WorldWideScience

Sample records for weak boson

  1. Hunting the weak bosons

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The possibility of the production of weak bosons in the proton-antiproton colliding beam facilities which are currently being developed, is discussed. The production, decay and predicted properties of these particles are described. (W.D.L.).

  2. Composite weak bosons

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, M.

    1988-04-01

    Dynamical mechanism of composite W and Z is studied in a 1/N field theory model with four-fermion interactions in which global weak SU(2) symmetry is broken explicitly by electromagnetic interaction. Issues involved in such a model are discussed in detail. Deviation from gauge coupling due to compositeness and higher order loop corrections are examined to show that this class of models are consistent not only theoretically but also experimentally.

  3. Weak boson emission in hadron collider processes

    International Nuclear Information System (INIS)

    Baur, U.

    2007-01-01

    The O(α) virtual weak radiative corrections to many hadron collider processes are known to become large and negative at high energies, due to the appearance of Sudakov-like logarithms. At the same order in perturbation theory, weak boson emission diagrams contribute. Since the W and Z bosons are massive, the O(α) virtual weak radiative corrections and the contributions from weak boson emission are separately finite. Thus, unlike in QED or QCD calculations, there is no technical reason for including gauge boson emission diagrams in calculations of electroweak radiative corrections. In most calculations of the O(α) electroweak radiative corrections, weak boson emission diagrams are therefore not taken into account. Another reason for not including these diagrams is that they lead to final states which differ from that of the original process. However, in experiment, one usually considers partially inclusive final states. Weak boson emission diagrams thus should be included in calculations of electroweak radiative corrections. In this paper, I examine the role of weak boson emission in those processes at the Fermilab Tevatron and the CERN LHC for which the one-loop electroweak radiative corrections are known to become large at high energies (inclusive jet, isolated photon, Z+1 jet, Drell-Yan, di-boson, tt, and single top production). In general, I find that the cross section for weak boson emission is substantial at high energies and that weak boson emission and the O(α) virtual weak radiative corrections partially cancel

  4. ElectroWeak Bosons Couplings

    CERN Document Server

    Ouraou, Ahmimed; The ATLAS collaboration

    2016-01-01

    Latest results on the measurement of gauge boson couplings, from ATLAS and CMS at the LHC, are presented. This review starts with an introduction to boson couplings, then the measurements of Triple and Quartic Couplings are described. And finally, limits on anomalous couplings are summarized.

  5. Search for a Higgs Boson Decaying to Weak Boson Pairs at LEP

    CERN Document Server

    Achard, P; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Dehmelt, K; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Dionisi, C; Dittmar, M; Doria, A; Dova, M T; Duchesneau, D; Duda, M; Echenard, B; Eline, A; El-Hage, A; El-Mamouni, H; Engler, A; Eppling, F J; Extermann, P; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, M; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hakobyan, R S; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Hu, Y; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Käfer, D; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Koutsenko, V F; Kräber, M H; Krämer, R W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Likhoded, S; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Nisati, A; Nowak, H; Ofierzynski, R A; Organtini, G; Palomares, C; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofiev, D O; Prokofev, D; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosier-Lees, S; Roth, S; Rosenbleck, C; Roux, B; Rubio, J A; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Sanders, M P; Schäfer, C; Shchegelskii, V; Schopper, Herwig Franz; Schotanus, D J; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Son, D; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van de Walle, R T; Vásquez, R; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wang, X L; Wang, Z M; Weber, M; Wienemann, P; Wilkens, H; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zimmermann, B; Zöller, M

    2003-01-01

    A Higgs particle produced in association with a Z boson and decaying into weak boson pairs is searched for in 336.4 1/pb of data collected by the L3 experiment at LEP at centre-of-mass energies from 200 to 209 GeV. Limits on the branching fraction of the Higgs boson decay into two weak bosons as a function of the Higgs mass are derived. These results are combined with the L3 search for a Higgs boson decaying to photon pairs. A Higgs produced with a Standard Model e+e- --> Zh cross section and decaying only into electroweak boson pairs is excluded at 95% CL for a mass below 107 GeV.

  6. Discovery of the charged vector bosons (W+-) conveying weak interaction

    International Nuclear Information System (INIS)

    Kiss, D.

    1983-01-01

    The unified Weinberg-Salam-Glashow theory of weak and electromagnetic interactions assumes the existence of two charged (W) and one neutral (Z) intermediate vector bosons of the unified electroweak interaction. These particles were discovered at the end of 1982 with the CERN's SPS proton-antiproton colliding beams. Technical aspects of the production and detection of W and Z bosons, the first results and their importance are described in detail. (D.Gy.)

  7. Renormalization of g-boson effects under weak coupling condition

    International Nuclear Information System (INIS)

    Zhang Zhanjun; Yang Jie; Liu Yong; Sang Jianping

    1998-01-01

    An approach based on perturbation theory is proposed to renormalized g-boson effects for sdgIBM system, which modifies that presented earlier by Druce et al. The weak coupling condition as the usage premise of the two approaches is proved to be satisfied. Two renormalization spectra are calculated for comparison and analyses. Results show that the g-boson effects are renormalized more completely by the approach proposed

  8. Origin and phenomenology of weak-doublet spin-1 bosons

    International Nuclear Information System (INIS)

    Chizhov, M.V.; Dvali, Gia

    2011-01-01

    We study phenomenological consequences of the Standard Model extension by the new spin-1 fields with the internal quantum numbers of the electroweak Higgs doublets. We show, that there are at least three different classes of theories, all motivated by the hierarchy problem, which predict appearance of such vector weak-doublets not far from the weak scale. The common feature for all the models is the existence of an SU(3) W gauge extension of the weak SU(2) W group, which is broken down to the latter at some energy scale around TeV. The Higgs doublet then emerges as either a pseudo-Nambu-Goldstone boson of a global remnant of SU(3) W , or as a symmetry partner of the true eaten-up Goldstone boson. In the third class, the Higgs is a scalar component of a high-dimensional SU(3) W gauge field. The common phenomenological feature of these theories is the existence of the electroweak doublet vectors (Z * ,W * ), which in contrast to well-known Z ' and W ' bosons posses only anomalous (magnetic moment type) couplings with ordinary light fermions. This fact leads to some unique signatures for their detection at the hadron colliders.

  9. Higgs boson production in association with a photon via weak boson fusion

    CERN Document Server

    Arnold, Ken; Jäger, Barbara; Zeppenfeld, Dieter

    2011-01-01

    We present next-to-leading order QCD corrections to Higgs production in association with a photon via weak boson fusion at a hadron collider. Utilizing the fully flexible parton level Monte-Carlo program VBFNLO, we find small overall corrections, while the shape of some distributions is sensitive to radiative contributions in certain regions of phase-space. Residual scale uncertainties at next-to-leading order are at the few-percent level. Being perturbatively well under control and exhibiting kinematic features that allow to distinguish it from potential backgrounds, this process can serve as a valuable source of information on the $Hb\\bar{b}$ Yukawa coupling.

  10. Inelastic multiple scattering of interacting bosons in weak random potentials

    International Nuclear Information System (INIS)

    Geiger, Tobias

    2013-01-01

    Within the present thesis we develop a diagrammatic scattering theory for interacting bosons in a three-dimensional, weakly disordered potential. Based on a microscopic N-body scattering theory, we identify the relevant diagrams including elastic and inelastic collision processes that are sufficient to describe quantum transport in the regime of weak disorder. By taking advantage of the statistical properties of the weak disorder potential, we demonstrate how the N-body dynamics can be reduced to a nonlinear integral equation of Boltzmann type for the single-particle diffusive flux. A presently available alternative description - based on the Gross-Pitaevskii equation - only includes elastic collisions. In contrast, we show that far from equilibrium the presence of inelastic collisions - even for weak interaction strength - must be accounted for and can induce the full thermalization of the single-particle current. In addition, we also determine the coherent corrections to the incoherent transport, leading to the effect of coherent backscattering. For the first time, we are able to analyze the influence of inelastic collisions on the coherent backscattering signal, which lead to an enhancement of the backscattered cone in a narrow spectral window, even for increasing non-linearity. With a short recollection of the presently available experimental techniques we furthermore show how an immediate implementation of our suggested setup with confined Bose-Einstein condensates can be accomplished. Thereby, the emergence of collective and/or thermodynamic behavior from fundamental, microscopic constituents can also be assessed experimentally. In a second part of this thesis, we present first results for light scattering off strongly interacting Rydberg atoms trapped in a one-dimensional, chain-like configuration. In order to monitor the time-dependence of this interacting many-body system, we devise a weak measurement scenario for which we derive a master equation for the

  11. Correlation function of weakly interacting bosons in a disordered lattice

    Energy Technology Data Exchange (ETDEWEB)

    Deissler, B; Lucioni, E; Modugno, M; Roati, G; Tanzi, L; Zaccanti, M; Inguscio, M; Modugno, G, E-mail: deissler@lens.unifi.it, E-mail: modugno@lens.unifi.it [LENS and Dipartimento di Fisica e Astronomia, Universita di Firenze, 50019 Sesto Fiorentino (Italy)

    2011-02-15

    One of the most important issues in disordered systems is the interplay of the disorder and repulsive interactions. Several recent experimental advances on this topic have been made with ultracold atoms, in particular the observation of Anderson localization and the realization of the disordered Bose-Hubbard model. There are, however, still questions as to how to differentiate the complex insulating phases resulting from this interplay, and how to measure the size of the superfluid fragments that these phases entail. It has been suggested that the correlation function of such a system can give new insights, but so far very little experimental investigation has been performed. Here, we show the first experimental analysis of the correlation function for a weakly interacting, bosonic system in a quasiperiodic lattice. We observe an increase in the correlation length as well as a change in the shape of the correlation function in the delocalization crossover from Anderson glass to coherent, extended state. In between, the experiment indicates the formation of progressively larger coherent fragments, consistent with a fragmented BEC, or Bose glass.

  12. Correlation function of weakly interacting bosons in a disordered lattice

    International Nuclear Information System (INIS)

    Deissler, B; Lucioni, E; Modugno, M; Roati, G; Tanzi, L; Zaccanti, M; Inguscio, M; Modugno, G

    2011-01-01

    One of the most important issues in disordered systems is the interplay of the disorder and repulsive interactions. Several recent experimental advances on this topic have been made with ultracold atoms, in particular the observation of Anderson localization and the realization of the disordered Bose-Hubbard model. There are, however, still questions as to how to differentiate the complex insulating phases resulting from this interplay, and how to measure the size of the superfluid fragments that these phases entail. It has been suggested that the correlation function of such a system can give new insights, but so far very little experimental investigation has been performed. Here, we show the first experimental analysis of the correlation function for a weakly interacting, bosonic system in a quasiperiodic lattice. We observe an increase in the correlation length as well as a change in the shape of the correlation function in the delocalization crossover from Anderson glass to coherent, extended state. In between, the experiment indicates the formation of progressively larger coherent fragments, consistent with a fragmented BEC, or Bose glass.

  13. Prospects of measuring gluon fusion and weak boson fusion cross sections at the LHC with CMS

    CERN Document Server

    Nicollerat, Anne-Sylvie

    2001-01-01

    The possibility to observe a Higgs boson having a mass between 300 and 600 GeV and to measure its couplings to vector bosons and top quark with CMS at the LHC is studied. Six different signatures are analyzed. The possibility to separate the Higgs events produced through weak boson fusion from the Higgs produced through gluon fusion using the forward going jets emitted in the weak boson fusion process is discussed for each of these different channels. The results are then used to determine the possible statistical errors on the ratio between the two Higgs decay branching fractions when it decays into Ws and into Zs and the possible statistical errors on the weak boson fusion and gluon fusion cross sections after one year of LHC running.

  14. Signatures for isoscalar weak vector bosons at pp and panti p colliders

    International Nuclear Information System (INIS)

    Baur, U.; Schwarzer, K.H.

    1986-01-01

    In a wide class of composite models of quarks, leptons and W-bosons the existence of isoscalar weak vector bosons Y or Y L is predicted. They either couple to the weak hypercharge current j μ Y or its left-handed part j Y μL =j μ YL and have a mass in the few hundred GeV range. The signatures of such particles at future hadron-hadron colliders is studied by means of an effective lagrangian incorporating vector dominance. Quantities relevant for detecting and studying isoscalar weak vector bosons turn out to be sensitive to the mixing strength λ Y of the Y- or Y L -boson with the photon. The Y or Y L are expected to be produced abundantly at multi-TeV colliders. The Tevatron collider will be able to see a Y L -boson if its mass is ≤400 GeV. (orig.)

  15. Composite weak bosons, anomalous Z decays and other consequences

    International Nuclear Information System (INIS)

    Renard, F.M.

    1984-01-01

    We first recall the motivations for considering W bosons as composite and the possible experimental tests proposed before W, Z discovery. We then present the Z → l + l - γ events and we discuss their possible interpretations (residual interaction, S, Z and l* enhancements). We propose additional tests using other Z and W decay modes like multiphoton and multifermion ones. We notice a possible similar enhancement of the crossed reactions e + e - → Zγ, qantiq → Zγ and of other 2-boson production processes

  16. Additional neutral vector boson in the 7-dimensional theory of gravy-electro-weak interactions

    International Nuclear Information System (INIS)

    Gavrilov, V.R.

    1988-01-01

    Possibilities of manifestation of an additional neutron vector boson, the existence of which is predicted by the 7-dimensional theory of gravy-electro-weak interactions, are analyzed. A particular case of muon neutrino scattering on a muon is considered. In this case additional neutral current manifests both at high and at relatively low energies of particle collisions

  17. Clean test of the electroweak theory by measuring weak boson masses

    International Nuclear Information System (INIS)

    Hioki, Zenro

    1985-01-01

    Role of the weak boson masses in the studies of electroweak higher order effects is surveyed. It is shown that precise measurements of these masses give us quite useful information for performing a clean test of the electroweak theory, and for a heavy fermion search. Effects of supersymmetric particles in these studies are also discussed. (author)

  18. Determination of the masses of electrical weak gauge bosons with L3

    CERN Document Server

    Rosenbleck, Christian

    2006-01-01

    This thesis presents the measurement of the masses of the carriers of the weak force in the Standard Model of Particle Physics, the gauge bosons W and Z. The masses are determined using the kinematics of the bosons' decay products. The data were collected by the L3 experiment at the Large Electron Positron Collider (LEP) at centre-of-mass energies, sqrt(s), between 183 GeV and 209 GeV in the years 1997 to 2000. The mass of the Z-boson, mZ, is already known very precisely: The L3 collaboration determined it to be mZ = 91.1898 +- 0.0031 GeV from a scan of the Z resonance. Therefore the main aim of this analysis is not the determination of the numerical value of mZ; instead the analysis is used to cross-check the measurement of the W boson mass since the methods are similar. Alternatively, the analysis can be used to measure the mean centre-of-mass energy at the L3 interaction point. The Z-boson mass is determined to be mZ = 91.272 +- 0.046 GeV. If interpreted as measurement of the centre-of-mass energy, this va...

  19. Higgs production via weak boson fusion in the standard model and the MSSM

    International Nuclear Information System (INIS)

    Figy, Terrance; Palmer, Sophy

    2010-12-01

    Weak boson fusion is expected to be an important Higgs production channel at the LHC. Complete one-loop results for weak boson fusion in the Standard Model have been obtained by calculating the full virtual electroweak corrections and photon radiation and implementing these results into the public Monte Carlo program VBFNLO (which includes the NLO QCD corrections). Furthermore the dominant supersymmetric one-loop corrections to neutral Higgs production, in the general case where the MSSM includes complex phases, have been calculated. These results have been combined with all one-loop corrections of Standard Model type and with the propagator-type corrections from the Higgs sector of the MSSM up to the two-loop level. Within the Standard Model the electroweak corrections are found to be as important as the QCD corrections after the application of appropriate cuts. The corrections yield a shift in the cross section of order 5% for a Higgs of mass 100-200 GeV, confirming the result obtained previously in the literature. For the production of a light Higgs boson in the MSSM the Standard Model result is recovered in the decoupling limit, while the loop contributions from superpartners to the production of neutral MSSM Higgs bosons can give rise to corrections in excess of 10% away from the decoupling region. (orig.)

  20. Discovery of the weak neutral intermediate vector boson Zsup(O)

    International Nuclear Information System (INIS)

    Kiss, D.

    1983-01-01

    The experimental detection and identification of the theoretically predicted new particle, the neutral intermediate vector boson of weak and electromagnetic interactions are described. Some technical details of the experiment made by CERN group led by C. Rubbia are discussed. The mass and width of Zsup(O) particle are in agreement with theoretical predictions. The importance of the new discovery is emphasized. (D.Gy.)

  1. Effects of an anomalous W-boson weak electric dipole moment in fi- fj → W ± Z0 (γ)

    International Nuclear Information System (INIS)

    Queijeiro, A.; Garcia, J.

    1995-01-01

    We study the high-energy production process f i - f j → W ± Z 0 (γ) allowing for gauge boson compositeness through an anomalous W - -boson weak-electric dipole moment parameter ∼ k z . We give the angular differential and total cross-section for different values of ∼ k z , and compare with the corresponding results coming from an anomalous weak-magnetic dipole moment k z . (Author)

  2. New weak boson decays and possible spin 3/2 leptons

    International Nuclear Information System (INIS)

    Fleury, N.; Lopes, J.L.; Simoes, J.A.M.

    1984-01-01

    It is discussed the possibility that new spin 3/2 leptons can occur in nature as a manifestation of a leptonic structure and in multiplets in supersymmetric theories. A new interaction between spin 1/2 and spin 3/2 particles that maintains the standard SU(2) sub(L) x U(1) local gauge invariance is postulated. A comparison with the anomalous Z 0 → e + e - γ events is made and new decays for the weak bosons are studied. (Author) [pt

  3. Cosmic ray neutrino tests for heavier weak bosons and cosmic antimatter

    Science.gov (United States)

    Brown, R. W.; Stecker, F. W.

    1981-01-01

    A program for using high energy neutrino astronomy with large neutrino detectors to directly test for the existence of heavier weak intermediate vector bosons (ivb) and cosmic antimatter is described. Such observations can provide a direct test of baryon symmetric cosmologies. Changes in the total cross section for nu(N) yields mu(X) due to additional propagators are discussed and higher mass resonances in the annihilation channel bar-nu sub e e(-) yields X are analyzed. The annihilation channel is instrumental in the search for antimatter, partcularly if heavier IVB's exist.

  4. Evidence for a particle produced in association with weak bosons and decaying to a bottom-antibottom quark pair in higgs boson searches at the tevatron.

    Science.gov (United States)

    Aaltonen, T; Abazov, V M; Abbott, B; Acharya, B S; Adams, M; Adams, T; Alexeev, G D; Alkhazov, G; Alton, A; Alvarez González, B; Alverson, G; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Askew, A; Atkins, S; Auerbach, B; Augsten, K; Aurisano, A; Avila, C; Azfar, F; Badaud, F; Badgett, W; Bae, T; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barbaro-Galtieri, A; Barberis, E; Baringer, P; Barnes, V E; Barnett, B A; Barria, P; Bartlett, J F; Bartos, P; Bassler, U; Bauce, M; Bazterra, V; Bean, A; Bedeschi, F; Begalli, M; Behari, S; Bellantoni, L; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bhat, P C; Bhatia, S; Bhatnagar, V; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Bland, K R; Blazey, G; Blessing, S; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Boehnlein, A; Boline, D; Boos, E E; Borissov, G; Bortoletto, D; Bose, T; Boudreau, J; Boveia, A; Brandt, A; Brandt, O; Brigliadori, L; Brock, R; Bromberg, C; Bross, A; Brown, D; Brown, J; Brucken, E; Budagov, J; Bu, X B; Budd, H S; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burkett, K; Busetto, G; Bussey, P; Buszello, C P; Buzatu, A; Calamba, A; Calancha, C; Camacho-Pérez, E; Camarda, S; Campanelli, M; Campbell, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Casey, B C K; Castilla-Valdez, H; Castro, A; Catastini, P; Caughron, S; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Chapon, E; Chen, G; Chen, Y C; Chertok, M; Chevalier-Théry, S; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, D K; Cho, K; Cho, S W; Choi, S; Chokheli, D; Choudhary, B; Chung, W H; Chung, Y S; Cihangir, S; Ciocci, M A; Claes, D; Clark, A; Clarke, C; Clutter, J; Compostella, G; Convery, M E; Conway, J; Cooke, M; Cooper, W E; Corbo, M; Corcoran, M; Cordelli, M; Couderc, F; Cousinou, M-C; Cox, C A; Cox, D J; Crescioli, F; Croc, A; Cuevas, J; Culbertson, R; Cutts, D; Dagenhart, D; d'Ascenzo, N; Das, A; Datta, M; Davies, G; de Barbaro, P; de Jong, S J; De La Cruz-Burelo, E; Déliot, F; Dell'orso, M; Demina, R; Demortier, L; Deninno, M; Denisov, D; Denisov, S P; d'Errico, M; Desai, S; Deterre, C; Devaughan, K; Devoto, F; Di Canto, A; Di Ruzza, B; Diehl, H T; Diesburg, M; Ding, P F; Dittmann, J R; Dominguez, A; Donati, S; Dong, P; D'Onofrio, M; Dorigo, M; Dorigo, T; Dubey, A; Dudko, L V; Duggan, D; Duperrin, A; Dutt, S; Dyshkant, A; Eads, M; Ebina, K; Edmunds, D; Elagin, A; Ellison, J; Elvira, V D; Enari, Y; Eppig, A; Erbacher, R; Errede, S; Ershaidat, N; Eusebi, R; Evans, H; Evdokimov, A; Evdokimov, V N; Facini, G; Farrington, S; Feindt, M; Feng, L; Ferbel, T; Fernandez, J P; Ferrazza, C; Fiedler, F; Field, R; Filthaut, F; Fisher, W; Fisk, H E; Flanagan, G; Forrest, R; Fortner, M; Fox, H; Frank, M J; Franklin, M; Freeman, J C; Fuess, S; Funakoshi, Y; Gallinaro, M; Garcia-Bellido, A; Garcia, J E; García-González, J A; García-Guerra, G A; Garfinkel, A F; Garosi, P; Gavrilov, V; Gay, P; Geng, W; Gerbaudo, D; Gerber, C E; Gerberich, H; Gerchtein, E; Gershtein, Y; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Ginsburg, C M; Ginther, G; Giokaris, N; Giromini, P; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Goldschmidt, N; Golossanov, A; Golovanov, G; Gomez-Ceballos, G; Gomez, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Goussiou, A; Grannis, P D; Greder, S; Greenlee, H; Grenier, G; Grinstein, S; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grosso-Pilcher, C; Group, R C; Grünendahl, S; Grünewald, M W; Guillemin, T; Guimaraes da Costa, J; Gutierrez, G; Gutierrez, P; Hagopian, S; Hahn, S R; Haley, J; Halkiadakis, E; Hamaguchi, A; Han, J Y; Han, L; Happacher, F; Hara, K; Harder, K; Hare, D; Hare, M; Harel, A; Harr, R F; Hatakeyama, K; Hauptman, J M; Hays, C; Hays, J; Head, T; Hebbeker, T; Heck, M; Hedin, D; Hegab, H; Heinrich, J; Heinson, A P; Heintz, U; Hensel, C; Heredia-De La Cruz, I; Herndon, M; Herner, K; Hesketh, G; Hewamanage, S; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hocker, A; Hoeneisen, B; Hogan, J; Hohlfeld, M; Hopkins, W; Horn, D; Hou, S; Howley, I; Hubacek, Z; Hughes, R E; Hurwitz, M; Husemann, U; Hussain, N; Hussein, M; Huston, J; Hynek, V; Iashvili, I; Ilchenko, Y; Illingworth, R; Introzzi, G; Iori, M; Ito, A S; Ivanov, A; Jabeen, S; Jaffré, M; James, E; Jang, D; Jayasinghe, A; Jayatilaka, B; Jeans, D T; Jeon, E J; Jeong, M S; Jesik, R; Jiang, P; Jindariani, S; Johns, K; Johnson, E; Johnson, M; Jonckheere, A; Jones, M; Jonsson, P; Joo, K K; Joshi, J; Jun, S Y; Jung, A W; Junk, T R; Juste, A; Kaadze, K; Kajfasz, E; Kamon, T; Karchin, P E; Karmanov, D; Kasmi, A; Kasper, P A; Kato, Y; Katsanos, I; Kehoe, R; Kermiche, S; Ketchum, W; Keung, J; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y J; Kim, Y K; Kimura, N; Kirby, M; Kiselevich, I; Klimenko, S; Knoepfel, K; Kohli, J M; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kozelov, A V; Kraus, J; Kreps, M; Kroll, J; Krop, D; Kruse, M; Krutelyov, V; Kuhr, T; Kulikov, S; Kumar, A; Kupco, A; Kurata, M; Kurča, T; Kuzmin, V A; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lammers, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lebrun, P; Lecompte, T; Lee, E; Lee, H S; Lee, H S; Lee, J S; Lee, S W; Lee, S W; Lee, W M; Lei, X; Lellouch, J; Leo, S; Leone, S; Lewis, J D; Li, D; Li, H; Li, L; Li, Q Z; Lim, J K; Limosani, A; Lincoln, D; Lin, C-J; Lindgren, M; Linnemann, J; Lipaev, V V; Lipeles, E; Lipton, R; Lister, A; Litvintsev, D O; Liu, C; Liu, H; Liu, H; Liu, Q; Liu, T; Liu, Y; Lobodenko, A; Lockwitz, S; Loginov, A; Lokajicek, M; Lopes de Sa, R; Lubatti, H J; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Luna-Garcia, R; Lungu, G; Lyon, A L; Lysak, R; Lys, J; Maciel, A K A; Madar, R; Madrak, R; Maestro, P; Magaña-Villalba, R; Malik, S; Malik, S; Malyshev, V L; Manca, G; Manousakis-Katsikakis, A; Maravin, Y; Margaroli, F; Marino, C; Martínez, M; Martínez-Ortega, J; Mastrandrea, P; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McCarthy, R; McFarland, K S; McGivern, C L; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Meijer, M M; Melnitchouk, A; Menezes, D; Mercadante, P G; Merkin, M; Mesropian, C; Meyer, A; Meyer, J; Miao, T; Miconi, F; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Mondal, N K; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mukherjee, A; Mulhearn, M; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nagy, E; Naimuddin, M; Nakano, I; Napier, A; Narain, M; Nayyar, R; Neal, H A; Negret, J P; Nett, J; Neubauer, M S; Neu, C; Neustroev, P; Nguyen, H T; Nielsen, J; Nodulman, L; Noh, S Y; Norniella, O; Nunnemann, T; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Orduna, J; Ortolan, L; Osman, N; Osta, J; Padilla, M; Pagan Griso, S; Pagliarone, C; Pal, A; Palencia, E; Papadimitriou, V; Paramonov, A A; Parashar, N; Parihar, V; Park, S K; Partridge, R; Parua, N; Patrick, J; Patwa, A; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penning, B; Penzo, A; Perfilov, M; Peters, Y; Petridis, K; Petrillo, G; Pétroff, P; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pondrom, L; Popov, A V; Poprocki, S; Potamianos, K; Pranko, A; Prewitt, M; Price, D; Prokopenko, N; Prokoshin, F; Ptohos, F; Punzi, G; Qian, J; Quadt, A; Quinn, B; Rahaman, A; Ramakrishnan, V; Rangel, M S; Ranjan, K; Ranjan, N; Ratoff, P N; Razumov, I; Redondo, I; Renkel, P; Renton, P; Rescigno, M; Riddick, T; Rimondi, F; Ripp-Baudot, I; Ristori, L; Rizatdinova, F; Robson, A; Rodriguez, T; Rogers, E; Rolli, S; Rominsky, M; Roser, R; Ross, A; Royon, C; Rubinov, P; Ruchti, R; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sajot, G; Sakumoto, W K; Sakurai, Y; Salcido, P; Sánchez-Hernández, A; Sanders, M P; Santi, L; Santos, A S; Sato, K; Savage, G; Saveliev, V; Savoy-Navarro, A; Sawyer, L; Scanlon, T; Schamberger, R D; Scheglov, Y; Schellman, H; Schlabach, P; Schlobohm, S; Schmidt, A; Schmidt, E E; Schwanenberger, C; Schwarz, T; Schwienhorst, R; Scodellaro, L; Scribano, A; Scuri, F; Seidel, S; Seiya, Y; Sekaric, J; Semenov, A; Severini, H; Sforza, F; Shabalina, E; Shalhout, S Z; Shary, V; Shaw, S; Shchukin, A A; Shears, T; Shepard, P F; Shimojima, M; Shivpuri, R K; Shochet, M; Shreyber-Tecker, I; Simak, V; Simonenko, A; Sinervo, P; Skubic, P; Slattery, P; Sliwa, K; Smirnov, D; Smith, J R; Smith, K J; Snider, F D; Snow, G R; Snow, J; Snyder, S; Soha, A; Söldner-Rembold, S; Song, H; Sonnenschein, L; Sorin, V; Soustruznik, K; Squillacioti, P; St Denis, R; Stancari, M; Stark, J; Stelzer-Chilton, O; Stelzer, B; Stentz, D; Stoyanova, D A; Strauss, M; Strologas, J; Strycker, G L; Sudo, Y; Sukhanov, A; Suslov, I; Suter, L; Svoisky, P; Takahashi, M; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thome, J; Thompson, G A; Thomson, E; Titov, M; Toback, D; Tokar, S; Tokmenin, V V; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Tsai, Y-T; Tschann-Grimm, K; Tsybychev, D; Tuchming, B; Tully, C; Ukegawa, F; Uozumi, S; Uvarov, L; Uvarov, S; Uzunyan, S; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varganov, A; Varnes, E W; Vasilyev, I A; Vázquez, F; Velev, G; Vellidis, C; Verdier, P; Verkheev, A Y; Vertogradov, L S; Verzocchi, M; Vesterinen, M; Vidal, M; Vila, I; Vilanova, D; Vilar, R; Vizán, J; Vogel, M; Vokac, P; Volpi, G; Wagner, P; Wagner, R L; Wahl, H D; Wakisaka, T; Wallny, R; Wang, S M; Wang, M H L S; Wang, R-J; Warburton, A; Warchol, J; Waters, D; Watts, G; Wayne, M; Weichert, J; Welty-Rieger, L; Wester, W C; White, A; Whiteson, D; Wick, F; Wicke, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, H H; Williams, M R J; Wilson, G W; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wobisch, M; Wolbers, S; Wolfe, H; Wood, D R; Wright, T; Wu, X; Wu, Z; Wyatt, T R; Xie, Y; Yamada, R; Yamamoto, K; Yamato, D; Yang, S; Yang, T; Yang, U K; Yang, W-C; Yang, Y C; Yao, W-M; Yasuda, T; Yatsunenko, Y A; Ye, W; Ye, Z; Yeh, G P; Yi, K; Yin, H; Yip, K; Yoh, J; Yorita, K; Yoshida, T; Youn, S W; Yu, G B; Yu, I; Yu, J M; Yu, S S; Yun, J C; Zanetti, A; Zeng, Y; Zennamo, J; Zhao, T; Zhao, T G; Zhou, B; Zhou, C; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L; Zucchelli, S

    2012-08-17

    We combine searches by the CDF and D0 Collaborations for the associated production of a Higgs boson with a W or Z boson and subsequent decay of the Higgs boson to a bottom-antibottom quark pair. The data, originating from Fermilab Tevatron pp collisions at √s = 1.96 TeV, correspond to integrated luminosities of up to 9.7 fb(-1). The searches are conducted for a Higgs boson with mass in the range 100-150 GeV/c(2). We observe an excess of events in the data compared with the background predictions, which is most significant in the mass range between 120 and 135 GeV/c(2). The largest local significance is 3.3 standard deviations, corresponding to a global significance of 3.1 standard deviations. We interpret this as evidence for the presence of a new particle consistent with the standard model Higgs boson, which is produced in association with a weak vector boson and decays to a bottom-antibottom quark pair.

  5. Processes with weak gauge boson pairs at hadron colliders. Precise predictions and future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Salfelder, Lukas

    2017-02-08

    In the last years, scattering processes comprising pairs of the massive weak gauge bosons gain more and more attention. Those reactions provide particularly promising means to investigate the very mechanism responsible for electroweak symmetry breaking in the Standard Model of particle physics and to search for new physics entering via the weak sector of the theory. Precisely predicting the differential distributions of the final-state particles in realistic conditions is an essential prerequisite to potentially reveal tiny deviations induced by physics beyond the Standard Model. In this thesis we present a calculation of the next-to-leading order (NLO) electroweak corrections to W-boson pair production at CERNs Large Hadron Collider (LHC), as well as a detailed analysis of vector-boson scattering (VBS) processes at a future high-energy proton.proton collider. In particular, our calculation of the NLO electroweak corrections to the hadronic process pp→W{sup +}W{sup -}→4 leptons takes the leptonic W-boson decays as well as all off-shell effects fully into account and, thus, is the first prediction providing NLO accuracy everywhere in phase space. Employing realistic event selection criteria, we study the influence of the corrections in situations that are typical for the experimental analyses in the high-energy region and for Higgs-boson precision studies in the channel H→WW{sup *}, to which direct W-boson pair production represents an important irreducible background. We observe non-trivial distortions of the differential distributions that, if not properly included in upcoming analyses, could easily be misidentified as first signs of new physics. Furthermore, we compare our predictions to previous results obtained by employing the so-called double-pole approximation. At small and intermediate scales the two approaches show the expected agreement at the level of fractions of a percent, while in the TeV range the differences may easily reach several tens of

  6. Equation of state and hybrid star properties with the weakly interacting light U-boson in relativistic models

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dong-Rui; Jiang, Wei-Zhou; Wei, Si-Na; Yang, Rong-Yao [Southeast University, Department of Physics, Nanjing (China); Xiang, Qian-Fei [Chinese Academy of Sciences, Institute of High Energy Physics, Beijing (China)

    2016-05-15

    It has been a puzzle whether quarks may exist in the interior of massive neutron stars, since the hadron-quark phase transition softens the equation of state (EOS) and reduce the neutron star (NS) maximum mass very significantly. In this work, we consider the light U-boson that increases the NS maximum mass appreciably through its weak coupling to fermions. The inclusion of the U-boson may thus allow the existence of the quark degrees of freedom in the interior of large mass neutron stars. Unlike the consequence of the U-boson in hadronic matter, the stiffening role of the U-boson in the hybrid EOS is not sensitive to the choice of the hadron phase models. In addition, we have also investigated the effect of the effective QCD correction on the hybrid EOS. This correction may reduce the coupling strength of the U-boson that is needed to satisfy NS maximum mass constraint. While the inclusion of the U-boson also increases the NS radius significantly, we find that appropriate in-medium effects of the U-boson may reduce the NS radii significantly, satisfying both the NS radius and mass constraints well. (orig.)

  7. Bosonization

    CERN Document Server

    1994-01-01

    Bosonization is a useful technique for studying systems of interacting fermions in low dimensions. It has applications in both particle and condensed matter physics.This book contains reprints of papers on the method as used in these fields. The papers range from the classic work of Tomonaga in the 1950's on one-dimensional electron gases, through the discovery of fermionic solitons in the 1970's, to integrable systems and bosonization on Riemann surfaces. A four-chapter pedagogical introduction by the editor should make the book accessible to graduate students and experienced researchers alik

  8. NLO QCD corrections to the production of a weak boson pair with a jet

    International Nuclear Information System (INIS)

    Sanguinetti, G.

    2008-07-01

    The upcoming Large Hadron Collider (LHC) will get soon the first data from the collisions between protons at the TeV energy scale, in order to understand the electroweak symmetry breaking. Precise phenomenological studies for processes involving many particles in the final state are then required. A detailed theoretical knowledge of the Quantum Chromodynamics backgrounds is indispensable for these studies at the LHC. Among the processes with more than four particles, the production of a weak boson pair (W, Z) associated by a hadronic jet is identified as one of the Higgs searches background at the LHC. It is important to calculate the next-to-leading order QCD corrections to this process, which are composed of two parts: the virtual correction (a one-loop amplitude calculation) and the real emission (a tree level amplitude calculation but with one more parton in the final state). Compact analytical expressions have been evaluated numerically for the virtual part and are in agreement with the results obtained by two other independent research groups. Concerning the real emission, all contributions have been calculated by using packages for the generation of tree-level amplitudes. Thus, we are able to give precise predictions about the next-to-leading order corrections to the total cross section of this process at the LHC. (author)

  9. An SU(3)xU(1) theory of weak-electromagnetic interactions with charged boson mixing

    International Nuclear Information System (INIS)

    Singer, M.

    1978-01-01

    An SU(3)xU(1) gauge theory of weak electromagnetic interactions is proposed in which the charged bosons mix with each other. The model naturally ensures e-μ and quark-lepton universality in couplings, and the charged boson mixing permits an equal number of leptons and quark flavours. There are no new stable leptons. All the fermions are placed in triplets and singlets and the theory is vector-like and hence free of anomalies. In addition one of the charged bosons can have a mass less than 43 GeV. Discrete symmetries and specific choices for Higgs fields are postulated to obtain the appropriate boson and fermion masses. Calculations for the decay of the tau particle, which is described as a heavy electron, are given. Multimuon events are discussed as are neutrino neutral currents. Calculations are also given for testing asymmetries in e-hadron scattering due to weak electron neutral currents along with other phenomenology of the model

  10. Limiting absorption principle at low energies for a mathematical model of weak interaction: the decay of a boson

    International Nuclear Information System (INIS)

    Barbarouxa, J.M.; Guillot, J.C.

    2009-01-01

    We study the spectral properties of a Hamiltonian describing the weak decay of spin 1 massive bosons into the full family of leptons. We prove that the considered Hamiltonian is self-adjoint, with a unique ground state and we derive a Mourre estimate and a limiting absorption principle above the ground state energy and below the first threshold, for a sufficiently small coupling constant. As a corollary, we prove absence of eigenvalues and absolute continuity of the energy spectrum in the same spectral interval. (authors)

  11. Measurement of the effective weak mixing angle by jet-charge asymmetry in hadronic decays of the Z boson

    CERN Document Server

    Acciarri, M; Aguilar-Benítez, M; Ahlen, S P; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Ball, R C; Banerjee, S; Banerjee, Sw; Banicz, K; Barczyk, A; Barillère, R; Barone, L; Bartalini, P; Baschirotto, A; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Bilei, G M; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böck, R K; Böhm, A; Boldizsar, L; Borgia, B; Bourilkov, D; Bourquin, Maurice; Boutigny, D; Braccini, S; Branson, J G; Brigljevic, V; Brock, I C; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Busenitz, J K; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chen, M; Chiefari, G; Chien, C Y; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Coignet, G; Colijn, A P; Colino, N; Costantini, S; Cotorobai, F; de la Cruz, B; Csilling, Akos; Dai, T S; D'Alessandro, R; De Asmundis, R; Degré, A; Deiters, K; Denes, P; De Notaristefani, F; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dova, M T; Drago, E; Duchesneau, D; Duinker, P; Durán, I; Easo, S; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Extermann, Pierre; Fabre, M; Faccini, R; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Ferguson, T; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisk, I; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gau, S S; Gentile, S; Gerald, J; Gheordanescu, N; Giagu, S; Goldfarb, S; Goldstein, J; Gong, Z F; Gougas, Andreas; Gratta, Giorgio; Grünewald, M W; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hartmann, B; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hidas, P; Hirschfelder, J; Van Hoek, W C; Hofer, H; Hoorani, H; Hou, S R; Hu, G; Iashvili, I; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kasser, A; Khan, R A; Kamrad, D; Kapustinsky, J S; Karyotakis, Yu; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, D H; Kim, J K; Kim, S C; Kinnison, W W; Kirkby, A; Kirkby, D; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Kopp, A; Korolko, I; Koutsenko, V F; Krämer, R W; Krenz, W; Kunin, A; Lacentre, P E; Ladrón de Guevara, P; Landi, G; Lapoint, C; Lassila-Perini, K M; Laurikainen, P; Lavorato, A; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Lee, H J; Leggett, C; Le Goff, J M; Leiste, R; Leonardi, E; Levchenko, P M; Li Chuan; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lu, W; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Majumder, G; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Marchesini, P A; Marian, G; Marin, A; Martin, J P; Marzano, F; Massaro, G G G; Mazumdar, K; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Mi, Y; Migani, D; Mihul, A; Van Mil, A J W; Milcent, H; Mirabelli, G; Mnich, J; Molnár, P; Monteleoni, B; Moore, R; Moulik, T; Mount, R; Muanza, G S; Muheim, F; Muijs, A J M; Nahn, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nippe, A; Nisati, A; Nowak, H; Oh, Yu D; Organtini, G; Ostonen, R; Palomares, C; Pandoulas, D; Paoletti, S; Paolucci, P; Park, H K; Park, I H; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Peach, D; Pedace, M; Pei, Y J; Pensotti, S; Perret-Gallix, D; Petersen, B; Petrak, S; Pevsner, A; Piccolo, D; Pieri, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Pothier, J; Produit, N; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Raja, N; Rancoita, P G; Rattaggi, M; Raven, G; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riles, K; Rind, O; Robohm, A; Rodin, J; Roe, B P; Romero, L; Rosier-Lees, S; Rosselet, P; Roth, S; Rubio, Juan Antonio; Ruschmeier, D; Rykaczewski, H; Sakar, S; Salicio, J; Sánchez, E; Sanders, M P; Sarakinos, M E; Sauvage, G; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schneegans, M; Scholz, N; Schopper, Herwig Franz; Schotanus, D J; Schwenke, J; Schwering, G; Sciacca, C; Sciarrino, D; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shukla, J; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Soulimov, V; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, H; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Susinno, G F; Suter, H; Swain, J D; Tang, X W; Tauscher, Ludwig; Taylor, L; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Uchida, Y; Ulbricht, J; Valente, E; Vesztergombi, G; Vetlitskii, I; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, J C; Wang, X L; Wang, Z M; Weber, A; Wu, S X; Wynhoff, S; Xu, J; Xu, Z Z; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Ye, J B; Yeh, S C; You, J M; Zalite, A; Zalite, Yu; Zemp, P; Zeng, Y; Zhang, Z P; Zhou, B; Zhou, Y; Zhu, G Y; Zhu, R Y; Zichichi, Antonino; Ziegler, F; Zilizi, G

    1998-01-01

    The coupling of the Z boson to quarks is studied in a sample of about 3.5 million hadronic Z decays collected by the L3 experiment at LEP from 1991 to 1995. The forward-backward quark charge asymmet ry is measured by means of a jet charge technique. From the measured asymmetries, the effective weak mixing angle is determined to be \\begin{center} $\\STE = 0.2327 \\pm 0.0012(\\mbox{\\emph{stat.}} ) \\pm 0.0013(\\mbox{\\emph{syst.}}).$

  12. GR@PPA 2.8: Initial-state jet matching for weak-boson production processes at hadron collisions

    Science.gov (United States)

    Odaka, Shigeru; Kurihara, Yoshimasa

    2012-04-01

    The initial-state jet matching method introduced in our previous studies has been applied to the event generation of single W and Z production processes and diboson (WW, WZ and ZZ) production processes at hadron collisions in the framework of the GR@PPA event generator. The generated events reproduce the transverse momentum spectra of weak bosons continuously in the entire kinematical region. The matrix elements (ME) for hard interactions are still at the tree level. As in previous versions, the decays of weak bosons are included in the matrix elements. Therefore, spin correlations and phase-space effects in the decay of weak bosons are exact at the tree level. The program package includes custom-made parton shower programs as well as ME-based hard interaction generators in order to achieve self-consistent jet matching. The generated events can be passed to general-purpose event generators to make the simulation proceed down to the hadron level. Catalogue identifier: ADRH_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADRH_v3_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 112 146 No. of bytes in distributed program, including test data, etc.: 596 667 Distribution format: tar.gz Programming language: Fortran; with some included libraries coded in C and C++ Computer: All Operating system: Any UNIX-like system RAM: 1.6 Mega bytes at minimum Classification: 11.2 Catalogue identifier of previous version: ADRH_v2_0 Journal reference of previous version: Comput. Phys. Comm. 175 (2006) 665 External routines: Bash and Perl for the setup, and CERNLIB, ROOT, LHAPDF, PYTHIA according to the user's choice. Does the new version supersede the previous version?: No, this version supports only a part of the processes included in the previous versions. Nature of problem: We

  13. Performance of the Alice muon spectrometer. Weak boson production and measurement in heavy-ion collisions at LHC

    International Nuclear Information System (INIS)

    Conesa del valle, Z.

    2007-07-01

    Lattice QCD predicts a transition from a hadronic phase to a Quark Gluon Plasma phase, QGP, for temperatures above 10 13 K. Heavy-ion collisions are proposed to recreate it in laboratory. With such a purpose, the LHC (Large Hadron Collider) will provide Pb-Pb collisions at 5.5 TeV/u, and the ALICE experiment will permit to explore them. In particular, the ALICE muon spectrometer will permit to investigate the muon related probes (quarkonia, open beauty,...). The expected apparatus performances to measure muons and dimuons are discussed. A factorization technique is employed to unravel the different contributions to the global efficiency. Results indicate that the detector should be able to measure muons up to pT ∼ 100 GeV/c with a resolution of about 10 per cent. We show that weak bosons production could be measured for the first time in heavy-ion collisions. Single muon p T and dimuons invariant mass distributions will probe W and Z production. As mainly muons from b- and c-quarks decays will populate the intermediate-p T of 5 - 25 GeV/c, heavy quark in-medium energy loss calculations indicate that the single muon spectra would be suppressed by a factor 2-4 in the most central 0 - 10% Pb-Pb collisions at 5.5 TeV. However, for p T > 35 GeV/c the weak boson decays are predominant, and no suppression is expected. Estimations indicate that the b- and W-muons crossing point shifts down in transverse momenta by 5 to 7 GeV/c in the most central 0 - 10% Pb-Pb collisions at 5.5 TeV. (author)

  14. Charge-charge correlations and the detection of weak vector bosons by hadronic jets in proton-antiproton and proton-proton collisions at collider energies

    International Nuclear Information System (INIS)

    Ranft, J.; Ritter, S.

    1980-07-01

    The charge properties of quark jets are studied within a chain decay model for quark jet fragmentation. Using the charge properties of quark jets, charge-charge two-jet cross sections and correlations are defined. In proton-antiproton collisions these correlations show significant structure due to the weak vector bosons W +- and Z 0 . (author)

  15. Forty years of the first attempt at the electroweak unification and of the prediction of the weak neutral boson Z0

    International Nuclear Information System (INIS)

    Leite Lopes, J.

    1998-03-01

    The author describes his first in 1958 at the unification of electromagnetic and weak interactions and his prediction in the same paper of the neutral Z 0 boson which would be the intermediate quantum exchanged in an eventual electron-neutron weak interaction (as muonic neutrinos were not known at that time). In annex he transcribes copies of letters from Steven Weinberg, Abdus Salam and Bruno Pontecorvo and comments by C.N. Yang and J. Tiomno. (author)

  16. Observing H→W(*)W(*)→e±μ±peT in weak boson fusion with dual forward jet tagging at the CERN LHC

    International Nuclear Information System (INIS)

    Rainwater, D.; Zeppenfeld, D.

    1999-01-01

    Weak boson fusion promises to be a copious source of intermediate mass standard model Higgs bosons at the CERN LHC. The additional very energetic forward jets in these events provide for powerful background suppression tools. We analyze the H→W (*) W (*) →e ± μ ± pe T decay mode for a Higgs boson mass in the 130-200 GeV range. A parton level analysis of the dominant backgrounds (production of W pairs, tt(bar sign) and Z→ττ in association with jets) demonstrates that this channel allows the observation of H→W (*) W (*) in a virtually background-free environment, yielding a significant Higgs boson signal with an integrated luminosity of 5 fb -1 or less. Weak boson fusion achieves a much better signal to background ratio than inclusive H→e ± μ ± pe T and is therefore the most promising search channel in the 130-200 GeV mass range. (c) 1999 The American Physical Society

  17. Measurement of the transverse momentum spectra of weak vector bosons produced in proton-proton collisions at √s=8 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Khachatryan, V.; Sirunyan, A.M.; Tumasyan, A. [Yerevan Physics Institute, Yerevan (Armenia); Adam, W. [Institut für Hochenergiephysik der OeAW, Wien (Austria); Collaboration: The CMS collaboration; and others

    2017-02-20

    The transverse momentum spectra of weak vector bosons are measured in the CMS experiment at the LHC. The measurement uses a sample of proton-proton collisions at √s=8 TeV, collected during a special low-luminosity running that corresponds to an integrated luminosity of 18.4±0.5 pb{sup −1}. The production of W bosons is studied in both electron and muon decay modes, while the production of Z bosons is studied using only the dimuon decay channel. The ratios of W{sup −} to W{sup +} and Z to W differential cross sections are also measured. The measured differential cross sections and ratios are compared with theoretical predictions up to next-to-next leading order in QCD.

  18. Forty years of the first attempt at the electroweak unification and of the prediction of the weak neutral boson Z{sub 0}

    Energy Technology Data Exchange (ETDEWEB)

    Leite Lopes, J [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    1998-03-01

    The author describes his first in 1958 at the unification of electromagnetic and weak interactions and his prediction in the same paper of the neutral Z{sub 0} boson which would be the intermediate quantum exchanged in an eventual electron-neutron weak interaction (as muonic neutrinos were not known at that time). In annex he transcribes copies of letters from Steven Weinberg, Abdus Salam and Bruno Pontecorvo and comments by C.N. Yang and J. Tiomno. (author) 24 refs., 5 figs.

  19. Signature of the CERN GoldenBook at CERN by Peters Higgs British theoretical physicist - He worked on proposals to unify the weak and the electromagnetic forces into a single electroweak theory, The Boson of Higgs.

    CERN Multimedia

    Claudia Marcelloni

    2008-01-01

    Signature of the CERN GoldenBook at CERN by Peters Higgs British theoretical physicist - He worked on proposals to unify the weak and the electromagnetic forces into a single electroweak theory, The Boson of Higgs.

  20. Visit of Peters Higgs at Point 2 ALICE Experiment - British theoretical physicist, He worked on proposals to unify the weak and the electromagnetic forces into a single electroweak theory, The Boson of Higgs.

    CERN Multimedia

    Mona Schweizer

    2008-01-01

    Visit of Peters Higgs at Point 2 ALICE Experiment - British theoretical physicist, He worked on proposals to unify the weak and the electromagnetic forces into a single electroweak theory, The Boson of Higgs.

  1. Search for Higgs boson production via weak boson fusion and decaying to bb¯in association with a high-energy photon using the ATLAS detector

    CERN Document Server

    Liang, Zhijun; The ATLAS collaboration

    2017-01-01

    A search for the bb¯ decay of the Standard Model Higgs boson produced through vector boson fusion in association with a high transverse energy (ET) photon has been conducted with the ATLAS detector. The high-ET photon provides a distinct signature for both triggering and reducing the large QCD jet background present in the inclusive bb¯jj signature. The talk will focus on new trigger strategy implemented in 2016 data taking to target the specific final state as well as the implementation of the multivariate strategy for the signal extraction. This analysis has been combined with a complementary analysis in the more inclusive bb¯jj final state, which results in a significant improvement in the sensitivity. Results with pp collision data collected in 2015 and 2016 at a centre-of-mass energy of 13 TeV are presented.

  2. Search for Higgs boson production via weak boson fusion and decaying to $b \\bar b$ in association with a high-energy photon in the ATLAS detector

    CERN Document Server

    The ATLAS collaboration

    2016-01-01

    A search has been conducted for the $b\\bar b$ decay of the Standard Model Higgs boson produced through vector boson fusion in association with a photon and two jets. The search in this $b\\bar b \\gamma jj$ signature benefits from a large reduction of QCD jet background relative to the inclusive $b\\bar b j j$ signature and from the presence of a high-tranverse-momentum photon for triggering. Results are reported from the analysis of 12.6 fb$^{-1}$ of LHC proton-proton collision data at $\\sqrt{s} = 13$ TeV collected with the ATLAS detector. The observed 95\\% confidence level upper limit on the production cross section times branching ratio for a Higgs mass of 125 GeV is $4.0$ times the Standard Model expectation, and the expected upper limit is $6.0^{+2.3}_{-1.7}$. The measured signal strength is $\\mu=-3.9^{+2.8}_{-2.7}$ times the Standard Model value. The analysis methods are also used to search for $Z+\\gamma$ vector boson fusion production in the same $b\\bar b \\gamma j j$ signature. The observed upper limit on...

  3. Measurement of longitudinal spin asymmetries for weak boson production in polarized proton-proton collisions at RHIC.

    Science.gov (United States)

    Adamczyk, L; Adkins, J K; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Anson, C D; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Balewski, J; Banerjee, A; Beavis, D R; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Borowski, W; Bouchet, J; Brandin, A V; Brovko, S G; Bültmann, S; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Calderón de la Barca Sánchez, M; Campbell, J M; Cebra, D; Cendejas, R; Cervantes, M C; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, L; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chwastowski, J; Codrington, M J M; Contin, G; Cramer, J G; Crawford, H J; Cui, X; Das, S; Davila Leyva, A; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; Derradi de Souza, R; Dhamija, S; di Ruzza, B; Didenko, L; Dilks, C; Ding, F; Djawotho, P; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Engle, K S; Eppley, G; Eun, L; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Fedorisin, J; Filip, P; Finch, E; Fisyak, Y; Flores, C E; Gagliardi, C A; Gangadharan, D R; Garand, D; Geurts, F; Gibson, A; Girard, M; Gliske, S; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, A; Gupta, S; Guryn, W; Haag, B; Hamed, A; Han, L-X; Haque, R; Harris, J W; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, B; Huang, H Z; Huang, X; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Kesich, A; Khan, Z H; Kikola, D P; Kisel, I; Kisiel, A; Koetke, D D; Kollegger, T; Konzer, J; Koralt, I; Kosarzewski, L K; Kotchenda, L; Kraishan, A F; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; LeVine, M J; Li, C; Li, W; Li, X; Li, X; Li, Y; Li, Z M; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, G L; Ma, Y G; Madagodagettige Don, D M M D; Mahapatra, D P; Majka, R; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; McShane, T S; Minaev, N G; Mioduszewski, S; Mohanty, B; Mondal, M M; Morozov, D A; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nelson, J M; Nigmatkulov, G; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Ohlson, A; Okorokov, V; Oldag, E W; Olvitt, D L; Pachr, M; Page, B S; Pal, S K; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlak, T; Pawlik, B; Pei, H; Perkins, C; Peryt, W; Pile, P; Planinic, M; Pluta, J; Poljak, N; Poniatowska, K; Porter, J; Poskanzer, A M; Pruthi, N K; Przybycien, M; Pujahari, P R; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Riley, C K; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Ross, J F; Roy, A; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sangaline, E; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, B; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Singaraju, R N; Skoby, M J; Smirnov, D; Smirnov, N; Solanki, D; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stevens, J R; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Sun, X; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, D N; Symons, T J M; Szelezniak, M A; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Trzeciak, B A; Tsai, O D; Turnau, J; Ullrich, T; Underwood, D G; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Vanfossen, J A; Varma, R; Vasconcelos, G M S; Vasiliev, A N; Vertesi, R; Videbæk, F; Viyogi, Y P; Vokal, S; Vossen, A; Wada, M; Wang, F; Wang, G; Wang, H; Wang, J S; Wang, X L; Wang, Y; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z; Xie, W; Xin, K; Xu, H; Xu, J; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yan, W; Yang, C; Yang, Y; Yang, Y; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Yu, N; Zawisza, Y; Zbroszczyk, H; Zha, W; Zhang, J B; Zhang, J L; Zhang, S; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, F; Zhao, J; Zhong, C; Zhu, X; Zhu, Y H; Zoulkarneeva, Y; Zyzak, M

    2014-08-15

    We report measurements of single- and double-spin asymmetries for W^{±} and Z/γ^{*} boson production in longitudinally polarized p+p collisions at sqrt[s]=510  GeV by the STAR experiment at RHIC. The asymmetries for W^{±} were measured as a function of the decay lepton pseudorapidity, which provides a theoretically clean probe of the proton's polarized quark distributions at the scale of the W mass. The results are compared to theoretical predictions, constrained by polarized deep inelastic scattering measurements, and show a preference for a sizable, positive up antiquark polarization in the range 0.05

  4. Measurement of Longitudinal Spin Asymmetries for Weak Boson Production in Polarized Proton-Proton Collisions at RHIC

    Science.gov (United States)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C. D.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Balewski, J.; Banerjee, A.; Beavis, D. R.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Borowski, W.; Bouchet, J.; Brandin, A. V.; Brovko, S. G.; Bültmann, S.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, L.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chwastowski, J.; Codrington, M. J. M.; Contin, G.; Cramer, J. G.; Crawford, H. J.; Cui, X.; Das, S.; Davila Leyva, A.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Derradi de Souza, R.; Dhamija, S.; di Ruzza, B.; Didenko, L.; Dilks, C.; Ding, F.; Djawotho, P.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Engle, K. S.; Eppley, G.; Eun, L.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Fedorisin, J.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Gagliardi, C. A.; Gangadharan, D. R.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Gliske, S.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Haag, B.; Hamed, A.; Han, L.-X.; Haque, R.; Harris, J. W.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, H. Z.; Huang, X.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Kesich, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Koetke, D. D.; Kollegger, T.; Konzer, J.; Koralt, I.; Kosarzewski, L. K.; Kotchenda, L.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; LeVine, M. J.; Li, C.; Li, W.; Li, X.; Li, X.; Li, Y.; Li, Z. M.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, Y. G.; Madagodagettige Don, D. M. M. D.; Mahapatra, D. P.; Majka, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; McShane, T. S.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Ohlson, A.; Okorokov, V.; Oldag, E. W.; Olvitt, D. L.; Pachr, M.; Page, B. S.; Pal, S. K.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Peryt, W.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Pujahari, P. R.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Riley, C. K.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ross, J. F.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sangaline, E.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Singaraju, R. N.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solanki, D.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stevens, J. R.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Sun, X.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, D. N.; Symons, T. J. M.; Szelezniak, M. A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Vanfossen, J. A.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Vossen, A.; Wada, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J. S.; Wang, X. L.; Wang, Y.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, H.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y.; Xu, Z.; Yan, W.; Yang, C.; Yang, Y.; Yang, Y.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zawisza, Y.; Zbroszczyk, H.; Zha, W.; Zhang, J. B.; Zhang, J. L.; Zhang, S.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, X.; Zhu, Y. H.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2014-08-01

    We report measurements of single- and double-spin asymmetries for W± and Z/γ* boson production in longitudinally polarized p+p collisions at √s =510 GeV by the STAR experiment at RHIC. The asymmetries for W± were measured as a function of the decay lepton pseudorapidity, which provides a theoretically clean probe of the proton's polarized quark distributions at the scale of the W mass. The results are compared to theoretical predictions, constrained by polarized deep inelastic scattering measurements, and show a preference for a sizable, positive up antiquark polarization in the range 0.05

  5. Search for a light Higgs boson decaying to long-lived weakly interacting particles in proton-proton collisions at sqrt[s] = 7 TeV with the ATLAS detector.

    Science.gov (United States)

    Aad, G; Abbott, B; Abdallah, J; Abdelalim, A A; Abdesselam, A; Abdinov, O; Abi, B; Abolins, M; Abouzeid, O S; Abramowicz, H; Abreu, H; Acerbi, E; Acharya, B S; Adamczyk, L; Adams, D L; Addy, T N; Adelman, J; Aderholz, M; Adomeit, S; Adragna, P; Adye, T; Aefsky, S; Aguilar-Saavedra, J A; Aharrouche, M; Ahlen, S P; Ahles, F; Ahmad, A; Ahsan, M; Aielli, G; Akdogan, T; Akesson, T P A; Akimoto, G; Akimov, A V; Akiyama, A; Alam, M S; Alam, M A; Albert, J; Albrand, S; Aleksa, M; Aleksandrov, I N; Alessandria, F; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Aliev, M; Alimonti, G; Alison, J; Aliyev, M; Allport, P P; Allwood-Spiers, S E; Almond, J; Aloisio, A; Alon, R; Alonso, A; Alvarez Gonzalez, B; Alviggi, M G; Amako, K; Amaral, P; Amelung, C; Ammosov, V V; Amorim, A; Amorós, G; Amram, N; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anderson, K J; Andreazza, A; Andrei, V; Andrieux, M-L; Anduaga, X S; Angerami, A; Anghinolfi, F; Anisenkov, A; Anjos, N; Annovi, A; Antonaki, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoun, S; Aperio Bella, L; Apolle, R; Arabidze, G; Aracena, I; Arai, Y; Arce, A T H; Archambault, J P; Arfaoui, S; Arguin, J-F; Arik, E; Arik, M; Armbruster, A J; Arnaez, O; Arnault, C; Artamonov, A; Artoni, G; Arutinov, D; Asai, S; Asfandiyarov, R; Ask, S; Asman, B; Asquith, L; Assamagan, K; Astbury, A; Astvatsatourov, A; Aubert, B; Auge, E; Augsten, K; Aurousseau, M; Avolio, G; Avramidou, R; Axen, D; Ay, C; Azuelos, G; Azuma, Y; Baak, M A; Baccaglioni, G; Bacci, C; Bach, A M; Bachacou, H; Bachas, K; Bachy, G; Backes, M; Backhaus, M; Badescu, E; Bagnaia, P; Bahinipati, S; Bai, Y; Bailey, D C; Bain, T; Baines, J T; Baker, O K; Baker, M D; Baker, S; Banas, E; Banerjee, P; Banerjee, Sw; Banfi, D; Bangert, A; Bansal, V; Bansil, H S; Barak, L; Baranov, S P; Barashkou, A; Barbaro Galtieri, A; Barber, T; Barberio, E L; Barberis, D; Barbero, M; Bardin, D Y; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnett, B M; Barnett, R M; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; da Costa, J Barreiro Guimarães; Barrillon, P; Bartoldus, R; Barton, A E; Bartsch, V; Bates, R L; Batkova, L; Batley, J R; Battaglia, A; Battistin, M; Bauer, F; Bawa, H S; Beale, S; Beare, B; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, S; Beckingham, M; Becks, K H; Beddall, A J; Beddall, A; Bedikian, S; Bednyakov, V A; Bee, C P; Begel, M; Behar Harpaz, S; Behera, P K; Beimforde, M; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellina, F; Bellomo, M; Belloni, A; Beloborodova, O; Belotskiy, K; Beltramello, O; Ben Ami, S; Benary, O; Benchekroun, D; Benchouk, C; Bendel, M; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez Garcia, J A; Benjamin, D P; Benoit, M; Bensinger, J R; Benslama, K; Bentvelsen, S; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Berglund, E; Beringer, J; Bernat, P; Bernhard, R; Bernius, C; Berry, T; Bertella, C; Bertin, A; Bertinelli, F; Bertolucci, F; Besana, M I; Besson, N; Bethke, S; Bhimji, W; Bianchi, R M; Bianco, M; Biebel, O; Bieniek, S P; Bierwagen, K; Biesiada, J; Biglietti, M; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biscarat, C; Bitenc, U; Black, K M; Blair, R E; Blanchard, J-B; Blanchot, G; Blazek, T; Blocker, C; Blocki, J; Blondel, A; Blum, W; Blumenschein, U; Bobbink, G J; Bobrovnikov, V B; Bocchetta, S S; Bocci, A; Boddy, C R; Boehler, M; Boek, J; Boelaert, N; Böser, S; Bogaerts, J A; Bogdanchikov, A; Bogouch, A; Bohm, C; Boisvert, V; Bold, T; Boldea, V; Bolnet, N M; Bona, M; Bondarenko, V G; Bondioli, M; Boonekamp, M; Boorman, G; Booth, C N; Bordoni, S; Borer, C; Borisov, A; Borissov, G; Borjanovic, I; Borroni, S; Bos, K; Boscherini, D; Bosman, M; Boterenbrood, H; Botterill, D; Bouchami, J; Boudreau, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boveia, A; Boyd, J; Boyko, I R; Bozhko, N I; Bozovic-Jelisavcic, I; Bracinik, J; Braem, A; Branchini, P; Brandenburg, G W; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brelier, B; Bremer, J; Brenner, R; Bressler, S; Breton, D; Britton, D; Brochu, F M; Brock, I; Brock, R; Brodbeck, T J; Brodet, E; Broggi, F; Bromberg, C; Bronner, J; Brooijmans, G; Brooks, W K; Brown, G; Brown, H; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Brunet, S; Bruni, A; Bruni, G; Bruschi, M; Buanes, T; Buat, Q; Bucci, F; Buchanan, J; Buchanan, N J; Buchholz, P; Buckingham, R M; Buckley, A G; Buda, S I; Budagov, I A; Budick, B; Büscher, V; Bugge, L; Bulekov, O; Bunse, M; Buran, T; Burckhart, H; Burdin, S; Burgess, T; Burke, S; Busato, E; Bussey, P; Buszello, C P; Butin, F; Butler, B; Butler, J M; Buttar, C M; Butterworth, J M; Buttinger, W; Cabrera Urbán, S; Caforio, D; Cakir, O; Calafiura, P; Calderini, G; Calfayan, P; Calkins, R; Caloba, L P; Caloi, R; Calvet, D; Calvet, S; Camacho Toro, R; Camarri, P; Cambiaghi, M; Cameron, D; Caminada, L M; Campana, S; Campanelli, M; Canale, V; Canelli, F; Canepa, A; Cantero, J; Capasso, L; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capriotti, D; Capua, M; Caputo, R; Caramarcu, C; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, B; Caron, S; Carrillo Montoya, G D; Carter, A A; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Cascella, M; Caso, C; Castaneda Hernandez, A M; Castaneda-Miranda, E; Castillo Gimenez, V; Castro, N F; Cataldi, G; Cataneo, F; Catinaccio, A; Catmore, J R; Cattai, A; Cattani, G; Caughron, S; Cauz, D; Cavalleri, P; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cetin, S A; Cevenini, F; Chafaq, A; Chakraborty, D; Chan, K; Chapleau, B; Chapman, J D; Chapman, J W; Chareyre, E; Charlton, D G; Chavda, V; Chavez Barajas, C A; Cheatham, S; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, S; Chen, T; Chen, X; Cheng, S; Cheplakov, A; Chepurnov, V F; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Cheung, S L; Chevalier, L; Chiefari, G; Chikovani, L; Childers, J T; Chilingarov, A; Chiodini, G; Chizhov, M V; Choudalakis, G; Chouridou, S; Christidi, I A; Christov, A; Chromek-Burckhart, D; Chu, M L; Chudoba, J; Ciapetti, G; Ciba, K; Ciftci, A K; Ciftci, R; Cinca, D; Cindro, V; Ciobotaru, M D; Ciocca, C; Ciocio, A; Cirilli, M; Citterio, M; Ciubancan, M; Clark, A; Clark, P J; Cleland, W; Clemens, J C; Clement, B; Clement, C; Clifft, R W; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coe, P; Cogan, J G; Coggeshall, J; Cogneras, E; Colas, J; Colijn, A P; Collins, N J; Collins-Tooth, C; Collot, J; Colon, G; Conde Muiño, P; Coniavitis, E; Conidi, M C; Consonni, M; Consorti, V; Constantinescu, S; Conta, C; Conventi, F; Cook, J; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Copic, K; Cornelissen, T; Corradi, M; Corriveau, F; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Costin, T; Côté, D; Coura Torres, R; Courneyea, L; Cowan, G; Cowden, C; Cox, B E; Cranmer, K; Crescioli, F; Cristinziani, M; Crosetti, G; Crupi, R; Crépé-Renaudin, S; Cuciuc, C-M; Cuenca Almenar, C; Cuhadar Donszelmann, T; Curatolo, M; Curtis, C J; Cuthbert, C; Cwetanski, P; Czirr, H; Czodrowski, P; Czyczula, Z; D'Auria, S; D'Onofrio, M; D'Orazio, A; Da Silva, P V M; Da Via, C; Dabrowski, W; Dai, T; Dallapiccola, C; Dam, M; Dameri, M; Damiani, D S; Danielsson, H O; Dannheim, D; Dao, V; Darbo, G; Darlea, G L; Daum, C; Davey, W; Davidek, T; Davidson, N; Davidson, R; Davies, E; Davies, M; Davison, A R; Davygora, Y; Dawe, E; Dawson, I; Dawson, J W; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Castro, S; De Castro Faria Salgado, P E; De Cecco, S; de Graat, J; De Groot, N; de Jong, P; De La Taille, C; De la Torre, H; De Lotto, B; de Mora, L; De Nooij, L; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; Dean, S; Dearnaley, W J; Debbe, R; Debenedetti, C; Dedovich, D V; Degenhardt, J; Dehchar, M; Del Papa, C; Del Peso, J; Del Prete, T; Delemontex, T; Deliyergiyev, M; Dell'acqua, A; Dell'asta, L; Della Pietra, M; Della Volpe, D; Delmastro, M; Delruelle, N; Delsart, P A; Deluca, C; Demers, S; Demichev, M; Demirkoz, B; Deng, J; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Devetak, E; Deviveiros, P O; Dewhurst, A; Dewilde, B; Dhaliwal, S; Dhullipudi, R; Di Ciaccio, A; Di Ciaccio, L; Di Girolamo, A; Di Girolamo, B; Di Luise, S; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Diaz, M A; Diblen, F; Diehl, E B; Dietrich, J; Dietzsch, T A; Diglio, S; Dindar Yagci, K; Dingfelder, J; Dionisi, C; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; do Vale, M A B; Do Valle Wemans, A; Doan, T K O; Dobbs, M; Dobinson, R; Dobos, D; Dobson, E; Dodd, J; Doglioni, C; Doherty, T; Doi, Y; Dolejsi, J; Dolenc, I; Dolezal, Z; Dolgoshein, B A; Dohmae, T; Donadelli, M; Donega, M; Donini, J; Dopke, J; Doria, A; Dos Anjos, A; Dosil, M; Dotti, A; Dova, M T; Dowell, J D; Doxiadis, A D; Doyle, A T; Drasal, Z; Drees, J; Dressnandt, N; Drevermann, H; Driouichi, C; Dris, M; Dubbert, J; Dube, S; Duchovni, E; Duckeck, G; Dudarev, A; Dudziak, F; Dührssen, M; Duerdoth, I P; Duflot, L; Dufour, M-A; Dunford, M; Duran Yildiz, H; Duxfield, R; Dwuznik, M; Dydak, F; Düren, M; Ebenstein, W L; Ebke, J; Eckweiler, S; Edmonds, K; Edwards, C A; Edwards, N C; Ehrenfeld, W; Ehrich, T; Eifert, T; Eigen, G; Einsweiler, K; Eisenhandler, E; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Ellis, K; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Engelmann, R; Engl, A; Epp, B; Eppig, A; Erdmann, J; Ereditato, A; Eriksson, D; Ernst, J; Ernst, M; Ernwein, J; Errede, D; Errede, S; Ertel, E; Escalier, M; Escobar, C; Espinal Curull, X; Esposito, B; Etienne, F; Etienvre, A I; Etzion, E; Evangelakou, D; Evans, H; Fabbri, L; Fabre, C; Fakhrutdinov, R M; Falciano, S; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farley, J; Farooque, T; Farrington, S M; Farthouat, P; Fassnacht, P; Fassouliotis, D; Fatholahzadeh, B; Favareto, A; Fayard, L; Fazio, S; Febbraro, R; Federic, P; Fedin, O L; Fedorko, W; Fehling-Kaschek, M; Feligioni, L; Fellmann, D; Feng, C; Feng, E J; Fenyuk, A B; Ferencei, J; Ferland, J; Fernando, W; Ferrag, S; Ferrando, J; Ferrara, V; Ferrari, A; Ferrari, P; Ferrari, R; Ferrer, A; Ferrer, M L; Ferrere, D; Ferretti, C; Ferretto Parodi, A; Fiascaris, M; Fiedler, F; Filipčič, A; Filippas, A; Filthaut, F; Fincke-Keeler, M; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, G; Fischer, P; Fisher, M J; Flechl, M; Fleck, I; Fleckner, J; Fleischmann, P; Fleischmann, S; Flick, T; Flores Castillo, L R; Flowerdew, M J; Fokitis, M; Fonseca Martin, T; Forbush, D A; Formica, A; Forti, A; Fortin, D; Foster, J M; Fournier, D; Foussat, A; Fowler, A J; Fowler, K; Fox, H; Francavilla, P; Franchino, S; Francis, D; Frank, T; Franklin, M; Franz, S; Fraternali, M; Fratina, S; French, S T; Friedrich, F; Froeschl, R; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fuster, J; Gabaldon, C; Gabizon, O; Gadfort, T; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Gallas, E J; Gallo, V; Gallop, B J; Gallus, P; Gan, K K; Gao, Y S; Gapienko, V A; Gaponenko, A; Garberson, F; Garcia-Sciveres, M; García, C; García Navarro, J E; Gardner, R W; Garelli, N; Garitaonandia, H; Garonne, V; Garvey, J; Gatti, C; Gaudio, G; Gaumer, O; Gaur, B; Gauthier, L; Gavrilenko, I L; Gay, C; Gaycken, G; Gayde, J-C; Gazis, E N; Ge, P; Gee, C N P; Geerts, D A A; Geich-Gimbel, Ch; Gellerstedt, K; Gemme, C; Gemmell, A; Genest, M H; Gentile, S; George, M; George, S; Gerlach, P; Gershon, A; Geweniger, C; Ghazlane, H; Ghodbane, N; Giacobbe, B; Giagu, S; Giakoumopoulou, V; Giangiobbe, V; Gianotti, F; Gibbard, B; Gibson, A; Gibson, S M; Gilbert, L M; Gilewsky, V; Gillberg, D; Gillman, A R; Gingrich, D M; Ginzburg, J; Giokaris, N; Giordani, M P; Giordano, R; Giorgi, F M; Giovannini, P; Giraud, P F; Giugni, D; Giunta, M; Giusti, P; Gjelsten, B K; Gladilin, L K; Glasman, C; Glatzer, J; Glazov, A; Glitza, K W; Glonti, G L; Goddard, J R; Godfrey, J; Godlewski, J; Goebel, M; Göpfert, T; Goeringer, C; Gössling, C; Göttfert, T; Goldfarb, S; Golling, T; Golovnia, S N; Gomes, A; Gomez Fajardo, L S; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, L; Gonidec, A; Gonzalez, S; González de la Hoz, S; Gonzalez Parra, G; Gonzalez Silva, M L; Gonzalez-Sevilla, S; Goodson, J J; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorfine, G; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Gorokhov, S A; Goryachev, V N; Gosdzik, B; Gosselink, M; Gostkin, M I; Gough Eschrich, I; Gouighri, M; Goujdami, D; Goulette, M P; Goussiou, A G; Goy, C; Gozpinar, S; Grabowska-Bold, I; Grafström, P; Grahn, K-J; Grancagnolo, F; Grancagnolo, S; Grassi, V; Gratchev, V; Grau, N; Gray, H M; Gray, J A; Graziani, E; Grebenyuk, O G; Greenshaw, T; Greenwood, Z D; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grigalashvili, N; Grillo, A A; Grinstein, S; Grishkevich, Y V; Grivaz, J-F; Groh, M; Gross, E; Grosse-Knetter, J; Groth-Jensen, J; Grybel, K; Guarino, V J; Guest, D; Guicheney, C; Guida, A; Guindon, S; Guler, H; Gunther, J; Guo, B; Guo, J; Gupta, A; Gusakov, Y; Gushchin, V N; Gutierrez, A; Gutierrez, P; Guttman, N; Gutzwiller, O; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haas, S; Haber, C; Hadavand, H K; Hadley, D R; Haefner, P; Hahn, F; Haider, S; Hajduk, Z; Hakobyan, H; Hall, D; Haller, J; Hamacher, K; Hamal, P; Hamer, M; Hamilton, A; Hamilton, S; Han, H; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Handel, C; Hanke, P; Hansen, J R; Hansen, J B; Hansen, J D; Hansen, P H; Hansson, P; Hara, K; Hare, G A; Harenberg, T; Harkusha, S; Harper, D; Harrington, R D; Harris, O M; Harrison, K; Hartert, J; Hartjes, F; Haruyama, T; Harvey, A; Hasegawa, S; Hasegawa, Y; Hassani, S; Hatch, M; Hauff, D; Haug, S; Hauschild, M; Hauser, R; Havranek, M; Hawes, B M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hawkins, D; Hayakawa, T; Hayashi, T; Hayden, D; Hayward, H S; Haywood, S J; Hazen, E; He, M; Head, S J; Hedberg, V; Heelan, L; Heim, S; Heinemann, B; Heisterkamp, S; Helary, L; Heller, C; Heller, M; Hellman, S; Hellmich, D; Helsens, C; Henderson, R C W; Henke, M; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Henry-Couannier, F; Hensel, C; Henß, T; Hernandez, C M; Hernández Jiménez, Y; Herrberg, R; Hershenhorn, A D; Herten, G; Hertenberger, R; Hervas, L; Hessey, N P; Higón-Rodriguez, E; Hill, D; Hill, J C; Hill, N; Hiller, K H; Hillert, S; Hillier, S J; Hinchliffe, I; Hines, E; Hirose, M; Hirsch, F; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoffman, J; Hoffmann, D; Hohlfeld, M; Holder, M; Holmgren, S O; Holy, T; Holzbauer, J L; Homma, Y; Hong, T M; Hooft van Huysduynen, L; Horazdovsky, T; Horn, C; Horner, S; Hostachy, J-Y; Hou, S; Houlden, M A; Hoummada, A; Howarth, J; Howell, D F; Hristova, I; Hrivnac, J; Hruska, I; Hryn'ova, T; Hsu, P J; Hsu, S-C; Huang, G S; Hubacek, Z; Hubaut, F; Huegging, F; Huettmann, A; Huffman, T B; Hughes, E W; Hughes, G; Hughes-Jones, R E; Huhtinen, M; Hurst, P; Hurwitz, M; Husemann, U; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibbotson, M; Ibragimov, I; Ichimiya, R; Iconomidou-Fayard, L; Idarraga, J; Iengo, P; Igonkina, O; Ikegami, Y; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Imbault, D; Imori, M; Ince, T; Inigo-Golfin, J; Ioannou, P; Iodice, M; Ippolito, V; Irles Quiles, A; Isaksson, C; Ishikawa, A; Ishino, M; Ishmukhametov, R; Issever, C; Istin, S; Ivashin, A V; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jackson, B; Jackson, J N; Jackson, P; Jaekel, M R; Jain, V; Jakobs, K; Jakobsen, S; Jakubek, J; Jana, D K; Jankowski, E; Jansen, E; Jansen, H; Jantsch, A; Janus, M; Jarlskog, G; Jeanty, L; Jelen, K; Jen-La Plante, I; Jenni, P; Jeremie, A; Jež, P; Jézéquel, S; Jha, M K; Ji, H; Ji, W; Jia, J; Jiang, Y; Jimenez Belenguer, M; Jin, G; Jin, S; Jinnouchi, O; Joergensen, M D; Joffe, D; Johansen, L G; Johansen, M; Johansson, K E; Johansson, P; Johnert, S; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T W; Jones, T J; Jonsson, O; Joram, C; Jorge, P M; Joseph, J; Jovin, T; Ju, X; Jung, C A; Jungst, R M; Juranek, V; Jussel, P; Juste Rozas, A; Kabachenko, V V; Kabana, S; Kaci, M; Kaczmarska, A; Kadlecik, P; Kado, M; Kagan, H; Kagan, M; Kaiser, S; Kajomovitz, E; Kalinin, S; Kalinovskaya, L V; Kama, S; Kanaya, N; Kaneda, M; Kaneti, S; Kanno, T; Kantserov, V A; Kanzaki, J; Kaplan, B; Kapliy, A; Kaplon, J; Kar, D; Karagounis, M; Karagoz, M; Karnevskiy, M; Karr, K; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kasieczka, G; Kass, R D; Kastanas, A; Kataoka, M; Kataoka, Y; Katsoufis, E; Katzy, J; Kaushik, V; Kawagoe, K; Kawamoto, T; Kawamura, G; Kayl, M S; Kazanin, V A; Kazarinov, M Y; Keeler, R; Kehoe, R; Keil, M; Kekelidze, G D; Kennedy, J; Kenney, C J; Kenyon, M; Kepka, O; Kerschen, N; Kerševan, B P; Kersten, S; Kessoku, K; Keung, J; Khalil-Zada, F; Khandanyan, H; Khanov, A; Kharchenko, D; Khodinov, A; Kholodenko, A G; Khomich, A; Khoo, T J; Khoriauli, G; Khoroshilov, A; Khovanskiy, N; Khovanskiy, V; Khramov, E; Khubua, J; Kim, H; Kim, M S; Kim, P C; Kim, S H; Kimura, N; Kind, O; King, B T; King, M; King, R S B; Kirk, J; Kirsch, L E; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kittelmann, T; Kiver, A M; Kladiva, E; Klaiber-Lodewigs, J; Klein, M; Klein, U; Kleinknecht, K; Klemetti, M; Klier, A; Klimek, P; Klimentov, A; Klingenberg, R; Klinkby, E B; Klioutchnikova, T; Klok, P F; Klous, S; Kluge, E-E; Kluge, T; Kluit, P; Kluth, S; Knecht, N S; Kneringer, E; Knobloch, J; Knoops, E B F G; Knue, A; Ko, B R; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Köneke, K; König, A C; Koenig, S; Köpke, L; Koetsveld, F; Koevesarki, P; Koffas, T; Koffeman, E; Kogan, L A; Kohn, F; Kohout, Z; Kohriki, T; Koi, T; Kokott, T; Kolachev, G M; Kolanoski, H; Kolesnikov, V; Koletsou, I; Koll, J; Kollar, D; Kollefrath, M; Kolya, S D; Komar, A A; Komori, Y; Kondo, T; Kono, T; Kononov, A I; Konoplich, R; Konstantinidis, N; Kootz, A; Koperny, S; Korcyl, K; Kordas, K; Koreshev, V; Korn, A; Korol, A; Korolkov, I; Korolkova, E V; Korotkov, V A; Kortner, O; Kortner, S; Kostyukhin, V V; Kotamäki, M J; Kotov, S; Kotov, V M; Kotwal, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kral, V; Kramarenko, V A; Kramberger, G; Krasny, M W; Krasznahorkay, A; Kraus, J; Kraus, J K; Kreisel, A; Krejci, F; Kretzschmar, J; Krieger, N; Krieger, P; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Kruker, T; Krumnack, N; Krumshteyn, Z V; Kruth, A; Kubota, T; Kuehn, S; Kugel, A; Kuhl, T; Kuhn, D; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kummer, C; Kuna, M; Kundu, N; Kunkle, J; Kupco, A; Kurashige, H; Kurata, M; Kurochkin, Y A; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwee, R; La Rosa, A; La Rotonda, L; Labarga, L; Labbe, J; Lablak, S; Lacasta, C; Lacava, F; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Laisne, E; Lamanna, M; Lampen, C L; Lampl, W; Lancon, E; Landgraf, U; Landon, M P J; Landsman, H; Lane, J L; Lange, C; Lankford, A J; Lanni, F; Lantzsch, K; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Larionov, A V; Larner, A; Lasseur, C; Lassnig, M; Laurelli, P; Lavrijsen, W; Laycock, P; Lazarev, A B; Le Dortz, O; Le Guirriec, E; Le Maner, C; Le Menedeu, E; Lebel, C; Lecompte, T; Ledroit-Guillon, F; Lee, H; Lee, J S H; Lee, S C; Lee, L; Lefebvre, M; Legendre, M; Leger, A; Legeyt, B C; Legger, F; Leggett, C; Lehmacher, M; Lehmann Miotto, G; Lei, X; Leite, M A L; Leitner, R; Lellouch, D; Leltchouk, M; Lemmer, B; Lendermann, V; Leney, K J C; Lenz, T; Lenzen, G; Lenzi, B; Leonhardt, K; Leontsinis, S; Leroy, C; Lessard, J-R; Lesser, J; Lester, C G; Leung Fook Cheong, A; Levêque, J; Levin, D; Levinson, L J; Levitski, M S; Lewis, A; Lewis, G H; Leyko, A M; Leyton, M; Li, B; Li, H; Li, S; Li, X; Liang, Z; Liao, H; Liberti, B; Lichard, P; Lichtnecker, M; Lie, K; Liebig, W; Lifshitz, R; Limbach, C; Limosani, A; Limper, M; Lin, S C; Linde, F; Linnemann, J T; Lipeles, E; Lipinsky, L; Lipniacka, A; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, C; Liu, D; Liu, H; Liu, J B; Liu, M; Liu, S; Liu, Y; Livan, M; Livermore, S S A; Lleres, A; Llorente Merino, J; Lloyd, S L; Lobodzinska, E; Loch, P; Lockman, W S; Loddenkoetter, T; Loebinger, F K; Loginov, A; Loh, C W; Lohse, T; Lohwasser, K; Lokajicek, M; Loken, J; Lombardo, V P; Long, R E; Lopes, L; Lopez Mateos, D; Lorenz, J; Losada, M; Loscutoff, P; Lo Sterzo, F; Losty, M J; Lou, X; Lounis, A; Loureiro, K F; Love, J; Love, P A; Lowe, A J; Lu, F; Lubatti, H J; Luci, C; Lucotte, A; Ludwig, A; Ludwig, D; Ludwig, I; Ludwig, J; Luehring, F; Luijckx, G; Lumb, D; Luminari, L; Lund, E; Lund-Jensen, B; Lundberg, B; Lundberg, J; Lundquist, J; Lungwitz, M; Lutz, G; Lynn, D; Lys, J; Lytken, E; Ma, H; Ma, L L; Macana Goia, J A; Maccarrone, G; Macchiolo, A; Maček, B; Machado Miguens, J; Mackeprang, R; Madaras, R J; Mader, W F; Maenner, R; Maeno, T; Mättig, P; Mättig, S; Magnoni, L; Magradze, E; Mahalalel, Y; Mahboubi, K; Mahout, G; Maiani, C; Maidantchik, C; Maio, A; Majewski, S; Makida, Y; Makovec, N; Mal, P; Malaescu, B; Malecki, Pa; Malecki, P; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V; Malyukov, S; Mameghani, R; Mamuzic, J; Manabe, A; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Mangeard, P S; Manhaes de Andrade Filho, L; Manjavidze, I D; Mann, A; Manning, P M; Manousakis-Katsikakis, A; Mansoulie, B; Manz, A; Mapelli, A; Mapelli, L; March, L; Marchand, J F; Marchese, F; Marchiori, G; Marcisovsky, M; Marin, A; Marino, C P; Marroquim, F; Marshall, R; Marshall, Z; Martens, F K; Marti-Garcia, S; Martin, A J; Martin, B; Martin, B; Martin, F F; Martin, J P; Martin, Ph; Martin, T A; Martin, V J; Martin Dit Latour, B; Martin-Haugh, S; Martinez, M; Martinez Outschoorn, V; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massaro, G; Massol, N; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mathes, M; Matricon, P; Matsumoto, H; Matsunaga, H; Matsushita, T; Mattravers, C; Maugain, J M; Maurer, J; Maxfield, S J; Maximov, D A; May, E N; Mayne, A; Mazini, R; Mazur, M; Mazzanti, M; Mazzoni, E; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; McFayden, J A; McGlone, H; McHedlidze, G; McLaren, R A; McLaughlan, T; McMahon, S J; McPherson, R A; Meade, A; Mechnich, J; Mechtel, M; Medinnis, M; Meera-Lebbai, R; Meguro, T; Mehdiyev, R; Mehlhase, S; Mehta, A; Meier, K; Meirose, B; Melachrinos, C; Mellado Garcia, B R; Mendoza Navas, L; Meng, Z; Mengarelli, A; Menke, S; Menot, C; Meoni, E; Mercurio, K M; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Meyer, J; Meyer, T C; Meyer, W T; Miao, J; Michal, S; Micu, L; Middleton, R P; Migas, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Miller, D W; Miller, R J; Mills, W J; Mills, C; Milov, A; Milstead, D A; Milstein, D; Minaenko, A A; Miñano Moya, M; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mirabelli, G; Miralles Verge, L; Misiejuk, A; Mitrevski, J; Mitrofanov, G Y; Mitsou, V A; Mitsui, S; Miyagawa, P S; Miyazaki, K; Mjörnmark, J U; Moa, T; Mockett, P; Moed, S; Moeller, V; Mönig, K; Möser, N; Mohapatra, S; Mohr, W; Mohrdieck-Möck, S; Moisseev, A M; Moles-Valls, R; Molina-Perez, J; Monk, J; Monnier, E; Montesano, S; Monticelli, F; Monzani, S; Moore, R W; Moorhead, G F; Mora Herrera, C; Moraes, A; Morange, N; Morel, J; Morello, G; Moreno, D; Moreno Llácer, M; Morettini, P; Morii, M; Morin, J; Morley, A K; Mornacchi, G; Morozov, S V; Morris, J D; Morvaj, L; Moser, H G; Mosidze, M; Moss, J; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Mudrinic, M; Mueller, F; Mueller, J; Mueller, K; Müller, T A; Mueller, T; Muenstermann, D; Muir, A; Munwes, Y; Murray, W J; Mussche, I; Musto, E; Myagkov, A G; Myska, M; Nadal, J; Nagai, K; Nagano, K; Nagasaka, Y; Nagel, M; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Nanava, G; Napier, A; Narayan, R; Nash, M; Nation, N R; Nattermann, T; Naumann, T; Navarro, G; Neal, H A; Nebot, E; Nechaeva, P Yu; Negri, A; Negri, G; Nektarijevic, S; Nelson, A; Nelson, S; Nelson, T K; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neusiedl, A; Neves, R M; Nevski, P; Newman, P R; Nguyen Thi Hong, V; Nickerson, R B; Nicolaidou, R; Nicolas, L; Nicquevert, B; Niedercorn, F; Nielsen, J; Niinikoski, T; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolaev, K; Nikolic-Audit, I; Nikolics, K; Nikolopoulos, K; Nilsen, H; Nilsson, P; Ninomiya, Y; Nisati, A; Nishiyama, T; Nisius, R; Nodulman, L; Nomachi, M; Nomidis, I; Nordberg, M; Nordkvist, B; Norton, P R; Novakova, J; Nozaki, M; Nozka, L; Nugent, I M; Nuncio-Quiroz, A-E; Nunes Hanninger, G; Nunnemann, T; Nurse, E; Nyman, T; O'Brien, B J; O'Neale, S W; O'Neil, D C; O'Shea, V; Oakes, L B; Oakham, F G; Oberlack, H; Ocariz, J; Ochi, A; Oda, S; Odaka, S; Odier, J; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohshima, T; Ohshita, H; Ohsugi, T; Okada, S; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Olcese, M; Olchevski, A G; Oliveira, M; Oliveira Damazio, D; Oliver Garcia, E; Olivito, D; Olszewski, A; Olszowska, J; Omachi, C; Onofre, A; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlov, I; Oropeza Barrera, C; Orr, R S; Osculati, B; Ospanov, R; Osuna, C; Otero Y Garzon, G; Ottersbach, J P; Ouchrif, M; Ouellette, E A; Ould-Saada, F; Ouraou, A; Ouyang, Q; Ovcharova, A; Owen, M; Owen, S; Ozcan, V E; Ozturk, N; Pacheco Pages, A; Padilla Aranda, C; Pagan Griso, S; Paganis, E; Paige, F; Pais, P; Pajchel, K; Palacino, G; Paleari, C P; Palestini, S; Pallin, D; Palma, A; Palmer, J D; Pan, Y B; Panagiotopoulou, E; Panes, B; Panikashvili, N; Panitkin, S; Pantea, D; Panuskova, M; Paolone, V; Papadelis, A; Papadopoulou, Th D; Paramonov, A; Park, W; Parker, M A; Parodi, F; Parsons, J A; Parzefall, U; Pasqualucci, E; Passaggio, S; Passeri, A; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N; Pater, J R; Patricelli, S; Pauly, T; Pecsy, M; Pedraza Morales, M I; Peleganchuk, S V; Peng, H; Pengo, R; Penson, A; Penwell, J; Perantoni, M; Perez, K; Perez Cavalcanti, T; Perez Codina, E; Pérez García-Estañ, M T; Perez Reale, V; Perini, L; Pernegger, H; Perrino, R; Perrodo, P; Persembe, S; Perus, A; Peshekhonov, V D; Peters, K; Petersen, B A; Petersen, J; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petrolo, E; Petrucci, F; Petschull, D; Petteni, M; Pezoa, R; Phan, A; Phillips, P W; Piacquadio, G; Piccaro, E; Piccinini, M; Piec, S M; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinder, A; Pinfold, J L; Ping, J; Pinto, B; Pirotte, O; Pizio, C; Plamondon, M; Pleier, M-A; Pleskach, A V; Poblaguev, A; Poddar, S; Podlyski, F; Poggioli, L; Poghosyan, T; Pohl, M; Polci, F; Polesello, G; Policicchio, A; Polini, A; Poll, J; Polychronakos, V; Pomarede, D M; Pomeroy, D; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Portell Bueso, X; Posch, C; Pospelov, G E; Pospisil, S; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Prabhu, R; Pralavorio, P; Pranko, A; Prasad, S; Pravahan, R; Prell, S; Pretzl, K; Pribyl, L; Price, D; Price, J; Price, L E; Price, M J; Prieur, D; Primavera, M; Prokofiev, K; Prokoshin, F; Protopopescu, S; Proudfoot, J; Prudent, X; Przybycien, M; Przysiezniak, H; Psoroulas, S; Ptacek, E; Pueschel, E; Purdham, J; Purohit, M; Puzo, P; Pylypchenko, Y; Qian, J; Qian, Z; Qin, Z; Quadt, A; Quarrie, D R; Quayle, W B; Quinonez, F; Raas, M; Radescu, V; Radics, B; Radloff, P; Rador, T; Ragusa, F; Rahal, G; Rahimi, A M; Rahm, D; Rajagopalan, S; Rammensee, M; Rammes, M; Randle-Conde, A S; Randrianarivony, K; Ratoff, P N; Rauscher, F; Raymond, M; Read, A L; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Reichold, A; Reinherz-Aronis, E; Reinsch, A; Reisinger, I; Reljic, D; Rembser, C; Ren, Z L; Renaud, A; Renkel, P; Rescigno, M; Resconi, S; Resende, B; Reznicek, P; Rezvani, R; Richards, A; Richter, R; Richter-Was, E; Ridel, M; Rijpstra, M; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Rios, R R; Riu, I; Rivoltella, G; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robinson, M; Robson, A; Rocha de Lima, J G; Roda, C; Roda Dos Santos, D; Rodriguez, D; Roe, A; Roe, S; Røhne, O; Rojo, V; Rolli, S; Romaniouk, A; Romano, M; Romanov, V M; Romeo, G; Romero Adam, E; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, A; Rose, M; Rosenbaum, G A; Rosenberg, E I; Rosendahl, P L; Rosenthal, O; Rosselet, L; Rossetti, V; Rossi, E; Rossi, L P; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubinskiy, I; Ruckert, B; Ruckstuhl, N; Rud, V I; Rudolph, C; Rudolph, G; Rühr, F; Ruggieri, F; Ruiz-Martinez, A; Rumiantsev, V; Rumyantsev, L; Runge, K; Rurikova, Z; Rusakovich, N A; Rust, D R; Rutherfoord, J P; Ruwiedel, C; Ruzicka, P; Ryabov, Y F; Ryadovikov, V; Ryan, P; Rybar, M; Rybkin, G; Ryder, N C; Rzaeva, S; Saavedra, A F; Sadeh, I; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Sakamoto, H; Salamanna, G; Salamon, A; Saleem, M; Salihagic, D; Salnikov, A; Salt, J; Salvachua Ferrando, B M; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sampsonidis, D; Samset, B H; Sanchez, A; Sandaker, H; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, T; Sandoval, C; Sandstroem, R; Sandvoss, S; Sankey, D P C; Sansoni, A; Santamarina Rios, C; Santoni, C; Santonico, R; Santos, H; Saraiva, J G; Sarangi, T; Sarkisyan-Grinbaum, E; Sarri, F; Sartisohn, G; Sasaki, O; Sasao, N; Satsounkevitch, I; Sauvage, G; Sauvan, E; Sauvan, J B; Savard, P; Savinov, V; Savu, D O; Sawyer, L; Saxon, D H; Says, L P; Sbarra, C; Sbrizzi, A; Scallon, O; Scannicchio, D A; Scarcella, M; Schaarschmidt, J; Schacht, P; Schäfer, U; Schaepe, S; Schaetzel, S; Schaffer, A C; Schaile, D; Schamberger, R D; Schamov, A G; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Scherzer, M I; Schiavi, C; Schieck, J; Schioppa, M; Schlenker, S; Schlereth, J L; Schmidt, E; Schmieden, K; Schmitt, C; Schmitt, S; Schmitz, M; Schöning, A; Schott, M; Schouten, D; Schovancova, J; Schram, M; Schroeder, C; Schroer, N; Schuh, S; Schuler, G; Schultes, J; Schultz-Coulon, H-C; Schulz, H; Schumacher, J W; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwemling, Ph; Schwienhorst, R; Schwierz, R; Schwindling, J; Schwindt, T; Schwoerer, M; Scott, W G; Searcy, J; Sedov, G; Sedykh, E; Segura, E; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Selbach, K E; Seliverstov, D M; Sellden, B; Sellers, G; Seman, M; Semprini-Cesari, N; Serfon, C; Serin, L; Seuster, R; Severini, H; Sevior, M E; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shank, J T; Shao, Q T; Shapiro, M; Shatalov, P B; Shaver, L; Shaw, K; Sherman, D; Sherwood, P; Shibata, A; Shichi, H; Shimizu, S; Shimojima, M; Shin, T; Shiyakova, M; Shmeleva, A; Shochet, M J; Short, D; Shrestha, S; Shupe, M A; Sicho, P; Sidoti, A; Siegert, F; Sijacki, Dj; Silbert, O; Silva, J; Silver, Y; Silverstein, D; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simmons, B; Simonyan, M; Sinervo, P; Sinev, N B; Sipica, V; Siragusa, G; Sircar, A; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skinnari, L A; Skottowe, H P; Skovpen, K; Skubic, P; Skvorodnev, N; Slater, M; Slavicek, T; Sliwa, K; Sloper, J; Smakhtin, V; Smirnov, S Yu; Smirnova, L N; Smirnova, O; Smith, B C; Smith, D; Smith, K M; Smizanska, M; Smolek, K; Snesarev, A A; Snow, S W; Snow, J; Snuverink, J; Snyder, S; Soares, M; Sobie, R; Sodomka, J; Soffer, A; Solans, C A; Solar, M; Solc, J; Soldatov, E; Soldevila, U; Solfaroli Camillocci, E; Solodkov, A A; Solovyanov, O V; Soni, N; Sopko, V; Sopko, B; Sosebee, M; Soualah, R; Soukharev, A; Spagnolo, S; Spanò, F; Spighi, R; Spigo, G; Spila, F; Spiwoks, R; Spousta, M; Spreitzer, T; Spurlock, B; St Denis, R D; Stahl, T; Stahlman, J; Stamen, R; Stanecka, E; Stanek, R W; Stanescu, C; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staude, A; Stavina, P; Stavropoulos, G; Steele, G; Steinbach, P; Steinberg, P; Stekl, I; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stern, S; Stevenson, K; Stewart, G A; Stillings, J A; Stockton, M C; Stoerig, K; Stoicea, G; Stonjek, S; Strachota, P; Stradling, A R; Straessner, A; Strandberg, J; Strandberg, S; Strandlie, A; Strang, M; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Strong, J A; Stroynowski, R; Strube, J; Stugu, B; Stumer, I; Stupak, J; Sturm, P; Styles, N A; Soh, D A; Su, D; Subramania, Hs; Succurro, A; Sugaya, Y; Sugimoto, T; Suhr, C; Suita, K; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, X; Sundermann, J E; Suruliz, K; Sushkov, S; Susinno, G; Sutton, M R; Suzuki, Y; Suzuki, Y; Svatos, M; Sviridov, Yu M; Swedish, S; Sykora, I; Sykora, T; Szeless, B; Sánchez, J; Ta, D; Tackmann, K; Taffard, A; Tafirout, R; Taiblum, N; Takahashi, Y; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A; Tamsett, M C; Tanaka, J; Tanaka, R; Tanaka, S; Tanaka, S; Tanaka, Y; Tanasijczuk, A J; Tani, K; Tannoury, N; Tappern, G P; Tapprogge, S; Tardif, D; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tassi, E; Tatarkhanov, M; Tayalati, Y; Taylor, C; Taylor, F E; Taylor, G N; Taylor, W; Teinturier, M; Teixeira Dias Castanheira, M; Teixeira-Dias, P; Temming, K K; Ten Kate, H; Teng, P K; Terada, S; Terashi, K; Terron, J; Testa, M; Teuscher, R J; Thadome, J; Therhaag, J; Theveneaux-Pelzer, T; Thioye, M; Thoma, S; Thomas, J P; Thompson, E N; Thompson, P D; Thompson, P D; Thompson, A S; Thomson, E; Thomson, M; Thun, R P; Tian, F; Tibbetts, M J; Tic, T; Tikhomirov, V O; Tikhonov, Y A; Timoshenko, S; Tipton, P; Tique Aires Viegas, F J; Tisserant, S; Toczek, B; Todorov, T; Todorova-Nova, S; Toggerson, B; Tojo, J; Tokár, S; Tokunaga, K; Tokushuku, K; Tollefson, K; Tomoto, M; Tompkins, L; Toms, K; Tong, G; Tonoyan, A; Topfel, C; Topilin, N D; Torchiani, I; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Trinh, T N; Tripiana, M F; Trischuk, W; Trivedi, A; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiakiris, M; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsung, J-W; Tsuno, S; Tsybychev, D; Tua, A; Tudorache, A; Tudorache, V; Tuggle, J M; Turala, M; Turecek, D; Turk Cakir, I; Turlay, E; Turra, R; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Tzanakos, G; Uchida, K; Ueda, I; Ueno, R; Ugland, M; Uhlenbrock, M; Uhrmacher, M; Ukegawa, F; Unal, G; Underwood, D G; Undrus, A; Unel, G; Unno, Y; Urbaniec, D; Usai, G; Uslenghi, M; Vacavant, L; Vacek, V; Vachon, B; Vahsen, S; Valenta, J; Valente, P; Valentinetti, S; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; van der Graaf, H; van der Kraaij, E; Van Der Leeuw, R; van der Poel, E; van der Ster, D; van Eldik, N; van Gemmeren, P; van Kesteren, Z; van Vulpen, I; Vanadia, M; Vandelli, W; Vandoni, G; Vaniachine, A; Vankov, P; Vannucci, F; Varela Rodriguez, F; Vari, R; Varnes, E W; Varouchas, D; Vartapetian, A; Varvell, K E; Vassilakopoulos, V I; Vazeille, F; Vegni, G; Veillet, J J; Vellidis, C; Veloso, F; Veness, R; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinek, E; Vinogradov, V B; Virchaux, M; Virzi, J; Vitells, O; Viti, M; Vivarelli, I; Vives Vaque, F; Vlachos, S; Vladoiu, D; Vlasak, M; Vlasov, N; Vogel, A; Vokac, P; Volpi, G; Volpi, M; Volpini, G; von der Schmitt, H; von Loeben, J; von Radziewski, H; von Toerne, E; Vorobel, V; Vorobiev, A P; Vorwerk, V; Vos, M; Voss, R; Voss, T T; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vu Anh, T; Vuillermet, R; Vukotic, I; Wagner, W; Wagner, P; Wahlen, H; Wakabayashi, J; Walbersloh, J; Walch, S; Walder, J; Walker, R; Walkowiak, W; Wall, R; Waller, P; Wang, C; Wang, H; Wang, H; Wang, J; Wang, J; Wang, J C; Wang, R; Wang, S M; Warburton, A; Ward, C P; Warsinsky, M; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, A T; Waugh, B M; Weber, M; Weber, M S; Weber, P; Weidberg, A R; Weigell, P; Weingarten, J; Weiser, C; Wellenstein, H; Wells, P S; Wen, M; Wenaus, T; Wendler, S; Weng, Z; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Werth, M; Wessels, M; Weydert, C; Whalen, K; Wheeler-Ellis, S J; Whitaker, S P; White, A; White, M J; Whitehead, S R; Whiteson, D; Whittington, D; Wicek, F; Wicke, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wijeratne, P A; Wildauer, A; Wildt, M A; Wilhelm, I; Wilkens, H G; Will, J Z; Williams, E; Williams, H H; Willis, W; Willocq, S; Wilson, J A; Wilson, M G; Wilson, A; Wingerter-Seez, I; Winkelmann, S; Winklmeier, F; Wittgen, M; Wolter, M W; Wolters, H; Wong, W C; Wooden, G; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wraight, K; Wright, C; Wright, M; Wrona, B; Wu, S L; Wu, X; Wu, Y; Wulf, E; Wunstorf, R; Wynne, B M; Xella, S; Xiao, M; Xie, S; Xie, Y; Xu, C; Xu, D; Xu, G; Yabsley, B; Yacoob, S; Yamada, M; Yamaguchi, H; Yamamoto, A; Yamamoto, K; Yamamoto, S; Yamamura, T; Yamanaka, T; Yamaoka, J; Yamazaki, T; Yamazaki, Y; Yan, Z; Yang, H; Yang, U K; Yang, Y; Yang, Y; Yang, Z; Yanush, S; Yao, Y; Yasu, Y; Ybeles Smit, G V; Ye, J; Ye, S; Yilmaz, M; Yoosoofmiya, R; Yorita, K; Yoshida, R; Young, C; Youssef, S; Yu, D; Yu, J; Yu, J; Yuan, L; Yurkewicz, A; Zabinski, B; Zaets, V G; Zaidan, R; Zaitsev, A M; Zajacova, Z; Zanello, L; Zarzhitsky, P; Zaytsev, A; Zeitnitz, C; Zeller, M; Zeman, M; Zemla, A; Zendler, C; Zenin, O; Zeniš, T; Zinonos, Z; Zenz, S; Zerwas, D; Zevi Della Porta, G; Zhan, Z; Zhang, D; Zhang, H; Zhang, J; Zhang, X; Zhang, Z; Zhao, L; Zhao, T; Zhao, Z; Zhemchugov, A; Zheng, S; Zhong, J; Zhou, B; Zhou, N; Zhou, Y; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhuravlov, V; Zieminska, D; Zimmermann, R; Zimmermann, S; Zimmermann, S; Ziolkowski, M; Zitoun, R; Zivković, L; Zmouchko, V V; Zobernig, G; Zoccoli, A; Zolnierowski, Y; Zsenei, A; Zur Nedden, M; Zutshi, V; Zwalinski, L

    2012-06-22

    A search for the decay of a light Higgs boson (120-140 GeV) to a pair of weakly interacting, long-lived particles in 1.94 fb(-1) of proton-proton collisions at sqrt[s] = 7 TeV recorded in 2011 by the ATLAS detector is presented. The search strategy requires that both long-lived particles decay inside the muon spectrometer. No excess of events is observed above the expected background and limits on the Higgs boson production times branching ratio to weakly interacting, long-lived particles are derived as a function of the particle proper decay length.

  6. Predictions for Boson-Jet Observables and Fragmentation Function Ratios from a Hybrid Strong/Weak Coupling Model for Jet Quenching

    CERN Document Server

    Casalderrey-Solana, Jorge; Milhano, José Guilherme; Pablos, Daniel; Rajagopal, Krishna

    2016-01-01

    We have previously introduced a hybrid strong/weak coupling model for jet quenching in heavy ion collisions that describes the production and fragmentation of jets at weak coupling, using PYTHIA, and describes the rate at which each parton in the jet shower loses energy as it propagates through the strongly coupled plasma, dE/dx, using an expression computed holographically at strong coupling. The model has a single free parameter that we fit to a single experimental measurement. We then confront our model with experimental data on many other jet observables, focusing here on boson-jet observables, finding that it provides a good description of present jet data. Next, we provide the predictions of our hybrid model for many measurements to come, including those for inclusive jet, dijet, photon-jet and Z-jet observables in heavy ion collisions with energy $\\sqrt{s}=5.02$ ATeV coming soon at the LHC. As the statistical uncertainties on near-future measurements of photon-jet observables are expected to be much sm...

  7. Search for a light Higgs boson decaying to long-lived weakly-interacting particles in proton-proton collisions at $\\sqrt{s}$ = 7 TeV with the ATLAS detector

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Akiyama, Kunihiro; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral, Pedro; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amorós, Gabriel; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Archambault, John-Paul; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Astvatsatourov, Anatoli; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Bachy, Gerard; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barashkou, Andrei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beare, Brian; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Benchouk, Chafik; Bendel, Markus; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertinelli, Francesco; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Böser, Sebastian; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bona, Marcella; Bondarenko, Valery; Bondioli, Mario; Boonekamp, Maarten; Boorman, Gary; Booth, Chris; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borroni, Sara; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Botterill, David; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozhko, Nikolay; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Braem, André; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brelier, Bertrand; Bremer, Johan; Brenner, Richard; Bressler, Shikma; Breton, Dominique; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brodbeck, Timothy; Brodet, Eyal; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, William; Brown, Gareth; Brown, Heather; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchanan, Norman; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Bulekov, Oleg; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butin, François; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cambiaghi, Mario; Cameron, David; Caminada, Lea Michaela; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Caramarcu, Costin; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carrillo Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Cataneo, Fernando; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cauz, Diego; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Cevenini, Francesco; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Kevin; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Tingyang; Chen, Xin; Cheng, Shaochen; Cheplakov, Alexander; Chepurnov, Vladimir; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciba, Krzysztof; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciobotaru, Matei Dan; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Clifft, Roger; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coe, Paul; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Colas, Jacques; Colijn, Auke-Pieter; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colon, German; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Michele; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conventi, Francesco; Cook, James; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Costin, Tudor; Côté, David; Coura Torres, Rodrigo; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crupi, Roberto; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Curatolo, Maria; Curtis, Chris; Cuthbert, Cameron; Cwetanski, Peter; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Silva, Paulo Vitor; Da Via, Cinzia; Dabrowski, Wladyslaw; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dannheim, Dominik; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Daum, Cornelis; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Dawson, John; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Castro Faria Salgado, Pedro; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lotto, Barbara; de Mora, Lee; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dean, Simon; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Degenhardt, James; Dehchar, Mohamed; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delruelle, Nicolas; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diblen, Faruk; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donega, Mauro; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dosil, Mireia; Dotti, Andrea; Dova, Maria-Teresa; Dowell, John; Doxiadis, Alexander; Doyle, Tony; Drasal, Zbynek; Drees, Jürgen; Dressnandt, Nandor; Drevermann, Hans; Driouichi, Chafik; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Düren, Michael; Ebenstein, William; Ebke, Johannes; Eckweiler, Sebastian; Edmonds, Keith; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Ehrich, Thies; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Eppig, Andrew; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrington, Sinead; Farthouat, Philippe; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Woiciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Ferland, Jonathan; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferrer, Antonio; Ferrer, Maria Lorenza; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filippas, Anastasios; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fischer, Peter; Fisher, Matthew; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Flores Castillo, Luis; Flowerdew, Michael; Fokitis, Manolis; Fonseca Martin, Teresa; Forbush, David Alan; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Foster, Joe; Fournier, Daniel; Foussat, Arnaud; Fowler, Andrew; Fowler, Ken; Fox, Harald; Francavilla, Paolo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Felix; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Gan, KK; Gao, Yongsheng; Gapienko, Vladimir; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Garvey, John; Gatti, Claudio; Gaudio, Gabriella; Gaumer, Olivier; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gayde, Jean-Christophe; Gazis, Evangelos; Ge, Peng; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilbert, Laura; Gilewsky, Valentin; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Göttfert, Tobias; Goldfarb, Steven; Golling, Tobias; Golovnia, Serguei; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; Gonidec, Allain; Gonzalez, Saul; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gorokhov, Serguei; Goryachev, Vladimir; Gosdzik, Bjoern; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Groh, Manfred; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guarino, Victor; Guest, Daniel; Guicheney, Christophe; Guida, Angelo; Guindon, Stefan; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gupta, Ambreesh; Gusakov, Yury; Gushchin, Vladimir; Gutierrez, Andrea; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Hall, David; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Hongguang; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Karl; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Hatch, Mark; Hauff, Dieter; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawes, Brian; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hawkins, Donovan; Hayakawa, Takashi; Hayashi, Takayasu; Hayden, Daniel; Hayward, Helen; Haywood, Stephen; Hazen, Eric; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Henry-Couannier, Frédéric; Hensel, Carsten; Henß, Tobias; Medina Hernandez, Carlos; Hernández Jiménez, Yesenia; Herrberg, Ruth; Hershenhorn, Alon David; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hessey, Nigel; Higón-Rodriguez, Emilio; Hill, Daniel; Hill, John; Hill, Norman; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Homma, Yasuhiro; Hong, Tae Min; Hooft van Huysduynen, Loek; Horazdovsky, Tomas; Horn, Claus; Horner, Stephan; Hostachy, Jean-Yves; Hou, Suen; Houlden, Michael; Hoummada, Abdeslam; Howarth, James; Howell, David; Hristova, Ivana; Hrivnac, Julius; Hruska, Ivan; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Huang, Guang Shun; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Hughes-Jones, Richard; Huhtinen, Mika; Hurst, Peter; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Ichimiya, Ryo; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuri; Iliadis, Dimitrios; Ilic, Nikolina; Imbault, Didier; Imori, Masatoshi; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishikawa, Akimasa; Ishino, Masaya; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakubek, Jan; Jana, Dilip; Jankowski, Ernest; Jansen, Eric; Jansen, Hendrik; Jantsch, Andreas; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jelen, Kazimierz; Jen-La Plante, Imai; Jenni, Peter; Jeremie, Andrea; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Ge; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Lars; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tegid; Jones, Tim; Jonsson, Ove; Joram, Christian; Jorge, Pedro; Joseph, John; Jovin, Tatjana; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabachenko, Vasily; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kaiser, Steffen; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagounis, Michael; Karagoz, Muge; Karnevskiy, Mikhail; Karr, Kristo; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Kekelidze, George; Kennedy, John; Kenney, Christopher John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Kholodenko, Anatoli; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Nikolai; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Min Suk; Kim, Peter; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kirsch, Lawrence; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kittelmann, Thomas; Kiver, Andrey; Kladiva, Eduard; Klaiber-Lodewigs, Jonas; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Knecht, Neil; Kneringer, Emmerich; Knobloch, Juergen; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kokott, Thomas; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollar, Daniel; Kollefrath, Michael; Kolya, Scott; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kootz, Andreas; Koperny, Stefan; Korcyl, Krzysztof; Kordas, Kostantinos; Koreshev, Victor; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotamäki, Miikka Juhani; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, James; Kraus, Jana; Kreisel, Arik; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruth, Andre; Kubota, Takashi; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kundu, Nikhil; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Landsman, Hagar; Lane, Jenna; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larionov, Anatoly; Larner, Aimee; Lasseur, Christian; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Laycock, Paul; Lazarev, Alexandre; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; Lebel, Céline; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Leger, Annie; LeGeyt, Benjamin; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Leltchouk, Mikhail; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Leroy, Claude; Lessard, Jean-Raphael; Lesser, Jonas; Lester, Christopher; Leung Fook Cheong, Annabelle; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levitski, Mikhail; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Lifshitz, Ronen; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipinsky, Lukas; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Minghui; Liu, Shengli; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Loken, James; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lorenz, Jeanette; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundquist, Johan; Lungwitz, Matthias; Lutz, Gerhard; Lynn, David; Lys, Jeremy; Lytken, Else; Ma, Hong; Ma, Lian Liang; Macana Goia, Jorge Andres; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Mackeprang, Rasmus; Madaras, Ronald; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magnoni, Luca; Magradze, Erekle; Mahalalel, Yair; Mahboubi, Kambiz; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Mangeard, Pierre-Simon; Manhaes de Andrade Filho, Luciano; Manjavidze, Ioseb; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Manz, Andreas; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marin, Alexandru; Marino, Christopher; Marroquim, Fernando; Marshall, Robin; Marshall, Zach; Martens, Kalen; Marti-Garcia, Salvador; Martin, Andrew; Martin, Brian; Martin, Brian Thomas; Martin, Franck Francois; Martin, Jean-Pierre; Martin, Philippe; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martin-Haugh, Stewart; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mathes, Markus; Matricon, Pierre; Matsumoto, Hiroshi; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maugain, Jean-Marie; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; May, Edward; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzanti, Marcello; Mazzoni, Enrico; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; McGlone, Helen; Mchedlidze, Gvantsa; McLaren, Robert Andrew; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Menot, Claude; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Meyer, W Thomas; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Miralles Verge, Lluis; Misiejuk, Andrzej; Mitrevski, Jovan; Mitrofanov, Gennady; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Miyazaki, Kazuki; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mockett, Paul; Moed, Shulamit; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohr, Wolfgang; Mohrdieck-Möck, Susanne; Moisseev, Artemy; Moles-Valls, Regina; Molina-Perez, Jorge; Monk, James; Monnier, Emmanuel; Montesano, Simone; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morii, Masahiro; Morin, Jerome; Morley, Anthony Keith; Mornacchi, Giuseppe; Morozov, Sergey; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mudrinic, Mihajlo; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Mueller, Timo; Muenstermann, Daniel; Muir, Alex; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nadal, Jordi; Nagai, Koichi; Nagano, Kunihiro; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Narayan, Rohin; Nash, Michael; Nation, Nigel; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nebot, Eduardo; Nechaeva, Polina; Negri, Andrea; Negri, Guido; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Silke; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicolas, Ludovic; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Niinikoski, Tapio; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolaev, Kirill; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishiyama, Tomonori; Nisius, Richard; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nordberg, Markus; Nordkvist, Bjoern; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nyman, Tommi; O'Brien, Brendan Joseph; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakes, Louise Beth; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Ohshita, Hidetoshi; Ohsugi, Takashi; Okada, Shogo; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olcese, Marco; Olchevski, Alexander; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Omachi, Chihiro; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panes, Boris; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Panuskova, Monika; Paolone, Vittorio; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Peng, Haiping; Pengo, Ruggero; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Persembe, Seda; Perus, Antoine; Peshekhonov, Vladimir; Peters, Krisztian; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Peter William; Piacquadio, Giacinto; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Ping, Jialun; Pinto, Belmiro; Pirotte, Olivier; Pizio, Caterina; Plamondon, Mathieu; Pleier, Marc-Andre; Pleskach, Anatoly; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Poghosyan, Tatevik; Pohl, Martin; Polci, Francesco; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomarede, Daniel Marc; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Posch, Christoph; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Pribyl, Lukas; Price, Darren; Price, Joe; Price, Lawrence; Price, Michael John; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przybycien, Mariusz; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Qian, Zuxuan; Qin, Zhonghua; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radescu, Voica; Radics, Balint; Radloff, Peter; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Ratoff, Peter; Rauscher, Felix; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reichold, Armin; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Reljic, Dusan; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Renkel, Peter; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richards, Alexander; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robinson, Mary; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodriguez, Diego; Roe, Adam; Roe, Shaun; Røhne, Ole; Rojo, Victoria; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romanov, Victor; Romeo, Gaston; Romero Adam, Elena; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubinskiy, Igor; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Gerald; Rühr, Frederik; Ruggieri, Federico; Ruiz-Martinez, Aranzazu; Rumiantsev, Viktor; Rumyantsev, Leonid; Runge, Kay; Rurikova, Zuzana; Rusakovich, Nikolai; Rust, Dave; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryadovikov, Vasily; Ryan, Patrick; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Rzaeva, Sevda; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sanchez, Arturo; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sandvoss, Stephan; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Lee; Saxon, David; Says, Louis-Pierre; Sbarra, Carla; Sbrizzi, Antonio; Scallon, Olivia; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schäfer, Uli; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schlereth, James; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitz, Martin; Schöning, André; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schuh, Silvia; Schuler, Georges; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Jan; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Scott, Bill; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Segura, Ester; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Seuster, Rolf; Severini, Horst; Sevior, Martin; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaver, Leif; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shichi, Hideharu; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Maria; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simmons, Brinick; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Skvorodnev, Nikolai; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Sloper, John erik; Smakhtin, Vladimir; Smirnov, Sergei; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snuverink, Jochem; Snyder, Scott; Soares, Mara; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spila, Federico; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahl, Thorsten; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staude, Arnold; Stavina, Pavel; Stavropoulos, Georgios; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stevenson, Kyle; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Succurro, Antonella; Sugaya, Yorihito; Sugimoto, Takuya; Suhr, Chad; Suita, Koichi; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Sushkov, Serge; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Sviridov, Yuri; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Szeless, Balazs; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanaka, Yoshito; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tappern, Geoffrey; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Testa, Marianna; Teuscher, Richard; Thadome, Jocelyn; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thioye, Moustapha; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tique Aires Viegas, Florbela De Jes; Tisserant, Sylvain; Toczek, Barbara; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokunaga, Kaoru; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Guoliang; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Trinh, Thi Nguyet; Tripiana, Martin; Trischuk, William; Trivedi, Arjun; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Underwood, David; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valente, Paolo; Valentinetti, Sara; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; van der Graaf, Harry; van der Kraaij, Erik; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; van Kesteren, Zdenko; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vandoni, Giovanna; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Varela Rodriguez, Fernando; Vari, Riccardo; Varnes, Erich; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vegni, Guido; Veillet, Jean-Jacques; Vellidis, Constantine; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vlasov, Nikolai; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Loeben, Joerg; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobiev, Alexander; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wakabayashi, Jun; Walbersloh, Jorg; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Joshua C; Wang, Rui; Wang, Song-Ming; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Marc; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wen, Mei; Wenaus, Torre; Wendler, Shanti; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Weydert, Carole; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; Whitaker, Scott; White, Andrew; White, Martin; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Catherine; Wright, Michael; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wunstorf, Renate; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xie, Song; Xie, Yigang; Xu, Chao; Xu, Da; Xu, Guofa; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaets, Vassilli; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zanello, Lucia; Zarzhitsky, Pavel; Zaytsev, Alexander; Zeitnitz, Christian; Zeller, Michael; Zeman, Martin; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Ženiš, Tibor; Zinonos, Zinonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhan, Zhichao; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zheng, Shuchen; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; Zolnierowski, Yves; Zsenei, Andras; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz

    2012-01-01

    A search for the decay of a light Higgs (120 - 140 GeV) to a pair of weakly-interacting, long-lived particles in 1.94 fb${^-1}$ of proton-proton collisions at $\\sqrt{s}$ = 7 TeV recorded in 2011 by the ATLAS detector is presented. The search strategy requires that both long-lived particles decay inside the muon spectrometer. No excess of events is observed above the expected background and limits on the Higgs boson production times branching ratio to weakly-interacting, long-lived particles are derived as a function of the particle proper decay length.

  8. Weak interactions

    International Nuclear Information System (INIS)

    Bjorken, J.D.

    1978-01-01

    Weak interactions are studied from a phenomenological point of view, by using a minimal number of theoretical hypotheses. Charged-current phenomenology, and then neutral-current phenomenology are discussed. This all is described in terms of a global SU(2) symmetry plus an electromagnetic correction. The intermediate-boson hypothesis is introduced and lower bounds on the range of the weak force are inferred. This phenomenology does not yet reconstruct all the predictions of the conventional SU(2)xU(1) gauge theory. To do that requires an additional assumption of restoration of SU(2) symmetry at asymptotic energies

  9. Strongly interacting Higgs bosons

    International Nuclear Information System (INIS)

    Appelquist, T.; Bernard, C.

    1980-01-01

    The sensitivity of present-energy weak interactions to a strongly interacting heavy-Higgs-boson sector is discussed. The gauged nonlinear sigma model, which is the limit of the linear model as the Higgs-boson mass goes to infinity, is used to organize and catalogue all possible heavy-Higgs-boson effects. As long as the SU(2)/sub L/ x SU(2)/sub R/ symmetry of the Higgs sector is preserved, these effects are found to be small, of the order of the square of the gauge coupling times logarithms (but not powers) of the Higgs-boson mass divided by the W mass. We work in the context of a simplified model with gauge group SU(2)/sub L/; the extension to SU(2)/sub L/ x U(1) is briefly discussed

  10. Limiting absorption principle at low energies for a mathematical model of weak interaction: the decay of a boson; Proprietes spectrales et principe d'absorption limite a faible energie pour un modele mathematique d'interaction faible: la desintegration d'un boson

    Energy Technology Data Exchange (ETDEWEB)

    Barbarouxa, J.M. [Centre de Physique Theorique, 13 - Marseille (France); Toulon-Var Univ. du Sud, Dept. de Mathematiques, 83 - La Garde (France); Guillot, J.C. [Centre de Mathematiques Appliquees, UMR 7641, Ecole Polytechnique - CNRS, 91 - Palaiseau (France)

    2009-09-15

    We study the spectral properties of a Hamiltonian describing the weak decay of spin 1 massive bosons into the full family of leptons. We prove that the considered Hamiltonian is self-adjoint, with a unique ground state and we derive a Mourre estimate and a limiting absorption principle above the ground state energy and below the first threshold, for a sufficiently small coupling constant. As a corollary, we prove absence of eigenvalues and absolute continuity of the energy spectrum in the same spectral interval. (authors)

  11. Gauge Bosons--The Ties That Bind.

    Science.gov (United States)

    Hill, Christopher T.

    1982-01-01

    Discusses four basic forces/interactions in nature (strong force, weak force, electromagnetic force and gravity), associated with elementary particles. Focuses on "gauge bosons" (for example, photons), thought to account for strong, weak, and electromagnetic forces. (Author/JN)

  12. Performance of the Alice muon spectrometer. Weak boson production and measurement in heavy-ion collisions at LHC; Performance du spectrometre a muons d'ALICE. Production et mesure des bosons faibles dans des collisions d'ions lourds aupres du LHC

    Energy Technology Data Exchange (ETDEWEB)

    Conesa del valle, Z

    2007-07-15

    Lattice QCD predicts a transition from a hadronic phase to a Quark Gluon Plasma phase, QGP, for temperatures above 10{sup 13} K. Heavy-ion collisions are proposed to recreate it in laboratory. With such a purpose, the LHC (Large Hadron Collider) will provide Pb-Pb collisions at 5.5 TeV/u, and the ALICE experiment will permit to explore them. In particular, the ALICE muon spectrometer will permit to investigate the muon related probes (quarkonia, open beauty,...). The expected apparatus performances to measure muons and dimuons are discussed. A factorization technique is employed to unravel the different contributions to the global efficiency. Results indicate that the detector should be able to measure muons up to pT {approx} 100 GeV/c with a resolution of about 10 per cent. We show that weak bosons production could be measured for the first time in heavy-ion collisions. Single muon p{sub T} and dimuons invariant mass distributions will probe W and Z production. As mainly muons from b- and c-quarks decays will populate the intermediate-p{sub T} of 5 - 25 GeV/c, heavy quark in-medium energy loss calculations indicate that the single muon spectra would be suppressed by a factor 2-4 in the most central 0 - 10% Pb-Pb collisions at 5.5 TeV. However, for p{sub T} > 35 GeV/c the weak boson decays are predominant, and no suppression is expected. Estimations indicate that the b- and W-muons crossing point shifts down in transverse momenta by 5 to 7 GeV/c in the most central 0 - 10% Pb-Pb collisions at 5.5 TeV. (author)

  13. Search for invisibly decaying Higgs boson at Large Hadron Collider

    Indian Academy of Sciences (India)

    In several scenarios of Beyond Standard Model physics, the invisible decay mode of the Higgs boson is an interesting possibility. The search strategy for an invisible Higgs boson at the Large Hadron Collider (LHC), using weak boson fusion process, has been studied in detail, by taking into account all possible ...

  14. Bosonic strings

    CERN Document Server

    Jost, Jürgen

    2007-01-01

    This book presents a mathematical treatment of Bosonic string theory from the point of view of global geometry. As motivation, Jost presents the theory of point particles and Feynman path integrals. He provides detailed background material, including the geometry of Teichmüller space, the conformal and complex geometry of Riemann surfaces, and the subtleties of boundary regularity questions. The high point is the description of the partition function for Bosonic strings as a finite-dimensional integral over a moduli space of Riemann surfaces. Jost concludes with some topics related to open and closed strings and D-branes. Bosonic Strings is suitable for graduate students and researchers interested in the mathematics underlying string theory.

  15. Seeking heavy Higgs bosons through cascade decays

    Science.gov (United States)

    Coleppa, Baradhwaj; Fuks, Benjamin; Poulose, P.; Sahoo, Shibananda

    2018-04-01

    We investigate the LHC discovery prospects for a heavy Higgs boson decaying into the standard model Higgs boson and additional weak bosons. We consider a generic model-independent new physics configuration where this decay proceeds via a cascade involving other intermediate scalar bosons and focus on an LHC final-state signature comprised either of four b -jets and two charged leptons or of four charged leptons and two b -jets. We design two analyses of the corresponding signals, and demonstrate that a 5 σ discovery at the 14 TeV LHC is possible for various combinations of the parent and daughter Higgs-boson masses. We moreover find that the standard model backgrounds can be sufficiently rejected to guarantee the reconstruction of the parent Higgs boson mass. We apply our analyses to the Type-II two-Higgs-doublet model and identify the regions of the parameter space to which the LHC is sensitive.

  16. Study of weak interaction with p-p colliding beam

    International Nuclear Information System (INIS)

    Arafune, Jiro; Sugawara, Hirotaka

    1975-01-01

    Weak interaction in the energy range of TRISTAN project is discussed. The cross-section of production of weak boson in p-p reaction was calculated with the parton model. The observation of weak boson may be possible. The production rate of neutral weak boson was also estimated on the basis of the Weinberg model, and was almost same as that of weak boson. The method of observation of weak boson is suggested. The direct method is the observation of lepton pair due to the decay of neutral weak boson. It is expected that the spectrum of decay products (+ -) in the decay of weak boson shows a characteristic feature, and it shows the existence of weak boson. Weak interaction makes larger contribution in case of large momentum transfer than electromagnetic interaction. When the momentum transfer is larger than 60 GeV/c, the contribution of weak interaction is dominant over the others. Therefore, the experiments at high energy will give informations concerning the relations among the interactions of elementary particles. Possibility of study on the Higgs scalar meson is also discussed. (Kato, T.)

  17. Superfluidity of bosons on a deformable lattice

    International Nuclear Information System (INIS)

    Jackeli, G.; Ranninger, J.

    2001-01-01

    We study the superfluid properties of a system of interacting bosons on a lattice, which, moreover, are coupled to the vibrational modes of this lattice, treated here in terms of Einstein phonon modes. The ground state corresponds to two correlated condensates: that of the bosons and that of the phonons. Two competing effects determine the common collective sound-wave-like mode with sound velocity v, arising from gauge symmetry breaking. (i) The sound velocity v 0 (corresponding to a weakly interacting Bose system on a rigid lattice) in the lowest-order approximation is reduced due to reduction of the repulsive boson-boson interaction, arising from the attractive part of the phonon-mediated interaction in the static limit. (ii) The second-order correction to the sound velocity is enhanced as compared to that of bosons on a rigid lattice when the boson-phonon interaction is switched on due to the retarded nature of the phonon-mediated interaction. The overall effect is that the sound velocity is essentially unaffected by the coupling with phonons, indicating the robustness of the superfluid state. The induction of a coherent state in the phonon system driven by the condensation of the bosons could be of experimental significance, permitting spectroscopic detection of superfluid properties of bosons. Our results are based on an extension of the Beliaev-Popov formalism for a weakly interacting Bose gas on a rigid lattice to one on a deformable lattice with which it interacts

  18. Evidence for the decay of the Higgs Boson to Bottom Quarks

    CERN Document Server

    CMS Collaboration

    2017-01-01

    A search for the standard model (SM) Higgs boson ($\\mathrm{H}$) decaying to $\\mathrm{b\\overline{b}}$ when produced in association with a weak vector boson ($\\mathrm{V}$) is reported for the following processes: $\\mathrm{Z}(\

  19. Search for intermediate vector bosons

    International Nuclear Information System (INIS)

    Cline, D.B.; Rubbia, C.; van der Meer, S.

    1982-01-01

    Over the past 15 years a new class of unified theories has been developed to describe the forces acting between elementary particles. The most successful of the new theories establishes a link between electromagnetism and the weak force. A crucial prediction of this unified electroweak theory is the existence of three massive particles called intermediate vector bosons. If these intermediate vector bosons exist and if they have properties attributed to them by electroweak theory, they should soon be detected, as the world's first particle accelerator with enough energy to create such particles has recently been completed at the European Organization for Nuclear Research (CERN) in Geneva. The accelerator has been converted to a colliding beam machine in which protons and antiprotons collide head on. According to electroweak theory, intermediate vector bosons can be created in proton-antiproton collisions. (SC)

  20. Search for intermediate vector bosons

    International Nuclear Information System (INIS)

    Klajn, D.B.; Rubbia, K.; Meer, S.

    1983-01-01

    Problem of registration and search for intermediate vector bosons is discussed. According to weak-current theory there are three intermediate vector bosons with +1(W + )-1(W - ) and zero (Z 0 ) electric charges. It was suggested to conduct the investigation into particles in 1976 by cline, Rubbia and Makintair using proton-antiproton beams. Major difficulties of the experiment are related to the necessity of formation of sufficient amount of antiparticles and the method of antiproton beam ''cooling'' for the purpose of reduction of its random movements. The stochastic method was suggested by van der Meer in 1968 as one of possible cooling methods. Several large detectors were designed for searching intermediate vector bosons

  1. Two-boson composites

    DEFF Research Database (Denmark)

    Tichy, Malte C.; Bouvrier, P. Alexander; Mølmer, Klaus

    2013-01-01

    Composite bosons made of two bosonic constituents exhibit deviations from ideal bosonic behavior due to their substructure. This deviation is reflected by the normalization ratio of the quantum state of N composites. We find a set of saturable, efficiently evaluable bounds for this indicator, which...... quantifies the bosonic behavior of composites via the entanglement of their constituents. We predict an abrupt transition between ordinary and exaggerated bosonic behavior in a condensate of two-boson composites....

  2. Weak interactions at high energies

    International Nuclear Information System (INIS)

    Ellis, J.

    1978-08-01

    Review lectures are presented on the phenomenological implications of the modern spontaneously broken gauge theories of the weak and electromagnetic interactions, and some observations are made about which high energy experiments probe what aspects of gauge theories. Basic quantum chromodynamics phenomenology is covered including momentum dependent effective quark distributions, the transverse momentum cutoff, search for gluons as sources of hadron jets, the status and prospects for the spectroscopy of fundamental fermions and how fermions may be used to probe aspects of the weak and electromagnetic gauge theory, studies of intermediate vector bosons, and miscellaneous possibilities suggested by gauge theories from the Higgs bosons to speculations about proton decay. 187 references

  3. Structure functions of electroweak boson and leptons

    International Nuclear Information System (INIS)

    Slominski, W.; Szwed, J.

    1996-01-01

    The QCD structure of the electroweak bosons is reviewed and the lepton structure function is defined and calculated. The leading order splitting functions of electron into quarks are extracted, showing an important contribution from γ-Z interference. Leading logarithmic QCD evolution equations are constructed and solved in the asymptotic region where log 2 behavior of the Parton densities is observed. Possible applications with clear manifestation of ''resolved'' photon and weak bosons are discussed. 8 refs., 3 figs

  4. Light Higgs bosons in phenomenological NMSSM

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoudi, F. [CERN, Geneva (Switzerland); Clermont Univ., CNRS/IN2P3, LPC, Clermont-Ferrand (France); Rathsman, J. [Uppsala Univ. (Sweden). High-Energy Physics; Lund Univ. (Sweden). Theoretical High Energy Physics; Staal, O. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Zeune, L. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Goettingen Univ. (Germany). II. Physikalisches Inst.

    2010-12-15

    We consider scenarios in the next-to-minimal supersymmetric model (NMSSM) where the CP-odd and charged Higgs bosons are very light. As we demonstrate, these can be obtained as simple deformations of existing phenomenological MSSM benchmarks scenarios with parameters defined at the weak scale. This offers a direct and meaningful comparison to the MSSM case. Applying a wide set of up-to-date constraints from both high-energy collider and flavour physics, the Higgs boson masses and couplings are studied in viable parts of parameter space. The LHC phenomenology of the light Higgs scenario for neutral and charged Higgs boson searches is discussed. (orig.)

  5. Light Higgs bosons in phenomenological NMSSM

    International Nuclear Information System (INIS)

    Mahmoudi, F.; Rathsman, J.; Zeune, L.; Goettingen Univ.

    2010-12-01

    We consider scenarios in the next-to-minimal supersymmetric model (NMSSM) where the CP-odd and charged Higgs bosons are very light. As we demonstrate, these can be obtained as simple deformations of existing phenomenological MSSM benchmarks scenarios with parameters defined at the weak scale. This offers a direct and meaningful comparison to the MSSM case. Applying a wide set of up-to-date constraints from both high-energy collider and flavour physics, the Higgs boson masses and couplings are studied in viable parts of parameter space. The LHC phenomenology of the light Higgs scenario for neutral and charged Higgs boson searches is discussed. (orig.)

  6. Symmetry breaking and scalar bosons

    International Nuclear Information System (INIS)

    Gildener, E.; Weinberg, S.

    1976-01-01

    There are reasons to suspect that the spontaneous breakdown of the gauge symmetries of the observed weak and electromagnetic interactions may be produced by the vacuum expectation values of massless weakly coupled elementary scalar fields. A method is described for finding the broken-symmetry solutions of such theories even when they contain arbitrary numbers of scalar fields with unconstrained couplings. In any such theory, there should exist a number of heavy Higgs bosons, with masses comparable to the intermediate vector bosons, plus one light Higgs boson, or ''scalon'' with mass of order αG/sub F/sub 1/2/. The mass and couplings of the scalon are calculable in terms of other masses, even without knowing all the details of the theory. For an SU(2) direct-product U(1) model with arbitrary numbers of scalar isodoublets, the scalon mass is greater than 5.26 GeV; a likely value is 7--10 GeV. The production and decay of the scalon are briefly considered. Some comments are offered on the relation between the mass scales associated with the weak and strong interactions

  7. Higgs bosons in supersymmetric models. Pt. 1

    International Nuclear Information System (INIS)

    Gunion, J.F.

    1986-01-01

    We describe the properties of Higgs bosons in a class of supersymmetric theories. We consider models in which the low-energy sector contains two weak complex doublets and perhaps one complex gauge-singlet Higgs field. Supersymmetry is assumed to be either softly or spontaneously broken, thereby imposing a number of restrictions on the Higgs boson parameters. We elucidate the Higgs boson masses and present Feynman rules for their couplings to the gauge bosons, fermions and scalars of the theory. We also present Feynman rules for vertices which are related by supersymmetry to the above couplings. Exact analytic expressions are given in two useful limits - one corresponding to the absence of the gauge-singlet Higgs field and the other corresponding to the absence of a supersymmetric Higgs mass term. (orig.)

  8. The Higgs Boson.

    Science.gov (United States)

    Veltman, Martinus J. G.

    1986-01-01

    Reports recent findings related to the particle Higgs boson and examines its possible contribution to the standard mode of elementary processes. Critically explores the strengths and uncertainties of the Higgs boson and proposed Higgs field. (ML)

  9. Hunting the Elusive Higgs Boson and the Origin of Mass

    International Nuclear Information System (INIS)

    Dixon, Lance

    2007-01-01

    For over 40 years, physicists have been trying to track down a hypothetical particle called the Higgs boson. This particle could explain how known elementary particles like the electron can have mass, and also why one of the basic forces, the weak interaction, is in fact so incredibly weak. However, the Higgs boson has escaped detection so far, even at the most powerful particle accelerators. The next big chance to 'bag' this particle will come when the Large Hadron Collider turns on next year. Will the Higgs boson finally be found? Or will an unexpected explanation for these mysteries be revealed?

  10. Effects of exotic composite bosons in the TRISTAN, SLC and LEP region

    International Nuclear Information System (INIS)

    Akama, Keiichi; Hattori, Takashi; Yasue, Masaki.

    1989-11-01

    Starting with typical dynamical composite models for exotic bosons as well as weak bosons, we derive their effective interactions, examine the restrictions from the presently known experimental results, and estimate possible effects on e + e - scattering. Some of the neutral exotics in the composite model, which decouple from neutrinos at low energies, can be as light as the order of the weak boson masses and offer the possibility of detecting sizable effects in the TRISTAN, SLC and LEP energy region. (author)

  11. Measurement of the Weak Boson Production Cross Section in the Events with Muons in Proton-Proton Collisions at $\\sqrt{s}$ = 7 TeV with the ATLAS Detector

    CERN Document Server

    Kubota, Takashi

    2011-01-01

    The Large Hadron Collider (LHC) -- a proton-proton collider with the highest center-of-mass energy which surpasses the previous energy frontier -- was built at CERN to investigate the TeV energy region where the existence of undiscovered physics such as the origin of the electroweak symmetry breaking and the Supersymmetry is expected. The LHC started operation on 30 March, 2010, then has been delivering proton-proton collision events. The ATLAS (A Toroidal LHC ApparatuS) experiment is held using one of the two general purpose detectors placed at the LHC. The detector %is called the ATLAS detector which is designed to exploit the full physics potential of the LHC. In this thesis, a measurement of the $W$ and $Z$-boson production cross sections in proton-proton collisions at $\\sqrt{s}$ = 7 TeV are presented in the $\\W \\to \\mu\

  12. Bosonic behavior of entangled fermions

    DEFF Research Database (Denmark)

    C. Tichy, Malte; Alexander Bouvrie, Peter; Mølmer, Klaus

    2012-01-01

    Two bound, entangled fermions form a composite boson, which can be treated as an elementary boson as long as the Pauli principle does not affect the behavior of many such composite bosons. The departure of ideal bosonic behavior is quantified by the normalization ratio of multi-composite-boson st......Two bound, entangled fermions form a composite boson, which can be treated as an elementary boson as long as the Pauli principle does not affect the behavior of many such composite bosons. The departure of ideal bosonic behavior is quantified by the normalization ratio of multi...

  13. Gauge boson/Higgs boson unification: The Higgs bosons as superpartners of massive gauge bosons

    International Nuclear Information System (INIS)

    Fayet, P.

    1984-01-01

    We show how one can use massive gauge superfields to describe, simultaneously, gauge bosons (Wsup(+-), Z, ...) and Higgs bosons (wsup(+-), z, ...) together with their spin-1/2 partners (pairs of winos, zinos, ...), despite their different electroweak properties. This provides a manifestly supersymmetric formulation of spontaneously broken supersymmetric gauge theories, and makes explicit the relations between massive gauge bosons and Higgs bosons. It raises, however, the following question: if the gauge bosons Wsup(+-) and Z and the Higgs bosons wsup(+-) and z are related by supersymmetry, how it is possible that the former couple to leptons and quarks proportionately to g or g', and the latter proportionately to gsub(F)sup(1/2) m (fermions). The paradox is solved as follows: when the Higgs bosons are described by massive gauge superfields, the lagrangian density is non-polynomial and field redefinitions have to be performed, in particular: lepton or quark field -> lepton or quark field + (approx.= Gsub(F)sup(1/2) Higgs field) (lepton or quark field). They automatically regenerate, from the lepton and quark supersymmetric mass terms, the correct Yukawa couplings of Higgs bosons proportional to fermion masses. We also apply this method to the case in which an extra U(1) group is gauged, the standard Higgs boson h 0 being then the superpartner of the new neutral gauge boson U. (orig.)

  14. Weak neutral-current interactions

    International Nuclear Information System (INIS)

    Barnett, R.M.

    1978-08-01

    The roles of each type of experiment in establishing uniquely the values of the the neutral-current couplings of u and d quarks are analyzed together with their implications for gauge models of the weak and electromagnetic interactions. An analysis of the neutral-current couplings of electrons and of the data based on the assumption that only one Z 0 boson exists is given. Also a model-independent analysis of parity violation experiments is discussed. 85 references

  15. Weak interactions at high energies. [Lectures, review

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, J.

    1978-08-01

    Review lectures are presented on the phenomenological implications of the modern spontaneously broken gauge theories of the weak and electromagnetic interactions, and some observations are made about which high energy experiments probe what aspects of gauge theories. Basic quantum chromodynamics phenomenology is covered including momentum dependent effective quark distributions, the transverse momentum cutoff, search for gluons as sources of hadron jets, the status and prospects for the spectroscopy of fundamental fermions and how fermions may be used to probe aspects of the weak and electromagnetic gauge theory, studies of intermediate vector bosons, and miscellaneous possibilities suggested by gauge theories from the Higgs bosons to speculations about proton decay. 187 references. (JFP)

  16. Effective theory of bosonic superfluids

    International Nuclear Information System (INIS)

    Schakel, A.M.J.

    1994-01-01

    The authors discuss the effective theory of a bosonic superfluid whose microscopic behavior is described by a nonrelativistic, weak-coupling φ 4 theory in the phase with broken particle number symmetry, both at zero temperature and in the vicinity of the phase transition. In the zero-temperature regime, the theory is governed by the gapless Goldstone mode resulting from the broken symmetry. Although this mode is gapless, the effective theory turns out to be Gallilei invariant. The regime just below the critical temperature is approached in a high-temperature expansion which is shown to be consistent with the weak-coupling assumption of the theory. The authors calculate the critical temperature, the coefficients of the Landau theory, and the finite-temperature sound velocity. A comparison with BCS theory is given

  17. CERN vector boson hunt successful

    International Nuclear Information System (INIS)

    Robinson, A.L.

    1983-01-01

    UA-1 and UA-2 are code names for two groups of physicists at the European Laboratory for Particle Physics (CERN), together comprising almost 200 researchers. From data collected in two 3-month-long runs last fall and spring, the groups have collected 100 intermediate vector bosons (90 W's and 10 Z 0 's) whose properties so far fit the predictions of the unified quantum field theory of the electromagnetic and weak forces. Although the number of events is short of staggering, the discovery is immensely important. Physicists have been looking for the W for about 50 years. The Z 0 is crucial to the success of the method by which the two forces were melded into one - the electro-weak force

  18. Bosonization in Space-Time

    Science.gov (United States)

    Stone, Michael

    The following sections are included: * Introduction * Free Fermi Fields * Free Bosons * The Bosonization Rules * A Quantum Pythagoras Theorem * Appendix 1A. Complex Coordinates * Appendix IB. Conformal Symmetry * References

  19. Inclusive and differential vector boson (W, Z) measurements from CMS

    CERN Document Server

    Ocalan, Kadir

    2018-01-01

    Weak vector boson (W, Z) production is one of the most prominent hard scattering processes at the LHC. Measurements of W and Z boson provide precision tests for the Standard Model including substantial inputs for parton distribution functions. The latest results on W and Z boson and their productions in association with jets are presented based on proton-proton collision data recorded by the CMS detector at center-of-mass energies of 8 TeV and 13 TeV. Precision measurements involving inclusive and differential production cross sections and their ratios for W and Z boson are reported as well as for W and Z boson produced in association with jets. The results are compared to predictions from various Monte Carlo event generators and theoretical calculations.

  20. Weak currents

    International Nuclear Information System (INIS)

    Leite Lopes, J.

    1976-01-01

    A survey of the fundamental ideas on weak currents such as CVC and PCAC and a presentation of the Cabibbo current and the neutral weak currents according to the Salam-Weinberg model and the Glashow-Iliopoulos-Miami model are given [fr

  1. Where Is Higgs Boson?

    CERN Multimedia

    2008-01-01

    Quantum physicists think they know the answer. Probabilistic calculations reveal than the data provided by previous experiments has been miscalculated and that the Higgs boson has in fact been discovered. Weird! The Higgs boson is the only particle predicted by the Standard Model that hasn't been discovered yet.

  2. Seniority bosons from similarity transformations

    International Nuclear Information System (INIS)

    Geyer, H.B.

    1986-01-01

    The requirement of associating in the boson space seniority with twice the number of non-s bosons defines a similarity transformation which re-expresses the Dyson pair boson images in terms of seniority bosons. In particular the fermion S-pair creation operator is mapped onto an operator which, unlike the pair boson image, does not change the number of non-s bosons. The original results of Otsuka, Arima and Iachello are recovered by this procedure while at the same time they are generalized to include g-bosons or even bosons with J>4 as well as any higher order boson terms. Furthermore the seniority boson images are valid for an arbitrary number of d- or g-bosons - a result which is not readily obtainable within the framework of the usual Marumori- or OAI-method

  3. Pseudo-Goldstone bosons and new macroscopic forces

    International Nuclear Information System (INIS)

    Hill, C.T.; Ross, G.G.

    1988-01-01

    Pseudoscalar Goldstone bosons may readily be associated with weakly, explicitly broken symmetries giving them mixed CP quantum numbers. In general this leads to scalar couplings to nucleons and leptons, which produces coherent long range forces. This can naturally accommodate detectable long range macroscopic forces mediated by bosons completely consistent with conventional cosmological limits, e.g., new interactions with the range of present 'fifth force' searches which probe a scale of new physics of f ≅ 10 14 GeV. (orig.)

  4. Ways to detect a light Higgs boson at the LHC

    International Nuclear Information System (INIS)

    Roeck, A. de; Khoze, V.A.; Ryskin, M.G.; Martin, A.D.; Orava, R.

    2002-01-01

    We summarize the possible processes which may be used to search for a Higgs boson, of mass in the range 114-130 GeV, at the LHC. We discuss, in detail, two processes with rapidity gaps: exclusive Higgs production with tagged outgoing protons and production by Weak Boson Fusion, in each case taking H→b anti b as the signal. We make an extensive study of all possible b anti b backgrounds, and discuss the relevant experimental issues. We emphasize the special features of these signals, and of their background processes, and show that they could play an important role in identifying a light Higgs boson at the LHC. (orig.)

  5. Ways to detect a light Higgs boson at the LHC

    CERN Document Server

    de Roeck, A; Martin, A D; Orava, Risto; Ryskin, M G

    2002-01-01

    We summarize the possible processes which may be used to search for a Higgs boson, of mass in the range 114-130 GeV, at the LHC. We discuss, in detail, two processes with rapidity gaps: exclusive Higgs production with tagged outgoing protons and production by Weak Boson Fusion, in each case taking H -> bbbar as the signal. We make an extensive study of all possible bbbar backgrounds, and discuss the relevant experimental issues. We emphasize the special features of these signals, and of their background processes, and show that they could play an important role in identifying a light Higgs boson at the LHC.

  6. Weak decays

    International Nuclear Information System (INIS)

    Wojcicki, S.

    1978-11-01

    Lectures are given on weak decays from a phenomenological point of view, emphasizing new results and ideas and the relation of recent results to the new standard theoretical model. The general framework within which the weak decay is viewed and relevant fundamental questions, weak decays of noncharmed hadrons, decays of muons and the tau, and the decays of charmed particles are covered. Limitation is made to the discussion of those topics that either have received recent experimental attention or are relevant to the new physics. (JFP) 178 references

  7. Weak interactions

    International Nuclear Information System (INIS)

    Ogava, S.; Savada, S.; Nakagava, M.

    1983-01-01

    The problem of the use of weak interaction laws to study models of elementary particles is discussed. The most typical examples of weak interaction is beta-decay of nucleons and muons. Beta-interaction is presented by quark currents in the form of universal interaction of the V-A type. Universality of weak interactions is well confirmed using as examples e- and μ-channels of pion decay. Hypothesis on partial preservation of axial current is applicable to the analysis of processes with pion participation. In the framework of the model with four flavours lepton decays of hadrons are considered. Weak interaction without lepton participation are also considered. Properties of neutral currents are described briefly

  8. Weak interactions

    International Nuclear Information System (INIS)

    Chanda, R.

    1981-01-01

    The theoretical and experimental evidences to form a basis for Lagrangian Quantum field theory for Weak Interactions are discussed. In this context, gauge invariance aspects of such interactions are showed. (L.C.) [pt

  9. Hyperquarks and bosonic preon bound states

    International Nuclear Information System (INIS)

    Schmid, Michael L.; Buchmann, Alfons J.

    2009-01-01

    In a model in which leptons, quarks, and the recently introduced hyperquarks are built up from two fundamental spin-(1/2) preons, the standard model weak gauge bosons emerge as preon bound states. In addition, the model predicts a host of new composite gauge bosons, in particular, those responsible for hyperquark and proton decay. Their presence entails a left-right symmetric extension of the standard model weak interactions and a scheme for a partial and grand unification of nongravitational interactions based on, respectively, the effective gauge groups SU(6) P and SU(9) G . This leads to a prediction of the Weinberg angle at low energies in good agreement with experiment. Furthermore, using evolution equations for the effective coupling strengths, we calculate the partial and grand unification scales, the hyperquark mass scale, as well as the mass and decay rate of the lightest hyperhadron.

  10. Intermediate Vector Boson

    Indian Academy of Sciences (India)

    Keith Ulmer

    ... new scalar particle. The Gauge field 'ate' the Goldsone boson, thereby acquiring both a mass ... Production rate is very very low in comparison with other physics process, need. ➢ ..... origin of mass of subatomic particles, and which recently ...

  11. On chiral bosonization

    International Nuclear Information System (INIS)

    Bastianelli, F.

    1991-01-01

    We examine the bosonization of chiral fermions in a gravitational background, using a path integral approach. The bosonic model is given by an action proposed some time ago by Floreanini and Jackiw, suitably coupled to gravity. We use a regulator for the path integral measure obtained from the general construction of Diaz, Hatsuda, Troost, van Nieuwenhuizen and Van Proeyen. We show that the effective actions are identical. (orig.)

  12. Exotic composite vector boson

    International Nuclear Information System (INIS)

    Akama, K.; Hattori, T.; Yasue, M.

    1991-01-01

    An exotic composite vector boson V is introduced in two dynamical models of composite quarks, leptons, W, and Z. One is based on four-Fermi interactions, in which composite vector bosons are regarded as fermion-antifermion bound states and the other is based on the confining SU(2) L gauge model, in which they are given by scalar-antiscalar bound states. Both approaches describe the same effective interactions for the sector of composite quarks, leptons, W, Z, γ, and V

  13. Vector Boson Scattering at ATLAS

    CERN Document Server

    Ozcan, V E

    2009-01-01

    While the Higgs model is the best studied scenario of electroweak symmetry breaking, there is no fundamental reason for the physics responsible for the symmetry breaking to be weakly-coupled. Many alternatives exist, predicting highly model-dependent signatures. By measuring the cross-section for the W and Z scattering at the LHC, it will be possible to obtain model-independent evidence for strong symmetry breaking or to constrain these various models. ATLAS Collaboration has recently performed a realistic simulation of this process and its backgrounds, which takes into account the detector effects and has developed new jet-analysis techniques for identifying vector bosons within the immense QCD backgrounds expected at the LHC. These techniques and the prospects for measuring the scattering signal will be presented.

  14. Vector Boson Scattering at ATLAS

    CERN Document Server

    Ozcan, V E

    2008-01-01

    While the Higgs model is the best studied scenario of electroweak symmetry breaking, there is no fundamental reason for the physics responsible for the symmetry breaking to be weakly-coupled. Many alternatives exist, predicting highly model-dependent signatures. By measuring the cross-section for the W and Z scattering at the LHC, it will be possible to obtain model-independent evidence for strong symmetry breaking or to constrain these various models. ATLAS Collaboration has recently performed a realistic simulation of this process and its backgrounds, which takes into account the detector effects and has developed new jet-analysis techniques for identifying vector bosons within the immense QCD backgrounds expected at the LHC. These techniques and the prospects for measuring the scattering signal will be presented.

  15. Higgs Boson Pizza Day

    CERN Document Server

    Stefania Pandolfi

    2016-01-01

    CERN celebrated the fourth anniversary of the historical Higgs boson announcement with special pizzas.    400 pizzas were served on Higgs pizza day in Restaurant 1 at CERN to celebrate the fourth anniversary of the announcement of the discovery of the Higgs Boson (Image: Maximilien Brice/ CERN) What do the Higgs boson and a pizza have in common? Pierluigi Paolucci, INFN and CMS collaboration member, together with INFN president Fernando Ferroni found out the answer one day in Naples: the pizza in front of them looked exactly like a Higgs boson event display. A special recipe was then created in collaboration with the chef of the historic “Ettore” pizzeria in the St. Lucia area of Naples, and two pizzas were designed to resemble two Higgs boson decay channel event displays. The “Higgs Boson Pizza Day” was held on Monday, 4 July 2016, on the fourth anniversary of the announcement of the discovery of the Higgs boso...

  16. Spectral flow of trimer states of two heavy impurities and one light condensed boson

    DEFF Research Database (Denmark)

    Zinner, Nikolaj Thomas

    2014-01-01

    The spectral flow of three-body (trimer) states consisting of two heavy (impurity) particles sitting in a condensate of light bosons is considered. Assuming that the condensate is weakly interaction and that an impurity and a boson have a zero-range two-body interaction, we use the Born...

  17. Higgs boson production A comparison of parton showers and resummation

    CERN Document Server

    Balázs, C; Puljak, I

    2001-01-01

    The search for the Higgs boson(s) is one of the major priorities at the upgraded Fermilab Tevatron and at the CERN Large Hadron Collider (LHC). Monte Carlo (MC) event generators are heavily utilized to extract and interpret the Higgs signal, which depends on the details of the soft-gluon emission from the initial state partons in hadronic collisions. Thus, it is crucial to establish the reliability of the MC event generators used by the experimentalists. In this paper, the MC based parton shower formalism is compared to that of an analytic resummation calculation. Theoretical input, predictions and, where they exist, data for the transverse momentum distribution of Higgs bosons, Z/sup 0/ bosons, and photon pairs are compared for the Tevatron and the LHC. This comparison is useful in understanding the strengths and the weaknesses of the different theoretical approaches, and in testing their reliability. (36 refs).

  18. The W Boson Mass Measurement

    CERN Document Server

    Kotwal, Ashutosh V

    2016-01-01

    The measurement of the W boson mass has been growing in importance as its precision has improved, along with the precision of other electroweak observables and the top quark mass. Over the last decade, the measurement of the W boson mass has been led at hadron colliders. Combined with the precise measurement of the top quark mass at hadron colliders, the W boson mass helped to pin down the mass of the Standard Model Higgs boson through its induced radiative correction on the W boson mass. With the discovery of the Higgs boson and the measurement of its mass, the electroweak sector of the Standard Model is over-constrained. Increasing the precision of the W boson mass probes new physics at the TeV-scale. We summarize an extensive Tevatron (1984–2011) program to measure the W boson mass at the CDF and Dø experiments. We highlight the recent Tevatron measurements and prospects for the final Tevatron measurements.

  19. Weak relativity

    CERN Document Server

    Selleri, Franco

    2015-01-01

    Weak Relativity is an equivalent theory to Special Relativity according to Reichenbach’s definition, where the parameter epsilon equals to 0. It formulates a Neo-Lorentzian approach by replacing the Lorentz transformations with a new set named “Inertial Transformations”, thus explaining the Sagnac effect, the twin paradox and the trip from the future to the past in an easy and elegant way. The cosmic microwave background is suggested as a possible privileged reference system. Most importantly, being a theory based on experimental proofs, rather than mutual consensus, it offers a physical description of reality independent of the human observation.

  20. Super symmetry in strong and weak interactions

    International Nuclear Information System (INIS)

    Seshavatharam, U.V.S.; Lakshminarayana, S.

    2010-01-01

    For strong interaction two new fermion mass units 105.32 MeV and 11450 MeV are assumed. Existence of "Integral charge quark bosons", "Integral charge effective quark fermions", "Integral charge (effective) quark fermi-gluons" and "Integral charge quark boso-gluons" are assumed and their masses are estimated. It is noticed that, characteristic nuclear charged fermion is X s · 105.32 = 938.8 MeV and corresponding charged boson is X s (105.32/x) = 415.0 where X s = 8.914 is the inverse of the strong coupling constant and x = 2.26234 is a new number by using which "super symmetry" can be seen in "strong and weak" interactions. 11450 MeV fermion and its boson of mass = 11450/x = 5060 MeV plays a crucial role in "sub quark physics" and "weak interaction". 938.8 MeV strong fermion seems to be the proton. 415 MeV strong boson seems to be the mother of the presently believed 493,496 and 547 MeV etc, strange mesons. With 11450 MeV fermion "effective quark-fermi-gluons" and with 5060 MeV boson "quark boso-gluon masses" are estimated. "Effective quark fermi-gluons" plays a crucial role in ground state charged baryons mass generation. Light quark bosons couple with these charged baryons to form doublets and triplets. "Quark boso-gluons" plays a crucial role in ground state neutral and charged mesons mass generation. Fine and super-fine rotational levels can be given by [I or (I/2)] power(1/4) and [I or (I/2)] power(1/12) respectively. Here, I = n(n+1) and n = 1, 2, 3, … (author)

  1. Collider signatures of flavorful Higgs bosons

    International Nuclear Information System (INIS)

    Altmannshofer, Wolfgang; Eby, Joshua; Gori, Stefania; Lotito, Matteo

    2016-01-01

    Motivated by our limited knowledge of the Higgs couplings to the first two generation fermions, we analyze the collider phenomenology of a class of two Higgs doublet models (2HDMs) with a nonstandard Yukawa sector. One Higgs doublet is mainly responsible for the masses of the weak gauge bosons and the third-generation fermions, while the second Higgs doublet provides mass for the lighter fermion generations. The characteristic collider signatures of this setup differ significantly from well-studied 2HDMs with natural flavor conservation, flavor alignment, or minimal flavor violation. New production mechanisms for the heavy scalar, pseudoscalar, and charged Higgs involving second-generation quarks can become dominant. The most interesting decay modes include H/A → cc,tc,μμ,τμ and H"± → cb,cs,μν. As a result, searches for low-mass dimuon resonances are currently among the best probes of the heavy Higgs bosons in this setup.

  2. Bosonization methods in string theory

    International Nuclear Information System (INIS)

    Abdalla, E.

    1988-02-01

    The use of bosonization/fermionization techniques to convert non-linear operators of the dual, is discussed. Non abelian bosonization to the case where the central charge of the Kac-Moody algebra is not unity, is generalized. In particular, using this generalization of non-abelian bosonization, the bosonic string vertex of the compactified theory; turns out to be fundamental field of thre fermionic theory, or bound states of it thus permiting explicit computations easily. (author) [pt

  3. Dynamical Boson Stars

    Directory of Open Access Journals (Sweden)

    Steven L. Liebling

    2012-05-01

    Full Text Available The idea of stable, localized bundles of energy has strong appeal as a model for particles. In the 1950s, John Wheeler envisioned such bundles as smooth configurations of electromagnetic energy that he called geons, but none were found. Instead, particle-like solutions were found in the late 1960s with the addition of a scalar field, and these were given the name boson stars. Since then, boson stars find use in a wide variety of models as sources of dark matter, as black hole mimickers, in simple models of binary systems, and as a tool in finding black holes in higher dimensions with only a single Killing vector. We discuss important varieties of boson stars, their dynamic properties, and some of their uses, concentrating on recent efforts.

  4. Higgs boson hunting

    International Nuclear Information System (INIS)

    Dawson, S.; Haber, H.E.; Rindani, S.D.

    1989-05-01

    This is the summary report of the Higgs Boson Working Group. We discuss a variety of search techniques for a Higgs boson which is lighter than the Z. The processes K → πH, η prime → ηH,Υ → Hγ and e + e - → ZH are examined with particular attention paid to theoretical uncertainties in the calculations. We also briefly examine new features of Higgs phenomenology in a model which contains Higgs triplets as well as the usual doublet of scalar fields. 33 refs., 6 figs., 1 tab

  5. Technicolor Higgs boson in the light of LHC data

    DEFF Research Database (Denmark)

    Belyaev, Alexander; S. Brown, Matthew; Foadi, Roshan

    2014-01-01

    We consider scenarios in which the 125 GeV resonance observed at the Large Hadron Collider is a Technicolor (TC) isosinglet scalar, the TC Higgs. By comparison with quantum chromodynamics, we argue that the couplings of the TC Higgs to the massive weak bosons are very close to the Standard Model...

  6. Bosonization and quantum hydrodynamics

    Indian Academy of Sciences (India)

    thereby completing the formalism introduced earlier [10]. It is worth emphasizing that it is the slow part of the field operator that is easily expressed in terms of the bosons rather than the full field as was implied in one of the author's earlier work. [5]. The present approach, together with the action mentioned in the abstract, can.

  7. The H boson

    CERN Document Server

    Duplantier, Bertrand; Rivasseau, Vincent

    2017-01-01

    This volume provides a detailed description of the seminal theoretical construction in 1964, independently by Robert Brout and Francois Englert, and by Peter W. Higgs, of a mechanism for short-range fundamental interactions, now called the Brout-Englert-Higgs (BEH) mechanism. It accounts for the non-zero mass of elementary particles and predicts the existence of a new particle - an elementary massive scalar boson. In addition to this the book describes the experimental discovery of this fundamental missing element in the Standard Model of particle physics. The H Boson, also called the Higgs Boson, was produced and detected in the Large Hadron Collider (LHC) of CERN near Geneva by two large experimental collaborations, ATLAS and CMS, which announced its discovery on the 4th of July 2012. This new volume of the Poincaré Seminar Series, The H Boson, corresponds to the nineteenth seminar, held on November 29, 2014, at Institut Henri Po incaré in Paris.

  8. Low mass Higgs boson searches in b¯b or ττ channels at CMS

    International Nuclear Information System (INIS)

    Gozzellino, A.

    2013-01-01

    The most probable decay for a light Higgs Boson Standard Model (m H −1 , collected in 2011 by the Compact Muon Solenoid experiment during the Large Hadron Collider proton-proton collisions at a centre of mass energy √ s = 7TeV. The Standard Model Higgs H, produced in association with a vector boson V , is studied in five different final states, where H → b¯b and the vector boson decays to charged leptons (e, μ) and neutrinos. The poster shows the resulting global limit on production cross section of Higgs boson and weak bosons, pp → VH + X. The poster also includes information on recent light Higgs boson searches studying the H → ττ decay. Such a final state is also important in the context of MSSM neutral Higgs boson searches.

  9. Weak mixing below the weak scale in dark-matter direct detection

    Science.gov (United States)

    Brod, Joachim; Grinstein, Benjamin; Stamou, Emmanuel; Zupan, Jure

    2018-02-01

    If dark matter couples predominantly to the axial-vector currents with heavy quarks, the leading contribution to dark-matter scattering on nuclei is either due to one-loop weak corrections or due to the heavy-quark axial charges of the nucleons. We calculate the effects of Higgs and weak gauge-boson exchanges for dark matter coupling to heavy-quark axial-vector currents in an effective theory below the weak scale. By explicit computation, we show that the leading-logarithmic QCD corrections are important, and thus resum them to all orders using the renormalization group.

  10. Weak interactions of the b quark

    International Nuclear Information System (INIS)

    Branco, G.C.; Mohapatra, R.N.

    1978-01-01

    In weak-interaction models with two charged W bosons of comparable mass, there exists a novel possibility for the weak interactions of the b quark, in which the (u-barb)/sub R/ current occurs with maximal strength. It is noted that multimuon production in e + e - annihilation at above Q 2 > or approx. = (12 GeV) 2 will distinguish this scheme from the conventional one. We also present a Higgs system that leads naturally to this type of coupling, in a class of gauge models

  11. Weak interaction contribution to the energy spectrum of two-lepton system

    International Nuclear Information System (INIS)

    Martynenko, A.P.; Saleev, V.A.

    1995-01-01

    The contribution of neutral currents to the weak interaction quasi-potential of two leptons is investigated. The exact expression for the weak interaction operator of the system for arbitrary biding energies in one-boson approximation is obtained. The weak interaction contribution to the S-levels displacement of hydrogen-like atom. 14 refs

  12. Il Bosone di Higgs

    CERN Multimedia

    Hemmer, Sabine

    2018-01-01

    Poster di ATLAS sul bosone di Higgs indirizzato al pubblico generico, che spiega il meccanismo di Brout-Englert-Higgs e la sua importanza. Spiega anche il ruolo del Bosone di Higgs, come viene cercato, il percorso della sua scoperta e cosa viene dopo la scoperta. Disponibile anche in Francese (http://cds.cern.ch/record/1697501) e Inglese (http://cds.cern.ch/record/1697389). Non esitate a utilizzarlo nelle sedi dei vostri Istituti e negli eventi divulgativi! Il poster è in formato A0. Cliccate sull'immagine per scaricare il .pdf ad alta qualità e stamparlo dove preferite. Per qualisasi domanda o commento potete contattare atlas-outreach-coordination@cern.ch

  13. Fractional bosonic strings

    Science.gov (United States)

    Diaz, Victor Alfonzo; Giusti, Andrea

    2018-03-01

    The aim of this paper is to present a simple generalization of bosonic string theory in the framework of the theory of fractional variational problems. Specifically, we present a fractional extension of the Polyakov action, for which we compute the general form of the equations of motion and discuss the connection between the new fractional action and a generalization the Nambu-Goto action. Consequently, we analyze the symmetries of the modified Polyakov action and try to fix the gauge, following the classical procedures. Then we solve the equations of motion in a simplified setting. Finally, we present a Hamiltonian description of the classical fractional bosonic string and introduce the fractional light-cone gauge. It is important to remark that, throughout the whole paper, we thoroughly discuss how to recover the known results as an "integer" limit of the presented model.

  14. Model test of boson mappings

    International Nuclear Information System (INIS)

    Navratil, P.; Dobes, J.

    1992-01-01

    Methods of boson mapping are tested in calculations for a simple model system of four protons and four neutrons in single-j distinguishable orbits. Two-body terms in the boson images of the fermion operators are considered. Effects of the seniority v=4 states are thus included. The treatment of unphysical states and the influence of boson space truncation are particularly studied. Both the Dyson boson mapping and the seniority boson mapping as dictated by the similarity transformed Dyson mapping do not seem to be simply amenable to truncation. This situation improves when the one-body form of the seniority image of the quadrupole operator is employed. Truncation of the boson space is addressed by using the effective operator theory with a notable improvement of results

  15. Bosonization and entanglement spectrum for one-dimensional polar bosons on disordered lattices

    International Nuclear Information System (INIS)

    Deng, Xiaolong; Santos, Luis; Citro, Roberta; Orignac, Edmond; Minguzzi, Anna

    2013-01-01

    Ultra cold polar bosons in a disordered lattice potential, described by the extended Bose–Hubbard model, display a rich phase diagram. In the case of uniform random disorder one finds two insulating quantum phases—the Mott-insulator and the Haldane insulator—in addition to a superfluid and a Bose glass phase. In the case of a quasiperiodic potential, further phases are found, e.g. the incommensurate density wave, adiabatically connected to the Haldane insulator. For the case of weak random disorder we determine the phase boundaries using a perturbative bosonization approach. We then calculate the entanglement spectrum for both types of disorder, showing that it provides a good indication of the various phases. (paper)

  16. On the bosonic atoms

    Science.gov (United States)

    Amusia, M. Ya.; Chernysheva, L. V.

    2018-01-01

    We investigate ground state properties of atoms, in which substitute fermions - electrons by bosons, namely π --mesons. We perform some calculations in the frame of modified Hartree-Fock (HF) equation. The modification takes into account symmetry, instead of anti-symmetry of the pair identical bosons wave function. The modified HF approach thus enhances (doubles) the effect of self-action for the boson case. Therefore, we accordingly modify the HF equations by eliminating the self-action terms "by hand". The contribution of meson-meson and meson-nucleon non-Coulomb interaction is inessential at least for atoms with low and intermediate nuclear charge, which is our main subject. We found that the binding energy of pion negative ions A π - , pion atoms A π , and the number of extra bound pions ΔN π increases with the growth of nuclear charge Z. For e.g. Xe ΔN π = 4. As an example of a simple process with a pion atom, we consider photoionization that differs essentially from that for electron atoms. Namely, it is not monotonic decreasing from the threshold but has instead a prominent maximum above threshold. We study also elastic scattering of pions by pion atoms.

  17. Stability of boson stars

    International Nuclear Information System (INIS)

    Gleiser, M.

    1988-01-01

    Boson stars are gravitationally bound, spherically symmetric equilibrium configurations of cold, free, or interacting complex scalar fields phi. As these equilibrium configurations naturally present local anisotropy, it is sensible to expect departures from the well-known stability criteria for fluid stars. With this in mind, I investigate the dynamical instability of boson stars against charge-conserving, small radial perturbations. Following the method developed by Chandrasekhar, a variational base for determining the eigenfrequencies of the perturbations is found. This approach allows one to find numerically an upper bound for the central density where dynamical instability occurs. As applications of the formalism, I study the stability of equilibrium configurations obtained both for the free and for the self-interacting [with V(phi) = (λ/4)chemical bondphichemical bond 4 ] massive scalar field phi. Instabilities are found to occur not for the critical central density as in fluid stars but for central densities considerably higher. The departure from the results for fluid stars is sensitive to the coupling λ; the higher the value of λ, the more the stability properties of boson stars approach those of a fluid star. These results are linked to the fractional anisotropy at the radius of the configuration

  18. New remarks on chiral bosonization

    International Nuclear Information System (INIS)

    Souza Dutra, A. de

    1992-01-01

    We discuss a certain duality between the constraints appearing in ordinary Lagrangian density and its first order counterpart for the gauged Siegel chiral boson. It is demonstrated the equivalence, at the classical level, of the two versions of the gauged Siegel chiral boson to its corresponding gauged Floreanini-Jackiw chiral bosons. It is also argued that the most general constrained Lagrangian density, that leads to a bosonic field obeying a first order differential equation of motion and preserve simultaneously Lorentz invariance, is just the Floreanini-Jackiw one. (author)

  19. Remarks on diffractive production of the Higgs boson

    Energy Technology Data Exchange (ETDEWEB)

    Peschanski, R. [CEA Saclay, Service de Physique Theorique, URA 2306, Unite de Recherche Associee au CNRS, 91 - Gif-sur-Yvette (France)

    2005-07-01

    Central diffractive production of the Higgs boson has recently received much attention as a potentially interesting production mode at the LHC (large hadron collider). While the standard production of Higgs boson via gluon-gluon fusion can reach high cross-sections, the study of the Higgs boson will be uneasy due to accompanying particles and background. The original guiding line for central diffractive production is to compensate the weak cross-sections by a cleaner signal, and precise production kinematics thanks to the tagging of diffracted protons. We shall review some of the wishes and realities encountered in this field. Theoretical open problems of diffractive dynamics are involved in making accurate predictions for the LHC, among which the most crucial is understanding factorization breaking in hard diffraction.

  20. Superconductivity in mixed boson-fermion systems

    International Nuclear Information System (INIS)

    Ioffe, L.; Larkin, A.I.; Ovchinnikov, Yu.N.; Yu, L.

    1989-12-01

    The superconductivity of mixed boson-fermion systems is studied using a simple boson-fermion transformation model. The critical temperature of the superconducting transition is calculated over a wide range of the narrow boson band position relative to the Fermi level. The BCS scenario and boson condensation picture are recovered in two limiting cases of high and low positions of boson band, respectively, with modifications due to boson-fermion interaction. (author). 11 refs

  1. Long range correlation in Higgs boson plus two jets production at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Peng [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Nuclear Science Division; Yuan, C. -P. [Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy; Yuan, Feng [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Nuclear Science Division

    2016-09-09

    Here, we study Higgs boson plus two high energy jets production at the LHC in the kinematics where the two jets are well separated in rapidity. The partonic processes are dominated by the t-channel weak boson fusion (WBF) and gluon fusion (GF) contributions. We derive the associated QCD resummation formalism for the correlation analysis where the total transverse momentum q⊥ of the Higgs boson and two jets is small. Because of different color structures, the resummation results lead to distinguished behaviors: the WBF contribution peaks at relative low q⊥ while all GF channel contributions are strongly de-correlated and spread to a much wider q⊥ range. Furthermore, by applying a kinematic cut on q⊥, one can effectively increase the WBF signal to the GF background by a significant factor. This, then strengthens the ability to investigate the WBF channel in Higgs boson production and study the couplings of Higgs to electroweak bosons.

  2. The Higgs boson resonance width from a chiral Higgs-Yukawa model on the lattice

    International Nuclear Information System (INIS)

    Gerhold, Philipp; Kallarackal, Jim; Humboldt-Universitaet, Berlin; Jansen, Karl

    2011-11-01

    The Higgs boson is a central part of the electroweak theory and is crucial to generate masses for quarks, leptons and the weak gauge bosons. We use a 4-dimensional Euclidean lattice formulation of the Higgs-Yukawa sector of the electroweak model to compute physical quantities in the path integral approach which is evaluated by means of Monte Carlo simulations thus allowing for fully non perturbative calculations. The chiral symmetry of the model is incorporated by using the Neuberger overlap Dirac operator. The here considered Higgs-Yukawa model does not involve the weak gauge bosons and furthermore, only a degenerate doublet of top- and bottom quarks are incorporated. The goal of this work is to study the resonance properties of the Higgs boson and its sensitivity to the strength of the quartic self coupling. (orig.)

  3. Discovery of the Higgs Boson Decaying to Two Photons

    CERN Document Server

    AUTHOR|(CDS)2075371; Branson, James; Pieri, Marco

    2014-09-10

    The Standard Model (SM) of particle physics fundamentally relies on the existence of the Higgs boson. This massive particle is a relic of the underlying and hidden Higgs field, whose transformation into the Higgs boson provides mass to weak bosons and all massive fermions in the SM. This particle has been long-sought and finally using data from proton-proton collisions at the LHC, CMS and ATLAS experiments have discovered a particle which is compatible with the SM Higgs boson. Presented here is the development of one of the discovery channels, $\\mathrm{H}\\rightarrow\\gamma\\gamma$, and the final $\\mathrm{H}\\rightarrow\\gamma\\gamma$ analysis and results using the full luminosity of the LHC Run 1 dataset $\\sim$25 $\\mathrm{fb}^{-1}$ at 7 or 8 TeV center of mass energy. The observed (expected) significance of this di-photon excess in the final analysis is $5.7\\sigma$ ($5.2\\sigma$) with a measured signal strength of $\\sigma / \\sigma_{SM} = 1.14^{+0.26}_{-0.23}$. The mass of this Higgs boson is not predicted by t...

  4. Limits on light Higgs bosons

    International Nuclear Information System (INIS)

    Dawson, S.

    1988-01-01

    Experimental limits on light Higgs bosons (M/sub H/ < 5 GeV) are examined. Particular attention is paid to the process K → πH. It is shown that there may be an allowed window for light Higgs bosons between about 100 and 210 MeV. 13 refs., 2 figs

  5. The interacting boson model

    International Nuclear Information System (INIS)

    Iachello, F.; Arima, A.

    1987-01-01

    The book gives an account of some of the properties of the interacting boson model. The model was introduced in 1974 to describe in a unified way the collective properties of nuclei. The book presents the mathematical techniques used to analyse the structure of the model. The mathematical framework of the model is discussed in detail. The book also contains all the formulae that have been developed throughout the years to account for collective properties of nuclei. These formulae can be used by experimentalists to compare their data with the predictions of the model. (U.K.)

  6. CMS Higgs boson results

    CERN Document Server

    Bluj, Michal Jacek

    2018-01-01

    In this report we review recent Higgs boson results obtained with pp collisions at $\\sqrt{s}=\\,$13 TeV recorded by the CMS detector in 2016 for an integrated luminosity of 35.9fb$^{\\text{-1}}$. The 2016 data allowed the observation of the $H \\to \\tau\\tau$ and $H \\to WW$ decays with high significance. We also present a combined measurement based on a full set of CMS analyses performed with 2016 data. These results are compatible with the standard model predictions with precision of several measurements exceeding results from combination of ATLAS and CMS data collected in 2011 and 2012.

  7. Weak interactions physics: from its birth to the eletroweak model

    International Nuclear Information System (INIS)

    Lopes, J.L.

    1987-01-01

    A review of the evolution of weak interaction physics from its beginning (Fermi-Majorana-Perrin) to the eletroweak model (Glashow-Weinberg-Salam). Contributions from Brazilian physicists are specially mentioned as well as the first prediction of electroweak-unification, of the neutral intermediate vector Z 0 and the first approximate value of the mass of the W-bosons. (Author) [pt

  8. Weak point disorder in strongly fluctuating flux-line liquids

    Indian Academy of Sciences (India)

    We consider the effect of weak uncorrelated quenched disorder (point defects) on a strongly fluctuating flux-line liquid. We use a hydrodynamic model which is based on mapping the flux-line system onto a quantum liquid of relativistic charged bosons in 2 + 1 dimensions [P Benetatos and M C Marchetti, Phys. Rev. B64 ...

  9. Towards a nonperturbative calculation of weak Hamiltonian Wilson coefficients

    Science.gov (United States)

    Bruno, Mattia; Lehner, Christoph; Soni, Amarjit; Rbc; Ukqcd Collaborations

    2018-04-01

    We propose a method to compute the Wilson coefficients of the weak effective Hamiltonian to all orders in the strong coupling constant using Lattice QCD simulations. We perform our calculations adopting an unphysically light weak boson mass of around 2 GeV. We demonstrate that systematic errors for the Wilson coefficients C1 and C2 , related to the current-current four-quark operators, can be controlled and present a path towards precise determinations in subsequent works.

  10. Low-Data Investigation of Higgs Boson Discovery at the LHC

    OpenAIRE

    Scoby, Cheyne M

    2006-01-01

    The Standard Model (SM) remains as a complete and effective tool for understanding fundamental particles and their interactions. There is only one particle that the model predicts that has not yet been discovered. The Higgs boson is required as part of the mechanism behind electroweak symmetry breaking, and explains how the weak vector bosons, as well as the charged quarks and leptons gain mass, proportional to their coupling to the Higgs field. The SM predicts many properties of the Higgs, b...

  11. Partially composite Goldstone Higgs boson

    DEFF Research Database (Denmark)

    Alanne, Tommi; Franzosi, Diogo Buarque; Frandsen, Mads T.

    2017-01-01

    We consider a model of dynamical electroweak symmetry breaking with a partially composite Goldstone Higgs boson. The model is based on a strongly interacting fermionic sector coupled to a fundamental scalar sector via Yukawa interactions. The SU(4)×SU(4) global symmetry of these two sectors...... is broken to a single SU(4) via Yukawa interactions. Electroweak symmetry breaking is dynamically induced by condensation due to the strong interactions in the new fermionic sector which further breaks the global symmetry SU(4)→Sp(4). The Higgs boson arises as a partially composite state which is an exact...... Goldstone boson in the limit where SM interactions are turned off. Terms breaking the SU(4) global symmetry explicitly generate a mass for the Goldstone Higgs boson. The model realizes in different limits both (partially) composite Higgs and (bosonic) technicolor models, thereby providing a convenient...

  12. Reconstructing weak values without weak measurements

    International Nuclear Information System (INIS)

    Johansen, Lars M.

    2007-01-01

    I propose a scheme for reconstructing the weak value of an observable without the need for weak measurements. The post-selection in weak measurements is replaced by an initial projector measurement. The observable can be measured using any form of interaction, including projective measurements. The reconstruction is effected by measuring the change in the expectation value of the observable due to the projector measurement. The weak value may take nonclassical values if the projector measurement disturbs the expectation value of the observable

  13. VBFNLO. A patron level Monte Carlo for processes with electroweak bosons. Manual for Version 2.5.0

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, K.; Bellm, J. [Karlsruhe Institute of Technology, Karlsruhe (Germany). Inst. fuer Theoretische Physik; Bozzi, G. [Milano-Bicocca Univ. (Italy). Dipt. di Fisica; INFN, Sezione di Milano-Bicocca (IT)] (and others)

    2011-08-15

    VBFNLO is a flexible parton level Monte Carlo program for the simulation of vector boson fusion, double and triple vector boson production in hadronic collisions at next-to-leading order (NLO) in the strong coupling constant, as well as Higgs boson plus two jet production via gluon fusion at the one-loop level. In the new release - Version 2.5.0 - several new processes have been added at NLO QCD: vector boson fusion production of a Higgs boson plus a photon, vector boson fusion production of a photon, W{gamma} and WZ production plus a hadronic jet and the triboson production processes WW{gamma}, ZZ{gamma}, WZ{gamma}, W{gamma}{gamma}, Z{gamma}{gamma} and {gamma}{gamma}{gamma}. The code has been extended to run in the Minimal Supersymmetric Standard Model (MSSM), and electroweak corrections to Higgs boson production via weak boson fusion have been included. Anomalous gauge boson couplings can be used in new processes and the Three-Site Higgsless model has been implemented for several processes. The simulation of Higgs boson production via gluon fusion has been improved. (orig.)

  14. Diatomic molecules in ultracold Fermi gases - Novel composite bosons

    OpenAIRE

    Petrov, D. S.; Salomon, C.; Shlyapnikov, G. V.

    2005-01-01

    We give a brief overview of recent studies of weakly bound homonuclear molecules in ultracold two-component Fermi gases. It is emphasized that they represent novel composite bosons, which exhibit features of Fermi statistics at short intermolecular distances. In particular, Pauli exclusion principle for identical fermionic atoms provides a strong suppression of collisional relaxation of such molecules into deep bound states. We then analyze heteronuclear molecules which are expected to be for...

  15. Anomalous couplings, resonances and unitarity in vector boson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Sekulla, Marco

    2015-12-04

    The Standard Model of particle physics has proved itself as a reliable theory to describe interactions of elementary particles. However, many questions concerning the Higgs sector and the associated electroweak symmetry breaking are still open, even after (or because) a light Higgs boson has been discovered. The 2→2 scattering amplitude of weak vector bosons is suppressed in the Standard Model due to the Higgs boson exchange. Therefore, weak vector boson scattering processes are very sensitive to additional contributions beyond the Standard Model. Possible new physics deviations can be studied model-independently by higher dimensional operators within the effective field theory framework. In this thesis, a complete set of dimension six and eight operators are discussed for vector boson scattering processes. Assuming a scenario where new physics in the Higgs/Goldstone boson decouples from the fermion-sector and the gauge-sector in the high energy limit, the impact of the dimension six operator L{sub HD} and dimension eight operators L{sub S,0} and L{sub S,1} to vector boson scattering processes can be studied separately for complete processes at particle colliders. However, a conventional effective field theory analysis will violate the S-matrix unitarity above a certain energy limit. The direct T-matrix scheme is developed to allow a study of effective field theory operators consistent with basic quantum-mechanical principles in the complete energy reach of current and future colliders. Additionally, this scheme can be used preventively for any model, because it leaves theoretical predictions invariant, which already satisfies unitarity. The effective field theory approach is further extended by allowing additional generic resonances coupling to the Higgs/Goldstone boson sector, namely the isoscalar-scalar, isoscalar-tensor, isotensor-scalar and isotensor-tensor. In particular, the Stueckelberg formalism is used to investigate the impact of the tensor degree of

  16. Weak interactions at the SSC

    International Nuclear Information System (INIS)

    Chanowitz, M.S.

    1986-03-01

    Prospects for the study of standard model weak interactions at the SSC are reviewed, with emphasis on the unique capability of the SSC to study the mechanism of electroweak symmetry breaking whether the associated new quanta are at the TeV scale or higher. Symmetry breaking by the minimal Higgs mechanism and by related strong interaction dynamical variants is summarized. A set of measurements is outlined that would calibrate the proton structure functions and the backgrounds to new physics. The ability to measure the three weak gauge boson vertex is found to complement LEP II, with measurements extending to larger Q 2 at a comparable statistical level in detectable decays. B factory physics is briefly reviewed as one example of a possible broad program of high statistics studies of sub-TeV scale phenomena. The largest section of the talk is devoted to the possible manifestations of symmetry breaking in the WW and ZZ production cross sections. Some new results are presented bearing on the ability to detect high mass WW and ZZ pairs. The principal conclusion is that although nonstandard model scenarios are typically more forgiving, the capability to study symmetry breaking in the standard model (and in related strong interaction dynamical variants) requires achieving the SSC design goals of √ s,L = 40Tev, 10 33 cm -2 sec -1 . 28 refs., 5 figs

  17. Bounds on dark matter interactions with electroweak gauge bosons

    Energy Technology Data Exchange (ETDEWEB)

    Cotta, R. C.; Hewett, J. L.; Le, M. -P.; Rizzo, T. G.

    2013-12-01

    We investigate scenarios in which dark matter interacts with the Standard Model primarily through electroweak gauge bosons. We employ an effective field theory framework wherein the Standard Model and the dark matter particle are the only light states in order to derive model-independent bounds. Bounds on such interactions are derived from dark matter production by weak boson fusion at the LHC, indirect detection searches for the products of dark matter annihilation and from the measured invisible width of the Z 0 . We find that limits on the UV scale, Λ , reach weak scale values for most operators and values of the dark matter mass, thus probing the most natural scenarios in the weakly interacting massive particle dark matter paradigm. Our bounds suggest that light dark matter ( m χ ≲ m Z / 2 or m χ ≲ 100 – 200 GeV , depending on the operator) cannot interact only with the electroweak gauge bosons of the Standard Model, but rather requires additional operator contributions or dark sector structure to avoid overclosing the Universe.

  18. Vector boson scattering at CLIC

    Energy Technology Data Exchange (ETDEWEB)

    Kilian, Wolfgang; Fleper, Christian [Department Physik, Universitaet Siegen, 57068 Siegen (Germany); Reuter, Juergen [DESY Theory Group, 22603 Hamburg (Germany); Sekulla, Marco [Institut fuer Theoretische Physik, Karlsruher Institut fuer Technologie, 76131 Karlsruhe (Germany)

    2016-07-01

    Linear colliders operating in a range of multiple TeV are able to investigate the details of vector boson scattering and electroweak symmetry breaking. We calculate cross sections with the Monte Carlo generator WHIZARD for vector boson scattering processes at the future linear e{sup +} e{sup -} collider CLIC. By finding suitable cuts, the vector boson scattering signal processes are isolated from the background. Finally, we are able to determine exclusion sensitivities on the non-Standard Model parameters of the relevant dimension eight operators.

  19. Kondo length in bosonic lattices

    Science.gov (United States)

    Giuliano, Domenico; Sodano, Pasquale; Trombettoni, Andrea

    2017-09-01

    Motivated by the fact that the low-energy properties of the Kondo model can be effectively simulated in spin chains, we study the realization of the effect with bond impurities in ultracold bosonic lattices at half filling. After presenting a discussion of the effective theory and of the mapping of the bosonic chain onto a lattice spin Hamiltonian, we provide estimates for the Kondo length as a function of the parameters of the bosonic model. We point out that the Kondo length can be extracted from the integrated real-space correlation functions, which are experimentally accessible quantities in experiments with cold atoms.

  20. Chameleon vector bosons

    International Nuclear Information System (INIS)

    Nelson, Ann E.; Walsh, Jonathan

    2008-01-01

    We show that for a force mediated by a vector particle coupled to a conserved U(1) charge, the apparent range and strength can depend on the size and density of the source, and the proximity to other sources. This chameleon effect is due to screening from a light charged scalar. Such screening can weaken astrophysical constraints on new gauge bosons. As an example we consider the constraints on chameleonic gauged B-L. We show that although Casimir measurements greatly constrain any B-L force much stronger than gravity with range longer than 0.1 μm, there remains an experimental window for a long-range chameleonic B-L force. Such a force could be much stronger than gravity, and long or infinite range in vacuum, but have an effective range near the surface of the earth which is less than a micron.

  1. Introduction to bosonization

    International Nuclear Information System (INIS)

    Miranda, E.

    2003-01-01

    This is a pedagogical introduction to the general technique of bosonization of one-dimensional systems starting from scratch and assuming very little besides basic quantum mechanics and second quantization. The formalism is developed in a self-contained fashion and applied to the spinless and spin-1/2 Luttinger models, working out both single and two particle correlation functions. The implications of these results for the specific cases of the (anisotropic) Heisenberg and the Hubbard models are discussed. Although everything in these notes can be found in the published literature, detailed and explicit calculations of most of the results are given, which may prove useful to beginning graduate students or researchers in this area. (author)

  2. The Higgs boson

    CERN Multimedia

    Brunet, S

    2014-01-01

    ATLAS Higgs poster targeted to general public, explaining the Brout-Englert-Higgs mechanism and why it is important. It also explains the role of the Higgs Boson, how we look for it, the journey of the discovery and what comes after the discovery. Also available in French (http://cds.cern.ch/record/1697501). Don’t hesitate to use it in your institute’s corridors and in your outreach events! The poster is in A0 format. You can click on the image to download the high-quality .pdf version and print it at your favorite printshop. For any questions or comments you can contact atlas-outreach-coordination@cern.ch.

  3. Vector boson production in joint resummation

    Energy Technology Data Exchange (ETDEWEB)

    Marzani, Simone; Theeuwes, Vincent [University at Buffalo, The State University of New York,Buffalo, NY 14260-1500 (United States)

    2017-02-24

    We study the transverse momentum (Q{sub T}) distribution of an electro-weak vector boson produced via the Drell-Yan mechanism, in the context of joint resummation. This formalism allows for the simultaneous resummation of logarithmic contributions that are enhanced at small Q{sub T} and at partonic threshold. We extend joint resummation to next-to-next-to leading logarithmic accuracy and we present resummed and matched results for three different phenomenological setups. In particular, we study the production of a Z boson at the Tevatron and at the Large Hadron Collider (LHC), as well as the production of a heavier Z{sup ′} at the LHC. We compare our findings to standard Q{sub T} resummation, as well as to fixed-order perturbation theory. We find that joint resummation provides a moderate (but not flat) correction with respect to Q{sub T} resummation and it leads to a reduction of the scale dependence of the results. However, our study also shows some limitations of this formalism. While the use of joint resummation for Z production at the Tevatron and Z{sup ′} production at the LHC appears to be justified, our implementation suffers from a stronger dependence on power corrections for processes which are further away from threshold, such as Z production at the LHC, for which we cannot claim an improvement over standard Q{sub T} resummation.

  4. Interacting boson model with surface delta interaction between nucleons: Structure and interaction of bosons

    International Nuclear Information System (INIS)

    Druce, C.H.; Moszkowski, S.A.

    1986-01-01

    The surface delta interaction is used as an effective nucleon-nucleon interaction to investigate the structure and interaction of the bosons in the interacting boson model. We have obtained analytical expressions for the coefficients of a multipole expansion of the neutron-boson-proton-boson interaction for the case of degenerate orbits. A connection is made between these coefficients and the parameters of the interaction boson model Hamiltonian. A link between the latter parameters and the single boson energies is suggested

  5. Interacting boson model with surface delta interaction between nucleons: Structure and interaction of bosons

    Energy Technology Data Exchange (ETDEWEB)

    Druce, C.H.; Moszkowski, S.A.

    1986-01-01

    The surface delta interaction is used as an effective nucleon-nucleon interaction to investigate the structure and interaction of the bosons in the interacting boson model. We have obtained analytical expressions for the coefficients of a multipole expansion of the neutron-boson-proton-boson interaction for the case of degenerate orbits. A connection is made between these coefficients and the parameters of the interaction boson model Hamiltonian. A link between the latter parameters and the single boson energies is suggested.

  6. Relativistic rapprochement of weak and strong interactions

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1995-01-01

    On the basis of the relativistic Yukawa potentials for the nuclear (quark) field and the field of intermediate vector W-, Z-bosons, it is shown that the interactions described by them increase differently with growing velocity (the weak one increases more rapidly). According to the estimates, they are compared (at distances of the 'action radius' of nuclear forces) at an energy of about 10 12 GeV (10 6 GeV for the pion field) what is smaller than the corresponding value in the model of 'grand unification'. 3 refs., 2 tabs

  7. A general approach to bosonization

    Indian Academy of Sciences (India)

    As the term suggests, 'bosonization' is an effort to recast theories involving ... to use this formula to calculate the Green functions of interacting systems in one ..... this picks up a contribution similar to the one suggested upon time evolution with.

  8. Higgs boson transverse momentum distribution

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    I will review  the recent progress in understanding Higgs boson transverse momentum distribution focusing on effects that go beyond the point-like approximation for the Higgs-glue interaction vertex.

  9. Theory of weak interactions and related topics. Progress report, January 1, 1982-February 28, 1983

    International Nuclear Information System (INIS)

    Marshak, R.E.

    1985-08-01

    Progress is reported in these areas: B-L vs V-A gauge groups; work on neutron oscillations; preon models of quarks and leptons; partial unification theory (PUT); extensions of standard electroweak group; composite weak bosons; quasi-solitons in electroweak gauge groups; and weak CP nonconservation. 18 refs

  10. On the colour contribution to effective weak vertex in broken colour gauge theories

    International Nuclear Information System (INIS)

    Ramachandran, R.

    1979-01-01

    Treating the breaking of colour symmetry via the mixing between the colour gluons and weak bosons (a la Rajasekaran and Roy) it is observed that the colour contribution to the effective weak vertex of a quark at zero momentum transfer is zero upto 0(α). (author)

  11. Fermion to boson mappings revisited

    International Nuclear Information System (INIS)

    Ginocchio, J.N.; Johnson, C.W.

    1996-01-01

    We briefly review various mappings of fermion pairs to bosons, including those based on mapping operators, such as Belyaev-Zelevinskii, and those on mapping states, such as Marumori; in particular we consider the work of Otsuka-Arima-Iachello, aimed at deriving the Interacting Boson Model. We then give a rigorous and unified description of state-mapping procedures which allows one to systematically go beyond Otsuka-Arima-Iachello and related approaches, along with several exact results. (orig.)

  12. Super boson-fermion correspondence

    International Nuclear Information System (INIS)

    Kac, V.G.; Leur van de, J.W.

    1987-01-01

    Since the pioneering work of Skyrme, the boson-fermion correspondence has been playing an increasingly important role in 2-dimensional quantum field theory. More recently, it has become an important ingredient in the work of the Kyoto school on the KP hierarchy of soliton equations. In the present paper we establish a super boson-fermion correspondence, having in mind its applications to super KP hierarchies

  13. An exotic composite vector boson

    International Nuclear Information System (INIS)

    Akama, Keiichi; Hattori, Takashi; Yasue, Masaki.

    1990-08-01

    An exotic composite vector boson, V, is introduced in two dynamical models of composite quarks, leptons, W and Z. One is based on four Fermi interactions, in which composite vector bosons are regarded as fermion-antifermion bound states and the other is based on the confining SU(2) L gauge model, in which they are given by scalar-antiscalar bound states. Both approaches describe the same effective interactions for the sector of composite quarks, leptons, W, Z, γ and V. (author)

  14. Microscopic structure of an interacting boson model in terms of the dyson boson mapping

    International Nuclear Information System (INIS)

    Geyer, H.B.; Lee, S.Y.

    1982-01-01

    In an application of the generalized Dyson boson mapping to a shell model Hamiltonian acting in a single j shell, a clear distinction emerges between pair bosons and kinematically determined seniority bosons. As in the Otsuka-Arima-Iachello method it is found that the latter type of boson determines the structure of an interactive boson-model-like Hamiltonian for the single j-shell model. It is furthermore shown that the Dyson boson mapping formalism is equally well suited for investigating possible interactive boson-model-like structures in a multishell case, where dynamical considerations are expected to play a much more important role in determining the structure of physical bosons

  15. Higgs boson search at ATLAS

    International Nuclear Information System (INIS)

    Hanninger, Guilherme Nunes

    2012-01-01

    Full text: The Standard Model of particle physics (SM) has been extremely successful describing the elementary particles and their interactions. It also features a theory describing the origin of particle masses: the 'Higgs mechanism', which postulates the existence of a new particle called the 'Higgs boson'. In 2011 and 2012, tantalising hints of the Higgs boson were reported by the experiments at the Large Hadron Collider (LHC). The results of the search for the Standard Model Higgs Boson with the ATLAS detector in proton-proton collisions at the LHC at 7 and 8 TeV center-of-mass energies are presented. A large number of the Higgs Boson decay channels, such as photon, tau, W and Z pairs, as well as for combined channels in the mass range from 110 GeV to 600 GeV are reviewed and discussed. The combined upper limits on the production cross section as a function of the Higgs Boson mass are derived. Practical methods to estimate the backgrounds using control samples in real data are discussed. Validation of some of the data driven background estimation methods using the early 7 TeV ATLAS data at the LHC is also presented. In addition, searches for Higgs Bosons in scenarios beyond the Standard Model (BSM) lead to improved constraints on the Higgs sector of BSM theories such as Supersymmetry. (author)

  16. Vector boson scattering and electroweak production of two like-charge W bosons and two jets at the current and future ATLAS detector

    International Nuclear Information System (INIS)

    Schnoor, Ulrike

    2015-01-01

    The scattering of electroweak gauge bosons is closely connected to the electroweak gauge symmetry and its spontaneous breaking through the Brout-Englert-Higgs mechanism. Since it contains triple and quartic gauge boson vertices, the measurement of this scattering process allows to probe the self-interactions of weak bosons. The contribution of the Higgs boson to the weak boson scattering amplitude ensures unitarity of the scattering matrix. Therefore, the scattering of massive electroweak gauge bosons is sensitive to deviations from the Standard Model prescription of the electroweak interaction and of the properties of the Higgs boson. At the Large Hadron Collider (LHC), the scattering of massive electroweak gauge bosons is accessible through the measurement of purely electroweak production of two jets and two gauge bosons. No such process has been observed before. Being the channel with the least amount of background from QCD-mediated production of the same final state, the most promising channel for the first measurement of a process containing massive electroweak gauge boson scattering is the one with two like-charge W bosons and two jets in the final state. This thesis presents the first measurement of electroweak production of two jets and two identically charged W bosons, which yields the first observation of a process with contributions from quartic gauge interactions of massive electroweak gauge bosons. An overview of the most important issues in Monte Carlo simulation of vector boson scattering processes with current Monte Carlo generators is given in this work. The measurement of the final state of two jets and two leptonically decaying same-charge W bosons is conducted based on proton-proton collision data with a center-of-mass energy of √(s)=8 TeV, taken in 2012 with the ATLAS experiment at the LHC. The cross section of electroweak production of two jets and two like-charge W bosons is measured with a significance of 3.6 standard deviations to be

  17. Latest LHCb measurements of Electroweak Boson Production in Run-1

    CERN Document Server

    CERN. Geneva

    2015-01-01

    We present the latest LHCb measurements of forward Electroweak Boson Production using proton-proton collisions recorded in LHC Run-1. The seminar shall discuss measurements of the 8 TeV W & Z boson production cross-sections. These results make use of LHCb's excellent integrated luminosity determination to provide constraints on the parton distribution functions which describe the inner structure of the proton. These LHCb measurements probe a region of phase space at low Bjorken-x where the other LHC experiments have limited sensitivity. We also present measurements of cross-section ratios, and ratios of results in 7 TeV and 8 TeV proton-proton collisions. These results provide precision tests of the Standard Model. The seminar shall also present a measurement of the forward-backward asymmetry (A_FB) in Z boson decays to two muons. This result allows for precision tests of the coupling of the Z boson to left and right handed particles, providing sensitivity to the effective weak mixing angle (...

  18. Measuring the Higgs Boson Self Coupling at the LHC and Finite Top Mass Matrix Elements

    CERN Document Server

    Baur, Ulrich; Rainwater, D L; Baur, Uli; Plehn, Tilman; Rainwater, David

    2002-01-01

    Inclusive Standard Model Higgs boson pair production and subsequent decay to same-sign dileptons via weak gauge W bosons at the CERN Large Hadron Collider has the capability to determine the Higgs boson self-coupling, lambda. The large top quark mass limit is found not to be a good approximation for the signal if one wishes to utilize differential distributions in the analysis. We find that it should be possible at the LHC with design luminosity to establish that the Standard Model Higgs boson has a non-zero self-coupling and that lambda/lambda(SM) can be restricted to a range of 0--3.7 at 95% confidence level if its mass is between 150 and 200 GeV.

  19. The Higgs boson resonance from a chiral Higgs-Yukawa model on the lattice

    Energy Technology Data Exchange (ETDEWEB)

    Kallarackal, Jim

    2011-04-28

    Despite the fact that the standard model of particle physics has been confirmed in many high energy experiments, the existence of the Higgs boson is not assured. The Higgs boson is a central part of the electroweak theory and is crucial to generate masses for fermions and the weak gauge bosons. The goal of this work is to set limits on the mass and the decay width of the Higgs boson. The basis to compute the physical quantities is the path integral which is here evaluated by means of Monte Carlo simulations thus allowing for fully non perturbative calculations. A polynomial hybrid Monte Carlo algorithm is used to incorporate dynamical fermions. The chiral symmetry of the electroweak model is incorporated by using the Neuberger overlap operator. Here, the standard model is considered in the limit of a Higgs-Yukawa sector which does not contain the weak gauge bosons and only a degenerate doublet of top- and bottom quarks are incorporated. Results from lattice perturbation theory up to one loop of the Higgs boson propagator are compared with those obtained from Monte Carlo simulations at three different values of the Yukawa coupling. At all values of the investigated couplings, the perturbative results agree very well with the Monte Carlo data. A main focus of this work is the investigation of the resonance parameters of the Higgs boson. The resonance width and the resonance mass are investigated at weak and at large quartic couplings. The parameters of the model are chosen such that the Higgs boson can decay into any even number of Goldstone bosons. Thus, the Higgs boson does not appear as an asymptotic stable state but as a resonance. In all considered cases the Higgs boson resonance width lies below 10% of the resonance mass. The obtained resonance mass is compared with the mass obtained from the Higgs boson propagator. The results agree perfectly at all values of the quartic coupling considered. Finally, the effect of a heavy fourth generation of fermions on the

  20. The Higgs boson resonance from a chiral Higgs-Yukawa model on the lattice

    International Nuclear Information System (INIS)

    Kallarackal, Jim

    2011-01-01

    Despite the fact that the standard model of particle physics has been confirmed in many high energy experiments, the existence of the Higgs boson is not assured. The Higgs boson is a central part of the electroweak theory and is crucial to generate masses for fermions and the weak gauge bosons. The goal of this work is to set limits on the mass and the decay width of the Higgs boson. The basis to compute the physical quantities is the path integral which is here evaluated by means of Monte Carlo simulations thus allowing for fully non perturbative calculations. A polynomial hybrid Monte Carlo algorithm is used to incorporate dynamical fermions. The chiral symmetry of the electroweak model is incorporated by using the Neuberger overlap operator. Here, the standard model is considered in the limit of a Higgs-Yukawa sector which does not contain the weak gauge bosons and only a degenerate doublet of top- and bottom quarks are incorporated. Results from lattice perturbation theory up to one loop of the Higgs boson propagator are compared with those obtained from Monte Carlo simulations at three different values of the Yukawa coupling. At all values of the investigated couplings, the perturbative results agree very well with the Monte Carlo data. A main focus of this work is the investigation of the resonance parameters of the Higgs boson. The resonance width and the resonance mass are investigated at weak and at large quartic couplings. The parameters of the model are chosen such that the Higgs boson can decay into any even number of Goldstone bosons. Thus, the Higgs boson does not appear as an asymptotic stable state but as a resonance. In all considered cases the Higgs boson resonance width lies below 10% of the resonance mass. The obtained resonance mass is compared with the mass obtained from the Higgs boson propagator. The results agree perfectly at all values of the quartic coupling considered. Finally, the effect of a heavy fourth generation of fermions on the

  1. Golden Jubilee photos: The Search for the Bosons

    CERN Multimedia

    2004-01-01

    From left to right: Carlo Rubbia; Simon van der Meer; Herwig Schopper, Director-General of CERN; Erwin Gabathuler, Research Director at CERN; and Pierre Darriulat, spokesman of the UA2 experiment. On 25 January 1983, this historic press conference announced the observation of W particles in the UA1 experiment at CERN, and was followed by another in May when Z particles had been found. Natural phenomena at this scale are described by four forces, gravity, electromagnetism and the strong and weak nuclear forces. But in 1968 a new theory predicted that electromagnetism and the weak nuclear force were manifestations of a single 'electroweak' interaction, proposing that it would be communicated by the charged W+ and W- bosons and the neutral Z0 boson. In 1979 Sheldon Glashow, Abdus Salam and Steven Weinberg won the Nobel Prize for Physics for this work. Finding the bosons predicted by the theory involved a huge effort. CERN had to develop new technology and engineering. Innovations included making crucial advances...

  2. Search for invisibly decaying Higgs bosons in e+e- -> Zoho production at sqrt(s) = 183 - 209 GeV

    OpenAIRE

    The OPAL collaboration

    2007-01-01

    A search is performed for Higgs bosons decaying into invisible final states, produced in association with a Zo boson in e+e- collisions at energies between 183 and 209 GeV. The search is based on data samples collected by the OPAL detector at LEP corresponding to an integrated luminosity of about 660 pb-1. The analysis aims to select events containing the hadronic decay products of the Zo boson and large missing momentum, as expected from Higgs boson decay into a pair of stable weakly interac...

  3. Distinguishing a SM-like MSSM Higgs boson from SM Higgs boson ...

    Indian Academy of Sciences (India)

    We explore the possibility of distinguishing the SM-like MSSM Higgs boson from the SM Higgs boson via Higgs boson pair production at future muon collider. We study the behavior of the production cross-section in SM and MSSM with Higgs boson mass for various MSSM parameters tan and A. We observe that at fixed ...

  4. Finite boson mappings of fermion systems

    International Nuclear Information System (INIS)

    Johnson, C.W.; Ginocchio, J.N.

    1994-01-01

    We discuss a general mapping of fermion pairs to bosons that preserves Hermitian conjugation, with an eye towards producing finite and usable boson Hamiltonians that approximate well the low-energy dynamics of a fermion Hamiltonian

  5. The search for a heavy Higgs boson

    International Nuclear Information System (INIS)

    Dawson, S.

    1989-02-01

    Theoretical limits on the mass of the Higgs boson from vacuum stability and perturbative unitarity are examined. Search techniques for heavy Higgs bosons, M/sub H/ > 200 GeV, are also reviewed. 8 refs., 5 figs

  6. On boson condensation considering a generalized Casimir example

    Science.gov (United States)

    Voigt, K.

    1990-12-01

    From the concept of generalized condensation [M. Van den Berg, J. T. Lewis, and J. V. Pulè, Helv. Phys. Acta 59, 1271 (1986)] it is known that two critical densities ρc and ρm exist for a free boson gas. Density ρc is the classical one and ρm is the critical density below which there can be no macroscopic occupation of ground state. A free boson gas is studied in a weak external potential which behaves asymptotically like ||x1||α1+||x2||α2+ṡṡṡ +||xd||αd near the origin. It is shown that there are only two possibilities to get ρc<ρm<∞, namely, α1=α2=∞ and d≥3 (this corresponds to Dirichlet boundary conditions), and α1=2 and d≥2 (i.e., a harmonic oscillator).

  7. High-energy vector boson scattering after the Higgs discovery

    International Nuclear Information System (INIS)

    Kilian, Wolfgang; Sekulla, Marco; Ohl, Thorsten; Reuter, Juergen

    2014-08-01

    Weak vector-boson W,Z scattering at high energy probes the Higgs sector and is most sensitive to any new physics associated with electroweak symmetry breaking. We show that in the presence of the 125 GeV Higgs boson, a conventional effective-theory analysis fails for this class of processes. We propose to extrapolate the effective-theory ansatz by an extension of the parameter-free K-matrix unitarization prescription, which we denote as direct T-matrix unitarization. We generalize this prescription to arbitrary non-perturbative models and describe the implementation, as an asymptotically consistent reference model matched to the low-energy effective theory. We present exemplary numerical results for full six-fermion processes at the LHC.

  8. Effective field theory and unitarity in vector boson scattering

    International Nuclear Information System (INIS)

    Sekulla, Marco; Kilian, Wolfgang; Ohl, Thorsten; Reuter, Juergen

    2016-10-01

    Weak vector boson scattering at high energies will be one of the key measurements in current and upcoming LHC runs. It is most sensitive to any new physics associated with electroweak symmetry breaking. However, a conventional EFT analysis will fail at high energies. To address this problem, we present a parameter-free prescription valid for arbitrary perturbative and non-perturbative models: the T-matrix unitarization. We describe its implementation as an asymptotically consistent reference model matched to the low-energy effective theory. We show examples of typical observables of vector-boson scattering at the LHC in our unitarized framework. For many strongly-coupled models like composite Higgs models, dimension-8 operators might be actually the leading operators. In addition to those longitudinal and transversal dimension eight EFT operators, the effects of generic tensor and scalar resonances within simplified models are considered.

  9. Measurement of W Boson Polarization in Top Quark Decay

    Energy Technology Data Exchange (ETDEWEB)

    Vickey, Trevor Neil [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2004-01-01

    A measurement of the polarization of the W boson from top quark decay is an excellent test of the V-A form of the charged-current weak interaction in the standard model. Since the longitudinal W boson is intimately related to the electroweak symmetry breaking mechanism, and the standard model gives a specific prediction for the fraction of longitudinal W bosons from top decays, it is of particular interest for study. This thesis presents a measurement of W boson polarization in top quark decays through an analysis of the cosθ* distribution in the lepton-plus-jets channel of t$\\bar{t}$ candidate events from p$\\bar{p}$ collisions at √s = 1.96 TeV. This measurement uses an integrated luminosity of ~ 162 pb-1 of data collected with the CDF Run II detector, resulting in 31 t$\\bar{t}$ candidate events with at least one identified b jet. Using a binned likelihood fit to the cosθ* distribution from the t$\\bar{t}$ candidate events found in this sample, the fraction of W bosons with longitudinal polarization is determined to be F0 = 0.99$+0.29\\atop{-0.35}$stat.) ± 0.19(syst.), F0 > 0.33 @ 95% CL. This result is consistent with the standard model prediction, given a top quark mass of 174.3 GeV/c2, of F0 = 0.701 ± 0.012.

  10. Working Group Report: Higgs Boson

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, Sally; Gritsan, Andrei; Logan, Heather; Qian, Jianming; Tully, Chris; Van Kooten, Rick [et al.

    2013-10-30

    This report summarizes the work of the Energy Frontier Higgs Boson working group of the 2013 Community Summer Study (Snowmass). We identify the key elements of a precision Higgs physics program and document the physics potential of future experimental facilities as elucidated during the Snowmass study. We study Higgs couplings to gauge boson and fermion pairs, double Higgs production for the Higgs self-coupling, its quantum numbers and $CP$-mixing in Higgs couplings, the Higgs mass and total width, and prospects for direct searches for additional Higgs bosons in extensions of the Standard Model. Our report includes projections of measurement capabilities from detailed studies of the Compact Linear Collider (CLIC), a Gamma-Gamma Collider, the International Linear Collider (ILC), the Large Hadron Collider High-Luminosity Upgrade (HL-LHC), Very Large Hadron Colliders up to 100 TeV (VLHC), a Muon Collider, and a Triple-Large Electron Positron Collider (TLEP).

  11. Thermodynamic aspects of light boson conjectures

    International Nuclear Information System (INIS)

    Ray, P.S.; Miller, D.E.

    1984-01-01

    Gauge theories have often led to the hypothesis for new particles (light bosons) in order to overcome their unpleasant features. Then one faces the dilemma of not observing these experimentally. We consider a many body system under thermal equilibrium which could emit the light bosons and point out the criterion for existence of the Bose-Einstein condensate for these new bosons

  12. Fermions and bosons : a 'spinless' approach

    International Nuclear Information System (INIS)

    Oliveira, P.M.C. de; Ribeiro, S.C.

    1980-07-01

    The fundamental difference between fermions and bosons is presented. The treatment used is based only on indistinguishability and its related implications on interference, with no mention to spin. Comparison between indistinguishable (fermions or bosons) and distinguishable identical particles are also made, yielding the enhancement (bosons) or inhibition (fermions) factors which determine the quantum distribution equations. (Author) [pt

  13. Introduction to the physics of Higgs bosons

    International Nuclear Information System (INIS)

    Dawson, S.

    1994-11-01

    A basic introduction to the physics of the Standard Model Higgs boson is given. We discuss Higgs boson production in e + e - and hadronic collisions and survey search techniques at future accelerators. The Higgs bosons of the minimal SUSY model are briefly considered. Indirect limits from triviality arguments, vacuum stability and precision measurements at LEP are also presented

  14. A search for a new gauge boson A'

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Eric L. [College of William and Mary, Williamsburg, VA (United States)

    2013-08-01

    In the Standard Model, gauge bosons mediate the strong, weak, and electromagnetic forces. New forces could have escaped detection only if their mediators are either heavier than order(TeV) or weakly coupled to charged matter. New vector bosons with small coupling {alpha}' arise naturally from a small kinetic mixing with the photon and have received considerable attention as an explanation of various dark matter related anomalies. Such particles can be produced in electron-nucleus fixed-target scattering and then decay to e+e-+ pairs. New light vector bosons and their associated forces are a common feature of Standard Model extensions, but existing constraints are remarkably sparse. The APEX experiment will search for a new vector boson A' with coupling α'/αfs > 6 × 10-8 to electrons in the mass range 65MeV < mass A' < 550MeV. The experiment will study e+e- production off an electron beam incident on a high-Z target in Hall A at Jefferson Lab. The e- and e+ will be detected in the High Resolution Spectrometers (HRSs). The invariant mass spectrum of the e+e- pairs will be scanned for a narrow resonance corresponding to the mass of the A'. A test run for the APEX experiment was held in the summer of 2010. Using the test run data, an A' search was performed in the mass range 175-250 MeV. The search found no evidence for an A' → e+e-reaction, and set an upper limit of {alpha}'/{alpha}{sub fs} ~ 10-6.

  15. On bosonization in 3 dimensions

    International Nuclear Information System (INIS)

    Barci, D.G.; Fosco, C.D.; Oxman, L.E.

    1995-08-01

    A recently proposed path-integral bosonization scheme for massive fermions in 3 dimensions is extended by keeping the full momentum-dependence of the one-loop vacuum polarization tensor. This makes it possible to discuss both the massive and massless fermion cases on an equal footing, and moreover the results it yields for massless fermions are consistent with the ones of another, seemingly different, canonical quantization approach to the problem of bosonization for a massless fermionic field in 3 dimensions. (author). 10 refs

  16. Light Higgs bosons at LEP

    International Nuclear Information System (INIS)

    Ekspong, G.

    1981-11-01

    Among possible production reactions for neutral Higgs bosons it is known that e + e - →Z 0 +H 0 offers advantages of relatively high production cross section and low background from other reactions. With Z 0 decaying to two electrons, which are measured, the existence of a Higgs candidate will be seen as a peak in the missing mass spectrum. It is shown that a sufficiently good mass resolution is obtainable to make a search for Higgs feasible at LEP. In its first phase, the energy of LEP limits the search to Higgs bosons of mass around 10 GeV. (Auth.)

  17. Weak interactions: muon decay

    International Nuclear Information System (INIS)

    Sachs, A.M.; Sirlin, A.

    1975-01-01

    The traditional theory of the dominant mode of muon decay is presented, a survey of the experiments which have measured the observable features of the decay is given, and those things which can be learned about the parameters and nature of the theory from the experimental results are indicated. The following aspects of the theory of muon decay are presented first: general four-fermion theory, two-component theory of the neutrino, V--A theory, two-component and V--A theories vs general four-fermion theory, intermediate-boson hypothesis, radiative corrections, radiative corrections in the intermediate-boson theory, and endpoint singularities and corrections of order α 2 . Experiments on muon lifetime, isotropic electron spectrum, total asymmetry and energy dependence of asymmetry of electrons from polarized muons, and electron polarization are described, and a summary of experimental results is given. 7 figures, 2 tables, 109 references

  18. Charged Higgs bosons in π→eν-bareγ decay

    International Nuclear Information System (INIS)

    Komachenko, Yu.Ya.

    1992-01-01

    The contribution of charged Higgs bosons of the two-doublet model to the weak-electromagnetic decay π→eν-bar e γ is considered. The limitation obtained for the parameters of the model with the two-doublet Higgs sector turns out to be more stringent than in previous works. 19 refs.; 1 fig

  19. QCD and electroweak interference in Higgs production by gauge boson fusion

    International Nuclear Information System (INIS)

    Andersen, Jeppe R.; Smillie, Jennifer M.

    2007-01-01

    We explicitly calculate the contribution to Higgs production at the LHC from the interference between gluon fusion and weak vector boson fusion, and compare it to the pure QCD and pure electroweak result. While the effect is small at tree level, we speculate it will be significantly enhanced by loop effects

  20. Evidence of Higgs Boson Production through Vector Boson Fusion

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00333580

    The discovery of the Higgs boson in 2012 provided confirmation of the proposed mechanism for preserving the electroweak $SU(2) \\times U(1)$ gauge symmetry of the Standard Model of particle physics. It also heralded in a new era of precision Higgs physics. This thesis presents a measurement of the rate at which the Higgs boson is produced by vector boson fusion in the \\wwlnln decay channel. With gauge boson couplings in both the production and decay vertices, a VBF measurement in this channel is a powerful probe of the $VVH$ vertex strength. Using $4.5$~fb$^{-1}$ and $20.3$~fb$^{-1}$ of $pp$ collision data collected at respective center-of-mass energies of 7 and $8 \\tev$ in the ATLAS detector, measurements of the statistical significance and the signal strength are carried out in the Higgs mass range $100 \\leq m_H \\leq 200 \\gev$. These measurements are enhanced with a boosted decision tree that exploits the correlations between eight kinematic inputs in order to separate signal and background processes. At the...

  1. State orthogonality, boson bunching parameter and bosonic enhancement factor

    International Nuclear Information System (INIS)

    Marchewka, A.; Granot, E.

    2016-01-01

    Bosons bunching is the tendency of bosons to bunch together with respect to distinguishable particles. It is emphasized that the bunching parameter β = p_B/p_D, i.e. the ratio between the probability to measure 2 bosons and 2 distinguishable particles at the same state, is a constant of motion and depends only on the overlap between the initial wavefunctions. This ratio is equal to β = 2/(1 + l"2), where l is the overlap integral between the initial wavefunctions. That is, only when the initial wavefunctions are orthogonal this ratio is equal to 2, however, this bunching ratio can be reduced to 1, when the two wavefunctions are identical. This simple equation explains the experimental evidences of a beam splitter. A straightforward conclusion is that by measuring the local bunching parameter β (at any point in space and time) it is possible to evaluate a global parameter l (the overlap between the initial wavefunctions). The bunching parameter is then generalized to arbitrary number of particles, and in an analogy to the two-particles scenario, the well-known bosonic enhancement appears only when all states are orthogonal

  2. Weakly clopen functions

    International Nuclear Information System (INIS)

    Son, Mi Jung; Park, Jin Han; Lim, Ki Moon

    2007-01-01

    We introduce a new class of functions called weakly clopen function which includes the class of almost clopen functions due to Ekici [Ekici E. Generalization of perfectly continuous, regular set-connected and clopen functions. Acta Math Hungar 2005;107:193-206] and is included in the class of weakly continuous functions due to Levine [Levine N. A decomposition of continuity in topological spaces. Am Math Mon 1961;68:44-6]. Some characterizations and several properties concerning weakly clopenness are obtained. Furthermore, relationships among weak clopenness, almost clopenness, clopenness and weak continuity are investigated

  3. Weak value controversy

    Science.gov (United States)

    Vaidman, L.

    2017-10-01

    Recent controversy regarding the meaning and usefulness of weak values is reviewed. It is argued that in spite of recent statistical arguments by Ferrie and Combes, experiments with anomalous weak values provide useful amplification techniques for precision measurements of small effects in many realistic situations. The statistical nature of weak values is questioned. Although measuring weak values requires an ensemble, it is argued that the weak value, similarly to an eigenvalue, is a property of a single pre- and post-selected quantum system. This article is part of the themed issue `Second quantum revolution: foundational questions'.

  4. Higgs boson properties in ATLAS

    CERN Document Server

    Mansoulie, Bruno; The ATLAS collaboration

    2017-01-01

    The measurement by the ATLAS collaboration of Higgs boson properties is presented, in terms of production cross-sections, simplified template cross-sections, couplings. The measurements are based on the analysis of the H decay channels to diphoton and 4 leptons, using 36.1 fb-1 of 13 TeV data recorded in 2015 and 2016.

  5. Theoretical estimation of Z´ boson mass

    International Nuclear Information System (INIS)

    Maji, Priya; Banerjee, Debika; Sahoo, Sukadev

    2016-01-01

    The discovery of Higgs boson at the LHC brings a renewed perspective in particle physics. With the help of Higgs mechanism, standard model (SM) allows the generation of particle mass. The ATLAS and CMS experiments at the LHC have predicted the mass of Higgs boson as m_H=125-126 GeV. Recently, it is claimed that the Higgs boson might interact with dark matter and there exists relation between the Higgs boson and dark matter (DM). Hertzberg has predicted a correlation between the Higgs mass and the abundance of dark matter. His theoretical result is in good agreement with current data. He has predicted the mass of Higgs boson as GeV. The Higgs boson could be coupled to the particle that constitutes all or part of the dark matter in the universe. Light Z´ boson could have important implications in dark matter phenomenology

  6. Higgs boson production and decay in little Higgs models with T-parity

    International Nuclear Information System (INIS)

    Chen, C.-R.; Tobe, Kazuhiro; Yuan, C.-P.

    2006-01-01

    We study Higgs boson production and decay in a certain class of little Higgs models with T-parity in which some T-parity partners of the Standard Model (SM) fermions gain their masses through Yukawa-type couplings. We find that the Higgs boson production cross section of a 120 GeV Higgs boson at the CERN LHC via gg fusion process at one-loop level could be reduced by about 45%, 35% and 20%, as compared to its SM prediction, for a relatively low new particle mass scale f=600, 700 and 1000 GeV, respectively. On the other hand, the weak boson fusion cross section is close to the SM value. Furthermore, the Higgs boson decay branching ratio into di-photon mode can be enhanced by about 35% in small Higgs mass region in certain case, for the total decay width of Higgs boson in the little Higgs model is always smaller than that in the SM

  7. Where is the Higgs boson?

    International Nuclear Information System (INIS)

    Aranda, A.; Balazs, C.; Diaz-Cruz, J.L.

    2003-01-01

    Electroweak precision measurements indicate that the standard model Higgs boson is light and that it could have already been discovered at LEP 2, or might be found at the Tevatron run 2. In the context of a TeV -1 size extra-dimensional model, we argue that the Higgs boson production rates at LEP and the Tevatron are suppressed, while they might be enhanced at the LHC or at CLIC. This is due to the possible mixing between brane and bulk components of the Higgs boson, that is, the non-trivial brane-bulk 'location' of the lightest Higgs. To parametrize this mixing, we consider two Higgs doublets, one confined to the usual space dimensions and the other propagating in the bulk. Calculating the production and decay rates for the lightest Higgs boson, we find that compared to the standard model (SM), the cross section receives a suppression well below but an enhancement close to and above the compactification scale M c . This impacts the discovery of the lightest (SM like) Higgs boson at colliders. To find a Higgs signal in this model at the Tevatron run 2 or at the LC with √s=1.5 TeV, a higher luminosity would be required than in the SM case. Meanwhile, at the LHC or at CLIC with √s∼3-5 TeV one might find highly enhanced production rates. This will enable the latter experiments to distinguish between the extra-dimensional and the SM for M c up to about 6 TeV

  8. An upper bound on right-chiral weak interactions

    International Nuclear Information System (INIS)

    Stephenson, G.J.; Goldman, T.; Maltman, K.

    1990-01-01

    Weak vertex corrections to the quark-gluon vertex functions produce differing form-factor corrections for quarks of differing chiralities. These differences grow with increasing four-momentum transfer in the gluon leg. Consequently, inclusive polarized proton--proton scattering to a final state jet should show a large parity-violating asymmetry at high energies. The absence of large signals at sufficiently high energies can be interpreted as being due to balancing vertex corrections from a right-handed weak vector boson of limited mass, and limits on the strength of such signals can, in principle, give upper bounds on that mass. 2 refs

  9. An upper bound on right-Chiral weak interactions

    International Nuclear Information System (INIS)

    Stephenson, G.J.; Goldman, T.; Maltman, K.

    1990-01-01

    Weak vertex corrections to the quark-gluon vertex functions produce differing form-factor corrections for quarks of differing chiralities. These differences grow with increasing four-momentum transfer in the gluon leg. Consequently, inclusive polarized proton-proton scattering to a final state jet should show a large parity-violating asymmetry at high energies. The absence of large signals at sufficiently high energies can be interpreted as being due to balancing vertex corrections from a right-handed weak vector boson of limited mass, and limits on the strength of such signals can, in principle, give upper bounds on that mass

  10. Production of new vector bosons from alternative models

    International Nuclear Information System (INIS)

    Chiappetta, P.; Fiandrino, A.; Taxil, P.

    1992-01-01

    Some effective alternative models are considered, introduced on the basis of compositeness, which are based on SU(2) WI weak isospin symmetry broken down explicitly to U(1) em via the mixing of the photon with the mental member W (3) of on SU(2) WI triplet of vector bosons. Besides W + ,W - and Z isoscalar neutral vectors, Y(Y L ) can be added which couple to the fuel hypercharge current or only to its left-handed part. Both Y and Y L models are tested. (K.A.) 9 refs., 4 figs

  11. Intermediate- and heavy-Higgs-boson physics at a 0.5 TeV e+e- collider

    International Nuclear Information System (INIS)

    Barger, V.; Cheung, K.; Kniehl, B.A.; Phillips, R.J.N.

    1992-01-01

    We explore the potential of a future e + e- collider in the 0.5 TeV center-of-mass energy range to detect intermediate or heavy Higgs bosons in the standard model. We first briefly assess the logistics for finding a Higgs boson of intermediate mass, with M Z H W . We then study in detail the possibility of detecting a heavy Higgs boson, with m H >2M W , through the production of pairs of weak bosons. We quantitatively analyze the sensitivity of the process e + e-→ν bar νW + W-(ZZ) to the presence of a heavy-Higgs-boson resonance in the standard model. We compare this signal to various backgrounds and to the smaller signal from e + e-→ZH→μ + μ - W+W-(ZZ), assuming the weak-boson pairs to be detected and measured in their dominant hadronic decay modes W + W-(ZZ)→4 jets. A related Higgs-boson signal in 6-jet final states is also estimated. We show how the main backgrounds from e + e-W+W-(ZZ), eνWZ, and t bar t production can be reduced by suitable acceptance cuts. Bremsstrahlung and typical beamstrahlung corrections are calculated. These corrections reduce Higgs-boson production by scattering mechanisms but increase production by annihilation mechanisms; they also smear out some dynamical features such as Jacobian peaks in p T (H). With all these corrections included, we conclude that it should be possible to detect a heavy-Higgs-boson signal in the ν bar νW + W-(ZZ) channels up to mass m H =350 GeV

  12. Can one really observe signatures of the weak interaction with multi-TeV colliding hadron rings

    International Nuclear Information System (INIS)

    Halzen, F.

    1977-01-01

    We discuss two possible signatures of weak interactions in multi-TeV hadron-hadron collisions: (i) production of the weak boson W/sup plus-or-minus/ and its neutral partner Z; (ii) observation of secondaries with transverse momentum so large that they cannot be electromagnetic or strong in origin. After summarizing theoretical prejudices on the properties of weak bosons and their production mechanism, we calculate their actual experimental signature, i.e., the momentum distributions of their decay lepton, as well as the competing backgrounds. Contrary to popular belief, we conclude that the weak-boson signature is not expected to be pronounced and backgrounds could be severe (especially the production of direct photons). Our calculation reinforces the case for antiproton-proton storage rings

  13. Search for the standard model Higgs boson produced in association with a standard W or a Z boson and decaying to bottom quarks

    Energy Technology Data Exchange (ETDEWEB)

    Chatrchyan, Serguei; et al.,

    2014-01-21

    A search for the standard model Higgs boson (H) decaying to b b-bar when produced in association with a weak vector boson (V) is reported for the following channels: W(mu nu)H, W(e nu)H, W(tau nu)H, Z(mu mu)H, Z(e e)H, and Z(nu nu)H. The search is performed in data samples corresponding to integrated luminosities of up to 5.1 inverse femtobarns at sqrt(s) = 7 TeV and up to 18.9 inverse femtobarns at sqrt(s) = 8 TeV, recorded by the CMS experiment at the LHC. An excess of events is observed above the expected background with a local significance of 2.1 standard deviations for a Higgs boson mass of 125 GeV, consistent with the expectation from the production of the standard model Higgs boson. The signal strength corresponding to this excess, relative to that of the standard model Higgs boson, is 1.0 +/- 0.5.

  14. Measurements of the Vector boson production with the ATLAS Detector

    CERN Document Server

    Kordas, Kostas; The ATLAS collaboration

    2017-01-01

    The electroweak sector of the Standard Model can be tested by precision measurements of its fundamental parameters, such as the W boson mass or the electroweak mixing angle. In this talk, we present the first measurement of the W boson mass, based on the 7 TeV data set corresponding to an integrated luminosity of 4.6 fb$^{-1}$. With these samples the detector and physics modelling has been studied in great detail, leading to an overall uncertainty of 19 MeV. The ATLAS collaboration also performed a new precise triple differential cross-section measurement as a function of M(ll), dilepton rapidity and $cos\\theta^{*}$ defined in the Collins-Soper frame. This measurement provides sensitivity to the PDFs and the Z forward-backward asymmetry, $A_{FB}$, which is derived and will be presented. The later builds the foundation for a possible future extraction of the weak-mixing angle. The production of jets in association with vector bosons is an important process to study perturbative QCD in a multi-scale environment...

  15. Impersonating the Standard Model Higgs boson: alignment without decoupling

    International Nuclear Information System (INIS)

    Carena, Marcela; Low, Ian; Shah, Nausheen R.; Wagner, Carlos E.M.

    2014-01-01

    In models with an extended Higgs sector there exists an alignment limit, in which the lightest CP-even Higgs boson mimics the Standard Model Higgs. The alignment limit is commonly associated with the decoupling limit, where all non-standard scalars are significantly heavier than the Z boson. However, alignment can occur irrespective of the mass scale of the rest of the Higgs sector. In this work we discuss the general conditions that lead to “alignment without decoupling”, therefore allowing for the existence of additional non-standard Higgs bosons at the weak scale. The values of tan β for which this happens are derived in terms of the effective Higgs quartic couplings in general two-Higgs-doublet models as well as in supersymmetric theories, including the MSSM and the NMSSM. Moreover, we study the information encoded in the variations of the SM Higgs-fermion couplings to explore regions in the m A −tan β parameter space

  16. Scaling and crossover in a fermion-boson mixture

    International Nuclear Information System (INIS)

    Singh, K.K.

    1987-01-01

    Thermodynamic behaviour of a mixture of weakly interacting fermions and bosons is investigated in (4 - ε) dimensions by the renormalization group method with a view to study scaling and crossover properties of the system in the tricritical region. Conventional tricritical scaling, first found to breakdown for a classical infinite-component model, is seen to do so more spectacularly in the case of the mixture. Whereas in the infinite-component model, conventional scaling holds in the ordered and disordered phases separately (i.e. with different tricritical exponents), no such thing is possible in either of the phases of the mixture. The breakdown of scaling in the mixture is associated with the dimensionless strength v 6 of the 6-point interaction in the effective Hamiltonian which causes the parameters of the renormalized Hamiltonian to depend on two combinations of scaling fields rather than one. The strength v 6 is a quantum mechanical parameter being proportional in 3 dimensions to (b 3 /λ T 4 K F ) where λ T , K F and b denote, respectively, the boson thermal wavelength, the Fermi momentum of the fermion component and the scattering length associated with the fermion-boson interaction. The square root of this quantity agrees with the non-universality parameter which was found to characterize tricritical amplitude ratios in 3 dimensions in an earlier work. (author). 19 refs, 8 figs

  17. The interacting boson model with the high spin bosons

    International Nuclear Information System (INIS)

    Mizusaki, T.; Otsuka, T.; Yoshinaga, N.

    1991-01-01

    The phenomenological study in the Ra region was carried out from the view of the sdg-IBM2. The sdg hamiltonian whose parameters are almost kept constant for the isotopes can successfully describe the spherical-deformed phase transition of the Ra isotopes and the enhancement of the moment of inertia of the β band. We emphasize that the role of the g boson is important in the actinide region. (author)

  18. Weak neutral currents discovery: a giant step for particle physics

    International Nuclear Information System (INIS)

    Pullia, A.; Vialle, J.P.

    2010-01-01

    Subatomic particles interact with different kinds of forces (strong, electromagnetic, weak and gravitational). In case of the weak force, the interaction is due to the exchange of intermediate charged (W +,- ) and neutral (Z 0 ) bosons. These cases are referred as 'charged currents' and 'neutral currents', respectively. The evidence for such weak neutral currents appeared in the Gargamelle international collaboration whose aim was to study in-depth neutrino interactions (and thus weak interactions) through the use of a giant heavy liquid bubble chamber at CERN. In a collaboration meeting in March 1972, the Milan team showed the first hints of neutral currents in neutrino interactions with at least one pion outgoing. In 1974, 2 new leptonic neutral current candidate events were found in Gargamelle films and the Fermilab team confirmed the result a few months later. (A.C.)

  19. Search for WIMP dark matter produced in association with a Z boson with the ATLAS detector

    CERN Document Server

    Basalaev, Artem; The ATLAS collaboration

    2016-01-01

    The search for weakly interacting dark matter particle (WIMP) candidates produced in association with a Z boson is presented. Events with large missing transverse momentum and consistent with the decay of a Z boson into oppositely charged electron or muon pairs were selected in analysis. Background estimates and corresponding systematic uncertainties are shown. The limits on the mass scale of the contact interaction as a function of the dark matter particle mass and the limits on the coupling and scalar particle mediator mass for 8 TeV proton-proton collisions data are presented. Prospects for analysis using 13 TeV proton-proton collisions data are discussed.

  20. Charged Higgs production via vector-boson fusion at NNLO in QCD

    International Nuclear Information System (INIS)

    Zaro, Marco; Maltoni, Fabio

    2010-12-01

    We present the total cross sections at next-to-next-to-leading order (NNLO) in the strong coupling for single and double charged Higgs production via weak boson fusion. Results are obtained via the structure function approach, which builds upon the approximate, though very accurate, factorization of the QCD corrections between the two quark lines. The theoretical uncertainty on the total cross sections at the LHC from higher order corrections and the parton distribution uncertainties are estimated at the 2% level each for a wide range of Higgs boson masses. (orig.)

  1. Higgs production via vector-boson fusion at NNLO in QCD

    International Nuclear Information System (INIS)

    Bolzoni, Paolo; Moch, Sven-Olaf; Maltoni, Fabio; Zaro, Marco

    2010-03-01

    We present the total cross sections at next-to-next-to-leading order (NNLO) in the strong coupling for Higgs production via weak boson fusion. Our results are obtained via the structure function approach, which builds upon the approximate, though very accurate, factorization of the QCD corrections between the two quark lines. The theoretical uncertainty on the total cross sections at the LHC from higher order corrections and the parton distribution uncertainties are estimated at the 2% level each for a wide range of Higgs boson masses. (orig.)

  2. Implications of perturbative unitarity for scalar di-boson resonance searches at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Di Luzio, Luca [Universita di Genova, Dipartimento di Fisica, Genova (Italy); Durham University, Institute for Particle Physics Phenomenology, Department of Physics, Durham (United Kingdom); INFN, Sezione di Genova (Italy); Kamenik, Jernej F. [Jozef Stefan Institute, Ljubljana (Slovenia); University of Ljubljana, Faculty of Mathematics and Physics, Ljubljana (Slovenia); Nardecchia, Marco [DAMTP, University of Cambridge, Cambridge (United Kingdom); CERN, Theoretical Physics Department, Geneva (Switzerland)

    2017-01-15

    We study the constraints implied by partial wave unitarity on new physics in the form of spin-zero di-boson resonances at LHC. We derive the scale where the effective description in terms of the SM supplemented by a single resonance is expected to break down depending on the resonance mass and signal cross section. Likewise, we use unitarity arguments in order to set perturbativity bounds on renormalizable UV completions of the effective description. We finally discuss under which conditions scalar di-boson resonance signals can be accommodated within weakly coupled models. (orig.)

  3. Rare decays of the Higgs boson with the CMS detector

    OpenAIRE

    Marini, Andrea Carlo

    2018-01-01

    The CMS collaboration reports the latest update on the searches of invisible and rare decays of the Higgs boson. The searches for the standard model Higgs boson decaying into two muons, for the standard model Higgs boson decaying into $\\ell\\ell\\gamma$, and for invisible decay of the Higgs boson in the vector boson fusion production channel are presented.

  4. Second class weak currents

    International Nuclear Information System (INIS)

    Delorme, J.

    1978-01-01

    The definition and general properties of weak second class currents are recalled and various detection possibilities briefly reviewed. It is shown that the existing data on nuclear beta decay can be consistently analysed in terms of a phenomenological model. Their implication on the fundamental structure of weak interactions is discussed [fr

  5. Weak C* Hopf Symmetry

    OpenAIRE

    Rehren, K. -H.

    1996-01-01

    Weak C* Hopf algebras can act as global symmetries in low-dimensional quantum field theories, when braid group statistics prevents group symmetries. Possibilities to construct field algebras with weak C* Hopf symmetry from a given theory of local observables are discussed.

  6. Bagging Weak Predictors

    DEFF Research Database (Denmark)

    Lukas, Manuel; Hillebrand, Eric

    Relations between economic variables can often not be exploited for forecasting, suggesting that predictors are weak in the sense that estimation uncertainty is larger than bias from ignoring the relation. In this paper, we propose a novel bagging predictor designed for such weak predictor variab...

  7. Measurement of Higgs boson production via vector boson fusion in decays into W bosons with the ATLAS detector

    International Nuclear Information System (INIS)

    Bronner, Johanna

    2014-01-01

    The vector boson fusion production rate of the Standard Model Higgs boson has been measured in decays into two W bosons, each subsequently decaying into an electron or muon and a neutrino, with the ATLAS detector at the Large Hadron Collider (LHC). The vector boson fusion production cross section in the Standard Model is about an order of magnitude smaller than the dominant Higgs boson production cross section from gluon fusion. Proton-proton collision data at a center-of-mass energy of 8 TeV delivered by the LHC recorded with the ATLAS detector corresponding to an integrated luminosity of 21 fb -1 have been analyzed. Motivated by the recent discovery of a Higgs-like boson with a mass of (125.5±0.6) GeV and (125.7±0.4) GeV by the ATLAS and CMS collaborations at the LHC, the analysis is optimized for this mass. An excess of events, compatible with the Standard Model expectation for a Higgs boson with m H =125 GeV, is observed with a significance of 2.8 standard deviations when compared to the background-only expectation. The corresponding signal strength, the observed event rate relative to the Standard Model prediction of m H =125 GeV is 2.1 -0.8 +1.0 . A Higgs boson produced via vector boson fusion is excluded with 95% confidence level in the mass range between 152 GeV and 185 GeV. When combined with measurements of other Higgs boson production and decay channels by ATLAS, evidence for vector boson fusion production with a significance of 3.3 standard deviations is observed. All measurements of Higgs boson couplings to Standard Model particles are in agreement with the predictions of the Standard Model.

  8. Two-dimensional thermofield bosonization

    International Nuclear Information System (INIS)

    Amaral, R.L.P.G.; Belvedere, L.V.; Rothe, K.D.

    2005-01-01

    The main objective of this paper was to obtain an operator realization for the bosonization of fermions in 1 + 1 dimensions, at finite, non-zero temperature T. This is achieved in the framework of the real-time formalism of Thermofield Dynamics. Formally, the results parallel those of the T = 0 case. The well-known two-dimensional Fermion-Boson correspondences at zero temperature are shown to hold also at finite temperature. To emphasize the usefulness of the operator realization for handling a large class of two-dimensional quantum field-theoretic problems, we contrast this global approach with the cumbersome calculation of the fermion-current two-point function in the imaginary-time formalism and real-time formalisms. The calculations also illustrate the very different ways in which the transmutation from Fermi-Dirac to Bose-Einstein statistics is realized

  9. Introduction to bosonic string theory

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Carmen [Instituto de Astronomia y Fisica del Espacio, Buenos Aires (Argentina)], e-mail: carmen@iafe.uba.ar

    2009-07-01

    This is an introductory set of five lectures on bosonic string theory. The first one deals with the classical theory of bosonic strings. The second and third lectures cover quantization. Three basic quantization methods are sketched: the old covariant formalism, the light-cone gauge quantization, where the spectrum is derived and the Polyakov path integral formalism and in particular the partition function at one loop. Finally, the last lecture covers interactions, low energy effective action, the general idea of compactification and in particular toroidal compactification. The notes are based on books by Green, Schwarz and Witten, Polchinski, Lust and Theissen and Kaku and review papers by D'Hocker and Phong and O. Alvarez. (author)

  10. Discovery of the Higgs boson

    CERN Document Server

    Sharma, Vivek

    2016-01-01

    The recent observation of the Higgs boson has been hailed as the scientific discovery of the century and led to the 2013 Nobel Prize in physics. This book describes the detailed science behind the decades-long search for this elusive particle at the Large Electron Positron Collider at CERN and at the Tevatron at Fermilab and its subsequent discovery and characterization at the Large Hadron Collider at CERN. Written by physicists who played leading roles in this epic search and discovery, this book is an authoritative and pedagogical exposition of the portrait of the Higgs boson that has emerged from a large number of experimental measurements. As the first of its kind, this book should be of interest to graduate students and researchers in particle physics.

  11. Distinguishing a SM-like MSSM Higgs boson from SM Higgs boson at muon collider

    International Nuclear Information System (INIS)

    Singhal, Jai Kumar; Singh, Sardar; Nagawat, Ashok K.

    2007-01-01

    We explore the possibility of distinguishing the SM-like MSSM Higgs boson from the SM Higgs boson via Higgs boson pair production at future muon collider. We study the behavior of the production cross-section in SM and MSSM with Higgs boson mass for various MSSM parameters tanβ and m A . We observe that at fixed CM energy, in the SM, the total cross-section increases with the increase in Higgs boson mass whereas this trend is reversed for the MSSM. The changes that occur for the MSSM in comparison to the SM predictions are quantified in terms of the relative percentage deviation in cross-section. The observed deviations in cross-section for different choices of Higgs boson masses suggest that the measurements of the cross-section could possibly distinguish the SM-like MSSM Higgs boson from the SM Higgs boson. (author)

  12. Signals of new gauge bosons

    International Nuclear Information System (INIS)

    Djouadi, A.; Leike, A.; Riemann, T.; Schaile, D.; Verzegnassi, C.

    1991-12-01

    We analyze signals of additional neutral gauge bosons originating from E 6 and Left-Right models, at a future e + e - collider with 500 GeV c.m. energy. Radiative corrections as well as the experimental situation are taken into account. We show that masses considerably higher than the total energy can be probed, and that a discrimination between theoretical models is possible. (orig.)

  13. Phenomenology of the Higgs boson

    International Nuclear Information System (INIS)

    Ali, A.

    1981-09-01

    The phenomenology of the standard Weinberg-Salam Higgs boson is reviewed with particular emphasis on production mechanisms in high energy e + e - and hadron-hadron collisions. The production processes relevant for the ISABELLE and TEVATRON energies are discussed and their backgrounds estimated. It is argued that the toponium production and radiative decay provides the most hopeful reaction to detect a Higgs in both the e + e - and the hadron-hadron machines. (orig.)

  14. Domains of bosonic functional integrals

    International Nuclear Information System (INIS)

    Botelho, Luiz C.L.; Para Univ., Belem, PA

    1998-07-01

    We propose a mathematical framework for bosonic Euclidean quantum field functional integrals based on the theory of integration on the dual algebraic vector space of classical field sources. We present a generalization of the Minlos-Dao Xing theorem and apply it to determine exactly the domain of integration associated to the functional integral representation of the two-dimensional quantum electrodynamics Schwinger generating functional. (author)

  15. One or more Higgs bosons?

    CERN Document Server

    Barbieri, Riccardo; Kannike, Kristjan; Sala, Filippo; Tesi, Andrea

    2013-01-01

    Now that one has been found, the search for signs of more scalars is a primary task of current and future experiments. In the motivated hypothesis that the extra Higgs bosons of the next-to-minimal supersymmetric Standard Model (NMSSM) be the lightest new particles around, we outline a possible overall strategy to search for signs of the CP-even states. This work complements Ref. arXiv:1304.3670.

  16. Electroweak boson production at LHCb

    CERN Document Server

    Sestini, Lorenzo

    2018-01-01

    The LHCb experiment offers a complementary phase space to ATLAS and CMS to study electroweak processes, thanks to the forward acceptance and the large bandwidth of the trigger allowing low energy thresholds. For this reason electroweak measurements at LHCb can provide unique constraints to the Parton Distribution Functions. Moreover these measurements can be used to validate reconstruction techniques. In these proceedings the latest measurements on W and Z bosons production performed during the LHC Run I and Run II data taking are presented.

  17. Finding the Higgs boson: A status report

    International Nuclear Information System (INIS)

    Dawson, S.

    1995-01-01

    The search for the Higgs boson of the minimal Standard Model has been a major focus of experimental high energy physics for some years now. Here, the authors review the current experimental limits and discuss the prospects for finding the Higgs boson at future accelerators, such as LEPII and the LHC. They consider only the Standard Model Higgs boson. Since a null result which definitively excluded a Higgs boson below some mass scale would be extremely important, they emphasize the case where the Higgs boson is much heavier than the relevant collider energy (or where there is no Higgs boson at all). Many of the results given here are a summary of those obtained by the DPF Committee on Long Term Planning

  18. CMS standard model Higgs boson results

    Directory of Open Access Journals (Sweden)

    Garcia-Abia Pablo

    2013-11-01

    Full Text Available In July 2012 CMS announced the discovery of a new boson with properties resembling those of the long-sought Higgs boson. The analysis of the proton-proton collision data recorded by the CMS detector at the LHC, corresponding to integrated luminosities of 5.1 fb−1 at √s = 7 TeV and 19.6 fb−1 at √s = 8 TeV, confirm the Higgs-like nature of the new boson, with a signal strength associated with vector bosons and fermions consistent with the expectations for a standard model (SM Higgs boson, and spin-parity clearly favouring the scalar nature of the new boson. In this note I review the updated results of the CMS experiment.

  19. Symmetry between bosons and fermions

    International Nuclear Information System (INIS)

    Ohnuki, Y.; Kamefuchi, S.

    1986-01-01

    By definition Bosons and Fermions behave quite differently as regards statistics. It is equally true, however, that in some other respects they do behave similarly or even symmetrically. In the present paper they would like to show that such similarity or symmetry can be exhibited most fully when the theory is formulated in a specific manner, i.e. in terms of annihilation and creation operators a/sub j/ and a/sub j//sup dagger/ or what they term g-numbers. The difference between Bosons and Fermions can, of course, be traced back to the difference in the signatures (jj) = +,- attached to the brackets in the basic commutation relations: [a/sub j/,a/sub j//sup dagger/]-(jj) = 1, [a/sub j/,a/sub j/]-(jj) = 0. However, the substantial part of the theory can in fact be formulated without specifying the individual signatures (jj). This is why it is possible to treat Bosons and Fermions in a unified manner, and to thereby consider, among the two, super- or more general, g-symmetry transformations. 6 references, 1 table

  20. Bosonization of free Weyl fermions

    Science.gov (United States)

    Marino, E. C.

    2017-03-01

    We generalize the method of bosonization, in its complete form, to a spacetime with 3  +  1 dimensions, and apply it to free Weyl fermion fields, which thereby, can be expressed in terms of a boson field, namely the Kalb-Ramond anti-symmetric tensor gauge field. The result may have interesting consequences both in condensed matter and in particle physics. In the former, the bosonized form of the Weyl chiral currents provides a simple explanation for the angle-dependent magneto-conductance recently observed in materials known as Weyl semimetals. In the latter, conversely, since electrons can be thought of as a combination of left and right Weyl fermions, our result suggests the possibility of a unified description of the elementary particles, which undergo the fundamental interactions, with the mediators of such interactions, namely, the gauge fields. This would fulfill the pioneering attempt of Skyrme, to unify the particles with their interaction mediators (Skyrme 1962 Nucl. Phys. 31 556).

  1. Electro-weak theory

    International Nuclear Information System (INIS)

    Deshpande, N.G.

    1980-01-01

    By electro-weak theory is meant the unified field theory that describes both weak and electro-magnetic interactions. The development of a unified electro-weak theory is certainly the most dramatic achievement in theoretical physics to occur in the second half of this century. It puts weak interactions on the same sound theoretical footing as quantum elecrodynamics. Many theorists have contributed to this development, which culminated in the works of Glashow, Weinberg and Salam, who were jointly awarded the 1979 Nobel Prize in physics. Some of the important ideas that contributed to this development are the theory of beta decay formulated by Fermi, Parity violation suggested by Lee and Yang, and incorporated into immensely successful V-A theory of weak interactions by Sudarshan and Marshak. At the same time ideas of gauge invariance were applied to weak interaction by Schwinger, Bludman and Glashow. Weinberg and Salam then went one step further and wrote a theory that is renormalizable, i.e., all higher order corrections are finite, no mean feat for a quantum field theory. The theory had to await the development of the quark model of hadrons for its completion. A description of the electro-weak theory is given

  2. Physics of the intermediate vector bosons

    International Nuclear Information System (INIS)

    Altavelli, G.; DiLella, L.

    1989-01-01

    The conversion of the CERN 450 GeV proton synchrotron (SPS) into a proton-antiproton collider was originally proposed in 1976 as a fast and relatively cheap way to produce and detect the weak intermediate Vector Bosons (IVB), W* and Z, by achieving hadronic collisions at an energy large enough to provide observable rates. The properties of such particles had been predicted already in the 60's in the framework of the so-called Standard Model of the unified electroweak theory developed; however, the interest in this theory arose only some years later, following the proof of renormalizability and the first experimental observation of neutrino interactions mediated by Z-exchange. In particular, the experiment obtained a measurement of the weak mixing angle, which allowed a quantitative prediction of the IVB mass values. The CERN Collider project was approved in 1978 and the first bar pp collisions at a total center-of-mass energy (√s) of 546 GeV were observed in 1981. The decay W → e ν was first observed among data collected at the end of 1982, and the decay Z → e + e - and Z → μ + μ - were observed a few months later. At present, following two more data-taking runs in 1984 and 1985 at a slightly increased center-of-mass energy (√s = 630 GeV), samples of ∼250 W → e ν and ∼30 Z → e + e - events are available from each of the two major experiments (UA1 and UA2), making possible a quantitative comparison of IVB properties with the predictions of the Standard Model. In this article the authors first describe the Standard Model of the unified electroweak theory, and the authors use the theoretical framework to derive the IVB mass values and their decay properties

  3. Bosonic instability of charged black holes

    International Nuclear Information System (INIS)

    Gaina, A.B.; Ternov, I.M.

    1986-01-01

    The processes of spontaneous and induced production and accumulation of charged bosons on quasibound superradiant levels in the field of Kerr-Newman black hole is analysed. It is shown that bosonic instability may be caused exclusively by the rotation of the black hole. Particulary, the Reissner-Nordstrom configuration is stable. In the case of rotating and charged black hole the bosonic instability may cause an increase of charge of the black hole

  4. More on Higgs bosons in SU(5)

    International Nuclear Information System (INIS)

    Hueffel, H.

    1980-01-01

    In the framework of the minimal SU(5) model of Georgi and Glashow the explicit couplings between the various mass eigenstate Higgs bosons and the gauge fields as well as the Higgs boson self couplings are presented. As an application bounds for the parameters of the Higgs potential and for the Higgs boson masses are derived by applying partial wave unitarity to the tree graphs of Higgs-Higgs scattering. (Auth.)

  5. Current algebra and bosonization in three dimensions

    International Nuclear Information System (INIS)

    Le Guillou, J.C.; Schaposnik, F.A.

    1996-01-01

    We consider the fermion-boson mapping in three dimensional space-time, in the Abelian case, from the current algebra point of view. We show that in a path-integral framework one can derive a general bosonization recipe leading, in the bosonic language, to the correct equal-time current commutators of the original free fermionic theory. Copyright copyright 1996 Academic Press, Inc

  6. Probing anomalous gauge boson couplings at LEP

    International Nuclear Information System (INIS)

    Dawson, S.; Valencia, G.

    1994-01-01

    We bound anomalous gauge boson couplings using LEP data for the Z → bar ∫∫ partial widths. We use an effective field theory formalism to compute the one-loop corrections resulting from non-standard model three and four gauge boson vertices. We find that measurements at LEP constrain the three gauge boson couplings at a level comparable to that obtainable at LEPII

  7. W-boson electric dipole moment

    International Nuclear Information System (INIS)

    He, X.; McKellar, B.H.J.

    1990-01-01

    The W-boson electric dipole moment is calculated in the SU(3) C xSU(2) L xU(1) Y model with several Higgs-boson doublets. Using the constraint on the CP-violating parameters from the experimental upper bound of the neutron electric dipole moment, we find that the W-boson electric dipole moment is constrained to be less than 10 -4

  8. Collider searches for fermiophobic gauge bosons

    International Nuclear Information System (INIS)

    Bramante, Joseph; Kumar, Jason; Yaylali, David; Hundi, R. S.; Rajaraman, Arvind

    2011-01-01

    We explore the phenomenology of an extra U(1) gauge boson which primarily couples to standard model gauge bosons. We classify all possible parity-odd couplings up to dimension 6 operators. We then study the prospects for the detection of such a boson at the LHC and show that the electroweak decay channels lead to very clean signals, allowing us to probe couplings well into the TeV scale.

  9. Weak interactions with nuclei

    International Nuclear Information System (INIS)

    Walecka, J.D.

    1983-01-01

    Nuclei provide systems where the strong, electomagnetic, and weak interactions are all present. The current picture of the strong interactions is based on quarks and quantum chromodynamics (QCD). The symmetry structure of this theory is SU(3)/sub C/ x SU(2)/sub W/ x U(1)/sub W/. The electroweak interactions in nuclei can be used to probe this structure. Semileptonic weak interactions are considered. The processes under consideration include beta decay, neutrino scattering and weak neutral-current interactions. The starting point in the analysis is the effective Lagrangian of the Standard Model

  10. Minimal spontaneously broken hidden sector and its impact on Higgs boson physics at the CERN Large Hadron Collider

    International Nuclear Information System (INIS)

    Schabinger, Robert; Wells, James D.

    2005-01-01

    Little experimental data bears on the question of whether there is a spontaneously broken hidden sector that has no Standard Model quantum numbers. Here we discuss the prospects of finding evidence for such a hidden sector through renormalizable interactions of the Standard Model Higgs boson with a Higgs boson of the hidden sector. We find that the lightest Higgs boson in this scenario has smaller rates in standard detection channels, and it can have a sizeable invisible final state branching fraction. Details of the hidden sector determine whether the overall width of the lightest state is smaller or larger than the Standard Model width. We compute observable rates, total widths and invisible decay branching fractions within the general framework. We also introduce the 'A-Higgs Model', which corresponds to the limit of a hidden sector Higgs boson weakly mixing with the Standard Model Higgs boson. This model has only one free parameter in addition to the mass of the light Higgs state and it illustrates most of the generic phenomenology issues, thereby enabling it to be a good benchmark theory for collider searches. We end by presenting an analogous supersymmetry model with similar phenomenology, which involves hidden sector Higgs bosons interacting with MSSM Higgs bosons through D-terms

  11. Ra isotopes in the sdg interacting-boson model with one f-boson

    International Nuclear Information System (INIS)

    Yoshinaga, Naotaka; Mizusaki, Takahiro; Otsuka, Takaharu.

    1992-01-01

    We study positive and negative parity in Ra isotopes in terms of the proton-neutron sdg interacting-boson model with one f-boson. The present calculation correctly reproduces the spherical to deformed phase transition. Especially, we would like to stress the importance of the g-boson for reproducing the E1 transitions which are very strong in this region. (author)

  12. Investigation of Trilinear Vector Boson Couplings Through W Boson Pair Production in Dilepton Decay Channels

    Energy Technology Data Exchange (ETDEWEB)

    Bloom, Paul Craig [Univ. of California, Davis, CA (United States)

    1998-03-01

    An investigation of the interactions between the $W$ boson and the $Z$ boson and photon through the pair production of bosons is presented. This has been accomplished via a study of the reaction $p\\overline{p} \\to \\ell\\overline{\

  13. Elements of the interacting boson approximation

    International Nuclear Information System (INIS)

    Cseh, Jozsef

    1985-01-01

    The main features of the interacting boson model family are briefly summarized. The main tool of the model is the group theory; its basic useful results (symmetry groups, spectrum generating algebra, dynamic groups and symmetries, tensor representations, broken symmetries, subgroup chains) are summarized. The emission and annihilation operators of the individual boson degrees of freedom form a U(n) algebra. Its reprezentation theory can be used to classify the basic states and energy levels of the system. A simple variant of the interacting boson model is analyzed in detail. The genealogy of different interacting boson models from vibron model to supersymmetric ones is surveyed. (D.Gy.)

  14. Higgs boson decays and production via gluon fusion at LHC in littlest Higgs models with T parity

    International Nuclear Information System (INIS)

    Wang Lei; Yang Jinmin

    2009-01-01

    We study the Higgs boson decays and production via gluon fusion at the LHC as a probe of two typical littlest Higgs models which introduce a top quark partner with different (even and odd) T parity to cancel the Higgs mass quadratic divergence contributed by the top quark. For each model, we consider two different choices for the down-type quark Yukawa couplings. We first examine the branching ratios of the Higgs boson decays and then study the production via gluon fusion followed by the decay into two photons or two weak gauge bosons. We find that the predictions can be quite different for different models or different choices of down-type quark Yukawa couplings, and all these predictions can sizably deviate from the standard model predictions. So the Higgs boson processes at the LHC can be a sensitive probe for these littlest Higgs models.

  15. Vector boson and quarkonia production in lead-lead collisions with ATLAS detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00015179; The ATLAS collaboration

    2017-01-01

    Photons and weak bosons do not interact strongly with the dense and hot medium formed in the nuclear collisions, thus should be sensitive to the nuclear modification of parton distribution functions (nPDFs). The in-medium modification of heavy quarkonium states plays an important role in studying the hot and dense medium formed in the larger collision systems. The ATLAS detector at the LHC, optimized for searching for new physics in proton-proton collisions, is especially well equipped to measure photons, Z, W bosons and quarkonia in the high occupancy environment produced in heavy-ion collisions. We present recent results on Z boson and charmonia yields as a functions of centrality, transverse momentum, and rapidity, from the ATLAS experiment.

  16. History of Weak Interactions

    Science.gov (United States)

    Lee, T. D.

    1970-07-01

    While the phenomenon of beta-decay was discovered near the end of the last century, the notion that the weak interaction forms a separate field of physical forces evolved rather gradually. This became clear only after the experimental discoveries of other weak reactions such as muon-decay, muon-capture, etc., and the theoretical observation that all these reactions can be described by approximately the same coupling constant, thus giving rise to the notion of a universal weak interaction. Only then did one slowly recognize that the weak interaction force forms an independent field, perhaps on the same footing as the gravitational force, the electromagnetic force, and the strong nuclear and sub-nuclear forces.

  17. Measurements of vector boson production in lead–lead and proton–lead collisions with the ATLAS detector

    International Nuclear Information System (INIS)

    Grabowska-Bold, Iwona

    2014-01-01

    Photons and weak bosons do not interact strongly and, thus, their production yields provide direct tests of scaling with a number of binary nucleon–nucleon collisions in the heavy-ion environment. In addition, they should be sensitive to the nuclear modification of parton distribution functions (nPDF). Proton-lead collisions also provide an excellent opportunity to test nPDF in a less dense environment than lead–lead via looking at forward–backward production of weak bosons. The ATLAS detector has proven to be an excellent apparatus in measurements involving photons, electrons and muons, the latter being products of weak boson decays, in the high occupancy environment produced in heavy-ion collisions. The experiment has recorded 30nb −1 of proton–lead data and 140μb −1 of lead–lead data, both of which have similar integrated partonic luminosities. We present the prompt photon, Z and W boson yields as a function of centrality, and also differentially in transverse momentum and rapidity, in lead–lead and proton–lead collisions from the ATLAS experiment. For W ± bosons, a lepton charge asymmetry has also been studied, which may also shed light on nPDF

  18. Charged weak currents

    International Nuclear Information System (INIS)

    Turlay, R.

    1979-01-01

    In this review of charged weak currents I shall concentrate on inclusive high energy neutrino physics. There are surely still things to learn from the low energy weak interaction but I will not discuss it here. Furthermore B. Tallini will discuss the hadronic final state of neutrino interactions. Since the Tokyo conference a few experimental results have appeared on charged current interaction, I will present them and will also comment on important topics which have been published during the last past year. (orig.)

  19. Weakly oval electron lense

    International Nuclear Information System (INIS)

    Daumenov, T.D.; Alizarovskaya, I.M.; Khizirova, M.A.

    2001-01-01

    The method of the weakly oval electrical field getting generated by the axially-symmetrical field is shown. Such system may be designed with help of the cylindric form coaxial electrodes with the built-in quadrupole duplet. The singularity of the indicated weakly oval lense consists of that it provides the conducting both mechanical and electronic adjustment. Such lense can be useful for elimination of the near-axis astigmatism in the electron-optical system

  20. A light scalar-HLQBS interplay and a HLQBS weak decay test

    International Nuclear Information System (INIS)

    Kozlov, G.A.

    1993-01-01

    The interplay between a light scalar boson (Higgs) and a heavy-light quark bound system (HLQBS) in the flavour-changing of the heavy quarks is presented. The estimations of the transition form-factors in the weak leptonic decays of the pseudoscalar HLQBS are proposed. (orig.)

  1. Prediction for neutrino-electron cross-sections in Weinberg's model for weak interactions

    NARCIS (Netherlands)

    Hooft, G. 't

    1971-01-01

    Weinberg's theory of purely leptonic weak interactions can be tested in neutrino-electron scattering experiments. Cross-sections must be measured as a function of the energy of the recoil electron. If Weinberg's theory is correct, then the masses of the intermediate vector bosons can be derived from

  2. CKP Hierarchy, Bosonic Tau Function and Bosonization Formulae

    Directory of Open Access Journals (Sweden)

    Johan W. van de Leur

    2012-06-01

    Full Text Available We develop the theory of CKP hierarchy introduced in the papers of Kyoto school [Date E., Jimbo M., Kashiwara M., Miwa T., J. Phys. Soc. Japan 50 (1981, 3806-3812] (see also [Kac V.G., van de Leur J.W., Adv. Ser. Math. Phys., Vol. 7, World Sci. Publ., Teaneck, NJ, 1989, 369-406]. We present appropriate bosonization formulae. We show that in the context of the CKP theory certain orthogonal polynomials appear. These polynomials are polynomial both in even and odd (in Grassmannian sense variables.

  3. Vibronic Boson Sampling: Generalized Gaussian Boson Sampling for Molecular Vibronic Spectra at Finite Temperature.

    Science.gov (United States)

    Huh, Joonsuk; Yung, Man-Hong

    2017-08-07

    Molecular vibroic spectroscopy, where the transitions involve non-trivial Bosonic correlation due to the Duschinsky Rotation, is strongly believed to be in a similar complexity class as Boson Sampling. At finite temperature, the problem is represented as a Boson Sampling experiment with correlated Gaussian input states. This molecular problem with temperature effect is intimately related to the various versions of Boson Sampling sharing the similar computational complexity. Here we provide a full description to this relation in the context of Gaussian Boson Sampling. We find a hierarchical structure, which illustrates the relationship among various Boson Sampling schemes. Specifically, we show that every instance of Gaussian Boson Sampling with an initial correlation can be simulated by an instance of Gaussian Boson Sampling without initial correlation, with only a polynomial overhead. Since every Gaussian state is associated with a thermal state, our result implies that every sampling problem in molecular vibronic transitions, at any temperature, can be simulated by Gaussian Boson Sampling associated with a product of vacuum modes. We refer such a generalized Gaussian Boson Sampling motivated by the molecular sampling problem as Vibronic Boson Sampling.

  4. State orthogonality, boson bunching parameter and bosonic enhancement factor

    Science.gov (United States)

    Marchewka, Avi; Granot, Er'el

    2016-04-01

    It is emphasized that the bunching parameter β ≡ p B / p D , i.e. the ratio between the probability to measure two bosons and two distinguishable particles at the same state, is a constant of motion and depends only on the overlap between the initial wavefunctions. This ratio is equal to β = 2 / (1 + I 2), where I is the overlap integral between the initial wavefunctions. That is, only when the initial wavefunctions are orthogonal this ratio is equal to 2, however, this bunching ratio can be reduced to 1, when the two wavefunctions are identical. This simple equation explains the experimental evidences of a beam splitter. A straightforward conclusion is that by measuring the local bunching parameter β (at any point in space and time) it is possible to evaluate a global parameter I (the overlap between the initial wavefunctions). The bunching parameter is then generalized to arbitrary number of particles, and in an analogy to the two-particles scenario, the well-known bosonic enhancement appears only when all states are orthogonal.

  5. Chiral bosonization on a Riemann surface

    International Nuclear Information System (INIS)

    Eguchi, Tohru; Ooguri, Hirosi

    1987-01-01

    We point out that the basic addition theorem of θ-functions, Fay's identity, implies an equivalence between bosons and chiral fermions on Riemann surfaces with arbitrary genus. We present a rule for a bosonized calculation of correlation functions. We also discuss ghost systems of n and (1-n) tensors and derive formulas for their chiral determinants. (orig.)

  6. Bosonization on higher genus Riemann surfaces

    International Nuclear Information System (INIS)

    Alvarez-Gaume, L.; Moore, G.; Nelson, P.; Vafa, C.

    1987-01-01

    We prove the equivalence between certain fermionic and bosonic theories in two spacetime dimensions. The theories have fields of arbitrary spin on compact surfaces with any number of handles. Global considerations required that we add new topological terms to the bosonic action. The proof that our prescritpion is correct relies on methods of complex algebraic geometry. (orig.)

  7. The unmasking of thermal Goldstone bosons

    International Nuclear Information System (INIS)

    Buchholz, D.; Bros, J.

    1996-08-01

    The problem of extracting the modes of Goldstone bosons from a thermal background is reconsidered in the framework of relativistic quantum field theory. It is shown that in the case of spontaneous breakdown of an internal bosonic symmetry a recently established decomposition of thermal correlation functions contains certain specific contributions which can be attributed to a scalar particle of zero mass. (orig.)

  8. Supersymmetry search via gauge boson fusion

    Indian Academy of Sciences (India)

    Abstract. We propose a novel method for the search of supersymmetry, especially for the elec- troweak gauginos at the large hadron collider (LHC). Gauge boson fusion technique was shown to be useful for heavy and intermediate mass Higgs bosons. In this article, we have shown that this method can also be applied to ...

  9. Pair production of intermediate vector bosons

    International Nuclear Information System (INIS)

    Mikaelian, K.O.

    1979-01-01

    The production of intermediate vector boson pairs W + W - , Z 0 Z 0 , W +- Z 0 and W +- γ in pp and p anti p collisions is discussed. The motivation is to detect the self-interactions among the four intermediate vector bosons

  10. Bounds on new Z bosons

    International Nuclear Information System (INIS)

    del Aguila, F.; Moreno, J.M.; Quiros, M.

    1989-01-01

    Since new Z bosons (Z') are predicted by many approaches to particle physics beyond the standard model, the absence of a signal in lepton pairs at hadron colliders implies important, but very model-dependent, lower limits on Z' masses. We present an analytical procedure for converting an experimental limit on σ(Z')B(Z'→l + l - ) into mass limits in a large set of models. Explicit results are given for present CERN and future Fermilab collider data. We include renormalization effects so that consideration can be restricted to grand-unification models

  11. Introduction to interacting boson model

    International Nuclear Information System (INIS)

    Goutte, D.

    1986-01-01

    A very simple presentation of the interacting boson model is first given. The two computerized models which are presented allow, with few parameters, to reproduce an impressive quantity of data characterizing the deformed nuclei. Their excitation spectra, the reduced transition probabilities, the quadrupolar moments, the two nucleon transfer experiment results, ... Then a specific application of the model is given: radial extension reproduction of nuclear functions. It is shown first how the electron inelastic scattering allows to measure observables related to these radial functions, the transition charge densities, then, on some examples, how the model allows to reproduce them [fr

  12. Collapsing stage of 'bosonic matter'

    International Nuclear Information System (INIS)

    Manoukian, E.B.; Muthaporn, C.; Sirininlakul, S.

    2006-01-01

    We prove rigorously that for 'bosonic matter', if deflation occurs upon collapse as more and more such matter is put together, then for a non-vanishing probability of having the negatively charged particles, with Coulomb interactions, within a sphere of radius R, the latter necessarily cannot decrease faster than N -1/3 for large N, where N denotes the number of the negatively charged particles. This is in clear distinction with matter (i.e., matter with the exclusion principle) which inflates and R necessarily increases not any slower than N 1/3 for large N

  13. Search for new heavy charged gauge bosons

    Energy Technology Data Exchange (ETDEWEB)

    Magass, Carsten Martin [RWTH Aachen Univ. (Germany)

    2007-11-02

    Additional gauge bosons are introduced in many theoretical extensions to the Standard Model. A search for a new heavy charged gauge boson W' decaying into an electron and a neutrino is presented. The data used in this analysis was taken with the D0 detector at the Fermilab proton-antiproton collider at a center-of-mass energy of 1.96 TeV and corresponds to an integrated luminosity of about 1 fb-1. Since no significant excess is observed in the data, an upper limit is set on the production cross section times branching fraction σW'xBr (W' → ev). Using this limit, a W' boson with mass below ~1 TeV can be excluded at the 95% confidence level assuming that the new boson has the same couplings to fermions as the Standard Model W boson.

  14. Search for invisibly decaying Higgs bosons in $e^{+}e^{-} \\rightarrow Z^{0}h^{0}$ production at $\\sqrt{s} = 183 - 209 GeV$

    CERN Document Server

    Abbiendi, G.; Akesson, P.F.; Alexander, G.; Anagnostou, G.; Anderson, K.J.; Asai, S.; Axen, D.; Bailey, I.; Barberio, E.; Barillari, T.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, K.W.; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Boeriu, O.; Bock, P.; Boutemeur, M.; Braibant, S.; Brown, R.M.; Burckhart, H.J.; Campana, S.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, D.G.; Ciocca, C.; Csilling, A.; Cuffiani, M.; Dado, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Etzion, E.; Fabbri, F.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Gagnon, P.; Gary, J.W.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, M.; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harel, A.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Herten, G.; Heuer, R.D.; Hill, J.C.; Horvath, D.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanzaki, J.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kramer, T.; Krasznahorkay, A., Jr.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Lellouch, D.; Letts, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, A.; Ludwig, J.; Mader, W.; Marcellini, S.; Martin, A.J.; Mashimo, T.; Mattig, P.; McKenna, J.; McPherson, R.A.; Meijers, F.; Menges, W.; Merritt, F.S.; Mes, H.; Meyer, N.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Nanjo, H.; Neal, H.A.; O'Neale, S.W.; Oh, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Pilcher, J.E.; Pinfold, J.; Plane, D.E.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Roney, J.M.; Rossi, A.M.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schorner-Sadenius, T.; Schroder, M.; Schumacher, M.; Seuster, R.; Shears, T.G.; Shen, B.C.; Sherwood, P.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spano, F.; Stahl, A.; Strom, D.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vollmer, C.F.; Vannerem, P.; Vertesi, R.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, L.

    2010-01-01

    A search is performed for Higgs bosons decaying into invisible final states, produced in association with a Zo boson in e+e- collisions at energies between 183 and 209 GeV. The search is based on data samples collected by the OPAL detector at LEP corresponding to an integrated luminosity of about 660 pb-1. The analysis aims to select events containing the hadronic decay products of the Zo boson and large missing momentum, as expected from Higgs boson decay into a pair of stable weakly interacting neutral particles, such as the lightest neutralino in the Minimal Supersymmetric Standard Model. The same analysis is applied to a search for nearly invisible Higgs boson cascade decays into stable weakly interacting neutral particles. No excess over the expected background from Standard Model processes is observed. Limits on the production of invisibly decaying Higgs bosons produced in association with a Zo boson are derived. Assuming a branching ratio BR(ho->invisible)=1, a lower limit of 108.2 GeV is placed on the...

  15. Weak radiative hyperon decays

    International Nuclear Information System (INIS)

    Roberts, B.L.; Booth, E.C.; Gall, K.P.; McIntyre, E.K.; Miller, J.P.; Whitehouse, D.A.; Bassalleck, B.; Hall, J.R.; Larson, K.D.; Wolfe, D.M.; Fickinger, W.J.; Robinson, D.K.; Hallin, A.L.; Hasinoff, M.D.; Measday, D.F.; Noble, A.J.; Waltham, C.E.; Hessey, N.P.; Lowe, J.; Horvath, D.; Salomon, M.

    1990-01-01

    New measurements of the Σ + and Λ weak radiative decays are discussed. The hyperons were produced at rest by the reaction K - p → Yπ where Y = Σ + or Λ. The monoenergetic pion was used to tag the hyperon production, and the branching ratios were determined from the relative amplitudes of Σ + → pγ to Σ + → pπ 0 and Λ → nγ to Λ → nπ 0 . The photons from weak radiative decays and from π 0 decays were detected with modular NaI arrays. (orig.)

  16. From The Beatles to Bosons

    CERN Multimedia

    Stephanie McClellan

    2013-01-01

    Before embarking on a successful career as a musician, Alan Parsons started out as a sound engineer - earning his first credit on The Beatles’ Abbey Road.  Over the years, he has worked and collaborated with various artists, but 30 September 2013 marks a unique collaboration.  For CERN’s ‘Bosons & More’ party, Alan Parsons Live Project will be sharing the stage with the Orchestre de la Suisse Romande.  Having already visited CERN in 2011, Alan Parsons provides an insight into his views on science and his upcoming performance at the ‘Bosons & More’ event.     Alan Parsons during his visit to CERN in August 2011. Since visiting CERN in 2011, how have your feelings towards the Organization developed? I was thrilled to hear about the recent discovery and how years of work had paid off. Together with my wife, Lisa, and my band, we were very privileged to come to CERN a couple of years ago, hav...

  17. Nonperturbative stochastic method for driven spin-boson model

    Science.gov (United States)

    Orth, Peter P.; Imambekov, Adilet; Le Hur, Karyn

    2013-01-01

    We introduce and apply a numerically exact method for investigating the real-time dissipative dynamics of quantum impurities embedded in a macroscopic environment beyond the weak-coupling limit. We focus on the spin-boson Hamiltonian that describes a two-level system interacting with a bosonic bath of harmonic oscillators. This model is archetypal for investigating dissipation in quantum systems, and tunable experimental realizations exist in mesoscopic and cold-atom systems. It finds abundant applications in physics ranging from the study of decoherence in quantum computing and quantum optics to extended dynamical mean-field theory. Starting from the real-time Feynman-Vernon path integral, we derive an exact stochastic Schrödinger equation that allows us to compute the full spin density matrix and spin-spin correlation functions beyond weak coupling. We greatly extend our earlier work [P. P. Orth, A. Imambekov, and K. Le Hur, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.82.032118 82, 032118 (2010)] by fleshing out the core concepts of the method and by presenting a number of interesting applications. Methodologically, we present an analogy between the dissipative dynamics of a quantum spin and that of a classical spin in a random magnetic field. This analogy is used to recover the well-known noninteracting-blip approximation in the weak-coupling limit. We explain in detail how to compute spin-spin autocorrelation functions. As interesting applications of our method, we explore the non-Markovian effects of the initial spin-bath preparation on the dynamics of the coherence σx(t) and of σz(t) under a Landau-Zener sweep of the bias field. We also compute to a high precision the asymptotic long-time dynamics of σz(t) without bias and demonstrate the wide applicability of our approach by calculating the spin dynamics at nonzero bias and different temperatures.

  18. Measurement of the Higgs boson tensor coupling in $H \\rightarrow ZZ^{*} \\rightarrow 4\\ell$ decays with the ATLAS detector - How odd is the Higgs boson?

    CERN Document Server

    Ecker, Katharina Maria; Kortner, Sandra

    The tensor structure of the Higgs boson couplings to gluons and heavy weak gauge bosons has been probed for small admixtures of non-Standard Model CP-odd and, only for heavy vector bosons, CP-even couplings to the CP-even Standard Model coupling. The Higgs boson candidates are reconstructed in the $\\HZZllll$ $(\\ell\\equiv e,\\mu)$ decay channel using proton-proton collision data recorded by the ATLAS detector at the Large Hadron Collider (LHC) in 2011 and 2012 at centre-of-mass energies of $\\sqrt{s}=7$ and $8\\,\\tev$ corresponding to an integrated luminosity of $\\intlumisetot\\,\\ifb$ and in 2015 and 2016 at $\\ecms$ corresponding to $\\intlumi\\,\\ifb$.\\\\ The non-Standard Model coupling parameters are defined within an effective field theory, the so-called Higgs characterisation framework. The relative contributions of the CP-even and CP-odd terms are described by the CP mixing angle $\\alpha$. The parameter $\\kaggnoma$ denotes the CP-odd non-Standard Model coupling at the Higgs to gluon interaction vertex and $\\khvv...

  19. Startpoints via weak contractions

    OpenAIRE

    Agyingi, Collins Amburo; Gaba, Yaé Ulrich

    2018-01-01

    Startpoints (resp. endpoints) can be defined as "oriented fixed points". They arise naturally in the study of fixed for multi-valued maps defined on quasi-metric spaces. In this article, we give a new result in the startpoint theory for quasi-pseudometric spaces. The result we present is obtained via a generalized weakly contractive set-valued map.

  20. Weakly Coretractable Modules

    Science.gov (United States)

    Hadi, Inaam M. A.; Al-aeashi, Shukur N.

    2018-05-01

    If R is a ring with identity and M is a unitary right R-module. Here we introduce the class of weakly coretractable module. Some basic properties are investigated and some relationships between these modules and other related one are introduced.

  1. Interacting boson model with surface delta interaction between nucleons

    International Nuclear Information System (INIS)

    Druce, C.; Moszkowski, S.A.

    1984-01-01

    The surface delta interaction is used as an effective nucleon-nucleon interaction to investigate the structure and interaction of the bosons in the interacting boson model. The authors have obtained analytical expressions for the coefficients of a multipole expansion of the neutron-boson proton-boson interaction for the case of degenerate orbits

  2. A test of boson mappings of fermion systems

    International Nuclear Information System (INIS)

    Arima, A.; Yoshida, N.; Ginocchio, J.N.

    1981-01-01

    The Otsuka-Arima-Iachello Method, the Belyaev-Zelevinsky-Marshalek boson expansion method, and the boson expansion theory are each used to map a solvable fermion hamiltonian onto a boson space. Comparison of the spectra and transition rates obtained by these three boson mapping methods are compared to the exact values. (orig.)

  3. Searches for neutral Higgs bosons in extended models

    NARCIS (Netherlands)

    Abdallah, J.; Blom, M.R.; Drees, J.; Palacios, J.; van der Pol, M.; Siebel, M.; van Dam, P.A.; Zupan, M.

    2004-01-01

    Searches for neutral Higgs bosons produced at LEP in association with Z bosons, in pairs and in the Yukawa process are presented in this paper. Higgs boson decays into b quarks, τ leptons, or other Higgs bosons are considered, giving rise to four-b, four-b+jets, six-b and four-τ final states, as

  4. SEARCH FOR DARK MATTER IN EVENTS WITH A SINGLE BOSON AND MISSING TRANSVERSE MOMENTUM WITH ATLAS

    CERN Document Server

    Brandt, Oleg; The ATLAS collaboration

    2017-01-01

    The presence of a non-baryonic dark matter component in the Universe is inferred from the observation of its gravitational interaction. If dark matter interacts weakly with the Standard Model it would be produced at the LHC, escaping the detector and leaving a large missing transverse momentum as their signature. The results of searches for Dark Matter with a single boson and large missing transverse momentum in 13 TeV will be presented.

  5. The boson and the Mexican hat

    International Nuclear Information System (INIS)

    Cohen-Tannoudji, Gilles; Spiro, Michel

    2013-01-01

    This document contains a brief presentation and the table of contents of a book in which the authors who reports the evolutions of the contemporary astrophysics theories, and the scientific, technological and human adventure of the CERN until the discovery of the Higgs boson by means of the LHC. The Mexican hat is the name given to the mechanism by which the boson reports the origin of the elementary particle masses. The first part reports the boson genealogy: the law of universal gravitation, the relativity and the limits of the rational mechanics, quantum mechanics, and particle physics at the end of the 1960's. The second part addresses the necessary existence of the boson: quantum electrodynamics, from the quark model to quantum chromo-dynamics, from intermediate bosons to the Brout, Englert and Higgs boson, the standard cosmology model. The third part deals with the perspectives opened by the existence and evidence of the boson: the search for physics theory and models beyond standard models

  6. Review of weak mixing angle results at SLC and LEP

    International Nuclear Information System (INIS)

    Woods, M.

    1995-10-01

    In this paper, the authors review recent precise measurements of the weak mixing angle by the SLD experiment at SLC and by the ALEPH, DELPHI, L3, and OPAL experiments at LEP. If they assume that the Minimal Standard Model provides a complete description of the quark and lepton couplings to the Z boson, they find sin 2 θ W eff = 0.23143 ± 0.00028. If this assumption is relaxed to apply to lepton couplings only, they find sin 2 θ W eff = 0.23106 ± 0.00035. They compare these results with other precision electroweak tests

  7. Measurement of cross sections and properties of the Higgs boson in decays to bosons using the ATLAS detector

    CERN Document Server

    Bruni, Lucrezia Stella; The ATLAS collaboration

    2018-01-01

    Measurements of Higgs boson properties and cross sections measured in Higgs boson decays to two photons, two Z bosons, and two W bosons based on pp collision data collected at 13 TeV are presented. In addition, results from the combination of different decay channels are shown.

  8. Higgs boson production via Z, W bosons and toponium in the E6 superstring model

    International Nuclear Information System (INIS)

    Barger, V.; Whisnant, K.

    1988-01-01

    The authors examine the production of light Higgs bosons associated with electroweak symmetry-breaking in an E 6 superstring model in Z ω HZ * decays, in e + e - annihilation and in toponium decays. They find that the couplings of the lightest scalar Higgs boson H 1 0 in these models are very similar to those of the standard Higgs boson unless the pseudoscalar P 0 in the model has mass ≤ M z . Possible new modes for Higgs boson production not found in the standard model are presented. The authors give simple analytic expressions for the Higgs boson masses and mixing angles in the limit that the extra Z' gauge boson is heavy which clearly shows the production mechanisms that are favored for a given set of model parameters

  9. Vector Boson Scattering at High Mass

    CERN Document Server

    Sherwood, P

    2009-01-01

    In the absence of a light Higgs boson, the mechanism of electroweak symmetry breaking will be best studied in processes of vector boson scattering at high mass. Various models predict resonances in this channel. Here, we investigate W W scalar and vector resonances, W Z vector resonances and a Z Z scalar resonance over a range of diboson centre-of-mass energies. Particular attention is paid to the application reconstruction of dijet pairs with low opening angle resulting from the decay of highly boosted vector bosons.

  10. An introduction to the interacting boson model

    International Nuclear Information System (INIS)

    Iachello, F.

    1981-01-01

    This chapter introduces an alternative, algebraic, description of the properties of nuclei with several particles outside the closed shells. Focuses on the group theory of the interacting boson model. Discusses the group structure of the boson Hamiltonian; subalgebras; the classification of states; dynamical symmetry; electromagnetic transition rates; transitional classes; and general cases. Omits a discussion of the latest developments (e.g., the introduction of proton and neutron degrees of freedom); the spectra of odd-A nuclei; and the bosonfermion model. Concludes that the major new feature of the interacting boson model is the introduction and systematic exploitation of algebraic techniques, which allows a simple and detailed description of many nuclear properties

  11. A light Higgs Boson would invite Supersymmmetry

    CERN Document Server

    Ellis, Jonathan Richard; Ellis, John; Ross, Douglas

    2001-01-01

    If the Higgs boson weighs about 115 GeV, the effective potential of the Standard Model becomes unstable above a scale of about 10^6 GeV. This instability may be rectified only by new bosonic particles such as stop squarks. However, avoiding the instability requires fine-tuning of the model couplings, in particular if the theory is not to become non-perturbative before the Planck scale. Such fine-tuning is automatic in a supersymmetric model, but is lost if there are no Higgsinos. A light Higgs boson would be prima facie evidence for supersymmetry in the top-quark and Higgs sectors.

  12. Three-dimensional topological insulators and bosonization

    Energy Technology Data Exchange (ETDEWEB)

    Cappelli, Andrea [INFN, Sezione di Firenze,Via G. Sansone 1, 50019 Sesto Fiorentino - Firenze (Italy); Randellini, Enrico [INFN, Sezione di Firenze,Via G. Sansone 1, 50019 Sesto Fiorentino - Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze,Via G. Sansone 1, 50019 Sesto Fiorentino - Firenze (Italy); Sisti, Jacopo [Scuola Internazionale Superiore di Studi Avanzati (SISSA),Via Bonomea 265, 34136 Trieste (Italy)

    2017-05-25

    Massless excitations at the surface of three-dimensional time-reversal invariant topological insulators possess both fermionic and bosonic descriptions, originating from band theory and hydrodynamic BF theory, respectively. We analyze the corresponding field theories of the Dirac fermion and compactified boson and compute their partition functions on the three-dimensional torus geometry. We then find some non-dynamic exact properties of bosonization in (2+1) dimensions, regarding fermion parity and spin sectors. Using these results, we extend the Fu-Kane-Mele stability argument to fractional topological insulators in three dimensions.

  13. Two gauge boson physics at future colliders

    International Nuclear Information System (INIS)

    Cahn, R.N.

    1988-01-01

    Electroweak unification suggests that there should be WW and ZZ physics analogous to γγ physics. Indeed, WW and ZZ collisions will provide an opportunity to search for the Higgs boson at future high energy colliders. Cross sections in the picobarn range are predicted for Higgs boson production at the proposed 40-TeV SSC. While other states may be produced by WW and ZZ collisions, it is the Higgs boson that looms as the most attractive objective. 31 refs., 5 figs

  14. New aspects of the interacting boson model

    International Nuclear Information System (INIS)

    Nadzakov, E.G.; Mikhajlov, I.N.

    1987-01-01

    In the framework of the boson space extension called interacting multiboson model: conserving the model basic dynamic symmetries, the s p d f boson model is considered. It does not destruct the intermediate mass nuclei simple description, and at the same time includes the number of levels and transitions, inaccessible to the usual s d boson model. Its applicability, even in a brief version, to the recently observed asymmetric nuclear shape effect in the Ra-Th-U region (and in other regions) with possible octupole and dipole deformation is demonstrated. It is done by reproducing algebraically the yrast lines of nuclei with vibrational, transitional and rotational spectra

  15. Introduction to weak interactions

    International Nuclear Information System (INIS)

    Leite Lopes, J.

    An account is first given of the electromagnetic interactions of complex, scalar, vector and spinor fields. It is shown that the electromagnetic field may be considered as a gauge field. Yang-Mills fields and the field theory invariant with respect to the non-Abelian gauge transformation group are then described. The construction, owing to this invariance principle, of conserved isospin currents associated with gauge fields is also demonstrated. This is followed by a historical survey of the development of the weak interaction theory, established at first to describe beta disintegration processes by analogy with electrodynamics. The various stages are mentioned from the discovery of principles and rules and violation of principles, such as those of invariance with respect to spatial reflection and charge conjugation to the formulation of the effective current-current Lagrangian and research on the structure of weak currents [fr

  16. Weak states and security

    OpenAIRE

    Rakipi, Albert

    2006-01-01

    Cataloged from PDF version of article. Although the weak 1 failing states have often been deseribed as the single most important problem for the international order s ince the en d of Cold W ar (F .Fukuyaına 2004:92) several dimensions of this phenomenon still remain unexplored. While this phenomenon has been present in the international politics even earlier, only the post Cold W ar period accentuated its relationship with security issues. Following the Cold W ar' s "peacef...

  17. Ra isotopes in the sdg interacting-boson model with one f-boson

    Energy Technology Data Exchange (ETDEWEB)

    Yoshinaga, Naotaka (Department of Physics, Saitama University (Japan)); Mizusaki, Takahiro (Department of Physics, University of Tokyo (Japan)); Otsuka, Takaharu (Department of Physics, University of Tokyo (Japan))

    1993-06-21

    We study positive- and negative-parity states in Ra isotopes in terms of the proton-neutron sdg interacting-boson model with one f-boson. The present calculation correctly reproduces the spherical to deformed phase transition. Especially, we would like to stress the importance of the g-boson for reproducing the E1 transitions which are very strong in this region. (orig.)

  18. Ra isotopes in the sdg interacting-boson model with one f-boson

    Science.gov (United States)

    Naotaka, Yoshinaga; Takahiro, Mizusaki; Takaharu, Otsuka

    1993-06-01

    We study positive- and negative-parity states in Ra isotopes in terms of the proton-neutron sdg interacting-boson model with one f-boson. The present calculation correctly reproduces the spherical to deformed phase transition. Especially, we would like to stress the importance of the g-boson for reproducing the E1 transitions which are very strong in this region.

  19. Relativistic quantum mechanics of bosons

    International Nuclear Information System (INIS)

    Ghose, P.; Home, D.; Sinha Roy, M.N.

    1993-01-01

    We show that it is possible to use the Klein-Gordon, Proca and Maxwell formulations to construct multi-component relativistic configuration space wavefunctions of spin-0 and spin-1 bosons in an external field. These wavefunctions satisfy the first-order Kemmer-Duffin equation. The crucial ingredient is the use of the future-causal normal n μ (n μ n μ =1, n 0 >0) to the space-like hypersurfaces foliating space-time, inherent in the concept of a relativistic wavefunction, to construct a conserved future-causal probability current four-vector from the second-rank energy-momentum tensor, following Holland's prescription. The existence of a Hermitian position operator, localized solutions, compatibility with the second quantized theories and the question of interpretation are discussed. (orig.)

  20. Dipolar and spinor bosonic systems

    Science.gov (United States)

    Yukalov, V. I.

    2018-05-01

    The main properties and methods of describing dipolar and spinor atomic systems, composed of bosonic atoms or molecules, are reviewed. The general approach for the correct treatment of Bose-condensed atomic systems with nonlocal interaction potentials is explained. The approach is applied to Bose-condensed systems with dipolar interaction potentials. The properties of systems with spinor interaction potentials are described. Trapped atoms and atoms in optical lattices are considered. Effective spin Hamiltonians for atoms in optical lattices are derived. The possibility of spintronics with cold atom is emphasized. The present review differs from the previous review articles by concentrating on a thorough presentation of basic theoretical points, helping the reader to better follow mathematical details and to make clearer physical conclusions.

  1. Double boson production at CDF

    International Nuclear Information System (INIS)

    Neuberger, D.

    1996-07-01

    New measurements of boson pair production in p anti p collisions have been performed by the CDF collaboration using a data sample of approximately 110 pb -1 . The cross sections for WW and WZ production are measured in the pure leptonic decay channel to σ(p anti p → WZ) = 3.2 +5.0 -3. 2 pb and σ(p anti p → W + W - ) = 10.2 +6.5 -5.3 pb, respectively. Limits on anomalous coupling parameters are set in the searches for WW and WZ production. Assuming an energy scale of Λ FF = 2 TeV, we find for the WWZ and WWγ couplings at 95% CL: -0.4 < λ < 0.3 (δκ 0) and -0.5 < δκ < 0.5 (λ = 0)

  2. Survival and weak chaos.

    Science.gov (United States)

    Nee, Sean

    2018-05-01

    Survival analysis in biology and reliability theory in engineering concern the dynamical functioning of bio/electro/mechanical units. Here we incorporate effects of chaotic dynamics into the classical theory. Dynamical systems theory now distinguishes strong and weak chaos. Strong chaos generates Type II survivorship curves entirely as a result of the internal operation of the system, without any age-independent, external, random forces of mortality. Weak chaos exhibits (a) intermittency and (b) Type III survivorship, defined as a decreasing per capita mortality rate: engineering explicitly defines this pattern of decreasing hazard as 'infant mortality'. Weak chaos generates two phenomena from the normal functioning of the same system. First, infant mortality- sensu engineering-without any external explanatory factors, such as manufacturing defects, which is followed by increased average longevity of survivors. Second, sudden failure of units during their normal period of operation, before the onset of age-dependent mortality arising from senescence. The relevance of these phenomena encompasses, for example: no-fault-found failure of electronic devices; high rates of human early spontaneous miscarriage/abortion; runaway pacemakers; sudden cardiac death in young adults; bipolar disorder; and epilepsy.

  3. Hiding a Heavy Higgs Boson at the 7 TeV LHC

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yang; Fan, JiJi; Hewett, JoAnne L.

    2012-03-20

    A heavy Standard Model Higgs boson is not only disfavored by electroweak precision observables but is also excluded by direct searches at the 7 TeV LHC for a wide range of masses. Here, we examine scenarios where a heavy Higgs boson can be made consistent with both the indirect constraints and the direct null searches by adding only one new particle beyond the Standard Model. This new particle should be a weak multiplet in order to have additional contributions to the oblique parameters. If it is a color singlet, we find that a heavy Higgs with an intermediate mass of 200-300 GeV can decay into the new states, suppressing the branching ratios for the standard model modes, and thus hiding a heavy Higgs at the LHC. If the new particle is also charged under QCD, the Higgs production cross section from gluon fusion can be reduced significantly due to the new colored particle one-loop contribution. Current collider constraints on the new particles allow for viable parameter space to exist in order to hide a heavy Higgs boson. We categorize the general signatures of these new particles, identify favored regions of their parameter space and point out that discovering or excluding them at the LHC can provide important indirect information for a heavy Higgs. Finally, for a very heavy Higgs boson, beyond the search limit at the 7 TeV LHC, we discuss three additional scenarios where models would be consistent with electroweak precision tests: including an additional vector-like fermion mixing with the top quark, adding another U(1) gauge boson and modifying triple-gauge boson couplings.

  4. g-Boson renormalization effects in the interacting Boson model for nondegenerate orbits

    Science.gov (United States)

    Duval, P. D.; Pittel, S.; Barrett, B. R.; Druce, C. H.

    1983-09-01

    A nonperturbative model-space truncation procedure is utilized to include the effects of a single g boson on the parameters of the neutron-proton Interacting Boson Model in the realistic case of nondegenerate single-particle orbits. Particular emphasis is given to the single-boson energies ɛdϱ (ϱ = v, π), with numerical results presented for the even isotopes of Hg. Only part of the observed renormalization is obtained. Possible sources of further renormalizations to ɛdϱ are discussed. Results are also presented for the renormalizations of the boson quadrupole parameters κ and χϱ.

  5. Particle-hole symmetry in the interacting-boson model: Fermion and boson aspects

    International Nuclear Information System (INIS)

    Johnson, A.B.; Vincent, C.M.

    1985-01-01

    We show that the S-D subspaces, which are used in the Otsuka-Arima-Iachello microscopic derivation of the interacting-boson model, form a particle-hole-symmetric family. Consequently, there exist particle-hole-symmetric prescriptions for determining the structure of the S and D pairs. This result holds independently of whether the Hamiltonian conserves generalized seniority. Nevertheless, there are deviations from particle-hole symmetry when boson matrix elements involving more than two d bosons are calculated in lowest order using the boson mapping procedure of Otsuka, Arima, and Iachello. These deviations are used to estimate the inaccuracies introduced by the lowest-order mapping

  6. Non-abelian gauge bosons in the compactified bosonic membrane theory

    International Nuclear Information System (INIS)

    Kubo, J.

    1988-01-01

    We consider the bosonic membrane compactified on a torus. The membrane motion is stabilized by a topologically non-trivial background. We find that, in the narrow membrane limit, the mass formula to O(ℎ) reduces to exactly the same form as that of the compactified closed bosonic string theory, and we obtain (almost) massless vector bosons in the adjoint representation of a simply laced Lie group in D=27. This is only dimension at which the graviton and gauge bosons may coexist in that background. (orig.)

  7. Detection of Heavy Majorana Neutrinos and Right-Handed Bosons

    CERN Document Server

    Gninenko, Sergei; Krasnikov, Nikolai; Matveev, Viktor

    2006-01-01

    The SU_C(3) otimes SU_L(2) otimes SU_R(2) otimes U(1) left-right (LR) symmetric model explains the origin of the parity violation in weak interactions and predicts the existence of additional W_R and Z' gauge bosons. In addition, heavy right-handed Majorana neutrino states N arise naturally within LR symmetric model. The N s could be partners of light neutrino states, related to their non-zero masses through the see-saw mechanism. This makes the searches of W_R, Z' and N interesting and important. This note describes the study of the potential of the CMS experiment to observe signals from the N and W_R production at the LHC. It is shown that their decay signals can be identified with a small background. For the integral LHC luminosity of L_t = 30 fb^ -1, the 5 sigma discovery of W_R - boson and heavy Majorana neutrinos N_e with masses up to 3.5 TeV and 2.3 TeV, respectively is found possible.

  8. Reproducing the Higgs boson data with vector-like quarks

    International Nuclear Information System (INIS)

    Bonne, N.; Moreau, G.

    2012-01-01

    Vector-Like (VL) quarks arise in the main alternatives to the supersymmetric extensions of the Standard Model (SM). Given the experimental possibility of a 125 GeV Higgs boson with rates significantly different from the SM expectations, it is motivating to study the effects of VL quarks on the Higgs boson cross sections and branching ratios. We perform a systematic search for the minimal field contents and gauge group representations of VL quarks able to significantly improve the fit of the measured Higgs rates, and simultaneously, to satisfy the direct constraints on VL quark masses as well as the electro-weak precision tests. In particular, large enhancements can be achieved in certain diphoton channels - as pointed out by both the ATLAS and CMS Collaborations - optimizing then the Higgs rate fit. This is a consequence of the introduction of VL quarks, with high electric charges of 8/3 or -7/3, which are exchanged in the Higgs-to-diphoton loop. Interestingly, the field contents and formal Higgs couplings obtained here are similar to those of scenarios in warped/composite frameworks arising from different motivations. The various exotic-charge quarks predicted, possibly below the TeV scale, might lead to a rich phenomenology soon at the LHC.

  9. Higgs as a holographic pseudo-Goldstone boson

    International Nuclear Information System (INIS)

    Contino, Roberto; Nomura, Yasunori; Pomarol, Alex

    2003-01-01

    The AdS/CFT correspondence allows one to relate 4D strongly coupled theories to weakly coupled theories in 5D AdS. We use this correspondence to study a scenario in which the Higgs appears as a composite pseudo-Goldstone boson (PGB) of a strongly coupled theory. We show how a non-linearly realized global symmetry protects the Higgs mass and guarantees the absence of quadratic divergences at any loop order. The gauge and Yukawa interactions for the PGB Higgs are simple to introduce in the 5D AdS theory, and their one-loop contributions to the Higgs potential are calculated using perturbation theory. These contributions are finite, giving a squared-mass to the Higgs which is one-loop smaller than the mass of the first Kaluza-Klein state. We also show that if the symmetry breaking is caused by boundary conditions in the extra dimension, the PGB Higgs corresponds to the fifth component of the bulk gauge boson. To make the model fully realistic, a tree-level Higgs quartic coupling must be induced. We present a possible mechanism to generate it and discuss the conditions under which an unwanted large Higgs mass term is avoided

  10. Acquiring a taste for the Higgs boson

    CERN Multimedia

    Caroline Duc

    2012-01-01

    Before CERN's scientists had even announced the discovery of the Higgs boson, others were already attributing some interesting characteristics to it: flavoursome, sparkling and liquid...   The artisan brewery Hopfenstark in Quebec launched its new "Higgs boson" beer in November 2010. Ever since, it has been intriguing enthusiasts with its unique taste explosion. The boson was a source of inspiration for brewer Frédéric Cormier, the Hopfenstark brewery's owner, who is a big fan of science programmes. "I returned from a trip to Europe in 2010 with the idea for a new beer that would be unlike any other," he explains. "I was always reading and hearing about CERN's particle accelerator in the media, so I did some research on the famous Higgs boson and decided to give my new creation the same name." For Frédéric Cormier, it's important that the names of his beers refle...

  11. Vertex operators for a bosonic string

    International Nuclear Information System (INIS)

    Sasaki, Ryu; Yamanaka, Itaru.

    1985-09-01

    Based on the operator formalism and the Virasoro algebra, we present a simple method of constructing vertex operators describing the emission and absorption of general particles in bosonic string theories. (author)

  12. Electron scattering in the interacting boson model

    NARCIS (Netherlands)

    Dieperink, AEL; Iachello, F; Rinat, A; Creswell, C

    1978-01-01

    It is suggested that the interacting boson model be used in the analysis of electron scattering data. Qualitative features of the expected behavior of the inelastic excitation of some 2 ÷ states inthe transitional Sm-Nd region are discussed

  13. A Historical Profile of the Higgs Boson

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, John; Gaillard, Mary K.; Nanopoulos, Dimitri V.

    2012-01-31

    The Higgs boson was postulated in 1964, and phenomenological studies of its possible production and decays started in the early 1970s, followed by studies of its possible productionin e{sup +} e{sup -}, {anti p}p and pp collisions, in particular. Until recently, the most sensitive searches for the Higgs boson were at LEP between 1989 and 2000, which have been complemented bysearches at the Fermilab Tevatron. The LHC has recently entered the hunt, excluding a Higgs boson over a large range of masses and revealing a tantalizing hint in the range 119 to125 GeV, and there are good prospects that the existence or otherwise of the Higgs boson will soon be established. One of the most attractive possibilities is that the Higgs bosonis accompanied by supersymmetry, though composite options have yet to be excluded. This article reviews some of the key historical developments in Higgs physics over the past half-century.

  14. Does nature like Nambu-Goldstone bosons

    International Nuclear Information System (INIS)

    Gelmini, G.B.; Nussinov, S.

    1982-08-01

    We argue here that many (up to around 30 species) so far undetected Goldstone bosons could exist in nature, for example, associated to the spontaneous breaking of a horizontal global symmetry, provided the breaking scale is V >or approx. 10 10 GeV. Since Goldstone bosons do not generate r - 1 but spin-dependent r - 3 non-relativistic long-range potentials, the apparently most dramatic effect of massless bosons - new long-range forces competing with gravitation and electromagnetism - is easily avoidable (the Glashow-Weinberg-Salam breaking scale is enough). μ→eG and K→πG provide the most restrictive bounds and probably the only possibility to look for Goldstone bosons in laboratory. (author)

  15. Quantum geometry of bosonic strings - revisited

    International Nuclear Information System (INIS)

    Botelho, Luiz C.L.; Botelho, Raimundo C.L.; Universidade Federal Rural do Rio de Janeiro, RJ

    1999-07-01

    We review the original paper by A.M. Polyakov (Quantum Geometry of Bosonic Strings) with corrections and improvements the concepts exposed there and following as closely as possible to the original A.M. Polyakov's paper. (author)

  16. Vector Boson Scattering at High Mass

    CERN Document Server

    The ATLAS collaboration

    2009-01-01

    In the absence of a light Higgs boson, the mechanism of electroweak symmetry breaking will be best studied in processes of vector boson scattering at high mass. Various models predict resonances in this channel. Here, we investigate $WW $scalar and vector resonances, $WZ$ vector resonances and a $ZZ$ scalar resonance over a range of diboson centre-of-mass energies. Particular attention is paid to the application of forward jet tagging and to the reconstruction of dijet pairs with low opening angle resulting from the decay of highly boosted vector bosons. The performances of different jet algorithms are compared. We find that resonances in vector boson scattering can be discovered with a few tens of inverse femtobarns of integrated luminosity.

  17. Microscopic boson approach to nuclear collective motion

    International Nuclear Information System (INIS)

    Kuchta, R.

    1989-01-01

    A quantum mechanical approach to the maximally decoupled nuclear collective motion is proposed. The essential idea is to transcribe the original shell-model Hamiltonian in terms of boson operators, then to isolate the collective one-boson eigenstates of the mapped Hamiltonian and to perform a canonical transformation which eliminates (up to the two-body terms) the coupling between the collective and noncollective bosons. Unphysical states arising due to the violtion of the Pauli principle in the boson space are identified and removed within a suitable approximation. The method is applied to study the low-lying collective states of nuclei which are successfully described by the exactly solvable multilevel pairing Hamiltonian (Sn, Ni, Pb). 75 refs.; 8 figs

  18. Boson structure functions from inelastic electron scattering

    International Nuclear Information System (INIS)

    De Jager, C.W.

    1986-01-01

    The even /sup 104-110/Pd isotopes and /sup 196/Pt have been investigated at NIKHEF-K by high-resolution inelastic electron scattering. A new IBA-2 calculation has been performed for the Pd isotopes, in which the ratio of the proton and neutron coupling constants is taken from pion scattering. One set of boson structure functions sufficed for the description of the first and second E2-excitations in all Pd isotopes. The data showed no sensitivity for different structure functions for proton and neutron bosons. A preliminary analysis of a number of negative parity states (3/sup -/,5/sup -/ and 7/sup -/), observed in /sup 196/Pt, was performed through the introduction of an f-boson. The first E4-excitation in the palladium isotopes can be reasonably described with a β-structure function, but all other E4-excitations require the introduction of g-boson admixtures

  19. CERN collider homes in on Higgs boson

    CERN Multimedia

    Abbott, A

    1999-01-01

    Last week LEP was pushed beyond its design limits when the electron and positron beams acheived energies of 200 GeV. According to some physicists, this level could be high enough to detect the Higgs boson (4 paragraphs).

  20. Boson expansion theory in the seniority scheme

    International Nuclear Information System (INIS)

    Tamura, T.; Li, C.; Pedrocchi, V.G.

    1985-01-01

    A boson expansion formalism in the seniority scheme is presented and its relation with number-conserving quasiparticle calculations is elucidated. Accuracy and convergence are demonstrated numerically. A comparative discussion with other related approaches is given

  1. Is neutrino produced in standard weak interactions a Dirac or Majorana particle?

    International Nuclear Information System (INIS)

    Beshtoev, Kh.M.

    2010-01-01

    This work considers the following problem: what type (Dirac or Majorana) of neutrinos is produced in standard weak interactions? It is concluded that only Dirac neutrinos but not Majorana neutrinos can be produced in these interactions. Then neutrino interacts with W ± and Z bosons but neutrinoless double beta decay is absent. It means that this neutrino will be produced in another type of interaction. Namely, Majorana neutrino will be produced in the interaction which differentiates spin projections but cannot differentiate neutrino (particle) from antineutrino (antiparticle). Then neutrino will interact with W ± bosons and neutrinoless double beta decay will arise. But interaction with Z boson will be absent. Such an interaction has not been discovered yet. Therefore, experiments with very high precision are important to detect the neutrinoless double decays if they are realized in the Nature

  2. Boson sampling with integrated optical circuits

    International Nuclear Information System (INIS)

    Bentivegna, M.

    2014-01-01

    Simulating the evolution of non-interacting bosons through a linear transformation acting on the system’s Fock state is strongly believed to be hard for a classical computer. This is commonly known as the Boson Sampling problem, and has recently got attention as the first possible way to demonstrate the superior computational power of quantum devices over classical ones. In this paper we describe the quantum optics approach to this problem, highlighting the role of integrated optical circuits.

  3. SU(N) Irreducible Schwinger Bosons

    OpenAIRE

    Mathur, Manu; Raychowdhury, Indrakshi; Anishetty, Ramesh

    2010-01-01

    We construct SU(N) irreducible Schwinger bosons satisfying certain U(N-1) constraints which implement the symmetries of SU(N) Young tableaues. As a result all SU(N) irreducible representations are simple monomials of $(N-1)$ types of SU(N) irreducible Schwinger bosons. Further, we show that these representations are free of multiplicity problems. Thus all SU(N) representations are made as simple as SU(2).

  4. Some aspects of q-boson calculus

    International Nuclear Information System (INIS)

    Smirnov, Yu.F.; Kibler, M.R.

    1992-10-01

    The Jordan-Schwinger calculus is discussed, using deformed bosons. This work constitutes a first step toward a complete study of the SU q (2) unit tensor. The objective is to find a realization of the components of this tensor in terms of q-bosons. The q-deformed Schwinger algebra relative to SU q (2) is defined, and an algorithm for producing recurrent relations between Clebsch-Gordan coefficients for SU q (2) is given. (K.A.) 18 refs

  5. Microscopic foundation of the interacting boson model

    International Nuclear Information System (INIS)

    Arima, Akito

    1994-01-01

    A microscopic foundation of the interacting boson model is described. The importance of monopole and quadrupole pairs of nucleons is emphasized. Those pairs are mapped onto the s and d bosons. It is shown that this mapping provides a good approximation in vibrational and transitional nuclei. In appendix, it is shown that the monopole pair of electrons plays possibly an important role in metal clusters. (orig.)

  6. Electroweak boson production with jets at CMS

    CERN Document Server

    Hortiangtham, Apichart

    2017-01-01

    The production of electroweak bosons (W, Z or gamma) in association with jets is a stringent test of perturbative QCD and is a background process in searches for new physics. Total and differential cross-section measurements of electroweak bosons produced in association with jets (and heavy flavour quarks) in proton-proton collisions are presented. The data have been recorded with the CMS detector at the LHC and are compared to the predictions of event generators and theoretical calculations.

  7. Study of single W bosons at JLC

    Energy Technology Data Exchange (ETDEWEB)

    Arogancia, Dennis C.; Sanchez, Allister Levi C.; Magallanes, Jingle B.; Gooc, Hermogenes C.; Bacala, Angelina M. [Mindanao State Univ., Dept. of Physics, Iligan (Philippines); Fujii, Keisuke; Miyamoto, Akiya [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    2001-06-01

    Single W bosons are studied through computer simulation using the process e{sup +}e{sup -} {yields} e{sup +}{nu}{sub e}W{sup -} where it decays into two hadronic jets. This study focuses of the measurement of W boson mass with and without beamstrahlung and initial state radiation (ISR) effects. The JLC Study Framework (JSF) is employed for this purpose. The center-of-mass energy is set at 500 GeV. (author)

  8. Study of single W bosons at JLC

    International Nuclear Information System (INIS)

    Arogancia, Dennis C.; Sanchez, Allister Levi C.; Magallanes, Jingle B.; Gooc, Hermogenes C.; Bacala, Angelina M.; Fujii, Keisuke; Miyamoto, Akiya

    2001-01-01

    Single W bosons are studied through computer simulation using the process e + e - → e + ν e W - where it decays into two hadronic jets. This study focuses of the measurement of W boson mass with and without beamstrahlung and initial state radiation (ISR) effects. The JLC Study Framework (JSF) is employed for this purpose. The center-of-mass energy is set at 500 GeV. (author)

  9. Fermion boson metamorphosis in field theory

    International Nuclear Information System (INIS)

    Ha, Y.K.

    1982-01-01

    In two-dimensional field theories many features are especially transparent if the Fermi fields are represented by non-local expressions of the Bose fields. Such a procedure is known as boson representation. Bilinear quantities appear in the Lagrangian of a fermion theory transform, however, as simple local expressions of the bosons so that the resulting theory may be written as a theory of bosons. Conversely, a theory of bosons may be transformed into an equivalent theory of fermions. Together they provide a basis for generating many interesting equivalences between theories of different types. In the present work a consistent scheme for constructing a canonical Fermi field in terms of a real scalar field is developed and such a procedure is valid and consistent with the tenets of quantum field theory is verified. A boson formulation offers a unifying theme in understanding the structure of many theories. This is illustrated by the boson formulation of a multifermion theory with chiral and internal symmetries. The nature of dynamical generation of mass when the theory undergoes boson transmutation and the preservation of continuous chiral symmetry in the massive case are examined. The dynamics of the system depends to a great extent on the specific number of fermions and different models of the same system can have very different properties. Many unusual symmetries of the fermion theory, such as hidden symmetry, duality and triality symmetries, are only manifest in the boson formulation. The underlying connections between some models with U(N) internal symmetry and another class of fermion models built with Majorana fermions which have O(2N) internal symmetry are uncovered

  10. Bound states of Dipolar Bosons in One-dimensional Systems

    DEFF Research Database (Denmark)

    G. Volosniev, A.; R. Armstrong, J.; V. Fedorov, D.

    2013-01-01

    that in the weakly-coupled limit the inter-tube interaction is similar to a zero-range term with a suitable rescaled strength. This allows us to address the corresponding many-body physics of the system by constructing a model where bound chains with one molecule in each tube are the effective degrees of freedom......We consider one-dimensional tubes containing bosonic polar molecules. The long-range dipole-dipole interactions act both within a single tube and between different tubes. We consider arbitrary values of the externally aligned dipole moments with respect to the symmetry axis of the tubes. The few....... This model can be mapped onto one-dimensional Hamiltonians for which exact solutions are known....

  11. Vector boson fusion NNLO in QCD. SM Higgs and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Bolzoni, Paolo [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Maltoni, Fabio; Zaro, Marco [Catholique Univ. Louvain-la-Neuve (BE). Center for Cosmology, Particle Phyics and Phenomenology (CP3); Moch, Sven-Olaf [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2011-09-15

    Weak vector boson fusion provides a unique channel to directly probe the mechanism of electroweak symmetry breaking at hadron colliders. We present a method that allows to calculate total cross sections to next-to-next-to-leading order (NNLO) in QCD for an arbitrary V{sup *}V{sup *}{yields}X process, the so-called structure function approach. By discussing the case of Higgs production in detail, we estimate several classes of previously neglected contributions and we argue that such method is accurate at a precision level well above the typical residual scale and PDF uncertainties at NNLO. Predictions for cross sections at the Tevatron and the LHC are presented for a variety of cases: the Standard Model Higgs (including anomalous couplings), neutral and charged scalars in extended Higgs sectors and (fermiophobic) vector resonance production. Further results can be easily obtained through the public use of the VBF rate at NNLO code. (orig.)

  12. Hypernuclear weak decay puzzle

    International Nuclear Information System (INIS)

    Barbero, C.; Horvat, D.; Narancic, Z.; Krmpotic, F.; Kuo, T.T.S.; Tadic, D.

    2002-01-01

    A general shell model formalism for the nonmesonic weak decay of the hypernuclei has been developed. It involves a partial wave expansion of the emitted nucleon waves, preserves naturally the antisymmetrization between the escaping particles and the residual core, and contains as a particular case the weak Λ-core coupling formalism. The extreme particle-hole model and the quasiparticle Tamm-Dancoff approximation are explicitly worked out. It is shown that the nuclear structure manifests itself basically through the Pauli principle, and a very simple expression is derived for the neutron- and proton-induced decays rates Γ n and Γ p , which does not involve the spectroscopic factors. We use the standard strangeness-changing weak ΛN→NN transition potential which comprises the exchange of the complete pseudoscalar and vector meson octets (π,η,K,ρ,ω,K * ), taking into account some important parity-violating transition operators that are systematically omitted in the literature. The interplay between different mesons in the decay of Λ 12 C is carefully analyzed. With the commonly used parametrization in the one-meson-exchange model (OMEM), the calculated rate Γ NM =Γ n +Γ p is of the order of the free Λ decay rate Γ 0 (Γ NM th congruent with Γ 0 ) and is consistent with experiments. Yet the measurements of Γ n/p =Γ n /Γ p and of Γ p are not well accounted for by the theory (Γ n/p th p th > or approx. 0.60Γ 0 ). It is suggested that, unless additional degrees of freedom are incorporated, the OMEM parameters should be radically modified

  13. Measurement of weak radioactivity

    CERN Document Server

    Theodorsson , P

    1996-01-01

    This book is intended for scientists engaged in the measurement of weak alpha, beta, and gamma active samples; in health physics, environmental control, nuclear geophysics, tracer work, radiocarbon dating etc. It describes the underlying principles of radiation measurement and the detectors used. It also covers the sources of background, analyzes their effect on the detector and discusses economic ways to reduce the background. The most important types of low-level counting systems and the measurement of some of the more important radioisotopes are described here. In cases where more than one type can be used, the selection of the most suitable system is shown.

  14. On Weak Markov's Principle

    DEFF Research Database (Denmark)

    Kohlenbach, Ulrich Wilhelm

    2002-01-01

    We show that the so-called weak Markov's principle (WMP) which states that every pseudo-positive real number is positive is underivable in E-HA + AC. Since allows one to formalize (atl eastl arge parts of) Bishop's constructive mathematics, this makes it unlikely that WMP can be proved within...... the framework of Bishop-style mathematics (which has been open for about 20 years). The underivability even holds if the ine.ective schema of full comprehension (in all types) for negated formulas (in particular for -free formulas) is added, which allows one to derive the law of excluded middle...

  15. Weak interaction rates

    International Nuclear Information System (INIS)

    Sugarbaker, E.

    1995-01-01

    I review available techniques for extraction of weak interaction rates in nuclei. The case for using hadron charge exchange reactions to estimate such rates is presented and contrasted with alternate methods. Limitations of the (p,n) reaction as a probe of Gamow-Teller strength are considered. Review of recent comparisons between beta-decay studies and (p,n) is made, leading to cautious optimism regarding the final usefulness of (p,n)- derived GT strengths to the field of astrophysics. copyright 1995 American Institute of Physics

  16. Who will catch the Higgs boson?

    International Nuclear Information System (INIS)

    Colas, P.; Tuchming, B.

    2004-01-01

    The Higgs boson was theoretically created about 40 years ago by a Scott Peter Higgs who wanted to explain why some particles get a mass. Since then the Higgs boson has taken consistency and has become an important point of the standard model theory. Its experimental discovery would be a milestone of modern physics. The search for the Higgs boson is an international challenge that takes place around 2 huge machines: the Tevatron near Chicago and the LHC (large hadron collider) that is being built in CERN. The Tevatron is in fact the upgrading of an old particle accelerator, it is a proton collider and its narrow range of energy is compensated by a low background noise. On the other hand the LHC will begin operating only in 2007 and its full power will be reached a few years later, the energy available to create particles will be then 7 times higher than for the Tevatron. Both machines have chance of succeeding by being the first to detect the Higgs boson. Time plays in favor of the Tevatron but in any case if the Higgs boson exists it will be detected at LHC because this equipment covers completely the energy range in which the Higgs boson is suspected to exist. (A.C.)

  17. Weakly Supervised Dictionary Learning

    Science.gov (United States)

    You, Zeyu; Raich, Raviv; Fern, Xiaoli Z.; Kim, Jinsub

    2018-05-01

    We present a probabilistic modeling and inference framework for discriminative analysis dictionary learning under a weak supervision setting. Dictionary learning approaches have been widely used for tasks such as low-level signal denoising and restoration as well as high-level classification tasks, which can be applied to audio and image analysis. Synthesis dictionary learning aims at jointly learning a dictionary and corresponding sparse coefficients to provide accurate data representation. This approach is useful for denoising and signal restoration, but may lead to sub-optimal classification performance. By contrast, analysis dictionary learning provides a transform that maps data to a sparse discriminative representation suitable for classification. We consider the problem of analysis dictionary learning for time-series data under a weak supervision setting in which signals are assigned with a global label instead of an instantaneous label signal. We propose a discriminative probabilistic model that incorporates both label information and sparsity constraints on the underlying latent instantaneous label signal using cardinality control. We present the expectation maximization (EM) procedure for maximum likelihood estimation (MLE) of the proposed model. To facilitate a computationally efficient E-step, we propose both a chain and a novel tree graph reformulation of the graphical model. The performance of the proposed model is demonstrated on both synthetic and real-world data.

  18. Precision measurement of the weak charge of the proton.

    Science.gov (United States)

    2018-05-01

    Large experimental programmes in the fields of nuclear and particle physics search for evidence of physics beyond that explained by current theories. The observation of the Higgs boson completed the set of particles predicted by the standard model, which currently provides the best description of fundamental particles and forces. However, this theory's limitations include a failure to predict fundamental parameters, such as the mass of the Higgs boson, and the inability to account for dark matter and energy, gravity, and the matter-antimatter asymmetry in the Universe, among other phenomena. These limitations have inspired searches for physics beyond the standard model in the post-Higgs era through the direct production of additional particles at high-energy accelerators, which have so far been unsuccessful. Examples include searches for supersymmetric particles, which connect bosons (integer-spin particles) with fermions (half-integer-spin particles), and for leptoquarks, which mix the fundamental quarks with leptons. Alternatively, indirect searches using precise measurements of well predicted standard-model observables allow highly targeted alternative tests for physics beyond the standard model because they can reach mass and energy scales beyond those directly accessible by today's high-energy accelerators. Such an indirect search aims to determine the weak charge of the proton, which defines the strength of the proton's interaction with other particles via the well known neutral electroweak force. Because parity symmetry (invariance under the spatial inversion (x, y, z) → (-x, -y, -z)) is violated only in the weak interaction, it provides a tool with which to isolate the weak interaction and thus to measure the proton's weak charge 1 . Here we report the value 0.0719 ± 0.0045, where the uncertainty is one standard deviation, derived from our measured parity-violating asymmetry in the scattering of polarized electrons on protons, which is -226.5

  19. Faddeev-Yakubovsky technique for weakly bound systems

    International Nuclear Information System (INIS)

    Hadizadeh, M.R.; Yamashita, M.T.; Tomio, Lauro; Delfino, A.

    2011-01-01

    Nature shows the existence of weakly bound systems in different sectors, ranging from atomic to nuclear physics. Few-body systems with large scattering length exhibit universal features, which are independent of the details of the interaction, and thus are common to nuclear and atomic systems. Very different methods are used to study the properties of few-body systems, from Faddeev methods to diagonalization methods that rely on an expansion of the wave functions in a complete basis set, like e.g. hyper-spherical harmonics and no core shell model. In this talk we present Faddeev-Yakubovsky method to study the three- and four-body bound states in momentum space. To show the efficiency and accuracy of the method we investigate the three- and four-boson weakly bound states in unitary limit (for zero two-body binding) and we present a pretty complete picture of universality. (author)

  20. Boson-fermion and boson-boson scattering in a Yang-Mills theory at high energy: Sixth-order perturbation theory

    International Nuclear Information System (INIS)

    McCoy, B.M.; Wu, T.T.

    1976-01-01

    Our previous study of Yang-Mills fields is extended by calculating the high-energy behavior of the boson-fermion and of the boson-boson amplitude in sixth-order perturbation theory. In the isovector and isoscalar channels of both these processes the behavior of the amplitude is the same as that found in fermion-fermion scattering

  1. Neutral Supersymmetric Higgs Boson Searches

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Stephen Luke [Imperial College, London (United Kingdom)

    2008-07-01

    In some Supersymmetric extensions of the Standard Model, including the Minimal Supersymmetric Standard Model (MSSM), the coupling of Higgs bosons to b-quarks is enhanced. This enhancement makes the associated production of the Higgs with b-quarks an interesting search channel for the Higgs and Supersymmetry at D0. The identification of b-quarks, both online and offline, is essential to this search effort. This thesis describes the author's involvement in the development of both types of b-tagging and in the application of these techniques to the MSSM Higgs search. Work was carried out on the Level-3 trigger b-tagging algorithms. The impact parameter (IP) b-tagger was retuned and the effects of increased instantaneous luminosity on the tagger were studied. An extension of the IP-tagger to use the z-tracking information was developed. A new b-tagger using secondary vertices was developed and commissioned. A tool was developed to allow the use of large multi-run samples for trigger studies involving b-quarks. Offline, a neural network (NN) b-tagger was trained combining the existing offline lifetime based b-tagging tools. The efficiency and fake rate of the NN b-tagger were measured in data and MC. This b-tagger was internally reviewed and certified by the Collaboration and now provides the official b-tagging for all analyses using the Run IIa dataset at D0. A search was performed for neutral MSSM Higgs bosons decaying to a b{bar b} pair and produced in association with one or more b-quarks. Limits are set on the cross-section times the branching ratio for such a process. The limits were interpreted in various MSSM scenarios. This analysis uses the NN b-tagger and was the first to use this tool. The analysis also relies on triggers using the Level-3 IP b-tagging tool described previously. A likelihood discriminant was used to improve the analysis and a neural network was developed to cross-check this technique. The result of the analysis has been submitted to PRL

  2. Search for the Higgs boson at ATLAS/LHC, in associated production with a Z boson

    CERN Document Server

    Sousa, Mário; Conde, Patricia

    A mechanism of spontaneous symmetry breaking was used to explain the mass of elementary particles and predicted the existence of the Higgs boson. The Higgs boson was discovered in 2012 by the ATLAS and CMS experiments at the LHC with a mass of about 125 GeV. It now becomes necessary to study this new boson in order to validate the Standard Model of elementary particles. The Standard Model Higgs boson with a mass of 125 GeV decays most of the times to a pair of b-quarks. However, this decay is very difficult to study in a proton-proton collider like the LHC, due to the production of a huge background of b-jets (and also non-b-jets). In the LHC, the only production process with some chance to be used in this study is the associated production with a vector boson, which can decay leptonically allowing the identification of the event. One can use three possibilities: a Z boson decaying to neutrinos (0-lepton channel), a W boson decaying to an electron or muon and a neutrino (1-lepton channel) or a Z boson decayin...

  3. Search for the Standard Model Higgs Boson in associated production with w boson at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Xu [Univ. of Michigan, Ann Arbor, MI (United States)

    2009-11-01

    A search for the Standard Model Higgs boson in proton-antiproton collisions with center-of-mass energy 1.96 TeV at the Tevatron is presented in this dissertation. The process of interest is the associated production of W boson and Higgs boson, with the W boson decaying leptonically and the Higgs boson decaying into a pair of bottom quarks. The dataset in the analysis is accumulated by the D0 detector from April 2002 to April 2008 and corresponding to an integrated luminosity of 2.7 fb-1. The events are reconstructed and selected following the criteria of an isolated lepton, missing transverse energy and two jets. The D0 Neural Network b-jet identification algorithm is further used to discriminate b jets from light jets. A multivariate analysis combining Matrix Element and Neural Network methods is explored to improve the Higgs boson signal significance. No evidence of the Higgs boson is observed in this analysis. In consequence, an observed (expected) limit on the ratio of σ (p$\\bar{p}$ → WH) x Br (H → b$\\bar{b}$) to the Standard Model prediction is set to be 6.7 (6.4) at 95% C.L. for the Higgs boson with a mass of 115 GeV.

  4. Boson mapping and the microscopic collective nuclear Hamiltonian

    International Nuclear Information System (INIS)

    Dobes, J.; Ivanova, S.P.; Dzholos, R.V.; Pedrosa, R.

    1990-01-01

    Starting with the mapping of the quadrupole collective states in the fermion space onto the boson space, the fermion nuclear problem is transformed into the boson one. The boson images of the bifermion operators and of the fermion Hamiltonian are found. Recurrence relations are used to obtain approximately the norm matrix which appears in the boson-fermion mapping. The resulting boson Hamiltonian contains terms which go beyond the ordinary SU(6) symmetry Hamiltonian of the interacting boson model. Calculations, however, suggest that on the phenomenological level the differences between the mapped Hamiltonian and the SU(6) Hamiltonian are not too important. 18 refs.; 2 figs

  5. Collective Interference of Composite Two-Fermion Bosons

    DEFF Research Database (Denmark)

    Tichy, Malte; Bouvrie, Peter Alexander; Mølmer, Klaus

    2012-01-01

    The composite character of two-fermion bosons manifests itself in the interference of many composites as a deviation from the ideal bosonic behavior. A state of many composite bosons can be represented as a superposition of different numbers of perfect bosons and fermions, which allows us...... to provide the full Hong–Ou–Mandel-like counting statistics of interfering composites. Our theory quantitatively relates the deviation from the ideal bosonic interference pattern to the entanglement of the fermions within a single composite boson....

  6. Complementarity of the CERN LEP collider, the Fermilab Tevatron, and the CERN LHC in the search for a light MSSM Higgs boson

    CERN Document Server

    Carena, M S; Wagner, C E M

    2000-01-01

    We study the discovery potential of the CERN LHC, Fermilab Tevatron and CERN LEP colliders in the search for the neutral CP-even Higgs boson of the MSSM which couples to the weak gauge bosons with a strength close to the standard model one and, hence, plays a relevant role in the mechanism of electroweak symmetry breaking. We place special emphasis on the radiative effects which influence the discovery reach of these colliders. We concentrate on the Vbb channel, with V=Z or W, and on the channels with diphoton final states, which are the dominant ones for the search for a light standard model Higgs boson at LEP or Tevatron and LHC, respectively. By analyzing the parameters of the MSSM for which the searches become difficult at one or more of these three colliders, we demonstrate their complementarity in the search for a light Higgs boson which plays a relevant role in the mechanism of electroweak symmetry breaking. (32 refs).

  7. Running bumps from stealth bosons

    Science.gov (United States)

    Aguilar-Saavedra, J. A.

    2018-03-01

    For the `stealth bosons' S, light boosted particles with a decay S → A A → q \\bar{q} q \\bar{q} into four quarks and reconstructed as a single fat jet, the groomed jet mass has a strong correlation with groomed jet substructure variables. Consequently, the jet mass distribution is strongly affected by the jet substructure selection cuts when applied on the groomed jet. We illustrate this fact by recasting a CMS search for low-mass dijet resonances and show a few representative examples. The mass distributions exhibit narrow and wide bumps at several locations in the 100-300 GeV range, between the masses of the daughter particles A and the parent particle S, depending on the jet substructure selection. This striking observation introduces several caveats when interpreting and comparing experimental results, for the case of non-standard signatures. The possibility that a single boosted particle decaying hadronically produces multiple bumps, at quite different jet masses, and depending on the event selection, brings the anomaly chasing game to the next level.

  8. Higgs bosons in extra dimensions

    Science.gov (United States)

    Quiros, Mariano

    2015-05-01

    In this paper, motivated by the recent discovery of a Higgs-like boson at the Large Hadron Collider (LHC) with a mass mH≃125 GeV, we review different models where the hierarchy problem is solved by means of a warped extra dimension. In the Randall-Sundrum (RS) model electroweak observables provide very strong bounds on the mass of KK modes which motivates extensions to overcome this problem. Two extensions are briefly discussed. One particular extension is based on the deformation of the metric such that it strongly departs from the AdS5 structure in the IR region while it goes asymptotically to AdS5 in the UV brane. This model has the IR brane close to a naked metric singularity (which is outside the physical interval) characteristic of soft-walls constructions. The proximity of the singularity provides a strong wave function renormalization for the Higgs field which suppresses the T and S parameters. The second class of considered extensions are based on the introduction of an extra gauge group in the bulk such that the custodial SU(2)R symmetry is gauged and protects the T parameter. By further enlarging the bulk gauge symmetry one can find models where the Higgs is identified with the fifth component of gauge fields and for which the Higgs potential along with the Higgs mass can be dynamically determined by the Coleman-Weinberg mechanism.

  9. Running bumps from stealth bosons

    International Nuclear Information System (INIS)

    Aguilar-Saavedra, J.A.

    2018-01-01

    For the 'stealth bosons' S, light boosted particles with a decay S → AA → q anti qq anti q into four quarks and reconstructed as a single fat jet, the groomed jet mass has a strong correlation with groomed jet substructure variables. Consequently, the jet mass distribution is strongly affected by the jet substructure selection cuts when applied on the groomed jet. We illustrate this fact by recasting a CMS search for low-mass dijet resonances and show a few representative examples. The mass distributions exhibit narrow and wide bumps at several locations in the 100-300 GeV range, between the masses of the daughter particles A and the parent particle S, depending on the jet substructure selection. This striking observation introduces several caveats when interpreting and comparing experimental results, for the case of non-standard signatures. The possibility that a single boosted particle decaying hadronically produces multiple bumps, at quite different jet masses, and depending on the event selection, brings the anomaly chasing game to the next level. (orig.)

  10. Vector boson and Charmonium production in p+Pb and Pb+Pb collisions with ATLAS at the LHC

    CERN Document Server

    K\\"{o}hler, Markus Konrad; The ATLAS collaboration

    2016-01-01

    Photons and weak bosons do not interact strongly with the dense and hot medium formed in the nuclei collisions, thus should be sensitive to the nuclear modification of parton distribution functions (nPDFs). The in-medium modification of heavy Charmonium states plays an important role in studying the hot and dense medium formed in the larger collision systems. The ATLAS detector, optimized for searching new physics in proton-proton collisions, is especially well equipped to measure photons, Z, W bosons and quakonium in the high occupancy environment produced in heavy ion collisions. We will present recent results on the prompt photon, Z and W boson yields as a function of centrality, transverse momentum and rapidity, from the ATLAS experiment.

  11. Vector Boson and Charmonium Production in pPb and PbPb Collisions with ATLAS at the LHC

    CERN Document Server

    Citron, Zvi Hirsh; The ATLAS collaboration

    2016-01-01

    Photons and weak bosons do not interact strongly with the dense and hot medium formed in the nuclei collisions, thus should be sensitive to the nuclear modification of parton distribution functions (nPDFs). The in-medium modification of heavy Charmonium states plays an important role in studying the hot and dense medium formed in the larger collision systems. The ATLAS detector, optimized for searching new physics in proton-proton collisions, is especially well equipped to measure photons, Z, W bosons and quakonium in the high occupancy environment produced in heavy ion collisions. We will present recent results on the prompt photon, Z and W boson yields as a function of centrality, transverse momentum and rapidity, from the ATLAS experiment.

  12. Vector boson and quarkonia production in p+Pb and Pb+Pb collisions with ATLAS at the LHC

    CERN Document Server

    Gallus, Petr; The ATLAS collaboration

    2017-01-01

    Photons and weak bosons do not interact strongly with the dense and hot medium formed in the nuclear collisions, thus should be sensitive to the nuclear modification of parton distribution functions (nPDFs). The in-medium modification of heavy quarkonium states plays an important role in studying the hot and dense medium formed in the larger collision systems. The ATLAS detector, optimized for searching new physics in proton-proton collisions, is especially well equipped to measure photons, Z, W bosons and quarkonium in the high occupancy environment produced in heavy-ion collisions. We will present recent results on the Z boson and quarkonia yields as a function of centrality, transverse momentum, and rapidity, from the ATLAS experiment in heavy ion environment.

  13. Weak interactions - formulae, results, and derivations

    Energy Technology Data Exchange (ETDEWEB)

    Pietschmann, H

    1983-01-01

    The purpose of this book is to provide experimental and theoretical physicists working in the field of weak interactions with a reference work which includes all the formulae and results needed in actual research. The derivation of these formulae is also given in detail for some typical examples to facilitate their use. New developments in unified gauge theories have been included as well as the decay processes of the new particles such as intermediate bosons and tau-lepton. In order to supply the research worker with a convenient working aid, frequently occurring mathematical formulae as well as phase space integrals and the Dirac algebra have been included. Treatment of field operators - also with respect to discrete transformations C, P, T and G - as well as products of invariant functions are provided. Particular emphasis has been placed on the Lagrangian of unified electroweak interactions. The major portion of the work is, of course, devoted to formulae for decay processes and scattering cross-sections. Useful formulae in e/sup +/e/sup -/ reactions and a small dictionary for translations into other forms for the space-time metric are collected in appendices.

  14. Splitting of the weak hypercharge quantum

    Science.gov (United States)

    Nielsen, H. B.; Brene, N.

    1991-08-01

    The ratio between the weak hypercharge quantum for particles having no coupling to the gauge bosons corresponding to the semi-simple component of the gauge group and the smallest hypercharge quantum for particles that do have such couplings is exceptionally large for the standard model, considering its rank. To compare groups with respect to this property we propose a quantity χ which depends on the rank of the group and the splitting ratio of the hypercharge(s) to be found in the group. The quantity χ has maximal value for the gauge group of the standard model. This suggests that the hypercharge splitting may play an important rôle either in the origin of the gauge symmetry at a fundamental scale or in some kind of selection mechanism at a scale perhaps nearer to the experimental scale. Such a selection mechanism might be what we have called confusion which removes groups with many (so-called generalized) automorphisms. The quantity χ tends to be large for groups with few generalized automorphisms.

  15. Splitting of the weak hypercharge quantum

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, H.B.; Brene, N. (Niels Bohr Inst., Copenhagen (Denmark))

    1991-08-05

    The ratio between the weak hypercharge quantum for particles having no coupling to the gauge bosons corresponding to the semi-simple component of the gauge group and the smallest hypercharge quantum for particles that do have such couplings is exceptionally large for the standard model, considering its rank. To compare groups with respect to this property we propose a quantity {chi} which depends on the rank of the group and the splitting ratio of the hypercharge(s) to be found in the group. The quantity {chi} has maximal value for the gauge group of the standard model. This suggests that the hypercharge splitting may play an important role either in the origin of the gauge symmetry at a fundamental scale or in some kind of selection mechanism at a scale perhaps nearer to the experimental scale. Such a selection mechanism might be what we have called confusion which removes groups with many (so-called generalized) automorphisms. The quantity {chi} tends to be large for groups with few generalized automorphisms. (orig.).

  16. Study of electroweak gauge boson scattering in the WZ channel with the ATLAS detector at the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Socher, Felix

    2016-07-15

    The Standard Model of particle physics is a very well tested gauge theory describing the strong, weak and electromagnetic interactions between elementary particles through the exchange of force carriers called gauge bosons. Its high predictive power stems from its ability to derive the properties of the interactions it describes from fundamental symmetries of nature. Yet, it is not a final theory as there are several phenomena it cannot explain. Furthermore, not all of its predictions have been studied with sufficient precision, e.g. the properties of the newly discovered Higgs boson. Therefore, further probing of the Standard Model is necessary and may result in finding possible indications for new physics. The non-abelian SU(2){sub L} x U(1){sub Y} symmetry group determines the properties of the electromagnetic and weak interactions giving rise to self-couplings between the electroweak gauge bosons, i.e. the massive W and Z boson, and the massless photon, via triple and quartic gauge couplings. Studies carried out over the past 20 years at various particle accelerator experiments have shed light on the structure of the triple gauge couplings but few results on quartic gauge couplings are available. The electroweak self-couplings are intertwined with the electroweak symmetry breaking and thus the Higgs boson through the scattering of massive electroweak gauge bosons. Both the W and Z boson couple to the Higgs boson and may interact with each other by exchanging it. Theory predictions yield physical results at high energies only if either both the self-couplings and Higgs boson properties are as described by the Standard Model or if they deviate from its predictions and contributions from new physics are present to render the calculations finite. This makes electroweak gauge boson scattering a powerful tool to probe the Standard Model and search for possible effects of new physics. The small cross section of massive electroweak gauge boson scattering necessitates

  17. Study of electroweak gauge boson scattering in the WZ channel with the ATLAS detector at the Large Hadron Collider

    International Nuclear Information System (INIS)

    Socher, Felix

    2016-01-01

    The Standard Model of particle physics is a very well tested gauge theory describing the strong, weak and electromagnetic interactions between elementary particles through the exchange of force carriers called gauge bosons. Its high predictive power stems from its ability to derive the properties of the interactions it describes from fundamental symmetries of nature. Yet, it is not a final theory as there are several phenomena it cannot explain. Furthermore, not all of its predictions have been studied with sufficient precision, e.g. the properties of the newly discovered Higgs boson. Therefore, further probing of the Standard Model is necessary and may result in finding possible indications for new physics. The non-abelian SU(2)_L x U(1)_Y symmetry group determines the properties of the electromagnetic and weak interactions giving rise to self-couplings between the electroweak gauge bosons, i.e. the massive W and Z boson, and the massless photon, via triple and quartic gauge couplings. Studies carried out over the past 20 years at various particle accelerator experiments have shed light on the structure of the triple gauge couplings but few results on quartic gauge couplings are available. The electroweak self-couplings are intertwined with the electroweak symmetry breaking and thus the Higgs boson through the scattering of massive electroweak gauge bosons. Both the W and Z boson couple to the Higgs boson and may interact with each other by exchanging it. Theory predictions yield physical results at high energies only if either both the self-couplings and Higgs boson properties are as described by the Standard Model or if they deviate from its predictions and contributions from new physics are present to render the calculations finite. This makes electroweak gauge boson scattering a powerful tool to probe the Standard Model and search for possible effects of new physics. The small cross section of massive electroweak gauge boson scattering necessitates high centre

  18. Is it possible to tell the difference between fermionic and bosonic hot dark matter?

    Energy Technology Data Exchange (ETDEWEB)

    Hannestad, S.; Tu, H. [Aarhus Univ. (Denmark). Dept. of Physics and Astronomy; Ringwald, A.; Wong, Y.Y.Y. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2005-07-01

    We study the difference between thermally produced fermionic and bosonic hot dark matter in detail. In the linear regime of structure formation, their distinct free-streaming behaviours can lead to pronounced differences in the matter power spectrum. While not detectable with current cosmological data, such differences will be clearly observable with upcoming large scale weak lensing surveys for particles as light as m{sub HDM} {proportional_to} 0.2 eV. In the nonlinear regime, bosonic hot dark matter is not subject to the same phase space constraints that severely limit the amount of fermionic hot dark matter infall into cold dark matter halos. Consequently, the overdensities in fermionic and bosonic hot dark matter of equal particle mass can differ by more than a factor of five in the central part of a halo. However, this unique manifestation of quantum statistics may prove very difficult to detect unless the mass of the hot dark matter particle and its decoupling temperature fall within a very narrow window, 1weak lensing convergence power spectrum at l {proportional_to} 10{sup 3} {yields} 10{sup 4} at the percent level. (orig.)

  19. Higgs boson theory and phenomenology mass measurements and nuclear physics Recent results from ISOLTRAP

    CERN Document Server

    Carena, M S; Herfurth, F; Ames, F; Audi, G; Beck, D; Blaum, K; Bollen, G; Kellerbauer, A G; Kluge, H J; Kuckein, M; Lunney, M D; Moore, R B; Oinonen, M; Rodríguez, D; Sauvan, E; Scheidenberger, C

    2003-01-01

    Precision electroweak data presently-favors a weakly-coupled Higgs sector as the mechanism responsible for electroweak symmetry breaking. Low-energy supersymmetry provides a natural framework for weakly-coupled elementary scalars. In this review, we summarize the theoretical properties of the Standard Model (SM) Higgs boson and the Higgs sector of the minimal super-symmetric extension of the Standard Model (MSSM). We then survey the phenomenology of the SM and MSSM Higgs bosons at the Tevatron, LHC and a future e**+e**- linear collider. We focus on the Higgs discovery potential of present and future colliders and stress the importance of precision measurements of Higgs boson properties. 459 Refs.31 The Penning trap mass spectrometer ISOLTRAP is a facility for high- precision mass measurements of short-lived radioactive nuclei installed at ISOLDE/CERN in Geneva. More than 200 masses have been measured with relative uncertainties of 1 multiplied by 10**-**7 or even close to 1 multiplied by 10**-**8 in special c...

  20. Ratio method of measuring W boson mass

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Feng [Stony Brook Univ., NY (United States)

    2010-08-01

    This dissertation describes an alternative method of measuring the W boson mass in DØ experiment. Instead of extracting MW from the fitting of W → ev fast Monte Carlo simulations to W → ev data as in the standard method, we make the direct fit of transverse mass between W → ev data and Z → ee data. One of the two electrons from Z boson is treated as a neutrino in the calculation of transverse mass. In ratio method, the best fitted scale factor corresponds to the ratio of W and Z boson mass (MW/MZ). Given the precisely measured Z boson mass, W mass is directly fitted from W → ev and Z → ee data. This dissertation demonstrates that ratio method is a plausible method of measuring the W boson mass. With the 1 fb-1 DØ Run IIa dataset, ratio method gives MW = 80435 ± 43(stat) ± 26(sys) MeV.

  1. Interaction between bosonic dark matter and stars

    Science.gov (United States)

    Brito, Richard; Cardoso, Vitor; Macedo, Caio F. B.; Okawa, Hirotada; Palenzuela, Carlos

    2016-02-01

    We provide a detailed analysis of how bosonic dark matter "condensates" interact with compact stars, extending significantly the results of a recent Letter [1]. We focus on bosonic fields with mass mB , such as axions, axion-like candidates and hidden photons. Self-gravitating bosonic fields generically form "breathing" configurations, where both the spacetime geometry and the field oscillate, and can interact and cluster at the center of stars. We construct stellar configurations formed by a perfect fluid and a bosonic condensate, and which may describe the late stages of dark matter accretion onto stars, in dark-matter-rich environments. These composite stars oscillate at a frequency which is a multiple of f =2.5 ×1014(mBc2/eV ) Hz . Using perturbative analysis and numerical relativity techniques, we show that these stars are generically stable, and we provide criteria for instability. Our results also indicate that the growth of the dark matter core is halted close to the Chandrasekhar limit. We thus dispel a myth concerning dark matter accretion by stars: dark matter accretion does not necessarily lead to the destruction of the star, nor to collapse to a black hole. Finally, we argue that stars with long-lived bosonic cores may also develop in other theories with effective mass couplings, such as (massless) scalar-tensor theories.

  2. Iron Kα line of boson stars

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Zheng; Zhou, Menglei; Bambi, Cosimo [Center for Field Theory and Particle Physics and Department of Physics, Fudan University, 220 Handan Road, 200433 Shanghai (China); Cárdenas-Avendaño, Alejandro [Programa de Matemática, Fundación Universitaria Konrad Lorenz, Carrera 9 Bis No. 62-43, 110231 Bogotá (Colombia); Herdeiro, Carlos A.R.; Radu, Eugen, E-mail: zcao13@fudan.edu.cn, E-mail: alejandro.cardenasa@konradlorenz.edu.co, E-mail: mlzhou13@fudan.edu.cn, E-mail: bambi@fudan.edu.cn, E-mail: herdeiro@ua.pt, E-mail: eugen.radu@ua.pt [Departamento de Física da Universidade de Aveiro, and Center for Research and Development in Mathematics and Applications (CIDMA), Campus de Santiago, 3810-183 Aveiro (Portugal)

    2016-10-01

    The present paper is a sequel to our previous work [1] in which we studied the iron Kα line expected in the reflection spectrum of Kerr black holes with scalar hair. These metrics are solutions of Einstein's gravity minimally coupled to a massive, complex scalar field. They form a continuous bridge between a subset of Kerr black holes and a family of rotating boson stars depending on one extra parameter, the dimensionless scalar hair parameter q , ranging from 0 (Kerr black holes) to 1 (boson stars). Here we study the limiting case q = 1, corresponding to rotating boson stars. For comparison, spherical boson stars are also considered. We simulate observations with XIS/Suzaku. Using the fact that current observations are well fit by the Kerr solution and thus requiring that acceptable alternative compact objects must be compatible with a Kerr fit, we find that some boson star solutions are relatively easy to rule out as potential candidates to explain astrophysical black holes, while other solutions, which are neither too dilute nor too compact are more elusive and we argue that they cannot be distinguished from Kerr black holes by the analysis of the iron line with current X-ray facilities.

  3. Our dear boson – and so what?

    CERN Multimedia

    Antonella Del Rosso

    2012-01-01

    A long-sought particle finally found. On Wednesday 4 July, enthusiasm spread from CERN to the worldwide media. But a question legitimately arises: why is this particle attracting so much interest? In other words, how is it different from all the others? (And, by the way, what is a boson?).   CERN, 4 July 2012: a long-sought particle finally found. Strictly speaking, we cannot even call it the “Higgs” boson yet. Only after careful checking of its properties will physicists be able to say if the new boson corresponds to the particle that theorists predicted in 1964. However, the experimental data we have so far already tells us, unambiguously, that this new particle is different from all the other elementary particles we know. “Every particle is either a boson or a fermion,” explains John Ellis, former CERN theorist and currently professor at King's College in London. “All known particles spin like small tops, with the known bosons tha...

  4. Iron Kα line of boson stars

    International Nuclear Information System (INIS)

    Cao, Zheng; Zhou, Menglei; Bambi, Cosimo; Cárdenas-Avendaño, Alejandro; Herdeiro, Carlos A.R.; Radu, Eugen

    2016-01-01

    The present paper is a sequel to our previous work [1] in which we studied the iron Kα line expected in the reflection spectrum of Kerr black holes with scalar hair. These metrics are solutions of Einstein's gravity minimally coupled to a massive, complex scalar field. They form a continuous bridge between a subset of Kerr black holes and a family of rotating boson stars depending on one extra parameter, the dimensionless scalar hair parameter q , ranging from 0 (Kerr black holes) to 1 (boson stars). Here we study the limiting case q = 1, corresponding to rotating boson stars. For comparison, spherical boson stars are also considered. We simulate observations with XIS/Suzaku. Using the fact that current observations are well fit by the Kerr solution and thus requiring that acceptable alternative compact objects must be compatible with a Kerr fit, we find that some boson star solutions are relatively easy to rule out as potential candidates to explain astrophysical black holes, while other solutions, which are neither too dilute nor too compact are more elusive and we argue that they cannot be distinguished from Kerr black holes by the analysis of the iron line with current X-ray facilities.

  5. Atomic physics constraints on the X boson

    Science.gov (United States)

    Jentschura, Ulrich D.; Nándori, István

    2018-04-01

    Recently, a peak in the light fermion pair spectrum at invariant q2≈(16.7MeV ) 2 has been observed in the bombardment of 7Li by protons. This peak has been interpreted in terms of a protophobic interaction of fermions with a gauge boson (X boson) of invariant mass ≈16.7 MeV which couples mainly to neutrons. High-precision atomic physics experiments aimed at observing the protophobic interaction need to separate the X boson effect from the nuclear-size effect, which is a problem because of the short range of the interaction (11.8 fm), which is commensurate with a "nuclear halo." Here we analyze the X boson in terms of its consequences for both electronic atoms as well as muonic hydrogen and deuterium. We find that the most promising atomic systems where the X boson has an appreciable effect, distinguishable from a finite-nuclear-size effect, are muonic atoms of low and intermediate nuclear charge numbers.

  6. Search for dark matter produced in association with a Higgs boson decaying to two bottom quarks at ATLAS

    Science.gov (United States)

    Cheng, Yangyang

    This thesis presents a search for dark matter production in association with a Higgs boson decaying to a pair of bottom quarks, using data from 20.3 fb-1 of proton-proton collisions at a center-of-mass energy of 8 TeV collected by the ATLAS detector at the LHC. The dark matter particles are assumed to be Weakly Interacting Massive Particles, and can be produced in pairs at collider experiments. Events with large missing transverse energy are selected when produced in association with high momentum jets, of which at least two are identified as jets containing b-quarks consistent with those from a Higgs boson decay. To maintain good detector acceptance and selection efficiency of the signal across a wide kinematic range, two methods of Higgs boson reconstruction are used. The Higgs boson is reconstructed either as a pair of small-radius jets both containing b-quarks, called the "resolved'' analysis, or as a single large-radius jet with substructure consistent with a high momentum b b system, called the "boosted'' analysis. The resolved analysis is the focus of this thesis. The observed data are found to be consistent with the expected Standard Model backgrounds. The result from the resolved analysis is interpreted using a simplified model with a Z' gauge boson decaying into different Higgs bosons predicted in a two-Higgs-doublet model, of which the heavy pseudoscalar Higgs decays into a pair of dark matter particles. Exclusion limits are set in regions of parameter space for this model. Model-independent upper limits are also placed on the visible cross-sections for events with a Higgs boson decaying into bb and large missing transverse momentum with thresholds ranging from 150 GeV to 400 GeV.

  7. Measurements of the Higgs boson properties with the ATLAS detector

    CERN Document Server

    Tomoto, M; The ATLAS collaboration

    2013-01-01

    Slide draft for the Crimea 2013 workshop. The subject of the talk will be measurements of the Higgs boson properties, including the spin, mass, signal strength, and couplings of a new boson discovered in 2012 at the ATLAS experiment.

  8. Higgs bosons in the standard model, the MSSM and beyond

    Indian Academy of Sciences (India)

    Abstract. I summarize the basic theory and selected phenomenology for the Higgs boson(s) of the standard model, the minimal supersymmetric model and some extensions thereof, including the next-to-minimal supersymmetric model.

  9. Phenomenology of a nonstandard Higgs boson in WLWL scattering

    International Nuclear Information System (INIS)

    Koulovassilopoulos, V.; Chivukula, R.S.

    1994-01-01

    In this paper we consider the phenomenology of a nonstandard Higgs boson in longitudinal gauge boson scattering. First, we present a composite Higgs model [based on an SU(4)/Sp(4) chiral-symmetry breaking pattern] in which there is a nonstandard Higgs boson. Then we explore, in a model-independent way, the phenomenology of such a nonstandard Higgs boson by calculating the leading one-loop logarithmic corrections to longitudinal gauge boson scattering. This calculation is done using the equivalence theorem and the Higgs boson is treated as a scalar-isoscalar resonance coupled to the Goldstone bosons of the SU(2) L xSu(2) R /SU(2) V chiral symmetry breaking. We show that the most important deviation from the one-Higgs-doublet standard model is parametrized by one unknown coefficient which is related to the Higgs-boson width. The implications for future hadron colliders are discussed

  10. Correlations in charged bosons systems

    International Nuclear Information System (INIS)

    Almeida Caparica, A. de.

    1985-02-01

    The two and three-dimensional charge Bose gas have been studied. In the bidimensional case two different types of interaction were considered: l/r and l n(r). The method of self-consistent-field was applied to these systems, which takes into account the short range correlations between the bosons through a local-field correction. By using self-consistent numerical calculations, the structure factor S(k → ) was determined. The pair-correlation function, the ground-state energy, the pressure of the gas and the spectrum of elementary excitations were obtained from S (k → ). The screening density induced by a fixed charged impurity was calculated. In the high-density limit our calculations reproduce the results given by Bogoliubov's perturbation theory. In the intermediate-density region, corresponding to the strongly coupled systems, the results are in very good agreement with calculations based on HNC approximation as well as Monte Carlo method. The results are compared in several situations with RPA results showing that the self-consistent method is much more accurate. The two-dimensional systems showed to be more correlated than the three-dimensional systems showed to be more correlated than the three-dimensional one; the gas with interaction l/r is also more correlated than the logarithmic one at high densities, but it begins to be less correlated than this one in the low-density region. The thermodynamic functions of the two and three-dimensional systems at finite temperatures near absolute zero are calculated based upon the gas excitation spectra at zero temperature. (author)

  11. Search for a heavy resonance decaying into a Z boson and a vector boson in the $\

    CERN Document Server

    Sirunyan, Albert M; CMS Collaboration; Adam, Wolfgang; Ambrogi, Federico; Asilar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Escalante Del Valle, Alberto; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Grossmann, Johannes; Hrubec, Josef; Jeitler, Manfred; König, Axel; Krammer, Natascha; Krätschmer, Ilse; Liko, Dietrich; Madlener, Thomas; Mikulec, Ivan; Pree, Elias; Rad, Navid; Rohringer, Herbert; Schieck, Jochen; Schöfbeck, Robert; Spanring, Markus; Spitzbart, Daniel; Taurok, Anton; Waltenberger, Wolfgang; Wittmann, Johannes; Wulz, Claudia-Elisabeth; Zarucki, Mateusz; Chekhovsky, Vladimir; Mossolov, Vladimir; Suarez Gonzalez, Juan; De Wolf, Eddi A; Di Croce, Davide; Janssen, Xavier; Lauwers, Jasper; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; De Bruyn, Isabelle; De Clercq, Jarne; Deroover, Kevin; Flouris, Giannis; Lontkovskyi, Denys; Lowette, Steven; Marchesini, Ivan; Moortgat, Seth; Moreels, Lieselotte; Python, Quentin; Skovpen, Kirill; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Parijs, Isis; Beghin, Diego; Bilin, Bugra; Brun, Hugues; Clerbaux, Barbara; De Lentdecker, Gilles; Delannoy, Hugo; Dorney, Brian; Fasanella, Giuseppe; Favart, Laurent; Goldouzian, Reza; Grebenyuk, Anastasia; Kalsi, Amandeep Kaur; Lenzi, Thomas; Luetic, Jelena; Maerschalk, Thierry; Marinov, Andrey; Seva, Tomislav; Starling, Elizabeth; Vander Velde, Catherine; Vanlaer, Pascal; Vannerom, David; Yonamine, Ryo; Zenoni, Florian; Cornelis, Tom; Dobur, Didar; Fagot, Alexis; Gul, Muhammad; Khvastunov, Illia; Poyraz, Deniz; Roskas, Christos; Salva Diblen, Sinem; Trocino, Daniele; Tytgat, Michael; Verbeke, Willem; Zaganidis, Nicolas; Bakhshiansohi, Hamed; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Caputo, Claudio; Caudron, Adrien; David, Pieter; De Visscher, Simon; Delaere, Christophe; Delcourt, Martin; Francois, Brieuc; Giammanco, Andrea; Komm, Matthias; Krintiras, Georgios; Lemaitre, Vincent; Magitteri, Alessio; Mertens, Alexandre; Musich, Marco; Piotrzkowski, Krzysztof; Quertenmont, Loic; Saggio, Alessia; Vidal Marono, Miguel; Wertz, Sébastien; Zobec, Joze; Aldá Júnior, Walter Luiz; Alves, Fábio Lúcio; Alves, Gilvan; Brito, Lucas; Correia Silva, Gilson; Hensel, Carsten; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Coelho, Eduardo; Melo Da Costa, Eliza; Da Silveira, Gustavo Gil; De Jesus Damiao, Dilson; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Melo De Almeida, Miqueias; Mora Herrera, Clemencia; Mundim, Luiz; Nogima, Helio; Sanchez Rosas, Luis Junior; Santoro, Alberto; Sznajder, Andre; Thiel, Mauricio; Tonelli Manganote, Edmilson José; Torres Da Silva De Araujo, Felipe; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Misheva, Milena; Rodozov, Mircho; Shopova, Mariana; Sultanov, Georgi; Dimitrov, Anton; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Fang, Wenxing; Gao, Xuyang; Yuan, Li; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Chen, Ye; Jiang, Chun-Hua; Leggat, Duncan; Liao, Hongbo; Liu, Zhenan; Romeo, Francesco; Shaheen, Sarmad Masood; Spiezia, Aniello; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Yazgan, Efe; Yu, Taozhe; Zhang, Huaqiao; Zhao, Jingzhou; Ban, Yong; Chen, Geng; Li, Jing; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Zhang, Fengwangdong; Wang, Yi; Avila, Carlos; Cabrera, Andrés; Carrillo Montoya, Camilo Andres; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; González Hernández, Carlos Felipe; Ruiz Alvarez, José David; Segura Delgado, Manuel Alejandro; Courbon, Benoit; Godinovic, Nikola; Lelas, Damir; Puljak, Ivica; Ribeiro Cipriano, Pedro M; Sculac, Toni; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Ferencek, Dinko; Kadija, Kreso; Mesic, Benjamin; Starodumov, Andrei; Susa, Tatjana; Ather, Mohsan Waseem; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Finger, Miroslav; Finger Jr, Michael; Carrera Jarrin, Edgar; Khalil, Shaaban; Mahmoud, Mohammed; Mahrous, Ayman; Bhowmik, Sandeep; Dewanjee, Ram Krishna; Kadastik, Mario; Perrini, Lucia; Raidal, Martti; Tiko, Andres; Veelken, Christian; Eerola, Paula; Kirschenmann, Henning; Pekkanen, Juska; Voutilainen, Mikko; Havukainen, Joona; Heikkilä, Jaana Kristiina; Jarvinen, Terhi; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Laurila, Santeri; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Siikonen, Hannu; Tuominen, Eija; Tuominiemi, Jorma; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Ghosh, Saranya; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Kucher, Inna; Leloup, Clément; Locci, Elizabeth; Machet, Martina; Malcles, Julie; Negro, Giulia; Rander, John; Rosowsky, André; Sahin, Mehmet Özgür; Titov, Maksym; Abdulsalam, Abdulla; Amendola, Chiara; Antropov, Iurii; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Cadamuro, Luca; Charlot, Claude; Granier de Cassagnac, Raphael; Jo, Mihee; Lisniak, Stanislav; Lobanov, Artur; Martin Blanco, Javier; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Pigard, Philipp; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Stahl Leiton, Andre Govinda; Strebler, Thomas; Yilmaz, Yetkin; Zabi, Alexandre; Zghiche, Amina; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Brom, Jean-Marie; Buttignol, Michael; Chabert, Eric Christian; Chanon, Nicolas; Collard, Caroline; Conte, Eric; Coubez, Xavier; Drouhin, Frédéric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Jansová, Markéta; Juillot, Pierre; Le Bihan, Anne-Catherine; Tonon, Nicolas; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Bernet, Colin; Boudoul, Gaelle; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Finco, Linda; Gascon, Susan; Gouzevitch, Maxime; Grenier, Gérald; Ille, Bernard; Lagarde, Francois; Laktineh, Imad Baptiste; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Popov, Andrey; Sordini, Viola; Vander Donckt, Muriel; Viret, Sébastien; Zhang, Sijing; Khvedelidze, Arsen; Lomidze, David; Autermann, Christian; Feld, Lutz; Kiesel, Maximilian Knut; Klein, Katja; Lipinski, Martin; Preuten, Marius; Schomakers, Christian; Schulz, Johannes; Teroerde, Marius; Wittmer, Bruno; Zhukov, Valery; Albert, Andreas; Duchardt, Deborah; Endres, Matthias; Erdmann, Martin; Erdweg, Sören; Esch, Thomas; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Knutzen, Simon; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Mukherjee, Swagata; Pook, Tobias; Radziej, Markus; Reithler, Hans; Rieger, Marcel; Scheuch, Florian; Teyssier, Daniel; Thüer, Sebastian; Flügge, Günter; Kargoll, Bastian; Kress, Thomas; Künsken, Andreas; Müller, Thomas; Nehrkorn, Alexander; Nowack, Andreas; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Arndt, Till; Asawatangtrakuldee, Chayanit; Beernaert, Kelly; Behnke, Olaf; Behrens, Ulf; Bermúdez Martínez, Armando; Bin Anuar, Afiq Aizuddin; Borras, Kerstin; Botta, Valeria; Campbell, Alan; Connor, Patrick; Contreras-Campana, Christian; Costanza, Francesco; Diez Pardos, Carmen; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Eren, Engin; Gallo, Elisabetta; Garay Garcia, Jasone; Geiser, Achim; Grados Luyando, Juan Manuel; Grohsjean, Alexander; Gunnellini, Paolo; Guthoff, Moritz; Harb, Ali; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kasemann, Matthias; Keaveney, James; Kleinwort, Claus; Korol, Ievgen; Krücker, Dirk; Lange, Wolfgang; Lelek, Aleksandra; Lenz, Teresa; Leonard, Jessica; Lipka, Katerina; Lohmann, Wolfgang; Mankel, Rainer; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Missiroli, Marino; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Ntomari, Eleni; Pitzl, Daniel; Raspereza, Alexei; Savitskyi, Mykola; Saxena, Pooja; Shevchenko, Rostyslav; Stefaniuk, Nazar; Van Onsem, Gerrit Patrick; Walsh, Roberval; Wen, Yiwen; Wichmann, Katarzyna; Wissing, Christoph; Zenaiev, Oleksandr; Aggleton, Robin; Bein, Samuel; Blobel, Volker; Centis Vignali, Matteo; Dreyer, Torben; Garutti, Erika; Gonzalez, Daniel; Haller, Johannes; Hinzmann, Andreas; Hoffmann, Malte; Karavdina, Anastasia; Klanner, Robert; Kogler, Roman; Kovalchuk, Nataliia; Kurz, Simon; Lapsien, Tobias; Marconi, Daniele; Meyer, Mareike; Niedziela, Marek; Nowatschin, Dominik; Pantaleo, Felice; Peiffer, Thomas; Perieanu, Adrian; Scharf, Christian; Schleper, Peter; Schmidt, Alexander; Schumann, Svenja; Schwandt, Joern; Sonneveld, Jory; Stadie, Hartmut; Steinbrück, Georg; Stober, Fred-Markus Helmut; Stöver, Marc; Tholen, Heiner; Troendle, Daniel; Usai, Emanuele; Vanhoefer, Annika; Vormwald, Benedikt; Akbiyik, Melike; Barth, Christian; Baselga, Marta; Baur, Sebastian; Butz, Erik; Caspart, René; Chwalek, Thorsten; Colombo, Fabio; De Boer, Wim; Dierlamm, Alexander; Faltermann, Nils; Freund, Benedikt; Friese, Raphael; Giffels, Manuel; Harrendorf, Marco Alexander; Hartmann, Frank; Heindl, Stefan Michael; Husemann, Ulrich; Kassel, Florian; Kudella, Simon; Mildner, Hannes; Mozer, Matthias Ulrich; Müller, Thomas; Plagge, Michael; Quast, Gunter; Rabbertz, Klaus; Schröder, Matthias; Shvetsov, Ivan; Sieber, Georg; Simonis, Hans-Jürgen; Ulrich, Ralf; Wayand, Stefan; Weber, Marc; Weiler, Thomas; Williamson, Shawn; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Kyriakis, Aristotelis; Loukas, Demetrios; Topsis-Giotis, Iasonas; Karathanasis, George; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Kousouris, Konstantinos; Evangelou, Ioannis; Foudas, Costas; Gianneios, Paraskevas; Katsoulis, Panagiotis; Kokkas, Panagiotis; Mallios, Stavros; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Strologas, John; Triantis, Frixos A; Tsitsonis, Dimitrios; Csanad, Mate; Filipovic, Nicolas; Pasztor, Gabriella; Surányi, Olivér; Veres, Gabor Istvan; Bencze, Gyorgy; Hajdu, Csaba; Horvath, Dezso; Hunyadi, Ádám; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Beni, Noemi; Czellar, Sandor; Karancsi, János; Makovec, Alajos; Molnar, Jozsef; Szillasi, Zoltan; Bartók, Márton; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Choudhury, Somnath; Komaragiri, Jyothsna Rani; Bahinipati, Seema; Mal, Prolay; Mandal, Koushik; Nayak, Aruna; Sahoo, Deepak Kumar; Sahoo, Niladribihari; Swain, Sanjay Kumar; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Chawla, Ridhi; Dhingra, Nitish; Kaur, Anterpreet; Kaur, Manjit; Kaur, Sandeep; Kumar, Ramandeep; Kumari, Priyanka; Mehta, Ankita; Singh, Jasbir; Walia, Genius; Kumar, Ashok; Shah, Aashaq; Bhardwaj, Ashutosh; Chauhan, Sushil; Choudhary, Brajesh C; Garg, Rocky Bala; Keshri, Sumit; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Ramkrishna; Bhardwaj, Rishika; Bhattacharya, Rajarshi; Bhattacharya, Satyaki; Bhawandeep, Bhawandeep; Dey, Sourav; Dutt, Suneel; Dutta, Suchandra; Ghosh, Shamik; Majumdar, Nayana; Modak, Atanu; Mondal, Kuntal; Mukhopadhyay, Supratik; Nandan, Saswati; Purohit, Arnab; Roy, Ashim; Roy Chowdhury, Suvankar; Sarkar, Subir; Sharan, Manoj; Thakur, Shalini; Behera, Prafulla Kumar; Chudasama, Ruchi; Dutta, Dipanwita; Jha, Vishwajeet; Kumar, Vineet; Mohanty, Ajit Kumar; Netrakanti, Pawan Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Dugad, Shashikant; Mahakud, Bibhuprasad; Mitra, Soureek; Mohanty, Gagan Bihari; Sur, Nairit; Sutar, Bajrang; Banerjee, Sudeshna; Bhattacharya, Soham; Chatterjee, Suman; Das, Pallabi; Guchait, Monoranjan; Jain, Sandhya; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Sarkar, Tanmay; Wickramage, Nadeesha; Chauhan, Shubhanshu; Dube, Sourabh; Hegde, Vinay; Kapoor, Anshul; Kothekar, Kunal; Pandey, Shubham; Rane, Aditee; Sharma, Seema; Chenarani, Shirin; Eskandari Tadavani, Esmaeel; Etesami, Seyed Mohsen; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Errico, Filippo; Fiore, Luigi; Iaselli, Giuseppe; Lezki, Samet; Maggi, Giorgio; Maggi, Marcello; Miniello, Giorgia; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Ranieri, Antonio; Selvaggi, Giovanna; Sharma, Archana; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Abbiendi, Giovanni; Battilana, Carlo; Bonacorsi, Daniele; Borgonovi, Lisa; Braibant-Giacomelli, Sylvie; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Chhibra, Simranjit Singh; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Albergo, Sebastiano; Costa, Salvatore; Di Mattia, Alessandro; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Chatterjee, Kalyanmoy; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Russo, Lorenzo; Sguazzoni, Giacomo; Strom, Derek; Viliani, Lorenzo; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Primavera, Federica; Calvelli, Valerio; Ferro, Fabrizio; Ravera, Fabio; Robutti, Enrico; Tosi, Silvano; Benaglia, Andrea; Beschi, Andrea; Brianza, Luca; Brivio, Francesco; Ciriolo, Vincenzo; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Govoni, Pietro; Malberti, Martina; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pauwels, Kristof; Pedrini, Daniele; Pigazzini, Simone; Ragazzi, Stefano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Fabozzi, Francesco; Fienga, Francesco; Iorio, Alberto Orso Maria; Khan, Wajid Ali; Lista, Luca; Meola, Sabino; Paolucci, Pierluigi; Sciacca, Crisostomo; Thyssen, Filip; Azzi, Patrizia; Bacchetta, Nicola; Benato, Lisa; Bisello, Dario; Boletti, Alessio; Carlin, Roberto; Carvalho Antunes De Oliveira, Alexandra; Checchia, Paolo; Dall'Osso, Martino; De Castro Manzano, Pablo; Dorigo, Tommaso; Dosselli, Umberto; Gasparini, Fabrizio; Gasparini, Ugo; Gozzelino, Andrea; Lacaprara, Stefano; Lujan, Paul; Margoni, Martino; Meneguzzo, Anna Teresa; Pozzobon, Nicola; Ronchese, Paolo; Rossin, Roberto; Simonetto, Franco; Torassa, Ezio; Zanetti, Marco; Zotto, Pierluigi; Braghieri, Alessandro; Magnani, Alice; Montagna, Paolo; Ratti, Sergio P; Re, Valerio; Ressegotti, Martina; Riccardi, Cristina; Salvini, Paola; Vai, Ilaria; Vitulo, Paolo; Alunni Solestizi, Luisa; Biasini, Maurizio; Bilei, Gian Mario; Cecchi, Claudia; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Leonardi, Roberto; Manoni, Elisa; Mantovani, Giancarlo; Mariani, Valentina; Menichelli, Mauro; Rossi, Alessandro; Santocchia, Attilio; Spiga, Daniele; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Boccali, Tommaso; Borrello, Laura; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Fedi, Giacomo; Giannini, Leonardo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Manca, Elisabetta; Mandorli, Giulio; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Cipriani, Marco; Daci, Nadir; Del Re, Daniele; Di Marco, Emanuele; Diemoz, Marcella; Gelli, Simone; Longo, Egidio; Margaroli, Fabrizio; Marzocchi, Badder; Meridiani, Paolo; Organtini, Giovanni; Paramatti, Riccardo; Preiato, Federico; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bartosik, Nazar; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Cenna, Francesca; Costa, Marco; Covarelli, Roberto; Degano, Alessandro; Demaria, Natale; Kiani, Bilal; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Monteil, Ennio; Monteno, Marco; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Shchelina, Ksenia; Sola, Valentina; Solano, Ada; Staiano, Amedeo; Traczyk, Piotr; Belforte, Stefano; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Zanetti, Anna; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Lee, Jeongeun; Lee, Sangeun; Lee, Seh Wook; Moon, Chang-Seong; Oh, Young Do; Sekmen, Sezen; Son, Dong-Chul; Yang, Yu Chul; Kim, Hyunchul; Moon, Dong Ho; Oh, Geonhee; Brochero Cifuentes, Javier Andres; Goh, Junghwan; Kim, Tae Jeong; Cho, Sungwoong; Choi, Suyong; Go, Yeonju; Gyun, Dooyeon; Ha, Seungkyu; Hong, Byung-Sik; Jo, Youngkwon; Kim, Yongsun; Lee, Kisoo; Lee, Kyong Sei; Lee, Songkyo; Lim, Jaehoon; Park, Sung Keun; Roh, Youn; Almond, John; Kim, Junho; Kim, Jae Sung; Lee, Haneol; Lee, Kyeongpil; Nam, Kyungwook; Oh, Sung Bin; Radburn-Smith, Benjamin Charles; Seo, Seon-hee; Yang, Unki; Yoo, Hwi Dong; Yu, Geum Bong; Kim, Hyunyong; Kim, Ji Hyun; Lee, Jason Sang Hun; Park, Inkyu; Choi, Young-Il; Hwang, Chanwook; Lee, Jongseok; Yu, Intae; Dudenas, Vytautas; Juodagalvis, Andrius; Vaitkus, Juozas; Ahmed, Ijaz; Ibrahim, Zainol Abidin; Md Ali, Mohd Adli Bin; Mohamad Idris, Faridah; Wan Abdullah, Wan Ahmad Tajuddin; Yusli, Mohd Nizam; Zolkapli, Zukhaimira; Reyes-Almanza, Rogelio; Ramirez-Sanchez, Gabriel; Duran-Osuna, Cecilia; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-De La Cruz, Ivan; Rabadán-Trejo, Raúl Iraq; Lopez-Fernandez, Ricardo; Mejia Guisao, Jhovanny; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Oropeza Barrera, Cristina; Vazquez Valencia, Fabiola; Eysermans, Jan; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Uribe Estrada, Cecilia; Morelos Pineda, Antonio; Krofcheck, David; Bheesette, Srinidhi; Butler, Philip H; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Saddique, Asif; Shah, Mehar Ali; Shoaib, Muhammad; Waqas, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bozena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Szleper, Michal; Zalewski, Piotr; Bunkowski, Karol; Byszuk, Adrian; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Pyskir, Andrzej; Walczak, Marek; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Di Francesco, Agostino; Faccioli, Pietro; Galinhas, Bruno; Gallinaro, Michele; Hollar, Jonathan; Leonardo, Nuno; Lloret Iglesias, Lara; Nemallapudi, Mythra Varun; Seixas, Joao; Strong, Giles; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Afanasiev, Serguei; Alexakhin, Vadim; Bunin, Pavel; Gavrilenko, Mikhail; Golunov, Alexander; Golutvin, Igor; Gorbounov, Nikolai; Gorbunov, Ilya; Karjavin, Vladimir; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Savina, Maria; Shmatov, Sergey; Smirnov, Vitaly; Zarubin, Anatoli; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sosnov, Dmitry; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Karneyeu, Anton; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Spiridonov, Alexander; Stepennov, Anton; Stolin, Viatcheslav; Toms, Maria; Vlasov, Evgueni; Zhokin, Alexander; Aushev, Tagir; Bylinkin, Alexander; Chistov, Ruslan; Danilov, Mikhail; Parygin, Pavel; Philippov, Dmitry; Polikarpov, Sergey; Tarkovskii, Evgenii; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Rusakov, Sergey V; Terkulov, Adel; Baskakov, Alexey; Belyaev, Andrey; Boos, Edouard; Bunichev, Viacheslav; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Miagkov, Igor; Obraztsov, Stepan; Perfilov, Maxim; Savrin, Viktor; Snigirev, Alexander; Blinov, Vladimir; Shtol, Dmitry; Skovpen, Yuri; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Elumakhov, Dmitry; Godizov, Anton; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Mandrik, Petr; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Cirkovic, Predrag; Devetak, Damir; Dordevic, Milos; Milosevic, Jovan; Alcaraz Maestre, Juan; Bachiller, Irene; Barrio Luna, Mar; Cerrada, Marcos; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Moran, Dermot; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Triossi, Andrea; Álvarez Fernández, Adrian; Albajar, Carmen; de Trocóniz, Jorge F; Cuevas, Javier; Erice, Carlos; Fernandez Menendez, Javier; Gonzalez Caballero, Isidro; González Fernández, Juan Rodrigo; Palencia Cortezon, Enrique; Sanchez Cruz, Sergio; Vischia, Pietro; Vizan Garcia, Jesus Manuel; Cabrillo, Iban Jose; Calderon, Alicia; Chazin Quero, Barbara; Curras, Esteban; Duarte Campderros, Jordi; Fernandez, Marcos; Garcia-Ferrero, Juan; Gomez, Gervasio; Lopez Virto, Amparo; Marco, Jesus; Martinez Rivero, Celso; Martinez Ruiz del Arbol, Pablo; Matorras, Francisco; Piedra Gomez, Jonatan; Rodrigo, Teresa; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Trevisani, Nicolò; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Akgun, Bora; Auffray, Etiennette; Baillon, Paul; Ball, Austin; Barney, David; Bendavid, Joshua; Bianco, Michele; Bocci, Andrea; Botta, Cristina; Camporesi, Tiziano; Castello, Roberto; Cepeda, Maria; Cerminara, Gianluca; Chapon, Emilien; Chen, Yi; D'Enterria, David; Dabrowski, Anne; Daponte, Vincenzo; David Tinoco Mendes, Andre; De Gruttola, Michele; De Roeck, Albert; Deelen, Nikkie; Dobson, Marc; Du Pree, Tristan; Dünser, Marc; Dupont, Niels; Elliott-Peisert, Anna; Everaerts, Pieter; Fallavollita, Francesco; Franzoni, Giovanni; Fulcher, Jonathan; Funk, Wolfgang; Gigi, Dominique; Gilbert, Andrew; Gill, Karl; Glege, Frank; Gulhan, Doga; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Jafari, Abideh; Janot, Patrick; Karacheban, Olena; Kieseler, Jan; Knünz, Valentin; Kornmayer, Andreas; Kortelainen, Matti J; Krammer, Manfred; Lange, Clemens; Lecoq, Paul; Lourenco, Carlos; Lucchini, Marco Toliman; Malgeri, Luca; Mannelli, Marcello; Martelli, Arabella; Meijers, Frans; Merlin, Jeremie Alexandre; Mersi, Stefano; Meschi, Emilio; Milenovic, Predrag; Moortgat, Filip; Mulders, Martijn; Neugebauer, Hannes; Ngadiuba, Jennifer; Orfanelli, Styliani; Orsini, Luciano; Pape, Luc; Perez, Emmanuel; Peruzzi, Marco; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Rabady, Dinyar; Racz, Attila; Reis, Thomas; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Seidel, Markus; Selvaggi, Michele; Sharma, Archana; Silva, Pedro; Sphicas, Paraskevas; Stakia, Anna; Steggemann, Jan; Stoye, Markus; Tosi, Mia; Treille, Daniel; Tsirou, Andromachi; Veckalns, Viesturs; Verweij, Marta; Zeuner, Wolfram Dietrich; Bertl, Willi; Caminada, Lea; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Rohe, Tilman; Wiederkehr, Stephan Albert; Backhaus, Malte; Bäni, Lukas; Berger, Pirmin; Bianchini, Lorenzo; Casal, Bruno; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dorfer, Christian; Grab, Christoph; Heidegger, Constantin; Hits, Dmitry; Hoss, Jan; Kasieczka, Gregor; Klijnsma, Thomas; Lustermann, Werner; Mangano, Boris; Marionneau, Matthieu; Meinhard, Maren Tabea; Meister, Daniel; Micheli, Francesco; Musella, Pasquale; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pata, Joosep; Pauss, Felicitas; Perrin, Gaël; Perrozzi, Luca; Quittnat, Milena; Reichmann, Michael; Sanz Becerra, Diego Alejandro; Schönenberger, Myriam; Shchutska, Lesya; Tavolaro, Vittorio Raoul; Theofilatos, Konstantinos; Vesterbacka Olsson, Minna Leonora; Wallny, Rainer; Zhu, De Hua; Aarrestad, Thea Klaeboe; Amsler, Claude; Canelli, Maria Florencia; De Cosa, Annapaola; Del Burgo, Riccardo; Donato, Silvio; Galloni, Camilla; Hreus, Tomas; Kilminster, Benjamin; Pinna, Deborah; Rauco, Giorgia; Robmann, Peter; Salerno, Daniel; Schweiger, Korbinian; Seitz, Claudia; Takahashi, Yuta; Zucchetta, Alberto; Candelise, Vieri; Chang, Yu-Hsiang; Cheng, Kai-yu; Doan, Thi Hien; Jain, Shilpi; Khurana, Raman; Kuo, Chia-Ming; Lin, Willis; Pozdnyakov, Andrey; Yu, Shin-Shan; Kumar, Arun; Chang, Paoti; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Fiori, Francesco; Hou, George Wei-Shu; Hsiung, Yee; Liu, Yueh-Feng; Lu, Rong-Shyang; Paganis, Efstathios; Psallidas, Andreas; Steen, Arnaud; Tsai, Jui-fa; Asavapibhop, Burin; Kovitanggoon, Kittikul; Singh, Gurpreet; Srimanobhas, Norraphat; Bakirci, Mustafa Numan; Bat, Ayse; Boran, Fatma; Cerci, Salim; Damarseckin, Serdal; Demiroglu, Zuhal Seyma; Dozen, Candan; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Hos, Ilknur; Kangal, Evrim Ersin; Kara, Ozgun; Kiminsu, Ugur; Oglakci, Mehmet; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Tok, Ufuk Guney; Turkcapar, Semra; Zorbakir, Ibrahim Soner; Zorbilmez, Caglar; Karapinar, Guler; Ocalan, Kadir; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Tekten, Sevgi; Yetkin, Elif Asli; Agaras, Merve Nazlim; Atay, Serhat; Cakir, Altan; Cankocak, Kerem; Komurcu, Yildiray; Grynyov, Boris; Levchuk, Leonid; Ball, Fionn; Beck, Lana; Brooke, James John; Burns, Douglas; Clement, Emyr; Cussans, David; Davignon, Olivier; Flacher, Henning; Goldstein, Joel; Heath, Greg P; Heath, Helen F; Kreczko, Lukasz; Newbold, Dave M; Paramesvaran, Sudarshan; Sakuma, Tai; Seif El Nasr-storey, Sarah; Smith, Dominic; Smith, Vincent J; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Calligaris, Luigi; Cieri, Davide; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Linacre, Jacob; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Womersley, William John; Auzinger, Georg; Bainbridge, Robert; Bloch, Philippe; Borg, Johan; Breeze, Shane; Buchmuller, Oliver; Bundock, Aaron; Casasso, Stefano; Citron, Matthew; Colling, David; Corpe, Louie; Dauncey, Paul; Davies, Gavin; De Wit, Adinda; Della Negra, Michel; Di Maria, Riccardo; Elwood, Adam; Haddad, Yacine; Hall, Geoffrey; Iles, Gregory; James, Thomas; Lane, Rebecca; Laner, Christian; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mastrolorenzo, Luca; Matsushita, Takashi; Nash, Jordan; Nikitenko, Alexander; Palladino, Vito; Pesaresi, Mark; Raymond, David Mark; Richards, Alexander; Rose, Andrew; Scott, Edward; Seez, Christopher; Shtipliyski, Antoni; Summers, Sioni; Tapper, Alexander; Uchida, Kirika; Vazquez Acosta, Monica; Virdee, Tejinder; Wardle, Nicholas; Winterbottom, Daniel; Wright, Jack; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Reid, Ivan; Teodorescu, Liliana; Zahid, Sema; Borzou, Ahmad; Call, Kenneth; Dittmann, Jay; Hatakeyama, Kenichi; Liu, Hongxuan; Pastika, Nathaniel; Smith, Caleb; Bartek, Rachel; Dominguez, Aaron; Buccilli, Andrew; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; West, Christopher; Arcaro, Daniel; Avetisyan, Aram; Bose, Tulika; Gastler, Daniel; Rankin, Dylan; Richardson, Clint; Rohlf, James; Sulak, Lawrence; Zou, David; Benelli, Gabriele; Cutts, David; Hadley, Mary; Hakala, John; Heintz, Ulrich; Hogan, Julie Managan; Kwok, Ka Hei Martin; Laird, Edward; Landsberg, Greg; Lee, Jangbae; Mao, Zaixing; Narain, Meenakshi; Pazzini, Jacopo; Piperov, Stefan; Sagir, Sinan; Syarif, Rizki; Yu, David; Band, Reyer; Brainerd, Christopher; Breedon, Richard; Burns, Dustin; Calderon De La Barca Sanchez, Manuel; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Flores, Chad; Funk, Garrett; Ko, Winston; Lander, Richard; Mclean, Christine; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Shalhout, Shalhout; Shi, Mengyao; Smith, John; Stolp, Dustin; Tos, Kyle; Tripathi, Mani; Wang, Zhangqier; Bachtis, Michail; Bravo, Cameron; Cousins, Robert; Dasgupta, Abhigyan; Florent, Alice; Hauser, Jay; Ignatenko, Mikhail; Mccoll, Nickolas; Regnard, Simon; Saltzberg, David; Schnaible, Christian; Valuev, Vyacheslav; Bouvier, Elvire; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Ghiasi Shirazi, Seyyed Mohammad Amin; Hanson, Gail; Heilman, Jesse; Karapostoli, Georgia; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Olmedo Negrete, Manuel; Paneva, Mirena Ivova; Si, Weinan; Wang, Long; Wei, Hua; Wimpenny, Stephen; Yates, Brent; Branson, James G; Cittolin, Sergio; Derdzinski, Mark; Gerosa, Raffaele; Gilbert, Dylan; Hashemi, Bobak; Holzner, André; Klein, Daniel; Kole, Gouranga; Krutelyov, Vyacheslav; Letts, James; Masciovecchio, Mario; Olivito, Dominick; Padhi, Sanjay; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Vartak, Adish; Wasserbaech, Steven; Wood, John; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Amin, Nick; Bhandari, Rohan; Bradmiller-Feld, John; Campagnari, Claudio; Dishaw, Adam; Dutta, Valentina; Franco Sevilla, Manuel; Gouskos, Loukas; Heller, Ryan; Incandela, Joe; Ovcharova, Ana; Qu, Huilin; Richman, Jeffrey; Stuart, David; Suarez, Indara; Yoo, Jaehyeok; Anderson, Dustin; Bornheim, Adolf; Bunn, Julian; Lawhorn, Jay Mathew; Newman, Harvey B; Nguyen, Thong; Pena, Cristian; Spiropulu, Maria; Vlimant, Jean-Roch; Wilkinson, Richard; Xie, Si; Zhang, Zhicai; Zhu, Ren-Yuan; Andrews, Michael Benjamin; Ferguson, Thomas; Mudholkar, Tanmay; Paulini, Manfred; Russ, James; Sun, Menglei; Vogel, Helmut; Vorobiev, Igor; Weinberg, Marc; Cumalat, John Perry; Ford, William T; Jensen, Frank; Johnson, Andrew; Krohn, Michael; Leontsinis, Stefanos; Mulholland, Troy; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Mcdermott, Kevin; Mirman, Nathan; Patterson, Juliet Ritchie; Quach, Dan; Rinkevicius, Aurelijus; Ryd, Anders; Skinnari, Louise; Soffi, Livia; Tan, Shao Min; Tao, Zhengcheng; Thom, Julia; Tucker, Jordan; Wittich, Peter; Zientek, Margaret; Abdullin, Salavat; Albrow, Michael; Alyari, Maral; Apollinari, Giorgio; Apresyan, Artur; Apyan, Aram; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Canepa, Anadi; Cerati, Giuseppe Benedetto; Cheung, Harry; Chlebana, Frank; Cremonesi, Matteo; Duarte, Javier; Elvira, Victor Daniel; Freeman, Jim; Gecse, Zoltan; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Harris, Robert M; Hasegawa, Satoshi; Hirschauer, James; Hu, Zhen; Jayatilaka, Bodhitha; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kreis, Benjamin; Lammel, Stephan; Lincoln, Don; Lipton, Ron; Liu, Miaoyuan; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Magini, Nicolo; Marraffino, John Michael; Mason, David; McBride, Patricia; Merkel, Petra; Mrenna, Stephen; Nahn, Steve; O'Dell, Vivian; Pedro, Kevin; Prokofyev, Oleg; Rakness, Gregory; Ristori, Luciano; Schneider, Basil; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Stoynev, Stoyan; Strait, James; Strobbe, Nadja; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vernieri, Caterina; Verzocchi, Marco; Vidal, Richard; Wang, Michael; Weber, Hannsjoerg Artur; Whitbeck, Andrew; Wu, Weimin; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Brinkerhoff, Andrew; Carnes, Andrew; Carver, Matthew; Curry, David; Field, Richard D; Furic, Ivan-Kresimir; Gleyzer, Sergei V; Joshi, Bhargav Madhusudan; Konigsberg, Jacobo; Korytov, Andrey; Kotov, Khristian; Ma, Peisen; Matchev, Konstantin; Mei, Hualin; Mitselmakher, Guenakh; Shi, Kun; Sperka, David; Terentyev, Nikolay; Thomas, Laurent; Wang, Jian; Wang, Sean-Jiun; Yelton, John; Joshi, Yagya Raj; Linn, Stephan; Markowitz, Pete; Rodriguez, Jorge Luis; Ackert, Andrew; Adams, Todd; Askew, Andrew; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Kolberg, Ted; Martinez, German; Perry, Thomas; Prosper, Harrison; Saha, Anirban; Santra, Arka; Sharma, Varun; Yohay, Rachel; Baarmand, Marc M; Bhopatkar, Vallary; Colafranceschi, Stefano; Hohlmann, Marcus; Noonan, Daniel; Roy, Titas; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Cavanaugh, Richard; Chen, Xuan; Evdokimov, Olga; Gerber, Cecilia Elena; Hangal, Dhanush Anil; Hofman, David Jonathan; Jung, Kurt; Kamin, Jason; Sandoval Gonzalez, Irving Daniel; Tonjes, Marguerite; Trauger, Hallie; Varelas, Nikos; Wang, Hui; Wu, Zhenbin; Zhang, Jingyu; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Durgut, Süleyman; Gandrajula, Reddy Pratap; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Snyder, Christina; Tiras, Emrah; Wetzel, James; Yi, Kai; Blumenfeld, Barry; Cocoros, Alice; Eminizer, Nicholas; Fehling, David; Feng, Lei; Gritsan, Andrei; Maksimovic, Petar; Roskes, Jeffrey; Sarica, Ulascan; Swartz, Morris; Xiao, Meng; You, Can; Al-bataineh, Ayman; Baringer, Philip; Bean, Alice; Boren, Samuel; Bowen, James; Castle, James; Khalil, Sadia; Kropivnitskaya, Anna; Majumder, Devdatta; Mcbrayer, William; Murray, Michael; Rogan, Christopher; Royon, Christophe; Sanders, Stephen; Schmitz, Erich; Tapia Takaki, Daniel; Wang, Quan; Ivanov, Andrew; Kaadze, Ketino; Maravin, Yurii; Mohammadi, Abdollah; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Baron, Owen; Belloni, Alberto; Eno, Sarah Catherine; Feng, Yongbin; Ferraioli, Charles; Hadley, Nicholas John; Jabeen, Shabnam; Jeng, Geng-Yuan; Kellogg, Richard G; Kunkle, Joshua; Mignerey, Alice; Ricci-Tam, Francesca; Shin, Young Ho; Skuja, Andris; Tonwar, Suresh C; Abercrombie, Daniel; Allen, Brandon; Azzolini, Virginia; Barbieri, Richard; Baty, Austin; Bauer, Gerry; Bi, Ran; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; D'Alfonso, Mariarosaria; Demiragli, Zeynep; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hsu, Dylan; Hu, Miao; Iiyama, Yutaro; Innocenti, Gian Michele; Klute, Markus; Kovalskyi, Dmytro; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Maier, Benedikt; Marini, Andrea Carlo; Mcginn, Christopher; Mironov, Camelia; Narayanan, Siddharth; Niu, Xinmei; Paus, Christoph; Roland, Christof; Roland, Gunther; Salfeld-Nebgen, Jakob; Stephans, George; Sumorok, Konstanty; Tatar, Kaya; Velicanu, Dragos; Wang, Jing; Wang, Ta-Wei; Wyslouch, Bolek; Benvenuti, Alberto; Chatterjee, Rajdeep Mohan; Evans, Andrew; Hansen, Peter; Hiltbrand, Joshua; Kalafut, Sean; Kubota, Yuichi; Lesko, Zachary; Mans, Jeremy; Nourbakhsh, Shervin; Ruckstuhl, Nicole; Rusack, Roger; Turkewitz, Jared; Wadud, Mohammad Abrar; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Claes, Daniel R; Fangmeier, Caleb; Golf, Frank; Gonzalez Suarez, Rebeca; Kamalieddin, Rami; Kravchenko, Ilya; Monroy, Jose; Siado, Joaquin Emilo; Snow, Gregory R; Stieger, Benjamin; Dolen, James; Godshalk, Andrew; Harrington, Charles; Iashvili, Ia; Nguyen, Duong; Parker, Ashley; Rappoccio, Salvatore; Roozbahani, Bahareh; Alverson, George; Barberis, Emanuela; Freer, Chad; Hortiangtham, Apichart; Massironi, Andrea; Morse, David Michael; Orimoto, Toyoko; Teixeira De Lima, Rafael; Wamorkar, Tanvi; Wang, Bingran; Wisecarver, Andrew; Wood, Darien; Bhattacharya, Saptaparna; Charaf, Otman; Hahn, Kristan Allan; Mucia, Nicholas; Odell, Nathaniel; Schmitt, Michael Henry; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Bucci, Rachael; Dev, Nabarun; Hildreth, Michael; Hurtado Anampa, Kenyi; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Li, Wenzhao; Loukas, Nikitas; Marinelli, Nancy; Meng, Fanbo; Mueller, Charles; Musienko, Yuri; Planer, Michael; Reinsvold, Allison; Ruchti, Randy; Siddireddy, Prasanna; Smith, Geoffrey; Taroni, Silvia; Wayne, Mitchell; Wightman, Andrew; Wolf, Matthias; Woodard, Anna; Alimena, Juliette; Antonelli, Louis; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Francis, Brian; Hart, Andrew; Hill, Christopher; Ji, Weifeng; Ling, Ta-Yung; Liu, Bingxuan; Luo, Wuming; Winer, Brian L; Wulsin, Howard Wells; Cooperstein, Stephane; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Higginbotham, Samuel; Kalogeropoulos, Alexis; Lange, David; Luo, Jingyu; Marlow, Daniel; Mei, Kelvin; Ojalvo, Isabel; Olsen, James; Palmer, Christopher; Piroué, Pierre; Stickland, David; Tully, Christopher; Malik, Sudhir; Norberg, Scarlet; Barker, Anthony; Barnes, Virgil E; Das, Souvik; Folgueras, Santiago; Gutay, Laszlo; Jones, Matthew; Jung, Andreas Werner; Khatiwada, Ajeeta; Miller, David Harry; Neumeister, Norbert; Peng, Cheng-Chieh; Qiu, Hao; Schulte, Jan-Frederik; Sun, Jian; Wang, Fuqiang; Xiao, Rui; Xie, Wei; Cheng, Tongguang; Parashar, Neeti; Stupak, John; Chen, Zhenyu; Ecklund, Karl Matthew; Freed, Sarah; Geurts, Frank JM; Guilbaud, Maxime; Kilpatrick, Matthew; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Roberts, Jay; Rorie, Jamal; Shi, Wei; Tu, Zhoudunming; Zabel, James; Zhang, Aobo; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Duh, Yi-ting; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Han, Jiyeon; Hindrichs, Otto; Khukhunaishvili, Aleko; Lo, Kin Ho; Tan, Ping; Verzetti, Mauro; Ciesielski, Robert; Goulianos, Konstantin; Mesropian, Christina; Agapitos, Antonis; Chou, John Paul; Gershtein, Yuri; Gómez Espinosa, Tirso Alejandro; Halkiadakis, Eva; Heindl, Maximilian; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Kyriacou, Savvas; Lath, Amitabh; Montalvo, Roy; Nash, Kevin; Osherson, Marc; Saka, Halil; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Delannoy, Andrés G; Heideman, Joseph; Riley, Grant; Rose, Keith; Spanier, Stefan; Thapa, Krishna; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Celik, Ali; Dalchenko, Mykhailo; De Mattia, Marco; Delgado, Andrea; Dildick, Sven; Eusebi, Ricardo; Gilmore, Jason; Huang, Tao; Kamon, Teruki; Mueller, Ryan; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Perniè, Luca; Rathjens, Denis; Safonov, Alexei; Tatarinov, Aysen; Akchurin, Nural; Damgov, Jordan; De Guio, Federico; Dudero, Phillip Russell; Faulkner, James; Gurpinar, Emine; Kunori, Shuichi; Lamichhane, Kamal; Lee, Sung Won; Libeiro, Terence; Mengke, Tielige; Muthumuni, Samila; Peltola, Timo; Undleeb, Sonaina; Volobouev, Igor; Wang, Zhixing; Greene, Senta; Gurrola, Alfredo; Janjam, Ravi; Johns, Willard; Maguire, Charles; Melo, Andrew; Ni, Hong; Padeken, Klaas; Sheldon, Paul; Tuo, Shengquan; Velkovska, Julia; Xu, Qiao; Arenton, Michael Wayne; Barria, Patrizia; Cox, Bradley; Hirosky, Robert; Joyce, Matthew; Ledovskoy, Alexander; Li, Hengne; Neu, Christopher; Sinthuprasith, Tutanon; Wang, Yanchu; Wolfe, Evan; Xia, Fan; Harr, Robert; Karchin, Paul Edmund; Poudyal, Nabin; Sturdy, Jared; Thapa, Prakash; Zaleski, Shawn; Brodski, Michael; Buchanan, James; Caillol, Cécile; Carlsmith, Duncan; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Gomber, Bhawna; Grothe, Monika; Herndon, Matthew; Hervé, Alain; Hussain, Usama; Klabbers, Pamela; Lanaro, Armando; Levine, Aaron; Long, Kenneth; Loveless, Richard; Rekovic, Vladimir; Ruggles, Tyler; Savin, Alexander; Smith, Nicholas; Smith, Wesley H; Taylor, Devin; Woods, Nathaniel

    2018-01-01

    A search is presented for a heavy resonance decaying into either a pair of Z bosons or a Z boson and a W boson (ZZ or WZ), with a Z boson decaying into a pair of neutrinos and the other boson decaying hadronically into two collimated quarks that are reconstructed as a highly energetic large-cone jet. The search is performed using the data collected with the CMS detector at the CERN LHC during 2016 in proton-proton collisions at a center-of-mass energy of 13 TeV, corresponding to a total integrated luminosity of 35.9 fb$^{-1}$. No excess is observed in data with regard to background expectations. Results are interpreted in scenarios of physics beyond the standard model. Limits at 95% confidence level on production cross sections are set at 0.9 fb (63 fb) for spin-1 W' bosons, included in the heavy vector triplet model, with mass 4.0 TeV (1.0 TeV), and at 0.5 fb (40 fb) for spin-2 bulk gravitons with mass 4.0 TeV (1.0 TeV). Lower limits are set on the masses of W' bosons in the context of two versions of the he...

  12. Diboson Production, Vector Boson Fusion and Vector Boson Scattering measurements with the ATLAS detector

    CERN Document Server

    Geng, Cong; The ATLAS collaboration

    2017-01-01

    Measurements of the cross sections of the production of pairs of electroweak gauge bosons at the LHC constitute stringent tests of the electroweak sector of the Standard Model and provide a model-independent means to search for new physics at the TeV scale. The ATLAS collaboration has performed detailed measurements of integrated and differential cross sections of the production of heavy di-boson pairs, such as WW, WZ and ZZ, in the fully-leptonic and partially in the semi-leptonic final states at centre-of-mass energies of 8 and 13 TeV. Moreover, searches for the production of three W bosons or of a W boson and a photon together with a Z or W boson at a center of mass energy of 8 TeV will be presented. These studies are closely connected to the electroweak production of a heavy boson and a photon together with two jets. Evidence has been found for the exclusive production of W boson pairs, which will be presented in this talk. When selecting two jets at high invariant mass in addition to the production of th...

  13. Search for a Higgs Boson Produced in Association with a W Boson at ATLAS

    CERN Document Server

    Ruckert, Benjamin

    The Large Hadron Collider at CERN is the most modern proton-proton collider and data taking will start in 2009, with a centre-of-mass energy of 7 TeV. The ATLAS detector, which is one of two multi-purpose detectors at the Large Hadron Collider, is able to detect a Standard Model Higgs boson if it exists. This is one of the main tasks of the ATLAS experiment. This thesis deals with a Standard Model Higgs boson produced in association with a W boson. The Monte Carlo study is based on physics events generated at the nominal centre-of-mass energy of the Large Hadron Collider of 14 TeV. Large parts of this analysis have been done using the global Grid infrastructure of the Large Hadron Collider experiments. A mass range of the Higgs boson of mH = 130 - 190 GeV has been taken into account. In this mass range, the Higgs boson dominantly decays into a pair of W bosons, leading to initially three W bosons: WH -> WWW. Two orthogonal analysis channels have been investigated in detailed studies of the background properti...

  14. Dynamical correlation functions of the quadratic coupling spin-Boson model

    Science.gov (United States)

    Zheng, Da-Chuan; Tong, Ning-Hua

    2017-06-01

    The spin-boson model with quadratic coupling is studied using the bosonic numerical renormalization group method. We focus on the dynamical auto-correlation functions {C}O(ω ), with the operator \\hat{O} taken as {\\hat{{{σ }}}}x, {\\hat{{{σ }}}}z, and \\hat{X}, respectively. In the weak-coupling regime α qualitatively, showing enhanced dephasing at the spin flip point. Project supported by the National Key Basic Research Program of China (Grant No. 2012CB921704), the National Natural Science Foundation of China (Grant No. 11374362), the Fundamental Research Funds for the Central Universities, China, and the Research Funds of Renmin University of China (Grant No. 15XNLQ03).

  15. Dark Higgs bosons at the ForwArd Search ExpeRiment

    Science.gov (United States)

    Feng, Jonathan L.; Galon, Iftah; Kling, Felix; Trojanowski, Sebastian

    2018-03-01

    FASER, ForwArd Search ExpeRiment at the LHC, has been proposed as a small, very far forward detector to discover new, light, weakly-coupled particles. Previous work showed that with a total volume of just ˜0.1 - 1 m3 , FASER can discover dark photons in a large swath of currently unconstrained parameter space, extending the discovery reach of the LHC program. Here we explore FASER's discovery prospects for dark Higgs bosons. These scalar particles are an interesting foil for dark photons, as they probe a different renormalizable portal interaction and are produced dominantly through B and K meson decays, rather than pion decays, leading to less collimated signals. Nevertheless, we find that FASER is also a highly sensitive probe of dark Higgs bosons with significant discovery prospects that are comparable to, and complementary to, much larger proposed experiments.

  16. Search for WIMP dark matter produced in association with a Z boson with the ATLAS detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00399337; The ATLAS collaboration

    2016-01-01

    The search for weakly interacting dark matter particle (WIMP) candidates produced in association with a Z boson with the ATLAS detector at the LHC is presented. Events with large missing transverse momentum and consistent with the decay of a Z boson into oppositely charged electron or muon pairs were selected in analysis. Background estimates and corresponding systematic uncertainties are shown. The limits on the mass scale of the contact interaction as a function of the dark matter particle mass and the limits on the coupling and scalar particle mediator mass for 8 TeV proton-proton collisions data are presented. Prospects for analysis using 13 TeV proton-proton collisions data are discussed.

  17. A brief review of measurements of electroweak bosons at the LHCb experiment in LHC Run 1

    CERN Document Server

    INSPIRE-00340962

    2016-09-15

    The LHCb experiment is one of four major experiments at the LHC. Despite being designed for the study of beauty and charm particles, it has made important contributions in other areas, such as the production and decay of $W$ and $Z$ bosons. Such measurements can be used to study and constrain parton distribution functions, as well as to test perturbative quantum chromodynamics in hard scattering processes. The angular structure of $Z$ boson decays to leptons can also be studied and used to measure the weak mixing angle. The phase space probed by LHCb is particularly sensitive to this quantity, and the LHCb measurement using the dimuon final state is currently the most precise determination of $\\sin^2\\theta^\\text{lept.}_\\text{eff.}$ at the LHC. LHCb measurements made using data collected during the first period of LHC operations (LHC Run 1) are discussed in this review. The article also considers the potential impact of related future measurements.

  18. Optical analogues of the Newton-Schrödinger equation and boson star evolution.

    Science.gov (United States)

    Roger, Thomas; Maitland, Calum; Wilson, Kali; Westerberg, Niclas; Vocke, David; Wright, Ewan M; Faccio, Daniele

    2016-11-14

    Many gravitational phenomena that lie at the core of our understanding of the Universe have not yet been directly observed. An example in this sense is the boson star that has been proposed as an alternative to some compact objects currently interpreted as being black holes. In the weak field limit, these stars are governed by the Newton-Schrodinger equation. Here we present an optical system that, under appropriate conditions, identically reproduces such equation in two dimensions. A rotating boson star is experimentally and numerically modelled by an optical beam propagating through a medium with a positive thermal nonlinearity and is shown to oscillate in time while also stable up to relatively high densities. For higher densities, instabilities lead to an apparent breakup of the star, yet coherence across the whole structure is maintained. These results show that optical analogues can be used to shed new light on inaccessible gravitational objects.

  19. The properties of W-boson condensation induced by fermion density at finite temperatures

    International Nuclear Information System (INIS)

    Perez Rojas, H.; Kalashnikov, O.K.

    1987-01-01

    Bose-Einstein condensation of W bosons induced by fermion density is discussed within models of unified interactions at T ≠ 0. We study in detail the Weinberg-Salam model in wich chemical potentials related to lepton number, electric charge and weak neutral charge are introduced. The one-loop thermodynamic potential is calculated and a set of equations representing the necessary condition for condensation is solved thogether with the corresponding chemical equilibrium conditions. The boundary of the condensate phase is established and estimations for the critical lepton density are given. It is found that for small lepton density W-boson condensation exists only in the finite temperature region, evaporating when T goes to zero. (orig.)

  20. Optimal unitary dilation for bosonic Gaussian channels

    International Nuclear Information System (INIS)

    Caruso, Filippo; Eisert, Jens; Giovannetti, Vittorio; Holevo, Alexander S.

    2011-01-01

    A general quantum channel can be represented in terms of a unitary interaction between the information-carrying system and a noisy environment. In this paper the minimal number of quantum Gaussian environmental modes required to provide a unitary dilation of a multimode bosonic Gaussian channel is analyzed for both pure and mixed environments. We compute this quantity in the case of pure environment corresponding to the Stinespring representation and give an improved estimate in the case of mixed environment. The computations rely, on one hand, on the properties of the generalized Choi-Jamiolkowski state and, on the other hand, on an explicit construction of the minimal dilation for arbitrary bosonic Gaussian channel. These results introduce a new quantity reflecting ''noisiness'' of bosonic Gaussian channels and can be applied to address some issues concerning transmission of information in continuous variables systems.

  1. W Boson Polarisation at LEP2

    CERN Document Server

    Abbiendi, G.; Akesson, P.F.; Alexander, G.; Allison, John; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Barberio, E.; Barillari, T.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Boeriu, O.; Bock, P.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Buesser, K.; Burckhart, H.J.; Campana, S.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, D.G.; Ciocca, C.; Couchman, J.; Csilling, A.; Cuffiani, M.; Dado, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Gagnon, P.; Gary, John William; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harel, A.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Horvath, D.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kramer, T.; Krieger, P.; von Krogh, J.; Kruger, K.; Kuhl, T.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Layter, J.G.; Lellouch, D.; Lettso, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, A.; Ludwig, J.; Mader, W.; Marcellini, S.; Martin, A.J.; Masetti, G.; Mashimo, T.; Mattig, Peter; McKenna, J.; McPherson, R.A.; Meijers, F.; Menges, W.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Moed, S.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Nanjo, H.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Roney, J.M.; Rosati, S.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schoerner-Sadenius, Thomas; Schroder, Matthias; Schumacher, M.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Sherwood, P.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spano, F.; Stahl, A.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vollmer, C.F.; Vannerem, P.; Vertesi, R.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija

    2004-01-01

    Elements of the spin density matrix for W bosons in e+e- -> W+W- -> qqln events are measured from data recorded by the OPAL detector at LEP. This information is used calculate polarised differential cross-sections and to search for CP-violating effects. Results are presented for W bosons produced in e+e- collisions with centre-of-mass energies between 183 GeV and 209 GeV. The average fraction of W bosons that are longitudinally polarised is found to be (23.9 +- 2.1 +- 1.1)% compared to a Standard Model prediction of (23.9 +- 0.1)%. All results are consistent with CP conservation.

  2. Elementary Goldstone Higgs Boson and Dark Matter

    DEFF Research Database (Denmark)

    Alanne, Tommi; Gertov, Helene; Sannino, Francesco

    2015-01-01

    We investigate a perturbative extension of the Standard Model featuring elementary pseudo-Goldstone Higgs and dark matter particles. These are two of the five Goldstone bosons parametrising the SU(4)/Sp(4) coset space. They acquire masses, and therefore become pseudo-Goldstone bosons, due...... of the theory, the quantum corrections are precisely calculable. The remaining pseudo-Goldstone boson is identified with the dark matter candidate because it is neutral with respect to the Standard Model and stable. By a direct comparison with the Large Hadron Collider experiments, the model is found...... to be phenomenologically viable. Furthermore the dark matter particle leads to the observed thermal relic density while respecting the most stringent current experimental constraints....

  3. Grand unified models including extra Z bosons

    International Nuclear Information System (INIS)

    Li Tiezhong

    1989-01-01

    The grand unified theories (GUT) of the simple Lie groups including extra Z bosons are discussed. Under authors's hypothesis there are only SU 5+m SO 6+4n and E 6 groups. The general discussion of SU 5+m is given, then the SU 6 and SU 7 are considered. In SU 6 the 15+6 * +6 * fermion representations are used, which are not same as others in fermion content, Yukawa coupling and broken scales. A conception of clans of particles, which are not families, is suggested. These clans consist of extra Z bosons and the corresponding fermions of the scale. The all of fermions in the clans are down quarks except for the standard model which consists of Z bosons and 15 fermions, therefore, the spectrum of the hadrons which are composed of these down quarks are different from hadrons at present

  4. Parquet theory of finite temperature boson systems

    International Nuclear Information System (INIS)

    He, H.W.

    1992-01-01

    In this dissertation, the author uses the parquet summation for the two-body vertex as the framework for a perturbation theory of finite-temperature homogeneous boson systems. The present formalism is a first step toward a full description of the thermodynamic behavior of a finite temperature boson system through parquet summation. The current approximation scheme focuses on a system below the Bose-Einstein condensation temperature and considers only the contribution from Bogoliubov excitations out of a boson condensate. Comparison with the finite temperature variational theory by Campbell et al. shows strong similarities between variational theory and the current theory. Numerical results from a 4 He system and a nuclear system are discussed

  5. Mirror symmetry breaking of silicon polymers--from weak bosons to artificial helix.

    Science.gov (United States)

    Fujiki, Michiya

    2009-01-01

    From elemental particles to human beings, matter and living worlds in our universe are dissymmetric with respect to mirror symmetry. Since the early 19th century, the origin of biomolecular handedness has been puzzling scientists. Nature's elegant bottom-up preference, however, sheds light on new concepts of generating, amplifying, and switching artificial polymers, supramolecules, liquid crystals, and organic crystals that can exhibit ambidextrous circular dichroism in the UV/Visible region with efficiency in production under milder ambient conditions. In the 1920s, Kipping, who first synthesized polysilanes with phenyl groups, had much interest in the handedness of inorganic and organic substances from 1898 to 1909 in his early research life. Polysilanes--which are soluble Si-Si bonded chain-like near-UV chromophores that carry a rich variety of organic groups--may become a bridge between animate and inanimate polymer systems. The present account focuses on several mirror symmetry breaking phenomena exemplified in polysilanes carrying chiral and/or achiral side groups, which are in isotropic dilute solution, as polymer particles dispersed in solution, and in a double layer film immobilized at the solid surface, and subtle differences in the helix, by dictating ultimately ultraweak chiral forces at subatomic, atomic, and molecular levels. Copyright 2009 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.

  6. Run II jet physics: Proceedings of the Run II QCD and weak boson physics workshop

    International Nuclear Information System (INIS)

    Gerald C. Blazey

    2000-01-01

    The Run II jet physics group includes the Jet Algorithms, Jet Shape/Energy Flow, and Jet Measurements/Correlations subgroups. The main goal of the jet algorithm subgroup was to explore and define standard Run II jet finding procedures for CDF and D0. The focus of the jet shape/energy flow group was the study of jets as objects and the energy flows around these objects. The jet measurements/correlations subgroup discussed measurements at different beam energies; α S measurements; and LO, NLO, NNLO, and threshold jet calculations. As a practical matter the algorithm and shape/energy flow groups merged to concentrate on the development of Run II jet algorithms that are both free of theoretical and experimental difficulties and able to reproduce Run I measurements. Starting from a review of the experience gained during Run I, the group considered a variety of cone algorithms, and K T algorithms. The current understanding of both types of algorithms, including calibration issues, are discussed in this report along with some preliminary experimental results. The jet algorithms group recommends that CDF and D0 employ the same version of both a cone algorithm and a K T algorithm during Run II. Proposed versions of each type of algorithm are discussed. The group also recommends the use of full 4-vector kinematic variables whenever possible. The recommended algorithms attempt to minimize the impact of seeds in the case of the cone algorithm and preclustering in the case of the K T algorithm. Issues regarding precluster definitions and merge/split criteria require further study

  7. Diffractive Production of Jets and Weak Bosons, and Tests of Hard-Scattering Factorization

    CERN Document Server

    Alvero, L; Terrón, J; Whitmore, J; Alvero, Lyndon; Collins, John C.; Terron, Juan; Whitmore, Jim

    1999-01-01

    We extract diffractive parton densities from diffractive, deep inelastic (DIS) ep data from the ZEUS experiment. Then we use these fits to predict the diffractive production of jets and of W's and Z's in p\\bar p collisions at the Tevatron. Although the DIS data require a hard quark density in the pomeron, we find fairly low rates for the Tevatron processes (a few percent of the inclusive cross section). This results from the combined effects of Q^{2} evolution and of a normalization of the parton densities to the data. The calculated rates for W production are generally consistent with the preliminary data from the Tevatron. However, the jet data from CDF with a ``Roman pot'' trigger are substantially lower than the results of our calculations; if confirmed, this would signal a breakdown of hard-scattering factorization.

  8. Heavy weak bosons, cosmic antimatter and DUMAND. 2: Looking for cosmic antimatter with DUMAND

    Science.gov (United States)

    Stecker, F. W.; Brown, R. W.

    1980-01-01

    Discussion of various means for using high energy neutrino astronomy to directly test for the existence of cosmic antimatter on a significant cosmological scale is presented. Studies of the ultrahigh energy diffuse neutrino background using acoustic detector and high mass Glashow resonances are reported. Point source studies are also discussed.

  9. Study of Electroweak Gauge Boson Scattering in the WZ Channel with the ATLAS Detector at the Large Hadron Collider

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00355153; Kobel, Michael; Petridou, Chariclia; Kobel, Michael; Zur Nedden, Martin

    The Standard Model of particle physics is a very well tested gauge theory describing the strong, weak and electromagnetic interactions between elementary particles through the exchange of force carriers called gauge bosons. Its high predictive power stems from its ability to derive the properties of the interactions it describes from fundamental symmetries of nature. Yet, it is not a final theory as there are several phenomena it cannot explain. Furthermore, not all of its predictions have been studied with sufficient precision, e.g. the properties of the newly discovered Higgs boson. Therefore, further probing of the Standard Model is necessary and may result in finding possible indications for new physics. The non-abelian SU(2)L×U(1)Y symmetry group determines the properties of the electromagnetic and weak interactions giving rise to self-couplings between the electroweak gauge bosons, i.e. the massive W and Z boson, and the massless photon, via triple and quartic gauge couplings. Studies carried out over ...

  10. Search for heavy resonances in vector boson fusion

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00423270; The ATLAS collaboration

    2017-01-01

    If the Higgs boson discovered at the Large Hadron Collider (LHC) is not exactly the one in the Standard Model, an alternative mechanism is needed to restore unitarity in the scattering amplitude of longitudinal gauge bosons, and new resonances may appear. This paper presents a search for new heavy neutral resonances ($R$) produced through vector boson fusion process $qq \\rightarrow Rqq \\rightarrow \\ell^+ \

  11. Recent ATLAS Higgs measurements using di-boson decays

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    The seminar presents recent measurements of Higgs boson production properties using decays to pairs of W bosons, Z bosons or photons. The results are based on 36 fb-1 of pp collision data taken in 2015 and 2016 at 13 TeV by the ATLAS experiment.

  12. 90 - GeV Higgs boson in supersymmetric models

    International Nuclear Information System (INIS)

    Grzadkowski, B.; Kalinowski, J.; Pokorski, S.

    1989-07-01

    We discuss supersymmetric models with a hierarchy of vacuum expectation values of Higgs fields. These models predict one of the physical neutral Higgs bosons to have its mass very close to the Z-boson mass. Properties of such a 90-GeV Higgs boson are discussed. (author)

  13. Search for Charged Higgs Bosons at LEP

    CERN Document Server

    Achard, P.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Anderhub, H.; Andreev, Valery P.; Anselmo, F.; Arefev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Baldew, S.V.; Banerjee, S.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y.H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de la Cruz, B.; Cucciarelli, S.; van Dalen, J.A.; de Asmundis, R.; Deglon, P.; Debreczeni, J.; Degre, A.; Dehmelt, K.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M.T.; Duchesneau, D.; Duda, M.; Echenard, B.; Eline, A.; El Hage, A.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Extermann, P.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisher, W.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; van Gulik, R.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hirschfelder, J.; Hofer, H.; Hohlmann, M.; Holzner, G.; Hou, S.R.; Hu, Y.; Jin, B.N.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Kafer, D.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, J.K.; Kirkby, Jasper; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Le Goff, J.M.; Leiste, R.; Levtchenko, M.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Luci, C.; Luminari, L.; Lustermann, W.; Ma, W.G.; Malgeri, L.; Malinin, A.; Mana, C.; Mans, J.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Nagy, S.; Natale, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Nisati, A.; Novak, T.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Pal, I.; Palomares, C.; Paolucci, P.; Paramatti, R.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Pioppi, M.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, Mohammad Azizur; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Roe, B.P.; Romero, L.; Rosca, A.; Rosier-Lees, S.; Roth, Stefan; Rosenbleck, C.; Roux, B.; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Schafer, C.; Schegelsky, V.; Schopper, H.; Schotanus, D.J.; Sciacca, C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Son, D.; Souga, C.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Tang, X.W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Ulbricht, J.; Valente, E.; Van de Walle, R.T.; Vasquez, R.; Veszpremi, V.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobev, I.; Vorobyov, A.A.; Wadhwa, M.; Wang, Q.; Wang, X.L.; Wang, Z.M.; Weber, M.; Wienemann, P.; Wilkens, H.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Yeh, S.C.; Zalite, A.; Zalite, Yu.; Zhang, Z.P.; Zhao, J.; Zhu, G.Y.; Zhu, R.Y.; Zhuang, H.L.; Zichichi, A.; Zimmermann, B.; Zoller, M.

    2003-01-01

    A search for pair-produced charged Higgs bosons is performed with the L3 detector at LEP using data collected at centre-of-mass energies between 189 and 209GeV, corresponding to an integrated luminosity of 629.4/pb. Decays into a charm and a strange quark or into a tau lepton and its neutrino are considered. No significant excess is observed and lower limits on the mass of the charged Higgs boson are derived at the 95% confidence level. They vary from 76.5 to 82.7GeV, as a function of the H->tv branching ratio.

  14. Z Boson Pair-Production at LEP

    CERN Document Server

    Achard, P; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Dehmelt, K; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Dionisi, C; Dittmar, M; Doria, A; Dova, M T; Duchesneau, D; Duda, M; Echenard, B; Eline, A; El-Hage, A; El-Mamouni, H; Engler, A; Eppling, F J; Extermann, P; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, M; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Hu, Y; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Käfer, D; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Koutsenko, V F; Kräber, M H; Krämer, R W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Likhoded, S; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Malgeri, L; Malinin, A; Maña, C; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Nisati, A; Novák, T; Nowak, H; Ofierzynski, R A; Organtini, G; Pal, I; Palomares, C; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosier-Lees, S; Roth, S; Rosenbleck, C; Roux, B; Rubio, J A; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Schäfer, C; Shchegelskii, V; Schopper, Herwig Franz; Schotanus, D J; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Son, D; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van de Walle, R T; Vásquez, R; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wang, Q; Wang, X L; Wang, Z M; Weber, M; Wienemann, P; Wilkens, H; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zimmermann, B; Zöller, M

    2003-01-01

    Events stemming from the pair-production of Z bosons in e^+e^- collisions are studied using 217.4 pb^-1 of data collected with the L3 detector at centre-of-mass energies from 200 GeV up to 209 GeV. The special case of events with b quarks is also investigated. Combining these events with those collected at lower centre-of-mass energies, the Standard Model predictions for the production mechanism are verified. In addition, limits are set on anomalous couplings of neutral gauge bosons and on effects of extra space dimensions.

  15. Cosmic expansion from boson and fermion fields

    International Nuclear Information System (INIS)

    De Souza, Rudinei C; Kremer, Gilberto M

    2011-01-01

    This paper consists in analyzing an action that describes boson and fermion fields minimally coupled to the gravity and a common matter field. The self-interaction potentials of the fields are not chosen a priori but from the Noether symmetry approach. The Noether forms of the potentials allow the boson field to play the role of dark energy and matter and the fermion field to behave as standard matter. The constant of motion and the cyclic variable associated with the Noether symmetry allow the complete integration of the field equations, whose solution produces a universe with alternated periods of accelerated and decelerated expansion.

  16. Supersymmetric Higgs boson production in Z decays

    International Nuclear Information System (INIS)

    Gamberini, G.; Giudice, G.F.; Ridolfi, G.

    1987-01-01

    The problem of distinguishing between the standard model and the supersymmetric Higgs bosons is considered in the context of Z 0 decays. We find that, for some choices of the parameters, the branching ratio for Z 0 → H 0 γ is strongly enhanced by the exchange of supersymmetric fermions as virtual particles. This makes the study of this process at LEP very interesting, since other Z 0 branching modes into Higgs bosons, such as Z 0 → H 0 μ + μ - , are not so clearly modified by supersymmetry. (orig.)

  17. Quantum Szilard Engine with Attractively Interacting Bosons

    Science.gov (United States)

    Bengtsson, J.; Tengstrand, M. Nilsson; Wacker, A.; Samuelsson, P.; Ueda, M.; Linke, H.; Reimann, S. M.

    2018-03-01

    We show that a quantum Szilard engine containing many bosons with attractive interactions enhances the conversion between information and work. Using an ab initio approach to the full quantum-mechanical many-body problem, we find that the average work output increases significantly for a larger number of bosons. The highest overshoot occurs at a finite temperature, demonstrating how thermal and quantum effects conspire to enhance the conversion between information and work. The predicted effects occur over a broad range of interaction strengths and temperatures.

  18. Bosonic analog of the Klein paradox

    International Nuclear Information System (INIS)

    Wagner, R. E.; Ware, M. R.; Su, Q.; Grobe, R.

    2010-01-01

    The standard Klein paradox describes how an incoming electron scatters off a supercritical electrostatic barrier that is so strong that it can generate electron-positron pairs. This fermionic system has been widely discussed in textbooks to illustrate some of the discrepancies between quantum mechanical and quantum field theoretical descriptions for the pair creation process. We compare the fermionic dynamics with that of the corresponding bosonic system. We point out that the direct counterpart of the Pauli exclusion principle (the central mechanism to resolve the fermionic Klein paradox) is stimulated emission, which leads to the resolution of the analogous bosonic paradox.

  19. Gauge boson production at the Tevatron

    International Nuclear Information System (INIS)

    Cecilia E Gerber

    2003-01-01

    We present measurements on gauge boson production from data taken during 1994-1996 by the D0 and CDF detectors: the differential production cross section of the W boson as a function of the transverse momentum [1,2], the ratio of W and Z differential cross sections [3,4], direct photon cross-sections at √s = 630 and 1800 GeV [5,6], and studies of Drell-Yan production [7,8]. All measurements are in good agreement with currently available theoretical predictions in most of the measured kinematic range

  20. QCD bosonization and the meson effective action

    International Nuclear Information System (INIS)

    Praschifka, J.; Roberts, C.D.; Cahill, R.T.

    1987-01-01

    A bosonization of quantum chromodynamics (QCD) is employed to derive a meson effective action, thus providing a direct link between QCD and meson phenomenology. As an example of this approach expressions are obtained for the meson parameters associated with the analysis of ω→3π decay. The bosonization also directly motivates a divergence-free, global color-symmetry model for mesons, which is seen to be a generalization of various phenomenological models. Good estimates are obtained for the values of several of the meson parameters

  1. Inflation and pseudo-Goldstone Higgs boson

    DEFF Research Database (Denmark)

    Alanne, Tommi; Sannino, Francesco; Tenkanen, Tommi

    2017-01-01

    We consider inflation within a model framework where the Higgs boson arises as a pseudo-Goldstone boson associated with the breaking of a global symmetry at a scale significantly larger than the electroweak one. We show that in such a model the scalar self-couplings can be parametrically suppressed...... and, consequently, the nonminimal couplings to gravity can be of order one or less, while the inflationary predictions of the model remain compatible with the precision cosmological observations. Furthermore, in the model we study, the existence of the electroweak scale is entirely due to the inflaton...

  2. Searches for BSM Higgs Bosons with ATLAS

    CERN Document Server

    Navarro, Gabriela; The ATLAS collaboration

    2015-01-01

    The discovery of a Higgs-like boson with a mass of about 125GeV has prompted the question of whether or not this particle is part of a much larger and more complex Higgs sector than that envisioned in the Standard Model. In this talk, the current results from the ATLAS Experiment regarding Beyond-the-Standard Model (BSM) Higgs hypothesis tests are outlined. Searches for additional Higgs bosons are presented and interpreted in well-motivated BSM Higgs frameworks, such as two-Higgs-doublet Models and the Minimal Supersymmetric Standard Model.

  3. Critical Phenomena Associated with Boson Stars

    OpenAIRE

    Hawley, Scott H.; Choptuik, Matthew W.

    2001-01-01

    We present a brief synopsis of related work (gr-qc/0007039), describing a study of black hole threshold phenomena for a self-gravitating, massive complex scalar field in spherical symmetry. We construct Type I critical solutions dynamically by tuning a one-parameter family of initial data consisting of a boson star and a massless real scalar field, and numerically evolving this data. The resulting critical solutions appear to correspond to boson stars on the unstable branch, as we show via co...

  4. Self-interacting dark matter and Higgs bosons in the SU(3)C x SU(3)L x U(1)N model with right-handed neutrinos

    International Nuclear Information System (INIS)

    Hoang Ngoc Long; Nguyen Quynh Lan

    2003-05-01

    We show that the SU(3) C x SU(3) L x U(1) N (3-3-1) model with right-handed neutrinos can provide candidates for self-interacting dark matter, namely they are the CP-even and odd Higgs bosons. These dark matters are stable without imposing of new symmetry and should be weak-interacting. (author)

  5. Microscopy of bosonic models using Schwinger and Holstein - Primakoff bosonization techniques

    International Nuclear Information System (INIS)

    Pinto, M.E.B.

    1988-01-01

    Two kinds of bosonic expansions for the SU(2) case, one being finite (Schwinger) and the other being infinite (Holstein-Primakoff) are analysed. The existence of a transformation connecting them was discussed. Utilizing the two methods, the Two Level Model hamiltonian into the many boson space is mapped. Considering systems composed by 4, 6 and 14 particles, calculations for the eigenenergies within the ''vibrational limit'' of the model were performed. The results show that the Schwinger mapping is exact. Approximated bosonic images with the Holstein-Primakoff mapping are obtained. Indeed, the anharmonicities observed in the region between the ideal '' spherical limit'' and the ''transitional point'', were well described by the approximation containing up to quartic terms on the bosonic operators. (author) [pt

  6. Standard and Null Weak Values

    OpenAIRE

    Zilberberg, Oded; Romito, Alessandro; Gefen, Yuval

    2013-01-01

    Weak value (WV) is a quantum mechanical measurement protocol, proposed by Aharonov, Albert, and Vaidman. It consists of a weak measurement, which is weighed in, conditional on the outcome of a later, strong measurement. Here we define another two-step measurement protocol, null weak value (NVW), and point out its advantages as compared to WV. We present two alternative derivations of NWVs and compare them to the corresponding derivations of WVs.

  7. SUSY and BSM Higgs boson searches with ATLAS and CMS

    CERN Document Server

    Dasu, S

    2012-01-01

    Results of searches for super-symmetric and other beyond the Standard Model Higgs boson searches from ATLAS and CMS experiments at the LHC arc presented. Some Standard Model (SM) higgs searches are reinterpreted in SM with four quark generations and fermio­ phobic models. Stringent limits) covering a large portion of the allowed parameter space in (MA, tan/3) plane are set for MSSM neutral higgs bosons decaying to T-lepton pairs, and charged higgs boson decaying to TV. Limits are set on a light NMSSM neutral higgs boson and on doubly charged higgs bosons predicted in some models are also set.

  8. The Z boson spin observables as messengers of new physics

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Saavedra, J.A. [Universidad de Granada, Departamento de Fisica Teorica y del Cosmos, Granada (Spain); Bernabeu, J.; Segarra, A. [Universitat de Valencia, Departament de Fisica Teorica, Burjassot (Spain); CSIC-Universitat de Valencia, Instituto de Fisica Corpuscular, Paterna (Spain); Mitsou, V.A. [CSIC-Universitat de Valencia, Instituto de Fisica Corpuscular, Paterna (Spain)

    2017-04-15

    We demonstrate that the eight multipole parameters describing the spin state of the Z boson are able to disentangle known Z production mechanisms and signals from new physics at the LHC. They can be extracted from appropriate asymmetries in the angular distribution of lepton pairs from the Z boson decay. The power of this analysis is illustrated by (1) the production of Z boson plus jets; (2) Z boson plus missing transverse energy; (3) W and Z bosons originating from the two-body decay of a heavy resonance. (orig.)

  9. Selection of collective degrees of freedom in the boson space

    International Nuclear Information System (INIS)

    Menezes, D.P.; Yoshinaga, N.

    1990-04-01

    Two methods for selecting collective bosons, one proposed by Klein and Vallieres and the other one being a number conserved Tamm Dancoff method, are applied in this work to boson mapping methods. The first mapping to be tested is a Dyson boson mapping in the SD shell and the second one is a mapping developed by Bonatsos, Klein and Li and applied to two j-shells with |j 1 - j 2 | = 4. Whenever the boson mappings are accurate, the selection of collective bosons gives good results, independently of the method considered. (author) [pt

  10. From the shell model to the interacting boson model

    International Nuclear Information System (INIS)

    Ginocchio, J.N.; Johnson, C.W.

    1994-01-01

    Starting from a general, microscopic fermion-pair-to-boson mapping of a complete fermion space that preserves Hermitian conjugation, we show that the resulting infinite and non-convergent boson Hamilitonian can be factored into a finite (e.g., a 1 + 2-body fermion Hamiltonian is mapped to a 1 + 2-body boson Hamiltonian) image Hamilitonian times the norm operator, and it is the norm operator that is infinite and non-convergent. We then truncate to a collective boson space and we give conditions under which the exact boson images of finite fermion operators are also finite in the truncated basis

  11. New CMS measurements of Higgs boson production and decay properties

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    Combined measurements of the Higgs boson production and decay rates, as well its couplings to vector bosons and fermions, are presented. The analyses are based on the LHC proton-proton collision dataset recorded by the CMS detector at 13 TeV. The combination is based on the analysis of all the production processes gluon fusion, vector boson fusion and production with a W or a Z boson or a pair of top quarks, and of the H→ZZ, WW, γγ, ττ, bb, and μμ decay modes. Dedicated searches for invisible Higgs boson decays are also considered.

  12. Standard model Higgs boson-inflaton and dark matter

    International Nuclear Information System (INIS)

    Clark, T. E.; Liu Boyang; Love, S. T.; Veldhuis, T. ter

    2009-01-01

    The standard model Higgs boson can serve as the inflaton field of slow roll inflationary models provided it exhibits a large nonminimal coupling with the gravitational scalar curvature. The Higgs boson self interactions and its couplings with a standard model singlet scalar serving as the source of dark matter are then subject to cosmological constraints. These bounds, which can be more stringent than those arising from vacuum stability and perturbative triviality alone, still allow values for the Higgs boson mass which should be accessible at the LHC. As the Higgs boson coupling to the dark matter strengthens, lower values of the Higgs boson mass consistent with the cosmological data are allowed.

  13. Weak openness and almost openness

    Directory of Open Access Journals (Sweden)

    David A. Rose

    1984-01-01

    Full Text Available Weak openness and almost openness for arbitrary functions between topological spaces are defined as duals to the weak continuity of Levine and the almost continuity of Husain respectively. Independence of these two openness conditions is noted and comparison is made between these and the almost openness of Singal and Singal. Some results dual to those known for weak continuity and almost continuity are obtained. Nearly almost openness is defined and used to obtain an improved link from weak continuity to almost continuity.

  14. Weak measurements and quantum weak values for NOON states

    Science.gov (United States)

    Rosales-Zárate, L.; Opanchuk, B.; Reid, M. D.

    2018-03-01

    Quantum weak values arise when the mean outcome of a weak measurement made on certain preselected and postselected quantum systems goes beyond the eigenvalue range for a quantum observable. Here, we propose how to determine quantum weak values for superpositions of states with a macroscopically or mesoscopically distinct mode number, that might be realized as two-mode Bose-Einstein condensate or photonic NOON states. Specifically, we give a model for a weak measurement of the Schwinger spin of a two-mode NOON state, for arbitrary N . The weak measurement arises from a nondestructive measurement of the two-mode occupation number difference, which for atomic NOON states might be realized via phase contrast imaging and the ac Stark effect using an optical meter prepared in a coherent state. The meter-system coupling results in an entangled cat-state. By subsequently evolving the system under the action of a nonlinear Josephson Hamiltonian, we show how postselection leads to quantum weak values, for arbitrary N . Since the weak measurement can be shown to be minimally invasive, the weak values provide a useful strategy for a Leggett-Garg test of N -scopic realism.

  15. Search for Dark Matter in Events with a Single Boson and Missing Transverse Momentum using the ATLAS Detector

    CERN Document Server

    Okawa, Hideki; The ATLAS collaboration

    2017-01-01

    The presence of a non-baryonic dark matter component in the Universe is inferred from the observation of its gravitational interaction. If dark matter interacts weakly with the Standard Model it would be produced at the LHC, escaping the detector and leaving a large missing transverse momentum as their signature. The results of searches with a single boson and large missing transverse momentum in 13 TeV will be presented.

  16. Holographic theories of electroweak symmetry breaking without a Higgs Boson

    International Nuclear Information System (INIS)

    Burdman, Gustavo; Nomura, Yasunori

    2003-01-01

    Recently, realistic theories of electroweak symmetry breaking have been constructed in which the electroweak symmetry is broken by boundary conditions imposed at a boundary of higher dimensional spacetime. These theories have equivalent 4D dual descriptions, in which the electroweak symmetry is dynamically broken by non-trivial infrared dynamics of some gauge interaction, whose gauge coupling (tilde g) and size N satisfy (tilde g) 2 N ∼> 16π 2 . Such theories allow one to calculate electroweak radiative corrections, including the oblique parameters S, T and U, as long as (tilde g) 2 N/16π 2 and N are sufficiently larger than unity. We study how the duality between the 4D and 5D theories manifests itself in the computation of various physical quantities. In particular, we calculate the electroweak oblique parameters in a warped 5D theory where the electroweak symmetry is broken by boundary conditions at the infrared brane. We show that the value of S obtained in the minimal theory exceeds the experimental bound if the theory is in a weakly coupled regime. This requires either an extension of the minimal model or departure from weak coupling. A particularly interesting scenario is obtained if the gauge couplings in the 5D theory take the largest possible values--the value suggested by naive dimensional analysis. We argue that such a theory can provide a potentially consistent picture for dynamical electroweak symmetry breaking: corrections to the electroweak observables are sufficiently small while realistic fermion masses are obtained without conflicting with bounds from flavor violation. The theory contains only the standard model quarks, leptons and gauge bosons below ≅2 TeV, except for a possible light scalar associated with the radius of the extra dimension. At ≅2 TeV increasingly broad string resonances appear. An analysis of top-quark phenomenology and flavor violation is also presented, which is applicable to both the weakly-coupled and strongly

  17. Search for the Higgs boson theoretical perspectives

    CERN Document Server

    Ridolfi, G

    2001-01-01

    We present a short review of experimental and theoretical constraints on the mass of the Standard Model Higgs boson. We briefly illustrate the unsatisfactory aspects of the standard theory, and we present some general considerations about possible non-standard scenarios.

  18. Probing new gauge boson couplings at hadron

    International Nuclear Information System (INIS)

    Rizzo, T.G.

    1992-06-01

    Once it is discovered, the determination of the various couplings of a new neutral gauge boson at a hadron supercollider will not be an easy task. We review several recent studies that have begun to examine this issue for both the SSC and LHC

  19. Standard Model, Higgs Boson and What Next?

    Indian Academy of Sciences (India)

    IAS Admin

    theory, Higgs boson discovery, quantum gravity ... end of the 20th century, in the theory of fundamental forces based on ... the dominant force for the Universe at large, because .... trast to electric charge which is just a number (positive, negative ...

  20. Sphericity in the interacting boson model

    International Nuclear Information System (INIS)

    Ogata, H.

    1977-01-01

    The interacting boson model (IBM) of Arima and Iachello is examined. The transition between the rotational and vibrational modes of even-even nuclei is presented as a function of a sphericity parameter, which is determined primarily from yrast band spectra. The backbending feature is reasonably reproduced. (author)

  1. Goldstone bosons in presence of charge density

    Czech Academy of Sciences Publication Activity Database

    Brauner, Tomáš

    2007-01-01

    Roč. 75, č. 10 (2007), s. 105014-105014 ISSN 0556-2821 R&D Projects: GA ČR GA202/06/0734 Institutional research plan: CEZ:AV0Z10480505 Keywords : spontaneous symmetry breaking * goldstone boson counting * two- color QCD Subject RIV: BE - Theoretical Physics Impact factor: 4.852, year: 2005

  2. Electron scattering in the interacting boson model

    International Nuclear Information System (INIS)

    Dieperink, A.E.L.; Iachello, F.; Creswell, C.

    1978-01-01

    It is suggested that the interacting boson model be used in the analysis of electron scattering data. Qualitative features of the expected behavior of the inelastic excitation of some 2 + states in the transitional Sm-Nd region are discussed. (Auth.)

  3. Goldstone-Boson Dynamics for Constituent Quarks

    Science.gov (United States)

    Plessas, W.

    2003-07-01

    We address some essential features of the Goldstone-boson-exchange constituent quark model. Starting from its background we discuss the motivation for its construction and show its performance in light and strange baryon spectroscopy. Then we quote results from first applications of this type of constituent quark model in covariant calculations of electroweak nucleon form factors.

  4. Goldstone bosons and a dynamical Higgs field

    NARCIS (Netherlands)

    Mooij, S.; Postma, M.

    2011-01-01

    Higgs inflation uses the gauge variant Higgs field as the inflaton. During inflation the Higgs field is displaced from its minimum, which results in associated Goldstone bosons that are apparently massive. Working in a minimally coupled U(1) toy model, we use the closed-time-path formalism to show

  5. Fermion-boson scattering in ladder approximation

    International Nuclear Information System (INIS)

    Jafarov, R.G.; Hadjiev, S.A.

    1992-10-01

    A method of calculation of forward scattering amplitude for fermions and scalar bosons with exchanging of scalar particle is suggested. The Bethe-Salpeter ladder equation for the imaginary part of the amplitude is constructed and a solution in Regge asymptotical form is found and the corrections to the amplitude due to the exit from mass shell are calculated. (author). 8 refs

  6. Electroweak boson production in Pb+Pb

    CERN Document Server

    Balestri, T; The ATLAS collaboration

    2013-01-01

    Lead-lead collisions at the LHC are capable of producing a system of deconfined quarks and gluons at unprecedented energy density and temperature. Partonic-level interactions and energy-loss mechanisms in the medium can be studied with the aid of electroweak bosons which carry important information about the properties of the medium. Electroweak bosons form a class of unique high-$p_{T}$ probes because their decay products do not interact with the strongly-coupled medium, providing a benchmark for a variety of other phenomena measured with strongly interacting particles. The ATLAS experiment measures isolated high-$p_{T}$ photons, W and Z bosons via different decay channels. New analyses of experimental data obtained at the LHC with lead-lead beams at $\\sqrt{s_{NN}}$ = 2.76 TeV. This talk will present a comprehensive study of the scaling properties of electroweak bosons showing linear proportionality of production rates to the nuclear thickness function; rapidity distributions W-decays directly sensitivity to...

  7. Non-linear realizations and bosonic branes

    International Nuclear Information System (INIS)

    West, P.

    2001-01-01

    In this very short note, following hep-th/0001216, we express the well known bosonic brane as a non-linear realization. The reader may also consult hep-th/9912226, 0001216 and 0005270 where the branes of M theory are constructed as a non-linear realisation. The automorphisms of the supersymmetry algebra play an essential role. (author)

  8. Quantum geometry of bosonic strings - revisited

    Energy Technology Data Exchange (ETDEWEB)

    Botelho, Luiz C.L.; Botelho, Raimundo C.L. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Universidade Federal Rural do Rio de Janeiro, RJ (Brazil). Dept. de Fisica

    1999-07-01

    We review the original paper by A.M. Polyakov (Quantum Geometry of Bosonic Strings) with corrections and improvements the concepts exposed there and following as closely as possible to the original A.M. Polyakov's paper. (author)

  9. Privacy of a lossy bosonic memory channel

    Energy Technology Data Exchange (ETDEWEB)

    Ruggeri, Giovanna [Dipartimento di Fisica, Universita di Lecce, I-73100 Lecce (Italy)]. E-mail: ruggeri@le.infn.it; Mancini, Stefano [Dipartimento di Fisica, Universita di Camerino, I-62032 Camerino (Italy)]. E-mail: stefano.mancini@unicam.it

    2007-03-12

    We study the security of the information transmission between two honest parties realized through a lossy bosonic memory channel when losses are captured by a dishonest party. We then show that entangled inputs can enhance the private information of such a channel, which however does never overcome that of unentangled inputs in absence of memory.

  10. Proton Decay including extra Z0 bosons

    International Nuclear Information System (INIS)

    Li Tiezhong

    1988-06-01

    There exists an apparent discrepancy between proton decay experiment and simplest SU(5) prediction. Author suggested a scheme: if there exists an extra Z 0 boson then the experimental value of the proton decay may be caluclated from GUT and the good results of SU(5) can be preserved. The increasing fermions will be not bizarre

  11. Composite gauge bosons of transmuted gauge symmetry

    International Nuclear Information System (INIS)

    Terazawa, Hidezumi.

    1987-10-01

    It is shown that effective gauge theories of composite gauge bosons describing the dynamics of composite quarks and leptons can be transmuted from the subcolor gauge theory describing that of subquarks due to the condensation of subquarks and that the equality of effective gauge coupling constants can result as in a grand unified gauge theory. (author)

  12. Accelerating research into the Higgs boson particle

    CERN Multimedia

    Nikolaidou, Rosy

    "The only Standard Model particle yet to be observed, the search for the Higgs Boson - the so-called 'God Particle' - demands advanced facilities and physics expertise. At the Cern laboratory in Switzerland, the ARTEMIS project is well-placed to pursue research in this area" (2 pages)

  13. Interacting p- Boson model with isospin

    International Nuclear Information System (INIS)

    Chen, C.H.-T.

    A description of collective states in self-conjugate nuclei is proposed, both odd-odd and even-even, in terms of an interacting isoscalar p-boson model. Within this model, two limiting cases can be identified with the anharmonic vibrator and axial rotor limits of the classical geometrical description. (Author) [pt

  14. Bosons & More: Celebrating CERN / Part 2

    CERN Multimedia

    Team, CERN

    2013-01-01

    The "Bosons & More" event for CERN people this evening celebrated the success of the Open Days, and the exceptional achievements of the Large Hadron Collider (LHC). The British progressive rock band the Alan Parsons Live Project lead the celebrations until late in the night.

  15. Adler's overrelaxation algorithm for Goldstone bosons

    International Nuclear Information System (INIS)

    Neuberger, H.

    1987-01-01

    A very simple derivation of a closed-form solution to the stochastic evolution defined by Adler's overrelaxation algorithm is given for free massive and massless scalar fields on a finite lattice with periodic boundary conditions and checkerboard updating. It is argued that the results are directly relevant when critical slowing down reflects the existence of Goldstone bosons in the system

  16. Effective lagrangian from bosonic string field theory

    International Nuclear Information System (INIS)

    Nakazawa, Naohito

    1987-01-01

    We investigate the low-energy effective action from the string field theoretical view point. The low-energy effective lagrangian for the massless mode of bosonic string is determined to the order of α'. We find a term which can not be determined from the S-matrix approach. (author)

  17. W boson physics at LEP2

    International Nuclear Information System (INIS)

    Tonazzo, A.

    2000-01-01

    The precision study of W boson properties is one of the most important goals of the LEP2 physics programme. This paper provides an overview of the measurements performed by the four LEP experiments, with particular emphasis on the extraction of the W mass. A review of the results obtained with the data collected until 1999 is also presented

  18. Privacy of a lossy bosonic memory channel

    International Nuclear Information System (INIS)

    Ruggeri, Giovanna; Mancini, Stefano

    2007-01-01

    We study the security of the information transmission between two honest parties realized through a lossy bosonic memory channel when losses are captured by a dishonest party. We then show that entangled inputs can enhance the private information of such a channel, which however does never overcome that of unentangled inputs in absence of memory

  19. Combination of ATLAS Higgs Boson measurements

    CERN Document Server

    Monticelli, Fernando; The ATLAS collaboration

    2018-01-01

    The results obtained from the different decay channels are combined to study the properties of the Higgs boson mass, production and decay, and test the SM theoretical precision with increased accuracy, using about 36 fb^{-1} of p-p collisions data collected at 13 TeV.

  20. HNC variational calculations of boson matter

    International Nuclear Information System (INIS)

    Lantto, L.J.; Jackson, A.D.; Siemens, P.J.

    1977-01-01

    A simple and reliable numerical technique is given for determining the two-body distribution function which minimizes the HNC energy of boson matter. Numerical results are presented for the neutron matter homework problem and the 4 He Lennard-Jones potential. The resulting distribution function is found to have proper asymptotic behaviour and yields reasonable binding energies. (Auth.)

  1. Quantum contextuality in N-boson systems

    International Nuclear Information System (INIS)

    Benatti, Fabio; Floreanini, Roberto; Genovese, Marco; Olivares, Stefano

    2011-01-01

    Quantum contextuality in systems of identical bosonic particles is explicitly exhibited via the maximum violation of a suitable inequality of Clauser-Horne-Shimony-Holt type. Unlike the approaches considered so far, which make use of single-particle observables, our analysis involves collective observables constructed using multiboson operators. An exemplifying scheme to test this violation with a quantum optical setup is also discussed.

  2. Search for new heavy charged gauge bosons

    International Nuclear Information System (INIS)

    Magass, Carsten Martin

    2007-01-01

    The TEVATRON proton-antiproton collider at FERMILAB (near Chicago/USA) is operating at a center-of-mass energy of √(s)=1.96 TeV since March 2001. This analysis uses data taken with the DOe detector until February 2006 corresponding to an integrated luminosity of about ∫Ldt=1 fb -1 . Using this dataset, a search for a new heavy charged gauge boson W ' and its subsequent decay into an electron and a neutrino is performed: p anti p→W ' +X→eν+X. Additional gauge bosons (including the equivalent to the Z, the Z ' ) are introduced in many extensions to the Standard Model of particle physics. Assuming the most general case, the new gauge group can comprise a new mixing angle and new couplings. Here, the Altarelli Reference Model is considered which represents a generalization of the Manifest Left-Right Symmetric Model with light right-handed neutrinos. This model makes the assumptions that the new gauge boson W ' has the same couplings as the Standard Model W boson and that there is no mixing. Hence, the W ' is a heavy copy of the Standard Model W boson. The clear decay signature (in analogy to the decay of the W) contains an isolated electron with extreme high energy which is important for triggering. The neutrino can not be detected, but it gives rise to missing energy in the detector. The Jacobian peak in the transverse mass distribution stemming from the W decay is used for calibration, whereas the tail of the transverse mass distribution is searched for a possible W ' signal. The data agrees with the expectation from background processes. For instance, in the data 37 events are reconstructed with transverse masses above 300 GeV compared to a prediction of 37.1±2.1(stat) +6.0 -3.7 (sys) background events. Since no significant excess is found in the data, an upper limit is set on the production cross section for heavy charged gauge bosons decaying into electron and neutrino, σ W ' x Br(W ' →eν). Using this limit, a lower bound on the mass of the new gauge

  3. Search for new heavy charged gauge bosons

    Energy Technology Data Exchange (ETDEWEB)

    Magass, Carsten Martin

    2007-11-02

    The TEVATRON proton-antiproton collider at FERMILAB (near Chicago/USA) is operating at a center-of-mass energy of {radical}(s)=1.96 TeV since March 2001. This analysis uses data taken with the DOe detector until February 2006 corresponding to an integrated luminosity of about {integral}Ldt=1 fb{sup -1}. Using this dataset, a search for a new heavy charged gauge boson W{sup '} and its subsequent decay into an electron and a neutrino is performed: p anti p{yields}W{sup '}+X{yields}e{nu}+X. Additional gauge bosons (including the equivalent to the Z, the Z{sup '}) are introduced in many extensions to the Standard Model of particle physics. Assuming the most general case, the new gauge group can comprise a new mixing angle and new couplings. Here, the Altarelli Reference Model is considered which represents a generalization of the Manifest Left-Right Symmetric Model with light right-handed neutrinos. This model makes the assumptions that the new gauge boson W{sup '} has the same couplings as the Standard Model W boson and that there is no mixing. Hence, the W{sup '} is a heavy copy of the Standard Model W boson. The clear decay signature (in analogy to the decay of the W) contains an isolated electron with extreme high energy which is important for triggering. The neutrino can not be detected, but it gives rise to missing energy in the detector. The Jacobian peak in the transverse mass distribution stemming from the W decay is used for calibration, whereas the tail of the transverse mass distribution is searched for a possible W{sup '} signal. The data agrees with the expectation from background processes. For instance, in the data 37 events are reconstructed with transverse masses above 300 GeV compared to a prediction of 37.1{+-}2.1(stat){sup +6.0}{sub -3.7}(sys) background events. Since no significant excess is found in the data, an upper limit is set on the production cross section for heavy charged gauge bosons decaying into electron and neutrino, {sigma}{sub W

  4. Higgs boson phenomenology at the LHC

    International Nuclear Information System (INIS)

    Kirchner, Sebastian

    2016-01-01

    The outstanding performance of the Large Hadron Collider (LHC) led to the discovery of the Higgs boson in 2012. The paramount endeavour after this discovery is the examination of the Higgs-boson properties, amongst others the determination of its CP quantum number and total decay width. The experimental analysis of both properties requires precise theoretical input within the Standard Model of particle physics. Theoretical methods and predictions at next-to-leading-order (NLO) in perturbative Quantum Chromodynamics (QCD), addressing the CP nature and decay width of the Higgs boson, are presented in this thesis. The thesis is split in two parts: The first part addresses the Caola-Melnikov method, which is utilised to constrain the Higgs width that is experimentally not directly measurable. The method relies on cross section measurements on and far off the Higgs boson peak. Two-loop corrections via a heavy top quark to the gluon-gluon initialised Z boson pair-production are examined as an expansion about the heavy-top limit combined with a conformal mapping and Pade approximants. The impact of the full NLO QCD corrections to the signal and background cross sections, relevant for bounding the Higgs width, is investigated. The second part of this thesis examines how precisely the CP nature of the Higgs boson can be unravelled in its decay to tau lepton pairs. All subsequent major charged-prong decays of the tau leptons are included.The impact parameter method is utilised and allows to extract the CP-mixing angle of the Higgs boson from the distribution of a signed angle. NLO QCD predictions for the signal process as well as the Drell-Yan background, including a Monte Carlo simulation of measurement uncertainties, are computed. Energy and angular correlations of the charged prongs are analysed and used to suppress the Drell-Yan background contribution. In a second step, the sensitivity to the CP-mixing angle is increased by combining the impact parameter method with the

  5. Search for new heavy charged gauge bosons

    Energy Technology Data Exchange (ETDEWEB)

    Magass, Carsten Martin

    2007-11-02

    The TEVATRON proton-antiproton collider at FERMILAB (near Chicago/USA) is operating at a center-of-mass energy of {radical}(s)=1.96 TeV since March 2001. This analysis uses data taken with the DOe detector until February 2006 corresponding to an integrated luminosity of about {integral}Ldt=1 fb{sup -1}. Using this dataset, a search for a new heavy charged gauge boson W{sup '} and its subsequent decay into an electron and a neutrino is performed: p anti p{yields}W{sup '}+X{yields}e{nu}+X. Additional gauge bosons (including the equivalent to the Z, the Z{sup '}) are introduced in many extensions to the Standard Model of particle physics. Assuming the most general case, the new gauge group can comprise a new mixing angle and new couplings. Here, the Altarelli Reference Model is considered which represents a generalization of the Manifest Left-Right Symmetric Model with light right-handed neutrinos. This model makes the assumptions that the new gauge boson W{sup '} has the same couplings as the Standard Model W boson and that there is no mixing. Hence, the W{sup '} is a heavy copy of the Standard Model W boson. The clear decay signature (in analogy to the decay of the W) contains an isolated electron with extreme high energy which is important for triggering. The neutrino can not be detected, but it gives rise to missing energy in the detector. The Jacobian peak in the transverse mass distribution stemming from the W decay is used for calibration, whereas the tail of the transverse mass distribution is searched for a possible W{sup '} signal. The data agrees with the expectation from background processes. For instance, in the data 37 events are reconstructed with transverse masses above 300 GeV compared to a prediction of 37.1{+-}2.1(stat){sup +6.0}{sub -3.7}(sys) background events. Since no significant excess is found in the data, an upper limit is set on the production cross section for heavy charged gauge bosons decaying into electron

  6. Heavy Higgs boson with a light sneutrino next-to-lightest supersymmetric particle in the MSSM with enhanced SU(2) D-terms

    International Nuclear Information System (INIS)

    Medina, Anibal D.; Shah, Nausheen R.; Wagner, Carlos E. M.

    2009-01-01

    The minimal supersymmetric extension of the standard model provides a solution to the hierarchy problem and leads to the presence of a light Higgs. A Higgs boson with mass above the present experimental bound may only be obtained for relatively heavy third generation squarks, requiring a precise, somewhat unnatural balance between different contributions to the effective Higgs mass parameter. It was recently noticed that somewhat heavier Higgs bosons, which are naturally beyond the CERN LEP bound, may be obtained by enhanced weak SU(2) D-terms. Such contributions appear in models with an enhanced electroweak gauge symmetry, provided the supersymmetry breaking masses associated with the scalars responsible for the breakdown of the enhanced gauge symmetry group to the standard model one are larger than the enhanced symmetry breaking scale. In this article we emphasize that the enhanced SU(2) D-terms will not only raise the Higgs boson mass but also affect the spectrum of the nonstandard Higgs bosons, sleptons, and squarks, which therefore provide a natural contribution to the T parameter, compensating for the negative one coming from the heavy Higgs boson. The sleptons and nonstandard Higgs bosons of these models, in particular, may act in a way similar to the so-called inert Higgs doublet. The phenomenological properties of these models are emphasized, and possible cosmological implications as well as collider signatures are described.

  7. Weak decays of stable particles

    International Nuclear Information System (INIS)

    Brown, R.M.

    1988-09-01

    In this article we review recent advances in the field of weak decays and consider their implications for quantum chromodynamics (the theory of strong interactions) and electroweak theory (the combined theory of electromagnetic and weak interactions), which together form the ''Standard Model'' of elementary particles. (author)

  8. Standard and non-standard weak interactions

    International Nuclear Information System (INIS)

    Leurer, M.

    1985-12-01

    This work consists of independent chapters, all deal with weak interactions. The first chapter deals with left-right symmetric theories. Two main versions of these theories are discussed and compared. In addition, the K - K-bar mixing term is analysed: it has been known for several years now that in a left-right symmetric model there are new contributions to the mixing of kaons. We show that in the most appealing left-right symmetric model - the new contributions add up constructively. Consequently, we may derive reliable bounds on the mass of the right-handed gauge boson and the average mass of the (unavoidable) physical Higgs scalars. We also show that the new contributions are proportional to a new CP violating phase. While all previous treatments of the K - K-bar system were limited to the minimal model, we are able to show that our results hold also in the general case of nonminimal models. The second chapter deals with the possibility that W and Z are composite. Three experimental tests are discussed: (i) Universality -if W is composite then its coupling to the fermions is expected to deviate from universality. Since such deviations were not yet seen -we derive a lower bound on the compositeness scale. (ii) Possible enhancement of the reaction p-bar+p→Z 0 +γ+any - we show that if Z 0 is composite then the cross section for the above process might be considerably enhanced and this effect can be measured at CERN and Fermilab.(iii) The eeγ events of the 1983 run in CERN - we show that in contradiction to suggestions made in several papers, these events may not be explained by a composite-Z decaying through a scalar. In the last chapter we discuss the quark mixing angles

  9. Electromagnetic current in weak interactions

    International Nuclear Information System (INIS)

    Ma, E.

    1983-01-01

    In gauge models which unify weak and electromagnetic interactions, the weak neutral-current interaction also involves the electromagnetic current. The exact nature of such a component can be explored using e + e - experimental data. In recent years, the existence of a new component of the weak interaction has become firmly established, i.e., the neutral-current interaction. As such, it competes with the electromagnetic interaction whenever the particles involved are also charged, but at a very much lower rate because its effective strength is so small. Hence neutrino processes are best for the detection of the neutral-current interaction. However, in any gauge model which unifies weak and electromagnetic interactions, the weak neutral-current interaction also involves the electromagnetic current

  10. Weak values in collision theory

    Science.gov (United States)

    de Castro, Leonardo Andreta; Brasil, Carlos Alexandre; Napolitano, Reginaldo de Jesus

    2018-05-01

    Weak measurements have an increasing number of applications in contemporary quantum mechanics. They were originally described as a weak interaction that slightly entangled the translational degrees of freedom of a particle to its spin, yielding surprising results after post-selection. That description often ignores the kinetic energy of the particle and its movement in three dimensions. Here, we include these elements and re-obtain the weak values within the context of collision theory by two different approaches, and prove that the results are compatible with each other and with the results from the traditional approach. To provide a more complete description, we generalize weak values into weak tensors and use them to provide a more realistic description of the Stern-Gerlach apparatus.

  11. Vector Boson Scattering, Triple Gauge-Boson Final States, and Limits on Anomalous Quartic Gauge Couplings with the ATLAS Detector

    CERN Document Server

    Johnson, Christian; The ATLAS collaboration

    2017-01-01

    Measurements of the cross sections of the production of three electroweak gauge bosons and of vector-boson scattering processes at the LHC constitute stringent tests of the electroweak sector of the Standard Model and provide a model-independent means to search for new physics at the TeV scale. The ATLAS collaboration searched for the production of three W bosons or of a W boson and a photon together with a Z or W boson at a center of mass energy of 8 TeV. ATLAS has also searched for the electroweak production of a heavy boson and a photon together with two jets. Evidence has been found for the exclusive production of W boson pairs. All results have been used to constrain anomalous quartic gauge couplings and have been compared to the latest theory predictions.

  12. Vector boson scattering, triple gauge-boson final states and limits on anomalous quartic gauge couplings with the ATLAS detector

    CERN Document Server

    Nitta, Tatsumi; The ATLAS collaboration

    2018-01-01

    Measurements of the cross sections of the production of three electroweak gauge bosons and of vector-boson scattering processes at the LHC constitute stringent tests of the electroweak sector of the Standard Model and provide a model-independent means to search for new physics at the TeV scale. The ATLAS collaboration searched for the production of three W bosons or of a W boson and a photon together with a Z or W boson at a center of mass energy of 8 TeV. ATLAS has also searched for the electroweak production of a heavy boson and a photon together with two jets. Evidence has been found for the exclusive production of W boson pairs. All results have been used to constrain anomalous quartic gauge couplings and have been compared to the latest theory predictions.

  13. On possible contribution of a leptoquark intermediate boson mechanism in the free neutron beta decay

    International Nuclear Information System (INIS)

    Gaponov, Yu.V.

    2000-01-01

    A possible mechanism of the virtual leptoquark scalar intermediate boson exchange connected with a contribution of the right-handed nucleon currents to the free beta decay is demonstrated. The extension of the hypothesis can be associated with the realization of the same mechanism in the beta decay via the emission of right-handed neutrino (left-handed antineutrino). It is shown that a hypothesis of this kind leads to appearance of scalar and tensor terms in the effective Hamiltonian of weak interaction, and these terms include the right-handed neutrinos. The relevant experimental data are discussed [ru

  14. Heat transfer in the spin-boson model: a comparative study in the incoherent tunneling regime.

    Science.gov (United States)

    Segal, Dvira

    2014-07-01

    We study the transfer of heat in the nonequilibrium spin-boson model with an Ohmic dissipation. In the nonadiabatic limit we derive a formula for the thermal conductance based on a rate equation formalism at the level of the noninteracting blip approximation, valid for temperatures T>T(K), with T(K) as the Kondo temperature. We evaluate this expression analytically assuming either weak or strong couplings, and demonstrate that our results agree with exact relations. Far-from-equilibrium situations are further examined, showing a close correspondence to the linear response limit.

  15. Measurement of the masses of the electroweak gauge bosons at L3; Bestimmung der Massen der elektroschwachen Eichbosonen bei L3

    Energy Technology Data Exchange (ETDEWEB)

    Rosenbleck, C.

    2006-10-09

    This thesis presents the measurement of the masses of the carriers of the weak force in the Standard Model of Particle Physics, the gauge bosons W and Z. The masses are determined using the kinematics of the bosons' decay products. The data were collected by the L3 experiment at the Large Electron Positron Collider (LEP) at centre-of-mass energies, {radical}(s), between 183 GeV and 209 GeV in the years 1997 to 2000. The Z-boson mass is determined to be m{sub Z}=91.272{+-}0.046 GeV. The second part of this analysis describes the measurement of the mass of the W-boson. The W-boson mass is determined to be m{sub W}=80.242{+-}0.057 GeV in this analysis. If combined with the L3 results at lower centre-of-mass energies, the final W boson mass value is m{sub W}=80.270{+-}0.055 GeV. The {rho} parameter is defined as {rho}=m{sup 2}{sub W}/(m{sup 2}{sub Z} . cos{sup 2} {theta}{sub W}). Using the value of m{sub Z} obtained in the Z resonance scan, the final value for m{sub W} and the value of {theta}{sub W}, {rho} is obtained to be {rho}=0.9937{+-}0.0024, yielding a 2.6{sigma} deviation from 1. Combining the L3 value for m{sub W} with the results of the LEP experiments ALEPH, DELPHI, and OPAL and the TEVATRON experiments CDF and DOe yields a W boson mass of m{sub W}=80.392{+-}0.029 GeV. Together with other measurements this determines the best value of the Higgs-boson mass to be m{sub H}=85{sub -28}{sup +39} GeV. (orig.)

  16. Anomalous transport at weak coupling

    International Nuclear Information System (INIS)

    Chowdhury, Subham Dutta; David, Justin R.

    2015-01-01

    We evaluate the contribution of chiral fermions in d=2,4,6, chiral bosons, a chiral gravitino like theory in d=2 and chiral gravitinos in d=6 to all the leading parity odd transport coefficients at one loop. This is done by using finite temperature field theory to evaluate the relevant Kubo formulae. For chiral fermions and chiral bosons the relation between the parity odd transport coefficient and the microscopic anomalies including gravitational anomalies agree with that found by using the general methods of hydrodynamics and the argument involving the consistency of the Euclidean vacuum. For the gravitino like theory in d=2 and chiral gravitinos in d=6, we show that relation between the pure gravitational anomaly and parity odd transport breaks down. From the perturbative calculation we clearly identify the terms that contribute to the anomaly polynomial, but not to the transport coefficient for gravitinos. We also develop a simple method for evaluating the angular integrals in the one loop diagrams involved in the Kubo formulae. Finally we show that charge diffusion mode of an ideal 2 dimensional Weyl gas in the presence of a finite chemical potential acquires a speed, which is equal to half the speed of light.

  17. Axial weak currents in the Wess-Zumino term

    International Nuclear Information System (INIS)

    Fujikawa, Kazuo

    1986-01-01

    In a simplified model lagrangian of 3 quarks with an SU(2)sub(L) gauging of chiral SU(3)sub(L)xSU(3)sub(R) to introduce W-boson, we analyse certain complications associated with the low-energy theorem including axial weak fields. We first show that the low-energy amplitude is independent of the form of the quark-level anomalous identity, whether in the covariant form or the consistent form. However, the interplay of the short-distance dynamics (anomalous identity) and the long-distance dynamics (low-energy theorem) becomes involved in the presence of axial fields. We then discuss what kinds of conditions single out the gauged Wess-Zumino term as a low-energy effective action. The connection of the low-energy theorem with the 't Hooft anomaly matching condition is also discussed. (orig.)

  18. T-duality diagram for a weakly curved background

    International Nuclear Information System (INIS)

    Davidovic, Ljubica; Nikolic, Bojan; Sazdovic, Branislav

    2015-01-01

    In one of our previous papers we generalized the Buscher T-dualization procedure. Here we will investigate the application of this procedure to the theory of a bosonic string moving in the weakly curved background. We obtain the complete T-dualization diagram, connecting the theories which are the result of the T-dualizations over all possible choices of the coordinates. We distinguish three forms of the T-dual theories: the initial theory, the theory obtained T-dualizing some of the coordinates of the initial theory and the theory obtained T-dualizing all of the initial coordinates. While the initial theory is geometric, all the other theories are non-geometric and additionally non-local. We find the T-dual coordinate transformation laws connecting these theories and show that the set of all T-dualizations forms an Abelian group. (orig.)

  19. Higgs-boson contributions to gauge-boson mass shifts in extended electroweak models

    International Nuclear Information System (INIS)

    Moore, S.R.

    1985-10-01

    In the minimal standard model, the difference between the tree-level and one-loop-corrected predictions for the gauge-boson masses, known as the mass shifts, are of the order of 4%. The dominant contribution is from light-fermion loops. The Higgs-dependent terms are small, even if the Higgs boson is heavy. We have analyzed the mass shifts for models with a more complicated Higgs sector. We use the on-shell renormalization scheme, in which the parameters of the theory are the physical masses and couplings. We have considered the 2-doublet, n-doublet, triplet and doublet-triplet models. We have found that the Z-boson mass prediction has a strong dependence on the charged-Higgs mass. In the limit that the charged Higgs is much heavier than the gauge bosons, the Higgs-dependent terms become significant, and may even cancel the light-fermion terms. In the models with a Higgs triplet, there is also a strong dependence on the neutral-Higgs masses, although this contribution tends to be suppressed in realistic models. The W-boson mass shift does not have a strong Higgs dependence. If we use the Z mass as input in determining the parameters of the theory, a scenario which will become attractive as the mass of the Z is accurately measured in the next few years, we find that the W-boson mass shift exhibits the same sort of behavior, differing from the minimal model for the case of the charged Higgs being heavy. We have found that when radiative corrections are taken into account, models with extended Higgs sectors may differ significantly from the minimal standard model in their predictions for the gauge-boson masses. Thus, an accurate measurement of the masses will help shed light on the structure of the Higgs sector. 68 refs

  20. Prospects for Charged Higgs Boson Searches at the Large Hadron Collider with Early ATLAS Data

    CERN Document Server

    Lane, Jenna Louise; Jones, Roger; Yang, Un-Ki

    In some theories beyond the Standard Model, such as Supersymmetry, the two complex scalar doublets required for electro-weak symmetry breaking result in, amongst other new particles, two charged Higgs bosons, H ± . This thesis presents the expected sensitivity to the H ± , assuming proton-proton collisions at a centre of mass energy √ s = 10 TeV provided by the Large Hadron Collider and recorded by the ATLAS experiment. At this centre of mass energy, top-quark pairs are produced with a predicted cross section of 401.6 pb, and the H ± are potentially produced in the top quark decay t → bH + , which replaces the Standard Model decay t → bW + . The H ± were assumed to decay to the quark pairs c s or s c , and the presence of the H ± was inferred from a secondary peak in the W -boson mass distribution. A kinematic fitting method was used to gain better separation between the W -boson and H ± mass peaks, and a maximum likelihood method was used to set the expected upper limits on the branching ratio B ...

  1. Search for Higgs bosons and for Supersymmetric particles at particle collider experiments

    CERN Document Server

    Muanza, Steve

    The corner stone of the Standard Model (SM) of Particle Physics is the Higgs mechanism. It explains how the bosons W, Z and H acquire a mass via weak interactions. In addition it explains how the charged fermions also acquire a mass through Yukawa interactions. And on top of this, it regularizes the scattering of longitudinal W and Z bosons at high energy. The discovery of a Higgs boson by the ATLAS and the CMS collaborations in 2012 marked the culminating success of the SM at explaining most of the known phenomena. However a few other phenomena such as the Dark Matter and the Dark energy cannot be explained by the SM particles. What's more, the SM leaves several open questions such as a quest for a quantum theory for gravity, the naturalness in the Higgs sector, a possible Grand Unification,... The common thread in topics presented in this habilitation thesis is the search for manifestations of a TeV scale supersymmetric (SUSY) extension of the Standard Model at particle collider experiments. Among the predi...

  2. Green’s functions for spin boson systems: Beyond conventional perturbation theories

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Junjie [State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433 (China); Xu, Hui [Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433 (China); Wu, Chang-Qin [State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433 (China); Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433 (China)

    2016-12-20

    Unraveling general properties of Green’s functions of quantum dissipative systems is of both experimental relevance and theoretical interest. Here, we study the spin-boson model as a prototype. By utilizing the Majorana-fermion representation together with the polaron transformation, we establish a theoretical approach to analyze Green’s functions of the spin-boson model. In contrast to conventional perturbation theories either in the tunneling energy or in the system-bath coupling strength, the proposed scheme gives reliable results over wide regimes of the coupling strength, bias, as well as temperature. To demonstrate the utility of the approach, we consider the susceptibility as well as the symmetrized spin correlation function (SSCF) which can be expressed in terms of Green’s functions. Thorough investigations are made on systems embedded in Ohmic or sub-Ohmic bosonic baths. We found the so-obtained SSCF is the same as that of the non-interacting blip approximation (NIBA) in unbiased systems while it is applicable for a wider range of temperature in the biased systems compared with the NIBA. We also show that a previous perturbation result is recovered as a weak coupling limit of the so-obtained SSCF. Furthermore, by studying the quantum criticality of the susceptibility, we confirm the validity of the quantum-to-classical mapping in the whole sub-Ohmic regime.

  3. Pair production of neutralinos and charginos at the LHC: The role of Higgs bosons exchange

    International Nuclear Information System (INIS)

    Arhrib, Abdesslam; Benbrik, Rachid; Chabab, Mohamed; Chen, Chuan-Hung

    2011-01-01

    We analyze the effects of the s-channel Higgs bosons exchange on the charginos-pair and neutralinos-pair production in proton-proton collision at the CERN Large Hadron Collider (LHC) in the following channels: pp→χ-tilde + χ-tilde - /χ-tilde 0 χ-tilde 0 +X, within the minimal supersymmetric standard model (MSSM). Assuming the usual GUT relation between M 1 and M 2 at the weak scale, we found that substantial enhancement can be obtained through s-channel Higgs bosons exchange in the mixed regime where M 2 ∼|μ| with moderate to large tanβ at the resonance of the heavy Higgs bosons. By combining the phenomenological constraints on neutralinos and charginos, we may still find regions of parameter space where charginos-pair and neutralinos-pair production at the LHC from bb initial state can be large and observable at LHC. We also compute the full complete set of electroweak (EW) contributions to pp→gg→χ-tilde + χ-tilde - /χ-tilde 0 χ-tilde 0 +X at the one-loop level in the general MSSM. The analytical-computation of the complete tree-level amplitude for bb→χ-tilde + χ-tilde - /χ-tilde 0 χ-tilde 0 +X, including s-channel Higgs exchange, is given.

  4. Hartman effect and weak measurements that are not really weak

    International Nuclear Information System (INIS)

    Sokolovski, D.; Akhmatskaya, E.

    2011-01-01

    We show that in wave packet tunneling, localization of the transmitted particle amounts to a quantum measurement of the delay it experiences in the barrier. With no external degree of freedom involved, the envelope of the wave packet plays the role of the initial pointer state. Under tunneling conditions such ''self-measurement'' is necessarily weak, and the Hartman effect just reflects the general tendency of weak values to diverge, as postselection in the final state becomes improbable. We also demonstrate that it is a good precision, or a 'not really weak' quantum measurement: no matter how wide the barrier d, it is possible to transmit a wave packet with a width σ small compared to the observed advancement. As is the case with all weak measurements, the probability of transmission rapidly decreases with the ratio σ/d.

  5. Review of Physics Results from the Tevatron: Higgs Boson Physics

    International Nuclear Information System (INIS)

    Junk, Thomas R.; Juste, Aurelio

    2015-01-01

    We review the techniques and results of the searches for the Higgs boson performed by the two Tevatron collaborations, CDF and DO. The Higgs boson predicted by the Standard Model was sought in the mass range 90 GeVboson fusion, and tt ¯ H production, and in five main decay modes: H→bb ¯ , H→τ + τ − , H→WW (∗) , H→ZZ (∗) , and H→γγ . An excess of events was seen in the H→bb ¯ searches consistent with a Standard Model Higgs boson with a mass in the range 115 GeVboson mass of m H =125 GeV, studies of Higgs boson properties were performed, including measurements of the product of the cross section times branching the ratio in various production and decay modes, constraints on Higgs boson couplings to fermions and vector bosons, and tests of spin and parity. We also summarize the results of searches for supersymmetric Higgs bosons, and Higgs bosons in other extensions of the Standard Model

  6. Seniority mappings for probing phenomenological nuclear boson models

    International Nuclear Information System (INIS)

    De Kock, E.A.

    1988-12-01

    The interacting boson model (IBM) and interacting boson-fermion model (IBFM) are discussed. The main ideas of boson mapping of fermion systems are introduced using Holstein-Primakoff and Dyson-Maleev mappings of angular momentum operators. Generalized Dyson-Maleev (GDM) and Holstein-Primakoff (GHP) mappings are included. In fermoin problems, the degrees of freedom of collective motion are described by a collective subalgebra of the complete bifermion subalgebra. GDM mapping of Sp(6) generators, the transformation to collect bosons and truncation to these bosons led to collective sd-boson realization of Sp(6) algebra. This resulted in an IBM-like description of the collective subspace. Non-hermitian and existing hermitian forms are indicated in the assumed structure of an IBM Hamiltonian Boson mapping based on seniority considerations and involving single-j shell approximations of the shell model are examined. One method utilized truncation of a shell model space to a space spanned by monopole (S) and quadrupole (D) pairs. The association between states in truncated fermion and sd-boson spaces constructs boson images of fermion operators by equating boson and fermion matrix elements. To obtain boson images with IBM-like structures, a zero-order approximation was adopted. This approximation retains only N-body terms in the images of N-body fermion operators. A similarity transformation re-expressing GDM images of single-j shell fermion operators in seniority bosons was applied to the GDM image of a general shell model Hamiltonian. Numerical results for the surface-delta interaction show that truncation to s- and d-bosons in the seniority image of a two-body operator is not allowed if N≥2. This transformation was extended to odd fermion systems and applied to the image of the quadrupole pairing interaction. 79 refs., 3 figs., 4 tabs

  7. Search for a Higgs boson produced in association with a W boson at ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Ruckert, Benjamin

    2009-11-23

    The Large Hadron Collider at CERN the most modern proton-proton collider and data taking will start in 2009, with a centre-of-mass energy of {radical}(s) = 7 TeV. The ATLAS detector, which is one of two multi-purpose detectors at the Large Hadron Collider, is able to detect a Standard Model Higgs boson if it exists. This is one of the main tasks of the ATLAS experiment. This thesis deals with a Standard Model Higgs boson produced in association with a W boson. The Monte Carlo study is based on physics events generated at the nominal centre-of-mass energy of the Large Hadron Collider of {radical}(s) = 14 TeV. Large parts of this analysis have been done using the global Grid infrastructure of the Large Hadron Collider experiments. A mass range of the Higgs boson of m{sub H} = 130 - 190 GeV has been taken into account. In this mass range, the Higgs boson dominantly decays into a pair of W bosons, leading to initially three W bosons: WH{yields}WWW. Two orthogonal analysis channels have been investigated in detailed studies of the background properties. The first channel considers the leptonic decay of two W bosons, such that the leptons are of opposite charge. The third W boson then decays hadronically. The analysis is based on one-dimensional cuts, where the best cuts found are strict cuts on the transverse momenta of the leptons, a cut on the invariant mass of the jets, as well as a cut on the transverse jet momenta and the missing transverse energy. The second decay channel studied is dedicated to the leptonic decay of all three W bosons. Again, cuts on the transverse momenta of the leptons and the jets have been proven to be efficient, as well as the use of the spatial correlation of the decay products of the Higgs boson. The invariant mass of the leptons with opposite sign has been emerged as a very efficient cut to reject dominant diboson background contributions. The discovery reach of both channels separately as well as the combination has been calculated using

  8. Search for a Higgs boson produced in association with a W boson at ATLAS

    International Nuclear Information System (INIS)

    Ruckert, Benjamin

    2009-01-01

    The Large Hadron Collider at CERN the most modern proton-proton collider and data taking will start in 2009, with a centre-of-mass energy of √(s) = 7 TeV. The ATLAS detector, which is one of two multi-purpose detectors at the Large Hadron Collider, is able to detect a Standard Model Higgs boson if it exists. This is one of the main tasks of the ATLAS experiment. This thesis deals with a Standard Model Higgs boson produced in association with a W boson. The Monte Carlo study is based on physics events generated at the nominal centre-of-mass energy of the Large Hadron Collider of √(s) = 14 TeV. Large parts of this analysis have been done using the global Grid infrastructure of the Large Hadron Collider experiments. A mass range of the Higgs boson of m H = 130 - 190 GeV has been taken into account. In this mass range, the Higgs boson dominantly decays into a pair of W bosons, leading to initially three W bosons: WH→WWW. Two orthogonal analysis channels have been investigated in detailed studies of the background properties. The first channel considers the leptonic decay of two W bosons, such that the leptons are of opposite charge. The third W boson then decays hadronically. The analysis is based on one-dimensional cuts, where the best cuts found are strict cuts on the transverse momenta of the leptons, a cut on the invariant mass of the jets, as well as a cut on the transverse jet momenta and the missing transverse energy. The second decay channel studied is dedicated to the leptonic decay of all three W bosons. Again, cuts on the transverse momenta of the leptons and the jets have been proven to be efficient, as well as the use of the spatial correlation of the decay products of the Higgs boson. The invariant mass of the leptons with opposite sign has been emerged as a very efficient cut to reject dominant diboson background contributions. The discovery reach of both channels separately as well as the combination has been calculated using Bayesian methods. The

  9. Calibration of the Atlas electromagnetic calorimeter. Search for the Higgs boson in its invisible decays; Etalonnage du calorimetre electromagnetique d'ATLAS. Recherche du boson de Higgs dans ses desintegrations invisibles

    Energy Technology Data Exchange (ETDEWEB)

    Neukermans, L

    2002-05-01

    The most promising channels for an intermediate mass Higgs boson discovery at LHC are leptonic and photonic decays. Therefore, a good uniformity of response of the electromagnetic calorimeter is required to reach the 0.7% constant term needed. This thesis deals with the absolute calibration of this detector. An electrical description of the calibration system, the detector and its read-out chain has been made for a better comprehension of the signal pulse shapes. A method, using a convolution of the calibration waveforms, has been developed to predict physics response, leading to absolute calibration. The level of accuracy obtained allows to reach the 0.3% contribution to the constant term required. Test beam analysis of a prototype module showed the performance of the electromagnetic calorimeter in terms of local resolution and linearity. A uniformity study has been made, leading to a 0.8% dispersion on a {delta}{eta} x {delta}{phi} = 1.2 x 0.75 area. In a second part, the observability of an invisible Higgs boson produced via weak boson fusion at the LHC is presented. A level 1 trigger strategy for this purely jet and missing E{sub T} final states is discussed. A method to measure the level of background using physics events is presented. This analysis shows that an invisible branching ratio of 25% could be reached at 95% CL with only 30 fb{sup -1} for a Higgs boson mass of 120 GeV/c{sup 2}. (author)

  10. Weak Measurement and Quantum Correlation

    Indian Academy of Sciences (India)

    Arun Kumar Pati

    Entanglement: Two quantum systems can be in a strongly correlated state even if .... These are resources which can be used to design quantum computer, quantum ...... Weak measurements have found numerous applications starting from the ...

  11. Weakly infinite-dimensional spaces

    International Nuclear Information System (INIS)

    Fedorchuk, Vitalii V

    2007-01-01

    In this survey article two new classes of spaces are considered: m-C-spaces and w-m-C-spaces, m=2,3,...,∞. They are intermediate between the class of weakly infinite-dimensional spaces in the Alexandroff sense and the class of C-spaces. The classes of 2-C-spaces and w-2-C-spaces coincide with the class of weakly infinite-dimensional spaces, while the compact ∞-C-spaces are exactly the C-compact spaces of Haver. The main results of the theory of weakly infinite-dimensional spaces, including classification via transfinite Lebesgue dimensions and Luzin-Sierpinsky indices, extend to these new classes of spaces. Weak m-C-spaces are characterised by means of essential maps to Henderson's m-compacta. The existence of hereditarily m-strongly infinite-dimensional spaces is proved.

  12. Weak interactions and presupernova evolution

    International Nuclear Information System (INIS)

    Aufderheide, M.B.; State Univ. of New York

    1991-01-01

    The role of weak interactions, particularly electron capture and β - decay, in presupernova evolution is discussed. The present uncertainty in these rates is examined and the possibility of improving the situation is addressed. 12 refs., 4 figs

  13. Multi-boson production at the LHC

    CERN Document Server

    Oh, Alexander; The ATLAS collaboration

    2015-01-01

    The Large Hadron Collider (LHC) has completed in 2012 its first running phase and the experiments have collected data sets of pp collisions at centre-of-mass energies of 7 and 8 TeV with an integrated luminosity of about 5ifb and 20ifb, respectively. Analyses of these data sets have produced a rich set of results in the electroweak sector of the standard model. This presentation reviews the run-1 analysis of the inclusive and exclusive di-boson production processes from ATLAS and CMS, and the interpretation of the differential production cross sections in the framework of anomalous gauge boson couplings. Emphasis will be given to most recent results.

  14. Searching for displaced Higgs boson decays

    Science.gov (United States)

    Csáki, Csaba; Kuflik, Eric; Lombardo, Salvator; Slone, Oren

    2015-10-01

    We study a simplified model of the Standard Model (SM) Higgs boson decaying to a degenerate pair of scalars which travel a macroscopic distance before decaying to SM particles. This is the leading signal for many well-motivated solutions to the hierarchy problem that do not propose additional light colored particles. Bounds for displaced Higgs boson decays below 10 cm are found by recasting existing tracker searches from Run I. New tracker search strategies, sensitive to the characteristics of these models and similar decays, are proposed with sensitivities projected for Run II at √{s }=13 TeV . With 20 fb-1 of data, we find that Higgs branching ratios down to 2 ×1 0-4 can be probed for centimeter decay lengths.

  15. Dark side of the Higgs boson

    International Nuclear Information System (INIS)

    Low, I.; Schwaller, P.; Shaughnessy, G.; Wagner, C.E.M.

    2012-01-01

    Current limits from the Large Hadron Collider exclude a standard model-like Higgs mass above 150 GeV, by placing an upper bound on the Higgs production rate. We emphasize that, alternatively, the limit could be interpreted as a lower bound on the total decay width of the Higgs boson. If the invisible decay width of the Higgs is of the same order as the visible decay width, a heavy Higgs boson could be consistent with null results from current searches. We propose a method to infer the invisible decay of the Higgs by using the width of the measured h → ZZ → 4 (ell) line shape, and study the effect on the width extraction due to a reduced signal strength. Assuming the invisible decay product is the dark matter, we show that minimal models are tightly constrained by limits from Higgs searches at the LHC and direct detection experiments of dark matter, unless the relic density constraint is relaxed.

  16. Lepton flavor violation with light vector bosons

    Directory of Open Access Journals (Sweden)

    Julian Heeck

    2016-07-01

    Full Text Available New sub-GeV vector bosons with couplings to muons but not electrons have been discussed in order to explain the muon's magnetic moment, the gap of high-energy neutrinos in IceCube or the proton radius puzzle. If such a light Z′ not only violates lepton universality but also lepton flavor, as expected for example from the recent hint for h→μτ at CMS, the two-body decay mode τ→μZ′ opens up and for MZ′<2mμ gives better constraints than τ→3μ already with 20-year-old ARGUS limits. We discuss the general prospects and motivation of light vector bosons with lepton-flavor-violating couplings.

  17. Direct measurement of the W boson width

    Energy Technology Data Exchange (ETDEWEB)

    Abazov, V.M.; /Dubna, JINR; Abbott, B.; /Oklahoma U.; Abolins, M.; /Michigan State U.; Acharya, B.S.; /Tata Inst.; Adams, M.; /Illinois U., Chicago; Adams, T.; /Florida State U.; Aguilo, E.; /Alberta U. /Simon Fraser U. /McGill U.; Ahsan, M.; /Kansas State U.; Alexeev, G.D.; /Dubna, JINR; Alkhazov, G.; /St. Petersburg, INP; Alton, A.; /Michigan U. /Northeastern U.

    2009-09-01

    We present a direct measurement of the width of the W boson using the shape of the transverse mass distribution of W {yields} e{nu} candidates selected in 1 fb{sup -1} of data collected with the D0 detector at the Fermilab Tevatron collider in p{bar p} collisions at {radical}s = 1.96 TeV. We use the same methods and data sample that were used for our recently published W boson mass measurement, except for the modeling of the recoil, which is done with a new method based on a recoil library. Our result, 2.028 {+-} 0.072 GeV, is in agreement with the predictions of the standard model and is the most precise direct measurement result from a single experiment to date.

  18. Cherenkov-like emission of Z bosons

    Science.gov (United States)

    Colladay, D.; Noordmans, J. P.; Potting, R.

    2017-07-01

    We study CPT and Lorentz violation in the electroweak gauge sector of the Standard Model in the context of the Standard-Model Extension (SME). In particular, we show that any non-zero value of a certain relevant Lorentz violation parameter that is thus far unbounded by experiment would imply that for sufficiently large energies one of the helicity modes of the Z boson should propagate with spacelike four-momentum and become stable against decay in vacuum. In this scenario, Cherenkov-like radiation of Z bosons by ultra-high-energy cosmic-ray protons becomes possible. We deduce a bound on the Lorentz violation parameter from the observational data on ultra-high energy cosmic rays.

  19. Weak Deeply Virtual Compton Scattering

    International Nuclear Information System (INIS)

    Ales Psaker; Wolodymyr Melnitchouk; Anatoly Radyushkin

    2006-01-01

    We extend the analysis of the deeply virtual Compton scattering process to the weak interaction sector in the generalized Bjorken limit. The virtual Compton scattering amplitudes for the weak neutral and charged currents are calculated at the leading twist within the framework of the nonlocal light-cone expansion via coordinate space QCD string operators. Using a simple model, we estimate cross sections for neutrino scattering off the nucleon, relevant for future high intensity neutrino beam facilities

  20. Weakly compact operators and interpolation

    OpenAIRE

    Maligranda, Lech

    1992-01-01

    The class of weakly compact operators is, as well as the class of compact operators, a fundamental operator ideal. They were investigated strongly in the last twenty years. In this survey, we have collected and ordered some of this (partly very new) knowledge. We have also included some comments, remarks and examples. The class of weakly compact operators is, as well as the class of compact operators, a fundamental operator ideal. They were investigated strongly in the last twenty years. I...

  1. Bosonic and fermionic dipoles on a ring

    DEFF Research Database (Denmark)

    Zöllner, Sascha; Pethick, C. J.; Bruun, Georg Morten

    2011-01-01

    We show that dipolar bosons and fermions confined in a quasi-one-dimensional ring trap exhibit a rich variety of states because their interaction is inhomogeneous. For purely repulsive interactions, with increasing strength of the dipolar coupling there is a crossover from a gaslike state...... to an inhomogeneous crystal-like one. For small enough angles between the dipoles and the plane of the ring, there are regions with attractive interactions, and clustered states can form....

  2. Higgs boson mass and new physics

    Energy Technology Data Exchange (ETDEWEB)

    Bezrukov, Fedor [Connecticut Univ., Storrs, CT (United States). Dept. of Physics; Brookhaven National Lab., Upton, NY (United States). RIKEN-BNL Research Center; Kalmykov, Mikhail Yu.; Kniehl, Bernd A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Shaposhnikov, Mikhail [Ecole Polytechnique Federale de Lausanne (Switzerland). Inst. de Theorie des Phenomenes Physiques

    2012-05-15

    We discuss the lower Higgs boson mass bounds which come from the absolute stability of the Standard Model (SM) vacuum and from the Higgs inflation, as well as the prediction of the Higgs boson mass coming from asymptotic safety of the SM. We account for the 3-loop renormalization group evolution of the couplings of the Standard Model and for a part of two-loop corrections that involve the QCD coupling {alpha}{sub s} to initial conditions for their running. This is one step above the current state of the art procedure (''one-loop matching-two-loop running''). This results in reduction of the theoretical uncertainties in the Higgs boson mass bounds and predictions, associated with the Standard Model physics, to 1-2 GeV. We find that with the account of existing experimental uncertainties in the mass of the top quark and {alpha}{sub s} (taken at 2{sigma} level) the bound reads M{sub H} {>=} M{sub min} (equality corresponds to the asymptotic safety prediction), where M{sub min}=129{+-}6 GeV. We argue that the discovery of the SM Higgs boson in this range would be in agreement with the hypothesis of the absence of new energy scales between the Fermi and Planck scales, whereas the coincidence of M{sub H} with M{sub min} would suggest that the electroweak scale is determined by Planck physics. In order to clarify the relation between the Fermi and Planck scale a construction of an electron-positron or muon collider with a center of mass energy {proportional_to}200+200 GeV (Higgs and t-quark factory) would be needed.

  3. Transverse momentum signatures for heavy Higgs bosons

    International Nuclear Information System (INIS)

    Cahn, R.N.; Ellis, S.D.; Kleiss, R.; Stirling, W.J.

    1986-01-01

    Heavy Higgs bosons produced by WW fusion at the SSC will have transverse mementum of order M/sub w/. The background due to q anti q → ZZ will produce pairs with characteristically less transverse momentum. This provides a useful discriminator. It may be possible to tag the WW fusion events in a manner analogous to that used in two photon physics. 12 refs., 4 figs

  4. Discovery of the Higgs boson and beyond

    International Nuclear Information System (INIS)

    Godbole, Rohini

    2014-01-01

    This talk is about the Higgs mechanism, the theoretical discovery of which, was awarded the 2013 Nobel Prize. It also discusses the discovery of the Higgs boson at the large hadron collider which provided the experimental proof that made the Nobel prize possible. It covers the implications of these for the quest of unravelling the fundamental laws of nature which seem to govern both, the behavior of the ultra small (subatomic particles) and the ultra large (the cosmos)

  5. Higgs boson mass and new physics

    International Nuclear Information System (INIS)

    Bezrukov, Fedor; Brookhaven National Lab., Upton, NY; Kalmykov, Mikhail Yu.; Kniehl, Bernd A.; Shaposhnikov, Mikhail

    2012-05-01

    We discuss the lower Higgs boson mass bounds which come from the absolute stability of the Standard Model (SM) vacuum and from the Higgs inflation, as well as the prediction of the Higgs boson mass coming from asymptotic safety of the SM. We account for the 3-loop renormalization group evolution of the couplings of the Standard Model and for a part of two-loop corrections that involve the QCD coupling α s to initial conditions for their running. This is one step above the current state of the art procedure (''one-loop matching-two-loop running''). This results in reduction of the theoretical uncertainties in the Higgs boson mass bounds and predictions, associated with the Standard Model physics, to 1-2 GeV. We find that with the account of existing experimental uncertainties in the mass of the top quark and α s (taken at 2σ level) the bound reads M H ≥ M min (equality corresponds to the asymptotic safety prediction), where M min =129±6 GeV. We argue that the discovery of the SM Higgs boson in this range would be in agreement with the hypothesis of the absence of new energy scales between the Fermi and Planck scales, whereas the coincidence of M H with M min would suggest that the electroweak scale is determined by Planck physics. In order to clarify the relation between the Fermi and Planck scale a construction of an electron-positron or muon collider with a center of mass energy ∝200+200 GeV (Higgs and t-quark factory) would be needed.

  6. Search for horizontal bosons at the SSC

    International Nuclear Information System (INIS)

    Albright, C.H.; Deshpande, N.G.; Gunion, J.F.; Haber, H.E.

    1984-01-01

    The production process anti p p → l - l' + + X, where the leptons belong to two different generations and X refers to spectator jets, provides a clear signature for horizontal (generation-changing) bosons when the leptons are emitted nearly back-to-back and p/sub T//sup miss/ = 0. Cross sections and p/sub T/ distributions for each lepton are presented, and discovery limits on M/sub H/ are extracted for several different channels

  7. Chiral anomaly, bosonization and fractional charge

    International Nuclear Information System (INIS)

    Mignaco, J.A.; Rego Monteiro, M.A. do.

    1984-01-01

    A method to evaluate the Jacobian of chiral rotations, regulating determinants through the proper time method and using Seeley's asymptotic expansion is presented. With this method the chiral anomaly ofr ν=4,6 dimensions is computed easily, bosonization of some massless two-dimensional models is discussed and the problem of charge fractionization is handled. Besides, the general validity of Fujikawa's approach to regulate the Jacobian of chiral rotations with non-hermitean operators is commented. (Author) [pt

  8. Higgs boson studies at the Tevatron

    Czech Academy of Sciences Publication Activity Database

    Aaltonen, L.; Abbott, B.; Abazov, V. M.; Kupčo, Alexander; Lokajíček, Miloš; Lysák, Roman

    2013-01-01

    Roč. 88, č. 5 (2013), "052014-1"-"052014-29" ISSN 1550-7998 R&D Projects: GA MŠk(CZ) LG12006 Institutional support: RVO:68378271 Keywords : Higgs particle * mass * vector boson * gluon * fusion * Batavia TEVATRON Coll * CDF * DZERO * anti-p p * interaction Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 4.864, year: 2013

  9. Chiral anomaly, bosonization, and fractional charge

    International Nuclear Information System (INIS)

    Mignaco, J.A.; Monteiro, M.A.R.

    1985-01-01

    We present a method to evaluate the Jacobian of chiral rotations, regulating determinants through the proper-time method and using Seeley's asymptotic expansion. With this method we compute easily the chiral anomaly for ν = 4,6 dimensions, discuss bosonization of some massless two-dimensional models, and handle the problem of charge fractionization. In addition, we comment on the general validity of Fujikawa's approach to regulate the Jacobian of chiral rotations with non-Hermitian operators

  10. Quantum Kinematics of Bosonic Vortex Loops

    International Nuclear Information System (INIS)

    Goldin, G.A.; Owczarek, R.; Sharp, D.H.

    1999-01-01

    Poisson structure for vortex filaments (loops and arcs) in 2D ideal incompressible fluid is analyzed in detail. Canonical coordinates and momenta on coadjoint orbits of the area-preserving diffeomorphism group, associated with such vortices, are found. The quantum space of states in the simplest case of ''bosonic'' vortex loops is built within a geometric quantization approach to the description of a quantum fluid. Fock-like structure and non-local creation and annihilation operators of quantum vortex filaments are introduced

  11. Acute muscular weakness in children

    Directory of Open Access Journals (Sweden)

    Ricardo Pablo Javier Erazo Torricelli

    Full Text Available ABSTRACT Acute muscle weakness in children is a pediatric emergency. During the diagnostic approach, it is crucial to obtain a detailed case history, including: onset of weakness, history of associated febrile states, ingestion of toxic substances/toxins, immunizations, and family history. Neurological examination must be meticulous as well. In this review, we describe the most common diseases related to acute muscle weakness, grouped into the site of origin (from the upper motor neuron to the motor unit. Early detection of hyperCKemia may lead to a myositis diagnosis, and hypokalemia points to the diagnosis of periodic paralysis. Ophthalmoparesis, ptosis and bulbar signs are suggestive of myasthenia gravis or botulism. Distal weakness and hyporeflexia are clinical features of Guillain-Barré syndrome, the most frequent cause of acute muscle weakness. If all studies are normal, a psychogenic cause should be considered. Finding the etiology of acute muscle weakness is essential to execute treatment in a timely manner, improving the prognosis of affected children.

  12. How well do we need to measure Higgs boson couplings?

    CERN Document Server

    Gupta, Rick S.; Wells, James D.

    2012-01-01

    Most of the discussion regarding the Higgs boson couplings to Standard Model vector bosons and fermions is presented with respect to what present and future collider detectors will be able to measure. Here, we ask the more physics-based question of how well do we need to measure the Higgs boson couplings? We first present a reasonable definition of "need" and then investigate the answer in the context of various highly motivated new physics scenarios: supersymmetry, mixed-in hidden sector Higgs bosons, and a composite Higgs boson. We find the largest coupling deviations away from the SM Higgs couplings that are possible if no other state related to EWSB is directly accessible at the LHC. Depending on the physics scenario under consideration, we find targets that range from less than 1% to 10% for vector bosons, and from a few percent to tens of percent for couplings to fermions.

  13. Higgs boson events and background lep. A Monte Carlo study

    International Nuclear Information System (INIS)

    Ekspong, G.; Hultqvist, K.

    1982-06-01

    Higgs boson production at LEP using e+ e- to Z 0 to H 0 + e+ e- has been studied by Monte Carlo generation of events with realistic errors of measurement added. The results show the recoil mass (Higgs boson mass) resolution to be reasonably good for boson masses bigger than 5 Ge V. The events are found to populate a phase space region free of physical background for all boson masses below about 35 GeV. For masses above 40 GeV the Higgs boson signal merges with the physical background produced by semileptonic decays of heavy flavour quarks while diminishing in strength to low levels. The geometrical acceptance of a detector like DELPHI is about 80 per cent for Higgs boson events. (Author)

  14. A Precise Measurement of the W Boson Mass with CDF

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The W boson mass measurement probes quantum corrections to the W propagator, such as those arising from supersymmetric particles or Higgs bosons. The new measurement from CDF is more precise than the previous world average, providing a stringent constraint on the mass of the Higgs boson in the context of the Standard Model. I describe this measurement, performed with 2.2/fb of data using 1.1 million candidates in the electron and muon decay channels, with three kinematic fits in each channel. The measurement uses in-situ calibrations from cosmic rays, J/psi and Upsilon data, and W- and Z-boson decays, with multiple cross-checks including independent determinations of the Z boson mass in both channels. The W-boson mass is measured to be 80387 +- 19 MeV/c^2.

  15. Multi-Boson Interactions at the Run 1 LHC

    Energy Technology Data Exchange (ETDEWEB)

    Green, Daniel R. [Fermilab; Meade, Patrick [YITP, Stony Brook; Pleier, Marc-Andre [Brookhaven

    2016-10-24

    This review article covers results on the production of all possible electroweak boson pairs and 2-to-1 vector boson fusion (VBF) at the CERN Large Hadron Collider (LHC) in proton-proton collisions at a center-of-mass energy of 7 TeV and 8 TeV. The data was taken between 2010 and 2012. Limits on anomalous triple gauge couplings (aTGCs) then follow. In addition, data on electroweak triple gauge boson production and 2-to-2 vector boson scattering (VBS) yield limits on anomalous quartic gauge boson couplings (aQGCs). The LHC hosts two general purpose experiments, ATLAS and CMS, which both have reported limits on aTGCs and aQGCs which are herein summarized. The interpretation of these limits in terms of an effective field theory (EFT) is reviewed, and recommendations are made for testing other types of new physics using multi-gauge boson production.

  16. Higgs Boson Searches at Hadron Colliders (1/4)

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    In these Academic Training lectures, the phenomenology of Higgs bosons and search strategies at hadron colliders are discussed. After a brief introduction on Higgs bosons in the Standard Model and a discussion of present direct and indirect constraints on its mass the status of the theoretical cross section calculations for Higgs boson production at hadron colliders is reviewed. In the following lectures important experimental issues relevant for Higgs boson searches (trigger, measurements of leptons, jets and missing transverse energy) are presented. This is followed by a detailed discussion of the discovery potential for the Standard Model Higgs boson for both the Tevatron and the LHC experiments. In addition, various scenarios beyond the Standard Model, primarily the MSSM, are considered. Finally, the potential and strategies to measured Higgs boson parameters and the investigation of alternative symmetry breaking scenarios are addressed.

  17. Academic Training Lecture: Higgs Boson Searches at Hadron Colliders

    CERN Multimedia

    HR Department

    2010-01-01

    Regular Programme 21, 22, 23 & 24 June 2010 from 11:00 to 12:00 - Main Auditorium, Bldg. 500-1-001 Higgs Boson Searches at Hadron Colliders by Dr. Karl Jakobs (University of Freiburg) In these Academic Training lectures, the phenomenology of Higgs bosons and search strategies at hadron colliders are discussed. After a brief introduction on Higgs bosons in the Standard Model and a discussion of present direct and indirect constraints on its mass the status of the theoretical cross section calculations for Higgs boson production at hadron colliders is reviewed. In the following lectures important experimental issues relevant for Higgs boson searches (trigger, measurements of leptons, jets and missing transverse energy) are presented. This is followed by a detailed discussion of the discovery potential for the Standard Model Higgs boson for both the Tevatron and the LHC experiments. In addition, various scenarios beyond the Standard Model, primarily the MSSM, are considered. Finally, the potential and ...

  18. Sdg interacting boson hamiltonian in the seniority scheme

    Energy Technology Data Exchange (ETDEWEB)

    Yoshinaga, N.

    1989-03-06

    The sdg interacting boson hamiltonian is derived in the seniority scheme. We use the method of Otsuka, Arima and Iachello in order to derive the boson hamiltonian from the fermion hamiltonian. To examine how good is the boson approximation in the zeroth-order, we carry out the exact shell model calculations in a single j-shell. It is found that almost all low-lying levels are reproduced quite well by diagonalizing the sdg interacting boson hamiltonian in the vibrational case. In the deformed case the introduction of g-bosons improves the reproduction of the spectra and of the binding energies which are obtained by diagnoalizing the exact shell model hamiltonian. In particular the sdg interacting boson model reproduces well-developed rotational bands.

  19. sdg Interacting boson hamiltonian in the seniority scheme

    Science.gov (United States)

    Yoshinaga, N.

    1989-03-01

    The sdg interacting boson hamiltonian is derived in the seniority scheme. We use the method of Otsuka, Arima and Iachello in order to derive the boson hamiltonian from the fermion hamiltonian. To examine how good is the boson approximation in the zeroth-order, we carry out the exact shell model calculations in a single j-shell. It is found that almost all low-lying levels are reproduced quite well by diagonalizing the sdg interacting boson hamiltonian in the vibrational case. In the deformed case the introduction of g-bosons improves the reproduction of the spectra and of the binding energies which are obtained by diagonalizing the exact shell model hamiltonian. In particular the sdg interacting boson model reproduces well-developed rotational bands.

  20. On the mass and thermodynamics of the Higgs boson

    Science.gov (United States)

    Fokas, A. S.; Vayenas, C. G.; Grigoriou, D. P.

    2018-02-01

    In two recent works we have shown that the masses of the W± and Zo bosons can be computed from first principles by modeling these bosons as bound relativistic gravitationally confined rotational states consisting of e±-νe pairs in the case of W± bosons and of a e+-νe-e- triplet in the case of the Zo boson. Here, we present similar calculations for the Higgs boson which we model as a bound rotational state consisting of a positron, an electron, a neutrino and an antineutrino. The model contains no adjustable parameters and the computed boson mass of 125.7 GeV/c2, is in very good agreement with the experimental value of 125.1 ± 1 GeV/c2. The thermodynamics and potential connection of this particle with the Higgs field are also briefly addressed.

  1. Goldstone bosons in a crystalline chiral phase

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, Marco

    2017-07-24

    The phase diagram of strong interaction matter is expected to exhibit a rich structure. Different models have shown, that crystalline phases with a spatially varying chiral condensate can occur in the regime of low temperatures and moderate densities, where they replace the first-order phase transition found for spatially constant order parameters. We investigate this inhomogeneous phase, where in addition to the chiral symmetry, translational and rotational symmetry are broken as well, in a two flavor Nambu--Jona-Lasinio model. The main goal of this work is to describe the Goldstone bosons in this phase, massless excitations that occur for spontaneously broken symmetries. We take one of the simplest possible modulations, the chiral density wave, and show how to derive the quark propagator of the theory analytically, by means of transformations in chiral and momentum space. We apply this to a test case for the gap equation. We show the derivation of Nambu-Goldstone modes in the inhomogeneous phase and find, that for our case only three different modes have to be taken into account. We proceed to calculate the Goldstone boson related to the breaking of spatial symmetry, which can be related to the neutral pion. By evaluating a Bethe-Salpeter equation, we can show, that we have indeed found a Goldstone boson and give its dispersion relation in terms of momenta perpendicular, as well as parallel to the mass modulation.

  2. ATLAS measurements of vector boson production

    CERN Document Server

    Levchenko, M; The ATLAS collaboration

    2014-01-01

    ATLAS measurements of vector boson production with associated jets Productions of light and heavy-flavour jets in association with a W or a Z boson in proton-proton collisions are important processes to study QCD in multi-scale environments and the proton parton content. The cross section, differential in several kinematics variables, have been measured with the ATLAS detector in 7 TeV proton-proton collisions and compared to high-order QCD calculations and Monte Carlo simulations. The results demonstrate the need for the inclusion of high-multiplicity matrix elements in the calculations of high jet multiplicities. The ratio of (Z+jets)/(W+jets) provides a precise test of QCD due to the large cancellations of theoretical and experimental uncertainties. Measurement of W+c production cross section has a unique sensitivity to the strange-quark density, which is poorly known at low x. W or Z boson production in association with b-quark jets, on the other hand, probes the b-quark density in the proton and the b-qu...

  3. Goldstone bosons in a crystalline chiral phase

    International Nuclear Information System (INIS)

    Schramm, Marco

    2017-01-01

    The phase diagram of strong interaction matter is expected to exhibit a rich structure. Different models have shown, that crystalline phases with a spatially varying chiral condensate can occur in the regime of low temperatures and moderate densities, where they replace the first-order phase transition found for spatially constant order parameters. We investigate this inhomogeneous phase, where in addition to the chiral symmetry, translational and rotational symmetry are broken as well, in a two flavor Nambu--Jona-Lasinio model. The main goal of this work is to describe the Goldstone bosons in this phase, massless excitations that occur for spontaneously broken symmetries. We take one of the simplest possible modulations, the chiral density wave, and show how to derive the quark propagator of the theory analytically, by means of transformations in chiral and momentum space. We apply this to a test case for the gap equation. We show the derivation of Nambu-Goldstone modes in the inhomogeneous phase and find, that for our case only three different modes have to be taken into account. We proceed to calculate the Goldstone boson related to the breaking of spatial symmetry, which can be related to the neutral pion. By evaluating a Bethe-Salpeter equation, we can show, that we have indeed found a Goldstone boson and give its dispersion relation in terms of momenta perpendicular, as well as parallel to the mass modulation.

  4. Higgs boson: the winner takes it all?

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    Since its discovery in 2012, the Higgs boson has been in the spotlight for both experimentalists and theorists. In addition to its confirmed role in the mass mechanism, recent papers have discussed its possible role in the inflation of the universe and in the matter-antimatter imbalance. Can a single particle be responsible for everything?   “Since 2012 we have known that the Higgs boson exists, but its inner properties are yet to be completely uncovered,” says Gian Giudice, a member of the CERN Theory Unit. “Precise measurements of its decay modes are still ongoing and the LHC Run 2 will be essential to understand the nature of this particle at a deeper level.” What we know is that this boson is not “yet another particle” among the hundreds that we deal with every day in physics labs. In agreement with the Standard Model theory, the recent experimental data confirms that the particle discovered by the CERN experiments is the key pa...

  5. Bounding the Higgs boson width through interferometry.

    Science.gov (United States)

    Dixon, Lance J; Li, Ye

    2013-09-13

    We study the change in the diphoton-invariant-mass distribution for Higgs boson decays to two photons, due to interference between the Higgs resonance in gluon fusion and the continuum background amplitude for gg→γγ. Previously, the apparent Higgs mass was found to shift by around 100 MeV in the standard model in the leading-order approximation, which may potentially be experimentally observable. We compute the next-to-leading-order QCD corrections to the apparent mass shift, which reduce it by about 40%. The apparent mass shift may provide a way to measure, or at least bound, the Higgs boson width at the Large Hadron Collider through "interferometry." We investigate how the shift depends on the Higgs width, in a model that maintains constant Higgs boson signal yields. At Higgs widths above 30 MeV, the mass shift is over 200 MeV and increases with the square root of the width. The apparent mass shift could be measured by comparing with the ZZ* channel, where the shift is much smaller. It might be possible to measure the shift more accurately by exploiting its strong dependence on the Higgs transverse momentum.

  6. ATLAS measurements of vector boson production

    CERN Document Server

    Vittori, Camilla; The ATLAS collaboration

    2016-01-01

    Measurements of the Drell­Yan production of W and Z/gamma* bosons at the LHC provide a benchmark of our understanding of perturbative QCD and probe the proton structure in a unique way. The ATLAS collaboration has performed new high precision measurements at center­of­mass energies of 8 and 13 TeV. In the 8 TeV data, we present recent measurements in the di­lepton mass range up to the TeV scale, double­differentially in dilepton mass and rapidity(­separation). The measurements are compared to state­of­the­art calculations at NNLO in QCD and constrain the photon content of the proton. First precise inclusive measurements of W and Z production at 13 TeV are presented. W/Z and W charge ratios profit from a cancellation of experimental uncertainties. The angular distributions of the Drell­Yan lepton pairs around the Z­boson mass peak probe the underlying QCD dynamic of the Z­boson production mechanisms. We present a measurement of the complete set of angular coefficients describing these distributions...

  7. ATLAS measurement of Electroweak Vector Boson production

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00453010; The ATLAS collaboration

    2017-01-01

    The measurements of the Drell-Yan production of W and Z/γ⁎ bosons at the LHC provide a benchmark of our understanding of the perturbative QCD and probe the proton structure in a unique way. The ATLAS collaboration has performed new high precision measurements of the double differential cross-sections as a function of the dilepton mass and rapidity. The measurements are compared to state of calculations at NNLO in QCD and constrain the photon content of the proton. The angular distributions of the Drell-Yan lepton pairs around the Z-boson mass peak probe the underlying QCD dynamics of the Z-boson production mechanisms. The complete set of angular coefficients describing these distributions is presented and compared to theoretical predictions highlighting different approaches of the QCD and EW modelling. First precise inclusive measurements of W and Z production at 13 TeV are presented. $W/Z$ and $W^{+}/W^{−}$ ratios profit from a cancellation of experimental uncertainties.

  8. Boosted Higgs boson tagging using jet substructures

    CERN Document Server

    Shvydkin, Pavel

    2016-01-01

    Searching BSM particles via the Higgs boson final state has now become common. The mass of desired BSM particle is more than 1 TeV, thereby its decay products are highly Lorentz-boosted. Hence the jets from b quark-antiquark pair - which the Higgs boson mostly decays into - are very closed to each other, and merged into one jet, that is typically reconstructed using large jet sizes (∆R = 0.8). In this work regression technique is applied to AK8 jets (which defined by anti-kT algorithm, using ΔR = 0.8). The regression makes use of boosted jets with substructure information, coupled with the pecularities of a b quark decay, like the presence of a soft lepton (SL) inside the jet. It has allowed to improve the resolution of the mass reconstruction and transverse momentum of the Higgs boson. This application results in improvement of the mass reconstruction by 3-4 percent. These result may be improved firstly by making more careful pileup rejection. Then it is possible to combine base regression train for dif...

  9. W Boson Mass Measurement at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Kotwal, Ashutosh V. [Duke Univ., Durham, NC (United States). Physics Dept.

    2017-03-27

    This is the closeout report for the grant for experimental research at the energy frontier in high energy physics. The report describes the precise measurement of the W boson mass at the CDF experiment at Fermilab, with an uncertainty of ≈ 12 MeV, using the full dataset of ≈ 9 fb-1 collected by the experiment up to the shutdown of the Tevatron in 2011. In this analysis, the statistical and most of the experimental systematic uncertainties have been reduced by a factor of two compared to the previous measurement with 2.2 fb-1 of CDF data. This research has been the culmination of the PI's track record of producing world-leading measurements of the W boson mass from the Tevatron. The PI performed the first and only measurement to date of the W boson mass using high-rapidity leptons using the D0 endcap calorimeters in Run 1. He has led this measurement in Run 2 at CDF, publishing two world-leading measurements in 2007 and 2012 with total uncertainties of 48 MeV and 19 MeV respectively. The analysis of the final dataset is currently under internal review in CDF. Upon approval of the internal review, the result will be available for public release.

  10. Statistical benchmark for BosonSampling

    International Nuclear Information System (INIS)

    Walschaers, Mattia; Mayer, Klaus; Buchleitner, Andreas; Kuipers, Jack; Urbina, Juan-Diego; Richter, Klaus; Tichy, Malte Christopher

    2016-01-01

    Boson samplers—set-ups that generate complex many-particle output states through the transmission of elementary many-particle input states across a multitude of mutually coupled modes—promise the efficient quantum simulation of a classically intractable computational task, and challenge the extended Church–Turing thesis, one of the fundamental dogmas of computer science. However, as in all experimental quantum simulations of truly complex systems, one crucial problem remains: how to certify that a given experimental measurement record unambiguously results from enforcing the claimed dynamics, on bosons, fermions or distinguishable particles? Here we offer a statistical solution to the certification problem, identifying an unambiguous statistical signature of many-body quantum interference upon transmission across a multimode, random scattering device. We show that statistical analysis of only partial information on the output state allows to characterise the imparted dynamics through particle type-specific features of the emerging interference patterns. The relevant statistical quantifiers are classically computable, define a falsifiable benchmark for BosonSampling, and reveal distinctive features of many-particle quantum dynamics, which go much beyond mere bunching or anti-bunching effects. (fast track communication)

  11. The Higgs Boson Search and Discovery

    CERN Document Server

    Bernardi, Gregorio

    2016-01-01

    We present a brief account of the search for the Higgs boson at the three major colliders that have operated over the last three decades: LEP, the Tevatron, and the LHC. The experimental challenges encountered stemmed from the distinct event phenomenology as determined by the colliders energy and the possible values for the Higgs boson mass, and from the capability of these colliders to deliver as much collision data as possible to fully explore the mass spectrum within their reach. Focusing more on the hadron collider searches during the last decade, we discuss how the search for the Higgs boson was advanced through mastering the experimental signatures of standard theory backgrounds, through the comprehensive utilization of the features of the detectors involved in the searches, and by means of advanced data analysis techniques. The search culminated in 2012 with the discovery, by the ATLAS and CMS collaborations, of a Higgs-like particle with mass close to 125 GeV, confirmed more recently to have propertie...

  12. Measurement of quartic boson couplings at the international linear collider and study of novel particle flow algorithms

    International Nuclear Information System (INIS)

    Krstonosic, P.

    2008-02-01

    In the absence of the Standard Model Higgs boson the interaction among the gauge bosons becomes strong at high energies (∼1 TeV) and influences couplings between them. Trilinear and quartic gauge boson vertices are characterized by set of couplings that are expected to deviate from Standard Model at energies significantly lower then the energy scale of New Physics. Estimation of the precision with which we can measure quartic couplings at International Linear Collider (ILC) is one of two topics covered by this theses. There are several measurement scenarios for quartic couplings. One that we have chosen is weak boson scattering. Since taking of the real data is, unfortunately, still far in the future running options for the machine were also investigated with their impact on the results. Analysis was done in model independent way and precision limits were extracted. Interpretation of the results in terms of possible scenarios beyond Standard Model is then performed by combining accumulated knowledge about all signal processes. One of the key requirements for achieving the results of the measurement in the form that is presented is to reach the detector performance goals. This is possible only with ''Particle Flow'' reconstruction approach. Performance limit of such approach and various contribution to it is discussed in detail. Novel reconstruction algorithm for photon reconstruction is developed, and performance comparison of such concept with more traditional approaches is done. (orig.)

  13. Search for Dark Matter Produced in Association with a Higgs Boson Decaying to Two Bottom Quarks at ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00291862

    2017-01-01

    This thesis presents a search for dark matter production in association with a Higgs boson decaying to a pair of bottom quarks, using data from 20.3\\,fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of $8$ TeV collected by the ATLAS detector at the LHC. The dark matter particles are assumed to be Weakly Interacting Massive Particles, and can be produced in pairs at collider experiments. Events with large $E_T^{miss}$ are selected when produced in association with high momentum jets, of which at least two are identified as jets containing $b$-quarks consistent with those from a Higgs boson decay. To maintain good detector acceptance and selection efficiency of the signal across a wide kinematic range, two methods of Higgs boson reconstruction are used. The Higgs boson is reconstructed either as a pair of small-radius jets both containing $b$-quarks, called the ``resolved'' analysis, or as a single large-radius jet with substructure consistent with a high momentum $b\\bar{b}$ system, called ...

  14. Measurement of quartic boson couplings at the international linear collider and study of novel particle flow algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Krstonosic, P.

    2008-02-15

    In the absence of the Standard Model Higgs boson the interaction among the gauge bosons becomes strong at high energies ({approx}1 TeV) and influences couplings between them. Trilinear and quartic gauge boson vertices are characterized by set of couplings that are expected to deviate from Standard Model at energies significantly lower then the energy scale of New Physics. Estimation of the precision with which we can measure quartic couplings at International Linear Collider (ILC) is one of two topics covered by this theses. There are several measurement scenarios for quartic couplings. One that we have chosen is weak boson scattering. Since taking of the real data is, unfortunately, still far in the future running options for the machine were also investigated with their impact on the results. Analysis was done in model independent way and precision limits were extracted. Interpretation of the results in terms of possible scenarios beyond Standard Model is then performed by combining accumulated knowledge about all signal processes. One of the key requirements for achieving the results of the measurement in the form that is presented is to reach the detector performance goals. This is possible only with ''Particle Flow'' reconstruction approach. Performance limit of such approach and various contribution to it is discussed in detail. Novel reconstruction algorithm for photon reconstruction is developed, and performance comparison of such concept with more traditional approaches is done. (orig.)

  15. Higgs boson measurements and extended scalar sector searches in bosonic final states

    CERN Document Server

    Zenz, Seth

    2017-01-01

    Searches for additional Higgs-like bosons in the H to WW and H to ZZ decay channels are reported, for boson masses in the range 145 $< m_H <$ 1000 GeV. The results are based upon proton-proton collision data samples at $\\sqrt{s}$ = 8 and 13 TeV, recorded by the CMS experiment at the LHC. Several final states of the WW and ZZ decays are analyzed. Upper limits for the search for a heavy BSM resonance and the combined upper limits at 95$\\%$ confidence level on the products of the cross section and branching fraction. These data are also used to constrain the SM Higgs boson total decay width, finding observed and expected limits at the 95$\\%$ confidence level (CL).

  16. Second-order QCD effects in Higgs boson production through vector boson fusion

    Science.gov (United States)

    Cruz-Martinez, J.; Gehrmann, T.; Glover, E. W. N.; Huss, A.

    2018-06-01

    We compute the factorising second-order QCD corrections to the electroweak production of a Higgs boson through vector boson fusion. Our calculation is fully differential in the kinematics of the Higgs boson and of the final state jets, and uses the antenna subtraction method to handle infrared singular configurations in the different parton-level contributions. Our results allow us to reassess the impact of the next-to-leading order (NLO) QCD corrections to electroweak Higgs-plus-three-jet production and of the next-to-next-to-leading order (NNLO) QCD corrections to electroweak Higgs-plus-two-jet production. The NNLO corrections are found to be limited in magnitude to around ± 5% and are uniform in several of the kinematical variables, displaying a kinematical dependence only in the transverse momenta and rapidity separation of the two tagging jets.

  17. Search for a Higgs boson decaying to two W bosons at CDF.

    Science.gov (United States)

    Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzurri, P; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beringer, J; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burke, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cordelli, M; Cortiana, G; Cox, C A; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Derwent, P F; di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Elagin, A; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hays, C; Heck, M; Heijboer, A; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhr, T; Kulkarni, N P; Kurata, M; Kusakabe, Y; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, E; Lee, H S; Lee, S W; Leone, S; Lewis, J D; Lin, C-S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lucchesi, D; Luci, C; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Merkel, P; Mesropian, C; Miao, T; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moggi, N; Moon, C S; Moore, R; Morello, M J; Morlok, J; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Griso, S Pagan; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Rekovic, V; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Stuart, D; Suh, J S; Sukhanov, A; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Trovato, M; Tsai, S-Y; Tu, Y; Turini, N; Ukegawa, F; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wagner-Kuhr, J; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Weinelt, J; Wester Iii, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Würthwein, F; Wynne, S M; Xie, S; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zhang, X; Zheng, Y; Zucchelli, S

    2009-01-16

    We present a search for a Higgs boson decaying to two W bosons in pp[over ] collisions at sqrt[s]=1.96 TeV center-of-mass energy. The data sample corresponds to an integrated luminosity of 3.0 fb;(-1) collected with the CDF II detector. We find no evidence for production of a Higgs boson with mass between 110 and 200 GeV/c;(2), and determine upper limits on the production cross section. For the mass of 160 GeV/c;(2), where the analysis is most sensitive, the observed (expected) limit is 0.7 pb (0.9 pb) at 95% Bayesian credibility level which is 1.7 (2.2) times the standard model cross section.

  18. Localized bound states of fermions interacting via massive vector bosons

    International Nuclear Information System (INIS)

    Ionescu, D.C.; Reinhardt, J.; Mueller, B.; Greiner, W.; Soff, G.

    1988-11-01

    A model for composite consisting of fermions with internal degrees of freedom interacting via intermediate vector bosons (IVB) is constructed. We find highly localized, low-mass bound states in the Hartree-Fock approximation. We investigate the dependence of these states as function of the coupling constant and vector boson mass. In the limit of infinite vector boson mass the interaction is described by Fermi-type contact forces. (orig.)

  19. An exact fermion-pair to boson mapping

    International Nuclear Information System (INIS)

    Johnson, C.W.

    1993-01-01

    I derive in a novel fashion exact formulas for the calculation of general matrix elements, including the overlap (norm) matrix, between states constructed from fermion pairs. Mapping the fermion pairs to bosons, I show how to construct finite and exact (in the sense of preserving matrix elements) boson representations of the norm operator and one- and two-fermion operators. This may lead to a microscopic basis for the Interacting Boson Model, as well as new truncation schemes for the nuclear shell model

  20. Higgs Boson Measurements in CMS with Run II Data

    CERN Document Server

    Kumar, Ashok

    2017-01-01

    Latest results from the CMS experiment on studies of Higgs boson production are presented. Studies involving the 125 GeV Higgs boson using various Standard Model production and decay modes have been performed using proton proton collisions from data accumulated during the LHC Run II with center-of-mass energy of 13 TeV. Similar datasets have also been used to place constraints on physics beyond the Standard Model involving extended Higgs boson sectors.