Energy Technology Data Exchange (ETDEWEB)
McLaughlin, K.W.; Yenen, O.; Samson, J.A.R. [Univ. of Nebraska, Lincoln, NE (United States)] [and others
1997-04-01
Photoionization accompanied by excitation of the residual ionic state violates an independent electron model since, according to QED, photons interact only with individual electrons. By allowing measurements at a threshold event with high resolution, the observation of the fluorescence from the decay of these excited states (satellite states) is a sensitive method in the study of electron-electron interactions, providing complementary information to photoelectron spectroscopy. In the measurements reported here, an atomic beam of argon has been photoionized with 34 to 39 eV synchrotron radiation at beamline 9.0.1 of the Advanced Light Source. This energy range encompasses the 3p{sup 4} [{sup 3}P] 4p {sup 4}P, {sup 2}P, and {sup 2}D as well as the [{sup 1}D]4p {sup 2}F satellite states of Ar{sup +}. By observing the fine-structure resolved fluorescence from these satellite states, new Rydberg series and extensions of previously known series have been resolved with an energy resolution of 3 meV. With the high photon flux available from the high resolution monochromator of beamline 9.0.1, even the weakly excited [{sup 3}P] 4p ({sup 2}S) ns,d autoionizing structure has been observed for the first time.
International Nuclear Information System (INIS)
McLaughlin, K.W.; Yenen, O.; Samson, J.A.R.
1997-01-01
Photoionization accompanied by excitation of the residual ionic state violates an independent electron model since, according to QED, photons interact only with individual electrons. By allowing measurements at a threshold event with high resolution, the observation of the fluorescence from the decay of these excited states (satellite states) is a sensitive method in the study of electron-electron interactions, providing complementary information to photoelectron spectroscopy. In the measurements reported here, an atomic beam of argon has been photoionized with 34 to 39 eV synchrotron radiation at beamline 9.0.1 of the Advanced Light Source. This energy range encompasses the 3p 4 [ 3 P] 4p 4 P, 2 P, and 2 D as well as the [ 1 D]4p 2 F satellite states of Ar + . By observing the fine-structure resolved fluorescence from these satellite states, new Rydberg series and extensions of previously known series have been resolved with an energy resolution of 3 meV. With the high photon flux available from the high resolution monochromator of beamline 9.0.1, even the weakly excited [ 3 P] 4p ( 2 S) ns,d autoionizing structure has been observed for the first time
Exit channels of autoionization resonances in atoms
International Nuclear Information System (INIS)
Krause, M.O.
1985-01-01
In many-electron atoms with open shells strong autoionization resonances occur when an electron from an inner, weakly bound subshell is excited. Usually, the resonance state lies above several ionization thresholds and, hence, will decay into more than one exit or continuum channel. Several cases are discussed in which the resonance state is induced by synchrotron radiation, and the exit channels are differentiated and characterized by the analysis of the ejected electrons
Three-photon resonances due to autoionizing states in calcium
Energy Technology Data Exchange (ETDEWEB)
Zawadzka, A.; Dygdala, R.S.; Raczynski, A.; Zaremba, J.; Kobus, J. [Instytut Fizyki, Uniwersytet M Kopernika w Toruniu, Torun (Poland)
2002-04-28
In the present study we have investigated three-photon ionization in Ca in which autoionizing states are engaged. The two-photon resonant process (from the Ca ground state 4s{sup 2} {sup 1}S{sub 0}) occurred through or at least in the vicinity of one of the following states: 4s4d {sup 1}D{sub 2}, 4p{sup 2} {sup 3}P{sub 2}, 4s6s {sup 1}S{sub 0}, 4p{sup 2} {sup 1}D{sub 2} and 4p{sup 2} {sup 1}S{sub 0}, with the third photon either reaching the continuum directly or one of the autoionizing states. The three-photon resonant transitions to 3dmp, mf: {sup 1}P{sub 1}, {sup 3}P{sub 1} and {sup 3}D{sub 1} autoionizing states for m up to 21 have been observed. Some of the autoionizing resonances which we have found had not been observed before in a high-resolution one-photon absorption experiment (for J=1) and in multiphoton experiments (for J=3). We have compared the ionization signal as a function of the laser detuning and the laser intensity with theoretical curves obtained within a simple model (three-level atom + one-mode laser field). This gives information about the order of magnitude of the three-photon ionization probability through autoionizing states. (author)
Precision angle-resolved autoionization resonances in Ar and Ne
Energy Technology Data Exchange (ETDEWEB)
Berrah, N.; Langer, B.; Gorczyca, T.W. [Western Michigan Univ., Kalamazoo, MI (United States)] [and others
1997-04-01
Theoretical work has shown that the electron angular distribution and the shape of the autoionization resonances are crucial to the understanding of certain types of electron-electron correlation. Autoionization resonances in Ne (Ar) result from the decay of the excited discrete state Ne{sup *} 2s2p{sup 6} np (Ar{sup *} 3s3p{sup 6} np) into the continuum state Ne{sup +} 2s{sup 2}2p{sup 5} + e{sup {minus}} (ks,kd) (Ar{sup +} 3s{sup 2}3p{sup 5} + e{sup {minus}} (ks,kd)). Since the continuum can also be reached by direct photoionization, both paths add coherently, giving rise to interferences that produce the characteristic Beutler-Fano line shape. In this work, the authors report on quantitative angle-resolved electron spectrometry studies of (a) the Ne 2s{sup 2}2p{sup 6} {r_arrow} 2s2p{sup 6} np (n=3-5) autoionizing resonances and the 2s{sup 2}2p{sup 6} {r_arrow} 2p{sup 4}3s3p doubly excited resonance, (b) the Ar 3s{sup 2}3p{sup 6} {r_arrow} 3s3p{sup 6} np (n=4-9) autoionization resonances and extended R-matrix calculations of the angular-distribution parameters for both Ne and Ar measurements. Their results are compared with previous theoretical work by Taylor.
Photoemission study of Kr 3d→np autoionization resonances
International Nuclear Information System (INIS)
Lindle, D.W.; Heimann, P.A.; Ferrett, T.A.; Piancastelli, M.N.; Shirley, D.A.
1987-01-01
Resonant photoelectron spectra of Kr have been taken in the photon-energy ranges of the 3d/sub 5/2/→5p,6p and 3d/sub 3/2/→5p excitations. The spectra, which closely resemble normal Kr + 3d/sup -1/ Auger spectra, illustrate the importance of ''spectator'' Auger-like decay for inner-shell resonances, in which the initially excited electron does not participate in the core-hole deexcitation process, except to respond to the change in the atomic potential. Possible assignments for some of the spectator decay channels are discussed based on photoemission intensity measurements at the different 3d resonances. These assignments suggest that shake-up (e.g., 5p→6p) of the ''spectator'' electron during the decay process is not quite as important as previously suspected. The resonance profiles of some of the more intense satellites have been determined over the 3d→np resonances. Very small resonance effects also were observed in the partial cross section for 4p subshell ionization, which produced asymmetric Fano-type profiles. The 4p angular distribution, in contrast, exhibits a pronounced effect in the resonance energy range. The 4p results demonstrate that nonspectator autoionization also is present
Autoionization resonances in the photoabsorption spectra of Fe{sup n+} iron ions
Energy Technology Data Exchange (ETDEWEB)
Konovalov, A. V., E-mail: alkonvit@yandex.ru; Ipatov, A. N., E-mail: andrei-ipatov@mail.ru [Peter the Great St. Petersburg State Polytechnic University (Russian Federation)
2016-11-15
The photoabsorption cross sections of a neutral iron atom, as well as positive Fe{sup +} and Fe{sup 2+} ions, are calculated in the relativistic random-phase approximation with exchange in the energy range 20–160 eV. The wavefunctions of the ground and excited states are calculated in the single-configuration Hartree–Fock–Dirac approximation. The resultant photoabsorption spectra are compared with experimental data and with the results of calculations based on the nonrelativistic spin-polarized version of the random-phase approximation with exchange. Series of autoionization resonance peaks, as well as giant autoionization resonance lines corresponding to discrete transitions 3p → 3d, are clearly observed in the photoabsorption cross sections. The conformity of the positions of calculated peaks of giant autoionization resonances with experimental data is substantially improved by taking into account additionally the correlation electron–electron interaction based on the model of the dynamic polarization potential.
Interaction between resonances through autoionization continua near the 4s-threshold in KrII
International Nuclear Information System (INIS)
Demekhin, Ph V; Petrov, I D; Lagutin, B M; Sukhorukov, V L; Vollweiler, F; Klumpp, S; Ehresmann, A; Schartner, K-H; Schmoranzer, H
2005-01-01
The interaction between resonances through autoionization continua and the interaction between autoionization continua were investigated theoretically and experimentally for the photoionization process of the 4p- and 4s-shells and for the population of 4p 4 ( 3 P)5s 4 P J , 4p 4 ( 3 P)5s 2 P J and 4p 4 ( 3 P)4d 4 D J satellites of KrII. Cross sections for the satellite production and the angular distribution parameter of the fluorescence radiation were measured by photon-induced fluorescence spectroscopy after excitationx with linearly polarized monochromatized synchrotron radiation at exciting-photon energies between 28.45 eV and 29.95 eV with an exciting-photon energy resolution of 10 meV (FWHM). Measured cross sections are in good agreement with the computed ones. A refined assignment of resonances in the proximity of the 4s 1 4p 6 5p resonance was performed. It was concluded that there is a strong influence of the core rearrangement, of the interaction between resonances through the autoionization continua and of the interaction between autoionization continua, on the investigated processes on the basis of the observed good overall agreement between the computed and measured quantities
Resonant excitation and the decay of autoionization states in a strong electromagnetic field
International Nuclear Information System (INIS)
Andryushin, A.I.; Kazakov, A.E.; Fedorov, M.V.
1985-01-01
Photoionization of atoms involving resonant excitation of the auto-ionization state is studied. The evolution of the total ionization probability, its dependence on the frequency of the resonance radiation and also the photoelectron energy spectrum are investigated. It is shown that the energy of the final state of the system may be localized either in the vicinity of E approximately Esub(α), where Esub(α) is the auto-ionization energy, or in the vicinity of E approximately Esub(α)+h/2πω where h/2πω is the quantum energy of the resonance radiation. The photoelectron specturum in the region E approximately Esub(α)+h/2πω as a whole is similar to the electron spectrum on photoionization of atoms involving resonance excitation of the bound state. A strong effect on the photoelectron spectrum in the region E approximately Esub(α) is exerted by interference of various decay channels of the ground state in the resonance field which leads to the appearance in the spectrum of a characteristic structure of the Fano type. Interence also affects the widths of the two spectral curves, the relatve amount of electrons in the two energy ranges and also other characteristics of the ionization process. It is shown that the presence of a noninterfering photoionization channel of the autoionization state ensures the finiteness of the swidths and heights of the spectral curves and the absence of complete ''coherency merging''
Laser-optogalvanic studies of the 4p5 ns and nd autoionizing resonances in krypton
International Nuclear Information System (INIS)
Baig, M A; Hanif, M; Aslam, M
2008-01-01
We report new measurements of the odd-parity autoionizing resonances in krypton using resonant two-photon excitation from the 4p 5 5s[3/2] 2 metastable level in a mild DC discharge and an optogalvanic detection technique. We have observed the 4p 5 ns [1/2] 0,1 , 4p 5 nd [3/2] 2 and 4p 5 nd [5/2] 2,3 autoionizing resonances excited from three intermediate levels 4p 5 5p' [1/2] 1 , 4p 5 5p' [3/2] 1 and 4p 5 5p' [3/2] 2 . The spectra are notable for the absence of the broad autoionizing 4p 5 nd [3/2] 1 series which dominates in the photo-absorption spectrum from the ground state. The prominent transitions follow ΔK = ΔJ = Δl selection rules of the JK-coupling scheme. We report nearly 100 new energy levels in krypton besides the quantum defects and the reduced widths Γ r Γ(ν) 3 of the nd' [3/2] 2 , nd' [5/2] 2 and nd' [5/2] 3 Rydberg states
International Nuclear Information System (INIS)
Djiokap, J M Ngoko; Starace, Anthony F; Hu, S X; Jiang Weichao; Peng Liangyou
2012-01-01
By solving the two-active-electron, time-dependent Schrödinger equation in its full dimensionality, we investigate the carrier-envelope phase (CEP) dependence of single ionization of He to the He + (1s) state triggered by an intense few-cycle attosecond pulse with carrier frequency ω corresponding to the energy ℏω = 36 eV. Effects of electron correlations are probed by comparing projections of the final state of the two-electron wave packet onto field-free highly correlated Jacobi matrix wave functions with projections onto uncorrelated Coulomb wave functions. Significant differences are found in the vicinity of autoionizing resonances. Owing to the broad bandwidths of our 115 and 230 as pulses and their high intensities (1–2 PW cm −2 ), asymmetries are found in the differential probability for ionization of electrons parallel and antiparallel to the linear polarization axis of the laser pulse. These asymmetries stem from interference of the one- and two-photon ionization amplitudes for producing electrons with the same momentum along the linear polarization axis. Whereas these asymmetries generally decrease with increasing ionized electron kinetic energy, we find a large enhancement of the asymmetry in the vicinity of two-electron doubly excited (autoionizing) states on an energy scale comparable to the widths of the autoionizing states. The CEP dependence of the energy-integrated asymmetry agrees very well with the predictions of time-dependent perturbation theory (Pronin et al 2009 Phys. Rev. A 80 063403). (paper)
Autoionization: recent developments and applications
International Nuclear Information System (INIS)
Temkin, A.
1985-01-01
This volume reviews significant advances in calculational techniques and also includes a comprehensive treatment of important new applications of autoionization in solar spectral diagnostics. Chapters include: theory and calculation of resonances, autoionization of two-electron atoms and ions, extension of the Feshbach projection operator formalism to many-electron atomic targets, the hole-projection method for calculating Feshbach resonances and inner-shell vacancies, and complex rotation and applications to atomic and molecular resonances. The concluding chapter deals with the diagnostics of solar and astrophysical plasmas dependent on autoionization phenomena. It is a volume designed to be a useful source of information for atomic, molecular, and chemical physicists, astrophysicists, and other space scientists and those in related fields interested in recent developments in ionization
Goodacre, T Day
2017-01-01
The resonance ionization laser ion source (RILIS) is the principal ion source of the ISOLDE radioactive beam facility based at CERN. Using the method of in-source resonance ionization spectroscopy, an optimal three-step, three-resonance photo-ionization scheme has been developed for chromium. The scheme uses an ionizing transition to one of the 14 newly observed autoionizing states. This work increases the range of ISOLDE-RILIS ionized beams to 32 chemical elements. Details of the spectroscopic studies are described and the new ionization scheme is summarized. A link to the complete version of this document will be added here following publication:
XFEL resonant photo-pumping of dense plasmas and dynamic evolution of autoionizing core hole states
Rosmej, F. B.; Moinard, A.; Renner, O.; Galtier, E.; Lee, J. J.; Nagler, B.; Heimann, P. A.; Schlotter, W.; Turner, J. J.; Lee, R. W.; Makita, M.; Riley, D.; Seely, J.
2016-01-01
Similarly to the case of LIF (Laser-Induced Fluorescence), an equally revolutionary impact to science is expected from resonant X-ray photo-pumping. It will particularly contribute to a progress in high energy density science: pumped core hole states create X-ray transitions that can escape dense matter on a 10 fs-time scale without essential photoabsorption, thus providing a unique possibility to study matter under extreme conditions. In the first proof of principle experiment at the X-ray F...
XFEL resonant photo-pumping of dense plasmas and dynamic evolution of autoionizing core hole states
Rosmej, F. B.; Moinard, A.; Renner, O.; Galtier, E.; Lee, J. J.; Nagler, B.; Heimann, P. A.; Schlotter, W.; Turner, J. J.; Lee, R. W.; Makita, M.; Riley, D.; Seely, J.
2016-03-01
Similarly to the case of LIF (Laser-Induced Fluorescence), an equally revolutionary impact to science is expected from resonant X-ray photo-pumping. It will particularly contribute to a progress in high energy density science: pumped core hole states create X-ray transitions that can escape dense matter on a 10 fs-time scale without essential photoabsorption, thus providing a unique possibility to study matter under extreme conditions. In the first proof of principle experiment at the X-ray Free Electron Laser LCLS at SCLAC [Seely, J., Rosmej, F.B., Shepherd, R., Riley, D., Lee, R.W. Proposal to Perform the 1st High Energy Density Plasma Spectroscopic Pump/Probe Experiment”, approved LCLS proposal L332 (2010)] we have successfully pumped inner-shell X-ray transitions in dense plasmas. The plasma was generated with a YAG laser irradiating solid Al and Mg targets attached to a rotating cylinder. In parallel to the optical laser beam, the XFEL was focused into the plasma plume at different delay times and pump energies. Pumped X-ray transitions have been observed with a spherically bent crystal spectrometer coupled to a Princeton CCD. By using this experimental configuration, we have simultaneously achieved extremely high spectral (λ/δλ ≈ 5000) and spatial resolution (δx≈70 μm) while maintaining high luminosity and a large spectral range covered (6.90 - 8.35 Å). By precisely measuring the variations in spectra emitted from plasma under action of XFEL radiation, we have successfully demonstrated transient X- ray pumping in a dense plasma.
Two-color studies of autoionizing states of small molecules
International Nuclear Information System (INIS)
Pratt, S.T.; Dehmer, P.M.; Dehmer, J.L.; Tomkins, F.S.; O'Halloran, M.A.
1989-01-01
Two-color, resonantly enhanced multiphoton ionization is proving to be a valuable technique for the study of autoionizing states of small molecules. In this talk, results obtained by combining REMPI, photoelectron spectroscopy, and mass spectrometry will be discussed and will be illustrated by examples from our recent studies of rotational and vibrational autoionization in molecular hydrogen and rotational autoionization in nitric oxide. 2 refs., 1 fig
Autoionizing process of double rydberg states in atom
International Nuclear Information System (INIS)
Xu, X. Y.; Huang, W.; Xu, C. B.; Xue, P.; Chen, D. Y.
1997-01-01
We have studied the autoionization distribution of penetrating double Rydberg (DR) states NLnl(N< n;L,l<4) experimentally in calcium by using five-laser resonance excitation and sequential ionization with a pulsed and a strong constant electric field, as well as theoretically in helium by using the hyperspherical close-coupling method. We have found the DR states autoionize with the ejected electron having its average kinetic energy nearly independent of n but apparently related to the binding energy of the ionic Rydberg orbit NL. We have also discussed the dynamics in DR states and described two types of autoionizing processes, i.e., 'penetration autoionization' and 'polarization autoionization' in DR states
Polarization of fluorescence: a probe of molecular autoionization
International Nuclear Information System (INIS)
Leroi, G.E.; Dehmer, J.L.; Parr, A.C.; Poliakoff, E.D.
1983-01-01
The polarization of fluorescence from excited-state molecular photoions provides a direct probe of the photoionization dynamics and the symmetry signatures of autoionizing resonances. Measurements on CO 2 and CS 2 are presented as examples
International Nuclear Information System (INIS)
Knight, R.D.; Wang, L.G.
1986-01-01
The authors have studied both even- and odd-parity autoionizing levels in xenon. These levels lie between the Xe/sup +/ /sup 2/P/sub 3/2/ and /sup 2/P/sub 1/2/ ionization limits. Their technique is laser spectroscopy of a thermal metastable atomic beam of xenon. One-photon laser spectroscopy from the 6s'[1/2]/sub 0/ level has been used to study the np'[1/2]/sub 1/ and np'[3/2]/sub 1/ autoionization doublets, n = 7-20. These had previously been observed only for n = 7,8. The authors are using a MQDT analysis of both discrete and autoionizing even-parity J = 1 levels (five channels) to understand the autoionization line profiles. They have also used two-photon laser spectroscopy from the 6s[3/2]/sub 2/ metastable level via various J = 1,2 6p' levels to observe the odd-parity ns'[1/2]/sub 0 1/, nd'[3/2]/sub 1 2/, and nd'[5/2]/sub 2 3/ autoionizing levels to n > 50. This is the first observation of J not equal to 1 odd-parity autoionization in xenon. The most striking feature of these spectra is the complete absence of the very intense, very broad transitions to nd'[3/2]/sub 1/, which dominate the photoabsorption spectrum from the xenon J = 0 ground state. The other nd' levels (J = 2.3) and ns'[1/2]/sub 0/ are all comparable in width to the previously observed ns'[1/2]/sub 1/ levels. The authors present the results of position and width measurements for these levels
Autoionizing np Rydberg states of H2
International Nuclear Information System (INIS)
Xu, E.Y.; Helm, H.; Kachru, R.
1989-01-01
We report a study of the autoionizing np Rydberg states near the lowest ionization threshold of H 2 . Using resonant two-photon excitation, intermediate states in specific rotovibrational levels in the double well, E,F 1 Σ/sub g/ + states are prepared. Then, a second, tunable laser is used to photoionize via excitation of the np Rydberg states. Because of the stepwise laser excitation scheme employed in our experiment the photoionization occurs from states with vibrational wave functions very similar to those of the H 2 + core. As a consequence, the autoionizing states appear as nearly symmetric resonances, rather than the highly asymmetric Beutler-Fano profiles observed from the direct photoexcitation from the ground state of H 2 . Our experiments show that the J = 1 np states are broader than the J = 3 np states converging to the same limit, suggesting that the two states autoionize into the epsilon-cp and epsilon-cf continuum, respectively. We compare our observations with a theoretical analysis using a multichannel quantum defect theory. The J = 1 states reveal the profound effect caused by the perturbation of the autoionizing Rydberg series converging to the lowest vibrational and rotational state of H 2 + by low-n states converging to higher vibrational states of the H 2 -ion core
Woutersen, S.; de Milan, J.B.; de Lange, C.A.; Buma, W.J.
1997-01-01
Several previously unobserved Rydberg states of the sulphur atom above the lowest ionization threshold are identified and assigned using (2 + 1) resonance-enhanced multiphoton-ionization photoelectron spectroscopy. All states were accessed by two-photon transitions from either the 3P ground or the
Overcoming weak intrinsic depolarizing resonances with energy-jump
International Nuclear Information System (INIS)
Huang, H.; Ahrens, L.; Alessi, J.G.
1997-01-01
In the recent polarized proton runs in the AGS, a 5% partial snake was used successfully to overcome the imperfection depolarizing resonances. Polarized proton beam was accelerated up to the required RHIC injection energy of 25 GeV. However, significant amount of polarization was lost at 0+ν y , 12+ν y and 36+ν y , which is believed to be partially due to the coupling resonances. To overcome the coupling resonance, an energy-jump was generated by rapidly changing the beam circumference using the powerful AGS rf system. It clearly demonstrates that the novel energy-jump method can successfully overcome coupling resonances and weak intrinsic resonances
Theory of laser-assisted autoionization by attosecond light pulses
International Nuclear Information System (INIS)
Zhao, Z.X.; Lin, C.D.
2005-01-01
We present a quantum theory of the decay of an autoionizing state created in the attosecond xuv (extreme ultraviolet) pump and laser probe measurements within the strong field approximation employing resonance parameters from Fano's theory. From the electron spectra versus the pump-probe time delay, we show how the lifetimes of the resonances can be extracted directly from the time domain measurements
Autoionization spectral line shapes in dense plasmas
International Nuclear Information System (INIS)
Rosmej, F.B.; Hoffmann, D.H.H.; Faenov, A.Ya.; Pikuz, T.A.; Suess, W.; Geissel, M.
2001-01-01
The distortion of resonance line shapes due to the accumulation of a large number of satellite transitions is discovered by means of X-ray optical methods with simultaneous high spectral (λ/δλ≅8000) and spatial resolution (δx≅7 μm). Disappearance of the He α resonance line emission near the target surface is observed while Rydberg satellite intensity accumulates near the resonance line position. He β and He γ resonance line shapes are also shown to be seriously affected by opacity, higher-order line emissions from autoionizing states and inhomogeneous spatial emission. Opposite to resonance line emissions the He β satellites originate only from a very narrow spatial interval. New temperature and density diagnostics employing the 1s2131' and 1s3131'-satellites are developed. Moreover, even-J components of the satellite line emissions were resolved in the present high resolution experiments. Line transitions from the autoionizing states 1s2131' are therefore also proposed for space resolved Stark broadening analysis and local high density probing. Theorists are encouraged to provide accurate Stark broadening data for the transitions 1s2131 ' →1s 2 21+hv
Molecular detection using Rydberg, autoionizing, and cluster states. Progress report
Energy Technology Data Exchange (ETDEWEB)
Wessel, J.
1989-08-17
Continuing investigations of multiphoton ionization processes in naphthalene have established the geometry and spectroscopy of trimer and tetramer cluster states. A new, highly efficient ionization mechanism has been identified in the trimer. It is closely related to autoionization of 2-electron atoms by resonant 2-photon excitation and to exciton fusion in larger clusters.
Autoionizing Rydberg series in alkali atoms
International Nuclear Information System (INIS)
Kulov, M.A.; Ivanov, V.K.; Cherepkov, N.A.
2004-01-01
Full text: The results of many-body calculations of autoionizing resonance structure in neutral potassium, rubidium and cesium associated with the ns 2 np 6 (n+1)s → nsnp 6 (n+1)smp Rydberg excitations are presented. The numerical method based on the Many-Body Perturbation Theory takes into account the dynamic polarization and screening of electron-electron interaction by collective motion of the whole electronic system. The many-electron effects are shown to determine the resonance shapes. The numerically obtained cross section for photoionization of 3p electrons in neutral K in the vicinity of the 3s threshold is presented. The structure has the complex shape of 3s → mp resonances due to different behavior of electrons with the opposite spin projections
Electron-impact excitation autoionization of Ga II
International Nuclear Information System (INIS)
Pindzola, M.S.; Griffin, D.C.; Bottcher, C.
1982-01-01
The general-reaction theory of Feshbach is applied, within the framework of the distorted-wave approximation, to the calculation of excitation-autoionization resonances in the electron-impact ionization of Ga + . Although the spectrum of autoionizing levels for Ga + is quite complex, we focus our attention on the important 3d 10 4s 2 → 3d 9 4s 2 4p inner-shell excitations. For excitation of the 3d 9 4s 2 4p 1 P 1 autoionizing level we make a general-reaction-theory calculation for the dominant partial-wave cross section and compute a typical resonance profile in the ejected-electron differential cross section. We find that the quantum-mechanical interference between the direct and indirect processes has a small effect on the total ionization cross section. Employing an independent-processes approximation we calculate excitation-autoionization contributions to all twelve levels of the 3d 9 4s 2 4p configuration. Using the results of our calculations and their comparison with a recent crossed-beam experiment by Rogers et al., we discuss the accuracy of the distorted-wave method and the effects of configuration interaction on energy levels and excitation cross sections
International Nuclear Information System (INIS)
Hill, W.T. III; Cheng, K.T.; Johnson, W.R.; Lucatorto, T.B.; McIlrath, T.J.; Sugar, J.
1982-01-01
The first experimental-theoretical study of Rydberg autoionizing resonances along an isoelectronic sequence is presented. This analysis demonstrates the intimate connection between electron-electron correlation, term-dependence, and autoionization and underscores the power of multichannel quantum defect theory in analyzing complex spectra
Field-induced narrowing of auto-ionization atomic states as a way of creating inverse population
International Nuclear Information System (INIS)
Kotochigova, S.A.
1990-10-01
We discuss the possibility of narrowing the atomic auto-ionization states via their resonance mixing in a field. The results of Ref.1 show that, in contrast to the mixing of isolated states, with mixing of multiplets one may expect substantial narrowing of auto-ionization states owing to their intersection with bound electron states. (author). 5 refs, 5 figs, 1 tab
5. International workshop on autoionization phenomena in atoms. Abstracts
International Nuclear Information System (INIS)
Balashov, V.V.
1995-01-01
Summaries of the reports presented at the 5 International Workshop on Autoionization Phenomena in Atoms (Dubna, 12-14 December 1995). The main topics of these 53 reports are the following ones: photoexcitation of autoionizing states in atoms and ions, autoionization in electron-atom collisions, autoionization in heavy particle collisions, coincidence experiments in autoionization studies, investigations of autoionizing states with lasers and wave functions and decay characteristics of autoionizing states
Autoionization structure of nitric oxide (NO) at the first ionization limit
International Nuclear Information System (INIS)
Miescher, E.; Lee, Y.T.; California Univ., Berkeley; Guertler, P.
1977-12-01
A new and more detailed interpretation is given to the fine structure in the photoionization curve of cold NO observed by Ng, Mahan and Lee (J. Chem. Phys. 65 (1976) 1975). Resonances are assigned to autoionizing np and nd delta Rydberg levels which give prominent diffuse absorption bands in a spectrum recorded with the synchrotron radiation continuum. Δv [de
Studies of autoionizing states relevant to dielectronic recombination. Final report
International Nuclear Information System (INIS)
Gallagher, T.F.
1985-01-01
Dielectronic recombinaation, the inverse of autoionization, is a process leading to significant power loss in CTR plasmas. Although it is known that dielectronic recombination proceeds via autoionization Rydberg states, few data exist on autoionizing states and how they are affected by conditions found in a CTR plasma. Under this research program we have been using a novel laser excitation technique developed at SRI to study autoionizing states and the perturbing effects of electric fields found in CTR plasmas. We describe experimental investigations of the spectroscopy of autoionizing Rydberg states, the energy analysis of electrons ejected from autoionizing states, autoionizing in electric fields, and the autoionization induced by an electric field. 33 refs., 16 figs
Magneto-elastic resonant phenomena at the motion of the domain wall in weak ferromagnets
International Nuclear Information System (INIS)
Kuz'menko, A.P.; Zhukov, E.A.; Dobromyslov, M.B.; Kaminsky, A.V.
2007-01-01
Dynamics of domain walls (DWs) in transparent thin orthoferrite samples with weak ferromagnetic ordering is investigated at sub- and supersonic velocities. A resonant increase of Lamb waves and the formation of magnetoelastic solitons under resonant conditions in both an elastic and between a spin and elastic subsystems were observed
Impedance-Based High Frequency Resonance Analysis of DFIG System in Weak Grids
DEFF Research Database (Denmark)
Song, Yipeng; Wang, Xiongfei; Blaabjerg, Frede
2017-01-01
Resonance (SSR). However, the High Frequency Resonance (HFR) of DFIG systems due to the impedance interaction between DFIG system and parallel compensated weak network is often overlooked. This paper thus investigates the impedance characteristics of DFIG systems for the analysis of HFR. The influences...
Simple discretization method for autoionization widths. III. Molecules
International Nuclear Information System (INIS)
Macas, A.; Martn, F.; Riera, A.; Yanez, M.
1987-01-01
We apply a new method to calculate widths of two-electron Feshbach resonances, which was described in detail and applied to atomic systems in preceding articles (this issue), to molecular and quasimolecular autoionizing states. For simplicity in the programming effort, we restrict our calculations to the small-R region where one-centered expansions are sufficiently accurate to describe the wave functions. As test cases, positions and widths for the H 2 , He 2 /sup 2+/, HeH + , and LiHe/sup 3+/ resonances of lowest energy are computed for R<0.6 a.u. The advantage of using block-diagonalization techniques to define diabatic resonant states instead of generalizing the Feshbach formalism is pointed out
Resonant behavior in heat transfer across weak molecular interfaces
Energy Technology Data Exchange (ETDEWEB)
Sklan, Sophia R. [Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Alex Greaney, P. [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); School of Mechanical, Industrial, and Manufacturing Engineering, Oregon State University, Corvalis, Oregon 97331 (United States); Grossman, Jeffrey C., E-mail: jcg@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)
2013-12-21
Molecular dynamics (MD) simulations are used to study, in detail, the transfer of thermal (vibrational) energy between objects with discrete vibrational spectra to those with a semi-continuum of spectra. The transfer of energy is stochastic and strongly dependent on the instantaneous separation between the bodies. The insight from the MD simulations can be captured with a simple classical model that agrees well with quantum models. This model can be used to optimize systems for efficient frequency selective energy transfer, which can be used in designing a chemical sensor through nanomechanical resonance spectroscopy.
The influence of autoionizing states on the excitation of helium by electrons
International Nuclear Information System (INIS)
Ittersum, T. van
1976-01-01
The work described in this thesis deals with resonance effects in the scattering of electrons by helium at energies near the threshold of the autoionizing states (50-70 eV). The investigation is performed by studying light emission following the excitation of singly excited states. In some cases, the polarization of the radiation was also investigated. The purpose of the research was (i) to enlarge our knowledge of triply excited negative ion states, i.e. resonance states which are formed by temporary binding of the incident electron to a doubly excited (autoionizing) state of neutral helium, and (ii) to clear up the nature of some resonance structures which could not be explained in terms of negative ion resonances
Studies of weak capture-gamma-ray resonances via coincidence techniques
Rowland, C; Champagne, A E; Dummer, A K; Fitzgerald, R; Harley, E C T; Mosher, J; Runkle, R
2002-01-01
A method for measuring weak capture-gamma-ray resonances via gamma gamma-coincidence counting techniques is described. The coincidence apparatus consisted of a large-volume germanium detector and an annular NaI(Tl) crystal. The setup was tested by measuring the weak E sub R =227 keV resonance in sup 2 sup 6 Mg(p,gamma) sup 2 sup 7 Al. Absolute germanium and NaI(Tl) counting efficiencies for a range of gamma-ray energies and for different detector-target geometries are presented. Studies of the gamma-ray background in our spectra are described. Compared to previous work, our method improves the detection sensitivity for weak capture-gamma-ray resonances by a factor of approx 100. The usefulness of the present technique for investigations of interest to nuclear astrophysics is discussed.
Investigation of Condensed Media in Weak Fields by the Method of Nuclear Magnetic Resonance
Davydov, V. V.; Myazin, N. S.; Dudkin, V. I.; Velichko, E. N.
2018-05-01
A compact design of a rapid-response nuclear magnetic spectrometer for investigation of condensed media in weak fields is reported. As a result of investigation of different condensed media, special features of recording a nuclear magnetic resonance (NMR) signal in a weak magnetic field from a small volume of the medium under study are established. For the first time the NMR absorption spectra of condensed media in a weak field are collected. Based on the results of experimental studies, the potential of using a compact NMR-spectrometer for condensed media monitoring in a rapid response mode is determined.
High Frequency Resonance Damping of DFIG based Wind Power System under Weak Network
DEFF Research Database (Denmark)
Song, Yipeng; Wang, Xiongfei; Blaabjerg, Frede
2017-01-01
When operating in a micro or weak grid which has a relatively large network impedance, the Doubly Fed Induction Generator (DFIG) based wind power generation system is prone to suffer high frequency resonance due to the impedance interaction between DFIG system and the parallel compensated network...
First results of the CERN Resonant Weakly Interacting sub-eV Particle Search (CROWS)
Betz, M; Gasior, M; Thumm, M; Rieger, S W
2013-01-01
The CERN Resonant Weakly Interacting sub-eV Particle Search probes the existence of weakly interacting sub-eV particles like axions or hidden sector photons. It is based on the principle of an optical light shining through the wall experiment, adapted to microwaves. Critical aspects of the experiment are electromagnetic shielding, design and operation of low loss cavity resonators, and the detection of weak sinusoidal microwave signals. Lower bounds are set on the coupling constant g=4.5 x 10$^{-8}$ GeV$^{-1}$ for axionlike particles with a mass of m$_a$=7.2 $\\mu$eV. For hidden sector photons, lower bounds are set for the coupling constant $\\chi$=4.1 x 10$^{^-9}$ at a mass of m$\\gamma$=10.8 $\\mu$eV. For the latter we are probing a previously unexplored region in the parameter space.
Resonance reactions and enhancement of weak interactions in collisions of cold molecules
International Nuclear Information System (INIS)
Flambaum, V. V.; Ginges, J. S. M.
2006-01-01
With the creation of ultracold atoms and molecules, a new type of chemistry - 'resonance' chemistry - emerges: chemical reactions can occur when the energy of colliding atoms and molecules matches a bound state of the combined molecule (Feshbach resonance). This chemistry is rather similar to reactions that take place in nuclei at low energies. In this paper we suggest some problems for future experimental and theoretical work related to the resonance chemistry of ultracold molecules. Molecular Bose-Einstein condensates are particularly interesting because in this system collisions and chemical reactions are extremely sensitive to weak fields; also, a preferred reaction channel may be enhanced due to a finite number of final states. The sensitivity to weak fields arises due to the high density of narrow compound resonances and the macroscopic number of molecules with kinetic energy E=0 (in the ground state of a mean-field potential). The high sensitivity to the magnetic field may be used to measure the distribution of energy intervals, widths, and magnetic moments of compound resonances and study the onset of quantum chaos. A difference in the production rate of right-handed and left-handed chiral molecules may be produced by external electric E and magnetic B fields and the finite width Γ of the resonance (correlation ΓE·B). The same effect may be produced by the parity-violating energy difference in chiral molecules
A molecular clock for autoionization decay
International Nuclear Information System (INIS)
Medišauskas, Lukas; Bello, Roger Y; Palacios, Alicia; González-Castrillo, Alberto; Martín, Fernando; Morales, Felipe; Plimak, Lev; Smirnova, Olga; Ivanov, Misha Yu
2017-01-01
The ultrafast decay of highly excited electronic states is resolved with a molecular clock technique, using the vibrational motion associated to the ionic bound states as a time-reference. We demonstrate the validity of the method in the context of autoionization of the hydrogen molecule, where nearly exact full dimensional ab-initio calculations are available. The vibrationally resolved photoionization spectrum provides a time–energy mapping of the autoionization process into the bound states that is used to fully reconstruct the decay in time. A resolution of a fraction of the vibrational period is achieved. Since no assumptions are made on the underlying coupled electron–nuclear dynamics, the reconstruction procedure can be applied to describe the general problem of the decay of highly excited states in other molecular targets. (paper)
Theoretical Analysis of Rydberg and Autoionizing State Spectra of Antimony
Institute of Scientific and Technical Information of China (English)
Shuang-Fei Lv; Ruohong Li; Feng-Dong Jia; Xiao-Kang Li; Jens Lassen; Zhi-Ping Zhong
2017-01-01
We calculate the Rydberg and autoionization Rydberg spectra of antimony (Sb) from first principles by relativistic multichannel theory within the framework of multichannel quantum defect theory.Our calculation can be used to classify and assign the atomic states described in recently reported three Rydberg series and four autoionizing states.The perturbation effects on line intensity,variation and line profile are discussed.Assignments of the perturber states and autoionizing states are presented.
International Nuclear Information System (INIS)
Zhang Wei; Xiang Bingren; Wu Yanwei; Shang Erxin
2005-01-01
Based on the theory of stochastic resonance, a new method carried on the quantitive analysis to weak chromatographic signal of glyburide in plasma, which was embedded in the noise background and the signal-to-noise ratio (SNR) of HPLC-UV is enhanced remarkably. This method enhances the quantification limit to 1 ng ml -1 , which is the same as HPLC-MS, and makes it possible to detect the weak signal accurately by HPLC-UV, which was not suitable before. The results showed good recovery and linear range from 1 to 50 ng ml -1 of glyburide in plasma and the method can be used for quantitative analysis of glyburide
On the Resonant Behavior of a Weakly Compressible Water Layer During Tsunamigenic Earthquakes
Cecioni, Claudia; Bellotti, Giorgio
2018-01-01
Tsunamigenic earthquakes trigger pressure waves in the ocean, given the weak compressibility of the sea water. For particular conditions, a resonant behavior of the water layer can occur, which influences the energy transfer from the sea-bed motion to the ocean. In this paper, the resonance conditions are explained and analyzed, focusing on the hydro-acoustic waves in the proximity of the earthquake area. A preliminary estimation of the generation parameters (sea-bed rising time, velocity) is given, by means of parametric numerical simulations for simplified conditions. The results confirm the importance of measuring, modeling, and interpreting such waves for tsunami early detection and warning.
Statistics of resonances in a one-dimensional chain: a weak disorder limit
International Nuclear Information System (INIS)
Vinayak
2012-01-01
We study statistics of resonances in a one-dimensional disordered chain coupled to an outer world simulated by a perfect lead. We consider a limiting case for weak disorder and derive some results which are new in these studies. The main focus of this study is to describe the statistics of the scattered complex energies. We derive compact analytic statistical results for long chains. A comparison of these results has been found to be in good agreement with numerical simulations. (paper)
International Nuclear Information System (INIS)
Poirier, M.
1997-01-01
Though one would expect that large-angular momentum doubly excited states exhibit weak electronic correlations, it is shown in this paper that a first-order perturbation theory ignoring such correlations may completely fail in predicting correct autoionization probabilities: quadrupolar transitions are poorly described by lowest-order perturbation theory, except for very large angular momenta. Inclusion of second-order dipole-dipole term considerably improves the accuracy of the method. This effect is computed using Coulomb Green's function in its analytical form, probably applied here for the first time to autoionization processes. Examples are given in barium for 5d j 5g [k[ states (j=3/2, 5/2) and for 5d 5/2 nl [k[ states with l > 4. (orig.)
Resonant enhanced parallel-T topology for weak coupling wireless power transfer pickup applications
Directory of Open Access Journals (Sweden)
Yao Guo
2015-07-01
Full Text Available For the wireless power transfer (WPT system, the transfer performance and the coupling coefficient are contradictory. In this paper, a novel parallel-T resonant topology consists of a traditional parallel circuit and a T-matching network for secondary side is proposed. With this method, a boosted voltage can be output to the load, since this topology has a resonant enhancement effect, and high Q value can be obtained at a low resonant frequency and low coil inductance. This feature makes it more suitable for weak coupling WPT applications. Besides, the proposed topology shows good frequency stability and adaptability to variations of load. Experimental results show that the output voltage gain improves by 757% compared with traditional series circuit, and reaches 85% total efficiency when the coupling coefficient is 0.046.
Stochastic Resonance in an Underdamped System with Pinning Potential for Weak Signal Detection
Directory of Open Access Journals (Sweden)
Haibin Zhang
2015-08-01
Full Text Available Stochastic resonance (SR has been proved to be an effective approach for weak sensor signal detection. This study presents a new weak signal detection method based on a SR in an underdamped system, which consists of a pinning potential model. The model was firstly discovered from magnetic domain wall (DW in ferromagnetic strips. We analyze the principle of the proposed underdamped pinning SR (UPSR system, the detailed numerical simulation and system performance. We also propose the strategy of selecting the proper damping factor and other system parameters to match a weak signal, input noise and to generate the highest output signal-to-noise ratio (SNR. Finally, we have verified its effectiveness with both simulated and experimental input signals. Results indicate that the UPSR performs better in weak signal detection than the conventional SR (CSR with merits of higher output SNR, better anti-noise and frequency response capability. Besides, the system can be designed accurately and efficiently owing to the sensibility of parameters and potential diversity. The features also weaken the limitation of small parameters on SR system.
Stochastic Resonance in an Underdamped System with Pinning Potential for Weak Signal Detection.
Zhang, Haibin; He, Qingbo; Kong, Fanrang
2015-08-28
Stochastic resonance (SR) has been proved to be an effective approach for weak sensor signal detection. This study presents a new weak signal detection method based on a SR in an underdamped system, which consists of a pinning potential model. The model was firstly discovered from magnetic domain wall (DW) in ferromagnetic strips. We analyze the principle of the proposed underdamped pinning SR (UPSR) system, the detailed numerical simulation and system performance. We also propose the strategy of selecting the proper damping factor and other system parameters to match a weak signal, input noise and to generate the highest output signal-to-noise ratio (SNR). Finally, we have verified its effectiveness with both simulated and experimental input signals. Results indicate that the UPSR performs better in weak signal detection than the conventional SR (CSR) with merits of higher output SNR, better anti-noise and frequency response capability. Besides, the system can be designed accurately and efficiently owing to the sensibility of parameters and potential diversity. The features also weaken the limitation of small parameters on SR system.
Autoionizing states of atoms calculated using generalized sturmians
DEFF Research Database (Denmark)
Avery, James Emil; Avery, John Scales
2005-01-01
The generalized Sturmian method is applied to autoionizing states of atoms and ions. If the Goscinskian basis sets allow for a sufficient amount of angular correletion, the calculated energies of doubly-excited (autoionizing) states are found to agree well with the few available experimental...... energies. A large-Z approximation is discussed, and simple formulas are derived which are valid not only for autoionizing states, but for all states of an isoelectronic atomic series. Diagonalization of a small block of the interelectron repulsion matrix yields roots that can be used for a wide range of Z...
International Nuclear Information System (INIS)
Swenson, J.K.; Burgdoerfer, J.; Meyer, F.W.; Havener, C.C.; Gregory, D.C.; Stolterfoht, N.
1991-01-01
Autoionizing electrons emitted following low energy ion-atom collisions may scatter significantly from the receding spectator ion's attractive Coulomb field. In such cases the observed electron intensity is ''focused'' in the direction of the scattering ion as a result of the effective compression of the emission solid angle. In addition, interference may occur between trajectories, corresponding to electrons scattering around opposite sides of the ion, which lead to the same final laboratory electron energy and emission angle. This Coulomb ''path'' interference mechanism manifests itself in the uncharacteristically rapid angular dependence of the He target 2s 2 1 S autoionizing state measured near 0 degree following low energy He + + He collisions. A classical trajectory model for Coulomb focusing is presented and a semi-classical approximation is used to model the Coulomb ''path'' interference mechanism. In this description we account for the evolution of the phase of the autoionizing state until its decay and the path dependence of the amplitude of the emitted electron following decay of the autoionizing state. Calculated model lineshapes, which include contributions from adjacent overlapping resonances, reproduce quite well the angular dependence observed in the data near 0 degree. 14 refs., 7 figs
The 4p6 autoionization cross section of Rb atoms excited by low-energy electron impact
International Nuclear Information System (INIS)
Borovik, A; Roman, V; Kupliauskienė, A
2012-01-01
The autoionization cross section of rubidium atoms was obtained by measuring the total normalized intensities of ejected-electron spectra arising from the decay of the 4p 5 n 1 l 1 n 2 l 2 autoionizing levels. The electron impact energy range from the 4p 6 excitation threshold at 15.31 up to 50 eV was investigated. The cross section reaches the maximum value of (2.9 ± 0.6) × 10 −16 cm 2 at 21.8 eV impact energy. The general behaviours of the cross section and the role of particular autoionizing configurations in its formation were considered on the basis of large-scale configuration interaction calculations of energies, cross sections, autoionization probabilities in 5snl(n ⩽ 7; l ⩽ 4) and 4d nl(n ⩽ 5; l ⩽ 2) configurations as well as the measured excitation functions for the lowest levels in 5s 2 and 4d5s configurations. The resonance behaviour of the cross section between 15.3 and 18.5 eV impact energy is caused exclusively by the negative-ion resonances present close to the excitation thresholds of the (5s 2 ) 2 P and (4d5s) 4 P autoionizing levels. At higher impact energies, the autoionization cross section is composed of contributions from the high-lying quartet and doublet levels in 4d5s, 5p and 5s5p, 5d, 6s, 6p configurations. From the comparison of the present data with available experimental and calculated ionization cross sections, the 5s + 4p 6 direct ionization cross section of rubidium atoms was determined with the maximum value of (7.2 ± 2.2) × 10 −16 cm 2 at 36 eV. It was also found that the 4p 6 excitation–autoionization is the dominant indirect ionization process contributing over 30% of the total single ionization of rubidium atoms by electron impact in the 15.3–50 eV energy range. (paper)
International Nuclear Information System (INIS)
Krive, I.V.; Sandstroem, P.
1997-01-01
The persistent current for a one-dimensional ring with two tunneling barriers is considered in the limit of weakly interacting electrons. In addition to small off-resonance current, there are two kinds of resonant behaviour; (i) a current independent of the barrier transparency (true resonance) and (ii) a current analogous to the one for a ring with only single barrier (''semi''-resonance). For a given barrier transparency the realization of this or that type of resonant behaviour depends both on the geometrical factor (the ratio of interbarrier distance to a ring circumference) and on the strength of electron-electron interaction. It is shown that repulsive interaction favours the ''semi''-resonance behaviour. For a small barrier transparency the ''semi''-resonance peaks are easily washed out by temperature whereas the true resonance peaks survive. (author). 22 refs, 2 figs
A Weakly Nonlinear Model for the Damping of Resonantly Forced Density Waves in Dense Planetary Rings
Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki
2016-10-01
In this paper, we address the stability of resonantly forced density waves in dense planetary rings. Goldreich & Tremaine have already argued that density waves might be unstable, depending on the relationship between the ring’s viscosity and the surface mass density. In the recent paper Schmidt et al., we have pointed out that when—within a fluid description of the ring dynamics—the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping, but nonlinearity of the underlying equations guarantees a finite amplitude and eventually a damping of the wave. We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model. This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts density waves to be (linearly) unstable in a ring region where the conditions for viscous overstability are met. Sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. The wave’s damping lengths of the model depend on certain input parameters, such as the distance to the threshold for viscous overstability in parameter space and the ground state surface mass density.
Quenching H2 autoionization interferences with ultrashort xuv laser pulses
International Nuclear Information System (INIS)
González-Castrillo, Alberto; Palacios, Alicia; Martín, Fernando; Bachau, Henri
2012-01-01
In contrast with atomic photoionization or molecular direct photoionization, in the autoionization region, electron and proton kinetic-energy differential probabilities resulting from a short pulse cannot be reconstructed by the incoherent superposition of those resulting from long pulses.
Lin, Gong-Ru; Chi, Yu-Chieh; Liao, Yu-Sheng; Kuo, Hao-Chung; Liao, Zhi-Wang; Wang, Hai-Lin; Lin, Gong-Cheng
2012-06-18
By spectrally slicing a single longitudinal-mode from a master weak-resonant-cavity Fabry-Perot laser diode with transient wavelength scanning and tracking functions, the broadened self-injection-locking of a slave weak-resonant-cavity Fabry-Perot laser diode is demonstrated to achieve bi-directional transmission in a 200-GHz array-waveguide-grating channelized dense-wavelength-division-multiplexing passive optical network system. Both the down- and up-stream slave weak-resonant-cavity Fabry-Perot laser diodes are non-return-to-zero modulated below threshold and coherently injection-locked to deliver the pulsed carrier for 25-km bi-directional 2.5 Gbits/s return-to-zero transmission. The master weak-resonant-cavity Fabry-Perot laser diode is gain-switched at near threshold condition and delivers an optical coherent pulse-train with its mode linewidth broadened from 0.2 to 0.8 nm by transient wavelength scanning, which facilitates the broadband injection-locking of the slave weak-resonant-cavity Fabry-Perot laser diodes with a threshold current reducing by 10 mA. Such a transient wavelength scanning induced spectral broadening greatly releases the limitation on wavelength injection-locking range required for the slave weak-resonant-cavity Fabry-Perot laser diode. The theoretical modeling and numerical simulation on the wavelength scanning and tracking effects of the master and slave weak-resonant-cavity Fabry-Perot laser diodes are performed. The receiving power sensitivity for back-to-back transmission at bit-error-rate transmission is less than 2 dB for all 16 channels.
Quasimolecular autoionization in the collisions He+ - He, H2
International Nuclear Information System (INIS)
Ogurtsov, G.N.; Krupyshev, A.G.; Gordeev, Yu.S.
1993-01-01
Data on the autoionization transition level width dependence Γ(R) for He + - He, He + - H 2 pairs are obtained. Data on the probability of autoionization transition in a three-atom quasimolecule are obtained for the first time. It is shown that Γ(R) values for He + - He 2 quasimolecule exceed notably the similar values for isoelectron He + - He quasimolecule and may reach ∼ 1 eV. 6 refs., 2 figs
Electron streaking in the autoionization region of H2
International Nuclear Information System (INIS)
Palacios, Alicia; González-Castrillo, Alberto; Martín, Fernando
2015-01-01
We use a UV-pump/IR-probe scheme, combining a single attosecond UV pulse and a 750 nm IR pulse, to explore laser-assisted photoionization of the hydrogen molecule in the autoionization region. The electron energy distributions exhibit unusual streaking patterns that are explored for different angles of the electron ejection with respect to the polarization vector and the molecular axis. Moreover, by controlling the time delay between the pulses, we observe that one can suppress the autoionization channel. (paper)
Coherent and incoherent processes in resonant photoemission
Energy Technology Data Exchange (ETDEWEB)
Magnuson, M.; Karis, O.; Weinelt, M. [Uppsala Univ. (Sweden)] [and others
1997-04-01
In this contribution the authors present the distinction between coherent and incoherent processes in resonant photoemission. As a first step they determine whether an autoionization process is photoemission-like or Auger-like. The discussion is based on measurements for a weakly bonded adsorption system, Ar/Pt(111). This type of system is well adapted to investigate these effects since it yields distinctly shifted spectral features depending on the nature of the process. After this, the question of resonance photoemission in metallic systems is addressed. This is done in connection with measurements at the 2p edges for Ni metal. Ni has been one of the prototype systems for resonant photoemission. The resonances have been discussed in connection with the strong correlation and d-band localization effects in this system. Based on the results some general comments about the appearance of resonant effects in metallic systems are made.
The CERN Resonant Weakly Interacting Sub-eV Particle Search (CROWS)
Betz, Michael; Gasior, Marek; Thumm, Manfred
The subject of this thesis is the design, implementation and first results of the ``CERN Resonant WISP Search'' (CROWS) experiment, which probes the existence of Weakly Interacting Sub-eV Particles (WISPs) using microwave techniques. Axion Like Particles and Hidden Sector Photons are two well motivated members of the WISP family. Their existence could reveal the composition of cold dark matter in the universe and explain a large number of astrophysical phenomena. Particularly, the discovery of an axion would solve a long standing issue in the standard model, known as the ``strong CP problem''. Despite their strong theoretical motivation, the hypothetical particles have not been observed in any experiment so far. One way to probe the existence of WISPs is to exploit their interaction with photons in a ``light shining through the wall'' experiment. A laser beam is guided through a strong magnetic field in the ``emitting region'' of the experiment. This provides photons, which can convert into hypothetical Axi...
1P autoionization states of He in the elastic scattering region
International Nuclear Information System (INIS)
Chen, I.H.
1975-01-01
Following the method of Feshbach projection operator formalism, 1 P autoionization states of He in the n = 1 to n = 2 energy region was investigated. Variational functionals are constructed for solving the closed channel components and these results are compared with the absorption spectrum measured by Madden and Codling. In the open channel components the Coulomb wave function is used. Together with closed channel components, we calculate the line width of 1 P and 3 P resonance states. Comparison of these results with the previous calculation and with experimental data is also discussed
Weak-periodic stochastic resonance in a parallel array of static nonlinearities.
Directory of Open Access Journals (Sweden)
Yumei Ma
Full Text Available This paper studies the output-input signal-to-noise ratio (SNR gain of an uncoupled parallel array of static, yet arbitrary, nonlinear elements for transmitting a weak periodic signal in additive white noise. In the small-signal limit, an explicit expression for the SNR gain is derived. It serves to prove that the SNR gain is always a monotonically increasing function of the array size for any given nonlinearity and noisy environment. It also determines the SNR gain maximized by the locally optimal nonlinearity as the upper bound of the SNR gain achieved by an array of static nonlinear elements. With locally optimal nonlinearity, it is demonstrated that stochastic resonance cannot occur, i.e. adding internal noise into the array never improves the SNR gain. However, in an array of suboptimal but easily implemented threshold nonlinearities, we show the feasibility of situations where stochastic resonance occurs, and also the possibility of the SNR gain exceeding unity for a wide range of input noise distributions.
Directory of Open Access Journals (Sweden)
Jun He
2012-03-01
Full Text Available By means of the nonequilibrium Green's functions and the density functional theory, we have investigated the electronic transport properties of C60 based electronic device with different intermolecular interactions. It is found that the electronic transport properties vary with the types of the interaction between two C60 molecules. A fast electrical switching behavior based on negative differential resistance has been found when two molecules are coupled by the weak π − π interaction. Compared to the solid bonding, the weak interaction is found to induce resonant tunneling, which is responsible for the fast response to the applied electric field and hence the velocity of switching.
Forces on nuclei moving on autoionizing molecular potential energy surfaces.
Moiseyev, Nimrod
2017-01-14
Autoionization of molecular systems occurs in diatomic molecules and in small biochemical systems. Quantum chemistry packages enable calculation of complex potential energy surfaces (CPESs). The imaginary part of the CPES is associated with the autoionization decay rate, which is a function of the molecular structure. Molecular dynamics simulations, within the framework of the Born-Oppenheimer approximation, require the definition of a force field. The ability to calculate the forces on the nuclei in bio-systems when autoionization takes place seems to rely on an understanding of radiative damages in RNA and DNA arising from the release of slow moving electrons which have long de Broglie wavelengths. This work addresses calculation of the real forces on the nuclei moving on the CPES. By using the transformation of the time-dependent Schrödinger equation, previously used by Madelung, we proved that the classical forces on nuclei moving on the CPES correlated with the gradient of the real part of the CPES. It was proved that the force on the nuclei of the metastable molecules is time independent although the probability to detect metastable molecules exponentially decays. The classical force is obtained from the transformed Schrödinger equation when ℏ=0 and the Schrödinger equation is reduced to the classical (Newtonian) equations of motion. The forces on the nuclei regardless on what potential energy surface they move (parent CPES or product real PESs) vary in time due to the autoionization process.
The effect of weak resonances on the sup 25 Mg(p,gamma) sup 26 Al reaction rate
Energy Technology Data Exchange (ETDEWEB)
Champagne, A E [Princeton Univ., NJ (USA). Dept. of Physics; Howard, A J [Trinity Coll., Hartford, CT (USA). Dept. of Physics and Astronomy; Smith, M S; Magnus, P V; Parker, P D [Yale Univ., New Haven, CT (USA). Wright Nuclear Structure Lab.
1989-12-11
The {sup 25}Mg({sup 3}He,d){sup 26}Al reaction has been used to estimate proton spectroscopic factors for states which could be weak {sup 25}Mg+p resonances located near the proton-capture threshold. One of these states (corresponding to a resonance energy E{sub c.m.}=92.2 keV) is found to have a significant effect on the {sup 25}Mg(p,gamma){sup 26}Al reaction rate for temperatures characteristic of Wolf-Rayet stars or late-stage red giants. (orig.).
Energy Technology Data Exchange (ETDEWEB)
Swenson, J.K. (Lawrence Livermore National Lab., CA (USA)); Burgdoerfer, J. (Tennessee Univ., Knoxville, TN (USA)); Meyer, F.W.; Havener, C.C.; Gregory, D.C.; Stolterfoht, N. (Oak Ridge National Lab., TN (USA))
1991-03-13
Autoionizing electrons emitted following low energy ion-atom collisions may scatter significantly from the receding spectator ion's attractive Coulomb field. In such cases the observed electron intensity is focused'' in the direction of the scattering ion as a result of the effective compression of the emission solid angle. In addition, interference may occur between trajectories, corresponding to electrons scattering around opposite sides of the ion, which lead to the same final laboratory electron energy and emission angle. This Coulomb path'' interference mechanism manifests itself in the uncharacteristically rapid angular dependence of the He target 2s{sup 2} {sup 1}S autoionizing state measured near 0{degree} following low energy He{sup +} + He collisions. A classical trajectory model for Coulomb focusing is presented and a semi-classical approximation is used to model the Coulomb path'' interference mechanism. In this description we account for the evolution of the phase of the autoionizing state until its decay and the path dependence of the amplitude of the emitted electron following decay of the autoionizing state. Calculated model lineshapes, which include contributions from adjacent overlapping resonances, reproduce quite well the angular dependence observed in the data near 0{degree}. 14 refs., 7 figs.
Jacobs, Verne L.
2017-06-01
This investigation has been devoted to the theoretical description and computer modeling of atomic processes giving rise to radiative emission in energetic electron and ion beam interactions and in laboratory plasmas. We are also interested in the effects of directed electron and ion collisions and of anisotropic electric and magnetic fields. In the kinetic-theory description, we treat excitation, de-excitation, ionization, and recombination in electron and ion encounters with partially ionized atomic systems, including the indirect contributions from processes involving autoionizing resonances. These fundamental collisional and electromagnetic interactions also provide particle and photon transport mechanisms. From the spectral perspective, the analysis of atomic radiative emission can reveal detailed information on the physical properties in the plasma environment, such as non-equilibrium electron and charge-state distributions as well as electric and magnetic field distributions. In this investigation, a reduced-density-matrix formulation is developed for the microscopic description of atomic electromagnetic interactions in the presence of environmental (collisional and radiative) relaxation and decoherence processes. Our central objective is a fundamental microscopic description of atomic electromagnetic processes, in which both bound-state and autoionization-resonance phenomena can be treated in a unified and self-consistent manner. The time-domain (equation-of-motion) and frequency-domain (resolvent-operator) formulations of the reduced-density-matrix approach are developed in a unified and self-consistent manner. This is necessary for our ultimate goal of a systematic and self-consistent treatment of non-equilibrium (possibly coherent) atomic-state kinetics and high-resolution (possibly overlapping) spectral-line shapes. We thereby propose the introduction of a generalized collisional-radiative atomic-state kinetics model based on a reduced
Overview of DFIG-based Wind Power System Resonances under Weak Networks
DEFF Research Database (Denmark)
Song, Yipeng; Blaabjerg, Frede
2017-01-01
The wind power generation techniques are continuing to develop and increasing numbers of Doubly Fed Induction Generator (DFIG)-based wind power systems are connecting to the on-shore and off-shore grids, local standalone weak networks, and also micro grid applications. The impedances of the weak...... scale of DFIG system with different parameters; 3) L or LCL filter adopted in the Grid Side Converter (GSC); 4) rotor speed; 5) current closed-loop controller parameters and 6) digital control delay will be discussed in this paper. On the basis of the analysis, active damping strategies for HFR using...
Autoionization spectra of He excited by fast (MeV) H+, He+, and Li/sup n+/ (n = 1,2,3) ions
International Nuclear Information System (INIS)
Schneider, D.; Arcuni, P.; Bruch, P.; Stoeffler, W.
1983-01-01
Autoionization spectra of He following excitation by 1 to 3 MeV H + , He + , and Li/sup n+/ (n = 1,2,3) have been measured as a function of observation angle. The (2p 2 ) 1 D and (2s2p) 1 P resonances have been examined and a strong dependence on projectile velocities, charge state and observation angle was found
Energy Technology Data Exchange (ETDEWEB)
Schneider, D.; Arcuni, P.; Bruch, P.; Stoeffler, W.
1983-01-01
Autoionization spectra of He following excitation by 1 to 3 MeV H/sup +/, He/sup +/, and Li/sup n+/ (n = 1,2,3) have been measured as a function of observation angle. The (2p/sup 2/)/sup 1/D and (2s2p)/sup 1/P resonances have been examined and a strong dependence on projectile velocities, charge state and observation angle was found.
Wang, Shenghan; Fang, Wenhui; Li, Fabing; Gong, Nan; Li, Zhanlong; Li, Zuowei; Sun, Chenglin; Men, Zhiwei
2017-12-11
355 nm pulsed laser is employed to excite pre-resonance forward stimulated Raman scattering (FSRS) of liquid water at ambient temperature. Due to the shockwave induced dynamic high pressure, the obtained Raman spectra begin to exhibit double peaks distribution at 3318 and 3373 cm -1 with the input energy of 17 mJ,which correspond with OH stretching vibration with strong and weak hydrogen (H) bonds. With laser energy rising from 17 to 27 mJ, the Stokes line at 3318 cm -1 shifts to 3255 and 3230 cm -1 because of the high pressure being enlarged. When the energy is up to 32 mJ, only 3373 cm -1 peak exists. The strong and weak H bond exhibit quite different energy dependent behaviors.
Weak Depolarizing Resonances in the 3-TeV VLHC Booster
International Nuclear Information System (INIS)
Anferov, V.A.
1999-01-01
The possibility of polarized-proton-beam acceleration in the proposed low-field 3-TeV VLHC booster is considered. We find that the low-field combined function magnets in the booster's long FODO cells cause an inadvertent cancellation of most depolarizing fields due to a mechanism suggested earlier by Chao and Derbenev [Part.Accel.36, 25 (1991)]. The strongest spin-depolarizing resonances in the 3-TeV booster seem to be similar in strength to those in the 250-GeV RHIC. Moreover, the strength of the 3-TeV booster's strongest intrinsic depolarizing resonances decreases with energy, in contrast with the energy growth of the depolarizing resonance's strength in most proton synchrotrons. copyright 1999 The American Physical Society
Vibrational autoionization in PF3: Doing violence to the propensity rule
International Nuclear Information System (INIS)
Berkowitz, J.; Greene, J.P.
1984-01-01
The photoionization spectrum of PF + 3 in its threshold region displays two prominent progressions of autoionization peaks. When these are analyzed, together with earlier photoabsorption studies and a photoelectron spectrum, they lead to the conclusion that vibrational autoionization is occurring, with Δν< or =-13. This conclusion stands in sharp contrast with the current theory of vibrational autoionization, which predicts a propensity rule Δν = -1. Other examples from the recent literature are summarized, to suggest that a more general theory of vibrational autoionization is required
Energy Technology Data Exchange (ETDEWEB)
Godunov, A.L. [Department of Physics, Tulane University, New Orleans, LA 70118-5698 (United States); Ivanov, P.B.; Schipakov, V.A. [Troitsk Institute of Innovation and Fusion Research Troitsk, Moscow region, 142092 (Russian Federation); Moretto-Capelle, P.; Bordenave-Montesquieu, D.; Bordenave-Montesquieu, A. [Laboratoire Collisions, Agregats, Reactivite, IRSAMC, UMR 5589, CNRS-Universite Paul Sabatier, 31062 Toulouse Cedex (France)
2000-03-14
Mechanisms of two-electron excitation of the (2s{sup 2}){sup 1} S, (2p{sup 2} ){sup 1} D and (2s2p){sup 1} P autoionizing states of helium are studied both experimentally and theoretically. It is shown that an explicit introduction of a kinematic factor, with a process-specific phase leads to a productive parametrization of experimental cross sections of ionization, allowing one to extract cross sections of excitation of autoionizing states. Using a new fitting procedure together with the proposed parametrization made it possible to obtain the excitation cross sections and magnetic sublevel population from electron spectra as well as, for the first time, to resolve the contribution of resonance and interference components to resonance profiles. Interference with direct ionization is shown to contribute significantly into resonance formation even for backward ejection angles. We demonstrate theoretically that the excitation cross sections thus extracted from experimental electron spectra hold information about the interaction of autoionizing states with an adjacent continuum. (author)
Klinker, Markus; Marante, Carlos; Argenti, Luca; González-Vázquez, Jesús; Martín, Fernando
2018-02-15
Direct measurement of autoionization lifetimes by using time-resolved experimental techniques is a promising approach when energy-resolved spectroscopic methods do not work. Attosecond time-resolved experiments have recently provided the first quantitative determination of autoionization lifetimes of the lowest members of the well-known Hopfield series of resonances in N 2 . In this work, we have used the recently developed XCHEM approach to study photoionization of the N 2 molecule in the vicinity of these resonances. The XCHEM approach allows us to describe electron correlation in the molecular electronic continuum at a level similar to that provided by multireference configuration interaction methods in bound state calculations, a necessary condition to accurately describe autoionization, shakeup, and interchannel couplings occurring in this range of photon energies. Our results show that electron correlation leading to interchannel mixing is the main factor that determines the magnitude and shape of the N 2 photoionization cross sections, as well as the lifetimes of the Hopfield resonances. At variance with recent speculations, nonadiabatic effects do not seem to play a significant role. These conclusions are supported by the very good agreement between the calculated cross sections and those determined in synchrotron radiation and attosecond experiments.
DEFF Research Database (Denmark)
Göksu, Cihan
of individual ohmic conductivity values may open up the possibility of creating more realistic and accurate head models, which may ameliorate the simulations and practical use of NIBS techniques. Magnetic resonance current density imaging (MRCDI) and magnetic resonance electrical impedance tomography (MREIT......Knowing the electrical conductivity and current density distribution inside the human brain will be useful in various biomedical applications, i.e. for improving the efficiency of non-invasive brain stimulation (NIBS) techniques, the accuracy of electroencephalography (EEG......) and magnetoencephalography (MEG) source localization, or localization of pathological tissues. For example, the accuracy of electric field simulations for NIBS techniques is currently reduced by assigning inaccurate ohmic conductivity values taken from literature to different brain tissues. Therefore, the knowledge...
Magnetic Resonance Imaging of Surgical Implants Made from Weak Magnetic Materials
Gogola, D.; Krafčík, A.; Štrbák, O.; Frollo, I.
2013-08-01
Materials with high magnetic susceptibility cause local inhomogeneities in the main field of the magnetic resonance (MR) tomograph. These inhomogeneities lead to loss of phase coherence, and thus to a rapid loss of signal in the image. In our research we investigated inhomogeneous field of magnetic implants such as magnetic fibers, designed for inner suture during surgery. The magnetic field inhomogeneities were studied at low magnetic planar phantom, which was made from four thin strips of magnetic tape, arranged grid-wise. We optimized the properties of imaging sequences with the aim to find the best setup for magnetic fiber visualization. These fibers can be potentially exploited in surgery for internal stitches. Stitches can be visualized by the magnetic resonance imaging (MRI) method after surgery. This study shows that the imaging of magnetic implants is possible by using the low field MRI systems, without the use of complicated post processing techniques (e.g., IDEAL).
International Nuclear Information System (INIS)
Borovik, A; Roman, V; Zatsarinny, O; Bartschat, K
2013-01-01
Electron impact excitation of the (4p 5 5s 2 ) 2 P 3/2,1/2 and (4p 5 4d5s) 4 P 1/2,3/2,5/2 autoionizing states in rubidium atoms was studied experimentally by measuring the ejected-electron excitation functions and theoretically by employing a fully relativistic Dirac B-spline R-matrix (close-coupling) model. The experimental data were collected in an impact energy range from the respective excitation thresholds up to 50 eV with an incident electron energy resolution of 0.2 eV and an observation angle of 54.7°. Absolute values of the excitation cross sections were obtained by normalizing to the theoretical predictions. The observed near-threshold resonance structures were also analysed by comparison with theory. For the 2 P 3/2,1/2 doublet states, a detailed analysis of the R-matrix results reveals that the most intense resonances are related to odd-parity negative-ion states with dominant configurations 4p 5 5s5p 2 and 4p 5 4d5s6s. The measured excitation functions for the 2 P 1/2 and 4 P J states indicate a noticeable cascade population due to the radiative decay from high-lying autoionizing states. A comparative analysis with similar data for other alkali atoms is also presented.
Induced Double-Beta Processes in Electron Fluxes as Resonance Reactions in Weak Interaction
International Nuclear Information System (INIS)
Gaponov, Yu.V.
2004-01-01
A theory of induced double-beta processes in electron beams is developed. It is shown that a resonance mechanism of the excitation of the ground state of an intermediate nucleus is realized in them, this mechanism being described in the single-state-dominance approximation, where the process in question is broken down into two stages, the excitation of a dominant state and its decay. This approximation is valid irrespective of the features of this state, both for allowed (for a 1 + state of the intermediate nucleus) and for forbidden transitions. An analysis of the resonance mechanism reveals that its inclusion in double-beta-decay processes requires introducing additional diagrams that describe the gamma decay of virtual intermediate states. The inclusion of such corrections may lead to a decrease in the expected half-life and to a change in the beta spectrum. Effects associated with the interference between the two stages of a double-beta process are estimated, and it is shown that their influence can be significant if the time interval between these stages is less than or on the order of the lifetime of the dominant state
Electron capture to autoionizing states of multiply charged ions
International Nuclear Information System (INIS)
Mack, E.M.
1987-01-01
The present thesis investigates electron capture reactions resulting from slow collisions (V q+ ) and neutral gas targets (B). The energy spectra of the emitted electrons are measured; detection angle is 50 0 . Mainly, autoionizing double capture resulting from collisions with two-electron targets (He, H 2 ) is studied; then, the emitted electrons stem from doubly excited projectile states. The projectiles used are bare C 6+ , the H-like and He-like ions of C, N and O, He-like Ne 8+ and Ne-like Ar 8+ . Excited metastable projectiles used are C 5+ (2s), He-like projectiles A q+ (1s2s 3 S) and Ar 8+ (...2p 5 3s). Comparison is made with the predictions of a recently proposed extended classical barrier model, that was developed in connection with the work. This model assumes sequential capture of the electrons ('two-step' process); it predicts the realized binding enegies of the captured electrons - which may be directly determined from the autoionization spectra using only the projectile charge, the ionization potentials of the target and the collision velocity as parameters. No adjustable parameter enters into the calculations. The term energies and decay modes of the highly excited product ions themselves are studied. Generally, the autoionizing decay of these states is found to proceed preferentially to the directly adjacent lower singly excited state. Experimental evidence is presented, that triply excited states decay by successive emission of two electrons, whenever this is energetically possible. Finally, the L-MM decay in few-electron systems is considered. 314 refs.; 96 figs.; 29 tabs
Excitation of autoionizing states of helium by 100 keV proton impact: theory and experiment
International Nuclear Information System (INIS)
Godunov, A.L.; Moretto-Capelle, P.; Bordenave-Montesquieu, D.; Benhenni, M.; Bordenave-Montesquieu, A.
1997-01-01
A joint theoretical and experimental study of the excitation of the autoionizing (2s 2 ) 1 S, (2p 2 ) 1 D and (2s2p) 1 P states of helium by 100 keV proton impact is presented for the first time. The role of the three-body Coulomb interaction in the final state between the ejected electron, the scattered proton and the recoil helium ion is emphasized. Calculations have been carried out with inclusion of the three-body Coulomb interaction and within an expansion of a two-electron excitation amplitude in powers of projectile-target interaction up to the second order. A new parametrization is proposed to describe resonance profiles distorted by the Coulomb interaction in the final state (CIFS). New high-resolution (up to 68 meV) measurements of electron emission spectra made it possible to resolve the near-lying (2p 2 ) 1 D and (2s2p) 1 P resonances and reveal an evident distortion of the resonance profiles by CIFS for forward electron ejection angles below 40 o . (author)
Excitation of autoionizing states of helium by 100 keV proton impact: theory and experiment
Energy Technology Data Exchange (ETDEWEB)
Godunov, A.L.; Moretto-Capelle, P.; Bordenave-Montesquieu, D.; Benhenni, M.; Bordenave-Montesquieu, A. [Universite Paul Sabatier, Toulouse (France). Laboratoire Collisions, Agregats, Reactivite; Schipakov, V.A. [Troitsk Institute for Innovation and Fusion Research, Moscow (Russian Federation)
1997-12-14
A joint theoretical and experimental study of the excitation of the autoionizing (2s{sup 2}){sup 1}S, (2p{sup 2}){sup 1}D and (2s2p){sup 1}P states of helium by 100 keV proton impact is presented for the first time. The role of the three-body Coulomb interaction in the final state between the ejected electron, the scattered proton and the recoil helium ion is emphasized. Calculations have been carried out with inclusion of the three-body Coulomb interaction and within an expansion of a two-electron excitation amplitude in powers of projectile-target interaction up to the second order. A new parametrization is proposed to describe resonance profiles distorted by the Coulomb interaction in the final state (CIFS). New high-resolution (up to 68 meV) measurements of electron emission spectra made it possible to resolve the near-lying (2p{sup 2}){sup 1}D and (2s2p){sup 1}P resonances and reveal an evident distortion of the resonance profiles by CIFS for forward electron ejection angles below 40{sup o}. (author).
Autoionizing states in highly ionized oxygen, fluorine and silicon
International Nuclear Information System (INIS)
Forester, J.P.; Peterson, R.S.; Griffin, P.M.; Pegg, D.J.; Haselton, H.H.; Liao, K.H.; Sellin, I.A.; Mowat, J.R.; Thoe, R.S.
1975-01-01
Autoionizing states in high Z 3-electron ions associated with core excited configurations of the type 1s2snl and 1s2pnl are reported. The electron decay-in-flight spectra of lithium-like oxygen, fluorine, and silicon ions are presented. Initial beam energies of 6.75-MeV oxygen and fluorine ions and 22.5-MeV silicon ions were used. Stripping and excitation were done by passing the beams through a thin carbon foil. The experimental technique is described. 4 figs, 1 table, 7 refs
International Nuclear Information System (INIS)
Mandal, P.K.; Seema, A.U.; Das, R.C.; Shah, M.L.; Dev, Vas; Suri, B.M.
2013-01-01
Three-colour three-step photoionization spectroscopy of uranium has been performed in a U–Ne hollow cathode discharge tube by temporally resolving three-colour photoionization optogalvanic (PIOG) signal from the normal optogalvanic (OG) signal using three tunable pulsed dye lasers. U–Ne hollow cathode discharge tube has been used as a source of uranium atomic vapours and photoionization detector. Using this technique, photoionization spectra of uranium have been investigated systematically in the energy region 52,150–52,590 cm −1 , through three different excitation pathways, originating from its ground state, 0 cm −1 ( 5 L o 6 ). By analysing the three-colour photoionization spectra sixty new even-parity autoionization resonances of uranium have been identified and their probable total angular momentum (J) values have been assigned according to the J-momentum selection rule. The J-value of five autoionization resonances, which have been observed either through all three excitation pathways or through two different excitation pathways where J-value of the second excited levels differs by two, has been assigned uniquely. -- Highlights: ► Three-colour photoionization optogalvanic spectroscopy of uranium was performed in a U–Ne hollow cathode discharge tube. ► Hollow cathode discharge tube was used as a source of atomic vapour and laser ionisation detector. ► Uranium photoionization spectra were investigated through three different three-colour photoionization schemes. ► Sixty new even-parity autoionization levels of uranium were identified. ► J-value of five autoionization levels was assigned uniquely
Autoionization of inner atomic shells during β decay
International Nuclear Information System (INIS)
Batkin, I.S.; Kopytin, I.V.; Smirnov, Y.G.; Churakova, T.A.
1981-01-01
A theory describing the autoionization of inner atomic shells in nuclear β decay has been developed. It is shown on the basis of diagram technique that in first order in Z -1 the matrix element of the process is represented in the form of the sum of two terms, one of which corresponds to ionization of an electron shell of an atom with sudden change of the charge of the nucleus, and the other to direct interaction of a β particle with the electrons of the atomic shell. Specific calculations are carried out in the nonrelativistic approximation with use of electron wave functions and a Green's function constructed with a Teitz screened Coulomb potential, the systematic inclusion of the contribution of the direct mechanism being carried out for the first time. For the case of β decay of the isotopes 35 S, 45 Ca, 63 Ni, 147 Pm, and 151 Sm we have calculated the shape of the spectrum of shakeup electrons and the integrated probability of autoionization of the K shell. It was found that the contribution of the direct mechanism in all cases considered is significant
International Nuclear Information System (INIS)
Zhang Guangjun; Xu Jianxue; Wang Jue; Yue Zhifeng; Zou Hailin
2009-01-01
In this paper stochastic resonance induced by the novel random transitions of two-dimensional weak damping bistable Duffing oscillator is analyzed by moment method. This kind of novel transition refers to the one among three potential well on two sides of bifurcation point of original system at the presence of internal noise. Several conclusions are drawn. First, the semi-analytical result of stochastic resonance induced by the novel random transitions of two-dimensional weak damping bistable Duffing oscillator can be obtained, and the semi-analytical result is qualitatively compatible with the one of Monte Carlo simulation. Second, a bifurcation of double-branch fixed point curves occurs in the moment equations with noise intensity as their bifurcation parameter. Third, the bifurcation of moment equations corresponds to stochastic resonance of original system. Finally, the mechanism of stochastic resonance is presented from another viewpoint through analyzing the energy transfer induced by the bifurcation of moment equation.
Formation of inner-shell autoionizing CO+ states below the CO2+ threshold
International Nuclear Information System (INIS)
Osipov, T.; Weber, Th.; Rescigno, T. N.; Lee, S. Y.; Schoeffler, M.; Belkacem, A.; Orel, A. E.; Sturm, F. P.; Schoessler, S.; Lenz, U.; Havermeier, T.; Kuehnel, M.; Jahnke, T.; Doerner, R.; Williams, J. B.; Landers, A.; Ray, D.
2010-01-01
We report a kinematically complete experiment on the production of CO + autoionizing states following photoionization of carbon monoxide below its vertical double-ionization threshold. Momentum imaging spectroscopy is used to measure the energies and body-frame angular distributions of both photo- and autoionization electrons, as well as the kinetic energy release (KER) of the atomic ions. These data, in combination with ab initio theoretical calculations, provide insight into the nature of the cation states produced and their subsequent dissociation into autoionizing atomic (O * ) fragments.
Formation of inner-shell autoionizing CO+ states below the CO2+ threshold
Osipov, T.; Weber, Th.; Rescigno, T. N.; Lee, S. Y.; Orel, A. E.; Schöffler, M.; Sturm, F. P.; Schössler, S.; Lenz, U.; Havermeier, T.; Kühnel, M.; Jahnke, T.; Williams, J. B.; Ray, D.; Landers, A.; Dörner, R.; Belkacem, A.
2010-01-01
We report a kinematically complete experiment on the production of CO+ autoionizing states following photoionization of carbon monoxide below its vertical double-ionization threshold. Momentum imaging spectroscopy is used to measure the energies and body-frame angular distributions of both photo- and autoionization electrons, as well as the kinetic energy release (KER) of the atomic ions. These data, in combination with ab initio theoretical calculations, provide insight into the nature of the cation states produced and their subsequent dissociation into autoionizing atomic (O*) fragments.
Electron spectra resulting from autoionization in low-energy Li+ + He collisions
International Nuclear Information System (INIS)
Yagishita, A.; Wakiya, K.; Takayanagi, T.; Suzuki, H.; Koike, F.
1979-09-01
Spectra of electrons ejected from doubly excited states of helium have been extensively measured at several observation angles fro impact with lithium ions at energies lower than 5 KeV. ''Molecular-autoionization'' spectra have been found at forward observation angles, and analyzed in terms of the Gerber-Niehaus theory with modification. The spectral shapes of atomic-autoionization peaks have been discussed in relation to both the Barker-Berry effect and the Doppler effect. Excitation cross sections of autoionizing states have been determined by a new method that uses simultaneous impact of ions and electrons. (author)
Energy Technology Data Exchange (ETDEWEB)
Gunasekara, Nirosha [Department of Laboratory Medicine and Pathology, University of Alberta, 5B4.21 WCM Health Science Centre, 8440-112th Street, Edmonton, Alberta, Canada T6G 2R7 (Canada); Sykes, Brian, E-mail: brian.sykes@ualberta.ca [Department of Biochemistry, 4-19B Medical Sciences Bldg., University of Alberta Edmonton, Alberta, Canada T6G 2H7 (Canada); Hugh, Judith, E-mail: judithh@ualberta.ca [Department of Laboratory Medicine and Pathology, University of Alberta, 5B4.21 WCM Health Science Centre, 8440-112th Street, Edmonton, Alberta, Canada T6G 2R7 (Canada)
2012-05-18
Highlights: Black-Right-Pointing-Pointer MUC1 binds the Src-SH3 domain potentially triggering Src dependent cell migration. Black-Right-Pointing-Pointer NMR Spectroscopy was used to monitor MUC1-CD and Src SH3 domain titrations. Black-Right-Pointing-Pointer MUC1-CD peptides bind with a low affinity (K{sub d} of 2-3 mM) to a non-canonical site. Black-Right-Pointing-Pointer Weak interactions may mediate dynamic processes like migration. Black-Right-Pointing-Pointer The MUC1-CD and Src-SH3 interaction may be a prime target to inhibit cell migration. -- Abstract: Breast cancer causes death through cancer cell migration and subsequent metastasis to distant organs. In vitro, the MUC1 mucin can mediate breast cancer cell migration by binding to intercellular adhesion molecule-1 (ICAM-1). This migration is dependent on MUC1 cytoplasmic domain (MUC1-CD) activation of the non-receptor tyrosine kinase, Src, possibly through competitive displacement of an inhibitory Src intramolecular SH3 binding. Therefore, we characterized the binding site and affinity of the MUC1-CD for Src-SH3 using multidimensional nuclear magnetic resonance (NMR) spectroscopy to monitor the titration of the {sup 15}N labeled Src-SH3 domain with synthetic native and mutant peptides of MUC1-CD. The results revealed that the dissociation constant (K{sub d}) for the interaction of the native MUC1-CD peptides and Src-SH3 domain was weak with a K{sub d} of 2-3 mM. Notably, the SH3 residues most perturbed upon peptide binding were located outside the usual hydrophobic binding cleft in a previously described alternate binding site on the Src-SH3, suggesting that MUC1-CD binds to a non-canonical site. The binding characteristics outlined here suggest that the interaction between Src-SH3 and MUC1-CD represents a novel weak electrostatic interaction of the type which is increasingly recognized as important in transient and dynamic protein complexes required for cell migration and signal transduction. As such, this
Habets, J.; Zandvoort, H. J. A.; Moll, F. L.; Bartels, L. W.; Vonken, E. P. A.; van Herwaarden, J. A.; Leiner, T.
WHAT THIS PAPER ADDS In patients with enlarging aneurysms of unknown origin after endovascular aneurysm repair, magnetic resonance imaging (MRI) with a weak albumin binding contrast agent has additional diagnostic value for both the detection and determination of the origin of the endoleak.
Decay of long-lived autoionization atomic states in atom collisions
International Nuclear Information System (INIS)
Krakov, B.G.
1994-01-01
Radiationless decay of long-lived autoionization states of helium atoms in atom collisions is investigated. It is shown that the states may decay in atom collisions due to softening of the selection rules
International Nuclear Information System (INIS)
Gallagher, T.F.
1993-12-01
The goal of this research program supported by grant DE-FG05-85-ER13394 is to study the properties of autoionizing states to understand in detail dielectronic recombination of ions and electrons. During the period of the present grant, July 1, 1991--June 30, 1994, we have put substantial effort into the study of autoionizing states in Mg. The first topic we have investigated is the angular distribution of electrons ejected from the autoionizing Mg 3pns and 3pnd states. Both of these sets of measurements provide more stringent tests of the K matrix calculations than do measurements of total cross sections. The second topic is the effect of static and microwave electric fields on autoionizing states. Our previous measurements in Ba have shown the profound influence of electric fields on autoionization rates and we have made extensive new measurements in both Ba and Mg. Electric fields are of real importance for dielectronic recombination, since they are present as macroscopic fields in beam experiments and as microfields in plasmas. Finally, we have begun time resolved measurements. We have set up a picosecond laser system, and we have just finished the first experiment with it. Specifically we have used picosecond excitation from a bound Mg 3pnd Rydberg wave packet to the autoionizing 3pnd states to show explicitly the correlation between the spatial location of the Rydberg electron and the frequency of the exciting light
Near-threshold electron-impact excitation of the (2p53s2)2P3/2,1/2 autoionizing states in sodium
International Nuclear Information System (INIS)
Borovik, A; Zatsarinny, O; Bartschat, K
2008-01-01
The ejected-electron excitation functions of the J = 3/2, 1/2 components of the (2p 5 3s 2 ) 2 P leading autoionizing doublet in sodium atoms were measured at an incident electron energy resolution of 0.25 eV over the incident electron energy range from the lowest excitation threshold up to 36 eV. On the basis of 56-state R-matrix (close-coupling) calculations, the observed strong near-threshold structures were classified as negative-ion resonances with likely configurations 2p 5 3s 2 3p and 2p 5 3s3p 2
Spectra of resonance surface photoionization
Energy Technology Data Exchange (ETDEWEB)
Antsiferov, V.V.; Smirnov, G.I.; Telegin, G.G. [Budker Nuclear Physics Institute, Novosibirsk (Russian Federation)
1995-09-01
The theory of nonactivated electron transfer between atoms interacting reasonantly with coherent radiation and a metal surface is developed. The spectral resonances in photoabsorption and surface photoionization are found to be related to nonlinear interference effects in the interaction between discrete atomic levels and the continuum formed by the quasi-continuous electron spectrum of a normal metal. The asymmetry in the resonance surface photoionization spectrum is shown to have a shape typical of the Fano autoionization resonances. 18 refs.
International Nuclear Information System (INIS)
Chernyavskij, V.N.; Konstantinov, G.I.
1984-01-01
The device, consisting of an analog memory device and the Karr-Parsell pulse programming device (radio frequency pulse train is 90 deg - tau - 180 deg - 2 tau - 180 deg - 2 tau ..., where tau is the interval between 90 deg - and 180 deg - pulses), is described. The device is destined for measurement of the time T 2 of nuclear quadrupole resonance spin-spin relaxation weak signal with signal-to-noise ratio 0 - 10 4 ), pulse numbers in series are 2-1024, start output signal amplitude >= 22 V, duration is 1 μs. The device may be also used in pulsed nuclear magnetic and electron paramagnetic resonance spectroscopy
Production of autoionizing di-excited states of barium with high angular momentum
International Nuclear Information System (INIS)
Roussel, F.; Breger, P.; Gounand, F.; Spiess, G.
1988-01-01
Autoionizing di-excited states Ba(6p 1/2 27l) with 7 ≤l≤26, have been experimentally detected. They have been produced by a method combining excitation by two lasers and l-mixing collisions between barium and xenon. Results show that a long delay between the two laser excitation steps is favourable to the production of these states. The method has proved to be very efficient (measured cross-section: σ = 3.1 . 10 -13 cm 2 ) for populating high-angular-momentum autoionizing states of barium
DEFF Research Database (Denmark)
Zhou, Xiaoping; Zhou, Leming; Chen, Yandong
2018-01-01
In this paper, a robust grid-current-feedback reso-nance suppression (GCFRS) method for LCL-type grid-connected inverter is proposed to enhance the system damping without introducing the switching noise and eliminate the impact of control delay on system robustness against grid-impedance variation....... It is composed of GCFRS method, the full duty-ratio and zero-beat-lag PWM method, and the lead-grid-current-feedback-resonance-suppression (LGCFRS) method. Firstly, the GCFRS is used to suppress the LCL-resonant peak well and avoid introducing the switching noise. Secondly, the proposed full duty-ratio and zero......-beat-lag PWM method is used to elimi-nate the one-beat-lag computation delay without introducing duty cycle limitations. Moreover, it can also realize the smooth switching from positive to negative half-wave of the grid current and improve the waveform quality. Thirdly, the proposed LGCFRS is used to further...
Onuki, Y.; Hibiya, T.
2016-02-01
The baroclinic tides are thought to be the dominant energy source for turbulent mixing in the ocean interior. In contrast to the geography of the energy conversion rates from the barotropic to baroclinic tides, which has been clarified in recent numerical studies, the global distribution of the energy sink for the resulting low-mode baroclinic tides remains obscure. A key to resolve this issue is the resonant wave-wave interactions, which transfer part of the baroclinic tidal energy to the background internal wave field enhancing the local energy dissipation rates. Recent field observations and numerical studies have pointed out that parametric subharmonic instability (PSI), one of the resonant interactions, causes significant energy sink of baroclinic tidal energy at mid-latitudes. The purpose of this study is to analyze the quantitative aspect of PSI to demonstrate the global distribution of the intensity of resonant wave interactions, namely, the attenuation rate of low-mode baroclinic tidal energy. Our approach is basically following the weak turbulence theory, which is the standard theory for resonant wave-wave interactions, where techniques of singular perturbation and statistical physics are employed. This study is, however, different from the classical theory in some points; we have reformulated the weak turbulence theory to be applicable to low-mode internal waves and also developed its numerical calculation method so that the effects of stratification profile and oceanic total depth can be taken into account. We have calculated the attenuation rate of low-mode baroclinic tidal waves interacting with the background Garrett-Munk internal wave field. The calculated results clearly show the rapid attenuation of baroclinic tidal energy at mid-latitudes, in agreement with the results from field observations and also show the zonal inhomogeneity of the attenuation rate caused by the density structures associated with the subtropical gyre. This study is expected
Resonance ionization scheme development for europium
Energy Technology Data Exchange (ETDEWEB)
Chrysalidis, K., E-mail: katerina.chrysalidis@cern.ch; Goodacre, T. Day; Fedosseev, V. N.; Marsh, B. A. [CERN (Switzerland); Naubereit, P. [Johannes Gutenberg-Universität, Institiut für Physik (Germany); Rothe, S.; Seiffert, C. [CERN (Switzerland); Kron, T.; Wendt, K. [Johannes Gutenberg-Universität, Institiut für Physik (Germany)
2017-11-15
Odd-parity autoionizing states of europium have been investigated by resonance ionization spectroscopy via two-step, two-resonance excitations. The aim of this work was to establish ionization schemes specifically suited for europium ion beam production using the ISOLDE Resonance Ionization Laser Ion Source (RILIS). 13 new RILIS-compatible ionization schemes are proposed. The scheme development was the first application of the Photo Ionization Spectroscopy Apparatus (PISA) which has recently been integrated into the RILIS setup.
Czech Academy of Sciences Publication Activity Database
Dinh, T.B.; Leoński, W.; Long, V.C.; Peřina ml., Jan
2013-01-01
Roč. 43, č. 3 (2013), s. 471-484 ISSN 0078-5466 Institutional support: RVO:68378271 Keywords : electromagnetically induced transparency (EIT) * lambda configuration * autoionizing states * double Fano profile Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.643, year: 2013
Energy Technology Data Exchange (ETDEWEB)
Kapoor, Varun; Brics, Martins; Bauer, Dieter [Institut fuer Physik, Universitaet Rostock, 18051 Rostock (Germany)
2013-07-01
Autoionizing states are inaccessible to time-dependent density functional theory (TDDFT) using known, adiabatic Kohn-Sham (KS) potentials. We determine the exact KS potential for a numerically exactly solvable model Helium atom interacting with a laser field that is populating an autoionizing state. The exact single-particle density of the population in the autoionizing state corresponds to that of the energetically lowest quasi-stationary state in the exact KS potential. We describe how this exact potential controls the decay by a barrier whose height and width allows for the density to tunnel out and decay with the same rate as in the ab initio time-dependent Schroedinger calculation. However, devising a useful exchange-correlation potential that is capable of governing such a scenario in general and in more complex systems is hopeless. As an improvement over TDDFT, time-dependent reduced density matrix functional theory has been proposed. We are able to obtain for the above described autoionization process the exact time-dependent natural orbitals (i.e., the eigenfunctions of the exact, time-dependent one-body reduced density matrix) and study the potentials that appear in the equations of motion for the natural orbitals and the structure of the two-body density matrix expanded in them.
International Nuclear Information System (INIS)
Litak, Grzegorz; Syta, Arkadiusz; Borowiec, Marek
2007-01-01
We examine the Melnikov criterion for transition to chaos in case of one degree of freedom non-linear oscillator with non-symmetric potential. This system, when subjected to an external periodic force, shows homoclinic transition from regular vibrations to chaos just before escape from a potential well. We focus especially on the effect of a second resonant excitation with a different phase on the system transition to chaos. We propose a way of its control
Xiang, Suyun; Wang, Wei; Xiang, Bingren; Deng, Haishan; Xie, Shaofei
2007-05-01
The periodic modulation-based stochastic resonance algorithm (PSRA) was used to amplify and detect the weak liquid chromatography-mass spectrometry (LC-MS) signal of granisetron in plasma. In the algorithm, the stochastic resonance (SR) was achieved by introducing an external periodic force to the nonlinear system. The optimization of parameters was carried out in two steps to give attention to both the signal-to-noise ratio (S/N) and the peak shape of output signal. By applying PSRA with the optimized parameters, the signal-to-noise ratio of LC-MS peak was enhanced significantly and distorted peak shape that often appeared in the traditional stochastic resonance algorithm was corrected by the added periodic force. Using the signals enhanced by PSRA, this method extended the limit of detection (LOD) and limit of quantification (LOQ) of granisetron in plasma from 0.05 and 0.2 ng/mL, respectively, to 0.01 and 0.02 ng/mL, and exhibited good linearity, accuracy and precision, which ensure accurate determination of the target analyte.
Wigner-Eisenbud-Smith photoionization time delay due to autoioinization resonances
Deshmukh, P. C.; Kumar, A.; Varma, H. R.; Banerjee, S.; Manson, Steven T.; Dolmatov, V. K.; Kheifets, A. S.
2018-03-01
An empirical ansatz for the complex photoionization amplitude and Wigner-Eisenbud-Smith time delay in the vicinity of a Fano autoionization resonance are proposed to evaluate and interpret the time delay in the resonant region. The utility of this expression is evaluated in comparison with accurate numerical calculations employing the ab initio relativistic random phase approximation and relativistic multichannel quantum defect theory. The indisputably good qualitative agreement (and semiquantitative agreement) between corresponding results of the proposed model and results produced by the ab initio theories proves the usability of the model. In addition, the phenomenology of the time delay in the vicinity of multichannel autoionizing resonances is detailed.
International Nuclear Information System (INIS)
Mandal, P.K.; Seema, A.U.; Das, R.C.; Shah, M.L.; Dev, Vas; Suri, B.M.
2013-01-01
Three-colour three-step photoionization spectroscopy of uranium has been performed in a U-Ne hollow cathode discharge tube by temporally resolving three-colour photoionization optogalvanic (PIOG) signal from the normal optogalvanic (OG) signal using three tunable pulsed dye lasers. U-Ne hollow cathode discharge tube has been used as a source of uranium atomic vapour and photoionization detector. Using this technique, photoionization spectra of uranium have been investigated systematically in the energy region 52150-52590 cm -1 , through three different excitation pathways, originating from its ground state, 0 cm -1 ( 5 L 0 6 ). By analyzing the three-colour photoionization spectra sixty new even-parity autoionization resonances of uranium have been identified and their probable total angular momentum (J) values have been assigned according to the J-momentum selection rule. (author)
Calculation of autoionization positions and widths with applications to Penning ionization reactions
International Nuclear Information System (INIS)
Isaacson, A.D.
1978-08-01
Using an approximate evaluation of Miller's golden rule formula to calculate autoionization widths which allows for the consideration only of L 2 functions, the positions and lifetimes of the lowest 1 , 3 P autoionizing states of He have been obtained to reasonable accuracy. This method has been extended to molecular problems, and the ab initio configuration interaction potential energy and width surfaces for the He(2 3 S) + H 2 system have been obtained. Quantum mechanical close-coupling calculations of ionization cross sections using the complex V* - (i/2) GAMMA-potential have yielded rate constants in good agreement with the experimental results of Lindinger, et al. The potential energy surface of the He(2 1 S) + H 2 system has also been obtained and exhibits not only a high degree of anisotropy, but also contains a relative maximum for a perpendicular (C 2 /sub v/) approach which appears to arise from s-p hybridization of the outer He orbital. However, similar ab initio calculations on the He(2 1 S) + Ar system do not show such anomalous structure. In addition, the complex poles of the S-matrix (Siegert eigenvalues) were calculated for several autoionizing states of He and H - , with encouraging results even for quite modest basis sets. This method was extended to molecular problems, and results obtained for the He(2 3 S) + H and He(2 1 S) + H systems. 75 references
Relativistic decay widths of autoionization processes: The relativistic FanoADC-Stieltjes method
Energy Technology Data Exchange (ETDEWEB)
Fasshauer, Elke, E-mail: Elke.Fasshauer@uit.no [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø–The Arctic University of Norway, N-9037 Tromsø (Norway); Theoretische Chemie, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg (Germany); Kolorenč, Přemysl [Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University in Prague, V Holešovičkách 2, 180 00 Prague (Czech Republic); Pernpointner, Markus [Theoretische Chemie, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg (Germany)
2015-04-14
Electronic decay processes of ionized systems are, for example, the Auger decay or the Interatomic/ Intermolecular Coulombic Decay. In both processes, an energetically low lying vacancy is filled by an electron of an energetically higher lying orbital and a secondary electron is instantaneously emitted to the continuum. Whether or not such a process occurs depends both on the energetic accessibility and the corresponding lifetime compared to the lifetime of competing decay mechanisms. We present a realization of the non-relativistically established FanoADC-Stieltjes method for the description of autoionization decay widths including relativistic effects. This procedure, being based on the Algebraic Diagrammatic Construction (ADC), was adapted to the relativistic framework and implemented into the relativistic quantum chemistry program package Dirac. It is, in contrast to other existing relativistic atomic codes, not limited to the description of autoionization lifetimes in spherically symmetric systems, but is instead also applicable to molecules and clusters. We employ this method to the Auger processes following the Kr3d{sup −1}, Xe4d{sup −1}, and Rn5d{sup −1} ionization. Based on the results, we show a pronounced influence of mainly scalar-relativistic effects on the decay widths of autoionization processes.
4pnp J=0e-2e autoionizing series of calcium: experimental and theoretical analysis
International Nuclear Information System (INIS)
Bolovinos, A.; Luc-Koenig, E.; Assimopoulos, S.; Lyras, A.; Karapanagioti, N.E.; Crete Univ., Iraklion; Charalambidis, D.; Crete Univ., Iraklion; Aymar, M.
1996-01-01
The even parity 4pnp J=0, 1, 2 doubly excited autoionizing states of neutral calcium in an atomic beam are investigated by a two-step isolated core excitation (ICE) method using two different combinations of polarization of the laser beams. The different excited energy levels are assigned to nine autoionizing Rydberg series 4p 1/2,3/2 np J=0, 1, 2 for 8≤n≤22. The theoretical interpretation is achieved by a combination of the eigenchannel R-matrix theory and the multichannel quantum defect (MQDT) method. Two, five and six closed interacting channels are introduced for the J=0, J=1 and J=2 series respectively. Theoretical energy level positions, autoionization widths and excitation profiles are compared with the experimental data, confirming the identification of the observed structures and providing evidence of extended mixing between the 4p 1/2 np and 4p 3/2 np series. (orig.). With 9 figs., 3 tabs
International Nuclear Information System (INIS)
Landau, M.
1982-06-01
The autoionizing state study seemed interesting to be taken up again in energy ranges corresponding to formation thresholds, a device well adapted to this range was available concerning electron measurements. Among other things, the overlapping autoionizing states have been displayed; proton kinetic energy distribution appropriate to each state at its formation threshold have been got. The whole of these results represents a proton (and D + ) production mechanism study contribution via autoionizing states. The theory used to describe autoionization cross-section calculations are recalled. Experimental results are presented, discussed, compared to experimental results and theoretical predictions [fr
DEFF Research Database (Denmark)
Petersen, Nils Holger
2014-01-01
A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice.......A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice....
International Nuclear Information System (INIS)
Wu Xiao-Rui; Shen Li; Zhang Kai; Dai Chang-Jian; Yang Yu-Na
2016-01-01
The branching ratios of ions and the angular distributions of electrons ejected from the Eu 4f 7 6p 1/2 n d auto-ionizing states are investigated with the velocity-map-imaging technique. To populate the above auto-ionizing states, the relevant bound Rydberg states have to be detected first. Two new bound Rydberg states are identified in the region between 41150 cm −1 and 44580 cm −1 , from which auto-ionization spectra of the Eu 4f 7 6p 1/2 n d states are observed with isolated core excitation method. With all preparations above, the branching ratios from the above auto-ionizing states to different final ionic states and the angular distributions of electrons ejected from these processes are measured systematically. Energy dependence of branching ratios and anisotropy parameters within the auto-ionization spectra are carefully analyzed, followed by a qualitative interpretation. (paper)
Autoionic microscopy of damage regions of single atom displacement cascades in metals
International Nuclear Information System (INIS)
Suvorov, A.L.
1981-01-01
The defect region formation characterized by zones of depletion with atoms and interstitial halos arizing during displacement cascade development in an irradiated metal is considered. in experimental autoionmicroscopic analysis technique is used. The analysis procedure is briefly discussed: the experiment, the defect identification on autoionic image microphotos, computer data processing. The technique was applied for pure tungsten irradiated with 12 and 5.8 MeV deuterons and fission neutrons, and for tungsten-1.5% ThO 2 alloy irradiated with fast neutrons from fission fragments
Non-LTE profiles of the Al I autoionization lines. [for solar model atmospheres
Finn, G. D.; Jefferies, J. T.
1974-01-01
A non-LTE formulation is given for the transfer of radiation in the autoionizing lines of neutral aluminum at 1932 and 1936 A through both the Bilderberg and Harvard-Smithsonian model atmospheres. Numerical solutions for the common source function of these lines and their theoretical line profiles are calculated and compared with the corresponding LTE profiles. The results show that the non-LTE profiles provide a better match with the observations. They also indicate that the continuous opacity of the standard solar models should be increased in this wavelength region if the center-limb variations of observed and theoretical profiles of these lines are to be in reasonable agreement.
Effects of autoionizing states on two-photon double ionization of the H2 molecule
International Nuclear Information System (INIS)
Guan, Xiaoxu; Bartschat, Klaus; Schneider, Barry I; Koesterke, Lars
2014-01-01
Treating the effects of autoionizing intermediate states on two-photon double ionization (DI) of the H 2 molecule using time-dependent laser pulses is a significant computational challenge. Relatively long exposure times are critical to understanding the dynamics. Using the fixed-nuclei approximation, we demonstrate how the doubly excited states enhance the angle-integrated generalized cross sections in H 2 , and how they affect the angular distribution pattern of the ejected electrons. As the energy approaches the threshold for sequential DI, there is a sharp rise in the cross section due to virtual sequential ionization
Non-statistically populated autoionizing levels of Li-like carbon: Hidden-crossings
International Nuclear Information System (INIS)
Deveney, E.F.; Krause, H.F.; Jones, N.L.
1995-01-01
The intensities of the Auger-electron lines from autoionizing (AI) states of Li-like (1s2s2l) configurations excited in ion-atom collisions vary as functions of the collision parameters such as, for example, the collision velocity. A statistical population of the three-electron levels is at best incomplete and underscores the intricate dynamical development of the electronic states. The authors compare several experimental studies to calculations using ''hidden-crossing'' techniques to explore some of the details of these Auger-electron intensity variation phenomena. The investigations show promising results suggesting that Auger-electron intensity variations can be used to probe collision dynamics
Electronic structure and the mechanism of autoionization for doubly excited states
International Nuclear Information System (INIS)
Komninos, Y.; Makri, N.; Nicolaides, C.A.
1986-01-01
Apart from pure phenomenology, the rigorous and quantitative study of many-electron autoionizing states presents intriguing questions as regards their structure and dynamics. In this paper we present an analysis of such states within a state specific theory with application to five low-lying doubly excited states (DES) of He. The zeroth order description is multiconfigurational and is obtained numerically at the MCHF level. In this way, major radial and angular correlations are accounted for accurately, and reliable predictions can be made without the requirement of large computations. The additional localized correlation is obtained by optimizing variationally analytic virtual orbitals. (orig./WL)
International Nuclear Information System (INIS)
Ryabtsev, A.N.; Wyart, J.F.
1987-01-01
The spark spectra of doubly ionized gallium and triply ionized germanium have been observed. Lines broadened by autoionization have been attributed to 3d 9 4p 2 - 3d 10 4p transitions on the basis of parametric studies of the configurations 3d 9 4p 2 + 3d 9 4s4d. Line strengths and autoionization widths support the identifications. The analysis of the 3d 10 nl system has been corrected and extended. The ionization energy of Ge IV is 368 720 cm -1 ± 10 cm -1 . (orig.)
Resonant inelastic scattering of quasifree electrons on ions
International Nuclear Information System (INIS)
Grabbe, S.
1994-01-01
Several studies of resonant-transfer excitation (RTE) have been reported in ion-atom collisions where the doubly excited autoionizing states are produced. Such a complex collision can be approximated as the scattering of quasifree electrons of the target from the projectile ion. Most of the investigations have been restricted to the deexcitation of the autoionizing states to the ground state by Auger electron emission. It has been shown that there is a strong interference between the elastic scattering amplitude and the resonance amplitude. The authors present here the cases where the corresponding interference is between the inelastic scattering and the resonance process. Recent work on 3 ell 3 ell ' resonances that decay predominantly to n=2 states will be presented for C 5+ -molecular hydrogen collisions
Femtosecond laser control of the angular distribution of electrons due to autoionization
International Nuclear Information System (INIS)
Bajema, M.L.; Jones, R.R.; Gallagher, T.F.
2004-01-01
Using two 500-fs laser pulses and a controlled time delay between them we are able to manipulate the angular distributions of the electrons ejected by autoionization of Ca atoms in the 4p 3/2 21s and 4p 3/2 19d states. Subsequent to their isolated core excitation by a 500-fs 393-nm laser pulse, Ca 4p 3/2 21s(19d) Rydberg atoms coherently evolve, via configuration interaction, into the degenerate 4p 1/2 ns(nd) states. While in the 4p 1/2 ns(nd) states atoms can be de-excited to bound 4sns(nd) levels using a 500-fs 397-nm pulse. Removing these atoms from the autoionizing states leads to a greater fraction of electrons leaving the atom along the direction of the laser polarization than is possible through direct excitation of 4 3/2 ns(nd) or 4p 1/2 ns(nd) using either the 393- or 397-nm pulse alone
International Nuclear Information System (INIS)
Leite Lopes, J.
1976-01-01
A survey of the fundamental ideas on weak currents such as CVC and PCAC and a presentation of the Cabibbo current and the neutral weak currents according to the Salam-Weinberg model and the Glashow-Iliopoulos-Miami model are given [fr
DEFF Research Database (Denmark)
an impetus or drive to that account: change, innovation, rupture, or discontinuity. Resonances: Historical Essays on Continuity and Change explores the historiographical question of the modes of interrelation between these motifs in historical narratives. The essays in the collection attempt to realize...
International Nuclear Information System (INIS)
Wojcicki, S.
1978-11-01
Lectures are given on weak decays from a phenomenological point of view, emphasizing new results and ideas and the relation of recent results to the new standard theoretical model. The general framework within which the weak decay is viewed and relevant fundamental questions, weak decays of noncharmed hadrons, decays of muons and the tau, and the decays of charmed particles are covered. Limitation is made to the discussion of those topics that either have received recent experimental attention or are relevant to the new physics. (JFP) 178 references
International Nuclear Information System (INIS)
Ogava, S.; Savada, S.; Nakagava, M.
1983-01-01
The problem of the use of weak interaction laws to study models of elementary particles is discussed. The most typical examples of weak interaction is beta-decay of nucleons and muons. Beta-interaction is presented by quark currents in the form of universal interaction of the V-A type. Universality of weak interactions is well confirmed using as examples e- and μ-channels of pion decay. Hypothesis on partial preservation of axial current is applicable to the analysis of processes with pion participation. In the framework of the model with four flavours lepton decays of hadrons are considered. Weak interaction without lepton participation are also considered. Properties of neutral currents are described briefly
International Nuclear Information System (INIS)
Chanda, R.
1981-01-01
The theoretical and experimental evidences to form a basis for Lagrangian Quantum field theory for Weak Interactions are discussed. In this context, gauge invariance aspects of such interactions are showed. (L.C.) [pt
Czech Academy of Sciences Publication Activity Database
Landau, A.; Haritan, I.; Kaprálová-Žďánská, Petra Ruth; Moiseyev, N.
2016-01-01
Roč. 120, č. 19 (2016), s. 3098-3108 ISSN 1089-5639 R&D Projects: GA MŠk(CZ) LG13029 Institutional support: RVO:68378271 Keywords : autoionizing states * coordinate calculation * scattering resonances Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 2.847, year: 2016
International Nuclear Information System (INIS)
Eichler, J.; Fritsch, W.
1976-01-01
The angular correlation of autoionization electrons or of photons ejected from collisionally aligned excited atoms is calculated assuming unpolarized beam and target, and polarization-insensitive detectors. Starting from the two-step hypothesis for the formation and decay of the intermediate excited atoms, the angular correlation is expressed in terms of the density matrix describing the excited system. Using the symmetries of the density matrix, a minimal set of independent matrix elements is given and the conditions for which a complete determination of this set is experimentally possible are discussed. For the case of electron emission, simple examples are pointed out in which the angular correlation is independent of the reduced Coulomb matrix elements describing the decay. (author)
Interference between radiative emission and autoionization in the decay of excited states of atoms
International Nuclear Information System (INIS)
Armstrong, L. Jr.; Theodosiou, C.E.; Wall, M.J.
1978-01-01
An excited state of an atom which can autoionize can also undergo radiative decay. We consider the interaction between the final states resulting from these two modes of decay, and its effects on such quantities as the fluorescence yield of the excited state, excitation profile of the excited state, and the spectra of the emitted photons and electrons. It is shown that the fraction of decays of the excited state resulting in a photon (fluorescence yield) is particularly sensitive to the details of the final-state interaction. In lowest order in the final-state interaction, the fluorescence yield is increased by a factor (1 + 1/q 2 ) from the traditional value, where q is the Fano q parameter relating to the excited state and the final atomic state
Focusing effects by one and two Coulomb centers in the autoionization of He
Energy Technology Data Exchange (ETDEWEB)
MartInez, S; Otranto, S [CONICET and Dto. de Fisica, Universidad Nacional del Sur, 8000 Bahia Blanca (Argentina); Suarez, S; Garibotti, C R, E-mail: smartine@criba.edu.a, E-mail: sotranto@uns.edu.a [CONICET and Centro Atomico Bariloche, 8400 S. C. de Bariloche (Argentina)
2009-11-01
In this work we consider the autoionization of He following double electron capture in He{sup 2+} + H{sub 2} collisions at an impact energy of 14 keV/amu. The post-collisional interaction with the two Coulomb centers is treated within the Barrachina-Macek model by employing the {Phi}{sub 2} correlated wave function introduced by Gasaneo et al to represent the continuum of the emitted electron in the field of two Coulomb centers. We compare the angular profiles in the electron spectrum with those obtained following double electron capture for the collision system He{sup 2+}+ He. Clear differences are observed in the spectra obtained for the atomic and molecular targets.
Progress in zirconium resonance ionization spectroscopy
International Nuclear Information System (INIS)
Page, R.H.; Dropinski, S.C.; Worden, E.F.; Stockdale, J.A.D.
1993-01-01
The authors have examined the stepwise-resonant three-photon-ionization spectrum of neutral zirconium atoms using three separately-tunable pulsed visible dye lasers. The ground-level (first-step) transitions were chosen on the basis of demonstrated 91 Zr selectivity. Lifetimes of even-parity levels around 36,000 cm -1 , measured with the delayed-photoionization technique, range from 10 to 100 nsec. Direct ionization cross sections appear to be less than 10 -17 cm 2 ; newly-detected autoionizing levels give peak ionization cross sections (inferred from saturation fluences) up to 10 -15 cm 2 . Portions of Rydberg series converging to the 315 and 763 cm -1 levels of Zr + were identified. Clumps of autoionizing levels are thought to be due to Rydberg-valence mixing
International Nuclear Information System (INIS)
Bjorken, J.D.
1978-01-01
Weak interactions are studied from a phenomenological point of view, by using a minimal number of theoretical hypotheses. Charged-current phenomenology, and then neutral-current phenomenology are discussed. This all is described in terms of a global SU(2) symmetry plus an electromagnetic correction. The intermediate-boson hypothesis is introduced and lower bounds on the range of the weak force are inferred. This phenomenology does not yet reconstruct all the predictions of the conventional SU(2)xU(1) gauge theory. To do that requires an additional assumption of restoration of SU(2) symmetry at asymptotic energies
Excitation of the (2p2)1D and (2s2p)1P autoionizing states of helium by 200 eV electron impact
International Nuclear Information System (INIS)
Godunov, A.L.; McGuire, J.H.; Schipakov, V.S.; Crowe, A.
2002-01-01
We report full second Born calculations with inclusion of post-collision interactions for excitation of the (2p 2 ) 1 D and (2s2p) 1 P autoionizing states of helium by 200 eV electron impact. The calculations are compared to (e, 2e) measurements of McDonald and Crowe (McDonald D G and Crowe A 1993 J. Phys. B: At. Mol. Opt. Phys. 26 2887-97) and Lower and Weigold (Lower J and Weigold E 1990 J. Phys. B: At. Mol. Opt. Phys. 23 2819-45). It is shown that post-collision interactions or Coulomb interactions in the final state between the scattered particle, the ejected electron and the recoil ion have a strong influence on both the direct ionization and resonance profiles around the binary lobe. The second-order terms in the amplitude of double electron excitation also play an observable role under these kinematic conditions. Reasonable agreement is found between the full-scale calculations and the experimental data. (author). Letter-to-the-editor
Energy Technology Data Exchange (ETDEWEB)
Schneider, D.; Arcuni, P.; Bruch, P.; Stoeffler, W.
1983-01-01
Autoionization spectra of He following excitation by 1 to 3 MeV H/sup +/, He/sup +/, and Li/sup n//sup +/ (n = 1,2,3) have been measured as a function of observation angle. The (2p/sup 2/)/sup 1/D and (2s2p)/sup 1/P resonances have been examined and a strong dependence on projectile velocities, charge state and observation angle was found. The measurements were performed in a crossed-beam scattering chamber. The target-gas pressure was in the order of 10/sup -4/ Torr. The secondary electrons have been energy analyzed by a 45/sup 0/ parallel-plate analyzer. Results are presented and discussed. (WHK)
International Nuclear Information System (INIS)
Kimura, M.; Rice Univ., Houston, TX
1990-01-01
The two-electron capture or excitation process resulting from collisions of H + and O 6+ ions with He atoms in the energy range from 0.5 keV/amu to 5 keV/amu is studied within a molecular representation. The collision dynamics for formation of doubly excited O 4+ ions and He** atoms and their (n ell, n'ell ') populations are analyzed in conjunction with electron correlations. Autoionizing states thus formed decay through the Auger process. An experimental study of an ejected electron energy spectrum shows ample structures in addition to two characteristic peaks that are identified by atomic and molecular autoionizations. These structures are attributable to various interferences among electronic states and trajectories. We examine the dominant sources of the interferences. 12 refs., 5 figs
International Nuclear Information System (INIS)
Zouros, T.J.M.; Liao, C.; Montenegro, E.C.; Hagmann, S.; Richard, P.; Grabbe, S.; Bhalla, C.P.; Wong, K.L.
1995-01-01
The unusual looking ''mesa''-shaped cusp observed in O 3+ collisions with He [N. Stolterfoht et al., Proc. 2nd US-Mexico Symp. on Atomic and Molecular Phy. eds. A. Cisneros and T. Morgan (Instituto de Fysica, Cuernavaca, Mexico, 1986) p. 51.], has been investigated using zero-degree electron spectroscopy, in both high resolution singles measurements and lower resolution electron-projectile coincidence measurements at 10, 15 and 23 MeV. The high resolution studies indicate the ''mesa'' peak to be actually composed of primarily two (other than the cusp) very strong autoionizing peaks corresponding to energies of 60 and 100 meV in the emitter frame. The coincidence studies, indicate these lines to originate from excitation of the O 3+ ion followed by autoionization. Ongoing Hartree-Fock-Slater calculations, severely tested at these extremely small transition energies, indicate that these lines can indeed result from the autoionization of t he O 3+ (1s 2 2s2p5l) Rydberg states produced during the collision. Furthermore, the unusually sharp edges of these lines giving rise to the characteristic ''mesa''-shape look, can be explained in terms of the kinematic constraints imposed by the energy and angular acceptance range of the spectrometer. (orig.)
Effect of couplings in the resonance continuum
International Nuclear Information System (INIS)
Royal, J; Larson, A; Orel, A E
2004-01-01
Electronic coupling of two or more resonances via the electron scattering continuum is investigated. The effect of this coupling as a function of the resonance curves and autoionization widths is investigated, and the conditions for the maximum effect are determined. The theory is applied to two physical problems, the product state distribution produced by the dissociative recombination of electrons with HeH + and a one-dimensional model for ion-pair production resulting from electron collisions with H + 3 . It is found that the coupling does not affect the product state distribution in HeH + but produces a significant effect in the H + 3 model
Theory and computation of triply excited resonances: Application to states of He-
International Nuclear Information System (INIS)
Nicolaides, C.A.; Piangos, N.A.; Komninos, Y.
1993-01-01
Autoionizing multiply excited states offer unusual challenges to the theory of electronic structure and spectra because of the presence of strong electron correlations, of their occasional weak binding, of their proximity to more than one threshold, and of their degeneracy with many continua. Here we discuss a theory that addresses these difficulties in conjunction with the computation of their wave functions and intrinsic properties. Emphasis is given on the justification of the possible presence of self-consistently obtained open-channel-like (OCL) correlating configurations in the square-integrable representation of such states and on their effect on the energy E and the width Γ. Application of the theory has allowed the prediction of two hitherto unknown He - triply excited resonances, the 2s2p 2 2 P (E=59.71 eV, above the He ground state, Γ=79 meV) and the 2p 3 2 Do (E=59.46 eV, Γ=282 meV) (1 a.u.=27.2116 eV). These resonances are above the singly excited states of He and are embedded in its doubly excited spectrum. The relatively broad 2p 3 2 Do state interacts strongly with the He 2s2p 3 Po εd continuum. The effect of this interaction has been studied in terms of the coupling with fixed core scattering states as well as with a self-consistently computed OCL bound configuration
Selleri, Franco
2015-01-01
Weak Relativity is an equivalent theory to Special Relativity according to Reichenbach’s definition, where the parameter epsilon equals to 0. It formulates a Neo-Lorentzian approach by replacing the Lorentz transformations with a new set named “Inertial Transformations”, thus explaining the Sagnac effect, the twin paradox and the trip from the future to the past in an easy and elegant way. The cosmic microwave background is suggested as a possible privileged reference system. Most importantly, being a theory based on experimental proofs, rather than mutual consensus, it offers a physical description of reality independent of the human observation.
International Nuclear Information System (INIS)
Du Luchun; Mei Dongcheng
2011-01-01
The non-adiabatic regime of stochastic resonance (SR) in a bistable system with time delay, an additive white noise and a periodic signal was investigated. The signal power amplification η was employed to characterize the SR of the system. The simulation results indicate that (i) in the case of intermediate frequency Ω of the periodic signal, the typical behavior of SR is lowered monotonically by increasing the delay time τ; in the case of large Ω, τ weakens the SR behavior and then enhances it, with a non-monotonic behavior as a function of time delay; (ii) time delay induces SR when A is above the threshold, whereas no such resonance exists in the absence of time delay; (iii) time delay induces a transition from bimodal to unimodal configuration of η; (iv) varying the particular form of time delay results in different phenomena.
Excitation of the helium autoionizing states in He++He collisions, between 3 and 140 keV
International Nuclear Information System (INIS)
Bordenave-Montesquieu, A.; Gleizes, A.; Benoit-Cattin, P.
1982-01-01
The autoionization of the helium atom has been experimentally studied in He + +He collisions between 3 and 140 keV by electron spectrometry. The excitation of the two collision partners has been considered. Above 10 keV, the shapes and excitation cross sections of the 2s 2 1 S, 2s2p 3 P, 2p 2 1 D, and 2s2p 1 P are determined by a numerical fitting procedure which is reported in detail; below 10 keV the ( 1 D+ 1 P), and 2p 2 1 S line intensities are obtained by planimetry since important post-collision effects are observed. From the angular distributions measured below 15 keV, the relative sublevel populations are deduced for the 2p 2 1 D and 2s2p 1 P levels and are compared with those obtained by other authors in a coincidence experiment; the excitation processes are then discussed within the quasimolecular-excitation model. For the highest collision energies, the asymmetry of the angular distributions with respect to 90 0 as well as the line shapes above 100 keV are interpreted by the occurrence of sudden electronic transitions to the continuum. A comparison of the differential cross sections for emission of electrons by autoionization of the fast and slow particles permits us to show that the quasimolecule model cannot explain what is observed above a collision velocity of about 0.5 a.u. The dependence of the total cross sections against the collision energy is also discussed in terms of an evolution of the excitation mechanism from a quasimolecular to an atomic one; the specific variation of the 2s2p 3 P cross section strengthens this interpretation. These total cross sections are compared with those estimated from earlier H + +He data published by us; similar autoionization cross-section values are expected for the two systems at high collision velocity
Angular distributions of autoionization electrons from Ne(2p43s2) 1D in Li+-Ne collisions
International Nuclear Information System (INIS)
Oud, M.; Pas, S.F. te; Westerveld, W.B.; Niehaus, A.
1993-01-01
Angular distributions of autoionization electrons from Ne(2p 4 3s 2 ) 1 D due to Li + -Ne collisions measured in coincidence with the scattered projectile ions are presented. The measurements are performed at four different collision energies between 1.0 keV and 3.0 keV, and the complex population amplitudes for the excited 1 D state are determined. A nearly pure M = O sublevel population is found with respect to an axis coinciding with the direction of the angular distribution. The direction of the angular distribution is found to deviate from the final direction of the asymptotic internuclear axis. (author)
International Nuclear Information System (INIS)
Wang, H.; Bruch, R.; Yan, Y.
1994-01-01
The authors have measured zero degree high-resolution spectra and double differential cross sections (DDCS) for double - excitation-autoionization of Helium atoms. They have also measured direct ionization DDCS at zero degree observation angle. The cross sections are absolutely calibrated. Electrons from the energy 150 to 1000 eV, protons from 100 keV to 1.5 MeV, He + from 400 keV to 1.5 MeV, and He 2+ from 400 keV to 1.6 MeV were used as projectiles. The zero degree observation angle provides a unique opportunity to maximize the interaction between the emitted electron, the ionized target atom, and the charged projectile particles. The doubly excited autoionizing (2lnl') states of He have been observed as a function of the collision conditions such as impact velocity, projectile charge sign, and type of projectile, specifically for the dominating (2p 2 ) 1 D → (lsεd) and (2s2p) 1 P 0 → (lsεp) channels
Eckstein, Martin; Yang, Chung-Hsin; Frassetto, Fabio; Poletto, Luca; Sansone, Giuseppe; Vrakking, Marc J J; Kornilov, Oleg
2016-04-22
Autoionizing Rydberg states of molecular N_{2} are studied using time-, energy-, and angular-resolved photoelectron spectroscopy. A femtosecond extreme ultraviolet pulse with a photon energy of 17.5 eV excites the resonance and a subsequent IR pulse ionizes the molecule before the autoionization takes place. The angular-resolved photoelectron spectra depend on pump-probe time delay and allow for the distinguishing of two electronic states contributing to the resonance. The lifetime of one of the contributions is determined to be 14±1 fs, while the lifetime of the other appears to be significantly shorter than the time resolution of the experiment. These observations suggest that the Rydberg states in this energy region are influenced by the effect of interference stabilization and merge into a complex resonance.
Excitation of the helium autoionizing states in He/sup +/+He collisions, between 3 and 140 keV
Energy Technology Data Exchange (ETDEWEB)
Bordenave-Montesquieu, A.; Gleizes, A.; Benoit-Cattin, P.
1982-01-01
The autoionization of the helium atom has been experimentally studied in He/sup +/+He collisions between 3 and 140 keV by electron spectrometry. The excitation of the two collision partners has been considered. Above 10 keV, the shapes and excitation cross sections of the 2s/sup 2/ /sup 1/S, 2s2p /sup 3/P, 2p/sup 2/ /sup 1/D, and 2s2p /sup 1/P are determined by a numerical fitting procedure which is reported in detail; below 10 keV the (/sup 1/D+/sup 1/P), and 2p/sup 2/ /sup 1/S line intensities are obtained by planimetry since important post-collision effects are observed. From the angular distributions measured below 15 keV, the relative sublevel populations are deduced for the 2p/sup 2/ /sup 1/D and 2s2p/sup 1/ P levels and are compared with those obtained by other authors in a coincidence experiment; the excitation processes are then discussed within the quasimolecular-excitation model. For the highest collision energies, the asymmetry of the angular distributions with respect to 90 /sup 0/ as well as the line shapes above 100 keV are interpreted by the occurrence of sudden electronic transitions to the continuum. A comparison of the differential cross sections for emission of electrons by autoionization of the fast and slow particles permits us to show that the quasimolecule model cannot explain what is observed above a collision velocity of about 0.5 a.u. The dependence of the total cross sections against the collision energy is also discussed in terms of an evolution of the excitation mechanism from a quasimolecular to an atomic one; the specific variation of the 2s2p /sup 3/P cross section strengthens this interpretation. These total cross sections are compared with those estimated from earlier H/sup +/+He data published by us; similar autoionization cross-section values are expected for the two systems at high collision velocity.
Reconstructing weak values without weak measurements
International Nuclear Information System (INIS)
Johansen, Lars M.
2007-01-01
I propose a scheme for reconstructing the weak value of an observable without the need for weak measurements. The post-selection in weak measurements is replaced by an initial projector measurement. The observable can be measured using any form of interaction, including projective measurements. The reconstruction is effected by measuring the change in the expectation value of the observable due to the projector measurement. The weak value may take nonclassical values if the projector measurement disturbs the expectation value of the observable
International Nuclear Information System (INIS)
Pindzola, M.S.; Griffin, D.C.; Bottcher, C.
1983-01-01
Excitation-autoionization contributions to electron-impact ionization are calculated for several atomic ions in the cadmium isoelectronic sequence. We calculate excitation cross sections in the distorted-wave approximation and compare them in one case to a calculation in the close-coupling approximation. We focus attention on the 4d 10 5s 2 →4d 9 5s 2 nf inner-shell excitations in In + , Sb 3+ , and Xe 6+ . Hartree-Fock atomic structure calculations for the 4d 9 5s 2 nf configurations are found to be highly term dependent. Thus our predictions for the total ionization cross section from the 5s subshell for these ions exhibit strong target term dependence. Our Xe 6+ results are found to be in excellent agreement with the recent experimental crossed-beam measurements of Gregory and Crandall
International Nuclear Information System (INIS)
Ueda, Kiyoshi
1997-01-01
Spectral line shapes for autoionizing Rydberg series are briefly reviewed within the framework of multichannel quantum defect theory (MQDT). Recent high-resolution measurements and MQDT analysis for the spectra line shapes are reviewed for the mp 5 ( 2 P 1/2 )ns ' and nd ' J=1 odd spectra of the Ar, Kr, and Xe atoms (m=3,4,5 for Ar, Kr, and Xe) and the 3p 5 ( 2 P 1/2 )nd ' J=2 and 3 odd spectra of Ar*3p 5 4p excited atoms. Some results are also discussed for the Ca 4p( 2 P 1/2,3/2 )ns and nd J=1 odd spectrum and the Ba 5d( 2 P 5/2 )nd J=1 odd spectrum
High-resolution, three-step resonance ionization mass spectrometry of gadolinium
International Nuclear Information System (INIS)
Blaum, K.; Wendt, K.; Bushaw, B.A.; Noertershaeuser, W.
2001-01-01
High-resolution resonance ionization mass spectrometry has been used to measure triple-resonance autoionization (AI) spectra of gadolinium. Al resonances as narrow as 10 MHz have been observed and isotope shifts and hyperfine structure have been measured in selected AI states. The strongest AI state observed at 49663.576 cm-1 with a photoionization cross section of >3.6x10 -15 cm 2 was found to have an overall detection efficiency of >3x10 -5 , allowing application to a number of ultratrace determination problems. Analytical measurements with a diode-laser-based system have been successfully performed on bio-medical tissue samples
Energy Technology Data Exchange (ETDEWEB)
Day Goodacre, T., E-mail: thomas.day.goodacre@cern.ch [CERN, CH-1211 Geneva 23 (Switzerland); School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL (United Kingdom); Fedorov, D. [Petersburg Nuclear Physics Institute, 188350 Gatchina (Russian Federation); Fedosseev, V.N.; Forster, L.; Marsh, B.A. [CERN, CH-1211 Geneva 23 (Switzerland); Rossel, R.E. [CERN, CH-1211 Geneva 23 (Switzerland); Institut für Physik, Johannes Gutenberg Universität, D-55099 Mainz (Germany); Faculty of Design, Computer Science and Media, Hochschule RheinMain, Wiesbaden (Germany); Rothe, S.; Veinhard, M. [CERN, CH-1211 Geneva 23 (Switzerland)
2016-09-11
The resonance ionization laser ion source (RILIS) is the principal ion source of the ISOLDE radioactive beam facility based at CERN. Using the method of in-source laser resonance ionization spectroscopy, a transition to a new autoionizing state of tellurium was discovered and applied as part of a three-step, three-resonance, photo-ionization scheme. In a second study, a three-step, two-resonance, photo-ionization scheme for germanium was developed and the ionization efficiency was measured at ISOLDE. This work increases the range of ISOLDE RILIS ionized beams to 31 elements. Details of the spectroscopy studies are described and the new ionization schemes are summarized.
Day Goodacre, T.; Fedosseev, V.N.; Forster, L.; Marsh, B.A.; Rossel, R.E.; Rothe, S.; Veinhard, M.
2016-01-01
The resonance ionization laser ion source (RILIS) is the principal ion source of the ISOLDE radioactive beam facility based at CERN. Using the method of in-source laser resonance ionization spectroscopy, a transition to a new autoionizing state of tellurium was discovered and applied as part of a three-step, three-resonance, photo-ionization scheme. In a second study, a three-step, two-resonance, photo-ionization scheme for germanium was developed and the ionization efficiency was measured at ISOLDE. This work increases the range of ISOLDE RILIS ionized beams to 31 elements. Details of the spectroscopy studies are described and the new ionization schemes are summarized.
Orbits in weak and strong bars
Contopoulos, George
1980-01-01
The authors study the plane orbits in simple bar models embedded in an axisymmetric background when the bar density is about 1% (weak), 10% (intermediate) or 100% (strong bar) of the axisymmetric density. Most orbits follow the stable periodic orbits. The basic families of periodic orbits are described. In weak bars with two Inner Lindblad Resonances there is a family of stable orbits extending from the center up to the Outer Lindblad Resonance. This family contains the long period orbits near corotation. Other stable families appear between the Inner Lindblad Resonances, outside the Outer Lindblad Resonance, around corotation (short period orbits) and around the center (retrograde). Some families become unstable or disappear in strong bars. A comparison is made with cases having one or no Inner Lindblad Resonance. (12 refs).
International Nuclear Information System (INIS)
Gleizes, A.; Benoit-Cattin, P.; Bordenave-Montesquieu, A.; Merchez, H.
1976-01-01
A detailed study is given of the influence of the Doppler shift and broadening on the spectra of electrons ejected by autoionization in collisions between heavy particles. General formulae have been obtained which permit the validity of results already published by other authors to be discussed. These results have been applied to the spectra of electrons ejected in He + -He collisions at 15 keV. The variation of the width of the autoionization peaks against ejection angle is well explained by Doppler broadening. On the contrary, the shape of these peaks cannot be due to the Doppler effect but rather to the Stark effect which is also studied in various experimental cases; it has been verified that the latter effect disappears in collisions between neutral particles for which symmetric peaks at 15 keV are obtained. (author)
International Nuclear Information System (INIS)
Kawatsura, K.; Yamaoka, H.; Oura, M.; Hayaishi, T.; Sekioka, T.; Agui, A.; Yoshigoe, A.; Koike, F.
2002-01-01
The photoion yields from O + to O 2+ were measured in the 1s-2p autoionizing resonance region of the 525-540 eV photon energy range. A multiconfiguration Dirac-Fock calculation was performed to interpret the experimental data and the results show fairly good agreement with the experimental ones. Photoionization of the N-like isoelectronic sequences of O + and Ne 3+ are discussed. (author)
Directory of Open Access Journals (Sweden)
Kashinski D.O.
2015-01-01
Full Text Available We describe our implementation of the block diagonalization method for calculating the potential surfaces necessary to treat dissociative recombination (DR of electrons with N2H+. Using the methodology we have developed over the past few years, we performed multi-reference, configuration interaction calculations for N2H+ and N2H with a large active space using the GAMESS electronic structure code. We treated both linear and bent geometries of the molecules, with N2 fixed at its equilibrium separation. Because of the strong Rydberg-valence coupling in N2H, it is essential to isolate the appropriate dissociating, autoionizing states. Our procedure requires only modest additional effort beyond the standard methodology. The results indicate that the crossing between the dissociating neutral curve and the initial ion potential is not favorably located for DR, even if the molecule bends. The present calculations thereby confirm our earlier results for linear N2H and reinforce the conclusion that the direct mechanism for DR is likely to be inefficient. We also describe interesting features of our preliminary calculations on SH.
Observation of Cd 4d95s25p J=3 autoionizing levels in (e,2e) energy spectra
International Nuclear Information System (INIS)
Martin, N.L.S.; Bauman, R.P.; Wilson, M.
1998-01-01
Cadmium (e,2e) energy spectra have been measured for kinematics corresponding to a momentum transfer of 1 a.u. Two previously unknown cadmium autoinizing levels have been observed. Their energies are in excellent agreement with existing ab initio structure calculations of the 4d 9 5s 2 5p J=3 levels. One level is easily seen at an ejected-electron direction along the momentum-transfer axis, but is absent for a direction 39 degree away from this axis. The opposite is true for the other level; it is absent in the former, but present in the latter case. This behavior is in agreement with a calculation that takes into account that the J=3 levels can autoionize into both singlet and triplet 5sEf continua. The intensity of the new levels, relative to the well-known 4d 9 5s 2 5p J=1 levels, agrees well with a plane-wave Born approximation calculation for the J=3 levels. The third 4d 9 5s 2 5p J=3 level is calculated to lie within the broad 4d 9 5s 2 5p 1 P 1 level and cannot be seen in the present experiments. copyright 1998 The American Physical Society
International Nuclear Information System (INIS)
Son, Mi Jung; Park, Jin Han; Lim, Ki Moon
2007-01-01
We introduce a new class of functions called weakly clopen function which includes the class of almost clopen functions due to Ekici [Ekici E. Generalization of perfectly continuous, regular set-connected and clopen functions. Acta Math Hungar 2005;107:193-206] and is included in the class of weakly continuous functions due to Levine [Levine N. A decomposition of continuity in topological spaces. Am Math Mon 1961;68:44-6]. Some characterizations and several properties concerning weakly clopenness are obtained. Furthermore, relationships among weak clopenness, almost clopenness, clopenness and weak continuity are investigated
Vaidman, L.
2017-10-01
Recent controversy regarding the meaning and usefulness of weak values is reviewed. It is argued that in spite of recent statistical arguments by Ferrie and Combes, experiments with anomalous weak values provide useful amplification techniques for precision measurements of small effects in many realistic situations. The statistical nature of weak values is questioned. Although measuring weak values requires an ensemble, it is argued that the weak value, similarly to an eigenvalue, is a property of a single pre- and post-selected quantum system. This article is part of the themed issue `Second quantum revolution: foundational questions'.
Autoionization study of the Argon 2p satellites excited near the argon 2s threshold
Energy Technology Data Exchange (ETDEWEB)
Wang, H.; Glans, P.; Hemmers, O. [Univ. of Nevada, Las Vegas, NV (United States)] [and others
1997-04-01
The dynamics of near-threshold photoionization is a complex phenomenon in which the many-electron character of the wavefunctions plays an important role. According to generalized time-independent resonant scattering theory, the transition matrix element from an initial state to a final state is the summation of the amplitudes of direct photoionization and an indirect term in which intermediate states are involved and the resonant behavior is embedded. Studies of the interference effects of intermediate states have been explored in the cases where the direct term is negligible. In the present work, electron time-of-flight spectra of the Ar 2p satellites were measured at two angles (magic and 0{degrees}) in the dipole plane with the exciting photon energy tuned in the vicinity of the Ar 2s threshold. For excitation far below or above the 2s threshold, the 2p satellites spectrum is dominated by 3p to np shakeup contributions upon the ionization of a 2p electron.
Autoionization study of the Argon 2p satellites excited near the argon 2s threshold
International Nuclear Information System (INIS)
Wang, H.; Glans, P.; Hemmers, O.
1997-01-01
The dynamics of near-threshold photoionization is a complex phenomenon in which the many-electron character of the wavefunctions plays an important role. According to generalized time-independent resonant scattering theory, the transition matrix element from an initial state to a final state is the summation of the amplitudes of direct photoionization and an indirect term in which intermediate states are involved and the resonant behavior is embedded. Studies of the interference effects of intermediate states have been explored in the cases where the direct term is negligible. In the present work, electron time-of-flight spectra of the Ar 2p satellites were measured at two angles (magic and 0 degrees) in the dipole plane with the exciting photon energy tuned in the vicinity of the Ar 2s threshold. For excitation far below or above the 2s threshold, the 2p satellites spectrum is dominated by 3p to np shakeup contributions upon the ionization of a 2p electron
Solitons and Weakly Nonlinear Waves in Plasmas
DEFF Research Database (Denmark)
Pécseli, Hans
1985-01-01
Theoretical descriptions of solitons and weakly nonlinear waves propagating in plasma media are reviewed, with particular attention to the Korteweg-de Vries (KDV) equation and the Nonlinear Schrödinger equation (NLS). The modifications of these basic equations due to the effects of resonant...
International Nuclear Information System (INIS)
Mandelbaum, P.; Finkenthal, M.; Meroz, E.; Schwob, J.L.; Oreg, J.; Goldstein, W.H.; Klapisch, M.; Osterheld, L.; Bar Shalom, A.; Lippman, S.; Huang, L.K.; Moos, H.W.
1990-01-01
A systematic variation in the line-intensity ratios of GaI-- and ZnI--like Pr (Z=59) to Dy (Z=66) ions has been observed in spectra emitted by atoms injected in a low-density high-temperature tokamak plasma. This variation is shown to be correlated with the progressive closing of the autoionizing channels through the excited 3d 9 4s 2 4p4f configuration in the GaI--like ionization state as Z increases
International Nuclear Information System (INIS)
Delorme, J.
1978-01-01
The definition and general properties of weak second class currents are recalled and various detection possibilities briefly reviewed. It is shown that the existing data on nuclear beta decay can be consistently analysed in terms of a phenomenological model. Their implication on the fundamental structure of weak interactions is discussed [fr
Rehren, K. -H.
1996-01-01
Weak C* Hopf algebras can act as global symmetries in low-dimensional quantum field theories, when braid group statistics prevents group symmetries. Possibilities to construct field algebras with weak C* Hopf symmetry from a given theory of local observables are discussed.
DEFF Research Database (Denmark)
Lukas, Manuel; Hillebrand, Eric
Relations between economic variables can often not be exploited for forecasting, suggesting that predictors are weak in the sense that estimation uncertainty is larger than bias from ignoring the relation. In this paper, we propose a novel bagging predictor designed for such weak predictor variab...
International Nuclear Information System (INIS)
Deshpande, N.G.
1980-01-01
By electro-weak theory is meant the unified field theory that describes both weak and electro-magnetic interactions. The development of a unified electro-weak theory is certainly the most dramatic achievement in theoretical physics to occur in the second half of this century. It puts weak interactions on the same sound theoretical footing as quantum elecrodynamics. Many theorists have contributed to this development, which culminated in the works of Glashow, Weinberg and Salam, who were jointly awarded the 1979 Nobel Prize in physics. Some of the important ideas that contributed to this development are the theory of beta decay formulated by Fermi, Parity violation suggested by Lee and Yang, and incorporated into immensely successful V-A theory of weak interactions by Sudarshan and Marshak. At the same time ideas of gauge invariance were applied to weak interaction by Schwinger, Bludman and Glashow. Weinberg and Salam then went one step further and wrote a theory that is renormalizable, i.e., all higher order corrections are finite, no mean feat for a quantum field theory. The theory had to await the development of the quark model of hadrons for its completion. A description of the electro-weak theory is given
International Nuclear Information System (INIS)
Walecka, J.D.
1983-01-01
Nuclei provide systems where the strong, electomagnetic, and weak interactions are all present. The current picture of the strong interactions is based on quarks and quantum chromodynamics (QCD). The symmetry structure of this theory is SU(3)/sub C/ x SU(2)/sub W/ x U(1)/sub W/. The electroweak interactions in nuclei can be used to probe this structure. Semileptonic weak interactions are considered. The processes under consideration include beta decay, neutrino scattering and weak neutral-current interactions. The starting point in the analysis is the effective Lagrangian of the Standard Model
International Nuclear Information System (INIS)
Oreg, J.; Bar-Shalom, A.; Mandlebaum, P.; Mittnik, D.; Meroz, E.; Schwob, J.L.; Klapisch, M.
1991-01-01
A systematic variation in the line intensity ratios of GaI-like and ZnI-like ions of rare earth elements has been recently observed in spectra emitted in a low density, high temperature tokamak plasma. This variation is shown to be correlated with the gradual opening of autoionizing channels through inner-shell excited configurations of the GaI-like charge-state. These channels enhance the indirect ionization rate of GaI-like ions through excitation-autoionization (EA), effecting the ionization balance and temperatures of greatest abundance. We present a systematic investigation of EA and direct impact ionization (DI) in the GaI-like isoelectronic sequence from Mo (Z = 42) to Dy (Z = 66). As Z decreases from Dy to Pr (Z = 59) the levels of the configuration 3d 9 4p4f, which are excited from the ground state by strong dipole collisional transitions, gradually cross the first ionization limit of the ion and are responsible for this ionization enhancement. When Z decreases further an additional channel is opened through the configuration 3d 9 4p4d. 9 refs., 3 figs., 1 tab
International Nuclear Information System (INIS)
Oreg, J.; Bar-Shalom, A.; Goldstein, W.H.; Mandlebaum, P.; Mittnik, D.; Meroz, E.; Schwob, J.L.; Klapisch, M.
1991-01-01
A systematic variation in the line intensity ratios of GaI-like and ZnI-like ions of rare earth elements has been recently observed in spectra emitted in a low density, high temperature Tokamak plasma. This variation is shown to be correlated with the gradual opening of autoionizing channels through inner-shell excited configurations of the GaI-like charge-state. These channels enhance the indirect ionization rate of GaI-like ions through excitation-autoionization (EA), effecting the ionization balance and temperatures of greatest abundance. The authors a systematic investigations of EA and direct impact ionizations (DI) in the GaI-like isoelectronic sequence from Mo (Z = 42) to Dy (Z = 66). As Z decreases from Dy to Pr (Z = 59) the levels of the configuration 3d 9 4p4f, which are excited from the ground state by strong dipole collisional transitions, gradually cross the first ionization limit of the ion and are responsible for this ionization enhancement. When Z decreases further an additional channel is opened through the configuration 3d 9 4p4d
Lee, T. D.
1970-07-01
While the phenomenon of beta-decay was discovered near the end of the last century, the notion that the weak interaction forms a separate field of physical forces evolved rather gradually. This became clear only after the experimental discoveries of other weak reactions such as muon-decay, muon-capture, etc., and the theoretical observation that all these reactions can be described by approximately the same coupling constant, thus giving rise to the notion of a universal weak interaction. Only then did one slowly recognize that the weak interaction force forms an independent field, perhaps on the same footing as the gravitational force, the electromagnetic force, and the strong nuclear and sub-nuclear forces.
International Nuclear Information System (INIS)
Anon.
1979-01-01
The possibility of the production of weak bosons in the proton-antiproton colliding beam facilities which are currently being developed, is discussed. The production, decay and predicted properties of these particles are described. (W.D.L.).
International Nuclear Information System (INIS)
Turlay, R.
1979-01-01
In this review of charged weak currents I shall concentrate on inclusive high energy neutrino physics. There are surely still things to learn from the low energy weak interaction but I will not discuss it here. Furthermore B. Tallini will discuss the hadronic final state of neutrino interactions. Since the Tokyo conference a few experimental results have appeared on charged current interaction, I will present them and will also comment on important topics which have been published during the last past year. (orig.)
International Nuclear Information System (INIS)
Daumenov, T.D.; Alizarovskaya, I.M.; Khizirova, M.A.
2001-01-01
The method of the weakly oval electrical field getting generated by the axially-symmetrical field is shown. Such system may be designed with help of the cylindric form coaxial electrodes with the built-in quadrupole duplet. The singularity of the indicated weakly oval lense consists of that it provides the conducting both mechanical and electronic adjustment. Such lense can be useful for elimination of the near-axis astigmatism in the electron-optical system
The dielectronic satellites to the 2s-3p Ne-like krypton resonance lines
International Nuclear Information System (INIS)
Khakhalin, S.Ya.; Dyakin, V.M.; Faenov, A.Ya.; Fiedorowicz, H.; Bartnik, A.; Parys, P.; Nilsen, J.; Osterheld, A.
1994-01-01
We present an analysis of dielectronic satellite spectra of 2p 6 -2s2p 6 3p Ne-like krypton resonance lines. The satellite structure was registered with high (better than λ/Δλ > 3500) spectral resolution in the emission of a laser irradiated gas puff target. We perform an unambiguous identification of satellite lines caused by radiative transitions from autoionizing states of sodium-like krypton ions. A total of about 20 spectral features are identified, most of them for the first time. Very good agreement between the satellite structure calculations and experimental emission spectra is obtained. (orig.)
The dielectronic satellites to the 2s-3p Ne-like krypton resonance lines
Energy Technology Data Exchange (ETDEWEB)
Khakhalin, S.Ya. (MISDC, NPO ' ' VNIIFTRI' ' , Mendeleevo (Russian Federation)); Dyakin, V.M. (MISDC, NPO ' ' VNIIFTRI' ' , Mendeleevo (Russian Federation)); Faenov, A.Ya. (MISDC, NPO ' ' VNIIFTRI' ' , Mendeleevo (Russian Federation)); Fiedorowicz, H. (Inst. of Optoelectronics, Warsaw (Poland)); Bartnik, A. (Inst. of Optoelectronics, Warsaw (Poland)); Parys, P. (Inst. of Plasma Physics and Laser Microfusion, Warsaw (Poland)); Nilsen, J. (Lawrence Livermore National Lab., Livermore, CA (United States)); Osterheld, A. (Lawrence Livermore National Lab., Livermore, CA (United States))
1994-08-01
We present an analysis of dielectronic satellite spectra of 2p[sup 6]-2s2p[sup 6]3p Ne-like krypton resonance lines. The satellite structure was registered with high (better than [lambda]/[Delta][lambda] > 3500) spectral resolution in the emission of a laser irradiated gas puff target. We perform an unambiguous identification of satellite lines caused by radiative transitions from autoionizing states of sodium-like krypton ions. A total of about 20 spectral features are identified, most of them for the first time. Very good agreement between the satellite structure calculations and experimental emission spectra is obtained. (orig.).
International Nuclear Information System (INIS)
Roberts, B.L.; Booth, E.C.; Gall, K.P.; McIntyre, E.K.; Miller, J.P.; Whitehouse, D.A.; Bassalleck, B.; Hall, J.R.; Larson, K.D.; Wolfe, D.M.; Fickinger, W.J.; Robinson, D.K.; Hallin, A.L.; Hasinoff, M.D.; Measday, D.F.; Noble, A.J.; Waltham, C.E.; Hessey, N.P.; Lowe, J.; Horvath, D.; Salomon, M.
1990-01-01
New measurements of the Σ + and Λ weak radiative decays are discussed. The hyperons were produced at rest by the reaction K - p → Yπ where Y = Σ + or Λ. The monoenergetic pion was used to tag the hyperon production, and the branching ratios were determined from the relative amplitudes of Σ + → pγ to Σ + → pπ 0 and Λ → nγ to Λ → nπ 0 . The photons from weak radiative decays and from π 0 decays were detected with modular NaI arrays. (orig.)
Doubly excited circular Ba(6pj, 21c) states: e-e interaction effects in weak external fields
International Nuclear Information System (INIS)
Chen, L.; Cheret, M.; Poirier, M.; Roussel, F.; Bolzinger, T.; Spiess, G.
1992-01-01
The behaviour of doubly excited circular atoms in weak parallel electric and magnetic fields has been studied. The Hamiltonian, including the e-e interaction between the two excited electrons, Stark and Zeeman effects, is diagonalized in a truncated basis. The Rydberg electron, initially in a circular state, experiences a mixing of its orbital and magnetic quantum numbers, due to the presence of the external fields and to the excitation of the inner electron. This mixing depends on the spatial symmetry of the excited core and on the amplitude of the electric field. It can be detected by the field-ionization method which provides a new way for studying non-autoionizing doubly excited states. (orig.)
Startpoints via weak contractions
Agyingi, Collins Amburo; Gaba, Yaé Ulrich
2018-01-01
Startpoints (resp. endpoints) can be defined as "oriented fixed points". They arise naturally in the study of fixed for multi-valued maps defined on quasi-metric spaces. In this article, we give a new result in the startpoint theory for quasi-pseudometric spaces. The result we present is obtained via a generalized weakly contractive set-valued map.
Hadi, Inaam M. A.; Al-aeashi, Shukur N.
2018-05-01
If R is a ring with identity and M is a unitary right R-module. Here we introduce the class of weakly coretractable module. Some basic properties are investigated and some relationships between these modules and other related one are introduced.
Probing hysteretic elasticity in weakly nonlinear materials
Energy Technology Data Exchange (ETDEWEB)
Johnson, Paul A [Los Alamos National Laboratory; Haupert, Sylvain [UPMC UNIV PARIS; Renaud, Guillaume [UPMC UNIV PARIS; Riviere, Jacques [UPMC UNIV PARIS; Talmant, Maryline [UPMC UNIV PARIS; Laugier, Pascal [UPMC UNIV PARIS
2010-12-07
Our work is aimed at assessing the elastic and dissipative hysteretic nonlinear parameters' repeatability (precision) using several classes of materials with weak, intermediate and high nonlinear properties. In this contribution, we describe an optimized Nonlinear Resonant Ultrasound Spectroscopy (NRUS) measuring and data processing protocol applied to small samples. The protocol is used to eliminate the effects of environmental condition changes that take place during an experiment, and that may mask the intrinsic elastic nonlinearity. As an example, in our experiments, we identified external temperature fluctuation as a primary source of material resonance frequency and elastic modulus variation. A variation of 0.1 C produced a frequency variation of 0.01 %, which is similar to the expected nonlinear frequency shift for weakly nonlinear materials. In order to eliminate environmental effects, the variation in f{sub 0} (the elastically linear resonance frequency proportional to modulus) is fit with the appropriate function, and that function is used to correct the NRUS calculation of nonlinear parameters. With our correction procedure, we measured relative resonant frequency shifts of 10{sup -5} , which are below 10{sup -4}, often considered the limit to NRUS sensitivity under common experimental conditions. Our results show that the procedure is an alternative to the stringent control of temperature often applied. Applying the approach, we report nonlinear parameters for several materials, some with very small nonclassical nonlinearity. The approach has broad application to NRUS and other Nonlinear Elastic Wave Spectroscopy approaches.
Introduction to weak interactions
International Nuclear Information System (INIS)
Leite Lopes, J.
An account is first given of the electromagnetic interactions of complex, scalar, vector and spinor fields. It is shown that the electromagnetic field may be considered as a gauge field. Yang-Mills fields and the field theory invariant with respect to the non-Abelian gauge transformation group are then described. The construction, owing to this invariance principle, of conserved isospin currents associated with gauge fields is also demonstrated. This is followed by a historical survey of the development of the weak interaction theory, established at first to describe beta disintegration processes by analogy with electrodynamics. The various stages are mentioned from the discovery of principles and rules and violation of principles, such as those of invariance with respect to spatial reflection and charge conjugation to the formulation of the effective current-current Lagrangian and research on the structure of weak currents [fr
Rakipi, Albert
2006-01-01
Cataloged from PDF version of article. Although the weak 1 failing states have often been deseribed as the single most important problem for the international order s ince the en d of Cold W ar (F .Fukuyaına 2004:92) several dimensions of this phenomenon still remain unexplored. While this phenomenon has been present in the international politics even earlier, only the post Cold W ar period accentuated its relationship with security issues. Following the Cold W ar' s "peacef...
Energy Technology Data Exchange (ETDEWEB)
Suzuki, M.
1988-04-01
Dynamical mechanism of composite W and Z is studied in a 1/N field theory model with four-fermion interactions in which global weak SU(2) symmetry is broken explicitly by electromagnetic interaction. Issues involved in such a model are discussed in detail. Deviation from gauge coupling due to compositeness and higher order loop corrections are examined to show that this class of models are consistent not only theoretically but also experimentally.
Nee, Sean
2018-05-01
Survival analysis in biology and reliability theory in engineering concern the dynamical functioning of bio/electro/mechanical units. Here we incorporate effects of chaotic dynamics into the classical theory. Dynamical systems theory now distinguishes strong and weak chaos. Strong chaos generates Type II survivorship curves entirely as a result of the internal operation of the system, without any age-independent, external, random forces of mortality. Weak chaos exhibits (a) intermittency and (b) Type III survivorship, defined as a decreasing per capita mortality rate: engineering explicitly defines this pattern of decreasing hazard as 'infant mortality'. Weak chaos generates two phenomena from the normal functioning of the same system. First, infant mortality- sensu engineering-without any external explanatory factors, such as manufacturing defects, which is followed by increased average longevity of survivors. Second, sudden failure of units during their normal period of operation, before the onset of age-dependent mortality arising from senescence. The relevance of these phenomena encompasses, for example: no-fault-found failure of electronic devices; high rates of human early spontaneous miscarriage/abortion; runaway pacemakers; sudden cardiac death in young adults; bipolar disorder; and epilepsy.
Resonances in atomic few-body systems
International Nuclear Information System (INIS)
Mezei, J.Zs.; Kruppa, A.T.
2005-01-01
Complete text of publication follows. The variational method using a correlated Gaussian basis (SVM, see [1]) has proved to be an excellent method in calculating the characteristics of bound-states. Its trial and error procedures are very powerful to select an optimal basis, while the simple form of the trial function simplifies the calculations, because most of the matrix elements have analytic form. Combining the SVM with the complex rotational technique we are able to determine auto-ionizing states of Coulombic systems with three or more charged particles. Performing the complex rotation of the coordinates (r → re iθ the complex scaled Hamiltonian of a Coulombic system - only Coulomb interactions act between the particles - is a simple function of the rotational angle H(θ) Te -2iθ + Ve -iθ , where T,V are the kinetic and the potential energies of the system. In order to find the complex eigen energies of the rotated Hamiltonian, we have to solve the equation det/e -i2θ T i,j + e -iθ V ij - EΔ ij / = 0, where T ij and V i,j are the matrix elements of the original kinetic energy operator and the potential energy operator, while Δ ij are the overlap integrals of the basis elements. The SVM optimizes the non-linear parameters of the basis in a very specific way in order to get the best ground state energy. In the calculation of the excited auto-ionizing states we used the same set of parameters as for the ground state, because there are no simple recipes to optimize the parameters of a basis in a resonance state calculation. We have found that with the same set of non- linear parameters as for the ground state, we are able to describe all resonances of the Ps - (e + + e - + e - ) system calculated by Ho. We get almost the same accuracy as Ho, although Ho uses different bases for each resonant state. For the second resonance state in Table 1, our width is an order-of-magnitude smaller than Ho's, but our result is in a good agreement with recent calculations
Gravitoelectromagnetic resonances
International Nuclear Information System (INIS)
Tsagas, Christos G.
2011-01-01
The interaction between gravitational and electromagnetic radiation has a rather long research history. It is well known, in particular, that gravity-wave distortions can drive propagating electromagnetic signals. Since forced oscillations provide the natural stage for resonances to occur, gravitoelectromagnetic resonances have been investigated as a means of more efficient gravity-wave detection methods. In this report, we consider the coupling between the Weyl and the Maxwell fields on a Minkowski background, which also applies to astrophysical environments where gravity is weak, at the second perturbative level. We use covariant methods that describe gravitational waves via the transverse component of the shear, instead of pure-tensor metric perturbations. The aim is to calculate the properties of the electromagnetic signal, which emerges from the interaction of its linear counterpart with an incoming gravitational wave. Our analysis shows how the wavelength and the amplitude of the gravitationally driven electromagnetic wave vary with the initial conditions. More specifically, for certain initial data, the amplitude of the induced electromagnetic signal is found to diverge. Analogous, diverging, gravitoelectromagnetic resonances were also reported in cosmology. Given that, we extend our Minkowski space study to cosmology and discuss analogies and differences in the physics and in the phenomenology of the Weyl-Maxwell coupling between the aforementioned two physical environments.
Hypernuclear weak decay puzzle
International Nuclear Information System (INIS)
Barbero, C.; Horvat, D.; Narancic, Z.; Krmpotic, F.; Kuo, T.T.S.; Tadic, D.
2002-01-01
A general shell model formalism for the nonmesonic weak decay of the hypernuclei has been developed. It involves a partial wave expansion of the emitted nucleon waves, preserves naturally the antisymmetrization between the escaping particles and the residual core, and contains as a particular case the weak Λ-core coupling formalism. The extreme particle-hole model and the quasiparticle Tamm-Dancoff approximation are explicitly worked out. It is shown that the nuclear structure manifests itself basically through the Pauli principle, and a very simple expression is derived for the neutron- and proton-induced decays rates Γ n and Γ p , which does not involve the spectroscopic factors. We use the standard strangeness-changing weak ΛN→NN transition potential which comprises the exchange of the complete pseudoscalar and vector meson octets (π,η,K,ρ,ω,K * ), taking into account some important parity-violating transition operators that are systematically omitted in the literature. The interplay between different mesons in the decay of Λ 12 C is carefully analyzed. With the commonly used parametrization in the one-meson-exchange model (OMEM), the calculated rate Γ NM =Γ n +Γ p is of the order of the free Λ decay rate Γ 0 (Γ NM th congruent with Γ 0 ) and is consistent with experiments. Yet the measurements of Γ n/p =Γ n /Γ p and of Γ p are not well accounted for by the theory (Γ n/p th p th > or approx. 0.60Γ 0 ). It is suggested that, unless additional degrees of freedom are incorporated, the OMEM parameters should be radically modified
Measurement of weak radioactivity
Theodorsson , P
1996-01-01
This book is intended for scientists engaged in the measurement of weak alpha, beta, and gamma active samples; in health physics, environmental control, nuclear geophysics, tracer work, radiocarbon dating etc. It describes the underlying principles of radiation measurement and the detectors used. It also covers the sources of background, analyzes their effect on the detector and discusses economic ways to reduce the background. The most important types of low-level counting systems and the measurement of some of the more important radioisotopes are described here. In cases where more than one type can be used, the selection of the most suitable system is shown.
DEFF Research Database (Denmark)
Kohlenbach, Ulrich Wilhelm
2002-01-01
We show that the so-called weak Markov's principle (WMP) which states that every pseudo-positive real number is positive is underivable in E-HA + AC. Since allows one to formalize (atl eastl arge parts of) Bishop's constructive mathematics, this makes it unlikely that WMP can be proved within...... the framework of Bishop-style mathematics (which has been open for about 20 years). The underivability even holds if the ine.ective schema of full comprehension (in all types) for negated formulas (in particular for -free formulas) is added, which allows one to derive the law of excluded middle...
International Nuclear Information System (INIS)
Sugarbaker, E.
1995-01-01
I review available techniques for extraction of weak interaction rates in nuclei. The case for using hadron charge exchange reactions to estimate such rates is presented and contrasted with alternate methods. Limitations of the (p,n) reaction as a probe of Gamow-Teller strength are considered. Review of recent comparisons between beta-decay studies and (p,n) is made, leading to cautious optimism regarding the final usefulness of (p,n)- derived GT strengths to the field of astrophysics. copyright 1995 American Institute of Physics
Weakly Supervised Dictionary Learning
You, Zeyu; Raich, Raviv; Fern, Xiaoli Z.; Kim, Jinsub
2018-05-01
We present a probabilistic modeling and inference framework for discriminative analysis dictionary learning under a weak supervision setting. Dictionary learning approaches have been widely used for tasks such as low-level signal denoising and restoration as well as high-level classification tasks, which can be applied to audio and image analysis. Synthesis dictionary learning aims at jointly learning a dictionary and corresponding sparse coefficients to provide accurate data representation. This approach is useful for denoising and signal restoration, but may lead to sub-optimal classification performance. By contrast, analysis dictionary learning provides a transform that maps data to a sparse discriminative representation suitable for classification. We consider the problem of analysis dictionary learning for time-series data under a weak supervision setting in which signals are assigned with a global label instead of an instantaneous label signal. We propose a discriminative probabilistic model that incorporates both label information and sparsity constraints on the underlying latent instantaneous label signal using cardinality control. We present the expectation maximization (EM) procedure for maximum likelihood estimation (MLE) of the proposed model. To facilitate a computationally efficient E-step, we propose both a chain and a novel tree graph reformulation of the graphical model. The performance of the proposed model is demonstrated on both synthetic and real-world data.
International Nuclear Information System (INIS)
Shahbazian, B.A.
1982-01-01
The invariant mass spectra of forty nine hadronic systems with hypercharge, strangeness and baryon number, varied in wide limits have been studied. Resonance peaks have been found in the invariant mass spectra of Y 2 and #betta#pπ 2495 MeV/c 2 resonant states. Three more candidates for anti qq 4 states were found #bettaπ# + π + : 1705, 2072, 2605 MeV/c 2 . The masses of all these candidates are in good agreement with Bag Model predictions. A hypercharge selection rule is suggested: ''The hypercharge of hadronic resonances in weak gravitational fields cannot exceed one Y <= 1
Electron scattering from H2+: Resonances in the Π symmetries
International Nuclear Information System (INIS)
Collins, L.A.; Schneider, B.I.; Noble, C.J.
1992-01-01
We present the results of calculations for e - +H 2 + scattering in the region below the first excited state. We employ three distinct and independent methods, close-coupling linear algebraic, effective-optical-potential linear algebraic, and R matrix, to examine the collision at the highest level of sophistication and to provide a valuable check on the results of a single technique. For the 1 Π u and 3 Π u symmetries, we find strong interference effects between various autoionizing series, leading to significant variations of the resonance width with internuclear separation R. Such variations may have profound effects on such processes as photoionization, dissociation, and recombination. For the 1 Π g and 3 Π g symmetries, we observe monotonic behavior of the width with R and find no evidence of strong interference effects or rapid changes
Stabilization of matter wave solitons in weakly coupled atomic condensates
International Nuclear Information System (INIS)
Radha, R.; Vinayagam, P.S.
2012-01-01
We investigate the dynamics of a weakly coupled two component Bose–Einstein condensate and generate bright soliton solutions. We observe that when the bright solitons evolve in time, the density of the condensates shoots up suddenly by virtue of weak coupling indicating the onset of instability in the dynamical system. However, this instability can be overcome either through Feshbach resonance by tuning the temporal scattering length or by suitably changing the time dependent coupling coefficient, thereby extending the lifetime of the condensates.
Weak mixing angle measurements at hadron colliders
Di Simone, Andrea; The ATLAS collaboration
2015-01-01
The Talk will cover weak mixing angle measurements at hadron colliders ATLAS and CMS in particular. ATLAS has measured the forward-backward asymmetry for the neutral current Drell Yan process in a wide mass range around the Z resonance region using dielectron and dimuon final states with $\\sqrt{s}$ =7 TeV data. For the dielectron channel, the measurement includes electrons detected in the forward calorimeter which extends the covered phase space. The result is then used to extract a measurement of the effective weak mixing angle. Uncertainties from the limited knowledge on the parton distribution functions in the proton constitute a significant part of the uncertainty and a dedicated study is performed to obtain a PDF set describing W and Z data measured previously by ATLAS. Similar studies from CMS will be reported.
Marante, Carlos; Klinker, Markus; Kjellsson, Tor; Lindroth, Eva; González-Vázquez, Jesús; Argenti, Luca; Martín, Fernando
2017-08-01
The XCHEM approach interfaces well established quantum chemistry packages with scattering numerical methods in order to describe single-ionization processes in atoms and molecules. This should allow one to describe electron correlation in the continuum at the same level of accuracy as quantum chemistry methods do for bound states. Here we have applied this method to study multichannel photoionization of Ne in the vicinity of the autoionizing states lying between the 2 s22 p5 and 2 s 2 p6 ionization thresholds. The calculated total photoionization cross sections are in very good agreement with the absolute measurement of Samson et al. [J. Electron Spectrosc. Relat. Phenom. 123, 265 (2002), 10.1016/S0368-2048(02)00026-9], and with independent benchmark calculations performed at the same level of theory. From these cross sections, we have extracted resonance positions, total autoionization widths, Fano profile parameters, and correlation parameters for the lowest three autoionizing states. The values of these parameters are in good agreement with those reported in earlier theoretical and experimental work. We have also evaluated β asymmetry parameter and partial photoionization cross sections and, from the latter, partial autoionization widths and Starace parameters for the same resonances, not yet available in the literature. Resonant features in the calculated β parameter are in good agreement with the experimental observations. We have found that the three lowest resonances preferentially decay into the 2 p-1ɛ d continuum rather than into the 2 p-1ɛ s one [Phys. Rev. A 89, 043415 (2014), 10.1103/PhysRevA.89.043415], in agreement with previous expectations, and that in the vicinity of the resonances the partial 2 p-1ɛ s cross section can be larger than the 2 p-1ɛ d one, in contrast with the accepted idea that the latter should amply dominate in the whole energy range. These results show the potential of the XCHEM approach to describe highly correlated process
Zilberberg, Oded; Romito, Alessandro; Gefen, Yuval
2013-01-01
Weak value (WV) is a quantum mechanical measurement protocol, proposed by Aharonov, Albert, and Vaidman. It consists of a weak measurement, which is weighed in, conditional on the outcome of a later, strong measurement. Here we define another two-step measurement protocol, null weak value (NVW), and point out its advantages as compared to WV. We present two alternative derivations of NWVs and compare them to the corresponding derivations of WVs.
International Nuclear Information System (INIS)
Khakhalin, S.Ya.; Faenov, A.Ya.; Skobelev, I.Yu.; Pikuz, S.A.; Nilsen, J.; Osterheld, A.
1994-01-01
We present an analysis of dielectronic satellite spectra of Ne-like ion resonance lines for elements from Cr to Ni. For these low-Z elements, we use spectra from strongly underionized CO 2 -laser produced plasma to minimize the emission from open L-shell ions. This simplifies the spectra and allows the identification of satellite lines caused by radiative transitions from autoionizing states of sodium like ions. Good agreement between the satellite structure calculations and the experimental emission spectra is obtained. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Khakhalin, S.Ya. (MISDC, NPO ' ' VNIIFTRI' ' , Mendeleevo (Russian Federation)); Faenov, A.Ya. (MISDC, NPO ' ' VNIIFTRI' ' , Mendeleevo (Russian Federation)); Skobelev, I.Yu. (MISDC, NPO ' ' VNIIFTRI' ' , Mendeleevo (Russian Federation)); Pikuz, S.A. (P. N. Lebedev Physical Inst., Russian Academy of Science, Moscow (Russian Federation)); Nilsen, J. (Lawrence Livermore National Lab., Livermore, CA (United States)); Osterheld, A. (Lawrence Livermore National Lab., Livermore, CA (United States))
1994-08-01
We present an analysis of dielectronic satellite spectra of Ne-like ion resonance lines for elements from Cr to Ni. For these low-Z elements, we use spectra from strongly underionized CO[sub 2]-laser produced plasma to minimize the emission from open L-shell ions. This simplifies the spectra and allows the identification of satellite lines caused by radiative transitions from autoionizing states of sodium like ions. Good agreement between the satellite structure calculations and the experimental emission spectra is obtained. (orig.).
Weak openness and almost openness
Directory of Open Access Journals (Sweden)
David A. Rose
1984-01-01
Full Text Available Weak openness and almost openness for arbitrary functions between topological spaces are defined as duals to the weak continuity of Levine and the almost continuity of Husain respectively. Independence of these two openness conditions is noted and comparison is made between these and the almost openness of Singal and Singal. Some results dual to those known for weak continuity and almost continuity are obtained. Nearly almost openness is defined and used to obtain an improved link from weak continuity to almost continuity.
Weak measurements and quantum weak values for NOON states
Rosales-Zárate, L.; Opanchuk, B.; Reid, M. D.
2018-03-01
Quantum weak values arise when the mean outcome of a weak measurement made on certain preselected and postselected quantum systems goes beyond the eigenvalue range for a quantum observable. Here, we propose how to determine quantum weak values for superpositions of states with a macroscopically or mesoscopically distinct mode number, that might be realized as two-mode Bose-Einstein condensate or photonic NOON states. Specifically, we give a model for a weak measurement of the Schwinger spin of a two-mode NOON state, for arbitrary N . The weak measurement arises from a nondestructive measurement of the two-mode occupation number difference, which for atomic NOON states might be realized via phase contrast imaging and the ac Stark effect using an optical meter prepared in a coherent state. The meter-system coupling results in an entangled cat-state. By subsequently evolving the system under the action of a nonlinear Josephson Hamiltonian, we show how postselection leads to quantum weak values, for arbitrary N . Since the weak measurement can be shown to be minimally invasive, the weak values provide a useful strategy for a Leggett-Garg test of N -scopic realism.
In-Source Laser Resonance Ionization at ISOL Facilities
Marsh, Bruce; Feddosseev, Valentin
Resonance ionization laser ion source development has been carried out at two radioactive ion beam facilities: ISOLDE (CERN, Switzerland) and the IGISOL facility (Jyvaskyla, Finland). The scope of the Resonance Ionization Laser Ion Source has been extended to 27 elements with the development of new three-step ionization schemes for Sb, Sc, Dy, Y and Au. The efficiencies were determined to be in the range of 2 - 20 %. Additionally, a new two-step ionization scheme has been developed for bismuth in an off-line atomic beam unit. The scheme relies on ionization via a strong and broad auto-ionizing resonance at an energy of 63196.79 cm$^{−1}$. This scheme may offer an improvement over the existing RILIS efficiency and will be more convenient for use during resonance ionization spectroscopy of Bi isotopes. The RILIS can be used as a spectroscopic tool to probe features such as the hyperfine structures and the isotope-shifts of radioisotopes with low production rates. By coupling a laser scanning process that dire...
Weak decays of stable particles
International Nuclear Information System (INIS)
Brown, R.M.
1988-09-01
In this article we review recent advances in the field of weak decays and consider their implications for quantum chromodynamics (the theory of strong interactions) and electroweak theory (the combined theory of electromagnetic and weak interactions), which together form the ''Standard Model'' of elementary particles. (author)
Electromagnetic current in weak interactions
International Nuclear Information System (INIS)
Ma, E.
1983-01-01
In gauge models which unify weak and electromagnetic interactions, the weak neutral-current interaction also involves the electromagnetic current. The exact nature of such a component can be explored using e + e - experimental data. In recent years, the existence of a new component of the weak interaction has become firmly established, i.e., the neutral-current interaction. As such, it competes with the electromagnetic interaction whenever the particles involved are also charged, but at a very much lower rate because its effective strength is so small. Hence neutrino processes are best for the detection of the neutral-current interaction. However, in any gauge model which unifies weak and electromagnetic interactions, the weak neutral-current interaction also involves the electromagnetic current
Weak values in collision theory
de Castro, Leonardo Andreta; Brasil, Carlos Alexandre; Napolitano, Reginaldo de Jesus
2018-05-01
Weak measurements have an increasing number of applications in contemporary quantum mechanics. They were originally described as a weak interaction that slightly entangled the translational degrees of freedom of a particle to its spin, yielding surprising results after post-selection. That description often ignores the kinetic energy of the particle and its movement in three dimensions. Here, we include these elements and re-obtain the weak values within the context of collision theory by two different approaches, and prove that the results are compatible with each other and with the results from the traditional approach. To provide a more complete description, we generalize weak values into weak tensors and use them to provide a more realistic description of the Stern-Gerlach apparatus.
Hartman effect and weak measurements that are not really weak
International Nuclear Information System (INIS)
Sokolovski, D.; Akhmatskaya, E.
2011-01-01
We show that in wave packet tunneling, localization of the transmitted particle amounts to a quantum measurement of the delay it experiences in the barrier. With no external degree of freedom involved, the envelope of the wave packet plays the role of the initial pointer state. Under tunneling conditions such ''self-measurement'' is necessarily weak, and the Hartman effect just reflects the general tendency of weak values to diverge, as postselection in the final state becomes improbable. We also demonstrate that it is a good precision, or a 'not really weak' quantum measurement: no matter how wide the barrier d, it is possible to transmit a wave packet with a width σ small compared to the observed advancement. As is the case with all weak measurements, the probability of transmission rapidly decreases with the ratio σ/d.
Weak Measurement and Quantum Correlation
Indian Academy of Sciences (India)
Arun Kumar Pati
Entanglement: Two quantum systems can be in a strongly correlated state even if .... These are resources which can be used to design quantum computer, quantum ...... Weak measurements have found numerous applications starting from the ...
Weakly infinite-dimensional spaces
International Nuclear Information System (INIS)
Fedorchuk, Vitalii V
2007-01-01
In this survey article two new classes of spaces are considered: m-C-spaces and w-m-C-spaces, m=2,3,...,∞. They are intermediate between the class of weakly infinite-dimensional spaces in the Alexandroff sense and the class of C-spaces. The classes of 2-C-spaces and w-2-C-spaces coincide with the class of weakly infinite-dimensional spaces, while the compact ∞-C-spaces are exactly the C-compact spaces of Haver. The main results of the theory of weakly infinite-dimensional spaces, including classification via transfinite Lebesgue dimensions and Luzin-Sierpinsky indices, extend to these new classes of spaces. Weak m-C-spaces are characterised by means of essential maps to Henderson's m-compacta. The existence of hereditarily m-strongly infinite-dimensional spaces is proved.
Weak interactions and presupernova evolution
International Nuclear Information System (INIS)
Aufderheide, M.B.; State Univ. of New York
1991-01-01
The role of weak interactions, particularly electron capture and β - decay, in presupernova evolution is discussed. The present uncertainty in these rates is examined and the possibility of improving the situation is addressed. 12 refs., 4 figs
Weak Deeply Virtual Compton Scattering
International Nuclear Information System (INIS)
Ales Psaker; Wolodymyr Melnitchouk; Anatoly Radyushkin
2006-01-01
We extend the analysis of the deeply virtual Compton scattering process to the weak interaction sector in the generalized Bjorken limit. The virtual Compton scattering amplitudes for the weak neutral and charged currents are calculated at the leading twist within the framework of the nonlocal light-cone expansion via coordinate space QCD string operators. Using a simple model, we estimate cross sections for neutrino scattering off the nucleon, relevant for future high intensity neutrino beam facilities
Weakly compact operators and interpolation
Maligranda, Lech
1992-01-01
The class of weakly compact operators is, as well as the class of compact operators, a fundamental operator ideal. They were investigated strongly in the last twenty years. In this survey, we have collected and ordered some of this (partly very new) knowledge. We have also included some comments, remarks and examples. The class of weakly compact operators is, as well as the class of compact operators, a fundamental operator ideal. They were investigated strongly in the last twenty years. I...
Acute muscular weakness in children
Directory of Open Access Journals (Sweden)
Ricardo Pablo Javier Erazo Torricelli
Full Text Available ABSTRACT Acute muscle weakness in children is a pediatric emergency. During the diagnostic approach, it is crucial to obtain a detailed case history, including: onset of weakness, history of associated febrile states, ingestion of toxic substances/toxins, immunizations, and family history. Neurological examination must be meticulous as well. In this review, we describe the most common diseases related to acute muscle weakness, grouped into the site of origin (from the upper motor neuron to the motor unit. Early detection of hyperCKemia may lead to a myositis diagnosis, and hypokalemia points to the diagnosis of periodic paralysis. Ophthalmoparesis, ptosis and bulbar signs are suggestive of myasthenia gravis or botulism. Distal weakness and hyporeflexia are clinical features of Guillain-Barré syndrome, the most frequent cause of acute muscle weakness. If all studies are normal, a psychogenic cause should be considered. Finding the etiology of acute muscle weakness is essential to execute treatment in a timely manner, improving the prognosis of affected children.
Weak pion production off the nucleon
International Nuclear Information System (INIS)
Hernandez, E.; Nieves, J.; Valverde, M.
2007-01-01
We develop a model for the weak pion production off the nucleon, which besides the delta pole mechanism [weak excitation of the Δ(1232) resonance and its subsequent decay into Nπ], includes also some background terms required by chiral symmetry. We refit the C 5 A (q 2 ) form factor to the flux-averaged ν μ p→μ - pπ + ANL q 2 -differential cross section data, finding a substantially smaller contribution of the delta pole mechanism than traditionally assumed in the literature. Within this scheme, we calculate several differential and integrated cross sections, including pion angular distributions, induced by neutrinos and antineutrinos and driven both by charged and neutral currents. In all cases we find that the background terms produce quite significant effects, and that they lead to an overall improved description of the data, as compared to the case where only the delta pole mechanism is considered. We also show that the interference between the delta pole and the background terms produces parity-violating contributions to the pion angular differential cross section, which are intimately linked to T-odd correlations in the contraction between the leptonic and hadronic tensors. However, these latter correlations do not imply a genuine violation of time-reversal invariance because of the existence of strong final state interaction effects
... by a slipped disk in the spine) Stroke MUSCLE DISEASES Becker muscular dystrophy Dermatomyositis Muscular dystrophy (Duchenne) Myotonic dystrophy POISONING Botulism Poisoning ( insecticides , nerve gas) ...
Cosmology with weak lensing surveys
International Nuclear Information System (INIS)
Munshi, Dipak; Valageas, Patrick; Waerbeke, Ludovic van; Heavens, Alan
2008-01-01
Weak gravitational lensing is responsible for the shearing and magnification of the images of high-redshift sources due to the presence of intervening matter. The distortions are due to fluctuations in the gravitational potential, and are directly related to the distribution of matter and to the geometry and dynamics of the Universe. As a consequence, weak gravitational lensing offers unique possibilities for probing the Dark Matter and Dark Energy in the Universe. In this review, we summarise the theoretical and observational state of the subject, focussing on the statistical aspects of weak lensing, and consider the prospects for weak lensing surveys in the future. Weak gravitational lensing surveys are complementary to both galaxy surveys and cosmic microwave background (CMB) observations as they probe the unbiased non-linear matter power spectrum at modest redshifts. Most of the cosmological parameters are accurately estimated from CMB and large-scale galaxy surveys, so the focus of attention is shifting to understanding the nature of Dark Matter and Dark Energy. On the theoretical side, recent advances in the use of 3D information of the sources from photometric redshifts promise greater statistical power, and these are further enhanced by the use of statistics beyond two-point quantities such as the power spectrum. The use of 3D information also alleviates difficulties arising from physical effects such as the intrinsic alignment of galaxies, which can mimic weak lensing to some extent. On the observational side, in the next few years weak lensing surveys such as CFHTLS, VST-KIDS and Pan-STARRS, and the planned Dark Energy Survey, will provide the first weak lensing surveys covering very large sky areas and depth. In the long run even more ambitious programmes such as DUNE, the Supernova Anisotropy Probe (SNAP) and Large-aperture Synoptic Survey Telescope (LSST) are planned. Weak lensing of diffuse components such as the CMB and 21 cm emission can also
Cosmology with weak lensing surveys
Energy Technology Data Exchange (ETDEWEB)
Munshi, Dipak [Institute of Astronomy, Madingley Road, Cambridge, CB3 OHA (United Kingdom); Astrophysics Group, Cavendish Laboratory, Madingley Road, Cambridge CB3 OHE (United Kingdom)], E-mail: munshi@ast.cam.ac.uk; Valageas, Patrick [Service de Physique Theorique, CEA Saclay, 91191 Gif-sur-Yvette (France); Waerbeke, Ludovic van [University of British Columbia, Department of Physics and Astronomy, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Heavens, Alan [SUPA - Scottish Universities Physics Alliance, Institute for Astronomy, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom)
2008-06-15
Weak gravitational lensing is responsible for the shearing and magnification of the images of high-redshift sources due to the presence of intervening matter. The distortions are due to fluctuations in the gravitational potential, and are directly related to the distribution of matter and to the geometry and dynamics of the Universe. As a consequence, weak gravitational lensing offers unique possibilities for probing the Dark Matter and Dark Energy in the Universe. In this review, we summarise the theoretical and observational state of the subject, focussing on the statistical aspects of weak lensing, and consider the prospects for weak lensing surveys in the future. Weak gravitational lensing surveys are complementary to both galaxy surveys and cosmic microwave background (CMB) observations as they probe the unbiased non-linear matter power spectrum at modest redshifts. Most of the cosmological parameters are accurately estimated from CMB and large-scale galaxy surveys, so the focus of attention is shifting to understanding the nature of Dark Matter and Dark Energy. On the theoretical side, recent advances in the use of 3D information of the sources from photometric redshifts promise greater statistical power, and these are further enhanced by the use of statistics beyond two-point quantities such as the power spectrum. The use of 3D information also alleviates difficulties arising from physical effects such as the intrinsic alignment of galaxies, which can mimic weak lensing to some extent. On the observational side, in the next few years weak lensing surveys such as CFHTLS, VST-KIDS and Pan-STARRS, and the planned Dark Energy Survey, will provide the first weak lensing surveys covering very large sky areas and depth. In the long run even more ambitious programmes such as DUNE, the Supernova Anisotropy Probe (SNAP) and Large-aperture Synoptic Survey Telescope (LSST) are planned. Weak lensing of diffuse components such as the CMB and 21 cm emission can also
Peripheral facial weakness (Bell's palsy).
Basić-Kes, Vanja; Dobrota, Vesna Dermanović; Cesarik, Marijan; Matovina, Lucija Zadro; Madzar, Zrinko; Zavoreo, Iris; Demarin, Vida
2013-06-01
Peripheral facial weakness is a facial nerve damage that results in muscle weakness on one side of the face. It may be idiopathic (Bell's palsy) or may have a detectable cause. Almost 80% of peripheral facial weakness cases are primary and the rest of them are secondary. The most frequent causes of secondary peripheral facial weakness are systemic viral infections, trauma, surgery, diabetes, local infections, tumor, immune disorders, drugs, degenerative diseases of the central nervous system, etc. The diagnosis relies upon the presence of typical signs and symptoms, blood chemistry tests, cerebrospinal fluid investigations, nerve conduction studies and neuroimaging methods (cerebral MRI, x-ray of the skull and mastoid). Treatment of secondary peripheral facial weakness is based on therapy for the underlying disorder, unlike the treatment of Bell's palsy that is controversial due to the lack of large, randomized, controlled, prospective studies. There are some indications that steroids or antiviral agents are beneficial but there are also studies that show no beneficial effect. Additional treatments include eye protection, physiotherapy, acupuncture, botulinum toxin, or surgery. Bell's palsy has a benign prognosis with complete recovery in about 80% of patients, 15% experience some mode of permanent nerve damage and severe consequences remain in 5% of patients.
Quantum discord with weak measurements
International Nuclear Information System (INIS)
Singh, Uttam; Pati, Arun Kumar
2014-01-01
Weak measurements cause small change to quantum states, thereby opening up the possibility of new ways of manipulating and controlling quantum systems. We ask, can weak measurements reveal more quantum correlation in a composite quantum state? We prove that the weak measurement induced quantum discord, called as the “super quantum discord”, is always larger than the quantum discord captured by the strong measurement. Moreover, we prove the monotonicity of the super quantum discord as a function of the measurement strength and in the limit of strong projective measurement the super quantum discord becomes the normal quantum discord. We find that unlike the normal discord, for pure entangled states, the super quantum discord can exceed the quantum entanglement. Our results provide new insights on the nature of quantum correlation and suggest that the notion of quantum correlation is not only observer dependent but also depends on how weakly one perturbs the composite system. We illustrate the key results for pure as well as mixed entangled states. -- Highlights: •Introduced the role of weak measurements in quantifying quantum correlation. •We have introduced the notion of the super quantum discord (SQD). •For pure entangled state, we show that the SQD exceeds the entanglement entropy. •This shows that quantum correlation depends not only on observer but also on measurement strength
Weak-interacting holographic QCD
International Nuclear Information System (INIS)
Gazit, D.; Yee, H.-U.
2008-06-01
We propose a simple prescription for including low-energy weak-interactions into the frame- work of holographic QCD, based on the standard AdS/CFT dictionary of double-trace deformations. As our proposal enables us to calculate various electro-weak observables involving strongly coupled QCD, it opens a new perspective on phenomenological applications of holographic QCD. We illustrate efficiency and usefulness of our method by performing a few exemplar calculations; neutron beta decay, charged pion weak decay, and meson-nucleon parity non-conserving (PNC) couplings. The idea is general enough to be implemented in both Sakai-Sugimoto as well as Hard/Soft Wall models. (author)
Plane waves with weak singularities
International Nuclear Information System (INIS)
David, Justin R.
2003-03-01
We study a class of time dependent solutions of the vacuum Einstein equations which are plane waves with weak null singularities. This singularity is weak in the sense that though the tidal forces diverge at the singularity, the rate of divergence is such that the distortion suffered by a freely falling observer remains finite. Among such weak singular plane waves there is a sub-class which does not exhibit large back reaction in the presence of test scalar probes. String propagation in these backgrounds is smooth and there is a natural way to continue the metric beyond the singularity. This continued metric admits string propagation without the string becoming infinitely excited. We construct a one parameter family of smooth metrics which are at a finite distance in the space of metrics from the extended metric and a well defined operator in the string sigma model which resolves the singularity. (author)
International Nuclear Information System (INIS)
Paripás, Béla; Palásthy, Béla; Žitnik, Matjaz
2013-01-01
Highlights: •The interference of autoionizing resonances with a common final ionic state is measured. •We have developed a method to experimentally verify for the exchange interference effect. •The sum of kinetic energies of the two detected electrons is kept constant. •Mainly the interference effects of [2p 3/2 ]4p and [2p 1/2 ]4p resonances in argon are studied. •The results possibly indicate small exchange interference effects. -- Abstract: Any two autoionizing resonances with a common final ionic state can be made to interfere by an appropriate selection of electron impact energy. To reveal the exchange interference effects a selective detection of electron pairs related to the selected final state is desired. We have performed a constant ionic state (e, 2e) experiment (CIS) isolating the final state by keeping the sum of transmission energies of two independent electron spectrometers constant. In the focus of this work are the exchange interference effects of 2p 3/2 −1 4p and 2p 1/2 −1 4p resonances in argon decaying to the 3p −2 ( 1 D)4p 2 P, 2 D final ionic state with energy E F = 37.3 ± 0.2 eV. We have developed a method to experimentally verify for the exchange interference effect. It is based on a comparison of the CIS spectrum recorded at the critical primary electron energy that activates the interferences, and the constructed, interference-free CIS spectrum that is build up from the CIS spectrum measured at primary electron energy away from the critical value. The results possibly indicate small exchange interference effects that may have been considerably smeared out at present experimental energy resolution
Cosmology and the weak interaction
Energy Technology Data Exchange (ETDEWEB)
Schramm, D.N. (Fermi National Accelerator Lab., Batavia, IL (USA)):(Chicago Univ., IL (USA))
1989-12-01
The weak interaction plays a critical role in modern Big Bang cosmology. This review will emphasize two of its most publicized cosmological connections: Big Bang nucleosynthesis and Dark Matter. The first of these is connected to the cosmological prediction of Neutrino Flavours, N{sub {nu}} {approximately} 3 which is now being confirmed at SLC and LEP. The second is interrelated to the whole problem of galaxy and structure formation in the universe. This review will demonstrate the role of the weak interaction both for dark matter candidates and for the problem of generating seeds to form structure. 87 refs., 3 figs., 5 tabs.
Cosmology and the weak interaction
International Nuclear Information System (INIS)
Schramm, D.N.
1989-12-01
The weak interaction plays a critical role in modern Big Bang cosmology. This review will emphasize two of its most publicized cosmological connections: Big Bang nucleosynthesis and Dark Matter. The first of these is connected to the cosmological prediction of Neutrino Flavours, N ν ∼ 3 which is now being confirmed at SLC and LEP. The second is interrelated to the whole problem of galaxy and structure formation in the universe. This review will demonstrate the role of the weak interaction both for dark matter candidates and for the problem of generating seeds to form structure. 87 refs., 3 figs., 5 tabs
Nonlinear waves and weak turbulence
Zakharov, V E
1997-01-01
This book is a collection of papers on dynamical and statistical theory of nonlinear wave propagation in dispersive conservative media. Emphasis is on waves on the surface of an ideal fluid and on Rossby waves in the atmosphere. Although the book deals mainly with weakly nonlinear waves, it is more than simply a description of standard perturbation techniques. The goal is to show that the theory of weakly interacting waves is naturally related to such areas of mathematics as Diophantine equations, differential geometry of waves, Poincaré normal forms, and the inverse scattering method.
Weak disorder in Fibonacci sequences
Energy Technology Data Exchange (ETDEWEB)
Ben-Naim, E [Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Krapivsky, P L [Department of Physics and Center for Molecular Cybernetics, Boston University, Boston, MA 02215 (United States)
2006-05-19
We study how weak disorder affects the growth of the Fibonacci series. We introduce a family of stochastic sequences that grow by the normal Fibonacci recursion with probability 1 - {epsilon}, but follow a different recursion rule with a small probability {epsilon}. We focus on the weak disorder limit and obtain the Lyapunov exponent that characterizes the typical growth of the sequence elements, using perturbation theory. The limiting distribution for the ratio of consecutive sequence elements is obtained as well. A number of variations to the basic Fibonacci recursion including shift, doubling and copying are considered. (letter to the editor)
Weak interactions at high energies
International Nuclear Information System (INIS)
Ellis, J.
1978-08-01
Review lectures are presented on the phenomenological implications of the modern spontaneously broken gauge theories of the weak and electromagnetic interactions, and some observations are made about which high energy experiments probe what aspects of gauge theories. Basic quantum chromodynamics phenomenology is covered including momentum dependent effective quark distributions, the transverse momentum cutoff, search for gluons as sources of hadron jets, the status and prospects for the spectroscopy of fundamental fermions and how fermions may be used to probe aspects of the weak and electromagnetic gauge theory, studies of intermediate vector bosons, and miscellaneous possibilities suggested by gauge theories from the Higgs bosons to speculations about proton decay. 187 references
International Nuclear Information System (INIS)
Shore, B.W.
1977-01-01
The long-time average of level populations in a coherently-excited anharmonic sequence of energy levels (e.g., an anharmonic oscillator) exhibits sharp resonances as a function of laser frequency. For simple linearly-increasing anharmonicity, each resonance is a superposition of various multiphoton resonances (e.g., a superposition of 3, 5, 7, . . . photon resonances), each having its own characteristic width predictable from perturbation theory
Weak localization of seismic waves
International Nuclear Information System (INIS)
Larose, E.; Margerin, L.; Tiggelen, B.A. van; Campillo, M.
2004-01-01
We report the observation of weak localization of seismic waves in a natural environment. It emerges as a doubling of the seismic energy around the source within a spot of the width of a wavelength, which is several tens of meters in our case. The characteristic time for its onset is the scattering mean-free time that quantifies the internal heterogeneity
Thomys, Janus; Zhang, Xiaohong
2013-01-01
We describe weak-BCC-algebras (also called BZ-algebras) in which the condition (x∗y)∗z = (x∗z)∗y is satisfied only in the case when elements x, y belong to the same branch. We also characterize ideals, nilradicals, and nilpotent elements of such algebras. PMID:24311983
Voltage Weak DC Distribution Grids
Hailu, T.G.; Mackay, L.J.; Ramirez Elizondo, L.M.; Ferreira, J.A.
2017-01-01
This paper describes the behavior of voltage weak DC distribution systems. These systems have relatively small system capacitance. The size of system capacitance, which stores energy, has a considerable effect on the value of fault currents, control complexity, and system reliability. A number of
The structure of weak interaction
International Nuclear Information System (INIS)
Zee, A.
1977-01-01
The effect of introducing righthanded currents on the structure of weak interaction is discussed. The ΔI=1/2 rule is in the spotlight. The discussion provides an interesting example in which the so-called Iizuka-Okubo-Zweing rule is not only evaded, but completely negated
Coverings, Networks and Weak Topologies
Czech Academy of Sciences Publication Activity Database
Dow, A.; Junnila, H.; Pelant, Jan
2006-01-01
Roč. 53, č. 2 (2006), s. 287-320 ISSN 0025-5793 R&D Projects: GA ČR GA201/97/0216 Institutional research plan: CEZ:AV0Z10190503 Keywords : Banach spaces * weak topologies * networks topologies Subject RIV: BA - General Mathematics
Weak differentiability of product measures
Heidergott, B.F.; Leahu, H.
2010-01-01
In this paper, we study cost functions over a finite collection of random variables. For these types of models, a calculus of differentiation is developed that allows us to obtain a closed-form expression for derivatives where "differentiation" has to be understood in the weak sense. The technique
International Nuclear Information System (INIS)
Huterer, Dragan
2002-01-01
We study the power of upcoming weak lensing surveys to probe dark energy. Dark energy modifies the distance-redshift relation as well as the matter power spectrum, both of which affect the weak lensing convergence power spectrum. Some dark-energy models predict additional clustering on very large scales, but this probably cannot be detected by weak lensing alone due to cosmic variance. With reasonable prior information on other cosmological parameters, we find that a survey covering 1000 sq deg down to a limiting magnitude of R=27 can impose constraints comparable to those expected from upcoming type Ia supernova and number-count surveys. This result, however, is contingent on the control of both observational and theoretical systematics. Concentrating on the latter, we find that the nonlinear power spectrum of matter perturbations and the redshift distribution of source galaxies both need to be determined accurately in order for weak lensing to achieve its full potential. Finally, we discuss the sensitivity of the three-point statistics to dark energy
Weak pion production from nuclei
Indian Academy of Sciences (India)
effect of Pauli blocking, Fermi motion and renormalization of weak ∆ properties ... Furthermore, the angular distribution and the energy distribution of ... Here ψα(p ) and u(p) are the Rarita Schwinger and Dirac spinors for ∆ and nucleon.
International Nuclear Information System (INIS)
Tauhata, L.; Marques, A.
1972-01-01
Energy levels and gamma radiation transitions of Ca 44 are experimentally determined, mainly the weak transition at 564 KeV and 728 KeV. The decay scheme and the method used (coincidence with Ge-Li detector) are also presented [pt
Giant first-forbidden resonances
International Nuclear Information System (INIS)
Krmpotic, F.; Nakayama, K.; Sao Paulo Univ.; Pio Galeao, A.; Sao Paulo Univ.
1983-01-01
Recent experimental data on first-forbidden charge-exchange resonances are discussed in the framework of a schematic model. We also evaluate the screening of the weak coupling constants induced by both the giant resonances and the δ-isobar. It is shown that the last effect does not depend on the multipolarity of the one-particle moment. Due to the same reason, the fraction of the reaction strength pushed up into the δ-resonance region is always the same regardless of the quantum numbers carried by the excitation. Simple expressions are derived for the dependence of the excitation energies of the first-forbidden giant resonances on the mass number and isospin of the target. The model reproduces consistently both the Gamow-Teller and the first-forbidden resonances. (orig.)
Resonant ultrasound spectrometer
Migliori, Albert; Visscher, William M.; Fisk, Zachary
1990-01-01
An ultrasound resonant spectrometer determines the resonant frequency spectrum of a rectangular parallelepiped sample of a high dissipation material over an expected resonant response frequency range. A sample holder structure grips corners of the sample between piezoelectric drive and receive transducers. Each transducer is mounted on a membrane for only weakly coupling the transducer to the holder structure and operatively contacts a material effective to remove system resonant responses at the transducer from the expected response range. i.e., either a material such as diamond to move the response frequencies above the range or a damping powder to preclude response within the range. A square-law detector amplifier receives the response signal and retransmits the signal on an isolated shield of connecting cabling to remove cabling capacitive effects. The amplifier also provides a substantially frequency independently voltage divider with the receive transducer. The spectrometer is extremely sensitive to enable low amplitude resonance to be detected for use in calculating the elastic constants of the high dissipation sample.
Behavioral Stochastic Resonance
Freund, Jan A.; Schimansky-Geier, Lutz; Beisner, Beatrix; Neiman, Alexander; Russell, David F.; Yakusheva, Tatyana; Moss, Frank
2001-03-01
Zooplankton emit weak electric fields into the surrounding water that originate from their own muscular activities associated with swimming and feeding. Juvenile paddlefish prey upon single zooplankton by detecting and tracking these weak electric signatures. The passive electric sense in the fish is provided by an elaborate array of electroreceptors, Ampullae Lorenzini, spread over the surface of an elongated rostrum. We have previously shown that the fish use stochastic resonance to enhance prey capture near the detection threshold of their sensory system. But stochastic resonance requires an external source of electrical noise in order to function. The required noise can be provided by a swarm of plankton, for example Daphnia. Thus juvenile paddlefish can detect and attack single Daphnia as outliers in the vicinity of the swarm by making use of noise from the swarm itself. From the power spectral density of the noise plus the weak signal from a single Daphnia we calculate the signal-to-noise ratio and the Fisher information at the surface of the paddlefish's rostrum. The results predict a specific attack pattern for the paddlefish that appears to be experimentally testable.
Multipole giant resonances in highly excited nuclei
International Nuclear Information System (INIS)
Xia Keding; Cai Yanhuang
1989-01-01
The isoscalar giant surface resonance and giant dipole resonance in highly excited nuclei are discussed. Excitation energies of the giant modes in 208 Pb are calculated in a simplified model, using the concept of energy wieghted sum rule (EWSR), and the extended Thomas-Fermi approximation at the finite temperature is employed to describe the finite temperature is employed to describe the finite temperature equilibrium state. It is shown that EWSR and the energy of the resonance depend only weakly on temperature in the system. This weak dependence is analysed
International Nuclear Information System (INIS)
Safronova, University I.; Safronova, A. S.; Beiersdorfer, P.
2016-01-01
Energy levels, radiative transition probabilities, and autoionization rates for [Ni]4s 2 4p 6 nl, [Ni]4s 2 4p 5 4l ′ nl (l ′ =d,f,n = 4–7), [Ni]4s4p 6 4l ′ nl, (l ′ =d,f,n = 4–7), [Ni]4s 2 4p 5 5l ′ nl (n = 5–7), and [Ni]4s4p 6 6l ′ nl (n = 6–7) states in Rb-like tungsten (W37+) are calculated using the relativistic many-body perturbation theory method (RMBPT code) and the Hartree–Fock-relativistic method (COWAN code). Autoionizing levels above the [Ni]4s 2 4p 6 threshold are considered. It is found that configuration mixing among [Ni]4s 2 4p 5 4l ′ nl and [Ni]4s4p 6 4l ′ nl plays an important role for all atomic characteristics. Branching ratios relative to the first threshold and intensity factors are calculated for satellite lines, and dielectronic recombination (DR) rate coefficients are determined for the [Ni]4s 2 4p 6 nl (n = 4–7) singly excited states, as well as the [Ni]4s 2 4p 5 4dnl, [Ni]4s 2 4p 5 4fnl, [Ni]4s4p 6 4dnl, [Ni]4s 2 4p 6 4fnl, (n = 4–6), and [Ni]4s 2 4p 5 5l ′ 5l doubly excited nonautoionizing states in Rb-like W37+ ion. Contributions from the [Ni]4s24p 6 4fnl (n = 6–7), [Ni]4s 2 4p 5 5l ′ nl (n = 5–6), and [Ni]4s 2 4p 5 6l ′ nl (n = 6–7) doubly excited autoionizing states are evaluated numerically. The high-n state (with n up to 500) contributions are very important for high temperatures. These contributions are determined by using a scaling procedure. Synthetic dielectronic satellite spectra from Rb-like W are simulated in a broad spectral range from 8 to 70 Å. Here, these calculations provide highly accurate values for a number of W 37+ properties useful for a variety of applications including for fusion applications.
Light weakly interacting massive particles
Gelmini, Graciela B.
2017-08-01
Light weakly interacting massive particles (WIMPs) are dark matter particle candidates with weak scale interaction with the known particles, and mass in the GeV to tens of GeV range. Hints of light WIMPs have appeared in several dark matter searches in the last decade. The unprecedented possible coincidence into tantalizingly close regions of mass and cross section of four separate direct detection experimental hints and a potential indirect detection signal in gamma rays from the galactic center, aroused considerable interest in our field. Even if these hints did not so far result in a discovery, they have had a significant impact in our field. Here we review the evidence for and against light WIMPs as dark matter candidates and discuss future relevant experiments and observations.
(Weakly) three-dimensional caseology
International Nuclear Information System (INIS)
Pomraning, G.C.
1996-01-01
The singular eigenfunction technique of Case for solving one-dimensional planar symmetry linear transport problems is extended to a restricted class of three-dimensional problems. This class involves planar geometry, but with forcing terms (either boundary conditions or internal sources) which are weakly dependent upon the transverse spatial variables. Our analysis involves a singular perturbation about the classic planar analysis, and leads to the usual Case discrete and continuum modes, but modulated by weakly dependent three-dimensional spatial functions. These functions satisfy parabolic differential equations, with a different diffusion coefficient for each mode. Representative one-speed time-independent transport problems are solved in terms of these generalised Case eigenfunctions. Our treatment is very heuristic, but may provide an impetus for more rigorous analysis. (author)
History of the weak interactions
International Nuclear Information System (INIS)
Lee, T.D.
1987-01-01
At the 'Jackfest' marking the 65th birthday of Jack Steinberger (see July/August 1986 issue, page 29), T.D. Lee gave an account of the history of the weak interactions. This edited version omits some of Lee's tributes to Steinberger, but retains the impressive insight into the subtleties of a key area of modern physics by one who played a vital role in its development. (orig./HSI).
Weak neutral-current interactions
International Nuclear Information System (INIS)
Barnett, R.M.
1978-08-01
The roles of each type of experiment in establishing uniquely the values of the the neutral-current couplings of u and d quarks are analyzed together with their implications for gauge models of the weak and electromagnetic interactions. An analysis of the neutral-current couplings of electrons and of the data based on the assumption that only one Z 0 boson exists is given. Also a model-independent analysis of parity violation experiments is discussed. 85 references
Submanifolds weakly associated with graphs
Indian Academy of Sciences (India)
A CARRIAZO, L M FERN ´ANDEZ and A RODRÍGUEZ-HIDALGO. Department of Geometry and Topology, ..... by means of trees (connected graphs without cycles) and forests (disjoint unions of trees, see [6]) given in [3], by extending it to weak ... CR-submanifold. In this case, every tree is a K2. Finally, Theorem 3.8 of [3] can ...
International Nuclear Information System (INIS)
1977-03-01
At the 1975 Particle Accelerator Conference it was reported that a class of resonances were observed in SPEAR II that had not appeared before in SPEAR I. While the existence of sideband resonances of the main betatron oscillation frequencies has been previously observed and analyzed, the resonances observed in SPEAR do not appear to be of the same variety. Experiments were performed at SPEAR to identify the mechanism believed to be the most likely explanation. Some of the current experimental knowledge and theoretical views on the source of these resonances are presented
International Nuclear Information System (INIS)
Tepikian, S.
1988-01-01
Siberian Snakes provide a practical means of obtaining polarized proton beams in large accelerators. The effect of snakes can be understood by studying the dynamics of spin precession in an accelerator with snakes and a single spin resonance. This leads to a new class of energy independent spin depolarizing resonances, called snake resonances. In designing a large accelerator with snakes to preserve the spin polarization, there is an added constraint on the choice of the vertical betatron tune due to the snake resonances. 11 refs., 4 figs
Gossip and Distributed Kalman Filtering: Weak Consensus Under Weak Detectability
Kar, Soummya; Moura, José M. F.
2011-04-01
The paper presents the gossip interactive Kalman filter (GIKF) for distributed Kalman filtering for networked systems and sensor networks, where inter-sensor communication and observations occur at the same time-scale. The communication among sensors is random; each sensor occasionally exchanges its filtering state information with a neighbor depending on the availability of the appropriate network link. We show that under a weak distributed detectability condition: 1. the GIKF error process remains stochastically bounded, irrespective of the instability properties of the random process dynamics; and 2. the network achieves \\emph{weak consensus}, i.e., the conditional estimation error covariance at a (uniformly) randomly selected sensor converges in distribution to a unique invariant measure on the space of positive semi-definite matrices (independent of the initial state.) To prove these results, we interpret the filtered states (estimates and error covariances) at each node in the GIKF as stochastic particles with local interactions. We analyze the asymptotic properties of the error process by studying as a random dynamical system the associated switched (random) Riccati equation, the switching being dictated by a non-stationary Markov chain on the network graph.
International Nuclear Information System (INIS)
Stener, M.; Fronzoni, G.; Decleva, P.
2009-01-01
The photoionization dynamics of Cr(CO) 6 has been calculated at the TDDFT level, employing a basis set of multicentric B-spline functions with the explicit treatment of the photoelectron continuum. The cross section and the asymmetry parameter profiles of all the valence orbitals have been considered and compared with the available experimental data. The most interesting spectral feature is the intense autoionization resonance Cr 3p → Cr 3d observed in the experiment of band A, which is very well reproduced by present calculation at the TDDFT level. Other observed spectral features have been ascribed to shape resonances and assigned according to the dipole-prepared continuum orbital nature. The present TDDFT scheme proves accurate and practicable on large and complex systems containing transition metal compounds, for the description and the interpretation of the photoionization dynamics.
International Nuclear Information System (INIS)
Goradia, S.G.
2006-01-01
Why is gravity weak? Gravity is plagued with this and many other questions. After decades of exhausting work we do not have a clear answer. In view of this fact it will be shown in the following pages that there are reasons for thinking that gravity is just a composite force consisting of the long-range manifestations of short range nuclear forces that are too tiny to be measured at illuminated or long ranges by particle colliders. This is consistent with Einstein's proposal in 1919
International Nuclear Information System (INIS)
Gaillard, M.K.
1978-08-01
The properties that may help to identify the two additional quark flavors that are expected to be discovered. These properties are lifetime, branching ratios, selection rules, and lepton decay spectra. It is also noted that CP violation may manifest itself more strongly in heavy particle decays than elsewhere providing a new probe of its origin. The theoretical progress in the understanding of nonleptonic transitions among lighter quarks, nonleptonic K and hyperon decay amplitudes, omega minus and charmed particle decay predictions, and lastly the Kobayashi--Maskawa model for the weak coupling of heavy quarks together with the details of its implications for topology and bottomology are treated. 48 references
Weak consistency and strong paraconsistency
Directory of Open Access Journals (Sweden)
Gemma Robles
2009-11-01
Full Text Available In a standard sense, consistency and paraconsistency are understood as, respectively, the absence of any contradiction and as the absence of the ECQ (“E contradictione quodlibet” rule that allows us to conclude any well formed formula from any contradiction. The aim of this paper is to explain the concepts of weak consistency alternative to the standard one, the concepts of paraconsistency related to them and the concept of strong paraconsistency, all of which have been defined by the author together with José M. Méndez.
Electromagnetic weak turbulence theory revisited
Energy Technology Data Exchange (ETDEWEB)
Yoon, P. H. [IPST, University of Maryland, College Park, Maryland 20742 (United States); Ziebell, L. F. [Instituto de Fisica, UFRGS, Porto Alegre, RS (Brazil); Gaelzer, R.; Pavan, J. [Instituto de Fisica e Matematica, UFPel, Pelotas, RS (Brazil)
2012-10-15
The statistical mechanical reformulation of weak turbulence theory for unmagnetized plasmas including fully electromagnetic effects was carried out by Yoon [Phys. Plasmas 13, 022302 (2006)]. However, the wave kinetic equation for the transverse wave ignores the nonlinear three-wave interaction that involves two transverse waves and a Langmuir wave, the incoherent analogue of the so-called Raman scattering process, which may account for the third and higher-harmonic plasma emissions. The present paper extends the previous formalism by including such a term.
Time dependence, complex scaling, and the calculation of resonances in many-electron systems
International Nuclear Information System (INIS)
Nicolaides, C.A.; Beck, D.R.
1978-01-01
The theory deals with certain aspects of the formal properties of atomic and molecular highly excited nonstationary states and the problem of calculating their wave functions, energies, and widths. The conceptual framework is a decay theory based on the consistent definition and calculation of the t = 0 localized state, vertical bar psi 0 >. Given this framework, the following topics are treated: The variational calculation of psi 0 and E 0 using a previously published theory that generalized the projection operator approach to many-electron systems. The exact definition of the resonance energy. The possibility of bound states in the continuum. The relation of psi 0 to the resonance (Gamow) function psi and of the Hamiltonian to the rotated Hamiltonian H(theta) based on the notion of perturbation of boundary conditions in the asymptotic region. The variational calculation of real and complex energies employing matrix elements of H and H 2 with square-integrable and resonance functions. The mathematical structure of the time evolution of vertical bar psi 0 > and the possibility of observing nonexponential decays in certain autoionizing states that are very close to the ionization threshold. A many-body theory of atomic and molecular resonances that employs the coordinate rotation method. 107 references
International Nuclear Information System (INIS)
Kim, Yong Shin; Jung, Young Jae; Kang, Wee Kyung; Jung, Kyung Hoon
2002-01-01
Two-photon resonant third photon ionization of atomic bromine (4p 5 2 P 3/2 and 2 P 1/2 ) has been studied using a photoelectron imaging spectroscopy in the wavelength region 250-278 nm. The technique has yielded simultaneously both relative branching ratios to the three levels of Br + ( 3 P 2 , 3 P 0,1 and 1 D 2 ) with 4p 4 configuration and the angular distributions of outgoing photoelectrons. The product branching ratios reveal a strong propensity to populate particular levels in many cases. Several pathways have been documented for selective formation of Br + ( 3 P 2 ) and Br + ( 3 P 0,1 ) ions. In general, the final ion level distributions are dominated by the preservation of the ion core configuration of a resonant excited state. Some deviations from this simple picture are discussed in terms of the configuration interaction of resonant states and the autoionization in the continuum. The photoelectron angular distributions are qualitatively similar for all transitions, with a positive A 2 anisotropy coefficient of 1.0 - 2.0 and negligible A 4 in most cases, which suggests that the angular distribution is mainly determined by the single-photon ionization process of a resonant excited state induced from the third photon absorption
International Nuclear Information System (INIS)
Chanowitz, M.S.
1986-03-01
Prospects for the study of standard model weak interactions at the SSC are reviewed, with emphasis on the unique capability of the SSC to study the mechanism of electroweak symmetry breaking whether the associated new quanta are at the TeV scale or higher. Symmetry breaking by the minimal Higgs mechanism and by related strong interaction dynamical variants is summarized. A set of measurements is outlined that would calibrate the proton structure functions and the backgrounds to new physics. The ability to measure the three weak gauge boson vertex is found to complement LEP II, with measurements extending to larger Q 2 at a comparable statistical level in detectable decays. B factory physics is briefly reviewed as one example of a possible broad program of high statistics studies of sub-TeV scale phenomena. The largest section of the talk is devoted to the possible manifestations of symmetry breaking in the WW and ZZ production cross sections. Some new results are presented bearing on the ability to detect high mass WW and ZZ pairs. The principal conclusion is that although nonstandard model scenarios are typically more forgiving, the capability to study symmetry breaking in the standard model (and in related strong interaction dynamical variants) requires achieving the SSC design goals of √ s,L = 40Tev, 10 33 cm -2 sec -1 . 28 refs., 5 figs
Probing supervoids with weak lensing
Higuchi, Yuichi; Inoue, Kaiki Taro
2018-05-01
The cosmic microwave background (CMB) has non-Gaussian features in the temperature fluctuations. An anomalous cold spot surrounded with a hot ring, called the Cold Spot, is one of such features. If a large underdense region (supervoid) resides towards the Cold Spot, we would be able to detect a systematic shape distortion in the images of background source galaxies via weak lensing effect. In order to estimate the detectability of such signals, we used the data of N-body simulations to simulate full-sky ray-tracing of source galaxies. We searched for a most prominent underdense region using the simulated convergence maps smoothed at a scale of 20° and obtained tangential shears around it. The lensing signal expected in a concordant Λ cold dark matter model can be detected at a signal-to-noise ratio S/N ˜ 3. If a supervoid with a radius of ˜200 h-1 Mpc and a density contrast δ0 ˜ -0.3 at the centre resides at a redshift z ˜ 0.2, on-going and near-future weak gravitational lensing surveys would detect a lensing signal with S/N ≳ 4 without resorting to stacking. From the tangential shear profile, we can obtain a constraint on the projected mass distribution of the supervoid.
Rajasekar, Shanmuganathan
2016-01-01
This introductory text presents the basic aspects and most important features of various types of resonances and anti-resonances in dynamical systems. In particular, for each resonance, it covers the theoretical concepts, illustrates them with case studies, and reviews the available information on mechanisms, characterization, numerical simulations, experimental realizations, possible quantum analogues, applications and significant advances made over the years. Resonances are one of the most fundamental phenomena exhibited by nonlinear systems and refer to specific realizations of maximum response of a system due to the ability of that system to store and transfer energy received from an external forcing source. Resonances are of particular importance in physical, engineering and biological systems - they can prove to be advantageous in many applications, while leading to instability and even disasters in others. The book is self-contained, providing the details of mathematical derivations and techniques invo...
Weak KAM for commuting Hamiltonians
International Nuclear Information System (INIS)
Zavidovique, M
2010-01-01
For two commuting Tonelli Hamiltonians, we recover the commutation of the Lax–Oleinik semi-groups, a result of Barles and Tourin (2001 Indiana Univ. Math. J. 50 1523–44), using a direct geometrical method (Stoke's theorem). We also obtain a 'generalization' of a theorem of Maderna (2002 Bull. Soc. Math. France 130 493–506). More precisely, we prove that if the phase space is the cotangent of a compact manifold then the weak KAM solutions (or viscosity solutions of the critical stationary Hamilton–Jacobi equation) for G and for H are the same. As a corollary we obtain the equality of the Aubry sets and of the Peierls barrier. This is also related to works of Sorrentino (2009 On the Integrability of Tonelli Hamiltonians Preprint) and Bernard (2007 Duke Math. J. 136 401–20)
Stability of carbon-bearing phases in coal on the passage of weak electric current
International Nuclear Information System (INIS)
Pivnyak, G.G.; Sobolev, V.V.; Baskevich, A.S.
2012-01-01
According to data of the electron paramagnetic resonance, infrared spectroscopy, X-ray analysis, and other methods, mobile radicals and gas have formed in coal on the passage of weak electric current. The quantum-mechanical estimation of the stability of coal organic mass components under the action of weak electric current is offered. It is established that the hydrocarbon and carbon chains are the most probable phase which is destroyed the first.
A Weakly Nonlinear Model for Kelvin–Helmholtz Instability in Incompressible Fluids
International Nuclear Information System (INIS)
Li-Feng, Wang; Wen-Hua, Ye; Zheng-Feng, Fan; Chuang, Xue; Ying-Jun, Li
2009-01-01
A weakly nonlinear model is proposed for the Kelvin–Helmholtz instability in two-dimensional incompressible fluids by expanding the perturbation velocity potential to third order. The third-order harmonic generation effects of single-mode perturbation are analyzed, as well as the nonlinear correction to the exponential growth of the fundamental modulation. The weakly nonlinear results are supported by numerical simulations. Density and resonance effects exist in the development of mode coupling. (fundamental areas of phenomenology (including applications))
Fermi and the Theory of Weak Interactions
Indian Academy of Sciences (India)
IAS Admin
Quantum Field Theory created by Dirac and used by Fermi to describe weak ... of classical electrodynamics (from which the electric field and magnetic field can be obtained .... Universe. However, thanks to weak interactions, this can be done.
Nuclear beta decay and the weak interaction
International Nuclear Information System (INIS)
Kean, D.C.
1975-11-01
Short notes are presented on various aspects of nuclear beta decay and weak interactions including: super-allowed transitions, parity violation, interaction strengths, coupling constants, and the current-current formalism of weak interaction. (R.L.)
Nonlinear phenomena at cyclotron resonance
International Nuclear Information System (INIS)
Subbarao, D.; Uma, R.
1986-01-01
Finite amplitude electromagnetic waves in a magnetoplasma which typically occur in situations as in present day wave heating, current drives and other schemes in magnetically confined fusion systems, can show qualitatively different absorption and emission characteristics around resonant frequencies of the plasma because of anharmonicity. Linear wave plasma coupling as well as weak nonlinear effects such as parametric instabilities generally overlook this important effect even though the thresholds for the two phenomena as shown here are comparable. Though the effects described here are relevant to a host of nonlinear resonance effects in fusion plasmas, the authors mainly limit themselves to ECRH
Tunneling Time and Weak Measurement in Strong Field Ionization.
Zimmermann, Tomáš; Mishra, Siddhartha; Doran, Brent R; Gordon, Daniel F; Landsman, Alexandra S
2016-06-10
Tunneling delays represent a hotly debated topic, with many conflicting definitions and little consensus on when and if such definitions accurately describe the physical observables. Here, we relate these different definitions to distinct experimental observables in strong field ionization, finding that two definitions, Larmor time and Bohmian time, are compatible with the attoclock observable and the resonance lifetime of a bound state, respectively. Both of these definitions are closely connected to the theory of weak measurement, with Larmor time being the weak measurement value of tunneling time and Bohmian trajectory corresponding to the average particle trajectory, which has been recently reconstructed using weak measurement in a two-slit experiment [S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, Science 332, 1170 (2011)]. We demonstrate a big discrepancy in strong field ionization between the Bohmian and weak measurement values of tunneling time, and we suggest this arises because the tunneling time is calculated for a small probability postselected ensemble of electrons. Our results have important implications for the interpretation of experiments in attosecond science, suggesting that tunneling is unlikely to be an instantaneous process.
Shock velocity in weakly ionized nitrogen, air, and argon
International Nuclear Information System (INIS)
Siefert, Nicholas S.
2007-01-01
The goal of this research was to determine the principal mechanism(s) for the shock velocity increase in weakly ionized gases. This paper reports experimental data on the propagation of spark-generated shock waves (1< Mach<3) into weakly ionized nitrogen, air, and argon glow discharges (1 < p<20 Torr). In order to distinguish between effects due solely to the presence of electrons and effects due to heating of the background gas via elastic collisions with electrons, the weakly ionized discharge was pulsed on/off. Laser deflection methods determined the shock velocity, and the electron number density was collected using a microwave hairpin resonator. In the afterglow of nitrogen, air, and argon discharges, the shock velocity first decreased, not at the characteristic time for electrons to diffuse to the walls, but rather at the characteristic time for the centerline gas temperature to equilibrate with the wall temperature. These data support the conclusion that the principal mechanism for the increase in shock velocity in weakly ionized gases is thermal heating of the neutral gas species via elastic collisions with electrons
Nonlinear elasticity in resonance experiments
Li, Xun; Sens-Schönfelder, Christoph; Snieder, Roel
2018-04-01
Resonant bar experiments have revealed that dynamic deformation induces nonlinearity in rocks. These experiments produce resonance curves that represent the response amplitude as a function of the driving frequency. We propose a model to reproduce the resonance curves with observed features that include (a) the log-time recovery of the resonant frequency after the deformation ends (slow dynamics), (b) the asymmetry in the direction of the driving frequency, (c) the difference between resonance curves with the driving frequency that is swept upward and downward, and (d) the presence of a "cliff" segment to the left of the resonant peak under the condition of strong nonlinearity. The model is based on a feedback cycle where the effect of softening (nonlinearity) feeds back to the deformation. This model provides a unified interpretation of both the nonlinearity and slow dynamics in resonance experiments. We further show that the asymmetry of the resonance curve is caused by the softening, which is documented by the decrease of the resonant frequency during the deformation; the cliff segment of the resonance curve is linked to a bifurcation that involves a steep change of the response amplitude when the driving frequency is changed. With weak nonlinearity, the difference between the upward- and downward-sweeping curves depends on slow dynamics; a sufficiently slow frequency sweep eliminates this up-down difference. With strong nonlinearity, the up-down difference results from both the slow dynamics and bifurcation; however, the presence of the bifurcation maintains the respective part of the up-down difference, regardless of the sweep rate.
Weakly distributive modules. Applications to supplement submodules
Indian Academy of Sciences (India)
Abstract. In this paper, we define and study weakly distributive modules as a proper generalization of distributive modules. We prove that, weakly distributive supplemented modules are amply supplemented. In a weakly distributive supplemented module every submodule has a unique coclosure. This generalizes a result of ...
Determination of trace elements by resonant ionization mass spectrometry (RIMS)
International Nuclear Information System (INIS)
Ruster, W.; Ames, F.; Rehklau, D.; Mang, M.; Muehleck, C.; Rimke, H.; Sattelberger, P.; Herrmann, G.; Trautmann, N.; Kluge, H.J.; Otten, E.W.
1988-01-01
A resonant ionization mass spectrometer has been developed as an analytical tool for the detection of trace elements, especially of plutonium and other radionuclides. The sample, deposited on a rhenium filament, is evaporated by electrical heating and the atoms of the element under investigation are selectively ionized by laser light delivered from three dye lasers pumped by a copper vapour laser. The resulting photoions are detected in a time-of-flight spectrometer with a channelplate detector. For plutonium a mass resolution of M/ΔM=1500 was obtained and an overall detection efficiency of 4x10 -6 was determined for stepwise excitation and ionization via autoionizing states. With a laser light bandwidth of 3-5 GHz neighbouring isotopes could be suppressed by a factor of 20 due to isotope shifts in the excitation transitions. The isotope composition of synthetic samples was measured and good agreement was found with mass spectroscopic results. The influence of the hyperfine structure on the isotope ratios is discussed. (orig.)
A Universe without Weak Interactions
Energy Technology Data Exchange (ETDEWEB)
Harnik, Roni; Kribs, Graham D.; Perez, Gilad
2006-04-07
A universe without weak interactions is constructed that undergoes big-bang nucleosynthesis, matter domination, structure formation, and star formation. The stars in this universe are able to burn for billions of years, synthesize elements up to iron, and undergo supernova explosions, dispersing heavy elements into the interstellar medium. These definitive claims are supported by a detailed analysis where this hypothetical ''Weakless Universe'' is matched to our Universe by simultaneously adjusting Standard Model and cosmological parameters. For instance, chemistry and nuclear physics are essentially unchanged. The apparent habitability of the Weakless Universe suggests that the anthropic principle does not determine the scale of electroweak breaking, or even require that it be smaller than the Planck scale, so long as technically natural parameters may be suitably adjusted. Whether the multi-parameter adjustment is realized or probable is dependent on the ultraviolet completion, such as the string landscape. Considering a similar analysis for the cosmological constant, however, we argue that no adjustments of other parameters are able to allow the cosmological constant to raise up even remotely close to the Planck scale while obtaining macroscopic structure. The fine-tuning problems associated with the electroweak breaking scale and the cosmological constant therefore appear to be qualitatively different from the perspective of obtaining a habitable universe.
A Universe without Weak Interactions
International Nuclear Information System (INIS)
Harnik, R
2006-01-01
A universe without weak interactions is constructed that undergoes big-bang nucleosynthesis, matter domination, structure formation, and star formation. The stars in this universe are able to burn for billions of years, synthesize elements up to iron, and undergo supernova explosions, dispersing heavy elements into the interstellar medium. These definitive claims are supported by a detailed analysis where this hypothetical ''Weakless Universe'' is matched to our Universe by simultaneously adjusting Standard Model and cosmological parameters. For instance, chemistry and nuclear physics are essentially unchanged. The apparent habitability of the Weakless Universe suggests that the anthropic principle does not determine the scale of electroweak breaking, or even require that it be smaller than the Planck scale, so long as technically natural parameters may be suitably adjusted. Whether the multi-parameter adjustment is realized or probable is dependent on the ultraviolet completion, such as the string landscape. Considering a similar analysis for the cosmological constant, however, we argue that no adjustments of other parameters are able to allow the cosmological constant to raise up even remotely close to the Planck scale while obtaining macroscopic structure. The fine-tuning problems associated with the electroweak breaking scale and the cosmological constant therefore appear to be qualitatively different from the perspective of obtaining a habitable universe
A universe without weak interactions
International Nuclear Information System (INIS)
Harnik, Roni; Kribs, Graham D.; Perez, Gilad
2006-01-01
A universe without weak interactions is constructed that undergoes big-bang nucleosynthesis, matter domination, structure formation, and star formation. The stars in this universe are able to burn for billions of years, synthesize elements up to iron, and undergo supernova explosions, dispersing heavy elements into the interstellar medium. These definitive claims are supported by a detailed analysis where this hypothetical ''weakless universe'' is matched to our Universe by simultaneously adjusting standard model and cosmological parameters. For instance, chemistry and nuclear physics are essentially unchanged. The apparent habitability of the weakless universe suggests that the anthropic principle does not determine the scale of electroweak breaking, or even require that it be smaller than the Planck scale, so long as technically natural parameters may be suitably adjusted. Whether the multiparameter adjustment is realized or probable is dependent on the ultraviolet completion, such as the string landscape. Considering a similar analysis for the cosmological constant, however, we argue that no adjustments of other parameters are able to allow the cosmological constant to raise up even remotely close to the Planck scale while obtaining macroscopic structure. The fine-tuning problems associated with the electroweak breaking scale and the cosmological constant therefore appear to be qualitatively different from the perspective of obtaining a habitable universe
Measurements of weak conversion lines
International Nuclear Information System (INIS)
Feoktistov, A.I.; Frantsev, Yu.E.
1979-01-01
Described is a new methods for measuring weak conversion lines with the help of the β spectrometer of the π √ 2 type which permits to increase the reliability of the results obtained. According to this method the measurements were carried out by short series with the storage of the information obtained on the punched tape. The spectrometer magnetic field was stabilized during the measuring of the conversion spectra with the help of three nmr recorders. Instead of the dependence of the pulse calculation rate on the magnetic field value was measured the dependence of the calculation rate on the value of the voltage applied between the source and the spectrometer chamber. A short description of the automatic set-up for measuring conversion lines according to the method proposed is given. The main set-up elements are the voltage multiplexer timer, printer, scaler and the pulse analyzer. With the help of the above methods obtained is the K 1035, 8 keV 182 Ta line. It is obtained as a result of the composition of 96 measurement series. Each measurement time constitutes 640 s 12 points are taken on the line
Methodology for analyzing weak spectra
International Nuclear Information System (INIS)
Yankovich, T.L.; Swainson, I.P.
2000-02-01
There is considerable interest in quantifying radionuclide transfer between environmental compartments. However, in many cases, it can be a challenge to detect concentrations of gamma-emitting radionuclides due to their low levels in environmental samples. As a result, it is valuable to develop analytical protocols to ensure consistent analysis of the areas under weak peaks. The current study has focused on testing how reproducibly peak areas and baselines can be determined using two analytical approaches. The first approach, which can be carried out using Maestro software, involves extracting net counts under a curve without fitting a functional form to the peak, whereas the second approach, which is used by most other peak fitting programs, determines net counts from spectra by fitting a Gaussian form to the data. It was found that the second approach produces more consistent peak area and baseline measurements, with the ability to de-convolute multiple, overlapping peaks. In addition, programs, such as Peak Fit, which can be used to fit a form to spectral data, often provide goodness of fit analyses, since the Gaussian form can be described using a characteristic equation against which peak data can be tested for their statistical significance. (author)
Resonance – Journal of Science Education | Indian Academy of ...
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 12. Electrostatics in Chemistry - Electrostatic Models for Weak Molecular Complexation. Shridhar R Gadre Pravin K Babu. Series Article Volume 4 Issue 12 December 1999 pp 11-20 ...
Homological properties of modules with finite weak injective and weak flat dimensions
Zhao, Tiwei
2017-01-01
In this paper, we define a class of relative derived functors in terms of left or right weak flat resolutions to compute the weak flat dimension of modules. Moreover, we investigate two classes of modules larger than that of weak injective and weak flat modules, study the existence of covers and preenvelopes, and give some applications.
Weak boson emission in hadron collider processes
International Nuclear Information System (INIS)
Baur, U.
2007-01-01
The O(α) virtual weak radiative corrections to many hadron collider processes are known to become large and negative at high energies, due to the appearance of Sudakov-like logarithms. At the same order in perturbation theory, weak boson emission diagrams contribute. Since the W and Z bosons are massive, the O(α) virtual weak radiative corrections and the contributions from weak boson emission are separately finite. Thus, unlike in QED or QCD calculations, there is no technical reason for including gauge boson emission diagrams in calculations of electroweak radiative corrections. In most calculations of the O(α) electroweak radiative corrections, weak boson emission diagrams are therefore not taken into account. Another reason for not including these diagrams is that they lead to final states which differ from that of the original process. However, in experiment, one usually considers partially inclusive final states. Weak boson emission diagrams thus should be included in calculations of electroweak radiative corrections. In this paper, I examine the role of weak boson emission in those processes at the Fermilab Tevatron and the CERN LHC for which the one-loop electroweak radiative corrections are known to become large at high energies (inclusive jet, isolated photon, Z+1 jet, Drell-Yan, di-boson, tt, and single top production). In general, I find that the cross section for weak boson emission is substantial at high energies and that weak boson emission and the O(α) virtual weak radiative corrections partially cancel
Esposito, A.; Polosa, A.D.
2016-01-01
Multiquark resonances are undoubtedly experimentally observed. The number of states and the amount of details on their properties has been growing over the years. It is very recent the discovery of two pentaquarks and the confirmation of four tetraquarks, two of which had not been observed before. We mainly review the theoretical understanding of this sector of particle physics phenomenology and present some considerations attempting a coherent description of the so called X and Z resonances. The prominent problems plaguing theoretical models, like the absence of selection rules limiting the number of states predicted, motivate new directions in model building. Data are reviewed going through all of the observed resonances with particular attention to their common features and the purpose of providing a starting point to further research.
DEFF Research Database (Denmark)
Brooks, Anthony Lewis
2013-01-01
Neuroaesthetic Resonance emerged from a mature body of patient- centered gesture-control research investigating non-formal rehabilitation via ICT-enhanced-Art to question ‘Aesthetic Resonance’. Motivating participation, ludic engagement, and augmenting physical motion in non-formal (fun) treatment...... sessions are achieved via adaptive action-analyzed activities. These interactive virtual environments are designed to empower patients’ creative and/or playful expressions via digital feedback stimuli. Unconscious self- pushing of limits result from innate distractive mechanisms offered by the alternative...... the unencumbered motion-to-computer-generated activities - ‘Music Making’, ‘Painting’, ‘Robotic’ and ‘Video Game’ control. A focus of this position paper is to highlight how Aesthetic Resonance, in this context, relates to the growing body of research on Neuroaesthetics to evolve Neuroaesthetic Resonance....
International Nuclear Information System (INIS)
Oset, E.; Sarkar, S.; Sun Baoxi; Vicente Vacas, M.J.; Ramos, A.; Gonzalez, P.; Vijande, J.; Martinez Torres, A.; Khemchandani, K.
2010-01-01
In this talk I show recent results on how many excited baryon resonances appear as systems of one meson and one baryon, or two mesons and one baryon, with the mesons being either pseudoscalar or vectors. Connection with experiment is made including a discussion on old predictions and recent results for the photoproduction of the Λ(1405) resonance, as well as the prediction of one 1/2 + baryon state around 1920 MeV which might have been seen in the γp→K + Λ reaction.
Classical field approach to quantum weak measurements.
Dressel, Justin; Bliokh, Konstantin Y; Nori, Franco
2014-03-21
By generalizing the quantum weak measurement protocol to the case of quantum fields, we show that weak measurements probe an effective classical background field that describes the average field configuration in the spacetime region between pre- and postselection boundary conditions. The classical field is itself a weak value of the corresponding quantum field operator and satisfies equations of motion that extremize an effective action. Weak measurements perturb this effective action, producing measurable changes to the classical field dynamics. As such, weakly measured effects always correspond to an effective classical field. This general result explains why these effects appear to be robust for pre- and postselected ensembles, and why they can also be measured using classical field techniques that are not weak for individual excitations of the field.
Instrumental systematics and weak gravitational lensing
International Nuclear Information System (INIS)
Mandelbaum, R.
2015-01-01
We present a pedagogical review of the weak gravitational lensing measurement process and its connection to major scientific questions such as dark matter and dark energy. Then we describe common ways of parametrizing systematic errors and understanding how they affect weak lensing measurements. Finally, we discuss several instrumental systematics and how they fit into this context, and conclude with some future perspective on how progress can be made in understanding the impact of instrumental systematics on weak lensing measurements
Fixed points of occasionally weakly biased mappings
Y. Mahendra Singh, M. R. Singh
2012-01-01
Common fixed point results due to Pant et al. [Pant et al., Weak reciprocal continuity and fixed point theorems, Ann Univ Ferrara, 57(1), 181-190 (2011)] are extended to a class of non commuting operators called occasionally weakly biased pair[ N. Hussain, M. A. Khamsi A. Latif, Commonfixed points for JH-operators and occasionally weakly biased pairs under relaxed conditions, Nonlinear Analysis, 74, 2133-2140 (2011)]. We also provideillustrative examples to justify the improvements. Abstract....
Robust weak measurements on finite samples
International Nuclear Information System (INIS)
Tollaksen, Jeff
2007-01-01
A new weak measurement procedure is introduced for finite samples which yields accurate weak values that are outside the range of eigenvalues and which do not require an exponentially rare ensemble. This procedure provides a unique advantage in the amplification of small nonrandom signals by minimizing uncertainties in determining the weak value and by minimizing sample size. This procedure can also extend the strength of the coupling between the system and measuring device to a new regime
Spin effects in the weak interaction
International Nuclear Information System (INIS)
Freedman, S.J.; Chicago Univ., IL; Chicago Univ., IL
1990-01-01
Modern experiments investigating the beta decay of the neutron and light nuclei are still providing important constraints on the theory of the weak interaction. Beta decay experiments are yielding more precise values for allowed and induced weak coupling constants and putting constraints on possible extensions to the standard electroweak model. Here we emphasize the implications of recent experiments to pin down the strengths of the weak vector and axial vector couplings of the nucleon
Indian Academy of Sciences (India)
IAS Admin
996. RESONANCE. November 2013. Page 2. 997. RESONANCE. November 2013. Page 3. 998. RESONANCE. November 2013. Page 4. 999. RESONANCE. November 2013. Page 5. 1000. RESONANCE. November 2013. Page 6. 1001. RESONANCE. November 2013. Page 7. 1002. RESONANCE. November 2013 ...
Indian Academy of Sciences (India)
IAS Admin
817. RESONANCE ⎜ September 2013. Page 2. 818. RESONANCE ⎜ September 2013. Page 3. 819. RESONANCE ⎜ September 2013. Page 4. 820. RESONANCE ⎜ September 2013. Page 5. 821. RESONANCE ⎜ September 2013. Page 6. 822. RESONANCE ⎜ September 2013. Page 7. 823. RESONANCE ⎜ September ...
Indian Academy of Sciences (India)
IAS Admin
369. RESONANCE ⎜ April 2016. Page 2. 370. RESONANCE ⎜ April 2016. Page 3. 371. RESONANCE ⎜ April 2016. Page 4. 372. RESONANCE ⎜ April 2016. Page 5. 373. RESONANCE ⎜ April 2016. Page 6. 374. RESONANCE ⎜ April 2016. Page 7. 375. RESONANCE ⎜ April 2016.
Weak strange particle production: advantages and difficulties
International Nuclear Information System (INIS)
Angelescu, Tatiana; Baker, O.K.
2002-01-01
Electromagnetic strange particle production developed at Jefferson Laboratory was an important source of information on strange particle electromagnetic formfactors and induced and transferred polarization. The high quality of the beam and the detection techniques involved could be an argument for detecting strange particles in weak interactions and answer questions about cross sections, weak formfactors, neutrino properties, which have not been investigated yet. The paper analyses some aspects related to the weak lambda production and detection with the Hall C facilities at Jefferson Laboratory and the limitations in measuring the weak interaction quantities. (authors)
Turbulence of Weak Gravitational Waves in the Early Universe.
Galtier, Sébastien; Nazarenko, Sergey V
2017-12-01
We study the statistical properties of an ensemble of weak gravitational waves interacting nonlinearly in a flat space-time. We show that the resonant three-wave interactions are absent and develop a theory for four-wave interactions in the reduced case of a 2.5+1 diagonal metric tensor. In this limit, where only plus-polarized gravitational waves are present, we derive the interaction Hamiltonian and consider the asymptotic regime of weak gravitational wave turbulence. Both direct and inverse cascades are found for the energy and the wave action, respectively, and the corresponding wave spectra are derived. The inverse cascade is characterized by a finite-time propagation of the metric excitations-a process similar to an explosive nonequilibrium Bose-Einstein condensation, which provides an efficient mechanism to ironing out small-scale inhomogeneities. The direct cascade leads to an accumulation of the radiation energy in the system. These processes might be important for understanding the early Universe where a background of weak nonlinear gravitational waves is expected.
International Nuclear Information System (INIS)
Anon.
1977-01-01
At the 1975 Particle Accelerator Conference it was reported that a class of resonances were observed in SPEAR II that had not appeared before in SPEAR I. These resonances occur when the betatron oscillation wave numbers ν/sub x/ or ν/sub y/ and the synchrotron wave number ν/sub s/ satisfy the relation (ν/sub x,y/ - mν/sub s/) = 5, with m an integer denoting the m/sup th/ satellite. The main difference between SPEAR II and SPEAR I is the value of ν/sub s/, which in SPEAR II is approximately 0.04, an order of magnitude larger than in SPEAR I. An ad hoc meeting was held at the 1975 Particle Accelerator Conference, where details of the SPEAR II results were presented and various possible mechanisms for producing these resonances were discussed. Later, experiments were performed at SPEAR to identify the mechanism believed to be the most likely explanation. Some of the current experimental knowledge and theoretical views on the source of these resonances are presented
Leavey, Sean; Rae, Katherine; Murray, Adam; Courtial, Johannes
2012-09-01
Autostereograms, or "Magic Eye" pictures, are repeating patterns designed to give the illusion of depth. Here we discuss optical resonators that create light patterns which, when viewed from a suitable position by a monocular observer, are autostereograms of the three-dimensional shape of one of the mirror surfaces.
Novikov, V V; Sheĭman, I M; Iablokova, E V; Fesenko, E E
2014-01-01
It is shown that an exposure of pupae of the mealworm beetle Tenebrio molitor to the combined static (42 μT) and very weak alternating (250 nT) magnetic fields exerts different influence, depending on the frequency of the alternating magnetic field, on duration of metamorphosis processes in these insects. For instance, an exposure of pupae to weak combined magnetic fields, adjusted to the frequency of ion cyclotron resonance for glutaminic acid (4,4 Hz), stimulates metamorphosis process--a transitional stage from pupae to imago lasts shorter. An inhibiting effect was observed when adjusted to the frequency of ion cyclotron resonance for Ca2 (32,2 Hz). At some frequencies this effect is not seen. For instance, an exposure at a frequency of ion cyclotron resonance for K+ (16,5 Hz) exerts no noticeable effect on the duration of the pupal metamorphosis stage.
Resonances in photoabsorption: Predissociation line shapes in the 3pπD1Π+u ← Χ1Σg+ system in H2
International Nuclear Information System (INIS)
Mezei, J. Zs.; Schneider, I. F.; Glass-Maujean, M.; Jungen, Ch.
2014-01-01
The predissociation of the 3pπD 1 Π u + ,v≥3,N=1, N = 2, and N = 3 levels of diatomic hydrogen is calculated by ab initio multichannel quantum defect theory combined with a R-matrix type approach that accounts for interfering predissociation and autoionization. The theory yields absorption line widths and shapes that are in good agreement with those observed in the high-resolution synchrotron vacuum-ultraviolet absorption spectra obtained by Dickenson et al. [J. Chem. Phys. 133, 144317 (2010)] at the DESIRS beamline of the SOLEIL synchrotron. The theory predicts further that many of the D state resonances with v ⩾ 6 exhibit a complex fine structure which cannot be modeled by the Fano profile formula and which has not yet been observed experimentally
On resonances and bound states of Smilansky Hamiltonian
Czech Academy of Sciences Publication Activity Database
Exner, Pavel; Lotoreichik, Vladimir; Tater, Miloš
2016-01-01
Roč. 7, č. 5 (2016), s. 789-802 ISSN 2220-8054 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : Smilansky Hamiltonian * resonances * resonance free region * weak coupling asymptotics * Riemann surface * bound states Subject RIV: BE - Theoretical Physics
S-parameters for weakly excited slots
DEFF Research Database (Denmark)
Albertsen, Niels Christian
1999-01-01
A simple approach to account for parasitic effects in weakly excited slots cut in the broad wall of a rectangular waveguide is proposed......A simple approach to account for parasitic effects in weakly excited slots cut in the broad wall of a rectangular waveguide is proposed...
Low-energy Electro-weak Reactions
International Nuclear Information System (INIS)
Gazit, Doron
2012-01-01
Chiral effective field theory (EFT) provides a systematic and controlled approach to low-energy nuclear physics. Here, we use chiral EFT to calculate low-energy weak Gamow-Teller transitions. We put special emphasis on the role of two-body (2b) weak currents within the nucleus and discuss their applications in predicting physical observables.
Weak interaction: past answers, present questions
International Nuclear Information System (INIS)
Ne'eman, Y.
1977-02-01
A historical sketch of the weak interaction is presented. From beta ray to pion decay, the V-A theory of Marshak and Sudarshan, CVC principle of equivalence, universality as an algebraic condition, PCAC, renormalized weak Hamiltonian in the rehabilitation of field theory, and some current issues are considered in this review. 47 references
Staggering towards a calculation of weak amplitudes
Energy Technology Data Exchange (ETDEWEB)
Sharpe, S.R.
1988-09-01
An explanation is given of the methods required to calculate hadronic matrix elements of the weak Hamiltonians using lattice QCD with staggered fermions. New results are presented for the 1-loop perturbative mixing of the weak interaction operators. New numerical techniques designed for staggered fermions are described. A preliminary result for the kaon B parameter is presented. 24 refs., 3 figs.
Weak measurements with a qubit meter
DEFF Research Database (Denmark)
Wu, Shengjun; Mølmer, Klaus
2009-01-01
We derive schemes to measure the so-called weak values of quantum system observables by coupling of the system to a qubit meter system. We highlight, in particular, the meaning of the imaginary part of the weak values, and show how it can be measured directly on equal footing with the real part...
Optimization of strong and weak coordinates
Swart, M.; Bickelhaupt, F.M.
2006-01-01
We present a new scheme for the geometry optimization of equilibrium and transition state structures that can be used for both strong and weak coordinates. We use a screening function that depends on atom-pair distances to differentiate strong coordinates from weak coordinates. This differentiation
Weak Measurement and Quantum Smoothing of a Superconducting Qubit
Tan, Dian
In quantum mechanics, the measurement outcome of an observable in a quantum system is intrinsically random, yielding a probability distribution. The state of the quantum system can be described by a density matrix rho(t), which depends on the information accumulated until time t, and represents our knowledge about the system. The density matrix rho(t) gives probabilities for the outcomes of measurements at time t. Further probing of the quantum system allows us to refine our prediction in hindsight. In this thesis, we experimentally examine a quantum smoothing theory in a superconducting qubit by introducing an auxiliary matrix E(t) which is conditioned on information obtained from time t to a final time T. With the complete information before and after time t, the pair of matrices [rho(t), E(t)] can be used to make smoothed predictions for the measurement outcome at time t. We apply the quantum smoothing theory in the case of continuous weak measurement unveiling the retrodicted quantum trajectories and weak values. In the case of strong projective measurement, while the density matrix rho(t) with only diagonal elements in a given basis |n〉 may be treated as a classical mixture, we demonstrate a failure of this classical mixture description in determining the smoothed probabilities for the measurement outcome at time t with both diagonal rho(t) and diagonal E(t). We study the correlations between quantum states and weak measurement signals and examine aspects of the time symmetry of continuous quantum measurement. We also extend our study of quantum smoothing theory to the case of resonance fluorescence of a superconducting qubit with homodyne measurement and observe some interesting effects such as the modification of the excited state probabilities, weak values, and evolution of the predicted and retrodicted trajectories.
DEFF Research Database (Denmark)
Hjelholt, Morten; Jensen, Tina Blegind
2015-01-01
IT projects are often complex arrangements of technological components, social actions, and organizational transformation that are difficult to manage in practice. This paper takes an analytical discourse perspective to explore the process of legitimizing IT projects. We introduce the concept...... of resonating statements to highlight how central actors navigate in various discourses over time. Particularly, the statements and actions of an IT project manager are portrayed to show how individuals can legitimize actions by connecting statements to historically produced discourses. The case study...... as part of a feedback loop to re-attach the localized IT project to the broader national discourse. The paper concludes with reflections on how to actively build on resonating statements as a strategic resource for legitimizing IT projects...
Magnetic resonance annual 1986
International Nuclear Information System (INIS)
Kressel, H.Y.
1986-01-01
This book contains papers written on magnetic resonance during 1986. Topics include: musculosketetal magnetic resonance imaging; imaging of the spine; magnetic resonance chemical shift imaging; magnetic resonance imaging in the central nervous system; comparison to computed tomography; high resolution magnetic resonance imaging using surface coils; magnetic resonance imaging of the chest; magnetic resonance imaging of the breast; magnetic resonance imaging of the liver; magnetic resonance spectroscopy of neoplasms; blood flow effects in magnetic resonance imaging; and current and potential applications of clinical sodium magnetic resonance imaging
Resonance ionization spectroscopy of Europium The first application of the PISA at ISOLDE-RILIS
AUTHOR|(CDS)2099873; Marsh, Bruce Alan
The following work has been carried out at the radioactive ion beam facility ISOLDE at CERN. A compact atomic beam unit named PISA (Photo Ionization Spectroscopy Apparatus) has been implemented as a recent addition to the laboratory of the Resonance Ionization Laser Ion Source (RILIS). The scope of this thesis work was to demonstrate different applications of the PISA, using the existing and highly developed laser setup of the RILIS installation. In a demonstration of the suitability of PISA for ionization scheme development, a new ionization scheme for Europium has been developed. This resulted in the observation of several new autoionizing states and Rydberg series. Through the analysis of the observed Rydberg resonances a refined value of $45734.33(3)(3)$ cm$^{-1}$ for the ionization potential of the europium atom has been determined. In addition this thesis reports on the feasibility of the use of the PISA as a RILIS performance monitoring device during laser ion source operations. Finally the present wor...
Directory of Open Access Journals (Sweden)
Oyelami, Benjamin Oyediran
2013-09-01
Full Text Available In this paper, criteria for the existence of weak solutions and uniformly weak bounded solution of impulsive heat equation containing maximum temperature are investigated and results obtained. An example is given for heat flow system with impulsive temperature using maximum temperature simulator and criteria for the uniformly weak bounded of solutions of the system are obtained.
Nonlinear particle-wave kinetics in weakly unstable plasmas
International Nuclear Information System (INIS)
Breizman, B.N.; Berk, H.L.; Pekker, M.S.
1996-01-01
With the motivation to address the behavior of the fusion produced alpha particles in a thermonuclear reactor, a theory is developed for predicting the wave saturation levels and particle transport in weakly unstable systems with a discrete number of modes in the presence of energetic particle sources and sinks. Conditions are established for either steady state or bursting nonlinear scenarios when several modes are excited for cases where there is and there is not resonance overlap. Depending on parameters, the particles can undergo benign relaxation, with only a small fraction of the available free energy released to waves and with no global transport, or the particles can experience rapid global transport caused by a substantial conversion of their free energy into wave energy. When the resonance condition of the particle-wave interaction is varied adiabatically, the particles trapped in a wave are found to form phase space holes or clumps that enhance the particle-wave energy exchange. This mechanism, which has been experimentally observed when there is frequency chirping, causes increased saturation levels of instabilities. If resonance sweeping is imposed externally, the particle free energy can even be tapped in stable systems where background dissipation suppresses linear instability. Externally applied resonance sweeping can be important for alpha particle energy channeling, as well as for understanding fishbone and some Alfven wave instability experiments. Near instability threshold, that is when the destabilizing drive just exceeds the background dissipation, a more sophisticated analysis is developed to predict the correct saturation. To leading order, this problem reduces to an integral equation for the wave amplitude with a temporally non local cubic term. This equation has a self-similar solution that blows-up in a finite time
The research status and development trend of stochastic resonance
Xu, Lei; Peng, Yueping; Liu, Man
2017-12-01
The synergistic reaction under specific conditions of the nonlinear system, weak driving signal and moderate noise can make noise to be advantageous in a certain extent, so as to achieve the purpose of signal enhancement, this seemingly anomalous phenomenon is defined as stochastic resonance. In this paper, the weak signal detection under strong noise background is the main line. The principle of white noise to counteract external noise is expounded, and the present research situation and development trend of stochastic resonance are reviewed in that paper, it also pointed out the direction of further research of stochastic resonance technology.
Diagnosis of functional (psychogenic paresis and weakness
Directory of Open Access Journals (Sweden)
Savkov V.S.
2018-03-01
Full Text Available Functional (conversion neurological symptoms represent one of the most common situations faced by neurologists in their everyday practice. Among them, acute or subacute functional weakness may mimic very prevalent conditions such as stroke or traumatic injury. In the diagnosis of functional weakness, although elements of the history are helpful, physical signs are often of crucial importance in the diagnosis and positive signs are as important as absence of signs of disease. Hence, accurate and reliable positive signs of functional weakness are valuable for obtaining timely diagnosis and treatment, making it possible to avoid unnecessary or invasive tests and procedures up to thrombolysis. Functional weakness commonly presents as weakness of an entire limb, paraparesis, or hemiparesis, with observable or demonstrable inconsistencies and non-anatomic accompaniments. Documentation of limb movements during sleep, the arm drop test, the Babinski’s trunk-thigh test, Hoover tests, the Sonoo abductor test, and various dynamometer tests can provide useful bedside diagnostic information on functional weakness. We therefore present here a brief overview of the positive neurological signs of functional weakness available, both in the lower and in the upper limbs; but none should be used in isolation and must be interpreted in the overall context of the presentation. It should be borne in mind that a patient may have both a functional and an organic disorder.
Indian Academy of Sciences (India)
IAS Admin
1004. RESONANCE │ November 2013. Page 2. 1005. RESONANCE │ November 2013. Page 3. 1006. RESONANCE │ November 2013. Page 4. 1007. RESONANCE │ November 2013. Page 5. 1008. RESONANCE │ November 2013. Page 6. 1009. RESONANCE │ November 2013. Page 7. 1010. RESONANCE ...
International Nuclear Information System (INIS)
Lee, S.Y.
1993-01-01
We found that the perturbed spin tune due to the imperfection resonance plays an important role in beam depolarization at snake resonances. We also found that even order snake resonances exist in the overlapping intrinsic and imperfection resonances. Due to the perturbed spin tune shift of imperfection resonances, each snake resonance splits into two
Determination of ligand binding modes in weak protein–ligand complexes using sparse NMR data
Energy Technology Data Exchange (ETDEWEB)
Mohanty, Biswaranjan; Williams, Martin L.; Doak, Bradley C.; Vazirani, Mansha; Ilyichova, Olga [Monash University, Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences (Australia); Wang, Geqing [La Trobe University, La Trobe Institute for Molecular Bioscience (Australia); Bermel, Wolfgang [Bruker Biospin GmbH (Germany); Simpson, Jamie S.; Chalmers, David K. [Monash University, Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences (Australia); King, Glenn F. [The University of Queensland, Institute for Molecular Bioscience (Australia); Mobli, Mehdi, E-mail: m.mobli@uq.edu.au [The University of Queensland, Centre for Advanced Imaging (Australia); Scanlon, Martin J., E-mail: martin.scanlon@monash.edu [Monash University, Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences (Australia)
2016-11-15
We describe a general approach to determine the binding pose of small molecules in weakly bound protein–ligand complexes by deriving distance constraints between the ligand and methyl groups from all methyl-containing residues of the protein. We demonstrate that using a single sample, which can be prepared without the use of expensive precursors, it is possible to generate high-resolution data rapidly and obtain the resonance assignments of Ile, Leu, Val, Ala and Thr methyl groups using triple resonance scalar correlation data. The same sample may be used to obtain Met {sup ε}CH{sub 3} assignments using NOESY-based methods, although the superior sensitivity of NOESY using [U-{sup 13}C,{sup 15}N]-labeled protein makes the use of this second sample more efficient. We describe a structural model for a weakly binding ligand bound to its target protein, DsbA, derived from intermolecular methyl-to-ligand nuclear Overhauser enhancements, and demonstrate that the ability to assign all methyl resonances in the spectrum is essential to derive an accurate model of the structure. Once the methyl assignments have been obtained, this approach provides a rapid means to generate structural models for weakly bound protein–ligand complexes. Such weak complexes are often found at the beginning of programs of fragment based drug design and can be challenging to characterize using X-ray crystallography.
Weak entropy inequalities and entropic convergence
Institute of Scientific and Technical Information of China (English)
2008-01-01
A criterion for algebraic convergence of the entropy is presented and an algebraic convergence result for the entropy of an exclusion process is improved. A weak entropy inequality is considered and its relationship to entropic convergence is discussed.
Current problems in the weak interactions
International Nuclear Information System (INIS)
Pais, A.
1977-01-01
Some reasons are discussed showing why the recent SU(2) x U(1) gauge theory of weak and electromagnetic interactions is not a complete theory of these interactions, Lepton theory, charm, and the CP problem are considered. 60 references
From Suitable Weak Solutions to Entropy Viscosity
Guermond, Jean-Luc; Pasquetti, Richard; Popov, Bojan
2010-01-01
This paper focuses on the notion of suitable weak solutions for the three-dimensional incompressible Navier-Stokes equations and discusses the relevance of this notion to Computational Fluid Dynamics. The purpose of the paper is twofold (i
Atypical presentation of GNE myopathy with asymmetric hand weakness
de Dios, John Karl L.; Shrader, Joseph A.; Joe, Galen O.; McClean, Jeffrey C.; Williams, Kayla; Evers, Robert; Malicdan, May Christine V.; Ciccone, Carla; Mankodi, Ami; Huizing, Marjan; McKew, John C.; Bluemke, David A.; Gahl, William A.; Carrillo-Carrasco, Nuria
2014-01-01
GNE myopathy is a rare autosomal recessive muscle disease caused by mutations in GNE, the gene encoding the rate-limiting enzyme in sialic acid biosynthesis. GNE myopathy usually manifests in early adulthood with distal myopathy that progresses slowly and symmetrically, first involving distal muscles of the lower extremities, followed by proximal muscles with relative sparing of the quadriceps. Upper extremities are typically affected later in the disease. We report a patient with GNE myopathy who presented with asymmetric hand weakness. He had considerably decreased left grip strength, atrophy of the left anterior forearm and fibro-fatty tissue replacement of left forearm flexor muscles on T1-weighted magnetic resonance imaging. The patient was an endoscopist and thus the asymmetric hand involvement may be associated with left hand overuse in daily repetitive pinching and gripping movements, highlighting the possible impact of environmental factors on the progression of genetic muscle conditions. PMID:25182749
Subsidy Competition for FDI: Fierce or Weak?
Tomáš Havránek
2009-01-01
The objective of this paper is to empirically assess the recently introduced models of subsidy competition based on the classical oligopoly theories, using both cross-sectional and panel data. Three crucial scenarios (including coordination, weak competition, and fierce competition) are tested employing OLS, iteratively re-weighted least squares, fixed effects, and Blundell-Bond estimator. The results suggest that none of the scenarios can be strongly supported—although there is some weak sup...
About some distinguishing features of weak interactions
International Nuclear Information System (INIS)
Beshtoev, Kh.M.
1999-01-01
It is shown that, in contrast to strong and electromagnetic theories, additive conserved numbers (such as lepton, aromatic and another numbers) and γ 5 anomaly do not appear in the standard weak interaction theory. It means that in this interaction the additive numbers cannot be conserved. These results are the consequence of specific character of the weak interaction: the right components of spinors do not participate in this interaction. The schemes of violation of the aromatic and lepton numbers were considered
Weak limits for quantum random walks
International Nuclear Information System (INIS)
Grimmett, Geoffrey; Janson, Svante; Scudo, Petra F.
2004-01-01
We formulate and prove a general weak limit theorem for quantum random walks in one and more dimensions. With X n denoting position at time n, we show that X n /n converges weakly as n→∞ to a certain distribution which is absolutely continuous and of bounded support. The proof is rigorous and makes use of Fourier transform methods. This approach simplifies and extends certain preceding derivations valid in one dimension that make use of combinatorial and path integral methods
Drift waves in a weakly ionized plasma
DEFF Research Database (Denmark)
Popovic, M.; Melchior, H.
1968-01-01
A dispersion relation for low frequency drift waves in a weakly ionized plasma has been derived, and through numerical calculations the effect of collisions between the charged and the neutral particles is estimated.......A dispersion relation for low frequency drift waves in a weakly ionized plasma has been derived, and through numerical calculations the effect of collisions between the charged and the neutral particles is estimated....
Attending to weak signals: the leader's challenge.
Kerfoot, Karlene
2005-12-01
Halverson and Isham (2003) quote sources that report the accidental death rate of simply being in a hospital is " ... four hundred times more likely than your risk of death from traveling by train, forty times higher than driving a car, and twenty times higher than flying in a commercial aircraft" (p. 13). High-reliability organizations such as nuclear power plants and aircraft carriers have been pioneers in the business of recognizing weak signals. Weike and Sutcliffe (2001) note that high-reliability organizations distinguish themselves from others because of their mindfulness which enables them to see the significance of weak signals and to give strong interventions to weak signals. To act mindfully, these organizations have an underlying mental model of continually updating, anticipating, and focusing the possibility of failure using the intelligence that weak signals provides. Much of what happens is unexpected in health care. However, with a culture that is continually looking for weak signals, and intervenes and rescues when these signals are detected, the unexpected happens less often. This is the epitome of how leaders can build a culture of safety that focuses on recognizing the weak signals to manage the unforeseen.
Photoluminescence dynamics of weakly confined excitons in GaAs thin films
International Nuclear Information System (INIS)
Kanno, Atsushi; Katouf, Redouane; Kojima, Osamu; Ishi-Hayase, Junko; Sasaki, Masahide; Tsuchiya, Masahiro; Isu, Toshiro
2008-01-01
We investigate the dynamics of weakly confined excitons in GaAs thin films measured by time-resolved photoluminescence (PL) technique. When excitation energy was above the resonant energy of the exciton, a long PL rise time of about 200 ps was observed. It is considered that an exciton formation process from excited continuum energy states to discrete energy states of the exciton in the thin film causes the slow PL rise. The observed PL decay time constant was about 14 ns due to high quality fabricated samples. The observed population dynamics can be surely ascribed to the specific features of weakly confined excitons
Enhancing QKD security with weak measurements
Farinholt, Jacob M.; Troupe, James E.
2016-10-01
Publisher's Note: This paper, originally published on 10/24/2016, was replaced with a corrected/revised version on 11/8/2016. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance. In the late 1980s, Aharonov and colleagues developed the notion of a weak measurement of a quantum observable that does not appreciably disturb the system.1, 2 The measurement results are conditioned on both the pre-selected and post-selected state of the quantum system. While any one measurement reveals very little information, by making the same measurement on a large ensemble of identically prepared pre- and post-selected (PPS) states and averaging the results, one may obtain what is known as the weak value of the observable with respect to that PPS ensemble. Recently, weak measurements have been proposed as a method of assessing the security of QKD in the well-known BB84 protocol.3 This weak value augmented QKD protocol (WV-QKD) works by additionally requiring the receiver, Bob, to make a weak measurement of a particular observable prior to his strong measurement. For the subset of measurement results in which Alice and Bob's measurement bases do not agree, the weak measurement results can be used to detect any attempt by an eavesdropper, Eve, to correlate her measurement results with Bob's. Furthermore, the well-known detector blinding attacks, which are known to perfectly correlate Eve's results with Bob's without being caught by conventional BB84 implementations, actually make the eavesdropper more visible in the new WV-QKD protocol. In this paper, we will introduce the WV-QKD protocol and discuss its generalization to the 6-state single qubit protocol. We will discuss the types of weak measurements that are optimal for this protocol, and compare the predicted performance of the 6- and 4-state WV-QKD protocols.
Weak interactions in astrophysics and cosmology
International Nuclear Information System (INIS)
Taylor, R.J.
1977-01-01
There ar many problems in astrophysics and cosmology in which the form of the weak interactions, their strength or the number of weakly interacting particles, is very important. It is possible that astronomical observations may give some information about the weak interactions. In the conventional hot big bang cosmological theory the number of leptons with associated neutrinos influences the speed of expansion of the Universe and the chemical composition of pre-galactic matter. The strength of the weak interaction, as exemplified by the half-life of the neutron, has a similar effect. In addition, the form of the weak interactions will determine how effectively neutrino viscosity can smooth out irregularities in the early Universe. Because neutrinos have a very long mean free path, they can escape from the central region of stars whereas photons can only escape from the surface. In late stages of stellar evolution, neutrino luminosity is often believed to be much greater than photon luminosity. This can both accelerate the cooling of dying stars and influence the stages of stellar evolution leading to the onset of supernova explosions. In pre-super-novae it is even possible that very dense stellar cores can be opaque to neutrinos and that the absorption or scattering of neutrinos can cause the explosion. These results depend crucially on the form of the weak interactions, with the discovery of neutral currents being very important. Until the solar neutrino experiment has been reconciled with theory, the possible role of uncertainties in the weak interactions cannot be ignored. (author)
Importance of weak minerals on earthquake mechanics
Kaneki, S.; Hirono, T.
2017-12-01
The role of weak minerals such as smectite and talc on earthquake mechanics is one of the important issues, and has been debated for recent several decades. Traditionally weak minerals in fault have been reported to weaken fault strength causing from its low frictional resistance. Furthermore, velocity-strengthening behavior of such weak mineral (talc) is considered to responsible for fault creep (aseismic slip) in the San Andreas fault. In contrast, recent studies reported that large amount of weak smectite in the Japan Trench could facilitate gigantic seismic slip during the 2011 Tohoku-oki earthquake. To investigate the role of weak minerals on rupture propagation process and magnitude of slip, we focus on the frictional properties of carbonaceous materials (CMs), which is the representative weak materials widely distributed in and around the convergent boundaries. Field observation and geochemical analyses revealed that graphitized CMs-layer is distributed along the slip surface of a fossil plate-subduction fault. Laboratory friction experiments demonstrated that pure quartz, bulk mixtures with bituminous coal (1 wt.%), and quartz with layered coal samples exhibited almost similar frictional properties (initial, yield, and dynamic friction). However, mixtures of quartz (99 wt.%) and layered graphite (1 wt.%) showed significantly lower initial and yield friction coefficient (0.31 and 0.50, respectively). Furthermore, the stress ratio S, defined as (yield stress-initial stress)/(initial stress-dynamic stress), increased in layered graphite samples (1.97) compared to quartz samples (0.14). Similar trend was observed in smectite-rich fault gouge. By referring the reported results of dynamic rupture propagation simulation using S ratio of 1.4 (typical value for the Japan Trench) and 2.0 (this study), we confirmed that higher S ratio results in smaller slip distance by approximately 20 %. On the basis of these results, we could conclude that weak minerals have lower
SIMULATION OF SUBGRADE EMBANKMENT ON WEAK BASE
Directory of Open Access Journals (Sweden)
V. D. Petrenko
2015-08-01
Full Text Available Purpose. This article provides: the question of the sustainability of the subgrade on a weak base is considered in the paper. It is proposed to use the method of jet grouting. Investigation of the possibility of a weak base has an effect on the overall deformation of the subgrade; the identification and optimization of the parameters of subgrade based on studies using numerical simulation. Methodology. The theoretical studies of the stress-strain state of the base and subgrade embankment by modeling in the software package LIRA have been conducted to achieve this goal. Findings. After making the necessary calculations perform building fields of a subsidence, borders cramped thickness, bed’s coefficients of Pasternak and Winkler. The diagrams construction of vertical stress performs at any point of load application. Also, using the software system may perform peer review subsidence, rolls railroad tracks in natural and consolidated basis. Originality. For weak soils is the most appropriate nonlinear model of the base with the existing areas of both elastic and limit equilibrium, mixed problem of the theory of elasticity and plasticity. Practical value. By increasing the load on the weak base as a result of the second track construction, adds embankment or increasing axial load when changing the rolling stock process of sedimentation and consolidation may continue again. Therefore, one of the feasible and promising options for the design and reconstruction of embankments on weak bases is to strengthen the bases with the help of jet grouting. With the expansion of the railway infrastructure, increasing speed and weight of the rolling stock is necessary to ensure the stability of the subgrade on weak bases. LIRA software package allows you to perform all the necessary calculations for the selection of a proper way of strengthening weak bases.
Energy Technology Data Exchange (ETDEWEB)
Wang, Lei; Li, Zhenyu; Jiang, Jia; An, Taiyu; Qin, Hongwei; Hu, Jifan, E-mail: hujf@sdu.edu.cn
2017-01-01
In the present work, we demonstrate that ferromagnetic resonance and magneto-permittivity resonance can be observed in appropriate microwave frequencies at room temperature for multiferroic nano-BiFeO{sub 3}/paraffin composite sample with an appropriate sample-thickness (such as 2 mm). Ferromagnetic resonance originates from the room-temperature weak ferromagnetism of nano-BiFeO{sub 3}. The observed magneto-permittivity resonance in multiferroic nano-BiFeO{sub 3} is connected with the dynamic magnetoelectric coupling through Dzyaloshinskii–Moriya (DM) magnetoelectric interaction or the combination of magnetostriction and piezoelectric effects. In addition, we experimentally observed the resonance of negative imaginary permeability for nano BiFeO{sub 3}/paraffin toroidal samples with longer sample thicknesses D=3.7 and 4.9 mm. Such resonance of negative imaginary permeability belongs to sample-size resonance. - Highlights: • Nano-BiFeO{sub 3}/paraffin composite shows a ferromagnetic resonance. • Nano-BiFeO{sub 3}/paraffin composite shows a magneto-permittivity resonance. • Resonance of negative imaginary permeability in BiFeO{sub 3} is a sample-size resonance. • Nano-BiFeO{sub 3}/paraffin composite with large thickness shows a sample-size resonance.
International Nuclear Information System (INIS)
Wang, Lei; Li, Zhenyu; Jiang, Jia; An, Taiyu; Qin, Hongwei; Hu, Jifan
2017-01-01
In the present work, we demonstrate that ferromagnetic resonance and magneto-permittivity resonance can be observed in appropriate microwave frequencies at room temperature for multiferroic nano-BiFeO 3 /paraffin composite sample with an appropriate sample-thickness (such as 2 mm). Ferromagnetic resonance originates from the room-temperature weak ferromagnetism of nano-BiFeO 3 . The observed magneto-permittivity resonance in multiferroic nano-BiFeO 3 is connected with the dynamic magnetoelectric coupling through Dzyaloshinskii–Moriya (DM) magnetoelectric interaction or the combination of magnetostriction and piezoelectric effects. In addition, we experimentally observed the resonance of negative imaginary permeability for nano BiFeO 3 /paraffin toroidal samples with longer sample thicknesses D=3.7 and 4.9 mm. Such resonance of negative imaginary permeability belongs to sample-size resonance. - Highlights: • Nano-BiFeO 3 /paraffin composite shows a ferromagnetic resonance. • Nano-BiFeO 3 /paraffin composite shows a magneto-permittivity resonance. • Resonance of negative imaginary permeability in BiFeO 3 is a sample-size resonance. • Nano-BiFeO 3 /paraffin composite with large thickness shows a sample-size resonance.
Lineshape-asymmetry elimination in weak atomic transitions driven by an intense standing wave field
Antypas, Dionysios; Fabricant, Anne; Budker, Dmitry
2018-05-01
Owing to the ac-Stark effect, the lineshape of a weak optical transition in an atomic beam can become significantly distorted, when driven by an intense standing wave field. We use an Yb atomic beam to study the lineshape of the 6s2 1S0 -> 5d6s 3D1 transition, which is excited with light circulating in a Fabry-Perot resonator. We demonstrate two methods to avoid the distortion of the transition profile. Of these, one relies on the operation of the resonator in multiple longitudinal modes, and the other in multiple transverse modes.
The Problem of Weak Governments and Weak Societies in Eastern Europe
Directory of Open Access Journals (Sweden)
Marko Grdešić
2008-01-01
Full Text Available This paper argues that, for Eastern Europe, the simultaneous presence of weak governments and weak societies is a crucial obstacle which must be faced by analysts and reformers. The understanding of other normatively significant processes will be deficient without a consciousness-raising deliberation on this problem and its implications. This paper seeks to articulate the “relational” approach to state and society. In addition, the paper lays out a typology of possible patterns of relationship between state and society, dependent on whether the state is weak or strong and whether society is weak or strong. Comparative data are presented in order to provide an empirical support for the theses. Finally, the paper outlines two reform approaches which could enable breaking the vicious circle emerging in the context of weak governments and weak societies.
Applied neutron resonance theory
International Nuclear Information System (INIS)
Froehner, F.H.
1980-01-01
Utilisation of resonance theory in basic and applications-oriented neutron cross section work is reviewed. The technically important resonance formalisms, principal concepts and methods as well as representative computer programs for resonance parameter extraction from measured data, evaluation of resonance data, calculation of Doppler-broadened cross sections and estimation of level-statistical quantities from resonance parameters are described. (author)
Applied neutron resonance theory
International Nuclear Information System (INIS)
Froehner, F.H.
1978-07-01
Utilisation of resonance theory in basic and applications-oriented neutron cross section work is reviewed. The technically important resonance formalisms, principal concepts and methods as well as representative computer programs for resonance parameter extraction from measured data, evaluation of resonance data, calculation of Doppler-broadened cross sections and estimation of level-statistical quantities from resonance parameters are described. (orig.) [de
Geometric phase topology in weak measurement
Samlan, C. T.; Viswanathan, Nirmal K.
2017-12-01
The geometric phase visualization proposed by Bhandari (R Bhandari 1997 Phys. Rep. 281 1-64) in the ellipticity-ellipse orientation basis of the polarization ellipse of light is implemented to understand the geometric aspects of weak measurement. The weak interaction of a pre-selected state, acheived via spin-Hall effect of light (SHEL), results in a spread in the polarization ellipticity (η) or ellipse orientation (χ) depending on the resulting spatial or angular shift, respectively. The post-selection leads to the projection of the η spread in the complementary χ basis results in the appearance of a geometric phase with helical phase topology in the η - χ parameter space. By representing the weak measurement on the Poincaré sphere and using Jones calculus, the complex weak value and the geometric phase topology are obtained. This deeper understanding of the weak measurement process enabled us to explore the techniques’ capabilities maximally, as demonstrated via SHEL in two examples—external reflection at glass-air interface and transmission through a tilted half-wave plate.
Weak KAM theory for a weakly coupled system of Hamilton–Jacobi equations
Figalli, Alessio; Gomes, Diogo A.; Marcon, Diego
2016-01-01
Here, we extend the weak KAM and Aubry–Mather theories to optimal switching problems. We consider three issues: the analysis of the calculus of variations problem, the study of a generalized weak KAM theorem for solutions of weakly coupled systems of Hamilton–Jacobi equations, and the long-time behavior of time-dependent systems. We prove the existence and regularity of action minimizers, obtain necessary conditions for minimality, extend Fathi’s weak KAM theorem, and describe the asymptotic limit of the generalized Lax–Oleinik semigroup. © 2016, Springer-Verlag Berlin Heidelberg.
Weak KAM theory for a weakly coupled system of Hamilton–Jacobi equations
Figalli, Alessio
2016-06-23
Here, we extend the weak KAM and Aubry–Mather theories to optimal switching problems. We consider three issues: the analysis of the calculus of variations problem, the study of a generalized weak KAM theorem for solutions of weakly coupled systems of Hamilton–Jacobi equations, and the long-time behavior of time-dependent systems. We prove the existence and regularity of action minimizers, obtain necessary conditions for minimality, extend Fathi’s weak KAM theorem, and describe the asymptotic limit of the generalized Lax–Oleinik semigroup. © 2016, Springer-Verlag Berlin Heidelberg.
Weakly supervised classification in high energy physics
International Nuclear Information System (INIS)
Dery, Lucio Mwinmaarong; Nachman, Benjamin; Rubbo, Francesco; Schwartzman, Ariel
2017-01-01
As machine learning algorithms become increasingly sophisticated to exploit subtle features of the data, they often become more dependent on simulations. This paper presents a new approach called weakly supervised classification in which class proportions are the only input into the machine learning algorithm. Using one of the most challenging binary classification tasks in high energy physics — quark versus gluon tagging — we show that weakly supervised classification can match the performance of fully supervised algorithms. Furthermore, by design, the new algorithm is insensitive to any mis-modeling of discriminating features in the data by the simulation. Weakly supervised classification is a general procedure that can be applied to a wide variety of learning problems to boost performance and robustness when detailed simulations are not reliable or not available.
Weakly supervised classification in high energy physics
Energy Technology Data Exchange (ETDEWEB)
Dery, Lucio Mwinmaarong [Physics Department, Stanford University,Stanford, CA, 94305 (United States); Nachman, Benjamin [Physics Division, Lawrence Berkeley National Laboratory,1 Cyclotron Rd, Berkeley, CA, 94720 (United States); Rubbo, Francesco; Schwartzman, Ariel [SLAC National Accelerator Laboratory, Stanford University,2575 Sand Hill Rd, Menlo Park, CA, 94025 (United States)
2017-05-29
As machine learning algorithms become increasingly sophisticated to exploit subtle features of the data, they often become more dependent on simulations. This paper presents a new approach called weakly supervised classification in which class proportions are the only input into the machine learning algorithm. Using one of the most challenging binary classification tasks in high energy physics — quark versus gluon tagging — we show that weakly supervised classification can match the performance of fully supervised algorithms. Furthermore, by design, the new algorithm is insensitive to any mis-modeling of discriminating features in the data by the simulation. Weakly supervised classification is a general procedure that can be applied to a wide variety of learning problems to boost performance and robustness when detailed simulations are not reliable or not available.
Efficient quantum computing with weak measurements
International Nuclear Information System (INIS)
Lund, A P
2011-01-01
Projective measurements with high quantum efficiency are often assumed to be required for efficient circuit-based quantum computing. We argue that this is not the case and show that the fact that they are not required was actually known previously but was not deeply explored. We examine this issue by giving an example of how to perform the quantum-ordering-finding algorithm efficiently using non-local weak measurements considering that the measurements used are of bounded weakness and some fixed but arbitrary probability of success less than unity is required. We also show that it is possible to perform the same computation with only local weak measurements, but this must necessarily introduce an exponential overhead.
Weak layer fracture: facets and depth hoar
Directory of Open Access Journals (Sweden)
I. Reiweger
2013-09-01
Full Text Available Understanding failure initiation within weak snow layers is essential for modeling and predicting dry-snow slab avalanches. We therefore performed laboratory experiments with snow samples containing a weak layer consisting of either faceted crystals or depth hoar. During these experiments the samples were loaded with different loading rates and at various tilt angles until fracture. The strength of the samples decreased with increasing loading rate and increasing tilt angle. Additionally, we took pictures of the side of four samples with a high-speed video camera and calculated the displacement using a particle image velocimetry (PIV algorithm. The fracture process within the weak layer could thus be observed in detail. Catastrophic failure started due to a shear fracture just above the interface between the depth hoar layer and the underlying crust.
Weak lensing in the Dark Energy Survey
Troxel, Michael
2016-03-01
I will present the current status of weak lensing results from the Dark Energy Survey (DES). DES will survey 5000 square degrees in five photometric bands (grizY), and has already provided a competitive weak lensing catalog from Science Verification data covering just 3% of the final survey footprint. I will summarize the status of shear catalog production using observations from the first year of the survey and discuss recent weak lensing science results from DES. Finally, I will report on the outlook for future cosmological analyses in DES including the two-point cosmic shear correlation function and discuss challenges that DES and future surveys will face in achieving a control of systematics that allows us to take full advantage of the available statistical power of our shear catalogs.
Weak self-adjoint differential equations
International Nuclear Information System (INIS)
Gandarias, M L
2011-01-01
The concepts of self-adjoint and quasi self-adjoint equations were introduced by Ibragimov (2006 J. Math. Anal. Appl. 318 742-57; 2007 Arch. ALGA 4 55-60). In Ibragimov (2007 J. Math. Anal. Appl. 333 311-28), a general theorem on conservation laws was proved. In this paper, we generalize the concept of self-adjoint and quasi self-adjoint equations by introducing the definition of weak self-adjoint equations. We find a class of weak self-adjoint quasi-linear parabolic equations. The property of a differential equation to be weak self-adjoint is important for constructing conservation laws associated with symmetries of the differential equation. (fast track communication)
On weakly D-differentiable operators
DEFF Research Database (Denmark)
Christensen, Erik
2016-01-01
Let DD be a self-adjoint operator on a Hilbert space HH and aa a bounded operator on HH. We say that aa is weakly DD-differentiable, if for any pair of vectors ξ,ηξ,η from HH the function 〈eitDae−itDξ,η〉〈eitDae−itDξ,η〉 is differentiable. We give an elementary example of a bounded operator aa......, such that aa is weakly DD-differentiable, but the function eitDae−itDeitDae−itD is not uniformly differentiable. We show that weak DD-differentiability may be characterized by several other properties, some of which are related to the commutator (Da−aD)...
Strong effects in weak nonleptonic decays
International Nuclear Information System (INIS)
Wise, M.B.
1980-04-01
In this report the weak nonleptonic decays of kaons and hyperons are examined with the hope of gaining insight into a recently proposed mechanism for the ΔI = 1/2 rule. The effective Hamiltonian for ΔS = 1 weak nonleptonic decays and that for K 0 -anti K 0 mixing are calculated in the six-quark model using the leading logarithmic approximation. These are used to examine the CP violation parameters of the kaon system. It is found that if Penguin-type diagrams make important contributions to K → ππ decay amplitudes then upcoming experiments may be able to distinguish the six-quark model for CP violation from the superweak model. The weak radiative decays of hyperons are discussed with an emphasis on what they can teach us about hyperon nonleptonic decays and the ΔI = 1/2 rule
Excitation and photon decay of giant multipole resonances
International Nuclear Information System (INIS)
Bertrand, F.E.; Beene, J.R.
1990-01-01
A brief review of the excitation of giant multipole resonances via Coulomb excitation is given which emphasizes the very large cross sections that can be realized through this reaction for both isoscalar and isovector resonances. Discussion and results where available, are provide for the measurement of the photon decay of one and two phonon giant resonances. It is pointed out throughout the presentation that the use of E1 photons as a ''tag'' provides a means to observe weakly excited resonances that cannot be observed in the singles spectra. 14 refs., 12 figs., 1 tab
Precision cosmology with weak gravitational lensing
Hearin, Andrew P.
In recent years, cosmological science has developed a highly predictive model for the universe on large scales that is in quantitative agreement with a wide range of astronomical observations. While the number and diversity of successes of this model provide great confidence that our general picture of cosmology is correct, numerous puzzles remain. In this dissertation, I analyze the potential of planned and near future galaxy surveys to provide new understanding of several unanswered questions in cosmology, and address some of the leading challenges to this observational program. In particular, I study an emerging technique called cosmic shear, the weak gravitational lensing produced by large scale structure. I focus on developing strategies to optimally use the cosmic shear signal observed in galaxy imaging surveys to uncover the physics of dark energy and the early universe. In chapter 1 I give an overview of a few unsolved mysteries in cosmology and I motivate weak lensing as a cosmological probe. I discuss the use of weak lensing as a test of general relativity in chapter 2 and assess the threat to such tests presented by our uncertainty in the physics of galaxy formation. Interpreting the cosmic shear signal requires knowledge of the redshift distribution of the lensed galaxies. This redshift distribution will be significantly uncertain since it must be determined photometrically. In chapter 3 I investigate the influence of photometric redshift errors on our ability to constrain dark energy models with weak lensing. The ability to study dark energy with cosmic shear is also limited by the imprecision in our understanding of the physics of gravitational collapse. In chapter 4 I present the stringent calibration requirements on this source of uncertainty. I study the potential of weak lensing to resolve a debate over a long-standing anomaly in CMB measurements in chapter 5. Finally, in chapter 6 I summarize my findings and conclude with a brief discussion of my
Extrapolating Weak Selection in Evolutionary Games
Wu, Bin; García, Julián; Hauert, Christoph; Traulsen, Arne
2013-01-01
In evolutionary games, reproductive success is determined by payoffs. Weak selection means that even large differences in game outcomes translate into small fitness differences. Many results have been derived using weak selection approximations, in which perturbation analysis facilitates the derivation of analytical results. Here, we ask whether results derived under weak selection are also qualitatively valid for intermediate and strong selection. By “qualitatively valid” we mean that the ranking of strategies induced by an evolutionary process does not change when the intensity of selection increases. For two-strategy games, we show that the ranking obtained under weak selection cannot be carried over to higher selection intensity if the number of players exceeds two. For games with three (or more) strategies, previous examples for multiplayer games have shown that the ranking of strategies can change with the intensity of selection. In particular, rank changes imply that the most abundant strategy at one intensity of selection can become the least abundant for another. We show that this applies already to pairwise interactions for a broad class of evolutionary processes. Even when both weak and strong selection limits lead to consistent predictions, rank changes can occur for intermediate intensities of selection. To analyze how common such games are, we show numerically that for randomly drawn two-player games with three or more strategies, rank changes frequently occur and their likelihood increases rapidly with the number of strategies . In particular, rank changes are almost certain for , which jeopardizes the predictive power of results derived for weak selection. PMID:24339769
Nyasulu, Frazier; McMills, Lauren; Barlag, Rebecca
2013-01-01
A laboratory to determine the equilibrium constants of weak acid negative weak base reactions is described. The equilibrium constants of component reactions when multiplied together equal the numerical value of the equilibrium constant of the summative reaction. The component reactions are weak acid ionization reactions, weak base hydrolysis…
Weak hadronic currents in compensation theory
International Nuclear Information System (INIS)
Pappas, R.C.
1975-01-01
Working within the framework of a compensation theory of strong and weak interactions, it is shown that: (1) an axial vector baryon number current can be included in the weak current algebra if certain restrictions on the K-meson strong couplings are relaxed; (2) the theory does not permit the introduction of strange currents of the chiral form V + A; and (3) the assumption that the superweak currents of the theory cannot contain certain CP conserving terms can be justified on the basis of compensation requirements
Weak interactions of the b quark
International Nuclear Information System (INIS)
Branco, G.C.; Mohapatra, R.N.
1978-01-01
In weak-interaction models with two charged W bosons of comparable mass, there exists a novel possibility for the weak interactions of the b quark, in which the (u-barb)/sub R/ current occurs with maximal strength. It is noted that multimuon production in e + e - annihilation at above Q 2 > or approx. = (12 GeV) 2 will distinguish this scheme from the conventional one. We also present a Higgs system that leads naturally to this type of coupling, in a class of gauge models
Fast measure proceeding of weak currents
International Nuclear Information System (INIS)
Taieb, J.
1953-01-01
The process of fast measure of the weak currents that we are going to describe briefly apply worthy of the provided currents by the sources to elevated value internal resistance, as it is the case for the ionization chamber, the photocells, mass spectroscopic tubes. The problem to measure weak currents is essentially a problem of amplifier and of input circuit. We intended to achieve a whole amplifier and input circuit with advanced performances, meaning that for a measured celerity we wanted to have an signal/noise ratio the most important as in the classic systems and for a same report signal/noise a more quickly done measure. (M.B.) [fr
A Continuation Method for Weakly Kannan Maps
Directory of Open Access Journals (Sweden)
Ariza-Ruiz David
2010-01-01
Full Text Available The first continuation method for contractive maps in the setting of a metric space was given by Granas. Later, Frigon extended Granas theorem to the class of weakly contractive maps, and recently Agarwal and O'Regan have given the corresponding result for a certain type of quasicontractions which includes maps of Kannan type. In this note we introduce the concept of weakly Kannan maps and give a fixed point theorem, and then a continuation method, for this class of maps.
From Suitable Weak Solutions to Entropy Viscosity
Guermond, Jean-Luc
2010-12-16
This paper focuses on the notion of suitable weak solutions for the three-dimensional incompressible Navier-Stokes equations and discusses the relevance of this notion to Computational Fluid Dynamics. The purpose of the paper is twofold (i) to recall basic mathematical properties of the three-dimensional incompressible Navier-Stokes equations and to show how they might relate to LES (ii) to introduce an entropy viscosity technique based on the notion of suitable weak solution and to illustrate numerically this concept. © 2010 Springer Science+Business Media, LLC.
Weak form factors of beauty baryons
International Nuclear Information System (INIS)
Ivanov, M.A.; Lyubovitskij, V.E.
1992-01-01
Full analysis of semileptonic decays of beauty baryons with J p =1/2 2 and J p =3/2 2 into charmed ones within the Quark Confinement Model is reported. Weak form factors and decay rates are calculated. Also the heavy quark limit m Q →∞ (Isgur-Wise symmetry) is examined. The weak heavy-baryon form factors in the Isgur-Wise limit and 1/m Q -corrections to them are computered. The Ademollo-Gatto theorem is spin-flavour symmetry of heavy quarks is checked. 33 refs.; 1 fig.; 9 tabs
Weak interactions at high energies. [Lectures, review
Energy Technology Data Exchange (ETDEWEB)
Ellis, J.
1978-08-01
Review lectures are presented on the phenomenological implications of the modern spontaneously broken gauge theories of the weak and electromagnetic interactions, and some observations are made about which high energy experiments probe what aspects of gauge theories. Basic quantum chromodynamics phenomenology is covered including momentum dependent effective quark distributions, the transverse momentum cutoff, search for gluons as sources of hadron jets, the status and prospects for the spectroscopy of fundamental fermions and how fermions may be used to probe aspects of the weak and electromagnetic gauge theory, studies of intermediate vector bosons, and miscellaneous possibilities suggested by gauge theories from the Higgs bosons to speculations about proton decay. 187 references. (JFP)
Shock waves in weakly compressed granular media.
van den Wildenberg, Siet; van Loo, Rogier; van Hecke, Martin
2013-11-22
We experimentally probe nonlinear wave propagation in weakly compressed granular media and observe a crossover from quasilinear sound waves at low impact to shock waves at high impact. We show that this crossover impact grows with the confining pressure P0, whereas the shock wave speed is independent of P0-two hallmarks of granular shocks predicted recently. The shocks exhibit surprising power law attenuation, which we model with a logarithmic law implying that shock dissipation is weak and qualitatively different from other granular dissipation mechanisms. We show that elastic and potential energy balance in the leading part of the shocks.
Categorization of States Beyond Strong and Weak
Directory of Open Access Journals (Sweden)
Peter Tikuisis
2017-09-01
Full Text Available The discourse on poor state performers has suffered from widely varying definitions on what distinguishes certain weak states from others. Indices that rank states from strong to weak conceal important distinctions that can adversely affect intervention policy. This deficiency is addressed by grouping states according to their performance on three dimensions of statehood: authority, legitimacy, and capacity. The resultant categorization identifies brittle states that are susceptible to regime change, impoverished states often considered as aid darlings, and fragile states that experience disproportionately high levels of violent internal conflict. It also provides a quantifiable means to analyze transitions from one state type to another for more insightful intervention policy.
Theoretical status of weak and electromagnetic interactions
Energy Technology Data Exchange (ETDEWEB)
Pandit, L. K.
1980-07-01
An extended simple version of the Weinberg gauge model is proposed to bring together weak and electromagnetic interactions under one theory. The essential features of the standard SU/sub 2/ (operating on)U/sub 1/ gauge scheme with four leptons and four quark flavours is recalled. Charged-current and neutral current interactions are described. Non-leptonic decays of strange particles are studied. The treatment is extended to 6-leptons and 6-quark flavours. The short comings of this model are discussed. Speculations on the unification of strong, weak and electromagnetic interactions are made.
CPT non-invariance and weak interactions
International Nuclear Information System (INIS)
Hsu, J.P.
1973-01-01
In this talk, I will describe a possible violation of CPT invariance in the domain of weak interactions. One can construct a model of weak interactions which, in order to be consistent with all experimental data, must violate CPT maximally. The model predicts many specific results for decay processes which could be tested in the planned neutral hyperon beam or neutrino beam at NAL. The motivations and the physical idea in the model are explained and the implications of the model are discussed. (U.S.)
International Nuclear Information System (INIS)
Kajdalov, A.B.
1986-01-01
Experimental data on np interactions indicating to existence of narrow resonances in pp-system are discussed. Possible theoretical interpretations of these resonances are given. Experimental characteristics of the dibaryon resonances with isospin I=2 are considered
MRI (Magnetic Resonance Imaging)
... Procedures Medical Imaging MRI (Magnetic Resonance Imaging) MRI (Magnetic Resonance Imaging) Share Tweet Linkedin Pin it More sharing options Linkedin Pin it Email Print Magnetic Resonance Imaging (MRI) is a medical imaging procedure for ...
Weak reward source memory in depression reflects blunted activation of VTA/SN and parahippocampus
Dillon, Daniel G.; Dobbins, Ian G.; Pizzagalli, Diego A.
2013-01-01
Reward responses in the medial temporal lobes and dopaminergic midbrain boost episodic memory formation in healthy adults, and weak memory for emotionally positive material in depression suggests this mechanism may be dysfunctional in major depressive disorder (MDD). To test this hypothesis, we performed a study in which unmedicated adults with MDD and healthy controls encoded drawings paired with reward or zero tokens during functional magnetic resonance imaging. In a recognition test, parti...
Recent results on weak decays of charmed mesons from the Mark III experiment
International Nuclear Information System (INIS)
Browder, T.E.
1989-01-01
Recent results from the Mark III experiment on weak decays of charmed mesons are presented. Measurements of the resonant substructure of D 0 → K - π + π - π + decays, the first model independent result on D s → φπ + , as well as limits on D s → ηπ + and D s → η'π + are described. The implications of these new results are also discussed. 37 refs., 7 figs., 4 tabs
International Nuclear Information System (INIS)
Tagirov, Eh.A.
1985-01-01
A model of resonance parametric transformation of a gravitational wave to electromagnetic one is considered. Two plane monochromatic waves: a strong electromagnetic and weak gravitational - interacting in a medium generate at difference and sum frequencies an electromagnetic wave in a direction determined with the condition of spatial wave synchronism. Rarefied cold gas or beam of elementary emitters (''molecules'') serve as a medium model. Coefficients of parametric transformation have been determined
Regenerative feedback resonant circuit
Jones, A. Mark; Kelly, James F.; McCloy, John S.; McMakin, Douglas L.
2014-09-02
A regenerative feedback resonant circuit for measuring a transient response in a loop is disclosed. The circuit includes an amplifier for generating a signal in the loop. The circuit further includes a resonator having a resonant cavity and a material located within the cavity. The signal sent into the resonator produces a resonant frequency. A variation of the resonant frequency due to perturbations in electromagnetic properties of the material is measured.
Resonances, resonance functions and spectral deformations
International Nuclear Information System (INIS)
Balslev, E.
1984-01-01
The present paper is aimed at an analysis of resonances and resonance states from a mathematical point of view. Resonances are characterized as singular points of the analytically continued Lippman-Schwinger equation, as complex eigenvalues of the Hamiltonian with a purely outgoing, exponentially growing eigenfunction, and as poles of the S-matrix. (orig./HSI)
A weak balance: the contribution of muscle weakness to postural instability and falls.
Horlings, G.C.; Engelen, B.G.M. van; Allum, J.H.J.; Bloem, B.R.
2008-01-01
Muscle strength is a potentially important factor contributing to postural control. In this article, we consider the influence of muscle weakness on postural instability and falling. We searched the literature for research evaluating muscle weakness as a risk factor for falls in community-dwelling
Theory of coherent resonance energy transfer
International Nuclear Information System (INIS)
Jang, Seogjoo; Cheng, Y.-C.; Reichman, David R.; Eaves, Joel D.
2008-01-01
A theory of coherent resonance energy transfer is developed combining the polaron transformation and a time-local quantum master equation formulation, which is valid for arbitrary spectral densities including common modes. The theory contains inhomogeneous terms accounting for nonequilibrium initial preparation effects and elucidates how quantum coherence and nonequilibrium effects manifest themselves in the coherent energy transfer dynamics beyond the weak resonance coupling limit of the Foerster and Dexter (FD) theory. Numerical tests show that quantum coherence can cause significant changes in steady state donor/acceptor populations from those predicted by the FD theory and illustrate delicate cooperation of nonequilibrium and quantum coherence effects on the transient population dynamics.
Study of weak neutral-current effects in (e,e'X) reactions
International Nuclear Information System (INIS)
Kleppinger, W.E.
1985-01-01
In electron scattering from nuclei, in addition to the usual electromagnetic interaction, unified models of the electromagnetic and weak interactions predict an additional weak neutral-current interaction. When this additional interaction is included, a parity-violating contribution to the cross section due to the interference of the electromagnetic and neutral-weak currents, is present. The purpose of this work was to examine how these effects can be explored in (e,e'X) reactions with polarized incident electrons, where in addition to detecting the scattered electron, a decay particle X, emitted by the excited target nucleus, is also detected. It is found that new interference terms appear in the cross section that are not present in inelastic (e,e') scattering. A model calculation that assumed that the target was excited to a single, intermediate resonance indicates that the angular distribution of X is sensitive to these new terms. Results of this work have been published
Predictions of baryon form factors for the electromagnetic and weak interaction
International Nuclear Information System (INIS)
Kiehlmann, H.D.
1978-05-01
The electromagnetic and weak form factors of the baryon matrix elements (with B the nucleon or the Λ(1232)-resonance) are determined via sumrules by the experimentally known form factors of the nucleon matrix element for momentum transfers 0 2 2 . The operator Jμ denotes either the electromagnetic current or the weak hypercharge-conserving current of the I. class. The sumrules are derived from the superconvergence of properly chosen reaction amplitudes. The results allow an absolute determination of the cross sections of a series of peripheral reactions. An important and interesting consequence for the considered matrix elements of the weak current is that the properties of CVC of PCAC follow from the sumrules without additional assumptions. Finally the predictions of relativistic SU(6)-models are checked. One gets surprisingly a good confirmation of the essential results of these models, the reliability of which has almost been unknown on account of a series of speculative assumptions. (orig.) [de
International Nuclear Information System (INIS)
Maltsev, A Ya
2005-01-01
We consider the special type of field-theoretical symplectic structures called weakly nonlocal. The structures of this type are, in particular, very common for integrable systems such as KdV or NLS. We introduce here the special class of weakly nonlocal symplectic structures which we call weakly nonlocal symplectic structures of hydrodynamic type. We investigate then the connection of such structures with the Whitham averaging method and propose the procedure of 'averaging' the weakly nonlocal symplectic structures. The averaging procedure gives the weakly nonlocal symplectic structure of hydrodynamic type for the corresponding Whitham system. The procedure also gives 'action variables' corresponding to the wave numbers of m-phase solutions of the initial system which give the additional conservation laws for the Whitham system
Weak organic acid stress in Bacillus subtilis
ter Beek, A.S.
2009-01-01
Weak organic acids are commonly used food preservatives that protect food products from bacterial contamination. A variety of spore-forming bacterial species pose a serious problem to the food industry by causing extensive food spoilage or even food poisoning. Understanding the mechanisms of
Common Fixed Points for Weakly Compatible Maps
Indian Academy of Sciences (India)
The purpose of this paper is to prove a common fixed point theorem, from the class of compatible continuous maps to a larger class of maps having weakly compatible maps without appeal to continuity, which generalized the results of Jungck [3], Fisher [1], Kang and Kim [8], Jachymski [2], and Rhoades [9].
Weak MSO: automata and expressiveness modulo bisimilarity
Carreiro, F.; Facchini, A.; Venema, Y.; Zanasi, F.
2014-01-01
We prove that the bisimulation-invariant fragment of weak monadic second-order logic (WMSO) is equivalent to the fragment of the modal μ-calculus where the application of the least fixpoint operator μp.φ is restricted to formulas φ that are continuous in p. Our proof is automata-theoretic in nature;
Weak lensing probes of modified gravity
International Nuclear Information System (INIS)
Schmidt, Fabian
2008-01-01
We study the effect of modifications to general relativity on large-scale weak lensing observables. In particular, we consider three modified gravity scenarios: f(R) gravity, the Dvali-Gabadadze-Porrati model, and tensor-vector-scalar theory. Weak lensing is sensitive to the growth of structure and the relation between matter and gravitational potentials, both of which will in general be affected by modified gravity. Restricting ourselves to linear scales, we compare the predictions for galaxy-shear and shear-shear correlations of each modified gravity cosmology to those of an effective dark energy cosmology with the same expansion history. In this way, the effects of modified gravity on the growth of perturbations are separated from the expansion history. We also propose a test which isolates the matter-potential relation from the growth factor and matter power spectrum. For all three modified gravity models, the predictions for galaxy and shear correlations will be discernible from those of dark energy with very high significance in future weak lensing surveys. Furthermore, each model predicts a measurably distinct scale dependence and redshift evolution of galaxy and shear correlations, which can be traced back to the physical foundations of each model. We show that the signal-to-noise for detecting signatures of modified gravity is much higher for weak lensing observables as compared to the integrated Sachs-Wolfe effect, measured via the galaxy-cosmic microwave background cross-correlation.
Weak contractions via $\\lambda$-sequences
Agyingi, Collins Amburo; Gaba, Yaé Ulrich
2018-01-01
In this note, we discuss common fixed point for a family of self mapping defined on a metric type space and satisfying a weakly contractive condition. In our development, we make use of the $\\lambda$-sequence approach and also of a certain class of real valued maps. We derive some implications for self-mappings on quasi-pseudometric type spaces.
Reducing Weak to Strong Bisimilarity in CCP
Directory of Open Access Journals (Sweden)
Andrés Aristizábal
2012-12-01
Full Text Available Concurrent constraint programming (ccp is a well-established model for concurrency that singles out the fundamental aspects of asynchronous systems whose agents (or processes evolve by posting and querying (partial information in a global medium. Bisimilarity is a standard behavioural equivalence in concurrency theory. However, only recently a well-behaved notion of bisimilarity for ccp, and a ccp partition refinement algorithm for deciding the strong version of this equivalence have been proposed. Weak bisimiliarity is a central behavioural equivalence in process calculi and it is obtained from the strong case by taking into account only the actions that are observable in the system. Typically, the standard partition refinement can also be used for deciding weak bisimilarity simply by using Milner's reduction from weak to strong bisimilarity; a technique referred to as saturation. In this paper we demonstrate that, because of its involved labeled transitions, the above-mentioned saturation technique does not work for ccp. We give an alternative reduction from weak ccp bisimilarity to the strong one that allows us to use the ccp partition refinement algorithm for deciding this equivalence.
Weak radiative baryonic decays of B mesons
International Nuclear Information System (INIS)
Kohara, Yoji
2004-01-01
Weak radiative baryonic B decays B→B 1 B 2 -barγ are studied under the assumption of the short-distance b→sγ electromagnetic penguin transition dominance. The relations among the decay rates of various decay modes are derived
Weak NNM couplings and nuclear parity violation
International Nuclear Information System (INIS)
Holstein, B.R.
1987-01-01
After many years of careful theoretical and experimental study of nuclear parity violation, rough empirical values for weak parity violation nucleon-nucleon-meson vertices have been deduced. We address some of the physics which has been learned from this effort and show that it has implications for work going on outside this field. (author)
Weak universality in inhomogeneous Ising quantum chains
International Nuclear Information System (INIS)
Karevski, Dragi
2006-01-01
The Ising quantum chain with arbitrary coupling distribution {λ i } leading to an anisotropic scaling is considered. The smallest gap of the chain is connected to the surface magnetization by the relation Λ 1 = m s ({λ i })m s ({λ -1 i }). For some aperiodic distribution {λ i }, a weak universality of the critical behaviour is found. (letter to the editor)
Broken color symmetry and weak currents
International Nuclear Information System (INIS)
Stech, B.
1976-01-01
Broken colour symmetry predicts a very rich spectrum of new particles. If broken colour is relevant at all, charged psi-particles should be found in particular at the 4 GeV region. For the weak hadronic currents no completely satisfactory suggestion exists. Broken colour symmetry describes qualitatively several of the new effects observed recently. (BJ) [de
Efficient bootstrap with weakly dependent processes
Bravo, Francesco; Crudu, Federico
The efficient bootstrap methodology is developed for overidentified moment conditions models with weakly dependent observation. The resulting bootstrap procedure is shown to be asymptotically valid and can be used to approximate the distributions of t-statistics, the J-statistic for overidentifying
Weak equivalence classes of complex vector bundles
Czech Academy of Sciences Publication Activity Database
Le, Hong-Van
LXXVII, č. 1 (2008), s. 23-30 ISSN 0862-9544 R&D Projects: GA AV ČR IAA100190701 Institutional research plan: CEZ:AV0Z10190503 Keywords : chern classes * complex Grassmannians weak equivalence Subject RIV: BA - General Mathematics
Gauge theories of the weak interactions
International Nuclear Information System (INIS)
Quinn, H.
1978-08-01
Two lectures are presented on the Weinberg--Salam--Glashow--Iliopoulos--Maiani gauge theory for weak interactions. An attempt is made to give some impressions of the generality of this model, how it was developed, variations found in the literature, and the status of the standard model. 21 references
Electric properties of weakly nonideal plasmas
Energy Technology Data Exchange (ETDEWEB)
Guenther, K; Radtke, R
1984-01-01
The progress in theory as well as in diagnostics and measurement during the last fifteen years is reviewed. Starting from the transport theory of ideal plasmas physically justified corrections are introduced which allow the quantitative calculation of the transport properties of weakly nonideal plasmas. Essential coefficients and numerical data of the electrical conductivity for plasmas of technical importance are given in tables and diagrams.
Localization on weakly disordered Cayley tree
International Nuclear Information System (INIS)
Brezini, A.; Olivier, G.
1980-08-01
The localization model of Kumar et al. is critically re-examined for the approximation γ → 0, which describes weak disorder. By using an improved method of approximation, we have studied the displacement of the band and the mobility edges and compared the result of Kumar et al. and Abou-Chacra et al. in the light of the present approximation. (author)
Studying dark matter haloes with weak lensing
Velander, Malin Barbro Margareta
2012-01-01
Our Universe is comprised not only of normal matter but also of unknown components: dark matter and dark energy. This Thesis recounts studies of dark matter haloes, using a technique known as weak gravitational lensing, in order to learn more about the nature of these dark components. The haloes
Completely continuous and weakly completely continuous abstract ...
Indian Academy of Sciences (India)
An algebra A is called right completely continuous (right weakly completely continuous) ... Moreover, some applications of these results in group algebras are .... A linear subspace S(G) of L1(G) is said to be a Segal algebra, if it satisfies the.
Collisional properties of weakly bound heteronuclear dimers
Marcelis, B.; Kokkelmans, S.J.J.M.F.; Shlyapnikov, G.V.; Petrov, D.S.
2008-01-01
We consider collisional properties of weakly bound heteronuclear molecules (dimers) formed in a two-species mixture of atoms with a large mass difference. We focus on dimers containing light fermionic atoms as they manifest collisional stability due to an effective dimer-dimer repulsion originating
Quantum mechanical calculations on weakly interacting complexes
Heijmen, T.G.A.
1998-01-01
Symmetry-adapted perturbation theory (SAPT) has been applied to compute the intermolecular potential energy surfaces and the interaction-induced electrical properties of weakly interacting complexes. Asymptotic (large R) expressions have been derived for the contributions to the collision-induced
Weak-interaction rates in stellar conditions
Sarriguren, Pedro
2018-05-01
Weak-interaction rates, including β-decay and electron captures, are studied in several mass regions at various densities and temperatures of astrophysical interest. In particular, we study odd-A nuclei in the pf-shell region, which are involved in presupernova formations. Weak rates are relevant to understand the late stages of the stellar evolution, as well as the nucleosynthesis of heavy nuclei. The nuclear structure involved in the weak processes is studied within a quasiparticle proton-neutron random-phase approximation with residual interactions in both particle-hole and particle-particle channels on top of a deformed Skyrme Hartree-Fock mean field with pairing correlations. First, the energy distributions of the Gamow-Teller strength are discussed and compared with the available experimental information, measured under terrestrial conditions from charge-exchange reactions. Then, the sensitivity of the weak-interaction rates to both astrophysical densities and temperatures is studied. Special attention is paid to the relative contribution to these rates of thermally populated excited states in the decaying nucleus and to the electron captures from the degenerate electron plasma.
Black holes and the weak cosmic censorship
International Nuclear Information System (INIS)
Krolak, A.
1984-01-01
A theory of black holes is developed under the assumption of the weak cosmic censorship. It includes Hawking's theory of black holes in the future asymptotically predictable space-times as a special case but it also applies to the cosmological situations including models with nonzero cosmological constant of both signs. (author)
How weak is the subduction zone interface?
Duarte, João C.; Schellart, Wouter P.; Cruden, Alexander R.
2015-01-01
Several lines of evidence suggest that subduction zones are weak and that the unique availability of water on Earth is a critical factor in the weakening process. We have evaluated the strength of subduction zone interfaces using two approaches: (i) from empirical relationships between shear stress
International Nuclear Information System (INIS)
Wellens, Thomas; Shatokhin, Vyacheslav; Buchleitner, Andreas
2004-01-01
We are taught by conventional wisdom that the transmission and detection of signals is hindered by noise. However, during the last two decades, the paradigm of stochastic resonance (SR) proved this assertion wrong: indeed, addition of the appropriate amount of noise can boost a signal and hence facilitate its detection in a noisy environment. Due to its simplicity and robustness, SR has been implemented by mother nature on almost every scale, thus attracting interdisciplinary interest from physicists, geologists, engineers, biologists and medical doctors, who nowadays use it as an instrument for their specific purposes. At the present time, there exist a lot of diversified models of SR. Taking into account the progress achieved in both theoretical understanding and practical application of this phenomenon, we put the focus of the present review not on discussing in depth technical details of different models and approaches but rather on presenting a general and clear physical picture of SR on a pedagogical level. Particular emphasis will be given to the implementation of SR in generic quantum systems-an issue that has received limited attention in earlier review papers on the topic. The major part of our presentation relies on the two-state model of SR (or on simple variants thereof), which is general enough to exhibit the main features of SR and, in fact, covers many (if not most) of the examples of SR published so far. In order to highlight the diversity of the two-state model, we shall discuss several examples from such different fields as condensed matter, nonlinear and quantum optics and biophysics. Finally, we also discuss some situations that go beyond the generic SR scenario but are still characterized by a constructive role of noise
Resonant photoelectron spectroscopy at the Mo 4p→4d absorption edge in MoS2
International Nuclear Information System (INIS)
Lince, J.R.; Didziulis, S.V.; Yarmoff, J.A.
1991-01-01
A systematic study has been conducted of the resonant behavior of the valence-band photoelectron spectrum of MoS 2 for hν=26--70 eV, spanning the Mo 4p→4d transition region. A broad Fano-like resonance appears at ∼42 eV in the constant-initial-state (CIS) intensity plot of the d z 2 peak near the valence-band maximum [∼2 eV binding energy (BE)], confirming its predominantly Mo 4d character. A second shoulder on the higher-hν side of the maximum in the d z 2 CIS intensity plot is suggested to result from transitions to unoccupied states in the 5sp band ∼10 eV above E F , by comparison with a partial-yield spectrum and previous inverse-photoemission data. The region of the valence band in the range 3--4.5-eV BE also exhibits resonant behavior, indicating Mo 4d character, although somewhat less than for the d z 2 peak. The 5--7-eV BE range does not exhibit resonance behavior at the Mo 4p edge and, therefore, contains negligible Mo 4d character. A feature at ∼30 eV in the CIS intensity plot for the 5--7-eV BE range could not be definitively assigned in this study, but may be due to a resonance between direct photoemission and a process involving absorption and autoionization of electronic states that contain Mo 5s and 5p character
Photoionization of gallium at 3d-4p and 4s-np (n = 5,6) resonances
International Nuclear Information System (INIS)
Caldwell, C.D.; Krause, M.O.; Jimenez-Mier, J.
1988-01-01
The simplest atoms having nonspherical symmetry are those with a single p electron in a valence shell. Of these, the group IIIB elements are excellent examples. As such, they form test cases for photoionization from open-shell systems. Through photoelectron-spectroscopy techniques, we have examined both partial cross sections and angular-distribution parameters for autoionization corresponding to promotion of a 3d electron to the 4p shell of gallium. The resulting dp 2 configuration gives rise to a complicated multiplet structure across which the angular-distribution parameter varies considerably. We have also looked at the simpler structure resulting from promotion of one s electron to an np level, n = 5,6. For these cases, the multiplet structure is simpler, but the influence of the resonance on the cross section and the angular distribution is pronounced. For the 4s4p( 3 P)5p resonance we find a value of β = -1 at the cross-section minimum. No calculations have been performed for this system, so we attempt a qualitative interpretation of our results based on an angular-momentum-transfer analysis
International Nuclear Information System (INIS)
Smotritskij, L.M.
2001-01-01
Application of resonance phase for two quasi-stationary states with similar spin and unlike parity is shown to enable to coordinate the experimentally observed signed dependence of P-odd effects in neutron reactions with the theory. The developed approach enables to obtain information on isospin structure of a weak nucleon-nucleon interaction [ru
Penetration of an ordinary wave into a weakly inhomogeneous magnetoplasma at oblique incidence
International Nuclear Information System (INIS)
Preinhaelter, J.
1973-12-01
The propagation was studied of high-frequency electromagnetic waves in a plane-stratified weakly inhomogeneous plasma. The density gradient was assumed to be perpendicular to the external magnetic field and the wave vector was not considered to be generally parallel to the plane given by the two former vectors. The analysis shows that an ordinary wave may penetrate the plasma resonance region if the orientation of the vacuum wave vector is appropriately chosen. Analytical expressions for the reflexion and transmission coefficients were obtained and their dependence on the direction cosines of the wave vector of the incident wave was studied. It is also briefly shown that after the transmission through plasma resonance the ordinary wave was transformed into an extraordinary wave and the latter was reflected back to the region of hybrid resonance. In this region the extraordinary wave was fully transformed into the Bernstein modes. (author)
3D printing from MRI Data: Harnessing strengths and minimizing weaknesses.
Ripley, Beth; Levin, Dmitry; Kelil, Tatiana; Hermsen, Joshua L; Kim, Sooah; Maki, Jeffrey H; Wilson, Gregory J
2017-03-01
3D printing facilitates the creation of accurate physical models of patient-specific anatomy from medical imaging datasets. While the majority of models to date are created from computed tomography (CT) data, there is increasing interest in creating models from other datasets, such as ultrasound and magnetic resonance imaging (MRI). MRI, in particular, holds great potential for 3D printing, given its excellent tissue characterization and lack of ionizing radiation. There are, however, challenges to 3D printing from MRI data as well. Here we review the basics of 3D printing, explore the current strengths and weaknesses of printing from MRI data as they pertain to model accuracy, and discuss considerations in the design of MRI sequences for 3D printing. Finally, we explore the future of 3D printing and MRI, including creative applications and new materials. 5 J. Magn. Reson. Imaging 2017;45:635-645. © 2016 International Society for Magnetic Resonance in Medicine.
Weak rotating flow disturbances in a centrifugal compressor with a vaneless diffuser
Moore, F. K.
1988-01-01
A theory is presented to predict the occurrence of weak rotating waves in a centrifugal compression system with a vaneless diffuser. As in a previous study of axial systems, an undisturbed performance characteristic is assumed known. Following an inviscid analysis of the diffuser flow, conditions for a neutral rotating disturbance are found. The solution is shown to have two branches; one with fast rotation, the other with very slow rotation. The slow branch includes a dense set of resonant solutions. The resonance is a feature of the diffuser flow, and therefore such disturbances must be expected at the various resonant flow coefficients regardless of the compressor characteristic. Slow solutions seem limited to flow coefficients less than about 0.3, where third and fourth harmonics appear. Fast waves seem limited to a first harmonic. These fast and slow waves are described, and effects of diffuser-wall convergence, backward blade angles, and partial recovery of exit velocity head are assessed.
Electron spin resonance identification of irradiated fruits
International Nuclear Information System (INIS)
Raffi, J.J.; Agnel, J.-P.L.
1989-01-01
The electron spin resonance spectrum of achenes, pips, stalks and stones from irradiated fruits (stawberry, raspberry, red currant, bilberry, apple, pear, fig, french prune, kiwi, water-melon and cherry) always displays, just after γ-treatment, a weak triplet (a H ∼30 G) due to a cellulose radical; its left line (lower field) can be used as an identification test of irradiation, at least for strawberries, raspberries, red currants or bilberries irradiated in order to improve their storage time. (author)
New weak keys in simplified IDEA
Hafman, Sari Agustini; Muhafidzah, Arini
2016-02-01
Simplified IDEA (S-IDEA) is simplified version of International Data Encryption Algorithm (IDEA) and useful teaching tool to help students to understand IDEA. In 2012, Muryanto and Hafman have found a weak key class in the S-IDEA by used differential characteristics in one-round (0, ν, 0, ν) → (0,0, ν, ν) on the first round to produce input difference (0,0, ν, ν) on the fifth round. Because Muryanto and Hafman only use three differential characteristics in one-round, we conducted a research to find new differential characteristics in one-round and used it to produce new weak key classes of S-IDEA. To find new differential characteristics in one-round of S-IDEA, we applied a multiplication mod 216+1 on input difference and combination of active sub key Z1, Z4, Z5, Z6. New classes of weak keys are obtained by combining all of these characteristics and use them to construct two new differential characteristics in full-round of S-IDEA with or without the 4th round sub key. In this research, we found six new differential characteristics in one round and combined them to construct two new differential characteristics in full-round of S-IDEA. When two new differential characteristics in full-round of S-IDEA are used and the 4th round sub key required, we obtain 2 new classes of weak keys, 213 and 28. When two new differential characteristics in full-round of S-IDEA are used, yet the 4th round sub key is not required, the weak key class of 213 will be 221 and 28 will be 210. Membership test can not be applied to recover the key bits in those weak key classes. The recovery of those unknown key bits can only be done by using brute force attack. The simulation result indicates that the bit of the key can be recovered by the longest computation time of 0,031 ms.
Qi, Yi-Bin; Zheng, Cheng-Gang; Lv, Cheng-Yuan; Lun, Zeng-Min; Ma, Tao
2018-03-20
To investigate weak gel-assisted microbial flooding in Block Wang Long Zhuang in the Jiangsu Oilfield, the compatibility of weak gel and microbe was evaluated using laboratory experiments. Bacillus sp. W5 was isolated from the formation water in Block Wang Long Zhuang. The rate of oil degradation reached 178 mg/day, and the rate of viscosity reduction reached 75.3%. Strain W5 could produce lipopeptide with a yield of 1254 mg/L. Emulsified crude oil was dispersed in the microbial degradation system, and the average diameter of the emulsified oil particles was 18.54 μm. Bacillus sp. W5 did not affect the rheological properties of the weak gel, and the presence of the weak gel did not significantly affect bacterial reproduction (as indicated by an unchanged microbial biomass), emulsification (surface tension is 35.56 mN/m and average oil particles size is 21.38 μm), oil degradation (162 mg/day) and oil viscosity reduction (72.7%). Core-flooding experiments indicated oil recovery of 23.6% when both weak gel and Bacillus sp. W5 were injected into the system, 14.76% when only the weak gel was injected, and 9.78% with strain W5 was injected without the weak gel. The results demonstrate good compatibility between strains W5 and the weak gel and highlight the application potential of weak gel-assisted microbial flooding. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Weak mixing below the weak scale in dark-matter direct detection
Brod, Joachim; Grinstein, Benjamin; Stamou, Emmanuel; Zupan, Jure
2018-02-01
If dark matter couples predominantly to the axial-vector currents with heavy quarks, the leading contribution to dark-matter scattering on nuclei is either due to one-loop weak corrections or due to the heavy-quark axial charges of the nucleons. We calculate the effects of Higgs and weak gauge-boson exchanges for dark matter coupling to heavy-quark axial-vector currents in an effective theory below the weak scale. By explicit computation, we show that the leading-logarithmic QCD corrections are important, and thus resum them to all orders using the renormalization group.
Dark-Matter Particles without Weak-Scale Masses or Weak Interactions
International Nuclear Information System (INIS)
Feng, Jonathan L.; Kumar, Jason
2008-01-01
We propose that dark matter is composed of particles that naturally have the correct thermal relic density, but have neither weak-scale masses nor weak interactions. These models emerge naturally from gauge-mediated supersymmetry breaking, where they elegantly solve the dark-matter problem. The framework accommodates single or multiple component dark matter, dark-matter masses from 10 MeV to 10 TeV, and interaction strengths from gravitational to strong. These candidates enhance many direct and indirect signals relative to weakly interacting massive particles and have qualitatively new implications for dark-matter searches and cosmological implications for colliders
Communication through resonance in spiking neuronal networks.
Hahn, Gerald; Bujan, Alejandro F; Frégnac, Yves; Aertsen, Ad; Kumar, Arvind
2014-08-01
The cortex processes stimuli through a distributed network of specialized brain areas. This processing requires mechanisms that can route neuronal activity across weakly connected cortical regions. Routing models proposed thus far are either limited to propagation of spiking activity across strongly connected networks or require distinct mechanisms that create local oscillations and establish their coherence between distant cortical areas. Here, we propose a novel mechanism which explains how synchronous spiking activity propagates across weakly connected brain areas supported by oscillations. In our model, oscillatory activity unleashes network resonance that amplifies feeble synchronous signals and promotes their propagation along weak connections ("communication through resonance"). The emergence of coherent oscillations is a natural consequence of synchronous activity propagation and therefore the assumption of different mechanisms that create oscillations and provide coherence is not necessary. Moreover, the phase-locking of oscillations is a side effect of communication rather than its requirement. Finally, we show how the state of ongoing activity could affect the communication through resonance and propose that modulations of the ongoing activity state could influence information processing in distributed cortical networks.
Asymptotic theory of weakly dependent random processes
Rio, Emmanuel
2017-01-01
Presenting tools to aid understanding of asymptotic theory and weakly dependent processes, this book is devoted to inequalities and limit theorems for sequences of random variables that are strongly mixing in the sense of Rosenblatt, or absolutely regular. The first chapter introduces covariance inequalities under strong mixing or absolute regularity. These covariance inequalities are applied in Chapters 2, 3 and 4 to moment inequalities, rates of convergence in the strong law, and central limit theorems. Chapter 5 concerns coupling. In Chapter 6 new deviation inequalities and new moment inequalities for partial sums via the coupling lemmas of Chapter 5 are derived and applied to the bounded law of the iterated logarithm. Chapters 7 and 8 deal with the theory of empirical processes under weak dependence. Lastly, Chapter 9 describes links between ergodicity, return times and rates of mixing in the case of irreducible Markov chains. Each chapter ends with a set of exercises. The book is an updated and extended ...
Nulling tomography with weak gravitational lensing
International Nuclear Information System (INIS)
Huterer, Dragan; White, Martin
2005-01-01
We explore several strategies of eliminating (or nulling) the small-scale information in weak lensing convergence power spectrum measurements in order to protect against undesirable effects, for example, the effects of baryonic cooling and pressure forces on the distribution of large-scale structures. We selectively throw out the small-scale information in the convergence power spectrum that is most sensitive to the unwanted bias, while trying to retain most of the sensitivity to cosmological parameters. The strategies are effective in the difficult but realistic situations when we are able to guess the form of the contaminating effect only approximately. However, we also find that the simplest scheme of simply not using information from the largest multipoles works about as well as the proposed techniques in most, although not all, realistic cases. We advocate further exploration of nulling techniques and believe that they will find important applications in the weak lensing data mining
A dynamical weak scale from inflation
Energy Technology Data Exchange (ETDEWEB)
You, Tevong, E-mail: tty20@cam.ac.uk [DAMTP, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)
2017-09-01
Dynamical scanning of the Higgs mass by an axion-like particle during inflation may provide a cosmological component to explaining part of the hierarchy problem. We propose a novel interplay of this cosmological relaxation mechanism with inflation, whereby the backreaction of the Higgs vacuum expectation value near the weak scale causes inflation to end. As Hubble drops, the relaxion's dissipative friction increases relative to Hubble and slows it down enough to be trapped by the barriers of its periodic potential. Such a scenario raises the natural cut-off of the theory up to ∼ 10{sup 10} GeV, while maintaining a minimal relaxion sector without having to introduce additional scanning scalars or new physics coincidentally close to the weak scale.
Weak-light phase locking for LISA
International Nuclear Information System (INIS)
McNamara, Paul W
2005-01-01
The long armlengths of the LISA interferometer, and the finite aperture of the telescope, lead to an optical power attenuation of ∼10 -10 of the transmitted to received light. Simple reflection at the end of the arm is therefore not an optimum interferometric design. Instead, a local laser is offset phase locked to the weak incoming beam, transferring the phase information of the incoming to the outgoing light. This paper reports on an experiment to characterize a weak-light phase-locking scheme suitable for LISA in which a diode-pumped, Nd:YAG, non-planar ring oscillator (NPRO) is offset phase locked to a low-power (13 pW) frequency stabilized master NPRO. Preliminary results of the relative phase noise of the slave laser shows shot noise limited performance above 0.4 Hz. Excess noise is observed at lower frequencies, most probably due to thermal effects in the optical arrangement and phase-sensing electronics
Towards weakly constrained double field theory
Directory of Open Access Journals (Sweden)
Kanghoon Lee
2016-08-01
Full Text Available We show that it is possible to construct a well-defined effective field theory incorporating string winding modes without using strong constraint in double field theory. We show that X-ray (Radon transform on a torus is well-suited for describing weakly constrained double fields, and any weakly constrained fields are represented as a sum of strongly constrained fields. Using inverse X-ray transform we define a novel binary operation which is compatible with the level matching constraint. Based on this formalism, we construct a consistent gauge transform and gauge invariant action without using strong constraint. We then discuss the relation of our result to the closed string field theory. Our construction suggests that there exists an effective field theory description for massless sector of closed string field theory on a torus in an associative truncation.
Quantum Groups, Property (T), and Weak Mixing
Brannan, Michael; Kerr, David
2018-06-01
For second countable discrete quantum groups, and more generally second countable locally compact quantum groups with trivial scaling group, we show that property (T) is equivalent to every weakly mixing unitary representation not having almost invariant vectors. This is a generalization of a theorem of Bekka and Valette from the group setting and was previously established in the case of low dual by Daws, Skalski, and Viselter. Our approach uses spectral techniques and is completely different from those of Bekka-Valette and Daws-Skalski-Viselter. By a separate argument we furthermore extend the result to second countable nonunimodular locally compact quantum groups, which are shown in particular not to have property (T), generalizing a theorem of Fima from the discrete setting. We also obtain quantum group versions of characterizations of property (T) of Kerr and Pichot in terms of the Baire category theory of weak mixing representations and of Connes and Weiss in terms of the prevalence of strongly ergodic actions.
Weakly Collisional and Collisionless Astrophysical Plasmas
DEFF Research Database (Denmark)
Berlok, Thomas
are used to study weakly collisional, stratified atmospheres which offer a useful model of the intracluster medium of galaxy clusters. Using linear theory and computer simulations, we study instabilities that feed off thermal and compositional gradients. We find that these instabilities lead to vigorous...... investigate helium mixing in the weakly collisional intracluster medium of galaxy clusters using Braginskii MHD. Secondly, we present a newly developed Vlasov-fluid code which can be used for studying fully collisionless plasmas such as the solar wind and hot accretions flows. The equations of Braginskii MHD...... associated with the ions and is thus well suited for studying collisionless plasmas. We have developed a new 2D-3V Vlasov-fluid code which works by evolving the phase-space density distribution of the ions while treating the electrons as an inertialess fluid. The code uses the particle-incell (PIC) method...
Bound states in weakly disordered spin ladders
Energy Technology Data Exchange (ETDEWEB)
Arlego, M. [Departamento de Fisica, Universidad Nacional de La Plata, CC 67 (1900) La Plata (Argentina)]. E-mail: arlego@venus.fisica.unlp.edu.ar; Brenig, W. [Institut fuer Theoretische Physik, Technische Universitaet Braunschweig (Germany); Cabra, D.C. [Laboratoire de Physique Theorique, Universite Louis Pasteur Strasbourg (France); Heidrich-Meisner, F. [Institut fuer Theoretische Physik, Technische Universitaet Braunschweig (Germany); Honecker, A. [Institut fuer Theoretische Physik, Technische Universitaet Braunschweig (Germany); Rossini, G. [Departamento de Fisica, Universidad Nacional de La Plata, CC 67 (1900) La Plata (Argentina)
2005-04-30
We study the appearance of bound states in the spin gap of spin-12 ladders induced by weak bond disorder. Starting from the strong-coupling limit, i.e., the limit of weakly coupled dimers, we perform a projection on the single-triplet subspace and derive the position of bound states for the single impurity problem of one modified coupling as well as for small impurity clusters. The case of a finite concentration of impurities is treated with the coherent-potential approximation (CPA) in the strong-coupling limit and compared with numerical results. Further, we analyze the details in the structure of the density of states and relate their origin to the influence of impurity clusters.
Weak cosmic censorship: as strong as ever.
Hod, Shahar
2008-03-28
Spacetime singularities that arise in gravitational collapse are always hidden inside of black holes. This is the essence of the weak cosmic censorship conjecture. The hypothesis, put forward by Penrose 40 years ago, is still one of the most important open questions in general relativity. In this Letter, we reanalyze extreme situations which have been considered as counterexamples to the weak cosmic censorship conjecture. In particular, we consider the absorption of scalar particles with large angular momentum by a black hole. Ignoring back reaction effects may lead one to conclude that the incident wave may overspin the black hole, thereby exposing its inner singularity to distant observers. However, we show that when back reaction effects are properly taken into account, the stability of the black-hole event horizon is irrefutable. We therefore conclude that cosmic censorship is actually respected in this type of gedanken experiments.
Shock Wave Dynamics in Weakly Ionized Plasmas
Johnson, Joseph A., III
1999-01-01
An investigation of the dynamics of shock waves in weakly ionized argon plasmas has been performed using a pressure ruptured shock tube. The velocity of the shock is observed to increase when the shock traverses the plasma. The observed increases cannot be accounted for by thermal effects alone. Possible mechanisms that could explain the anomalous behavior include a vibrational/translational relaxation in the nonequilibrium plasma, electron diffusion across the shock front resulting from high electron mobility, and the propagation of ion-acoustic waves generated at the shock front. Using a turbulence model based on reduced kinetic theory, analysis of the observed results suggest a role for turbulence in anomalous shock dynamics in weakly ionized media and plasma-induced hypersonic drag reduction.
Perturbation of embedded eigenvalue by a near-lying resonance
Energy Technology Data Exchange (ETDEWEB)
Belyaev, V B; Motovilov, A K
1997-12-31
The case of quantum-mechanical system (including electronic molecules) is considered where Hamiltonian allows a separation, in particular by the Faddeev method, of a weakly coupled channel. Width (i.e. the imaginary part) of the resonance generated by a discrete spectrum eigenvalue of the separated channel is studied in the case where main part of the Hamiltonian gives itself another resonance. It is shown that if real parts of these resonances coincide and, at the same time, a coupling between the separated and main channels is sufficiently small then the width of the resonance generated by the separated (molecular) channel is inversely proportional to the width of the main (nuclear) channel resonance. This phenomenon being a kind of universal law, may play an important role increasing the `cold fusion` probability in electronic molecules whose nuclear constituents have narrow pre-threshold resonances. 21 refs.
SANS observations on weakly flocculated dispersions
DEFF Research Database (Denmark)
Mischenko, N.; Ourieva, G.; Mortensen, K.
1997-01-01
Structural changes occurring in colloidal dispersions of poly-(methyl metacrylate) (PMMA) particles, sterically stabilized with poly-(12-hydroxystearic acid) (PHSA), while varying the solvent quality, temperature and shear rate, are investigated by small-angle neutron scattering (SANS......). For a moderately concentrated dispersion in a marginal solvent the transition on cooling from the effective stability to a weak attraction is monitored, The degree of attraction is determined in the framework of the sticky spheres model (SSM), SANS and rheological results are correlated....
The weak conversion rate in quark matter
International Nuclear Information System (INIS)
Heiselberg, H.
1992-01-01
The weak conversion rate of strange to down quarks, s + u ↔ u + d, is calculated analytically for degenerate u, d and s quark matter to leading orders in temperature and deviations from chemical equilibrium. The rate is applied to burning of neutron matter into quark matter, to evaporation from quark nuggets in the early universe, for estimating the lifetime of strangelets, and to pulsar glitches
BCS superconductivity for weakly coupled clusters
International Nuclear Information System (INIS)
Friedel, J.
1992-01-01
BCS superconductivity is expected to have fairly high critical temperatures when clusters of moderate sizes are weakly coupled to form a crystal. This remark extends to quasi zerodimensional cases, a remark initially made by Labbe for quasi one-dimensional ones and by Hirsch, Bok and Labbe for quasi twodimensional ones. Possible applications are envisaged for twodimensional clusters (fullerene) or threedimensional ones (metal clusters, Chevrel phases). Conditions for optimal applicability of the scheme are somewhat restricted. (orig.)
Deep inelastic inclusive weak and electromagnetic interactions
International Nuclear Information System (INIS)
Adler, S.L.
1976-01-01
The theory of deep inelastic inclusive interactions is reviewed, emphasizing applications to electromagnetic and weak charged current processes. The following reactions are considered: e + N → e + X, ν + N → μ - + X, anti ν + N → μ + + X where X denotes a summation over all final state hadrons and the ν's are muon neutrinos. After a discussion of scaling, the quark-parton model is invoked to explain the principle experimental features of deep inelastic inclusive reactions
Weakly interacting massive particles and stellar structure
International Nuclear Information System (INIS)
Bouquet, A.
1988-01-01
The existence of weakly interacting massive particles (WIMPs) may solve both the dark matter problem and the solar neutrino problem. Such particles affect the energy transport in the stellar cores and change the stellar structure. We present the results of an analytic approximation to compute these effects in a self-consistent way. These results can be applied to many different stars, but we focus on the decrease of the 8 B neutrino flux in the case of the Sun
Search for weakly decaying b -flavored pentaquarks
Aaij, R.; Adeva, B.; Ajaltouni, Z.; Akar, S.; Alessio, F.; Alexander, M.; Alfonso Albero, A.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Archilli, F.; D'Argent, P.; Arnau Romeu, J.; Artamonov, A.; Artuso, M.; Aslanides, E.; Atzeni, M.; Auriemma, G.; Baalouch, M.; Babuschkin, I.; Bachmann, S.; BacK, J. J.; Badalov, A.; Baesso, C.; Baker, S.; Balagura, V.; Baldini, W.; Baranov, A.; Barlow, R. J.; Barschel, C.; BarsuK, S.; Barter, W.; Baryshnikov, F.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Beiter, A.; Bel, L. J.; Beliy, N.; Bellee, V.; Belloli, N.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; BeraneK, S.; Berezhnoy, A.; Bernet, R.; Berninghoff, D.; Bertholet, E.; Bertolin, A.; Betancourt, C.; Betti, F.; Bettler, M. O.; Van Beuzekom, M.; Bezshyiko, Ia; Bifani, S.; Billoir, P.; Birnkraut, A.; Bizzeti, A.; Bjørn, M.; Blake, T.; Blanc, F.; BlusK, S.; Bocci, V.; Boettcher, T.; Bondar, A.; Bondar, N.; Bordyuzhin, I.; Borghi, S.; BorisyaK, M.; Borsato, M.; Bossu, F.; Boubdir, M.; BowcocK, T. J.V.; Bowen, E.; Bozzi, C.; Brodzicka, J.; Brundu, D.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Byczynski, W.; Cadeddu, S.; Cai, H.; Calabrese, R.; Calladine, R.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D. H.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Cattaneo, M.; Cavallero, G.; Cenci, R.; Chamont, D.; Chapman, M. G.; Charles, M.; Charpentier, Ph; Chatzikonstantinidis, G.; Chefdeville, M.; Cheung, S. F.; Chitic, S. G.; Chobanova, V.; Chrzaszcz, M.; Chubykin, A.; Ciambrone, P.; Cid Vidal, X.; CiezareK, G.; Clarke, P. E.L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collins, P.; Colombo, T.; Comerma-Montells, A.; Contu, A.; Coombs, G.; Coquereau, S.; Corti, G.; Corvo, M.; Costa Sobral, C. M.; Couturier, B.; Cowan, G. A.; CraiK, D. C.; Crocombe, A.; Cruz Torres, M.; Currie, R.; D'Ambrosio, C.; Da Cunha Marinho, F.; Da Silva, C. L.; Dall'Occo, E.; Dalseno, J.; Davis, A.; De Aguiar Francisco, O.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Serio, M.; De Simone, P.; Dean, C. T.; Decamp, D.; Del Buono, L.; Dembinski, H. P.; Demmer, M.; DendeK, A.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Nezza, P.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Douglas, L.; Dovbnya, A.; Dreimanis, K.; Dujany, G.; Durante, P.; Durham, J. M.; Dutta, D.; Dzhelyadin, R.; Dziewiecki, M.; Dziurda, A.; Dzyuba, A.; Easo, S.; Ebert, M.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Farley, N.; Farry, S.; Fazzini, D.; Federici, L.; Ferguson, D.; Fernandez, G.; Fernandez Declara, P.; Fernandez Prieto, A.; Ferrari, F.; Ferreira Lopes, L.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fini, R. A.; Fiorini, M.; Firlej, M.; FitzpatricK, C.; Fiutowski, T.; Fleuret, F.; Fontana, M.; Fontanelli, F.; Forty, R.; Franco Lima, V.; FranK, M.; Frei, C.; Fu, J.; FunK, W.; Furfaro, E.; Färber, C.; Gabriel, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Martin, L. M.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Gascon, D.; Gaspar, C.; Gavardi, L.; Gazzoni, G.; GericK, D.; GersabecK, E.; GersabecK, M.; Gershon, T.; Ghez, Ph; Gianì, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gizdov, K.; Gligorov, V. V.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gorelov, I. V.; Gotti, C.; Govorkova, E.; Grabowski, J. P.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greim, R.; Grillo, L.; Gruber, L.; Gruberg Cazon, B. R.; Grünberg, O.; Gushchin, E.; Guz, Yu; Gys, T.; Göbel, C.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hamilton, B.; Han, X.; HancocK, T. H.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Hasse, C.; Hatch, M.; Hecker, M.; Heinicke, K.; Heister, A.; Hennessy, K.; Henrard, P.; Van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hopchev, P. H.; Huard, Z. C.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hutchcroft, D.; Ibis, P.; IdziK, M.; Ilten, P.; Jacobsson, R.; Jalocha, J.; Jans, E.; Jawahery, A.; John, M.; Jones, C. R.; Joram, C.; Jost, B.; JuriK, N.; Kandybei, S.; Karacson, M.; Kariuki, J. M.; Karodia, S.; Kazeev, N.; Kecke, M.; Keizer, F.; Kelsey, M.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Klimkovich, T.; Koliiev, S.; Kolpin, M.; Kopecna, R.; Koppenburg, P.; Kosmyntseva, A.; Kotriakhova, S.; Kozeiha, M.; KravchuK, L.; Kreps, M.; Kress, F.; Krokovny, P.; Krzemien, W.; Kucewicz, W.; KucharczyK, M.; Kudryavtsev, V.; Kuonen, A. K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; Leflat, A.; Lefrançois, J.; Lefèvre, R.; Lemaitre, F.; Lemos Cid, E.; Leroy, O.; LesiaK, T.; Leverington, B.; Liang, X.; Likhomanenko, T.; Lindner, R.; Lionetto, F.; Lisovskyi, V.; Loh, D.; Loi, A.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Lyu, X.; Machefert, F.; Maciuc, F.; Macko, V.; MackowiaK, P.; Maddrell-Mander, S.; Maev, O.; Maguire, K.; Maisuzenko, D.; Majewski, M. W.; Malde, S.; Malecki, B.; Malinin, A.; Maltsev, T.; Manca, G.; Mancinelli, G.; Marangotto, D.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marinangeli, M.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurice, E.; Maurin, B.; Mazurov, A.; McCann, M.; McNab, A.; McNulty, R.; Mead, J. V.; Meadows, B.; Meaux, C.; Meier, F.; Meinert, N.; MelnychuK, D.; MerK, M.; Merli, A.; Michielin, E.; Milanes, D. A.; Millard, E.; Minard, M. N.; Minzoni, L.; Mitzel, D. S.; Mogini, A.; Molina Rodriguez, J.; Mombächer, T.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morello, M. J.; Morgunova, O.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Müller, D.; Müller, K.; Müller, V.; NaiK, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen-Mau, C.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Nogay, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Oldeman, R.; Onderwater, C. J.G.; Ossowska, A.; Otalora Goicochea, J. M.; Owen, P.; Oyanguren, A.; Pais, P. R.; Palano, A.; Palutan, M.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parker, W.; Parkes, C.; Passaleva, G.; Pastore, A.; Patel, M.; Patrignani, C.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Pereima, D.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petrov, A.; Petruzzo, M.; Picatoste Olloqui, E.; PietrzyK, B.; PietrzyK, G.; Pikies, M.; Pinci, D.; Pisani, F.; Pistone, A.; Piucci, A.; Placinta, V.; Playfer, S.; Plo Casasus, M.; Polci, F.; Poli Lener, M.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Pomery, G. J.; Ponce, S.; Popov, A.; Popov, D.; Poslavskii, S.; Potterat, C.; Price, E.; Prisciandaro, J.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Pullen, H.; Punzi, G.; Qian, W.; Qin, J.; Quagliani, R.; Quintana, B.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; RaniuK, I.; Ratnikov, F.; Raven, G.; Ravonel Salzgeber, M.; Reboud, M.; Redi, F.; Reichert, S.; Dos Reis, A. C.; Remon Alepuz, C.; Renaudin, V.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Robbe, P.; Robert, A.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rogozhnikov, A.; Roiser, S.; Rollings, A.; Romanovskiy, V.; Romero Vidal, A.; Rotondo, M.; Rudolph, M. S.; Ruf, T.; Ruiz Valls, P.; Ruiz Vidal, J.; Saborido Silva, J. J.; Sadykhov, E.; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarpis, G.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schellenberg, M.; Schiller, M.; Schindler, H.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schreiner, H. F.; Schubiger, M.; Schune, M. H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sepulveda, E. S.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Siddi, B. G.; Silva Coutinho, R.; Silva De Oliveira, L.; Simi, G.; Simone, S.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, J.; Smith, M.; Soares Lavra, L.; Sokoloff, M. D.; Soler, F. J.P.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefko, P.; Stefkova, S.; Steinkamp, O.; Stemmle, S.; Stenyakin, O.; Stepanova, M.; Stevens, H.; Stone, S.; Storaci, B.; Stracka, S.; Stramaglia, M. E.; Straticiuc, M.; Straumann, U.; Sun, J.; Sun, L.; SwienteK, K.; Syropoulos, V.; SzumlaK, T.; Szymanski, M.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; Van Tilburg, J.; Tilley, M. J.; Tisserand, V.; Tobin, M.; TolK, S.; Tomassetti, L.; Tonelli, D.; Tourinho Jadallah Aoude, R.; Tournefier, E.; Traill, M.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tully, A.; Tuning, N.; Ukleja, A.; Usachov, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagner, A.; Vagnoni, V.; Valassi, A.; Valat, S.; Valenti, G.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vecchi, S.; Van Veghel, M.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Venkateswaran, A.; Verlage, T. A.; Vernet, M.; Vesterinen, M.; Viana Barbosa, J. V.; Vieira, D.; Vieites Diaz, M.; Viemann, H.; Vilasis-Cardona, X.; Vitti, M.; Volkov, V.; Vollhardt, A.; Voneki, B.; Vorobyev, A.; Vorobyev, V.; Voß, C.; Vázquez Sierra, C.; Waldi, R.; Walsh, J.; Ward, D. R.; WarK, H. M.; Watson, N. K.; Websdale, D.; Weiden, A.; Weisser, C.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M.; Wilson, F. F.; Wimberley, J.; Winn, M.; Wishahi, J.; Wislicki, W.; WiteK, M.; Wormser, G.; Wotton, S. A.; Wyllie, K.; Xie, Y.; Xu, M.; Xu, Q.; Yang, Z.; Yang, Z.; Yao, Y.; Yin, H.; Yuan, X.; Yushchenko, O.; Zarebski, K. A.; Zavertyaev, M.; Zhelezov, A.; Zhukov, V.; Zonneveld, J. B.; Zucchelli, S.
2018-01-01
Investigations of the existence of pentaquark states containing a single b (anti)quark decaying weakly into four specific final states J/ψK+π-p, J/ψK-π-p, J/ψK-π+p, and J/ψφ(1020)p are reported. The data sample corresponds to an integrated luminosity of 3.0 fb-1 in 7 and 8 TeV pp collisions acquired
Nonmesonic weak decay of the hypertriton
International Nuclear Information System (INIS)
Bennhold, C.; Ramos, A.; Aruliah, D.A.; Oelfke, U.
1992-01-01
The nonmesonic weak decay of Λ 3 H is evaluated microscopically in the pion exchange model. The correlated three-body wave function of the hypertriton is approximated by a bound Λ-deuteron system obtained by averaging the YN interaction over the deuteron wave function. The relevant matrix elements are calculated in momentum space. The resulting decay rate is 4.9% of the free Λ decay rate
Acute neuromuscular weakness associated with dengue infection
Directory of Open Access Journals (Sweden)
Harmanjit Singh Hira
2012-01-01
Full Text Available Background: Dengue infections may present with neurological complications. Whether these are due to neuromuscular disease or electrolyte imbalance is unclear. Materials and Methods: Eighty-eight patients of dengue fever required hospitalization during epidemic in year 2010. Twelve of them presented with acute neuromuscular weakness. We enrolled them for study. Diagnosis of dengue infection based on clinical profile of patients, positive serum IgM ELISA, NS1 antigen, and sero-typing. Complete hemogram, kidney and liver functions, serum electrolytes, and creatine phosphokinase (CPK were tested. In addition, two patients underwent nerve conduction velocity (NCV test and electromyography. Results: Twelve patients were included in the present study. Their age was between 18 and 34 years. Fever, myalgia, and motor weakness of limbs were most common presenting symptoms. Motor weakness developed on 2 nd to 4 th day of illness in 11 of 12 patients. In one patient, it developed on 10 th day of illness. Ten of 12 showed hypokalemia. One was of Guillain-Barré syndrome and other suffered from myositis; they underwent NCV and electromyography. Serum CPK and SGOT raised in 8 out of 12 patients. CPK of patient of myositis was 5098 IU. All of 12 patients had thrombocytopenia. WBC was in normal range. Dengue virus was isolated in three patients, and it was of serotype 1. CSF was normal in all. Within 24 hours, those with hypokalemia recovered by potassium correction. Conclusions: It was concluded that the dengue virus infection led to acute neuromuscular weakness because of hypokalemia, myositis, and Guillain-Barré syndrome. It was suggested to look for presence of hypokalemia in such patients.
Weak interaction studies from nuclear beta decay
International Nuclear Information System (INIS)
Morita, M.
1981-01-01
The studies performed at the theoretical nuclear physics division of the Laboratory of Nuclear Studies, Osaka University, are reported. Electron spin density and internal conversion process, nuclear excitation by electron transition, beta decay, weak charged current, and beta-ray angular distributions in oriented nuclei have been studied. The relative intensity of internal conversion electrons for the case in which the radial wave functions of orbital electrons are different for electron spin up and down was calculated. The calculated value was in good agreement with the experimental one. The nuclear excitation following the transition of orbital electrons was studied. The calculated probability of the nuclear excitation of Os 189 was 1.4 x 10 - 7 in conformity with the experimental value 1.7 x 10 - 7 . The second class current and other problems on beta-decay have been extensively studied, and described elsewhere. Concerning weak charged current, the effects of all induced terms, the time component of main axial vector, all partial waves of leptons, Coulomb correction for the electrons in finite size nuclei, and radiative correction were studied. The beta-ray angular distribution for the 1 + -- 0 + transition in oriented B 12 and N 12 was investigated. In this connection, investigation on the weak magnetism to include all higher order corrections for the evaluation of the spectral shape factors was performed. Other works carried out by the author and his collaborators are also explained. (Kato, T.)
Skeletal muscle weakness in osteogenesis imperfecta mice.
Gentry, Bettina A; Ferreira, J Andries; McCambridge, Amanda J; Brown, Marybeth; Phillips, Charlotte L
2010-09-01
Exercise intolerance, muscle fatigue and weakness are often-reported, little-investigated concerns of patients with osteogenesis imperfecta (OI). OI is a heritable connective tissue disorder hallmarked by bone fragility resulting primarily from dominant mutations in the proα1(I) or proα2(I) collagen genes and the recently discovered recessive mutations in post-translational modifying proteins of type I collagen. In this study we examined the soleus (S), plantaris (P), gastrocnemius (G), tibialis anterior (TA) and quadriceps (Q) muscles of mice expressing mild (+/oim) and moderately severe (oim/oim) OI for evidence of inherent muscle pathology. In particular, muscle weight, fiber cross-sectional area (CSA), fiber type, fiber histomorphology, fibrillar collagen content, absolute, relative and specific peak tetanic force (P(o), P(o)/mg and P(o)/CSA respectively) of individual muscles were evaluated. Oim/oim mouse muscles were generally smaller, contained less fibrillar collagen, had decreased P(o) and an inability to sustain P(o) for the 300-ms testing duration for specific muscles; +/oim mice had a similar but milder skeletal muscle phenotype. +/oim mice had mild weakness of specific muscles but were less affected than their oim/oim counterparts which demonstrated readily apparent skeletal muscle pathology. Therefore muscle weakness in oim mice reflects inherent skeletal muscle pathology. Copyright © 2010 Elsevier B.V. All rights reserved.
Policy-based benchmarking of weak heaps and their relatives
DEFF Research Database (Denmark)
Bruun, Asger; Edelkamp, Stefan; Katajainen, Jyrki
2010-01-01
In this paper we describe an experimental study where we evaluated the practical efficiency of three worst-case efficient priority queues: 1) a weak heap that is a binary tree fulfilling half-heap ordering, 2) a weak queue that is a forest of perfect weak heaps, and 3) a runrelaxed weak queue tha...
Spectral and resonance properties of the Smilansky Hamiltonian
Czech Academy of Sciences Publication Activity Database
Exner, Pavel; Lotoreichik, Vladimir; Tater, Miloš
2017-01-01
Roč. 381, č. 8 (2017), s. 756-761 ISSN 0375-9601 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : Smilansky model * discrete spectrum * weak coupling * resonances Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics ( physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 1.772, year: 2016
Resonant satellite transitions in argon
International Nuclear Information System (INIS)
Samson, J.A.R.; Lee Eunmee; Chung, Y.
1990-01-01
The production of specific Ar + satellite states has been studied with synchrotron radiation at wavelengths between 300 and 350 A with an effective energy resolution of 20 meV. The specific states studied were the ( 3 P)4p( 2 P 3/2 ), ( 1 D)4p( 2 F 7/2 ), and ( 1 D)4p( 2 P 1/2 ) states. The fluorescent radiation emitted from these excited ionic states was measured at 4766, 4611, and 4133 A by the use of narrow band interference filters. The variation of the fluorescence intensity was measured as a function of wavelength. This provided a measure of the relative cross section for production of the satellite states. Each satellite state was found to be completely dominated by autoionization of the neutral doubly excited states (3s 2 3p 4 )nl, n'l' found in this spectral region. (orig.)
Study of emission process in hot, optically thin plasma: application to solar active regions
International Nuclear Information System (INIS)
Steenman-Clark, Lois.
1983-06-01
Analysis of soft X-ray got in hot and weak density plasmas, such as those in TOKAMAKS and in solar flares, needs a detailed knowledge of emission processes. In this work are presented spectroscopic diagnostics which can be deduced from such spectra analysis and results are applied to magnesium solar spectrum analysis. An important improvement is brought to collisional calculation corresponding to forbidden line populating. For this line, The relative importance of autoionizing states effect, called also resonance effect is studied [fr
Riemann Geometric Color-Weak Compensationfor Individual Observers
Kojima, Takanori; Mochizuki, Rika; Lenz, Reiner; Chao, Jinhui
2014-01-01
We extend a method for color weak compensation based on the criterion of preservation of subjective color differences between color normal and color weak observers presented in [2]. We introduce a new algorithm for color weak compensation using local affine maps between color spaces of color normal and color weak observers. We show howto estimate the local affine map and how to determine correspondences between the origins of local coordinates in color spaces of color normal and color weak ob...
Kooistra, C.; Sluyterman, L.A.A.E.
1988-01-01
The fundamental equation of isotachochromatography, i.e., isotachophoresis translated into ion-exchange chromatography, has been derived for weak acids and weak bases. Weak acids are separated on strong cation exchangers and weak bases on strong anion exchangers. According to theory, the elution
Boeckxstaens, G. E.; Smout, A.
2010-01-01
The importance of weakly acidic and weakly alkaline reflux in gastro-oesophageal reflux disease (GERD) is gaining recognition. To quantify the proportions of reflux episodes that are acidic (pH <4), weakly acidic (pH 4-7) and weakly alkaline (pH >7) in adult patients with GERD, and to evaluate their
Organic random lasers in the weak-scattering regime
Polson, R C; 10.1103/PhysRevB.71.045205
2005-01-01
We used the ensemble-averaged power Fourier transform (PFT) of random laser emission spectra over the illuminated area to study random lasers with coherent feedback in four different disordered organic gain media in the weak scattering regime, where the light mean free path, l* is much larger than the emission wavelength. The disordered gain media include a pi -conjugated polymer film, an opal photonic crystal infiltrated with a laser dye (rhodamine 6G; R6G) having optical gain in the visible spectral range, a suspension of titania balls in R6G solution, and biological tissues such as chicken breast infiltrated with R6G. We show the existence of universality among the random resonators in each gain medium that we tested, in which at the same excitation intensity a dominant random cavity is excited in different parts of the sample. We show a second universality when scaling the average PFT of the four different media by l*; we found that the dominant cavity in each disordered gain medium scales with l *. The e...
Weakly nonlinear sloshing in a truncated circular conical tank
International Nuclear Information System (INIS)
Gavrilyuk, I P; Hermann, M; Lukovsky, I A; Solodun, O V; Timokha, A N
2013-01-01
Sloshing of an ideal incompressible liquid in a rigid truncated (tapered) conical tank is considered when the tank performs small-magnitude oscillatory motions with the forcing frequency close to the lowest natural sloshing frequency. The multimodal method, the non-conformal mapping technique and the Moiseev type asymptotics are employed to derive a finite-dimensional system of weakly nonlinear ordinary differential (modal) equations. This modal system is a generalization of that by Gavrilyuk et al 2005 Fluid Dyn. Res. 37 399–429. Using the derived modal equations, we classify the resonant steady-state wave regimes occurring due to horizontal harmonic tank excitations. The frequency ranges are detected where the ‘planar’ and/or ‘swirling’ steady-state sloshing are stable as well as a range in which all steady-state wave regimes are not stable and irregular (chaotic) liquid motions occur is established. The results on the frequency ranges are qualitatively supported by experiments by Matta E 2002 PhD Thesis Politecnico di Torino, Torino. (paper)
Nonadiabatic electron wavepacket dynamics behind molecular autoionization
Matsuoka, Takahide; Takatsuka, Kazuo
2018-01-01
A theoretical method for real-time dynamics of nonadiabatic reorganization of electronic configurations in molecules is developed, with dual aim that the intramolecular electron dynamics can be probed by means of direct and/or indirect photoionizations and that the physical origins behind photoionization signals attained in the time domain can be identified in terms of the language of time-dependent quantum chemistry. In doing so, we first formulate and implement a new computational scheme for nonadiabatic electron dynamics associated with molecular ionization, which well fits in the general theory of nonadiabatic electron dynamics. In this method, the total nonadiabatic electron wavepackets are propagated in time directly with complex natural orbitals without referring to Hartree-Fock molecular orbitals, and the amount of electron flux from a molecular region leading to ionization is evaluated in terms of the relevant complex natural orbitals. In the second half of this paper, we apply the method to electron dynamics in the elementary processes consisting of the Auger decay to demonstrate the methodological significance. An illustrative example is taken from an Auger decay starting from the 2a1 orbital hole-state of H2O+. The roles of nuclear momentum (kinetic) couplings in electronic-state mixing during the decay process are analyzed in terms of complex natural orbitals, which are schematically represented in the conventional language of molecular symmetry of the Hartree-Fock orbitals.
Weak polyelectrolyte complexation driven by associative charging
Rathee, Vikramjit S.; Zervoudakis, Aristotle J.; Sidky, Hythem; Sikora, Benjamin J.; Whitmer, Jonathan K.
2018-03-01
Weak polyelectrolytes are relevant for a wide range of fields; in particular, they have been investigated as "smart" materials for chemical separations and drug delivery. The charges on weak polyelectrolytes are dynamic, causing polymer chains to adopt different equilibrium conformations even with relatively small changes to the surrounding environment. Currently, there exists no comprehensive picture of this behavior, particularly where polymer-polymer interactions have the potential to affect charging properties significantly. In this study, we elucidate the novel interplay between weak polyelectrolyte charging and complexation behavior through coupled molecular dynamics and Monte Carlo simulations. Specifically, we investigate a model of two equal-length and oppositely charging polymer chains in an implicit salt solution represented through Debye-Hückel interactions. The charging tendency of each chain, along with the salt concentration, is varied to determine the existence and extent of cooperativity in charging and complexation. Strong cooperation in the charging of these chains is observed at large Debye lengths, corresponding to low salt concentrations, while at lower Debye lengths (higher salt concentrations), the chains behave in apparent isolation. When the electrostatic coupling is long-ranged, we find that a highly charged chain strongly promotes the charging of its partner chain, even if the environment is unfavorable for an isolated version of that partner chain. Evidence of this phenomenon is supported by a drop in the potential energy of the system, which does not occur at the lower Debye lengths where both potential energies and charge fractions converge for all partner chain charging tendencies. The discovery of this cooperation will be helpful in developing "smart" drug delivery mechanisms by allowing for better predictions for the dissociation point of delivery complexes.
The magnetosphere under weak solar wind forcing
Directory of Open Access Journals (Sweden)
C. J. Farrugia
2007-02-01
Full Text Available The Earth's magnetosphere was very strongly disturbed during the passage of the strong shock and the following interacting ejecta on 21–25 October 2001. These disturbances included two intense storms (Dst*≈−250 and −180 nT, respectively. The cessation of this activity at the start of 24 October ushered in a peculiar state of the magnetosphere which lasted for about 28 h and which we discuss in this paper. The interplanetary field was dominated by the sunward component [B=(4.29±0.77, −0.30±0.71, 0.49±0.45 nT]. We analyze global indicators of geomagnetic disturbances, polar cap precipitation, ground magnetometer records, and ionospheric convection as obtained from SuperDARN radars. The state of the magnetosphere is characterized by the following features: (i generally weak and patchy (in time low-latitude dayside reconnection or reconnection poleward of the cusps; (ii absence of substorms; (iii a monotonic recovery from the previous storm activity (Dst corrected for magnetopause currents decreasing from ~−65 to ~−35 nT, giving an unforced decreased of ~1.1 nT/h; (iv the probable absence of viscous-type interaction originating from the Kelvin-Helmholtz (KH instability; (v a cross-polar cap potential of just 20–30 kV; (vi a persistent, polar cap region containing (vii very weak, and sometimes absent, electron precipitation and no systematic inter-hemisphere asymmetry. Whereas we therefore infer the presence of a moderate amount of open flux, the convection is generally weak and patchy, which we ascribe to the lack of solar wind driver. This magnetospheric state approaches that predicted by Cowley and Lockwood (1992 but has never yet been observed.
Spurious Shear in Weak Lensing with LSST
Energy Technology Data Exchange (ETDEWEB)
Chang, C.; Kahn, S.M.; Jernigan, J.G.; Peterson, J.R.; AlSayyad, Y.; Ahmad, Z.; Bankert, J.; Bard, D.; Connolly, A.; Gibson, R.R.; Gilmore, K.; Grace, E.; Hannel, M.; Hodge, M.A.; Jee, M.J.; Jones, L.; Krughoff, S.; Lorenz, S.; Marshall, P.J.; Marshall, S.; Meert, A.
2012-09-19
The complete 10-year survey from the Large Synoptic Survey Telescope (LSST) will image {approx} 20,000 square degrees of sky in six filter bands every few nights, bringing the final survey depth to r {approx} 27.5, with over 4 billion well measured galaxies. To take full advantage of this unprecedented statistical power, the systematic errors associated with weak lensing measurements need to be controlled to a level similar to the statistical errors. This work is the first attempt to quantitatively estimate the absolute level and statistical properties of the systematic errors on weak lensing shear measurements due to the most important physical effects in the LSST system via high fidelity ray-tracing simulations. We identify and isolate the different sources of algorithm-independent, additive systematic errors on shear measurements for LSST and predict their impact on the final cosmic shear measurements using conventional weak lensing analysis techniques. We find that the main source of the errors comes from an inability to adequately characterise the atmospheric point spread function (PSF) due to its high frequency spatial variation on angular scales smaller than {approx} 10{prime} in the single short exposures, which propagates into a spurious shear correlation function at the 10{sup -4}-10{sup -3} level on these scales. With the large multi-epoch dataset that will be acquired by LSST, the stochastic errors average out, bringing the final spurious shear correlation function to a level very close to the statistical errors. Our results imply that the cosmological constraints from LSST will not be severely limited by these algorithm-independent, additive systematic effects.
Spectral line profiles in weakly turbulent plasmas
International Nuclear Information System (INIS)
Capes, H.; Voslamber, D.
1976-07-01
The unified theory of line broadening by electron perturbers is generalized to include the case of a weakly turbulent plasma. The collision operator in the line shape expression is shown to be the sum of two terms, both containing effects arising from the non-equilibrium nature of the plasma. One of the two terms represents the influence of individual atom-particle interactions occuring via the nonequilibrium dielectric plasma medium. The other term is due to the interaction of the atom with the turbulent waves. Both terms contain damping and diffusion effects arising from the plasma turbulence
Weak mixing angles and heavy flavours
International Nuclear Information System (INIS)
Jarlskog, C.
1984-05-01
The present status of the weak mixing angles, in the standard six quark model, is reviewed. The implications of the recent measurements of the beauty lifetime and branching ratios are discussed, in the framework of the Kobayashi-Maskawa and the Wolfenstein parametrizations. Expectations for B(sup)o - B(sup)-o mixing and consequences for the collider data are given. Other topics briefly reviewed are CP-violation, top quark mass and possible implications of the existence of a fourth family. (author)
Why is hydrofluoric acid a weak acid?
Ayotte, Patrick; Hébert, Martin; Marchand, Patrick
2005-11-08
The infrared vibrational spectra of amorphous solid water thin films doped with HF at 40 K reveal a strong continuous absorbance in the 1000-3275 cm(-1) range. This so-called Zundel continuum is the spectroscopic hallmark for aqueous protons. The extensive ionic dissociation of HF at such low temperature suggests that the reaction enthalpy remains negative down to 40 K. These observations support the interpretation that dilute HF aqueous solutions behave as weak acids largely due to the large positive reaction entropy resulting from the structure making character of the hydrated fluoride ion.
Superconductor in a weak static gravitational field
Energy Technology Data Exchange (ETDEWEB)
Ummarino, Giovanni Alberto [Dipartimento DISAT, Politecnico di Torino, Turin (Italy); National Research Nuclear University MEPhI-Moscow Engineering Physics Institute, Moscow (Russian Federation); Gallerati, Antonio [Dipartimento DISAT, Politecnico di Torino, Turin (Italy)
2017-08-15
We provide the detailed calculation of a general form for Maxwell and London equations that takes into account gravitational corrections in linear approximation. We determine the possible alteration of a static gravitational field in a superconductor making use of the time-dependent Ginzburg-Landau equations, providing also an analytic solution in the weak field condition. Finally, we compare the behavior of a high-T{sub c} superconductor with a classical low-T{sub c} superconductor, analyzing the values of the parameters that can enhance the reduction of the gravitational field. (orig.)
Unification of electromagnetic, strong and weak interaction
International Nuclear Information System (INIS)
Duong Van Phi; Duong Anh Duc
1993-09-01
The Unification of Electromagnetic, Strong and Weak Interactions is realized in the framework of the Quantum Field Theory, established in an 8-dimensional Unified Space. Two fundamental, spinor and vector field equations are considered. The first of the matter particles and the second is of the gauge particles. Interaction Lagrangians are formed from the external and internal currents and the external and internal vector field operators. Generators of the local gauge transformations are the combinations of the matrices of the first field equation. (author). 15 refs
Relativistic rapprochement of weak and strong interactions
International Nuclear Information System (INIS)
Strel'tsov, V.N.
1995-01-01
On the basis of the relativistic Yukawa potentials for the nuclear (quark) field and the field of intermediate vector W-, Z-bosons, it is shown that the interactions described by them increase differently with growing velocity (the weak one increases more rapidly). According to the estimates, they are compared (at distances of the 'action radius' of nuclear forces) at an energy of about 10 12 GeV (10 6 GeV for the pion field) what is smaller than the corresponding value in the model of 'grand unification'. 3 refs., 2 tabs
[The weakness of individual psychologic dream theory].
Strunz, F
1988-05-13
This article undertakes a critical evaluation of Adlerian dream theory. The main weakness of the theory is found to be its lack of an inherent instance of truth that shows the dreamer the way to a better and more feasible life style. Contemporary Adlerians' treatment of the master's dream dogmas and their practical use in psychotherapy are described. There seems to be a convergence movement of today's practical application methods of the dream in all psychotherapeutic schools. Adlerian dream interpretation in the original sense intended by Adler is practised nowhere by psychotherapists today and seems largely antiquated.
Superconductivity in multilayer perovskite. Weak coupling analysis
International Nuclear Information System (INIS)
Koikegami, Shigeru; Yanagisawa, Takashi
2006-01-01
We investigate the superconductivity of a three-dimensional d-p model with a multilayer perovskite structure on the basis of the second-order perturbation theory within the weak coupling framework. Our model has been designed with multilayer high-T c superconducting cuprates in mind. In our model, multiple Fermi surfaces appear, and the component of a superconducting gap function develops on each band. We have found that the multilayer structure can stabilize the superconductivity in a wide doping range. (author)
Weak measurement and its experimental realisation
International Nuclear Information System (INIS)
Flack, R; Hiley, B J
2014-01-01
The relationship between the real part of the weak value of the momentum operator at a post selected position is discussed and the meaning of the experimentally determined stream-lines in the Toronto experiment of Kocsis et al is re-examined. We argue against interpreting the energy flow lines as photon trajectories. The possibility of performing an analogous experiment using atoms is proposed in order that a direct comparison can be made with the trajectories calculated by Philippidis, Dewdney and Hiley using the Bohm approach.
Weak field approximation of new general relativity
International Nuclear Information System (INIS)
Fukui, Masayasu; Masukawa, Junnichi
1985-01-01
In the weak field approximation, gravitational field equations of new general relativity with arbitrary parameters are examined. Assuming a conservation law delta sup(μ)T sub(μν) = 0 of the energy-momentum tensor T sub(μν) for matter fields in addition to the usual one delta sup(ν)T sub(μν) = 0, we show that the linearized gravitational field equations are decomposed into equations for a Lorentz scalar field and symmetric and antisymmetric Lorentz tensor fields. (author)
New quark model with weak triplet
International Nuclear Information System (INIS)
Suzuki, T.; Hori, S.; Yamada, E.; Yamanashi, K.; Abe, Y.
1976-01-01
We propose a new anomaly-free quark model with weak isotriplets for quarks. The ΔI=1/2 enhancement may be accounted for, the requirement of Golowich and Holstein being satisfied. There arises a mixing of left-handed charmed quarks with left-handed nucleonic ones - such mixing essentially gives an overall explanation of neutral-current effects, inclusive y distribution, the ratio sigma/sup T/(anti νd)/sigma/sup T/(νd), and copious dilepton events in ν and anti ν reactions
Excavating wide inclines in weak strata
Energy Technology Data Exchange (ETDEWEB)
Kuznetsov, N N [Ukrspetsstroiproekt (USSR)
1990-09-01
Discusses schemes for excavation of transport inclines in surface mines under conditions of weak, unstable rocks characterized by a high water content. The schemes are aimed at maximum reduction of excavation operations without infringing the safety of personnel. Use of walking draglines (the EhSh-20/90, EhSh-100/100 and EhSh-10/70) is evaluated. Optimum schemes for incline excavation and determining optimum slope inclination are described on the example of the Berezovsk brown coal surface mine in the USSR. Efficiency of optimum schemes is analyzed: range of excavation, safety degree, landslide hazards, water influx rate, accident rate, etc.
Thermodynamics of Weakly Measured Quantum Systems.
Alonso, Jose Joaquin; Lutz, Eric; Romito, Alessandro
2016-02-26
We consider continuously monitored quantum systems and introduce definitions of work and heat along individual quantum trajectories that are valid for coherent superposition of energy eigenstates. We use these quantities to extend the first and second laws of stochastic thermodynamics to the quantum domain. We illustrate our results with the case of a weakly measured driven two-level system and show how to distinguish between quantum work and heat contributions. We finally employ quantum feedback control to suppress detector backaction and determine the work statistics.
PLASMA EMISSION BY WEAK TURBULENCE PROCESSES
Energy Technology Data Exchange (ETDEWEB)
Ziebell, L. F.; Gaelzer, R. [Instituto de Física, UFRGS, Porto Alegre, RS (Brazil); Yoon, P. H. [Institute for Physical Science and Technology, University of Maryland, College Park, MD (United States); Pavan, J., E-mail: luiz.ziebell@ufrgs.br, E-mail: rudi.gaelzer@ufrgs.br, E-mail: yoonp@umd.edu, E-mail: joel.pavan@ufpel.edu.br [Instituto de Física e Matemática, UFPel, Pelotas, RS (Brazil)
2014-11-10
The plasma emission is the radiation mechanism responsible for solar type II and type III radio bursts. The first theory of plasma emission was put forth in the 1950s, but the rigorous demonstration of the process based upon first principles had been lacking. The present Letter reports the first complete numerical solution of electromagnetic weak turbulence equations. It is shown that the fundamental emission is dominant and unless the beam speed is substantially higher than the electron thermal speed, the harmonic emission is not likely to be generated. The present findings may be useful for validating reduced models and for interpreting particle-in-cell simulations.
DEFF Research Database (Denmark)
Kohlenbach, Ulrich
2002-01-01
The so-called weak Konig's lemma WKL asserts the existence of an infinite path b in any infinite binary tree (given by a representing function f). Based on this principle one can formulate subsystems of higher-order arithmetic which allow to carry out very substantial parts of classical mathematics...... which-relative to PRA -implies the schema of 10-induction). In this setting one can consider also a uniform version UWKL of WKL which asserts the existence of a functional which selects uniformly in a given infinite binary tree f an infinite path f of that tree. This uniform version of WKL...
The Biological Effects of Weak Electromagnetic Fields
International Nuclear Information System (INIS)
Algattawi, A.; Elshyrih, H.
2010-01-01
Many studies investigated that weak electromagnetic fields remove calcium ions bound to the membranes of living cells, making them more likely to tear,. There is an enzyme that destroys DNA this enzyme leaking through the membranes of lysosomes explains the fragmentation of DNA. This case was seen in cells exposed to mobile phone signals. When this occurs in the germ line it reduces fertility and predicts genetic damage in future generations. Although leakage of calcium ions into the cytosol (the main part of the cell) accelerates the growth, but it also promotes the growth of tumors. Leakage of calcium ions into neurons (brain cells) makes nerve impulses accounting for pain and other neurological symptoms in electro sensitive. It also reduces the signal to noise ratio of the brain making it less likely to respond. This may be partially responsible for the increased accident rate of drivers using mobile phones. More details for the molecular mechanisms to explain characteristics of electromagnetic exposure are needed, e.g. I) why weak fields are more effective than strong ones, II) why some frequencies such as 16 Hz are especially potent and III) why pulsed fields do more damage
Critical potentials, leptons, and weak currents
International Nuclear Information System (INIS)
Smith, P.F.; Lewin, J.D.
1977-12-01
A theoretical study is made of the interaction of very strong localised electromagnetic potentials with charged leptons, and with the vacuum state. The principal objective is to investigate the phenomena which occur when the potential reaches or exceeds the critical value at which bound levels are drawn into the lower continuum. The behaviour of bound and continuum solutions of the Dirac equation for the specific model of a short range potential well in an arbitrarily large bounded volume is examined in detail. Vacuum polarisation effects are computed by summation over the infinite set of single particle levels, and special attention is given to the behaviour of the overall charge distribution as the potential strength increases through the critical value. The most significant features of the results are (a) the formation of highly localised electron or muon bound states, (b) similar critical potential strengths for electrons and muons, and (c) redefinition of the vacuum by one charge unit at the critical potential. These features are analogous to some properties of leptonic and hadronic weak currents, and the hypothesis is proposed that strong short range potentials may provide a possible mediating mechanism for the weak interaction and also a lepton confinement mechanism within the structure of hadrons. (author)
Weak lensing of the Lyman α forest
Croft, Rupert A. C.; Romeo, Alessandro; Metcalf, R. Benton
2018-06-01
The angular positions of quasars are deflected by the gravitational lensing effect of foreground matter. The Lyman α (Lyα) forest seen in the spectra of these quasars is therefore also lensed. We propose that the signature of weak gravitational lensing of the Lyα forest could be measured using similar techniques that have been applied to the lensed cosmic microwave background (CMB), and which have also been proposed for application to spectral data from 21-cm radio telescopes. As with 21-cm data, the forest has the advantage of spectral information, potentially yielding many lensed `slices' at different redshifts. We perform an illustrative idealized test, generating a high-resolution angular grid of quasars (of order arcminute separation), and lensing the Lyα forest spectra at redshifts z = 2-3 using a foreground density field. We find that standard quadratic estimators can be used to reconstruct images of the foreground mass distribution at z ˜ 1. There currently exists a wealth of Lyα forest data from quasar and galaxy spectral surveys, with smaller sightline separations expected in the future. Lyα forest lensing is sensitive to the foreground mass distribution at redshifts intermediate between CMB lensing and galaxy shear, and avoids the difficulties of shape measurement associated with the latter. With further refinement and application of mass reconstruction techniques, weak gravitational lensing of the high-redshift Lyα forest may become a useful new cosmological probe.
Conformational transitions of a weak polyampholyte
Nair, Arun Kumar Narayanan
2014-10-07
Using grand canonical Monte Carlo simulations of a flexible polyelectrolyte where the charges are in contact with a reservoir of constant chemical potential given by the solution pH, we study the behavior of weak polyelectrolytes in poor and good solvent conditions for polymer backbone. We address the titration behavior and conformational properties of a flexible diblock polyampholyte chain formed of two oppositely charged weak polyelectrolyte blocks, each containing equal number of identical monomers. The change of solution pH induces charge asymmetry in a diblock polyampholyte. For diblock polyampholyte chains in poor solvents, we demonstrate that a discontinuous transition between extended (tadpole) and collapsed (globular) conformational states is attainable by varying the solution pH. The double-minima structure in the probability distribution of the free energy provides direct evidence for the first-order like nature of this transition. At the isoelectric point electrostatically driven coil-globule transition of diblock polyampholytes in good solvents is found to consist of different regimes identified with increasing electrostatic interaction strength. At pH values above or below the isoelectric point diblock chains are found to have polyelectrolyte-like behavior due to repulsion between uncompensated charges along the chain.
Weak scale from the maximum entropy principle
Hamada, Yuta; Kawai, Hikaru; Kawana, Kiyoharu
2015-03-01
The theory of the multiverse and wormholes suggests that the parameters of the Standard Model (SM) are fixed in such a way that the radiation of the S3 universe at the final stage S_rad becomes maximum, which we call the maximum entropy principle. Although it is difficult to confirm this principle generally, for a few parameters of the SM, we can check whether S_rad actually becomes maximum at the observed values. In this paper, we regard S_rad at the final stage as a function of the weak scale (the Higgs expectation value) vh, and show that it becomes maximum around vh = {{O}} (300 GeV) when the dimensionless couplings in the SM, i.e., the Higgs self-coupling, the gauge couplings, and the Yukawa couplings are fixed. Roughly speaking, we find that the weak scale is given by vh ˜ T_{BBN}2 / (M_{pl}ye5), where ye is the Yukawa coupling of electron, T_BBN is the temperature at which the Big Bang nucleosynthesis starts, and M_pl is the Planck mass.
Conformational transitions of a weak polyampholyte
Nair, Arun Kumar Narayanan; Uyaver, Sahin; Sun, Shuyu
2014-01-01
Using grand canonical Monte Carlo simulations of a flexible polyelectrolyte where the charges are in contact with a reservoir of constant chemical potential given by the solution pH, we study the behavior of weak polyelectrolytes in poor and good solvent conditions for polymer backbone. We address the titration behavior and conformational properties of a flexible diblock polyampholyte chain formed of two oppositely charged weak polyelectrolyte blocks, each containing equal number of identical monomers. The change of solution pH induces charge asymmetry in a diblock polyampholyte. For diblock polyampholyte chains in poor solvents, we demonstrate that a discontinuous transition between extended (tadpole) and collapsed (globular) conformational states is attainable by varying the solution pH. The double-minima structure in the probability distribution of the free energy provides direct evidence for the first-order like nature of this transition. At the isoelectric point electrostatically driven coil-globule transition of diblock polyampholytes in good solvents is found to consist of different regimes identified with increasing electrostatic interaction strength. At pH values above or below the isoelectric point diblock chains are found to have polyelectrolyte-like behavior due to repulsion between uncompensated charges along the chain.
Weak interactions in hot nucleon matter
International Nuclear Information System (INIS)
Cowell, S.; Pandharipande, V.R.
2006-01-01
The reaction rates for electron capture, neutrino absorption, and neutrino scattering in hot asymmetric nuclear matter are calculated with two-body effective interactions and one-body effective weak operators obtained from realistic models of nuclear forces by use of correlated basis theory. The infinite system is modeled in a box with periodic boundary conditions, and the one-quasiparticle quasi-hole response functions are calculated with a large microcanonical sample and the Tamm-Dancoff approximation. Results for matter at a temperature of 10 MeV, proton fraction 0.4, and densities ρ=(1/2),1,(3/2)ρ 0 , where ρ 0 is the equilibrium density of symmetric nuclear matter, are presented to illustrate the method. In general, the strength of the response is shifted to higher-energy transfers when compared with that of a noninteracting Fermi gas. The shift in the response and the weakness of effective operators as compared with the bare operators significantly reduce the cross sections for electron capture and neutrino scattering by factors of ∼2.5-3.5. In contrast, the symmetry energy enhances the neutrino absorption reaction rate relative to the Fermi gas. However, this reaction rate is still quite small because of Pauli blocking
Rabi-vibronic resonance with large number of vibrational quanta
Glenn, R.; Raikh, M. E.
2011-01-01
We study theoretically the Rabi oscillations of a resonantly driven two-level system linearly coupled to a harmonic oscillator (vibrational mode) with frequency, \\omega_0. We show that for weak coupling, \\omega_p \\ll \\omega_0, where \\omega_p is the polaronic shift, Rabi oscillations are strongly modified in the vicinity of the Rabi-vibronic resonance \\Omega_R = \\omega_0, where \\Omega_R is the Rabi frequency. The width of the resonance is (\\Omega_R-\\omega_0) \\sim \\omega_p^{2/3} \\omega_0^{1/3} ...
Spectral and resonance properties of the Smilansky Hamiltonian
Energy Technology Data Exchange (ETDEWEB)
Exner, Pavel [Department of Theoretical Physics, Nuclear Physics Institute, Czech Academy of Sciences, 25068 Řež near Prague (Czech Republic); Doppler Institute for Mathematical Physics and Applied Mathematics, Czech Technical University, Břehová 7, 11519 Prague (Czech Republic); Lotoreichik, Vladimir [Department of Theoretical Physics, Nuclear Physics Institute, Czech Academy of Sciences, 25068 Řež near Prague (Czech Republic); Tater, Miloš, E-mail: tater@ujf.cas.cz [Department of Theoretical Physics, Nuclear Physics Institute, Czech Academy of Sciences, 25068 Řež near Prague (Czech Republic)
2017-02-26
We analyze the Hamiltonian proposed by Smilansky to describe irreversible dynamics in quantum graphs and studied further by Solomyak and others. We derive a weak-coupling asymptotics of the ground state and add new insights by finding the discrete spectrum numerically in the subcritical case. Furthermore, we show that the model then has a rich resonance structure. - Highlights: • We derive conditions on bound states and on resonances of the Smilansky Hamiltonian. • Using these conditions we find numerically discrete spectrum and resonances of this Hamiltonian. • Our numerical tests confirm known properties of the Hamiltonian and allow us to conjecture new ones.
Transverse signal decay under the weak field approximation: Theory and validation.
Berman, Avery J L; Pike, G Bruce
2018-07-01
To derive an expression for the transverse signal time course from systems in the motional narrowing regime, such as water diffusing in blood. This was validated in silico and experimentally with ex vivo blood samples. A closed-form solution (CFS) for transverse signal decay under any train of refocusing pulses was derived using the weak field approximation. The CFS was validated via simulations of water molecules diffusing in the presence of spherical perturbers, with a range of sizes and under various pulse sequences. The CFS was compared with more conventional fits assuming monoexponential decay, including chemical exchange, using ex vivo blood Carr-Purcell-Meiboom-Gill data. From simulations, the CFS was shown to be valid in the motional narrowing regime and partially into the intermediate dephasing regime, with increased accuracy with increasing Carr-Purcell-Meiboom-Gill refocusing rate. In theoretical calculations of the CFS, fitting for the transverse relaxation rate (R 2 ) gave excellent agreement with the weak field approximation expression for R 2 for Carr-Purcell-Meiboom-Gill sequences, but diverged for free induction decay. These same results were confirmed in the ex vivo analysis. Transverse signal decay in the motional narrowing regime can be accurately described analytically. This theory has applications in areas such as tissue iron imaging, relaxometry of blood, and contrast agent imaging. Magn Reson Med 80:341-350, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
International Nuclear Information System (INIS)
Collins, T.
1985-08-01
A simple criterion governs the beam distortion and/or loss of protons on a fast resonance crossing. Results from numerical integrations are illustrated for simple sextupole, octupole, and 10-pole resonances
Amin, Muhammad; Farhat, Mohamed; Bagci, Hakan
2014-01-01
The resonances with asymmetric Fano line-shapes were originally discovered in the context of quantum mechanics (U. Fano, Phys. Rev., 124, 1866-1878, 1961). Quantum Fano resonances were generated from destructive interference of a discrete state
International Nuclear Information System (INIS)
Chrien, R.E.
1986-10-01
The principles of resonance averaging as applied to neutron capture reactions are described. Several illustrations of resonance averaging to problems of nuclear structure and the distribution of radiative strength in nuclei are provided. 30 refs., 12 figs
Energy Technology Data Exchange (ETDEWEB)
Collins, T.
1985-08-01
A simple criterion governs the beam distortion and/or loss of protons on a fast resonance crossing. Results from numerical integrations are illustrated for simple sextupole, octupole, and 10-pole resonances.
International Nuclear Information System (INIS)
Manjaly, Z.M.
2007-10-01
The contribution covers the following chapters: 1. In search of the hidden: an FMRI study with implications for the study of patients with autism and with acquired brain injury. 2. Context-dependent interactions of left posterior inferior frontal gyrus in a local visual search task unrelated to language. 3. Neurophysiological correlates of relatively enhanced local visual search in autistic adolescents
Forster resonance energy transfer rate in any dielectric nanophotonic medium with weak dispersion
DEFF Research Database (Denmark)
Wubs, Martijn; Vos, Willem L.
2016-01-01
frequency dependent in nanophotonic media. Therefore, the position-dependent FRET rate and the LDOS at the donor transition frequency are completely uncorrelated for any nondispersive medium. Secondly, we derive an exact expression for the FRET rate as a frequency integral of the imaginary part of the Green...
Energy Technology Data Exchange (ETDEWEB)
Manjaly, Z M
2007-10-15
The contribution covers the following chapters: 1. In search of the hidden: an FMRI study with implications for the study of patients with autism and with acquired brain injury. 2. Context-dependent interactions of left posterior inferior frontal gyrus in a local visual search task unrelated to language. 3. Neurophysiological correlates of relatively enhanced local visual search in autistic adolescents.
Review of the different methods to derive average spacing from resolved resonance parameters sets
International Nuclear Information System (INIS)
Fort, E.; Derrien, H.; Lafond, D.
1979-12-01
The average spacing of resonances is an important parameter for statistical model calculations, especially concerning non fissile nuclei. The different methods to derive this average value from resonance parameters sets have been reviewed and analyzed in order to tentatively detect their respective weaknesses and propose recommendations. Possible improvements are suggested
Pediatric magnetic resonance imaging
International Nuclear Information System (INIS)
Cohen, M.D.
1986-01-01
This book defines the current clinical potential of magnetic resonance imaging and focuses on direct clinical work with pediatric patients. A section dealing with the physics of magnetic resonance imaging provides an introduction to enable clinicians to utilize the machine and interpret the images. Magnetic resonance imaging is presented as an appropriate imaging modality for pediatric patients utilizing no radiation
Resonant thermonuclear reaction rate
International Nuclear Information System (INIS)
Haubold, H.J.; Mathai, A.M.
1986-01-01
Basic physical principles for the resonant and nonresonant thermonuclear reaction rates are applied to find their standard representations for nuclear astrophysics. Closed-form representations for the resonant reaction rate are derived in terms of Meijer's G-function. Analytic representations of the resonant and nonresonant nuclear reaction rates are compared and the appearance of Meijer's G-function is discussed in physical terms
Resonant photoemission study of CeRu4Sb12
International Nuclear Information System (INIS)
Ishii, Hiroyoshi; Miyahara, Tsuneaki; Takayama, Yasuhiro; Shiozawa, Hidetsugu; Obu, Kenji; Matsuda, Tatsuma D.; Aoki, Yuji; Sugawara, Hitoshi; Sato, Hideyuki
2005-01-01
We have measured the Ce 4d-4f and Ce 3d-4f resonant photoemission spectra of CeRu 4 Sb 12 . The Ce 4f spectra show the spectral features corresponding to a weakly hybridized system. The number of 4f electrons is estimated to be ∼1.0
Absorption enhancement in graphene with an efficient resonator
DEFF Research Database (Denmark)
Xiao, Binggang; Gu, Mingyue; Qin, Kang
2017-01-01
Graphene can be utilized in designing tunable terahertz (THz) devices due to its tunability of sheet conductivity, suffering however with weak light-graphene interactions. In this paper, an absorption enhancement in graphene using a Fabry–Perot resonator is presented, and its performance has been...
Non-resonant microwave absorption studies of superconducting ...
Indian Academy of Sciences (India)
Abstract. Non-resonant microwave absorption (NRMA) studies of superconducting MgB2 and a sample containing 10% by weight of MgO in MgB2 are reported. The NRMA results indicate near absence of intergranular weak links in the pure MgB2 sample. A linear temperature dependence of the lower critical field Hc1 is ...
Meson exchange and neutral weak currents
Energy Technology Data Exchange (ETDEWEB)
Beck, D.H. [Univ. of Illinois, Urbana, IL (United States)
1994-04-01
Measurements of parity-violating electron scattering asymmetries to determine weak neutral currents in nuclei will be effected by the presence of meson exchange currents. Present low momentum transfer calculations, based on a flavor independent framework, show these effects to be small. In general, however, as the momentum transfer increases to values typical of deep-inelastic scattering, fragmentation functions show a clear flavor dependence. It is suggested that a good experimental starting point for understanding the flavor dependence of meson production and exchange currents is the Q{sup 2} dependence of parity-violating asymmetry in inclusive single pion electroproduction. A CEBAF facility with doubled energy is necessary to approach momentum transfers where this process begins to scale.
Astrophysical evidence for weak new forces
International Nuclear Information System (INIS)
Burgess, C.; Cloutier, J.
1988-01-01
Recent observations of the orbital precession rate for eclipsing binary star systems appear to be in disagreement with the predictions of general relativity. We here analyse whether these discrepancies can be interpreted as being due to the existence of a new, long range, very weak force. We find that, with a conservative estimate of the astrophysical errors involved, the binary-star data by itself is consistent with what would be expected of a new force. The coupling and range required to fit the data can be consistent with the present limits on the existence of new forces. The strongest constraints come from recent terrestrial searches for a ''fifth force''. This analysis underlines the fact that these binary star systems are sensitive to forces whose coupling strength can be as low as 10 -5 that of gravity
Weak lensing cosmology beyond ΛCDM
International Nuclear Information System (INIS)
Das, Sudeep; Linder, Eric V.; Nakajima, Reiko; Putter, Roland de
2012-01-01
Weak gravitational lensing is one of the key probes of the cosmological model, dark energy, and dark matter, providing insight into both the cosmic expansion history and large scale structure growth history. Taking into account a broad spectrum of physics affecting growth — dynamical dark energy, extended gravity, neutrino masses, and spatial curvature — we analyze the cosmological constraints. Similarly we consider the effects of a range of systematic uncertainties, in shear measurement, photometric redshifts, intrinsic alignments, and the nonlinear power spectrum, on cosmological parameter extraction. We also investigate, and provide fitting formulas for, the influence of survey parameters such as redshift depth, galaxy number densities, and sky area on the cosmological constraints in the beyond-ΛCDM parameter space. Finally, we examine the robustness of results for different fiducial cosmologies
General gauge mediation at the weak scale
Energy Technology Data Exchange (ETDEWEB)
Knapen, Simon [Berkeley Center for Theoretical Physics,University of California, Berkeley, CA 94720 (United States); Theoretical Physics Group, Lawrence Berkeley National Laboratory,Berkeley, CA 94720 (United States); Redigolo, Diego [Sorbonne Universités, UPMC Univ Paris 06,UMR 7589, LPTHE, F-75005, Paris (France); CNRS, UMR 7589,LPTHE, F-75005, Paris (France); Shih, David [New High Energy Theory Center, Rutgers University,Piscataway, NJ 08854 (United States)
2016-03-09
We completely characterize General Gauge Mediation (GGM) at the weak scale by solving all IR constraints over the full parameter space. This is made possible through a combination of numerical and analytical methods, based on a set of algebraic relations among the IR soft masses derived from the GGM boundary conditions in the UV. We show how tensions between just a few constraints determine the boundaries of the parameter space: electroweak symmetry breaking (EWSB), the Higgs mass, slepton tachyons, and left-handed stop/sbottom tachyons. While these constraints allow the left-handed squarks to be arbitrarily light, they place strong lower bounds on all of the right-handed squarks. Meanwhile, light EW superpartners are generic throughout much of the parameter space. This is especially the case at lower messenger scales, where a positive threshold correction to m{sub h} coming from light Higgsinos and winos is essential in order to satisfy the Higgs mass constraint.
Sex hormones and skeletal muscle weakness
DEFF Research Database (Denmark)
Sipilä, Sarianna; Narici, Marco; Kjaer, Michael
2013-01-01
Human ageing is accompanied with deterioration in endocrine functions the most notable and well characterized of which being the decrease in the production of sex hormones. Current research literature suggests that low sex hormone concentration may be among the key mechanism for sarcopenia...... and muscle weakness. Within the European large scale MYOAGE project, the role of sex hormones, estrogens and testosterone, in causing the aging-related loss of muscle mass and function was further investigated. Hormone replacement therapy (HRT) in women is shown to diminish age-associated muscle loss, loss...... properties. HRT influences gene expression in e.g. cytoskeletal and cell-matrix proteins, has a stimulating effect upon IGF-I, and a role in IL-6 and adipokine regulation. Despite low circulating steroid-hormone level, postmenopausal women have a high local concentration of steroidogenic enzymes in skeletal...
Poisson equation for weak gravitational lensing
International Nuclear Information System (INIS)
Kling, Thomas P.; Campbell, Bryan
2008-01-01
Using the Newman and Penrose [E. T. Newman and R. Penrose, J. Math. Phys. (N.Y.) 3, 566 (1962).] spin-coefficient formalism, we examine the full Bianchi identities of general relativity in the context of gravitational lensing, where the matter and space-time curvature are projected into a lens plane perpendicular to the line of sight. From one component of the Bianchi identity, we provide a rigorous, new derivation of a Poisson equation for the projected matter density where the source term involves second derivatives of the observed weak gravitational lensing shear. We also show that the other components of the Bianchi identity reveal no new results. Numerical integration of the Poisson equation in test cases shows an accurate mass map can be constructed from the combination of a ground-based, wide-field image and a Hubble Space Telescope image of the same system
Casimir apparatuses in a weak gravitational field
DEFF Research Database (Denmark)
Bimonte, Giuseppe; Calloni, Enrico; Esposito, Giampiero
2009-01-01
We review and assess a part of the recent work on Casimir apparatuses in the weak gravitational field of the Earth. For a free, real massless scalar field subject to Dirichlet or Neumann boundary conditions on the parallel plates, the resulting regularized and renormalized energy-momentum tensor...... is covariantly conserved, while the trace anomaly vanishes if the massless field is conformally coupled to gravity. Conformal coupling also ensures a finite Casimir energy and finite values of the pressure upon parallel plates. These results have been extended to an electromagnetic field subject to perfect...... conductor (hence idealized) boundary conditions on parallel plates, by various authors. The regularized and renormalized energy-momentum tensor has beene valuated up to second order in the gravity acceleration. In both the scalar and the electromagnetic case, studied to first order in the gravity...
Gluon Bremsstrahlung in Weakly-Coupled Plasmas
International Nuclear Information System (INIS)
Arnold, Peter
2009-01-01
I report on some theoretical progress concerning the calculation of gluon bremsstrahlung for very high energy particles crossing a weakly-coupled quark-gluon plasma. (i) I advertise that two of the several formalisms used to study this problem, the BDMPS-Zakharov formalism and the AMY formalism (the latter used only for infinite, uniform media), can be made equivalent when appropriately formulated. (ii) A standard technique to simplify calculations is to expand in inverse powers of logarithms ln(E/T). I give an example where such expansions are found to work well for ω/T≥10 where ω is the bremsstrahlung gluon energy. (iii) Finally, I report on perturbative calculations of q.
Strong mobility in weakly disordered systems
Energy Technology Data Exchange (ETDEWEB)
Ben-naim, Eli [Los Alamos National Laboratory; Krapivsky, Pavel [BOSTON UNIV
2009-01-01
We study transport of interacting particles in weakly disordered media. Our one-dimensional system includes (i) disorder, the hopping rate governing the movement of a particle between two neighboring lattice sites is inhomogeneous, and (ii) hard core interaction, the maximum occupancy at each site is one particle. We find that over a substantial regime, the root-mean-square displacement of a particle s grows superdiffusively with time t, {sigma}{approx}({epsilon}t){sup 2/3}, where {epsilon} is the disorder strength. Without disorder the particle displacement is subdiffusive, {sigma} {approx}t{sup 1/4}, and therefore disorder strongly enhances particle mobility. We explain this effect using scaling arguments, and verify the theoretical predictions through numerical simulations. Also, the simulations show that regardless of disorder strength, disorder leads to stronger mobility over an intermediate time regime.
Los resonance lines in promethiumlike heavy ions
International Nuclear Information System (INIS)
Nakamura, Nobuyuki; Kobayashi, Yusuke; Kato, Daiji; Sakaue, Hiroyuki A.; Murakami, Izumi
2016-01-01
Identifying the ns - np resonance lines in alkali-metal-like ions is an important issue in fusion plasma science in the view of spectroscopic diagnostics and radiation power loss. Whereas for n=2, 3 and 4 these resonances are prominent and well studied, so far no one could clearly identify the resonance lines for n=5 in the promethiumlike sequence. We have now experimentally clarified the reason for the 'lost resonance lines. In the present study, highly-charged bismuth ions have been studied using a compact electron beam ion trap (EBIT). Extreme ultraviolet emission from the bismuth ions produced and trapped in the EBIT is observed with a grazing-incidence flat-field spectrometer. The energy dependent spectra are compared with a collisional-radiative model calculation, and we show that the 5s - 5p resonance lines are very weak in plasma with a wide range of electron density due to the presence of a long-lived metastable state. (author)
Acoustic radiation from weakly wrinkled premixed flames
Energy Technology Data Exchange (ETDEWEB)
Lieuwen, Tim; Mohan, Sripathi; Rajaram, Rajesh; Preetham, [School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0150 (United States)
2006-01-01
This paper describes a theoretical analysis of acoustic radiation from weakly wrinkled (i.e., u'/S{sub L}<1) premixed flames. Specifically, it determines the transfer function relating the spectrum of the acoustic pressure oscillations, P'({omega}), to that of the turbulent velocity fluctuations in the approach flow, U'({omega}). In the weakly wrinkled limit, this transfer function is local in frequency space; i.e., velocity fluctuations at a frequency {omega} distort the flame and generate sound at the same frequency. This transfer function primarily depends upon the flame Strouhal number St (based on mean flow velocity and flame length) and the correlation length, {lambda}, of the flow fluctuations. For cases where the ratio of the correlation length and duct radius {lambda}/a>>1, the acoustic pressure and turbulent velocity power spectra are related by P'({omega})-{omega}{sup 2}U'({omega}) and P'({omega})-U'({omega}) for St<<1 and St>>1, respectively. For cases where {lambda}/a<<1, the transfer functions take the form P'({omega})-{omega}{sup 2}({lambda}/a){sup 2}U'({omega}) and P'({omega})-{omega}{sup 2}({lambda}/a){sup 2}({psi}-{delta}ln({lambda}/a))U'({omega}) for St<<1 and St>>1, respectively, where (PS) and {delta} are constants. The latter result demonstrates that this transfer function does not exhibit a simple power law relationship in the high frequency region of the spectra. The simultaneous dependence of this pressure-velocity transfer function upon the Strouhal number and correlation length suggests a mechanism for the experimentally observed maximum in acoustic spectra and provides some insight into the controversy in the literature over how this peak should scale with the flame Strouhal number.
Weak links in high critical temperature superconductors
Tafuri, Francesco; Kirtley, John R.
2005-11-01
The traditional distinction between tunnel and highly transmissive barriers does not currently hold for high critical temperature superconducting Josephson junctions, both because of complicated materials issues and the intrinsic properties of high temperature superconductors (HTS). An intermediate regime, typical of both artificial superconductor-barrier-superconductor structures and of grain boundaries, spans several orders of magnitude in the critical current density and specific resistivity. The physics taking place at HTS surfaces and interfaces is rich, primarily because of phenomena associated with d-wave order parameter (OP) symmetry. These phenomena include Andreev bound states, the presence of the second harmonic in the critical current versus phase relation, a doubly degenerate state, time reversal symmetry breaking and the possible presence of an imaginary component of the OP. All these effects are regulated by a series of transport mechanisms, whose rules of interplay and relative activation are unknown. Some transport mechanisms probably have common roots, which are not completely clear and possibly related to the intrinsic nature of high-TC superconductivity. The d-wave OP symmetry gives unique properties to HTS weak links, which do not have any analogy with systems based on other superconductors. Even if the HTS structures are not optimal, compared with low critical temperature superconductor Josephson junctions, the state of the art allows the realization of weak links with unexpectedly high quality quantum properties, which open interesting perspectives for the future. The observation of macroscopic quantum tunnelling and the qubit proposals represent significant achievements in this direction. In this review we attempt to encompass all the above aspects, attached to a solid experimental basis of junction concepts and basic properties, along with a flexible phenomenological background, which collects ideas on the Josephson effect in the presence
Weak links in high critical temperature superconductors
International Nuclear Information System (INIS)
Tafuri, Francesco; Kirtley, John R
2005-01-01
The traditional distinction between tunnel and highly transmissive barriers does not currently hold for high critical temperature superconducting Josephson junctions, both because of complicated materials issues and the intrinsic properties of high temperature superconductors (HTS). An intermediate regime, typical of both artificial superconductor-barrier-superconductor structures and of grain boundaries, spans several orders of magnitude in the critical current density and specific resistivity. The physics taking place at HTS surfaces and interfaces is rich, primarily because of phenomena associated with d-wave order parameter (OP) symmetry. These phenomena include Andreev bound states, the presence of the second harmonic in the critical current versus phase relation, a doubly degenerate state, time reversal symmetry breaking and the possible presence of an imaginary component of the OP. All these effects are regulated by a series of transport mechanisms, whose rules of interplay and relative activation are unknown. Some transport mechanisms probably have common roots, which are not completely clear and possibly related to the intrinsic nature of high-T C superconductivity. The d-wave OP symmetry gives unique properties to HTS weak links, which do not have any analogy with systems based on other superconductors. Even if the HTS structures are not optimal, compared with low critical temperature superconductor Josephson junctions, the state of the art allows the realization of weak links with unexpectedly high quality quantum properties, which open interesting perspectives for the future. The observation of macroscopic quantum tunnelling and the qubit proposals represent significant achievements in this direction. In this review we attempt to encompass all the above aspects, attached to a solid experimental basis of junction concepts and basic properties, along with a flexible phenomenological background, which collects ideas on the Josephson effect in the presence
Super symmetry in strong and weak interactions
International Nuclear Information System (INIS)
Seshavatharam, U.V.S.; Lakshminarayana, S.
2010-01-01
For strong interaction two new fermion mass units 105.32 MeV and 11450 MeV are assumed. Existence of "Integral charge quark bosons", "Integral charge effective quark fermions", "Integral charge (effective) quark fermi-gluons" and "Integral charge quark boso-gluons" are assumed and their masses are estimated. It is noticed that, characteristic nuclear charged fermion is X s · 105.32 = 938.8 MeV and corresponding charged boson is X s (105.32/x) = 415.0 where X s = 8.914 is the inverse of the strong coupling constant and x = 2.26234 is a new number by using which "super symmetry" can be seen in "strong and weak" interactions. 11450 MeV fermion and its boson of mass = 11450/x = 5060 MeV plays a crucial role in "sub quark physics" and "weak interaction". 938.8 MeV strong fermion seems to be the proton. 415 MeV strong boson seems to be the mother of the presently believed 493,496 and 547 MeV etc, strange mesons. With 11450 MeV fermion "effective quark-fermi-gluons" and with 5060 MeV boson "quark boso-gluon masses" are estimated. "Effective quark fermi-gluons" plays a crucial role in ground state charged baryons mass generation. Light quark bosons couple with these charged baryons to form doublets and triplets. "Quark boso-gluons" plays a crucial role in ground state neutral and charged mesons mass generation. Fine and super-fine rotational levels can be given by [I or (I/2)] power(1/4) and [I or (I/2)] power(1/12) respectively. Here, I = n(n+1) and n = 1, 2, 3, … (author)
Pre-relaxation in weakly interacting models
Bertini, Bruno; Fagotti, Maurizio
2015-07-01
We consider time evolution in models close to integrable points with hidden symmetries that generate infinitely many local conservation laws that do not commute with one another. The system is expected to (locally) relax to a thermal ensemble if integrability is broken, or to a so-called generalised Gibbs ensemble if unbroken. In some circumstances expectation values exhibit quasi-stationary behaviour long before their typical relaxation time. For integrability-breaking perturbations, these are also called pre-thermalisation plateaux, and emerge e.g. in the strong coupling limit of the Bose-Hubbard model. As a result of the hidden symmetries, quasi-stationarity appears also in integrable models, for example in the Ising limit of the XXZ model. We investigate a weak coupling limit, identify a time window in which the effects of the perturbations become significant and solve the time evolution through a mean-field mapping. As an explicit example we study the XYZ spin-\\frac{1}{2} chain with additional perturbations that break integrability. One of the most intriguing results of the analysis is the appearance of persistent oscillatory behaviour. To unravel its origin, we study in detail a toy model: the transverse-field Ising chain with an additional nonlocal interaction proportional to the square of the transverse spin per unit length (2013 Phys. Rev. Lett. 111 197203). Despite being nonlocal, this belongs to a class of models that emerge as intermediate steps of the mean-field mapping and shares many dynamical properties with the weakly interacting models under consideration.
Anomalous baryogenesis at the weak scale
Energy Technology Data Exchange (ETDEWEB)
Singleton, R.L. Jr.
1991-06-01
One of the fundamental constants of nature is the baryon asymmetry of the universe -- the ratio of the number of baryons to the entropy. This constant is about 10{sup {minus}11}. In baryon- number conserving theories, this was just an initial condition. With the advent of the grand unified theories (GUTs), baryon number is no longer conserved, and this asymmetry can be generated dynamically. Unfortunately, however, there are reasons for preferring another mechanism. For example, GUTs predict proton decay which, after extensive searches, has not been found. An alternative place to look for baryogenesis is the electroweak phase transition, described by the standard model, which posses all the necessary ingredients for baryogenesis. Anomalous baryon-number violation in weak interactions becomes large at high temperatures, which offers the prospect of creating the asymmetry with the standard model or minimal extensions. This can just barely be done if certain conditions are fulfilled. CP violation must be large, which rules out the minimal standard model as the source of the asymmetry, but which is easily arranged with an extended Higgs sector. The baryon-number violating rates themselves are not exactly known, and they must be pushed to their theoretical limits. A more exact determination of these rates is needed before a definitive answer can be given. Finally, the phase transition must be at least weakly first order. Such phase transitions are accompanied by the formation and expansion of bubbles of true vacuum within the false vacuum, much like the boiling of water. As the bubbles expand, they provide a departure from thermal equilibrium, otherwise the dynamics will adjust the net baryon number to zero. The bubble expansion also provides a biasing that creates an asymmetry on the bubbles surface. Under optimal conditions, the observed asymmetry can just be produced. 31 refs., 10 figs.
Normal modes of weak colloidal gels
Varga, Zsigmond; Swan, James W.
2018-01-01
The normal modes and relaxation rates of weak colloidal gels are investigated in calculations using different models of the hydrodynamic interactions between suspended particles. The relaxation spectrum is computed for freely draining, Rotne-Prager-Yamakawa, and accelerated Stokesian dynamics approximations of the hydrodynamic mobility in a normal mode analysis of a harmonic network representing several colloidal gels. We find that the density of states and spatial structure of the normal modes are fundamentally altered by long-ranged hydrodynamic coupling among the particles. Short-ranged coupling due to hydrodynamic lubrication affects only the relaxation rates of short-wavelength modes. Hydrodynamic models accounting for long-ranged coupling exhibit a microscopic relaxation rate for each normal mode, λ that scales as l-2, where l is the spatial correlation length of the normal mode. For the freely draining approximation, which neglects long-ranged coupling, the microscopic relaxation rate scales as l-γ, where γ varies between three and two with increasing particle volume fraction. A simple phenomenological model of the internal elastic response to normal mode fluctuations is developed, which shows that long-ranged hydrodynamic interactions play a central role in the viscoelasticity of the gel network. Dynamic simulations of hard spheres that gel in response to short-ranged depletion attractions are used to test the applicability of the density of states predictions. For particle concentrations up to 30% by volume, the power law decay of the relaxation modulus in simulations accounting for long-ranged hydrodynamic interactions agrees with predictions generated by the density of states of the corresponding harmonic networks as well as experimental measurements. For higher volume fractions, excluded volume interactions dominate the stress response, and the prediction from the harmonic network density of states fails. Analogous to the Zimm model in polymer
Anomalous baryogenesis at the weak scale
International Nuclear Information System (INIS)
Singleton, R.L. Jr.
1991-06-01
One of the fundamental constants of nature is the baryon asymmetry of the universe -- the ratio of the number of baryons to the entropy. This constant is about 10 -11 . In baryon- number conserving theories, this was just an initial condition. With the advent of the grand unified theories (GUTs), baryon number is no longer conserved, and this asymmetry can be generated dynamically. Unfortunately, however, there are reasons for preferring another mechanism. For example, GUTs predict proton decay which, after extensive searches, has not been found. An alternative place to look for baryogenesis is the electroweak phase transition, described by the standard model, which posses all the necessary ingredients for baryogenesis. Anomalous baryon-number violation in weak interactions becomes large at high temperatures, which offers the prospect of creating the asymmetry with the standard model or minimal extensions. This can just barely be done if certain conditions are fulfilled. CP violation must be large, which rules out the minimal standard model as the source of the asymmetry, but which is easily arranged with an extended Higgs sector. The baryon-number violating rates themselves are not exactly known, and they must be pushed to their theoretical limits. A more exact determination of these rates is needed before a definitive answer can be given. Finally, the phase transition must be at least weakly first order. Such phase transitions are accompanied by the formation and expansion of bubbles of true vacuum within the false vacuum, much like the boiling of water. As the bubbles expand, they provide a departure from thermal equilibrium, otherwise the dynamics will adjust the net baryon number to zero. The bubble expansion also provides a biasing that creates an asymmetry on the bubbles surface. Under optimal conditions, the observed asymmetry can just be produced. 31 refs., 10 figs
Magnified Weak Lensing Cross Correlation Tomography
Energy Technology Data Exchange (ETDEWEB)
Ulmer, Melville P., Clowe, Douglas I.
2010-11-30
This project carried out a weak lensing tomography (WLT) measurement around rich clusters of galaxies. This project used ground based photometric redshift data combined with HST archived cluster images that provide the WLT and cluster mass modeling. The technique has already produced interesting results (Guennou et al, 2010,Astronomy & Astrophysics Vol 523, page 21, and Clowe et al, 2011 to be submitted). Guennou et al have validated that the necessary accuracy can be achieved with photometric redshifts for our purposes. Clowe et al titled "The DAFT/FADA survey. II. Tomographic weak lensing signal from 10 high redshift clusters," have shown that for the **first time** via this purely geometrical technique, which does not assume a standard rod or candle, that a cosmological constant is **required** for flat cosmologies. The intent of this project is not to produce the best constraint on the value of the dark energy equation of state, w. Rather, this project is to carry out a sustained effort of weak lensing tomography that will naturally feed into the near term Dark Energy Survey (DES) and to provide invaluable mass calibration for that project. These results will greatly advance a key cosmological method which will be applied to the top-rated ground-based project in the Astro2020 decadal survey, LSST. Weak lensing tomography is one of the key science drivers behind LSST. CO-I Clowe is on the weak lensing LSST committee, and senior scientist on this project, at FNAL James Annis, plays a leading role in the DES. This project has built on successful proposals to obtain ground-based imaging for the cluster sample. By 1 Jan, it is anticipated the project will have accumulated complete 5-color photometry on 30 (or about 1/3) of the targeted cluster sample (public webpage for the survey is available at http://cencos.oamp.fr/DAFT/ and has a current summary of the observational status of various clusters). In all, the project has now been awarded the equivalent of over 60
Weak Disposability in Nonparametric Production Analysis with Undesirable Outputs
Kuosmanen, T.K.
2005-01-01
Environmental Economics and Natural Resources Group at Wageningen University in The Netherlands Weak disposability of outputs means that firms can abate harmful emissions by decreasing the activity level. Modeling weak disposability in nonparametric production analysis has caused some confusion.
Weakly Idempotent Lattices and Bilattices, Non-Idempotent Plonka Functions
Directory of Open Access Journals (Sweden)
Davidova D. S.
2015-12-01
Full Text Available In this paper, we study weakly idempotent lattices with an additional interlaced operation. We characterize interlacity of a weakly idempotent semilattice operation, using the concept of hyperidentity and prove that a weakly idempotent bilattice with an interlaced operation is epimorphic to the superproduct with negation of two equal lattices. In the last part of the paper, we introduce the concepts of a non-idempotent Plonka function and the weakly Plonka sum and extend the main result for algebras with the well known Plonka function to the algebras with the non-idempotent Plonka function. As a consequence, we characterize the hyperidentities of the variety of weakly idempotent lattices, using non-idempotent Plonka functions, weakly Plonka sums and characterization of cardinality of the sets of operations of subdirectly irreducible algebras with hyperidentities of the variety of weakly idempotent lattices. Applications of weakly idempotent bilattices in multi-valued logic is to appear.