WorldWideScience

Sample records for wdm phase-modulated radio-over-fiber

  1. WDM Phase-Modulated Millimeter-Wave Fiber Systems

    DEFF Research Database (Denmark)

    Yu, Xianbin; Prince, Kamau; Gibbon, Timothy Braidwood

    2012-01-01

    This chapter presents a computer simulation case study of two typical WDM phase-modulated millimeter-wave systems. The phase-modulated 60 GHz fiber multi-channel transmission systems employ single sideband (SSB) and double sideband subcarrier modulation (DSB-SC) schemes and present one of the lat......This chapter presents a computer simulation case study of two typical WDM phase-modulated millimeter-wave systems. The phase-modulated 60 GHz fiber multi-channel transmission systems employ single sideband (SSB) and double sideband subcarrier modulation (DSB-SC) schemes and present one...... of the latest research efforts in the rapidly emerging Radio-over-Fiber (RoF) application space for in-house access networks....

  2. Experimental 2.5 Gbit/s QPSK WDM coherent phase modulated radio-over-fibre link with digital demodulation by a K-means algorithm

    DEFF Research Database (Denmark)

    Guerrero Gonzalez, Neil; Caballero Jambrina, Antonio; Amaya Fernández, Ferney Orlando

    2009-01-01

    Highest reported bit rate of 2.5 Gbit/s for optically phase modulated radio-over-fibre link employing coherent detection is demonstrated. Demodulation of 3·2.5 Gbit/s QPSK modulated WDM channels, is achieved after 79km of transmission through deployed fiber....

  3. Coherent Detection of Wavelength Division Multiplexed Phase-Modulated Radio-over-Fibre Signals

    DEFF Research Database (Denmark)

    Zibar, Darko; Yu, Xianbin; Peucheret, Christophe

    2008-01-01

    A WDM phase-modulated Radio-over-Fibre link using digital coherent detection is experimentally demonstrated. 3 times 50 Mb/s WDM transmission of a BPSK modulated 5 GHz RF carrier is achieved over 25 km.......A WDM phase-modulated Radio-over-Fibre link using digital coherent detection is experimentally demonstrated. 3 times 50 Mb/s WDM transmission of a BPSK modulated 5 GHz RF carrier is achieved over 25 km....

  4. Experimental 2.5-Gb/s QPSK WDM phase-modulated radio-over-fiber link with digital demodulation by a K-means algorithm

    DEFF Research Database (Denmark)

    Guerrero Gonzalez, Neil; Zibar, Darko; Caballero Jambrina, Antonio

    2010-01-01

    Highest reported bit rate of 2.5 Gb/s for optically phase modulated radio-over-fiber (RoF) link, employing digital coherent detection, is demonstrated. Demodulation of 3$,times,$ 2.5 Gb/s quadrature phase-shift keying modulated wavelength-division-multiplexed RoF channels is achieved after 79 km ...... of transmission through deployed fiber. Error-free performance (bit-error rate corresponding to $10^{{-}4}$) is achieved using a digital coherent receiver in combination with a $K$-means algorithm for radio-frequency phase recovery....

  5. Phase-modulated radio over fiber multimode links.

    Science.gov (United States)

    Gasulla, Ivana; Capmany, José

    2012-05-21

    We present the first experimental demonstration of a phase-modulated MMF link implementing high-frequency digital transmission in a cost-effective solution based on direct detection. Successful subcarrier transmission of QPSK, 16-QAM and 64-QAM data channels for bit rates up to 120 Mb/s through a 5 km MMF link is achieved over the microwave region comprised between 6 and 20 GHz. The overall capacity of the proposed approach can be further increased by properly accommodating more passband channels in the operative frequency range determined by the phase-to-intensity conversion process provided by the dispersive nature of the optical fiber. In this sense, our results show the possibility of achieving an aggregate bit rate per length product of 144 Gb/s · km and confirm, in consequence, the possibility of broadband phase-modulated radio over fiber transmission through MMF links suitable for multichannel SCM signal distribution.

  6. Radio over fiber transceiver employing phase modulation of an optical broadband source.

    Science.gov (United States)

    Grassi, Fulvio; Mora, José; Ortega, Beatriz; Capmany, José

    2010-10-11

    This paper proposes a low-cost RoF transceiver for multichannel SCM/WDM signal distribution suitable for future broadband access networks. The transceiver is based on the phase modulation of an optical broadband source centered at third transmission window. Prior to phase modulation the optical broadband source output signal is launched into a Mach-Zehnder interferometer structure, as key device enabling radio signals propagation over the optical link. Furthermore, an optical CWDM is employed to create a multichannel scenario by performing the spectral slicing of the modulated optical signal into a number of channels each one conveying the information from the central office to different base stations. The operation range is up to 20 GHz with a modulation bandwidth around of 500 MHz. Experimental results of the transmission of SCM QPSK and 64-QAM data through 20 Km of SMF exhibit good EVM results in the operative range determined by the phase-to-intensity conversion process. The proposed approach shows a great suitability for WDM networks based on RoF signal transport and also represents a cost-effective solution for passive optical networks.

  7. Performance Evaluation of Digital Coherent Receivers for Phase-Modulated Radio-Over-Fiber Links

    DEFF Research Database (Denmark)

    Caballero Jambrina, Antonio; Zibar, Darko; Tafur Monroy, Idelfonso

    2011-01-01

    The performance of optical phase-modulated (PM) radio-over-fiber (RoF) links assisted with coherent detection and digital signal processing (PM-Coh) is analyzed and experimentally demonstrated for next-generation wireless-over-fiber systems. PM-Coh offers high linearity for transparent transport ...

  8. Optical phase-modulated radio-over-fiber links with k-means algorithm for digital demodulation of 8PSK subcarrier multiplexed signals

    DEFF Research Database (Denmark)

    Guerrero Gonzalez, Neil; Zibar, Darko; Yu, Xianbin

    2010-01-01

    A k-means algorithm for phase recovery of three, 50 Mbaud, 8PSK subcarrier multiplexed signals at 5 GHz for optical phase-modulated radio-over-fiber is proposed and experimentally demonstrated after 40 km of single mode fiber transmission......A k-means algorithm for phase recovery of three, 50 Mbaud, 8PSK subcarrier multiplexed signals at 5 GHz for optical phase-modulated radio-over-fiber is proposed and experimentally demonstrated after 40 km of single mode fiber transmission...

  9. Bidirectional Radio-Over-Fiber System With Phase-Modulation Downlink and RF Oscillator-Free Uplink Using a Reflective SOA

    DEFF Research Database (Denmark)

    Yu, Xianbin; Gibbon, Timothy Braidwood; Tafur Monroy, Idelfonso

    2008-01-01

    We propose and demonstrate a bidirectional radio-over-fiber (RoF) system based on a reflective semiconductor optical amplifier (RSOA). In this system, phase-modulated 5.25-GHz radio frequency (RF) carrying 850 Mb/s is used for the downstream signal. Optical envelope detection of 10-GHz RF carryin......-effective. The experimental results indicate that after simultaneous transmission of downstream and upstream signals over 25-km fiber, the receiver sensitivities are -22 and -14.5 dBm, respectively....

  10. Bit-error-rate performance analysis of self-heterodyne detected radio-over-fiber links using phase and intensity modulation

    DEFF Research Database (Denmark)

    Yin, Xiaoli; Yu, Xianbin; Tafur Monroy, Idelfonso

    2010-01-01

    We theoretically and experimentally investigate the performance of two self-heterodyne detected radio-over-fiber (RoF) links employing phase modulation (PM) and quadrature biased intensity modulation (IM), in term of bit-error-rate (BER) and optical signal-to-noise-ratio (OSNR). In both links, self...

  11. Cognitive digital receiver for burst mode phase modulated radio over fiber links

    DEFF Research Database (Denmark)

    Guerrero Gonzalez, Neil; Zibar, Darko; Tafur Monroy, Idelfonso

    2010-01-01

    A novel cognitive receiver for modulation format recognition with reconfigurable carrier recovery scheme is proposed and experimentally demonstrated for phase modulated radio-over-fibre links. Demodulation of burst-mode mixed modulation formats (PSK and QAM) is demonstrated after 40km...

  12. The radio-on-fiber-wavelength-division-multiplexed-passive-optical network (WDM-RoF-PON) for wireless and wire layout with linearly-polarized dual-wavelength fiber laser and carrier reusing

    Science.gov (United States)

    Ji, Wei; Chang, Jun

    2013-07-01

    In this paper, we design a WDM-RoF-PON based on linearly-polarized dual-wavelength fiber laser and CSRZ-DPSK, which can achieve wire-line and wireless access synchronously. With the CSRZ-DPSK modulation, the wireless access in ONU can save RF source and the frequency of radio carrier can be controlled by OLT. The dual-wavelength fiber laser is the union light source of WDM-PON with polarization multiplexing. By the RSOA and downstream light source reusing, the ONU can save omit laser source and makes the WDM-PON to be colorless. The networking has the credible transmission property, including wireless access and fiber transmission. The networking also has excellent covering range.

  13. Cost-effective bidirectional digitized radio-over-fiber systems employing sigma delta modulation

    Science.gov (United States)

    Lee, Kyung Woon; Jung, HyunDo; Park, Jung Ho

    2016-11-01

    We propose a cost effective digitized radio-over-fiber (D-RoF) system employing a sigma delta modulation (SDM) and a bidirectional transmission technique using phase modulated downlink and intensity modulated uplink. SDM is transparent to different radio access technologies and modulation formats, and more suitable for a downlink of wireless system because a digital to analog converter (DAC) can be avoided at the base station (BS). Also, Central station and BS share the same light source by using a phase modulation for the downlink and an intensity modulation for the uplink transmission. Avoiding DACs and light sources have advantages in terms of cost reduction, power consumption, and compatibility with conventional wireless network structure. We have designed a cost effective bidirectional D-RoF system using a low pass SDM and measured the downlink and uplink transmission performance in terms of error vector magnitude, signal spectra, and constellations, which are based on the 10MHz LTE 64-QAM standard.

  14. Fiber nonlinearity compensation of an 8-channel WDM PDM-QPSK signal using multiple phase conjugations

    DEFF Research Database (Denmark)

    Hu, Hao; Jopson, R. M.; Dinu, M.

    2013-01-01

    We demonstrate compensation of fiber nonlinearities using optical phase conjugation of an 8-chamiel WDM 32-Gbaud PDM QPSK signal. Conjugating phase every 600 km in a fiber loop enabled a 6000 km transmission over True Wave fiber. © 2013 Optical Society of America....

  15. 100G WDM Transmission over 100 meter Multimode Fiber

    DEFF Research Database (Denmark)

    Cimoli, Bruno; Estaran Tolosa, Jose Manuel; Rodes Lopez, Guillermo Arturo

    We present a comparative performance analysis for wavelength-grid selection in WDM shortrange multimode-fibers. We study 100Gbps links over OM2, OM3 and OM4 fibers and show it is feasible to reach over 100 m transmission distances....

  16. W-band radio-over-fiber propagation of two optically encoded wavelength channels

    Science.gov (United States)

    Eghbal, Morad Khosravi; Shadaram, Mehdi

    2018-01-01

    We propose a W-band wavelength-division multiplexing (WDM)-over-optical code-division multiple access radio-over-fiber system. This system offers capacity expansion by increasing the working frequency to millimeter wave region and by introducing optical encoding and multiwavelength multiplexing. The system's functionality is investigated by software modeling, and the results are presented. The generated signals are data modulated at 10 Gb/s and optically encoded for two wavelength channels and transmitted with a 20-km length of fiber. The received signals are optically decoded and detected. Also, encoding has improved the bit error rate (BER) versus the received optical power margin for the WDM setting by about 4 dB. In addition, the eye-diagram shows that the difference between received optical power levels at the BER of 10-12 to 10-3 is about 1.3% between two encoded channels. This method of capacity improvement is significantly important for the next generation of mobile communication, where millimeter wave signals will be widely used to deliver data to small cells.

  17. Low-Complexity Tracking of Laser and Nonlinear Phase Noise in WDM Optical Fiber Systems

    DEFF Research Database (Denmark)

    Yankov, Metodi Plamenov; Fehenberger, Tobias; Barletta, Luca

    2015-01-01

    In this paper, the wavelength division multiplexed (WDM) fiber optic channel is considered. It is shown that for ideal distributed Raman amplification (IDRA), the Wiener process model is suitable for the non-linear phase noise due to cross phase modulation from neighboring channels. Based......, at the moderate received SNR region. The performance in these cases is close to the information rate achieved by the above mentioned trellis processing....

  18. A Radio-Frequency-over-Fiber link for large-array radio astronomy applications

    International Nuclear Information System (INIS)

    Mena, J; Bandura, K; Cliche, J-F; Dobbs, M; Gilbert, A; Tang, Q Y

    2013-01-01

    A prototype 425-850 MHz Radio-Frequency-over-Fiber (RFoF) link for the Canadian Hydrogen Intensity Mapping Experiment (CHIME) is presented. The design is based on a directly modulated Fabry-Perot (FP) laser, operating at ambient temperature, and a single-mode fiber. The dynamic performance, gain stability, and phase stability of the RFoF link are characterized. Tests on a two-element interferometer built at the Dominion Radio Astrophysical Observatory for CHIME prototyping demonstrate that RFoF can be successfully used as a cost-effective solution for analog signal transport on the CHIME telescope and other large-array radio astronomy applications

  19. High Capacity Radio over Fiber Transmission Links

    DEFF Research Database (Denmark)

    Caballero Jambrina, Antonio

    . This achievement has satisfied the requirements on transmission robustness and high capacity of next generation hybrid optical fibre-wireless networks. One important contribution of this thesis is the novel concept of photonic downconversion with free-running pulsed laser source for phase modulated Radio-over-Fiber......This thesis expands the state-of-the-art on the detection of high speed wireless signals using optics. Signal detection at speeds over 1 Gbps at carrier Radio Frequency (RF) ranging from 5 GHz to 100 GHz have been achieved by applying novel concepts on optical digital coherent receivers......-wave frequencies at carrier frequencies exceeding 60 GHz, using photonic baseband technologies. For signal generation, high spectral-efficient optical modulation technologies are used together with optical heterodyning. In the detection side, the mm-wave signal is modulated in the optical domain and received using...

  20. A method of simulating intensity modulation-direct detection WDM systems

    Institute of Scientific and Technical Information of China (English)

    HUANG Jing; YAO Jian-quan; LI En-bang

    2005-01-01

    In the simulation of Intensity Modulation-Direct Detection WDM Systems,when the dispersion and nonlinear effects play equally important roles,the intensity fluctuation caused by cross-phase modulation may be overestimated as a result of the improper step size.Therefore,the step size in numerical simulation should be selected to suppress false XPM intensity modulation (keep it much less than signal power).According to this criterion,the step size is variable along the fiber.For a WDM system,the step size depends on the channel separation.Different type of transmission fiber has different step size.In the split-step Fourier method,this criterion can reduce simulation time,and when the step size is bigger than 100 meters,the simulation accuracy can also be improved.

  1. Experimental demonstration of 24-Gb/s CAP-64QAM radio-over-fiber system over 40-GHz mm-wave fiber-wireless transmission.

    Science.gov (United States)

    Zhang, Junwen; Yu, Jianjun; Chi, Nan; Li, Fan; Li, Xinying

    2013-11-04

    We propose and demonstrate a novel CAP-ROF system based on multi-level carrier-less amplitude and phase modulation (CAP) 64QAM with high spectrum efficiency for mm-wave fiber-wireless transmission. The performance of novel CAP modulation with high order QAM, for the first time, is investigated in the mm-wave fiber-wireless transmission system. One I/Q modulator is used for mm-wave generation and base-band signal modulation based on optical carrier suppression (OCS) and intensity modulation. Finally, we demonstrated a 24-Gb/s CAP-64QAM radio-over-fiber (ROF) system over 40-km stand single-mode-fiber (SMMF) and 1.5-m 38-GHz wireless transmission. The system operation factors are also experimentally investigated.

  2. MIMO-OFDM WDM PON with DM-VCSEL for femtocells application

    DEFF Research Database (Denmark)

    Binti Othman, Maisara; Deng, Lei; Pang, Xiaodan

    2011-01-01

    We report on experimental demonstration of 2x2 MIMO-OFDM 5.6-GHz radio over fiber signaling over 20 km WDM-PON with directly modulated (DM) VCSELs for femtocells application. MIMO-OFDM algorithms effectively compensate for impairments in the wireless link. Error-free signal demodulation of 64...

  3. Fiber nonlinearity mitigation of WDM-PDM QPSK/16-QAM signals using fiber-optic parametric amplifiers based multiple optical phase conjugations

    DEFF Research Database (Denmark)

    Hu, Hao; Jopson, Robert M.; Gnauck, Alan H.

    2017-01-01

    We demonstrate fiber nonlinearity mitigation by using multiple optical phase conjugations (OPCs) in the WDM transmission systems of both 8 x 32-Gbaud PDM QPSK channels and 8 x 32-Gbaud PDM 16-QAM channels, showing improved performance over a single mid-span OPC and no OPC in terms of nonlinear...... threshold and a best achievable Q(2) factor after transmission. In addition, after an even number of OPCs, the signal wavelength can be preserved after transmission. The performance of multiple OPCs for fiber nonlinearity mitigation was evaluated independently for WDM PDM QPSK signals and WDM PDM 16QAM...... to 1 dB compared to the case of mid-span OPC. The improvements in the best achievable Q(2) factors were more modest, ranging from 0.2 dB to 1.1 dB for the results presented. (C) 2017 Optical Society of America...

  4. 225m Outdoor W-Band Radio-over-Fiber Link Using an Optical SFP+ Module

    DEFF Research Database (Denmark)

    Rommel, Simon; Rodríguez Páez, Juan Sebastián; Chorchos, Łukasz

    2016-01-01

    A W-band radio-over-fiber link based on a commercial SFP+ module is demonstrated, allowing easy integration into existing PON solutions. Without active laser control good RF frequency stability and 225m wireless distance are achieved...

  5. Comparison of WDM/Pulse-Position-Modulation (WDM/PPM) with Code/Pulse-Position-Swapping (C/PPS) Based on Wavelength/Time Codes

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, A J; Hernandez, V J; Gagliardi, R M; Bennett, C V

    2009-06-19

    Pulse position modulation (PPM) signaling is favored in intensity modulated/direct detection (IM/DD) systems that have average power limitations. Combining PPM with WDM over a fiber link (WDM/PPM) enables multiple accessing and increases the link's throughput. Electronic bandwidth and synchronization advantages are further gained by mapping the time slots of PPM onto a code space, or code/pulse-position-swapping (C/PPS). The property of multiple bits per symbol typical of PPM can be combined with multiple accessing by using wavelength/time [W/T] codes in C/PPS. This paper compares the performance of WDM/PPM and C/PPS for equal wavelengths and bandwidth.

  6. Feasibility analysis of WDM links for radar applications

    Directory of Open Access Journals (Sweden)

    D. Meena

    2015-03-01

    Full Text Available Active phased array antennas enhances the performance of modern radars by using multiple low power transmit/receive modules in place of a high power transmitter in conventional radars. Fully distributed phased array radars demand the distribution of various signals in radio frequency (RF and digital domain for real time operation. This is normally achieved through complex and bulky coaxial distribution networks. In this work, we intend to tap the inherent advantages of fiber links with wavelength division multiplexed (WDM technology and a feasibility study to adapt these links for radar applications is carried out. This is done by analysing various parameters like amplitude, delay, frequency and phase variation response of various radar waveforms over WDM links. This also includes performance evaluation of non-linear frequency modulation (NLFM signals, known for better signal to noise ratio (SNR to specific side lobe levels. NLFM waveforms are further analysed using pulse compression (PC technique. Link evaluation is also carried out using a standard simulation environment and is then experimentally verified with other waveforms like RF continuous wave (CW, pulsed RF and digital signals. Synchronization signals are generated from this variable duty cycle digital signals during real time radar operation. During evaluation of digital signals, variable transient effects for different duty cycles are observed from an amplifier configuration. A suppression method is proposed to eliminate this transient effects. Further, the link delay response is investigated using different lengths of fiber spools. It can be inferred from the experimental results that WDM links are capable of handling various signals significant to radar applications.

  7. Nonlinearity effect of electro-optical modulator response in double spread CDMA radio-over-fiber transmissions

    Science.gov (United States)

    Huang, Jen-Fa; Yen, Chih-Ta; Li, Tzung-Yen

    2008-07-01

    This study presents a double-spread code-division multiple-access (CDMA) scheme for radio-over-fiber (RoF) transmissions. The network coder/decoders (codecs) are implemented using arrayed-waveguide grating (AWG) routers coded with maximal-length sequence ( M-sequence) codes. The effects of phase-induced intensity noise (PIIN) and multiple-access interference (MAI) on the system performance are evaluated numerically for different values of the optical modulation index (OMI) during the nonlinear electro-optical modulator (EOM) response. At low OMI optical device noise is dominant, but at high OMI nonlinear effect becomes significant. Numerical result shows that the system performance is highly sensitive to the OMI. Therefore, specifying an appropriate value of the OMI is essential in optimizing the system performance. The influence of the degree of polarization (DOP) in the system is also discussed. By employing the scrambler in front of the balanced photo-detector, the system performance can be enhanced. The high-performance, low-cost characteristics of the double-spread CDMA render the scheme an ideal solution for radio-CDMA wireless system cascaded with optical CDMA network.

  8. Millimeter-wave and Terahertz Reconfigurable Radio-over-Fiber Systems

    DEFF Research Database (Denmark)

    Vegas Olmos, Juan José

    when deploying fiber is not an option. Radio-over-Fiber (RoF) technologies have evolved from a blue sky academic topic in the 90s to a main driver within the current quest for the 5th generation mobile systems (5G). A twist in RoF technologies is that it has found along the way niches in areas non......, the complexity of fabrication and to integrate this solutions have to compete with the off-the-shelf solutions provided by RoF technologies. Technologically though, reconfigurable Radio-over-Fiber networks require a co-design effort involving tunable lasers, digital signal processing, high speed modulators...

  9. Concurrent support of higher-layer protocols over WDM

    NARCIS (Netherlands)

    Theelen, B.D.; Voeten, J.P.M.; Putten, van der P.H.A.; Stevens, M.P.J.; Dorren, H.J.S.

    2002-01-01

    To satisfy the severe requirements involved in future communication networks, commercial and research interest in the applicability of wavelength division multiplexing (WDM) is growing. However, since WDM is merely concerned with transmitting bits over optical fibers, full advantage can only be

  10. Modal noise impact in radio over fiber multimode fiber links.

    Science.gov (United States)

    Gasulla, I; Capmany, J

    2008-01-07

    A novel analysis is given on the statistics of modal noise for a graded-index multimode fiber (MMF) link excited by an analog intensity modulated laser diode. We present the speckle contrast as a function of the power spectrum of the modulated source and the transfer function of the MMF which behaves as an imperfect transversal microwave photonic filter. The theoretical results confirm that the modal noise is directly connected with the coherence properties of the optical source and show that the performance of high-frequency Radio Over Fiber (ROF) transmission through MMF links for short and middle reach distances is not substantially degraded by modal noise.

  11. THEORETICAL EVALUATION OF NONLINEAR EFFECTS ON OPTICAL WDM NETWORKS WITH VARIOUS FIBER TYPES

    Directory of Open Access Journals (Sweden)

    YASIN M. KARFAA

    2010-09-01

    Full Text Available A theoretical study is carried out to evaluate the performance of an opticalwavelength division multiplexing (WDM network transmission system in the presenceof crosstalk due to optical fiber nonlinearities. The most significant nonlinear effects inthe optical fiber which are Cross-Phase Modulation (XPM, Four-Wave Mixing (FWM,and Stimulated Raman Scattering (SRS are investigated. Four types of optical fiber areincluded in the analysis; these are: single-mode fiber (SMF, dispersion compensationfiber (DCF, non-zero dispersion fiber (NZDF, and non-zero dispersion shifted fiber(NZDSF. The results represent the standard deviation of nonlinearity induced crosstalknoise power due to FWM and SRS, XPM power penalty for SMF, DCF, NZDF, andNZDSF types of fiber, besides the Bit Error Rate (BER for the three nonlinear effectsusing standard fiber type (SMF. It is concluded that three significant fiber nonlinearitiesare making huge limitations against increasing the launched power which is desired,otherwise, lower values of launched power limit network expansion including length,distance, covered areas, and number of users accessing the WDM network, unlesssuitable precautions are taken to neutralize the nonlinear effects. Besides, various fibertypes are not behaving similarly towards network parameters.

  12. Optical single sideband modulation radio over fiber system by using a fiber-Bragg-grating-based acousto-optic filter

    Science.gov (United States)

    Gao, Song; Pei, Li; Li, Zhuoxuan; Liu, Chao; Wang, Yiqun; Weng, Sijun

    2013-03-01

    An optical single sideband (OSSB) modulation radio over a fiber system, by using an acousto-optic filter (AOF), is proposed and demonstrated. In the AOF, a uniform fiber Bragg grating is etched and modulated by an axially propagating acoustic wave. Due to the acousto-optic superlattice modulation, two secondary reflection peaks, centered on the primary reflection peak, are generated. In the scheme, an optical double-sideband signal passes though the AOF to realize OSSB modulation. Because the reflect depth of the primary peak is much deeper than those of the secondary peaks, the carrier experiences higher attenuation than the upper sideband, which means the carrier-to-sideband ratio (CSR) can be optimized at the same time. We demonstrate this scheme via simulations, and successfully reduce the CSR from 9.73 to 2.9 dB. As a result, the receiving sensitivity improved from -23.43 to -31.18 dBm at BER of 10-9 with 30 km long SMF.

  13. Phase Stable RF-over-fiber Transmission using Heterodyne Interferometry

    International Nuclear Information System (INIS)

    Wilcox, R.; Byrd, J.M.; Doolittle, L.; Huang, G.; Staples, J.W.

    2010-01-01

    New scientific applications require phase-stabilized RF distribution to multiple remote locations. These include phased-array radio telescopes and short pulse free electron lasers. RF modulated onto a CW optical carrier and transmitted via fiber is capable of low noise, but commercially available systems aren't long term stable enough for these applications. Typical requirements are for less than 50fs long term temporal stability between receivers, which is 0.05 degrees at 3GHz. Good results have been demonstrated for RF distribution schemes based on transmission of short pulses, but these require specialized free-space optics and high stability mechanical infrastructure. We report a method which uses only standard telecom optical and RF components, and achieves less than 20fs RMS error over 300m of standard single-mode fiber. We demonstrate stable transmission of 3GHz over 300m of fiber with less than 0.017 degree (17fs) RMS phase error. An interferometer measures optical phase delay, providing information to a feed-forward correction of RF phase.

  14. Parametric Amplification, Wavelength Conversion, and Phase Conjugation of a 2.048-Tbit/s WDM PDM 16-QAM Signal

    DEFF Research Database (Denmark)

    Hu, Hao; Jopson, R. M.; Gnauck, A. H.

    2015-01-01

    We demonstrate polarization-independent parametric amplification of a 2.048-Tbit/s 8-WDM PDM 16-QAM signal and simultaneous wavelength conversion and phase conjugation in a highly nonlinear fiber. Two high-power continuous-wave pumps with orthogonal polarizations and counter-phase modulation are ...

  15. PAM-4 signal delivery in one radio-over-fiber system

    Science.gov (United States)

    Wang, Hada; Zhou, Wen; Yu, Jianjun

    2017-10-01

    We propose and experimentally demonstrate four-level pulse-amplitude-modulation (PAM-4) signal delivery in a radio-over-fiber system for the first time. Over 8-Gbit/s PAM-4 signals have been transmitted over 20-km single-mode fiber-28 and 1-m wireless distance. The signal after transmission is detected directly by an envelope detector at the receiver side. The maximal bit rate could be increased if the bandpass amplifier and envelope detector have more bandwidth.

  16. Performance Enhancement of Optical CDMA by Differential-Phase Method for Radio-over-Fiber Transmissions

    Directory of Open Access Journals (Sweden)

    Hsu-Chih Cheng

    2013-01-01

    Full Text Available The study proposes the differential-phase optical code-division multiple-access (OCDMA network for radio-over-fiber (RoF transmissions, and the characteristics are numerically analyzed. The network coder/decoders (codecs are structured on the basis of arrayed-waveguide-grating (AWG routers with complementary Walsh-Hadamard (CWH signature codes. In the proposed system, the network requires only two AWG routers to accomplish spectral encoding of radio base station (RBS and decoding of control station for the complementary keying, thus resulting in a simpler and low cost system. Performance analyses are evaluated with the dominant noise of phase-induced intensity noise (PIIN in spectral code OCDMA network. By the proposed AWG-based OCDMA with the differential-phase scheme, it is possible to establish interference-free and low crosstalk beat noise RoF systems.

  17. Transmission of 2.5 Gbit/s Spectrum-sliced WDM System for 50 km Single-mode Fiber

    Science.gov (United States)

    Ahmed, Nasim; Aljunid, Sayed Alwee; Ahmad, R. Badlisha; Fadil, Hilal Adnan; Rashid, Mohd Abdur

    2011-06-01

    The transmission of a spectrum-sliced WDM channel at 2.5 Gbit/s for 50 km of single mode fiber using an system channel spacing only 0.4 nm is reported. We have investigated the system performance using NRZ modulation format. The proposed system is compared with conventional system. The system performance is characterized as the bit-error-rate (BER) received against the system bit rates. Simulation results show that the NRZ modulation format performs well for 2.5 Gbit/s system bit rates. Using this narrow channel spectrum-sliced technique, the total number of multiplexed channels can be increased greatly in WDM system. Therefore, 0.4 nm channel spacing spectrum-sliced WDM system is highly recommended for the long distance optical access networks, like the Metro Area Network (MAN), Fiber-to-the-Building (FTTB) and Fiber-to-the-Home (FTTH).

  18. Mathematical Verification for Transmission Performance of Centralized Lightwave WDM-RoF-PON with Quintuple Services Integrated in Each Wavelength Channel

    Directory of Open Access Journals (Sweden)

    Shuai Chen

    2015-01-01

    Full Text Available Wavelength-division-multiplexing passive-optical-network (WDM-PON has been recognized as a promising solution of the “last mile” access as well as multibroadband data services access for end users, and WDM-RoF-PON, which employs radio-over-fiber (RoF technique in WDM-PON, is even a more attractive approach for future broadband fiber and wireless access for its strong availability of centralized multiservices transmission operation and its transparency for bandwidth and signal modulation formats. As for multiservices development in WDM-RoF-PON, various system designs have been reported and verified via simulation or experiment till now, and the scheme with multiservices transmitted in each single wavelength channel is believed as the one that has the highest bandwidth efficiency; however, the corresponding mathematical verification is still hard to be found in state-of-the-art literature. In this paper, system design and data transmission performance of a quintuple services integrated WDM-RoF-PON which jointly employs carrier multiplexing and orthogonal modulation techniques, have been theoretically analyzed and verified in detail; moreover, the system design has been duplicated and verified experimentally and the theory system of such WDM-RoF-PON scheme has thus been formed.

  19. WDM-Coherent OCDMA over one single device based on short chip Super Structured Fiber Bragg Gratings.

    Science.gov (United States)

    Amaya, Waldimar; Pastor, Daniel; Baños, Rocio; Garcia-Munoz, Victor

    2011-11-21

    We theoretically propose and demonstrate experimentally a Coherent Direct Sequence OCDMA en/decoder for multi-channel WDM operation based on a single device. It presents a broadband spectral envelope and a periodic spectral pattern that can be employed for en/decoding multiple sub-bands simultaneously. Multi-channel operation is verified experimentally by means of Multi-Band Super Structured Fiber Bragg Gratings with binary phase encoded chips fabricated with 1mm inter-chip separation that provides 4x100 GHz ITU sub-band separation at 1.25 Gbps. The WDM-OCDMA system verification was carried out employing simultaneous encoding of four adjacent sub-bands and two different OCDMA codes. © 2011 Optical Society of America

  20. Experimental investigation of inter-core crosstalk tolerance of MIMO-OFDM/OQAM radio over multicore fiber system.

    Science.gov (United States)

    He, Jiale; Li, Borui; Deng, Lei; Tang, Ming; Gan, Lin; Fu, Songnian; Shum, Perry Ping; Liu, Deming

    2016-06-13

    In this paper, the feasibility of space division multiplexing for optical wireless fronthaul systems is experimentally demonstrated by implementing high speed MIMO-OFDM/OQAM radio signals over 20km 7-core fiber and 0.4m wireless link. Moreover, the impact of optical inter-core crosstalk in multicore fibers on the proposed MIMO-OFDM/OQAM radio over fiber system is experimentally evaluated in both SISO and MIMO configurations for comparison. The experimental results show that the inter-core crosstalk tolerance of the proposed radio over fiber system can be relaxed to -10 dB by using the proposed MIMO-OFDM/OQAM processing. These results could guide high density multicore fiber design to support a large number of antenna modules and a higher density of radio-access points for potential applications in 5G cellular system.

  1. Generation of 1.024-Tb/s Nyquist-WDM phase-conjugated twin vector waves through polarization-insensitive optical parametric amplification enabling transmission over 4000-km dispersion-managed TWRS fiber

    DEFF Research Database (Denmark)

    Liu, Xiang; Hu, Hao; Chandrasekhar, S.

    2013-01-01

    We experimentally demonstrate the first Tb/s Nyquist-WDM phase-conjugated twin waves, consisting of eight 128-Gb/s PDM-QPSK signals and their idlers, by a broadband polarization-insensitive fiber optical parametric amplifier, enabling more than doubled reach in dispersion-managed transmission. © ...

  2. INFLUENCE OF POLARIZATION MODE DISPERSION ON THE EFFECT OF CROSS-PHASE MODULATION IN INTENSITY MODULATION-DIRECT DETECTION WDM TRANSMISSION SYSTEM

    Directory of Open Access Journals (Sweden)

    M S Islam

    2010-03-01

    Full Text Available Cross-phase modulation (XPM changes the state-of-polarization (SOP of the channels through nonlinear polarization rotation and induces nonlinear time dependent phase shift for polarization components that leads to amplitude modulation of the propagating waves in a wavelength division multiplexing (WDM system. Due to the presence of birefringence, the angle between the SOP changes randomly and as a result polarization mode dispersion (PMD causes XPM modulation amplitude fluctuation random in the perturbed channel. In this paper we analytically determine the probability density function of the random angle between the SOP of pump and probe, and evaluate the impact of polarization mode dispersion on XPM in terms of bit error rate, channel spacing etc for a two channel intensity modulation-direct detection WDM system at 10 Gb/s. It is found that the XPM induced crosstalk is polarization independent for channel spacing greater than 3 nm or PMD coefficient larger than 2 ps/√km. We also investigate the dependence of SOP variance on PMD coefficient and channel spacing.

  3. Radio-over-Fiber Transmission Using Vortex Modes

    DEFF Research Database (Denmark)

    Tatarczak, Anna; Lu, Xiaofeng; Rommel, Simon

    2015-01-01

    This paper demonstrates experimentally the distribution of radio-over-fiber (RoF) signals using orbital angular momentum (OAM) of light over standard OM4 multimode fiber (MMF) at 850 nm wavelength. Five independent OAM modes are used to convey RoF signals in the microwave regime showing robust pe...

  4. Next generation wireless communications using radio over fiber

    CERN Document Server

    Gomes, Nathan J; Gameiro, Atilio

    2012-01-01

    Taking a coherent and logical approach, this book describes the potential use of co-ordinated multipoint systems supported by radio over fiber. It covers an impressive breadth of topics, ranging from components, subsystem and system architecture, to network management and business perspectives. The authors show the importance of radio over fiber in eliminating or mitigating against the current, perceived barriers to the use of co-ordinated multipoint, and the drivers for standardisation activities in future mobile/wireless systems over the next few years. The book brings together the

  5. Reflective electroabsorption modular for compact base station radio-over-fiber systems

    Science.gov (United States)

    Wu, Yang; Chang, Wei-Xi; Yu, Paul K. L.

    2003-07-01

    A Radio-over-Fiber system with simplified Base Station (BS) is proposed in which a single chip DBR Reflective Electro-absorption Modulator (REAM) serves both as an optical transceiver and as a mixer at the BS. It enables full duplex optical transmission for base band and RF band services simultaneously due to good isolation between uplink and downlink at the same chip. Grating structure is incorporated into the EA modulator for the sake of system design. It also improves yield and efficiency of high-speed devices.

  6. Performance improvement on a MIMO radio-over-fiber system by probabilistic shaping

    Science.gov (United States)

    Kong, Miao; Yu, Jianjun

    2018-01-01

    As we know, probabilistic shaping (PS), as a typical one of modulation format optimization technologies, becomes a promising technology and attracts more and more attention, because of its higher transmission capacity and lower computation complexity. In this paper, we experimentally demonstrated a reliable 8 Gbaud-rate delivery of polarization multiplexed PS 16-QAM single carrier signal in a MIMO radio-over-fiber system with 20-km SMF-28 wire link and 2.5-m wireless link at 60 GHz. The BER performance of PS 16-QAM signals at different baud rate was also evaluated. What is more, PS 16-QAM was also experimentally compared with uniform 16-QAM, and it can be concluded that PS 16-QAM brings a better compromise between effectiveness and reliability performance and a higher capacity than uniform 16-QAM for the radio-over-fiber system.

  7. An OTDM-To-WDM Converter Using Optical Fourier Transformation

    OpenAIRE

    Khin Su Myat Min; Zaw Myo Lwin; Hla Myo Tun

    2015-01-01

    We demonstrate serial-to-parallel conversion of 40 Gbps optical time division multiplexed OTDM signal to 4x10 Gbps wavelength division-multiplexed WDM individual channels by using Optical Fourier Transformation OFT method. OFT is also called time lens technique and it is implemented by the combination of dispersive fiber and phase modulation. In this research electro-optic phase modulator EOM is used as time lens. As our investigations simulation results and bit error rate BER measurements ar...

  8. An OTDM-To-WDM Converter Using Optical Fourier Transformation

    Directory of Open Access Journals (Sweden)

    Khin Su Myat Min

    2015-08-01

    Full Text Available We demonstrate serial-to-parallel conversion of 40 Gbps optical time division multiplexed OTDM signal to 4x10 Gbps wavelength division-multiplexed WDM individual channels by using Optical Fourier Transformation OFT method. OFT is also called time lens technique and it is implemented by the combination of dispersive fiber and phase modulation. In this research electro-optic phase modulator EOM is used as time lens. As our investigations simulation results and bit error rate BER measurements are expressed.

  9. Full-duplex radio-over-fiber system with tunable millimeter-wave signal generation and wavelength reuse for upstream signal.

    Science.gov (United States)

    Wang, Yiqun; Pei, Li; Li, Jing; Li, Yueqin

    2017-06-10

    A full-duplex radio-over-fiber system is proposed, which provides both the generation of a millimeter-wave (mm-wave) signal with tunable frequency multiplication factors (FMFs) and wavelength reuse for uplink data. A dual-driving Mach-Zehnder modulator and a phase modulator are cascaded to form an optical frequency comb. An acousto-optic tunable filter based on a uniform fiber Bragg grating (FBG-AOTF) is employed to select three target optical sidebands. Two symmetrical sidebands are chosen to generate mm waves with tunable FMFs up to 16, which can be adjusted by changing the frequency of the applied acoustic wave. The optical carrier is reused at the base station for uplink connection. FBG-AOTFs driven by two acoustic wave signals are experimentally fabricated and further applied in the proposed scheme. Results of the research indicate that the 2-Gbit/s data can be successfully transmitted over a 25-km single-mode fiber for bidirectional full-duplex channels with power penalty of less than 2.6 dB. The feasibility of the proposed scheme is verified by detailed simulations and partial experiments.

  10. Optical chaos and hybrid WDM/TDM based large capacity quasi-distributed sensing network with real-time fiber fault monitoring.

    Science.gov (United States)

    Luo, Yiyang; Xia, Li; Xu, Zhilin; Yu, Can; Sun, Qizhen; Li, Wei; Huang, Di; Liu, Deming

    2015-02-09

    An optical chaos and hybrid wavelength division multiplexing/time division multiplexing (WDM/TDM) based large capacity quasi-distributed sensing network with real-time fiber fault monitoring is proposed. Chirped fiber Bragg grating (CFBG) intensity demodulation is adopted to improve the dynamic range of the measurements. Compared with the traditional sensing interrogation methods in time, radio frequency and optical wavelength domains, the measurand sensing and the precise locating of the proposed sensing network can be simultaneously interrogated by the relative amplitude change (RAC) and the time delay of the correlation peak in the cross-correlation spectrum. Assisted with the WDM/TDM technology, hundreds of sensing units could be potentially multiplexed in the multiple sensing fiber lines. Based on the proof-of-concept experiment for axial strain measurement with three sensing fiber lines, the strain sensitivity up to 0.14% RAC/με and the precise locating of the sensors are achieved. Significantly, real-time fiber fault monitoring in the three sensing fiber lines is also implemented with a spatial resolution of 2.8 cm.

  11. Generation of 1.024-Tb/s Nyquist-WDM phase-conjugated twin vector waves by a polarization-insensitive optical parametric amplifier for fiber-nonlinearity-tolerant transmission

    DEFF Research Database (Denmark)

    Liu, Xiang; Hu, Hao; Chandrasekhar, S.

    2014-01-01

    We experimentally demonstrate the generation of 1.024-Tb/s Nyquist-WDM phase-conjugated vector twin waves (PCTWs), consisting of eight 128-Gb/s polarization-division-multiplexed QPSK signals and their idlers, by a broadband polarization-insensitive fiber optic parametric amplifier. This novel all...

  12. Developments in photonic and mm-wave component technology for fiber radio

    Science.gov (United States)

    Iezekiel, Stavros

    2013-01-01

    A review of photonic component technology for fiber radio applications at 60 GHz will be given. We will focus on two architectures: (i) baseband-over-fiber and (ii) RF-over-fiber. In the first approach, up-conversion to 60 GHz is performed at the picocell base stations, with data being transported over fiber, while in the second both the data and rum­ wave carrier are transported over fiber. For the baseband-over-fiber scheme, we examine techniques to improve the modulation efficiency of directly­ modulated fiber links. These are based on traveling-wave structures applied to series cascades of lasers. This approach combines the improvement in differential quantum efficiency with the ability to tailor impedance matching as required. In addition, we report on various base station transceiver architectures based on optically-controlled :tvfMIC self­ oscillating mixers, and their application to 60 GHz fiber radio. This approach allows low cost optoelectronic transceivers to be used for the baseband fiber link, whilst minimizing the impact of dispersion. For the RF-over-fiber scheme, we report on schemes for optical generation of 100 GHz. These use modulation of a Mach-Zehnder modulator at Vπ bias in cascade with a Mach-Zehnder driven by 1.25 Gb/s data. One of the issues in RF-over-fiber is dispersion, while reduced modulation efficiency due to the presence of the optical carrier is also problematic. We examine the use of silicon nitride micro-ring resonators for the production of optical single sideband modulation in order to combat dispersion, and for the reduction of optical carrier power in order to improve link modulation efficiency.

  13. SPM and XPM crosstalk in WDM systems with DRA: Channel spacing and attenuation effects

    Science.gov (United States)

    Morsy, Emadeldeen; Fayed, Heba A.; Abd El Aziz, Ahmed; Aly, Moustafa H.

    2018-06-01

    This paper presents a theoretical analysis of a closed formula for nonlinear crosstalk due to self-phase modulation (SPM) and cross phase modulation (XPM) in wavelength division multiplexing (WDM) systems. The influence of channel spacing and attenuation on the system behavior is modeled and investigated. The system under consideration is a standard single-mode fiber (SSMF) with a single-span distributed Raman amplifier (DRA) and is operating at 100 Gbps.

  14. On Radio over Fiber for Heterogeneous Wireless Networks

    DEFF Research Database (Denmark)

    Riaz, M. Tahir; Nielsen, Rasmus Hjorth; Pedersen, Jens Myrup

    2009-01-01

    The paper provides an overview of the radio over fiber (RoF) technology and its potential use in heterogeneous wireless networks. Wireless communications have seen a huge growth in the last decade. It has been estimated that five in every six people in the entire world will have a mobile phone...... in 2010. The vast growing use of Internet on the mobile devices has also been increased significantly. In order to provide a broadband access for mobile communications, a new wireless infrastructure (fiber optic networks for distributed, extendible heterogeneous radio architectures and service...... provisioning - FUTON) based on RoF technology has been introduced. The project adopts centralized processing of radio signals for number of wireless base stations can enhance the network performance in terms of bandwidth, and QoS parameters. The simplified remote access units (RAU) are expected to not only...

  15. A full-duplex CATV/wireless-over-fiber lightwave transmission system.

    Science.gov (United States)

    Li, Chung-Yi; Lu, Hai-Han; Ying, Cheng-Ling; Cheng, Chun-Jen; Lin, Che-Yu; Wan, Zhi-Wei; Chen, Jian-Hua

    2015-04-06

    A full-duplex CATV/wireless-over-fiber lightwave transmission system consisting of one broadband light source (BLS), two optical interleavers (ILs), one intensity modulator, and one phase modulator is proposed and experimentally demonstrated. The downstream light is optically promoted from 10Gbps/25GHz microwave (MW) data signal to 10Gbps/100GHz and 10Gbps/50GHz millimeter-wave (MMW) data signals in fiber-wireless convergence, and intensity-modulated with 50-550 MHz CATV signal. For up-link transmission, the downstream light is phase-remodulated with 10Gbps/25GHz MW data signal in fiber-wireless convergence. Over a 40-km single-mode fiber (SMF) and a 10-m radio frequency (RF) wireless transport, bit error rate (BER), carrier-to-noise ratio (CNR), composite second-order (CSO), and composite triple-beat (CTB) are observed to perform well in such full-duplex CATV/wireless-over-fiber lightwave transmission systems. This full-duplex 100-GHz/50-GHz/25-GHz/550-MHz lightwave transmission system is an attractive alternative. This transmission system not only presents its advancement in the integration of fiber backbone and CATV/wireless feeder networks, but also it provides the advantages of a communication channel for higher data rates and bandwidth.

  16. Photonic crystal fibers used in a multi-wavelength source and as transmission fiber in a WDM system

    DEFF Research Database (Denmark)

    Andersen, Peter Andreas; Zsigri, Beata; Peucheret, Christophe

    2004-01-01

    We present a WDM system based entirely on photonic crystal fibers. It includes a novel dispersion flattened highly nonlinear PCF to generate supercontinuum used in a multiwavelength pulse source and a 5.6 km transmission PCF.......We present a WDM system based entirely on photonic crystal fibers. It includes a novel dispersion flattened highly nonlinear PCF to generate supercontinuum used in a multiwavelength pulse source and a 5.6 km transmission PCF....

  17. Energy-efficient WDM-OFDM-PON employing shared OFDM modulation modules in optical line terminal.

    Science.gov (United States)

    Hu, Xiaofeng; Zhang, Liang; Cao, Pan; Wang, Kongtao; Su, Yikai

    2012-03-26

    We propose and experimentally demonstrate a scheme to improve the energy efficiency of wavelength division multiplexing - orthogonal frequency division multiplexing - passive optical networks (WDM-OFDM-PONs). By using an N × M opto-mechanic switch in optical line terminal (OLT), an OFDM modulation module is shared by several channels to deliver data to multiple users with low traffic demands during non-peak hours of the day, thus greatly reducing the number of operating devices and minimizing the energy consumption of the OLT. An experiment utilizing one OFDM modulation module to serve three optical network units (ONUs) in a WDM-OFDM-PON is performed to verify the feasibility of our proposal. Theoretical analysis and numerical calculation show that the proposed scheme can achieve a saving of 23.6% in the energy consumption of the OFDM modulation modules compared to conventional WDM-OFDM-PON.

  18. Stable radio frequency dissemination by simple hybrid frequency modulation scheme.

    Science.gov (United States)

    Yu, Longqiang; Wang, Rong; Lu, Lin; Zhu, Yong; Wu, Chuanxin; Zhang, Baofu; Wang, Peizhang

    2014-09-15

    In this Letter, we propose a fiber-based stable radio frequency transfer system by a hybrid frequency modulation scheme. Creatively, two radio frequency signals are combined and simultaneously transferred by only one laser diode. One frequency component is used to detect the phase fluctuation, and the other one is the derivative compensated signal providing a stable frequency for the remote end. A proper ratio of the frequencies of the components is well maintained by parameter m to avoid interference between them. Experimentally, a stable 200 MHz signal is transferred over 100 km optical fiber with the help of a 1 GHz detecting signal, and fractional instability of 2×10(-17) at 10(5) s is achieved.

  19. Reconfigurable remote access unit for W-band Radio-over-Fiber transmission

    DEFF Research Database (Denmark)

    Chorchos, Łukasz; Rommel, Simon; Turkiewicz, Jarosław P.

    2016-01-01

    There is a growing demand for cost-effective radio over fibre transmission techniques. In this paper, we propose and realize the reconfigurable remote access unit for radio-over-fiber transmission. The reconfigurable unit is build from the tunable filter and laser as well as remote controller...

  20. XPM-induced degradation of multilevel phase modulated channel caused by neighboring NRZ modulated channels

    DEFF Research Database (Denmark)

    Jensen, Jesper Bevensee; Schiellerup, G.; Peucheret, Christophe

    2008-01-01

    The impact of XPM from NRZ modulated channels on an 8-level phase modulated channel in a WDM system was investigated. Requirements on launch power are found. 400 km transmission was achieved with negligible penalty.......The impact of XPM from NRZ modulated channels on an 8-level phase modulated channel in a WDM system was investigated. Requirements on launch power are found. 400 km transmission was achieved with negligible penalty....

  1. Performance evaluation and optimization of multiband phase-modulated radio over IsOWC link with balanced coherent homodyne detection

    Science.gov (United States)

    Zong, Kang; Zhu, Jiang

    2018-04-01

    In this paper, we present a multiband phase-modulated (PM) radio over intersatellite optical wireless communication (IsOWC) link with balanced coherent homodyne detection. The proposed system can provide the transparent transport of multiband radio frequency (RF) signals with higher linearity and better receiver sensitivity than intensity modulated with direct detection (IM/DD) system. The expressions of RF gain, noise figure (NF) and third-order spurious-free dynamic range (SFDR) are derived considering the third-order intermodulation product and amplifier spontaneous emission (ASE) noise. The optimal power of local oscillator (LO) optical signal is also derived theoretically. Numerical results for RF gain, NF and third-order SFDR are given for demonstration. Results indicate that the gain of the optical preamplifier and the power of LO optical signal should be optimized to obtain the satisfactory performance.

  2. Performance of a 60-GHz DCM-OFDM and BPSK-Impulse Ultra-Wideband System with Radio-Over-Fiber and Wireless Transmission Employing a Directly-Modulated VCSEL

    DEFF Research Database (Denmark)

    Beltrán, Marta; Jensen, Jesper Bevensee; Yu, Xianbin

    2011-01-01

    The performance of radio-over-fiber optical transmission employing vertical-cavity surface-emitting lasers (VCSELs), and further wireless transmission, of the two major ultra-wideband (UWB) implementations is reported when operating in the 60-GHz radio band. Performance is evaluated at 1.44 Gbit...... in bend-insensitive single-mode fiber with wireless transmission up to 5 m in both cases is demonstrated with no penalty. A simulation analysis has also been performed in order to investigate the operational limits. The analysis results are in excellent agreement with the experimental work and indicate...... good tolerance to chromatic dispersion due to the chirp characteristics of electro-optical conversion when a directly-modulated VCSEL is employed. The performance comparison indicates that BPSK-IR UWB exhibits better tolerance to optical transmission impairments requiring lower received optical power...

  3. 24-26  GHz radio-over-fiber and free-space optics for fifth-generation systems.

    Science.gov (United States)

    Bohata, Jan; Komanec, Matěj; Spáčil, Jan; Ghassemlooy, Zabih; Zvánovec, Stanislav; Slavík, Radan

    2018-03-01

    This Letter outlines radio-over-fiber combined with radio-over-free-space optics (RoFSO) and radio frequency free-space transmission, which is of particular relevance for fifth-generation networks. Here, the frequency band of 24-26 GHz is adopted to demonstrate a low-cost, compact, and high-energy-efficient solution based on the direct intensity modulation and direct detection scheme. For our proof-of-concept demonstration, we use 64 quadrature amplitude modulation with a 100 MHz bandwidth. We assess the link performance by exposing the RoFSO section to atmospheric turbulence conditions. Further, we show that the measured minimum error vector magnitude (EVM) is 4.7% and also verify that the proposed system with the free-space-optics link span of 100 m under strong turbulence can deliver an acceptable EVM of <9% with signal-to-noise ratio levels of 22 dB and 10 dB with and without turbulence, respectively.

  4. Ultrahigh-Spectral-Efficiency WDM/SDM Transmission Using PDM-1024-QAM Probabilistic Shaping With Adaptive Rate

    DEFF Research Database (Denmark)

    Hu, Hao; Yankov, Metodi Plamenov; Da Ros, Francesco

    2018-01-01

    We demonstrate wavelength-division-multiplexed (WDM) and space-division-multiplexed (SDM) transmission of probabilistically shaped polarization-division-multiplexed (PDM) 1024-state quadrature amplitude modulation (QAM) channels over a 9.7-km single-mode 30-core fiber, achieving aggregated spectr...

  5. 2x2 MIMO-OFDM Gigabit fiber-wireless access system based on polarization division multiplexed WDM-PON

    DEFF Research Database (Denmark)

    Deng, Lei; Pang, Xiaodan; Zhao, Ying

    2012-01-01

    We propose a spectral efficient radio over wavelength division multiplexed passive optical network (WDM-PON) system by combining optical polarization division multiplexing (PDM) and wireless multiple input multiple output (MIMO) spatial multiplexing techniques. In our experiment, a training-based...

  6. Dispersive-cavity actively mode-locked fiber laser for stable radio frequency delivery

    International Nuclear Information System (INIS)

    Dai, Yitang; Wang, Ruixin; Yin, Feifei; Xu, Kun; Li, Jianqiang; Lin, Jintong

    2013-01-01

    We report a novel technique for highly stable transfer of a radio frequency (RF) comb over long optical fiber link, which is highly dispersive and is a part of an actively mode-locked fiber laser. Phase fluctuation along the fiber link, which is mainly induced by physical vibration and temperature fluctuations, is automatically compensated by the self-adapted wavelength shifting. Without phase-locking loop or any tunable parts, stable radio frequency is transferred over a 2-km fiber link, with a time jitter suppression ratio larger than 110. (letter)

  7. WDM PONs based on colorless technology

    Science.gov (United States)

    Saliou, Fabienne; Simon, Gael; Chanclou, Philippe; Pizzinat, Anna; Lin, Huafeng; Zhou, Enyu; Xu, Zhiguang

    2015-12-01

    Wavelength Division Multiplexing (WDM) Passive Optical Network (PON) is foreseen to be part of the Next Generation Passive Optical Networks. Business and mobile fronthaul networks already express the need to develop WDM PONs in the access segment. Fixed wavelength transceivers based on Coarse WDM are already available to respond to today's market needs but Dense WDM technologies will be needed and colorless technologies are essential to provide simple and cost-effective WDM PON systems. We propose in this paper to demonstrate the capabilities of a DWDM PON system prototype based on self-seeded RSOAs and designed to transmit CPRI over 60 km of fiber at 2.5 Gbit/s.

  8. Performance evaluation of a real time OFDM radio over fiber system at 2.5 GHz using software defined radio SDR

    DEFF Research Database (Denmark)

    David Cepeda, Juan; Rodriguez, Santiago Isaac; Rico-Martinez, Monica

    2017-01-01

    This paper presents the implementation of an OFDM radio over fiber (RoF) system at 2.5 GHz using software defined radio (SDR). In this work, first we present an introduction of the main concepts about radio over fiber and an orthogonal frequency-division multiplexing (OFDM) system at 2.5 GHz......, then we present a comparison of an OFDM RoF system in three scenarios, modifying the wireless distances and the optical fiber distance in order to evaluate the performance of the system taking into account the symbol error rate (SER) vs signal to noise ratio (SNR) curves....

  9. Link Design Rules for Cost-Effective Short-Range Radio Over Multimode Fiber Systems

    DEFF Research Database (Denmark)

    Visani, Davide; Tartarini, Giovanni; Petersen, Martin Nordal

    2010-01-01

    Referring to short-range radio over multimode fiber links, we find out important guidelines for the realization of cost-effective intensity modulated directly detected systems. Since the quality of today's connectors is considerably higher than in the past, we demonstrate that two important...... parameters of the system are the finite detecting area of the photodiode and the laser frequency chirp. Furthemore, we show that the use of the central launch technique inherently determines a lower impact of modal noise fluctuations with respect to the offset launch one. This makes CL more convenient...

  10. 40Gbit/s MDM-WDM Laguerre-Gaussian Mode with Equalization for Multimode Fiber in Access Networks

    Science.gov (United States)

    Fazea, Yousef; Amphawan, Angela

    2018-04-01

    Modal dispersion is seen as the primary impairment for multimode fiber. Mode division multiplexing (MDM) is a promising technology that has been realized as a favorable technology for considerably upsurges the capacity and distance of multimode fiber in conjunction with Wavelength Division Multiplexing (WDM) for fiber-to-the-home. This paper reveals the importance of an equalization technique in conjunction with controlling the modes spacing of mode division multiplexing-wavelength division multiplexing of Laguerre-Gaussian modes to alleviate modal dispersion for multimode fiber. The effects of channel spacing of 20 channels MDM-WDM were examined through controlling the azimuthal mode number and the radial mode number of Laguerre-Gaussian modes. A data rate of 40Gbit/s was achieved for a distance of 1,500 m for MDM-WDM.

  11. Radio over fiber link with adaptive order n‐QAM optical phase modulated OFDM and digital coherent detection

    DEFF Research Database (Denmark)

    Arlunno, Valeria; Borkowski, Robert; Guerrero Gonzalez, Neil

    2011-01-01

    Successful digital coherent demodulation of asynchronous optical phase‐modulated adaptive order QAM (4, 16, and 64) orthogonal frequency division multiplexing signals is achieved by a single reconfigurable digital receiver after 78 km of optical deployed fiber transmission....

  12. Monolithically integrated 8-channel WDM reflective modulator

    NARCIS (Netherlands)

    Stopinski, S.T.; Malinowski, M.; Piramidowicz, R.; Smit, M.K.; Leijtens, X.J.M.

    2013-01-01

    In this work the design and characterization of a monolithically integrated photonic circuit acting as a reflective modulator for eight WDM channels is presented. The chip was designed and fabricated in a generic integration technology

  13. Radio-over-fiber linearization with optimized genetic algorithm CPWL model.

    Science.gov (United States)

    Mateo, Carlos; Carro, Pedro L; García-Dúcar, Paloma; De Mingo, Jesús; Salinas, Íñigo

    2017-02-20

    This article proposes an optimized version of a canonical piece-wise-linear (CPWL) digital predistorter in order to enhance the linearity of a radio-over-fiber (RoF) LTE mobile fronthaul. In this work, we propose a threshold allocation optimization process carried out by a genetic algorithm (GA) in order to optimize the CPWL model (GA-CPWL). Firstly, experiments show how the CPWL model outperforms the classical memory polynomial DPD in an intensity modulation/direct detection (IM/DD) RoF link. Then, the GA-CPWL predistorter is compared with the CPWL model in several scenarios, in order to verify that the proposed DPD offers better performance in different optical transmission conditions. Experimental results reveal that with a proper threshold allocation, the GA-CPWL predistorter offers very promising outcomes.

  14. Optical Switching for Dynamic Distribution of Wireless-over-Fiber Signals

    DEFF Research Database (Denmark)

    Rodes Lopez, Guillermo Arturo; Vegas Olmos, Juan José; Karinou, Fotini

    2012-01-01

    In this paper, we report on an experimental validation of dynamic distribution of wireless-over-fiber by employing optical switching using semiconductor optical amplifiers; the rest of the network was designed according to the channel distribution over the optical spectra required by the optical...... switch. An experimental validation was also conducted. The experiment consists of a four wavelength division multiplexed (WDM) channel system operating on a WiMax frequency band, and employing an orthogonal frequency-division multiplexing (OFDM) modulation at 625 Mbit/s per channel, transmission...... of the data over 20 km of optical fiber, and active switching in a one-by-sixteen active optical switch. The results show a negligible power penalty on each channel, for both the best and the worst case in terms of inter-channel crosstalk....

  15. Detection and processing of phase modulated optical signals at 40 Gbit/s and beyond

    DEFF Research Database (Denmark)

    Geng, Yan

    the amplitude regeneration capability based on FWM in a highly nonlinear fiber (HNLF). The first reported experimental demonstration of amplitude equalization of 40 Gbit/s RZ-DPSK signals using a 500 m long HNLF is presented. Using four possible phase levels to carry the information, DQPSK allows generation......This thesis addresses demodulation in direct detection systems and signal processing of high speed phase modulated signals in future all-optical wavelength division multiplexing (WDM) communication systems where differential phase shift keying (DPSK) or differential quadrature phase shift keying...... (DQPSK) are used to transport information. All-optical network functionalities -such as optical labeling, wavelength conversion and signal regeneration- are experimentally investigated. Direct detection of phase modulated signals requires phase-to-intensity modulation conversion in a demodulator...

  16. Linearization Technologies for Broadband Radio-Over-Fiber Transmission Systems

    Directory of Open Access Journals (Sweden)

    Xiupu Zhang

    2014-11-01

    Full Text Available Linearization technologies that can be used for linearizing RoF transmission are reviewed. Three main linearization methods, i.e. electrical analog linearization, optical linearization, and electrical digital linearization are presented and compared. Analog linearization can be achieved using analog predistortion circuits, and can be used for suppression of odd order nonlinear distortion components, such as third and fifth order. Optical linearization includes mixed-polarization, dual-wavelength, optical channelization and the others, implemented in optical domain, to suppress both even and odd order nonlinear distortion components, such as second and third order. Digital predistortion has been a widely used linearization method for RF power amplifiers. However, digital linearization that requires analog to digital converter is severely limited to hundreds of MHz bandwidth. Instead, analog and optical linearization provide broadband linearization with up to tens of GHz. Therefore, for broadband radio over fiber transmission that can be used for future broadband cloud radio access networks, analog and optical linearization are more appropriate than digital linearization. Generally speaking, both analog and optical linearization are able to improve spur-free dynamic range greater than 10 dB over tens of GHz. In order for current digital linearization to be used for broadband radio over fiber transmission, the reduced linearization complexity and increased linearization bandwidth are required. Moreover, some digital linearization methods in which the complexity can be reduced, such as Hammerstein type, may be more promising and require further investigation.

  17. 3.125 Gb/s impulse radio ultra-wideband photonic generation and distribution Over a 50 km Fiber With Wireless Transmission

    DEFF Research Database (Denmark)

    Gibbon, Timothy Braidwood; Yu, Xianbin; Gamatham, Romeo

    2010-01-01

    A 3.125 Gb/s photonic impulse radio ultra-wideband signal is created using the incoherent optical field summation resulting from the cross gain modulation of an uncooled distributed feedback laser injected with an external cavity laser. After 50 km of fiber and wireless transmission over 2.9-3.3-m...

  18. Broadband photonic single sideband frequency up-converter based on the cross polarization modulation effect in a semiconductor optical amplifier for radio-over-fiber systems.

    Science.gov (United States)

    Lee, Seung-Hun; Kim, Hyoung-Jun; Song, Jong-In

    2014-01-13

    A broadband photonic single sideband (SSB) frequency up-converter based on the cross polarization modulation (XPolM) effect in a semiconductor optical amplifier (SOA) is proposed and experimentally demonstrated. An optical radio frequency (RF) signal in the form of an optical single sideband (OSSB) is generated by the photonic SSB frequency up-converter to solve the power fading problem caused by fiber chromatic dispersion. The generated OSSB RF signal has almost identical optical carrier power and optical sideband power. This SSB frequency up-conversion scheme shows an almost flat electrical RF power response as a function of the RF frequency in a range from 31 GHz to 75 GHz after 40 km single mode fiber (SMF) transmission. The photonic SSB frequency up-conversion technique shows negligible phase noise degradation. The phase noise of the up-converted RF signal at 49 GHz for an offset of 10 kHz is -93.17 dBc/Hz. Linearity analysis shows that the photonic SSB frequency up-converter has a spurious free dynamic range (SFDR) value of 79.51 dB · Hz(2/3).

  19. Effective Design for Optical CDMA Based on Radio over Fiber (RoF Technique

    Directory of Open Access Journals (Sweden)

    Rashidi C. B. M.

    2017-01-01

    Full Text Available In this paper, the performance of OCDMA coding systems utilizing the radio over fiber (RoF technique is presented. It has been done by means of conventional OptiSystem simulation tools, where the propagation of radio signals up to 50 km using standard single mode fiber (SMF was investigated. The analysis was made based on the performance of eye diagram, bit rate, bit error rate and optical received power.

  20. Ultra-high capacity WDM-SDM optical access network with self-homodyne detection downstream and 32QAM-FBMC upstream.

    Science.gov (United States)

    Feng, Zhenhua; Xu, Liang; Wu, Qiong; Tang, Ming; Fu, Songnian; Tong, Weijun; Shum, Perry Ping; Liu, Deming

    2017-03-20

    Towards 100G beyond large-capacity optical access networks, wavelength division multiplexing (WDM) techniques incorporating with space division multiplexing (SDM) and affordable spectrally efficient advanced modulation formats are indispensable. In this paper, we proposed and experimentally demonstrated a cost-efficient multicore fiber (MCF) based hybrid WDM-SDM optical access network with self-homodyne coherent detection (SHCD) based downstream (DS) and direct detection optical filter bank multi carrier (DDO-FBMC) based upstream (US). In the DS experiments, the inner core of the 7-core fiber is used as a dedicated channel to deliver the local oscillator (LO) lights while the other 6 outer cores are used to transmit 4 channels of wavelength multiplexed 200-Gb/s PDM-16QAM-OFDM signals. For US transmission, 4 wavelengths with channel spacing of 100 GHz are intensity modulated with 30 Gb/s 32-QAM-FBMC and directly detected by a ~7 GHz bandwidth receiver after transmission along one of the outer core. The results show that a 4 × 6 × 200-Gb/s DS transmission can be realized over 37 km 7-core fiber without carrier frequency offset (CFO) and phase noise (PN) compensation even using 10 MHz linewidth DFB lasers. The SHCD based on MCF provides a compromise and cost efficient scheme between conventional intradyne coherent detection and intensity modulation and direct detection (IM/DD) schemes. Both US and DS have acceptable BER performance and high spectral efficiency.

  1. Full distortion induced by dispersion evaluation and optical bandwidth constraining of fiber Bragg grating demultiplexers over analogue SCM systems.

    Science.gov (United States)

    Martinez, Alfonso; Pastor, Daniel; Capmany, Jose

    2002-12-30

    We provide a full analysis of the distortion effects produced by the first and second order in-band dispersion of fiber Bragg grating based optical demultiplexers over analogue SCM (Sub Carrier Multiplexed) signals. Optical bandwidth utilization ranges for Dense WDM network are calculated considering different SCM system cases of frequency extension and modulation conditions.

  2. Cross layer optimization for cloud-based radio over optical fiber networks

    Science.gov (United States)

    Shao, Sujie; Guo, Shaoyong; Qiu, Xuesong; Yang, Hui; Meng, Luoming

    2016-07-01

    To adapt the 5G communication, the cloud radio access network is a paradigm introduced by operators which aggregates all base stations computational resources into a cloud BBU pool. The interaction between RRH and BBU or resource schedule among BBUs in cloud have become more frequent and complex with the development of system scale and user requirement. It can promote the networking demand among RRHs and BBUs, and force to form elastic optical fiber switching and networking. In such network, multiple stratum resources of radio, optical and BBU processing unit have interweaved with each other. In this paper, we propose a novel multiple stratum optimization (MSO) architecture for cloud-based radio over optical fiber networks (C-RoFN) with software defined networking. Additionally, a global evaluation strategy (GES) is introduced in the proposed architecture. MSO can enhance the responsiveness to end-to-end user demands and globally optimize radio frequency, optical spectrum and BBU processing resources effectively to maximize radio coverage. The feasibility and efficiency of the proposed architecture with GES strategy are experimentally verified on OpenFlow-enabled testbed in terms of resource occupation and path provisioning latency.

  3. Radio over fiber for wireless communications from fundamentals to advanced topics

    CERN Document Server

    Fernando, Xavier N

    2014-01-01

    A comprehensive evaluation of Fi-Wi,  enabling readers to design links using channel estimation and equalization algorithms  This book provides a detailed study of radio over fiber (ROF) based wireless communication systems, otherwise called fiber wireless (Fi-Wi) systems. This is an emerging hot topic where the abundant bandwidth of optical fiber is directly combined with the flexibility and mobility of wireless networks to provide broadband connectivity.  Its application is increasing because of the growing demand for broadband wireless services. In such a system the transmission of the ra

  4. Information rates of next-generation long-haul optical fiber systems using coded modulation

    NARCIS (Netherlands)

    Liga, G.; Alvarado, A.; Agrell, E.; Bayvel, P.

    2017-01-01

    A comprehensive study of the coded performance of long-haul spectrally-efficient WDM optical fiber transmission systems with different coded modulation decoding structures is presented. Achievable information rates are derived for three different square QAM formats and the optimal format is

  5. All-optical WDM Regeneration of DPSK Signals using Optical Fourier Transformation and Phase Sensitive Amplification

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Kjøller, Niels-Kristian

    2015-01-01

    We propose a novel all-optical WDM regeneration scheme for DPSK signals based on optical Fourier transformation and phase sensitive amplification. Phase regeneration of a WDM signal consisting of 4x10-Gbit/s phase noise degraded DPSK channels is demonstrated for the first time.......We propose a novel all-optical WDM regeneration scheme for DPSK signals based on optical Fourier transformation and phase sensitive amplification. Phase regeneration of a WDM signal consisting of 4x10-Gbit/s phase noise degraded DPSK channels is demonstrated for the first time....

  6. Integrated Coherent Radio-over-Fiber Units for Millimeter-Wave Wireless Access

    DEFF Research Database (Denmark)

    Stöhr, A.; Babiel, S.; Chuenchom, M.

    2015-01-01

    For providing wireless access as a complementary access technology to direct optical access, supporting 1–10 Gb/s per client, we propose a novel scheme based upon the transparent integration of coherent Radio-over-Fiber (CRoF) units with next generation optical access (NGOA) networks using dense ...

  7. Simultaneous transmission of 256-QAM WIMAX at 5.7GHz and optically generated impulse radio UWB over fiber for indoor wireless multi-services

    DEFF Research Database (Denmark)

    Yu, Xianbin; Yin, Xiaoli; Gibbon, Timothy Braidwood

    2010-01-01

    Fiber transmission of simultaneous optically generated FCC compliant 625Mbps impulse radio UWB and 80Mbps 256-QAM IEEE 802.16 WIMAX signals is experimentally demonstrated by using a single directly modulated light source.......Fiber transmission of simultaneous optically generated FCC compliant 625Mbps impulse radio UWB and 80Mbps 256-QAM IEEE 802.16 WIMAX signals is experimentally demonstrated by using a single directly modulated light source....

  8. A Review on Radio-Over-Fiber Technology-Based Integrated (Optical/Wireless) Networks

    Science.gov (United States)

    Rajpal, Shivika; Goyal, Rakesh

    2017-06-01

    In the present paper, radio-over-fiber (RoF) technology has been proposed, which is the integration of the optical and radio networks. With a high transmission capacity, comparatively low cost and low attenuation, optical fiber provides an ideal solution for accomplishing the interconnections. In addition, a radio system enables the significant mobility, flexibility and easy access. Therefore, the system integration can meet the increasing demands of subscribers for voice, data and multimedia services that require the access network to support high data rates at any time and any place inexpensively. RoF has the potentiality to the backbone of the wireless access network and it has gained significant momentum in the last decade as a potential last-mile access scheme. This paper gives the comprehensive review of RoF technology used in the communication system. Concept, applications, advantages and limitations of RoF technology are also discussed in this paper.

  9. Bidirectional 3.125 Gbps downstream / 2 Gbps upstream impulse radio ultrawide-band (UWB) over combined fiber and wireless link

    DEFF Research Database (Denmark)

    Jensen, Jesper Bevensee; Gibbon, Timothy Braidwood; Yu, Xianbin

    2010-01-01

    We demonstrate bidirectional fiber and wireless transmission of impulse radio ultra-wideband at 3.125 Gbps downstream and 2 Gbps upstream. After transmission over 50 km fiber and 1.85 m wireless link both signals are recovered without errors.......We demonstrate bidirectional fiber and wireless transmission of impulse radio ultra-wideband at 3.125 Gbps downstream and 2 Gbps upstream. After transmission over 50 km fiber and 1.85 m wireless link both signals are recovered without errors....

  10. Coverage Range and Cost Comparison of Remote Antenna Unit Designs for Inbuilding Radio over Fiber Technology

    Directory of Open Access Journals (Sweden)

    Razali Ngah

    2013-09-01

    Full Text Available Future communication needs to be ubiquitous, broadband, convergent, and seamless. Radio over fiber (RoF technology is one of the most important enabler in access network for the technologies. Adoption of RoF faces bottleneck in optoelectronics, that they are still expensive, high power consumption, and limited in bandwidth. To solve the problem, transceiver in remote antenna unit (RAU is developed, i.e. electroabsorption transceiver (EAT and asymmetric FabryPerot modulator (AFPM. This paper compares their coverage range and cost in providing WCDMA and WLAN services. Needed gain of RF amplifier for supporting picocell is also discussed.

  11. Nonlinearity and Phase Noise Tolerant 75-110 GHz Signal over Fiber System Using Phase Modulation Technique

    DEFF Research Database (Denmark)

    Deng, Lei; Pang, Xiaodan; Zhang, Xu

    2013-01-01

    We report on the transmission of 8 Gb/s 0 dB PAPR 16QAM-OFDM W-band (75-110 GHz) signals over 22.8km SMF without phase noise compensation by using a phase modulator in the optical heterodyne up-convertor....

  12. Next Generation Radio over Fiber Network Management for a Distributed Antenna System

    DEFF Research Database (Denmark)

    Santiago, Carlos; Gangopadhyay, Bodhisattwa; arsenio, Artur

    2009-01-01

    Dette dokument beskriver funktioner og procedurer i futon Radio Over Fiber Manager til at operere med det øvre (net) og nederste (fysiske) lag, der anvendes til transport af trådløse signaler mellem en central enhed (CU) og Remote Antenna Units. Også, det giver nogle mekanismer og procedurer, der...

  13. Demonstration of digital fronthaul over self-seeded WDM-PON in commercial LTE environment.

    Science.gov (United States)

    Ma, Yiran; Xu, Zhiguang; Zhang, Chengliang; Lin, Huafeng; Wang, Qing; Zhou, Min; Wang, Heng; Yu, Jingwen; Wang, Xiaomu

    2015-05-04

    CPRI between BBU and RRU equipment is carried by self-seeded WDM-PON prototype system within commercial LTE end-to-end environment. Delay and jitter meets CPRI requirements while services demonstrated show the same performance as bare fiber.

  14. Dual-tone optical vector millimeter wave signal generated by frequency-nonupling the radio frequency 16-star quadrature-amplitude-modulation signal

    Science.gov (United States)

    Wu, Tonggen; Ma, Jianxin

    2017-12-01

    This paper proposes an original scheme to generate the photonic dual-tone optical millimeter wave (MMW) carrying the 16-star quadrature-amplitude-modulation (QAM) signal via an optical phase modulator (PM) and an interleaver with adaptive photonic frequency-nonupling without phase precoding. To enable the generated optical vector MMW signal to resist the power fading effect caused by the fiber chromatic dispersion, the modulated -5th- and +4th-order sidebands are selected from the output of the PM, which is driven by the precoding 16-star QAM signal. The modulation index of the PM is optimized to gain the maximum opto-electrical conversion efficiency. A radio over fiber link is built by simulation, and the simulated constellations and the bit error rate graph demonstrate that the frequency-nonupling 16-star QAM MMW signal has good transmission performance. The simulation results agree well with our theoretical results.

  15. WDM hybrid microoptical transceiver with Bragg volume grating

    Science.gov (United States)

    Jeřábek, Vitezslav; Armas, Julio; Mareš, David; Prajzler, Václav

    2012-02-01

    The paper presents the design, simulation and construction results of the wavelength division multiplex bidirectional transceiver module (WDM transceiver) for the passive optical network (PON) of a fiber to the home (FTTH) topology network. WDM transceiver uses a microoptical hybrid integration technology with volume holographic Bragg grating triplex filter -VHGT and a collimation lenses imagine system for wavelength multiplexing/ demultiplexing. This transmission type VHGT filter has high diffraction angle, very low insertion loses and optical crosstalk, which guide to very good technical parameters of transceiver module. WDM transceiver has been constructed using system of a four micromodules in the new circle topology. The optical micromodule with VHGT filter and collimation and decollimation lenses, two optoelectronics microwave receiver micromodules for receiving download information (internet and digital TV signals) and optoelectronic transmitter micromodule for transmitting upload information. In the paper is presented the optical analysis of the optical imagine system by ray-transfer matrix. We compute and measure VHGT characteristics such as diffraction angle, diffraction efficiency and diffraction crosstalk of the optical system for 1310, 1490 and 1550 nm wavelength radiation. For the design of optoelectronic receiver micromodule was used the low signal electrical equivalent circuit for the dynamic performance signal analysis. In the paper is presented the planar form WDM transceiver with polymer optical waveguides and two stage interference demultiplexing optical filter as well.

  16. Enhanced bit rate-distance product impulse radio ultra-wideband over fiber link

    DEFF Research Database (Denmark)

    Rodes Lopez, Roberto; Jensen, Jesper Bevensee; Caballero Jambrina, Antonio

    2010-01-01

    We report on a record distance and bit rate-wireless impulse radio (IR) ultra-wideband (UWB) link with combined transmission over a 20 km long fiber link. We are able to improve the compliance with the regulated frequency emission mask and achieve bit rate-distance products as high as 16 Gbit/s·m....

  17. Measurement of Chromatic Dispersion using the Baseband Radio-Frequency Response of a Phase-Modulated Analog Optical Link Employing a Reference Fiber

    National Research Council Canada - National Science Library

    McKinney, Jason D; Diehl, John

    2007-01-01

    In this work we demonstrate a new technique for measuring the chromatic dispersion of an optical fiber using the baseband RF response of a phase-modulated analog optical link in concert with a well...

  18. Experimental Demonstration of Nonlinearity and Phase Noise Tolerant 16-QAM OFDM W-Band (75–110 GHz) Signal Over Fiber System

    DEFF Research Database (Denmark)

    Deng, Lei; Pang, Xiaodan; Tafur Monroy, Idelfonso

    2014-01-01

    We propose a nonlinearity and phase noise tolerant orthogonal frequency division multiplexing (OFDM) W-band signal over fiber system based on phase modulation and photonic heterodyne up-conversion techniques. By heterodyne mixing the phase-modulated optical OFDM signal with a free-running laser i...

  19. All-optical wavelength converter based on fiber cross-phase modulation and fiber Bragg grating

    Czech Academy of Sciences Publication Activity Database

    Honzátko, Pavel

    2010-01-01

    Roč. 283, č. 9 (2010), s. 1744-1749 ISSN 0030-4018 R&D Projects: GA AV ČR 1ET300670502 Institutional research plan: CEZ:AV0Z20670512 Keywords : Wavelength conversion * Fiber cross phase modulation * Fiber Bragg grating Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.517, year: 2010

  20. Transfer function of radio over fiber multimode fiber optic links considering third-order dispersion.

    Science.gov (United States)

    Capmany, J; Gasulla, Ivana

    2007-08-20

    Although a considerable number of multimode fiber (MMF) links operate in a wavelength region around 850 nm where chromatic dispersion of a given modal group mu is described adequately by the second derivative beta(mu) (2) of the propagation constant beta(mu)(omega), there is also an increasing interest in MMF links transmitting in the second spectral window (@1300nm) where this second derivative vanishes being thus necessary to consider the third derivative beta(mu) (3) in the evaluation of the transfer function of the multimode fiber link. We present in this paper, for the first time to our knowledge, an analytical model for the transfer function of a multimode fiber (MMF) optic link taken into account the impact of third-order dispersion. The model extends the operation of a previously reported one for second-order dispersion. Our results show that the performance of broadband radio over fiber transmission through middle-reach distances can be improved by working at the minimum-dispersion wavelength as long as low-linewidth lasers are employed.

  1. 6.4 Tb/s (32 × 200 Gb/s) WDM direct-detection transmission with twin-SSB modulation and Kramers-Kronig receiver

    Science.gov (United States)

    Zhu, Yixiao; Jiang, Mingxuan; Ruan, Xiaoke; Chen, Zeyu; Li, Chenjia; Zhang, Fan

    2018-05-01

    We experimentally demonstrate 6.4 Tb/s wavelength division multiplexed (WDM) direct-detection transmission based on Nyquist twin-SSB modulation over 25 km SSMF with bit error rates (BERs) below the 20% hard-decision forward error correction (HD-FEC) threshold of 1.5 × 10-2. The two sidebands of each channel are separately detected using Kramers-Kronig receiver without MIMO equalization. We also carry out numerical simulations to evaluate the system robustness against I/Q amplitude imbalance, I/Q phase deviation and the extinction ratio of modulator, respectively. Furthermore, we show in simulation that the requirement of steep edge optical filter can be relaxed if multi-input-multi-output (MIMO) equalization between the two sidebands is used.

  2. 300 Gb/s IM/DD based SDM-WDM-PON with laserless ONUs

    DEFF Research Database (Denmark)

    Bao, Fangdi; Morioka, Toshio; Oxenløwe, Leif Katsuo

    2018-01-01

    A low-cost, high-speed SDM-WDM-PON architecture is proposed by using a multi-core fiber (MCF) and intensity modulation/directly detection (IM/DD). One of the MCF cores is used for sending laser sources from optical line terminal (OLT) to optical network unit (ONU), thus facilitating laserless...

  3. Amplitude-modulated fiber-ring laser

    DEFF Research Database (Denmark)

    Caputo, J. G.; Clausen, Carl A. Balslev; Sørensen, Mads Peter

    2000-01-01

    Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self......-starting of stable solitonic pulses from small random noise, provided the modulation depth is small. The perturbative analysis leads to a nonlinear coupled return map for the amplitude, phase, and position of the soliton pulses circulating in the fiber-ring laser. We established the validity of this approach...

  4. Optical-wireless-optical full link for polarization multiplexing quadrature amplitude/phase modulation signal transmission.

    Science.gov (United States)

    Li, Xinying; Yu, Jianjun; Chi, Nan; Zhang, Junwen

    2013-11-15

    We propose and experimentally demonstrate an optical wireless integration system at the Q-band, in which up to 40 Gb/s polarization multiplexing multilevel quadrature amplitude/phase modulation (PM-QAM) signal can be first transmitted over 20 km single-mode fiber-28 (SMF-28), then delivered over a 2 m 2 × 2 multiple-input multiple-output wireless link, and finally transmitted over another 20 km SMF-28. The PM-QAM modulated wireless millimeter-wave (mm-wave) signal at 40 GHz is generated based on the remote heterodyning technique, and demodulated by the radio-frequency transparent photonic technique based on homodyne coherent detection and baseband digital signal processing. The classic constant modulus algorithm equalization is used at the receiver to realize polarization demultiplexing of the PM-QAM signal. For the first time, to the best of our knowledge, we realize the conversion of the PM-QAM modulated wireless mm-wave signal to the optical signal as well as 20 km fiber transmission of the converted optical signal.

  5. A Study of Dispersion Compensation of Polarization Multiplexing-Based OFDM-OCDMA for Radio-over-Fiber Transmissions.

    Science.gov (United States)

    Yen, Chih-Ta; Chen, Wen-Bin

    2016-09-07

    Chromatic dispersion from optical fiber is the most important problem that produces temporal skews and destroys the rectangular structure of code patterns in the spectra-amplitude-coding-based optical code-division multiple-access (SAC-OCDMA) system. Thus, the balance detection scheme does not work perfectly to cancel multiple access interference (MAI) and the system performance will be degraded. Orthogonal frequency-division multiplexing (OFDM) is the fastest developing technology in the academic and industrial fields of wireless transmission. In this study, the radio-over-fiber system is realized by integrating OFDM and OCDMA via polarization multiplexing scheme. The electronic dispersion compensation (EDC) equalizer element of OFDM integrated with the dispersion compensation fiber (DCF) is used in the proposed radio-over-fiber (RoF) system, which can efficiently suppress the chromatic dispersion influence in long-haul transmitted distance. A set of length differences for 10 km-long single-mode fiber (SMF) and 4 km-long DCF is to verify the compensation scheme by relative equalizer algorithms and constellation diagrams. In the simulation result, the proposed dispersion mechanism successfully compensates the dispersion from SMF and the system performance with dispersion equalizer is highly improved.

  6. A Study of Dispersion Compensation of Polarization Multiplexing-Based OFDM-OCDMA for Radio-over-Fiber Transmissions

    Directory of Open Access Journals (Sweden)

    Chih-Ta Yen

    2016-09-01

    Full Text Available Chromatic dispersion from optical fiber is the most important problem that produces temporal skews and destroys the rectangular structure of code patterns in the spectra-amplitude-coding-based optical code-division multiple-access (SAC-OCDMA system. Thus, the balance detection scheme does not work perfectly to cancel multiple access interference (MAI and the system performance will be degraded. Orthogonal frequency-division multiplexing (OFDM is the fastest developing technology in the academic and industrial fields of wireless transmission. In this study, the radio-over-fiber system is realized by integrating OFDM and OCDMA via polarization multiplexing scheme. The electronic dispersion compensation (EDC equalizer element of OFDM integrated with the dispersion compensation fiber (DCF is used in the proposed radio-over-fiber (RoF system, which can efficiently suppress the chromatic dispersion influence in long-haul transmitted distance. A set of length differences for 10 km-long single-mode fiber (SMF and 4 km-long DCF is to verify the compensation scheme by relative equalizer algorithms and constellation diagrams. In the simulation result, the proposed dispersion mechanism successfully compensates the dispersion from SMF and the system performance with dispersion equalizer is highly improved.

  7. Hybrid wireless-over-fiber transmission system based on multiple injection-locked FP LDs.

    Science.gov (United States)

    Li, Chung-Yi; Lu, Hai-Han; Chu, Chien-An; Ying, Cheng-Ling; Lu, Ting-Chien; Peng, Peng-Chun

    2015-07-27

    A hybrid wireless-over-fiber (WoF) transmission system based on multiple injection-locked Fabry-Perot laser diodes (FP LDs) is proposed and experimentally demonstrated. Unlike the traditional hybrid WoF transmission systems that require multiple distributed feedback (DFB) LDs to support different kinds of services, the proposed system employs multiple injection-locked FP LDs to provide different kinds of applications. Such a hybrid WoF transmission system delivers downstream intensity-modulated 20-GHz microwave (MW)/60-GHz millimeter-wave (MMW)/550-MHz cable television (CATV) signals and upstream phase-remodulated 20-GHz MW signal. Excellent bit error rate (BER), carrier-to-noise ratio (CNR), composite second-order (CSO), and composite triple-beat (CTB) are observed over a 40-km single-mode fiber (SMF) and a 4-m radio frequency (RF) wireless transport. Such a hybrid WoF transmission system has practical applications for fiber-wireless convergence to provide broadband integrated services, including telecommunication, data communication, and CATV services.

  8. Fiber-optic perimeter security system based on WDM technology

    Science.gov (United States)

    Polyakov, Alexandre V.

    2017-10-01

    Intelligent underground fiber optic perimeter security system is presented. Their structure, operation, software and hardware with neural networks elements are described. System allows not only to establish the fact of violation of the perimeter, but also to locate violations. This is achieved through the use of WDM-technology division spectral information channels. As used quasi-distributed optoelectronic recirculation system as a discrete sensor. The principle of operation is based on registration of the recirculation period change in the closed optoelectronic circuit at different wavelengths under microstrain exposed optical fiber. As a result microstrain fiber having additional power loss in a fiber optical propagating pulse, which causes a time delay as a result of switching moments of the threshold device. To separate the signals generated by intruder noise and interference, the signal analyzer is used, based on the principle of a neural network. The system detects walking, running or crawling intruder, as well as undermining attempts to register under the perimeter line. These alarm systems can be used to protect the perimeters of facilities such as airports, nuclear reactors, power plants, warehouses, and other extended territory.

  9. Optical frequency upconversion technique for transmission of wireless MIMO-type signals over optical fiber.

    Science.gov (United States)

    Shaddad, R Q; Mohammad, A B; Al-Gailani, S A; Al-Hetar, A M

    2014-01-01

    The optical fiber is well adapted to pass multiple wireless signals having different carrier frequencies by using radio-over-fiber (ROF) technique. However, multiple wireless signals which have the same carrier frequency cannot propagate over a single optical fiber, such as wireless multi-input multi-output (MIMO) signals feeding multiple antennas in the fiber wireless (FiWi) system. A novel optical frequency upconversion (OFU) technique is proposed to solve this problem. In this paper, the novel OFU approach is used to transmit three wireless MIMO signals over a 20 km standard single mode fiber (SMF). The OFU technique exploits one optical source to produce multiple wavelengths by delivering it to a LiNbO3 external optical modulator. The wireless MIMO signals are then modulated by LiNbO3 optical intensity modulators separately using the generated optical carriers from the OFU process. These modulators use the optical single-sideband with carrier (OSSB+C) modulation scheme to optimize the system performance against the fiber dispersion effect. Each wireless MIMO signal is with a 2.4 GHz or 5 GHz carrier frequency, 1 Gb/s data rate, and 16-quadrature amplitude modulation (QAM). The crosstalk between the wireless MIMO signals is highly suppressed, since each wireless MIMO signal is carried on a specific optical wavelength.

  10. Reconfigurable WDM-PON empowered by a low-cost 8-channel directly modulated laser module

    Science.gov (United States)

    Zhang, Yi-ming; Liu, Yu; Zhang, Zhi-ke; Zhao, Ze-ping; Tian, Ye; Zhu, Ning-hua

    2017-11-01

    A 10 Gbit/s 16-km-long reconfigurable wavelength-division-multiplexing passive optical network (WDM-PON) is presented empowered by a low-cost multi-channel directly modulated laser (DML) module. Compared with the case using discrete devices in conventional scheme, the proposed DML module provides a cost-effective solution with reduced complexity. The clear eye diagram and the bit error rate ( BER) of less than 2×10-7 with a sensitivity of -7 dBm are obtained. Due to the special packaging design, the crosstalk between channels under condition of simultaneous operation can be negligible.

  11. Impulse radio ultra wide-band over multi-mode fiber for in-home signal distribution

    DEFF Research Database (Denmark)

    Caballero Jambrina, Antonio; Rodes, Roberto; Jensen, Jesper Bevensee

    2009-01-01

    We propose and experimentally demonstrate a high speed impulse radio ultra wide-band (IR-UWB) wireless link for in-home network signal distribution. The IR-UWB pulse is distributed over a multimode fiber to the transmitter antenna. Wireless transmitted bit-rates of 1 Gbps at 2 m and 2 Gbps at 1.5 m...

  12. Cost-Efficient DWDM-PON / Mm-Wave Wireless Integration using Coherent Radio-over-Fiber (CRoF)

    DEFF Research Database (Denmark)

    Thakur, Manoj P.; Mikroulis, S.; Renaud, C. C.

    2015-01-01

    This work aims to investigate the performance of millimetre wave (mm-wave) broadband wireless access for seamless integration with the (ultra-dense) WDM infrastructure. By using two uncorrelated lasers, this system concept allows simple implementation that can additionally be improved, if thermally...... for transmission. In this work, we analyze the performance of heterodyne based optical receivers, using OOK and multilevel modulation formats....

  13. Cross stratum resources protection in fog-computing-based radio over fiber networks for 5G services

    Science.gov (United States)

    Guo, Shaoyong; Shao, Sujie; Wang, Yao; Yang, Hui

    2017-09-01

    In order to meet the requirement of internet of things (IoT) and 5G, the cloud radio access network is a paradigm which converges all base stations computational resources into a cloud baseband unit (BBU) pool, while the distributed radio frequency signals are collected by remote radio head (RRH). A precondition for centralized processing in the BBU pool is an interconnection fronthaul network with high capacity and low delay. However, it has become more complex and frequent in the interaction between RRH and BBU and resource scheduling among BBUs in cloud. Cloud radio over fiber network has been proposed in our previous work already. In order to overcome the complexity and latency, in this paper, we first present a novel cross stratum resources protection (CSRP) architecture in fog-computing-based radio over fiber networks (F-RoFN) for 5G services. Additionally, a cross stratum protection (CSP) scheme considering the network survivability is introduced in the proposed architecture. The CSRP with CSP scheme can effectively pull the remote processing resource locally to implement the cooperative radio resource management, enhance the responsiveness and resilience to the dynamic end-to-end 5G service demands, and globally optimize optical network, wireless and fog resources. The feasibility and efficiency of the proposed architecture with CSP scheme are verified on our software defined networking testbed in terms of service latency, transmission success rate, resource occupation rate and blocking probability.

  14. Combined Optical and Electrical Spectrum Shaping for High-Baud-Rate Nyquist-WDM Transceivers

    DEFF Research Database (Denmark)

    Porto da Silva, Edson; Borkowski, Robert; Preussler, Stefan

    2016-01-01

    bandwidth is related to the optical comb parameters 25 and the pulse shaping of the modulating waveforms in the electrical domain. Such de- 26 pendence may result in broadening of the modulated spectra, which can degrade the 27 performance of Nyquist-WDM systems due to interchannel crosstalk penalties....... To investigate the benefits of the proposed approach, we demonstrate 32 the first WDM Nyquist-OTDM signal generation based on the periodic train of sinc pulses 33 and electrical spectrum shaping. Straight line transmission of five 112.5-Gbd Nyquist- 34 OTDM dual-polarization quadrature phase-shift keying (QPSK......We discuss the benefits and limitations of optical time-division multiplexing 22 (OTDM) techniques based on the optical generation of a periodic train of sinc pulses for 23 wavelength-division multiplexing (WDM) transmission at high baud rates. It is shown 24 how the modulated OTDM spectrum...

  15. Time domain spectral phase encoding/DPSK data modulation using single phase modulator for OCDMA application.

    Science.gov (United States)

    Wang, Xu; Gao, Zhensen; Kataoka, Nobuyuki; Wada, Naoya

    2010-05-10

    A novel scheme using single phase modulator for simultaneous time domain spectral phase encoding (SPE) signal generation and DPSK data modulation is proposed and experimentally demonstrated. Array- Waveguide-Grating and Variable-Bandwidth-Spectrum-Shaper based devices can be used for decoding the signal directly in spectral domain. The effects of fiber dispersion, light pulse width and timing error on the coding performance have been investigated by simulation and verified in experiment. In the experiment, SPE signal with 8-chip, 20GHz/chip optical code patterns has been generated and modulated with 2.5 Gbps DPSK data using single modulator. Transmission of the 2.5 Gbps data over 34km fiber with BEROCDMA) and secure optical communication applications. (c) 2010 Optical Society of America.

  16. Experimental demonstrations of all-optical networking functions for WDM optical networks

    Science.gov (United States)

    Gurkan, Deniz

    The deployment of optical networks will enable high capacity links between users but will introduce the problems associated with transporting and managing more channels. Many network functions should be implemented in optical domain; main reasons are: to avoid electronic processing bottlenecks, to achieve data-format and data-rate independence, to provide reliable and cost efficient control and management information, to simultaneously process multiple wavelength channel operation for wavelength division multiplexed (WDM) optical networks. The following novel experimental demonstrations of network functions in the optical domain are presented: Variable-bit-rate recognition of the header information in a data packet. The technique is reconfigurable for different header sequences and uses optical correlators as look-up tables. The header is processed and a signal is sent to the switch for a series of incoming data packets at 155 Mb/s, 622 Mb/s, and 2.5 Gb/s in a reconfigurable network. Simultaneous optical time-slot-interchange and wavelength conversion of the bits in a 2.5-Gb/s data stream to achieve a reconfigurable time/wavelength switch. The technique uses difference-frequency-generation (DFG) for wavelength conversion and fiber Bragg gratings (FBG) as wavelength-dependent optical time buffers. The WDM header recognition module simultaneously recognizing two header bits on each of two 2.5-Gbit/s WDM packet streams. The module is tunable to enable reconfigurable look-up tables. Simultaneous and independent label swapping and wavelength conversion of two WDM channels for a multi-protocol label switching (MPLS) network. Demonstration of label swapping of distinct 8-bit-long labels for two WDM data channels is presented. Two-dimensional code conversion module for an optical code-division multiple-access (O-CDMA) local area network (LAN) system. Simultaneous wavelength conversion and time shifting is achieved to enable flexible code conversion and increase code re

  17. Brillouin suppression in a fiber optical parametric amplifier by combining temperature distribution and phase modulation

    DEFF Research Database (Denmark)

    Lorenzen, Michael Rodas; Noordegraaf, Danny; Nielsen, Carsten Vandel

    2008-01-01

    We demonstrate an increased gain in optical parametric amplier through suppression of stimulated Brillouin scattering by applying a temperature distribution along the fiber resulting in a reduction of the required phase modulation.......We demonstrate an increased gain in optical parametric amplier through suppression of stimulated Brillouin scattering by applying a temperature distribution along the fiber resulting in a reduction of the required phase modulation....

  18. Phase Planning for Overall Copper-Fiber Switch-over

    DEFF Research Database (Denmark)

    Gutierrez Lopez, Jose Manuel; Jensen, Michael; Andreasen, Morten Henius

    2013-01-01

    This paper introduces a phase planning concept to the imminent copper-fiber switch-over action. Traditional copper loops are to be replaced by modern fiber lines in order to keep up with the current evolution of data communications. This work proposes two novel approaches of how to schedule...... this transition by systematically selecting the most attractive areas, in terms of economic efficiency, to be upgraded first. These are alternatively based on 1) distance to the access point and 2)population density, and the overall plan is divided into three phases. In both cases the final network solution...... is the same, but the different prioritization on what areas to upgrade first implies a different distribution of the investment over the deployment period. Two case studies using real geographical data in Denmark show these differences, and the results suggest that planning the phases based on population...

  19. Strain measurement using multiplexed fiber optic sensors

    International Nuclear Information System (INIS)

    Kwon, Il Bum; Kim, Chi Yeop; Yoon, Dong Jin; Lee, Seung Seok

    2003-01-01

    FBG(Fiber Bragg grating) sensor, which is one of the fiber optic sensors for the application of smart structures, can not only measure one specific point but also multiple points by multiplexing techniques. We have proposed a novel multiplexing technique of FBG sensor by the intensity modulation of light source. This technique is applicable to WDM(Wavelength Division Multiplexing) technique and number of sensors in this system can be increased by using this technique with WDM technique.

  20. Experimental demonstration of high spectral efficient 4 × 4 MIMO SCMA-OFDM/OQAM radio over multi-core fiber system.

    Science.gov (United States)

    Liu, Chang; Deng, Lei; He, Jiale; Li, Di; Fu, Songnian; Tang, Ming; Cheng, Mengfan; Liu, Deming

    2017-07-24

    In this paper, 4 × 4 multiple-input multiple-output (MIMO) radio over 7-core fiber system based on sparse code multiple access (SCMA) and OFDM/OQAM techniques is proposed. No cyclic prefix (CP) is required by properly designing the prototype filters in OFDM/OQAM modulator, and non-orthogonally overlaid codewords by using SCMA is help to serve more users simultaneously under the condition of using equal number of time and frequency resources compared with OFDMA, resulting in the increase of spectral efficiency (SE) and system capacity. In our experiment, 11.04 Gb/s 4 × 4 MIMO SCMA-OFDM/OQAM signal is successfully transmitted over 20 km 7-core fiber and 0.4 m air distance in both uplink and downlink. As a comparison, 6.681 Gb/s traditional MIMO-OFDM signal with the same occupied bandwidth has been evaluated for both uplink and downlink transmission. The experimental results show that SE could be increased by 65.2% with no bit error rate (BER) performance degradation compared with the traditional MIMO-OFDM technique.

  1. Performance Evaluation of Wavelet-Coded OFDM on a 4.9 Gbps W-Band Radio-over-Fiber Link

    DEFF Research Database (Denmark)

    Cavalcante, Lucas Costa Pereira; Rommel, Simon; Dinis, Rui

    2017-01-01

    Future generation mobile communications running on mm-wave frequencies will require great robustness against frequency selective channels. In this work we evaluate the transmission performance of 4.9 Gbps Wavelet-Coded OFDM signals on a 10 km fiber plus 58 m wireless Radio-over-Fiber link using...... a mm-wave radio frequency carrier. The results show that a 2×128 Wavelet-Coded OFDM system achieves a bit-error rate of 1e-4 with nearly 2.5 dB less signal-to-noise ratio than a convolutional coded OFDM system with equivalent spectral efficiency for 8 GHz-wide signals with 512 sub-carriers on a carrier...

  2. The Audacity of Fiber-Wireless (FiWi) Networks

    Science.gov (United States)

    Maier, Martin; Ghazisaidi, Navid; Reisslein, Martin

    A plethora of enabling optical and wireless technologies have been emerging that can be used to build future-proof bimodal fiber-wireless (FiWi) broadband access networks. After overviewing key enabling radio-over-fiber (RoF) and radio-and-fiber (R&F) technologies and briefly surveying the state of the art of FiWi networks, we introduce an Ethernet-based access-metro FiWi network, called SuperMAN, that integrates next-generation WiFi and WiMAX networks with WDM-enhanced EPON and RPR networks. Throughout the paper we pay close attention to the technical challenges and opportunities of FiWi networks, but also elaborate on their societal benefits and potential to shift the current research focus from optical-wireless networking to the exploitation of personal and in-home computing facilities to create new unforeseen services and applications as we are about to enter the Petabyte age.

  3. Reconfigurable digital receiver for 8PSK subcarrier multiplexed and 16QAM single carrier phase‐modulated radio over fiber links

    DEFF Research Database (Denmark)

    Guerrero Gonzalez, Neil; Zibar, Darko; Yu, Xianbin

    2011-01-01

    A reconfigurable digital receiver based on the k‐means algorithm is proposed for phase‐modulated subcarrier multiplexed (SCM) and quadrature amplitude‐modulated single carrier, phase‐modulated radio‐over‐fiber links. We report successful demodulation after 40 km single mode fiber transmission wit...... with three 50 Mbaud 8PSK SCM signals and a 312.5 Mbaud 16QAM single carrier. © 2011 Wiley Periodicals, Inc. Microwave Opt Technol Lett 53:1015–1018, 2011; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.25905...

  4. Radio-over-fiber using an optical antenna based on Rydberg states of atoms

    Science.gov (United States)

    Deb, A. B.; Kjærgaard, N.

    2018-05-01

    We provide an experimental demonstration of a direct fiber-optic link for RF transmission ("radio-over-fiber") using a sensitive optical antenna based on a rubidium vapor cell. The scheme relies on measuring the transmission of laser light at an electromagnetically induced transparency resonance that involves highly excited Rydberg states. By dressing pairs of Rydberg states using microwave fields that act as local oscillators, we encoded RF signals in the optical frequency domain. The light carrying the information is linked via a virtually lossless optical fiber to a photodetector where the signal is retrieved. We demonstrate a signal bandwidth in excess of 1 MHz limited by the available coupling laser power and atomic optical density. Our sensitive, non-metallic and readily scalable optical antenna for microwaves allows extremely low-levels of optical power (˜1 μW) throughput in the fiber-optic link. It offers a promising future platform for emerging wireless network infrastructures.

  5. On the capacity of MIMO-OFDM based diversity and spatial multiplexing in Radio-over-Fiber system

    Science.gov (United States)

    El Yahyaoui, Moussa; El Moussati, Ali; El Zein, Ghaïs

    2017-11-01

    This paper proposes a realistic and global simulation to predict the behavior of a Radio over Fiber (RoF) system before its realization. In this work we consider a 2 × 2 Multiple-Input Multiple-Output (MIMO) Orthogonal Frequency Division Multiplexing (OFDM) RoF system at 60 GHz. This system is based on Spatial Diversity (SD) which increases reliability (decreases probability of error) and Spatial Multiplexing (SMX) which increases data rate, but not necessarily reliability. The 60 GHz MIMO channel model employed in this work based on a lot of measured data and statistical analysis named Triple-S and Valenzuela (TSV) model. To the authors best knowledge; it is the first time that this type of TSV channel model has been employed for 60 GHz MIMO-RoF system. We have evaluated and compared the performance of this system according to the diversity technique, modulation schemes, and channel coding rate for Line-Of-Sight (LOS) desktop environment. The SMX coded is proposed as an intermediate system to improve the Signal to Noise Ratio (SNR) and the data rate. The resulting 2 × 2 MIMO-OFDM SMX system achieves a higher data rate up to 70 Gb/s with 64QAM and Forward Error Correction (FEC) limit of 10-3 over 25-km fiber transmission followed by 3-m wireless transmission using 7 GHz bandwidth of millimeter wave band.

  6. Stabilization of Phase of a Sinusoidal Signal Transmitted Over Optical Fiber

    Science.gov (United States)

    DAddario, Larry R.; Trink, Joseph T.

    2010-01-01

    In the process of connecting widely distributed antennas into a coherent array, it is necessary to synchronize the timing of signals at the various locations. This can be accomplished by distributing a common reference signal from a central source, usually over optical fiber. A high-frequency (RF or microwave) tone is a good choice for the reference. One difficulty is that the effective length of the optical fiber changes with temperature and mechanical stress, leading to phase instability in the received tone. This innovation provides a new way to stabilize the phase of the received tone, in spite of variations in the electrical length of the fiber. Stabilization is accomplished by two-way transmission in which part of the received signal is returned to the transmitting end over an identical fiber. The returned signal is detected and used to close an electrical servo loop whose effect is to keep constant the phase of the tone at the receiving end.

  7. Konsep Dan Kinerja Dari Sistem Hybrid OCDMA/WDM Untuk Local Area Network

    OpenAIRE

    Nasaruddin, Nasaruddin

    2011-01-01

    Peningkatan kapasitas, distribusi bandwidth dan daya merupakan beberapa isu penting untuk aplikasi local area network (LAN). Saat ini, teknologi fiber optik sudah dapat mendukung jaringan akses dengan kecepatan tinggi untuk layanan multimedia diantaranya teknologi OCDMA dan WDM. Penambahan kapasitas transmisi LAN bisa dilakukan dengan penggabungan sistem transmisi OCDMA dengan WDM. Untuk itu, paper ini mengusulkan konsep dan kinerja dari sistem hybrid OCDMA/WDM. Sistem hybrid OCDMA/WDM ini be...

  8. Differential Service in a Bidirectional Radio-over-Fiber System over a Spectral-Amplitude-Coding OCDMA Network

    Directory of Open Access Journals (Sweden)

    Chao-Chin Yang

    2016-10-01

    Full Text Available A new scheme of radio-over-fiber (RoF network based on spectral-amplitude-coding (SAC optical code division multiple access (OCDMA is herein proposed. Differential service is provided by a power control scheme that classifies users into several classes and assigns each of them with a specific power level. Additionally, the wavelength reuse technique is adapted to support bidirectional transmission and reduce base station (BS cost. Both simulation and numerical results show that significantly differential quality-of-service (QoS in bit-error rate (BER is achieved in both downlink and uplink transmissions.

  9. Measuring high-frequency responses of an electro-optic phase modulator based on dispersion induced phase modulation to intensity modulation conversion

    Science.gov (United States)

    Zhang, Shangjian; Wang, Heng; Wang, Yani; Zou, Xinhai; Zhang, Yali; Liu, Shuang; Liu, Yong

    2014-11-01

    We investigate the phase modulation to intensity modulation conversion in dispersive fibers for measuring frequency responses of electro-optic phase modulators, and demonstrate two typical measurements with cascade path and fold-back path. The measured results achieve an uncertainty of less than 2.8% within 20 GHz. Our measurements show stable and repeatable results because the optical carrier and its phase-modulated sidebands are affected by the same fiber impairments. The proposed method requires only dispersive fibers and works without any small-signal assumption, which is applicable for swept frequency measurement at different driving levels and operating wavelengths.

  10. Proposal and design of phase-modulated fiber gratings in transmission for pulse shaping.

    Science.gov (United States)

    Preciado, Miguel A; Shu, Xuewen; Sugden, Kate

    2013-01-01

    An approach to pulse shaping using a phase-modulated fiber Bragg grating (FBG) in transmission is proposed and designed. We show that phase-modulated FBGs can provide transmission responses suitable for pulse shaping applications, offering important technological feasibility benefits, since the coupling strength remains basically uniform in the grating. Moreover, this approach retains the substantial advantages of FBGs in transmission, such as optimum energy efficiency, no requirement for an optical circulator, and robustness against fabrication errors.

  11. High-throughput and low-latency 60GHz small-cell network architectures over radio-over-fiber technologies

    Science.gov (United States)

    Pleros, N.; Kalfas, G.; Mitsolidou, C.; Vagionas, C.; Tsiokos, D.; Miliou, A.

    2017-01-01

    Future broadband access networks in the 5G framework will need to be bilateral, exploiting both optical and wireless technologies. This paper deals with new approaches and synergies on radio-over-fiber (RoF) technologies and how those can be leveraged to seamlessly converge wireless technology for agility and mobility with passive optical networks (PON)-based backhauling. The proposed convergence paradigm is based upon a holistic network architecture mixing mm-wave wireless access with photonic integration, dynamic capacity allocation and network coding schemes to enable high bandwidth and low-latency fixed and 60GHz wireless personal area communications for gigabit rate per user, proposing and deploying on top a Medium-Transparent MAC (MT-MAC) protocol as a low-latency bandwidth allocation mechanism. We have evaluated alternative network topologies between the central office (CO) and the access point module (APM) for data rates up to 2.5 Gb/s and SC frequencies up to 60 GHz. Optical network coding is demonstrated for SCM-based signaling to enhance bandwidth utilization and facilitate optical-wireless convergence in 5G applications, reporting medium-transparent network coding directly at the physical layer between end-users communicating over a RoF infrastructure. Towards equipping the physical layer with the appropriate agility to support MT-MAC protocols, a monolithic InP-based Remote Antenna Unit optoelectronic PIC interface is shown that ensures control over the optical resource allocation assisting at the same time broadband wireless service. Finally, the MT-MAC protocol is analysed and simulation and analytical theoretical results are presented that are found to be in good agreement confirming latency values lower than 1msec for small- to mid-load conditions.

  12. Integration of power over fiber on RoF systems in different scenarios

    Science.gov (United States)

    Vázquez, C.; Montero, D. S.; Pinzón, P. J.; López-Cardona, J. D.; Contreras, P.; Tapetado, A.

    2017-01-01

    Future high capacity of the 5th Generation radio environment will boost transport networks to be adapted. The high bandwidth, together with stringent delay and jitter requirements, make dedicated optical connectivity a preferred solution for fronthaul. Those Radio Access Networks apart from higher capacity and lower latency should have higher energy efficiency. In order to cover this aspect, power over fiber has been pointed out as a key technology for that purpose having in mind that control plane will be centralized on future Cloud RAN and that sometimes Remote Radio Heads should be deployed in places lacking external power supply in order to fulfill the desired coverage. In this paper, different scenarios on potential demanding environments of power over fiber on Radio over Fiber systems such as automotive, in-house and remote mobile fronthaul will be discussed. Some tests on power over fiber systems based on different optical fibers are provided.

  13. Real-time distributed scheduling algorithm for supporting QoS over WDM networks

    Science.gov (United States)

    Kam, Anthony C.; Siu, Kai-Yeung

    1998-10-01

    Most existing or proposed WDM networks employ circuit switching, typically with one session having exclusive use of one entire wavelength. Consequently they are not suitable for data applications involving bursty traffic patterns. The MIT AON Consortium has developed an all-optical LAN/MAN testbed which provides time-slotted WDM service and employs fast-tunable transceivers in each optical terminal. In this paper, we explore extensions of this service to achieve fine-grained statistical multiplexing with different virtual circuits time-sharing the wavelengths in a fair manner. In particular, we develop a real-time distributed protocol for best-effort traffic over this time-slotted WDM service with near-optical fairness and throughput characteristics. As an additional design feature, our protocol supports the allocation of guaranteed bandwidths to selected connections. This feature acts as a first step towards supporting integrated services and quality-of-service guarantees over WDM networks. To achieve high throughput, our approach is based on scheduling transmissions, as opposed to collision- based schemes. Our distributed protocol involves one MAN scheduler and several LAN schedulers (one per LAN) in a master-slave arrangement. Because of propagation delays and limits on control channel capacities, all schedulers are designed to work with partial, delayed traffic information. Our distributed protocol is of the `greedy' type to ensure fast execution in real-time in response to dynamic traffic changes. It employs a hybrid form of rate and credit control for resource allocation. We have performed extensive simulations, which show that our protocol allocates resources (transmitters, receivers, wavelengths) fairly with high throughput, and supports bandwidth guarantees.

  14. 16 channel WDM regeneration in a single phase-sensitive amplifier through optical Fourier transformation

    DEFF Research Database (Denmark)

    Guan, Pengyu; Da Ros, Francesco; Lillieholm, Mads

    2016-01-01

    We demonstrate simultaneous phase regeneration of 16-WDM DPSK channels using optical Fourier transformation and a single phase-sensitive amplifier. The BERs of 16-WDM×10-Gbit/s phase noise degraded DPSK signals are improved by 0.4-1.3 orders of magnitude...

  15. Phase-Modulated Optical Communication Systems

    CERN Document Server

    Ho, Keang-Po

    2005-01-01

    Fiber-optic communication systems have revolutionized our telecommunication infrastructures – currently, almost all telephone land-line, cellular, and internet communications must travel via some form of optical fibers. In these transmission systems, neither the phase nor frequency of the optical signal carries information – only the intensity of the signal is used. To transmit more information in a single optical carrier, the phase of the optical carrier must be explored. As a result, there is renewed interest in phase-modulated optical communications, mainly in direct-detection DPSK signals for long-haul optical communication systems. When optical amplifiers are used to maintain certain signal level among the fiber link, the system is limited by amplifier noises and fiber nonlinearities. Phase-Modulated Optical Communication Systems surveys this newly popular area, covering the following topics: The transmitter and receiver for phase-modulated coherent lightwave systems Method for performance analysis o...

  16. An efficient mechanism for dynamic multicast traffic grooming in overlay IP/MPLS over WDM networks

    Science.gov (United States)

    Yu, Xiaojun; Xiao, Gaoxi; Cheng, Tee Hiang

    2014-08-01

    This paper proposes an efficient overlay multicast provisioning (OMP) mechanism for dynamic multicast traffic grooming in overlay IP/MPLS over WDM networks. To facilitate request provisioning, OMP jointly utilizes a data learning (DL) scheme on the IP/MPLS layer for logical link cost estimation, and a lightpath fragmentation (LPF) based method on the WDM layer for improving resource sharing in grooming process. Extensive simulations are carried out to evaluate the performance of OMP mechanism under different traffic loads, with either limited or unlimited port resources. Simulation results demonstrate that OMP significantly outperforms the existing methods. To evaluate the respective influences of the DL scheme and the LPF method on OMP performance, provisioning mechanisms only utilizing either the IP/MPLS layer DL scheme or the WDM layer LPF method are also devised. Comparison results show that both DL and LPF methods help improve OMP blocking performance, and contribution from the DL scheme is more significant when the fixed routing and first-fit wavelength assignment (RWA) strategy is adopted on the WDM layer. Effects of a few other factors, including definition of connection cost to be reported by the WDM layer to the IP/MPLS layer and WDM-layer routing method, on OMP performance are also evaluated.

  17. OFDM RF power-fading circumvention for long-reach WDM-PON.

    Science.gov (United States)

    Chow, C W; Yeh, C H; Sung, J Y

    2014-10-06

    We propose and demonstrate an orthogonal frequency division multiplexing (OFDM) radio-frequency (RF) power-fading circumvention scheme for long-reach wavelength-division-multiplexed passive-optical-network (LR-WDM-PON); hence the same capacity of 40 Gb/s can be provided to all the optical-networking-units (ONUs) in the LR-WDM-PON. Numerical analysis and proof-of-concept experiment are performed.

  18. The Gain of Performance of Optical WDM Networks

    Directory of Open Access Journals (Sweden)

    Miroslav Bahleda

    2008-01-01

    Full Text Available We study the blocking probability and performance of single-fiber and multifiber optical networks with wavelength division multiplexing (WDM. We extend the well-known analytical blocking probability model by Barry and Humblet to the general model, which is proposed for both single-fiber and multifiber network paths with any kind of wavelength conversion (no, limited, or full wavelength conversion and for uniform and nonuniform link loads. We investigate the effect of the link load, wavelength conversion degree, and the number of wavelengths, fibers, and hops on blocking probability. We also extend the definition of the gain of wavelength conversion by Barry and Humblet to the gain of performance, which is fully general. Thanks to this definition and implementation of our model, we compare different WDM node architectures and present interesting results.

  19. A Novel Reliable WDM-PON System

    Science.gov (United States)

    Chen, Benyang; Gan, Chaoqin; Qi, Yongqian; Xia, Lei

    2011-12-01

    In this paper, a reliable Wavelength-Division-Multiplexing Passive Optical Network (WDM-PON) system is proposed. It can provide the protection against both the feeder fiber failure and the distribution fiber failure. When the fiber failure occurs, the corresponding switches in the OLT and in the ONU can switch to the protection link without affecting the users in normal status. That is to say, the protection for one ONU is independent of the other ONUs.

  20. Self-healing ring-based WDM-PON

    Science.gov (United States)

    Zhou, Yang; Gan, Chaoqin; Zhu, Long

    2010-05-01

    In this paper, a survivable ring-based wavelength-division-multiplexing (WDM)-passive optical network (PON) for fiber protection is proposed. Protections for feeder fiber and distributed fiber are independent in the scheme. Optical line terminal (OLT) and optical network units (ONUs) can automatically switch to protection link when fiber failure occurs. Protection distributed fiber is not required in the scheme. Cost-effective components are used in ONUs to minimize costs of network. A simulation study is performed to demonstrate the scheme. Its result shows good performance of upstream and downstream signals.

  1. Stable transmission of radio frequency signals on fiber links using interferomectric delay sensing

    International Nuclear Information System (INIS)

    Wilcox, Russell B.; Byrd, J.M.; Doolittle, Lawrence; Huang, Gang; Staples, J.W.

    2009-01-01

    The authors demonstrate distribution of a 2850 MHz rf signal over stabilized optical fiber links. For a 2.2 km link they measure an rms drift of 19.4 fs over 60 h, and for a 200 m link an rms drift of 8.4 fs over 20 h. The rf signals are transmitted as amplitude modulation on a continuous optical carrier. Variations in the delay length are sensed using heterodyne interferometry and used to correct the rf phase. The system uses standard fiber telecommunications components.

  2. GigaWaM—Next-Generation WDM-PON Enabling Gigabit Per-User Data Bandwidth

    DEFF Research Database (Denmark)

    Prince, Kamau; Gibbon, Timothy Braidwood; Rodes Lopez, Roberto

    2012-01-01

    The “Gigabit access passive optical network using wavelength division multiplexing” project aims to implement 64-Gb/s data transmission over 20-km single-mode fiber. Per-user symmetric data rates of 1-Gb/s will be achieved using wavelength division multiplexing passive optical network (WDM-PON) a...

  3. Analysis of control and management plane for hybrid fiber radio architectures

    DEFF Research Database (Denmark)

    Kardaras, Georgios; Pham, Tien Thang; Soler, José

    2010-01-01

    This paper presents the existing Radio over Fiber (RoF) architectures and focuses on the control and management plane of the Remote Antenna Unit (RAU). Broadband wireless standards, such as WiMAX and LTE, incorporate optical technologies following the distributed base station concept. The control...... and management of the RAU becomes a critical task, since it can facilitate allocation of resources, configuration and upgrade of the remote unit and constant monitoring of its performance. In the case of baseband over fiber, two protocols (OBSAI and CPRI) introduce a well-defined control and management plane....... In the case of intermediate/radio frequency over fiber, this paper presents a simple approach, which can provide configurability and real-time monitoring of the RAU over the same optical link. This is realized by multiplexing high frequency user data with baseband frequency control data at the Central Office...

  4. SDN based millimetre wave radio over fiber (RoF) network

    Science.gov (United States)

    Amate, Ahmed; Milosavljevic, Milos; Kourtessis, Pandelis; Robinson, Matthew; Senior, John M.

    2015-01-01

    This paper introduces software-defined, millimeter Wave (mm-Wave) networks with Radio over Fiber (RoF) for the delivery of gigabit connectivity required to develop fifth generation (5G) mobile. This network will enable an effective open access system allowing providers to manage and lease the infrastructure to service providers through unbundling new business models. Exploiting the inherited benefits of RoF, complete base station functionalities are centralized at the edges of the metro and aggregation network, leaving remote radio heads (RRHs) with only tunable filtering and amplification. A Software Defined Network (SDN) Central Controller (SCC) is responsible for managing the resource across several mm-Wave Radio Access Networks (RANs) providing a global view of the several network segments. This ensures flexible resource allocation for reduced overall latency and increased throughput. The SDN based mm-Wave RAN also allows for inter edge node communication. Therefore, certain packets can be routed between different RANs supported by the same edge node, reducing latency. System level simulations of the complete network have shown significant improvement of the overall throughput and SINR for wireless users by providing effective resource allocation and coordination among interfering cells. A new Coordinated Multipoint (CoMP) algorithm exploiting the benefits of the SCC global network view for reduced delay in control message exchange is presented, accounting for a minimum packet delay and limited Channel State Information (CSI) in a Long Term Evolution-Advanced (LTE-A), Cloud RAN (CRAN) configuration. The algorithm does not require detailed CSI feedback from UEs but it rather considers UE location (determined by the eNB) as the required parameter. UE throughput in the target sector is represented using a Cumulative Distributive Function (CDF). The drawn characteristics suggest that there is a significant 60% improvement in UE cell edge throughput following the

  5. Performance Analysis of Ad Hoc Dispersed Spectrum Cognitive Radio Networks over Fading Channels

    Directory of Open Access Journals (Sweden)

    Mohammad Muneer

    2011-01-01

    Full Text Available Cognitive radio systems can utilize dispersed spectrum, and thus such approach is known as dispersed spectrum cognitive radio systems. In this paper, we first provide the performance analysis of such systems over fading channels. We derive the average symbol error probability of dispersed spectrum cognitive radio systems for two cases, where the channel for each frequency diversity band experiences independent and dependent Nakagami- fading. In addition, the derivation is extended to include the effects of modulation type and order by considering M-ary phase-shift keying ( -PSK and M-ary quadrature amplitude modulation -QAM schemes. We then consider the deployment of such cognitive radio systems in an ad hoc fashion. We consider an ad hoc dispersed spectrum cognitive radio network, where the nodes are assumed to be distributed in three dimension (3D. We derive the effective transport capacity considering a cubic grid distribution. Numerical results are presented to verify the theoretical analysis and show the performance of such networks.

  6. Theoretical Design of a Depolarized Interferometric Fiber-Optic Gyroscope (IFOG) on SMF-28 Single-Mode Standard Optical Fiber Based on Closed-Loop Sinusoidal Phase Modulation with Serrodyne Feedback Phase Modulation Using Simulation Tools for Tactical and Industrial Grade Applications.

    Science.gov (United States)

    Pérez, Ramón José; Álvarez, Ignacio; Enguita, José María

    2016-04-27

    This article presents, by means of computational simulation tools, a full analysis and design of an Interferometric Fiber-Optic Gyroscope (IFOG) prototype based on a closed-loop configuration with sinusoidal bias phase- modulation. The complete design of the different blocks, optical and electronic, is presented, including some novelties as the sinusoidal bias phase-modulation and the use of an integrator to generate the serrodyne phase-modulation signal. The paper includes detailed calculation of most parameter values, and the plots of the resulting signals obtained from simulation tools. The design is focused in the use of a standard single-mode optical fiber, allowing a cost competitive implementation compared to commercial IFOG, at the expense of reduced sensitivity. The design contains an IFOG model that accomplishes tactical and industrial grade applications (sensitivity ≤ 0.055 °/h). This design presents two important properties: (1) an optical subsystem with advanced conception: depolarization of the optical wave by means of Lyot depolarizers, which allows to use a sensing coil made by standard optical fiber, instead by polarization maintaining fiber, which supposes consequent cost savings and (2) a novel and simple electronic design that incorporates a linear analog integrator with reset in feedback chain, this integrator generating a serrodyne voltage-wave to apply to Phase-Modulator (PM), so that it will be obtained the interferometric phase cancellation. This particular feedback design with sawtooth-wave generated signal for a closed-loop configuration with sinusoidal bias phase modulation has not been reported till now in the scientific literature and supposes a considerable simplification with regard to previous designs based on similar configurations. The sensing coil consists of an 8 cm average diameter spool that contains 300 m of standard single-mode optical-fiber (SMF-28 type) realized by quadrupolar winding. The working wavelength will be

  7. Theoretical Design of a Depolarized Interferometric Fiber-Optic Gyroscope (IFOG on SMF-28 Single-Mode Standard Optical Fiber Based on Closed-Loop Sinusoidal Phase Modulation with Serrodyne Feedback Phase Modulation Using Simulation Tools for Tactical and Industrial Grade Applications

    Directory of Open Access Journals (Sweden)

    Ramón José Pérez

    2016-04-01

    Full Text Available This article presents, by means of computational simulation tools, a full analysis and design of an Interferometric Fiber-Optic Gyroscope (IFOG prototype based on a closed-loop configuration with sinusoidal bias phase- modulation. The complete design of the different blocks, optical and electronic, is presented, including some novelties as the sinusoidal bias phase-modulation and the use of an integrator to generate the serrodyne phase-modulation signal. The paper includes detailed calculation of most parameter values, and the plots of the resulting signals obtained from simulation tools. The design is focused in the use of a standard single-mode optical fiber, allowing a cost competitive implementation compared to commercial IFOG, at the expense of reduced sensitivity. The design contains an IFOG model that accomplishes tactical and industrial grade applications (sensitivity ≤ 0.055 °/h. This design presents two important properties: (1 an optical subsystem with advanced conception: depolarization of the optical wave by means of Lyot depolarizers, which allows to use a sensing coil made by standard optical fiber, instead by polarization maintaining fiber, which supposes consequent cost savings and (2 a novel and simple electronic design that incorporates a linear analog integrator with reset in feedback chain, this integrator generating a serrodyne voltage-wave to apply to Phase-Modulator (PM, so that it will be obtained the interferometric phase cancellation. This particular feedback design with sawtooth-wave generated signal for a closed-loop configuration with sinusoidal bias phase modulation has not been reported till now in the scientific literature and supposes a considerable simplification with regard to previous designs based on similar configurations. The sensing coil consists of an 8 cm average diameter spool that contains 300 m of standard single-mode optical-fiber (SMF-28 type realized by quadrupolar winding. The working

  8. Fiber-wireless convergence in next-generation communication networks systems, architectures, and management

    CERN Document Server

    Chang, Gee-Kung; Ellinas, Georgios

    2017-01-01

    This book investigates new enabling technologies for Fi-Wi convergence. The editors discuss Fi-Wi technologies at the three major network levels involved in the path towards convergence: system level, network architecture level, and network management level. The main topics will be: a. At system level: Radio over Fiber (digitalized vs. analogic, standardization, E-band and beyond) and 5G wireless technologies; b. Network architecture level: NGPON, WDM-PON, BBU Hotelling, Cloud Radio Access Networks (C-RANs), HetNets. c. Network management level: SDN for convergence, Next-generation Point-of-Presence, Wi-Fi LTE Handover, Cooperative MultiPoint. • Addresses the Fi-Wi convergence issues at three different levels, namely at the system level, network architecture level, and network management level • Provides approaches in communication systems, network architecture, and management that are expected to steer the evolution towards fiber-wireless convergence • Contributions from leading experts in the field of...

  9. Quality of Context Enhancements and Cost Effective Radio over Fiber Network Planning

    DEFF Research Database (Denmark)

    Shawky, Ahmed Sherif Mahmoud

    In Communication networks today there is an endless quest for increased capacity and improved quality. With wireless systems being now popular worldwide for allowing users and devices to communicate and share information with each other irrespective of their location, the development of sustainable...... into dynamic context information reliability by developing models and online algorithms that ensure increased reliability for context information exchange. Eventually, the PhD looks into improving network planning by implementing an automated network planning model that takes advantage of both Radio over Fiber...... services. The increased number of mobile users puts a demand on today's networks in terms of application sensitivity, mobility and reliability. Mobile operators are offering various context-aware services and applications to the user. Today, mobile users are demanding access to dynamic context information...

  10. Aerosol absorption measurement with a sinusoidal phase modulating fiber optic photo thermal interferometer

    Science.gov (United States)

    Li, Shuwang; Shao, Shiyong; Mei, Haiping; Rao, Ruizhong

    2016-10-01

    Aerosol light absorption plays an important role in the earth's atmosphere direct and semi-direct radiate forcing, simultaneously, it also has a huge influence on the visibility impairment and laser engineering application. Although various methods have been developed for measuring aerosol light absorption, huge challenge still remains in precision, accuracy and temporal resolution. The main reason is that, as a part of aerosol light extinction, aerosol light absorption always generates synchronously with aerosol light scattering, and unfortunately aerosol light scattering is much stronger in most cases. Here, a novel photo-thermal interferometry is proposed only for aerosol absorption measurement without disturbance from aerosol scattering. The photo-thermal interferometry consists of a sinusoidal phase-modulating single mode fiber-optic interferometer. The thermal dissipation, caused by aerosol energy from photo-thermal conversion when irritated by pump laser through interferometer, is detected. This approach is completely insensitive to aerosol scattering, and the single mode fiber-optic interferometer is compact, low-cost and insensitive to the polarization shading. The theory of this technique is illustrated, followed by the basic structure of the sinusoidal phase-modulating fiber-optic interferometer and demodulation algorithms. Qualitative and quantitative analysis results show that the new photo-thermal interference is a potential approach for aerosol absorption detection and environmental pollution detection.

  11. Performance analysis for IEEE 802.11 distributed coordination function in radio-over-fiber-based distributed antenna systems.

    Science.gov (United States)

    Fan, Yuting; Li, Jianqiang; Xu, Kun; Chen, Hao; Lu, Xun; Dai, Yitang; Yin, Feifei; Ji, Yuefeng; Lin, Jintong

    2013-09-09

    In this paper, we analyze the performance of IEEE 802.11 distributed coordination function in simulcast radio-over-fiber-based distributed antenna systems (RoF-DASs) where multiple remote antenna units (RAUs) are connected to one wireless local-area network (WLAN) access point (AP) with different-length fiber links. We also present an analytical model to evaluate the throughput of the systems in the presence of both the inter-RAU hidden-node problem and fiber-length difference effect. In the model, the unequal delay induced by different fiber length is involved both in the backoff stage and in the calculation of Ts and Tc, which are the period of time when the channel is sensed busy due to a successful transmission or a collision. The throughput performances of WLAN-RoF-DAS in both basic access and request to send/clear to send (RTS/CTS) exchange modes are evaluated with the help of the derived model.

  12. 4 Gbps Impulse Radio (IR) Ultra-Wideband (UWB) Transmission over 100 Meters Multi Mode Fiber with 4 Meters Wireless Transmission

    DEFF Research Database (Denmark)

    Jensen, Jesper Bevensee; Rodes Lopez, Roberto; Caballero Jambrina, Antonio

    2009-01-01

    We present experimental demonstrations of in-building impulse radio (IR) ultra-wideband (UWB) link consisting of 100 m multi mode fiber (MMF) and 4 m wireless transmission at a record 4 Gbps, and a record 8 m wireless transmission at 2.5 Gbps. A directly modulated vertical cavity surface emitting...... laser (VCSEL) was used for the generation of the optical signal. 8 m at 2.5 Gbps corresponds to a bit rate - distance product of 20; the highest yet reported for wireless IR-UWB transmission...

  13. Architectures for radio over fiber transmission of high-quality video and data signals

    DEFF Research Database (Denmark)

    Lebedev, Alexander

    with a constraint on complexity. For wireless personal area networks distribution, we explore the notion of joint optimization of physical layer parameters of a fiber-wireless link (optical power levels, wireless transmission distance) and the codec parameters (quantization, error-resilience tools) based...... on the peak signal-to-noise ratio as an objective video quality metric for compressed video transmission. Furthermore, we experimentally demonstrate uncompressed 1080i highdefinition video distribution in V-band (50–75 GHz) and W-band (75–110 GHz) fiber-wireless links achieving 3 m of wireless transmission...... efficient wired/wireless backhaul of picocell networks. Gigabit signal transmission is realized in combined fiber-wireless-fiber link enabling simultaneous backhaul of dense metropolitan and suburban areas. In this Thesis, we propose a technique to combat periodic chromatic dispersion-induced radio...

  14. Working Paper 2: WDM, Poverty & Equity | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2010-12-08

    Dec 8, 2010 ... This paper shows that WDM can contribute to poverty reduction, defined ... Series contributes to setting the stage for the next phase of WDM research. ... that 20% of the country's population has some form of physical disability.

  15. Testing FSO WDM communication system in simulation software optiwave OptiSystem in different atmospheric environments

    Science.gov (United States)

    Vanderka, Ales; Hajek, Lukas; Bednarek, Lukas; Latal, Jan; Vitasek, Jan; Hejduk, Stanislav; Vasinek, Vladimir

    2016-09-01

    In this article the author's team deals with using Wavelength Division Multiplexing (WDM) for Free Space Optical (FSO) Communications. In FSO communication occurs due to the influence of atmospheric effect (attenuation, and fluctuation of the received power signal, influence turbulence) and the WDM channel suffers from interchannel crosstalk. There is considered only the one direction. The behavior FSO link was tested for one or eight channels. Here we will be dealing with modulation schemes OOK (On-Off keying), QAM (Quadrature Amplitude Modulation) and Subcarrier Intensity Modulation (SIM) based on a BPSK (Binary Phase Shift Keying). Simulation software OptiSystem 14 was used for tasting. For simulation some parameters were set according to real FSO link such as the datarate 1.25 Gbps, link range 1.4 km. Simulated FSO link used wavelength of 1550 nm with 0.8 nm spacing. There is obtained the influence of crosstalk and modulation format for the BER, depending on the amount of turbulence in the propagation medium.

  16. Sagnac secret sharing over telecom fiber networks.

    Science.gov (United States)

    Bogdanski, Jan; Ahrens, Johan; Bourennane, Mohamed

    2009-01-19

    We report the first Sagnac quantum secret sharing (in three-and four-party implementations) over 1550 nm single mode fiber (SMF) networks, using a single qubit protocol with phase encoding. Our secret sharing experiment has been based on a single qubit protocol, which has opened the door to practical secret sharing implementation over fiber telecom channels and in free-space. The previous quantum secret sharing proposals were based on multiparticle entangled states, difficult in the practical implementation and not scalable. Our experimental data in the three-party implementation show stable (in regards to birefringence drift) quantum secret sharing transmissions at the total Sagnac transmission loop distances of 55-75 km with the quantum bit error rates (QBER) of 2.3-2.4% for the mean photon number micro?= 0.1 and 1.7-2.1% for micro= 0.3. In the four-party case we have achieved quantum secret sharing transmissions at the total Sagnac transmission loop distances of 45-55 km with the quantum bit error rates (QBER) of 3.0-3.7% for the mean photon number micro= 0.1 and 1.8-3.0% for micro?= 0.3. The stability of quantum transmission has been achieved thanks to our new concept for compensation of SMF birefringence effects in Sagnac, based on a polarization control system and a polarization insensitive phase modulator. The measurement results have showed feasibility of quantum secret sharing over telecom fiber networks in Sagnac configuration, using standard fiber telecom components.

  17. Architectural Considerations of Fiber-Radio Millimeter-Wave Wireless Access Systems

    Science.gov (United States)

    Kitayama, Ken-Ichi

    The architecture of fiber-radio mm-wave wireless access systems critically depends upon the optical mm-wave generation and transport techniques. Four optical mm-wave generation and transport techniques: 1) optical self-heterodyning, 2) external modulation, 3) up- and downconversion, and 4) optical transceiver, will be assessed. From the technical viewpoints, their advantages and disadvantages are discussed. The economical assessment, focusing on the cost of a base station BS ( ), will suggest that the optical transceiver looks the most promising in the long run, but in the near future, however, the external modulation will be cost-effective. The experimental results of 60 GHz testbeds using the external modulation will support the conclusion.

  18. Enhanced noise tolerance for 10 Gb/s Bi-directional cross-wavelength reuse colorless WDM-PON by using spectrally shaped OFDM signals

    Science.gov (United States)

    Choudhury, Pallab K.

    2018-05-01

    Spectrally shaped orthogonal frequency division multiplexing (OFDM) signal for symmetric 10 Gb/s cross-wavelength reuse reflective semiconductor optical amplifier (RSOA) based colorless wavelength division multiplexed passive optical network (WDM-PON) is proposed and further analyzed to support broadband services of next generation high speed optical access networks. The generated OFDM signal has subcarriers in separate frequency ranges for downstream and upstream, such that the re-modulation noise can be effectively minimized in upstream data receiver. Moreover, the cross wavelength reuse approach improves the tolerance against Rayleigh backscattering noise due to the propagation of different wavelengths in the same feeder fiber. The proposed WDM-PON is successfully demonstrated for 25 km fiber with 16-QAM (quadrature amplitude modulation) OFDM signal having bandwidth of 2.5 GHz for 10 Gb/s operation and subcarrier frequencies in 3-5.5 GHz and DC-2.5 GHz for downstream (DS) and upstream (US) transmission respectively. The result shows that the proposed scheme maintains a good bit error rate (BER) performance below the forward error correction (FEC) limit of 3.8 × 10-3 at acceptable receiver sensitivity and provides a high resilience against re-modulation and Rayleigh backscattering noises as well as chromatic dispersion.

  19. Performance comparison of a wdm pon with tdm pon at 10 gbps

    International Nuclear Information System (INIS)

    Usman, M.

    2014-01-01

    Recent developments in optical technologies have realized wavelength division multiplexed passive optical network (WDM PON) as a promising and a cost-effective solution for the next generation networks. Due to the intrinsic optical transparency and extremely high transmission capacity, WDM PON is considered more future oriented than conventional TDM PON. In this paper we compare an eight channel WDM PON with an eight channel TDM PON, both operating at 10 Gbps data rate. Network parameters like input laser power, optical fiber length and optical amplifier gain are varied and their impact on performance parameters i.e. Q-factor, BER, OSNR, Eye opening and Extinction ratio penalty is recorded. Results reveal that WDM PON exhibits superior performance than TDM PON in each case. (author)

  20. Simplified radio-over-fiber transport systems with a low-cost multiband light source.

    Science.gov (United States)

    Chang, Ching-Hung; Peng, Peng-Chun; Lu, Hai-Han; Shih, Chine-Liang; Chen, Hwan-Wen

    2010-12-01

    In this Letter, low-cost radio-over-fiber (ROF) transport systems are proposed and experimentally demonstrated. By utilizing a laser diode (LD) and a local oscillator (LO) to generate coherent multiband optical carriers, as well as a self-composed wavelength selector to separate every two carriers for different ROF transport systems, no any other dedicated LD or electrical frequency upconverting circuit/process is needed in the central station (CS). Compared with current ROF systems, the required numbers of LDs, LOs, and mixers in a CS are significantly reduced. Reducing the number of components not only can simplify the network structure but can also reduce the volume and complexity of the relative logistics. To demonstrate the practice of the proposed ROF transport systems, clear eye diagrams and error-free transmission performance are experimentally presented.

  1. Experimental Demonstration of an Electro-Absorption Modulated Laser for High-Speed Transmissions at 1.55-μm Window Using Digital Signal Processing

    Directory of Open Access Journals (Sweden)

    Fotini Karinou

    2017-02-01

    Full Text Available We experimentally investigate the transmission performance of 56 Gb/s four-level pulse amplitude modulation (PAM-4 over 30-km standard single mode fiber (SMF using a C-band EML for low-cost metro and short-reach wavelength division multiplexing (WDM applications. Bit error rate (BER performance below the HD-FEC threshold is achieved for up to 30-km maximum reported distance without employing dispersion compensation fiber (DCF in the link.

  2. Deploying Monitoring Trails for Fault Localization in All- Optical Networks and Radio-over-Fiber Passive Optical Networks

    Science.gov (United States)

    Maamoun, Khaled Mohamed

    Fault localization is the process of realizing the true source of a failure from a set of collected failure notifications. Isolating failure recovery within the network optical domain is necessary to resolve alarm storm problems. The introduction of the monitoring trail (m-trail) has been proven to deliver better performance by employing monitoring resources in a form of optical trails - a monitoring framework that generalizes all the previously reported counterparts. In this dissertation, the m-trail design is explored and a focus is given to the analysis on using m-trails with established lightpaths to achieve fault localization. This process saves network resources by reducing the number of the m-trails required for fault localization and therefore the number of wavelengths used in the network. A novel approach based on Geographic Midpoint Technique, an adapted version of the Chinese Postman's Problem (CPP) solution and an adapted version of the Traveling Salesman's Problem (TSP) solution algorithms is introduced. The desirable features of network architectures and the enabling of innovative technologies for delivering future millimeter-waveband (mm-WB) Radio-over-Fiber (RoF) systems for wireless services integrated in a Dense Wavelength Division Multiplexing (DWDM) is proposed in this dissertation. For the conceptual illustration, a DWDM RoF system with channel spacing of 12.5 GHz is considered. The mm-WB Radio Frequency (RF) signal is obtained at each Optical Network Unit (ONU) by simultaneously using optical heterodyning photo detection between two optical carriers. The generated RF modulated signal has a frequency of 12.5 GHz. This RoF system is easy, cost-effective, resistant to laser phase noise and also reduces maintenance needs, in principle. A revision of related RoF network proposals and experiments is also included. A number of models for Passive Optical Networks (PON)/ RoF-PON that combine both innovative and existing ideas along with a number of

  3. The optimal input optical pulse shape for the self-phase modulation based chirp generator

    Science.gov (United States)

    Zachinyaev, Yuriy; Rumyantsev, Konstantin

    2018-04-01

    The work is aimed to obtain the optimal shape of the input optical pulse for the proper functioning of the self-phase modulation based chirp generator allowing to achieve high values of chirp frequency deviation. During the research, the structure of the device based on self-phase modulation effect using has been analyzed. The influence of the input optical pulse shape of the transmitting optical module on the chirp frequency deviation has been studied. The relationship between the frequency deviation of the generated chirp and frequency linearity for the three options for implementation of the pulse shape has been also estimated. The results of research are related to the development of the theory of radio processors based on fiber-optic structures and can be used in radars, secure communications, geolocation and tomography.

  4. A novel survivable architecture for hybrid WDM/TDM passive optical networks

    Science.gov (United States)

    Qiu, Yang; Chan, Chun-Kit

    2014-02-01

    A novel tree-ring survivable architecture, which consists of an organization of a wavelength-division-multiplexing (WDM) tree from optical line terminal (OLT) to remote nodes (RNs) and a time division multiplexing (TDM) ring in each RN, is proposed for hybrid WDM/TDM passive optical networks. By utilizing the cyclic property of arrayed waveguide gratings (AWGs) and the single-ring topology among a group of optical network units (ONUs) in the remote node, not only the feeder and distribution fibers, but also any fiber failures in the RN rings are protected simultaneously. Five-Gbit/s transmissions under both normal working and protection modes were experimentally demonstrated and a traffic restoration time was successfully measured.

  5. High capacity fiber optic sensor networks using hybrid multiplexing techniques and their applications

    Science.gov (United States)

    Sun, Qizhen; Li, Xiaolei; Zhang, Manliang; Liu, Qi; Liu, Hai; Liu, Deming

    2013-12-01

    Fiber optic sensor network is the development trend of fiber senor technologies and industries. In this paper, I will discuss recent research progress on high capacity fiber sensor networks with hybrid multiplexing techniques and their applications in the fields of security monitoring, environment monitoring, Smart eHome, etc. Firstly, I will present the architecture of hybrid multiplexing sensor passive optical network (HSPON), and the key technologies for integrated access and intelligent management of massive fiber sensor units. Two typical hybrid WDM/TDM fiber sensor networks for perimeter intrusion monitor and cultural relics security are introduced. Secondly, we propose the concept of "Microstructure-Optical X Domin Refecltor (M-OXDR)" for fiber sensor network expansion. By fabricating smart micro-structures with the ability of multidimensional encoded and low insertion loss along the fiber, the fiber sensor network of simple structure and huge capacity more than one thousand could be achieved. Assisted by the WDM/TDM and WDM/FDM decoding methods respectively, we built the verification systems for long-haul and real-time temperature sensing. Finally, I will show the high capacity and flexible fiber sensor network with IPv6 protocol based hybrid fiber/wireless access. By developing the fiber optic sensor with embedded IPv6 protocol conversion module and IPv6 router, huge amounts of fiber optic sensor nodes can be uniquely addressed. Meanwhile, various sensing information could be integrated and accessed to the Next Generation Internet.

  6. Adaptive Rates of High-Spectral-Efficiency WDM/SDM Channels Using PDM-1024-QAM Probabilistic Shaping

    DEFF Research Database (Denmark)

    Hu, Hao; Yankov, Metodi Plamenov; Da Ros, Francesco

    2017-01-01

    We demonstrate adaptive rates and spectral efficiencies in WDM/SDM transmission using probabilistically shaped PDM-1024-QAM signals, achieving up to 7-Tbit/s data rates per spatial-superchannel and up to 297.8-bit/s/Hz aggregate spectral efficiency using a 30-core fiber on 12.5 and 25GHz WDM grids...

  7. Temporal Probabilistic Constellation Shaping for WDM Optical Communication Systems

    DEFF Research Database (Denmark)

    Yankov, Metodi Plamenov; Forchhammer, Søren

    2016-01-01

    Finite state machine sources transmitting QPSK are studied as input to WDM optical fiber systems with ideal distributed Raman amplification. The probabilities of successive constellation symbols are shaped for nonlinear transmission and gains of around 500km (5-10%) are demonstrated...

  8. Temporal Probabilistic Constellation Shaping for WDM Optical Communication Systems

    OpenAIRE

    Yankov, Metodi Plamenov; Forchhammer, Søren

    2016-01-01

    Finite state machine sources transmitting QPSK are studied as input to WDM optical fiber systems with ideal distributed Raman amplification. The probabilities of successive constellation symbols are shaped for nonlinear transmission and gains of around 500km (5-10%) are demonstrated

  9. On-the-field performance of quintuple-play long-reach OFDM-based WDM-PON optical access networks.

    Science.gov (United States)

    Llorente, Roberto; Morant, Maria; Pellicer, Eloy; Herman, Milan; Nagy, Zsolt; Alves, Tiago; Cartaxo, Adolfo; Herrera, Javier; Correcher, Jose; Quinlan, Terence; Walker, Stuart; Rodrigues, Cláudio; Cluzeaud, Pierre; Schmidt, Axel; Piesiewicz, Radoslaw; Sambaraju, Rakesh

    2014-03-24

    In this paper the on-the-field performance of a WDM-PON optical access providing quintuple-play services using orthogonal frequency division multiplexing (OFDM) modulation is evaluated in a real fiber-to-the-home (FTTH) network deployed by Towercom operator in Bratislava (Slovakia). A bundle of quintuple-play services comprising full-standard OFDM-based signals (LTE, WiMAX, UWB and DVB-T) and an ad-hoc OFDM-GbE signal is transmitted in coexistence per single user. Both downstream and upstream transmission performances are evaluated in different on-the-field long-reach optical link distance configurations. Four wavelength multi-user transmission of quintuple-play OFDM services is demonstrated exceeding 60.8 km reach in standard single mode fiber.

  10. Radio-over-optical waveguide system-on-wafer for massive delivery capacity 5G MIMO access networks

    Science.gov (United States)

    Binh, Le N.

    2017-01-01

    Delivering maximum information capacity over MIMO antennae systems beam steering is critical so as to achieve the flexibility via beam steering, maximizing the number of users or community of users in Gb/s rate per user over distributed cloud-based optical-wireless access networks. This paper gives an overview of (i) demands of optical - wireless delivery with high flexibility, especially the beam steering of multi-Tbps information channels to information hungry community of users via virtualized beam steering MIMO antenna systems at the free-license mmW region; (ii) Proposing a novel photonic planar integrated waveguide systems composing several passive and active, passive and amplification photonic devices so as to generate mmW carrier and embedded baseband information channels to feed to antenna elements; (iii) Integration techniques to generate a radio over optical waveguide (RoOW) system-on-wafer (SoW) comprising MIMO planar antenna elements and associate photonic integrated circuits for both up- and down- links; (iv) Challenges encountered in the implementation of the SoW in both wireless and photonic domains; (v) Photonic modulation techniques to achieve maximum transmission capacity per wavelength per MIMO antenna system. (vi) A view on control-feedback systems for fast and accurate generation of phase pattern for MIMO beam steering via a bank of optical phase modulators to mmW carrier phases and their preservation in the converted mmW domain . (vi) The overall operational principles of the novel techniques and technologies based on the coherent mixing of two lightwave channels The entire SoW can be implemented on SOI Si-photonic technology or via hybrid integration. These technological developments and their pros- and cons- will be discussed to achieve 50Tera-bps over the extended 110 channel Cband single mode fiber with mmW centered at 58.6GHz and 7GHz free-license band.

  11. Experimental Study of Nonlinear Phase Noise and its Impact on WDM Systems with DP-256QAM

    DEFF Research Database (Denmark)

    Yankov, Metodi Plamenov; Da Ros, Francesco; Porto da Silva, Edson

    2016-01-01

    A probabilistic method for mitigating the phase noise component of the non-linear interference in WDM systems with Raman amplification is experimentally demonstrated. The achieved gains increase with distance and are comparable to the gains of single-channel digital back-propagation....

  12. Simultaneous all-optical demultiplexing and regeneration based on self-phase and cross-phase modulation in a dispersion shifted fiber

    DEFF Research Database (Denmark)

    Yu, Jianjun; Jeppesen, Palle

    2001-01-01

    Simultaneous demultiplexing and regeneration of 40-Gb/s optical time division multiplexed (OTDM) signal based on self-phase and cross-phase modulation in a dispersion shifted fiber is numerically and experimentally investigated. The optimal walkoff time between the control pulse and OTDM signal...... is obtained by numerical simulation. Our experiment also shows that it is an effective method for realizing simultaneous demultiplexing and regeneration when used in the middle of a system or in the receiver with a proper walkoff time....

  13. Long-distance transmission over standard fiber by use of mid-way phase conjugation

    DEFF Research Database (Denmark)

    Zhang, Xiupu; Ebskamp, Frank; Jørgensen, Bo Foged

    1995-01-01

    In this letter, we predict transmission over more than 6000 km using standard fiber with the application of mid-way phase-conjugation in a 1.55-μm, 10-Gb/s IM/DD system with in-line amplifiers for the power penalty at BER=10-9, which is less than 6 dB; the system must operate with an average powe...... into the fiber within the range of -5 to 5 dBm...

  14. WDM compatible and electrically tunable SPE-OCDMA system based on the temporal self-imaging effect.

    Science.gov (United States)

    Tainta, S; Amaya, W; Erro, M J; Garde, M J; Sales, S; Muriel, M A

    2011-02-01

    A coding/decoding setup for a spectral phase encoding optical code-division multiple access (SPE-OCDMA) system has been developed. The proposal is based on the temporal self-imaging effect and the use of an easily tunable electro-optic phase modulator to achieve line-by-line coding of the transmitted signal, thus assuring compatibility with WDM techniques. Modulation of the code is performed at the same rate as the data, avoiding the use of high-bandwidth electro-optic modulators. As proof of concept of the technique, experimental results are presented for a back-to-back coder/decoder setup transmitting a 10 GHz unmodulated optical pulse train within an 80 GHz optical window and using 8-chip Hadamard codes.

  15. Distributed Weak Fiber Bragg Grating Vibration Sensing System Based on 3 × 3 Fiber Coupler

    Science.gov (United States)

    Li, Wei; Zhang, Jian

    2018-06-01

    A novel distributed weak fiber Bragg gratings (FBGs) vibration sensing system has been designed to overcome the disadvantages of the conventional methods for optical fiber sensing networking, which are: low signal intensity in the usually adopted time-division multiplexing (TDM) technology, insufficient quantity of multiplexed FBGs in the wavelength-division multiplexing (WDM) technology, and that the mixed WDM/TDM technology measures only the physical parameters of the FBG locations but cannot perform distributed measurement over the whole optical fiber. This novel system determines vibration events in the optical fiber line according to the intensity variation of the interference signals between the adjacent weak FBG reflected signals and locates the vibration points accurately using the TDM technology. It has been proven by tests that this system performs vibration signal detection and demodulation in a way more convenient than the conventional methods for the optical fiber sensing system. It also measures over the whole optical fiber, therefore, distributed measurement is fulfilled, and the system locating accuracy is up to 20 m, capable of detecting any signals of whose drive signals lower limit voltage is 0.2 V while the frequency range is 3 Hz‒1 000 Hz. The system has the great practical significance and application value for perimeter surveillance systems.

  16. Convergent optical wired and wireless long-reach access network using high spectral-efficient modulation.

    Science.gov (United States)

    Chow, C W; Lin, Y H

    2012-04-09

    To provide broadband services in a single and low cost perform, the convergent optical wired and wireless access network is promising. Here, we propose and demonstrate a convergent optical wired and wireless long-reach access networks based on orthogonal wavelength division multiplexing (WDM). Both the baseband signal and the radio-over-fiber (ROF) signal are multiplexed and de-multiplexed in optical domain, hence it is simple and the operation speed is not limited by the electronic bottleneck caused by the digital signal processing (DSP). Error-free de-multiplexing and down-conversion can be achieved for all the signals after 60 km (long-reach) fiber transmission. The scalability of the system for higher bit-rate (60 GHz) is also simulated and discussed.

  17. A CLS-based survivable and energy-saving WDM-PON architecture

    Science.gov (United States)

    Zhu, Min; Zhong, Wen-De; Zhang, Zhenrong; Luan, Feng

    2013-11-01

    We propose and demonstrate an improved survivable and energy-saving WDM-PON with colorless ONUs. It incorporates both energy-saving and self-healing operations. A simple effective energy-saving scheme is proposed by including an energy-saving control unit in the OLT and a control unit at each ONU. The energy-saving scheme realizes both dozing and sleep (offline) modes, which greatly improves the energy-saving efficiency for WDM-PONs. An intelligent protection switching scheme is designed in the OLT, which can distinguish if an ONU is in dozing/sleep (offline) state or a fiber is faulty. Moreover, by monitoring the optical power of each channel on both working and protection paths, the OLT can know the connection status of every fiber path, thus facilitating an effective protection switching and a faster failure recovery. The improved WDM-PON architecture not only significantly reduces energy consumption, but also performs self-healing operation in practical operation scenarios. The scheme feasibility is experimentally verified with 10 Gbit/s downstream and 1.25 Gbit/s upstream transmissions. We also examine the energy-saving efficiency of our proposed energy-saving scheme by simulation, which reveals that energy saving mainly arises from the dozing mode, not from the sleep mode when the ONU is in the online state.

  18. Linearized Optically Phase-Modulated Fiber Optic Links for Microwave Signal Transport

    Science.gov (United States)

    2009-03-03

    detectors (with internal 50- Ohm resistors) capable of 40-mA dc current per detector. With this link, the linearized SFDR would improve to 133 dB/Hz4/5...the IF) limitation on the signal. All calculations consider the 3dB power loss from the hybrid combiner and 6dB loss from parallel 50- Ohm resistors...283. [25] M. Nazarathy, J. Berger, A. Ley , I. Levi, and Y. Kagan, “Externally Modulated 80 Channel Am Catv Fiber-to-feeder Distribution System Over

  19. Performance evaluation of multi-stratum resources optimization with network functions virtualization for cloud-based radio over optical fiber networks.

    Science.gov (United States)

    Yang, Hui; He, Yongqi; Zhang, Jie; Ji, Yuefeng; Bai, Wei; Lee, Young

    2016-04-18

    Cloud radio access network (C-RAN) has become a promising scenario to accommodate high-performance services with ubiquitous user coverage and real-time cloud computing using cloud BBUs. In our previous work, we implemented cross stratum optimization of optical network and application stratums resources that allows to accommodate the services in optical networks. In view of this, this study extends to consider the multiple dimensional resources optimization of radio, optical and BBU processing in 5G age. We propose a novel multi-stratum resources optimization (MSRO) architecture with network functions virtualization for cloud-based radio over optical fiber networks (C-RoFN) using software defined control. A global evaluation scheme (GES) for MSRO in C-RoFN is introduced based on the proposed architecture. The MSRO can enhance the responsiveness to dynamic end-to-end user demands and globally optimize radio frequency, optical and BBU resources effectively to maximize radio coverage. The efficiency and feasibility of the proposed architecture are experimentally demonstrated on OpenFlow-based enhanced SDN testbed. The performance of GES under heavy traffic load scenario is also quantitatively evaluated based on MSRO architecture in terms of resource occupation rate and path provisioning latency, compared with other provisioning scheme.

  20. Optical signal processing techniques and applications of optical phase modulation in high-speed communication systems

    Science.gov (United States)

    Deng, Ning

    In recent years, optical phase modulation has attracted much research attention in the field of fiber optic communications. Compared with the traditional optical intensity-modulated signal, one of the main merits of the optical phase-modulated signal is the better transmission performance. For optical phase modulation, in spite of the comprehensive study of its transmission performance, only a little research has been carried out in terms of its functions, applications and signal processing for future optical networks. These issues are systematically investigated in this thesis. The research findings suggest that optical phase modulation and its signal processing can greatly facilitate flexible network functions and high bandwidth which can be enjoyed by end users. In the thesis, the most important physical-layer technology, signal processing and multiplexing, are investigated with optical phase-modulated signals. Novel and advantageous signal processing and multiplexing approaches are proposed and studied. Experimental investigations are also reported and discussed in the thesis. Optical time-division multiplexing and demultiplexing. With the ever-increasing demand on communication bandwidth, optical time division multiplexing (OTDM) is an effective approach to upgrade the capacity of each wavelength channel in current optical systems. OTDM multiplexing can be simply realized, however, the demultiplexing requires relatively complicated signal processing and stringent timing control, and thus hinders its practicability. To tackle this problem, in this thesis a new OTDM scheme with hybrid DPSK and OOK signals is proposed. Experimental investigation shows this scheme can greatly enhance the demultiplexing timing misalignment and improve the demultiplexing performance, and thus make OTDM more practical and cost effective. All-optical signal processing. In current and future optical communication systems and networks, the data rate per wavelength has been approaching

  1. 40-Gb/s transmission over 100m graded-index plastic optical fiber based on discrete multitone modulation

    NARCIS (Netherlands)

    Yang, H.; Lee, S.C.J.; Tangdiongga, E.; Breyer, F.; Randel, S.; Koonen, A.M.J.

    2009-01-01

    Spectral-efficient 40-Gb/s discrete multitone transmission over 100m of graded-index plastic optical fiber is experimentally demonstrated by intensity-modulation of a 10-GHz DFB-laser (1302nm) and direct-detection with a 25-µm large diameter photodetector.

  2. Multi-kW coherent combining of fiber lasers seeded with pseudo random phase modulated light

    Science.gov (United States)

    Flores, Angel; Ehrehreich, Thomas; Holten, Roger; Anderson, Brian; Dajani, Iyad

    2016-03-01

    We report efficient coherent beam combining of five kilowatt-class fiber amplifiers with a diffractive optical element (DOE). Based on a master oscillator power amplifier (MOPA) configuration, the amplifiers were seeded with pseudo random phase modulated light. Each non-polarization maintaining fiber amplifier was optically path length matched and provides approximately 1.2 kW of near diffraction-limited output power (measured M2polarization control. A low power sample of the combined beam after the DOE provided an error signal for active phase locking which was performed via Locking of Optical Coherence by Single-Detector Electronic-Frequency Tagging (LOCSET). After phase stabilization, the beams were coherently combined via the 1x5 DOE. A total combined output power of 4.9 kW was achieved with 82% combining efficiency and excellent beam quality (M2splitter loss was 5%. Similarly, losses due in part to non-ideal polarization, ASE content, uncorrelated wavefront errors, and misalignment errors contributed to the efficiency reduction.

  3. Novel OSNR Monitoring Technique in Dense WDM Systems using Inherently Generated CW Monitoring Channels

    DEFF Research Database (Denmark)

    Petersen, Martin Nordal

    2007-01-01

    We present a simple, yet effective OSNR monitoring technique based on an inherent effect in the optical modulator. Highly accurate OSNR monitoring is demonstrated in a 40 Gb/s dense WDM system with 50 GHz channel spacing.......We present a simple, yet effective OSNR monitoring technique based on an inherent effect in the optical modulator. Highly accurate OSNR monitoring is demonstrated in a 40 Gb/s dense WDM system with 50 GHz channel spacing....

  4. 200 Gbit/s 16QAM WDM transmission over a fully integrated cladding pumped 7-Core MCF System

    DEFF Research Database (Denmark)

    Castro, C.; Jain, S.; Jung, Y.

    2017-01-01

    A complete, realistic integrated system is investigated, consisting of directly spliced 7-core MCF, cladding-pumped 7-core amplifiers, isolators, and couplers. The system is demonstrated in a 16QAM C-band WDM scenario over 720 km....

  5. Digital services using quadrature amplitude modulation (QAM) over CATV analog DWDM system

    Science.gov (United States)

    Yeh, JengRong; Selker, Mark D.; Trail, J.; Piehler, David; Levi, Israel

    2000-04-01

    Dense Wavelength Division Multiplexing (DWDM) has recently gained great popularity as it provides a cost effective way to increase the transmission capacity of the existing fiber cable plant. For a long time, Dense WDM was exclusively used for baseband digital applications, predominantly in terrestrial long haul networks and in some cases in metropolitan and enterprise networks. Recently, the performance of DWDM components and frequency-stabilized lasers has substantially improved while the costs have down significantly. This makes a variety of new optical network architectures economically viable. The first commercial 8- wavelength DWDM system designed for Hybrid Fiber Coax networks was reported in 1998. This type of DWDM system utilizes Sub-Carrier Multiplexing (SCM) of Quadrature Amplitude Modulated (QAM) signals to transport IP data digital video broadcast and Video on Demand on ITU grid lightwave carriers. The ability of DWDM to provide scalable transmission capacity in the optical layer with SCM granularity is now considered by many to be the most promising technology for future transport and distribution of broadband multimedia services.

  6. Distribution of photonically generated 5 Gbits=s impulse radio ultrawideband signals over fiber

    DEFF Research Database (Denmark)

    Yu, Xianbin; Tafur Monroy, Idelfonso

    2011-01-01

    We propose an approach to generate ultrawideband (UWB) pulses with tunable high-speed modulation based on pulse compression. Flexible generation of up to a record 5 Gbits=s on-off keying impulse radio UWB signals are successfully demonstrated as well. We also investigate 5 Gbits=s on-off keying bit...

  7. Self-phase modulation enabled, wavelength-tunable ultrafast fiber laser sources: an energy scalable approach.

    Science.gov (United States)

    Liu, Wei; Li, Chen; Zhang, Zhigang; Kärtner, Franz X; Chang, Guoqing

    2016-07-11

    We propose and demonstrate a new approach to implement a wavelength-tunable ultrafast fiber laser source suitable for multiphoton microscopy. We employ fiber-optic nonlinearities to broaden a narrowband optical spectrum generated by an Yb-fiber laser system and then use optical bandpass filters to select the leftmost or rightmost spectral lobes from the broadened spectrum. Detailed numerical modeling shows that self-phase modulation dominates the spectral broadening, self-steepening tends to blue shift the broadened spectrum, and stimulated Raman scattering is minimal. We also find that optical wave breaking caused by fiber dispersion slows down the shift of the leftmost/rightmost spectral lobes and therefore limits the wavelength tuning range of the filtered spectra. We show both numerically and experimentally that shortening the fiber used for spectral broadening while increasing the input pulse energy can overcome this dispersion-induced limitation; as a result, the filtered spectral lobes have higher power, constituting a powerful and practical approach for energy scaling the resulting femtosecond sources. We use two commercially available photonic crystal fibers to verify the simulation results. More specific, use of 20-mm fiber NL-1050-ZERO-2 enables us to implement an Yb-fiber laser based ultrafast source, delivering femtosecond (70-120 fs) pulses tunable from 825 nm to 1210 nm with >1 nJ pulse energy.

  8. 3.375-Gb/s RGB-LED based WDM visible light communication system employing PAM-8 modulation with phase shifted Manchester coding.

    Science.gov (United States)

    Chi, Nan; Zhang, Mengjie; Zhou, Yingjun; Zhao, Jiaqi

    2016-09-19

    Optical background noise and second-order nonlinear distortions are two main challenges faced by indoor high-speed VLC system. In this paper, a novel phase shifted Manchester (PS-Manchester) coding based on PAM-8 is proposed and experimentally demonstrated to mitigate these noise and distortions. With the aid of PS-Manchester coding and WDM, a total data rate of 3.375-Gb/s can be successfully achieved in the RGB-LED based VLC system. The BER is under 7% HD-FEC limit of 3.8x10-3 after 1-m indoor free space transmission. To the best of our knowledge, this is the highest data rate ever achieved in PAM VLC systems.

  9. Phase modulation and structural effects in a D-shaped all-solid photonic crystal fiber surface plasmon resonance sensor.

    Science.gov (United States)

    Tan, Zhixin; Hao, Xin; Shao, Yonghong; Chen, Yuzhi; Li, Xuejin; Fan, Ping

    2014-06-16

    We numerically investigate a D-shaped fiber surface plasmon resonance sensor based on all-solid photonic crystal fiber (PCF) with finite element method. In the side-polished PCF sensor, field leakage is guided to penetrate through the gap between the rods, causing a pronounced phase modulation in the deep polishing case. Taking advantage of these amplified phase shifts, a high-performance fiber sensor design is proposed. The significant enhancements arising from this new sensor design should lift the performance of the fiber SPR sensor into the range capable of detecting a wide range of biochemical interactions, which makes it especially attractive for many in vivo and in situ bioanalysis applications. Several parameters which influence the field leakage, such as the polishing position, the pitch of the PCF, and the rod diameter, are inspected to evaluate their impacts. Furthermore, we develop a mathematical model to describe the effects of varying the structural parameters of a D-shaped PCF sensor on the evanescent field and the sensor performance.

  10. Novel RF Interrogation of a Fiber Bragg Grating Sensor Using Bidirectional Modulation of a Mach-Zehnder Electro-Optical Modulator

    Science.gov (United States)

    Choi, Sang-Jin; Mao, Wankai; Pan, Jae-Kyung

    2013-01-01

    We propose and experimentally demonstrate the novel radio-frequency (RF) interrogation of a fiber Bragg grating (FBG) sensor using bidirectional modulation of a Mach-Zehnder electro-optical modulator (MZ-EOM). Based on the microwave photonic technique and active detection, the transfer function of the proposed system was obtained, and the time delay was calculated from the change in the free spectral range (FSR) at different wavelengths over the optimal measuring range. The results show that the time delay and the wavelength variation have a good linear relationship, with a gradient of 9.31 ps/nm. An actual measurement taken with a sensing FBG for temperature variation shows the relationship with a gradient of 0.93 ps/10 °C. The developed system could be used for FBG temperature or strain sensing and other multiplexed sensor applications. PMID:23820744

  11. 60-GHz Millimeter-wave Over Fiber with Directly Modulated Dual-mode Laser Diode

    Science.gov (United States)

    Tsai, Cheng-Ting; Lin, Chi-Hsiang; Lin, Chun-Ting; Chi, Yu-Chieh; Lin, Gong-Ru

    2016-01-01

    A directly modulated dual-mode laser diode (DMLD) with third-order intermodulation distortion (IMD3) suppression is proposed for a 60-GHz millimeter-wave over fiber (MMWoF) architecture, enabling new fiber-wireless communication access to cover 4-km single-mode-fiber (SMF) and 3-m wireless 16-QAM OFDM transmissions. By dual-mode injection-locking, the throughput degradation of the DMLD is mitigated with saturation effect to reduce its threshold, IMD3 power and relative intensity noise to 7.7 mA, −85 dBm and −110.4 dBc/Hz, respectively, providing huge spurious-free dynamic range of 85.8 dB/Hz2/3. This operation suppresses the noise floor of the DMLD carried QPSK-OFDM spectrum by 5 dB. The optical receiving power is optimized to restrict the power fading effect for improving the bit error rate to 1.9 × 10−3 and the receiving power penalty to 1.1 dB. Such DMLD based hybrid architecture for 60-GHz MMW fiber-wireless access can directly cover the current optical and wireless networks for next-generation indoor and short-reach mobile communications. PMID:27297267

  12. High-Order Modulation for Optical Fiber Transmission

    CERN Document Server

    Seimetz, Matthias

    2009-01-01

    Catering to the current interest in increasing the spectral efficiency of optical fiber networks by the deployment of high-order modulation formats, this monograph describes transmitters, receivers and performance of optical systems with high-order phase and quadrature amplitude modulation. In the first part of the book, the author discusses various transmitter implementation options as well as several receiver concepts based on direct and coherent detection, including designs of new structures. Hereby, both optical and electrical parts are considered, allowing the assessment of practicability and complexity. In the second part, a detailed characterization of optical fiber transmission systems is presented, regarding a wide range of modulation formats. It provides insight in the fundamental behavior of different formats with respect to relevant performance degradation effects and identifies the major trends in system performance.

  13. Optical self-injection mode-locking of semiconductor optical amplifier fiber ring with electro-absorption modulation—fundamentals and applications

    International Nuclear Information System (INIS)

    Chi, Yu-Chieh; Lin, Gong-Ru

    2013-01-01

    The optical self-injection mode-locking of a semiconductor optical amplifier incorporated fiber ring laser (SOAFL) with spectrally sliced multi-channel carriers is demonstrated for applications. The synthesizer-free SOAFL pulse-train is delivered by optical injection mode-locking with a 10 GHz self-pulsed electro-absorption modulator (EAM). Such a coupled optical and electronic resonator architecture facilitates a self-feedback oscillation with a higher Q-factor and lower phase/intensity noises when compared with conventional approaches. The theoretical model of such an injection-mode-locking SOAFL is derived to improve the self-pulsating performance of the optical return-to-zero (RZ) carrier, thus providing optimized pulsewidth, pulse extinction ratio, effective Q-factor, frequency variation and timing jitter of 11.4 ps, 9.1 dB, 4 × 10 5 , −1 bi-directional WDM transmission network with down-stream RZ binary phase-shift keying (RZ-BPSK) and up-stream re-modulated RZ on–off-keying (RZ-OOK) formats. Under BPSK/OOK bi-directional data transmission, the self-pulsed harmonic mode-locking SOAFL simultaneously provides four to six WDM channels for down-stream RZ-BPSK and up-stream RZ-OOK formats with receiving sensitivities of −17 and −15.2 dBm at a bit error rate of 10 −9 , respectively. (paper)

  14. Self-pulsing in a 2 km single-mode fiber with the seed source broadened via WNS phase modulation

    Science.gov (United States)

    Zha, Congwen; Sun, Yinhong; Wang, Yanshan; Li, Tenglong; Peng, Wanjing; Ma, Yi; Zhang, Kai

    2018-03-01

    The seed source with spectral linewidth broadening via phase modulation is potential to achieve the higher output power with effective SBS suppression. However, self-pulsing from the amplifier output is harmful. In this work, we study the self-pulsing characteristics in a long single-mode fiber with lower self-pulsing threshold instead of the high power amplifier. We provide a powerful experimental support for the self-pulsing mechanism in high-power narrow-linewidth fiber lasers, which is important for further output power scaling.

  15. WDM-PON-compatible system for simultaneous distribution of gigabit baseband and wireless ultrawideband services with flexible bandwidth allocation

    DEFF Research Database (Denmark)

    Pham, Tien Thang; Yu, Xianbin; Gibbon, Timothy Braidwood

    2011-01-01

    In this paper, a novel and simple scheme to realize flexible access for gigabit wireline and impulse radio ultrawideband (IR-UWB) wireless services is proposed. The UWB signals are generated by multi-carrier upconverting and reshaping the baseband signals.The proposed system was experimentally...... demonstrated with the performances of 2.0-Gbps data in both baseband and UWB formats after 46-km single mode fiber transmission and further 0.5-m wireless for UWB data. The flexibility of the system is confirmed by investigating the system performance at different data rates including 1.0 Gbps and 1.6 Gbps....... Optical wavelength independency and data-rate variability of UWB signal generation makes the system attractive for potential wireline and wireless applications in existing WDM-PON systems....

  16. Bidirectional fiber-wireless and fiber-IVLLC integrated system based on polarization-orthogonal modulation scheme.

    Science.gov (United States)

    Lu, Hai-Han; Li, Chung-Yi; Chen, Hwan-Wei; Ho, Chun-Ming; Cheng, Ming-Te; Huang, Sheng-Jhe; Yang, Zih-Yi; Lin, Xin-Yao

    2016-07-25

    A bidirectional fiber-wireless and fiber-invisible laser light communication (IVLLC) integrated system that employs polarization-orthogonal modulation scheme for hybrid cable television (CATV)/microwave (MW)/millimeter-wave (MMW)/baseband (BB) signal transmission is proposed and demonstrated. To our knowledge, it is the first one that adopts a polarization-orthogonal modulation scheme in a bidirectional fiber-wireless and fiber-IVLLC integrated system with hybrid CATV/MW/MMW/BB signal. For downlink transmission, carrier-to-noise ratio (CNR), composite second-order (CSO), composite triple-beat (CTB), and bit error rate (BER) perform well over 40-km single-mode fiber (SMF) and 10-m RF/50-m optical wireless transport scenarios. For uplink transmission, good BER performance is obtained over 40-km SMF and 50-m optical wireless transport scenario. Such a bidirectional fiber-wireless and fiber-IVLLC integrated system for hybrid CATV/MW/MMW/BB signal transmission will be an attractive alternative for providing broadband integrated services, including CATV, Internet, and telecommunication services. It is shown to be a prominent one to present the advancements for the convergence of fiber backbone and RF/optical wireless feeder.

  17. Elimination of residual amplitude modulation in tunable diode laser wavelength modulation spectroscopy using an optical fiber delay line.

    Science.gov (United States)

    Chakraborty, Arup Lal; Ruxton, Keith; Johnstone, Walter; Lengden, Michael; Duffin, Kevin

    2009-06-08

    A new fiber-optic technique to eliminate residual amplitude modulation in tunable diode laser wavelength modulation spectroscopy is presented. The modulated laser output is split to pass in parallel through the gas measurement cell and an optical fiber delay line, with the modulation frequency / delay chosen to introduce a relative phase shift of pi between them. The two signals are balanced using a variable attenuator and recombined through a fiber coupler. In the absence of gas, the direct laser intensity modulation cancels, thereby eliminating the high background. The presence of gas induces a concentration-dependent imbalance at the coupler's output from which the absolute absorption profile is directly recovered with high accuracy using 1f detection.

  18. Dispersion Compensation Requirements for Optical CDMA Using WDM Lasers

    International Nuclear Information System (INIS)

    Mendez, A J; Hendandez, V J; Feng, H X C; Heritage, J P; Lennon, W J

    2001-01-01

    Optical code division multiple access (O-CDMA) uses very narrow transmission pulses and is thus susceptible to fiber optic link impairments. When the O-CDMA is implemented as wavelength/time (W/T) matrices which use wavelength division multiplexing (WDM) sources such as multi-frequency laser transmitters, the susceptibility may be higher due to: (a) the large bandwidth utilized and (b) the requirement that the various wavelength components of the codes be synchronized at the point of modulation and encoding as well as after (optical) correlation. A computer simulation based on the nonlinear Schroedinger equation, developed to study optical networking on the National Transparent Optical Network (NTON), was modified to characterize the impairments on the propagation and decoding of W/T matrix codes over a link of the NTON. Three critical link impairments were identified by the simulation: group velocity dispersion (GVD); the flatness of the optical amplifier gain; and the slope of the GVD. Subsequently, experiments were carried out on the NTON link to verify and refine the simulations as well as to suggest improvements in the W/T matrix signal processing design. The NTON link measurements quantified the O-CDMA dispersion compensation requirements. Dispersion compensation management is essential to assure the performance of W/T matrix codes

  19. The Advent of WDM and the All-Optical Network: A Reality Check.

    Science.gov (United States)

    Lutkowitz, Mark

    1998-01-01

    Discussion of the telecommunications industry focuses on WDM (wavelength division multiplexing) as a solution for dealing with capacity constraints. Highlights include fiber optic technology; cross-connecting and switching wavelengths; SONET (Synchronous Optical Network) and wavelength networking; and optical TDM (Time Division Multiplexing). (LRW)

  20. Dynamic Bandwidth Allocation with Effective Utilization of Polling Interval over WDM/TDM PON

    Science.gov (United States)

    Ni, Cuiping; Gan, Chaoqin; Gao, Ziyue

    2014-12-01

    WDM/TDM (wavelength-division multiplexing/time-division multiplexing) PON (passive optical network) appears to be an attractive solution for the next generation optical access networks. Dynamic bandwidth allocation (DBA) plays a crucial role in efficiently and fairly allocating the bandwidth among all users in WDM/TDM PON. In this paper, two dynamic bandwidth allocation schemes (DBA1 and DBA2) are proposed to eliminate the idle time of polling cycles (i.e. polling interval), improve bandwidth utilization and make full use of bandwidth resources. The two DBA schemes adjust the time slot of sending request information and make fair scheduling among users to achieve the effective utilization of polling interval in WDM/TDM PON. The simulation and theoretical analyses verify that the proposed schemes outperform the conventional DBA scheme. We also make comparisons between the two schemes in terms of bandwidth utilization and average packet delay to further demonstrate the effectiveness of the scheme of DBA2.

  1. System performance of a 4-channel PHASAR WDM receiver operating at 1.2 Gbit/s

    NARCIS (Netherlands)

    Steenbergen, C.A.M.; van Deventer, M.O.; Vreede, de L.C.N.; Dam, van C.; Smit, M.K.; Verbeek, B.H.

    1996-01-01

    Phased arrays are important key components in wavelength-division multiplexing (WDM) systems. We have realized a 4-channel WDM receiver combining a phased array with photodetectors on InP with a Si bipolar transimpedance amplifier. The channels are spaced at 2.0 nm with a 1.0-nm flat passband. On

  2. Integration of Optically Generated Impulse Radio UWB Signals into Baseband WDM-PON

    DEFF Research Database (Denmark)

    Pham, Tien Thang; Yu, Xianbin; Dittmann, Lars

    2011-01-01

    We propose a compact integration system to simultaneously provide wireline and wireless (baseband and ultra-wide band (UWB)) services to end-users in a WDM-PON. A 1-Gbps UWB signal is optically generated and shares the same wavelength with the baseband signal. Error-free performance was achieved...

  3. Enabling technologies for millimeter-wave radio-over-fiber systems in next generation heterogeneous mobile access networks

    Science.gov (United States)

    Zhang, Junwen; Yu, Jianjun; Wang, Jing; Xu, Mu; Cheng, Lin; Lu, Feng; Shen, Shuyi; Yan, Yan; Cho, Hyunwoo; Guidotti, Daniel; Chang, Gee-kung

    2017-01-01

    Fifth-generation (5G) wireless access network promises to support higher access data rate with more than 1,000 times capacity with respect to current long-term evolution (LTE) systems. New radio-access-technologies (RATs) based on higher carrier frequencies to millimeter-wave (MMW) radio-over-fiber, and carrier-aggregation (CA) using multi-band resources are intensively studied to support the high data rate access and effectively use of frequency resources in heterogeneous mobile network (Het-Net). In this paper, we investigate several enabling technologies for MMW RoF systems in 5G Het-Net. Efficient mobile fronthaul (MFH) solutions for 5G centralized radio access network (C-RAN) and beyond are proposed, analyzed and experimentally demonstrated based on the analog scheme. Digital predistortion based on memory polynomial for analog MFH linearization are presented with improved EVM performances and receiver sensitivity. We also propose and experimentally demonstrate a novel inter-/intra- RAT CA scheme for 5G Het- Net. The real-time standard 4G-LTE signal is carrier-aggregated with three broadband 60GHz MMW signals based on proposed optical-domain band-mapping method. RATs based on new waveforms have also been studied here to achieve higher spectral-efficiency (SE) in asynchronous environments. Full-duplex asynchronous quasi-gapless carrier aggregation scheme for MMW ROF inter-/intra-RAT based on the FBMC is also presented with 4G-LTE signals. Compared with OFDM-based signals with large guard-bands, FBMC achieves higher spectral-efficiency with better EVM performance at less received power and smaller guard-bands.

  4. A novel method for combating dispersion induced power fading in dispersion compensating fiber

    DEFF Research Database (Denmark)

    Lebedev, Alexander; Vegas Olmos, Juan José; Iglesias Olmedo, Miguel

    2013-01-01

    We experimentally investigate the performance of 60 GHz double sideband (DSB) radio over fiber (RoF) links that employ dispersion compensating fiber (DCF). Error free transmission of 3 Gbps signals over 1 m of wireless distance is reported. In order to overcome experimentally observed chromatic...... dispersion (CD) induced power fading of radio frequency (RF) signal, we propose a method for improvement of RF carrier-to-noise (C/N) ratio through introduction of a degree of RF frequency tunability. Overall results improve important aspects of directly modulated RoF systems and demonstrate the feasibility...

  5. Optical Communication over Plastic Optical Fibers Integrated Optical Receiver Technology

    CERN Document Server

    Atef, Mohamed

    2013-01-01

    This book presents high-performance data transmission over plastic optical fibers (POF) using integrated optical receivers having good properties with multilevel modulation, i.e. a higher sensitivity and higher data rate transmission over a longer plastic optical fiber length. Integrated optical receivers and transmitters with high linearity are introduced for multilevel communication. For binary high-data rate transmission over plastic optical fibers, an innovative receiver containing an equalizer is described leading also to a high performance of a plastic optical fiber link. The cheap standard PMMA SI-POF (step-index plastic optical fiber) has the lowest bandwidth and the highest attenuation among multimode fibers. This small bandwidth limits the maximum data rate which can be transmitted through plastic optical fibers. To overcome the problem of the plastic optical fibers high transmission loss, very sensitive receivers must be used to increase the transmitted length over POF. The plastic optical fiber li...

  6. Fiber-wireless transmission system of 108  Gb/sdata over 80 km fiber and 2×2multiple-input multiple-output wireless links at 100 GHz W-band frequency.

    Science.gov (United States)

    Li, Xinying; Dong, Ze; Yu, Jianjun; Chi, Nan; Shao, Yufeng; Chang, G K

    2012-12-15

    We experimentally demonstrate a seamlessly integrated fiber-wireless system that delivers a 108  Gb/s signal through 80 km fiber and 1 m wireless transport over free space at 100 GHz adopting polarization-division-multiplexing quadrature-phase-shift-keying (PDM-QPSK) modulation and heterodyning coherent detection. The X- and Y-polarization components of the optical PDM-QPSK baseband signal are simultaneously upconverted to 100 GHz wireless carrier by optical polarization-diversity heterodyne beating, and then independently transmitted and received by two pairs of transmitter and receiver antennas, which form a 2×2 multiple-input multiple-output wireless link. At the wireless receiver, two-stage downconversion is performed firstly in the analog domain based on balanced mixer and sinusoidal radio frequency signal, and then in the digital domain based on digital signal processing (DSP). Polarization demultiplexing is realized by the constant modulus algorithm in the DSP part at the receiver. The bit-error ratio for the 108  Gb/s PDM-QPSK signal is less than the pre-forward-error-correction threshold of 3.8×10(-3) after both 1 m wireless delivery at 100 GHz and 80 km single-mode fiber-28 transmission. To our knowledge, this is the first demonstration to realize 100  Gb/s signal delivery through both fiber and wireless links at 100 GHz.

  7. A SURVEY ON WAVELENGTH DIVISION MULTIPLEXING (WDM NETWORKS

    Directory of Open Access Journals (Sweden)

    G. Ramesh

    2010-03-01

    Full Text Available Communication networks have emerged as a source of empowerment in today’s society. At the global level, the Internet is becoming the backbone of the modern economy. The new generations in developed countries cannot even conceive of a world without broadband access to the Internet. The inability of the current Internet infrastructure to cope with the wide variety and ever growing number of users, emerging networked applications, usage patterns and business models is increasingly being recognized worldwide. The dynamic growth of Internet traffic and its bursty nature requires high transmission rate. With the advances and the progress in Wavelength Division Multiplexing (WDM technology, the amount of raw bandwidth available in fiber links has increased to high magnitude. This paper presents a survey on WDM networks from its development to the current status. Also an analysis on buffer size in optical networks for real time traffic was performed.

  8. Characterization of dual-polarization LTE radio over a free-space optical turbulence channel.

    Science.gov (United States)

    Bohata, J; Zvanovec, S; Korinek, T; Mansour Abadi, M; Ghassemlooy, Z

    2015-08-10

    A dual polarization (DP) radio over a free-space optical (FSO) communication link using a long-term evolution (LTE) radio signal is proposed and analyzed under different turbulence channel conditions. Radio signal transmission over the DP FSO channel is experimentally verified by means of error vector magnitude (EVM) statistics. We demonstrate that such a system, employing a 64 quadrature amplitude modulation at the frequency bands of 800 MHz and 2.6 GHz, evinces reliability with LTE signal over the FSO channel is a potential solution for last-mile access or backbone networks, when using multiple-input multiple-output based DP signals.

  9. BER and total throughput of asynchronous DS-OCDMA/WDM systems with multiple user interference

    OpenAIRE

    Ghiringhelli, F.; Zervas, M.N.

    2003-01-01

    The BER and throughput of Direct-Sequence OCDMA/WDM systems based on quadripolar codes and superstructured fiber Bragg gratings are statistically derived under asynchronous operation, intensity detection, and Multiple User Interference. Performance improvements with Forward Error Correction are included.

  10. Fiber-Optic Communication Links Suitable for On-Board Use in Modern Aircraft

    Science.gov (United States)

    Nguyen, Hung; Ngo, Duc; Alam, Mohammad F.; Atiquzzaman, Mohammed; Sluse, James; Slaveski, Filip

    2004-01-01

    The role of the Advanced Air Transportation Technologies program undertaken at the NASA Glenn Research Centers has been focused mainly on the improvement of air transportation safety, with particular emphasis on air transportation communication systems in on-board aircraft. The conventional solutions for digital optical communications systems specifically designed for local/metro area networks are, unfortunately, not capable of transporting the microwave and millimeter RF signals used in avionics systems. Optical networks capable of transporting RF signals are substantially different from the standard digital optical communications systems. The objective of this paper is to identify a number of different communication link architectures for RF/fiber optic transmission using a single backbone fiber for carrying VHF and UHF RF signals in the aircraft. To support these architectures, two approaches derived from both hybrid RF-optical and all-optical processing methodologies are discussed with single and multiple antennas for explicitly transporting VHF and UHF signals, while the relative merits and demerits of each architecture are also addressed. Furthermore, the experimental results of wavelength division multiplexing (WDM) link architecture from our test-bed platform, configured for aircraft environment to support simultaneous transmission of multiple RF signals over a single optical fiber, exhibit no appreciable signal degradation at wavelengths of both 1330 and 1550 nm, respectively. Our measurements of signal to noise ratio carried out for the transmission of FM and AM analog modulated signals at these wavelengths indicate that WDM is a fiber optic technology which is potentially suitable for avionics applications.

  11. Single Source 5-dimensional (Space-, Wavelength-, Time-, Polarization-, Quadrature-) 43 Tbit/s Data Transmission of 6 SDM × 6 WDM × 1.2 Tbit/s Nyquist-OTDM-PDM-QPSK

    DEFF Research Database (Denmark)

    Hu, Hao; Ye, Feihong; Medhin, Ashenafi Kiros

    2014-01-01

    We demonstrate 43-Tbit/s transmission over 67.4-km seven-core fiber using a single source. Each of the 6 outer cores carries 6 Nyquist-WDM channels using 320-Gbaud Nyquist- OTDM-PDM-QPSK 330-GHz spaced, and the center core carries 10-GHz clock pulses....

  12. Evaluation of correlated digital back propagation and extended Kalman filtering for non-linear mitigation in PM-16-QAM WDM systems

    Science.gov (United States)

    Pakala, Lalitha; Schmauss, Bernhard

    2017-01-01

    We investigate the individual and combined performance of correlated digital back propagation (CDBP) and extended Kalman filtering (EKF) in mitigating inter and intra-channel non-linearities in wavelength division multiplexed (WDM) systems. The afore-mentioned algorithms are verified through numerical simulations on 28 Gbaud polarization multiplexed (PM) 16-quadrature amplitude modulation (16-QAM) 9-channel WDM system with 50 GHz spacing. A single channel CDBP with one-step-per-span based on asymmetric split step Fourier method (A-SSFM) with optimized non-linear coefficient has been employed. We also study an amplitude dependent optimization (AO) of the non-linear coefficient for CDBP which shows an improvement of ≍ 0.8 dB compared to the conventional optimized CDBP, in the non-linear regime. Moreover, our proposed carrier phase and amplitude noise estimation (CPANE) algorithm based on EKF outperforms AO-CDBP in both linear and non-linear regimes with an enhanced performance besides significantly reduced complexity. We further investigate the combined performance of AO-CDBP and EKF which results in an enhanced non-linear tolerance at the expense of increased computational cost trading off to the number of required CDBP steps per span. Furthermore, we also analyze the impact of cross phase modulation (XPM) on the combined performance of AO-CDBP and EKF by varying the number of WDM channels. Numerical results show that the obtained gain from employing AO-CDBP prior to EKF reduces with increasing effects of XPM. Additionally, we also discuss the computational complexity of the aforementioned algorithms.

  13. Stimulated Brillouin scattering continuous wave phase conjugation in step-index fiber optics.

    Science.gov (United States)

    Massey, Steven M; Spring, Justin B; Russell, Timothy H

    2008-07-21

    Continuous wave (CW) stimulated Brillouin scattering (SBS) phase conjugation in step-index optical fibers was studied experimentally and modeled as a function of fiber length. A phase conjugate fidelity over 80% was measured from SBS in a 40 m fiber using a pinhole technique. Fidelity decreases with fiber length, and a fiber with a numerical aperture (NA) of 0.06 was found to generate good phase conjugation fidelity over longer lengths than a fiber with 0.13 NA. Modeling and experiment support previous work showing the maximum interaction length which yields a high fidelity phase conjugate beam is inversely proportional to the fiber NA(2), but find that fidelity remains high over much longer fiber lengths than previous models calculated. Conditions for SBS beam cleanup in step-index fibers are discussed.

  14. In situ observation of modulated light emission of fiber fuse synchronized with void train over hetero-core splice point.

    Directory of Open Access Journals (Sweden)

    Shin-ichi Todoroki

    Full Text Available BACKGROUND: Fiber fuse is a process of optical fiber destruction under the action of laser radiation, found 20 years ago. Once initiated, opical discharge runs along the fiber core region to the light source and leaves periodic voids whose shape looks like a bullet pointing the direction of laser beam. The relation between damage pattern and propagation mode of optical discharge is still unclear even after the first in situ observation three years ago. METHODOLOGY/PRINCIPAL FINDINGS: Fiber fuse propagation over hetero-core splice point (Corning SMF-28e and HI 1060 was observed in situ. Sequential photographs obtained at intervals of 2.78 micros recorded a periodic emission at the tail of an optical discharge pumped by 1070 nm and 9 W light. The signal stopped when the discharge ran over the splice point. The corresponding damage pattern left in the fiber core region included a segment free of periodicity. CONCLUSIONS: The spatial modulation pattern of the light emission agreed with the void train formed over the hetero-core splice point. Some segments included a bullet-shaped void pointing in the opposite direction to the laser beam propagation although the sequential photographs did not reveal any directional change in the optical discharge propagation.

  15. Digital coherent superposition of optical OFDM subcarrier pairs with Hermitian symmetry for phase noise mitigation.

    Science.gov (United States)

    Yi, Xingwen; Chen, Xuemei; Sharma, Dinesh; Li, Chao; Luo, Ming; Yang, Qi; Li, Zhaohui; Qiu, Kun

    2014-06-02

    Digital coherent superposition (DCS) provides an approach to combat fiber nonlinearities by trading off the spectrum efficiency. In analogy, we extend the concept of DCS to the optical OFDM subcarrier pairs with Hermitian symmetry to combat the linear and nonlinear phase noise. At the transmitter, we simply use a real-valued OFDM signal to drive a Mach-Zehnder (MZ) intensity modulator biased at the null point and the so-generated OFDM signal is Hermitian in the frequency domain. At receiver, after the conventional OFDM signal processing, we conduct DCS of the optical OFDM subcarrier pairs, which requires only conjugation and summation. We show that the inter-carrier-interference (ICI) due to phase noise can be reduced because of the Hermitain symmetry. In a simulation, this method improves the tolerance to the laser phase noise. In a nonlinear WDM transmission experiment, this method also achieves better performance under the influence of cross phase modulation (XPM).

  16. High Speed and High Spatial Density Parameter Measurement Using Fiber Optic Sensing Technology

    Science.gov (United States)

    Parker, Allen R. Jr. (Inventor); Chan, Hon Man (Inventor); Richards, William Lance (Inventor); Piazza, Anthony (Inventor); Hamory, Philip J (Inventor)

    2017-01-01

    The present invention is an improved fiber optic sensing system (FOSS) having the ability to provide both high spatial resolution and high frequency strain measurements. The inventive hybrid FOSS fiber combines sensors from high acquisition speed and low spatial resolution Wavelength-Division Multiplexing (WDM) systems and from low acquisition speed and high spatial resolution Optical Frequency Domain Reflection (OFDR) systems. Two unique light sources utilizing different wavelengths are coupled with the hybrid FOSS fiber to generate reflected data from both the WDM sensors and OFDR sensors operating on a single fiber optic cable without incurring interference from one another. The two data sets are then de-multiplexed for analysis, optionally with conventionally-available WDM and OFDR system analyzers.

  17. Comparison of OOK- and PAM-4 modulation for 10 Gbit/s transmission over up to 300 m polymer optical fiber

    NARCIS (Netherlands)

    Breyer, F.; Lee, S.C.J.; Randel, S.; Hanik, N.

    2008-01-01

    10 Gbit/s Transmission over up to 300 m of multimode 62.5 µm core-diameter perfluorinated graded-index polymer optical fiber is compared using on-off-keying (OOK) or 4-level pulse amplitude modulation (PAM-4) and feed-forward or decision-feedback equalization.

  18. A hybrid WDM/OCDMA ring with a dynamic add/drop function based on Fourier code for local area networks.

    Science.gov (United States)

    Choi, Yong-Kyu; Hosoya, Kenta; Lee, Chung Ghiu; Hanawa, Masanori; Park, Chang-Soo

    2011-03-28

    We propose and experimentally demonstrate a hybrid WDM/OCDMA ring with a dynamic add/drop function based on Fourier code for local area networks. Dynamic function is implemented by mechanically tuning the Fourier encoder/decoder for optical code division multiple access (OCDMA) encoding/decoding. Wavelength division multiplexing (WDM) is utilized for node assignment and 4-chip Fourier code recovers the matched signal from the codes. For an optical source well adapted to WDM channels and its short optical pulse generation, reflective semiconductor optical amplifiers (RSOAs) are used with a fiber Bragg grating (FBG) and gain-switched. To demonstrate we experimentally investigated a two-node hybrid WDM/OCDMA ring with a 4-chip Fourier encoder/decoder fabricated by cascading four FBGs with the bit error rate (BER) of <10(-9) for the node span of 10.64 km at 1.25 Gb/s.

  19. Experimental demonstration of optical stealth transmission over wavelength-division multiplexing network.

    Science.gov (United States)

    Zhu, Huatao; Wang, Rong; Pu, Tao; Fang, Tao; Xiang, Peng; Zheng, Jilin; Tang, Yeteng; Chen, Dalei

    2016-08-10

    We propose and experimentally demonstrate an optical stealth transmission system over a 200 GHz-grid wavelength-division multiplexing (WDM) network. The stealth signal is processed by spectral broadening, temporal spreading, and power equalizing. The public signal is suppressed by multiband notch filtering at the stealth channel receiver. The interaction between the public and stealth channels is investigated in terms of public-signal-to-stealth-signal ratio, data rate, notch-filter bandwidth, and public channel number. The stealth signal can transmit over 80 km single-mode fiber with no error. Our experimental results verify the feasibility of optical steganography used over the existing WDM-based optical network.

  20. Fabrication of an electro-absorption transceiver with a monolithically integrated optical amplifier for fiber transmission of 40–60 GHz radio signals

    International Nuclear Information System (INIS)

    Zhang, Andy Zhenzhong; Wang, Qin; Fonjallaz, Pierre-Yves; Almqvist, Susanne; Karlsson, Stefan; Kjebon, Olle; Schatz, Richard; Chacinski, Marek; Thylén, Lars; Berggren, Jesper; Hammar, Mattias; Honecker, Jörg; Steffan, Andreas

    2011-01-01

    We report on the fabrication of a monolithically integrated semiconductor optical amplifier (SOA) and a reflective electro-absorption transceiver (EAT) for 40–60 GHz radio-over-fiber applications. The EAT can either function as a transmitter (reflective modulator) or as a receiver (photodetector) depending on operation mode. The SOA and the EAT sections are based on different InGaAsP multiple quantum-well active layers connected by a butt joint. Benzocyclobutene is used to reduce the capacitance beside the ridge mesa. Devices are designed to have a peaked response at the operating frequency through the design of microwave waveguides on top of the devices. The packaged device exhibits at 0.1 mW optical input power an amplified DC responsivity of 18.5 mA mW −1 and a modulation efficiency of 0.67 mW V −1 . The estimated radio frequency loss at 40 GHz of an optical link consisting of two SOA–EAT devices was 23 dB using an unmodulated optical input carrier to the transmitter of 0.94 mW

  1. Fiber-optic communication systems

    CERN Document Server

    Agrawal, Govind P

    2010-01-01

    This book provides a comprehensive account of fiber-optic communication systems. The 3rd edition of this book is used worldwide as a textbook in many universities. This 4th edition incorporates recent advances that have occurred, in particular two new chapters. One deals with the advanced modulation formats (such as DPSK, QPSK, and QAM) that are increasingly being used for improving spectral efficiency of WDM lightwave systems. The second chapter focuses on new techniques such as all-optical regeneration that are under development and likely to be used in future communication systems. All othe

  2. Hybrid CATV/MMW/BB lightwave transmission system based on fiber-wired/fiber-wireless/fiber-VLLC integrations.

    Science.gov (United States)

    Li, Chung-Yi; Lu, Hai-Han; Lu, Ting-Chieh; Chu, Chien-An; Chen, Bo-Rui; Lin, Chun-Yu; Peng, Peng-Chun

    2015-12-14

    A hybrid lightwave transmission system for cable television (CATV)/millimeter-wave (MMW)/baseband (BB) signal transmission based on fiber-wired/fiber-wireless/fiber-visible laser light communication (VLLC) integrations is proposed and demonstrated. For down-link transmission, the light is intensity-modulated with 50-550 MHz CATV signal and optically promoted from 25 GHz radio frequency (RF) signal to 10 Gbps/50 GHz and 20 Gbps/100 GHz MMW data signals based on fiber-wired and fiber-wireless integrations. Good performances of carrier-to-noise ratio (CNR), composite second-order (CSO), composite triple-beat (CTB), and bit error rate (BER) are obtained over a 40-km single-mode fiber (SMF) and a 10-m RF wireless transport. For up-link transmission, the light is successfully intensity-remodulated with 5-Gbps BB data stream based on fiber-VLLC integration. Good BER performance is achieved over a 40-km SMF and a 10-m free-space VLLC transport. Such a hybrid CATV/MMW/BB lightwave transmission system is an attractive alternative, it gives the benefits of a communication link for broader bandwidth and higher transmission rate.

  3. One-to-six WDM multicasting of DPSK signals based on dual-pump four-wave mixing in a silicon waveguide

    DEFF Research Database (Denmark)

    Pu, Minhao; Hu, Hao; Ji, Hua

    2011-01-01

    We present WDM multicasting based on dual-pump four-wave mixing in a 3-mm long dispersion engineered silicon waveguide. One-to-six phase-preserving WDM multicasting of 10-Gb/s differential phase-shiftkeying (DPSK) data is experimentally demonstrated with bit-error rate measurements. All the six...

  4. Wavelength-agnostic WDM-PON System

    DEFF Research Database (Denmark)

    Wagner, Christoph; Eiselt, Michael; Zou, S.

    2016-01-01

    on the standardization status of this lowcost system in the new ITU-T G.metro draft recommendation, in the context of autonomous tuning. We also discuss some low-effort implementations of the pilot-tone labels and investigate the impact of these labels on the transmission channels.......Next-generation WDM-PON solutions for metro and access systems will take advantage of remotely controlled wavelength-tunable ONUs to keep system costs as low as possible. For such a purpose, each ONU signal can be labeled by a pilot tone modulated onto the optical data stream. We report...

  5. Three dimensional phase imaging using a scanning optical fiber interferometer

    International Nuclear Information System (INIS)

    Walford, J.N.; Nugent, K.A.; Roberts, A.; Scholten, R.E.

    1998-01-01

    A quantitative method for measuring phase in three dimensions using a scanning optical fiber interferometer is described. By exploiting phase modulation in the reference arm, this technique is insensitive to large variations in the intensity of the field being studied, and is therefore highly suitable for measurement of phase within spatially confined optical beams. It uses only a single detector, and is not reliant on lock-in electronics. The technique is applied to the measurement of the near field of a cleaved optical fiber and shown to produce results in good agreement with theory. (authors)

  6. Self-homodyne optical OFDM for broadband WDM-PONs with crosstalk-free remodulation and enhanced tolerance to Rayleigh noise

    Science.gov (United States)

    Lyu, WeiChao; Wang, Andong; Xie, Dequan; Zhu, Long; Guan, Xun; Wang, Jian; Xu, Jing

    2018-05-01

    We propose a novel architecture for wavelength-division-multiplexed passive optical network (WDM-PON) that can simultaneously circumvent both remodulation crosstalk and Rayleigh noise, based on self-homodyne detection and optical orthogonal frequency-division multiplexing (OFDM) remodulation. The proposed self-homodyne detection at optical network unit (ONU) requires neither frequency offset compensation nor phase noise compensation, and thus can significantly reduce system complexity and power consumption. Bidirectional transmission of 12.5 Gb/s down- and up-stream signals, via single 25 km single-mode fiber without dispersion compensation, is demonstrated in a proof-of-concept experiment.

  7. Homogeneous spectral broadening of pulsed terahertz quantum cascade lasers by radio frequency modulation.

    Science.gov (United States)

    Wan, W J; Li, H; Cao, J C

    2018-01-22

    The authors present an experimental investigation of radio frequency modulation on pulsed terahertz quantum cascade lasers (QCLs) emitting around 4.3 THz. The QCL chip used in this work is based on a resonant phonon design which is able to generate a 1.2 W peak power at 10 K from a 400-µm-wide and 4-mm-long laser with a single plasmon waveguide. To enhance the radio frequency modulation efficiency and significantly broaden the terahertz spectra, the QCLs are also processed into a double-metal waveguide geometry with a Silicon lens out-coupler to improve the far-field beam quality. The measured beam patterns of the double-metal QCL show a record low divergence of 2.6° in vertical direction and 2.4° in horizontal direction. Finally we perform the inter-mode beat note and terahertz spectra measurements for both single plasmon and double-metal QCLs working in pulsed mode. Since the double-metal waveguide is more suitable for microwave signal transmission, the radio frequency modulation shows stronger effects on the spectral broadening for the double-metal QCL. Although we are not able to achieve comb operation in this work for the pulsed lasers due to the large phase noise, the homogeneous spectral broadening resulted from the radio frequency modulation can be potentially used for spectroscopic applications.

  8. Compact frequency-modulation Q-switched single-frequency fiber laser at 1083 nm

    International Nuclear Information System (INIS)

    Zhang, Yuanfei; Feng, Zhouming; Xu, Shanhui; Mo, Shupei; Yang, Changsheng; Li, Can; Gan, Jiulin; Chen, Dongdan; Yang, Zhongmin

    2015-01-01

    A compact frequency-modulation Q-switched single-frequency fiber laser is demonstrated at 1083 nm. The short linear resonant cavity consists of a 12 mm long homemade Yb 3+ -doped phosphate fiber and a pair of fiber Bragg gratings (FBGs) in which the Q-switching and the frequency excursion is achieved by a tensile-induced period modulation. Over 375 MHz frequency-tuning range is achieved with a modulation frequency varying from tens to hundreds of kilohertz. The highest peak power of the output pulse reaching 6.93 W at the repetition rate of 10 kHz is obtained. (paper)

  9. High Dimensional Modulation and MIMO Techniques for Access Networks

    DEFF Research Database (Denmark)

    Binti Othman, Maisara

    Exploration of advanced modulation formats and multiplexing techniques for next generation optical access networks are of interest as promising solutions for delivering multiple services to end-users. This thesis addresses this from two different angles: high dimensionality carrierless...... the capacity per wavelength of the femto-cell network. Bit rate up to 1.59 Gbps with fiber-wireless transmission over 1 m air distance is demonstrated. The results presented in this thesis demonstrate the feasibility of high dimensionality CAP in increasing the number of dimensions and their potentially......) optical access network. 2 X 2 MIMO RoF employing orthogonal frequency division multiplexing (OFDM) with 5.6 GHz RoF signaling over all-vertical cavity surface emitting lasers (VCSEL) WDM passive optical networks (PONs). We have employed polarization division multiplexing (PDM) to further increase...

  10. Ultrafast Hierarchical OTDM/WDM Network

    Directory of Open Access Journals (Sweden)

    Hideyuki Sotobayashi

    2003-12-01

    Full Text Available Ultrafast hierarchical OTDM/WDM network is proposed for the future core-network. We review its enabling technologies: C- and L-wavelength-band generation, OTDM-WDM mutual multiplexing format conversions, and ultrafast OTDM wavelengthband conversions.

  11. WDM Network and Multicasting Protocol Strategies

    Directory of Open Access Journals (Sweden)

    Pinar Kirci

    2014-01-01

    Full Text Available Optical technology gains extensive attention and ever increasing improvement because of the huge amount of network traffic caused by the growing number of internet users and their rising demands. However, with wavelength division multiplexing (WDM, it is easier to take the advantage of optical networks and optical burst switching (OBS and to construct WDM networks with low delay rates and better data transparency these technologies are the best choices. Furthermore, multicasting in WDM is an urgent solution for bandwidth-intensive applications. In the paper, a new multicasting protocol with OBS is proposed. The protocol depends on a leaf initiated structure. The network is composed of source, ingress switches, intermediate switches, edge switches, and client nodes. The performance of the protocol is examined with Just Enough Time (JET and Just In Time (JIT reservation protocols. Also, the paper involves most of the recent advances about WDM multicasting in optical networks. WDM multicasting in optical networks is given as three common subtitles: Broadcast and-select networks, wavelength-routed networks, and OBS networks. Also, in the paper, multicast routing protocols are briefly summarized and optical burst switched WDM networks are investigated with the proposed multicast schemes.

  12. Performance evaluation of coherent WDM PS-QPSK (HEXA) accounting for non-linear fiber propagation effects.

    Science.gov (United States)

    Poggiolini, P; Bosco, G; Carena, A; Curri, V; Forghieri, F

    2010-05-24

    Coherent-detection (CoD) permits to fully exploit the four-dimensional (4D) signal space consisting of the in-phase and quadrature components of the two fiber polarizations. A well-known and successful format exploiting such 4D space is Polarization-multiplexed QPSK (PM-QPSK). Recently, new signal constellations specifically designed and optimized in 4D space have been proposed, among which polarization-switched QPSK (PS-QPSK), consisting of a 8-point constellation at the vertices of a 4D polychoron called hexadecachoron. We call it HEXA because of its geometrical features and to avoid acronym mix-up with PM-QPSK, as well as with other similar acronyms. In this paper we investigate the performance of HEXA in direct comparison with PM-QPSK, addressing non-linear propagation over realistic links made up of 20 spans of either standard single mode fiber (SSMF) or non-zero dispersion-shifted fiber (NZDSF). We show that HEXA not only confirms its theoretical sensitivity advantage over PM-QPSK in back-to-back, but also shows a greater resilience to non-linear effects, allowing for substantially increased span loss margins. As a consequence, HEXA appears as an interesting option for dual-format transceivers capable to switch on-the-fly between PM-QPSK and HEXA when channel propagation degrades. It also appears as a possible direct competitor of PM-QPSK, especially over NZDSF fiber and uncompensated links.

  13. Integration of multiwavelength lasers with fast electro-optical modulators

    NARCIS (Netherlands)

    Besten, den J.H.

    2004-01-01

    Photonic Integrated Circuits (PICs) are of key importance in Wavelength-Division Multiplexing (WDM) networks because of their reduced volume and packaging costs compared to discrete components. The research described in this thesis was focussed on the integration of WDM-lasers and Radio-Frequency

  14. All-optical equalization of power transients on four 40 Gbit/s WDM channels using a fiber-based device

    DEFF Research Database (Denmark)

    Kjær, Rasmus; Oxenløwe, Leif Katsuo; Palsdottir, Bera

    2008-01-01

    Simultaneous transient suppression of four transient-impaired 40 Gbit/s RZ-ASK WDM channels is demonstrated. Sensitivity improvements are in excess of 5 dB and transmission penalties are significantly reduced.......Simultaneous transient suppression of four transient-impaired 40 Gbit/s RZ-ASK WDM channels is demonstrated. Sensitivity improvements are in excess of 5 dB and transmission penalties are significantly reduced....

  15. W-band OFDM photonic vector signal generation employing a single Mach-Zehnder modulator and precoding.

    Science.gov (United States)

    Xiao, Jiangnan; Li, Xinying; Xu, Yuming; Zhang, Ziran; Chen, Long; Yu, Jianjun

    2015-09-07

    We present a simple radio-over-fiber (RoF) link architecture for millimeter-wave orthogonal frequency division multiplexing (OFDM) transmission using only one Mach-Zehnder modulator (MZM) and precoding technique. In the transmission system, the amplitudes and the phase of the driving radio-frequency (RF) OFDM signal on each sub-carrier are precoded, to ensure that the OFDM signal after photodetector (PD) can be restored to original OFDM signal. The experimental results show that the bit-error ratios (BERs) of the transmission system are less than the forward-error-correction (FEC) threshold of 3.8 × 10(-3), which demonstrates that the generation of OFDM vector signal based on our proposed scheme can be employed in our system architecture.

  16. Hydrometallurgical minor actinide separation in hollow fiber modules

    International Nuclear Information System (INIS)

    Geist, A.; Weigl, M.; Gompper, K.

    2004-01-01

    Hollow fiber modules (HFM) were used as phase contacting devices for hydrometallurgical minor actinide separation in the Partitioning and Transmutation context. Two single-HFM setups, one using commercially available HFM, the other one using miniature HFM, have been developed and manufactured. Several very successful DIAMEX and SANEX once-through tests were performed. The major advantage of the new miniature HFM is their size drastically reducing chemicals consumption: only several 10 mL of feed phases are required for a test. (authors)

  17. Capacity Enhancement for Hybrid Fiber-Wireless Channels with 46.8Gbit/sWireless Multi-CAP Transmission over 50m at W-Band

    DEFF Research Database (Denmark)

    Rommel, Simon; Puerta Ramírez, Rafael; Vegas Olmos, Juan José

    2017-01-01

    Transmission of a 46.8 Gbit/s multi-band CAP signal is experimentally demonstrated over a 50 m W-band radio-over-fiber link. Bit error rates below 3.8×10-3 are achieved, employing nine CAP bands with bit and power loading.......Transmission of a 46.8 Gbit/s multi-band CAP signal is experimentally demonstrated over a 50 m W-band radio-over-fiber link. Bit error rates below 3.8×10-3 are achieved, employing nine CAP bands with bit and power loading....

  18. Optical switching properties of VO2 films driven by using WDM-aligned lasers

    International Nuclear Information System (INIS)

    Tsai, K.Y.; Wu, F.-H.; Shieh, H.-P.D.; Chin, T.-S.

    2006-01-01

    Vanadium dioxide (VO 2 ) film had been demonstrated a high speed IR shutter driven by total optical modulation. However, it usually required a higher power heating laser of high power and precise optical systems to cover the probe beam on the sample with a heating beam of larger area. A new optical system, simply composed of wavelength division multiplexing (WDM), fiber lens or convex lens system, and a glass sheet with VO 2 thin film on it, was easily assembled to utilize VO 2 film as an IR shutter, implying the possibility to highly miniaturize the VO 2 -based optical shutter. A permanent low-transmittance (PLT) region forms on the film within the probe beam, resulting in a decrease in average power of the probe beam. Another ring-type switching area (switching ring) forms around the PLT region, resulting in the transmittance switching of the probe beam synchronously with the heating signal. VO 2 films can be switched with the highest rate of a continuous square heating signal of 3 mW at 120 kHz. A heating pulse of 0.7 ns and 13 mW can be used to stimulate an IR pulse with fiber lens

  19. Modeling and Validation of Performance Limitations for the Optimal Design of Interferometric and Intensity-Modulated Fiber Optic Displacement Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Moro, Erik A. [Los Alamos National Laboratory

    2012-06-07

    Optical fiber sensors offer advantages over traditional electromechanical sensors, making them particularly well-suited for certain measurement applications. Generally speaking, optical fiber sensors respond to a desired measurand through modulation of an optical signal's intensity, phase, or wavelength. Practically, non-contacting fiber optic displacement sensors are limited to intensity-modulated and interferometric (or phase-modulated) methodologies. Intensity-modulated fiber optic displacement sensors relate target displacement to a power measurement. The simplest intensity-modulated sensor architectures are not robust to environmental and hardware fluctuations, since such variability may cause changes in the measured power level that falsely indicate target displacement. Differential intensity-modulated sensors have been implemented, offering robustness to such intensity fluctuations, and the speed of these sensors is limited only by the combined speed of the photodetection hardware and the data acquisition system (kHz-MHz). The primary disadvantages of intensity-modulated sensing are the relatively low accuracy (?m-mm for low-power sensors) and the lack of robustness, which consequently must be designed, often with great difficulty, into the sensor's architecture. White light interferometric displacement sensors, on the other hand, offer increased accuracy and robustness. Unlike their monochromatic-interferometer counterparts, white light interferometric sensors offer absolute, unambiguous displacement measurements over large displacement ranges (cm for low-power, 5 mW, sources), necessitating no initial calibration, and requiring no environmental or feedback control. The primary disadvantage of white light interferometric displacement sensors is that their utility in dynamic testing scenarios is limited, both by hardware bandwidth and by their inherent high-sensitivity to Doppler-effects. The decision of whether to use either an intensity-modulated

  20. Design of a fiber-optic interrogator module for telecommunication satellites

    Science.gov (United States)

    Putzer, Philipp; Koch, Alexander W.; Plattner, Markus; Hurni, Andreas; Manhart, Markus

    2017-11-01

    In this paper we present the results of the radiation tests performed on the optical components of the fiber-optic interrogator module as a part of the Hybrid Sensor Bus (HSB) system. The HSB-system is developed in the frame of an ESAARTES program and will be verified as flight demonstrator onboard the German Heinrich Hertz satellite in 2016. The HSB system is based on a modular concept which includes sensor interrogation modules based on I2C electrical and fiber Bragg grating (FBG) fiber-optical sensor elements. Onboard fiber-optic sensing allows the implementation of novel control and monitoring methods. For read-out of multiple FBG sensors, a design based on a tunable laser diode as well as a design based on a spectrometer is considered. The expected and tested total ionizing dose (TID) applicable to the HSB system is in the range between 100 krad and 300 krad inside the satellite in the geostationary orbit over a life time of 15 years. We present radiation test results carried out on critical optical components to be used in the fiber-optic interrogation module. These components are a modulated grating Y-branch (MGY) tunable laser diode acting as light source for the tuning laser approach, the line detector of a spectrometer, photodetectors and the FBG sensors acting as sensor elements. A detailed literature inquiry of radiation effects on optical fibers and FBG sensors, is also included in the paper. The fiber-optic interrogator module implemented in the HSB system is based on the most suitable technology, which sustains the harsh environment in the geostationary orbit.

  1. Efficient Phase Locking of Fiber Amplifiers Using a Low-Cost and High-Damage-Threshold Phase Control System

    International Nuclear Information System (INIS)

    Pu, Zhou; Yan-Xing, Ma; Xiao-Lin, Wang; Hao-Tong, Ma; Xiao-Jun, Xu; Ze-Jin, Liu

    2010-01-01

    We propose a low-cost and high-damage-threshold phase control system that employs a piezoelectric ceramic transducer modulator controlled by a stochastic parallel gradient descent algorithm. Efficient phase locking of two fiber amplifiers is demonstrated. Experimental results show that energy encircled in the target pinhole is increased by a factor of 1.76 and the visibility of the fringe pattern is as high as 90% when the system is in close-loop. The phase control system has potential in phase locking of large-number and high-power fiber laser endeavors. (fundamental areas of phenomenology (including applications))

  2. Sub-cycle QAM modulation for VCSEL-based optical fiber links

    DEFF Research Database (Denmark)

    Pham, Tien-Thang; Rodes Lopez, Roberto; Jensen, Jesper Bevensee

    2013-01-01

    QAM modulation utilizing subcarrier frequency lower than the symbol rate is both theoretically and experimentally investigated. High spectral efficiency and concentration of power in low frequencies make sub-cycle QAM signals attractive for optical fiber links with direct modulated light sources....... Real-time generated 10-Gbps 4-level QAM signal in a 7.5-GHz bandwidth utilizing subcarrier frequency at a half symbol rate was successfully transmitted over 20-km SMF using an un-cooled 1.5-μm VCSEL. Only 2.5-dB fiber transmission power penalty was observed with no equalization applied....

  3. Fiber to the Home Using a PON Infrastructure

    Science.gov (United States)

    Lee, Chang-Hee; Sorin, Wayne V.; Kim, Byoung Yoon

    2006-12-01

    Traffic patterns in access networks have evolved from voice- and text-oriented services to video- and image-based services. This change will require new access networks that support high-speed (> 100 Mb/s), symmetric, and guaranteed bandwidths for future video services with high-definition TV quality. To satisfy the required bandwidth over a 20-km transmission distance, single-mode optical fiber is currently the only practical choice. To minimize the cost of implementing an FTTP solution, a passive optical network (PON) that uses a point-to-multipoint architecture is generally considered to be the best approach. There are several multiple-access techniques to share a single PON architecture, and the authors addressed several of these approaches such as time-division multiple access, wavelength-division multiple access, subcarrier multiple access, and code-division multiple access. Among these multiple techniques, they focus on time-division multiplexing (TDM)-PON and wavelength-division multiplexing (WDM)-PON, which will be the most promising candidates for practical future systems. A TDM-PON shares a single-transmission channel with multiple subscribers in time domain. Then, there exists tight coupling between subscribers. A WDM-PON provides point-to-point optical connectivity using a dedicated pair of wavelengths per user. While a TDM-PON appears to be a satisfactory solution for current bandwidth demands, the combination of future data-rate projections and traffic patterns coupled with recent advances in WDM technology may result in WDM-PON becoming the preferred solution for a future proof fiber-based access network.

  4. Bend-insensitive single-mode photonic crystal fiber with ultralarge effective area for dual applications

    Science.gov (United States)

    Islam, Md. Asiful; Alam, M. Shah

    2013-05-01

    A novel photonic crystal fiber (PCF) having circular arrangement of cladding air holes has been designed and numerically optimized to obtain a bend insensitive single mode fiber with large mode area for both wavelength division multiplexing (WDM) communication and fiber-to-the-home (FTTH) application. The bending loss of the proposed bent PCF lies in the range of 10-3 to 10-4 dB/turn or lower over 1300 to 1700 nm, and 2 × 10-4 dB/turn at the wavelength of 1550 nm for a 30-mm bend radius with a higher order mode (HOM) cut-off frequency below 1200 nm for WDM application. When the whole structure of the PCF is scaled down, a bending loss of 6.78×10-4 dB/turn at 1550 nm for a 4-mm bend radius is obtained, and the loss remains in the order of 10-4 dB/turn over the same range of wavelength with an HOM cut-off frequency below 700 nm, and makes the fiber useful for FTTH applications. Furthermore, this structure is also optimized to show a splice loss near zero for fusion-splicing to a conventional single-mode fiber (SMF).

  5. A Grooming Nodes Optimal Allocation Method for Multicast in WDM Networks

    Directory of Open Access Journals (Sweden)

    Chengying Wei

    2016-01-01

    Full Text Available The grooming node has the capability of grooming multicast traffic with the small granularity into established light at high cost of complexity and node architecture. In the paper, a grooming nodes optimal allocation (GNOA method is proposed to optimize the allocation of the grooming nodes constraint by the blocking probability for multicast traffic in sparse WDM networks. In the proposed GNOA method, the location of each grooming node is determined by the SCLD strategy. The improved smallest cost largest degree (SCLD strategy is designed to select the nongrooming nodes in the proposed GNOA method. The simulation results show that the proposed GNOA method can reduce the required number of grooming nodes and decrease the cost of constructing a network to guarantee a certain request blocking probability when the wavelengths per fiber and transmitter/receiver ports per node are sufficient for the optical multicast in WDM networks.

  6. On the possibilities of large-scale radio and fiber optics detectors in cosmic rays

    Science.gov (United States)

    Gusev, G. A.; Markov, M. A.; Zheleznykh, I. M.

    1985-01-01

    Different variants of radio and fiber optics detectors for registration of super high energy cascades in the atmosphere and in dense media are discussed. Particularly the possibilities for investigation of quasi horizontal cosmic ray showers (CRS) and simulated muons from these CRS with the help of radio detectors and fiber optics detectors located on the ice surface are considered.

  7. Real time algorithm temperature compensation in tunable laser / VCSEL based WDM-PON system

    DEFF Research Database (Denmark)

    Iglesias Olmedo, Miguel; Rodes Lopez, Roberto; Pham, Tien Thang

    2012-01-01

    We report on a real time experimental validation of a centralized algorithm for temperature compensation of tunable laser/VCSEL at ONU and OLT, respectively. Locking to a chosen WDM channel is shown for temperature changes over 40°C.......We report on a real time experimental validation of a centralized algorithm for temperature compensation of tunable laser/VCSEL at ONU and OLT, respectively. Locking to a chosen WDM channel is shown for temperature changes over 40°C....

  8. Radio refractivity gradients in the lowest 100m of the atmosphere over Lagos, Nigeria in the rainy-harmattan transition phase

    Science.gov (United States)

    Dairo, O. F.; Kolawole, L. B.

    2018-01-01

    Radio engineers and researchers in conjunction with the International Telecommunication Union (ITU) have established the pivotal role of radio refractivity to the propagation of electromagnetic energy in the troposphere. In particular, the refractivity gradient statistics for the lowest 100m in the troposphere are used to determine the probability of occurrence of anomalous propagation conditions known as ducting. The major challenge to characterising the propagation condition over any environment is accessing the data of the lowest boundary layer of the atmosphere, which is highly dynamic and turbulent in evolution. High resolution radiosonde data from the Nigerian Meteorological Agency (NiMet) were used for a synoptic study of the rain-harmattan transition phase. The rain-harmattan transition phase marks the onset of the dry season due to the movement of the intertropical convergence zone interplay between (north-easterly and south-westerly) trade winds and monsoonal circulation. The lowest 100m data were analysed to determine the frequency of ducting per month. Progressive increase in the occurrence of ducting was observed during the rain-harmattan transition phase, which coincides with the West African Monsoon retreat. The results show significant divergence from previous studies, which reported that the tropospheric condition over Lagos (Geo. 6 . 5 °N, 3 . 3 °E), Nigeria, is predominantly super-refractive.

  9. Constant envelope OFDM scheme for 6PolSK-QPSK

    Science.gov (United States)

    Li, Yupeng; Ding, Ding

    2018-03-01

    A constant envelope OFDM scheme with phase modulator (PM-CE-OFDM) for 6PolSK-QPSK modulation was demonstrated. Performance under large fiber launch power is measured to check its advantages in counteracting fiber nonlinear impairments. In our simulation, PM-CE-OFDM, RF-assisted constant envelope OFDM (RF-CE-OFDM) and conventional OFDM (Con-OFDM) are transmitted through 80 km standard single mode fiber (SSMF) single channel and WDM system. Simulation results confirm that PM-CE-OFDM has best performance in resisting fiber nonlinearity. In addition, benefiting from the simple system structure, the complexity and cost of PM-CE-OFDM system could be reduced effectively.

  10. Internet Protocol-Hybrid Opto-Electronic Ring Network (IP-HORNET): A Novel Internet Protocol-Over-Wavelength Division Multiplexing (IP-Over-WDM) Multiple-Access Metropolitan Area Network (MAN)

    Science.gov (United States)

    2003-04-01

    IP-HORNET, Metropolitan Optical Networks 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED 18. SECURITY CLASSIFICATION...OF THIS PAGE UNCLASSIFIED 19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED 20. LIMITATION OF ABSTRACT UL NSN 7540-01-280-5500...Gemelos, and L. G. Kazovsky, “CSMA/CA MAC protocols for IP-HORNET: An IP over WDM metropolitan area ring netowrk ,” in Proceedings of GLOBE- COM’00

  11. Re-configurable digital receiver for optically envelope detected half cycle BPSK and MSK radio-on-fiber signals

    DEFF Research Database (Denmark)

    Guerrero Gonzalez, Neil; Prince, Kamau; Zibar, Darko

    2011-01-01

    We present the first known integration of a digital receiver into optically envelope detection radio-on-fiber systems. We also present a re-configurable scheme for two different types of optically envelope detected wireless signals while keeping the complexity of used optical components low. Our...... novel digital receiver consists of a digital signal processing unit integrating functions such as filtering, peak-powers detection, symbol synchronization and signal demodulation for optically envelope detected half-cycle binary phase-shift-keying and minimum-shift-keying signals. Furthermore, radio......-frequency signal down-conversion is not required in our proposed approach; simplifying evens more the optical receiver front-end. We experimentally demonstrate error-free optical transmission (bit-error rate corresponding to 10−3 related to FEC-compatible levels) for both 416.6 Mbit/s half-cycle binary phase...

  12. Radio frequency modulation made easy

    CERN Document Server

    Faruque, Saleh

    2017-01-01

    This book introduces Radio Frequency Modulation to a broad audience. The author blends theory and practice to bring readers up-to-date in key concepts, underlying principles and practical applications of wireless communications. The presentation is designed to be easily accessible, minimizing mathematics and maximizing visuals.

  13. Higher-order modulation instability in nonlinear fiber optics.

    Science.gov (United States)

    Erkintalo, Miro; Hammani, Kamal; Kibler, Bertrand; Finot, Christophe; Akhmediev, Nail; Dudley, John M; Genty, Goëry

    2011-12-16

    We report theoretical, numerical, and experimental studies of higher-order modulation instability in the focusing nonlinear Schrödinger equation. This higher-order instability arises from the nonlinear superposition of elementary instabilities, associated with initial single breather evolution followed by a regime of complex, yet deterministic, pulse splitting. We analytically describe the process using the Darboux transformation and compare with experiments in optical fiber. We show how a suitably low frequency modulation on a continuous wave field induces higher-order modulation instability splitting with the pulse characteristics at different phases of evolution related by a simple scaling relationship. We anticipate that similar processes are likely to be observed in many other systems including plasmas, Bose-Einstein condensates, and deep water waves. © 2011 American Physical Society

  14. Radio Spectral Imaging of Reflective MHD Waves during the Impulsive Phase of a Solar Flare

    Science.gov (United States)

    Yu, S.; Chen, B.; Reeves, K.

    2017-12-01

    We report a new type of coherent radio bursts observed by the Karl G. Jansky Very Large Array (VLA) in 1-2 GHz during the impulsive phase of a two-ribbon flare on 2014 November 1, which we interpret as MHD waves reflected near the footpoint of flaring loops. In the dynamic spectrum, this burst starts with a positive frequency drift toward higher frequencies until it slows down near its highest-frequency boundary. Then it turns over and drifts toward lower frequencies. The frequency drift rate in its descending and ascending branch is between 50-150 MHz/s, which is much slower than type III radio bursts associated with fast electron beams but close to the well-known intermediate drift bursts, or fiber bursts, which are usually attributed to propagating whistler or Alfvenic waves. Thanks to VLA's unique capability of imaging with spectrometer-like temporal and spectral resolution (50 ms and 2 MHz), we are able to obtain an image of the radio source at every time and frequency in the dynamic spectrum where the burst is present and trace its spatial evolution. From the imaging results, we find that the radio source firstly moves downward toward one of the flaring ribbons before it "bounces off" at the lowest height (corresponding to the turnover frequency in the dynamic spectrum) and moves upward again. The measured speed in projection is at the order of 1-2 Mm/s, which is characteristic of Alfvenic or fast-mode MHD waves in the low corona. We conclude that the radio burst is emitted by trapped nonthermal electrons in the flaring loop carried along by a large-scale MHD wave. The waves are probably launched during the eruption of a magnetic flux rope in the flare impulsive phase.

  15. Analysis of subsystems in wavelength-division-multiplexing networks

    DEFF Research Database (Denmark)

    Liu, Fenghai

    2001-01-01

    Wavelength division multiplexing (WDM) technology together with optical amplification has created a new era for optical communication. Transmission capacity is greatly increased by adding more and more wavelength channels into a single fiber, as well as by increasing the line rate of each channel...... in semiconductor optical amplifiers (SOAs), and dispersion managed fiber sections. New subsystems are also proposed in the thesis: a modular 2×2 multiwavelength cross-connect using wavelength switching blocks, a wavelength converter based on cross phase modulation in a semiconductor modulator, a wavelength...

  16. Bandwidth efficient bidirectional 5 Gb/s overlapped-SCM WDM PON with electronic equalization and forward-error correction.

    Science.gov (United States)

    Buset, Jonathan M; El-Sahn, Ziad A; Plant, David V

    2012-06-18

    We demonstrate an improved overlapped-subcarrier multiplexed (O-SCM) WDM PON architecture transmitting over a single feeder using cost sensitive intensity modulation/direct detection transceivers, data re-modulation and simple electronics. Incorporating electronic equalization and Reed-Solomon forward-error correction codes helps to overcome the bandwidth limitation of a remotely seeded reflective semiconductor optical amplifier (RSOA)-based ONU transmitter. The O-SCM architecture yields greater spectral efficiency and higher bit rates than many other SCM techniques while maintaining resilience to upstream impairments. We demonstrate full-duplex 5 Gb/s transmission over 20 km and analyze BER performance as a function of transmitted and received power. The architecture provides flexibility to network operators by relaxing common design constraints and enabling full-duplex operation at BER ∼ 10(-10) over a wide range of OLT launch powers from 3.5 to 8 dBm.

  17. The CEBAF fiber optic phase reference system

    International Nuclear Information System (INIS)

    Crawford, K.; Simrock, S.; Hovater, C.; Krycuk, A.

    1995-01-01

    The specified phase stability of the CEBAF RF distribution system is 2.9 degree rms per linac. Stability is achieved through the use of a temperature and pressure regulated coaxial drive line. Purpose of the fiber optic phase reference system is to monitor the relative phase at the beginning and ending of this drive line, between linacs, injector and separator to determine drift due to ambient temperature fluctuations. The system utilizes an Ortel 1310 nm single mode laser driving Sumitumo optical fiber to distribute a reference signal at 1497 MHz. Phase of this reference signal is compared to the 1427 MHz (LO) and the 70 MHz (IF) via a 360 degree phase detector. The detected information is then routed to the CEBAF control system for display with a specified resolution of ±0.2 degree over a 20 degree phase delta

  18. Effects of nonlinear phase modulation on Bragg scattering in the low-conversion regime

    DEFF Research Database (Denmark)

    Andersen, Lasse Mejling; Cargill, D. S.; McKinstrie, C. J.

    2012-01-01

    In this paper, we consider the effects of nonlinear phase modulation on frequency conversion by four-wave mixing (Bragg scattering) in the low-conversion regime. We derive the Green functions for this process using the time-domain collision method, for partial collisions, in which the four fields...... interact at the beginning or the end of the fiber, and complete collisions, in which the four fields interact at the midpoint of the fiber. If the Green function is separable, there is only one output Schmidt mode, which is free from temporal entanglement. We find that nonlinear phase modulation always...... chirps the input and output Schmidt modes and renders the Green function formally nonseparable. However, by pre-chirping the pumps, one can reduce the chirps of the Schmidt modes and enable approximate separability. Thus, even in the presence of nonlinear phase modulation, frequency conversion...

  19. Effective refractive index modulation based optical fiber humidity sensor employing etched fiber Bragg grating

    Science.gov (United States)

    Mundendhar, Pathi; Khijwania, Sunil K.

    2015-09-01

    Relative humidity (RH) sensor employing etched fiber Bragg grating (FBG) is reported where RH variations are captured using effective-index-modulation, rather than traditional strain-modulation. Additionly, linear sensor response over wide dynamic range with optimum characteristics is focused. Comprehensive experimental investigation is carried out for the sensor that comprises uniformly etched cladding in the FBG region. Obtained results are observed to be in agreement with the theoretical analysis. Sensor response is observed to be linear over dynamic range 3-94%RH with ~ 0.082 pm/%RH sensitivity, ~0.6%RH resolution, ~ +/-2.5%RH accuracy, ~ +/-0.2 pm average discrepancy and ~ 0.2s response time during humidification/desiccation.

  20. EVALUATION METHOD FOR PARASITIC EFFECTS OF THE ELECTRO-OPTICAL MODULATOR IN A FIBER OPTIC GYROSCOPE

    Directory of Open Access Journals (Sweden)

    S. A. Volkovskiy

    2016-09-01

    Full Text Available Subject of Research.The paper proposes an original method for studying the parasitic effects in the electro-optic modulator of the fiber optic gyroscope. Proposed method is based on the usage of a special waveform phase modulation signal. Method. The essence of the proposed method lies in modification of serrodyne modulation signal, thereby providing a periodic displacement of the phase difference signal to the maximum of the interference curve. In this case, the intensity level reflects the influence of parasitic effects with the degree of manifestation being determined by the sequence of voltage control signals applied to the modulator. Enumeration of combinations of control signals and the corresponding intensity levels gives the possibility to observe an empirical dependence of the parasitic effects and use it later for compensation. Main Results. The efficiency of the proposed method is demonstrated by the program model of the fiber optic gyroscope. The results of the method application on a production sample of the device were obtained. Comparison with the results of direct estimate of the parasitic intensity modulation effect testifies to the effectiveness of the proposed method. Practical Relevance. The method can be used as a diagnostic tool to quantify the influence of parasitic effects in the electro-optic modulator of the fiber optic gyroscope as well as for their subsequent compensation.

  1. Modeling of Thermal Phase Noise in a Solid Core Photonic Crystal Fiber-Optic Gyroscope.

    Science.gov (United States)

    Song, Ningfang; Ma, Kun; Jin, Jing; Teng, Fei; Cai, Wei

    2017-10-26

    A theoretical model of the thermal phase noise in a square-wave modulated solid core photonic crystal fiber-optic gyroscope has been established, and then verified by measurements. The results demonstrate a good agreement between theory and experiment. The contribution of the thermal phase noise to the random walk coefficient of the gyroscope is derived. A fiber coil with 2.8 km length is used in the experimental solid core photonic crystal fiber-optic gyroscope, showing a random walk coefficient of 9.25 × 10 -5 deg/√h.

  2. A comparison of electrical and photonic pulse generation for IR-UWB on fiber links

    DEFF Research Database (Denmark)

    Rodes Lopez, Roberto; Caballero Jambrina, Antonio; Yu, Xianbin

    2010-01-01

    We present and compare experimental results for electrical and photonic generation of 2-Gb/s pulses for impulse radio ultra-wideband on fiber transmission systems based on direct current modulation of a semiconductor laser diode and external optical injection of a semiconductor laser diode......, respectively. We assess the performance of the two generation approaches in terms of bit-error rate after propagation over 20 km of optical fiber followed by wireless transmission....

  3. Capacity-Approaching Superposition Coding for Optical Fiber Links

    DEFF Research Database (Denmark)

    Estaran Tolosa, Jose Manuel; Zibar, Darko; Tafur Monroy, Idelfonso

    2014-01-01

    We report on the first experimental demonstration of superposition coded modulation (SCM) for polarization-multiplexed coherent-detection optical fiber links. The proposed coded modulation scheme is combined with phase-shifted bit-to-symbol mapping (PSM) in order to achieve geometric and passive......-SCM) is employed in the framework of bit-interleaved coded modulation with iterative decoding (BICM-ID) for forward error correction. The fiber transmission system is characterized in terms of signal-to-noise ratio for back-to-back case and correlated with simulated results for ideal transmission over additive...... white Gaussian noise channel. Thereafter, successful demodulation and decoding after dispersion-unmanaged transmission over 240-km standard single mode fiber of dual-polarization 6-Gbaud 16-, 32- and 64-ary SCM-PSM is experimentally demonstrated....

  4. Ring resonator-based on-chip modulation transformer for high-performance phase-modulated microwave photonic links.

    Science.gov (United States)

    Zhuang, Leimeng; Taddei, Caterina; Hoekman, Marcel; Leinse, Arne; Heideman, René; van Dijk, Paulus; Roeloffzen, Chris

    2013-11-04

    In this paper, we propose and experimentally demonstrate a novel wideband on-chip photonic modulation transformer for phase-modulated microwave photonic links. The proposed device is able to transform phase-modulated optical signals into intensity-modulated versions (or vice versa) with nearly zero conversion of laser phase noise to intensity noise. It is constructed using waveguide-based ring resonators, which features simple architecture, stable operation, and easy reconfigurability. Beyond the stand-alone functionality, the proposed device can also be integrated with other functional building blocks of photonic integrated circuits (PICs) to create on-chip complex microwave photonic signal processors. As an application example, a PIC consisting of two such modulation transformers and a notch filter has been designed and realized in TriPleX(TM) waveguide technology. The realized device uses a 2 × 2 splitting circuit and 3 ring resonators with a free spectral range of 25 GHz, which are all equipped with continuous tuning elements. The device can perform phase-to-intensity modulation transform and carrier suppression simultaneously, which enables high-performance phase-modulated microwave photonics links (PM-MPLs). Associated with the bias-free and low-complexity advantages of the phase modulators, a single-fiber-span PM-MPL with a RF bandwidth of 12 GHz (3 dB-suppression band 6 to 18 GHz) has been demonstrated comprising the proposed PIC, where the achieved spurious-free dynamic range performance is comparable to that of Class-AB MPLs using low-biased Mach-Zehnder modulators.

  5. A precise time synchronization method for 5G based on radio-over-fiber network with SDN controller

    Science.gov (United States)

    He, Linkuan; Wei, Baoguo; Yang, Hui; Yu, Ao; Wang, Zhengyong; Zhang, Jie

    2018-02-01

    There is an increasing demand on accurate time synchronization with the growing bandwidth of network service for 5G. In 5G network, it's necessary for base station to achieve accurate time synchronization to guarantee the quality of communication. In order to keep accuracy time for 5G network, we propose a time synchronization system for satellite ground station based on radio-over-fiber network (RoFN) with software defined optical network (SDON) controller. The advantage of this method is to improve the accuracy of time synchronization of ground station. The IEEE 1588 time synchronization protocol can solve the problems of high cost and lack of precision. However, in the process of time synchronization, distortion exists during the transmission of digital time signal. RoF uses analog optical transmission links and therefore analog transmission can be implemented among ground stations instead of digital transmission, which means distortion and bandwidth waste in the process of digital synchronization can be avoided. Additionally, the thought of SDN, software defined network, can optimize RoFN with centralized control and simplifying base station. Related simulation had been carried out to prove its superiority.

  6. A rigorous analysis of digital pre-emphasis and DAC resolution for interleaved DAC Nyquist-WDM signal generation in high-speed coherent optical transmission systems

    Science.gov (United States)

    Weng, Yi; Wang, Junyi; He, Xuan; Pan, Zhongqi

    2018-02-01

    The Nyquist spectral shaping techniques facilitate a promising solution to enhance spectral efficiency (SE) and further reduce the cost-per-bit in high-speed wavelength-division multiplexing (WDM) transmission systems. Hypothetically, any Nyquist WDM signals with arbitrary shapes can be generated by the use of the digital signal processing (DSP) based electrical filters (E-filter). Nonetheless, in actual 100G/ 200G coherent systems, the performance as well as DSP complexity are increasingly restricted by cost and power consumption. Henceforward it is indispensable to optimize DSP to accomplish the preferred performance at the least complexity. In this paper, we systematically investigated the minimum requirements and challenges of Nyquist WDM signal generation, particularly for higher-order modulation formats, including 16 quadrature amplitude modulation (QAM) or 64QAM. A variety of interrelated parameters, such as channel spacing and roll-off factor, have been evaluated to optimize the requirements of the digital-to-analog converter (DAC) resolution and transmitter E-filter bandwidth. The impact of spectral pre-emphasis has been predominantly enhanced via the proposed interleaved DAC architecture by at least 4%, and hence reducing the required optical signal to noise ratio (OSNR) at a bit error rate (BER) of 10-3 by over 0.45 dB at a channel spacing of 1.05 symbol rate and an optimized roll-off factor of 0.1. Furthermore, the requirements of sampling rate for different types of super-Gaussian E-filters are discussed for 64QAM Nyquist WDM transmission systems. Finally, the impact of the non-50% duty cycle error between sub-DACs upon the quality of the generated signals for the interleaved DAC structure has been analyzed.

  7. SCALE FACTOR DETERMINATION METHOD OF ELECTRO-OPTICAL MODULATOR IN FIBER-OPTIC GYROSCOPE

    Directory of Open Access Journals (Sweden)

    A. S. Aleynik

    2016-05-01

    Full Text Available Subject of Research. We propose a method for dynamic measurement of half-wave voltage of electro-optic modulator as part of a fiber optic gyroscope. Excluding the impact of the angular acceleration o​n measurement of the electro-optical coefficient is achieved through the use of homodyne demodulation method that allows a division of the Sagnac phase shift signal and an auxiliary signal for measuring the electro-optical coefficient in the frequency domain. Method. The method essence reduces to decomposition of step of digital serrodyne modulation in two parts with equal duration. The first part is used for quadrature modulation signals. The second part comprises samples of the auxiliary signal used to determine the value of the scale factor of the modulator. Modeling is done in standalone model, and as part of a general model of the gyroscope. The applicability of the proposed method is investigated as well as its qualitative and quantitative characteristics: absolute and relative accuracy of the electro-optic coefficient, the stability of the method to the effects of angular velocities and accelerations, method resistance to noise in actual devices. Main Results. The simulation has showed the ability to measure angular velocity changing under the influence of angular acceleration, acting on the device, and simultaneous measurement of electro-optical coefficient of the phase modulator without interference between these processes. Practical Relevance. Featured in the paper the ability to eliminate the influence of the angular acceleration on the measurement accuracy of the electro-optical coefficient of the phase modulator will allow implementing accurate measurement algorithms for fiber optic gyroscopes resistant to a significant acceleration in real devices.

  8. Optical detection of radio waves through a nanomechanical transducer

    DEFF Research Database (Denmark)

    Bagci, Tolga; Simonsen, A; Schmid, Silvan

    2013-01-01

    Low-loss transmission and sensitive recovery of weak radio-frequency (rf) and microwave signals is an ubiquitous technological challenge, crucial in fields as diverse as radio astronomy, medical imaging, navigation and communication, including those of quantum states. Efficient upconversion of rf-signals...... to an optical carrier would allow transmitting them via optical fibers instead of copper wires dramatically reducing losses, and give access to the mature toolbox of quantum optical techniques, routinely enabling quantum-limited signal detection. Research in the field of cavity optomechanics [1, 2] has shown...... reflected off its metallized surface. The circuit acts as an antenna; the voltage signals it induces are detected as an optical phase shift with quantum-limited sensitivity. The corresponding half-wave voltage is in the microvolt range, orders of magnitude below that of standard optical modulators...

  9. Contrast enhancement in an optical time-domain reflectometer via self-phase modulation compensation by chirped probe pulses

    International Nuclear Information System (INIS)

    Alekseev, A E; Potapov, V T; Vdovenko, V S; Simikin, D E; Gorshkov, B G

    2016-01-01

    In the present paper we propose a novel method for optical time-domain reflectometer (OTDR)–reflectogram contrast enhancement via compensation of nonlinear distortions of propagating probe pulse, which arise due to the self-phase modulation (SPM) effect in optical fiber. The compensation is performed via preliminary frequency modulation (chirp) of the initial probe pulse according to the specific law. As a result the OTDR contrast at some distant predefined fiber point is fully restored to the value of non-distorted probe pulse at the beginning of the fiber line. As a result, the performance of the phase OTDR increases. The point of full SPM compensation could be shifted to any other point of the fiber line via preliminary frequency modulation index change. The feasibility of the proposed method is theoretically proved and experimentally demonstrated. (paper)

  10. Demonstration of Femtosecond-Phase Stabilization in 2 km Optical Fiber

    International Nuclear Information System (INIS)

    Staples, J.W.; Wilcox, R.; Byrd, J.M.

    2007-01-01

    Long-term phase drifts of less than a femtosecond per hour have been demonstrated in a 2 km length of single-mode optical fiber, stabilized interferometrically at 1530 nm. Recent improvements include a wide-band phase detector that reduces the possibility of fringe jumping due to fast external perturbations of the fiber and locking of the master CW laser wavelength to an atomic absorption line. Mode-locked lasers may be synchronized using two wavelengths of the comb, multiplexed over one fiber, each wavelength individually interferometrically stabilized

  11. Tunable radio-frequency photonic filter based on an actively mode-locked fiber laser.

    Science.gov (United States)

    Ortigosa-Blanch, A; Mora, J; Capmany, J; Ortega, B; Pastor, D

    2006-03-15

    We propose the use of an actively mode-locked fiber laser as a multitap optical source for a microwave photonic filter. The fiber laser provides multiple optical taps with an optical frequency separation equal to the external driving radio-frequency signal of the laser that governs its repetition rate. All the optical taps show equal polarization and an overall Gaussian apodization, which reduces the sidelobes. We demonstrate continuous tunability of the filter by changing the external driving radio-frequency signal of the laser, which shows good fine tunability in the operating range of the laser from 5 to 10 GHz.

  12. Universal holonomic single quantum gates over a geometric spin with phase-modulated polarized light.

    Science.gov (United States)

    Ishida, Naoki; Nakamura, Takaaki; Tanaka, Touta; Mishima, Shota; Kano, Hiroki; Kuroiwa, Ryota; Sekiguchi, Yuhei; Kosaka, Hideo

    2018-05-15

    We demonstrate universal non-adiabatic non-abelian holonomic single quantum gates over a geometric electron spin with phase-modulated polarized light and 93% average fidelity. This allows purely geometric rotation around an arbitrary axis by any angle defined by light polarization and phase using a degenerate three-level Λ-type system in a negatively charged nitrogen-vacancy center in diamond. Since the control light is completely resonant to the ancillary excited state, the demonstrated holonomic gate not only is fast with low power, but also is precise without the dynamical phase being subject to control error and environmental noise. It thus allows pulse shaping for further fidelity.

  13. Silicon photonics WDM transmitter with single section semiconductor mode-locked laser

    Science.gov (United States)

    Müller, Juliana; Hauck, Johannes; Shen, Bin; Romero-García, Sebastian; Islamova, Elmira; Azadeh, Saeed Sharif; Joshi, Siddharth; Chimot, Nicolas; Moscoso-Mártir, Alvaro; Merget, Florian; Lelarge, François; Witzens, Jeremy

    2015-04-01

    We demonstrate a wavelength domain-multiplexed (WDM) optical link relying on a single section semiconductor mode-locked laser (SS-MLL) with quantum dash (Q-Dash) gain material to generate 25 optical carriers spaced by 60.8 GHz, as well as silicon photonics (SiP) resonant ring modulators (RRMs) to modulate individual optical channels. The link requires optical reamplification provided by an erbium-doped fiber amplifier (EDFA) in the system experiments reported here. Open eye diagrams with signal quality factors (Q-factors) above 7 are measured with a commercial receiver (Rx). For higher compactness and cost effectiveness, reamplification of the modulated channels with a semiconductor optical amplifier (SOA) operated in the linear regime is highly desirable. System and device characterization indicate compatibility with the latter. While we expect channel counts to be primarily limited by the saturation output power level of the SOA, we estimate a single SOA to support more than eight channels. Prior to describing the system experiments, component design and detailed characterization results are reported including design and characterization of RRMs, ring-based resonant optical add-drop multiplexers (RR-OADMs) and thermal tuners, S-parameters resulting from the interoperation of RRMs and RR-OADMs, and characterization of Q-Dash SS-MLLs reamplified with a commercial SOA. Particular emphasis is placed on peaking effects in the transfer functions of RRMs and RR-OADMs resulting from transient effects in the optical domain, as well as on the characterization of SS-MLLs in regard to relative intensity noise (RIN), stability of the modes of operation, and excess noise after reamplification.

  14. A 80 km reach fully passive WDM-PON based on reflective ONUs

    DEFF Research Database (Denmark)

    Presi, Marco; Proietti, Roberto; Prince, Kamau

    2008-01-01

    We propose a novel line coding combination (Inverse RZ coding in downlink and RZ in uplink) that extends the reach of WDM Passive Optical Networks based on Reflective SOAs with no in-line amplification. We achieved full downstream remodulation even when feeding the reflective SOA with power level...... as low as -35dBm, thus increasing the system power budget. We experimentally assessed this scheme for a fully passive, full-duplex and symmetrical 1.25Gb/s WDM-PON over a 80km G.652 feeder....

  15. Phase Sensitive Amplification using Parametric Processes in Optical Fibers

    DEFF Research Database (Denmark)

    Kang, Ning

    . Further, phase sensitive parametric processes in a nano-engineered silicon waveguide have been measured experimentally for the first time. Numerical optimizations show that with reduced waveguide propagation loss and reduced carrier life time, larger signal phase sensitive extinction ratio is achievable......Phase sensitive amplification using the parametric processes in fiber has the potential of delivering high gain and broadband operation with ultralow noise. It is able to regenerate both amplitude and phase modulated signals, simultaneously, with the appropriate design. This thesis concerns...... types. The regeneration capability of PSAs on phase encoded signal in an optical link has been optimized. Flat-top phase sensitive profile has been synthesized. It is able to provide simultaneous amplitude and phase noise squeezing, with enhanced phase noise margin compared to conventional designs...

  16. Management of Distributed and Extendible Heterogeneous Radio Architectures

    DEFF Research Database (Denmark)

    Ramkumar, Venkata; Mihovska, Albena D.; Prasad, Neeli R.

    2009-01-01

    Wireless communication systems are dynamic by nature, which comes from several factors, namely: radio propagation impairments, traffic changes, interference conditions, user mobility, etc. In a heterogeneous environment, , the dynamic network behavior calls for a dynamic management of the radio...... resources; a process that associates a large number of parameters and quality/performance indicators that need to be set, measured, analyzed, and optimized. Radio-over-fiber (RoF) technology involves the use of optical fiber links to distribute radio frequency (RF) signals from a central location to remote...

  17. All-optical ultra-high-speed OFDM to Nyquist-WDM conversion

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Mulvad, Hans Christian Hansen

    2015-01-01

    We propose an all-optical ultra-high-speed OFDM to Nyquist-WDM conversion scheme based on complete OFT. An 8-subcarrier 640 Gbit/s DPSK OFDM super-channel is converted to eight 80-Gbit/s Nyquist-WDM channels with BER <10−9 performance for all channels.......We propose an all-optical ultra-high-speed OFDM to Nyquist-WDM conversion scheme based on complete OFT. An 8-subcarrier 640 Gbit/s DPSK OFDM super-channel is converted to eight 80-Gbit/s Nyquist-WDM channels with BER

  18. Analytical Characterization of SPM Impact on XPM-Induced Degradation in Dispersion-Compensated WDM Systems

    Science.gov (United States)

    Luís, Ruben S.; Cartaxo, Adolfo V. T.

    2005-03-01

    This paper proposes the definition of a cross-phase modulation (XPM)-induced power penalty for intensity modulation/direct detection (IM-DD) systems as a function of the normalized variance of the XPM-induced IM. This allows the definition of 1-dB power penalty reference values. New expressions of the equivalent linear model transfer functions for the XPM-induced IM and phase modulation (PM) that include the influence of self-phase modulation (SPM) as well as group-velocity dispersion are derived. The new expressions allow a significant extension for higher powers and dispersion parameters of expressions derived in previous papers for single-segment and multisegment fiber systems with dispersion compensation. Good agreement between analytical results and numerical simulations is obtained. Consistency with work performed numerically and experimentally by other authors is shown, validating the proposed model. Using the proposed model, the influence of residual dispersion and SPM on the limitations imposed by XPM on the performance of dispersion-compensated systems is assessed. It is shown that inline residual dispersion may lead to performance improvement for a properly tuned total residual dispersion. The influence of SPM is shown to degrade the system performance when nonzero-dispersion-shifted fiber is used. However, systems using standard single-mode fiber may benefit from the presence of SPM.

  19. An amplitude modulated radio frequency plasma generator

    Science.gov (United States)

    Lei, Fan; Li, Xiaoping; Liu, Yanming; Liu, Donglin; Yang, Min; Xie, Kai; Yao, Bo

    2017-04-01

    A glow discharge plasma generator and diagnostic system has been developed to study the effects of rapidly variable plasmas on electromagnetic wave propagation, mimicking the plasma sheath conditions encountered in space vehicle reentry. The plasma chamber is 400 mm in diameter and 240 mm in length, with a 300-mm-diameter unobstructed clear aperture. Electron densities produced are in the mid 1010 electrons/cm3. An 800 W radio frequency (RF) generator is capacitively coupled through an RF matcher to an internally cooled stainless steel electrode to form the plasma. The RF power is amplitude modulated by a waveform generator that operates at different frequencies. The resulting plasma contains electron density modulations caused by the varying power levels. A 10 GHz microwave horn antenna pair situated on opposite sides of the chamber serves as the source and detector of probe radiation. The microwave power feed to the source horn is split and one portion is sent directly to a high-speed recording oscilloscope. On mixing this with the signal from the pickup horn antenna, the plasma-induced phase shift between the two signals gives the path-integrated electron density with its complete time dependent variation. Care is taken to avoid microwave reflections and extensive shielding is in place to minimize electronic pickup. Data clearly show the low frequency modulation of the electron density as well as higher harmonics and plasma fluctuations.

  20. Phase-shifted fiber Bragg grating inscription by fusion splicing technique and femtosecond laser

    Science.gov (United States)

    Jiang, Yajun; Yuan, Yuan; Xu, Jian; Yang, Dexing; Li, Dong; Wang, Meirong; Zhao, Jianlin

    2016-11-01

    A new method for phase-shifted fiber Bragg grating (PS-FBG) inscription in single mode fiber by fusion splicing technique and femtosecond laser is presented. The PS-FBG is produced by exposing the fusion spliced fiber with femtosecond laser through a uniform phase mask. The transmission spectrum of the PS-FBG shows a nonlinear red shift during the inscription process, and two or three main dips can be observed due to the formation of one or two FBG-based Fabry-Pérot structures by controlling the exposure intensity and time of the laser. For a peak power density of 4.8×1013 W/cm2, the induced refractive index modulation can reach to 6.3×10-4 in the fiber without sensitization. The PS-FBG's temperature, strain and pressure characteristics are also experimentally studied. These PS-FBGs can be potentially used for multiple wavelength fiber lasers, filters and optical fiber sensors.

  1. Experimental demonstration of the transmission performance for LDPC-coded multiband OFDM ultra-wideband over fiber system

    Science.gov (United States)

    He, Jing; Wen, Xuejie; Chen, Ming; Chen, Lin; Su, Jinshu

    2015-01-01

    To improve the transmission performance of multiband orthogonal frequency division multiplexing (MB-OFDM) ultra-wideband (UWB) over optical fiber, a pre-coding scheme based on low-density parity-check (LDPC) is adopted and experimentally demonstrated in the intensity-modulation and direct-detection MB-OFDM UWB over fiber system. Meanwhile, a symbol synchronization and pilot-aided channel estimation scheme is implemented on the receiver of the MB-OFDM UWB over fiber system. The experimental results show that the LDPC pre-coding scheme can work effectively in the MB-OFDM UWB over fiber system. After 70 km standard single-mode fiber (SSMF) transmission, at the bit error rate of 1 × 10-3, the receiver sensitivities are improved about 4 dB when the LDPC code rate is 75%.

  2. 32-core Dense SDM Unidirectional Transmission of PDM-16QAM Signals Over 1600 km Using Crosstalk-managed Single-mode Heterogeneous Multicore Transmission Line

    DEFF Research Database (Denmark)

    Mizuno, Takayuki; Shibahara, K.; Ono, Hirotaka

    2016-01-01

    We demonstrate 32-core dense space-division multiplexed (DSDM) unidirectional transmission of PDM-16QAM 20-WDM signals over 1644.8 km employing a low-crosstalk single-mode heterogeneous 32-core fiber in a partial recirculating-loop system....

  3. Fiber-based modulated optical reflectance configuration allowing for offset pump and probe beams

    Science.gov (United States)

    Fleming, A.; Folsom, C.; Jensen, C.; Ban, H.

    2016-12-01

    A new fiber-based modulated optical reflectance configuration is developed in this work. The technique maintains the fiber-based heating laser (pump) and detection laser (probe) in close proximity at a fixed separation distance in a ceramic ferrule. The pump beam periodically heats the sample inducing thermal waves into the sample. The probe beam measures the temperature response at a known distance from the pump beam over a range of heating modulation frequencies. The thermal diffusivity of the sample may be calculated from the phase response between the input heat flux and the temperature response of a sample having a reflective surface. The unique measurement configuration is ideal for in situ measurements and has many advantages for laboratory-based systems. The design and development of the system are reported along with theoretical justification for the experimental design. The thermal diffusivities of Ge and SiC are measured and found to be within 10% of reported literature values. The diffusivity for SiO2 is measured with a relative difference of approximately 100% from the literature value when the ferrule is in contact with the sample. An additional measurement was made on the SiO2 sample with the ferrule not in contact resulting in a difference of less than 2% from the literature value. The difference in the SiO2 measurement when the ferrule is in contact with the sample is likely due to a parallel heat transfer path through the dual-fiber ferrule assembly.

  4. Rydberg-atom based radio-frequency electrometry using frequency modulation spectroscopy in room temperature vapor cells.

    Science.gov (United States)

    Kumar, Santosh; Fan, Haoquan; Kübler, Harald; Jahangiri, Akbar J; Shaffer, James P

    2017-04-17

    Rydberg atom-based electrometry enables traceable electric field measurements with high sensitivity over a large frequency range, from gigahertz to terahertz. Such measurements are particularly useful for the calibration of radio frequency and terahertz devices, as well as other applications like near field imaging of electric fields. We utilize frequency modulated spectroscopy with active control of residual amplitude modulation to improve the signal to noise ratio of the optical readout of Rydberg atom-based radio frequency electrometry. Matched filtering of the signal is also implemented. Although we have reached similarly, high sensitivity with other read-out methods, frequency modulated spectroscopy is advantageous because it is well-suited for building a compact, portable sensor. In the current experiment, ∼3 µV cm-1 Hz-1/2 sensitivity is achieved and is found to be photon shot noise limited.

  5. Multicast routing for wavelength-routed WDM networks with dynamic membership

    Science.gov (United States)

    Huang, Nen-Fu; Liu, Te-Lung; Wang, Yao-Tzung; Li, Bo

    2000-09-01

    Future broadband networks must support integrated services and offer flexible bandwidth usage. In our previous work, we explore the optical link control layer on the top of optical layer that enables the possibility of bandwidth on-demand service directly over wavelength division multiplexed (WDM) networks. Today, more and more applications and services such as video-conferencing software and Virtual LAN service require multicast support over the underlying networks. Currently, it is difficult to provide wavelength multicast over the optical switches without optical/electronic conversions although the conversion takes extra cost. In this paper, based on the proposed wavelength router architecture (equipped with ATM switches to offer O/E and E/O conversions when necessary), a dynamic multicast routing algorithm is proposed to furnish multicast services over WDM networks. The goal is to joint a new group member into the multicast tree so that the cost, including the link cost and the optical/electronic conversion cost, is kept as less as possible. The effectiveness of the proposed wavelength router architecture as well as the dynamic multicast algorithm is evaluated by simulation.

  6. 25 Gbit/s differential phase-shift-keying signal generation using directly modulated quantum-dot semiconductor optical amplifiers

    International Nuclear Information System (INIS)

    Zeghuzi, A.; Schmeckebier, H.; Stubenrauch, M.; Bimberg, D.; Meuer, C.; Schubert, C.; Bunge, C.-A.

    2015-01-01

    Error-free generation of 25-Gbit/s differential phase-shift keying (DPSK) signals via direct modulation of InAs quantum-dot (QD) based semiconductor optical amplifiers (SOAs) is experimentally demonstrated with an input power level of −5 dBm. The QD SOAs emit in the 1.3-μm wavelength range and provide a small-signal fiber-to-fiber gain of 8 dB. Furthermore, error-free DPSK modulation is achieved for constant optical input power levels from 3 dBm down to only −11 dBm for a bit rate of 20 Gbit/s. Direct phase modulation of QD SOAs via current changes is thus demonstrated to be much faster than direct gain modulation

  7. Kerr nonlinearity mitigation in 5 × 28-GBd PDM16-QAM signal transmission over a dispersion-uncompensated link with backward-pumpeddistributed Raman amplification

    DEFF Research Database (Denmark)

    Sackey, I.; Da Ros, Francesco; Jazayerifar, M.

    2014-01-01

    We present experimental and numerical investigations of Kerr nonlinearity compensation in a 400-km standard single-mode fiber link with distributed Raman amplification with backward pumping. A dual-pump polarization-independent fiber-based optical parametric amplifier is used for mid-link spectra...... to numerical simulations with good agreement. It is also shown with simulations that a maximum transmission reach of 2400 km enabled by the optical phase conjugator is possible for the WDM signal...

  8. Low-latency fiber-millimeter-wave system for future mobile fronthauling

    Science.gov (United States)

    Tien Dat, Pham; Kanno, Atsushi; Yamamoto, Naokatsu; Kawanishi, Tetsuya

    2016-02-01

    A seamless combination of fiber and millimeter-wave (MMW) systems can be very attractive for future heterogeneous mobile networks such as 5G because of its flexibility and high bandwidth. Analog mobile signal transmission over seamless fiber-MMW systems is very promising to reduce the latency and the required band-width, and to simplify the systems. However, stable and high-performance seamless systems are indispensable to conserve the quality of the analog signal transmission. In this paper, we present several technologies to develop such seamless fiber-MMW systems. In the downlink direction, a high-performance system can be realized using a high-quality optical MMW signal generator and a self-homodyne MMW signal detector. In the uplink direction, a cascade of radio-on-radio and radio-over-fiber systems using a burst-mode optical amplifier can support bursty radio signal transmission. A full-duplex transmission with negligible interference effects can be realized using frequency multiplexing in the radio link and wavelength-division multiplexing in the optical link. A high-spectral efficiency MMW-over-fiber system using an intermediate frequency-over-fiber system and a high-quality remote delivery of a local oscillator signal is highly desirable to reduce the costs.

  9. Study on the capability of four-level partial response equalization in RSOA-based WDM-PON

    Science.gov (United States)

    Guo, Qi; Tran, An Vu

    2010-12-01

    The expected development of advanced video services with HDTV quality demands the delivery of more than Gb/s link to end users across the last mile connection. Future access networks are also required to have long reach for reduction in the number of central offices (CO). Fueled by those requirements, we propose a novel equalization scheme that increases the capacity and reach of the wavelength division multiplexing passive optical network (WDM-PON) based on a low bandwidth reflective semiconductor optical amplifier (RSOA). We investigate the characteristics of 10 Gb/s upstream transmission in WDM-PON using RSOA with only 1.2 GHz electrical bandwidth and various lengths of fiber. It is proven that the proposed four-level partial response equalizer (PRE) is capable of mitigating the impact of ISI in the received signals from optical network units (ONU) located 0 km to 75 km away from the optical line terminal (OLT).

  10. POLICY BRIEF 1 - WDM Criteria | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2012-01-18

    Jan 18, 2012 ... Water demand management ― WDM ― can be hard to define. More an issue of policy than of technology, it is about managing and moderating our ... critical to the success of WDM at the policy and at the operational levels.

  11. New Mexico Fiber-Optic Link Marks Giant Leap Toward Future of Radio Astronomy

    Science.gov (United States)

    1998-12-01

    SOCORRO, NM -- Scientists and engineers at the National Radio Astronomy Observatory (NRAO) have made a giant leap toward the future of radio astronomy by successfully utilizing the Very Large Array (VLA) radio telescope in conjunction with an antenna of the continent-wide Very Long Baseline Array (VLBA) using the longest fiber-optic data link ever demonstrated in radio astronomy. The 65-mile fiber link will allow scientists to use the two National Science Foundation (NSF) facilities together in real time, and is the first step toward expanding the VLA to include eight proposed new radio-telescope antennas throughout New Mexico. LEFT: Miller Goss, NRAO's director of VLA/VLBA Operations, unveils graphic showing success of the Pie Town-VLA fiber link. The project, funded by the NSF and Associated Universities, Inc. (AUI), which operates NRAO for the NSF, links the VLA and the VLBA antenna in Pie Town, NM, using a Western New Mexico Telephone Co. fiber-optic cable. The successful hookup was announced at a ceremony that also marked the 10th anniversary of NRAO's Operations Center in Socorro. "Linking the Pie Town antenna to the VLA quadruples the VLA's ability to make detailed images of astronomical objects," said Paul Vanden Bout, NRAO's Director. "This alone makes the link an advance for science, but its greater importance is that it clearly demonstrates the technology for improving the VLA's capabilities even more in the future." "Clearly, the big skies and wide open spaces in New Mexico create near perfect conditions for the incredible astronomical assets located in our state. This new fiber-optic link paves the way for multiplying the already breathtaking scientific capabilities of the VLA," Senator Pete Domenici (R-NM) said. The VLA is a system of 27 radio-telescope antennas distributed over the high desert west of Socorro, NM, in the shape of a giant "Y." Made famous in movies, commercials and numerous published photos, the VLA has been one of the most productive

  12. Wavefront sensing and adaptive control in phased array of fiber collimators

    Science.gov (United States)

    Lachinova, Svetlana L.; Vorontsov, Mikhail A.

    2011-03-01

    A new wavefront control approach for mitigation of atmospheric turbulence-induced wavefront phase aberrations in coherent fiber-array-based laser beam projection systems is introduced and analyzed. This approach is based on integration of wavefront sensing capabilities directly into the fiber-array transmitter aperture. In the coherent fiber array considered, we assume that each fiber collimator (subaperture) of the array is capable of precompensation of local (onsubaperture) wavefront phase tip and tilt aberrations using controllable rapid displacement of the tip of the delivery fiber at the collimating lens focal plane. In the technique proposed, this tip and tilt phase aberration control is based on maximization of the optical power received through the same fiber collimator using the stochastic parallel gradient descent (SPGD) technique. The coordinates of the fiber tip after the local tip and tilt aberrations are mitigated correspond to the coordinates of the focal-spot centroid of the optical wave backscattered off the target. Similar to a conventional Shack-Hartmann wavefront sensor, phase function over the entire fiber-array aperture can then be retrieved using the coordinates obtained. The piston phases that are required for coherent combining (phase locking) of the outgoing beams at the target plane can be further calculated from the reconstructed wavefront phase. Results of analysis and numerical simulations are presented. Performance of adaptive precompensation of phase aberrations in this laser beam projection system type is compared for various system configurations characterized by the number of fiber collimators and atmospheric turbulence conditions. The wavefront control concept presented can be effectively applied for long-range laser beam projection scenarios for which the time delay related with the double-pass laser beam propagation to the target and back is compared or even exceeds the characteristic time of the atmospheric turbulence change

  13. An orthogonal wavelet division multiple-access processor architecture for LTE-advanced wireless/radio-over-fiber systems over heterogeneous networks

    Science.gov (United States)

    Mahapatra, Chinmaya; Leung, Victor CM; Stouraitis, Thanos

    2014-12-01

    The increase in internet traffic, number of users, and availability of mobile devices poses a challenge to wireless technologies. In long-term evolution (LTE) advanced system, heterogeneous networks (HetNet) using centralized coordinated multipoint (CoMP) transmitting radio over optical fibers (LTE A-ROF) have provided a feasible way of satisfying user demands. In this paper, an orthogonal wavelet division multiple-access (OWDMA) processor architecture is proposed, which is shown to be better suited to LTE advanced systems as compared to orthogonal frequency division multiple access (OFDMA) as in LTE systems 3GPP rel.8 (3GPP, http://www.3gpp.org/DynaReport/36300.htm). ROF systems are a viable alternative to satisfy large data demands; hence, the performance in ROF systems is also evaluated. To validate the architecture, the circuit is designed and synthesized on a Xilinx vertex-6 field-programmable gate array (FPGA). The synthesis results show that the circuit performs with a clock period as short as 7.036 ns (i.e., a maximum clock frequency of 142.13 MHz) for transform size of 512. A pipelined version of the architecture reduces the power consumption by approximately 89%. We compare our architecture with similar available architectures for resource utilization and timing and provide performance comparison with OFDMA systems for various quality metrics of communication systems. The OWDMA architecture is found to perform better than OFDMA for bit error rate (BER) performance versus signal-to-noise ratio (SNR) in wireless channel as well as ROF media. It also gives higher throughput and mitigates the bad effect of peak-to-average-power ratio (PAPR).

  14. Experimental investigation of saturation effect on pump-to-signal intensity modulation transfer in single-pump phase-insensitive fiber optic parametric amplifiers

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Lali-Dastjerdi, Zohreh; Lund-Hansen, Toke

    2013-01-01

    We present an experimental characterization of how signal gain saturation affects the transfer of intensity modulation from the pump to the signal in single-pump, phase-insensitive fiber optic parametric amplifiers (FOPAs). In this work, we demonstrate experimentally for the first time, to our...... knowledge, how gain saturation of a FOPA reduces the noise contribution due to the transfer of pump power fluctuations to the signal. In a particular example, it is shown that the transferred noise is significantly reduced by a factor of 3, while the FOPA gain remains above 10 dB....

  15. Optical wavelength conversion by cross-phase modulation of data signals up to 640 Gb/s

    DEFF Research Database (Denmark)

    Galili, Michael; Oxenløwe, Leif Katsuo; Mulvad, Hans Christian Hansen

    2008-01-01

    In this paper, all-optical wavelength conversion by cross-phase modulation in a highly nonlinear fiber is investigated. Regenerative properties of the wavelength converter are demonstrated, and the effect of adding Raman gain to enhance the performance of the wavelength converter is shown. The wa....... The wavelength conversion scheme is demonstrated at the record-high bit rate of 640 Gb/s.......In this paper, all-optical wavelength conversion by cross-phase modulation in a highly nonlinear fiber is investigated. Regenerative properties of the wavelength converter are demonstrated, and the effect of adding Raman gain to enhance the performance of the wavelength converter is shown...

  16. Double nanosecond pulses generation in ytterbium fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Veiko, V. P.; Samokhvalov, A. A., E-mail: samokhvalov.itmo@gmail.com; Yakovlev, E. B.; Zhitenev, I. Yu.; Kliushin, A. N. [Saint-Petersburg State University of Information Technologies, Mechanics and Optics, Kronverksky Pr. 49, Saint Petersburg (Russian Federation); Lednev, V. N. [Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov Str., 38, Moscow (Russian Federation); National University of Science and Technology MISiS, Leninskyave., 4, Moscow (Russian Federation); Pershin, S. M. [Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov Str., 38, Moscow (Russian Federation)

    2016-06-15

    Double pulse generation mode for nanosecond ytterbium fiber laser was developed. Two sequential 60-200 ns laser pulses with variable delay between them were generated by acousto-optic modulator opening with continuous diode pumping. A custom radio frequency generator was developed to produce two sequential “opening” radio pulses with a delay of 0.2–1 μs. It was demonstrated that double pulse generation did not decrease the average laser power while providing the control over the laser pulse power profile. Surprisingly, a greater peak power in the double pulse mode was observed for the second laser pulse. Laser crater studies and plasma emission measurements revealed an improved efficiency of laser ablation in the double pulse mode.

  17. Widely tunable broadband deep-ultraviolet to visible wavelength generation by the cross phase modulation in a hollow-core photonic crystal fiber cladding

    International Nuclear Information System (INIS)

    Yuan, J H; Sang, X Z; Wu, Q; Yu, C X; Shen, X W; Wang, K R; Yan, B B; Teng, Y L; Farrell, G; Zhou, G Y; Xia, C M; Han, Y; Li, S G; Hou, L T

    2013-01-01

    The deep-ultraviolet (UV) to visible wavelengths are efficiently generated for the first time by the cross phase modulation (XPM) between the red-shifted solitons and the blue-shifted dispersive waves (DWs) in the fundamental guided mode of the multi-knots of a hollow-core photonic crystal fiber cladding (HC-PCFC). When the femtosecond pulses with a wavelength of 850 nm and average power of 300 mW are coupled into the knots 1–3, the conversion efficiency η uv−v of 11% and bandwidth B uv−v of 100 nm in the deep-UV region are experimentally obtained. The multi-milliwatt ultrashort pulses are tunable over the deep-UV (below 200 nm) to visible spectral region by adjusting the wavelengths of the pump pulses in different knots. It is expected that these widely tunable broadband ultrashort deep-UV–visible pulse sources could have important applications in ultrafast photonics, femtochemisty, photobiology, and UV–visible resonant Raman scattering. (letter)

  18. Analysis of second order harmonic distortion due to transmitter non-linearity and chromatic and modal dispersion of optical OFDM SSB modulated signals in SMF-MMF fiber links

    Science.gov (United States)

    Patel, Dhananjay; Singh, Vinay Kumar; Dalal, U. D.

    2017-01-01

    Single mode fibers (SMF) are typically used in Wide Area Networks (WAN), Metropolitan Area Networks (MAN) and also find applications in Radio over Fiber (RoF) architectures supporting data transmission in Fiber to the Home (FTTH), Remote Antenna Units (RAUs), in-building networks etc. Multi-mode fibers (MMFs) with low cost, ease of installation and low maintenance are predominantly (85-90%) deployed in-building networks providing data access in local area networks (LANs). The transmission of millimeter wave signals through the SMF in WAN and MAN, along with the reuse of MMF in-building networks will not levy fiber reinstallation cost. The transmission of the millimeter waves experiences signal impairments due to the transmitter non-linearity and modal dispersion of the MMF. The MMF exhibiting large modal dispersion limits the bandwidth-length product of the fiber. The second and higher-order harmonics present in the optical signal fall within the system bandwidth. This causes degradation in the received signal and an unwanted radiation of power at the RAU. The power of these harmonics is proportional to the non-linearity of the transmitter and the modal dispersion of the MMF and should be maintained below the standard values as per the international norms. In this paper, a mathematical model is developed for Second-order Harmonic Distortion (HD2) generated due to non-linearity of the transmitter and chromatic-modal dispersion of the SMF-MMF optic link. This is also verified using a software simulation. The model consists of a Mach Zehnder Modulator (MZM) that generates two m-QAM OFDM Single Sideband (SSB) signals based on phase shift of the hybrid coupler (90° and 120°). Our results show that the SSB signal with 120° hybrid coupler has suppresses the higher-order harmonics and makes the system more robust against the HD2 in the SMF-MMF optic link.

  19. Working Paper 2: WDM, Poverty & Equity | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2012-01-23

    Jan 23, 2012 ... Despite the growing practical and policy-level engagement with WDM, there has been little analytical or empirical effort devoted to its potential social implications. Establishing a better foundation for understanding the linkages between WDM and poverty is, therefore, very important. This paper shows that ...

  20. Radio frequency powering of microelectronic sensor modules

    Energy Technology Data Exchange (ETDEWEB)

    Boegel, Gerd vom; Meyer, Frederic; Kemmerling, Martin [Fraunhofer-Institut fuer Mikroelektronische Schaltungen und Systeme, Duisburg (Germany)

    2013-03-01

    In RFID applications the power supply of transponders via electromagnetic field is state-of-the-art. In this presentation the use of electromagnetic energy will be discussed for the operation of sensor modules. Starting with the question, whether the omnipresent radiation from power supply networks, radio transmitters, and mobile phone base stations is useable (energy harvesting), the feasibility of the operation of self-sufficient sensor modules is explained. Ancillary conditions of typical applications (e.g. operating range) and technology are considered. (orig.)

  1. Accuracy of Analog Fiber-Optic Links in Pulsed Radiation Environments

    International Nuclear Information System (INIS)

    E K Miller; G S Macrum; I J McKenna

    2007-01-01

    Interferometric fiber-optic links used in pulsed-power experiments are evaluated for accuracy in the presence of radiation fields which alter fiber transmission. Amplitude-modulated format (e.g., Mach-Zehnder) and phase-modulated formats are compared. Historically, studies of radiation effects on optical fibers have focused on degradation and recovery of the fibers transmission properties; such work is either in the context of survivability of fibers in catastrophic conditions or suitability of fibers installed for command and control systems within an experimental facility [1], [2]. In this work, we consider links used to transmit realtime diagnostic data, and we analyze the error introduced by radiation effects during the drive pulse. The result is increased uncertainties in key parameters required to unfold the sinusoidal transfer function. Two types of modulation are considered: amplitude modulation typical of a Mach-Zehnder (M-Z) modulator [3], and phase modulation, which offers more flexible demodulation options but relies on the spatiotemporal coherence of the light in the fiber. The M-Z link is shown schematically in Fig. 1, and the phase-modulated link is shown in Fig. 2. We present data from two experimental environments: one with intense, controlled radiation fields to simulate conditions expected at the next generation of pulsed-power facilities, and the second with radiation effects below the noise level of the recording system. In the first case, we intentionally expose three types of single-mode fiber (SMF) to ionizing radiation and study the response by simultaneously monitoring phase and amplitude of the transmitted light. The phase and amplitude effects are evidently dominated by different physical phenomena, as their recovery dynamics are markedly different; both effects, though, show similar short-term behavior during exposure, integrating the dose at the dose levels studied, from 1 to 300 kRad, over the exposure times of 50 ps and 30 ns. In the

  2. Traffic Scheduling in WDM Passive Optical Network with Delay Guarantee

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    WDM passive optical network becomes more favorable as the required bandwidth increases, but currently few media access control algorithms adapted to WDM access network. This paper presented a new scheduling algorithm for bandwidth sharing in WDM passive optical networks, which provides per-flow delay guarantee and supports variable-length packets scheduling. Through theoretical analysis and simulation, the end-to-end delay bound and throughput fairness of the algorithm was demonstrated.

  3. Reconfigurable, Cognitive Software-Defined Radio

    Science.gov (United States)

    Bhat, Arvind

    2015-01-01

    Software-defined radio (SDR) technology allows radios to be reconfigured to perform different communication functions without using multiple radios to accomplish each task. Intelligent Automation, Inc., has developed SDR platforms that switch adaptively between different operation modes. The innovation works by modifying both transmit waveforms and receiver signal processing tasks. In Phase I of the project, the company developed SDR cognitive capabilities, including adaptive modulation and coding (AMC), automatic modulation recognition (AMR), and spectrum sensing. In Phase II, these capabilities were integrated into SDR platforms. The reconfigurable transceiver design employs high-speed field-programmable gate arrays, enabling multimode operation and scalable architecture. Designs are based on commercial off-the-shelf (COTS) components and are modular in nature, making it easier to upgrade individual components rather than redesigning the entire SDR platform as technology advances.

  4. 12-core x 3-mode Dense Space Division Multiplexed Transmission over 40 km Employing Multi-carrier Signals with Parallel MIMO Equalization

    DEFF Research Database (Denmark)

    Mizuno, T.; Kobayashi, T.; Takara, H.

    2014-01-01

    We demonstrate dense SDM transmission of 20-WDM multi-carrier PDM-32QAM signals over a 40-km 12-core x 3-mode fiber with 247.9-b/s/Hz spectral efficiency. Parallel MIMO equalization enables 21-ns DMD compensation with 61 TDE taps per subcarrier....

  5. FTTA System Demo Using Optical Fiber-Coupled Active Antennas

    Directory of Open Access Journals (Sweden)

    Niels Neumann

    2014-08-01

    Full Text Available The convergence of optical and wireless systems such as Radio-over-Fiber (RoF networks is the key to coping with the increasing bandwidth demands due to the increasing popularity of video and other high data rate applications. A high level of integration of optical technologies enables simple base stations with a fiber-to-the-antenna (FTTA approach. In this paper, we present a complete full-duplex RoF–FTTA system consisting of integrated active fiber-coupled optical receiving and transmitting antennas that are directly connected to a standard single mode fiber optical link. Data rates up to 1 Gbit/s could be shown without advanced modulation formats on a 1.5 GHz carrier frequency. The antennas as well as the whole system are explained and the results of the system experiments are discussed.

  6. Fiber-optic refractometer based on an etched high-Q π-phase-shifted fiber-Bragg-grating.

    Science.gov (United States)

    Zhang, Qi; Ianno, Natale J; Han, Ming

    2013-07-10

    We present a compact and highly-sensitive fiber-optic refractometer based on a high-Q π-phase-shifted fiber-Bragg-grating (πFBG) that is chemically etched to the core of the fiber. Due to the p phase-shift, a strong πFBG forms a high-Q optical resonator and the reflection spectrum features an extremely narrow notch that can be used for highly sensitivity refractive index measurement. The etched πFBG demonstrated here has a diameter of ~9.3 μm and a length of only 7 mm, leading to a refractive index responsivity of 2.9 nm/RIU (RIU: refractive index unit) at an ambient refractive index of 1.318. The reflection spectrum of the etched πFBG features an extremely narrow notch with a linewidth of only 2.1 pm in water centered at ~1,550 nm, corresponding to a Q-factor of 7.4 × 10(5), which allows for potentially significantly improved sensitivity over refractometers based on regular fiber Bragg gratings.

  7. Performance analysis of adaptive modulation for cognitive radios with opportunistic access

    KAUST Repository

    Chen, Yunfei

    2011-06-01

    The performance of adaptive modulation for cognitive radio with opportunistic access is analyzed by considering the effects of spectrum sensing and primary user traffic for Nakagami-m fading channels. Both the adaptive continuous rate scheme and the adaptive discrete rate scheme are considered. Numerical results show that spectrum sensing and primary user traffic cause considerable degradation to the bit error rate performance of adaptive modulation in a cognitive radio system with opportunistic access to the licensed channel. They also show that primary user traffic does not affect the link spectral efficiency performance of adaptive modulation, while the spectrum sensing degrades the link spectral efficiency performance. © 2011 IEEE.

  8. Spectral decomposition of single-tone-driven quantum phase modulation

    International Nuclear Information System (INIS)

    Capmany, Jose; Fernandez-Pousa, Carlos R

    2011-01-01

    Electro-optic phase modulators driven by a single radio-frequency tone Ω can be described at the quantum level as scattering devices where input single-mode radiation undergoes energy changes in multiples of ℎΩ. In this paper, we study the spectral representation of the unitary, multimode scattering operator describing these devices. The eigenvalue equation, phase modulation being a process preserving the photon number, is solved at each subspace with definite number of photons. In the one-photon subspace F 1 , the problem is equivalent to the computation of the continuous spectrum of the Susskind-Glogower cosine operator of the harmonic oscillator. Using this analogy, the spectral decomposition in F 1 is constructed and shown to be equivalent to the usual Fock-space representation. The result is then generalized to arbitrary N-photon subspaces, where eigenvectors are symmetrized combinations of N one-photon eigenvectors and the continuous spectrum spans the entire unit circle. Approximate normalizable one-photon eigenstates are constructed in terms of London phase states truncated to optical bands. Finally, we show that synchronous ultrashort pulse trains represent classical field configurations with the same structure as these approximate eigenstates, and that they can be considered as approximate eigenvectors of the classical formulation of phase modulation.

  9. Spectral decomposition of single-tone-driven quantum phase modulation

    Energy Technology Data Exchange (ETDEWEB)

    Capmany, Jose [ITEAM Research Institute, Univ. Politecnica de Valencia, 46022 Valencia (Spain); Fernandez-Pousa, Carlos R, E-mail: c.pousa@umh.es [Signal Theory and Communications, Department of Physics and Computer Science, Univ. Miguel Hernandez, 03202 Elche (Spain)

    2011-02-14

    Electro-optic phase modulators driven by a single radio-frequency tone {Omega} can be described at the quantum level as scattering devices where input single-mode radiation undergoes energy changes in multiples of {h_bar}{Omega}. In this paper, we study the spectral representation of the unitary, multimode scattering operator describing these devices. The eigenvalue equation, phase modulation being a process preserving the photon number, is solved at each subspace with definite number of photons. In the one-photon subspace F{sub 1}, the problem is equivalent to the computation of the continuous spectrum of the Susskind-Glogower cosine operator of the harmonic oscillator. Using this analogy, the spectral decomposition in F{sub 1} is constructed and shown to be equivalent to the usual Fock-space representation. The result is then generalized to arbitrary N-photon subspaces, where eigenvectors are symmetrized combinations of N one-photon eigenvectors and the continuous spectrum spans the entire unit circle. Approximate normalizable one-photon eigenstates are constructed in terms of London phase states truncated to optical bands. Finally, we show that synchronous ultrashort pulse trains represent classical field configurations with the same structure as these approximate eigenstates, and that they can be considered as approximate eigenvectors of the classical formulation of phase modulation.

  10. All-optical, thermo-optical path length modulation based on the vanadium-doped fibers.

    Science.gov (United States)

    Matjasec, Ziga; Campelj, Stanislav; Donlagic, Denis

    2013-05-20

    This paper presents an all-fiber, fully-optically controlled, optical-path length modulator based on highly absorbing optical fiber. The modulator utilizes a high-power 980 nm pump diode and a short section of vanadium-co-doped single mode fiber that is heated through absorption and a non-radiative relaxation process. The achievable path length modulation range primarily depends on the pump's power and the convective heat-transfer coefficient of the surrounding gas, while the time response primarily depends on the heated fiber's diameter. An absolute optical length change in excess of 500 µm and a time-constant as short as 11 ms, were demonstrated experimentally. The all-fiber design allows for an electrically-passive and remote operation of the modulator. The presented modulator could find use within various fiber-optics systems that require optical (remote) path length control or modulation.

  11. Modulational instability of short pulses in long optical fibers

    DEFF Research Database (Denmark)

    Shukla, P. K.; Juul Rasmussen, Jens

    1986-01-01

    The effect of time-derivative nonlinearity is incorporated into the study of the modulational instability of heat pulses propagating through long optical fibers. Conditions for soliton formation are discussed......The effect of time-derivative nonlinearity is incorporated into the study of the modulational instability of heat pulses propagating through long optical fibers. Conditions for soliton formation are discussed...

  12. Re-modulated technology of WDM-PON employing different DQPSK downstream signals

    Science.gov (United States)

    Gao, Chao; Xin, Xiang-jun; Yu, Chong-xiu

    2012-11-01

    This paper proposes a kind of modulation architecture for wavelength-division-multiplexing passive optical network (WDMPON) employing optical differential quadrature phase shift keying (DQPSK) downstream signals and two different modulation formats of re-modulated upstream signals. At the optical line terminal (OLT), 10 Gbit/s signal is modulated with DQPSK. At the optical network unit (ONU), part of the downstream signal is re-modulated with on-off keying (OOK) or inverse-return-to-zero (IRZ). Simulation results show the impact on the system employing NRZ, RZ and carrier-suppressed return-to-zero (CSRZ). The analyses also reflect that the architecture can restrain chromatic dispersion and channel crosstalk, which makes it the best architecture of access network in the future.

  13. Absorption-Modulated Crossed-Optical Fiber-Sensor Platform for Measurements in Liquid Environments and Flow Streams

    Directory of Open Access Journals (Sweden)

    Paul E. Henning

    2017-01-01

    Full Text Available A new evanescent-wave fiber sensor is described that utilizes absorption-modulated luminescence (AML in combination with a crossed-fiber sensor platform. The luminescence signals of two crossed-fiber reference regions, placed on opposite sides of the stretch of fiber supporting the absorbance sensor, monitor the optical intensity in the fiber core. Evanescent absorption of the sensor reduces a portion of the excitation light and modulates the luminescence of the second reference region. The attenuation is determined from the luminescence intensity of both reference regions similar to the Beer-Lambert Law. The AML-Crossed-Fiber technique was demonstrated using the absorbance of the Zn(II-PAN2 complex at 555 nm. A linear response was obtained over a zinc(II concentration range of 0 to 20 μM (approximately 0 to 1.3 ppm. A nonlinear response was observed at higher zinc(II concentrations and was attributed to depletion of higher-order modes in the fiber. This was corroborated by the measured induced repopulation of these modes.

  14. Degradation of gas-phase trichloroethylene over thin-film TiO2 photocatalyst in multi-modules reactor

    International Nuclear Information System (INIS)

    Kim, Sang Bum; Lee, Jun Yub; Kim, Gyung Soo; Hong, Sung Chang

    2009-01-01

    The present paper examined the photocatalytic degradation (PCD) of gas-phase trichloroethylene (TCE) over thin-film TiO 2 . A large-scale treatment of TCE was carried out using scale-up continuous flow photo-reactor in which nine reactors were arranged in parallel and series. The parallel or serial arrangement is a significant factor to determine the special arrangement of whole reactor module as well as to compact the multi-modules in a continuous flow reactor. The conversion of TCE according to the space time was nearly same for parallel and serial connection of the reactors.

  15. Flattened optical frequency-locked multi-carrier generation by cascading one DML and one phase modulator driven by different RF frequency clocks

    International Nuclear Information System (INIS)

    Li, Xinying; Yu, Jianjun; Zhang, Junwen; Chi, Nan

    2013-01-01

    We propose a novel scheme for flattened optical frequency-locked multi-carrier generation based on one directly modulated laser (DML) and one phase modulator (PM) in cascade driven by different sinusoidal radio-frequency (RF) clocks. We experimentally demonstrate that when the clock frequencies for the cascaded DML and the PM are respectively 12.5 GHz and 25 GHz, over 24 optical subcarriers can be generated with 12.5-GHz frequency spacing and amplitude fluctuation less than 3 dB. Furthermore, the number of generated optical subcarriers can be further increased when we increase the driving power for the DML. (letter)

  16. Key lessons — Twelve factors critical to the success of WDM at the ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2010-12-22

    Dec 22, 2010 ... Water demand management (WDM) programs have been widely ... The criteria below are intended to help policymakers determine how best to ... implement and monitor WDM activities and to further the concept of WDM as ...

  17. Intrinsically stable phase-modulated polarization encoding system for quantum key distribution

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xiaobao [Laboratory of Photonic Information Technology, School for Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China); Liao Changjun [Laboratory of Photonic Information Technology, School for Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China)], E-mail: chliao@scnu.edu.cn; Mi Jinglong; Wang Jindong; Liu Songhao [Laboratory of Photonic Information Technology, School for Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China)

    2008-12-22

    We demonstrate experimentally an intrinsically stable polarization coding and decoding system composed of optical-fiber Sagnac interferometers with integrated phase modulators for quantum key distribution. An interference visibility of 98.35% can be kept longtime during the experiment without any efforts of active compensation for coding all four desired polarization states.

  18. Export policies for multi-domain WDM networks

    DEFF Research Database (Denmark)

    Manolova, Anna Vasileva; Ruepp, Sarah Renée

    2010-01-01

    We analyze the performance of six export policies for a multi-domain routing protocol in WDM networks. We show that providing many AS-disjoint paths for survivability and load-balancing does not necessarily guarantee the lowest connection blocking......We analyze the performance of six export policies for a multi-domain routing protocol in WDM networks. We show that providing many AS-disjoint paths for survivability and load-balancing does not necessarily guarantee the lowest connection blocking...

  19. Strongly nonlinear optical glass fibers from noncentrosymmetric phase-change chalcogenide materials.

    Science.gov (United States)

    Chung, In; Jang, Joon I; Malliakas, Christos D; Ketterson, John B; Kanatzidis, Mercouri G

    2010-01-13

    We report that the one-dimensional polar selenophosphate compounds APSe(6) (A = K, Rb), which show crystal-glass phase-change behavior, exhibit strong second harmonic generation (SHG) response in both crystal and glassy forms. The crystalline materials are type-I phase-matchable with SHG coefficients chi((2)) of 151.3 and 149.4 pm V(-1) for K(+) and Rb(+) salts, respectively, which is the highest among phase-matchable nonlinear optical (NLO) materials with band gaps over 1.0 eV. The glass of APSe(6) exhibits comparable SHG intensities to the top infrared NLO material AgGaSe(2) without any poling treatments. APSe(6) exhibit excellent mid-IR transparency. We demonstrate that starting from noncentrosymmetric phase-change materials such as APSe(6) (A = K, Rb), we can obtain optical glass fibers with strong, intrinsic, and temporally stable second-order nonlinear optical (NLO) response. The as-prepared glass fibers exhibit SHG and difference frequency generation (DFG) responses over a wide range of wavelengths. Raman spectroscopy and pair distribution function (PDF) analyses provide further understanding of the local structure in amorphous state of KPSe(6) bulk glass and glass fiber. We propose that this approach can be widely applied to prepare permanent NLO glass from materials that undergo a phase-change process.

  20. LOOKING FOR A PULSE: A SEARCH FOR ROTATIONALLY MODULATED RADIO EMISSION FROM THE HOT JUPITER, {tau} BOOeTIS b

    Energy Technology Data Exchange (ETDEWEB)

    Hallinan, G.; Bourke, S. [Cahill Center for Astrophysics, California Institute of Technology, 1200 E. California Blvd., MC 249-17, Pasadena, CA 91125 (United States); Sirothia, S. K.; Ishwara-Chandra, C. H. [National Centre for Radio Astrophysics, TIFR, Post Bag 3, Pune University Campus, Pune 411007 (India); Antonova, A. [Department of Astronomy, St. Kliment Ohridski University of Sofia, 5 James Bourchier Blvd., 1164 Sofia (Bulgaria); Doyle, J. G. [Armagh Observatory, College Hill, Armagh BT61 9DG (United Kingdom); Hartman, J. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Golden, A. [Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461 (United States)

    2013-01-01

    Hot Jupiters have been proposed as a likely population of low-frequency radio sources due to electron cyclotron maser emission of similar nature to that detected from the auroral regions of magnetized solar system planets. Such emission will likely be confined to specific ranges of orbital/rotational phase due to a narrowly beamed radiation pattern. We report on GMRT 150 MHz radio observations of the hot Jupiter {tau} Booetis b, consisting of 40 hr carefully scheduled to maximize coverage of the planet's 79.5 hr orbital/rotational period in an effort to detect such rotationally modulated emission. The resulting image is the deepest yet published at these frequencies and leads to a 3{sigma} upper limit on the flux density from the planet of 1.2 mJy, two orders of magnitude lower than predictions derived from scaling laws based on solar system planetary radio emission. This represents the most stringent upper limits for both quiescent and rotationally modulated radio emission from a hot Jupiter yet achieved and suggests that either (1) the magnetic dipole moment of {tau} Booetis b is insufficient to generate the surface field strengths of >50 G required for detection at 150 MHz or (2) Earth lies outside the beaming pattern of the radio emission from the planet.

  1. Optical Injection Locking of Vertical Cavity Surface-Emitting Lasers: Digital and Analog Applications

    Science.gov (United States)

    Parekh, Devang

    With the rise of mobile (cellphones, tablets, notebooks, etc.) and broadband wireline communications (Fiber to the Home), there are increasing demands being placed on transmitters for moving data from device to device and around the world. Digital and analog fiber-optic communications have been the key technology to meet this challenge, ushering in ubiquitous Internet and cable TV over the past 20 years. At the physical layer, high-volume low-cost manufacturing of semiconductor optoelectronic devices has played an integral role in allowing for deployment of high-speed communication links. In particular, vertical cavity surface emitting lasers (VCSEL) have revolutionized short reach communications and are poised to enter more markets due to their low cost, small size, and performance. However, VCSELs have disadvantages such as limited modulation performance and large frequency chirp which limits fiber transmission speed and distance, key parameters for many fiber-optic communication systems. Optical injection locking is one method to overcome these limitations without re-engineering the VCSEL at the device level. By locking the frequency and phase of the VCSEL by the direct injection of light from another laser oscillator, improved device performance is achieved in a post-fabrication method. In this dissertation, optical injection locking of VCSELs is investigated from an applications perspective. Optical injection locking of VCSELs can be used as a pathway to reduce complexity, cost, and size of both digital and analog fiber-optic communications. On the digital front, reduction of frequency chirp via bit pattern inversion for large-signal modulation is experimentally demonstrated showing up to 10 times reduction in frequency chirp and over 90 times increase in fiber transmission distance. Based on these results, a new reflection-based interferometric model for optical injection locking was established to explain this phenomenon. On the analog side, the resonance

  2. Distributed optical fiber vibration sensing using phase-generated carrier demodulation algorithm

    Science.gov (United States)

    Yu, Zhihua; Zhang, Qi; Zhang, Mingyu; Dai, Haolong; Zhang, Jingjing; Liu, Li; Zhang, Lijun; Jin, Xing; Wang, Gaifang; Qi, Guang

    2018-05-01

    A novel optical fiber-distributed vibration-sensing system is proposed, which is based on self-interference of Rayleigh backscattering with phase-generated carrier (PGC) demodulation algorithm. Pulsed lights are sent into the sensing fiber and the Rayleigh backscattering light from a certain position along the sensing fiber would interfere through an unbalanced Michelson interferometry to generate the interference light. An improved PGC demodulation algorithm is carried out to recover the phase information of the interference signal, which carries the sensing information. Three vibration events were applied simultaneously to different positions over 2000 m sensing fiber and demodulated correctly. The spatial resolution is 10 m, and the noise level of the Φ-OTDR system we proposed is about 10-3 rad/\\surd {Hz}, and the signal-to-noise ratio is about 30.34 dB.

  3. Fiber-Optic Refractometer Based on an Etched High-Q π-Phase-Shifted Fiber-Bragg-Grating

    Directory of Open Access Journals (Sweden)

    Ming Han

    2013-07-01

    Full Text Available We present a compact and highly-sensitive fiber-optic refractometer based on a high-Q p-phase-shifted fiber-Bragg-grating (pFBG that is chemically etched to the core of the fiber. Due to the p phase-shift, a strong pFBG forms a high-Q optical resonator and the reflection spectrum features an extremely narrow notch that can be used for highly sensitivity refractive index measurement. The etched pFBG demonstrated here has a diameter of ~9.3 μm and a length of only 7 mm, leading to a refractive index responsivity of 2.9 nm/RIU (RIU: refractive index unit at an ambient refractive index of 1.318. The reflection spectrum of the etched pFBG features an extremely narrow notch with a linewidth of only 2.1 pm in water centered at ~1,550 nm, corresponding to a Q-factor of 7.4 ´ 105, which allows for potentially significantly improved sensitivity over refractometers based on regular fiber Bragg gratings.

  4. The emerging WDM EPON

    CERN Document Server

    Radivojević, Mirjana

    2017-01-01

    This book proposes dynamic wavelength and bandwidth allocation (DWBA), a hybrid of time-division multiplexing (TDM) and wavelength-division multiplexing (WDM), which offers a solution for service providers faced with multiservice networks. It discusses different models, architectures and implementations and evaluates their performance.

  5. Solutions for 400 Gbit/s inter data center WDM transmission

    DEFF Research Database (Denmark)

    Dochhan, Annika; Eiselt, Nicklas; Griesser, Helmut

    2016-01-01

    We review some currently discussed solutions for 400 Gbit/s inter-data center WDM transmission for up to 100 km. We focus on direct detected solutions, namely PAM4 and DMT, and present two WDM systems based on these formats....

  6. Secure Communications in High Speed Fiber Optical Networks Using Code Division Multiple Access (CDMA) Transmission

    Energy Technology Data Exchange (ETDEWEB)

    Han, I; Bond, S; Welty, R; Du, Y; Yoo, S; Reinhardt, C; Behymer, E; Sperry, V; Kobayashi, N

    2004-02-12

    This project is focused on the development of advanced components and system technologies for secure data transmission on high-speed fiber optic data systems. This work capitalizes on (1) a strong relationship with outstanding faculty at the University of California-Davis who are experts in high speed fiber-optic networks, (2) the realization that code division multiple access (CDMA) is emerging as a bandwidth enhancing technique for fiber optic networks, (3) the realization that CDMA of sufficient complexity forms the basis for almost unbreakable one-time key transmissions, (4) our concepts for superior components for implementing CDMA, (5) our expertise in semiconductor device processing and (6) our Center for Nano and Microtechnology, which is where the majority of the experimental work was done. Here we present a novel device concept, which will push the limits of current technology, and will simultaneously solve system implementation issues by investigating new state-of-the-art fiber technologies. This will enable the development of secure communication systems for the transmission and reception of messages on deployed commercial fiber optic networks, through the CDMA phase encoding of broad bandwidth pulses. CDMA technology has been developed as a multiplexing technology, much like wavelength division multiplexing (WDM) or time division multiplexing (TDM), to increase the potential number of users on a given communication link. A novel application of the techniques created for CDMA is to generate secure communication through physical layer encoding. Physical layer encoding devices are developed which utilize semiconductor waveguides with fast carrier response times to phase encode spectral components of a secure signal. Current commercial technology, most commonly a spatial light modulator, allows phase codes to be changed at rates of only 10's of Hertz ({approx}25ms response). The use of fast (picosecond to nanosecond) carrier dynamics of semiconductors

  7. Effect of dipole-quadrupole Robinson mode coupling upon the beam response to radio-frequency phase noise

    Directory of Open Access Journals (Sweden)

    R. A. Bosch

    2006-09-01

    Full Text Available In an electron storage ring, coupling between dipole and quadrupole Robinson oscillations modifies the spectrum of longitudinal beam oscillations driven by radio-frequency (rf generator phase noise. In addition to the main peak at the resonant frequency of the coupled dipole Robinson mode, another peak occurs at the resonant frequency of the coupled quadrupole mode. To describe these peaks analytically for a quadratic synchrotron potential, we include the dipole and quadrupole modes when calculating the beam response to generator noise. We thereby obtain the transfer function from generator-noise phase modulation to beam phase modulation with and without phase feedback. For Robinson-stable bunches confined in a synchrotron potential with a single minimum, the calculated transfer function agrees with measurements at the Aladdin 800-MeV electron storage ring. The transfer function is useful in evaluating phase feedback that suppresses Robinson oscillations in order to obtain quiet operation of an infrared beam line.

  8. High Power (50W) WDM Space Lasercom 1.5um Fiber Laser Transmitter, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Fibertek proposes to develop and demonstrate a spaceflight prototype of a wideband, high power (up to 50W), polarization maintaining (PM), 1.5-um fiber laser...

  9. A simple system for 160GHz optical terahertz wave generation and data modulation

    Science.gov (United States)

    Li, Yihan; He, Jingsuo; Sun, Xueming; Shi, Zexia; Wang, Ruike; Cui, Hailin; Su, Bo; Zhang, Cunlin

    2018-01-01

    A simple system based on two cascaded Mach-Zehnder modulators, which can generate 160GHz optical terahertz waves from 40GHz microwave sources, is simulated and tested in this paper. Fiber grating filter is used in the system to filter out optical carrier. By properly adjusting the modulator DC bias voltages and the signal voltages and phases, 4-tupling optical terahertz wave can be generated with fiber grating. This notch fiber grating filter is greatly suitable for terahertz over fiber (TOF) communication system. This scheme greatly reduces the cost of long-distance terahertz communication. Furthermore, 10Gbps digital signal is modulated in the 160GHz optical terahertz wave.

  10. Optical Switching for Dynamic Distribution of Wireless-Over-Fiber Signals in Active Optical Networks

    DEFF Research Database (Denmark)

    Vegas Olmos, Juan José; Rodes, Guillermo; Tafur Monroy, Idelfonso

    2012-01-01

    In this paper, we report on an experimental validation of dynamic distribution of wireless-over-fiber by employing optical switching using semiconductor optical amplifiers; we also provide a channel distribution scheme and a generic topology for such an optical switch. The experiment consists...... of a four wavelength-division-multiplexed channel system operating on a WiMax frequency band and employing an orthogonal-frequency-division-multiplexing modulation at 625 Mbits/s per channel, transmission of the data over 20 km of optical fiber, and active switching in a 1 × 16 active optical switch....... The results show a negligible power penalty on each channel for both the best and the worst case in terms of inter-channel crosstalk. The presented system is highly scalable both in terms of port count and throughput, a desirable feature in highly branched access networks, and is modulation- and frequency...

  11. Deterministic reshaping of single-photon spectra using cross-phase modulation.

    Science.gov (United States)

    Matsuda, Nobuyuki

    2016-03-01

    The frequency conversion of light has proved to be a crucial technology for communication, spectroscopy, imaging, and signal processing. In the quantum regime, it also offers great potential for realizing quantum networks incorporating disparate physical systems and quantum-enhanced information processing over a large computational space. The frequency conversion of quantum light, such as single photons, has been extensively investigated for the last two decades using all-optical frequency mixing, with the ultimate goal of realizing lossless and noiseless conversion. I demonstrate another route to this target using frequency conversion induced by cross-phase modulation in a dispersion-managed photonic crystal fiber. Owing to the deterministic and all-optical nature of the process, the lossless and low-noise spectral reshaping of a single-photon wave packet in the telecommunication band has been readily achieved with a modulation bandwidth as large as 0.4 THz. I further demonstrate that the scheme is applicable to manipulations of a nonclassical frequency correlation, wave packet interference, and entanglement between two photons. This approach presents a new coherent frequency interface for photons for quantum information processing.

  12. A cost-effective structure of a centralized-light-source WDM-PON utilizing inverse-duobinary-RZ downstream and DPSK upstream

    International Nuclear Information System (INIS)

    Chen Long-Quan; Qiao Yao-Jun; Ji Yue-Feng

    2013-01-01

    In this paper, we propose a new structure of a centralized-light-source wavelength division multiplexed passive optical network (WDM-PON) utilizing inverse-duobinary-return-to-zero (inverse-duobinary-RZ) downstream and DPSK upstream. It reuses downstream light for the upstream modulation, which retrenches lasers assembled at each optical network unit (ONU), and ultimately cuts down the cost of ONUs a great deal. Meanwhile, a 50-km-reach WDM-PON experiment with 10-Gb/s inverse-duobinary-RZ downstream and 6-Gb/s DPSK upstream is demonstrated here. It is revealed to be a novel cost-effective alternative for the next generation access network. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  13. Multimedia over cognitive radio networks algorithms, protocols, and experiments

    CERN Document Server

    Hu, Fei

    2014-01-01

    PrefaceAbout the EditorsContributorsNetwork Architecture to Support Multimedia over CRNA Management Architecture for Multimedia Communication in Cognitive Radio NetworksAlexandru O. Popescu, Yong Yao, Markus Fiedler , and Adrian P. PopescuPaving a Wider Way for Multimedia over Cognitive Radios: An Overview of Wideband Spectrum Sensing AlgorithmsBashar I. Ahmad, Hongjian Sun, Cong Ling, and Arumugam NallanathanBargaining-Based Spectrum Sharing for Broadband Multimedia Services in Cognitive Radio NetworkYang Yan, Xiang Chen, Xiaofeng Zhong, Ming Zhao, and Jing WangPhysical Layer Mobility Challen

  14. Generation of Flattened Multicarrier Signals from a Single Laser Source for 330 Gbps WDM-PON Transmission over 25 km SSMF

    Science.gov (United States)

    Ullah, Sibghat; Liu, Bo; Ullah, Rahat; Ahmad, Muhammad; Wang, Fu; Zhang, Lijia; Xin, Xiangjun; Memon, Kamran Ali; Khalid, Hafiz Ahmad

    2017-12-01

    A novel technique is proposed for optical frequency comb generation with a budget friendly system. A Mach-Zehnder modulator is used in connectivity with continuous wave optical signal which is filtered by rectangle optical filter and the signal is then amplified by erbium-doped fiber amplifier. With a frequency spacing of 10 GHz 33 useable OFC lines were generated with good tone to noise ratio which is quite impressive for such a cost effective setup. Each generated carrier carries differential phase shift keying based data of 10 Gbps. A total of 330 Gbps multiplexed data is successfully transmitted through a standard single mode fiber length of 25-km. During the downlink transmission the power penalties are observed to be negligible. The resulted eye diagrams are wide and promises to be a good system for wavelength division multiplexed-passive optical network.

  15. Gaussian Process Regression for WDM System Performance Prediction

    DEFF Research Database (Denmark)

    Wass, Jesper; Thrane, Jakob; Piels, Molly

    2017-01-01

    Gaussian process regression is numerically and experimentally investigated to predict the bit error rate of a 24 x 28 CiBd QPSK WDM system. The proposed method produces accurate predictions from multi-dimensional and sparse measurement data.......Gaussian process regression is numerically and experimentally investigated to predict the bit error rate of a 24 x 28 CiBd QPSK WDM system. The proposed method produces accurate predictions from multi-dimensional and sparse measurement data....

  16. High-speed ultra-wideband wireless signals over fiber systems: Photonic generation and DSP detection

    DEFF Research Database (Denmark)

    Yu, Xianbin; Gibbon, Timothy Braidwood; Tafur Monroy, Idelfonso

    2009-01-01

    We firstly review the efforts in the literature on UWB over-fiber systems. Secondly, we present experimental results on photonic generation of high-speed UWB signals by both direct modulation and external optical injecting an uncooled semiconductor laser. Furthermore, we introduce the use of digi...

  17. Degradation of gas-phase trichloroethylene over thin-film TiO{sub 2} photocatalyst in multi-modules reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Bum [New and Renewable Energy Team, Environment and Energy Division, Korea Institute of Industrial Technology (Korea, Republic of); Lee, Jun Yub, E-mail: ljy02191@hanafos.com [Power Engineering Research Institute, Korea Power Engineering Company, Inc. (Korea, Republic of); Kim, Gyung Soo [New and Renewable Energy Team, Environment and Energy Division, Korea Institute of Industrial Technology (Korea, Republic of); Hong, Sung Chang [Department of Environmental Engineering, Kyonggi University (Korea, Republic of)

    2009-07-30

    The present paper examined the photocatalytic degradation (PCD) of gas-phase trichloroethylene (TCE) over thin-film TiO{sub 2}. A large-scale treatment of TCE was carried out using scale-up continuous flow photo-reactor in which nine reactors were arranged in parallel and series. The parallel or serial arrangement is a significant factor to determine the special arrangement of whole reactor module as well as to compact the multi-modules in a continuous flow reactor. The conversion of TCE according to the space time was nearly same for parallel and serial connection of the reactors.

  18. Phase Evolution of the Crab Pulsar between Radio and X-Ray

    Energy Technology Data Exchange (ETDEWEB)

    Yan, L. L.; Ge, M. Y.; Zheng, S. J.; Lu, F. J.; Tuo, Y. L.; Zhang, S. N.; Lu, Y. [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Yuan, J. P.; Tong, H. [Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi, Xinjiang 830011 (China); Han, J. L. [National Astronomical Observatory, Chinese Academy of Sciences, Jia 20 Datun Road, Beijing 100012 (China); Du, Y. J., E-mail: yanlinli@ihep.ac.cn [Qian Xuesen Laboratory of Space Technology, No. 104, Youyi Road, Haidian District, Beijing 100094 (China)

    2017-08-20

    We study the X-ray phases of the Crab pulsar utilizing the 11-year observations from the Rossi X-ray Timing Explorer , 6-year radio observations from Nanshan Telescope, and the ephemeris from Jodrell Bank Observatory. It is found that the X-ray phases in different energy bands and the radio phases from the Nanshan Telescope show similar behaviors, including long-time evolution and short-time variations. Such strong correlations between the X-ray and radio phases imply that the radio and X-ray timing noises are both generated from the pulsar spin that cannot be well described by the the monthly ephemeris from the Jodrell Bank observatory. When using the Nanshan phases as references to study the X-ray timing noise, it has a significantly smaller variation amplitude and shows no long-time evolution, with a change rate of (−1.1 ± 1.1) × 10{sup −7} periods per day. These results show that the distance of the X-ray and radio emission regions on the Crab pulsar has no detectable secular change, and it is unlikely that the timing noises resulted from any unique physical processes in the radio or X-ray emitting regions. The similar behaviors of the X-ray and radio timing noises also imply that the variation of the interstellar medium is not the origin of the Crab pulsar’s timing noises, which is consistent with the results obtained from the multi-frequency radio observations of PSR B1540−06.

  19. Radiation damage of tile/fiber scintillator modules for the SDC calorimeter

    International Nuclear Information System (INIS)

    Hu, L.; Liu, N.; Mao, H.; Tan, Y.; Wang, G.; Zhang, C.; Zhang, G.; Zhang, L.; Zhang, Z.; Zhao, X.; Zheng, L.; Zhong, X.; Zhou, Y.; Han, S.; Byon, A.; Green, D.; Para, A.; Johnson, K.; Barnes, V.

    1992-02-01

    The measurements of radiation damage of tile/fiber scintillator modules to be used for the SDC calorimeter are described. Four tile/fiber scintillator modules were irradiated up to 6 Mrad with the BEPC 1.1 GeV electron beam. We have studied the light output at different depths in the modules and at different integrated doses, the recovery process and the dependence on the ambient atmosphere

  20. Radio-frequency unbalanced M-Z interferometer for wavelength interrogation of fiber Bragg grating sensors.

    Science.gov (United States)

    Zhou, Jiaao; Xia, Li; Cheng, Rui; Wen, Yongqiang; Rohollahnejad, Jalal

    2016-01-15

    The optical unbalanced Mach-Zehnder interferometer (UMZI) has attracted significant interests for interrogation of FBG sensors owing to its excellent advantages in sensitivity, resolution, and demodulation speed. But this method is still limited to dynamic measurements due to its poor stability and reliability when used for quasi-static detections. Here, we propose for the first time, to the best of our knowledge, a radio-frequency unbalanced M-Z interferometer (RF-UMZI) for interrogation of FBG sensors, which, owing to its operation in an incoherent rather than a coherent regime, provides an ideal solution for the existing stability problem of the conventional UMZI, with remarkable features of adjustable resolution and potentially extremely high sensitivity. A dispersion compensation fiber (DCF) and single-mode fiber (SMF) with a small length difference are served as the two unbalanced arms of the RF interferometer. The induced differential chromatic dispersion transfers the wavelength shift of the FBG to the change of the RF phase difference between the two interferometric carriers, which ultimately leads to the variation of the RF signal intensity. An interrogation of a strain-turned FBG was accomplished and a maximum sensitivity of 0.00835  a.u./με was obtained, which can easily be further improved by more than two orders of magnitude through various fiber dispersion components. Finally, the stability of the interrogation was tested.

  1. Fiber-distributed feedback lasers for high-speed wavelength-division multiplexed networks

    DEFF Research Database (Denmark)

    Sejka, Milan; Hübner, Jörg; Varming, Poul

    1996-01-01

    Summary form only given. In conclusion, we have demonstrated that fiber DFB lasers constitute an excellent alternative to commercially available semiconductor DFB lasers. We have also shown that two fiber DFB lasers can be spliced together without any BER power penalty. Therefore, we suggest...... the possibility of using a single pump source for pumping a WDM laser array consisting of a number of fiber lasers spliced in series....

  2. Moiré phase-shifted fiber Bragg gratings in polymer optical fibers

    DEFF Research Database (Denmark)

    Min, Rui; Marques, Carlos; Bang, Ole

    2018-01-01

    We demonstrate a simple way to fabricate phase-shifted fiber Bragg grating in polymer optical fibers as a narrowband transmission filter for a variety of applications at telecom wavelengths. The filters have been fabricated by overlapping two uniform fiber Bragg gratings with slightly different...

  3. Crystal structure of the commensurately modulated ζ phase of PAMC

    DEFF Research Database (Denmark)

    Harris, P.; Larsen, F.K.; Lebech, B.

    1994-01-01

    phase, indicating a 'lock-in' and phase shift between adjacent modulated layers. The modulation waves do not change much from the values of the epsilon phase, which confirms the lock-in of the modulation vector; only some components of the modulations of the propylammonium chains appear......The commensurately modulated zeta low-temperature phase of bis(propylammonium) tetrachloromanganate(II), [NH3(C3H7)]2MnCl4, has been determined at 8 K. a = 7.437 (5), b = 7.082 (5), c = 13.096 (8) Angstrom, alpha = 105.59 (1)degrees. Superspace group P2(1)/b(0 beta 0)(1) over bar s, with beta = 1...... to be significantly different, these chains appear to be responsible for the phase shift across the layers....

  4. Revenue-driven Lightpaths Provisioning over Optical WDM Networks Using Bee Colony Optimization

    Directory of Open Access Journals (Sweden)

    Goran Z. Marković

    2017-01-01

    Full Text Available Revenue-driven Lightpaths Provisioning over Optical WDM Networks Using Bee Colony Optimization Goran Z. Markovic University of Belgrade n Faculty of Transport and Traffic Engineering, Vojvode Stepe 305, Belgrade, 11000, Serbia E-mail: g.markovic@sf.bg.ac.rs Abstract This paper aims to study the lightpaths provisioning problem in optical WDM networks with scarce available wavelengths under the static (off-line traffic demands such that network operatorrs (NOrs revenue is maximized. To achieve this goal, a NO has to be addressed with the issue how to solve the call admission control jointly with the lightpaths routing and wavelength assignment (RWA problem in efficient manner. The improved bee colony optimization (BCOi metaheuristic is applied to solve the considered revenue maximization (Max-Rev problem. We evaluated the performances of the proposed BCOi Max-Rev framework by performing numerous simulation experiments in different realistic WDM optical network topologies. We observed that our BCOi Max-Rev algorithm is an efficient tool to produce high quality solutions within reasonable amount of CPU time. It has been proved that BCOi Max-Rev solutions just slightly deviate from optimal solutions (at most 1% and considerably outperform some heuristic algorithms, such as the Max-Profit and FCFS. In addition, our Max-Rev BCOi algorithm is able to produce better solution quality compared to the constructive BCO approach (up to 3.5% in the case of NSFNet and 5% in the case of EON. Finally, we compared the BCOi to differential evolution (DE approach in the case of more complex networks, such as the USA optical network topology. The results show that our BCOi always outperforms DE metaheuristic, whereby the profit improvement could reach up to 20 % in some instances. Keywords: bee colony optimization (BCO, lightpath, optical network, routing and wavelength assignment (RWA, revenue maximization. 1. Introduction Optical networks employing wavelength

  5. Quantum Noise Reduction with Pulsed Light in Optical Fibers.

    Science.gov (United States)

    Bergman, Keren

    Optical fibers offer considerable advantages over bulk nonlinear media for the generation of squeezed states. This thesis reports on experimental investigations of reducing quantum noise by means of squeezing in nonlinear fiber optic interferometers. Fibers have low insertion loss which allows for long interaction lengths. High field intensities are easily achieved in the small cores of single mode fibers. Additionally, the nonlinear process employed is self phase modulation or the Kerr effect, whose broad band nature requires no phase matching and can be exploited with ultra-short pulses of high peak intensity. All these advantageous features of fibers result in easily obtained large nonlinear phase shifts and subsequently large squeezing parameters. By the self phase modulation process a correlation is produced between the phase and amplitude fluctuations of the optical field. The attenuated or squeezed quadrature has a lower noise level than the initial level associated with the coherent state field before propagation. The resulting reduced quantum noise quadrature can be utilized to improve the sensitivity of a phase measuring instrument such as an interferometer. Because the Kerr nonlinearity is a degenerate self pumping process, the squeezed noise is at the same frequency as the pump field. Classical pump noise can therefore interfere with the desired measurement of the quantum noise reduction. The most severe noise process is the phase noise caused by thermally induced index modulation of the fiber. This noise termed Guided Acoustic Wave Brillouin Scattering, or GAWBS, by previous researchers is studied and analyzed. Experiments performed to overcome GAWBS successfully with several schemes are described. An experimental demonstration of an interferometric measurement with better sensitivity than the standard quantum limit is described. The results lead to new understandings into the limitations of quantum noise reduction that can be achieved in the

  6. Adaptive Neuro-Fuzzy Based Gain Controller for Erbium-Doped Fiber Amplifiers

    Directory of Open Access Journals (Sweden)

    YUCEL, M.

    2017-02-01

    Full Text Available Erbium-doped fiber amplifiers (EDFA must have a flat gain profile which is a very important parameter such as wavelength division multiplexing (WDM and dense WDM (DWDM applications for long-haul optical communication systems and networks. For this reason, it is crucial to hold a stable signal power per optical channel. For the purpose of overcoming performance decline of optical networks and long-haul optical systems, the gain of the EDFA must be controlled for it to be fixed at a high speed. In this study, due to the signal power attenuation in long-haul fiber optic communication systems and non-equal signal amplification in each channel, an automatic gain controller (AGC is designed based on the adaptive neuro-fuzzy inference system (ANFIS for EDFAs. The intelligent gain controller is implemented and the performance of this new electronic control method is demonstrated. The proposed ANFIS-based AGC-EDFA uses the experimental dataset to produce the ANFIS-based sets and the rule base. Laser diode currents are predicted within the accuracy rating over 98 percent with the proposed ANFIS-based system. Upon comparing ANFIS-based AGC-EDFA and experimental results, they were found to be very close and compatible.

  7. Experimental Investigations of 3-D-/4-D-CAP Modulation With Directly Modulated VCSELs

    DEFF Research Database (Denmark)

    Binti Othman, Maisara; Zhang, Xu; Deng, Lei

    2012-01-01

    correction limit of 2.8 × 10-3 for error-free reception is achieved after 20 km of SSMF transmission. Spectral efficiencies of 2.68 and 2.08 b/s/Hz are reported for 3-D-CAP and 4-D-CAP, respectively. We believe that multidimensional modulation formats represent an attractive solution for providing more......In this letter, we present experimental investigations of multidimensional multilevel carrierless amplitude phase (CAP) modulation with directly modulated vertical cavity surface-emitting lasers. The signals are transmitted over 20 km of standard single-mode fiber (SSMF). For multilevel 3-D...

  8. Simultaneous transmission of the IEEE 802.11 radio signal and optical Gbit Ethernet over the multimode fiber link

    Science.gov (United States)

    Maksymiuk, L.; Podziewski, A.

    2015-09-01

    In the paper we present a successful joint transmission of the IEEE 802.11 signal and an optical Gbit Ethernet over a multimode fiber based link. Most importantly, the multiplexation of both signals was performed in the optical domain. Due to the utilization of the multimode fiber the OBI noise was avoided and both channels were able to operate at the same wavelength. We prove that potential RoF link for IEEE 802.11 signal distribution may be used to additionally transmit other signals as Gbit Ethernet and therefore utilize the fiber infrastructure installed more effectively. The qualities of both the IEEE 802.11 and Ethernet transmissions fulfilled the requirements imposed by appropriate standards.

  9. Upstream vertical cavity surface-emitting lasers for fault monitoring and localization in WDM passive optical networks

    Science.gov (United States)

    Wong, Elaine; Zhao, Xiaoxue; Chang-Hasnain, Connie J.

    2008-04-01

    As wavelength division multiplexed passive optical networks (WDM-PONs) are expected to be first deployed to transport high capacity services to business customers, real-time knowledge of fiber/device faults and the location of such faults will be a necessity to guarantee reliability. Nonetheless, the added benefit of implementing fault monitoring capability should only incur minimal cost associated with upgrades to the network. In this work, we propose and experimentally demonstrate a fault monitoring and localization scheme based on a highly-sensitive and potentially low-cost monitor in conjunction with vertical cavity surface-emitting lasers (VCSELs). The VCSELs are used as upstream transmitters in the WDM-PON. The proposed scheme benefits from the high reflectivity of the top distributed Bragg reflector (DBR) mirror of optical injection-locked (OIL) VCSELs to reflect monitoring channels back to the central office for monitoring. Characterization of the fault monitor demonstrates high sensitivity, low bandwidth requirements, and potentially low output power. The added advantage of the proposed fault monitoring scheme incurs only a 0.5 dB penalty on the upstream transmissions on the existing infrastructure.

  10. Water brief-WDM & wastewater reuse

    International Development Research Centre (IDRC) Digital Library (Canada)

    aalfouns

    Wastewater Reuse for Water Demand Management in the Middle East and ... Among the substantial WDM tools in MENA is the use of wastewater to reduce the pressure on scarce freshwater .... recycled water to irrigate crops with associated ...

  11. Upgrade of optical WDM transport systems introducing linerates at 40 Gbit/s per channel

    Science.gov (United States)

    Schneiders, Malte; Vorbeck, Sascha; Aust, Nora

    2006-10-01

    Driven by high growth rates of internet traffic the question of upgrading existing optical metro-, regio- and long haul transport networks introducing 40 Gbit/s/λ is one of the most important questions today and in the near future. Current WDM Systems in photonic networks are commonly operated at linerates of 2.5 and 10 Gbit/s/λ. Induced by market analyses and the historical development of transport systems some work has already been carried out to evaluate update scenarios from 10 to 40 Gbit/s channel data rates. Due to the inherent quadruplication of the bandwidth per channel, limitations due to linear and non-linear transmission impairments become stronger resulting in a highly increased complexity of link engineering, potentially increasing the capital and operational expenditures. A lot of work is therefore in progress, which targets at the relaxation of constraints for 40 Gbit/s transmission to find the most efficient upgrade strategies. One approach towards an increased robustness against signal distortions is the introduction of more advanced modulation formats. Different modulation schemes show strongly different optical WDM transmission characteristics. The choice of the appropriate format does not only depend on the technical requirements, but also on economical considerations as an increased transmitter- and receiver-complexity will drive the transponder price. This article presents investigations on different modulation formats for the upgrade of existing metro-/ regio and long haul transport networks. Tolerances and robustness against the main degrading effects dispersion, noise and nonlinearities are considered together with mitigation strategies like the adaptation of dispersion maps. Results from numerical simulations are provided for some of the most promising modulation formats like NRZ, RZ, CS-RZ, Optical Duobinary and DPSK.

  12. Smooth Phase Interpolated Keying

    Science.gov (United States)

    Borah, Deva K.

    2007-01-01

    Smooth phase interpolated keying (SPIK) is an improved method of computing smooth phase-modulation waveforms for radio communication systems that convey digital information. SPIK is applicable to a variety of phase-shift-keying (PSK) modulation schemes, including quaternary PSK (QPSK), octonary PSK (8PSK), and 16PSK. In comparison with a related prior method, SPIK offers advantages of better performance and less complexity of implementation. In a PSK scheme, the underlying information waveform that one seeks to convey consists of discrete rectangular steps, but the spectral width of such a waveform is excessive for practical radio communication. Therefore, the problem is to smooth the step phase waveform in such a manner as to maintain power and bandwidth efficiency without incurring an unacceptably large error rate and without introducing undesired variations in the amplitude of the affected radio signal. Although the ideal constellation of PSK phasor points does not cause amplitude variations, filtering of the modulation waveform (in which, typically, a rectangular pulse is converted to a square-root raised cosine pulse) causes amplitude fluctuations. If a power-efficient nonlinear amplifier is used in the radio communication system, the fluctuating-amplitude signal can undergo significant spectral regrowth, thus compromising the bandwidth efficiency of the system. In the related prior method, one seeks to solve the problem in a procedure that comprises two major steps: phase-value generation and phase interpolation. SPIK follows the two-step approach of the related prior method, but the details of the steps are different. In the phase-value-generation step, the phase values of symbols in the PSK constellation are determined by a phase function that is said to be maximally smooth and that is chosen to minimize the spectral spread of the modulated signal. In this step, the constellation is divided into two groups by assigning, to information symbols, phase values

  13. Estudo de topologias para redes WDM-PON

    OpenAIRE

    Guilherme Enéas Vaz Silva

    2010-01-01

    A demanda de largura de banda exigida pelos usuários de redes de acesso vem aumentando rapidamente e a rede óptica passiva baseada em multiplexação por divisão de comprimento de onda (WDM-PON) tem se destacado como a tecnologia capaz de suprir essa demanda. Dessa forma, este trabalho conduz, inicialmente, uma comparação entre uma rede WDM-PON ideal e uma rede TDM-PON, discutindo também aspectos de segurança desta última, bem como estratégias de migração entre estes dois esquemas. Devido ao cu...

  14. Fiber optical parametric amplifiers in optical communication systems

    Science.gov (United States)

    Marhic (†), Michel E; Andrekson, Peter A; Petropoulos, Periklis; Radic, Stojan; Peucheret, Christophe; Jazayerifar, Mahmoud

    2015-01-01

    The prospects for using fiber optical parametric amplifiers (OPAs) in optical communication systems are reviewed. Phase-insensitive amplifiers (PIAs) and phase-sensitive amplifiers (PSAs) are considered. Low-penalty amplification at/or near 1 Tb/s has been achieved, for both wavelength- and time-division multiplexed formats. High-quality mid-span spectral inversion has been demonstrated at 0.64 Tb/s, avoiding electronic dispersion compensation. All-optical amplitude regeneration of amplitude-modulated signals has been performed, while PSAs have been used to demonstrate phase regeneration of phase-modulated signals. A PSA with 1.1-dB noise figure has been demonstrated, and preliminary wavelength-division multiplexing experiments have been performed with PSAs. 512 Gb/s have been transmitted over 6,000 km by periodic phase conjugation. Simulations indicate that PIAs could reach data rate x reach products in excess of 14,000 Tb/s × km in realistic wavelength-division multiplexed long-haul networks. Technical challenges remaining to be addressed in order for fiber OPAs to become useful for long-haul communication networks are discussed. PMID:25866588

  15. In-Building Wireless Distribution in legacy Multimode Fiber with an improved RoMMF system

    DEFF Research Database (Denmark)

    Visani, Davide; Petersen, Martin Nordal; Sorci, Francesca

    2012-01-01

    A radio over multimode fiber (RoMMF) system for in-building wireless distribution employing a directly modulated Fabry-Perot (FP) transmitter and the central launch technique is presented. The worst-case spurious free dynamic range (SFDR) exceeds 105 dB×Hz2/3 up to 525 m of OM2 multimode fiber (MMF......). Experimental and theoretical results are reported showing that this scheme outperforms a RoMMF system employing a distributed feed-back (DFB) laser diode (LD) and/or a mode scrambler to achieve overfilled launch (OFL). Long Term Evolution (LTE) signal transmission is achieved with high quality in terms...... of Adjacent Channel Leakage Ratio (ACLR) and Error Vector Magnitude (EVM)....

  16. Photonic network R and D activities in Japan

    Science.gov (United States)

    Kitayama, Ken-ichi; Miki, Tetsuya; Morioka, Toshio; Tsushima, Hideaki; Koga, Masafumi; Mori, Kazuyuki; Araki, Soichiro; Sato, Ken-ichi; Onaka, Hiroshi; Namiki, Shu; Aovama, Tomonori

    2005-11-01

    R and D activities on photonic networks in Japan are presented. First, milestones in current, ongoing R and D programs supported by Japanese government agencies are introduced, including long-distance and WDM fiber transmission, wavelength routing, optical burst switching, and control plane technology for IP backbone networks. Their goal was set to evolve a legacy telecommunications network to IP over WDM networks by introducing technologies for WDM and wavelength routing. We then discuss the perspectives of so-called PHASE II R and D programs for photonic networks over the next five years until 2010, by focusing on the report which has been recently issued by the Photonic Internet Forum (PIF), a consortium that has major carriers, telecom vendors, and Japanese academics as members. The PHASE II R and D programs should serve to establish a photonic platform to provide abundant bandwidth on demand, at any time on a real-time basis through the customer's initiative, to promote bandwidth-rich applications, such as grid computing, real-time digital-cinema streaming, medical and educational applications, and network storage in e-commerce.

  17. Photonic Network R&D Activities in Japan-Current Activities and Future Perspectives

    Science.gov (United States)

    Kitayama, Ken-Ichi; Miki, Tetsuya; Morioka, Toshio; Tsushima, Hideaki; Koga, Masafumi; Mori, Kazuyuki; Araki, Soichiro; Sato, Ken-Ichi; Onaka, Hiroshi; Namiki, Shu; Aoyama, Tomonori

    2005-10-01

    R&D activities on photonic networks in Japan are presented. First, milestones in current ongoing R&D programs supported by Japanese government agencies are introduced, including long-distance and wavelength division multiplexing (WDM) fiber transmission, wavelength routing, optical burst switching (OBS), and control-plane technology for IP backbone networks. Their goal was set to evolve a legacy telecommunications network to IP-over-WDM networks by introducing technologies for WDM and wavelength routing. We then discuss the perspectives of so-called PHASE II R&D programs for photonic networks over the next 5 years until 2010, by focusing on the report that has been recently issued by the Photonic Internet Forum (PIF), a consortium that has major carriers, telecom vendors, and Japanese academics as members. The PHASE II R&D programs should serve to establish a photonic platform to provide abundant bandwidth on demand, at any time on a real-time basis, through the customer's initiative to promote bandwidth-rich applications, such as grid computing, real-time digital-cinema streaming, medical and educational applications, and network storage in e-commerce.

  18. Linearity optimizations of analog ring resonator modulators through bias voltage adjustments

    Science.gov (United States)

    Hosseinzadeh, Arash; Middlebrook, Christopher T.

    2018-03-01

    The linearity of ring resonator modulator (RRM) in microwave photonic links is studied in terms of instantaneous bandwidth, fabrication tolerances, and operational bandwidth. A proposed bias voltage adjustment method is shown to maximize spur-free dynamic range (SFDR) at instantaneous bandwidths required by microwave photonic link (MPL) applications while also mitigating RRM fabrication tolerances effects. The proposed bias voltage adjustment method shows RRM SFDR improvement of ∼5.8 dB versus common Mach-Zehnder modulators at 500 MHz instantaneous bandwidth. Analyzing operational bandwidth effects on SFDR shows RRMs can be promising electro-optic modulators for MPL applications which require high operational frequencies while in a limited bandwidth such as radio-over-fiber 60 GHz wireless network access.

  19. Crosstalk in WDM communication networks

    NARCIS (Netherlands)

    Tafur Monroy, I.; Tangdiongga, E.

    2002-01-01

    The use of advanced transmission and switching techniques such as reconfigurable WDM optical crossconnects is enabling high capacity and flexible optical networking at ultra bit-rates reaching multi-terabits per second. These techniques also offer creative ways to improve the network connectivity

  20. Software Defined Multiband EVA Radio, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of Phase 2 is to build a reliable, lightweight, programmable, multi-mode, miniaturized EVA Software Defined Radio (SDR) that supports data telemetry,...

  1. Long Reach RFID-over-Fiber Distribution and Collection Network

    DEFF Research Database (Denmark)

    Madsen, Peter; Suhr, Lau Frejstrup; Vegas Olmos, Juan José

    This paper presents an RFID-over-Fiber wireless track and trace system using active RFID tags. This paper demonstrates a system, operating over distances up to 30km of optical fiber and 50m of wireless readability.......This paper presents an RFID-over-Fiber wireless track and trace system using active RFID tags. This paper demonstrates a system, operating over distances up to 30km of optical fiber and 50m of wireless readability....

  2. OTDM-to-WDM Conversion of Complex Modulation Formats by Time-Domain Optical Fourier Transformation

    DEFF Research Database (Denmark)

    Palushani, Evarist; Richter, T.; Ludwig, R.

    2012-01-01

    We demonstrate the utilization of the optical Fourier transform technique for serial-to-parallel conversion of 64×10-GBd OTDM data tributaries with complex modulation formats into 50-GHz DWDM grid without loss of phase and amplitude information.......We demonstrate the utilization of the optical Fourier transform technique for serial-to-parallel conversion of 64×10-GBd OTDM data tributaries with complex modulation formats into 50-GHz DWDM grid without loss of phase and amplitude information....

  3. SERS Raman Sensor Based on Diameter-Modulated Sapphire Fiber

    Energy Technology Data Exchange (ETDEWEB)

    Shimoji, Yutaka

    2010-08-09

    Surface enhanced Raman scattering (SERS) has been observed using a sapphire fiber coated with gold nano-islands for the first time. The effect was found to be much weaker than what was observed with a similar fiber coated with silver nanoparticles. Diameter-modulated sapphire fibers have been successfully fabricated on a laser heated pedestal growth system. Such fibers have been found to give a modest increase in the collection efficiency of induced emission. However, the slow response of the SERS effect makes it unsuitable for process control applications.

  4. Novel Digital Radio over Fibre for 4G-LTE

    OpenAIRE

    Li, Tongyun; Penty, Richard Vincent; White, Ian Hugh

    2015-01-01

    Digital radio over fibre (RoF) technology has been suggested as a promising solution to replace conventional analogue RoF technology for multi-service in-building wireless coverage. However in conventional digital RoF, digitisation leads to high data rates which in turn results in high capital expenditure (CAPEX) and operational expenditure (OPEX). This paper investigates a novel methodology to transmit efficiently a digitised radio service over an optical link to provide...

  5. Electrospun phase change fibers based on polyethylene glycol/cellulose acetate blends

    International Nuclear Information System (INIS)

    Chen, Changzhong; Wang, Linge; Huang, Yong

    2011-01-01

    Highlights: → Ultrafine PEG/CA phase change fibers were fabricated by electrospinning. → PEG content dramatically influenced the fiber morphology and phase change behaviors. → The electrospun fibers have excellent thermal properties for thermal energy storage. - Abstract: Ultrafine phase change fibers based on polyethylene glycol (PEG)/cellulose acetate (CA) blends in which PEG acts as a model phase change material (PCM) and CA acts as a supporting material, were successfully prepared via electrospinning. The effect of PEG content on the morphology, crystalline properties, phase change behaviors and tensile properties of the composite fibers was studied systematically by field-emission scanning electron microscopy (FE-SEM), wide-angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC) and a tensile tester, respectively. The SEM observation indicates that maximum PEG content in the fibers could reach up to 70 wt%, and the morphology and average diameter of the composite fibers vary with PEG content. Thermal analysis results show that the latent heats of the phase change fibers increase with the increasing of PEG content in the fibers, and the PEG/CA fibers with high enthalpies have a good capability to regulate their interior temperature as the ambient temperature alters. Therefore, the developed phase change fibers have enormous applicable potentials in thermal energy storage and temperature regulation.

  6. A novel WDM monitoring method

    NARCIS (Netherlands)

    Bergh, van de M.P.H.; Tol, van der J.J.G.M.; Dorren, H.J.S.

    1999-01-01

    A novel method to monitor the performance of WDM channels in an optical network is presented by analyzing the photo-diode current of a detected optical signal. From the photo-diode current, an amplitude histogram is generated, hereafter to be called the probability density function (PDF). By

  7. Three-dimensional photolithography technology for a fiber substrate using a microfabricated exposure module

    International Nuclear Information System (INIS)

    Lu, Yao; Zhang, Yi; Lu, Jian; Mimura, Akio; Matsumoto, Sohei; Itoh, Toshihiro

    2010-01-01

    This paper proposes a new three-dimensional (3D) photolithography technology for a high-resolution micropatterning process on a fiber substrate. A brief review on the lithography technology of the non-planar surface is also presented. The proposed technology mainly comprises the microfabrication of the 3D exposure module and the spray deposition of thin resist films on the fiber. The 3D exposure module is successfully prepared by the wet etching of a quartz substrate and the projection exposure method. The chief advantages of the 3D exposure module are long service life, low cost, narrow print gap and thus high resolution. A novel spray coating system has been developed for the preparation of uniform and thin resist films on the fibers, which are necessary for the high-resolution micropatterning process. The spray deposition process on the 125 µm in-diameter optical fiber has been systematically investigated. The viscosity and volatility of the resist solutions have complicated effects because the spray-coating deposition process on the fiber mainly consisted of the impinging region. The uniform and thin resist film down to 1 µm thick had been successfully achieved. Fine patterns with the line width down to 6 µm were successfully formed on the optical fiber by using the microfabricated exposure module. Preliminary photolithography experiments confirmed that the new 3D photolithography technology is one attractive low-cost solution to the integration of micro transducers onto the fibers for various applications. The 3D exposure module could also enable the continuous photolithography process on the fibers

  8. Comparison of three methods of restoration of cosmic radio source profiles

    International Nuclear Information System (INIS)

    Malov, I.F.; Frolov, V.A.

    1986-01-01

    Effectiveness of three methods for restoration of radio brightness distribution over the source: main solution, fitting and minimal - phase method (MPM) - was compared on the basis of data on module and phase of luminosity function (LF) of 15 cosmic radiosources. It is concluded that MPM can soccessfully compete with other known methods. Its obvious advantages in comparison with the fitting method consist in that it gives unambigous and direct restoration and a main advantage as compared with the main solution is the feasibility of restoration in the absence of data on LF phase which reduces restoration errors

  9. Parametric amplification and wavelength conversion of a 2.048-Tbit/s WDM PDM 16-QAM signal

    DEFF Research Database (Denmark)

    Hu, Hao; Jopson, R. M.; Gnauck, A. H.

    2014-01-01

    We demonstrate polarisation-insensitive parametric amplification in highly nonlinear fibre of a 2.048-Tbit/s dense WDM PDM 16-QAM signal with ∼10 dB on-off gain and simultaneous wavelength conversion and phase conjugation, with mean Q2 penalties of only 0.6 dB and 0.4 dB....

  10. Experimental research of UWB over fiber system employing 128-QAM and ISFA-optimized scheme

    Science.gov (United States)

    He, Jing; Xiang, Changqing; Long, Fengting; Chen, Zuo

    2018-05-01

    In this paper, an optimized intra-symbol frequency-domain averaging (ISFA) scheme is proposed and experimentally demonstrated in intensity-modulation and direct-detection (IMDD) multiband orthogonal frequency division multiplexing (MB-OFDM) ultra-wideband over fiber (UWBoF) system. According to the channel responses of three MB-OFDM UWB sub-bands, the optimal ISFA window size for each sub-band is investigated. After 60-km standard single mode fiber (SSMF) transmission, the experimental results show that, at the bit error rate (BER) of 3.8 × 10-3, the receiver sensitivity of 128-quadrature amplitude modulation (QAM) can be improved by 1.9 dB using the proposed enhanced ISFA combined with training sequence (TS)-based channel estimation scheme, compared with the conventional TS-based channel estimation. Moreover, the spectral efficiency (SE) is up to 5.39 bit/s/Hz.

  11. Cost-effective TCM-based WDM-PON for highly asymmetric traffic conditions.

    Science.gov (United States)

    Lee, Danbi; Kwon, Won-Bae; Chae, Chang-Joon; Park, Chang-Soo

    2015-11-16

    A time compression multiplexing (TCM)-based wavelength division multiplexing passive optical network (WDM-PON) using a reflective semiconductor optical amplifier (RSOA) is proposed, and its feasibility is experimentally demonstrated. In the proposed system, the RSOA pre-amplifies a 10 Gb/s downstream signal and modulates the RSOA output, wavelength-locked to the downstream signal, with a 1.25 Gb/s upstream signal simultaneously. The sensitivity of the downstream signal is improved by about 3 dB through the RSOA. The downstream and upstream signals have power penalties of about 0.1 dB and 1.1 dB, respectively, at bit error rates (BERs) of 10(-9) after 20 km transmission.

  12. All-optical microwave signal processing based on optical phase modulation

    Science.gov (United States)

    Zeng, Fei

    implemented by use of commercially available devices without increasing significantly the system complexity compared to IM-based systems. More importantly, the PM-IM conversions bring a number of very interesting features which would be used to implement different signal processing functionalities. First, the PM-IM conversion plus direct detection has a frequency response with a notch at the dc, this feature can be used to achieve all-optical microwave bandpass filtering. Second, in the PM-IM conversion based on frequency discrimination, the polarity of the detected electrical signal can be easily reversed by simply tuning the optical wavelength, which provides the possibility to achieve bipolar operation, a feature highly desirable and extremely important in all-optical microwave signal processing. In this thesis, the use of the PM-IM conversion features for all-optical signal processing is investigated. Specifically, (1) We propose and demonstrate three different filter architectures for all-optical microwave bandpass filtering. (2) We propose and demonstrate, for the first time, an all-optical microwave signal processor that can realize all-optical mixing and filtering simultaneously. (3) We propose and demonstrate a scheme to implement unipolar-bipolar phase-time encoding/decoding for optical CDMA. (4) UWB pulses are usually generated in the electrical domain for short-range high-data rate wireless communications. To extend its coverage, UWB signal distributed over optical fiber is a topic of interest recently. In the thesis, we propose and demonstrate two approaches to generating and distributing UWB pulses in the optical domain.

  13. Optical techniques to feed and control GaAs MMIC modules for phased array antenna applications

    Science.gov (United States)

    Bhasin, K. B.; Anzic, G.; Kunath, R. R.; Connolly, D. J.

    1986-01-01

    A complex signal distribution system is required to feed and control GaAs monolithic microwave integrated circuits (MMICs) for phased array antenna applications above 20 GHz. Each MMIC module will require one or more RF lines, one or more bias voltage lines, and digital lines to provide a minimum of 10 bits of combined phase and gain control information. In a closely spaced array, the routing of these multiple lines presents difficult topology problems as well as a high probability of signal interference. To overcome GaAs MMIC phased array signal distribution problems optical fibers interconnected to monolithically integrated optical components with GaAs MMIC array elements are proposed as a solution. System architecture considerations using optical fibers are described. The analog and digital optical links to respectively feed and control MMIC elements are analyzed. It is concluded that a fiber optic network will reduce weight and complexity, and increase reliability and performance, but higher power will be required.

  14. Geometric phases in singlemode fiber lightguides and fiber ring interferometers

    International Nuclear Information System (INIS)

    Malykin, Grigorii B; Pozdnyakova, Vera I

    2004-01-01

    We consider various geometric phases (GPs) in singlemode fiber lightguides (SMFs) and in fiber ring interferometers (FRIs): the Pancharatnam phase stemming from the cyclic evolution of the polarization state of radiation (RP state) in SMF, the Rytov-Vladimirskii phase (RV phase) stemming from the Rytov effect (specifically, rotation of the polarization plane due to noncoplanar winding of SMFs), as well as the nonreciprocal phase difference of counterpropagating waves (NPDCW) and nonreciprocal geometric phase of counterpropagating waves (NGPCW), which are caused by polarization nonreciprocity (PN) in FRIs. We show that in the general case, the Pancharatnam phase for an arbitrary RP state is inconsistent with the real phase change of light fluctuations in media that possess not only circular but also linear birefringence. We show that the RV phase, having a geometric origin, can in principle be considered as a dynamic phase (DP). We also show that the NGPCW can be considered as an effect of the evolution of the RP state mapped on the Poincare sphere in Ginzburg's orthogonal screw polarization modes (GSPMs) of SMFs in the FRI contour. We analyze a number of experiments in which geometric phases were detected in FRIs: changing the RV phase and Rytov's angle (RA) in response to change of the pitch of helicoidal winding of SMFs. (methodological notes)

  15. Low frequency modulation of transionospheric radio wave amplitude at low-latitudes: possible role of field line oscillations

    Directory of Open Access Journals (Sweden)

    A. K. Sinha

    Full Text Available Ionospheric scintillations of radio waves at low-latitudes are associated with electron density irregularities. These irregularities are field-aligned and can provide excitation energy all along the field line to non-local field-aligned oscillations, such as the local field line oscillations. Eigen-periods of toroidal field line oscillations at low-latitudes, computed by using the dipole magnetic field and ion distributions obtained from the International Reference Ionosphere (IRI for typical nighttime conditions, fall in the range of 20–25 s. When subjected to spectral analysis, signal strength of the radio waves recorded on the 250 MHz beacon at Pondicherry (4.5° N dip, Mumbai (13.4° N dip and Ujjain (18.6° N dip exhibit periodicities in the same range. For the single event for which simultaneous ground magnetic data were available, the geomagnetic field also oscillated at the same periodicity. The systematic presence of a significant peak in the 20–25 s range during periods of strong radio wave scintillations, and its absence otherwise suggests the possibility that field line oscillations are endogenously excited by the irregularities, and the oscillations associated with the excited field line generate the modulation characteristics of the radio waves received on the ground. The frequency of modulation is found to be much lower than the characteristic frequencies that define the main body of scintillations, and they probably correspond to scales that are much larger than the typical Fresnel scale. It is possible that the refractive mechanism associated with larger scale long-lived irregularities could be responsible for the observed phenomenon. Results of a preliminary numerical experiment that uses a sinusoidal phase irregularity in the ionosphere as a refracting media are presented. The results show that phase variations which are large enough to produce a focal plane close to the ground can reproduce features that are not

  16. Low frequency modulation of transionospheric radio wave amplitude at low-latitudes: possible role of field line oscillations

    Directory of Open Access Journals (Sweden)

    A. K. Sinha

    2002-01-01

    Full Text Available Ionospheric scintillations of radio waves at low-latitudes are associated with electron density irregularities. These irregularities are field-aligned and can provide excitation energy all along the field line to non-local field-aligned oscillations, such as the local field line oscillations. Eigen-periods of toroidal field line oscillations at low-latitudes, computed by using the dipole magnetic field and ion distributions obtained from the International Reference Ionosphere (IRI for typical nighttime conditions, fall in the range of 20–25 s. When subjected to spectral analysis, signal strength of the radio waves recorded on the 250 MHz beacon at Pondicherry (4.5° N dip, Mumbai (13.4° N dip and Ujjain (18.6° N dip exhibit periodicities in the same range. For the single event for which simultaneous ground magnetic data were available, the geomagnetic field also oscillated at the same periodicity. The systematic presence of a significant peak in the 20–25 s range during periods of strong radio wave scintillations, and its absence otherwise suggests the possibility that field line oscillations are endogenously excited by the irregularities, and the oscillations associated with the excited field line generate the modulation characteristics of the radio waves received on the ground. The frequency of modulation is found to be much lower than the characteristic frequencies that define the main body of scintillations, and they probably correspond to scales that are much larger than the typical Fresnel scale. It is possible that the refractive mechanism associated with larger scale long-lived irregularities could be responsible for the observed phenomenon. Results of a preliminary numerical experiment that uses a sinusoidal phase irregularity in the ionosphere as a refracting media are presented. The results show that phase variations which are large enough to produce a focal plane close to the ground can reproduce features that are not

  17. DSP-based CSO cancellation technique for RoF transmission system implemented by using directly modulated laser.

    Science.gov (United States)

    Kim, Byung Gon; Bae, Sung Hyun; Kim, Hoon; Chung, Yun C

    2017-05-29

    We propose and demonstrate a simple composite second-order (CSO) cancellation technique based on the digital signal processing (DSP) for the radio-over-fiber (RoF) transmission system implemented by using directly modulated lasers (DMLs). When the RoF transmission system is implemented by using DMLs, its performance could be limited by the CSO distortions caused by the interplay between the DML's chirp and fiber's chromatic dispersion. We present the theoretical analysis of these nonlinear distortions and show that they can be suppressed at the receiver by using a simple DSP. To verify the effectiveness of the proposed technique, we demonstrate the transmission of twenty-four 100-MHz filtered orthogonal frequency-division multiplexing (f-OFDM) signals in 64 quadrature amplitude modulation (QAM) format over 20 km of the standard single-mode fiber (SSMF). The results show that, by using the proposed technique, we can suppress the CSO distortion components by >10 dB and achieve the error-vector magnitude performance better than 6% even after the 20-km long SSMF transmission.

  18. Remotely controllable WDM-PON technology for wireless fronthaul/backhaul application

    DEFF Research Database (Denmark)

    Eiselt, Michael H.; Wagner, Christoph; Lawin, Mirko

    2016-01-01

    Low-cost WDM-PON solutions for fronthaul and backhaul applications will include remotely controlled tail-end transceivers. We report on control aspects of these transceivers and how standardization is evolving to enable these applications.......Low-cost WDM-PON solutions for fronthaul and backhaul applications will include remotely controlled tail-end transceivers. We report on control aspects of these transceivers and how standardization is evolving to enable these applications....

  19. Protocol and networking design issues for local access WDM networks

    OpenAIRE

    Salvador, M.R.; Heemstra de Groot, S.M.; Niemegeers, I.G.M.M.

    1999-01-01

    This report gives an overview of some of the protocol and networking design issues that have been addressed in Flamingo, a major ongoing project which investigates the use of WDM optical technology in local access networks. Quality of service delivery and wavelength assignment are focused on in this report. A brief introduction to optical networks and WDM as well as a brief description of Flamingo are also included in this report.

  20. Orbital angular momentum mode groups multiplexing transmission over 2.6-km conventional multi-mode fiber.

    Science.gov (United States)

    Zhu, Long; Wang, Andong; Chen, Shi; Liu, Jun; Mo, Qi; Du, Cheng; Wang, Jian

    2017-10-16

    Twisted light carrying orbital angular momentum (OAM) is a special kind of structured light that has a helical phase front, a phase singularity, and a doughnut intensity profile. Beyond widespread developments in manipulation, microscopy, metrology, astronomy, nonlinear and quantum optics, OAM-carrying twisted light has seen emerging application of optical communications in free space and specially designed fibers. Instead of specialty fibers, here we show the direct use of a conventional graded-index multi-mode fiber (MMF) for OAM communications. By exploiting fiber-compatible mode exciting and filtering elements, we excite the first four OAM mode groups in an MMF. We demonstrate 2.6-km MMF transmission using four data-carrying OAM mode groups (OAM 0,1 , OAM +1,1 /OAM -1,1 , OAM +2,1 , OAM +3,1 ). Moreover, we demonstrate two data-carrying OAM mode groups multiplexing transmission over the 2.6-km MMF with low-level crosstalk free of multiple-input multiple-output digital signal processing (MIMO-DSP). The demonstrations may open up new perspectives to fiber-based OAM communication/non-communication applications using already existing conventional fibers.

  1. Performance analysis of a threshold-based parallel multiple beam selection scheme for WDM-based systems for Gamma-Gamma distributions

    KAUST Repository

    Nam, Sung Sik

    2017-03-02

    In this paper, we statistically analyze the performance of a threshold-based parallel multiple beam selection scheme (TPMBS) for Free-space optical (FSO) based system with wavelength division multiplexing (WDM) in cases where a pointing error has occurred for practical consideration over independent identically distributed (i.i.d.) Gamma-Gamma fading conditions. Specifically, we statistically analyze the characteristics in operation under conventional heterodyne detection (HD) scheme for both adaptive modulation (AM) case in addition to non-AM case (i.e., coherentnon-coherent binary modulation). Then, based on the statistically derived results, we evaluate the outage probability (CDF) of a selected beam, the average spectral efficiency (ASE), the average number of selected beams (ANSB), and the average bit error rate (BER). Some selected results shows that we can obtain the higher spectral efficiency and simultaneously reduce the potential increasing of the complexity of implementation caused by applying the selection based beam selection scheme without a considerable performance loss.

  2. Performance analysis of adaptive modulation for cognitive radios with opportunistic access

    KAUST Repository

    Chen, Yunfei; Alouini, Mohamed-Slim; Tang, Liang

    2011-01-01

    The performance of adaptive modulation for cognitive radio with opportunistic access is analyzed by considering the effects of spectrum sensing and primary user traffic for Nakagami-m fading channels. Both the adaptive continuous rate scheme

  3. Studying the effect of over-modulation on the output voltage of three-phase single-stage grid-connected boost inverter

    Directory of Open Access Journals (Sweden)

    A. Abbas Elserougi

    2013-09-01

    Full Text Available Voltage boosting is very essential issue in renewable-energy fed applications. The classical two-stage power conversion process is typically used to interface the renewable energy sources to the grid. For better efficiency, single-stage inverters are recommended. In this paper, the performance of single-stage three-phase grid-connected boost inverter is investigated when its gain is extended by employing over-modulation technique. Using of over-modulation is compared with the employment of third order harmonic injection. The latter method can increase the inverter gain by 15% without distorting the inverter output voltage. The performance of extended gain grid-connected boost inverter is also tested during normal operation as well as in the presence of grid side disturbances. Simulation and experimental results are satisfactory.

  4. Health monitoring of unmanned aerial vehicle based on optical fiber sensor array

    Science.gov (United States)

    Luo, Yuxiang; Shen, Jingshi; Shao, Fei; Guo, Chunhui; Yang, Ning; Zhang, Jiande

    2017-10-01

    The unmanned aerial vehicle (UAV) in flight needs to face the complicated environment, especially to withstand harsh weather conditions, such as the temperature and pressure. Compared with conventional sensors, fiber Bragg grating (FBG) sensor has the advantages of small size, light weight, high reliability, high precision, anti-electromagnetic interference, long lift-span, moistureproof and good resistance to causticity. It's easy to be embedded in composite structural components of UAVs. In the paper, over 1000 FBG sensors distribute regularly on a wide range of UAVs body, combining wavelength division multiplexing (WDM), time division multiplexing (TDM) and multichannel parallel architecture. WDM has the advantage of high spatial resolution. TDM has the advantage of large capacity and wide range. It is worthful to constitute a sensor network by different technologies. For the signal demodulation of FBG sensor array, WDM works by means of wavelength scanning light sources and F-P etalon. TDM adopts the technology of optical time-domain reflectometry. In order to demodulate efficiently, the most proper sensor multiplex number with some reflectivity is given by the curves fitting. Due to the regular array arrangement of FBG sensors on the UAVs, we can acquire the health state of UAVs in the form of 3D visualization. It is helpful to master the information of health status rapidly and give a real-time health evaluation.

  5. Optical stealth transmission based on super-continuum generation in highly nonlinear fiber over WDM network.

    Science.gov (United States)

    Zhu, Huatao; Wang, Rong; Pu, Tao; Fang, Tao; Xiang, Peng; Zheng, Jilin; Chen, Dalei

    2015-06-01

    In this Letter, the optical stealth transmission carried by super-continuum spectrum optical pulses generated in highly nonlinear fiber is proposed and experimentally demonstrated. In the proposed transmission scheme, super-continuum signals are reshaped in the spectral domain through a wavelength-selective switch and are temporally spread by a chromatic dispersion device to achieve the same noise-like characteristic as the noise in optical networks, so that in both the time domain and the spectral domain, the stealth signals are hidden in public channel. Our experimental results show that compared with existing schemes where stealth channels are carried by amplified spontaneous emission noise, super-continuum signal can increase the transmission performance and robustness.

  6. All-optical OXC transition strategy from WDM optical network to elastic optical network.

    Science.gov (United States)

    Chen, Xin; Li, Juhao; Guo, Bingli; Zhu, Paikun; Tang, Ruizhi; Chen, Zhangyuan; He, Yongqi

    2016-02-22

    Elastic optical network (EON) has been proposed recently as a spectrum-efficient optical layer to adapt to rapidly-increasing traffic demands instead of current deployed wavelength-division-multiplexing (WDM) optical network. In contrast with conventional WDM optical cross-connect (OXCs) based on wavelength selective switches (WSSs), the EON OXCs are based on spectrum selective switches (SSSs) which are much more expensive than WSSs, especially for large-scale switching architectures. So the transition cost from WDM OXCs to EON OXCs is a major obstacle to realizing EON. In this paper, we propose and experimentally demonstrate a transition OXC (TOXC) structure based on 2-stage cascading switching architectures, which make full use of available WSSs in current deployed WDM OXCs to reduce number and port count of required SSSs. Moreover, we propose a contention-aware spectrum allocation (CASA) scheme for EON built with the proposed TOXCs. We show by simulation that the TOXCs reduce the network capital expenditure transiting from WDM optical network to EON about 50%, with a minor traffic blocking performance degradation and about 10% accommodated traffic number detriment compared with all-SSS EON OXC architectures.

  7. Efficient pump module coupling >1kW from a compact detachable fiber

    Science.gov (United States)

    Dogan, M.; Chin, R. H.; Fulghum, S.; Jacob, J. H.; Chin, A. K.

    2018-02-01

    In the most developed fiber amplifiers, optical pump power is introduced into the 400μm-diameter, 0.46NA first cladding of the double-clad, Yb-doped, gain fiber, using a (6+1):1 multi-mode fiber combiner. For this configuration, the core diameter and numerical aperture of the pump delivery fibers have maximum values of 225μm and 0.22, respectively. This paper presents the first fiber-coupled laser-diode pump module emitting more than 1kW of claddingmode- stripped power from a detachable 225μm, 0.22NA delivery fiber at 976nm. The electrical-to-optical power conversion efficiency at 1kW is 50%. The FWHM spectral width at 1kW output is 4nm and has an excellent overlap with the narrow absorption spectrum of ytterbium in glass. Six of these pump modules attached to a (6+1):1 multimode combiner enable a 5-6kW, single-mode, Yb-doped fiber amplifier.

  8. Multiband LTE-A and 4-PAM signals over large-core plastic fibers for in-home networks

    NARCIS (Netherlands)

    Forni, F.; Shi, Y.; van den Boom, H.P.A.; Tangdiongga, E.; Koonen, A.M.J.

    2016-01-01

    This letter presents the transmission of eight standard compliant 64-QAM long term evolution advanced (LTE-A) bands and 1.4 Gb/s 4-pulse amplitude modulation (PAM) signals over 20 m of 1 mm core diameter graded-index polymethyl methacrylate plastic optical fiber. The optical transceiver consists of

  9. Multichannel silicon WDM ring filters fabricated with DUV lithography

    Science.gov (United States)

    Lee, Jong-Moo; Park, Sahnggi; Kim, Gyungock

    2008-09-01

    We have fabricated 9-channel silicon wavelength-division-multiplexing (WDM) ring filters using 193 nm deep-ultraviolet (DUV) lithography and investigated the spectral properties of the ring filters by comparing the transmission spectra with and without an upper cladding. The average channel-spacing of the 9-channel WDM ring filter with a polymeric upper cladding is measured about 1.86 nm with the standard deviation of the channel-spacing about 0.34 nm. The channel crosstalk is about -30 dB, and the minimal drop loss is about 2 dB.

  10. High spatial resolution distributed fiber system for multi-parameter sensing based on modulated pulses.

    Science.gov (United States)

    Zhang, Jingdong; Zhu, Tao; Zhou, Huan; Huang, Shihong; Liu, Min; Huang, Wei

    2016-11-28

    We demonstrate a cost-effective distributed fiber sensing system for the multi-parameter detection of the vibration, the temperature, and the strain by integrating phase-sensitive optical time domain reflectometry (φ-OTDR) and Brillouin optical time domain reflectometry (B-OTDR). Taking advantage of the fast changing property of the vibration and the static properties of the temperature and the strain, both the width and intensity of the laser pulses are modulated and injected into the single-mode sensing fiber proportionally, so that three concerned parameters can be extracted simultaneously by only one photo-detector and one data acquisition channel. A data processing method based on Gaussian window short time Fourier transform (G-STFT) is capable of achieving high spatial resolution in B-OTDR. The experimental results show that up to 4.8kHz vibration sensing with 3m spatial resolution at 10km standard single-mode fiber can be realized, as well as the distributed temperature and stress profiles along the same fiber with 80cm spatial resolution.

  11. All-Optical Ultra-High-Speed OFDM to Nyquist-WDM Conversion Based on Complete Optical Fourier Transformation

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Mulvad, Hans Christian Hansen

    2016-01-01

    We propose a novel all-optical ultra-high-speed orthogonal frequency-division multiplexing (OFDM) to Nyquist wavelength-division multiplexing (Nyquist-WDM) conversion scheme, achieved by exchanging the temporal and spectral profiles using a complete optical Fourier transformation (OFT). This scheme...... enables high-speed OFDM to Nyquist-WDM conversion without complex optical/electrical/optical conversion. The all-optical OFDM transmitter is based on the generation of OFDM symbols with a low duty cycle by rectangular temporal gating, which in combination with optical time-division multiplexing yields...... a higher symbol-rate OFDM signal. In the receiver, the converted Nyquist-WDM super-channel is WDM demultiplexed into individual Nyquist-WDM channels using a rectangular optical bandpass filter, followed by optical sampling at the intersymbol-interference free point. In the experimental demonstration...

  12. Graphene based terahertz phase modulators

    Science.gov (United States)

    Kakenov, N.; Ergoktas, M. S.; Balci, O.; Kocabas, C.

    2018-07-01

    Electrical control of amplitude and phase of terahertz radiation (THz) is the key technological challenge for high resolution and noninvasive THz imaging. The lack of active materials and devices hinders the realization of these imaging systems. Here, we demonstrate an efficient terahertz phase and amplitude modulation using electrically tunable graphene devices. Our device structure consists of electrolyte-gated graphene placed at quarter wavelength distance from a reflecting metallic surface. In this geometry, graphene operates as a tunable impedance surface which yields electrically controlled reflection phase. Terahertz time domain reflection spectroscopy reveals the voltage controlled phase modulation of π and the reflection modulation of 50 dB. To show the promises of our approach, we demonstrate a multipixel phase modulator array which operates as a gradient impedance surface.

  13. Multiplication modules over non-commutative rings

    International Nuclear Information System (INIS)

    Tuganbaev, A A

    2003-01-01

    It is proved that each submodule of a multiplication module over a regular ring is a multiplicative module. If A is a ring with commutative multiplication of right ideals, then each projective right ideal is a multiplicative module, and a finitely generated A-module M is a multiplicative module if and only if all its localizations with respect to maximal right ideals of A are cyclic modules over the corresponding localizations of A. In addition, several known results on multiplication modules over commutative rings are extended to modules over not necessarily commutative rings

  14. Pulse position modulation for compact all-fiber vehicle laser rangefinder development

    Science.gov (United States)

    Mao, Xuesong; Cheng, Yongzhi; Xiong, Ying; Inoue, Daisuke; Kagami, Manabu

    2017-10-01

    We propose a method for developing small all-fiber vehicle laser rangefinders that is based on pulse position modulation (PPM) and data integration and present a theoretical study on its performance. Compared with spatial coupling, which is employed by most of the current commercial vehicle laser rangefinders, fiber coupling has the advantage that it can guide laser echoes into the interior of a car, so the electronic components following the photodiode can operate in a moderate-temperature environment. However, optical fibers have numerical apertures (NAs), which means that a laser beam from a receiving lens cannot be coupled into an optical fiber if its incident angle exceeds the critical value. Therefore, the effective size of the receiving lens is typically small since it is limited by its focal length and the NA of the fiber, causing the power of the laser echoes gathered by the receiving lens to be insufficient for performing target identification. Instead of increasing the peak transmitting laser power unrestrictedly, PPM and data integration effectively compensate for the low signal-to-noise ratio that results from the effective receiving lens size reduction. We validated the proposed method by conducting numerical simulations and performance analysis. Finally, we compared the proposed method with pseudorandom noise (PN) code modulation and found that, although the two methods perform equally well in single-target measurement scenarios, PPM is more effective than PN code modulation for multitarget measurement. In addition, PPM enables the transmission of laser beams with higher peak powers and requires less computation than PN code modulation does.

  15. Space Weather Action Plan Solar Radio Burst Phase 1 Benchmarks and the Steps to Phase 2

    Science.gov (United States)

    Biesecker, D. A.; White, S. M.; Gopalswamy, N.; Black, C.; Love, J. J.; Pierson, J.

    2017-12-01

    Solar radio bursts, when at the right frequency and when strong enough, can interfere with radar, communication, and tracking signals. In severe cases, radio bursts can inhibit the successful use of radio communications and disrupt a wide range of systems that are reliant on Position, Navigation, and Timing services on timescales ranging from minutes to hours across wide areas on the dayside of Earth. The White House's Space Weather Action Plan asked for solar radio burst intensity benchmarks for an event occurrence frequency of 1 in 100 years and also a theoretical maximum intensity benchmark. The benchmark team has developed preliminary (phase 1) benchmarks for the VHF (30-300 MHz), UHF (300-3000 MHz), GPS (1176-1602 MHz), F10.7 (2800 MHz), and Microwave (4000-20000) bands. The preliminary benchmarks were derived based on previously published work. Limitations in the published work will be addressed in phase 2 of the benchmark process. In addition, deriving theoretical maxima requires additional work, where it is even possible to, in order to meet the Action Plan objectives. In this presentation, we will present the phase 1 benchmarks, the basis used to derive them, and the limitations of that work. We will also discuss the work that needs to be done to complete the phase 2 benchmarks.

  16. Cryocooled wideband digital channelizing radio-frequency receiver based on low-pass ADC

    International Nuclear Information System (INIS)

    Vernik, Igor V; Kirichenko, Dmitri E; Dotsenko, Vladimir V; Miller, Robert; Webber, Robert J; Shevchenko, Pavel; Talalaevskii, Andrei; Gupta, Deepnarayan; Mukhanov, Oleg A

    2007-01-01

    We have demonstrated a digital receiver performing direct digitization of radio-frequency signals over a wide frequency range from kilohertz to gigahertz. The complete system, consisting of a cryopackaged superconductor all-digital receiver (ADR) chip followed by room-temperature interface electronics and a field programmable gate array (FPGA) based post-processing module, has been developed. The ADR chip comprises a low-pass analog-to-digital converter (ADC) delta modulator with phase modulation-demodulation architecture together with digital in-phase and quadrature mixer and a pair of digital decimation filters. The chip is fabricated using a 4.5 kA cm -2 process and is cryopackaged using a commercial-off-the-shelf cryocooler. Experimental results in HF, VHF, UHF and L bands and their analysis, proving consistent operation of the cryopackaged ADR chip up to 24.32 GHz clock frequency, are presented and discussed

  17. Moiré phase-shifted fiber Bragg gratings in polymer optical fibers

    Science.gov (United States)

    Min, Rui; Marques, Carlos; Bang, Ole; Ortega, Beatriz

    2018-03-01

    We demonstrate a simple way to fabricate phase-shifted fiber Bragg grating in polymer optical fibers as a narrowband transmission filter for a variety of applications at telecom wavelengths. The filters have been fabricated by overlapping two uniform fiber Bragg gratings with slightly different periods to create a Moiré grating with only two pulses (one pulse is 15 ns) of UV power. Experimental characterization of the filter is provided under different conditions where the strain and temperature sensitivities were measured.

  18. Phase transformation of 316L stainless steel from wire to fiber

    International Nuclear Information System (INIS)

    Shyr, Tien-Wei; Shie, Jing-Wen; Huang, Shih-Ju; Yang, Shun-Tung; Hwang, Weng-Sing

    2010-01-01

    In this work, quantitative crystalline phase analysis of 316L stainless steel from wire to fiber using a multi-pass cold drawing process was studied using the Rietveld whole XRD profile fitting technique. The different diameters of the fibers: 179, 112, 75, 50, 34, 20, and 8 μm, were produced from an as-received wire with a diameter of 190 μm. The crystalline phases were identified using MDI Jade 5.0 software. The volume fractions of crystalline phases were estimated using a Materials Analysis Using Diffraction software. XRD analysis revealed that the crystal structure of as-received wire is essentially a γ-austenite crystalline phase. The phase transformation occurred during the 316L stainless steel from wire to fiber. Three crystalline phases such as γ-austenite, α'-martensite, and sigma phase of the fine fiber were observed. A cold drawing accelerates the sigma phase precipitates, particularly during the heat treatment of the fiber.

  19. High-speed ultra-wideband wireless signals over fiber systems: photonic generation and DSP detection

    DEFF Research Database (Denmark)

    Yu, Xianbin; Gibbon, Timothy Braidwood; Tafur Monroy, Idelfonso

    2009-01-01

    We firstly review the efforts in the literature on ultra-wideband (UWB)-over-fiber systems. Secondly, we present experimental results on photonic generation of high-speed UWB signals by both direct modulation and external optical injecting an uncooled semiconductor laser. Furthermore, we introduce...... the use of digital signal processing (DSP) technology to receive the generated UWB signal at 781.25 Mbit/s. Error-free transmission is achieved....

  20. Active plasmonics in WDM traffic switching applications

    DEFF Research Database (Denmark)

    Papaioannou, S.; Kalavrouziotis, D.; Vyrsokinos, K.

    2012-01-01

    -enabling characteristics of active plasmonic circuits with an ultra-low power 3 response time product represents a crucial milestone in the development of active plasmonics towards real telecom and datacom applications, where low-energy and fast TO operation with small-size circuitry is targeted........ The first active Dielectric-Loaded Surface Plasmon Polariton (DLSPP) thermo-optic (TO) switches with successful performance in single-channel 10 Gb/s data traffic environments have led the inroad towards bringing low-power active plasmonics in practical traffic applications. In this article, we introduce...... active plasmonics into Wavelength Division Multiplexed (WDM) switching applications, using the smallest TO DLSPP-based Mach-Zehnder interferometric switch reported so far and showing its successful performance in 4310 Gb/s low-power and fast switching operation. The demonstration of the WDM...

  1. On the fly all-optical packet switching based on hybrid WDM/OCDMA labeling scheme

    Science.gov (United States)

    Brahmi, Houssem; Giannoulis, Giannis; Menif, Mourad; Katopodis, Vasilis; Kalavrouziotis, Dimitrios; Kouloumentas, Christos; Groumas, Panos; Kanakis, Giannis; Stamatiadis, Christos; Avramopoulos, Hercules; Erasme, Didier

    2014-02-01

    We introduce a novel design of an all-optical packet routing node that allows for the selection and forwarding of optical packets based on the routing information contained in hybrid wavelength division multiplexing/optical code division multiple access (WDM/OCDMA) labels. A stripping paradigm of optical code-label is adopted. The router is built around an optical-code gate that consists in an optical flip-flop controlled by two fiber Bragg grating correlators and is combined with a Mach-Zehnder interferometer (MZI)-based forwarding gate. We experimentally verify the proof-of-principle operation of the proposed self-routing node under NRZ and OCDMA packet traffic conditions. The successful switching of elastic NRZ payload at 40 Gb/s controlled by DS-OCDMA coded labels and the forwarding operation of encoded data using EQC codes are presented. Proper auto-correlation functions are obtained with higher than 8.1 dB contrast ratio, suitable to efficiently trigger the latching device with a contrast ratio of 11.6 dB and switching times below 3.8 ns. Error-free operation is achieved with 1.5 dB penalty for 40 Gb/s NRZ data and with 2.1 dB penalty for DS-OCDMA packets. The scheme can further be applied to large-scale optical packet switching networks by exploiting efficient optical coders allocated at different WDM channels.

  2. High-Capacity Multi-Core Fibers for Space-Division Multiplexing

    DEFF Research Database (Denmark)

    Ye, Feihong

    The transmission capacity of the present optical fiber communication systems based on time division multiplexing (TDM) and wavelength-division multiplexing (WDM) using single-mode fibers (SMFs) is reaching its limit of around 100 Tbit/s per fiber due to the fiber nonlinearities, fiber fuse...... phenomenon and the optical amplifier bandwidth. To meet the ever increasing global data traffic growth and to overcome the looming capacity crunch, a new multiplexing technology using new optical fibers is urgently needed. Space-division multiplexing (SDM) is a promising scheme to overcome the capacity limit...... of the present SMF-based systems. Among the proposed SDM schemes, the one based on uncoupled multi-core fibers (MCFs) having multiple cores in a mutual cladding has proven effective in substantially increasing the transmission capacity per fiber with least system complexity as demonstrated in several state...

  3. Polarization Insensitive One-to-Six WDM Multicasting in a Silicon Nanowire

    DEFF Research Database (Denmark)

    Pu, Minhao; Hu, Hao; Peucheret, Christophe

    2012-01-01

    We present polarization insensitive one-to-six WDM multicasting based on nondegenerate four-wave mixing in a silicon nanowire with angled-pump scheme. Bit-error rate measurements are performed and error-free operation is achieved.......We present polarization insensitive one-to-six WDM multicasting based on nondegenerate four-wave mixing in a silicon nanowire with angled-pump scheme. Bit-error rate measurements are performed and error-free operation is achieved....

  4. Wavelength conversion, time demultiplexing and multicasting based on cross-phase modulation and four-wave mixing in dispersion-flattened highly nonlinear photonic crystal fiber

    International Nuclear Information System (INIS)

    Hui, Zhan-Qiang; Zhang, Jian-Guo

    2012-01-01

    We propose the use of cross-phase modulation (XPM) and four-wave mixing (FWM) in dispersion-flattened highly nonlinear photonic crystal fibers (HNL-PCFs) to implement the functionalities of wavelength conversion, simultaneous time demultiplexing and wavelength multicasting in optical time-division multiplexing (OTDM) systems. The experiments on wavelength conversion at 80 Gbit s −1 and OTDM demultiplexing from 80 to 10 Gbit s −1 with wavelength multicasting of two channels are successfully demonstrated to validate the proposed scheme, which are carried out by using two segments of dispersion-flattened HNL-PCFs with lengths of 100 and 50 m, respectively. Moreover, the bit error rate (BER) performance is also measured. The results show that our designed system can achieve a power penalty of less than 4.6 dB for two multicasting channels with a 24 nm wavelength span at the BER of 10 −9 when compared with the 10 Gbit/s back-to-back measurement. The proposed system is transparent to bit rate since only an ultrafast third-order nonlinear effect is used. The resulting configuration is compact, robust and reliable, benefiting from the use of dispersion-flattened HNL-PCFs with short lengths. This also makes the proposed system more flexible in the operational wavelengths than those based on dispersion-shifted fibers and traditional highly nonlinear fibers. (paper)

  5. Fiber-Optic Refractometer Based on an Etched High-Q ?-Phase-Shifted Fiber-Bragg-Grating

    OpenAIRE

    Zhang, Qi; Ianno, Natale J.; Han, Ming

    2013-01-01

    We present a compact and highly-sensitive fiber-optic refractometer based on a high-Q p-phase-shifted fiber-Bragg-grating (pFBG) that is chemically etched to the core of the fiber. Due to the p phase-shift, a strong pFBG forms a high-Q optical resonator and the reflection spectrum features an extremely narrow notch that can be used for highly sensitivity refractive index measurement. The etched pFBG demonstrated here has a diameter of ~9.3 μm and a length of only 7 mm, leading to a refractive...

  6. Polarization-insensitive all-optical dual pump-phase transmultiplexing from 2 x 10-GBd OOKs to 10-GBd RZ-QPSK using cross-phase modulation in a passive nonlinear birefringent photonic crystal fiber

    Science.gov (United States)

    Mahmood, Tanvir

    Considering the network size, bit rate, spectral and channel capacity limitations, different modulation formats may be selectively used in future optical networks. Although the traditional metropolitan area networks (MANs) still uses the non-return-to-zero on-off keying (NRZ-OOK) modulation format due to its technical simplicity and therefore low cost, QPSK format is more advantageous in spectrally efficient long-haul fiber optic transmission systems because of its constant power envelope, and robustness to various transmission impairments. Consequently, an important problem may arise, in particular how to route the OOK-data streams from MANs to long-haul backbone networks when the state of polarization (SOP) of the remotely generated OOK is unpredictable. Hence, the focus of this dissertation was to investigate a polarization insensitive (PI) all-optical nonlinear optical signal processing (NOSP) method that can be implemented at the network cross-connect (X-connect) to transfer data from a remotely and a locally generated OOK data simultaneously to more effectual QPSK format for long-haul transmission. By utilizing cross-phase modulation (XPM) and inherent birefringence of the device, the work demonstrated, for the first time, PI all-optical data transfer utilizing dual pump-phase transmultiplexing (DPTM) from 2 x 10-GBd OOKs to 10-GBd RZ-QPSK in a passive nonlinear birefringent photonic crystal fiber (PCF). Polarization insensitivity was achieved by scrambling the SOP of the remotely generated OOK pump and launching the locally generated OOK pump and the probe off-axis. To mitigate polarization induced power fluctuations and detrimental effects due to nearby partially degenerate and non-degenerate four wave mixings, an optimum pump-probe detuning was also utilized. The PI DPTM RZ-QPSK demonstrated a pre-amplified receiver sensitivity penalty < 5.5 dB at 10--9 bit-error-rate (BER), relative to relative to the FPGA-precoded RZ-DQPSK baseline in ASE

  7. A phase mask fiber grating and sensing applications

    Directory of Open Access Journals (Sweden)

    Preecha P. Yupapin

    2003-09-01

    Full Text Available This paper presents an investigation of a fabricated fiber grating device characteristics and its applications, using a phase mask writing technique. The use of a most common UV phase laser (KrF eximer laser, with high intensity light source was focussed to the phase mask for writing on a fiber optic sample. The device (i.e. grating characteristic especially, in sensing application, was investigated. The possibility of using such device for temperature and strain sensors is discussed.

  8. Digital non-linear equalization for flexible capacity ultradense WDM channels for metro core networking

    DEFF Research Database (Denmark)

    Arlunno, Valeria; Zhang, Xu; Larsen, Knud J.

    2011-01-01

    carriers, we demonstrate that a digital non-linear equalization allow to mitigate inter-channel interference and improve overall system performance in terms of OSNR. Evaluation of the algorithm and comparison with an ultradense WDM system with coherent carriers generated from a single laser are also......An experimental demonstration of Ultradense WDM with advanced digital signal processing is presented. The scheme proposed allows the use of independent tunable DFB lasers spaced at 12.5 GHz for ultradense WDM PM-QPSK flexible capacity channels for metro core networking. To allocate extremely closed...

  9. Spectral shaping of an all-fiber torsional acousto-optic tunable filter.

    Science.gov (United States)

    Ko, Jeakwon; Lee, Kwang Jo; Kim, Byoung Yoon

    2014-12-20

    Spectral shaping of an all-fiber torsional acousto-optic (AO) tunable filter is studied. The technique is based on the axial modulation of AO coupling strength along a highly birefringent optical fiber, which is achieved by tailoring the outer diameter of the fiber along its propagation axis. Two kinds of filter spectral shaping schemes-Gaussian apodization and matched filtering with triple resonance peaks-are proposed and numerically investigated under realistic experimental conditions: at the 50-cm-long AO interaction length of the fiber and at half of the original fiber diameter as the minimum thickness of the tailored fiber section. The results show that the highest peak of sidelobe spectra in filter transmission is suppressed from 11.64% to 0.54% via Gaussian modulation of the AO coupling coefficient (κ). Matched filtering with triple resonance peaks operating with a single radio frequency signal is also achieved by cosine modulation of κ, of which the modulation period determines the spectral distance between two satellite peaks located in both wings of the main resonance peak. The splitting of two satellite peaks in the filter spectra reaches 48.2 nm while the modulation period varies from 7.7 to 50 cm. The overall peak power of two satellite resonances is calculated to be 22% of the main resonance power. The results confirm the validity and practicality of our approach, and we predict robust and stable operation of the designed all-fiber torsional AO filters.

  10. WDM Research Series: Working Paper No. 2

    International Development Research Centre (IDRC) Digital Library (Canada)

    IDRC CRDI

    The other three papers of the Series focus on the issues of institutional structures ... Any approach that relates WDM to poverty and equity requires a set of working ..... If local irrigation system operation and maintenance investments and.

  11. Massive WDM and TDM Soliton Transmission Systems : a ROSC Symposium

    CERN Document Server

    2002-01-01

    This book summarizes the proceedings of the invited talks presented at the “International Symposium on Massive TDM and WDM Optical Soliton Tra- mission Systems” held in Kyoto during November 9–12, 1999. The symposium is the third of the series organized by Research Group for Optical Soliton C- munications (ROSC) chaired by Akira Hasegawa. The research group, ROSC, was established in Japan in April 1995 with a support of the Japanese Ministry of Post and Telecommunications to promote collaboration and information - change among communication service companies, communication industries and academic circles in the theory and application of optical solitons. The symposium attracted enthusiastic response from worldwide researchers in the field of soliton based communications and intensive discussions were made. In the symposium held in 1997, new concept of soliton transmission based on dispersion management of optical fibers were presented. This new soliton is now called the dispersion managed soliton. The p...

  12. Magnetic Quasi-Phase Matching All-Fiber Isolator

    Directory of Open Access Journals (Sweden)

    Chunte A. Lu

    2010-01-01

    Full Text Available We have experimentally demonstrated an all-fiber optical isolator with 20 dB isolation. The result shows that the quasi-phase matching technique via a meter-long magnet array is highly feasible to generate more than 45 degrees of Faraday rotation in the fibers. The all-fiber isolator can also be temperature tuned to operate between 1048 nm and 1066 nm wavelength.

  13. Simultaneous transmission of accurate time, stable frequency, data, and sensor system over one fiber with ITU 100 GHz grid

    Science.gov (United States)

    Horvath, Tomas; Munster, Petr; Vojtech, Josef; Velc, Radek; Oujezsky, Vaclav

    2018-01-01

    Optical fiber is the most used medium for current telecommunication networks. Besides data transmissions, special advanced applications like accurate time or stable frequency transmissions are more common, especially in research and education networks. On the other hand, new applications like distributed sensing are in ISP's interest because e.g. such sensing allows new service: protection of fiber infrastructure. Transmission of all applications in a single fiber can be very cost efficient but it is necessary to evaluate possible interaction before real application and deploying the service, especially if standard 100 GHz grid is considered. We performed laboratory measurement of simultaneous transmission of 100 G data based on DP-QPSK modulation format, accurate time, stable frequency and sensing system based on phase sensitive OTDR through two types of optical fibers, G.655 and G.653. These fibers are less common than G.652 fiber but thanks to their slightly higher nonlinear character, there are suitable for simulation of the worst case which can arise in a real network.

  14. High-efficient full-duplex WDM-RoF system with sub-central station

    Science.gov (United States)

    Liu, Anliang; Yin, Hongxi; Wu, Bin

    2018-05-01

    With an additional sub-central station (S-CS), a high-efficient full-duplex radio-over-fiber (RoF) system compatible with the wavelength-division-multiplexing technology is proposed and experimentally demonstrated in this paper. To improve the dispersion tolerance of the RoF system, the baseband data format for the downlink and an all-optical down-conversion approach for the uplink are employed. In addition, this RoF system can not only make full use of the fiber link resources but also realize the upstream transmission without any local light sources at remote base stations (BSs). A 10-GHz RoF experimental system with a 1.25-Gb/s rate bidirectional transmission is established based on the S-CS structure. The feasibility and reliability of this RoF system are verified through eye diagrams and bit error rate (BER) curves experimentally obtained.

  15. Single- and two-phase flow characterization using optical fiber bragg gratings.

    Science.gov (United States)

    Baroncini, Virgínia H V; Martelli, Cicero; da Silva, Marco José; Morales, Rigoberto E M

    2015-03-17

    Single- and two-phase flow characterization using optical fiber Bragg gratings (FBGs) is presented. The sensor unit consists of the optical fiber Bragg grating positioned transversely to the flow and fixed in the pipe walls. The hydrodynamic pressure applied by the liquid or air/liquid flow to the optical fiber induces deformation that can be detected by the FBG. Given that the applied pressure is directly related to the mass flow, it is possible to establish a relationship using the grating resonance wavelength shift to determine the mass flow when the flow velocity is well known. For two phase flows of air and liquid, there is a significant change in the force applied to the fiber that accounts for the very distinct densities of these substances. As a consequence, the optical fiber deformation and the correspondent grating wavelength shift as a function of the flow will be very different for an air bubble or a liquid slug, allowing their detection as they flow through the pipe. A quasi-distributed sensing tool with 18 sensors evenly spread along the pipe is developed and characterized, making possible the characterization of the flow, as well as the tracking of the bubbles over a large section of the test bed. Results show good agreement with standard measurement methods and open up plenty of opportunities to both laboratory measurement tools and field applications.

  16. Simulation of propagation in a bundle of skeletal muscle fibers: Modulation effects of passive fibers

    DEFF Research Database (Denmark)

    Henneberg, Kaj-åge; F.A., Roberge

    1997-01-01

    source current (I-ma) enters the passive tissue as a radial load current (I-ep) while the rest flows longitudinally in the cleft between the active and adjacent passive fibers. The conduction velocity of 1.32 m/s was about 30% lower than on an isolated fiber in a Ringer bath, in close agreement...... rate of rise of the action potential upstroke (V-max) from 512 to 503 V/s. Increasing the phase angle of the passive fiber membrane impedence (Z(m)) increases the phase delay between I-ma and I-ep, thereby increasing phi(epp) which in turn slows down propagation and increases V-max....

  17. Practical design approach for trapezoidal modulation of a radio-frequency quadrupole

    Directory of Open Access Journals (Sweden)

    A. S. Plastun

    2018-03-01

    Full Text Available Trapezoidal modulation of quadrupole electrodes offers additional benefits to the concept of a radio-frequency quadrupole (RFQ. Because of the significant increase of the effective shunt impedance, RFQs with trapezoidal modulation have a reduced interelectrode voltage or resonator length as compared to conventional RFQs with sinusoidal modulation. This feature is especially valuable for RFQs operating in cw mode, since it reduces the required rf power. We develop a detailed procedure for the design of RFQ electrodes with trapezoidal modulation. With our design procedure and by properly choosing the trapezoidal cell parameters, we can easily control the peak surface fields in the RFQ to the same level as for sinusoidal cell modulation. The procedure is applied to the design of the electrodes for the ReA3 RFQ at Michigan State University.

  18. Sub-symbol-rate sampling for PDM-QPSK signals in super-Nyquist WDM systems using quadrature poly-binary shaping.

    Science.gov (United States)

    Xu, Cheng; Gao, Guanjun; Chen, Sai; Zhang, Jie; Luo, Ming; Hu, Rong; Yang, Qi

    2016-11-14

    We compare the performance of sub-symbol-rate sampling for polarization-division-multiplexed quadrature-phase-shift-keying (PDM-QPSK) signals in super-Nyquist wavelength division multiplexing (WDM) system by using quadrature duo-binary (QDB) and quadrature four-level poly-binary (4PB) shaping together with maximum likelihood sequence estimation (MLSE). PDM-16QAM is adopted in the simulation to be compared with PDM-QPSK. The numerical simulations show that, for a software defined communication system, the level number of quadrature poly-binary modulation should be adjusted to achieve the optimal performance according to channel spacing, required OSNR and sampling rate restrictions of optics. In the experiment, we demonstrate 3-channel 12-Gbaud PDM-QPSK transmission with 10-GHz channel spacing and only 8.4-GSa/s ADC sampling rate at lowest. By using QDB or 4PB shaping with 3tap-MLSE, the sampling rate can be reduced to the signal baud rate (1 samples per symbol) without penalty.

  19. WDM Question and Answers | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2011-01-04

    Jan 4, 2011 ... Why is there growing concern about water issues in the MENA region? ... tend to leak, taps tend to drip and little is done to prevent water pollution. ... water demand management (WDM) and water supply management (WSM)?.

  20. Experimental demonstration of single-mode fiber coupling over relatively strong turbulence with adaptive optics.

    Science.gov (United States)

    Chen, Mo; Liu, Chao; Xian, Hao

    2015-10-10

    High-speed free-space optical communication systems using fiber-optic components can greatly improve the stability of the system and simplify the structure. However, propagation through atmospheric turbulence degrades the spatial coherence of the signal beam and limits the single-mode fiber (SMF) coupling efficiency. In this paper, we analyze the influence of the atmospheric turbulence on the SMF coupling efficiency over various turbulences. The results show that the SMF coupling efficiency drops from 81% without phase distortion to 10% when phase root mean square value equals 0.3λ. The simulations of SMF coupling with adaptive optics (AO) indicate that it is inevitable to compensate the high-order aberrations for SMF coupling over relatively strong turbulence. The SMF coupling efficiency experiments, using an AO system with a 137-element deformable mirror and a Hartmann-Shack wavefront sensor, obtain average coupling efficiency increasing from 1.3% in open loop to 46.1% in closed loop under a relatively strong turbulence, D/r0=15.1.

  1. Reduction of the barium concentration presents in liquid effluents by mean of non-dispersive extraction in hollow fiber modules

    International Nuclear Information System (INIS)

    Duperle Yaruro, Gladys; Pena, Dario Yesid; Escalante Hernandez, Humberto

    2008-01-01

    This work has been focused on the study of the viability of barium removal, present in a waste liquid phase, by means of non-dispersive extraction (NDE) in hollow fiber modules. An organic solution based on DEPHA (Bis-2-ethylhexyl phosphate) 30% (v/v), isopropilic alcohol 30% (v/v) and kerosene is used as selective extraction medium. For the extraction process was made a contactor with five hollow microporous propilenic fibers. A solution contained 100 ppm of BaCl 2 H 2 O, level concentration very equal as generated on the petroleum industrial wastes, is used as liquid phase. a efficiency of 95,25% is obtained when the NDE take place at pH = 9, and them 9 hours of process

  2. Ultra-wideband WDM VCSEL arrays by lateral heterogeneous integration

    Science.gov (United States)

    Geske, Jon

    Advancements in heterogeneous integration are a driving factor in the development of evermore sophisticated and functional electronic and photonic devices. Such advancements will merge the optical and electronic capabilities of different material systems onto a common integrated device platform. This thesis presents a new lateral heterogeneous integration technology called nonplanar wafer bonding. The technique is capable of integrating multiple dissimilar semiconductor device structures on the surface of a substrate in a single wafer bond step, leaving different integrated device structures adjacent to each other on the wafer surface. Material characterization and numerical simulations confirm that the material quality is not compromised during the process. Nonplanar wafer bonding is used to fabricate ultra-wideband wavelength division multiplexed (WDM) vertical-cavity surface-emitting laser (VCSEL) arrays. The optically-pumped VCSEL arrays span 140 nm from 1470 to 1610 nm, a record wavelength span for devices operating in this wavelength range. The array uses eight wavelength channels to span the 140 nm with all channels separated by precisely 20 nm. All channels in the array operate single mode to at least 65°C with output power uniformity of +/- 1 dB. The ultra-wideband WDM VCSEL arrays are a significant first step toward the development of a single-chip source for optical networks based on coarse WDM (CWDM), a low-cost alternative to traditional dense WDM. The CWDM VCSEL arrays make use of fully-oxidized distributed Bragg reflectors (DBRs) to provide the wideband reflectivity required for optical feedback and lasing across 140 rim. In addition, a novel optically-pumped active region design is presented. It is demonstrated, with an analytical model and experimental results, that the new active-region design significantly improves the carrier uniformity in the quantum wells and results in a 50% lasing threshold reduction and a 20°C improvement in the peak

  3. Fiber Optic Calorimetry

    International Nuclear Information System (INIS)

    Rudy, C.; Bayliss, S.; Bracken, D.; Bush, J.; Davis, P.

    1997-01-01

    A twin-bridge calorimeter using optical fiber as the sensor element was constructed and tested. This system demonstrates the principle and capability of using optical fibers for heat-flow measurements of special nuclear material. This calorimeter uses piezoelectric-generated phase-carrier modulation with subsequent electronic signal processes to allow phase shifts as small as 1 microradian (microrad) to be measured. The sensing element consists of 21-m lengths of single-mode optical fiber wrapped around sample and reference chambers. The sensitivity of the calorimeter was determined to be 74 radians (rad) of phase shift per milliwatt of thermal power. One milliwatt of thermal power is equivalent to 400 mg of plutonium (6% 240 Pu). The system noise base was about 0.2 rad, equivalent to about 1 mg of plutonium

  4. Fiber optic calorimetry

    International Nuclear Information System (INIS)

    Rudy, C.R.; Bayliss, S.C.; Bracken, D.S.; Bush, I.J.; Davis, P.G.

    1998-01-01

    A twin-bridge calorimeter using optical fiber as the sensor element was constructed and tested. This system demonstrates the principle and capability of using optical fibers for heat-flow measurements of special nuclear material. This calorimeter uses piezoelectric-generated phase-carrier modulation with subsequent electronic signal processing to allow phase shifts as small as 1 microrad to be measured. The sensing element consists of 21-m lengths of single-mode optical fiber wrapped around sample and reference chambers. The sensitivity of the calorimeter was determined to be 74 rad of phase shift per mW of thermal power. One milliwatt of thermal power is equivalent to 400 mg of plutonium (6% 240 Pu). The system noise base was about 0.2 rad, equivalent to about 1 mg of plutonium

  5. Fiber optic calorimetry

    International Nuclear Information System (INIS)

    Rudy, C.; Bayliss, S.; Bracken, D.; Bush, J.; Davis, P.

    1998-01-01

    A twin-bridge calorimeter using optical fiber as the sensor element was constructed and tested. This system demonstrates the principle and capability of using fiber for heat-flow measurements of special nuclear material. This calorimeter uses piezoelectric-generated phase-carrier modulation with subsequent electronic signal processing to allow phase shifts as small as 1 microradian (μrad) to be measured. The sensing element consists of 21-m lengths of single-mode optical fiber wrapped around sample and reference chambers. The sensitivity of the calorimeter was determined to be 74 radians (rad) of phase shift per milliwatt of thermal power. One milliwatt of thermal power is equivalent to 400 mg of plutonium (6% 240 Pu). The system noise base was about 0.2 rad, equivalent to about 1 mg of plutonium

  6. Two-harmonic complex spectral-domain optical coherence tomography using achromatic sinusoidal phase modulation

    Science.gov (United States)

    Lu, Sheng-Hua; Huang, Siang-Ru; Chou, Che-Chung

    2018-03-01

    We resolve the complex conjugate ambiguity in spectral-domain optical coherence tomography (SD-OCT) by using achromatic two-harmonic method. Unlike previous researches, the optical phase of the fiber interferometer is modulated by an achromatic phase shifter based on an optical delay line. The achromatic phase modulation leads to a wavelength-independent scaling coefficient for the two harmonics. Dividing the mean absolute value of the first harmonic by that of the second harmonic in a B-scan interferogram directly gives the scaling coefficient. It greatly simplifies the determination of the magnitude ratio between the two harmonics without the need of third harmonic and cumbersome iterative calculations. The inverse fast Fourier transform of the complex-valued interferogram constructed with the scaling coefficient, first and second harmonics yields a full-range OCT image. Experimental results confirm the effectiveness of the proposed achromatic two-harmonic technique for suppressing the mirror artifacts in SD-OCT images.

  7. EXPERIMENTAL COMPARISON OF HOMODYNE DEMODULATION ALGORITHMS FOR PHASE FIBER-OPTIC SENSOR

    Directory of Open Access Journals (Sweden)

    M. N. Belikin

    2015-11-01

    Full Text Available Subject of Research. The paper presents the results of experimental comparative analysis of homodyne demodulation algorithms based on differential cross multiplying method and on arctangent method under the same conditions. The dependencies of parameters for the output signals on the optical radiation intensity are studied for the considered demodulation algorithms. Method. The prototype of single fiber optic phase interferometric sensor has been used for experimental comparison of signal demodulation algorithms. Main Results. We have found that homodyne demodulation based on arctangent method provides greater (by 7 dB at average signal-to-noise ratio of output signals over the frequency band of acoustic impact from 100 Hz to 500 Hz as compared to differential cross multiplying algorithms. We have demonstrated that no change in the output signal amplitude occurs for the studied range of values of the optical pulses amplitudes. Obtained results indicate that the homodyne demodulation based on arctangent method is most suitable for application in the phase fiber-optic sensors. It provides higher repeatability of their characteristics than the differential cross multiplying algorithm. Practical Significance. Algorithms of interferometric signals demodulation are widely used in phase fiber-optic sensors. Improvement of their characteristics has a positive effect on the performance of such sensors.

  8. Exploring crosstalk noise generated in the N-port router used in the WDM-based ONoC

    Science.gov (United States)

    Zhang, Zhendong; Xie, Yiyuan; Song, Tingting; He, Chao; Li, Jiachao; Liu, Yong

    2017-07-01

    Compared with optical network-on-chip (ONoC) with single wavelength, ONoC adopting wavelength division multiplexing (WDM) technology possesses a very prominent advantage-higher bandwidth. Therefore, WDM-based ONoC has been considered one of the most promising ways to relieve the rapidly increasing traffic load in communication systems. A WDM-based router, as the core equipment of WDM-based ONoC, is influenced by crosstalk noise, especially the nonlinear crosstalk noise generated by the four-wave mixing effect. Thus, to explore the performance of the N-port nonblocking optical router using WDM, we propose a universal analytic model to analyze the transmission loss, crosstalk noise, optical signal-to-noise ratio (OSNR), and bit error ratio (BER). The research results show that crosstalk noise varies along with signals at different wavelengths in the same channel. For signals with the same wavelength, the noises generated in the different transmission paths are obviously different from each other. For research of transmission loss, OSNR, and BER, similar results can be obtained. Based on the eye diagrams, we can learn that crosstalk noise will cause signal distortion to a certain extent. With this model, capability of this kind of multiport optical router using WDM can be understood conveniently.

  9. Vertical blind phase search for low-complexity carrier phase recovery of offset-QAM Nyquist WDM transmission

    Science.gov (United States)

    Lu, Jianing; Fu, Songnian; Tang, Haoyuan; Xiang, Meng; Tang, Ming; Liu, Deming

    2017-01-01

    Low complexity carrier phase recovery (CPR) scheme based on vertical blind phase search (V-BPS) for M-ary offset quadrature amplitude modulation (OQAM) is proposed and numerically verified. After investigating the constellations of both even and odd samples with respect to the phase noise, we identify that the CPR can be realized by measuring the verticality of constellation with respect to different test phase angles. Then measurement without multiplication in the complex plane is found with low complexity. Furthermore, a two-stage configuration is put forward to further reduce the computational complexity (CC). Compared with our recently proposed modified blind phase search (M-BPS) algorithm, the proposed algorithm shows comparable tolerance of phase noise, but reduces the CC by a factor of 3.81 (or 3.05) in the form of multipliers (or adders), taking the CPR of 16-OQAM into account.

  10. Video over cognitive radio networks when quality of service meets spectrum

    CERN Document Server

    Mao, Shiwen

    2014-01-01

    This book focuses on the problem of video streaming over emerging cognitive radio (CR) networks. The book discusses the problems and techniques for scalable video streaming over cellular cognitive radio networks, ad hoc CR networks, cooperative CR networks, and femtocell CR networks. The author formulates these problems and proposes optimal algorithms to solve these problems. Also, the book analyzes the proposed algorithms and validates the algorithms with simulations.

  11. Two novel plasma diagnostic tools: fiber sensors and phase conjugation

    International Nuclear Information System (INIS)

    Jahoda, F.C.

    1985-01-01

    A rapidly developing technology (single-mode optical fiber sensors) and recent fundamental research in nonlinear optics (phase conjugation) both offer opportunities for novel plasma diagnostics. Single-mode fiber sensors can replace electrical wire probes for current and magnetic field measurements with advantages in voltage insulation requirements, electromagnetic noise immunity, much greater bandwidth, and some configuration flexibility. Faraday rotation measurements through fibers wound on the ZT-40M RFP have demonstrated quantitative results, but competing linear birefringence effects still hinder independent interpretation. Twisted fiber may solve this problem. Optical phase conjugation (in which a phase reversed copy of a laser beam is generated) allows real time distortion corrections in laser diagnostics. Self-pumped phase conjugation in BaTiO 3 improves the quality of phase conjugation imagery and greatly simplifies experimentation directed toward plasma diagnostics. Our initial applications are a) time-differential refractometry with high spatial resolution and b) intracavity absorption Zeeman spectroscopy

  12. Longitudinal tracking with phase and amplitude modulated rf

    International Nuclear Information System (INIS)

    Caussyn, D.D.; Ball, M.; Brabson, B.

    1993-06-01

    Synchrotron motion was induced by phase shifting the rf of the Indiana University Cyclotron Facility (IUCF) cooler-synchrotron. The resulting coherent-bunch motion was tracked in longitudinal phase space for as many as 700,000 turns, or for over 350 synchrotron oscillations. Results of recent experimental studies of longitudinal motion in which the rf phase and amplitude were harmonically modulated are also presented. Comparisons of experimental data with numerical simulations, assuming independent particle motion, are made. Observed multiparticle effects are also discussed

  13. Gain transient control for wavelength division multiplexed access networks using semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Gibbon, Timothy Braidwood; Osadchiy, Alexey Vladimirovich; Kjær, Rasmus

    2009-01-01

    Gain transients can severely hamper the upstream network performance in wavelength division multiplexed (WDM) access networks featuring erbium doped fiber amplifiers (EDFAs) or Raman amplification. We experimentally demonstrate for the first time using 10 Gb/s fiber transmission bit error rate...... measurements how a near-saturated semiconductor optical amplifier (SOA) can be used to control these gain transients. An SOA is shown to reduce the penalty of transients originating in an EDFA from 2.3 dB to 0.2 dB for 10 Gb/s transmission over standard single mode fiber using a 231-1 PRBS pattern. The results...... suggest that a single SOA integrated within a WDM receiver at the metro node could offer a convenient all-optical solution for upstream transient controlin WDM access networks....

  14. 120W, NA_0.15 fiber coupled LD module with 125-μm clad/NA 0.22 fiber by spatial coupling method

    Science.gov (United States)

    Ishige, Yuta; Kaji, Eisaku; Katayama, Etsuji; Ohki, Yutaka; Gajdátsy, Gábor; Cserteg, András.

    2018-02-01

    We have fabricated a fiber coupled semiconductor laser diode module by means of spatial beam combining of single emitter broad area semiconductor laser diode chips in the 9xx nm band. In the spatial beam multiplexing method, the numerical aperture of the output light from the optical fiber increases by increasing the number of laser diodes coupled into the fiber. To reduce it, we have tried the approach to improving assembly process technology. As a result, we could fabricate laser diode modules having a light output power of 120W or more and 95% power within NA of 0.15 or less from a single optical fiber with 125-μm cladding diameter. Furthermore, we have obtained that the laser diode module maintaining high coupling efficiency can be realized even around the fill factor of 0.95. This has been achieved by improving the optical alignment method regarding the fast axis stack pitch of the laser diodes in the laser diode module. Therefore, without using techniques such as polarization combining and wavelength combining, high output power was realized while keeping small numerical aperture. This contributes to a reduction in unit price per light output power of the pumping laser diode module.

  15. All-optical short pulse translation through cross-phase modulation in a VO₂ thin film.

    Science.gov (United States)

    Fardad, Shima; Das, Susobhan; Salandrino, Alessandro; Breckenfeld, Eric; Kim, Heungsoo; Wu, Judy; Hui, Rongqing

    2016-01-15

    VO2 is a promising material for reconfigurable photonic devices due to the ultrafast changes in electronic and optical properties associated with its dielectric-to-metal phase transition. Based on a fiber-optic, pump-probe setup at 1550 nm wavelength window, and by varying the pump-pulse duration, we show that the material phase transition is primarily caused by the pump-pulse energy. For the first time, we demonstrate that the instantaneous optical phase modulation of probe during pump leading edge can be utilized to create short optical pulses at probe wavelength, through optical frequency discrimination. This circumvents the impact of long recovery time well known for the phase transition of VO2.

  16. Gender & WDM in the Middle East & North Africa

    International Development Research Centre (IDRC) Digital Library (Canada)

    nkhaled

    WDM Research Report Series: Working Paper No. ... water-users themselves, coupled with an adequate enabling policy environment with the commitment ..... affect water quality, as well as, decrease food security and safety and are exposed ...

  17. Open-Loop Wide-Bandwidth Phase Modulation Techniques

    Directory of Open Access Journals (Sweden)

    Nitin Nidhi

    2011-01-01

    Full Text Available The ever-increasing growth in the bandwidth of wireless communication channels requires the transmitter to be wide-bandwidth and power-efficient. Polar and outphasing transmitter topologies are two promising candidates for such applications, in future. Both these architectures require a wide-bandwidth phase modulator. Open-loop phase modulation presents a viable solution for achieving wide-bandwidth operation. An overview of prior art and recent approaches for phase modulation is presented in this paper. Phase quantization noise cancellation was recently introduced to lower the out-of-band noise in a digital phase modulator. A detailed analysis on the impact of timing and quantization of the cancellation signal is presented. Noise generated by the transmitter in the receive band frequency poses another challenge for wide-bandwidth transmitter design. Addition of a noise transfer function notch, in a digital phase modulator, to reduce the noise in the receive band during phase modulation is described in this paper.

  18. Components for monolithic fiber chirped pulse amplification laser systems

    Science.gov (United States)

    Swan, Michael Craig

    The first portion of this work develops techniques for generating femtosecond-pulses from conventional fabry-perot laser diodes using nonlinear-spectral-broadening techniques in Yb-doped positive dispersion fiber ampliers. The approach employed an injection-locked fabry-perot laser diode followed by two stages of nonlinear-spectral-broadening to generate sub-200fs pulses. This thesis demonstrated that a 60ps gain-switched fabry-perot laser-diode can be injection-locked to generate a single-longitudinal-mode pulse and compressed by nonlinear spectral broadening to 4ps. Two problems have been identified that must be resolved before moving forward with this approach. First, gain-switched pulses from a standard diode-laser have a number of characteristics not well suited for producing clean self-phase-modulation-broadened pulses, such as an asymmetric temporal shape, which has a long pulse tail. Second, though parabolic pulse formation occurs for any arbitrary temporal input pulse profile, deviation from the optimum parabolic input results in extensively spectrally modulated self-phase-modulation-broadened pulses. In conclusion, the approach of generating self-phase-modulation-broadened pulses from pulsed laser diodes has to be modified from the initial approach explored in this thesis. The first Yb-doped chirally-coupled-core ber based systems are demonstrated and characterized in the second portion of this work. Robust single-mode performance independent of excitation or any other external mode management techniques have been demonstrated in Yb-doped chirally-coupled-core fibers. Gain and power efficiency characteristics are not compromised in any way in this novel fiber structure up to the 87W maximum power achieved. Both the small signal gain at 1064nm of 30.3dB, and the wavelength dependence of the small signal gain were comparable to currently deployed large-mode-area-fiber technology. The efficiencies of the laser and amplifier were measured to be 75% and 54

  19. Modulated Source Interferometry with Combined Amplitude and Frequency Modulation

    Science.gov (United States)

    Gutierrez, Roman C. (Inventor)

    1998-01-01

    An improved interferometer is produced by modifying a conventional interferometer to include amplitude and/or frequency modulation of a coherent light source at radio or higher frequencies. The phase of the modulation signal can be detected in an interfering beam from an interferometer and can be used to determine the actual optical phase of the beam. As such, this improvement can be adapted to virtually any two-beam interferometer, including: Michelson, Mach-Zehnder, and Sagnac interferometers. The use of an amplitude modulated coherent tight source results in an interferometer that combines the wide range advantages of coherent interferometry with the precise distance measurement advantages of white light interferometry.

  20. Gastrointestinal Transit Time, Glucose Homeostasis and Metabolic Health: Modulation by Dietary Fibers.

    Science.gov (United States)

    Müller, Mattea; Canfora, Emanuel E; Blaak, Ellen E

    2018-02-28

    Gastrointestinal transit time may be an important determinant of glucose homeostasis and metabolic health through effects on nutrient absorption and microbial composition, among other mechanisms. Modulation of gastrointestinal transit may be one of the mechanisms underlying the beneficial health effects of dietary fibers. These effects include improved glucose homeostasis and a reduced risk of developing metabolic diseases such as obesity and type 2 diabetes mellitus. In this review, we first discuss the regulation of gastric emptying rate, small intestinal transit and colonic transit as well as their relation to glucose homeostasis and metabolic health. Subsequently, we briefly address the reported health effects of different dietary fibers and discuss to what extent the fiber-induced health benefits may be mediated through modulation of gastrointestinal transit.

  1. Path-length-resolved measurements of multiple scattered photons in static and dynamic turbid media using phase-modulated low-coherence interferometry

    NARCIS (Netherlands)

    Varghese, Babu; Rajan, Vinayakrishnan; van Leeuwen, Ton G.; Steenbergen, Wiendelt

    2007-01-01

    In optical Doppler measurements, the path length of the light is unknown. To facilitate quantitative measurements, we develop a phase-modulated Mach-Zehnder interferometer with separate fibers for illumination and detection. With this setup, path-length-resolved dynamic light scattering measurements

  2. RFID-over-Fiber system for agricultural exploitations - Wireless track and trace with range extension using optical fiber

    DEFF Research Database (Denmark)

    Madsen, Peter; Suhr, Lau Frejstrup; Cavalcante, Lucas Costa Pereira

    2015-01-01

    This paper proposes and demonstrates an RFIDover-Fiber wireless track and trace system using active RFID tags and operating over distances up to 30 km of optical fiber and 35 meters of wireless readability......This paper proposes and demonstrates an RFIDover-Fiber wireless track and trace system using active RFID tags and operating over distances up to 30 km of optical fiber and 35 meters of wireless readability...

  3. A slotted access control protocol for metropolitan WDM ring networks

    Science.gov (United States)

    Baziana, P. A.; Pountourakis, I. E.

    2009-03-01

    In this study we focus on the serious scalability problems that many access protocols for WDM ring networks introduce due to the use of a dedicated wavelength per access node for either transmission or reception. We propose an efficient slotted MAC protocol suitable for WDM ring metropolitan area networks. The proposed network architecture employs a separate wavelength for control information exchange prior to the data packet transmission. Each access node is equipped with a pair of tunable transceivers for data communication and a pair of fixed tuned transceivers for control information exchange. Also, each access node includes a set of fixed delay lines for synchronization reasons; to keep the data packets, while the control information is processed. An efficient access algorithm is applied to avoid both the data wavelengths and the receiver collisions. In our protocol, each access node is capable of transmitting and receiving over any of the data wavelengths, facing the scalability issues. Two different slot reuse schemes are assumed: the source and the destination stripping schemes. For both schemes, performance measures evaluation is provided via an analytic model. The analytical results are validated by a discrete event simulation model that uses Poisson traffic sources. Simulation results show that the proposed protocol manages efficient bandwidth utilization, especially under high load. Also, comparative simulation results prove that our protocol achieves significant performance improvement as compared with other WDMA protocols which restrict transmission over a dedicated data wavelength. Finally, performance measures evaluation is explored for diverse numbers of buffer size, access nodes and data wavelengths.

  4. Nonlinear intermodulation distortion suppression in coherent analog fiber optic link using electro-optic polymeric dual parallel Mach-Zehnder modulator.

    Science.gov (United States)

    Kim, Seong-Ku; Liu, Wei; Pei, Qibing; Dalton, Larry R; Fetterman, Harold R

    2011-04-11

    A linearized dual parallel Mach-Zehnder modulator (DPMZM) based on electro-optic (EO) polymer was both fabricated, and experimentally used to suppress the third-order intermodulation distortion (IMD3) in a coherent analog fiber optic link. This optical transmitter design was based on a new EO chromophore called B10, which was synthesized for applications dealing with the fiber-optic communication systems. The chromophore was mixed with amorphous polycarbonate (APC) to form the waveguide's core material. The DPMZM was configured with two MZMs, of different lengths in parallel, with unbalanced input and output couplers and a phase shifter in one arm. In this configuration each of the MZMs carried a different optical power, and imposed a different depth of optical modulation. When the two optical beams from the MZMs were combined to generate the transmitted signal it was possible to set the IMD3 produced by each modulator to be equal in amplitude but 180° out of phase from the other. Therefore, the resulting IMD3 of the DPMZM transmitter was effectively canceled out during two-tone experiments. A reduction of the IMD3 below the noise floor was observed while leaving fifth-order distortion (IMD5) as the dominant IMD product. This configuration has the capability of broadband operation and shot-noise limited operation simultaneously. © 2011 Optical Society of America

  5. Multifunctional fiber-optic microwave links based on remote heterodyne detection

    DEFF Research Database (Denmark)

    Gliese, Ulrik Bo; Nielsen, Torben Nørskov; Nielsen, Søren Nørskov

    1998-01-01

    The multifunctionality of microwave links based on remote heterodyne detection (RHD) of signals from a dual-frequency laser transmitter is discussed and experimentally demonstrated in this paper. Typically, direct detection (DD) in conjunction with optical intensity modulation is used to implement...... fiber-optic microwave links. The resulting links are inherently transparent. As opposed to DD links, RHD links can perform radio-system functionalities such as modulation and frequency conversion in addition to transparency. All of these three functionalities are presented and experimentally...

  6. Robust transmission of non-Gaussian entanglement over optical fibers

    International Nuclear Information System (INIS)

    Biswas, Asoka; Lidar, Daniel A.

    2006-01-01

    We show how the entanglement in a wide range of continuous variable non-Gaussian states can be preserved against decoherence for long-range quantum communication through an optical fiber. We apply protection via decoherence-free subspaces and quantum dynamical decoupling to this end. The latter is implemented by inserting phase shifters at regular intervals Δ inside the fiber, where Δ is roughly the ratio of the speed of light in the fiber to the bath high-frequency cutoff. Detailed estimates of relevant parameters are provided using the boson-boson model of system-bath interaction for silica fibers and Δ is found to be on the order of a millimeter

  7. Local area networking in a radio quiet environment

    Science.gov (United States)

    Childers, Edwin L.; Hunt, Gareth; Brandt, Joseph J.

    2002-11-01

    The Green Bank facility of the National Radio Astronomy Observatory is spread out over 2,700 acres in the Allegheny Mountains of West Virginia. Good communication has always been needed between the radio telescopes and the control buildings. The National Radio Quiet Zone helps protect the Green Bank site from radio transmissions that interfere with the astronomical signals. Due to stringent Radio Frequency Interference (RFI) requirements, a fiber optic communication system was used for Ethernet transmissions on the site and coaxial cable within the buildings. With the need for higher speed communications, the entire network has been upgraded to use optical fiber with modern Ethernet switches. As with most modern equipment, the implementation of the control of the newly deployed Green Bank Telescope (GBT) depends heavily on TCP/IP. In order to protect the GBT from the commodity Internet, the GBT uses a non-routable network. Communication between the control building Local Area Network (LAN) and the GBT is implemented using a Virtual LAN (VLAN). This configuration will be extended to achieve isolation between trusted local user systems, the GBT, and other Internet users. Legitimate access to the site, for example by remote observers, is likely to be implemented using a virtual private network (VPN).

  8. Cooperative Cognitive Radio Systems over Nakagami-m Fading Channels

    KAUST Repository

    Hyadi, Amal

    2013-05-08

    This thesis aims to investigate the incorporation of cooperative techniques in cognitive radio networks over Nakagami-m fading channels. These last years, spectrum sharing mechanisms has gained a lot of interest in the wireless communication domain. Using cooperation in a cognitive set up make the use of spectrum much more efficient. Moreover, it helps to extend the coverage area of the cognitive network and also to reduce the transmitting power and, thus, the generated interference. In this work, we consider two particular scenarios for cooperative cognitive radio systems. The first scenario consider multihop regenerative relaying in an underlay cognitive set up. The cooperation is performed in the secondary system, in the presence of multiple primary users. Both interference power and peak power constraints are taking into account. Closed-form expressions for the statistical characteristics and multiple end- to-end performance metrics are derived. Different scenarios are presented to illustrate the obtained results and Monte Carlo simulations confirm the accuracy of our analytical derivations. In the second part of this work, we consider an overlay cognitive network with the spectrally efficient two-phase two-way relaying protocol. Two relay selection techniques, optimizing both the primary and the secondary communication, are presented. The overall outage performance is investigated and an optimal power allocation scheme, that ameliorate the outage performance of the system, is proposed. Numerical simulations are presented to illustrate and compare the obtained results.

  9. Twelve factors critical to the success of WDM at the policy and at the ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    IDRC CRDI

    and monetary units. A WDM agency has to be able to show results (such as water savings measured in cubic meters for example) in order to compete for attention with older and better established supply-side agencies. Such data may be hard to find, or estimate, but it can be very persuasive in furthering the WDM agenda.

  10. OTN Transport of Baseband Radio Serial Protocols in C-RAN Architecture for Mobile Network Applications

    OpenAIRE

    Checko, Aleksandra; Kardaras, Georgios; Lanzani, Christian Fabio Alessandro; Temple, Dan; Mathiasen, Carsten; Pedersen, Lars A.; Klaps, Bert

    2014-01-01

    This white paper presents a proof of concept implementation of digital baseband radio data transport over Optical Transport Network (OTN) compliant to 3GPP Long Term Evolution – Advanced (LTE-A) standard enabling Cloud Radio Access Network (C-RAN) architecture. The transport between the baseband module and a remote radio module is compliant to Common Public Radio Interface (CPRI) and to the OBSAI reference point 3 - 01 (RP3-01) interface protocols, respectively. The purpose is to demonstrate ...

  11. Non-uniform-tilt-modulated fiber Bragg grating for temperature-immune micro-displacement measurement

    International Nuclear Information System (INIS)

    Guo, Tuan; Chen, Chengkun; Albert, Jacques

    2009-01-01

    Temperature-immune micro-displacement measurement is demonstrated by using a Gaussian-chirped tilted fiber Bragg grating (TFBG). The internal tilt angles of the sensing TFBG are effectively modulated via a displacement-induced Gaussian-strain-gradient along the specially designed bending cantilever beam. The phase mismatch between different effective pitches and tilt angles weakens the core-to-cladding mode coupling as the beam is displaced. While the power of the ghost mode resonance in transmission shows a strong sensitivity to the displacement, it is immune from spatially uniform temperature changes. Ghost-power-referenced displacement measurement and temperature-insensitive property are experimentally achieved for this cost-effective sensing device

  12. Long-range distributed optical fiber hot-wire anemometer based on chirped-pulse ΦOTDR.

    Science.gov (United States)

    Garcia-Ruiz, Andres; Dominguez-Lopez, Alejandro; Pastor-Graells, Juan; Martins, Hugo F; Martin-Lopez, Sonia; Gonzalez-Herraez, Miguel

    2018-01-08

    We demonstrate a technique allowing to develop a fully distributed optical fiber hot-wire anemometer capable of reaching a wind speed uncertainty of ≈ ±0.15m/s (±0.54km/h) at only 60 mW/m of dissipated power in the sensing fiber, and within only four minutes of measurement time. This corresponds to similar uncertainty values than previous papers on distributed optical fiber anemometry but requires two orders of magnitude smaller dissipated power and covers at least one order of magnitude longer distance. This breakthrough is possible thanks to the extreme temperature sensitivity and single-shot performance of chirped-pulse phase-sensitive optical time domain reflectometry (ΦOTDR), together with the availability of metal-coated fibers. To achieve these results, a modulated current is fed through the metal coating of the fiber, causing a modulated temperature variation of the fiber core due to Joule effect. The amplitude of this temperature modulation is strongly dependent on the wind speed at which the fiber is subject. Continuous monitoring of the temperature modulation along the fiber allows to determine the wind speed with singular low power injection requirements. Moreover, this procedure makes the system immune to temperature drifts of the fiber, potentially allowing for a simple field deployment. Being a much less power-hungry scheme, this method also allows for monitoring over much longer distances, in the orders of 10s of km. We expect that this system can have application in dynamic line rating and lateral wind monitoring in railway catenary wires.

  13. Fabrication of high quality, ultra-long fiber Bragg gratings: up to 2 million periods in phase.

    Science.gov (United States)

    Gagné, Mathieu; Loranger, Sébastien; Lapointe, Jerome; Kashyap, Raman

    2014-01-13

    The fabrication and characterization of high quality ultra-long (up to 1m) fiber Bragg gratings (FBGs) is reported. A moving phase mask and an electro-optic phase-modulation (EOPM) based interferometer are used with a high precision 1-meter long translation stage and compared. A novel interferometer position feedback scheme to simplify the fabrication process is proposed and analyzed. The ultra-long uniform FBGs show near perfect characteristics of a few picometers bandwidth, symmetrical, near theory-matching group-delay and transmission spectra. Grating characterization using optical backscattering reflectometry and chirped FBGs are also demonstrated. Limitations of the schemes are discussed.

  14. Fast Interrogation of Fiber Bragg Gratings with Electro-Optical Dual Optical Frequency Combs.

    Science.gov (United States)

    Posada-Roman, Julio E; Garcia-Souto, Jose A; Poiana, Dragos A; Acedo, Pablo

    2016-11-26

    Optical frequency combs (OFC) generated by electro-optic modulation of continuous-wave lasers provide broadband coherent sources with high power per line and independent control of line spacing and the number of lines. In addition to their application in spectroscopy, they offer flexible and optimized sources for the interrogation of other sensors based on wavelength change or wavelength filtering, such as fiber Bragg grating (FBG) sensors. In this paper, a dual-OFC FBG interrogation system based on a single laser and two optical-phase modulators is presented. This architecture allows for the configuration of multimode optical source parameters such as the number of modes and their position within the reflected spectrum of the FBG. A direct read-out is obtained by mapping the optical spectrum onto the radio-frequency spectrum output of the dual-comb. This interrogation scheme is proposed for measuring fast phenomena such as vibrations and ultrasounds. Results are presented for dual-comb operation under optimized control. The optical modes are mapped onto detectable tones that are multiples of 0.5 MHz around a center radiofrequency tone (40 MHz). Measurements of ultrasounds (40 kHz and 120 kHz) are demonstrated with this sensing system. Ultrasounds induce dynamic strain onto the fiber, which generates changes in the reflected Bragg wavelength and, hence, modulates the amplitude of the OFC modes within the reflected spectrum. The amplitude modulation of two counterphase tones is detected to obtain a differential measurement proportional to the ultrasound signal.

  15. Fast Interrogation of Fiber Bragg Gratings with Electro-Optical Dual Optical Frequency Combs

    Directory of Open Access Journals (Sweden)

    Julio E. Posada-Roman

    2016-11-01

    Full Text Available Optical frequency combs (OFC generated by electro-optic modulation of continuous-wave lasers provide broadband coherent sources with high power per line and independent control of line spacing and the number of lines. In addition to their application in spectroscopy, they offer flexible and optimized sources for the interrogation of other sensors based on wavelength change or wavelength filtering, such as fiber Bragg grating (FBG sensors. In this paper, a dual-OFC FBG interrogation system based on a single laser and two optical-phase modulators is presented. This architecture allows for the configuration of multimode optical source parameters such as the number of modes and their position within the reflected spectrum of the FBG. A direct read-out is obtained by mapping the optical spectrum onto the radio-frequency spectrum output of the dual-comb. This interrogation scheme is proposed for measuring fast phenomena such as vibrations and ultrasounds. Results are presented for dual-comb operation under optimized control. The optical modes are mapped onto detectable tones that are multiples of 0.5 MHz around a center radiofrequency tone (40 MHz. Measurements of ultrasounds (40 kHz and 120 kHz are demonstrated with this sensing system. Ultrasounds induce dynamic strain onto the fiber, which generates changes in the reflected Bragg wavelength and, hence, modulates the amplitude of the OFC modes within the reflected spectrum. The amplitude modulation of two counterphase tones is detected to obtain a differential measurement proportional to the ultrasound signal.

  16. Thermally moderated hollow fiber sorbent modules in rapidly cycled pressure swing adsorption mode for hydrogen purification

    KAUST Repository

    Lively, Ryan P.; Bessho, Naoki; Bhandari, Dhaval A.; Kawajiri, Yoshiaki; Koros, William J.

    2012-01-01

    We describe thermally moderated multi-layered pseudo-monolithic hollow fiber sorbents entities, which can be packed into compact modules to provide small-footprint, efficient H2 purification/CO2 removal systems for use in on-site steam methane reformer product gas separations. Dual-layer hollow fibers are created via dry-jet, wet-quench spinning with an inner "active" core of cellulose acetate (porous binder) and zeolite NaY (69 wt% zeolite NaY) and an external sheath layer of pure cellulose acetate. The co-spun sheath layer reduces the surface porosity of the fiber and was used as a smooth coating surface for a poly(vinyl-alcohol) post-treatment, which reduced the gas permeance through the fiber sorbent by at least 7 orders of magnitude, essentially creating an impermeable sheath layer. The interstitial volume between the individual fibers was filled with a thermally-moderating paraffin wax. CO2 breakthrough experiments on the hollow fiber sorbent modules with and without paraffin wax revealed that the "passively" cooled paraffin wax module had 12.5% longer breakthrough times than the "non-isothermal" module. The latent heat of fusion/melting of the wax offsets the released latent heat of sorption/desorption of the zeolites. One-hundred rapidly cycled pressure swing adsorption cycles were performed on the "passively" cooled hollow fiber sorbents using 25 vol% CO2/75 vol% He (H2 surrogate) at 60 °C and 113 psia, resulting in a product purity of 99.2% and a product recovery of 88.1% thus achieving process conditions and product quality comparable to conventional pellet processes. Isothermal and non-isothermal dynamic modeling of the hollow fiber sorbent module and a traditional packed bed using gPROMS® indicated that the fiber sorbents have sharper fronts (232% sharper) and longer adsorbate breakthrough times (66% longer), further confirming the applicability of the new fiber sorbent approach for H2 purification. © 2012, Hydrogen Energy Publications, LLC

  17. Thermally moderated hollow fiber sorbent modules in rapidly cycled pressure swing adsorption mode for hydrogen purification

    KAUST Repository

    Lively, Ryan P.

    2012-10-01

    We describe thermally moderated multi-layered pseudo-monolithic hollow fiber sorbents entities, which can be packed into compact modules to provide small-footprint, efficient H2 purification/CO2 removal systems for use in on-site steam methane reformer product gas separations. Dual-layer hollow fibers are created via dry-jet, wet-quench spinning with an inner "active" core of cellulose acetate (porous binder) and zeolite NaY (69 wt% zeolite NaY) and an external sheath layer of pure cellulose acetate. The co-spun sheath layer reduces the surface porosity of the fiber and was used as a smooth coating surface for a poly(vinyl-alcohol) post-treatment, which reduced the gas permeance through the fiber sorbent by at least 7 orders of magnitude, essentially creating an impermeable sheath layer. The interstitial volume between the individual fibers was filled with a thermally-moderating paraffin wax. CO2 breakthrough experiments on the hollow fiber sorbent modules with and without paraffin wax revealed that the "passively" cooled paraffin wax module had 12.5% longer breakthrough times than the "non-isothermal" module. The latent heat of fusion/melting of the wax offsets the released latent heat of sorption/desorption of the zeolites. One-hundred rapidly cycled pressure swing adsorption cycles were performed on the "passively" cooled hollow fiber sorbents using 25 vol% CO2/75 vol% He (H2 surrogate) at 60 °C and 113 psia, resulting in a product purity of 99.2% and a product recovery of 88.1% thus achieving process conditions and product quality comparable to conventional pellet processes. Isothermal and non-isothermal dynamic modeling of the hollow fiber sorbent module and a traditional packed bed using gPROMS® indicated that the fiber sorbents have sharper fronts (232% sharper) and longer adsorbate breakthrough times (66% longer), further confirming the applicability of the new fiber sorbent approach for H2 purification. © 2012, Hydrogen Energy Publications, LLC

  18. A simple-architecture fibered transmission system for dissemination of high stability 100 MHz signals

    Science.gov (United States)

    Bakir, A.; Rocher, C.; Maréchal, B.; Bigler, E.; Boudot, R.; Kersalé, Y.; Millo, J.

    2018-05-01

    We report on the development of a simple-architecture fiber-based frequency distribution system used to transfer high frequency stability 100 MHz signals. This work is focused on the emitter and the receiver performances that allow the transmission of the radio-frequency signal over an optical fiber. The system exhibits a residual fractional frequency stability of 1 × 10-14 at 1 s integration time and in the low 10-16 range after 100 s. These performances are suitable to transfer the signal of frequency references such as those of a state-of-the-art hydrogen maser without any phase noise compensation scheme. As an application, we demonstrate the dissemination of such a signal through a 100 m long optical fiber without any degradation. The proposed setup could be easily extended for operating frequencies in the 10 MHz-1 GHz range.

  19. Liquid crystalline phase behavior of protein fibers in water: experiments versus theory.

    Science.gov (United States)

    Jung, Jin-Mi; Mezzenga, Raffaele

    2010-01-05

    We have developed a new method allowing the study of the thermodynamic phase behavior of mesoscopic colloidal systems consisting of amyloid protein fibers in water, obtained by heat denaturation and aggregation of beta-lactoglobulin, a dairy protein. The fibers have a cross section of about 5.2 nm and two groups of polydisperse contour lengths: (i) long fibers of 1-20 microm, showing semiflexible behavior, and (ii) short rods of 100-200 nm long, obtained by cutting the long fibers via high-pressure homogenization. At pH 2 without salt, these fibers are highly charged and stable in water. We have studied the isotropic-nematic phase transition for both systems and compared our results with the theoretical values predicted by Onsager's theory. The experimentally measured isotropic-nematic phase transition was found to occur at 0.4% and at 3% for the long and short fibers, respectively. For both systems, this phase transition occurs at concentrations more than 1 order of magnitude lower than what is expected based on Onsager's theory. Moreover, at low enough pH, no intermediate biphasic region was observed between the isotropic phase and the nematic phase. The phase diagrams of both systems (pH vs concentration) showed similar, yet complex and rich, phase behavior. We discuss the possible physical fundamentals ruling the phase diagram as well as the discrepancy we observe for the isotropic-nematic phase transition between our experimental results and the predicted theoretical results. Our work highlights that systems formed by water-amyloid protein fibers are way too complex to be understood based solely on Onsager's theories. Experimental results are revisited in terms of the Flory's theory (1956) for suspensions of rods, which allows accounting for rod-solvent hydrophobic interactions. This theoretical approach allows explaining, on a semiquantitative basis, most of the discrepancies observed between the experimental results and Onsager's predictions. The sources of

  20. Study on phase noise induced by 1/f noise of the modulator drive circuit in high-sensitivity fiber optic gyroscope

    Science.gov (United States)

    Teng, Fei; Jin, Jing; Li, Yong; Zhang, Chunxi

    2018-05-01

    The contribution of modulator drive circuit noise as a 1/f noise source to the output noise of the high-sensitivity interferometric fiber optic gyroscope (IFOG) was studied here. A noise model of closed-loop IFOG was built. By applying the simulated 1/f noise sequence into the model, a gyroscope output data series was acquired, and the corresponding power spectrum density (PSD) and the Allan variance curve were calculated to analyze the noise characteristic. The PSD curve was in the spectral shape of 1/f, which verifies that the modulator drive circuit induced a low frequency 1/f phase noise into the gyroscope. The random walk coefficient (RWC), a standard metric to characterize the noise performance of the IFOG, was calculated according to the Allan variance curve. Using an operational amplifier with an input 1/f noise of 520 nV/√Hz at 1 Hz, the RWC induced by this 1/f noise was 2 × 10-4°/√h, which accounts for 63% of the total RWC. To verify the correctness of the noise model we proposed, a high-sensitivity gyroscope prototype was built and tested. The simulated Allan variance curve gave a good rendition of the prototype actual measured curve. The error percentage between the simulated RWC and the measured value was less than 13%. According to the model, a noise reduction method is proposed and the effectiveness is verified by the experiment.

  1. Distributed dual-parameter optical fiber sensor based on cascaded microfiber Fabry-Pérot interferometers

    Science.gov (United States)

    Xiang, Yang; Luo, Yiyang; Zhang, Wei; Liu, Deming; Sun, Qizhen

    2017-04-01

    We propose and demonstrate a distributed fiber sensor based on cascaded microfiber Fabry-Perot interferometers (MFPI) for simultaneous refractive index (SRI) and temperature measurement. By employing MFPI which is fabricated by taper-drawing the center of a uniform fiber Bragg grating (FBG) on standard fiber into a section of microfiber, dual parameters including SRI and temperature can be detected through demodulating the reflection spectrum of the MFPI. Further, wavelength-division-multiplexing (WDM) is applied to realize distributed dual-parameter fiber sensor by using cascaded MFPIs with different Bragg wavelengths. A prototype sensor system with 5 cascaded MFPIs is constructed to experimentally demonstrate the sensing performance.

  2. Dynamic Characterization of Fiber Optical Chirped Pulse Amplification for Sub-ps Pulses

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Lali-Dastjerdi, Zohreh; Rishøj, Lars Søgaard

    2013-01-01

    We investigate experimentally the propagation of sub-picosecond pulses in fiber optical parametric chirped pulse amplifiers, showing a significant broadening of the pulses from 450 fs up to 720 fs due to dispersion and self-phase modulation.......We investigate experimentally the propagation of sub-picosecond pulses in fiber optical parametric chirped pulse amplifiers, showing a significant broadening of the pulses from 450 fs up to 720 fs due to dispersion and self-phase modulation....

  3. Operators Manual and Technical Reference for the Z-Beamlet Phase Modulation Failsafe System: Version 1.

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Darrell J.

    2014-09-01

    The need for pulse energies exceeding 4 kJ and pulse lengths [?] 2 ns in Sandia's Z-Beamlet laser (ZBL) requires that the single-frequency spectrum of its fiber-laser master oscillator be converted to a phase modulated spectrum with a modulation in dex [?] 5. Because accidental injection of single-frequency light into ZBL could result i n damage to optical materials from transverse stimulated Brillouin scattering, the presence of phase modulated (PM) light must be monitored by a reliable failsafe system that can stop a las er shot within of a few 10's of ns following a failure of the PM system. This requirement is met by combining optical heterodyne detection with high-speed electronics to indicate the pres ence or absence of phase modulated light. The transition time for the failsafe signal resultin g from a sudden failure using this technique is approximately 35 ns. This is sufficiently short to safely stop a single-frequency laser pulse from leaving ZBL's regenerative amplifier with a n approximately 35 ns margin of safety. This manual and technical reference contains detai led instructions for daily use of the PM failsafe system and provides enough additional informat ion for its maintenance and repair.

  4. A Novel Line Coding Pair for Fully Passive Long Reach {WDM-PON}s

    DEFF Research Database (Denmark)

    Presi, Marco; Proietti, Roberto; Prince, Kamau

    2008-01-01

    A novel line coding pair allows to use unsaturated flective-SOAs as upstream remodulator in long-reach WDM-PONs. Full-duplex and symmetric 80 km reach is demonstrated without in-line amplification at 1.25 Gb/s......A novel line coding pair allows to use unsaturated flective-SOAs as upstream remodulator in long-reach WDM-PONs. Full-duplex and symmetric 80 km reach is demonstrated without in-line amplification at 1.25 Gb/s...

  5. VLA radio observations of AR Scorpii

    Science.gov (United States)

    Stanway, E. R.; Marsh, T. R.; Chote, P.; Gänsicke, B. T.; Steeghs, D.; Wheatley, P. J.

    2018-03-01

    Aims: AR Scorpii is unique amongst known white dwarf binaries in showing powerful pulsations extending to radio frequencies. Here we aim to investigate the multi-frequency radio emission of AR Sco in detail, in order to constrain its origin and emission mechanisms. Methods: We present interferometric radio frequency imaging of AR Sco at 1.5, 5 and 9 GHz, analysing the total flux and polarization behaviour of this source at high time resolution (10, 3 and 3 s), across a full 3.6 h orbital period in each band. Results: We find strong modulation of the radio flux on the orbital period and the orbital sideband of the white dwarf's spin period (also known as the "beat" period). This indicates that, like the optical flux, the radio flux arises predominantly from on or near the inner surface of the M-dwarf companion star. The beat-phase pulsations of AR Sco decrease in strength with decreasing frequency. They are strongest at 9 GHz and at an orbital phase 0.5. Unlike the optical emission from this source, radio emission from AR Sco shows weak linear polarization but very strong circular polarization, reaching 30% at an orbital phase 0.8. We infer the probable existence of a non-relativistic cyclotron emission component, which dominates at low radio frequencies. Given the required magnetic fields, this also likely arises from on or near the M-dwarf. A table of the flux time series is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A66

  6. 3D silicon neural probe with integrated optical fibers for optogenetic modulation.

    Science.gov (United States)

    Kim, Eric G R; Tu, Hongen; Luo, Hao; Liu, Bin; Bao, Shaowen; Zhang, Jinsheng; Xu, Yong

    2015-07-21

    Optogenetics is a powerful modality for neural modulation that can be useful for a wide array of biomedical studies. Penetrating microelectrode arrays provide a means of recording neural signals with high spatial resolution. It is highly desirable to integrate optics with neural probes to allow for functional study of neural tissue by optogenetics. In this paper, we report the development of a novel 3D neural probe coupled simply and robustly to optical fibers using a hollow parylene tube structure. The device shanks are hollow tubes with rigid silicon tips, allowing the insertion and encasement of optical fibers within the shanks. The position of the fiber tip can be precisely controlled relative to the electrodes on the shank by inherent design features. Preliminary in vivo rat studies indicate that these devices are capable of optogenetic modulation simultaneously with 3D neural signal recording.

  7. Homogeneous spectral spanning of terahertz semiconductor lasers with radio frequency modulation.

    Science.gov (United States)

    Wan, W J; Li, H; Zhou, T; Cao, J C

    2017-03-08

    Homogeneous broadband and electrically pumped semiconductor radiation sources emitting in the terahertz regime are highly desirable for various applications, including spectroscopy, chemical sensing, and gas identification. In the frequency range between 1 and 5 THz, unipolar quantum cascade lasers employing electron inter-subband transitions in multiple-quantum-well structures are the most powerful semiconductor light sources. However, these devices are normally characterized by either a narrow emission spectrum due to the narrow gain bandwidth of the inter-subband optical transitions or an inhomogeneous broad terahertz spectrum from lasers with heterogeneous stacks of active regions. Here, we report the demonstration of homogeneous spectral spanning of long-cavity terahertz semiconductor quantum cascade lasers based on a bound-to-continuum and resonant phonon design under radio frequency modulation. At a single drive current, the terahertz spectrum under radio frequency modulation continuously spans 330 GHz (~8% of the central frequency), which is the record for single plasmon waveguide terahertz lasers with a bound-to-continuum design. The homogeneous broadband terahertz sources can be used for spectroscopic applications, i.e., GaAs etalon transmission measurement and ammonia gas identification.

  8. Radio-frequency-modulated Rydberg states in a vapor cell

    Science.gov (United States)

    Miller, S. A.; Anderson, D. A.; Raithel, G.

    2016-05-01

    We measure strong radio-frequency (RF) electric fields using rubidium Rydberg atoms prepared in a room-temperature vapor cell as field sensors. Electromagnetically induced transparency is employed as an optical readout. We RF-modulate the 60{{{S}}}1/2 and 58{{{D}}}5/2 Rydberg states with 50 and 100 MHz fields, respectively. For weak to moderate RF fields, the Rydberg levels become Stark-shifted, and sidebands appear at even multiples of the driving frequency. In high fields, the adjacent hydrogenic manifold begins to intersect the shifted levels, providing rich spectroscopic structure suitable for precision field measurements. A quantitative description of strong-field level modulation and mixing of S and D states with hydrogenic states is provided by Floquet theory. Additionally, we estimate the shielding of DC electric fields in the interior of the glass vapor cell.

  9. Flexible Transport Network Expansion via Open WDM Interfaces

    DEFF Research Database (Denmark)

    Fagertun, Anna Manolova; Skjoldstrup, Bjarke

    2013-01-01

    This paper presents a successful test-bed implementation of a multi-vendor transport network interconnection via open WDM interfaces. The concept of applying Alien Wavelengths (AWs) for network expansion was successfully illustrated via deployment of multi-domain/multi-vendor end-to-end OTN servi...

  10. Fiber Optic Temperature Sensors for Thermal Protection Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase 1, Intelligent Fiber Optic Systems Corporation (IFOS), in collaboration with North Carolina State University, successfully demonstrated a Fiber Bragg...

  11. Super continuum generation at 800 nm in highly nonlinear photonic crystal fibers with normal dispersion

    DEFF Research Database (Denmark)

    Hansen, Kim Per; Larsen, Jacob Juul; Jensen, Jacob Riis

    2001-01-01

    More than 90 nm broad self-phase modulation (SPM) induced pulses have been created from both 25 and 50 fs pulses in just 12.5 cm of fiber. The broadening is more than 2.5 times that observed in standard SMF. SPM broadening in PCFs has several advantages over more complex super continuum generatio...

  12. Experimental studies of the overshoot and undershoot in pulse-modulated radio-frequency atmospheric discharge

    Energy Technology Data Exchange (ETDEWEB)

    Huo, W. G.; Li, R. M.; Shi, J. J. [School of Physics and Electronic Technology, Liaoning Normal University, Dalian 116029 (China); Ding, Z. F., E-mail: huowg.wg@tom.com [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116023 (China)

    2016-08-15

    The overshoot and undershoot of the applied voltage on the electrodes, the discharge current, and radio frequency (RF) power were observed at the initial phase of pulse-modulated (PM) RF atmospheric pressure discharges, but factors influencing the overshoot and undershoot have not been fully elucidated. In this paper, the experimental studies were performed to seek the reasons for the overshoot and undershoot. The experimental results show that the overshoot and undershoot are associated with the pulse frequency, the rise time of pulse signal, and the series capacitor C{sub s} in the inversely L-shaped matching network. In the case of a high RF power discharge, these overshoot and undershoot become serious when shortening the rise time of a pulse signal (5 ns) or operating at a moderate pulse frequency (500 Hz or 1 kHz).

  13. OTDM-WDM Conversion Based on Time-Domain Optical Fourier Transformation with Spectral Compression

    DEFF Research Database (Denmark)

    Mulvad, Hans Christian Hansen; Palushani, Evarist; Galili, Michael

    2011-01-01

    We propose a scheme enabling direct serial-to-parallel conversion of OTDM data tributaries onto a WDM grid, based on optical Fourier transformation with spectral compression. Demonstrations on 320 Gbit/s and 640 Gbit/s OTDM data are shown.......We propose a scheme enabling direct serial-to-parallel conversion of OTDM data tributaries onto a WDM grid, based on optical Fourier transformation with spectral compression. Demonstrations on 320 Gbit/s and 640 Gbit/s OTDM data are shown....

  14. Optical fronthauling for 5G mobile: A perspective of passive metro WDM technology

    DEFF Research Database (Denmark)

    Zou, Shihuan Jim; Wagner, Christoph; Eiselt, Michael

    2017-01-01

    We discuss the necessity of passive WDM technology in the 5G fronthaul application. The proof-of-concept field trial showed that the proposed system integrated seamlessly with the current wireless equipment and had no impact on services.......We discuss the necessity of passive WDM technology in the 5G fronthaul application. The proof-of-concept field trial showed that the proposed system integrated seamlessly with the current wireless equipment and had no impact on services....

  15. Modeling Phase-Aligned Gamma-Ray and Radio Millisecond Pulsar Light Curves

    Science.gov (United States)

    Venter, C.; Johnson, T.; Harding, A.

    2012-01-01

    Since the discovery of the first eight gamma-ray millisecond pulsars (MSPs) by the Fermi Large Area Telescope, this population has been steadily expanding. Four of the more recent detections, PSR J00340534, PSR J1939+2134 (B1937+21; the first MSP ever discovered), PSR J1959+2048 (B1957+20; the first discovery of a black widow system), and PSR J2214+3000, exhibit a phenomenon not present in the original discoveries: nearly phase-aligned radio and gamma-ray light curves (LCs). To account for the phase alignment, we explore models where both the radio and gamma-ray emission originate either in the outer magnetosphere near the light cylinder or near the polar caps. Using a Markov Chain Monte Carlo technique to search for best-fit model parameters, we obtain reasonable LC fits for the first three of these MSPs in the context of altitude-limited outer gap (alOG) and two-pole caustic (alTPC) geometries (for both gamma-ray and radio emission). These models differ from the standard outer gap (OG)/two-pole caustic (TPC) models in two respects: the radio emission originates in caustics at relatively high altitudes compared to the usual conal radio beams, and we allow both the minimum and maximum altitudes of the gamma-ray and radio emission regions to vary within a limited range (excluding the minimum gamma-ray altitude of the alTPC model, which is kept constant at the stellar radius, and that of the alOG model, which is set to the position-dependent null charge surface altitude). Alternatively, phase-aligned solutions also exist for emission originating near the stellar surface in a slot gap scenario (low-altitude slot gap (laSG) models). We find that the alTPC models provide slightly better LC fits than the alOG models, and both of these give better fits than the laSG models (for the limited range of parameters considered in the case of the laSG models). Thus, our fits imply that the phase-aligned LCs are likely of caustic origin, produced in the outer magnetosphere, and

  16. Multicarrier Spread Spectrum Modulation Schemes and Efficient FFT Algorithms for Cognitive Radio Systems

    Directory of Open Access Journals (Sweden)

    Mohandass Sundararajan

    2014-07-01

    Full Text Available Spread spectrum (SS and multicarrier modulation (MCM techniques are recognized as potential candidates for the design of underlay and interweave cognitive radio (CR systems, respectively. Direct Sequence Code Division Multiple Access (DS-CDMA is a spread spectrum technique generally used in underlay CR systems. Orthogonal Frequency Division Multiplexing (OFDM is the basic MCM technique, primarily used in interweave CR systems. There are other MCM schemes derived from OFDM technique, like Non-Contiguous OFDM, Spread OFDM, and OFDM-OQAM, which are more suitable for CR systems. Multicarrier Spread Spectrum Modulation (MCSSM schemes like MC-CDMA, MC-DS-CDMA and SS-MC-CDMA, combine DS-CDMA and OFDM techniques in order to improve the CR system performance and adaptability. This article gives a detailed survey of the various spread spectrum and multicarrier modulation schemes proposed in the literature. Fast Fourier Transform (FFT plays a vital role in all the multicarrier modulation techniques. The FFT part of the modem can be used for spectrum sensing. The performance of the FFT operator plays a crucial role in the overall performance of the system. Since the cognitive radio is an adaptive system, the FFT operator must also be adaptive for various input/output values, in order to save energy and time taken for execution. This article also includes the various efficient FFT algorithms proposed in the literature, which are suitable for CR systems.

  17. Geometric phase modulation for stellar interferometry

    International Nuclear Information System (INIS)

    Roy, M.; Boschung, B.; Tango, W.J.; Davis, J.

    2002-01-01

    Full text: In a long baseline optical interferometer, the fringe visibility is normally measured by modulation of the optical path difference between the two arms of the instruments. To obtain accurate measurements, the spectral bandwidth must be narrow, limiting the sensitivity of the technique. The application of geometric phase modulation technique to stellar interferometry has been proposed by Tango and Davis. Modulation of the geometric phase has the potential for improving the sensitivity of optical interferometers, and specially the Sydney University Stellar Interferometer (SUSI), by allowing broad band modulation of the light signals. This is because a modulator that changes the geometric phase of the signal is, in principle, achromatic. Another advantage of using such a phase modulator is that it can be placed in the common path traversed by the two orthogonally polarized beams emerging from the beam combiner in a stellar interferometer. Thus the optical components of the modulator do not have to be interferometric quality and could be relatively easily introduced into SUSI. We have investigated the proposed application in a laboratory-based experiment using a Mach-Zehnder interferometer with white-light source. This can be seen as a small model of an amplitude stellar interferometer where the light source takes the place of the distant star and two corner mirrors replaces the entrance pupils of the stellar interferometer

  18. Fiber fine structure during solar type IV radio bursts: Observations and theory of radiation in presence of localized whistler turbulence

    International Nuclear Information System (INIS)

    Bernold, T.E.X.; Treumann, R.A.

    1983-01-01

    Observations with a digital spectrometer within the frequency band between 250 and 273 MHz of fiber fine structures during the type IV solar radio burst of 1978 October 1 are presented and analyzed. The results are summarized in histograms. Typical values for drift rates are in the range between -2.3 and -9.9 MHz s -1 . Frequency intervals between absorption and emission within the spectrum were measured to be within 0.9 and 2.7 MHz. Several types of spectra are discussed. A theoretical interpretation is based upon the model of a population of electrons trapped within a magnetic-mirror loop-configuration. It is shown that the fiber emission can be explained assuming an interaction between spatially localized strong whistler turbulence (solitons) and a broad-band Langmuir wave spectrum. Estimates using the observed flux values indicate that a fiber is composed of some 10 11 --10 14 solitons occupying a volume of about 10 5 --10 8 km 3 . Ducting of whistler solitons in low-density magnetic loops provides a plausible explanation for coherent behavior during the lifetime of an individual fiber. The magnetic field strength is found to be 6.2< or =B< or =35 gauss at the radio source and 15.3< or =B< or =76 gauss at the lower hybrid wave level respectively. The quasi-periodicity of the fiber occurrence is interpreted as periodically switched-on soliton production

  19. Planetary Radio Interferometry and Doppler Experiment (PRIDE) for Planetary Atmospheric Studies

    Science.gov (United States)

    Bocanegra Bahamon, Tatiana; Cimo, Giuseppe; Duev, Dmitry; Gurvits, Leonid; Molera Calves, Guifre; Pogrebenko, Sergei

    2015-04-01

    The Planetary Radio Interferometry and Doppler Experiment (PRIDE) is a technique that allows the determination of the radial velocity and lateral coordinates of planetary spacecraft with very high accuracy (Duev, 2012). The setup of the experiment consists of several ground stations from the European VLBI Network (EVN) located around the globe, which simultaneously perform Doppler tracking of a spacecraft carrier radio signal, and are subsequently processed in a VLBI-style in phase referencing mode. Because of the accurate examination of the changes in phase and amplitude of the radio signal propagating from the spacecraft to the multiple stations on Earth, the PRIDE technique can be used for several fields of planetary research, among which planetary atmospheric studies, gravimetry and ultra-precise celestial mechanics of planetary systems. In the study at hand the application of this technique for planetary atmospheric investigations is demonstrated. As a test case, radio occultation experiments were conducted with PRIDE having as target ESA's Venus Express, during different observing sessions with multiple ground stations in April 2012 and March 2014. Once each of the stations conducts the observation, the raw data is delivered to the correlation center at the Joint Institute for VLBI in Europe (JIVE) located in the Netherlands. The signals are processed with a high spectral resolution and phase detection software package from which Doppler observables of each station are derived. Subsequently the Doppler corrected signals are correlated to derive the VLBI observables. These two sets of observables are used for precise orbit determination. The reconstructed orbit along with the Doppler observables are used as input for the radio occultation processing software, which consists of mainly two modules, the geometrical optics module and the ray tracing inversion module, from which vertical density profiles, and subsequently, temperature and pressure profiles of Venus

  20. QoS Provisioning Techniques for Future Fiber-Wireless (FiWi Access Networks

    Directory of Open Access Journals (Sweden)

    Martin Maier

    2010-04-01

    Full Text Available A plethora of enabling optical and wireless access-metro network technologies have been emerging that can be used to build future-proof bimodal fiber-wireless (FiWi networks. Hybrid FiWi networks aim at providing wired and wireless quad-play services over the same infrastructure simultaneously and hold great promise to mitigate the digital divide and change the way we live and work by replacing commuting with teleworking. After overviewing enabling optical and wireless network technologies and their QoS provisioning techniques, we elaborate on enabling radio-over-fiber (RoF and radio-and-fiber (R&F technologies. We describe and investigate new QoS provisioning techniques for future FiWi networks, ranging from traffic class mapping, scheduling, and resource management to advanced aggregation techniques, congestion control, and layer-2 path selection algorithms.

  1. Design and fabrication of inner-selective thin-film composite (TFC) hollow fiber modules for pressure retarded osmosis (PRO)

    KAUST Repository

    Wan, Chun Feng

    2016-08-03

    Pressure retarded osmosis (PRO) is a promising technology to harvest the renewable osmotic energy from salinity gradients. There are great progresses in the fabrication of PRO membranes in the last decade. Thin-film composite (TFC) hollow fibers have been widely studied and demonstrated superior performance. However, the lack of effective TFC hollow fiber modules hinders the commercialization of the PRO technology. Knowledge and experiences to fabricate TFC hollow fiber modules remain limited in the open literature. In this study, we aim to reveal the engineering and science on how to fabricate TFC hollow fiber modules including the formation of inner-selective polyamide layers and the repair of leakages. TFC-PES hollow fiber modules with 30% and 50% packing densities have been successfully fabricated, showing peak power densities of 20.0 W/m2 and 19.4 W/m2, respectively, at 20 bar using 1 M NaCl solution and DI water as feeds. The modules may be damaged during handling and high pressure testing. The repaired modules have a power density of 18.2 W/m2, 91% of the power densities of the undamaged ones. This study would make up the gap between TFC membrane fabrication and TFC membrane module fabrication in the membrane industry. © 2016 Elsevier B.V.

  2. Design and fabrication of inner-selective thin-film composite (TFC) hollow fiber modules for pressure retarded osmosis (PRO)

    KAUST Repository

    Wan, Chun Feng; Li, Bofan; Yang, Tianshi; Chung, Neal Tai-Shung

    2016-01-01

    Pressure retarded osmosis (PRO) is a promising technology to harvest the renewable osmotic energy from salinity gradients. There are great progresses in the fabrication of PRO membranes in the last decade. Thin-film composite (TFC) hollow fibers have been widely studied and demonstrated superior performance. However, the lack of effective TFC hollow fiber modules hinders the commercialization of the PRO technology. Knowledge and experiences to fabricate TFC hollow fiber modules remain limited in the open literature. In this study, we aim to reveal the engineering and science on how to fabricate TFC hollow fiber modules including the formation of inner-selective polyamide layers and the repair of leakages. TFC-PES hollow fiber modules with 30% and 50% packing densities have been successfully fabricated, showing peak power densities of 20.0 W/m2 and 19.4 W/m2, respectively, at 20 bar using 1 M NaCl solution and DI water as feeds. The modules may be damaged during handling and high pressure testing. The repaired modules have a power density of 18.2 W/m2, 91% of the power densities of the undamaged ones. This study would make up the gap between TFC membrane fabrication and TFC membrane module fabrication in the membrane industry. © 2016 Elsevier B.V.

  3. A novel modulation scheme for noise reduction in analog fiber optic links

    NARCIS (Netherlands)

    Marpaung, D.A.I.; Roeloffzen, C.G.H.; van Etten, Wim; Megret, P.; Wuilpart, M.; Bette, S.; Staquet, N.

    2005-01-01

    A novel balanced modulation and detection scheme for analog fiber optic links is proposed to overcome the limitations in signal-to-noise ratio (SNR) and dynamic range (DR).In this scheme, the modulating signal is split into positive and negative halves and applied to a pair of laser diodes. Both

  4. Fiber Bragg grating for spectral phase optical code-division multiple-access encoding and decoding

    Science.gov (United States)

    Fang, Xiaohui; Wang, Dong-Ning; Li, Shichen

    2003-08-01

    A new method for realizing spectral phase optical code-division multiple-access (OCDMA) coding based on step chirped fiber Bragg gratings (SCFBGs) is proposed and the corresponding encoder/decoder is presented. With this method, a mapping code is introduced for the m-sequence address code and the phase shift can be inserted into the subgratings of the SCFBG according to the mapping code. The transfer matrix method together with Fourier transform is used to investigate the characteristics of the encoder/decoder. The factors that influence the correlation property of the encoder/decoder, including index modulation and bandwidth of the subgrating, are identified. The system structure is simple and good correlation output can be obtained. The performance of the OCDMA system based on SCFBGs has been analyzed.

  5. Building new WDM regulations for the Namibian tourism sector on factors influencing current water-management practices at the enterprise level

    Science.gov (United States)

    Schachtschneider, Klaudia

    Namibia's aridity is forcing its water sector to resort to new water resource management approaches, including water demand management (WDM). Such a change in management approach is facilitated through the country's opportunity at independence to rewrite and adapt its old policies, including those for water and tourism. Legal support for WDM through the Water Act and other sector-specific Acts is crucial to plan the practical implementation of WDM throughout the different water use sectors of Namibia. In order to be able to put the policy into practice, it is imperative to understand which factors motivate people to adopt WDM initiatives. Within the Namibian tourism industry three main factors have been identified which influence the water-management approaches at tourist facilities. This paper discusses how the water and tourism decision makers can consider these factors when developing new regulations to introduce WDM in the tourism sector.

  6. DAMA/LIBRA-phase1 results and perspectives of the phase2

    Directory of Open Access Journals (Sweden)

    Bernabei R.

    2015-01-01

    Full Text Available The results obtained with the total exposure of 1.04 ton × yr collected by DAMA/LIBRA–phase1 deep underground at the Gran Sasso National Laboratory (LNGS of the I.N.F.N. during 7 annual cycles are summarized. The DAMA/LIBRA–phase1 and the former DAMA/NaI data (cumulative exposure 1.33 ton × yr, corresponding to 14 annual cycles give evidence at 9.3 σ C.L. for the presence of Dark Matter (DM particles in the galactic halo, on the basis of the exploited model independent DM annual modulation signature by using highly radio-pure NaI(Tl target. No systematic or side reaction able to mimic the exploited DM signature has been found or suggested by anyone over more than a decade. The same data of DAMA/LIBRA–phase1 have also been analyzed searching for possible DM second-order diurnal effect; at present, the DM diurnal modulation amplitude – expected because of the Earth diurnal motion – evaluated on the basis of the DAMA Dark Matter annual modulation results is below the reached experimental sensitivity. Some of the perspectives of the presently running DAMA/LIBRA–phase2 are outlined.

  7. Modeling dose-rate on/over the surface of cylindrical radio-models using Monte Carlo methods

    International Nuclear Information System (INIS)

    Xiao Xuefu; Ma Guoxue; Wen Fuping; Wang Zhongqi; Wang Chaohui; Zhang Jiyun; Huang Qingbo; Zhang Jiaqiu; Wang Xinxing; Wang Jun

    2004-01-01

    Objective: To determine the dose-rates on/over the surface of 10 cylindrical radio-models, which belong to the Metrology Station of Radio-Geological Survey of CNNC. Methods: The dose-rates on/over the surface of 10 cylindrical radio-models were modeled using the famous Monte Carlo code-MCNP. The dose-rates on/over the surface of 10 cylindrical radio-models were measured by a high gas pressurized ionization chamber dose-rate meter, respectively. The values of dose-rate modeled using MCNP code were compared with those obtained by authors in the present experimental measurement, and with those obtained by other workers previously. Some factors causing the discrepancy between the data obtained by authors using MCNP code and the data obtained using other methods are discussed in this paper. Results: The data of dose-rates on/over the surface of 10 cylindrical radio-models, obtained using MCNP code, were in good agreement with those obtained by other workers using the theoretical method. They were within the discrepancy of ±5% in general, and the maximum discrepancy was less than 10%. Conclusions: As if each factor needed for the Monte Carlo code is correct, the dose-rates on/over the surface of cylindrical radio-models modeled using the Monte Carlo code are correct with an uncertainty of 3%

  8. Detecting mode hopping in single-longitudinal-mode fiber ring lasers based on an unbalanced fiber Michelson interferometer.

    Science.gov (United States)

    Ma, Mingxiang; Hu, Zhengliang; Xu, Pan; Wang, Wei; Hu, Yongming

    2012-10-20

    A method of detecting mode hopping for single-longitudinal-mode (SLM) fiber ring lasers has been proposed and experimentally demonstrated. The method that is based on an unbalanced Michelson interferometer (MI) utilizing phase generated carrier modulation instantly transforms mode-hopping dynamics into steep phase changes of the interferometer. Multiform mode hops in an SLM erbium-doped fiber ring laser with an 18.6 MHz mode spacing have been detected exactly in real-time domain and discussed in detail. Numerical results show that the MI-based method has a high testing sensitivity for identifying mode hopping, which will play a significant role in evaluating the output stability of SLM fiber lasers.

  9. Analysis of self-homodyne detection for 6-mode fiber with low-modal crosstalk

    Science.gov (United States)

    Guo, Meng; Hu, Guijun

    2017-12-01

    In this paper, we present an appropriate analysis on self-homodyne coherent system with 56 × 5 × 3 Gb / s WDM-PDM-MDM quadrature phase-shift keying (QPSK) signals using 6-mode weakly coupled few mode fiber. The mode division technology can effectively improve the spectral efficiency (SE) of self-homodyne detection. Of all the LP modes, LP01 mode is used to transmit the pilot tone (PT), while the others for signal channels. The influence of inter-mode crosstalk is analyzed. The proposed frequency domain MMA shows a better BER performance for intra-mode crosstalk elimination. The path-length misalignment's influence caused by mode differential group delay (MDGD) is also investigated. The system tolerance for different laser's line-width is compared as well as the influence of PT filter's bandwidth.

  10. Modeling of SBS Phase Conjugation in Multimode Step Index Fibers

    National Research Council Canada - National Science Library

    Spring, Justin B

    2008-01-01

    ... limited, double-pass high-power amplifiers or coherent beam combination. Little modeling of such a fiber-based phase-conjugator has been done, making it difficult to make decisions about the right fiber to use...

  11. Mode-multiplexed transmission over conventional graded-index multimode fibers

    NARCIS (Netherlands)

    Ryf, R.; Fontaine, N.K.; Chen, H.; Guan, B.; Huang, B.; Esmaeelpour, M.; Gnauck, A.H.; Randel, S.; Yoo, S.J.B.; Koonen, A.M.J.; Shubochkin, R.; Sun, Yi; Lingle, R.

    2015-01-01

    We present experimental results for combined mode-multiplexed and wavelength multiplexed transmission over conventional graded-index multimode fibers. We use mode-selective photonic lanterns as mode couplers to precisely excite a subset of the modes of the multimode fiber and additionally to

  12. Next-generation fiber lasers enabled by high-performance components

    Science.gov (United States)

    Kliner, D. A. V.; Victor, B.; Rivera, C.; Fanning, G.; Balsley, D.; Farrow, R. L.; Kennedy, K.; Hampton, S.; Hawke, R.; Soukup, E.; Reynolds, M.; Hodges, A.; Emery, J.; Brown, A.; Almonte, K.; Nelson, M.; Foley, B.; Dawson, D.; Hemenway, D. M.; Urbanek, W.; DeVito, M.; Bao, L.; Koponen, J.; Gross, K.

    2018-02-01

    Next-generation industrial fiber lasers enable challenging applications that cannot be addressed with legacy fiber lasers. Key features of next-generation fiber lasers include robust back-reflection protection, high power stability, wide power tunability, high-speed modulation and waveform generation, and facile field serviceability. These capabilities are enabled by high-performance components, particularly pump diodes and optical fibers, and by advanced fiber laser designs. We summarize the performance and reliability of nLIGHT diodes, fibers, and next-generation industrial fiber lasers at power levels of 500 W - 8 kW. We show back-reflection studies with up to 1 kW of back-reflected power, power-stability measurements in cw and modulated operation exhibiting sub-1% stability over a 5 - 100% power range, and high-speed modulation (100 kHz) and waveform generation with a bandwidth 20x higher than standard fiber lasers. We show results from representative applications, including cutting and welding of highly reflective metals (Cu and Al) for production of Li-ion battery modules and processing of carbon fiber reinforced polymers.

  13. Auditory sensitivity to spectral modulation phase reversal as a function of modulation depth.

    Science.gov (United States)

    Buss, Emily; Grose, John

    2018-01-01

    The present study evaluated auditory sensitivity to spectral modulation by determining the modulation depth required to detect modulation phase reversal. This approach may be preferable to spectral modulation detection with a spectrally flat standard, since listeners appear unable to perform the task based on the detection of temporal modulation. While phase reversal thresholds are often evaluated by holding modulation depth constant and adjusting modulation rate, holding rate constant and adjusting modulation depth supports rate-specific assessment of modulation processing. Stimuli were pink noise samples, filtered into seven octave-wide bands (0.125-8 kHz) and spectrally modulated in dB. Experiment 1 measured performance as a function of modulation depth to determine appropriate units for adaptive threshold estimation. Experiment 2 compared thresholds in dB for modulation detection with a flat standard and modulation phase reversal; results supported the idea that temporal cues were available at high rates for the former but not the latter. Experiment 3 evaluated spectral modulation phase reversal thresholds for modulation that was restricted to either one or two neighboring bands. Flanking bands of unmodulated noise had a larger detrimental effect on one-band than two-band targets. Thresholds for high-rate modulation improved with increasing carrier frequency up to 2 kHz, whereas low-rate modulation appeared more consistent across frequency, particularly in the two-band condition. Experiment 4 measured spectral weights for spectral modulation phase reversal detection and found higher weights for bands in the spectral center of the stimulus than for the lowest (0.125 kHz) or highest (8 kHz) band. Experiment 5 compared performance for highly practiced and relatively naïve listeners, and found weak evidence of a larger practice effect at high than low spectral modulation rates. These results provide preliminary data for a task that may provide a better estimate of

  14. Optical detection of radio waves through a nanomechanical transducer

    DEFF Research Database (Denmark)

    Bagci, T.; Simonsen, A.; Schmid, Silvan

    2014-01-01

    Low-loss transmission and sensitive recovery of weak radio-frequency and microwave signals is a ubiquitous challenge, crucial in radio astronomy, medical imaging, navigation, and classical and quantum communication. Efficient up-conversion of radio-frequency signals to an optical carrier would...... strong coupling between the voltage fluctuations in a radio-frequency resonance circuit and the membrane's displacement, which is simultaneously coupled to light reflected off its surface. The radio-frequency signals are detected as an optical phase shift with quantum-limited sensitivity....... The corresponding half-wave voltage is in the microvolt range, orders of magnitude less than that of standard optical modulators. The noise of the transducer--beyond the measured 800 pV Hz-1/2 Johnson noise of the resonant circuit--consists of the quantum noise of light and thermal fluctuations of the membrane...

  15. Symmetry, phase modulation and nonlinear waves

    CERN Document Server

    Bridges, Thomas J

    2017-01-01

    Nonlinear waves are pervasive in nature, but are often elusive when they are modelled and analysed. This book develops a natural approach to the problem based on phase modulation. It is both an elaboration of the use of phase modulation for the study of nonlinear waves and a compendium of background results in mathematics, such as Hamiltonian systems, symplectic geometry, conservation laws, Noether theory, Lagrangian field theory and analysis, all of which combine to generate the new theory of phase modulation. While the build-up of theory can be intensive, the resulting emergent partial differential equations are relatively simple. A key outcome of the theory is that the coefficients in the emergent modulation equations are universal and easy to calculate. This book gives several examples of the implications in the theory of fluid mechanics and points to a wide range of new applications.

  16. Intensity-based fibre-optic sensing system using contrast modulation of subcarrier interference pattern

    Science.gov (United States)

    Adamovsky, G.; Sherer, T. N.; Maitland, D. J.

    1989-01-01

    A novel technique to compensate for unwanted intensity losses in a fiber-optic sensing system is described. The technique involves a continuous sinusoidal modulation of the light source intensity at radio frequencies and an intensity sensor placed in an unbalanced interferometer. The system shows high sensitivity and stability.

  17. Cross-layer combining of power control and adaptive modulation with truncated ARQ for cognitive radios

    Institute of Scientific and Technical Information of China (English)

    CHENG Shi-lun; YANG Zhen

    2008-01-01

    To maximize throughput and to satisfy users' requirements in cognitive radios, a cross-layer optimization problem combining adaptive modulation and power control at the physical layer and truncated automatic repeat request at the medium access control layer is proposed. Simulation results show the combination of power control, adaptive modulation, and truncated automatic repeat request can regulate transmitter powers and increase the total throughput effectively.

  18. Signal Processing Algorithms for Down-Stream Traffic in Next Generation 10 Gbit/s Fixed-Grid Passive Optical Networks

    Directory of Open Access Journals (Sweden)

    Rameez Asif

    2014-01-01

    Full Text Available We have analyzed the impact of digital and optical signal processing algorithms, that is, Volterra equalization (VE, digital backpropagation (BP, and optical phase conjugation with nonlinearity module (OPC-NM, in next generation 10 Gbit/s (also referred to as XG DP-QPSK long haul WDM (fixed-grid passive optical network (PON without midspan repeaters over 120 km standard single mode fiber (SMF link for downstream signals. Due to the compensation of optical Kerr effects, the sensitivity penalty is improved by 2 dB by implementing BP algorithm, 1.5 dB by VE algorithm, and 2.69 dB by OPC-NM. Moreover, with the implementation of NL equalization technique, we are able to get the transmission distance of 126.6 km SMF for the 1 : 1024 split ratio at 5 GHz channel spacing in the nonlinear region.

  19. SDN-enabled dynamic WDM networks to address routing information inaccuracy

    CSIR Research Space (South Africa)

    Ravhuanzwo, Lusani

    2016-11-01

    Full Text Available Large dynamic wavelength-division multiplexed (WDM) networks based on the distributed control mechanism are susceptible to routing information inaccuracies. Factors such as non-negligible propagation delays, infrequent network state updates...

  20. Modulated phases of phospholipid bilayers induced by tocopherols.

    Science.gov (United States)

    Kamal, Md Arif; Raghunathan, V A

    2012-11-01

    The influence of α-, γ- and δ-tocopherols on the structure and phase behavior of dipalmitoyl phosphatidylcholine (DPPC) bilayers has been determined from X-ray diffraction studies on oriented multilayers. In all the three cases the main-transition temperature (T(m)) of DPPC was found to decrease with increasing tocopherol concentration up to around 25 mol%. Beyond this the main transition is suppressed in the case of γ-tocopherol, whereas T(m) becomes insensitive to composition in the other two cases. The pre-transition is found to be suppressed over a narrow tocopherol concentration range between 7.5 and 10 mol% in DPPC-γ-tocopherol and DPPC-δ-tocopherol bilayers, and the ripple phase occurs down to the lowest temperature studied. In all the three cases a modulated phase is observed above a tocopherol concentration of about 10 mol%, which is similar to the P(β) phase reported in DPPC-cholesterol bilayers. This phase is found to occur even in excess water conditions at lower tocopherol concentrations, and consists of bilayers with periodic height modulation. These results indicate the ability of tocopherols to induce local curvature in membranes, which could be important for some of their biological functions. Copyright © 2012 Elsevier B.V. All rights reserved.