WorldWideScience

Sample records for wdm passive optical

  1. Traffic Scheduling in WDM Passive Optical Network with Delay Guarantee

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    WDM passive optical network becomes more favorable as the required bandwidth increases, but currently few media access control algorithms adapted to WDM access network. This paper presented a new scheduling algorithm for bandwidth sharing in WDM passive optical networks, which provides per-flow delay guarantee and supports variable-length packets scheduling. Through theoretical analysis and simulation, the end-to-end delay bound and throughput fairness of the algorithm was demonstrated.

  2. A novel survivable architecture for hybrid WDM/TDM passive optical networks

    Science.gov (United States)

    Qiu, Yang; Chan, Chun-Kit

    2014-02-01

    A novel tree-ring survivable architecture, which consists of an organization of a wavelength-division-multiplexing (WDM) tree from optical line terminal (OLT) to remote nodes (RNs) and a time division multiplexing (TDM) ring in each RN, is proposed for hybrid WDM/TDM passive optical networks. By utilizing the cyclic property of arrayed waveguide gratings (AWGs) and the single-ring topology among a group of optical network units (ONUs) in the remote node, not only the feeder and distribution fibers, but also any fiber failures in the RN rings are protected simultaneously. Five-Gbit/s transmissions under both normal working and protection modes were experimentally demonstrated and a traffic restoration time was successfully measured.

  3. Optical RAM row access using WDM-enabled all-passive row/column decoders

    Science.gov (United States)

    Papaioannou, Sotirios; Alexoudi, Theoni; Kanellos, George T.; Miliou, Amalia; Pleros, Nikos

    2014-03-01

    Towards achieving a functional RAM organization that reaps the advantages offered by optical technology, a complete set of optical peripheral modules, namely the Row (RD) and Column Decoder (CD) units, is required. In this perspective, we demonstrate an all-passive 2×4 optical RAM RD with row access operation and subsequent all-passive column decoding to control the access of WDM-formatted words in optical RAM rows. The 2×4 RD exploits a WDM-formatted 2-bit-long memory WordLine address along with its complementary value, all of them encoded on four different wavelengths and broadcasted to all RAM rows. The RD relies on an all-passive wavelength-selective filtering matrix (λ-matrix) that ensures a logical `0' output only at the selected RAM row. Subsequently, the RD output of each row drives the respective SOA-MZI-based Row Access Gate (AG) to grant/block the entry of the incoming data words to the whole memory row. In case of a selected row, the data word exits the row AG and enters the respective CD that relies on an allpassive wavelength-selective Arrayed Waveguide Grating (AWG) for decoding the word bits into their individual columns. Both RD and CD procedures are carried out without requiring any active devices, assuming that the memory address and data word bits as well as their inverted values will be available in their optical form by the CPU interface. Proof-of-concept experimental verification exploiting cascaded pairs of AWGs as the λ-matrix is demonstrated at 10Gb/s, providing error-free operation with a peak power penalty lower than 0.2dB for all optical word channels.

  4. A novel WDM passive optical network architecture supporting two independent multicast data streams

    Science.gov (United States)

    Qiu, Yang; Chan, Chun-Kit

    2012-01-01

    We propose a novel scheme to perform optical multicast overlay of two independent multicast data streams on a wavelength-division-multiplexed (WDM) passive optical network. By controlling a sinusoidal clock signal and shifting the wavelength at the optical line terminal (OLT), the delivery of the two multicast data, being carried by the generated optical tones, can be independently and flexibly controlled. Simultaneous transmission of 10-Gb/s unicast downstream and upstream data as well as two independent 10-Gb/s multicast data was successfully demonstrated.

  5. Optical fronthauling for 5G mobile: A perspective of passive metro WDM technology

    DEFF Research Database (Denmark)

    Zou, Shihuan Jim; Wagner, Christoph; Eiselt, Michael

    2017-01-01

    We discuss the necessity of passive WDM technology in the 5G fronthaul application. The proof-of-concept field trial showed that the proposed system integrated seamlessly with the current wireless equipment and had no impact on services.......We discuss the necessity of passive WDM technology in the 5G fronthaul application. The proof-of-concept field trial showed that the proposed system integrated seamlessly with the current wireless equipment and had no impact on services....

  6. A 80 km reach fully passive WDM-PON based on reflective ONUs

    DEFF Research Database (Denmark)

    Presi, Marco; Proietti, Roberto; Prince, Kamau

    2008-01-01

    We propose a novel line coding combination (Inverse RZ coding in downlink and RZ in uplink) that extends the reach of WDM Passive Optical Networks based on Reflective SOAs with no in-line amplification. We achieved full downstream remodulation even when feeding the reflective SOA with power level...... as low as -35dBm, thus increasing the system power budget. We experimentally assessed this scheme for a fully passive, full-duplex and symmetrical 1.25Gb/s WDM-PON over a 80km G.652 feeder....

  7. Modelisation et simulation d'un PON (Passive Optical Network) base ...

    African Journals Online (AJOL)

    English Title: Modeling and simulation of a PON (Passive Optical Network) Based on hybrid technology WDM/TDM. English Abstract. This development is part of dynamism of design for a model combining WDM and TDM multiplexing in the optical network of PON (Passive Optical Network) type, in order to satisfy the high bit ...

  8. WDM PONs based on colorless technology

    Science.gov (United States)

    Saliou, Fabienne; Simon, Gael; Chanclou, Philippe; Pizzinat, Anna; Lin, Huafeng; Zhou, Enyu; Xu, Zhiguang

    2015-12-01

    Wavelength Division Multiplexing (WDM) Passive Optical Network (PON) is foreseen to be part of the Next Generation Passive Optical Networks. Business and mobile fronthaul networks already express the need to develop WDM PONs in the access segment. Fixed wavelength transceivers based on Coarse WDM are already available to respond to today's market needs but Dense WDM technologies will be needed and colorless technologies are essential to provide simple and cost-effective WDM PON systems. We propose in this paper to demonstrate the capabilities of a DWDM PON system prototype based on self-seeded RSOAs and designed to transmit CPRI over 60 km of fiber at 2.5 Gbit/s.

  9. Upstream vertical cavity surface-emitting lasers for fault monitoring and localization in WDM passive optical networks

    Science.gov (United States)

    Wong, Elaine; Zhao, Xiaoxue; Chang-Hasnain, Connie J.

    2008-04-01

    As wavelength division multiplexed passive optical networks (WDM-PONs) are expected to be first deployed to transport high capacity services to business customers, real-time knowledge of fiber/device faults and the location of such faults will be a necessity to guarantee reliability. Nonetheless, the added benefit of implementing fault monitoring capability should only incur minimal cost associated with upgrades to the network. In this work, we propose and experimentally demonstrate a fault monitoring and localization scheme based on a highly-sensitive and potentially low-cost monitor in conjunction with vertical cavity surface-emitting lasers (VCSELs). The VCSELs are used as upstream transmitters in the WDM-PON. The proposed scheme benefits from the high reflectivity of the top distributed Bragg reflector (DBR) mirror of optical injection-locked (OIL) VCSELs to reflect monitoring channels back to the central office for monitoring. Characterization of the fault monitor demonstrates high sensitivity, low bandwidth requirements, and potentially low output power. The added advantage of the proposed fault monitoring scheme incurs only a 0.5 dB penalty on the upstream transmissions on the existing infrastructure.

  10. Energy-efficient WDM-OFDM-PON employing shared OFDM modulation modules in optical line terminal.

    Science.gov (United States)

    Hu, Xiaofeng; Zhang, Liang; Cao, Pan; Wang, Kongtao; Su, Yikai

    2012-03-26

    We propose and experimentally demonstrate a scheme to improve the energy efficiency of wavelength division multiplexing - orthogonal frequency division multiplexing - passive optical networks (WDM-OFDM-PONs). By using an N × M opto-mechanic switch in optical line terminal (OLT), an OFDM modulation module is shared by several channels to deliver data to multiple users with low traffic demands during non-peak hours of the day, thus greatly reducing the number of operating devices and minimizing the energy consumption of the OLT. An experiment utilizing one OFDM modulation module to serve three optical network units (ONUs) in a WDM-OFDM-PON is performed to verify the feasibility of our proposal. Theoretical analysis and numerical calculation show that the proposed scheme can achieve a saving of 23.6% in the energy consumption of the OFDM modulation modules compared to conventional WDM-OFDM-PON.

  11. All-optical OXC transition strategy from WDM optical network to elastic optical network.

    Science.gov (United States)

    Chen, Xin; Li, Juhao; Guo, Bingli; Zhu, Paikun; Tang, Ruizhi; Chen, Zhangyuan; He, Yongqi

    2016-02-22

    Elastic optical network (EON) has been proposed recently as a spectrum-efficient optical layer to adapt to rapidly-increasing traffic demands instead of current deployed wavelength-division-multiplexing (WDM) optical network. In contrast with conventional WDM optical cross-connect (OXCs) based on wavelength selective switches (WSSs), the EON OXCs are based on spectrum selective switches (SSSs) which are much more expensive than WSSs, especially for large-scale switching architectures. So the transition cost from WDM OXCs to EON OXCs is a major obstacle to realizing EON. In this paper, we propose and experimentally demonstrate a transition OXC (TOXC) structure based on 2-stage cascading switching architectures, which make full use of available WSSs in current deployed WDM OXCs to reduce number and port count of required SSSs. Moreover, we propose a contention-aware spectrum allocation (CASA) scheme for EON built with the proposed TOXCs. We show by simulation that the TOXCs reduce the network capital expenditure transiting from WDM optical network to EON about 50%, with a minor traffic blocking performance degradation and about 10% accommodated traffic number detriment compared with all-SSS EON OXC architectures.

  12. All-optical WDM Regeneration of DPSK Signals using Optical Fourier Transformation and Phase Sensitive Amplification

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Kjøller, Niels-Kristian

    2015-01-01

    We propose a novel all-optical WDM regeneration scheme for DPSK signals based on optical Fourier transformation and phase sensitive amplification. Phase regeneration of a WDM signal consisting of 4x10-Gbit/s phase noise degraded DPSK channels is demonstrated for the first time.......We propose a novel all-optical WDM regeneration scheme for DPSK signals based on optical Fourier transformation and phase sensitive amplification. Phase regeneration of a WDM signal consisting of 4x10-Gbit/s phase noise degraded DPSK channels is demonstrated for the first time....

  13. All-Optical Ultra-High-Speed OFDM to Nyquist-WDM Conversion Based on Complete Optical Fourier Transformation

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Mulvad, Hans Christian Hansen

    2016-01-01

    We propose a novel all-optical ultra-high-speed orthogonal frequency-division multiplexing (OFDM) to Nyquist wavelength-division multiplexing (Nyquist-WDM) conversion scheme, achieved by exchanging the temporal and spectral profiles using a complete optical Fourier transformation (OFT). This scheme...... enables high-speed OFDM to Nyquist-WDM conversion without complex optical/electrical/optical conversion. The all-optical OFDM transmitter is based on the generation of OFDM symbols with a low duty cycle by rectangular temporal gating, which in combination with optical time-division multiplexing yields...... a higher symbol-rate OFDM signal. In the receiver, the converted Nyquist-WDM super-channel is WDM demultiplexed into individual Nyquist-WDM channels using a rectangular optical bandpass filter, followed by optical sampling at the intersymbol-interference free point. In the experimental demonstration...

  14. OFDM RF power-fading circumvention for long-reach WDM-PON.

    Science.gov (United States)

    Chow, C W; Yeh, C H; Sung, J Y

    2014-10-06

    We propose and demonstrate an orthogonal frequency division multiplexing (OFDM) radio-frequency (RF) power-fading circumvention scheme for long-reach wavelength-division-multiplexed passive-optical-network (LR-WDM-PON); hence the same capacity of 40 Gb/s can be provided to all the optical-networking-units (ONUs) in the LR-WDM-PON. Numerical analysis and proof-of-concept experiment are performed.

  15. All-optical ultra-high-speed OFDM to Nyquist-WDM conversion

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Mulvad, Hans Christian Hansen

    2015-01-01

    We propose an all-optical ultra-high-speed OFDM to Nyquist-WDM conversion scheme based on complete OFT. An 8-subcarrier 640 Gbit/s DPSK OFDM super-channel is converted to eight 80-Gbit/s Nyquist-WDM channels with BER <10−9 performance for all channels.......We propose an all-optical ultra-high-speed OFDM to Nyquist-WDM conversion scheme based on complete OFT. An 8-subcarrier 640 Gbit/s DPSK OFDM super-channel is converted to eight 80-Gbit/s Nyquist-WDM channels with BER

  16. Experimental demonstrations of all-optical networking functions for WDM optical networks

    Science.gov (United States)

    Gurkan, Deniz

    The deployment of optical networks will enable high capacity links between users but will introduce the problems associated with transporting and managing more channels. Many network functions should be implemented in optical domain; main reasons are: to avoid electronic processing bottlenecks, to achieve data-format and data-rate independence, to provide reliable and cost efficient control and management information, to simultaneously process multiple wavelength channel operation for wavelength division multiplexed (WDM) optical networks. The following novel experimental demonstrations of network functions in the optical domain are presented: Variable-bit-rate recognition of the header information in a data packet. The technique is reconfigurable for different header sequences and uses optical correlators as look-up tables. The header is processed and a signal is sent to the switch for a series of incoming data packets at 155 Mb/s, 622 Mb/s, and 2.5 Gb/s in a reconfigurable network. Simultaneous optical time-slot-interchange and wavelength conversion of the bits in a 2.5-Gb/s data stream to achieve a reconfigurable time/wavelength switch. The technique uses difference-frequency-generation (DFG) for wavelength conversion and fiber Bragg gratings (FBG) as wavelength-dependent optical time buffers. The WDM header recognition module simultaneously recognizing two header bits on each of two 2.5-Gbit/s WDM packet streams. The module is tunable to enable reconfigurable look-up tables. Simultaneous and independent label swapping and wavelength conversion of two WDM channels for a multi-protocol label switching (MPLS) network. Demonstration of label swapping of distinct 8-bit-long labels for two WDM data channels is presented. Two-dimensional code conversion module for an optical code-division multiple-access (O-CDMA) local area network (LAN) system. Simultaneous wavelength conversion and time shifting is achieved to enable flexible code conversion and increase code re

  17. Performance comparison of a wdm pon with tdm pon at 10 gbps

    International Nuclear Information System (INIS)

    Usman, M.

    2014-01-01

    Recent developments in optical technologies have realized wavelength division multiplexed passive optical network (WDM PON) as a promising and a cost-effective solution for the next generation networks. Due to the intrinsic optical transparency and extremely high transmission capacity, WDM PON is considered more future oriented than conventional TDM PON. In this paper we compare an eight channel WDM PON with an eight channel TDM PON, both operating at 10 Gbps data rate. Network parameters like input laser power, optical fiber length and optical amplifier gain are varied and their impact on performance parameters i.e. Q-factor, BER, OSNR, Eye opening and Extinction ratio penalty is recorded. Results reveal that WDM PON exhibits superior performance than TDM PON in each case. (author)

  18. Design and implementation of flexible TWDM-PON with PtP WDM overlay based on WSS for next-generation optical access networks

    Science.gov (United States)

    Wu, Bin; Yin, Hongxi; Qin, Jie; Liu, Chang; Liu, Anliang; Shao, Qi; Xu, Xiaoguang

    2016-09-01

    Aiming at the increasing demand of the diversification services and flexible bandwidth allocation of the future access networks, a flexible passive optical network (PON) scheme combining time and wavelength division multiplexing (TWDM) with point-to-point wavelength division multiplexing (PtP WDM) overlay is proposed for the next-generation optical access networks in this paper. A novel software-defined optical distribution network (ODN) structure is designed based on wavelength selective switches (WSS), which can implement wavelength and bandwidth dynamical allocations and suits for the bursty traffic. The experimental results reveal that the TWDM-PON can provide 40 Gb/s downstream and 10 Gb/s upstream data transmission, while the PtP WDM-PON can support 10 GHz point-to-point dedicated bandwidth as the overlay complement system. The wavelengths of the TWDM-PON and PtP WDM-PON are allocated dynamically based on WSS, which verifies the feasibility of the proposed structure.

  19. WDM hybrid microoptical transceiver with Bragg volume grating

    Science.gov (United States)

    Jeřábek, Vitezslav; Armas, Julio; Mareš, David; Prajzler, Václav

    2012-02-01

    The paper presents the design, simulation and construction results of the wavelength division multiplex bidirectional transceiver module (WDM transceiver) for the passive optical network (PON) of a fiber to the home (FTTH) topology network. WDM transceiver uses a microoptical hybrid integration technology with volume holographic Bragg grating triplex filter -VHGT and a collimation lenses imagine system for wavelength multiplexing/ demultiplexing. This transmission type VHGT filter has high diffraction angle, very low insertion loses and optical crosstalk, which guide to very good technical parameters of transceiver module. WDM transceiver has been constructed using system of a four micromodules in the new circle topology. The optical micromodule with VHGT filter and collimation and decollimation lenses, two optoelectronics microwave receiver micromodules for receiving download information (internet and digital TV signals) and optoelectronic transmitter micromodule for transmitting upload information. In the paper is presented the optical analysis of the optical imagine system by ray-transfer matrix. We compute and measure VHGT characteristics such as diffraction angle, diffraction efficiency and diffraction crosstalk of the optical system for 1310, 1490 and 1550 nm wavelength radiation. For the design of optoelectronic receiver micromodule was used the low signal electrical equivalent circuit for the dynamic performance signal analysis. In the paper is presented the planar form WDM transceiver with polymer optical waveguides and two stage interference demultiplexing optical filter as well.

  20. GigaWaM—Next-Generation WDM-PON Enabling Gigabit Per-User Data Bandwidth

    DEFF Research Database (Denmark)

    Prince, Kamau; Gibbon, Timothy Braidwood; Rodes Lopez, Roberto

    2012-01-01

    The “Gigabit access passive optical network using wavelength division multiplexing” project aims to implement 64-Gb/s data transmission over 20-km single-mode fiber. Per-user symmetric data rates of 1-Gb/s will be achieved using wavelength division multiplexing passive optical network (WDM-PON) a...

  1. Self-healing ring-based WDM-PON

    Science.gov (United States)

    Zhou, Yang; Gan, Chaoqin; Zhu, Long

    2010-05-01

    In this paper, a survivable ring-based wavelength-division-multiplexing (WDM)-passive optical network (PON) for fiber protection is proposed. Protections for feeder fiber and distributed fiber are independent in the scheme. Optical line terminal (OLT) and optical network units (ONUs) can automatically switch to protection link when fiber failure occurs. Protection distributed fiber is not required in the scheme. Cost-effective components are used in ONUs to minimize costs of network. A simulation study is performed to demonstrate the scheme. Its result shows good performance of upstream and downstream signals.

  2. Self-homodyne optical OFDM for broadband WDM-PONs with crosstalk-free remodulation and enhanced tolerance to Rayleigh noise

    Science.gov (United States)

    Lyu, WeiChao; Wang, Andong; Xie, Dequan; Zhu, Long; Guan, Xun; Wang, Jian; Xu, Jing

    2018-05-01

    We propose a novel architecture for wavelength-division-multiplexed passive optical network (WDM-PON) that can simultaneously circumvent both remodulation crosstalk and Rayleigh noise, based on self-homodyne detection and optical orthogonal frequency-division multiplexing (OFDM) remodulation. The proposed self-homodyne detection at optical network unit (ONU) requires neither frequency offset compensation nor phase noise compensation, and thus can significantly reduce system complexity and power consumption. Bidirectional transmission of 12.5 Gb/s down- and up-stream signals, via single 25 km single-mode fiber without dispersion compensation, is demonstrated in a proof-of-concept experiment.

  3. An agent-based QoS provisioning mechanism for WDM optical networks

    Science.gov (United States)

    Ouyang, Yong; Zeng, Qingji; Yue, Ling

    2004-04-01

    This paper addresses QoS provisioning mechanisms in the WDM optical networks. With the appearance of metropolitan optical network, a hierarchical metro and wide area optical network will be envisioned in the near future. This hierarchical optical transport network is often divided into optical domains by geography, administration and technology, which usually employ different QoS routing algorithms and policies. To provide end-to-end optical QoS is becoming a new challenge for the optical network design. In this paper, we first give an overview of issues on the QoS provisioning in data, control and management planes of the WDM optical network. And then three provisioning approaches are analyzed and compared. Finally, we propose an agent-based hybrid centralized/distributed QoS provisioning mechanism based on the concept of domain agent. This agent-based hybrid mechanism employs centralized approach in the domain and distributed approach between domains. It offers scalability and intra-domain optimal QoS routing. It also keeps independence and interoperability between domains.

  4. A Novel Reliable WDM-PON System

    Science.gov (United States)

    Chen, Benyang; Gan, Chaoqin; Qi, Yongqian; Xia, Lei

    2011-12-01

    In this paper, a reliable Wavelength-Division-Multiplexing Passive Optical Network (WDM-PON) system is proposed. It can provide the protection against both the feeder fiber failure and the distribution fiber failure. When the fiber failure occurs, the corresponding switches in the OLT and in the ONU can switch to the protection link without affecting the users in normal status. That is to say, the protection for one ONU is independent of the other ONUs.

  5. Combined Optical and Electrical Spectrum Shaping for High-Baud-Rate Nyquist-WDM Transceivers

    DEFF Research Database (Denmark)

    Porto da Silva, Edson; Borkowski, Robert; Preussler, Stefan

    2016-01-01

    bandwidth is related to the optical comb parameters 25 and the pulse shaping of the modulating waveforms in the electrical domain. Such de- 26 pendence may result in broadening of the modulated spectra, which can degrade the 27 performance of Nyquist-WDM systems due to interchannel crosstalk penalties....... To investigate the benefits of the proposed approach, we demonstrate 32 the first WDM Nyquist-OTDM signal generation based on the periodic train of sinc pulses 33 and electrical spectrum shaping. Straight line transmission of five 112.5-Gbd Nyquist- 34 OTDM dual-polarization quadrature phase-shift keying (QPSK......We discuss the benefits and limitations of optical time-division multiplexing 22 (OTDM) techniques based on the optical generation of a periodic train of sinc pulses for 23 wavelength-division multiplexing (WDM) transmission at high baud rates. It is shown 24 how the modulated OTDM spectrum...

  6. 2x2 MIMO-OFDM Gigabit fiber-wireless access system based on polarization division multiplexed WDM-PON

    DEFF Research Database (Denmark)

    Deng, Lei; Pang, Xiaodan; Zhao, Ying

    2012-01-01

    We propose a spectral efficient radio over wavelength division multiplexed passive optical network (WDM-PON) system by combining optical polarization division multiplexing (PDM) and wireless multiple input multiple output (MIMO) spatial multiplexing techniques. In our experiment, a training-based...

  7. OTDM-WDM Conversion Based on Time-Domain Optical Fourier Transformation with Spectral Compression

    DEFF Research Database (Denmark)

    Mulvad, Hans Christian Hansen; Palushani, Evarist; Galili, Michael

    2011-01-01

    We propose a scheme enabling direct serial-to-parallel conversion of OTDM data tributaries onto a WDM grid, based on optical Fourier transformation with spectral compression. Demonstrations on 320 Gbit/s and 640 Gbit/s OTDM data are shown.......We propose a scheme enabling direct serial-to-parallel conversion of OTDM data tributaries onto a WDM grid, based on optical Fourier transformation with spectral compression. Demonstrations on 320 Gbit/s and 640 Gbit/s OTDM data are shown....

  8. WDM Network and Multicasting Protocol Strategies

    Directory of Open Access Journals (Sweden)

    Pinar Kirci

    2014-01-01

    Full Text Available Optical technology gains extensive attention and ever increasing improvement because of the huge amount of network traffic caused by the growing number of internet users and their rising demands. However, with wavelength division multiplexing (WDM, it is easier to take the advantage of optical networks and optical burst switching (OBS and to construct WDM networks with low delay rates and better data transparency these technologies are the best choices. Furthermore, multicasting in WDM is an urgent solution for bandwidth-intensive applications. In the paper, a new multicasting protocol with OBS is proposed. The protocol depends on a leaf initiated structure. The network is composed of source, ingress switches, intermediate switches, edge switches, and client nodes. The performance of the protocol is examined with Just Enough Time (JET and Just In Time (JIT reservation protocols. Also, the paper involves most of the recent advances about WDM multicasting in optical networks. WDM multicasting in optical networks is given as three common subtitles: Broadcast and-select networks, wavelength-routed networks, and OBS networks. Also, in the paper, multicast routing protocols are briefly summarized and optical burst switched WDM networks are investigated with the proposed multicast schemes.

  9. Temporal Probabilistic Constellation Shaping for WDM Optical Communication Systems

    DEFF Research Database (Denmark)

    Yankov, Metodi Plamenov; Forchhammer, Søren

    2016-01-01

    Finite state machine sources transmitting QPSK are studied as input to WDM optical fiber systems with ideal distributed Raman amplification. The probabilities of successive constellation symbols are shaped for nonlinear transmission and gains of around 500km (5-10%) are demonstrated...

  10. Temporal Probabilistic Constellation Shaping for WDM Optical Communication Systems

    OpenAIRE

    Yankov, Metodi Plamenov; Forchhammer, Søren

    2016-01-01

    Finite state machine sources transmitting QPSK are studied as input to WDM optical fiber systems with ideal distributed Raman amplification. The probabilities of successive constellation symbols are shaped for nonlinear transmission and gains of around 500km (5-10%) are demonstrated

  11. Time lens based optical fourier transformation for advanced processing of spectrally-efficient OFDM and N-WDM signals

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Morioka, Toshio

    2016-01-01

    We review recent progress in the use of time lens based optical Fourier transformation for advanced optical signal processing, with focus on all-optical generation, detection and format conversion of spectrally-efficient OFDM and N-WDM signals.......We review recent progress in the use of time lens based optical Fourier transformation for advanced optical signal processing, with focus on all-optical generation, detection and format conversion of spectrally-efficient OFDM and N-WDM signals....

  12. The Advent of WDM and the All-Optical Network: A Reality Check.

    Science.gov (United States)

    Lutkowitz, Mark

    1998-01-01

    Discussion of the telecommunications industry focuses on WDM (wavelength division multiplexing) as a solution for dealing with capacity constraints. Highlights include fiber optic technology; cross-connecting and switching wavelengths; SONET (Synchronous Optical Network) and wavelength networking; and optical TDM (Time Division Multiplexing). (LRW)

  13. An OTDM-To-WDM Converter Using Optical Fourier Transformation

    OpenAIRE

    Khin Su Myat Min; Zaw Myo Lwin; Hla Myo Tun

    2015-01-01

    We demonstrate serial-to-parallel conversion of 40 Gbps optical time division multiplexed OTDM signal to 4x10 Gbps wavelength division-multiplexed WDM individual channels by using Optical Fourier Transformation OFT method. OFT is also called time lens technique and it is implemented by the combination of dispersive fiber and phase modulation. In this research electro-optic phase modulator EOM is used as time lens. As our investigations simulation results and bit error rate BER measurements ar...

  14. The Gain of Performance of Optical WDM Networks

    Directory of Open Access Journals (Sweden)

    Miroslav Bahleda

    2008-01-01

    Full Text Available We study the blocking probability and performance of single-fiber and multifiber optical networks with wavelength division multiplexing (WDM. We extend the well-known analytical blocking probability model by Barry and Humblet to the general model, which is proposed for both single-fiber and multifiber network paths with any kind of wavelength conversion (no, limited, or full wavelength conversion and for uniform and nonuniform link loads. We investigate the effect of the link load, wavelength conversion degree, and the number of wavelengths, fibers, and hops on blocking probability. We also extend the definition of the gain of wavelength conversion by Barry and Humblet to the gain of performance, which is fully general. Thanks to this definition and implementation of our model, we compare different WDM node architectures and present interesting results.

  15. An OTDM-To-WDM Converter Using Optical Fourier Transformation

    Directory of Open Access Journals (Sweden)

    Khin Su Myat Min

    2015-08-01

    Full Text Available We demonstrate serial-to-parallel conversion of 40 Gbps optical time division multiplexed OTDM signal to 4x10 Gbps wavelength division-multiplexed WDM individual channels by using Optical Fourier Transformation OFT method. OFT is also called time lens technique and it is implemented by the combination of dispersive fiber and phase modulation. In this research electro-optic phase modulator EOM is used as time lens. As our investigations simulation results and bit error rate BER measurements are expressed.

  16. A 10 Gb/s passive-components-based WDM-TDM reconfigurable optical access network architecture

    NARCIS (Netherlands)

    Tran, N.C.; Jung, H.D.; Okonkwo, C.M.; Tangdiongga, E.; Koonen, A.M.J.

    2011-01-01

    We propose a cost-effective, reconfigurable optical access network by employing passive components in the remote node and dual conventional optical transceivers in ONUs. The architecture is demonstrated with bidirectional transmission at 10 Gb/s.

  17. A New Wavelength Optimization and Energy-Saving Scheme Based on Network Coding in Software-Defined WDM-PON Networks

    Science.gov (United States)

    Ren, Danping; Wu, Shanshan; Zhang, Lijing

    2016-09-01

    In view of the characteristics of the global control and flexible monitor of software-defined networks (SDN), we proposes a new optical access network architecture dedicated to Wavelength Division Multiplexing-Passive Optical Network (WDM-PON) systems based on SDN. The network coding (NC) technology is also applied into this architecture to enhance the utilization of wavelength resource and reduce the costs of light source. Simulation results show that this scheme can optimize the throughput of the WDM-PON network, greatly reduce the system time delay and energy consumption.

  18. Dynamic Bandwidth Allocation with Effective Utilization of Polling Interval over WDM/TDM PON

    Science.gov (United States)

    Ni, Cuiping; Gan, Chaoqin; Gao, Ziyue

    2014-12-01

    WDM/TDM (wavelength-division multiplexing/time-division multiplexing) PON (passive optical network) appears to be an attractive solution for the next generation optical access networks. Dynamic bandwidth allocation (DBA) plays a crucial role in efficiently and fairly allocating the bandwidth among all users in WDM/TDM PON. In this paper, two dynamic bandwidth allocation schemes (DBA1 and DBA2) are proposed to eliminate the idle time of polling cycles (i.e. polling interval), improve bandwidth utilization and make full use of bandwidth resources. The two DBA schemes adjust the time slot of sending request information and make fair scheduling among users to achieve the effective utilization of polling interval in WDM/TDM PON. The simulation and theoretical analyses verify that the proposed schemes outperform the conventional DBA scheme. We also make comparisons between the two schemes in terms of bandwidth utilization and average packet delay to further demonstrate the effectiveness of the scheme of DBA2.

  19. Bandwidth Allocation Method by Service for WDM EPON

    Institute of Scientific and Technical Information of China (English)

    Yongseok; Chang; Changgyu; Choi; Jonghoon; Eom; Sungho; Kim

    2003-01-01

    A WDM(Wavelength Division Multiplexing) EPON(Ethernet Passive Optical Network) is an economical and efficient access network that has attracted significant research attention in recent years. A MAC(Media Access Control) Protocol of PON is based on TDMA(Time Division Multiple Access) basically, we can classify this protocol into a fixed length slot assignment method suitable for leased line supporting Qos(Quality of Service) and a variable length slot assignment method suitable for LAN/MAN with the best ...

  20. Gigabit Access Passive Optical Network Using Wavelength Division Multiplexing—GigaWaM

    DEFF Research Database (Denmark)

    Iglesias Olmedo, Miguel; Suhr, Lau; Prince, Kamau

    2014-01-01

    passive optical network (WDM-PON) architecture that can deliver symmetric 1 Gb/s to 64 users over 20 km standard single mode fiber using the L and C bands for down and upstream, respectively. During the course of the project, a number of key enabling technologies were developed including tunable......This paper summarizes the research and technical achievements done under the EU project GigaWaM. The goal of this project was to develop a cost-effective solution that can meet the increasing bandwidth demands in access networks. The approach was to use a novel wavelength division multiplexing...... transceivers, athermal 50 GHz spaced arrayed waveguide grating multiplexer devices, novel hybridization technologies for integration of passive and active electro-optic devices, and system-level algorithms that ensure the quality of service. The outcome of the project proved a reliable, cost...

  1. Remote-seeded WDM-PON upgrade using linear semiconductor opticalamplifiers

    Science.gov (United States)

    Martínez, J. J.; Merayo, N.; Villafranca, A.; Garcés, I.

    2013-05-01

    In this work we have assessed the capacity of a linear (gain-clamped) semiconductor optical amplifier to enhance the budget of WDM PON network links for their evolution from FTTC to FTTH access. A wavelength-seeded network architecture has been considered, evaluating the performance improvement obtained by the use of an amplifier for the cases of link reach extension and optical splitting to reach end users. The evaluation measurements have shown that the extra budget is enough to compensate for the losses of a passive splitter up to atleast 1:16 division rate or to highly increment reach of the network.

  2. A cost-effective structure of a centralized-light-source WDM-PON utilizing inverse-duobinary-RZ downstream and DPSK upstream

    International Nuclear Information System (INIS)

    Chen Long-Quan; Qiao Yao-Jun; Ji Yue-Feng

    2013-01-01

    In this paper, we propose a new structure of a centralized-light-source wavelength division multiplexed passive optical network (WDM-PON) utilizing inverse-duobinary-return-to-zero (inverse-duobinary-RZ) downstream and DPSK upstream. It reuses downstream light for the upstream modulation, which retrenches lasers assembled at each optical network unit (ONU), and ultimately cuts down the cost of ONUs a great deal. Meanwhile, a 50-km-reach WDM-PON experiment with 10-Gb/s inverse-duobinary-RZ downstream and 6-Gb/s DPSK upstream is demonstrated here. It is revealed to be a novel cost-effective alternative for the next generation access network. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  3. A reconfigurable all-optical VPN based on XGM effect of SOA in WDM PON

    Science.gov (United States)

    Hu, Xiaofeng; Zhang, Liang; Cao, Pan; Wang, Tao; Su, Yikai

    2010-12-01

    We propose and experimentally demonstrate a reconfigurable all-optical VPN scheme enabling intercommunications among different ONUs in a WDM PON. Reconfiguration is realized by dynamically setting wavelength conversion of optical VPN signal using a SOA in the OLT.

  4. Fiber nonlinearity mitigation of WDM-PDM QPSK/16-QAM signals using fiber-optic parametric amplifiers based multiple optical phase conjugations

    DEFF Research Database (Denmark)

    Hu, Hao; Jopson, Robert M.; Gnauck, Alan H.

    2017-01-01

    We demonstrate fiber nonlinearity mitigation by using multiple optical phase conjugations (OPCs) in the WDM transmission systems of both 8 x 32-Gbaud PDM QPSK channels and 8 x 32-Gbaud PDM 16-QAM channels, showing improved performance over a single mid-span OPC and no OPC in terms of nonlinear...... threshold and a best achievable Q(2) factor after transmission. In addition, after an even number of OPCs, the signal wavelength can be preserved after transmission. The performance of multiple OPCs for fiber nonlinearity mitigation was evaluated independently for WDM PDM QPSK signals and WDM PDM 16QAM...... to 1 dB compared to the case of mid-span OPC. The improvements in the best achievable Q(2) factors were more modest, ranging from 0.2 dB to 1.1 dB for the results presented. (C) 2017 Optical Society of America...

  5. Study on the capability of four-level partial response equalization in RSOA-based WDM-PON

    Science.gov (United States)

    Guo, Qi; Tran, An Vu

    2010-12-01

    The expected development of advanced video services with HDTV quality demands the delivery of more than Gb/s link to end users across the last mile connection. Future access networks are also required to have long reach for reduction in the number of central offices (CO). Fueled by those requirements, we propose a novel equalization scheme that increases the capacity and reach of the wavelength division multiplexing passive optical network (WDM-PON) based on a low bandwidth reflective semiconductor optical amplifier (RSOA). We investigate the characteristics of 10 Gb/s upstream transmission in WDM-PON using RSOA with only 1.2 GHz electrical bandwidth and various lengths of fiber. It is proven that the proposed four-level partial response equalizer (PRE) is capable of mitigating the impact of ISI in the received signals from optical network units (ONU) located 0 km to 75 km away from the optical line terminal (OLT).

  6. Passive Optical Access Networks: State of the Art and Future Evolution

    Directory of Open Access Journals (Sweden)

    Tommaso Muciaccia

    2014-10-01

    Full Text Available In the very last years, optical access networks are growing very rapidly, from both the network operators and the research interests points of view. Fiber To The Home (FTTH is already a reality in plenty of real contexts and there has been a further stimulus to the proposal of new solutions and the investigation of new possibilities, in order to optimize network performance and reduce capital and operational expenditure. A complete and systematic overview of passive optical access networks is presented in this paper, concerning both the hot research topics and the main operative issues about the design guidelines and the deployment of Passive Optical Networks (PON architectures, nowadays the most commonly implemented approach to realize optical fiber links in the access networks. A comparison of advantages and disadvantages of different multiplexing techniques is discussed, with specific reference to WDM-based networks, almost universally considered as the enabling technology for future proof bandwidth requirements. An exhaustive summary is also given about the-state-of-the-art of modulation and encoding techniques recently proposed by the scientific community, as well as the open challenges (such as colorless and coolerless ONUs for telecom companies and international standardization compliance.

  7. An Optical Multicast Routing with Minimal Network Coding Operations in WDM Networks

    Directory of Open Access Journals (Sweden)

    Huanlin Liu

    2014-01-01

    Full Text Available Network coding can improve the optical multicast routing performance in terms of network throughput, bandwidth utilization, and traffic load balance. But network coding needs high encoding operations costs in all-optical WDM networks due to shortage of optical RAM. In the paper, the network coding operation is defined to evaluate the number of network coding operation cost in the paper. An optical multicast routing algorithm based on minimal number of network coding operations is proposed to improve the multicast capacity. Two heuristic criteria are designed to establish the multicast routing with low network coding cost and high multicast capacity. One is to select one path from the former K shortest paths with the least probability of dropping the multicast maximal capacity. The other is to select the path with lowest potential coding operations with the highest link shared degree among the multiple wavelength disjoint paths cluster from source to each destination. Comparing with the other multicast routing based on network coding, simulation results show that the proposed multicast routing algorithm can effectively reduce the times of network coding operations, can improve the probability of reaching multicast maximal capacity, and can keep the less multicast routing link cost for optical WDM networks.

  8. Integration of Optically Generated Impulse Radio UWB Signals into Baseband WDM-PON

    DEFF Research Database (Denmark)

    Pham, Tien Thang; Yu, Xianbin; Dittmann, Lars

    2011-01-01

    We propose a compact integration system to simultaneously provide wireline and wireless (baseband and ultra-wide band (UWB)) services to end-users in a WDM-PON. A 1-Gbps UWB signal is optically generated and shares the same wavelength with the baseband signal. Error-free performance was achieved...

  9. Cost-effective TCM-based WDM-PON for highly asymmetric traffic conditions.

    Science.gov (United States)

    Lee, Danbi; Kwon, Won-Bae; Chae, Chang-Joon; Park, Chang-Soo

    2015-11-16

    A time compression multiplexing (TCM)-based wavelength division multiplexing passive optical network (WDM-PON) using a reflective semiconductor optical amplifier (RSOA) is proposed, and its feasibility is experimentally demonstrated. In the proposed system, the RSOA pre-amplifies a 10 Gb/s downstream signal and modulates the RSOA output, wavelength-locked to the downstream signal, with a 1.25 Gb/s upstream signal simultaneously. The sensitivity of the downstream signal is improved by about 3 dB through the RSOA. The downstream and upstream signals have power penalties of about 0.1 dB and 1.1 dB, respectively, at bit error rates (BERs) of 10(-9) after 20 km transmission.

  10. On the fly all-optical packet switching based on hybrid WDM/OCDMA labeling scheme

    Science.gov (United States)

    Brahmi, Houssem; Giannoulis, Giannis; Menif, Mourad; Katopodis, Vasilis; Kalavrouziotis, Dimitrios; Kouloumentas, Christos; Groumas, Panos; Kanakis, Giannis; Stamatiadis, Christos; Avramopoulos, Hercules; Erasme, Didier

    2014-02-01

    We introduce a novel design of an all-optical packet routing node that allows for the selection and forwarding of optical packets based on the routing information contained in hybrid wavelength division multiplexing/optical code division multiple access (WDM/OCDMA) labels. A stripping paradigm of optical code-label is adopted. The router is built around an optical-code gate that consists in an optical flip-flop controlled by two fiber Bragg grating correlators and is combined with a Mach-Zehnder interferometer (MZI)-based forwarding gate. We experimentally verify the proof-of-principle operation of the proposed self-routing node under NRZ and OCDMA packet traffic conditions. The successful switching of elastic NRZ payload at 40 Gb/s controlled by DS-OCDMA coded labels and the forwarding operation of encoded data using EQC codes are presented. Proper auto-correlation functions are obtained with higher than 8.1 dB contrast ratio, suitable to efficiently trigger the latching device with a contrast ratio of 11.6 dB and switching times below 3.8 ns. Error-free operation is achieved with 1.5 dB penalty for 40 Gb/s NRZ data and with 2.1 dB penalty for DS-OCDMA packets. The scheme can further be applied to large-scale optical packet switching networks by exploiting efficient optical coders allocated at different WDM channels.

  11. Two-dimensional priority-based dynamic resource allocation algorithm for QoS in WDM/TDM PON networks

    Science.gov (United States)

    Sun, Yixin; Liu, Bo; Zhang, Lijia; Xin, Xiangjun; Zhang, Qi; Rao, Lan

    2018-01-01

    Wavelength division multiplexing/time division multiplexing (WDM/TDM) passive optical networks (PON) is being viewed as a promising solution for delivering multiple services and applications. The hybrid WDM / TDM PON uses the wavelength and bandwidth allocation strategy to control the distribution of the wavelength channels in the uplink direction, so that it can ensure the high bandwidth requirements of multiple Optical Network Units (ONUs) while improving the wavelength resource utilization. Through the investigation of the presented dynamic bandwidth allocation algorithms, these algorithms can't satisfy the requirements of different levels of service very well while adapting to the structural characteristics of mixed WDM / TDM PON system. This paper introduces a novel wavelength and bandwidth allocation algorithm to efficiently utilize the bandwidth and support QoS (Quality of Service) guarantees in WDM/TDM PON. Two priority based polling subcycles are introduced in order to increase system efficiency and improve system performance. The fixed priority polling subcycle and dynamic priority polling subcycle follow different principles to implement wavelength and bandwidth allocation according to the priority of different levels of service. A simulation was conducted to study the performance of the priority based polling in dynamic resource allocation algorithm in WDM/TDM PON. The results show that the performance of delay-sensitive services is greatly improved without degrading QoS guarantees for other services. Compared with the traditional dynamic bandwidth allocation algorithms, this algorithm can meet bandwidth needs of different priority traffic class, achieve low loss rate performance, and ensure real-time of high priority traffic class in terms of overall traffic on the network.

  12. 16 channel WDM regeneration in a single phase-sensitive amplifier through optical Fourier transformation

    DEFF Research Database (Denmark)

    Guan, Pengyu; Da Ros, Francesco; Lillieholm, Mads

    2016-01-01

    We demonstrate simultaneous phase regeneration of 16-WDM DPSK channels using optical Fourier transformation and a single phase-sensitive amplifier. The BERs of 16-WDM×10-Gbit/s phase noise degraded DPSK signals are improved by 0.4-1.3 orders of magnitude...

  13. THEORETICAL EVALUATION OF NONLINEAR EFFECTS ON OPTICAL WDM NETWORKS WITH VARIOUS FIBER TYPES

    Directory of Open Access Journals (Sweden)

    YASIN M. KARFAA

    2010-09-01

    Full Text Available A theoretical study is carried out to evaluate the performance of an opticalwavelength division multiplexing (WDM network transmission system in the presenceof crosstalk due to optical fiber nonlinearities. The most significant nonlinear effects inthe optical fiber which are Cross-Phase Modulation (XPM, Four-Wave Mixing (FWM,and Stimulated Raman Scattering (SRS are investigated. Four types of optical fiber areincluded in the analysis; these are: single-mode fiber (SMF, dispersion compensationfiber (DCF, non-zero dispersion fiber (NZDF, and non-zero dispersion shifted fiber(NZDSF. The results represent the standard deviation of nonlinearity induced crosstalknoise power due to FWM and SRS, XPM power penalty for SMF, DCF, NZDF, andNZDSF types of fiber, besides the Bit Error Rate (BER for the three nonlinear effectsusing standard fiber type (SMF. It is concluded that three significant fiber nonlinearitiesare making huge limitations against increasing the launched power which is desired,otherwise, lower values of launched power limit network expansion including length,distance, covered areas, and number of users accessing the WDM network, unlesssuitable precautions are taken to neutralize the nonlinear effects. Besides, various fibertypes are not behaving similarly towards network parameters.

  14. Concurrent support of higher-layer protocols over WDM

    NARCIS (Netherlands)

    Theelen, B.D.; Voeten, J.P.M.; Putten, van der P.H.A.; Stevens, M.P.J.; Dorren, H.J.S.

    2002-01-01

    To satisfy the severe requirements involved in future communication networks, commercial and research interest in the applicability of wavelength division multiplexing (WDM) is growing. However, since WDM is merely concerned with transmitting bits over optical fibers, full advantage can only be

  15. Energy-Saving Mechanism in WDM/TDM-PON Based on Upstream Network Traffic

    Directory of Open Access Journals (Sweden)

    Paola Garfias

    2014-08-01

    Full Text Available One of the main challenges of Passive Optical Networks (PONs is the resource (bandwidth and wavelength management. Since it has been shown that access networks consume a significant part of the overall energy of the telecom networks, the resource management schemes should also consider energy minimization strategies. To sustain the increased bandwidth demand of emerging applications in the access section of the network, it is expected that next generation optical access networks will adopt the wavelength division/time division multiplexing (WDM/TDM technique to increase PONs capacity. Compared with traditional PONs, the architecture of a WDM/TDM-PON requires more transceivers/receivers, hence they are expected to consume more energy. In this paper, we focus on the energy minimization in WDM/TDM-PONs and we propose an energy-efficient Dynamic Bandwidth and Wavelength Allocation mechanism whose objective is to turn off, whenever possible, the unnecessary upstream traffic receivers at the Optical Line Terminal (OLT. We evaluate our mechanism in different scenarios and show that the proper use of upstream channels leads to relevant energy savings. Our proposed energy-saving mechanism is able to save energy at the OLT while maintaining the introduced penalties in terms of packet delay and cycle time within an acceptable range. We might highlight the benefits of our proposal as a mechanism that maximizes the channel utilization. Detailed implementation of the proposed algorithm is presented, and simulation results are reported to quantify energy savings and effects on network performance on different network scenarios.

  16. Dynamic multicast routing scheme in WDM optical network

    Science.gov (United States)

    Zhu, Yonghua; Dong, Zhiling; Yao, Hong; Yang, Jianyong; Liu, Yibin

    2007-11-01

    During the information era, the Internet and the service of World Wide Web develop rapidly. Therefore, the wider and wider bandwidth is required with the lower and lower cost. The demand of operation turns out to be diversified. Data, images, videos and other special transmission demands share the challenge and opportunity with the service providers. Simultaneously, the electrical equipment has approached their limit. So the optical communication based on the wavelength division multiplexing (WDM) and the optical cross-connects (OXCs) shows great potentials and brilliant future to build an optical network based on the unique technical advantage and multi-wavelength characteristic. In this paper, we propose a multi-layered graph model with inter-path between layers to solve the problem of multicast routing wavelength assignment (RWA) contemporarily by employing an efficient graph theoretic formulation. And at the same time, an efficient dynamic multicast algorithm named Distributed Message Copying Multicast (DMCM) mechanism is also proposed. The multicast tree with minimum hops can be constructed dynamically according to this proposed scheme.

  17. Crosstalk in WDM communication networks

    NARCIS (Netherlands)

    Tafur Monroy, I.; Tangdiongga, E.

    2002-01-01

    The use of advanced transmission and switching techniques such as reconfigurable WDM optical crossconnects is enabling high capacity and flexible optical networking at ultra bit-rates reaching multi-terabits per second. These techniques also offer creative ways to improve the network connectivity

  18. Mathematical Verification for Transmission Performance of Centralized Lightwave WDM-RoF-PON with Quintuple Services Integrated in Each Wavelength Channel

    Directory of Open Access Journals (Sweden)

    Shuai Chen

    2015-01-01

    Full Text Available Wavelength-division-multiplexing passive-optical-network (WDM-PON has been recognized as a promising solution of the “last mile” access as well as multibroadband data services access for end users, and WDM-RoF-PON, which employs radio-over-fiber (RoF technique in WDM-PON, is even a more attractive approach for future broadband fiber and wireless access for its strong availability of centralized multiservices transmission operation and its transparency for bandwidth and signal modulation formats. As for multiservices development in WDM-RoF-PON, various system designs have been reported and verified via simulation or experiment till now, and the scheme with multiservices transmitted in each single wavelength channel is believed as the one that has the highest bandwidth efficiency; however, the corresponding mathematical verification is still hard to be found in state-of-the-art literature. In this paper, system design and data transmission performance of a quintuple services integrated WDM-RoF-PON which jointly employs carrier multiplexing and orthogonal modulation techniques, have been theoretically analyzed and verified in detail; moreover, the system design has been duplicated and verified experimentally and the theory system of such WDM-RoF-PON scheme has thus been formed.

  19. Optimal Golomb Ruler Sequences Generation for Optical WDM Systems: A Novel Parallel Hybrid Multi-objective Bat Algorithm

    Science.gov (United States)

    Bansal, Shonak; Singh, Arun Kumar; Gupta, Neena

    2017-02-01

    In real-life, multi-objective engineering design problems are very tough and time consuming optimization problems due to their high degree of nonlinearities, complexities and inhomogeneity. Nature-inspired based multi-objective optimization algorithms are now becoming popular for solving multi-objective engineering design problems. This paper proposes original multi-objective Bat algorithm (MOBA) and its extended form, namely, novel parallel hybrid multi-objective Bat algorithm (PHMOBA) to generate shortest length Golomb ruler called optimal Golomb ruler (OGR) sequences at a reasonable computation time. The OGRs found their application in optical wavelength division multiplexing (WDM) systems as channel-allocation algorithm to reduce the four-wave mixing (FWM) crosstalk. The performances of both the proposed algorithms to generate OGRs as optical WDM channel-allocation is compared with other existing classical computing and nature-inspired algorithms, including extended quadratic congruence (EQC), search algorithm (SA), genetic algorithms (GAs), biogeography based optimization (BBO) and big bang-big crunch (BB-BC) optimization algorithms. Simulations conclude that the proposed parallel hybrid multi-objective Bat algorithm works efficiently as compared to original multi-objective Bat algorithm and other existing algorithms to generate OGRs for optical WDM systems. The algorithm PHMOBA to generate OGRs, has higher convergence and success rate than original MOBA. The efficiency improvement of proposed PHMOBA to generate OGRs up to 20-marks, in terms of ruler length and total optical channel bandwidth (TBW) is 100 %, whereas for original MOBA is 85 %. Finally the implications for further research are also discussed.

  20. A novel WDM monitoring method

    NARCIS (Netherlands)

    Bergh, van de M.P.H.; Tol, van der J.J.G.M.; Dorren, H.J.S.

    1999-01-01

    A novel method to monitor the performance of WDM channels in an optical network is presented by analyzing the photo-diode current of a detected optical signal. From the photo-diode current, an amplitude histogram is generated, hereafter to be called the probability density function (PDF). By

  1. Multi-granularity Bandwidth Allocation for Large-Scale WDM/TDM PON

    Science.gov (United States)

    Gao, Ziyue; Gan, Chaoqin; Ni, Cuiping; Shi, Qiongling

    2017-12-01

    WDM (wavelength-division multiplexing)/TDM (time-division multiplexing) PON (passive optical network) is being viewed as a promising solution for delivering multiple services and applications, such as high-definition video, video conference and data traffic. Considering the real-time transmission, QoS (quality of services) requirements and differentiated services model, a multi-granularity dynamic bandwidth allocation (DBA) in both domains of wavelengths and time for large-scale hybrid WDM/TDM PON is proposed in this paper. The proposed scheme achieves load balance by using the bandwidth prediction. Based on the bandwidth prediction, the wavelength assignment can be realized fairly and effectively to satisfy the different demands of various classes. Specially, the allocation of residual bandwidth further augments the DBA and makes full use of bandwidth resources in the network. To further improve the network performance, two schemes named extending the cycle of one free wavelength (ECoFW) and large bandwidth shrinkage (LBS) are proposed, which can prevent transmission from interruption when the user employs more than one wavelength. The simulation results show the effectiveness of the proposed scheme.

  2. Dispersion Compensation Requirements for Optical CDMA Using WDM Lasers

    International Nuclear Information System (INIS)

    Mendez, A J; Hendandez, V J; Feng, H X C; Heritage, J P; Lennon, W J

    2001-01-01

    Optical code division multiple access (O-CDMA) uses very narrow transmission pulses and is thus susceptible to fiber optic link impairments. When the O-CDMA is implemented as wavelength/time (W/T) matrices which use wavelength division multiplexing (WDM) sources such as multi-frequency laser transmitters, the susceptibility may be higher due to: (a) the large bandwidth utilized and (b) the requirement that the various wavelength components of the codes be synchronized at the point of modulation and encoding as well as after (optical) correlation. A computer simulation based on the nonlinear Schroedinger equation, developed to study optical networking on the National Transparent Optical Network (NTON), was modified to characterize the impairments on the propagation and decoding of W/T matrix codes over a link of the NTON. Three critical link impairments were identified by the simulation: group velocity dispersion (GVD); the flatness of the optical amplifier gain; and the slope of the GVD. Subsequently, experiments were carried out on the NTON link to verify and refine the simulations as well as to suggest improvements in the W/T matrix signal processing design. The NTON link measurements quantified the O-CDMA dispersion compensation requirements. Dispersion compensation management is essential to assure the performance of W/T matrix codes

  3. Protocol and networking design issues for local access WDM networks

    OpenAIRE

    Salvador, M.R.; Heemstra de Groot, S.M.; Niemegeers, I.G.M.M.

    1999-01-01

    This report gives an overview of some of the protocol and networking design issues that have been addressed in Flamingo, a major ongoing project which investigates the use of WDM optical technology in local access networks. Quality of service delivery and wavelength assignment are focused on in this report. A brief introduction to optical networks and WDM as well as a brief description of Flamingo are also included in this report.

  4. Fiber-optic perimeter security system based on WDM technology

    Science.gov (United States)

    Polyakov, Alexandre V.

    2017-10-01

    Intelligent underground fiber optic perimeter security system is presented. Their structure, operation, software and hardware with neural networks elements are described. System allows not only to establish the fact of violation of the perimeter, but also to locate violations. This is achieved through the use of WDM-technology division spectral information channels. As used quasi-distributed optoelectronic recirculation system as a discrete sensor. The principle of operation is based on registration of the recirculation period change in the closed optoelectronic circuit at different wavelengths under microstrain exposed optical fiber. As a result microstrain fiber having additional power loss in a fiber optical propagating pulse, which causes a time delay as a result of switching moments of the threshold device. To separate the signals generated by intruder noise and interference, the signal analyzer is used, based on the principle of a neural network. The system detects walking, running or crawling intruder, as well as undermining attempts to register under the perimeter line. These alarm systems can be used to protect the perimeters of facilities such as airports, nuclear reactors, power plants, warehouses, and other extended territory.

  5. All-Optical Regeneration System for Optical Wavelength Division Multiplexed Communication Systems

    DEFF Research Database (Denmark)

    2014-01-01

    The invention relates to an all-optical regeneration system for regeneration of optical wavelength division multiplexed WDM data signals in an optical WDM communication system. The system comprises a WDM-to-Optical time domain multiplexing OTDM, WDM-to-OTDM, converter, capable of converting....... The system additionally comprises an OTDM-to-WDM converter for converting the output OTDM data signal to an output WDM data signal. An input of the all-optical regenerator unit is in optical communication with an output of the WDM-to-OTDM converter, and an output of the all-optical regenerator unit...... an input WDM data signal comprising multiple wavelength channels into an input OTDM data signal comprising multiple time multiplexed time channels. The system further comprises an all-optical regenerator unit being configured for regenerating the input OTDM data signal into an output OTDM data signal...

  6. A Novel Line Coding Pair for Fully Passive Long Reach {WDM-PON}s

    DEFF Research Database (Denmark)

    Presi, Marco; Proietti, Roberto; Prince, Kamau

    2008-01-01

    A novel line coding pair allows to use unsaturated flective-SOAs as upstream remodulator in long-reach WDM-PONs. Full-duplex and symmetric 80 km reach is demonstrated without in-line amplification at 1.25 Gb/s......A novel line coding pair allows to use unsaturated flective-SOAs as upstream remodulator in long-reach WDM-PONs. Full-duplex and symmetric 80 km reach is demonstrated without in-line amplification at 1.25 Gb/s...

  7. All-optical multi-wavelength conversion with negative power penalty by a commercial SOA-MZI for WDM wavelength multicast

    NARCIS (Netherlands)

    Yan, N.; Jung, H.D.; Tafur Monroy, I.; Waardt, de H.; Koonen, A.M.J.

    2007-01-01

    WDM wavelength multicast is demonstrated by all-optical multi-wavelength conversion at 10 Gb/s using a commercial SOA-MZI. We report for the first time simultaneous one-to-four conversion with negative power penalty of 1.84 dB.

  8. Low-Complexity Tracking of Laser and Nonlinear Phase Noise in WDM Optical Fiber Systems

    DEFF Research Database (Denmark)

    Yankov, Metodi Plamenov; Fehenberger, Tobias; Barletta, Luca

    2015-01-01

    In this paper, the wavelength division multiplexed (WDM) fiber optic channel is considered. It is shown that for ideal distributed Raman amplification (IDRA), the Wiener process model is suitable for the non-linear phase noise due to cross phase modulation from neighboring channels. Based......, at the moderate received SNR region. The performance in these cases is close to the information rate achieved by the above mentioned trellis processing....

  9. Exploring crosstalk noise generated in the N-port router used in the WDM-based ONoC

    Science.gov (United States)

    Zhang, Zhendong; Xie, Yiyuan; Song, Tingting; He, Chao; Li, Jiachao; Liu, Yong

    2017-07-01

    Compared with optical network-on-chip (ONoC) with single wavelength, ONoC adopting wavelength division multiplexing (WDM) technology possesses a very prominent advantage-higher bandwidth. Therefore, WDM-based ONoC has been considered one of the most promising ways to relieve the rapidly increasing traffic load in communication systems. A WDM-based router, as the core equipment of WDM-based ONoC, is influenced by crosstalk noise, especially the nonlinear crosstalk noise generated by the four-wave mixing effect. Thus, to explore the performance of the N-port nonblocking optical router using WDM, we propose a universal analytic model to analyze the transmission loss, crosstalk noise, optical signal-to-noise ratio (OSNR), and bit error ratio (BER). The research results show that crosstalk noise varies along with signals at different wavelengths in the same channel. For signals with the same wavelength, the noises generated in the different transmission paths are obviously different from each other. For research of transmission loss, OSNR, and BER, similar results can be obtained. Based on the eye diagrams, we can learn that crosstalk noise will cause signal distortion to a certain extent. With this model, capability of this kind of multiport optical router using WDM can be understood conveniently.

  10. Reconfigurable WDM-PON empowered by a low-cost 8-channel directly modulated laser module

    Science.gov (United States)

    Zhang, Yi-ming; Liu, Yu; Zhang, Zhi-ke; Zhao, Ze-ping; Tian, Ye; Zhu, Ning-hua

    2017-11-01

    A 10 Gbit/s 16-km-long reconfigurable wavelength-division-multiplexing passive optical network (WDM-PON) is presented empowered by a low-cost multi-channel directly modulated laser (DML) module. Compared with the case using discrete devices in conventional scheme, the proposed DML module provides a cost-effective solution with reduced complexity. The clear eye diagram and the bit error rate ( BER) of less than 2×10-7 with a sensitivity of -7 dBm are obtained. Due to the special packaging design, the crosstalk between channels under condition of simultaneous operation can be negligible.

  11. Signal Processing Algorithms for Down-Stream Traffic in Next Generation 10 Gbit/s Fixed-Grid Passive Optical Networks

    Directory of Open Access Journals (Sweden)

    Rameez Asif

    2014-01-01

    Full Text Available We have analyzed the impact of digital and optical signal processing algorithms, that is, Volterra equalization (VE, digital backpropagation (BP, and optical phase conjugation with nonlinearity module (OPC-NM, in next generation 10 Gbit/s (also referred to as XG DP-QPSK long haul WDM (fixed-grid passive optical network (PON without midspan repeaters over 120 km standard single mode fiber (SMF link for downstream signals. Due to the compensation of optical Kerr effects, the sensitivity penalty is improved by 2 dB by implementing BP algorithm, 1.5 dB by VE algorithm, and 2.69 dB by OPC-NM. Moreover, with the implementation of NL equalization technique, we are able to get the transmission distance of 126.6 km SMF for the 1 : 1024 split ratio at 5 GHz channel spacing in the nonlinear region.

  12. Ultra-wideband WDM VCSEL arrays by lateral heterogeneous integration

    Science.gov (United States)

    Geske, Jon

    Advancements in heterogeneous integration are a driving factor in the development of evermore sophisticated and functional electronic and photonic devices. Such advancements will merge the optical and electronic capabilities of different material systems onto a common integrated device platform. This thesis presents a new lateral heterogeneous integration technology called nonplanar wafer bonding. The technique is capable of integrating multiple dissimilar semiconductor device structures on the surface of a substrate in a single wafer bond step, leaving different integrated device structures adjacent to each other on the wafer surface. Material characterization and numerical simulations confirm that the material quality is not compromised during the process. Nonplanar wafer bonding is used to fabricate ultra-wideband wavelength division multiplexed (WDM) vertical-cavity surface-emitting laser (VCSEL) arrays. The optically-pumped VCSEL arrays span 140 nm from 1470 to 1610 nm, a record wavelength span for devices operating in this wavelength range. The array uses eight wavelength channels to span the 140 nm with all channels separated by precisely 20 nm. All channels in the array operate single mode to at least 65°C with output power uniformity of +/- 1 dB. The ultra-wideband WDM VCSEL arrays are a significant first step toward the development of a single-chip source for optical networks based on coarse WDM (CWDM), a low-cost alternative to traditional dense WDM. The CWDM VCSEL arrays make use of fully-oxidized distributed Bragg reflectors (DBRs) to provide the wideband reflectivity required for optical feedback and lasing across 140 rim. In addition, a novel optically-pumped active region design is presented. It is demonstrated, with an analytical model and experimental results, that the new active-region design significantly improves the carrier uniformity in the quantum wells and results in a 50% lasing threshold reduction and a 20°C improvement in the peak

  13. High speed all optical networks

    Science.gov (United States)

    Chlamtac, Imrich; Ganz, Aura

    1990-01-01

    An inherent problem of conventional point-to-point wide area network (WAN) architectures is that they cannot translate optical transmission bandwidth into comparable user available throughput due to the limiting electronic processing speed of the switching nodes. The first solution to wavelength division multiplexing (WDM) based WAN networks that overcomes this limitation is presented. The proposed Lightnet architecture takes into account the idiosyncrasies of WDM switching/transmission leading to an efficient and pragmatic solution. The Lightnet architecture trades the ample WDM bandwidth for a reduction in the number of processing stages and a simplification of each switching stage, leading to drastically increased effective network throughputs. The principle of the Lightnet architecture is the construction and use of virtual topology networks, embedded in the original network in the wavelength domain. For this construction Lightnets utilize the new concept of lightpaths which constitute the links of the virtual topology. Lightpaths are all-optical, multihop, paths in the network that allow data to be switched through intermediate nodes using high throughput passive optical switches. The use of the virtual topologies and the associated switching design introduce a number of new ideas, which are discussed in detail.

  14. A multicast tree aggregation algorithm in wavelength-routed WDM networks

    Science.gov (United States)

    Cheng, Hsu-Chen; Kuo, Chin-Chun; Lin, Frank Y.

    2005-02-01

    Wavelength division multiplexing (WDM) has been considered a promising transmission technology in optical communication networks. With the continuous advance in optical technology, WDM network will play an important role in wide area backbone networks. Optical wavelength switching, compared with optical packet switching, is a more mature and more cost-effective choice for optical switching technologies. Besides, the technology of time division multiplexing in optical communication networks has been working smoothly for a long time. In the proposed research, the problem of multicast groups aggregation and multicast routing and wavelength assignment in wavelength-routed WDM network is studied. The optical cross connect switches in the problem are assumed to have limited optical multicast/splitting and TDM functionalities. Given the physical network topology and capacity, the objective is to maximize the total revenue by means of utmost merging multicast groups into larger macro-groups. The groups in the same macro-group will share a multicast tree to conduct data transmission. The problem is formulated as an optimization problem, where the objective function is to maximize the total revenue subject to capacity constraints of components in the optical network, wavelength continuity constraints, and tree topology constraints. The decision variables in the formulations include the merging results between groups, multicast tree routing assignment and wavelength assignment. The basic approach to the algorithm development for this model is Lagrangean relaxation in conjunction with a number of optimization techniques. In computational experiments, the proposed algorithms are evaluated on different network topologies and perform efficiently and effectively according to the experiment results.

  15. Performance evaluation of distributed wavelength assignment in WDM optical networks

    Science.gov (United States)

    Hashiguchi, Tomohiro; Wang, Xi; Morikawa, Hiroyuki; Aoyama, Tomonori

    2004-04-01

    In WDM wavelength routed networks, prior to a data transfer, a call setup procedure is required to reserve a wavelength path between the source-destination node pairs. A distributed approach to a connection setup can achieve a very high speed, while improving the reliability and reducing the implementation cost of the networks. However, along with many advantages, several major challenges have been posed by the distributed scheme in how the management and allocation of wavelength could be efficiently carried out. In this thesis, we apply a distributed wavelength assignment algorithm named priority based wavelength assignment (PWA) that was originally proposed for the use in burst switched optical networks to the problem of reserving wavelengths of path reservation protocols in the distributed control optical networks. Instead of assigning wavelengths randomly, this approach lets each node select the "safest" wavelengths based on the information of wavelength utilization history, thus unnecessary future contention is prevented. The simulation results presented in this paper show that the proposed protocol can enhance the performance of the system without introducing any apparent drawbacks.

  16. WDM Systems and Networks Modeling, Simulation, Design and Engineering

    CERN Document Server

    Ellinas, Georgios; Roudas, Ioannis

    2012-01-01

    WDM Systems and Networks: Modeling, Simulation, Design and Engineering provides readers with the basic skills, concepts, and design techniques used to begin design and engineering of optical communication systems and networks at various layers. The latest semi-analytical system simulation techniques are applied to optical WDM systems and networks, and a review of the various current areas of optical communications is presented. Simulation is mixed with experimental verification and engineering to present the industry as well as state-of-the-art research. This contributed volume is divided into three parts, accommodating different readers interested in various types of networks and applications. The first part of the book presents modeling approaches and simulation tools mainly for the physical layer including transmission effects, devices, subsystems, and systems), whereas the second part features more engineering/design issues for various types of optical systems including ULH, access, and in-building system...

  17. A hybrid WDM/OCDMA ring with a dynamic add/drop function based on Fourier code for local area networks.

    Science.gov (United States)

    Choi, Yong-Kyu; Hosoya, Kenta; Lee, Chung Ghiu; Hanawa, Masanori; Park, Chang-Soo

    2011-03-28

    We propose and experimentally demonstrate a hybrid WDM/OCDMA ring with a dynamic add/drop function based on Fourier code for local area networks. Dynamic function is implemented by mechanically tuning the Fourier encoder/decoder for optical code division multiple access (OCDMA) encoding/decoding. Wavelength division multiplexing (WDM) is utilized for node assignment and 4-chip Fourier code recovers the matched signal from the codes. For an optical source well adapted to WDM channels and its short optical pulse generation, reflective semiconductor optical amplifiers (RSOAs) are used with a fiber Bragg grating (FBG) and gain-switched. To demonstrate we experimentally investigated a two-node hybrid WDM/OCDMA ring with a 4-chip Fourier encoder/decoder fabricated by cascading four FBGs with the bit error rate (BER) of <10(-9) for the node span of 10.64 km at 1.25 Gb/s.

  18. Upgrade of optical WDM transport systems introducing linerates at 40 Gbit/s per channel

    Science.gov (United States)

    Schneiders, Malte; Vorbeck, Sascha; Aust, Nora

    2006-10-01

    Driven by high growth rates of internet traffic the question of upgrading existing optical metro-, regio- and long haul transport networks introducing 40 Gbit/s/λ is one of the most important questions today and in the near future. Current WDM Systems in photonic networks are commonly operated at linerates of 2.5 and 10 Gbit/s/λ. Induced by market analyses and the historical development of transport systems some work has already been carried out to evaluate update scenarios from 10 to 40 Gbit/s channel data rates. Due to the inherent quadruplication of the bandwidth per channel, limitations due to linear and non-linear transmission impairments become stronger resulting in a highly increased complexity of link engineering, potentially increasing the capital and operational expenditures. A lot of work is therefore in progress, which targets at the relaxation of constraints for 40 Gbit/s transmission to find the most efficient upgrade strategies. One approach towards an increased robustness against signal distortions is the introduction of more advanced modulation formats. Different modulation schemes show strongly different optical WDM transmission characteristics. The choice of the appropriate format does not only depend on the technical requirements, but also on economical considerations as an increased transmitter- and receiver-complexity will drive the transponder price. This article presents investigations on different modulation formats for the upgrade of existing metro-/ regio and long haul transport networks. Tolerances and robustness against the main degrading effects dispersion, noise and nonlinearities are considered together with mitigation strategies like the adaptation of dispersion maps. Results from numerical simulations are provided for some of the most promising modulation formats like NRZ, RZ, CS-RZ, Optical Duobinary and DPSK.

  19. Novel OSNR Monitoring Technique in Dense WDM Systems using Inherently Generated CW Monitoring Channels

    DEFF Research Database (Denmark)

    Petersen, Martin Nordal

    2007-01-01

    We present a simple, yet effective OSNR monitoring technique based on an inherent effect in the optical modulator. Highly accurate OSNR monitoring is demonstrated in a 40 Gb/s dense WDM system with 50 GHz channel spacing.......We present a simple, yet effective OSNR monitoring technique based on an inherent effect in the optical modulator. Highly accurate OSNR monitoring is demonstrated in a 40 Gb/s dense WDM system with 50 GHz channel spacing....

  20. The Design of Polymer Planar Optical Triplexer with MMI Filter and Directional Coupler

    Directory of Open Access Journals (Sweden)

    V. Jerabek

    2013-12-01

    Full Text Available Optical bidirectional WDM transceiver is a key component of the Passive Optical Network of the Fiber to the Home topology. Essential parts of such transceivers are filters that combine multiplexing and demultiplexing function of optical signal (triplexing filters. In this paper we report about a design of a new planar optical multi-wavelength selective system triplexing filter, which combines a multimode interference filter with directional coupler based on the epoxy polymer SU-8 on Si/SiO2 substrate. The optical triplexing filter was designed using the Beam Propagation Method. The aim of this project was to optimize the triplexing filter optical parameters and to minimize the planar optical wavelength selective system dimensions. The multimode interference filter was used for separation of downstream optical signal in designed optoelectronic integrated WDM transceiver. The directional coupler was used for adding of upstream optical signal.

  1. Optical chaos and hybrid WDM/TDM based large capacity quasi-distributed sensing network with real-time fiber fault monitoring.

    Science.gov (United States)

    Luo, Yiyang; Xia, Li; Xu, Zhilin; Yu, Can; Sun, Qizhen; Li, Wei; Huang, Di; Liu, Deming

    2015-02-09

    An optical chaos and hybrid wavelength division multiplexing/time division multiplexing (WDM/TDM) based large capacity quasi-distributed sensing network with real-time fiber fault monitoring is proposed. Chirped fiber Bragg grating (CFBG) intensity demodulation is adopted to improve the dynamic range of the measurements. Compared with the traditional sensing interrogation methods in time, radio frequency and optical wavelength domains, the measurand sensing and the precise locating of the proposed sensing network can be simultaneously interrogated by the relative amplitude change (RAC) and the time delay of the correlation peak in the cross-correlation spectrum. Assisted with the WDM/TDM technology, hundreds of sensing units could be potentially multiplexed in the multiple sensing fiber lines. Based on the proof-of-concept experiment for axial strain measurement with three sensing fiber lines, the strain sensitivity up to 0.14% RAC/με and the precise locating of the sensors are achieved. Significantly, real-time fiber fault monitoring in the three sensing fiber lines is also implemented with a spatial resolution of 2.8 cm.

  2. Enhanced noise tolerance for 10 Gb/s Bi-directional cross-wavelength reuse colorless WDM-PON by using spectrally shaped OFDM signals

    Science.gov (United States)

    Choudhury, Pallab K.

    2018-05-01

    Spectrally shaped orthogonal frequency division multiplexing (OFDM) signal for symmetric 10 Gb/s cross-wavelength reuse reflective semiconductor optical amplifier (RSOA) based colorless wavelength division multiplexed passive optical network (WDM-PON) is proposed and further analyzed to support broadband services of next generation high speed optical access networks. The generated OFDM signal has subcarriers in separate frequency ranges for downstream and upstream, such that the re-modulation noise can be effectively minimized in upstream data receiver. Moreover, the cross wavelength reuse approach improves the tolerance against Rayleigh backscattering noise due to the propagation of different wavelengths in the same feeder fiber. The proposed WDM-PON is successfully demonstrated for 25 km fiber with 16-QAM (quadrature amplitude modulation) OFDM signal having bandwidth of 2.5 GHz for 10 Gb/s operation and subcarrier frequencies in 3-5.5 GHz and DC-2.5 GHz for downstream (DS) and upstream (US) transmission respectively. The result shows that the proposed scheme maintains a good bit error rate (BER) performance below the forward error correction (FEC) limit of 3.8 × 10-3 at acceptable receiver sensitivity and provides a high resilience against re-modulation and Rayleigh backscattering noises as well as chromatic dispersion.

  3. WDM Optical Access Network for Full-Duplex and Reconfigurable Capacity Assignment Based on PolMUX Technique

    Directory of Open Access Journals (Sweden)

    Jose Mora

    2014-12-01

    Full Text Available We present a novel bidirectional WDM-based optical access network featuring reconfigurable capacity assignment. The architecture relies on the PolMUX technique allowing a compact, flexible, and bandwidth-efficient router in addition to source-free ONUs and color-less ONUs for cost/complexity minimization. Moreover, the centralized architecture contemplates remote management and control of polarization. High-quality transmission of digital signals is demonstrated through different routing scenarios where all channels are dynamically assigned in both downlink and uplink directions.

  4. Multicast routing for wavelength-routed WDM networks with dynamic membership

    Science.gov (United States)

    Huang, Nen-Fu; Liu, Te-Lung; Wang, Yao-Tzung; Li, Bo

    2000-09-01

    Future broadband networks must support integrated services and offer flexible bandwidth usage. In our previous work, we explore the optical link control layer on the top of optical layer that enables the possibility of bandwidth on-demand service directly over wavelength division multiplexed (WDM) networks. Today, more and more applications and services such as video-conferencing software and Virtual LAN service require multicast support over the underlying networks. Currently, it is difficult to provide wavelength multicast over the optical switches without optical/electronic conversions although the conversion takes extra cost. In this paper, based on the proposed wavelength router architecture (equipped with ATM switches to offer O/E and E/O conversions when necessary), a dynamic multicast routing algorithm is proposed to furnish multicast services over WDM networks. The goal is to joint a new group member into the multicast tree so that the cost, including the link cost and the optical/electronic conversion cost, is kept as less as possible. The effectiveness of the proposed wavelength router architecture as well as the dynamic multicast algorithm is evaluated by simulation.

  5. Optical switching properties of VO2 films driven by using WDM-aligned lasers

    International Nuclear Information System (INIS)

    Tsai, K.Y.; Wu, F.-H.; Shieh, H.-P.D.; Chin, T.-S.

    2006-01-01

    Vanadium dioxide (VO 2 ) film had been demonstrated a high speed IR shutter driven by total optical modulation. However, it usually required a higher power heating laser of high power and precise optical systems to cover the probe beam on the sample with a heating beam of larger area. A new optical system, simply composed of wavelength division multiplexing (WDM), fiber lens or convex lens system, and a glass sheet with VO 2 thin film on it, was easily assembled to utilize VO 2 film as an IR shutter, implying the possibility to highly miniaturize the VO 2 -based optical shutter. A permanent low-transmittance (PLT) region forms on the film within the probe beam, resulting in a decrease in average power of the probe beam. Another ring-type switching area (switching ring) forms around the PLT region, resulting in the transmittance switching of the probe beam synchronously with the heating signal. VO 2 films can be switched with the highest rate of a continuous square heating signal of 3 mW at 120 kHz. A heating pulse of 0.7 ns and 13 mW can be used to stimulate an IR pulse with fiber lens

  6. The radio-on-fiber-wavelength-division-multiplexed-passive-optical network (WDM-RoF-PON) for wireless and wire layout with linearly-polarized dual-wavelength fiber laser and carrier reusing

    Science.gov (United States)

    Ji, Wei; Chang, Jun

    2013-07-01

    In this paper, we design a WDM-RoF-PON based on linearly-polarized dual-wavelength fiber laser and CSRZ-DPSK, which can achieve wire-line and wireless access synchronously. With the CSRZ-DPSK modulation, the wireless access in ONU can save RF source and the frequency of radio carrier can be controlled by OLT. The dual-wavelength fiber laser is the union light source of WDM-PON with polarization multiplexing. By the RSOA and downstream light source reusing, the ONU can save omit laser source and makes the WDM-PON to be colorless. The networking has the credible transmission property, including wireless access and fiber transmission. The networking also has excellent covering range.

  7. On-the-field performance of quintuple-play long-reach OFDM-based WDM-PON optical access networks.

    Science.gov (United States)

    Llorente, Roberto; Morant, Maria; Pellicer, Eloy; Herman, Milan; Nagy, Zsolt; Alves, Tiago; Cartaxo, Adolfo; Herrera, Javier; Correcher, Jose; Quinlan, Terence; Walker, Stuart; Rodrigues, Cláudio; Cluzeaud, Pierre; Schmidt, Axel; Piesiewicz, Radoslaw; Sambaraju, Rakesh

    2014-03-24

    In this paper the on-the-field performance of a WDM-PON optical access providing quintuple-play services using orthogonal frequency division multiplexing (OFDM) modulation is evaluated in a real fiber-to-the-home (FTTH) network deployed by Towercom operator in Bratislava (Slovakia). A bundle of quintuple-play services comprising full-standard OFDM-based signals (LTE, WiMAX, UWB and DVB-T) and an ad-hoc OFDM-GbE signal is transmitted in coexistence per single user. Both downstream and upstream transmission performances are evaluated in different on-the-field long-reach optical link distance configurations. Four wavelength multi-user transmission of quintuple-play OFDM services is demonstrated exceeding 60.8 km reach in standard single mode fiber.

  8. An All-Silicon Passive Optical Diode

    OpenAIRE

    Fan, Li; Wang, Jian; Varghese, Leo T.; Shen, Hao; Niu, Ben; Xuan, Yi; Weiner, Andrew M.; Qi, Minghao

    2011-01-01

    A passive optical diode effect would be useful for on-chip optical information processing but has been difficult to achieve. Using a method based on optical nonlinearity, we demonstrate a forward-backward transmission ratio of up to 28 decibels within telecommunication wavelengths. Our device, which uses two silicon rings 5 micrometers in radius, is passive yet maintains optical nonreciprocity for a broad range of input power levels, and it performs equally well even if the backward input pow...

  9. Ultra-high capacity WDM-SDM optical access network with self-homodyne detection downstream and 32QAM-FBMC upstream.

    Science.gov (United States)

    Feng, Zhenhua; Xu, Liang; Wu, Qiong; Tang, Ming; Fu, Songnian; Tong, Weijun; Shum, Perry Ping; Liu, Deming

    2017-03-20

    Towards 100G beyond large-capacity optical access networks, wavelength division multiplexing (WDM) techniques incorporating with space division multiplexing (SDM) and affordable spectrally efficient advanced modulation formats are indispensable. In this paper, we proposed and experimentally demonstrated a cost-efficient multicore fiber (MCF) based hybrid WDM-SDM optical access network with self-homodyne coherent detection (SHCD) based downstream (DS) and direct detection optical filter bank multi carrier (DDO-FBMC) based upstream (US). In the DS experiments, the inner core of the 7-core fiber is used as a dedicated channel to deliver the local oscillator (LO) lights while the other 6 outer cores are used to transmit 4 channels of wavelength multiplexed 200-Gb/s PDM-16QAM-OFDM signals. For US transmission, 4 wavelengths with channel spacing of 100 GHz are intensity modulated with 30 Gb/s 32-QAM-FBMC and directly detected by a ~7 GHz bandwidth receiver after transmission along one of the outer core. The results show that a 4 × 6 × 200-Gb/s DS transmission can be realized over 37 km 7-core fiber without carrier frequency offset (CFO) and phase noise (PN) compensation even using 10 MHz linewidth DFB lasers. The SHCD based on MCF provides a compromise and cost efficient scheme between conventional intradyne coherent detection and intensity modulation and direct detection (IM/DD) schemes. Both US and DS have acceptable BER performance and high spectral efficiency.

  10. Real-time distributed scheduling algorithm for supporting QoS over WDM networks

    Science.gov (United States)

    Kam, Anthony C.; Siu, Kai-Yeung

    1998-10-01

    Most existing or proposed WDM networks employ circuit switching, typically with one session having exclusive use of one entire wavelength. Consequently they are not suitable for data applications involving bursty traffic patterns. The MIT AON Consortium has developed an all-optical LAN/MAN testbed which provides time-slotted WDM service and employs fast-tunable transceivers in each optical terminal. In this paper, we explore extensions of this service to achieve fine-grained statistical multiplexing with different virtual circuits time-sharing the wavelengths in a fair manner. In particular, we develop a real-time distributed protocol for best-effort traffic over this time-slotted WDM service with near-optical fairness and throughput characteristics. As an additional design feature, our protocol supports the allocation of guaranteed bandwidths to selected connections. This feature acts as a first step towards supporting integrated services and quality-of-service guarantees over WDM networks. To achieve high throughput, our approach is based on scheduling transmissions, as opposed to collision- based schemes. Our distributed protocol involves one MAN scheduler and several LAN schedulers (one per LAN) in a master-slave arrangement. Because of propagation delays and limits on control channel capacities, all schedulers are designed to work with partial, delayed traffic information. Our distributed protocol is of the `greedy' type to ensure fast execution in real-time in response to dynamic traffic changes. It employs a hybrid form of rate and credit control for resource allocation. We have performed extensive simulations, which show that our protocol allocates resources (transmitters, receivers, wavelengths) fairly with high throughput, and supports bandwidth guarantees.

  11. Active plasmonics in WDM traffic switching applications

    DEFF Research Database (Denmark)

    Papaioannou, S.; Kalavrouziotis, D.; Vyrsokinos, K.

    2012-01-01

    -enabling characteristics of active plasmonic circuits with an ultra-low power 3 response time product represents a crucial milestone in the development of active plasmonics towards real telecom and datacom applications, where low-energy and fast TO operation with small-size circuitry is targeted........ The first active Dielectric-Loaded Surface Plasmon Polariton (DLSPP) thermo-optic (TO) switches with successful performance in single-channel 10 Gb/s data traffic environments have led the inroad towards bringing low-power active plasmonics in practical traffic applications. In this article, we introduce...... active plasmonics into Wavelength Division Multiplexed (WDM) switching applications, using the smallest TO DLSPP-based Mach-Zehnder interferometric switch reported so far and showing its successful performance in 4310 Gb/s low-power and fast switching operation. The demonstration of the WDM...

  12. All-VCSEL Transmitters With Remote Optical Injection for WDM-OFDM-PON

    DEFF Research Database (Denmark)

    Deng, Lei; Zhao, Ying; Pang, Xiaodan

    2014-01-01

    We report on a novel scheme that uses vertical cavity surface emitting lasers (VCSELs) and remote optical injection technique in the hybrid wavelength division multiplexing orthogonal frequency division multiplexing (OFDM) passive optical network. In the proposed scheme, 1.55-$\\mu{\\rm m}$ VCSELs ...

  13. An all-silicon passive optical diode.

    Science.gov (United States)

    Fan, Li; Wang, Jian; Varghese, Leo T; Shen, Hao; Niu, Ben; Xuan, Yi; Weiner, Andrew M; Qi, Minghao

    2012-01-27

    A passive optical diode effect would be useful for on-chip optical information processing but has been difficult to achieve. Using a method based on optical nonlinearity, we demonstrate a forward-backward transmission ratio of up to 28 decibels within telecommunication wavelengths. Our device, which uses two silicon rings 5 micrometers in radius, is passive yet maintains optical nonreciprocity for a broad range of input power levels, and it performs equally well even if the backward input power is higher than the forward input. The silicon optical diode is ultracompact and is compatible with current complementary metal-oxide semiconductor processing.

  14. All optical OFDM transmission for passive optical networks

    Science.gov (United States)

    Kachare, Nitin; Ashik T., J.; Bai, K. Kalyani; Kumar, D. Sriram

    2017-06-01

    This paper demonstrates the idea of data transmission at a very higher rate (Tbits/s) through optical fibers in a passive optical network using the most efficient data transmission technique widely used in wireless communication that is orthogonal frequency division multiplexing. With an increase in internet users, data traffic has also increased significantly and the current dense wavelength division multiplexing (DWDM) systems may not support the next generation passive optical networks (PONs) requirements. The approach discussed in this paper allows to increase the downstream data rate per user and extend the standard single-mode fiber reach for future long-haul applications. All-optical OFDM is a promising solution for terabit per second capable single wavelength transmission, with high spectral efficiency and high tolerance to chromatic dispersion.

  15. 300 Gb/s IM/DD based SDM-WDM-PON with laserless ONUs

    DEFF Research Database (Denmark)

    Bao, Fangdi; Morioka, Toshio; Oxenløwe, Leif Katsuo

    2018-01-01

    A low-cost, high-speed SDM-WDM-PON architecture is proposed by using a multi-core fiber (MCF) and intensity modulation/directly detection (IM/DD). One of the MCF cores is used for sending laser sources from optical line terminal (OLT) to optical network unit (ONU), thus facilitating laserless...

  16. Radio over fiber transceiver employing phase modulation of an optical broadband source.

    Science.gov (United States)

    Grassi, Fulvio; Mora, José; Ortega, Beatriz; Capmany, José

    2010-10-11

    This paper proposes a low-cost RoF transceiver for multichannel SCM/WDM signal distribution suitable for future broadband access networks. The transceiver is based on the phase modulation of an optical broadband source centered at third transmission window. Prior to phase modulation the optical broadband source output signal is launched into a Mach-Zehnder interferometer structure, as key device enabling radio signals propagation over the optical link. Furthermore, an optical CWDM is employed to create a multichannel scenario by performing the spectral slicing of the modulated optical signal into a number of channels each one conveying the information from the central office to different base stations. The operation range is up to 20 GHz with a modulation bandwidth around of 500 MHz. Experimental results of the transmission of SCM QPSK and 64-QAM data through 20 Km of SMF exhibit good EVM results in the operative range determined by the phase-to-intensity conversion process. The proposed approach shows a great suitability for WDM networks based on RoF signal transport and also represents a cost-effective solution for passive optical networks.

  17. Generation of 1.024-Tb/s Nyquist-WDM phase-conjugated twin vector waves by a polarization-insensitive optical parametric amplifier for fiber-nonlinearity-tolerant transmission

    DEFF Research Database (Denmark)

    Liu, Xiang; Hu, Hao; Chandrasekhar, S.

    2014-01-01

    We experimentally demonstrate the generation of 1.024-Tb/s Nyquist-WDM phase-conjugated vector twin waves (PCTWs), consisting of eight 128-Gb/s polarization-division-multiplexed QPSK signals and their idlers, by a broadband polarization-insensitive fiber optic parametric amplifier. This novel all...

  18. A Comparative Study of Multiplexing Schemes for Next Generation Optical Access Networks

    Science.gov (United States)

    Imtiaz, Waqas A.; Khan, Yousaf; Shah, Pir Mehar Ali; Zeeshan, M.

    2014-09-01

    Passive optical network (PON) is a high bandwidth, economical solution which can provide the necessary bandwidth to end-users. Wavelength division multiplexed passive optical networks (WDM PONs) and time division multiplexed passive optical networks (TDM PONs) are considered as an evolutionary step for next-generation optical access (NGOA) networks. However they fail to provide highest transmission capacity, efficient bandwidth access, and robust dispersion tolerance. Thus future PONs are considered on simpler, efficient and potentially scalable, optical code division multiplexed (OCDM) PONs. This paper compares the performance of existing PONs with OCDM PON to determine a suitable scheme for NGOA networks. Two system parameter are used in this paper: fiber length, and bit rate. Performance analysis using Optisystem shows that; for a sufficient system performance parameters i.e. bit error rate (BER) ≤ 10-9, and maximum quality factor (Q) ≥ 6, OCDMA PON efficiently performs upto 50 km with 10 Gbit/s per ONU.

  19. Wavelength-agnostic WDM-PON System

    DEFF Research Database (Denmark)

    Wagner, Christoph; Eiselt, Michael; Zou, S.

    2016-01-01

    on the standardization status of this lowcost system in the new ITU-T G.metro draft recommendation, in the context of autonomous tuning. We also discuss some low-effort implementations of the pilot-tone labels and investigate the impact of these labels on the transmission channels.......Next-generation WDM-PON solutions for metro and access systems will take advantage of remotely controlled wavelength-tunable ONUs to keep system costs as low as possible. For such a purpose, each ONU signal can be labeled by a pilot tone modulated onto the optical data stream. We report...

  20. Simulation and Evaluation of Ethernet Passive Optical Network

    Directory of Open Access Journals (Sweden)

    Salah A. Jaro Alabady

    2013-05-01

    Full Text Available      This paper studies simulation and evaluation of Ethernet Passive Optical Network (EPON system, IEEE802.3ah based OPTISM 3.6 simulation program. The simulation program is used in this paper to build a typical ethernet passive optical network, and to evaluate the network performance when using the (1580, 1625 nm wavelength instead of (1310, 1490 nm that used in Optical Line Terminal (OLT and Optical Network Units (ONU's in system architecture of Ethernet passive optical network at different bit rate and different fiber optic length. The results showed enhancement in network performance by increase the number of nodes (subscribers connected to the network, increase the transmission distance, reduces the received power and reduces the Bit Error Rate (BER.   

  1. Ultrafast Hierarchical OTDM/WDM Network

    Directory of Open Access Journals (Sweden)

    Hideyuki Sotobayashi

    2003-12-01

    Full Text Available Ultrafast hierarchical OTDM/WDM network is proposed for the future core-network. We review its enabling technologies: C- and L-wavelength-band generation, OTDM-WDM mutual multiplexing format conversions, and ultrafast OTDM wavelengthband conversions.

  2. Protocol and networking design issues for local access WDM networks

    NARCIS (Netherlands)

    Salvador, M.R.; Heemstra de Groot, S.M.; Niemegeers, I.G.M.M.

    This report gives an overview of some of the protocol and networking design issues that have been addressed in Flamingo, a major ongoing project which investigates the use of WDM optical technology in local access networks. Quality of service delivery and wavelength assignment are focused on in this

  3. A SURVEY ON WAVELENGTH DIVISION MULTIPLEXING (WDM NETWORKS

    Directory of Open Access Journals (Sweden)

    G. Ramesh

    2010-03-01

    Full Text Available Communication networks have emerged as a source of empowerment in today’s society. At the global level, the Internet is becoming the backbone of the modern economy. The new generations in developed countries cannot even conceive of a world without broadband access to the Internet. The inability of the current Internet infrastructure to cope with the wide variety and ever growing number of users, emerging networked applications, usage patterns and business models is increasingly being recognized worldwide. The dynamic growth of Internet traffic and its bursty nature requires high transmission rate. With the advances and the progress in Wavelength Division Multiplexing (WDM technology, the amount of raw bandwidth available in fiber links has increased to high magnitude. This paper presents a survey on WDM networks from its development to the current status. Also an analysis on buffer size in optical networks for real time traffic was performed.

  4. All-optical virtual private network and ONUs communication in optical OFDM-based PON system.

    Science.gov (United States)

    Zhang, Chongfu; Huang, Jian; Chen, Chen; Qiu, Kun

    2011-11-21

    We propose and demonstrate a novel scheme, which enables all-optical virtual private network (VPN) and all-optical optical network units (ONUs) inter-communications in optical orthogonal frequency-division multiplexing-based passive optical network (OFDM-PON) system using the subcarrier bands allocation for the first time (to our knowledge). We consider the intra-VPN and inter-VPN communications which correspond to two different cases: VPN communication among ONUs in one group and in different groups. The proposed scheme can provide the enhanced security and a more flexible configuration for VPN users compared to the VPN in WDM-PON or TDM-PON systems. The all-optical VPN and inter-ONU communications at 10-Gbit/s with 16 quadrature amplitude modulation (16 QAM) for the proposed optical OFDM-PON system are demonstrated. These results verify that the proposed scheme is feasible. © 2011 Optical Society of America

  5. Fiber nonlinearity compensation of an 8-channel WDM PDM-QPSK signal using multiple phase conjugations

    DEFF Research Database (Denmark)

    Hu, Hao; Jopson, R. M.; Dinu, M.

    2013-01-01

    We demonstrate compensation of fiber nonlinearities using optical phase conjugation of an 8-chamiel WDM 32-Gbaud PDM QPSK signal. Conjugating phase every 600 km in a fiber loop enabled a 6000 km transmission over True Wave fiber. © 2013 Optical Society of America....

  6. High capacity fiber optic sensor networks using hybrid multiplexing techniques and their applications

    Science.gov (United States)

    Sun, Qizhen; Li, Xiaolei; Zhang, Manliang; Liu, Qi; Liu, Hai; Liu, Deming

    2013-12-01

    Fiber optic sensor network is the development trend of fiber senor technologies and industries. In this paper, I will discuss recent research progress on high capacity fiber sensor networks with hybrid multiplexing techniques and their applications in the fields of security monitoring, environment monitoring, Smart eHome, etc. Firstly, I will present the architecture of hybrid multiplexing sensor passive optical network (HSPON), and the key technologies for integrated access and intelligent management of massive fiber sensor units. Two typical hybrid WDM/TDM fiber sensor networks for perimeter intrusion monitor and cultural relics security are introduced. Secondly, we propose the concept of "Microstructure-Optical X Domin Refecltor (M-OXDR)" for fiber sensor network expansion. By fabricating smart micro-structures with the ability of multidimensional encoded and low insertion loss along the fiber, the fiber sensor network of simple structure and huge capacity more than one thousand could be achieved. Assisted by the WDM/TDM and WDM/FDM decoding methods respectively, we built the verification systems for long-haul and real-time temperature sensing. Finally, I will show the high capacity and flexible fiber sensor network with IPv6 protocol based hybrid fiber/wireless access. By developing the fiber optic sensor with embedded IPv6 protocol conversion module and IPv6 router, huge amounts of fiber optic sensor nodes can be uniquely addressed. Meanwhile, various sensing information could be integrated and accessed to the Next Generation Internet.

  7. Generation of 1.024-Tb/s Nyquist-WDM phase-conjugated twin vector waves through polarization-insensitive optical parametric amplification enabling transmission over 4000-km dispersion-managed TWRS fiber

    DEFF Research Database (Denmark)

    Liu, Xiang; Hu, Hao; Chandrasekhar, S.

    2013-01-01

    We experimentally demonstrate the first Tb/s Nyquist-WDM phase-conjugated twin waves, consisting of eight 128-Gb/s PDM-QPSK signals and their idlers, by a broadband polarization-insensitive fiber optical parametric amplifier, enabling more than doubled reach in dispersion-managed transmission. © ...

  8. Revenue-driven Lightpaths Provisioning over Optical WDM Networks Using Bee Colony Optimization

    Directory of Open Access Journals (Sweden)

    Goran Z. Marković

    2017-01-01

    Full Text Available Revenue-driven Lightpaths Provisioning over Optical WDM Networks Using Bee Colony Optimization Goran Z. Markovic University of Belgrade n Faculty of Transport and Traffic Engineering, Vojvode Stepe 305, Belgrade, 11000, Serbia E-mail: g.markovic@sf.bg.ac.rs Abstract This paper aims to study the lightpaths provisioning problem in optical WDM networks with scarce available wavelengths under the static (off-line traffic demands such that network operatorrs (NOrs revenue is maximized. To achieve this goal, a NO has to be addressed with the issue how to solve the call admission control jointly with the lightpaths routing and wavelength assignment (RWA problem in efficient manner. The improved bee colony optimization (BCOi metaheuristic is applied to solve the considered revenue maximization (Max-Rev problem. We evaluated the performances of the proposed BCOi Max-Rev framework by performing numerous simulation experiments in different realistic WDM optical network topologies. We observed that our BCOi Max-Rev algorithm is an efficient tool to produce high quality solutions within reasonable amount of CPU time. It has been proved that BCOi Max-Rev solutions just slightly deviate from optimal solutions (at most 1% and considerably outperform some heuristic algorithms, such as the Max-Profit and FCFS. In addition, our Max-Rev BCOi algorithm is able to produce better solution quality compared to the constructive BCO approach (up to 3.5% in the case of NSFNet and 5% in the case of EON. Finally, we compared the BCOi to differential evolution (DE approach in the case of more complex networks, such as the USA optical network topology. The results show that our BCOi always outperforms DE metaheuristic, whereby the profit improvement could reach up to 20 % in some instances. Keywords: bee colony optimization (BCO, lightpath, optical network, routing and wavelength assignment (RWA, revenue maximization. 1. Introduction Optical networks employing wavelength

  9. Optical power allocation for adaptive transmissions in wavelength-division multiplexing free space optical networks

    Directory of Open Access Journals (Sweden)

    Hui Zhou

    2015-08-01

    Full Text Available Attracting increasing attention in recent years, the Free Space Optics (FSO technology has been recognized as a cost-effective wireless access technology for multi-Gigabit rate wireless networks. Radio on Free Space Optics (RoFSO provides a new approach to support various bandwidth-intensive wireless services in an optical wireless link. In an RoFSO system using wavelength-division multiplexing (WDM, it is possible to concurrently transmit multiple data streams consisting of various wireless services at very high rate. In this paper, we investigate the problem of optical power allocation under power budget and eye safety constraints for adaptive WDM transmission in RoFSO networks. We develop power allocation schemes for adaptive WDM transmissions to combat the effect of weather turbulence on RoFSO links. Simulation results show that WDM RoFSO can support high data rates even over long distance or under bad weather conditions with an adequate system design.

  10. Electronic band-gap modified passive silicon optical modulator at telecommunications wavelengths.

    Science.gov (United States)

    Zhang, Rui; Yu, Haohai; Zhang, Huaijin; Liu, Xiangdong; Lu, Qingming; Wang, Jiyang

    2015-11-13

    The silicon optical modulator is considered to be the workhorse of a revolution in communications. In recent years, the capabilities of externally driven active silicon optical modulators have dramatically improved. Self-driven passive modulators, especially passive silicon modulators, possess advantages in compactness, integration, low-cost, etc. Constrained by a large indirect band-gap and sensitivity-related loss, the passive silicon optical modulator is scarce and has been not advancing, especially at telecommunications wavelengths. Here, a passive silicon optical modulator is fabricated by introducing an impurity band in the electronic band-gap, and its nonlinear optics and applications in the telecommunications-wavelength lasers are investigated. The saturable absorption properties at the wavelength of 1.55 μm was measured and indicates that the sample is quite sensitive to light intensity and has negligible absorption loss. With a passive silicon modulator, pulsed lasers were constructed at wavelengths at 1.34 and 1.42 μm. It is concluded that the sensitive self-driven passive silicon optical modulator is a viable candidate for photonics applications out to 2.5 μm.

  11. A rigorous analysis of digital pre-emphasis and DAC resolution for interleaved DAC Nyquist-WDM signal generation in high-speed coherent optical transmission systems

    Science.gov (United States)

    Weng, Yi; Wang, Junyi; He, Xuan; Pan, Zhongqi

    2018-02-01

    The Nyquist spectral shaping techniques facilitate a promising solution to enhance spectral efficiency (SE) and further reduce the cost-per-bit in high-speed wavelength-division multiplexing (WDM) transmission systems. Hypothetically, any Nyquist WDM signals with arbitrary shapes can be generated by the use of the digital signal processing (DSP) based electrical filters (E-filter). Nonetheless, in actual 100G/ 200G coherent systems, the performance as well as DSP complexity are increasingly restricted by cost and power consumption. Henceforward it is indispensable to optimize DSP to accomplish the preferred performance at the least complexity. In this paper, we systematically investigated the minimum requirements and challenges of Nyquist WDM signal generation, particularly for higher-order modulation formats, including 16 quadrature amplitude modulation (QAM) or 64QAM. A variety of interrelated parameters, such as channel spacing and roll-off factor, have been evaluated to optimize the requirements of the digital-to-analog converter (DAC) resolution and transmitter E-filter bandwidth. The impact of spectral pre-emphasis has been predominantly enhanced via the proposed interleaved DAC architecture by at least 4%, and hence reducing the required optical signal to noise ratio (OSNR) at a bit error rate (BER) of 10-3 by over 0.45 dB at a channel spacing of 1.05 symbol rate and an optimized roll-off factor of 0.1. Furthermore, the requirements of sampling rate for different types of super-Gaussian E-filters are discussed for 64QAM Nyquist WDM transmission systems. Finally, the impact of the non-50% duty cycle error between sub-DACs upon the quality of the generated signals for the interleaved DAC structure has been analyzed.

  12. Evaluation of the Impact of Coherent and Incoherent Crosstalk on the Performance of Wavelength-agnostic WDM-PON Systems

    DEFF Research Database (Denmark)

    Wagner, Christoph; Eiselt, Michael; Grobe, Klaus

    2015-01-01

    Wavelength-agnostic WDM-PON systems recently got a lot of interest as low-cost solution for metro area networking. Here, wavelength-agnostic means that the wavelength from the optical network unit to the optical line terminal is not known by the optical network unit a priori. Furthermore, calibra...

  13. Multicast traffic grooming in flexible optical WDM networks

    Science.gov (United States)

    Patel, Ankitkumar N.; Ji, Philip N.; Jue, Jason P.; Wang, Ting

    2012-12-01

    In Metropolitan Area Networks (MANs), point-to-multipoint applications, such as IPTV, video-on-demand, distance learning, and content distribution, can be efficiently supported through light-tree-based multicastcommunications instead of lightpath-based unicast-communications. The application of multicasting for such traffic is justified by its inherent benefits of reduced control and management overhead and elimination of redundant resource provisioning. Supporting such multicast traffic in Flexible optical WDM (FWDM) networks that can provision light-trees using optimum amount of spectrum within flexible channel spacing leads to higher wavelength and spectral efficiencies compared to the conventional ITU-T fixed grid networks. However, in spite of such flexibility, the residual channel capacity of stranded channels may not be utilized if the network does not offer channels with arbitrary line rates. Additionally, the spectrum allocated to guard bands used to isolate finer granularity channels remains unutilized. These limitations can be addressed by using traffic grooming in which low-rate multicast connections are aggregated and switched over high capacity light-trees. In this paper, we address the multicast traffic grooming problem in FWDM networks, and propose a novel auxiliary graph-based algorithm for the first time. The performance of multicast traffic grooming is evaluated in terms of spectral, cost, and energy efficiencies compared to lightpath-based transparent FWDM networks, lightpathbased traffic grooming-capable FWDM networks, multicast-enabled transparent FWDM networks, and multicast traffic grooming-capable fixed grid networks. Simulation results demonstrate that multicast traffic grooming in FWDM networks not only improves spectral efficiency, but also cost, and energy efficiencies compared to other multicast traffic provisioning approaches of FWDM and fixed grid networks.

  14. Field Trial of 40 Gb/s Optical Transport Network using Open WDM Interfaces

    DEFF Research Database (Denmark)

    Fagertun, Anna Manolova; Ruepp, Sarah Renée; Petersen, Martin Nordal

    2013-01-01

    An experimental field-trail deployment of a 40Gb/s open WDM interface in an operational network is presented, in cross-carrier interconnection scenario. Practical challenges of integration and performance measures for both native and alien channels are outlined....

  15. All-optical equalization of power transients on four 40 Gbit/s WDM channels using a fiber-based device

    DEFF Research Database (Denmark)

    Kjær, Rasmus; Oxenløwe, Leif Katsuo; Palsdottir, Bera

    2008-01-01

    Simultaneous transient suppression of four transient-impaired 40 Gbit/s RZ-ASK WDM channels is demonstrated. Sensitivity improvements are in excess of 5 dB and transmission penalties are significantly reduced.......Simultaneous transient suppression of four transient-impaired 40 Gbit/s RZ-ASK WDM channels is demonstrated. Sensitivity improvements are in excess of 5 dB and transmission penalties are significantly reduced....

  16. A CLS-based survivable and energy-saving WDM-PON architecture

    Science.gov (United States)

    Zhu, Min; Zhong, Wen-De; Zhang, Zhenrong; Luan, Feng

    2013-11-01

    We propose and demonstrate an improved survivable and energy-saving WDM-PON with colorless ONUs. It incorporates both energy-saving and self-healing operations. A simple effective energy-saving scheme is proposed by including an energy-saving control unit in the OLT and a control unit at each ONU. The energy-saving scheme realizes both dozing and sleep (offline) modes, which greatly improves the energy-saving efficiency for WDM-PONs. An intelligent protection switching scheme is designed in the OLT, which can distinguish if an ONU is in dozing/sleep (offline) state or a fiber is faulty. Moreover, by monitoring the optical power of each channel on both working and protection paths, the OLT can know the connection status of every fiber path, thus facilitating an effective protection switching and a faster failure recovery. The improved WDM-PON architecture not only significantly reduces energy consumption, but also performs self-healing operation in practical operation scenarios. The scheme feasibility is experimentally verified with 10 Gbit/s downstream and 1.25 Gbit/s upstream transmissions. We also examine the energy-saving efficiency of our proposed energy-saving scheme by simulation, which reveals that energy saving mainly arises from the dozing mode, not from the sleep mode when the ONU is in the online state.

  17. Performance Analysis of a Threshold-Based Parallel Multiple Beam Selection Scheme for WDM FSO Systems

    KAUST Repository

    Nam, Sung Sik; Alouini, Mohamed-Slim; Ko, Young-Chai

    2018-01-01

    In this paper, we statistically analyze the performance of a threshold-based parallel multiple beam selection scheme for a free-space optical (FSO) based system with wavelength division multiplexing (WDM) in cases where a pointing error has occurred

  18. Transmission of 2.5 Gbit/s Spectrum-sliced WDM System for 50 km Single-mode Fiber

    Science.gov (United States)

    Ahmed, Nasim; Aljunid, Sayed Alwee; Ahmad, R. Badlisha; Fadil, Hilal Adnan; Rashid, Mohd Abdur

    2011-06-01

    The transmission of a spectrum-sliced WDM channel at 2.5 Gbit/s for 50 km of single mode fiber using an system channel spacing only 0.4 nm is reported. We have investigated the system performance using NRZ modulation format. The proposed system is compared with conventional system. The system performance is characterized as the bit-error-rate (BER) received against the system bit rates. Simulation results show that the NRZ modulation format performs well for 2.5 Gbit/s system bit rates. Using this narrow channel spectrum-sliced technique, the total number of multiplexed channels can be increased greatly in WDM system. Therefore, 0.4 nm channel spacing spectrum-sliced WDM system is highly recommended for the long distance optical access networks, like the Metro Area Network (MAN), Fiber-to-the-Building (FTTB) and Fiber-to-the-Home (FTTH).

  19. Novel approach for all-optical packet switching in wide-area networks

    Science.gov (United States)

    Chlamtac, Imrich; Fumagalli, Andrea F.; Wedzinga, Gosse

    1998-09-01

    All-optical Wavelength Division Multiplexing (WDM) networks are believed to be a fundamental component in future high speed backbones. However, while wavelength routing made circuit switching in WDM feasible the reality of extant optical technology does not yet provide the necessary devices to achieve individual optical packet switching. This paper proposes to achieve all-optical packet switching in WDM Wide Area Networks (WANs) via a novel technique, called slot routing. Using slot routing, entire slots, each carrying multiple packets on distinct wavelengths, are switched transparently and individually. As a result packets can be optically transmitted and switched in the network using available fast and wavelength non-sensitive devices. The proposed routing technique leads to an optical packet switching solution, that is simple, practical, and unique as it makes it possible to build a WDM all-optical WAN with optical devices based on proven technologies.

  20. Energy-Efficiency in Optical Networks

    DEFF Research Database (Denmark)

    Saldaña Cercos, Silvia

    This thesis expands the state-of-the-art on the complex problem of implementing energy efficient optical networks. The main contribution of this Ph.D. thesis is providing a holistic approach in a multi-layered manner where different tools are used to tackle the urgent need of both estimating...... and optimizing power consumption in different network segments. An energy consumption analysis for a novel digital signal processing for signal slicing to reduce bandwidth requirements for passive optical networks is presented in this thesis. This scheme aims at re-using low bandwidth equipment to cope...... with parallel optics and WDM systems is reported. These results show the trade-off between increased capacity and both power consumption and system performance. In conclusion, an energy-efficient set of tools has been provided covering different aspects of the telecommunication network resulting in a cohesive...

  1. Simulation and measurement of optical access network with different types of optical-fiber amplifiers

    Science.gov (United States)

    Latal, Jan; Vogl, Jan; Koudelka, Petr; Vitasek, Jan; Siska, Petr; Liner, Andrej; Papes, Martin; Vasinek, Vladimir

    2012-01-01

    The optical access networks are nowadays swiftly developing in the telecommunications field. These networks can provide higher data transfer rates, and have great potential to the future in terms of transmission possibilities. Many local internet providers responded to these facts and began gradually installing optical access networks into their originally built networks, mostly based on wireless communication. This allowed enlargement of possibilities for end-users in terms of high data rates and also new services such as Triple play, IPTV (Internet Protocol television) etc. However, with this expansion and building-up is also related the potential of reach in case of these networks. Big cities, such as Prague, Brno, Ostrava or Olomouc cannot be simply covered, because of their sizes and also because of their internal regulations given by various organizations in each city. Standard logical and also physical reach of EPON (IEEE 802.3ah - Ethernet Passive Optical Network) optical access network is about 20 km. However, for networks based on Wavelength Division Multiplex the reach can be up to 80 km, if the optical-fiber amplifier is inserted into the network. This article deals with simulation of different types of amplifiers for WDM-PON (Wavelength Division Multiplexing-Passive Optical Network) network in software application Optiwave OptiSystem and than are the values from the application and from real measurement compared.

  2. Design issues of optical router for metropolitan optical network (MON) applications

    Science.gov (United States)

    Wei, Wei; Zeng, QingJi

    2001-10-01

    The popularity of the Internet has caused the traffic on the Metro Area Network (MAN) to grow drastically every year. It is believed that Wavelength Division Multiplexing (WDM) has become a cornerstone technology in the MAN. Solutions to provide a MAN with high bandwidth, good scalability and easy management are being constantly searched from both IP and WDM. In this paper we firstly propose a metro optical network architecture based on GMPLS--a flexible, highly scalable IP over WDM optical network architecture for the delivery of public network IP services. Two kinds of node including Electronic Label Switching Router (E-LSR) and Optical Router (O-LSR) are involved in this metro optical network architecture. Secondly, we mainly focus on design issues of OR including multi-granularity electro-optical hybrid switching fabrics, intelligent OTU, contro l plane software and etc. And we also discuss some issues such as routing, forwarding and management of OR. Finally, we reach conclusions that OR based on GMPLS and hybrid-switching fabrics is suitable for current multi-services application environment of MON and optimistic for IP traffic transfer.

  3. A Grooming Nodes Optimal Allocation Method for Multicast in WDM Networks

    Directory of Open Access Journals (Sweden)

    Chengying Wei

    2016-01-01

    Full Text Available The grooming node has the capability of grooming multicast traffic with the small granularity into established light at high cost of complexity and node architecture. In the paper, a grooming nodes optimal allocation (GNOA method is proposed to optimize the allocation of the grooming nodes constraint by the blocking probability for multicast traffic in sparse WDM networks. In the proposed GNOA method, the location of each grooming node is determined by the SCLD strategy. The improved smallest cost largest degree (SCLD strategy is designed to select the nongrooming nodes in the proposed GNOA method. The simulation results show that the proposed GNOA method can reduce the required number of grooming nodes and decrease the cost of constructing a network to guarantee a certain request blocking probability when the wavelengths per fiber and transmitter/receiver ports per node are sufficient for the optical multicast in WDM networks.

  4. Working Paper 2: WDM, Poverty & Equity | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2010-12-08

    Dec 8, 2010 ... This paper shows that WDM can contribute to poverty reduction, defined ... Series contributes to setting the stage for the next phase of WDM research. ... that 20% of the country's population has some form of physical disability.

  5. Optical Switching and Bit Rates of 40 Gbit/s and above

    DEFF Research Database (Denmark)

    Ackaert, A.; Demester, P.; O'Mahony, M.

    2003-01-01

    Optical switching in WDM networks introduces additional aspects to the choice of single channel bit rates compared to WDM transmission systems. The mutual impact of optical switching and bit rates of 40 Gbps and above is discussed....

  6. POLICY BRIEF 1 - WDM Criteria | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2012-01-18

    Jan 18, 2012 ... Water demand management ― WDM ― can be hard to define. More an issue of policy than of technology, it is about managing and moderating our ... critical to the success of WDM at the policy and at the operational levels.

  7. Comparison of WDM/Pulse-Position-Modulation (WDM/PPM) with Code/Pulse-Position-Swapping (C/PPS) Based on Wavelength/Time Codes

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, A J; Hernandez, V J; Gagliardi, R M; Bennett, C V

    2009-06-19

    Pulse position modulation (PPM) signaling is favored in intensity modulated/direct detection (IM/DD) systems that have average power limitations. Combining PPM with WDM over a fiber link (WDM/PPM) enables multiple accessing and increases the link's throughput. Electronic bandwidth and synchronization advantages are further gained by mapping the time slots of PPM onto a code space, or code/pulse-position-swapping (C/PPS). The property of multiple bits per symbol typical of PPM can be combined with multiple accessing by using wavelength/time [W/T] codes in C/PPS. This paper compares the performance of WDM/PPM and C/PPS for equal wavelengths and bandwidth.

  8. Survivability and Impairment-aware Routing in Optical Networks : An Algorithmic Study

    NARCIS (Netherlands)

    Beshir, A.A.

    2011-01-01

    Optical networks employing Wavelength Division Multiplexing (WDM) technology allow the multiplexing of several independent wavelength channels into a fiber. Since each wavelength channel operates independently at several Gb/s, WDM optical networks offer a tremendous transport capacity (which is in

  9. Quad 14Gbps L-Band VCSEL-based System for WDM Migration of 4-lanes 56 Gbps Optical Data Links

    DEFF Research Database (Denmark)

    Estaran Tolosa, Jose Manuel; Rodes Lopez, Roberto; Pham, Tien Thang

    2012-01-01

    We report on migrating multiple lane link into a single WDM L-band VCSEL-based system. Experimental validation successfully achieves 10 km of SMF reach with 4x14Gbps and less than 0.5dB inter-channel crosstalk penalty.......We report on migrating multiple lane link into a single WDM L-band VCSEL-based system. Experimental validation successfully achieves 10 km of SMF reach with 4x14Gbps and less than 0.5dB inter-channel crosstalk penalty....

  10. Working Paper 2: WDM, Poverty & Equity | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2012-01-23

    Jan 23, 2012 ... Despite the growing practical and policy-level engagement with WDM, there has been little analytical or empirical effort devoted to its potential social implications. Establishing a better foundation for understanding the linkages between WDM and poverty is, therefore, very important. This paper shows that ...

  11. Konsep Dan Kinerja Dari Sistem Hybrid OCDMA/WDM Untuk Local Area Network

    OpenAIRE

    Nasaruddin, Nasaruddin

    2011-01-01

    Peningkatan kapasitas, distribusi bandwidth dan daya merupakan beberapa isu penting untuk aplikasi local area network (LAN). Saat ini, teknologi fiber optik sudah dapat mendukung jaringan akses dengan kecepatan tinggi untuk layanan multimedia diantaranya teknologi OCDMA dan WDM. Penambahan kapasitas transmisi LAN bisa dilakukan dengan penggabungan sistem transmisi OCDMA dengan WDM. Untuk itu, paper ini mengusulkan konsep dan kinerja dari sistem hybrid OCDMA/WDM. Sistem hybrid OCDMA/WDM ini be...

  12. WDM-Coherent OCDMA over one single device based on short chip Super Structured Fiber Bragg Gratings.

    Science.gov (United States)

    Amaya, Waldimar; Pastor, Daniel; Baños, Rocio; Garcia-Munoz, Victor

    2011-11-21

    We theoretically propose and demonstrate experimentally a Coherent Direct Sequence OCDMA en/decoder for multi-channel WDM operation based on a single device. It presents a broadband spectral envelope and a periodic spectral pattern that can be employed for en/decoding multiple sub-bands simultaneously. Multi-channel operation is verified experimentally by means of Multi-Band Super Structured Fiber Bragg Gratings with binary phase encoded chips fabricated with 1mm inter-chip separation that provides 4x100 GHz ITU sub-band separation at 1.25 Gbps. The WDM-OCDMA system verification was carried out employing simultaneous encoding of four adjacent sub-bands and two different OCDMA codes. © 2011 Optical Society of America

  13. Performance analysis of a threshold-based parallel multiple beam selection scheme for WDM-based systems for Gamma-Gamma distributions

    KAUST Repository

    Nam, Sung Sik; Yoon, Chang Seok; Alouini, Mohamed-Slim

    2017-01-01

    In this paper, we statistically analyze the performance of a threshold-based parallel multiple beam selection scheme (TPMBS) for Free-space optical (FSO) based system with wavelength division multiplexing (WDM) in cases where a pointing error has

  14. Compact and high-sensitivity 100-Gb/s (4 × 25 Gb/s) APD-ROSA with a LAN-WDM PLC demultiplexer.

    Science.gov (United States)

    Yoshimatsu, Toshihide; Nada, Masahiro; Oguma, Manabu; Yokoyama, Haruki; Ohno, Tetsuichiro; Doi, Yoshiyuki; Ogawa, Ikuo; Takahashi, Hiroshi; Yoshida, Eiji

    2012-12-10

    We demonstrate an integrated 100 GbE receiver optical sub-assembly (ROSA) that incorporates a monolithic four-channel avalanche photodiode (APD) array and a planer lightwave circuit (PLC) based LAN-WDM demultiplexer. A record minimum receiver sensitivity of -20 dBm and 50-km error-free SMF transmission without an optical amplifier have been achieved.

  15. Protection of Passive Optical Networks by Using Ring Topology and Tunable Splitters

    Directory of Open Access Journals (Sweden)

    Pavel Lafata

    2013-01-01

    Full Text Available This article proposes an innovative method for protecting of passive optical networks (PONs, especially the central optical unit – optical line termination (OLT. PON networks are typically used in modern high-speed access networks, but there are also several specific applications, such as in business, army or science sector, which require a complex protection and backup system against failures and malfunctions. A standard tree or star topologies, which are usually used for PON networks, are significantly vulnerable mainly against the malfunctions and failures of OLT unit or feeder optical cable. The method proposed in this paper is focused on forming PON network with ring topology using passive optical splitters. The main idea is based on the possibility of placing both OLT units (primary and secondary on the opposite sides of the ring, which can potentially increase the resistance of network. This method is described in the article and scenarios and calculations using symmetric or tunable asymmetric passive optical splitters are included as well.

  16. Passive long range acousto-optic sensor

    Science.gov (United States)

    Slater, Dan

    2006-08-01

    Alexander Graham Bell's photophone of 1880 was a simple free space optical communication device that used the sun to illuminate a reflective acoustic diaphragm. A selenium photocell located 213 m (700 ft) away converted the acoustically modulated light beam back into sound. A variation of the photophone is presented here that uses naturally formed free space acousto-optic communications links to provide passive multichannel long range acoustic sensing. This system, called RAS (remote acoustic sensor), functions as a long range microphone with a demonstrated range in excess of 40 km (25 miles).

  17. Analizar y simular los efectos no lineales causados por el fenómeno de índice de refracción en la capa física de una red por de nueva generación.

    OpenAIRE

    Proaño Gavilanes, Víctor Daniel

    2015-01-01

    The demand from subscribers for the services they receive through internet, makes companies providing Internet services search new ways to transmit information with the highest possible quality. That is why the optical networks are one alternative to provide a high bandwidth to users, and where PON are used, because they are composed of passive elements. In optical networks using transmission techniques used are the time division (TDM) technique and wave division (WDM). A TDM-WDM-PON hybrid n...

  18. Key lessons — Twelve factors critical to the success of WDM at the ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2010-12-22

    Dec 22, 2010 ... Water demand management (WDM) programs have been widely ... The criteria below are intended to help policymakers determine how best to ... implement and monitor WDM activities and to further the concept of WDM as ...

  19. Modelling of passive heating for replication of sub-micron patterns in optical disk substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Youngmin; Bae, Jaecheol; Kim, Hongmin; Kang, Shinill [School of Mechanical Engineering, Yonsei University, 134 Shinchon-dong, Seodaemoon-ku, Seoul (Korea, Republic of)

    2004-05-07

    The transcribability of pit or land groove structures in replicating an optical disk substrate greatly affects the performance of a high-density optical disk. However, a solidified layer generated during the polymer filling worsens transcribability because the solidified layer prevents the polymer melt from filling the sub-micron patterns. Therefore, the development of the solidified layer during the filling stage of injection moulding must be delayed. For this delay, passive heating through an insulation layer has been used. In the present study, to examine the development of the solidified layer, delayed by passive heating, the flow of the polymer melt with passive heating was analysed. Passive heating delayed markedly the development of the solidified layer, reduced the viscosity of the polymer melt, and increased the fluidity of the polymer melt in the vicinity of the stamper surface with the sub-micron patterns. As a result, we predict that passive heating can improve the transcribability of an optical disk substrate. To verify our prediction, we fabricated an optical disk substrate by using passive heating of a mould and measured the transcribability of an optical disk substrate.

  20. Modelling of passive heating for replication of sub-micron patterns in optical disk substrates

    International Nuclear Information System (INIS)

    Kim, Youngmin; Bae, Jaecheol; Kim, Hongmin; Kang, Shinill

    2004-01-01

    The transcribability of pit or land groove structures in replicating an optical disk substrate greatly affects the performance of a high-density optical disk. However, a solidified layer generated during the polymer filling worsens transcribability because the solidified layer prevents the polymer melt from filling the sub-micron patterns. Therefore, the development of the solidified layer during the filling stage of injection moulding must be delayed. For this delay, passive heating through an insulation layer has been used. In the present study, to examine the development of the solidified layer, delayed by passive heating, the flow of the polymer melt with passive heating was analysed. Passive heating delayed markedly the development of the solidified layer, reduced the viscosity of the polymer melt, and increased the fluidity of the polymer melt in the vicinity of the stamper surface with the sub-micron patterns. As a result, we predict that passive heating can improve the transcribability of an optical disk substrate. To verify our prediction, we fabricated an optical disk substrate by using passive heating of a mould and measured the transcribability of an optical disk substrate

  1. Export policies for multi-domain WDM networks

    DEFF Research Database (Denmark)

    Manolova, Anna Vasileva; Ruepp, Sarah Renée

    2010-01-01

    We analyze the performance of six export policies for a multi-domain routing protocol in WDM networks. We show that providing many AS-disjoint paths for survivability and load-balancing does not necessarily guarantee the lowest connection blocking......We analyze the performance of six export policies for a multi-domain routing protocol in WDM networks. We show that providing many AS-disjoint paths for survivability and load-balancing does not necessarily guarantee the lowest connection blocking...

  2. Massive WDM and TDM Soliton Transmission Systems : a ROSC Symposium

    CERN Document Server

    2002-01-01

    This book summarizes the proceedings of the invited talks presented at the “International Symposium on Massive TDM and WDM Optical Soliton Tra- mission Systems” held in Kyoto during November 9–12, 1999. The symposium is the third of the series organized by Research Group for Optical Soliton C- munications (ROSC) chaired by Akira Hasegawa. The research group, ROSC, was established in Japan in April 1995 with a support of the Japanese Ministry of Post and Telecommunications to promote collaboration and information - change among communication service companies, communication industries and academic circles in the theory and application of optical solitons. The symposium attracted enthusiastic response from worldwide researchers in the field of soliton based communications and intensive discussions were made. In the symposium held in 1997, new concept of soliton transmission based on dispersion management of optical fibers were presented. This new soliton is now called the dispersion managed soliton. The p...

  3. WDM compatible and electrically tunable SPE-OCDMA system based on the temporal self-imaging effect.

    Science.gov (United States)

    Tainta, S; Amaya, W; Erro, M J; Garde, M J; Sales, S; Muriel, M A

    2011-02-01

    A coding/decoding setup for a spectral phase encoding optical code-division multiple access (SPE-OCDMA) system has been developed. The proposal is based on the temporal self-imaging effect and the use of an easily tunable electro-optic phase modulator to achieve line-by-line coding of the transmitted signal, thus assuring compatibility with WDM techniques. Modulation of the code is performed at the same rate as the data, avoiding the use of high-bandwidth electro-optic modulators. As proof of concept of the technique, experimental results are presented for a back-to-back coder/decoder setup transmitting a 10 GHz unmodulated optical pulse train within an 80 GHz optical window and using 8-chip Hadamard codes.

  4. The emerging WDM EPON

    CERN Document Server

    Radivojević, Mirjana

    2017-01-01

    This book proposes dynamic wavelength and bandwidth allocation (DWBA), a hybrid of time-division multiplexing (TDM) and wavelength-division multiplexing (WDM), which offers a solution for service providers faced with multiservice networks. It discusses different models, architectures and implementations and evaluates their performance.

  5. Solutions for 400 Gbit/s inter data center WDM transmission

    DEFF Research Database (Denmark)

    Dochhan, Annika; Eiselt, Nicklas; Griesser, Helmut

    2016-01-01

    We review some currently discussed solutions for 400 Gbit/s inter-data center WDM transmission for up to 100 km. We focus on direct detected solutions, namely PAM4 and DMT, and present two WDM systems based on these formats....

  6. Advanced Optical Signal Processing using Time Lens based Optical Fourier Transformation

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Lillieholm, Mads

    2016-01-01

    An overview of recent progress on time lens based advanced optical signal processing is presented, with a special focus on all-optical ultrafast 640 Gbit/s all-channel serial-to-parallel conversion, and scalable WDM regeneration....

  7. A STUDY OF SOLID STATE LASER PASSIVE OPTICAL Q-SWITCHING OPERATION REGIME (Part 1

    Directory of Open Access Journals (Sweden)

    Ion LĂNCRĂNJAN

    2009-09-01

    Full Text Available This paper is the first of a four series treating, theoretically with experimental comparison, the issue of solid state laser passive optical Q-switching regime. In this first paper the technique of solid state lasers passive optical Q-switching is numerically investigated considering the case of longitudinally and transversally uniform photon, population inversion and absorption centres densities. The coupled differential equations defining photon, population inversion and absorption centres densities are numerically solved being the basis of passively optical Q-switched laser functional simulation. The numerical simulations are performed using the several software packages, mostly SCILAB programs. The developed SCILAB programs can be used for a large range of saturable absorption centre and active media parameters, mainly the initial (low signal optical transmittance of the passive optical Q-switch. The developed FORTRAN and SCILAB programs can be applied for passively Q-switched solid state lasers of several types emitting at several NIR wavelengths, in domain 1 ÷ 2 μm. For validating the numerical simulation results are compared with The results of the numerical simulation are compared with experimentally obtained ones, in the case of a LiF:F2- passively Q-switched Nd:YAG. A good agreement between the two kinds of results is observed.

  8. Gaussian Process Regression for WDM System Performance Prediction

    DEFF Research Database (Denmark)

    Wass, Jesper; Thrane, Jakob; Piels, Molly

    2017-01-01

    Gaussian process regression is numerically and experimentally investigated to predict the bit error rate of a 24 x 28 CiBd QPSK WDM system. The proposed method produces accurate predictions from multi-dimensional and sparse measurement data.......Gaussian process regression is numerically and experimentally investigated to predict the bit error rate of a 24 x 28 CiBd QPSK WDM system. The proposed method produces accurate predictions from multi-dimensional and sparse measurement data....

  9. High speed all-optical networks

    Science.gov (United States)

    Chlamtac, Imrich

    1993-01-01

    An inherent problem of conventional point-to-point WAN architectures is that they cannot translate optical transmission bandwidth into comparable user available throughput due to the limiting electronic processing speed of the switching nodes. This report presents the first solution to WDM based WAN networks that overcomes this limitation. The proposed Lightnet architecture takes into account the idiosyncrasies of WDM switching/transmission leading to an efficient and pragmatic solution. The Lightnet architecture trades the ample WDM bandwidth for a reduction in the number of processing stages and a simplification of each switching stage, leading to drastically increased effective network throughputs.

  10. Optical and impedance characteristics of passive films on pure aluminium

    International Nuclear Information System (INIS)

    Krishnakumar, R.; Szklarska-Smialowska, Z.

    1992-01-01

    Optical and Impedance behavior of pure bulk aluminum and pure sputtered aluminum film were studied in order to gain a better understanding of their fundamental passivation and pitting characteristics. Constant potential experiments at the passivation and pitting potentials, and potentiostatic anodic polarization were conducted while simultaneously monitoring the current, impedance and optical behavior, in-situ. Noise characteristics in the current data during the pit incubation period indicate that Cl - ions migrate with little impediment to the metal surface through defects in the passive film. Impedance experiments indicate that the polarization resistance fluctuates continuously with time during the pit incubation period, suggesting that impedance spectroscopy is sensitive to localized processes. The interfacial capacitance increases continuously during this time. The smallest pits observed on the sample surface (less than 10μ) are clearly crystallographic, indicating activation controlled dissolution at pits. The film capacitance increases with exposure time at the passivation potential, while the polarization resistance decreases continuously. The decrease in the film resistance is thought to be due to chloride incorporation at defects in the passive film. The increase in film capacitance at the passivation and pitting potential is due to an increase in the film dielectric constant caused by either a compositional change or anion incorporation. Ellipsometry results indicate growth of a dual layered film on the pure aluminum surface, with the outer layer probably containing varying amounts of incorporated chloride depending on the applied potential. Preliminary experiments indicate that in the case of sputtered aluminum film, the passive film resistance is at least an order of magnitude higher than that of bulk aluminum. This is due to the fine grain structure of sputtered Al and hence a more defect free passive film than that formed on bulk aluminum. There is

  11. Design issues for semi-passive optical communication devices

    Science.gov (United States)

    Glaser, I.

    2007-09-01

    Optical smart cards are devices containing a retro-reflector, light modulator, and some computing and data storage capabilities to affect semi-passive communication. They do not produce light; instead they modulate and send back light received from a stationary unit. These devices can replace contact-based smart cards as well as RF based ones for applications ranging from identification to transmitting and validating data. Since their transmission is essentially focused on the receiving unit, they are harder to eavesdrop than RF devices, yet need no physical contact or alignment. In this paper we explore optical design issues of these devices and estimate their optical behavior. Specifically, we analyze how these compact devices can be optimized for selected application profiles. Some of the key parameters addressed are effective light efficiency (how much modulated signal can be received by the stationary unit given the amount of light it transmits), range of tilt angles (angle between device surface normal to the line connecting the optical smart card with the stationary unit) through which the device would be effective, and power requirements of the semi-passive unit. In addition, issues concerning compact packaging of this device are discussed. Finally, results of the analysis are employed to produce a comparison of achievable capabilities of these optical smart cards, as opposed to alternative devices, and discuss potential applications were they can be best utilized.

  12. Reactive granular optics for passive tracking of the sun

    Science.gov (United States)

    Frenkel, I.; Niv, A.

    2017-08-01

    The growing need for cost-effective renewable energy sources is hampered by the stagnation in solar cell technology, thus preventing a substantial reduction in the module and energy-production price. Lowering the energy-production cost could be achieved by using modules with efficiency. One of the possible means for increasing the module efficiency is concentrated photovoltaics (CPV). CPV, however, requires complex and accurate active tracking of the sun that reduces much of its cost-effectiveness. Here, we propose a passive tracking scheme based on a reactive optical device. The optical reaction is achieved by a new kind of light activated mechanical force that acts on micron-sized particles. This optical force allows the formation of granular disordered optical media that can be switched from being opaque to become transparent based on the intensity of light it interacts with. Such media gives rise to an efficient passive tracking scheme that when combined with an external optical cavity forms a new solar power conversion approach. Being external to the cell itself, this approach is indifferent to the type of semiconducting material that is used, as well as to other aspects of the cell design. This, in turn, liberates the cell layout from its optical constraints thus paving the way to higher efficiencies at lower module price.

  13. Integrated Active and Passive Polymer Optical Components with nm to mm Features

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Schøler, Mikkel; Kristensen, Anders

    2007-01-01

    We present wafer-scale fabrication of integrated active and passive polymer optics with nm to mm features. First order DFB lasers, defined in dye doped SU-8 resist are integrated with SU-8 waveguides.......We present wafer-scale fabrication of integrated active and passive polymer optics with nm to mm features. First order DFB lasers, defined in dye doped SU-8 resist are integrated with SU-8 waveguides....

  14. Water brief-WDM & wastewater reuse

    International Development Research Centre (IDRC) Digital Library (Canada)

    aalfouns

    Wastewater Reuse for Water Demand Management in the Middle East and ... Among the substantial WDM tools in MENA is the use of wastewater to reduce the pressure on scarce freshwater .... recycled water to irrigate crops with associated ...

  15. High Speed and High Spatial Density Parameter Measurement Using Fiber Optic Sensing Technology

    Science.gov (United States)

    Parker, Allen R. Jr. (Inventor); Chan, Hon Man (Inventor); Richards, William Lance (Inventor); Piazza, Anthony (Inventor); Hamory, Philip J (Inventor)

    2017-01-01

    The present invention is an improved fiber optic sensing system (FOSS) having the ability to provide both high spatial resolution and high frequency strain measurements. The inventive hybrid FOSS fiber combines sensors from high acquisition speed and low spatial resolution Wavelength-Division Multiplexing (WDM) systems and from low acquisition speed and high spatial resolution Optical Frequency Domain Reflection (OFDR) systems. Two unique light sources utilizing different wavelengths are coupled with the hybrid FOSS fiber to generate reflected data from both the WDM sensors and OFDR sensors operating on a single fiber optic cable without incurring interference from one another. The two data sets are then de-multiplexed for analysis, optionally with conventionally-available WDM and OFDR system analyzers.

  16. Estudo de topologias para redes WDM-PON

    OpenAIRE

    Guilherme Enéas Vaz Silva

    2010-01-01

    A demanda de largura de banda exigida pelos usuários de redes de acesso vem aumentando rapidamente e a rede óptica passiva baseada em multiplexação por divisão de comprimento de onda (WDM-PON) tem se destacado como a tecnologia capaz de suprir essa demanda. Dessa forma, este trabalho conduz, inicialmente, uma comparação entre uma rede WDM-PON ideal e uma rede TDM-PON, discutindo também aspectos de segurança desta última, bem como estratégias de migração entre estes dois esquemas. Devido ao cu...

  17. Passive Optical Link Budget for LEO Space Surveillance

    Science.gov (United States)

    Wagner, P.; Hasenohr, T.; Hampf, D.; Sproll, F.; Humbert, L.; Rodmann, J.; Riede, W.

    The rising space debris population is becoming an increasing risk for space assets. Even objects with the size of 10mm can cause major damages to active spacecraft. Especially the orbits around 800km high are densely populated with space debris objects. To assess the risk of collisions with active satellites, the Earth orbits need to be surveyed permanently. Space debris laser ranging systems for example can deliver highly accurate positional data for precise orbit determination. Therefor a priori information about the objects coarse trajectory is needed. Such initial orbit information can be provided by wide angle optical sensors. The Institute of Technical Physics at the German Aerospace Center in Stuttgart runs an observatory to perform passive as well as laser optical measurements to LEO objects. In order to detect unknown objects, a wide-angle imaging system with a field of view in the range of 5° to 15° equipped with an astronomical CCD camera and a commercial off the shelf (COTS) lens was designed to continuously observe the night sky for LEO objects. This paper presents the passive optical link budget for observing LEO objects to show the benefits and limits of the physical performance of an optical surveillance system. A compact COTS system is able to detect objects with a couple of decimeters in size while a large aperture telescope can detect objects with diameters below 10cm. Additionally, data captured by a passive optical staring system with a 10 cm aperture was analyzed. It is shown that 90% of all objects with a radar cross section larger than 2m² are detected with such a system during twilight conditions. The smallest detected LEO object with this system has a size of 0.32m x 0.32m x 0.26m. These measurements are compared to the developed link budget which allows an estimation of the performance of larger systems.

  18. Advanced optical signal processing of broadband parallel data signals

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Hu, Hao; Kjøller, Niels-Kristian

    2016-01-01

    Optical signal processing may aid in reducing the number of active components in communication systems with many parallel channels, by e.g. using telescopic time lens arrangements to perform format conversion and allow for WDM regeneration.......Optical signal processing may aid in reducing the number of active components in communication systems with many parallel channels, by e.g. using telescopic time lens arrangements to perform format conversion and allow for WDM regeneration....

  19. Resource management research in Passive Optical Networks (PON)

    OpenAIRE

    Garfias Hernández, Paola

    2013-01-01

    Next Generation Access Networks (NGAN) are the new step forward to deliver broadband services and to facilitate the integration of different technologies. It is plausible to assume that, from a technological standpoint, the Future Internet will be composed of long-range high-speed optical networks; a number of wireless networks at the edge; and, in between, several access technologies, among which, the Passive Optical Networks (xPON) are very likely to succeed, due to their simplicity, low-co...

  20. A Passive Optical Location with Limited Range

    Directory of Open Access Journals (Sweden)

    Pavel Fiala

    2008-01-01

    Full Text Available We know active and passive methods of a location. This article deals only with a passive location of dynamic targets. The passive optics location is suitable just for tracking of targets with mean velocity which is limited by the hardware basis. The aim of this work is to recognize plasma, particles etc. It is possible to propose such kind of evaluation methods which improve the capture probability markedly. Suggested method is dealing with the short-distance evaluation of targets. We suppose the application of three independent principles how to recognize an object in a scanned picture. These principles use similar stochastic functions in order to evaluate an object location by means of simple mathematical operations. Methods are based on direct evaluation of picture sequence by the help of the histogram and frequency spectrum. We find out the probability of unidentified moving object in pictures. If the probability reaches a setting value we will get a signal.

  1. No-go theorem for passive single-rail linear optical quantum computing.

    Science.gov (United States)

    Wu, Lian-Ao; Walther, Philip; Lidar, Daniel A

    2013-01-01

    Photonic quantum systems are among the most promising architectures for quantum computers. It is well known that for dual-rail photons effective non-linearities and near-deterministic non-trivial two-qubit gates can be achieved via the measurement process and by introducing ancillary photons. While in principle this opens a legitimate path to scalable linear optical quantum computing, the technical requirements are still very challenging and thus other optical encodings are being actively investigated. One of the alternatives is to use single-rail encoded photons, where entangled states can be deterministically generated. Here we prove that even for such systems universal optical quantum computing using only passive optical elements such as beam splitters and phase shifters is not possible. This no-go theorem proves that photon bunching cannot be passively suppressed even when extra ancilla modes and arbitrary number of photons are used. Our result provides useful guidance for the design of optical quantum computers.

  2. WDM Phase-Modulated Millimeter-Wave Fiber Systems

    DEFF Research Database (Denmark)

    Yu, Xianbin; Prince, Kamau; Gibbon, Timothy Braidwood

    2012-01-01

    This chapter presents a computer simulation case study of two typical WDM phase-modulated millimeter-wave systems. The phase-modulated 60 GHz fiber multi-channel transmission systems employ single sideband (SSB) and double sideband subcarrier modulation (DSB-SC) schemes and present one of the lat......This chapter presents a computer simulation case study of two typical WDM phase-modulated millimeter-wave systems. The phase-modulated 60 GHz fiber multi-channel transmission systems employ single sideband (SSB) and double sideband subcarrier modulation (DSB-SC) schemes and present one...... of the latest research efforts in the rapidly emerging Radio-over-Fiber (RoF) application space for in-house access networks....

  3. Testing FSO WDM communication system in simulation software optiwave OptiSystem in different atmospheric environments

    Science.gov (United States)

    Vanderka, Ales; Hajek, Lukas; Bednarek, Lukas; Latal, Jan; Vitasek, Jan; Hejduk, Stanislav; Vasinek, Vladimir

    2016-09-01

    In this article the author's team deals with using Wavelength Division Multiplexing (WDM) for Free Space Optical (FSO) Communications. In FSO communication occurs due to the influence of atmospheric effect (attenuation, and fluctuation of the received power signal, influence turbulence) and the WDM channel suffers from interchannel crosstalk. There is considered only the one direction. The behavior FSO link was tested for one or eight channels. Here we will be dealing with modulation schemes OOK (On-Off keying), QAM (Quadrature Amplitude Modulation) and Subcarrier Intensity Modulation (SIM) based on a BPSK (Binary Phase Shift Keying). Simulation software OptiSystem 14 was used for tasting. For simulation some parameters were set according to real FSO link such as the datarate 1.25 Gbps, link range 1.4 km. Simulated FSO link used wavelength of 1550 nm with 0.8 nm spacing. There is obtained the influence of crosstalk and modulation format for the BER, depending on the amount of turbulence in the propagation medium.

  4. Traffic grooming in WDM optical network with grooming resources at Max Connectivity nodes

    Science.gov (United States)

    Paul, Partha; Rawat, Balbeer Singh; Ghorai, S. K.

    2012-12-01

    In this paper, we propose Max Connectivity grooming in WDM mesh networks under static lightpath connection requests. The grooming and wavelength conversion resources are placed at the nodes having maximum connections. We propose a heuristic genetic algorithm (GA) model to solve grooming, routing and wavelength assignment. The GA algorithm has been used to optimize the cost of grooming and wavelength conversion resources. The blocking probability has been investigated under different lightpath connections. The performance of Max Connectivity grooming has been compared with other grooming policies. Our results indicate the improvement of resource utilization with minimum blocking probability.

  5. Experimental 2.5 Gbit/s QPSK WDM coherent phase modulated radio-over-fibre link with digital demodulation by a K-means algorithm

    DEFF Research Database (Denmark)

    Guerrero Gonzalez, Neil; Caballero Jambrina, Antonio; Amaya Fernández, Ferney Orlando

    2009-01-01

    Highest reported bit rate of 2.5 Gbit/s for optically phase modulated radio-over-fibre link employing coherent detection is demonstrated. Demodulation of 3·2.5 Gbit/s QPSK modulated WDM channels, is achieved after 79km of transmission through deployed fiber....

  6. Multi-power-level Energy Saving Management for Passive Optical Networks

    OpenAIRE

    Taheri, Mina; Ansari, Nirwan

    2014-01-01

    Environmental concerns have motivated network designers to further reduce energy consumption of access networks. This paper focuses on reducing energy consumption of Ethernet passive optical network (EPON) as one of the most efficient transmission technologies for broadband access. In EPON, the downstream traffic is sent from the optical line terminal (OLT) located at the central office to all optical network units (ONUs). Each ONU checks all arrival downstream packets and selects the downstr...

  7. Sub-GHz-resolution C-band Nyquist-filtering interleaver on a high-index-contrast photonic integrated circuit.

    Science.gov (United States)

    Zhuang, Leimeng; Zhu, Chen; Corcoran, Bill; Burla, Maurizio; Roeloffzen, Chris G H; Leinse, Arne; Schröder, Jochen; Lowery, Arthur J

    2016-03-21

    Modern optical communications rely on high-resolution, high-bandwidth filtering to maximize the data-carrying capacity of fiber-optic networks. Such filtering typically requires high-speed, power-hungry digital processes in the electrical domain. Passive optical filters currently provide high bandwidths with low power consumption, but at the expense of resolution. Here, we present a passive filter chip that functions as an optical Nyquist-filtering interleaver featuring sub-GHz resolution and a near-rectangular passband with 8% roll-off. This performance is highly promising for high-spectral-efficiency Nyquist wavelength division multiplexed (N-WDM) optical super-channels. The chip provides a simple two-ring-resonator-assisted Mach-Zehnder interferometer, which has a sub-cm2 footprint owing to the high-index-contrast Si3N4/SiO2 waveguide, while manifests low wavelength-dependency enabling C-band (> 4 THz) coverage with more than 160 effective free spectral ranges of 25 GHz. This device is anticipated to be a critical building block for spectrally-efficient, chip-scale transceivers and ROADMs for N-WDM super-channels in next-generation optical communication networks.

  8. Optical Code-Division Multiple-Access and Wavelength Division Multiplexing: Hybrid Scheme Review

    OpenAIRE

    P. Susthitha Menon; Sahbudin Shaari; Isaac A.M. Ashour; Hesham A. Bakarman

    2012-01-01

    Problem statement: Hybrid Optical Code-Division Multiple-Access (OCDMA) and Wavelength-Division Multiplexing (WDM) have flourished as successful schemes for expanding the transmission capacity as well as enhancing the security for OCDMA. However, a comprehensive review related to this hybrid system are lacking currently. Approach: The purpose of this paper is to review the literature on OCDMA-WDM overlay systems, including our hybrid approach of one-dimensional coding of SAC OCDMA with WDM si...

  9. OPTIMIZATION OF DISJOINTS FOR MINIMIZATION OF FAILURE IN WDM OPTICAL NETWORK

    Directory of Open Access Journals (Sweden)

    A. Renugadevi

    2015-06-01

    Full Text Available In an optical network, the fiber optic cable is used for communication between the nodes in a network by passing lights. The main problem in optical network is finding the link disjoints as well as optimal solution for the disjoints. To tolerate a single link failure in the network, the enhanced active path first algorithm is used which computes the re-routed back-up path. The multiple link failure in a network called fibre span disjoint path problem is solved using integer linear programming algorithm. The loop back recovery is used to provide pre-planned recovery of link or node failures in a network which allows dynamic choice of routes over pre-planned directions. Considering reliability in a mesh networks, the reliability algorithm helps to achieve the maximum reliability in two-path protection. It addresses the multiple disjoint failures that arise in a network and discusses the best solution between paths shared nodes or links. The unified algorithm is used to generate the optimal results with minimum cost for multiple link failures. The heuristic algorithm namely maximum arbitrary double-link protection algorithm helps to pre-compute the back-up path for double-link failures. In all the above approaches the shortest optimized path must be improved. To find the best shortest path, link-disjoint lightpath algorithm is designed to compute the disjoint occurred in a network and it also satisfies the wavelength continuity constraint in wavelength division multiplexing. A polynomial time algorithm Wavelength Division Multiplexing – Passive Optical Networking is used to compute the disjoint happen in the network. The overall time efficiency is analyzed and performance is evaluated through simulations.

  10. Remotely controllable WDM-PON technology for wireless fronthaul/backhaul application

    DEFF Research Database (Denmark)

    Eiselt, Michael H.; Wagner, Christoph; Lawin, Mirko

    2016-01-01

    Low-cost WDM-PON solutions for fronthaul and backhaul applications will include remotely controlled tail-end transceivers. We report on control aspects of these transceivers and how standardization is evolving to enable these applications.......Low-cost WDM-PON solutions for fronthaul and backhaul applications will include remotely controlled tail-end transceivers. We report on control aspects of these transceivers and how standardization is evolving to enable these applications....

  11. Integration of active and passive polymer optics

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Schøler, Mikkel; Kristensen, Anders

    2007-01-01

    We demonstrate a wafer scale fabrication process for integration of active and passive polymer optics: Polymer DFB lasers and waveguides. Polymer dye DFB lasers are fabricated by combined nanoimprint and photolithography (CNP). The CNP fabrication relies on an UV transparent stamp with nm sized...... wavelength from temperature and refractive index changes in the surroundings is investigated, pointing towards the use of the described fabrication method for on-chip polymer sensor systems....

  12. Delivery of video-on-demand services using local storages within passive optical networks.

    Science.gov (United States)

    Abeywickrama, Sandu; Wong, Elaine

    2013-01-28

    At present, distributed storage systems have been widely studied to alleviate Internet traffic build-up caused by high-bandwidth, on-demand applications. Distributed storage arrays located locally within the passive optical network were previously proposed to deliver Video-on-Demand services. As an added feature, a popularity-aware caching algorithm was also proposed to dynamically maintain the most popular videos in the storage arrays of such local storages. In this paper, we present a new dynamic bandwidth allocation algorithm to improve Video-on-Demand services over passive optical networks using local storages. The algorithm exploits the use of standard control packets to reduce the time taken for the initial request communication between the customer and the central office, and to maintain the set of popular movies in the local storage. We conduct packet level simulations to perform a comparative analysis of the Quality-of-Service attributes between two passive optical networks, namely the conventional passive optical network and one that is equipped with a local storage. Results from our analysis highlight that strategic placement of a local storage inside the network enables the services to be delivered with improved Quality-of-Service to the customer. We further formulate power consumption models of both architectures to examine the trade-off between enhanced Quality-of-Service performance versus the increased power requirement from implementing a local storage within the network.

  13. Heuristic approach to the passive optical network with fibre duct ...

    African Journals Online (AJOL)

    Integer programming, network flow optimisation, passive optical network, ... This paper uses concepts from network flow optimisation to incorporate fibre duct shar ... [4] studied the survivable constrained ConFL problem and solved a number of.

  14. Multichannel silicon WDM ring filters fabricated with DUV lithography

    Science.gov (United States)

    Lee, Jong-Moo; Park, Sahnggi; Kim, Gyungock

    2008-09-01

    We have fabricated 9-channel silicon wavelength-division-multiplexing (WDM) ring filters using 193 nm deep-ultraviolet (DUV) lithography and investigated the spectral properties of the ring filters by comparing the transmission spectra with and without an upper cladding. The average channel-spacing of the 9-channel WDM ring filter with a polymeric upper cladding is measured about 1.86 nm with the standard deviation of the channel-spacing about 0.34 nm. The channel crosstalk is about -30 dB, and the minimal drop loss is about 2 dB.

  15. Author Details - African Journals Online

    African Journals Online (AJOL)

    Etude et simulation des techniques de multiplexage OFDM pour une liaison optique du type IM/DD Study and simulation of OFDM multiplexing techniques for IM / DD optical link. Abstract · Vol 17, No 3 (2015) - Articles Modelisation et simulation d'un PON (Passive Optical Network) base sur la technologie hybride WDM/ ...

  16. Parallel Void Thread in Long-Reach Ethernet Passive Optical Networks

    KAUST Repository

    Elrasad, Amr; Shihada, Basem

    2015-01-01

    This work investigates void filling (idle periods) in long-reach Ethernet passive optical networks. We focus on reducing grant delays and hence reducing the average packet delay. We introduce a novel approach called parallel void thread (PVT), which

  17. An efficient mechanism for dynamic multicast traffic grooming in overlay IP/MPLS over WDM networks

    Science.gov (United States)

    Yu, Xiaojun; Xiao, Gaoxi; Cheng, Tee Hiang

    2014-08-01

    This paper proposes an efficient overlay multicast provisioning (OMP) mechanism for dynamic multicast traffic grooming in overlay IP/MPLS over WDM networks. To facilitate request provisioning, OMP jointly utilizes a data learning (DL) scheme on the IP/MPLS layer for logical link cost estimation, and a lightpath fragmentation (LPF) based method on the WDM layer for improving resource sharing in grooming process. Extensive simulations are carried out to evaluate the performance of OMP mechanism under different traffic loads, with either limited or unlimited port resources. Simulation results demonstrate that OMP significantly outperforms the existing methods. To evaluate the respective influences of the DL scheme and the LPF method on OMP performance, provisioning mechanisms only utilizing either the IP/MPLS layer DL scheme or the WDM layer LPF method are also devised. Comparison results show that both DL and LPF methods help improve OMP blocking performance, and contribution from the DL scheme is more significant when the fixed routing and first-fit wavelength assignment (RWA) strategy is adopted on the WDM layer. Effects of a few other factors, including definition of connection cost to be reported by the WDM layer to the IP/MPLS layer and WDM-layer routing method, on OMP performance are also evaluated.

  18. Approach of the T-CONT Allocation to Increase the Bandwidth in Passive Optical Networks

    Directory of Open Access Journals (Sweden)

    Z. Bosternak

    2017-12-01

    Full Text Available This paper works with the simulation of T-CONT allocation and delay analysis in passive optical networks PON. Building our networks with the PON technology we can achieve increased data rates, however we need to ensure that the idle gaps between the particular transmissions are minimal. The primary method for the upstream time slot allocation in passive optical networks is via Multi Point Control Protocol. The baseline standard of this protocol clearly defines the use of the REPORT and GATE control messages. The two optical network elements used here, the optical network unit ONT and the optical line termination OLT, located at the central office CO, can be scheduled to allocate the time slots. Using the control messages, a more accurate scheduling algorithm can be developed, hence we can directly improve the utilization of the bandwidth as well. In this work, we introduce the basic topology of the passive optical networks, how PON works and what basic principles of bandwidth allocation have been applied. Subsequently, we suggest a selection of methods for time slot allocation and we make an analysis on the achieved results. Our main focus is on the system load, transfer delay and the analysis of the effectivity.

  19. Monolithically integrated 8-channel WDM reflective modulator

    NARCIS (Netherlands)

    Stopinski, S.T.; Malinowski, M.; Piramidowicz, R.; Smit, M.K.; Leijtens, X.J.M.

    2013-01-01

    In this work the design and characterization of a monolithically integrated photonic circuit acting as a reflective modulator for eight WDM channels is presented. The chip was designed and fabricated in a generic integration technology

  20. Experimental demonstration of SCMA-OFDM for passive optical network

    Science.gov (United States)

    Lin, Bangjiang; Tang, Xuan; Shen, Xiaohuan; Zhang, Min; Lin, Chun; Ghassemlooy, Zabih

    2017-12-01

    We introduces a novel architecture for next generation passive optical network (PON) based on the employment of sparse code multiple access (SCMA) combined with orthogonal frequency division multiplexing (OFDM) modulation, in which the binary data is directly encoded to multi-dimensional codewords and then spread over OFDM subcarriers. The feasibility of SCMA-OFDM-PON is verified with experimental demonstration. We show that the SCMA-OFDM offers 150% overloading gain in the number of optical network units compared with the orthogonal frequency division multiplexing access.

  1. Polarization Insensitive One-to-Six WDM Multicasting in a Silicon Nanowire

    DEFF Research Database (Denmark)

    Pu, Minhao; Hu, Hao; Peucheret, Christophe

    2012-01-01

    We present polarization insensitive one-to-six WDM multicasting based on nondegenerate four-wave mixing in a silicon nanowire with angled-pump scheme. Bit-error rate measurements are performed and error-free operation is achieved.......We present polarization insensitive one-to-six WDM multicasting based on nondegenerate four-wave mixing in a silicon nanowire with angled-pump scheme. Bit-error rate measurements are performed and error-free operation is achieved....

  2. Integrated optic vector-matrix multiplier

    Science.gov (United States)

    Watts, Michael R [Albuquerque, NM

    2011-09-27

    A vector-matrix multiplier is disclosed which uses N different wavelengths of light that are modulated with amplitudes representing elements of an N.times.1 vector and combined to form an input wavelength-division multiplexed (WDM) light stream. The input WDM light stream is split into N streamlets from which each wavelength of the light is individually coupled out and modulated for a second time using an input signal representing elements of an M.times.N matrix, and is then coupled into an output waveguide for each streamlet to form an output WDM light stream which is detected to generate a product of the vector and matrix. The vector-matrix multiplier can be formed as an integrated optical circuit using either waveguide amplitude modulators or ring resonator amplitude modulators.

  3. Digital non-linear equalization for flexible capacity ultradense WDM channels for metro core networking

    DEFF Research Database (Denmark)

    Arlunno, Valeria; Zhang, Xu; Larsen, Knud J.

    2011-01-01

    carriers, we demonstrate that a digital non-linear equalization allow to mitigate inter-channel interference and improve overall system performance in terms of OSNR. Evaluation of the algorithm and comparison with an ultradense WDM system with coherent carriers generated from a single laser are also......An experimental demonstration of Ultradense WDM with advanced digital signal processing is presented. The scheme proposed allows the use of independent tunable DFB lasers spaced at 12.5 GHz for ultradense WDM PM-QPSK flexible capacity channels for metro core networking. To allocate extremely closed...

  4. WDM Research Series: Working Paper No. 2

    International Development Research Centre (IDRC) Digital Library (Canada)

    IDRC CRDI

    The other three papers of the Series focus on the issues of institutional structures ... Any approach that relates WDM to poverty and equity requires a set of working ..... If local irrigation system operation and maintenance investments and.

  5. Optical packet switched networks

    DEFF Research Database (Denmark)

    Hansen, Peter Bukhave

    1999-01-01

    Optical packet switched networks are investigated with emphasis on the performance of the packet switch blocks. Initially, the network context of the optical packet switched network is described showing that a packet network will provide transparency, flexibility and bridge the granularity gap...... in interferometric wavelength converters is investigated showing that a 10 Gbit/s 19 4x4 swich blocks can be cascaded at a BER of 10-14. An analytical traffic model enables the calculation of the traffice performance of a WDM packet network. Hereby the importance of WDM and wavelegth conversion in the switch blocks...... is established as a flexible means to reduce the optical buffer, e.g., the number of fibre delay lines for a 16x16 switch block is reduced from 23 to 6 by going from 2 to 8 wavelength channels pr. inlet. Additionally, a component count analysis is carried out to illustrate the trade-offs in the switch block...

  6. Optical near-field lithography on hydrogen-passivated silicon surfaces

    DEFF Research Database (Denmark)

    Madsen, Steen; Müllenborn, Matthias; Birkelund, Karen

    1996-01-01

    by the optical near field, were observed after etching in potassium hydroxide. The uncoated fibers can also induce oxidation without light exposure, in a manner similar to an atomic force microscope, and linewidths of 50 nm have been achieved this way. (C) 1996 American Institute of Physics.......We report on a novel lithography technique for patterning of hydrogen-passivated amorphous silicon surfaces. A reflection mode scanning near-field optical microscope with uncoated fiber probes has been used to locally oxidize a thin amorphous silicon layer. Lines of 110 nm in width, induced...

  7. Design of integrated optics all-optical label swappers for spectral amplitude code label swapping optical packet networks on active/passive InP technology

    NARCIS (Netherlands)

    Habib, C.; Munoz, P.; Leijtens, X.J.M.; Chen, Lawrence; Smit, M.K.; Capmany, J.

    2009-01-01

    In this paper the designs of optical label swapper devices, for spectral amplitude coded labels, monolithically integrated on InP active/passive technology are pre sented. The devices are based on cross-gain modulation in a semiconductor optical amplifier. Multi-wavelength operation is enabled by

  8. Experimental demonstration of optical stealth transmission over wavelength-division multiplexing network.

    Science.gov (United States)

    Zhu, Huatao; Wang, Rong; Pu, Tao; Fang, Tao; Xiang, Peng; Zheng, Jilin; Tang, Yeteng; Chen, Dalei

    2016-08-10

    We propose and experimentally demonstrate an optical stealth transmission system over a 200 GHz-grid wavelength-division multiplexing (WDM) network. The stealth signal is processed by spectral broadening, temporal spreading, and power equalizing. The public signal is suppressed by multiband notch filtering at the stealth channel receiver. The interaction between the public and stealth channels is investigated in terms of public-signal-to-stealth-signal ratio, data rate, notch-filter bandwidth, and public channel number. The stealth signal can transmit over 80 km single-mode fiber with no error. Our experimental results verify the feasibility of optical steganography used over the existing WDM-based optical network.

  9. Efficient Bandwidth Management for Ethernet Passive Optical Networks

    KAUST Repository

    Elrasad, Amr Elsayed M.

    2016-05-15

    The increasing bandwidth demands in access networks motivates network operators, networking devices manufacturers, and standardization institutions to search for new approaches for access networks. These approaches should support higher bandwidth, longer distance between end user and network operator, and less energy consumption. Ethernet Passive Optical Network (EPON) is a favorable choice for broadband access networks. EPONs support transmission rates up to 10 Gbps. EPONs also support distance between end users and central office up to 20 Km. Moreover, optical networks have the least energy consumption among all types of networks. In this dissertation, we focus on reducing delay and saving energy in EPONs. Reducing delay is essential for delay-sensitive traffic, while minimizing energy consumption is an environmental necessity and also reduces the network operating costs. We identify five challenges, namely excess bandwidth allocation, frame delineation, congestion resolution, large round trip time delay in long-reach EPONs (LR-EPONs), and energy saving. We provide a Dynamic Bandwidth Allocation (DBA) approach for each challenge. We also propose a novel scheme that combines the features of the proposed approaches in one highly performing scheme. Our approach is to design novel DBA protocols that can further reduce the delay and be simultaneously simple and fair. We also present a dynamic bandwidth allocation scheme for Green EPONs taking into consideration maximizing energy saving under target delay constraints. Regarding excess bandwidth allocation, we develop an effective DBA scheme called Delayed Excess Scheduling (DES). DES achieves significant delay and jitter reduction and is more suitable for industrial deployment due to its simplicity. Utilizing DES in hybrid TDM/WDM EPONs (TWDM-EPONs) is also investigated. We also study eliminating the wasted bandwidth due to frame delineation. We develop an interactive DBA scheme, Efficient Grant Sizing Interleaved

  10. Analysis of blocking probability for OFDM-based variable bandwidth optical network

    Science.gov (United States)

    Gong, Lei; Zhang, Jie; Zhao, Yongli; Lin, Xuefeng; Wu, Yuyao; Gu, Wanyi

    2011-12-01

    Orthogonal Frequency Division Multiplexing (OFDM) has recently been proposed as a modulation technique. For optical networks, because of its good spectral efficiency, flexibility, and tolerance to impairments, optical OFDM is much more flexible compared to traditional WDM systems, enabling elastic bandwidth transmissions, and optical networking is the future trend of development. In OFDM-based optical network the research of blocking rate has very important significance for network assessment. Current research for WDM network is basically based on a fixed bandwidth, in order to accommodate the future business and the fast-changing development of optical network, our study is based on variable bandwidth OFDM-based optical networks. We apply the mathematical analysis and theoretical derivation, based on the existing theory and algorithms, research blocking probability of the variable bandwidth of optical network, and then we will build a model for blocking probability.

  11. Cost-Effective Brillouin Optical Time-Domain Analysis Sensor Using a Single Optical Source and Passive Optical Filtering

    Directory of Open Access Journals (Sweden)

    H. Iribas

    2016-01-01

    Full Text Available We present a simplified configuration for distributed Brillouin optical time-domain analysis sensors that aims to reduce the cost of the sensor by reducing the number of components required for the generation of the two optical waves involved in the sensing process. The technique is based on obtaining the pump and probe waves by passive optical filtering of the spectral components generated in a single optical source that is driven by a pulsed RF signal. The optical source is a compact laser with integrated electroabsorption modulator and the optical filters are based on fiber Bragg gratings. Proof-of-concept experiments demonstrate 1 m spatial resolution over a 20 km sensing fiber with a 0.9 MHz precision in the measurement of the Brillouin frequency shift, a performance similar to that of much more complex setups. Furthermore, we discuss the factors limiting the sensor performance, which are basically related to residual spectral components in the filtering process.

  12. Strain measurement using multiplexed fiber optic sensors

    International Nuclear Information System (INIS)

    Kwon, Il Bum; Kim, Chi Yeop; Yoon, Dong Jin; Lee, Seung Seok

    2003-01-01

    FBG(Fiber Bragg grating) sensor, which is one of the fiber optic sensors for the application of smart structures, can not only measure one specific point but also multiple points by multiplexing techniques. We have proposed a novel multiplexing technique of FBG sensor by the intensity modulation of light source. This technique is applicable to WDM(Wavelength Division Multiplexing) technique and number of sensors in this system can be increased by using this technique with WDM technique.

  13. WDM Question and Answers | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2011-01-04

    Jan 4, 2011 ... Why is there growing concern about water issues in the MENA region? ... tend to leak, taps tend to drip and little is done to prevent water pollution. ... water demand management (WDM) and water supply management (WSM)?.

  14. Integration of FBG Strain Sensors in WDM Networks, Effects on Quality Factor

    Directory of Open Access Journals (Sweden)

    Ali Al-Lawati

    2009-06-01

    Full Text Available A study of the effect of integrating an FBG sensor in a four wavelength WDM communications system operating at 1550 nm is presented. The simulations considered focus on the mutual effects of both the sensing and the communications systems. The effect of power levels of the interrogating optical source on the performance of the two systems is also investigated under excitation levels of up to 10 dBm. The network layout used in the simulations is based on an actual optical link in Oman having a variety of spans. The results obtained at data rates of 2.5 and 10 Gbps with variable strains up to ±600 μs show a good tolerance in terms of quality of transmission for the two systems. However, the greater the strain values, the more noticeable are the degradations of transmission quality parameters of the communications system.

  15. Fault discovery protocol for passive optical networks

    Science.gov (United States)

    Hajduczenia, Marek; Fonseca, Daniel; da Silva, Henrique J. A.; Monteiro, Paulo P.

    2007-06-01

    All existing flavors of passive optical networks (PONs) provide an attractive alternative to legacy copper-based access lines deployed between a central office (CO) of the service provider (SP) and a customer site. One of the most challenging tasks for PON network planners is the reduction of the overall cost of employing protection schemes for the optical fiber plant while maintaining a reasonable level of survivability and reducing the downtime, thus ensuring acceptable levels of quality of service (QoS) for end subscribers. The recently growing volume of Ethernet PONs deployment [Kramer, IEEE 802.3, CFI (2006)], connected with low-cost electronic and optical components used in the optical network unit (ONU) modules, results in the situation where remote detection of faulty/active subscriber modules becomes indispensable for proper operation of an EPON system. The problem of the remote detection of faulty ONUs in the system is addressed where the upstream channel is flooded with the cw transmission from one or more damaged ONUs and standard communication is severed, providing a solution that is applicable in any type of PON network, regardless of the operating protocol, physical structure, and data rate.

  16. Gain transient control for wavelength division multiplexed access networks using semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Gibbon, Timothy Braidwood; Osadchiy, Alexey Vladimirovich; Kjær, Rasmus

    2009-01-01

    Gain transients can severely hamper the upstream network performance in wavelength division multiplexed (WDM) access networks featuring erbium doped fiber amplifiers (EDFAs) or Raman amplification. We experimentally demonstrate for the first time using 10 Gb/s fiber transmission bit error rate...... measurements how a near-saturated semiconductor optical amplifier (SOA) can be used to control these gain transients. An SOA is shown to reduce the penalty of transients originating in an EDFA from 2.3 dB to 0.2 dB for 10 Gb/s transmission over standard single mode fiber using a 231-1 PRBS pattern. The results...... suggest that a single SOA integrated within a WDM receiver at the metro node could offer a convenient all-optical solution for upstream transient controlin WDM access networks....

  17. Synchronization Algorithm for SDN-controlled All-Optical TDM Switching in a Random Length Ring Network

    DEFF Research Database (Denmark)

    Kamchevska, Valerija; Cristofori, Valentina; Da Ros, Francesco

    2016-01-01

    We propose and demonstrate an algorithm that allows for automatic synchronization of SDN-controlled all-optical TDM switching nodes connected in a ring network. We experimentally show successful WDM-SDM transmission of data bursts between all ring nodes.......We propose and demonstrate an algorithm that allows for automatic synchronization of SDN-controlled all-optical TDM switching nodes connected in a ring network. We experimentally show successful WDM-SDM transmission of data bursts between all ring nodes....

  18. Passive (self-powered) fiber-optic sensors

    International Nuclear Information System (INIS)

    McElhaney, S.A.; Falter, D.D.; Todd, R.A.; Simpson, M.L.; Mihalczo, J.T.

    1992-01-01

    ORNL is developing new group of fiber-optic sensors for characterizing physical aspects such as ambient temperature. These sensors exploit the inherent property of thermographic materials that the lifetime and/or intensity of the emitted fluorescence decreases with increasing temperature. Unlike current fluorescent temperature sensors that use a light source for excitation, these sensors are totally passive (self-powered) and use either an embedded or external radiation source. A proof-of-principle temperature sensor was developed, based on this concept, using a well-known thermographic material, magnesium fluorogermanate. Experimental results showed that the radiation-induced fluorescence resulted in an intensity change but no significant decay rate change with increasing temperature

  19. All-optical Data Vortex node using an MZI-SOA switch array

    DEFF Research Database (Denmark)

    Jung, H.D.; Tafur Monroy, Idelfonso; Koonen, A.M.J.

    2007-01-01

    We propose and demonstrate a new structure of a Data Vortex switch node for all-optical routing of wavelength-division-multiplexing (WDM) 10-Gb/s optical packets. The proposed node consists of two Mach-Zehnder interferometers with integrated semiconductor optical amplifier: an optical AND gate...

  20. Quad 14 Gbps L-band VCSEL-based system for WDM migration of 4-lanes 56 Gbps optical data links

    DEFF Research Database (Denmark)

    Estaran Tolosa, Jose Manuel; Rodes Lopez, Roberto; Pham, Tien Thang

    2012-01-01

    We report on migrating multiple-lane link into an L-band VCSEL-based WDM system. Experimental validation achieves successful transmission over 10 km of SMF at 4x14Gbps. Inter-channel crosstalk penalty is observed to be less than 0.5 dB and a transmission penalty around 1 dB. The power budget margin...

  1. Gender & WDM in the Middle East & North Africa

    International Development Research Centre (IDRC) Digital Library (Canada)

    nkhaled

    WDM Research Report Series: Working Paper No. ... water-users themselves, coupled with an adequate enabling policy environment with the commitment ..... affect water quality, as well as, decrease food security and safety and are exposed ...

  2. Towards all-optical label switching nodes with multicast

    NARCIS (Netherlands)

    Yan, N.

    2008-01-01

    Fiber optics has developed so rapidly during the last decades that it has be- come the backbone of our communication systems. Evolved from initially static single-channel point-to-point links, the current advanced optical backbone net- work consists mostly of wavelength-division multiplexed (WDM)

  3. Including 10-Gigabit-capable Passive Optical Network under End-to-End Generalized Multi-Protocol Label Switching Provisioned Quality of Service

    DEFF Research Database (Denmark)

    Brewka, Lukasz Jerzy; Gavler, Anders; Wessing, Henrik

    2012-01-01

    of the network where quality of service signaling is bridged. This article proposes strategies for generalized multi-protocol label switching control over next emerging passive optical network standard, i.e., the 10-gigabit-capable passive optical network. Node management and resource allocation approaches...... are discussed, and possible issues are raised. The analysis shows that consideration of a 10-gigabit-capable passive optical network as a generalized multi-protocol label switching controlled domain is valid and may advance end-to-end quality of service provisioning for passive optical network based customers.......End-to-end quality of service provisioning is still a challenging task despite many years of research and development in this area. Considering a generalized multi-protocol label switching based core/metro network and resource reservation protocol capable home gateways, it is the access part...

  4. Cost-effective parallel optical interconnection module based on fully passive-alignment process

    Science.gov (United States)

    Son, Dong Hoon; Heo, Young Soon; Park, Hyoung-Jun; Kang, Hyun Seo; Kim, Sung Chang

    2017-11-01

    In optical interconnection technology, high-speed and large data transitions with low error rate and cost reduction are key issues for the upcoming 8K media era. The researchers present notable types of optical manufacturing structures of a four-channel parallel optical module by fully passive alignment, which are able to reduce manufacturing time and cost. Each of the components, such as vertical-cavity surface laser/positive-intrinsic negative-photodiode array, microlens array, fiber array, and receiver (RX)/transmitter (TX) integrated circuit, is integrated successfully using flip-chip bonding, die bonding, and passive alignment with a microscope. Clear eye diagrams are obtained by 25.78-Gb/s (for TX) and 25.7-Gb/s (for RX) nonreturn-to-zero signals of pseudorandom binary sequence with a pattern length of 231 to 1. The measured responsivity and minimum sensitivity of the RX are about 0.5 A/W and ≤-6.5 dBm at a bit error rate (BER) of 10-12, respectively. The optical power margin at a BER of 10-12 is 7.5 dB, and cross talk by the adjacent channel is ≤1 dB.

  5. A study on Optical Labelling Techniques for All-Optical Networks

    DEFF Research Database (Denmark)

    Holm-Nielsen, Pablo Villanueva

    2005-01-01

    Optical switching has been proposed as an effective solution to overcoming the potential electronic bottleneck in all-optical network nodes carrying IP over WDM. The solution builds on the use of optical labelling as a mean to route packets or bursts of packets through the network. In addition...... of an intermediate wavelength between label erasure and label insertion. The above mentioned functionalities are assembled in whole network systems experiments that validates the different labelling schemes with respect to transmission, wavelength conversion, label swapping and retransmission. Optical labelling...... and specially the orthogonal schemes for optical labelling, are thus shown to be an effective solution to all-optical networks....

  6. Silicon photonics WDM transmitter with single section semiconductor mode-locked laser

    Science.gov (United States)

    Müller, Juliana; Hauck, Johannes; Shen, Bin; Romero-García, Sebastian; Islamova, Elmira; Azadeh, Saeed Sharif; Joshi, Siddharth; Chimot, Nicolas; Moscoso-Mártir, Alvaro; Merget, Florian; Lelarge, François; Witzens, Jeremy

    2015-04-01

    We demonstrate a wavelength domain-multiplexed (WDM) optical link relying on a single section semiconductor mode-locked laser (SS-MLL) with quantum dash (Q-Dash) gain material to generate 25 optical carriers spaced by 60.8 GHz, as well as silicon photonics (SiP) resonant ring modulators (RRMs) to modulate individual optical channels. The link requires optical reamplification provided by an erbium-doped fiber amplifier (EDFA) in the system experiments reported here. Open eye diagrams with signal quality factors (Q-factors) above 7 are measured with a commercial receiver (Rx). For higher compactness and cost effectiveness, reamplification of the modulated channels with a semiconductor optical amplifier (SOA) operated in the linear regime is highly desirable. System and device characterization indicate compatibility with the latter. While we expect channel counts to be primarily limited by the saturation output power level of the SOA, we estimate a single SOA to support more than eight channels. Prior to describing the system experiments, component design and detailed characterization results are reported including design and characterization of RRMs, ring-based resonant optical add-drop multiplexers (RR-OADMs) and thermal tuners, S-parameters resulting from the interoperation of RRMs and RR-OADMs, and characterization of Q-Dash SS-MLLs reamplified with a commercial SOA. Particular emphasis is placed on peaking effects in the transfer functions of RRMs and RR-OADMs resulting from transient effects in the optical domain, as well as on the characterization of SS-MLLs in regard to relative intensity noise (RIN), stability of the modes of operation, and excess noise after reamplification.

  7. Technologies for all-optical wavelength conversion in DWDM networks

    DEFF Research Database (Denmark)

    Wolfson, David; Fjelde, Tina; Kloch, Allan

    2001-01-01

    Different techniques for all-optical wavelength conversion are reviewed and the advantages and disadvantages seen from a system perspective are highlighted. All-optical wavelength conversion will play a major role in making cost-effective network nodes in future high-speed WDM networks, where...

  8. Short pulse generation from a passively mode-locked fiber optical parametric oscillator with optical time-stretch.

    Science.gov (United States)

    Qiu, Yi; Wei, Xiaoming; Du, Shuxin; Wong, Kenneth K Y; Tsia, Kevin K; Xu, Yiqing

    2018-04-16

    We propose a passively mode-locked fiber optical parametric oscillator assisted with optical time-stretch. Thanks to the lately developed optical time-stretch technique, the onset oscillating spectral components can be temporally dispersed across the pump envelope and further compete for the parametric gain with the other parts of onset oscillating sidebands within the pump envelope. By matching the amount of dispersion in optical time-stretch with the pulse width of the quasi-CW pump and oscillating one of the parametric sidebands inside the fiber cavity, we numerically show that the fiber parametric oscillator can be operated in a single pulse regime. By varying the amount of the intracavity dispersion, we further verify that the origin of this single pulse mode-locking regime is due to the optical pulse stretching and compression.

  9. Twelve factors critical to the success of WDM at the policy and at the ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    IDRC CRDI

    and monetary units. A WDM agency has to be able to show results (such as water savings measured in cubic meters for example) in order to compete for attention with older and better established supply-side agencies. Such data may be hard to find, or estimate, but it can be very persuasive in furthering the WDM agenda.

  10. Advanced integrated WDM system for POF communication

    Science.gov (United States)

    Haupt, M.; Fischer, U. H. P.

    2009-01-01

    Polymer Optical Fibres (POFs) show clear advantages compared to copper and glass fibres. In essence, POFs are inexpensive, space-saving and not susceptible to electromagnetic interference. Thus, the usage of POFs have become a reasonable alternative in short distance data communication. Today, POFs are applied in a wide number of applications due to these specific advantages. These applications include automotive communication systems and in-house-networks. State-of-the-art is to transmit data with only one channel over POF, this limits the bandwidth. To solve this problem, an integrated MUX/DEMUX-element for WDM over POF is designed and developed to use multiple channels. This integration leads to low costs, therefore this component is suitable for mass market applications. The fundamental idea is to separate the chromatic parts of the light in its monochromatic components by means of a grating based on an aspheric mirror. Due to the high NA of the POF the setup has to be designed in a 3D-approach. Therefore this setup cannot be compared with the planar solutions available on market, they would result high losses in the 3rd dimension. To achieve a fast and optimized design an optical simulation program is used. Particular attention has to be paid to the design of the POF as a light source in the simulation program and the optimisation of the grating. The following realization of the demultiplexer is planed to be done with injection molding. This technology offers easy and very economical processing. These advantages make this technology first choice for optical components in the low-cost array.

  11. A Survivable Wavelength Division Multiplexing Passive Optical Network with Both Point-to-Point Service and Broadcast Service Delivery

    Science.gov (United States)

    Ma, Xuejiao; Gan, Chaoqin; Deng, Shiqi; Huang, Yan

    2011-11-01

    A survivable wavelength division multiplexing passive optical network enabling both point-to-point service and broadcast service is presented and demonstrated. This architecture provides an automatic traffic recovery against feeder and distribution fiber link failure, respectively. In addition, it also simplifies the protection design for multiple services transmission in wavelength division multiplexing passive optical networks.

  12. CONFERENCE NOTE: CETO—Centro de Ciências e Tecnologias Opticas, Trends in Optical Fibre Metrology and Standards

    Science.gov (United States)

    1994-01-01

    requirements of the new generation of analogue and digital fibre optical systems, which require sophisticated measurement techniques employing complex instruments unique to optical measurements. The school will foster and enhance the interaction between material, devices, systems, and standards-oriented R&D communities, as well as between engineers concerned with design and manufacturers of systems and instrumentation. Topics Review of optical fibre communication technology and systems Measurement techniques for fibre characterization: Reliability and traceability Reference fibres and calibration artefacts Ribbon fibres Mechanical and environmental testing Fibre reliability Polarimetric measurements Passive components characterization: Splices and connectors Couplers, splitters, taps and WDMs Optical fibres and isolators WDM technologies and applications: WDM technologies Tunable optical filters Fibre amplifiers and sources: Performances and characterization Design and standards Nonlinear effects Subsystem design and standards: Design and fabrication techniques Performance degradation and reliability Evaluation of costs/performance/technology Sensors IR - optical fibres Plastic fibres Instrumentation Registration Participation free of charge for postgraduate students, with some grants available for travel and lodging expenses. All correspondence should be addressed to: Secretariat, Trends in Optical Fibre Metrology and Standards, a/c Prof. Olivério D D Soares, Centro de Ciências e Tecnologias Opticas, Lab. Fisica - Faculdade de Ciências, Praça Gomes Teixeira, P-4000 Porto, Portugal. Tel: 351-2-310290, 351-2-2001648; Fax: 351-2-319267.

  13. System performance of a 4-channel PHASAR WDM receiver operating at 1.2 Gbit/s

    NARCIS (Netherlands)

    Steenbergen, C.A.M.; van Deventer, M.O.; Vreede, de L.C.N.; Dam, van C.; Smit, M.K.; Verbeek, B.H.

    1996-01-01

    Phased arrays are important key components in wavelength-division multiplexing (WDM) systems. We have realized a 4-channel WDM receiver combining a phased array with photodetectors on InP with a Si bipolar transimpedance amplifier. The channels are spaced at 2.0 nm with a 1.0-nm flat passband. On

  14. Adaptive Rates of High-Spectral-Efficiency WDM/SDM Channels Using PDM-1024-QAM Probabilistic Shaping

    DEFF Research Database (Denmark)

    Hu, Hao; Yankov, Metodi Plamenov; Da Ros, Francesco

    2017-01-01

    We demonstrate adaptive rates and spectral efficiencies in WDM/SDM transmission using probabilistically shaped PDM-1024-QAM signals, achieving up to 7-Tbit/s data rates per spatial-superchannel and up to 297.8-bit/s/Hz aggregate spectral efficiency using a 30-core fiber on 12.5 and 25GHz WDM grids...

  15. Study of passive optical network monitoring based on non-OTDR

    Science.gov (United States)

    Li, Chuan-qi; Wang, Da-chi; Hu, Jin-lin

    2014-03-01

    Aiming at the defects of passive optical network (PON) monitoring based on optical time domain reflectometry (OTDR) technology, we research the non-OTDR monitoring technology. The coding scheme based on periodic encoder monitoring is discussed, and its limitation is analyzed. On this basis, the monitoring technology based on optical code division multiple access (OCDMA) is put forward. We analyze the feasibility of monitoring scheme based on PON of OCDMA, design a monitoring plan, and then use OptiSystem to simulate the design. The results of simulation and bit error rate (BER) analysis show that this monitoring technology can overcome the deficiencies of OTDR and distinguish the monitoring signals of different fiber branches clearly, which meets the demands for high beam split ratio of multi-user communication.

  16. Application of velocity filtering to optical-flow passive ranging

    Science.gov (United States)

    Barniv, Yair

    1992-01-01

    The performance of the velocity filtering method as applied to optical-flow passive ranging under real-world conditions is evaluated. The theory of the 3-D Fourier transform as applied to constant-speed moving points is reviewed, and the space-domain shift-and-add algorithm is derived from the general 3-D matched filtering formulation. The constant-speed algorithm is then modified to fit the actual speed encountered in the optical flow application, and the passband of that filter is found in terms of depth (sensor/object distance) so as to cover any given range of depths. Two algorithmic solutions for the problems associated with pixel interpolation and object expansion are developed, and experimental results are presented.

  17. SLA-aware differentiated QoS in elastic optical networks

    Science.gov (United States)

    Agrawal, Anuj; Vyas, Upama; Bhatia, Vimal; Prakash, Shashi

    2017-07-01

    The quality of service (QoS) offered by optical networks can be improved by accurate provisioning of service level specifications (SLSs) included in the service level agreement (SLA). A large number of users coexisting in the network require different services. Thus, a pragmatic network needs to offer a differentiated QoS to a variety of users according to the SLA contracted for different services at varying costs. In conventional wavelength division multiplexed (WDM) optical networks, service differentiation is feasible only for a limited number of users because of its fixed-grid structure. Newly introduced flex-grid based elastic optical networks (EONs) are more adaptive to traffic requirements as compared to the WDM networks because of the flexibility in their grid structure. Thus, we propose an efficient SLA provisioning algorithm with improved QoS for these flex-grid EONs empowered by optical orthogonal frequency division multiplexing (O-OFDM). The proposed algorithm, called SLA-aware differentiated QoS (SADQ), employs differentiation at the level of routing, spectrum allocation, and connection survivability. The proposed SADQ aims to accurately provision the SLA using such multilevel differentiation with an objective to improve the spectrum utilization from the network operator's perspective. SADQ is evaluated for three different CoSs under various traffic demand patterns and for different ratios of the number of requests belonging to the three considered CoSs. We propose two new SLA metrics for the improvement of functional QoS requirements, namely, security, confidentiality and survivability of high class of service (CoS) traffic. Since, to the best of our knowledge, the proposed SADQ is the first scheme in optical networks to employ exhaustive differentiation at the levels of routing, spectrum allocation, and survivability in a single algorithm, we first compare the performance of SADQ in EON and currently deployed WDM networks to assess the

  18. New all-passive 4x4 planar optical phase diversity network

    NARCIS (Netherlands)

    Soldano, L.B.; Smit, M.K.; Vreede, De A.H.; Uffelen, van J.W.M.; Verbeek, B.H.; Bennekom, van P.K.; Krom, de W.H.C.; Etten, van W.C.

    1991-01-01

    The realisation and performance of an all-passive silicon-based 4*4 planar optical hybrid receiver for operation at 1.55- mu m wavelength is reported here for the first time. Measurements show 5 degrees /12 degrees /12 degrees /9 degrees output phase deviations, without tuning or trimming. Network

  19. Feasibility analysis of WDM links for radar applications

    Directory of Open Access Journals (Sweden)

    D. Meena

    2015-03-01

    Full Text Available Active phased array antennas enhances the performance of modern radars by using multiple low power transmit/receive modules in place of a high power transmitter in conventional radars. Fully distributed phased array radars demand the distribution of various signals in radio frequency (RF and digital domain for real time operation. This is normally achieved through complex and bulky coaxial distribution networks. In this work, we intend to tap the inherent advantages of fiber links with wavelength division multiplexed (WDM technology and a feasibility study to adapt these links for radar applications is carried out. This is done by analysing various parameters like amplitude, delay, frequency and phase variation response of various radar waveforms over WDM links. This also includes performance evaluation of non-linear frequency modulation (NLFM signals, known for better signal to noise ratio (SNR to specific side lobe levels. NLFM waveforms are further analysed using pulse compression (PC technique. Link evaluation is also carried out using a standard simulation environment and is then experimentally verified with other waveforms like RF continuous wave (CW, pulsed RF and digital signals. Synchronization signals are generated from this variable duty cycle digital signals during real time radar operation. During evaluation of digital signals, variable transient effects for different duty cycles are observed from an amplifier configuration. A suppression method is proposed to eliminate this transient effects. Further, the link delay response is investigated using different lengths of fiber spools. It can be inferred from the experimental results that WDM links are capable of handling various signals significant to radar applications.

  20. Software defined multi-OLT passive optical network for flexible traffic allocation

    Science.gov (United States)

    Zhang, Shizong; Gu, Rentao; Ji, Yuefeng; Zhang, Jiawei; Li, Hui

    2016-10-01

    With the rapid growth of 4G mobile network and vehicular network services mobile terminal users have increasing demand on data sharing among different radio remote units (RRUs) and roadside units (RSUs). Meanwhile, commercial video-streaming, video/voice conference applications delivered through peer-to-peer (P2P) technology are still keep on stimulating the sharp increment of bandwidth demand in both business and residential subscribers. However, a significant issue is that, although wavelength division multiplexing (WDM) and orthogonal frequency division multiplexing (OFDM) technology have been proposed to fulfil the ever-increasing bandwidth demand in access network, the bandwidth of optical fiber is not unlimited due to the restriction of optical component properties and modulation/demodulation technology, and blindly increase the wavelength cannot meet the cost-sensitive characteristic of the access network. In this paper, we propose a software defined multi-OLT PON architecture to support efficient scheduling of access network traffic. By introducing software defined networking technology and wavelength selective switch into TWDM PON system in central office, multiple OLTs can be considered as a bandwidth resource pool and support flexible traffic allocation for optical network units (ONUs). Moreover, under the configuration of the control plane, ONUs have the capability of changing affiliation between different OLTs under different traffic situations, thus the inter-OLT traffic can be localized and the data exchange pressure of the core network can be released. Considering this architecture is designed to be maximum following the TWDM PON specification, the existing optical distribution network (ODN) investment can be saved and conventional EPON/GPON equipment can be compatible with the proposed architecture. What's more, based on this architecture, we propose a dynamic wavelength scheduling algorithm, which can be deployed as an application on control plane

  1. Modeling illumination performance of plastic optical fiber passive daylighting system

    Energy Technology Data Exchange (ETDEWEB)

    Sulaiman, F; Ahmad, A [Universiti Teknologi MARA, Shah Alam (Malaysia). Faculty of Electrical Engineering; Ahmed, A Z [Universiti Teknologi MARA, Shah Alam (Malaysia). Bureau of Reseaarch and Consultancy

    2006-12-15

    of the most direct methods of utilizing solar energy for energy conservation is to bring natural light indoors to light up an area. This paper reports on the investigation of the feasibility to utilize large core optical fibers to convey and distribute solar light passively throughout residential or commercial structures. The focus of this study is on the mathematical modeling of the illumination performance and the light transmission efficiency of solid core end light fiber for optical day lighting systems. The Meatball simulations features the optical fiber transmittance for glass and plastic fibers, illumination performance over lengths of plastic end-lit fiber, spectral transmission, light intensity loss through the large diameter solid core optical fibers as well as the transmission efficiency of the optical fiber itself. It was found that plastic optical fiber has less transmission loss over the distance of the fiber run which clearly shows that the Plastic Optical Fiber should be optimized for emitting visible light. The findings from the analysis on the performance of large diameter optical fibers for day lighting systems seems feasible for energy efficient lighting system in commercial or residential buildings.

  2. Modeling illumination performance of plastic optical fiber passive daylighting system

    International Nuclear Information System (INIS)

    Sulaiman, F.; Ahmad, A.; Ahmed, A.Z.

    2006-01-01

    One of the most direct methods of utilizing solar energy for energy conservation is to bring natural light indoors to light up an area. This paper reports on the investigation of the feasibility to utilize large core optical fibers to convey and distribute solar light passively throughout residential or commercial structures. The focus of this study is on the mathematical modeling of the illumination performance and the light transmission efficiency of solid core end light fiber for optical day lighting systems. The Meatball simulations features the optical fiber transmittance for glass and plastic fibers, illumination performance over lengths of plastic end-lit fiber, spectral transmission, light intensity loss through the large diameter solid core optical fibers as well as the transmission efficiency of the optical fiber itself. It was found that plastic optical fiber has less transmission loss over the distance of the fiber run which clearly shows that the Plastic Optical Fiber should be optimized for emitting visible light. The findings from the analysis on the performance of large diameter optical fibers for day lighting systems seems feasible for energy efficient lighting system in commercial or residential buildings

  3. Flexible Transport Network Expansion via Open WDM Interfaces

    DEFF Research Database (Denmark)

    Fagertun, Anna Manolova; Skjoldstrup, Bjarke

    2013-01-01

    This paper presents a successful test-bed implementation of a multi-vendor transport network interconnection via open WDM interfaces. The concept of applying Alien Wavelengths (AWs) for network expansion was successfully illustrated via deployment of multi-domain/multi-vendor end-to-end OTN servi...

  4. Real time algorithm temperature compensation in tunable laser / VCSEL based WDM-PON system

    DEFF Research Database (Denmark)

    Iglesias Olmedo, Miguel; Rodes Lopez, Roberto; Pham, Tien Thang

    2012-01-01

    We report on a real time experimental validation of a centralized algorithm for temperature compensation of tunable laser/VCSEL at ONU and OLT, respectively. Locking to a chosen WDM channel is shown for temperature changes over 40°C.......We report on a real time experimental validation of a centralized algorithm for temperature compensation of tunable laser/VCSEL at ONU and OLT, respectively. Locking to a chosen WDM channel is shown for temperature changes over 40°C....

  5. The handbook of optical communication networks

    CERN Document Server

    Ilyas, Mohammad

    2003-01-01

    The Handbook of Optical Communication Networks presents comprehensive, up-to-date technical information on integrated, state-of-the-art optical networks. Beginning with an in-depth intoduction to the field, top international authorities explore every major aspect of optical networks, from basic concepts to research grade material. Their discussions cover all of the essential topics, including protocols, resource management, routing and wavelength assignment in WDM networks, connection management, survivability, enabling technologies, and future trends.

  6. Sleep-time sizing and scheduling in green passive optical networks

    KAUST Repository

    Elrasad, Amr

    2012-08-01

    Next-generation passive optical network (PON) has been widely considered as a cost-effective broadband access technology. With the ever-increasing power saving concern, energy efficiency has been an important issue for its operations. In this paper, we present a novel sleep time sizing and scheduling framework that satisfies power efficient bandwidth allocation in PONs. We consider the downstream links from an optical line terminal (OLT) to an optical network unit (ONU). The ONU has two classes of traffic, control and data. Control traffic are delay intolerant with higher priority than the data traffic. Closed form model for average ONU sleeping time and end-to-end data traffic delay are presented and evaluated. Our framework decouples the dependency between ONU sleeping time and the QoS of the traffic.

  7. Building new WDM regulations for the Namibian tourism sector on factors influencing current water-management practices at the enterprise level

    Science.gov (United States)

    Schachtschneider, Klaudia

    Namibia's aridity is forcing its water sector to resort to new water resource management approaches, including water demand management (WDM). Such a change in management approach is facilitated through the country's opportunity at independence to rewrite and adapt its old policies, including those for water and tourism. Legal support for WDM through the Water Act and other sector-specific Acts is crucial to plan the practical implementation of WDM throughout the different water use sectors of Namibia. In order to be able to put the policy into practice, it is imperative to understand which factors motivate people to adopt WDM initiatives. Within the Namibian tourism industry three main factors have been identified which influence the water-management approaches at tourist facilities. This paper discusses how the water and tourism decision makers can consider these factors when developing new regulations to introduce WDM in the tourism sector.

  8. A study on the multiple dynamic wavelength distribution for gigabit capable passive optical networks

    Directory of Open Access Journals (Sweden)

    Gustavo Adolfo Puerto Leguizamón

    2014-04-01

    Full Text Available This paper presents a data traffic based study aiming at evaluating the impact of dynamic wavelength allocation on a Gigabit capable Passive Optical Network (GPON. In Passive Optical Networks (PON, an Optical Line Terminal (OLT feeds different PONs in such a way that a given wavelength channel is evenly distributed between the Optical Network Units (ONU at each PON. However, PONs do not specify any kind of dynamic behavior on the way the wavelengths are allocated in the network, a completely static distribution is implemented instead. In thispaper we evaluate the network performance in terms of packet losses and throughput for a number of ONUs being out-of-profile while featuring a given percentage of traffic in excess for a fixed wavelength distribution and for multiple dynamic wavelength allocation. Results show that for a multichannel operation with four wavelengths, the network throughput increases up to a rough value of 19% while the packet losses drop from 22 % to 1.8 % as compared with a static wavelength distribution.

  9. A method of simulating intensity modulation-direct detection WDM systems

    Institute of Scientific and Technical Information of China (English)

    HUANG Jing; YAO Jian-quan; LI En-bang

    2005-01-01

    In the simulation of Intensity Modulation-Direct Detection WDM Systems,when the dispersion and nonlinear effects play equally important roles,the intensity fluctuation caused by cross-phase modulation may be overestimated as a result of the improper step size.Therefore,the step size in numerical simulation should be selected to suppress false XPM intensity modulation (keep it much less than signal power).According to this criterion,the step size is variable along the fiber.For a WDM system,the step size depends on the channel separation.Different type of transmission fiber has different step size.In the split-step Fourier method,this criterion can reduce simulation time,and when the step size is bigger than 100 meters,the simulation accuracy can also be improved.

  10. Experimental demonstration of time- and mode-division multiplexed passive optical network

    Science.gov (United States)

    Ren, Fang; Li, Juhao; Tang, Ruizhi; Hu, Tao; Yu, Jinyi; Mo, Qi; He, Yongqi; Chen, Zhangyuan; Li, Zhengbin

    2017-07-01

    A time- and mode-division multiplexed passive optical network (TMDM-PON) architecture is proposed, in which each optical network unit (ONU) communicates with the optical line terminal (OLT) independently utilizing both different time slots and switched optical linearly polarized (LP) spatial modes. Combination of a mode multiplexer/demultiplexer (MUX/DEUX) and a simple N × 1 optical switch is employed to select the specific LP mode in each ONU. A mode-insensitive power splitter is used for signal broadcast/combination between OLT and ONUs. We theoretically propose a dynamic mode and time slot assignment scheme for TMDM-PON based on inter-ONU priority rating, in which the time delay and packet loss ratio's variation tendency are investigated by simulation. Moreover, we experimentally demonstrate 2-mode TMDM-PON transmission over 10 km FMF with 10-Gb/s on-off keying (OOK) signal and direct detection.

  11. 100G WDM Transmission over 100 meter Multimode Fiber

    DEFF Research Database (Denmark)

    Cimoli, Bruno; Estaran Tolosa, Jose Manuel; Rodes Lopez, Guillermo Arturo

    We present a comparative performance analysis for wavelength-grid selection in WDM shortrange multimode-fibers. We study 100Gbps links over OM2, OM3 and OM4 fibers and show it is feasible to reach over 100 m transmission distances....

  12. On-demand virtual optical network access using 100 Gb/s Ethernet.

    Science.gov (United States)

    Ishida, Osamu; Takamichi, Toru; Arai, Sachine; Kawate, Ryusuke; Toyoda, Hidehiro; Morita, Itsuro; Araki, Soichiro; Ichikawa, Toshiyuki; Hoshida, Takeshi; Murai, Hitoshi

    2011-12-12

    Our Terabit LAN initiatives attempt to enhance the scalability and utilization of lambda resources. This paper describes bandwidth-on-demand virtualized 100GE access to WDM networks on a field fiber test-bed using multi-domain optical-path provisioning. © 2011 Optical Society of America

  13. SDN-enabled dynamic WDM networks to address routing information inaccuracy

    CSIR Research Space (South Africa)

    Ravhuanzwo, Lusani

    2016-11-01

    Full Text Available Large dynamic wavelength-division multiplexed (WDM) networks based on the distributed control mechanism are susceptible to routing information inaccuracies. Factors such as non-negligible propagation delays, infrequent network state updates...

  14. Five Wavelength DFB Fibre Laser Source for WDM Systems

    DEFF Research Database (Denmark)

    Hübner, Jörg; Varming, Poul; Kristensen, Martin

    1997-01-01

    Singlemode UV-induced distributed feedback (DFB) fibre lasers with a linewidth of lasers is verified by a 10 Gbit/s transmission experiment. Five DFB fibre lasers are cascaded and pumped by a single...... semiconductor laser, thereby forming a multiwavelength source for WDM systems...

  15. Self-match based on polling scheme for passive optical network monitoring

    Science.gov (United States)

    Zhang, Xuan; Guo, Hao; Jia, Xinhong; Liao, Qinghua

    2018-06-01

    We propose a self-match based on polling scheme for passive optical network monitoring. Each end-user is equipped with an optical matcher that exploits only the specific length patchcord and two different fiber Bragg gratings with 100% reflectivity. The simple and low-cost scheme can greatly simplify the final recognition processing of the network link status and reduce the sensitivity of the photodetector. We analyze the time-domain relation between reflected pulses and establish the calculation model to evaluate the false alarm rate. The feasibility of the proposed scheme and the validity of the time-domain relation analysis are experimentally demonstrated.

  16. Design of an Optical OR Gate using Mach-Zehnder Interferometers

    Science.gov (United States)

    Choudhary, Kuldeep; Kumar, Santosh

    2018-04-01

    The optical switching phenomenon enhances the speed of optical communication systems. It is widely used in the wavelength division multiplexing (WDM). In this work, an optical OR gate is proposed using the Mach-Zehnder interferometer (MZI) structure. The detailed derivation of mathematical expression have been shown. The analysis is carried out by simulating the proposed device with MATLAB and Beam propagation method.

  17. Optical self-injection mode-locking of semiconductor optical amplifier fiber ring with electro-absorption modulation—fundamentals and applications

    International Nuclear Information System (INIS)

    Chi, Yu-Chieh; Lin, Gong-Ru

    2013-01-01

    The optical self-injection mode-locking of a semiconductor optical amplifier incorporated fiber ring laser (SOAFL) with spectrally sliced multi-channel carriers is demonstrated for applications. The synthesizer-free SOAFL pulse-train is delivered by optical injection mode-locking with a 10 GHz self-pulsed electro-absorption modulator (EAM). Such a coupled optical and electronic resonator architecture facilitates a self-feedback oscillation with a higher Q-factor and lower phase/intensity noises when compared with conventional approaches. The theoretical model of such an injection-mode-locking SOAFL is derived to improve the self-pulsating performance of the optical return-to-zero (RZ) carrier, thus providing optimized pulsewidth, pulse extinction ratio, effective Q-factor, frequency variation and timing jitter of 11.4 ps, 9.1 dB, 4 × 10 5 , −1 bi-directional WDM transmission network with down-stream RZ binary phase-shift keying (RZ-BPSK) and up-stream re-modulated RZ on–off-keying (RZ-OOK) formats. Under BPSK/OOK bi-directional data transmission, the self-pulsed harmonic mode-locking SOAFL simultaneously provides four to six WDM channels for down-stream RZ-BPSK and up-stream RZ-OOK formats with receiving sensitivities of −17 and −15.2 dBm at a bit error rate of 10 −9 , respectively. (paper)

  18. W-band radio-over-fiber propagation of two optically encoded wavelength channels

    Science.gov (United States)

    Eghbal, Morad Khosravi; Shadaram, Mehdi

    2018-01-01

    We propose a W-band wavelength-division multiplexing (WDM)-over-optical code-division multiple access radio-over-fiber system. This system offers capacity expansion by increasing the working frequency to millimeter wave region and by introducing optical encoding and multiwavelength multiplexing. The system's functionality is investigated by software modeling, and the results are presented. The generated signals are data modulated at 10 Gb/s and optically encoded for two wavelength channels and transmitted with a 20-km length of fiber. The received signals are optically decoded and detected. Also, encoding has improved the bit error rate (BER) versus the received optical power margin for the WDM setting by about 4 dB. In addition, the eye-diagram shows that the difference between received optical power levels at the BER of 10-12 to 10-3 is about 1.3% between two encoded channels. This method of capacity improvement is significantly important for the next generation of mobile communication, where millimeter wave signals will be widely used to deliver data to small cells.

  19. Semiconductor optical amplifier-based heterodyning detection for resolving optical terahertz beat-tone signals from passively mode-locked semiconductor lasers

    International Nuclear Information System (INIS)

    Latkowski, Sylwester; Maldonado-Basilio, Ramon; Carney, Kevin; Parra-Cetina, Josue; Philippe, Severine; Landais, Pascal

    2010-01-01

    An all-optical heterodyne approach based on a room-temperature controlled semiconductor optical amplifier (SOA) for measuring the frequency and linewidth of the terahertz beat-tone signal from a passively mode-locked laser is proposed. Under the injection of two external cavity lasers, the SOA acts as a local oscillator at their detuning frequency and also as an optical frequency mixer whose inputs are the self-modulated spectrum of the device under test and the two laser beams. Frequency and linewidth of the intermediate frequency signal (and therefore, the beat-tone signal) are resolved by using a photodiode and an electrical spectrum analyzer.

  20. Internet Protocol-Hybrid Opto-Electronic Ring Network (IP-HORNET): A Novel Internet Protocol-Over-Wavelength Division Multiplexing (IP-Over-WDM) Multiple-Access Metropolitan Area Network (MAN)

    Science.gov (United States)

    2003-04-01

    IP-HORNET, Metropolitan Optical Networks 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED 18. SECURITY CLASSIFICATION...OF THIS PAGE UNCLASSIFIED 19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED 20. LIMITATION OF ABSTRACT UL NSN 7540-01-280-5500...Gemelos, and L. G. Kazovsky, “CSMA/CA MAC protocols for IP-HORNET: An IP over WDM metropolitan area ring netowrk ,” in Proceedings of GLOBE- COM’00

  1. Classification of Active Microwave and Passive Optical Data Based on Bayesian Theory and Mrf

    Science.gov (United States)

    Yu, F.; Li, H. T.; Han, Y. S.; Gu, H. Y.

    2012-08-01

    A classifier based on Bayesian theory and Markov random field (MRF) is presented to classify the active microwave and passive optical remote sensing data, which have demonstrated their respective advantages in inversion of surface soil moisture content. In the method, the VV, VH polarization of ASAR and all the 7 TM bands are taken as the input of the classifier to get the class labels of each pixel of the images. And the model is validated for the necessities of integration of TM and ASAR, it shows that, the total precision of classification in this paper is 89.4%. Comparing with the classification with single TM, the accuracy increase 11.5%, illustrating that synthesis of active and passive optical remote sensing data is efficient and potential in classification.

  2. CLASSIFICATION OF ACTIVE MICROWAVE AND PASSIVE OPTICAL DATA BASED ON BAYESIAN THEORY AND MRF

    Directory of Open Access Journals (Sweden)

    F. Yu

    2012-08-01

    Full Text Available A classifier based on Bayesian theory and Markov random field (MRF is presented to classify the active microwave and passive optical remote sensing data, which have demonstrated their respective advantages in inversion of surface soil moisture content. In the method, the VV, VH polarization of ASAR and all the 7 TM bands are taken as the input of the classifier to get the class labels of each pixel of the images. And the model is validated for the necessities of integration of TM and ASAR, it shows that, the total precision of classification in this paper is 89.4%. Comparing with the classification with single TM, the accuracy increase 11.5%, illustrating that synthesis of active and passive optical remote sensing data is efficient and potential in classification.

  3. Optical and electrical study of CdZnTe surfaces passivated by KOH and NH{sub 4}F solutions

    Energy Technology Data Exchange (ETDEWEB)

    Zázvorka, J., E-mail: zazvorka.jakub@gmail.com [Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, 121 16 Prague (Czech Republic); Franc, J.; Statelov, M.; Pekárek, J.; Veis, M.; Moravec, P. [Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, 121 16 Prague (Czech Republic); Mašek, K. [Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University in Prague, V Holešovičkách 2, CZ, 18000 Prague (Czech Republic)

    2016-12-15

    Highlights: • Surface of CdZnTe samples was passivated after chemical etching. • KOH and NH{sub 4}F solutions were used as passivation agents. • Growth of surface oxide after passivation is observed. • Surface oxide thickness was evaluated over time after chemical treatment. • Oxidation of the sample correlates with decreased leakage current. - Abstract: Performance of CdZnTe-based detectors is highly related to surface preparation. Mechanical polishing, chemical etching and passivation are routinely employed for this purpose. However, the relation between these processes and the detector performance in terms of underlying physical phenomena has not been fully explained. The dynamics and properties of CdZnTe surface oxide layers, created by passivation with KOH and NH4F/H2O2 solutions, were studied by optical ellipsometry and X-ray photoelectron spectroscopy (XPS). Thicknesses and growth rates of the surface oxide layers differed for each of the passivation methods. Leakage currents which influence the final spectral resolution of the detector were measured simultaneously with ellipsometry. Results of both optical and electrical investigation showed the same trends in the time evolution and correlated to each other. NH4F/H2O2 passivation showed to be a method which produces the most desirable properties of the surface oxide layer.

  4. Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing.

    Science.gov (United States)

    Horst, Folkert; Green, William M J; Assefa, Solomon; Shank, Steven M; Vlasov, Yurii A; Offrein, Bert Jan

    2013-05-20

    We present 1-to-8 wavelength (de-)multiplexer devices based on a binary tree of cascaded Mach-Zehnder-like lattice filters, and manufactured using a 90 nm CMOS-integrated silicon photonics technology. We demonstrate that these devices combine a flat pass-band over more than 50% of the channel spacing with low insertion loss of less than 1.6 dB, and have a small device size of approximately 500 × 400 µm. This makes this type of filters well suited for application as WDM (de-)multiplexer in silicon photonics transceivers for optical data communication in large scale computer systems.

  5. Experimental demonstration of IDMA-OFDM for passive optical network

    Science.gov (United States)

    Lin, Bangjiang; Tang, Xuan; Li, Yiwei; Zhang, Min; Lin, Chun; Ghassemlooy, Zabih

    2017-11-01

    We present interleave division multiple access (IDMA) scheme combined with orthogonal frequency division multiplexing (OFDM) for passive optical network, which offers improved transmission performance and good chromatic dispersion tolerance. The interleavers are employed to separate different users and the generated chips are modulated on OFDM subcarriers. The feasibility of IDMA-OFDM-PON is experimentally verified with a bitrate of 3.3 Gb/s per user. Compared with OFDMA, IDMA-OFDM offers 8 and 6 dB gains in term of receiver sensitivity in the cases of 2 and 4 users, respectively.

  6. 40Gbit/s MDM-WDM Laguerre-Gaussian Mode with Equalization for Multimode Fiber in Access Networks

    Science.gov (United States)

    Fazea, Yousef; Amphawan, Angela

    2018-04-01

    Modal dispersion is seen as the primary impairment for multimode fiber. Mode division multiplexing (MDM) is a promising technology that has been realized as a favorable technology for considerably upsurges the capacity and distance of multimode fiber in conjunction with Wavelength Division Multiplexing (WDM) for fiber-to-the-home. This paper reveals the importance of an equalization technique in conjunction with controlling the modes spacing of mode division multiplexing-wavelength division multiplexing of Laguerre-Gaussian modes to alleviate modal dispersion for multimode fiber. The effects of channel spacing of 20 channels MDM-WDM were examined through controlling the azimuthal mode number and the radial mode number of Laguerre-Gaussian modes. A data rate of 40Gbit/s was achieved for a distance of 1,500 m for MDM-WDM.

  7. Tunable optical frequency comb enabled scalable and cost-effective multiuser orthogonal frequency-division multiple access passive optical network with source-free optical network units.

    Science.gov (United States)

    Chen, Chen; Zhang, Chongfu; Liu, Deming; Qiu, Kun; Liu, Shuang

    2012-10-01

    We propose and experimentally demonstrate a multiuser orthogonal frequency-division multiple access passive optical network (OFDMA-PON) with source-free optical network units (ONUs), enabled by tunable optical frequency comb generation technology. By cascading a phase modulator (PM) and an intensity modulator and dynamically controlling the peak-to-peak voltage of a PM driven signal, a tunable optical frequency comb source can be generated. It is utilized to assist the configuration of a multiple source-free ONUs enhanced OFDMA-PON where simultaneous and interference-free multiuser upstream transmission over a single wavelength can be efficiently supported. The proposed multiuser OFDMA-PON is scalable and cost effective, and its feasibility is successfully verified by experiment.

  8. Experimental demonstration of remote, passive acousto-optic sensing.

    Science.gov (United States)

    Antonelli, Lynn; Blackmon, Fletcher

    2004-12-01

    Passively detecting underwater sound from the air can allow aircraft and surface vessels to monitor the underwater acoustic environment. Experimental research into an optical hydrophone is being conducted for remote, aerial detection of underwater sound. A laser beam is directed onto the water surface to measure the velocity of the vibrations occurring as the underwater acoustic signal reaches the water surface. The acoustically generated surface vibrations modulate the phase of the laser beam. Sound detection occurs when the laser is reflected back towards the sensor. Therefore, laser alignment on the specularly reflecting water surface is critical. As the water surface moves, the laser beam is reflected away from the photodetector and no signal is obtained. One option to mitigate this problem is to continually steer the laser onto a spot on the water surface that provides a direct back-reflection. Results are presented from a laboratory test that investigates the feasibility of the acousto-optic sensor detection on hydrostatic and hydrodynamic surfaces using a laser Doppler vibrometer in combination with a laser-based, surface normal glint tracker for remotely detecting underwater sound. This paper outlines the acousto-optic sensor and tracker concepts and presents experimental results comparing sensor operation under various sea surface conditions.

  9. Optical signal processing techniques and applications of optical phase modulation in high-speed communication systems

    Science.gov (United States)

    Deng, Ning

    the speed limitation of electronics. Thus, all-optical signal processing techniques are highly desirable to support the necessary optical switching functionalities in future ultrahigh-speed optical packet-switching networks. To cope with the wide use of optical phase-modulated signals, in the thesis, an all-optical logic for DPSK or PSK input signals is developed, for the first time. Based on four-wave mixing in semiconductor optical amplifier, the structure of the logic gate is simple, compact, and capable of supporting ultrafast operation. In addition to the general logic processing, a simple label recognition scheme, as a specific signal processing function, is proposed for phase-modulated label signals. The proposed scheme can recognize any incoming label pattern according to the local pattern, and is potentially capable of handling variable-length label patterns. Optical access network with multicast overlay and centralized light sources. In the arena of optical access networks, wavelength division multiplexing passive optical network (WDM-PON) is a promising technology to deliver high-speed data traffic. However, most of proposed WDM-PONs only support conventional point-to-point service, and cannot meet the requirement of increasing demand on broadcast and multicast service. In this thesis, a simple network upgrade is proposed based on the traditional PON architecture to support both point-to-point and multicast service. In addition, the two service signals are modulated on the same lightwave carrier. The upstream signal is also remodulated on the same carrier at the optical network unit, which can significantly relax the requirement on wavelength management at the network unit.

  10. Time Lens based Optical Fourier Transformation for All-Optical Signal Processing of Spectrally-Efficient Data

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Lillieholm, Mads

    2017-01-01

    We review recent progress in the use of time lens based optical Fourier transformation for advanced all-optical signal processing. A novel time lens based complete optical Fourier transformation (OFT) technique is introduced. This complete OFT is based on two quadratic phase-modulation stages using...... four-wave mixing (FWM), separated by a dispersive medium, which enables time-to-frequency and frequency-to-time conversions simultaneously, thus performing an exchange between the temporal and spectral profiles of the input signal. Using the proposed complete OFT, several advanced all-optical signal......, such as orthogonal frequency division multiplexing (OFDM), Nyquist wavelength-division multiplexing (Nyquist-WDM) and Nyquist optical time division multiplexing (Nyquist-OTDM) signals....

  11. Architecture and Design of IP Broadcasting System Using Passive Optical Network

    Science.gov (United States)

    Ikeda, Hiroki; Sugawa, Jun; Ashi, Yoshihiro; Sakamoto, Kenichi

    We propose an IP broadcasting system architecture using passive optical networks (PON) utilizing the optical broadcast links of a PON with a downstream bandwidth allocation algorithm to provide a multi-channel IP broadcasting service to home subscribers on single broadband IP network infrastructures. We introduce the design and adaptation of the optical broadcast links to effectively broadcast video contents to home subscribers. We present a performance analysis that includes the downstream bandwidth utilization efficiency of the broadcast link and the bandwidth control of the IP broadcasting and Internet data. Our analysis and simulation results show that the proposed system can provide 100 HDTV channels to every user over fiber lines. We also propose an IPTV channel selection mechanism in an ONT by selecting a broadcast stream. We developed and evaluated a prototype that can achieve a 15-msec IPTV channel selection speed.

  12. One-to-six WDM multicasting of DPSK signals based on dual-pump four-wave mixing in a silicon waveguide

    DEFF Research Database (Denmark)

    Pu, Minhao; Hu, Hao; Ji, Hua

    2011-01-01

    We present WDM multicasting based on dual-pump four-wave mixing in a 3-mm long dispersion engineered silicon waveguide. One-to-six phase-preserving WDM multicasting of 10-Gb/s differential phase-shiftkeying (DPSK) data is experimentally demonstrated with bit-error rate measurements. All the six...

  13. Gratings in passive and active optical waveguides

    DEFF Research Database (Denmark)

    Berendt, Martin Ole

    1999-01-01

    will not only couple to the backward propagating fundamental mode, but also to cladding modes. Cladding modes are strongly bound, but slightly leaky, higher-order modes in the core-cladding-air index structure. If the waveguide is not surrounded by air, but by a recoating the cladding modes become highly...... attenuated. In either case the cladding mode coupling gives loss on the short wavelength side of the reflection band. The cladding mode coupling loss is a major problem for the utilization of fiber Bragg gratings in wavelength division multiplexed (WDM) system. In this project, a numerical model for cladding...... mode coupling has been developed. The model can predict the spectral location and size of coupling, for various fiber designs. By the aid of this modeling tool, a fiber has been optimized to give low cladding-mode losses. The optimized fiber has been produced and the predicted reduction of cladding...

  14. First-principle study on optical properties of spherical and cylindrical hydrogen-passivated Si nanoparticles with different sizes

    NARCIS (Netherlands)

    Wang, Yinglong; Chen, Chao; Wu, Zhuanhua; Liang, Weihua; Wang, Xiuli; Ding, Xuecheng; Chu, Lizhi; Deng, Zechao; Chen, Jinzhong; Fu, Guangsheng

    To investigate the size dependence of the optical properties of the hydrogen-passivated Si nanoparticles (Hp-SiNPs), the energy bands and optical dielectric functions for two types of nanostructures, that is, the spherical Hp-SiNPs (SHp-SiNPs) with various diameters and the cylindrical Hp-SiNPs

  15. WDM Question and Answers | CRDI - Centre de recherches pour le ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Why is there growing concern about water issues in the MENA region? ... Sometimes it is easier to define what is WDM is not about than to define what it is about. ... You can take part in this on-going regional effort by writing articles and ...

  16. Analizar el rendimiento de los receptores en una red TDM/WDM pon (red óptica pasiva)

    OpenAIRE

    Romero Chafla, Luis Fernando

    2016-01-01

    The rapid increase of Internet users deserve transmission rates higher data rates and greater capacity in terms of number of users. However, this should be achieved at a reasonable cost. TDM (Time Division Multiplexing) and WDM (Wavelength Division Multiplexing) technologies are most used. TDM allows us to offer extend services to many users (sacrificing bandwidth), low speed, at a reasonable cost. WDM meanwhile has the capacity to serve a greater number of users and provide higher transmissi...

  17. Silicon-based optical integrated circuits for terabit communication networks

    International Nuclear Information System (INIS)

    Svidzinsky, K K

    2003-01-01

    A brief review is presented of the development of silicon-based optical integrated circuits used as components in modern all-optical communication networks with the terabit-per-second transmission capacity. The designs and technologies for manufacturing these circuits are described and the problems related to their development and application in WDM communication systems are considered. (special issue devoted to the memory of academician a m prokhorov)

  18. The Design of Passive Optical Networking+Ethernet over Coaxial Cable Access Networking and Video-on-Demand Services Carrying

    Science.gov (United States)

    Ji, Wei

    2013-07-01

    Video on demand is a very attractive service used for entertainment, education, and other purposes. The design of passive optical networking+Ethernet over coaxial cable accessing and a home gateway system is proposed. The network integrates the passive optical networking and Ethernet over coaxial cable to provide high dedicated bandwidth for the metropolitan video-on-demand services. Using digital video broadcasting, IP television protocol, unicasting, and broadcasting mechanisms maximizes the system throughput. The home gateway finishes radio frequency signal receiving and provides three kinds of interfaces for high-definition video, voice, and data, which achieves triple-play and wire/wireless access synchronously.

  19. Overflow control mechanism (OCM) for Ethernet passive optical networks (EPONs)

    Science.gov (United States)

    Hajduczenia, Marek; da Silva, Henrique J. A.; Monteiro, Paulo P.

    2007-05-01

    The nonfragmentable nature of Ethernet data frames, as well as operation of the priority oriented packet schedulers in the optical network units, in conjunction with heavy network load conditions and the lack of detailed knowledge about the queue's composition at the optical line terminal (OLT) level, result in the creation of upstream channel slot remainders. The existing methods, in the form of nonpreemptive packet schedulers and multithreshold reporting process defined vaguely by the IEEE 802.3-2005 standard, result in either increased packet delay or Ethernet passive optical network (EPON) system incompatibility, respectively, since threshold processing was never officially defined in the scope of the respective EPON standard. We propose an alternative approach, based on basic modifications of the standard and extended GATE multipoint control protocol data unit format and meaning, allowing for the OLT packet scheduling agent to grant always exactly the requested slot size, thus preventing creation of any upstream channel slot remainders. It is estimated that, on average, ˜3% of upstream channel bandwidth can be salvaged when slot remainders are absent in the upstream channel transmission.

  20. MIMO-OFDM WDM PON with DM-VCSEL for femtocells application

    DEFF Research Database (Denmark)

    Binti Othman, Maisara; Deng, Lei; Pang, Xiaodan

    2011-01-01

    We report on experimental demonstration of 2x2 MIMO-OFDM 5.6-GHz radio over fiber signaling over 20 km WDM-PON with directly modulated (DM) VCSELs for femtocells application. MIMO-OFDM algorithms effectively compensate for impairments in the wireless link. Error-free signal demodulation of 64...

  1. Electro-optic architecture (EOA) for sensors and actuators in aircraft propulsion systems

    Science.gov (United States)

    Glomb, W. L., Jr.

    1989-01-01

    Results of a study to design an optimal architecture for electro-optical sensing and control in advanced aircraft and space systems are described. The propulsion full authority digital Electronic Engine Control (EEC) was the focus for the study. The recommended architecture is an on-engine EEC which contains electro-optic interface circuits for fiber-optic sensors on the engine. Size and weight are reduced by multiplexing arrays of functionally similar sensors on a pair of optical fibers to common electro-optical interfaces. The architecture contains common, multiplex interfaces to seven sensor groups: (1) self luminous sensors; (2) high temperatures; (3) low temperatures; (4) speeds and flows; (5) vibration; (6) pressures; and (7) mechanical positions. Nine distinct fiber-optic sensor types were found to provide these sensing functions: (1) continuous wave (CW) intensity modulators; (2) time division multiplexing (TDM) digital optic codeplates; (3) time division multiplexing (TDM) analog self-referenced sensors; (4) wavelength division multiplexing (WDM) digital optic code plates; (5) wavelength division multiplexing (WDM) analog self-referenced intensity modulators; (6) analog optical spectral shifters; (7) self-luminous bodies; (8) coherent optical interferometers; and (9) remote electrical sensors. The report includes the results of a trade study including engine sensor requirements, environment, the basic sensor types, and relevant evaluation criteria. These figures of merit for the candidate interface types were calculated from the data supplied by leading manufacturers of fiber-optic sensors.

  2. Iterated decoding of modified product codes in optical networks

    DEFF Research Database (Denmark)

    Justesen, Jørn

    2009-01-01

    Appendix I of the standard ITU-T G.975 contains several codes that have been proposed for improved performance of optical transmission. While the original application was submarine cables, the codes are now also used in terrestrial systems where wavelength-division multiplexing (WDM) is introduced...

  3. Photonic crystal fibers used in a multi-wavelength source and as transmission fiber in a WDM system

    DEFF Research Database (Denmark)

    Andersen, Peter Andreas; Zsigri, Beata; Peucheret, Christophe

    2004-01-01

    We present a WDM system based entirely on photonic crystal fibers. It includes a novel dispersion flattened highly nonlinear PCF to generate supercontinuum used in a multiwavelength pulse source and a 5.6 km transmission PCF.......We present a WDM system based entirely on photonic crystal fibers. It includes a novel dispersion flattened highly nonlinear PCF to generate supercontinuum used in a multiwavelength pulse source and a 5.6 km transmission PCF....

  4. Optical Access Multiservice Architecture with Support to Smart Grid

    DEFF Research Database (Denmark)

    Gómez-Martínez, Alejandro; Amaya-Fernández, Ferney; Hincapié, Roberto

    2013-01-01

    The increasing demand of fixed and mobile applications, and considering that smart grid imposes new requirements to the access networks, in this paper we present an optical access architecture to support home multiservice including smart grid applications. We propose a migration path based in a WDM...

  5. Toward green next-generation passive optical networks

    Science.gov (United States)

    Srivastava, Anand

    2015-01-01

    Energy efficiency has become an increasingly important aspect of designing access networks, due to both increased concerns for global warming and increased network costs related to energy consumption. Comparing access, metro, and core, the access constitutes a substantial part of the per subscriber network energy consumption and is regarded as the bottleneck for increased network energy efficiency. One of the main opportunities for reducing network energy consumption lies in efficiency improvements of the customer premises equipment. Access networks in general are designed for low utilization while supporting high peak access rates. The combination of large contribution to overall network power consumption and low Utilization implies large potential for CPE power saving modes where functionality is powered off during periods of idleness. Next-generation passive optical network, which is considered one of the most promising optical access networks, has notably matured in the past few years and is envisioned to massively evolve in the near future. This trend will increase the power requirements of NG-PON and make it no longer coveted. This paper will first provide a comprehensive survey of the previously reported studies on tackling this problem. A novel solution framework is then introduced, which aims to explore the maximum design dimensions and achieve the best possible power saving while maintaining the QoS requirements for each type of service.

  6. Internet Group Management Protocol for IPTV Services in Passive Optical Network

    Science.gov (United States)

    Lee, Eunjo; Park, Sungkwon

    We propose a new Internet group management protocol (IGMP) which can be used in passive optical network (PON) especially for IPTV services which dramatically reduces the channel change response time caused by traditional IGMP. In this paper, the newly proposed IGMP is introduced in detail and performance analysis is also included. Simulation results demonstrated the performance of the newly proposed IGMP, whereby, viewers can watch the shared IPTV channels without the channel change response time when channel request reaches a threshold.

  7. Adaptive upstream rate adjustment by RSOA-ONU depending on different injection power of seeding light in standard-reach and long-reach PON systems

    Science.gov (United States)

    Yeh, C. H.; Chow, C. W.; Shih, F. Y.; Pan, C. L.

    2012-08-01

    The wavelength division multiplexing-time division multiplexing (WDM-TDM) passive optical network (PON) using reflective semiconductor optical amplifier (RSOA)-based colorless optical networking units (ONUs) is considered as a promising candidate for the realization of fiber-to-the-home (FTTH). And this architecture is actively considered by Industrial Technology Research Institute (ITRI) for the realization of FTTH in Taiwan. However, different fiber distances and optical components would introduce different power budgets to different ONUs in the PON. Besides, due to the aging of optical transmitter (Tx), the power decay of the distributed optical carrier from the central office (CO) could also reduce the injection power into each ONU. The situation will be more severe in the long-reach (LR) PON, which is considered as an option for the future access. In this work, we investigate a WDM-TDM PON using RSOA-based ONU for upstream data rate adjustment depending on different continuous wave (CW) injection powers. Both standard-reach (25 km) and LR (100 km) transmissions are evaluated. Moreover, a detail analysis of the upstream signal bit-error rate (BER) performances at different injection powers, upstream data rates, PON split-ratios under stand-reach and long-reach is presented.

  8. Fiber to the Home Using a PON Infrastructure

    Science.gov (United States)

    Lee, Chang-Hee; Sorin, Wayne V.; Kim, Byoung Yoon

    2006-12-01

    Traffic patterns in access networks have evolved from voice- and text-oriented services to video- and image-based services. This change will require new access networks that support high-speed (> 100 Mb/s), symmetric, and guaranteed bandwidths for future video services with high-definition TV quality. To satisfy the required bandwidth over a 20-km transmission distance, single-mode optical fiber is currently the only practical choice. To minimize the cost of implementing an FTTP solution, a passive optical network (PON) that uses a point-to-multipoint architecture is generally considered to be the best approach. There are several multiple-access techniques to share a single PON architecture, and the authors addressed several of these approaches such as time-division multiple access, wavelength-division multiple access, subcarrier multiple access, and code-division multiple access. Among these multiple techniques, they focus on time-division multiplexing (TDM)-PON and wavelength-division multiplexing (WDM)-PON, which will be the most promising candidates for practical future systems. A TDM-PON shares a single-transmission channel with multiple subscribers in time domain. Then, there exists tight coupling between subscribers. A WDM-PON provides point-to-point optical connectivity using a dedicated pair of wavelengths per user. While a TDM-PON appears to be a satisfactory solution for current bandwidth demands, the combination of future data-rate projections and traffic patterns coupled with recent advances in WDM technology may result in WDM-PON becoming the preferred solution for a future proof fiber-based access network.

  9. Monitoring burst (M-burst) — A novel framework of failure localization in all-optical mesh networks

    KAUST Repository

    Ali, Mohammed L.; Ho, Pin-Han; Wu, Bin; Tapolcai, Janos; Shihada, Basem

    2011-01-01

    Achieving instantaneous and precise failure localization in all-optical wavelength division multiplexing (WDM) networks has been an attractive feature of network fault management systems, and is particularly important when failure

  10. A new architecture and MAC protocol for fully flexible hybrid WDM/TDM PON

    NARCIS (Netherlands)

    Das, G.; Lannoo, B.; Jung, H.D.; Koonen, A.M.J.; Colle, D.; Pickavet, M.; Demeester, P.

    2009-01-01

    In this paper we propose a novel architecture and MAC protocol for a scalable, cost effective WDM / TDM PON providing fully flexible dynamic bandwidth allocation for upstream and downstream data transmission.

  11. Fiber-optic communication systems

    CERN Document Server

    Agrawal, Govind P

    2010-01-01

    This book provides a comprehensive account of fiber-optic communication systems. The 3rd edition of this book is used worldwide as a textbook in many universities. This 4th edition incorporates recent advances that have occurred, in particular two new chapters. One deals with the advanced modulation formats (such as DPSK, QPSK, and QAM) that are increasingly being used for improving spectral efficiency of WDM lightwave systems. The second chapter focuses on new techniques such as all-optical regeneration that are under development and likely to be used in future communication systems. All othe

  12. Multicast backup reprovisioning problem for Hamiltonian cycle-based protection on WDM networks

    Science.gov (United States)

    Din, Der-Rong; Huang, Jen-Shen

    2014-03-01

    As networks grow in size and complexity, the chance and the impact of failures increase dramatically. The pre-allocated backup resources cannot provide 100% protection guarantee when continuous failures occur in a network. In this paper, the multicast backup re-provisioning problem (MBRP) for Hamiltonian cycle (HC)-based protection on WDM networks for the link-failure case is studied. We focus on how to recover the protecting capabilities of Hamiltonian cycle against the subsequent link-failures on WDM networks for multicast transmissions, after recovering the multicast trees affected by the previous link-failure. Since this problem is a hard problem, an algorithm, which consists of several heuristics and a genetic algorithm (GA), is proposed to solve it. The simulation results of the proposed method are also given. Experimental results indicate that the proposed algorithm can solve this problem efficiently.

  13. Next generation passive optical networks based on orthogonal frequency division multiplexing techniques

    OpenAIRE

    Escayola Elias, Francesc Xavier

    2015-01-01

    In recent decades, the industry of communications has acquired huge significance, and nowadays constitutes an essential tool for the society information. Thus, the exponential growth in demand of broadband services and the increasing amount of information to be transmitted have spurred the evolution of the access network infrastructure to effectively meet the user needs in an effective way in terms of costs of both installation and maintenance. Passive optical networks (PON) are current...

  14. METHOD AND MODULE FOR OPTICAL SUBCARRIER LABELLING

    DEFF Research Database (Denmark)

    2004-01-01

    The present invention relates to optical labelling in WDM networks, in that it provides a method and a module to be used in subcarrier label generation and switching in network edge nodes and core switch nodes. The methods and modules are typically employed in Optical Subcarrier Multiplexing (OSCM......) transmitters. The payload and the label are encoded independently on optical carrier and subcarrier signals respectively, using electro-optical modulators. The invention applies single or double sideband carrier-suppressed modulation to generate subcarrier signals for encoding of the label. Thereby the payload...... encoded carrier signal and the label encoded subcarrier signal can be coupled directly without prior filtering....

  15. On the passive probing of fiber optic quantum communication channels

    International Nuclear Information System (INIS)

    Korol'kov, A. V.; Katamadze, K. G.; Kulik, S. P.; Molotkov, S. N.

    2010-01-01

    Avalanche photodetectors based on InGaAs:P are the most sensitive and only detectors operating in the telecommunication wavelength range 1.30-1.55 μm in the fiber optic quantum cryptography systems that can operate in the single photon count mode. In contrast to the widely used silicon photodetectors for wavelengths up to 1 μm operating in a waiting mode, these detectors always operate in a gated mode. The production of an electron-hole pair in the process of the absorption of a photon and the subsequent appearance of an avalanche of carriers can be accompanied by the inverse processes of the recombination and emission of photons. Such a backward emission can present a potential serious problem for the stability of fiber optic quantum cryptography systems against passive probing. The results of analyzing the detection of backscattered radiation are reported. The probability of such an emission has been estimated.

  16. Passive Optical Networks for the Distribution of Timed Signals in Particle Physics Experiments

    CERN Document Server

    Papakonstantinou, I; Papadopoulos,S; Troska, J; Vasey, F; Baron, S; Santos, L; Silva, S; Stejskal, P; Sigaud, C; Detraz, S; Moreira, P; Darwazeh, I

    2009-01-01

    A passive optical network for timing distribution applications based on FPGAs has been successfully demonstrated. Deterministic latency was achieved in the critical downstream direction where triggers are distributed while a burst mode receiver was successfully implemented in the upstream direction. Finally, a simple and efficient protocol was introduced for the communication between the OLT and the ONUs in the network that maximizes bandwidth utilization.

  17. All-optical OFDM demultiplexing by spectral magnification and band-pass filtering

    DEFF Research Database (Denmark)

    Palushani, Evarist; Mulvad, Hans Christian Hansen; Kong, Deming

    2014-01-01

    We propose a simple OFDM receiver allowing for the use of standard WDM receivers to receive spectrally advanced OFDM signals. We propose to spectrally magnify the optical-OFDM super-channels using a spectral telescope consisting of two time-lenses, which enables reduced inter-carrier-interference...

  18. Physical-layer network coding for passive optical interconnect in datacenter networks.

    Science.gov (United States)

    Lin, Rui; Cheng, Yuxin; Guan, Xun; Tang, Ming; Liu, Deming; Chan, Chun-Kit; Chen, Jiajia

    2017-07-24

    We introduce physical-layer network coding (PLNC) technique in a passive optical interconnect (POI) architecture for datacenter networks. The implementation of the PLNC in the POI at 2.5 Gb/s and 10Gb/s have been experimentally validated while the gains in terms of network layer performances have been investigated by simulation. The results reveal that in order to realize negligible packet drop, the wavelengths usage can be reduced by half while a significant improvement in packet delay especially under high traffic load can be achieved by employing PLNC over POI.

  19. Impairment analysis of WDM-PON based on low-cost tunable lasers

    DEFF Research Database (Denmark)

    Wagner, Christoph; Eiselt, Michael H.; Lawin, Mirko

    2016-01-01

    channel must be kept below 15%. Similar values result for the upstream pilot tones. In order to limit crosstalk, such systems require reduced launch power during wavelength tuning and can cover up to 40 km differential reach. These results confirm that WDM-PON based on low-cost lasers is a technically...

  20. Information rates of next-generation long-haul optical fiber systems using coded modulation

    NARCIS (Netherlands)

    Liga, G.; Alvarado, A.; Agrell, E.; Bayvel, P.

    2017-01-01

    A comprehensive study of the coded performance of long-haul spectrally-efficient WDM optical fiber transmission systems with different coded modulation decoding structures is presented. Achievable information rates are derived for three different square QAM formats and the optimal format is

  1. Experimental integration of quantum key distribution and gigabit-capable passive optical network

    Science.gov (United States)

    Sun, Wei; Wang, Liu-Jun; Sun, Xiang-Xiang; Mao, Yingqiu; Yin, Hua-Lei; Wang, Bi-Xiao; Chen, Teng-Yun; Pan, Jian-Wei

    2018-01-01

    Quantum key distribution (QKD) ensures information-theoretic security for the distribution of random bits between two remote parties. To extend QKD applications to fiber-to-the-home optical communications, such as gigabit-capable passive optical networks (GPONs), an effective method is the use of wavelength-division multiplexing. However, the Raman scattering noise from intensive classical traffic and the huge loss introduced by the beam splitter in a GPON severely limits the performance of QKD. Here, we demonstrate the integration of QKD and a commercial GPON system with fiber lengths up to 14 km, in which the maximum splitting ratio of the beam splitter reaches 1:64. By placing the QKD transmitter on the optical line terminal side, we reduce the Raman noise collected at the QKD receiver. Using a bypass structure, the loss of the beam splitter is circumvented effectively. Our results pave the way to extending the applications of QKD to last-mile communications.

  2. POLICY BRIEF 1 - WDM Criteria | CRDI - Centre de recherches pour ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    18 janv. 2012 ... Water demand management ― WDM ― can be hard to define. More an issue of policy than of technology, it is about managing and moderating our demands for good quality fresh water. It is less a matter of piping and pumps and more a tool for changing the ways we use water and the rates at which we ...

  3. Chip-integrated optical power limiter based on an all-passive micro-ring resonator

    Science.gov (United States)

    Yan, Siqi; Dong, Jianji; Zheng, Aoling; Zhang, Xinliang

    2014-10-01

    Recent progress in silicon nanophotonics has dramatically advanced the possible realization of large-scale on-chip optical interconnects integration. Adopting photons as information carriers can break the performance bottleneck of electronic integrated circuit such as serious thermal losses and poor process rates. However, in integrated photonics circuits, few reported work can impose an upper limit of optical power therefore prevent the optical device from harm caused by high power. In this study, we experimentally demonstrate a feasible integrated scheme based on a single all-passive micro-ring resonator to realize the optical power limitation which has a similar function of current limiting circuit in electronics. Besides, we analyze the performance of optical power limiter at various signal bit rates. The results show that the proposed device can limit the signal power effectively at a bit rate up to 20 Gbit/s without deteriorating the signal. Meanwhile, this ultra-compact silicon device can be completely compatible with the electronic technology (typically complementary metal-oxide semiconductor technology), which may pave the way of very large scale integrated photonic circuits for all-optical information processors and artificial intelligence systems.

  4. Key lessons: Twelve factors critical to the success of WDM at the ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    English · Français ... Key lessons: Twelve factors critical to the success of WDM at the policy and at the operational levels ... from slums in central New Delhi to the city's desolate periphery face daily indignities and danger as they collect water o.

  5. Subcarrier multiplexing tolerant dispersion transmission system employing optical broadband sources.

    Science.gov (United States)

    Grassi, Fulvio; Mora, José; Ortega, Beatriz; Capmany, José

    2009-03-16

    This paper presents a novel SCM optical transmission system for next-generation WDM-PONs combining broadband optical sources and a Mach-Zehnder interferometric structure. The approach leeds to transport RF signals up to 50 GHz being compatible with RoF systems since a second configuration has been proposed in order to overcome dispersion carrier suppression effect using DSB modulation. The theoretical analysis validates the potentiality of the system also considering the effects of the dispersion slope over the transmission window. (c) 2009 Optical Society of America

  6. Mixing rules for optical and transport properties of warm, dense matter

    International Nuclear Information System (INIS)

    Kress, Joel D.; Horner, Daniel A.; Collins, Lee A.

    2009-01-01

    The warm, dense matter (WDM) regime requires a sophisticated treatment since neither ideal gas laws or fully ionized plasma models apply. Mixtures represent the predominant form of matter throughout the universe and the ability to predict the properties of a mixture, though direct simulation or from convolution of the properties of the constituents is both a challenging prospect and an important goal. Through quantum molecular dynamics (QMD), we accurately simulate WDM and compute equations of state, transport, and optical properties of such materials, including mixtures, in a self-consistent manner from a single simulation. With the ability to directly compute the mixture properties, we are able to validate mixing rules for combining the optical and dynamical properties of Li and H separately to predict the properties of lithium hydride (LiH). We have examined two such mixing rules and extend them to morphologies beyond a simple liquid alloy. We have also studied a mixture of polyethylene and aluminum at T = 1 eV.

  7. WDM-PON-compatible system for simultaneous distribution of gigabit baseband and wireless ultrawideband services with flexible bandwidth allocation

    DEFF Research Database (Denmark)

    Pham, Tien Thang; Yu, Xianbin; Gibbon, Timothy Braidwood

    2011-01-01

    In this paper, a novel and simple scheme to realize flexible access for gigabit wireline and impulse radio ultrawideband (IR-UWB) wireless services is proposed. The UWB signals are generated by multi-carrier upconverting and reshaping the baseband signals.The proposed system was experimentally...... demonstrated with the performances of 2.0-Gbps data in both baseband and UWB formats after 46-km single mode fiber transmission and further 0.5-m wireless for UWB data. The flexibility of the system is confirmed by investigating the system performance at different data rates including 1.0 Gbps and 1.6 Gbps....... Optical wavelength independency and data-rate variability of UWB signal generation makes the system attractive for potential wireline and wireless applications in existing WDM-PON systems....

  8. Vertical‐cavity surface‐emitting laser based digital coherent detection for multigigabit long reach passive optical links

    DEFF Research Database (Denmark)

    Rodes Lopez, Roberto; Jensen, Jesper Bevensee; Zibar, Darko

    2011-01-01

    We report on experimental demonstration of digital coherent detection based on a directly modulated vertical‐cavity surface‐emitting laser with bit rate up to 10 Gbps. This system allows a cooler‐less, free running, and unamplified transmission without optical dispersion compensation up to 105 km...... at 5 Gbps long reach passive optical links. © 2011 Wiley Periodicals, Inc. Microwave Opt Technol Lett 53:2462–2464, 2011; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.26331...

  9. Mode-locked silicon evanescent lasers.

    Science.gov (United States)

    Koch, Brian R; Fang, Alexander W; Cohen, Oded; Bowers, John E

    2007-09-03

    We demonstrate electrically pumped lasers on silicon that produce pulses at repetition rates up to 40 GHz. The mode locked lasers generate 4 ps pulses with low jitter and extinction ratios above 18 dB, making them suitable for data and telecommunication transmitters and for clock generation and distribution. Results of both passive and hybrid mode locking are discussed. This type of device could enable new silicon based integrated technologies, such as optical time division multiplexing (OTDM), wavelength division multiplexing (WDM), and optical code division multiple access (OCDMA).

  10. Demonstration of digital fronthaul over self-seeded WDM-PON in commercial LTE environment.

    Science.gov (United States)

    Ma, Yiran; Xu, Zhiguang; Zhang, Chengliang; Lin, Huafeng; Wang, Qing; Zhou, Min; Wang, Heng; Yu, Jingwen; Wang, Xiaomu

    2015-05-04

    CPRI between BBU and RRU equipment is carried by self-seeded WDM-PON prototype system within commercial LTE end-to-end environment. Delay and jitter meets CPRI requirements while services demonstrated show the same performance as bare fiber.

  11. Transmission enhancement by deployment of interferometric wavelength converters within all-optical cross connects

    DEFF Research Database (Denmark)

    Poulsen, Henrik Nørskov; Mikkelsen, Benny; Stubkjær, Kristian

    1997-01-01

    Wavelength-division multiplexing (WDM) networks are expected to utilize all-optical cross connects (OXCN) for signal routing. Because a signal path is likely to contain a number of OXCNs, their cascadability is essential. Furthermore, because wavelength converters in the OXCNs improve traffic...

  12. Re-modulated technology of WDM-PON employing different DQPSK downstream signals

    Science.gov (United States)

    Gao, Chao; Xin, Xiang-jun; Yu, Chong-xiu

    2012-11-01

    This paper proposes a kind of modulation architecture for wavelength-division-multiplexing passive optical network (WDMPON) employing optical differential quadrature phase shift keying (DQPSK) downstream signals and two different modulation formats of re-modulated upstream signals. At the optical line terminal (OLT), 10 Gbit/s signal is modulated with DQPSK. At the optical network unit (ONU), part of the downstream signal is re-modulated with on-off keying (OOK) or inverse-return-to-zero (IRZ). Simulation results show the impact on the system employing NRZ, RZ and carrier-suppressed return-to-zero (CSRZ). The analyses also reflect that the architecture can restrain chromatic dispersion and channel crosstalk, which makes it the best architecture of access network in the future.

  13. A system's view of metro and regional optical networks

    Science.gov (United States)

    Lam, Cedric F.; Way, Winston I.

    2009-01-01

    Developments in fiber optic communications have been rejuvenated after the glut of the overcapacity at the turn of the century. The boom of video-centric network applications finally resulted in another wave of vast build-outs of broadband access networks such as FTTH, DOCSIS 3.0 and WI-FI systems, which in turn also drove up the bandwidth demands in metro and regional WDM networks. These new developments have rekindled research interests on technologies not only to meet the surging demand, but also to upgrade legacy network infrastructures in an evolutionary manner without disrupting existing services and incurring significant capital penalties. Standard bodies such as IEEE, ITU and OIF have formed task forces to ratify 100Gb/s interface standards. Thanks to the seemingly unlimited bandwidth in single-mode fibers, advances in optical networks has traditionally been fueled by more capable physical components such as more powerful laser, cleaner and wider bandwidth optical amplifier, faster modulator and photo-detectors, etc. In the meanwhile, the mainstream modulation technique for fiber optic communication systems has remained the most rudimentary form of on-off keying (OOK) and direct power detection for a very long period of time because spectral efficiency had never been a concern. This scenario, however, is no longer valid as demand for bandwidth is pushing the limit of current of current WDM technologies. In terms of spectral use, all the 100-GHz ITU grids in the C-band have been populated with 10Gb/s wavelengths in most of the WDM transport networks, and we are exhausting the power and bandwidth offered on existing fiber plant EDFAs. Beyond 10Gb/s, increasing the transmission to 40Gb/s by brute force OOK approach incurs significant penalties due to chromatic and polarization mode dispersion. With conventional modulation schemes, transmission impairments at 40Gb/s speed and above already become such difficult challenges that the efforts to manage these

  14. Modeling the video distribution link in the Next Generation Optical Access Networks

    International Nuclear Information System (INIS)

    Amaya, F; Cardenas, A; Tafur, I

    2011-01-01

    In this work we present a model for the design and optimization of the video distribution link in the next generation optical access network. We analyze the video distribution performance in a SCM-WDM link, including the noise, the distortion and the fiber optic nonlinearities. Additionally, we consider in the model the effect of distributed Raman amplification, used to extent the capacity and the reach of the optical link. In the model, we use the nonlinear Schroedinger equation with the purpose to obtain capacity limitations and design constrains of the next generation optical access networks.

  15. Optical Response of Warm Dense Matter Using Real-Time Electron Dynamics

    Science.gov (United States)

    Baczewski, Andrew; Shulenburger, Luke; Desjarlais, Michael; Magyar, Rudolph

    2014-03-01

    The extreme temperatures and solid-like densities in warm dense matter present a unique challenge for theory, wherein neither conventional models from condensed matter nor plasma physics capture all of the relevant phenomenology. While Kubo-Greenwood DFT calculations have proven capable of reproducing optical properties of WDM, they require a significant number of virtual orbitals to reach convergence due to their perturbative nature. Real-time TDDFT presents a complementary framework with a number of computationally favorable properties, including reduced cost complexity and better scalability, and has been used to reproduce the optical response of finite and ordered extended systems. We will describe the use of Ehrenfest-TDDFT to evolve coupled electron-nuclear dynamics in WDM systems, and the subsequent evaluation of optical response functions from the real-time electron dynamics. The advantages and disadvantages of this approach will be discussed relative to the current state-of-the-art. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Security Administration under contract DE-AC04-94AL85000.

  16. All-optical OFDM demultiplexing by spectral magnification and band-pass filtering.

    Science.gov (United States)

    Palushani, E; Mulvad, H C Hansen; Kong, D; Guan, P; Galili, M; Oxenløwe, L K

    2014-01-13

    We propose a simple OFDM receiver allowing for the use of standard WDM receivers to receive spectrally advanced OFDM signals. We propose to spectrally magnify the optical-OFDM super-channels using a spectral telescope consisting of two time-lenses, which enables reduced inter-carrier-interference in subcarrier detection by simple band-pass filtering. A demonstration on an emulated 100 Gbit/s DPSK optical-OFDM channel shows improved sensitivities after 4-times spectral magnification.

  17. Multi-channel WDM RZ-to-NRZ format conversion at 50 Gbit/s based on single silicon microring resonator

    DEFF Research Database (Denmark)

    Ding, Yunhong; Peucheret, Christophe; Pu, Minhao

    2010-01-01

    We comprehensively analyze multiple WDM channels RZ-to- NRZ format conversion using a single microring resonator. The scheme relies on simultaneous suppression of the first order harmonic components in the spectra of all the RZ channels. An optimized silicon microring resonator with free spectral...... range of 100 GHz and Q value of 7900 is designed and fabricated for this purpose. Multi-channel RZ-to-NRZ format conversion is demonstrated experimentally at 50 Gbit/s for WDM channels with 200 GHz channel spacing using the fabricated device. Bit error rate (BER)measurements show very good conversion...

  18. The passive optical properties of a silicon nanoparticle-embedded benzocyclobutene polymer waveguide

    International Nuclear Information System (INIS)

    Chiu, J.-J.; Perng, Tsong P

    2008-01-01

    The passive optical properties of a silicon nanoparticle-embedded benzocyclobutene (BCB) waveguide were investigated. The silicon nanoparticles, of a size varying from 6 to 25 nm, were prepared by vapor condensation. The transmission modes and losses were examined by the prism coupler and cut-back methods. A He-Ne laser beam with a wavelength of 6328 A was used to measure the effective index and thickness of the waveguide. Laser light could be efficiently coupled into the BCB waveguide when the embedded Si nanoparticles were smaller than 6 nm. The film thickness and effective index of the Si-embedded BCB waveguide were measured to be 1.825 μm and 1.565, respectively. The optical transmission losses of the pure BCB and Si-embedded ridge waveguides measured by the cut-back method were 0.85 and 1.63 dB cm -1 , respectively. Although the optical loss was increased by the embedded Si, the disturbance of the output contour was quite small. This result demonstrates that the nanoparticle-embedded polymer waveguide may be used for optoelectronic integrated circuits

  19. Energy-saving framework for passive optical networks with ONU sleep/doze mode.

    Science.gov (United States)

    Van, Dung Pham; Valcarenghi, Luca; Dias, Maluge Pubuduni Imali; Kondepu, Koteswararao; Castoldi, Piero; Wong, Elaine

    2015-02-09

    This paper proposes an energy-saving passive optical network framework (ESPON) that aims to incorporate optical network unit (ONU) sleep/doze mode into dynamic bandwidth allocation (DBA) algorithms to reduce ONU energy consumption. In the ESPON, the optical line terminal (OLT) schedules both downstream (DS) and upstream (US) transmissions in the same slot in an online and dynamic fashion whereas the ONU enters sleep mode outside the slot. The ONU sleep time is maximized based on both DS and US traffic. Moreover, during the slot, the ONU might enter doze mode when only its transmitter is idle to further improve energy efficiency. The scheduling order of data transmission, control message exchange, sleep period, and doze period defines an energy-efficient scheme under the ESPON. Three schemes are designed and evaluated in an extensive FPGA-based evaluation. Results show that whilst all the schemes significantly save ONU energy for different evaluation scenarios, the scheduling order has great impact on their performance. In addition, the ESPON allows for a scheduling order that saves ONU energy independently of the network reach.

  20. Determining the Scattering Properties of Vertically-Structured Nepheloid Layers From the Fusion of Active and Passive Optical Sensors

    National Research Council Canada - National Science Library

    Bissett, W. P; Kohler, David D

    2006-01-01

    ... from the bottom back toward the surface. The net result is that these layers reduce the ability of active and passive optical instruments to retrieve estimates of bathymetry and bottom classification, as well as reduce the abilities...

  1. Experimental mouse model of optic neuritis with inflammatory demyelination produced by passive transfer of neuromyelitis optica-immunoglobulin G

    Science.gov (United States)

    2014-01-01

    Background Although optic neuritis (ON) is a defining feature of neuromyelitis optica (NMO), appropriate animal models of NMO ON are lacking. Most NMO patients are seropositive for immunoglobulin G autoantibodies (NMO-IgG) against the astrocyte water channel aquaporin-4 (AQP4). Methods Several approaches were tested to develop a robust, passive-transfer mouse model of NMO ON, including NMO-IgG and complement delivery by: (i) retrobulbar infusion; (ii) intravitreal injection; (iii) a single intracranial injection near the optic chiasm; and (iv) 3-days continuous intracranial infusion near the optic chiasm. Results Little ON or retinal pathology was seen using approaches (i) to (iii). Using approach (iv), however, optic nerves showed characteristic NMO pathology, with loss of AQP4 and glial fibrillary acidic protein immunoreactivity, granulocyte and macrophage infiltration, deposition of activated complement, demyelination and axonal injury. Even more extensive pathology was created in mice lacking complement inhibitor protein CD59, or using a genetically modified NMO-IgG with enhanced complement effector function, including significant loss of retinal ganglion cells. In control studies, optic nerve pathology was absent in treated AQP4-deficient mice, or in wild-type mice receiving control (non-NMO) IgG and complement. Conclusion Passive transfer of NMO-IgG and complement by continuous infusion near the optic chiasm in mice is sufficient to produce ON with characteristic NMO pathology. The mouse model of NMO ON should be useful in further studies of NMO pathogenesis mechanisms and therapeutics. PMID:24468108

  2. 6.4 Tb/s (32 × 200 Gb/s) WDM direct-detection transmission with twin-SSB modulation and Kramers-Kronig receiver

    Science.gov (United States)

    Zhu, Yixiao; Jiang, Mingxuan; Ruan, Xiaoke; Chen, Zeyu; Li, Chenjia; Zhang, Fan

    2018-05-01

    We experimentally demonstrate 6.4 Tb/s wavelength division multiplexed (WDM) direct-detection transmission based on Nyquist twin-SSB modulation over 25 km SSMF with bit error rates (BERs) below the 20% hard-decision forward error correction (HD-FEC) threshold of 1.5 × 10-2. The two sidebands of each channel are separately detected using Kramers-Kronig receiver without MIMO equalization. We also carry out numerical simulations to evaluate the system robustness against I/Q amplitude imbalance, I/Q phase deviation and the extinction ratio of modulator, respectively. Furthermore, we show in simulation that the requirement of steep edge optical filter can be relaxed if multi-input-multi-output (MIMO) equalization between the two sidebands is used.

  3. 3.375-Gb/s RGB-LED based WDM visible light communication system employing PAM-8 modulation with phase shifted Manchester coding.

    Science.gov (United States)

    Chi, Nan; Zhang, Mengjie; Zhou, Yingjun; Zhao, Jiaqi

    2016-09-19

    Optical background noise and second-order nonlinear distortions are two main challenges faced by indoor high-speed VLC system. In this paper, a novel phase shifted Manchester (PS-Manchester) coding based on PAM-8 is proposed and experimentally demonstrated to mitigate these noise and distortions. With the aid of PS-Manchester coding and WDM, a total data rate of 3.375-Gb/s can be successfully achieved in the RGB-LED based VLC system. The BER is under 7% HD-FEC limit of 3.8x10-3 after 1-m indoor free space transmission. To the best of our knowledge, this is the highest data rate ever achieved in PAM VLC systems.

  4. Secure passive RFID tag with seal

    Science.gov (United States)

    Nekoogar, Faranak; Reynolds, Matthew; Lefton, Scott; Dowla, Farid; Twogood, Richard

    2017-11-14

    A secure passive RFID tag system comprises at least one base station and at least one passive RFID tag. The tag includes a fiber optic cable with the cable ends sealed within the tag and the middle portion forming an external loop. The loop may be secured to at least portions of an object. The tag transmits and receives an optical signal through the fiber optic cable, and the cable is configured to be damaged or broken in response to removal or tampering attempts, wherein the optical signal is significantly altered if the cable is damaged or broken. The tag transmits the optical signal in response to receiving a radio signal from the base station and compares the transmitted optical signal to the received optical signal. If the transmitted optical signal and the received optical signal are identical, the tag transmits an affirmative radio signal to the base station.

  5. Passive and Portable Polymer Optical Fiber Cleaver

    DEFF Research Database (Denmark)

    Saez-Rodriguez, D.; Min, R.; Ortega, B.

    2016-01-01

    opening up the possibility of an electrically passive cleaver. In this letter, we describe the implementation and testing of a high quality cleaver based on a mechanical system formed by a constant force spring and a damper, which leads to the first reported electrical passive and portable cleaver....

  6. Bandwidth efficient bidirectional 5 Gb/s overlapped-SCM WDM PON with electronic equalization and forward-error correction.

    Science.gov (United States)

    Buset, Jonathan M; El-Sahn, Ziad A; Plant, David V

    2012-06-18

    We demonstrate an improved overlapped-subcarrier multiplexed (O-SCM) WDM PON architecture transmitting over a single feeder using cost sensitive intensity modulation/direct detection transceivers, data re-modulation and simple electronics. Incorporating electronic equalization and Reed-Solomon forward-error correction codes helps to overcome the bandwidth limitation of a remotely seeded reflective semiconductor optical amplifier (RSOA)-based ONU transmitter. The O-SCM architecture yields greater spectral efficiency and higher bit rates than many other SCM techniques while maintaining resilience to upstream impairments. We demonstrate full-duplex 5 Gb/s transmission over 20 km and analyze BER performance as a function of transmitted and received power. The architecture provides flexibility to network operators by relaxing common design constraints and enabling full-duplex operation at BER ∼ 10(-10) over a wide range of OLT launch powers from 3.5 to 8 dBm.

  7. BER and total throughput of asynchronous DS-OCDMA/WDM systems with multiple user interference

    OpenAIRE

    Ghiringhelli, F.; Zervas, M.N.

    2003-01-01

    The BER and throughput of Direct-Sequence OCDMA/WDM systems based on quadripolar codes and superstructured fiber Bragg gratings are statistically derived under asynchronous operation, intensity detection, and Multiple User Interference. Performance improvements with Forward Error Correction are included.

  8. Full distortion induced by dispersion evaluation and optical bandwidth constraining of fiber Bragg grating demultiplexers over analogue SCM systems.

    Science.gov (United States)

    Martinez, Alfonso; Pastor, Daniel; Capmany, Jose

    2002-12-30

    We provide a full analysis of the distortion effects produced by the first and second order in-band dispersion of fiber Bragg grating based optical demultiplexers over analogue SCM (Sub Carrier Multiplexed) signals. Optical bandwidth utilization ranges for Dense WDM network are calculated considering different SCM system cases of frequency extension and modulation conditions.

  9. Demonstration of hybrid orbital angular momentum multiplexing and time-division multiplexing passive optical network.

    Science.gov (United States)

    Wang, Andong; Zhu, Long; Liu, Jun; Du, Cheng; Mo, Qi; Wang, Jian

    2015-11-16

    Mode-division multiplexing passive optical network (MDM-PON) is a promising scheme for next-generation access networks to further increase fiber transmission capacity. In this paper, we demonstrate the proof-of-concept experiment of hybrid mode-division multiplexing (MDM) and time-division multiplexing (TDM) PON architecture by exploiting orbital angular momentum (OAM) modes. Bidirectional transmissions with 2.5-Gbaud 4-level pulse amplitude modulation (PAM-4) downstream and 2-Gbaud on-off keying (OOK) upstream are demonstrated in the experiment. The observed optical signal-to-noise ratio (OSNR) penalties for downstream and upstream transmissions at a bit-error rate (BER) of 2 × 10(-3) are less than 2.0 dB and 3.0 dB, respectively.

  10. Energy efficiency analysis for flexible-grid OFDM-based optical networks

    DEFF Research Database (Denmark)

    Vizcaíno, Jorge López; Ye, Yabin; Tafur Monroy, Idelfonso

    2012-01-01

    As the Internet traffic grows, the energy efficiency gains more attention as a design factor for the planning and operation of telecommunication networks. This paper is devoted to the study of energy efficiency in optical transport networks, comparing the performance of an innovative flexible......-grid network based on Orthogonal Frequency Division Multiplexing (OFDM) with that of conventional fixed-grid Wavelength Division Multiplexing (WDM) networks with a Single Line Rate (SLR) and with a Mixed Line Rate (MLR) operation. The power consumption values of the network elements are introduced. Energy......-aware heuristic algorithms are proposed for the resource allocation both in static (offline) and dynamic (online) scenarios with time-varying demands for the Elastic-bandwidth OFDM-based network and the WDM networks (with SLR and MLR). The energy efficiency performance of the two network technologies under...

  11. Fiber-Optic Communication Links Suitable for On-Board Use in Modern Aircraft

    Science.gov (United States)

    Nguyen, Hung; Ngo, Duc; Alam, Mohammad F.; Atiquzzaman, Mohammed; Sluse, James; Slaveski, Filip

    2004-01-01

    The role of the Advanced Air Transportation Technologies program undertaken at the NASA Glenn Research Centers has been focused mainly on the improvement of air transportation safety, with particular emphasis on air transportation communication systems in on-board aircraft. The conventional solutions for digital optical communications systems specifically designed for local/metro area networks are, unfortunately, not capable of transporting the microwave and millimeter RF signals used in avionics systems. Optical networks capable of transporting RF signals are substantially different from the standard digital optical communications systems. The objective of this paper is to identify a number of different communication link architectures for RF/fiber optic transmission using a single backbone fiber for carrying VHF and UHF RF signals in the aircraft. To support these architectures, two approaches derived from both hybrid RF-optical and all-optical processing methodologies are discussed with single and multiple antennas for explicitly transporting VHF and UHF signals, while the relative merits and demerits of each architecture are also addressed. Furthermore, the experimental results of wavelength division multiplexing (WDM) link architecture from our test-bed platform, configured for aircraft environment to support simultaneous transmission of multiple RF signals over a single optical fiber, exhibit no appreciable signal degradation at wavelengths of both 1330 and 1550 nm, respectively. Our measurements of signal to noise ratio carried out for the transmission of FM and AM analog modulated signals at these wavelengths indicate that WDM is a fiber optic technology which is potentially suitable for avionics applications.

  12. Cost and Availability Analysis of 2- and 3-Connected WDM Networks Physical Interconnection

    DEFF Research Database (Denmark)

    Gutierrez Lopez, Jose Manuel; Riaz, M. Tahir; Pedersen, Jens Myrup

    2012-01-01

    for the best trade-off among the relevant parameters for the network. In this paper we analyze this trade-off by studying 2-and 3-connected graphs to be used as WDM (Wavelength Division Multiplexing) networks physical infrastructure. The experiments show how the way links are distributed to interconnect...

  13. Modeling the video distribution link in the Next Generation Optical Access Networks

    DEFF Research Database (Denmark)

    Amaya, F.; Cárdenas, A.; Tafur Monroy, Idelfonso

    2011-01-01

    In this work we present a model for the design and optimization of the video distribution link in the next generation optical access network. We analyze the video distribution performance in a SCM-WDM link, including the noise, the distortion and the fiber optic nonlinearities. Additionally, we...... consider in the model the effect of distributed Raman amplification, used to extent the capacity and the reach of the optical link. In the model, we use the nonlinear Schrödinger equation with the purpose to obtain capacity limitations and design constrains of the next generation optical access networks....

  14. Definition, analysis and development of an optical data distribution network for integrated avionics and control systems. Part 2: Component development and system integration

    Science.gov (United States)

    Yen, H. W.; Morrison, R. J.

    1984-01-01

    Fiber optic transmission is emerging as an attractive concept in data distribution onboard civil aircraft. Development of an Optical Data Distribution Network for Integrated Avionics and Control Systems for commercial aircraft will provide a data distribution network that gives freedom from EMI-RFI and ground loop problems, eliminates crosstalk and short circuits, provides protection and immunity from lightning induced transients and give a large bandwidth data transmission capability. In addition there is a potential for significantly reducing the weight and increasing the reliability over conventional data distribution networks. Wavelength Division Multiplexing (WDM) is a candidate method for data communication between the various avionic subsystems. With WDM all systems could conceptually communicate with each other without time sharing and requiring complicated coding schemes for each computer and subsystem to recognize a message. However, the state of the art of optical technology limits the application of fiber optics in advanced integrated avionics and control systems. Therefore, it is necessary to address the architecture for a fiber optics data distribution system for integrated avionics and control systems as well as develop prototype components and systems.

  15. Maximization Network Throughput Based on Improved Genetic Algorithm and Network Coding for Optical Multicast Networks

    Science.gov (United States)

    Wei, Chengying; Xiong, Cuilian; Liu, Huanlin

    2017-12-01

    Maximal multicast stream algorithm based on network coding (NC) can improve the network's throughput for wavelength-division multiplexing (WDM) networks, which however is far less than the network's maximal throughput in terms of theory. And the existing multicast stream algorithms do not give the information distribution pattern and routing in the meantime. In the paper, an improved genetic algorithm is brought forward to maximize the optical multicast throughput by NC and to determine the multicast stream distribution by hybrid chromosomes construction for multicast with single source and multiple destinations. The proposed hybrid chromosomes are constructed by the binary chromosomes and integer chromosomes, while the binary chromosomes represent optical multicast routing and the integer chromosomes indicate the multicast stream distribution. A fitness function is designed to guarantee that each destination can receive the maximum number of decoding multicast streams. The simulation results showed that the proposed method is far superior over the typical maximal multicast stream algorithms based on NC in terms of network throughput in WDM networks.

  16. Ultrahigh-Spectral-Efficiency WDM/SDM Transmission Using PDM-1024-QAM Probabilistic Shaping With Adaptive Rate

    DEFF Research Database (Denmark)

    Hu, Hao; Yankov, Metodi Plamenov; Da Ros, Francesco

    2018-01-01

    We demonstrate wavelength-division-multiplexed (WDM) and space-division-multiplexed (SDM) transmission of probabilistically shaped polarization-division-multiplexed (PDM) 1024-state quadrature amplitude modulation (QAM) channels over a 9.7-km single-mode 30-core fiber, achieving aggregated spectr...

  17. Silicon Waveguide with Lateral p-i-n Diode for Nonlinearity Compensation by On-Chip Optical Phase Conjugation

    DEFF Research Database (Denmark)

    Gajda, A.; Da Ros, Francesco; Porto da Silva, Edson

    2018-01-01

    A 1-dB Q-factor improvement through optical phase conjugation in a silicon waveguide with a lateral p-i-n diode enables BERWDM 16-QAM single-polarization signal...

  18. Observation of phase noise reduction in photonically synthesized sub-THz signals using a passively mode-locked laser diode and highly selective optical filtering

    DEFF Research Database (Denmark)

    Criado, A. R.; Acedo, P.; Carpintero, G.

    2012-01-01

    A Continuous Wave (CW) sub-THz photonic synthesis setup based on a single Passively Mode-Locked Laser Diode (PMLLD) acting as a monolithic Optical Frequency Comb Generator (OFCG) and highly selective optical filtering has been implemented to evaluate the phase noise performance of the generated sub...

  19. Photonic synthesis of continuous‐wave millimeter‐wave signals using a passively mode‐locked laser diode and selective optical filtering

    DEFF Research Database (Denmark)

    Acedo, P.; Carpintero, G.; Criado, A.R.

    2012-01-01

    We report a photonic synthesis scheme for continuous wave millimeter‐wave signal generation using a single passively mode‐locked laser diode (PMLLD), optical filtering and photomixing in a fast photodiode.The phase noise of the photonically synthesized signals is evaluated and inherits...

  20. Fault location algorithms for optical networks

    OpenAIRE

    Mas Machuca, Carmen; Thiran, Patrick

    2005-01-01

    Today, there is no doubt that optical networks are the solution to the explosion of Internet traffic that two decades ago we only dreamed about. They offer high capacity with the use of Wavelength Division Multiplexing (WDM) techniques among others. However, this increase of available capacity can be betrayed by the high quantity of information that can be lost when a failure occurs because not only one, but several channels will then be interrupted. Efficient fault detection and location mec...

  1. Optical Switching for Dynamic Distribution of Wireless-over-Fiber Signals

    DEFF Research Database (Denmark)

    Rodes Lopez, Guillermo Arturo; Vegas Olmos, Juan José; Karinou, Fotini

    2012-01-01

    In this paper, we report on an experimental validation of dynamic distribution of wireless-over-fiber by employing optical switching using semiconductor optical amplifiers; the rest of the network was designed according to the channel distribution over the optical spectra required by the optical...... switch. An experimental validation was also conducted. The experiment consists of a four wavelength division multiplexed (WDM) channel system operating on a WiMax frequency band, and employing an orthogonal frequency-division multiplexing (OFDM) modulation at 625 Mbit/s per channel, transmission...... of the data over 20 km of optical fiber, and active switching in a one-by-sixteen active optical switch. The results show a negligible power penalty on each channel, for both the best and the worst case in terms of inter-channel crosstalk....

  2. Optical absorption and oxygen passivation of surface states in III-nitride photonic devices

    Science.gov (United States)

    Rousseau, Ian; Callsen, Gordon; Jacopin, Gwénolé; Carlin, Jean-François; Butté, Raphaël; Grandjean, Nicolas

    2018-03-01

    III-nitride surface states are expected to impact high surface-to-volume ratio devices, such as nano- and micro-wire light-emitting diodes, transistors, and photonic integrated circuits. In this work, reversible photoinduced oxygen desorption from III-nitride microdisk resonator surfaces is shown to increase optical attenuation of whispering gallery modes by 100 cm-1 at λ = 450 nm. Comparison of photoinduced oxygen desorption in unintentionally and n+-doped microdisks suggests that the spectral changes originate from the unpinning of the surface Fermi level, likely taking place at etched nonpolar III-nitride sidewalls. An oxygen-rich surface prepared by thermal annealing results in a broadband Q improvement to state-of-the-art values exceeding 1 × 104 at 2.6 eV. Such findings emphasize the importance of optically active surface states and their passivation for future nanoscale III-nitride optoelectronic and photonic devices.

  3. High spectral efficiency optical CDMA system based on guard-time and optical hard-limiting (OHL)

    Energy Technology Data Exchange (ETDEWEB)

    Gagliardi, R M; Bennett, C V; Mendez, A J; Hernandez, V J; Lennon, W J

    2003-12-02

    Optical code-division multiple access (OCDMA) is an interesting subject of research because of its potential to support asynchronous, bursty communications. OCDMA has been investigated for local area networks, access networks, and, more recently, as a packet label for emerging networks. Two-dimensional (2-D) OCDMA codes are preferred in current research because of the flexibility of designing the codes and their higher cardinality and spectral efficiency (SE) compared with direct sequence codes based on on-off keying and intensity modulation/direct detection, and because they lend themselves to being implemented with devices developed for wavelength-division-multiplexed (WDM) transmission (the 2-D codes typically combine wavelength and time as the two dimensions of the codes). This paper shows rigorously that 2-D wavelength/time codes have better SE than one-dimensional (1-D) CDMA/WDM combinations (of the same cardinality). Then, the paper describes a specific set of wavelength/time (W/T) codes and their implementation. These 2-D codes are high performance because they simultaneously have high cardinality (/spl Gt/10), per-user high bandwidth (>1 Gb/s), and high SE (>0.10 b/s/Hz). The physical implementation of these W/T codes is described and their performance evaluated by system simulations and measurements on an OCDMA technology demonstrator. This research shows that OCDMA implementation complexity (e.g., incorporating double hard-limiting and interference estimation) can be avoided by using a guard time in the codes and an optical hard limiter in the receiver.

  4. Formation of SiNx:H by PECVD: optimization of the optical, bulk passivation and structural properties for photovoltaic applications

    International Nuclear Information System (INIS)

    Lelievre, J.F.

    2007-04-01

    The hydrogenated silicon nitride SiNx:H is widely used as antireflection coating and passivation layer in the manufacture of silicon photovoltaic cells. The aim of this work was to implement a low frequency (440 kHz) PECVD reactor and to characterize the obtained SiN layers. After having determined the parameters of the optimal deposition, the physico-chemical structure of the layers has been studied. The optical properties have been studied with the aim to improve the antireflection coating of the photovoltaic cells. The surface and bulk passivation properties, induced by the SiN layer in terms of its stoichiometry, have been analyzed and have revealed the excellent passivating efficiency of this material. At last, have been studied the formation conditions of the silicon nano-crystals in the SiN matrix. (O.M.)

  5. Developments for a passive optical node network for deployment in deep sea enabling time synchronous data readout

    International Nuclear Information System (INIS)

    Heine, Eric; Hoek, Mar van der; Hogenbirk, Jelle; Jansweijer, Peter; Mos, Sander; Peek, Henk

    2009-01-01

    An overview of an optical network design for a Very Large Volume neutrino Telescope (VLVnT) [Proceedings of the Workshop on Technical aspects of a VLVnT in the Mediterranean Sea, ISBN90-6488-026-3] residing on the seabed is presented. The passive optical network transports all data to shore in a synchronous way without data congestion. Due to fixed propagation delay and low jitter over the fiber network an accurate event time stamp can be generated onshore. The determined signal propagation can also serve for detector calibration. The results of a proto type vertical cable test are presented.

  6. Experimental Study of Nonlinear Phase Noise and its Impact on WDM Systems with DP-256QAM

    DEFF Research Database (Denmark)

    Yankov, Metodi Plamenov; Da Ros, Francesco; Porto da Silva, Edson

    2016-01-01

    A probabilistic method for mitigating the phase noise component of the non-linear interference in WDM systems with Raman amplification is experimentally demonstrated. The achieved gains increase with distance and are comparable to the gains of single-channel digital back-propagation....

  7. Link Power Budget and Traffict QoS Performance Analysis of Gygabit Passive Optical Network

    Science.gov (United States)

    Ubaidillah, A.; Alfita, R.; Toyyibah

    2018-01-01

    Data service of telecommunication network is needed widely in the world; therefore extra wide bandwidth must be provided. For this case, PT. Telekomunikasi Tbk. applies GPON (Gigabit Passive Optical Network) as optical fibre based on telecommunication network system. GPON is a point to a multipoint technology of FTTx (Fiber to The x) that transmits information signals to the subscriber over optical fibre. In GPON trunking system, from OLT (Optical Line Terminal), the network is split to many ONT (Optical Network Terminal) of the subscribers, so it causes path loss and attenuation. In this research, the GPON performance is measured from the link power budget system and the Quality of Service (QoS) of the traffic. And the observation result shows that the link power budget system of this GPON is in good condition. The link power budget values from the mathematical calculation and direct measurement are satisfy the ITU-T G984 Class B standard, that the power level must be between -8 dBm to -27 dBm. While from the traffic performance, the observation result shows that the network resource utility of the subscribers of the observed area is not optimum. The mean of subscriber utility rate is 27.985 bps for upstream and 79.687 bps for downstream. While maximally, It should be 60.800 bps for upstream and 486.400 bps for downstream.

  8. 18-THz-wide optical frequency comb emitted from monolithic passively mode-locked semiconductor quantum-well laser

    Science.gov (United States)

    Lo, Mu-Chieh; Guzmán, Robinson; Ali, Muhsin; Santos, Rui; Augustin, Luc; Carpintero, Guillermo

    2017-10-01

    We report on an optical frequency comb with 14nm (~1.8 THz) spectral bandwidth at -3 dB level that is generated using a passively mode-locked quantum-well (QW) laser in photonic integrated circuits (PICs) fabricated through an InP generic photonic integration technology platform. This 21.5-GHz colliding-pulse mode-locked laser cavity is defined by on-chip reflectors incorporating intracavity phase modulators followed by an extra-cavity SOA as booster amplifier. A 1.8-THz-wide optical comb spectrum is presented with ultrafast pulse that is 0.35-ps-wide. The radio frequency beat note has a 3-dB linewidth of 450 kHz and 35-dB SNR.

  9. Physical impairment aware transparent optical networks

    Science.gov (United States)

    Antona, Jean-Christophe; Morea, Annalisa; Zami, Thierry; Leplingard, Florence

    2009-11-01

    As illustrated by optical fiber and optical amplification, optical telecommunications have appeared for the last ten years as one of the most promising candidates to increase the transmission capacities. More recently, the concept of optical transparency has been investigated and introduced: it consists of the optical routing of Wavelength Division Multiplexed (WDM) channels without systematic optoelectronic processing at nodes, as long as propagation impairments remain acceptable [1]. This allows achieving less power-consuming, more scalable and flexible networks, and today partial optical transparency has become a reality in deployed systems. However, because of the evolution of traffic features, optical networks are facing new challenges such as demand for higher transmitted capacity, further upgradeability, and more automation. Making all these evolutions compliant on the same current network infrastructure with a minimum of upgrades is one of the main issues for equipment vendors and operators. Hence, an automatic and efficient management of the network needs a control plan aware of the expected Quality of Transmission (QoT) of the connections to set-up with respect to numerous parameters such as: the services demanded by the customers in terms of protection/restoration; the modulation rate and format of the connection under test and also of its adjacent WDM channels; the engineering rules of the network elements traversed with an accurate knowledge of the associated physical impairments. Whatever the method and/or the technology used to collect this information, the issue about its accuracy is one of the main concerns of the network system vendors, because an inaccurate knowledge could yield a sub-optimal dimensioning and so additional costs when installing the network in the field. Previous studies [1], [2] illustrated the impact of this knowledge accuracy on the ability to predict the connection feasibility. After describing usual methods to build

  10. Wavelength-Converter Saving Span Restoration in GMPLS Controlled WDM Optical Networks

    DEFF Research Database (Denmark)

    Ruepp, Sarah Renée; Buron, Jakob Due; Andriolli, N.

    2006-01-01

    We present two label preference schemes to reduce wavelength-conversion during restoration path setup in GMPLS controlled optical networks exploiting span restoration. The amount of required wavelength-conversions can be reduced up to 34 percent.......We present two label preference schemes to reduce wavelength-conversion during restoration path setup in GMPLS controlled optical networks exploiting span restoration. The amount of required wavelength-conversions can be reduced up to 34 percent....

  11. 200 Gbit/s 16QAM WDM transmission over a fully integrated cladding pumped 7-Core MCF System

    DEFF Research Database (Denmark)

    Castro, C.; Jain, S.; Jung, Y.

    2017-01-01

    A complete, realistic integrated system is investigated, consisting of directly spliced 7-core MCF, cladding-pumped 7-core amplifiers, isolators, and couplers. The system is demonstrated in a 16QAM C-band WDM scenario over 720 km....

  12. An enhanced DWBA algorithm in hybrid WDM/TDM EPON networks with heterogeneous propagation delays

    Science.gov (United States)

    Li, Chengjun; Guo, Wei; Jin, Yaohui; Sun, Weiqiang; Hu, Weisheng

    2011-12-01

    An enhanced dynamic wavelength and bandwidth allocation (DWBA) algorithm in hybrid WDM/TDM PON is proposed and experimentally demonstrated. In addition to the fairness of bandwidth allocation, this algorithm also considers the varying propagation delays between ONUs and OLT. The simulation based on MATLAB indicates that the improved algorithm has a better performance compared with some other algorithms.

  13. Analisis Redaman Pada Jaringan FTTH (Fiber To The Home Dengan Teknologi GPON (Gigabit Passive Optical Network Di PT MNC Kabel Mediacom

    Directory of Open Access Journals (Sweden)

    Minal Abral

    2017-06-01

    Full Text Available iber optic merupakan teknologi yang menyediakan kapasitas bandwith besar dengan kecepatan tinggi, tidak dipengaruhi interferensi gelombang elektromagnetik, Sejalan dengan berkembang secara pesatnya penggunaan serat optik sebagai medium penghantar, ada kemungkinan terjadinya hilang informasi akibat kerugian dari pemanjangan kabel fiber optic ataupun penyambungan kabel fiber optic, kerugian tersebut yaitu redaman. Dalam penerapan metode link power budget, perhitungan redaman dilakukan dengan data yang diperoleh berdasarkan standarisasi dan pengukuran menggunakan perangkat optical power meter. Hasil analisa perhitungan, sistem mampu dalam keadaan normal menggunakan layanan gigabit passive optical network dapat diterima oleh perangkat akhir jaringan fiber to the home pada pelanggan perusahaan PT MNC Kabel Mediacom yang berada di Kelurahan Jati RW 02 Pulo Gadung Jakarta Timur.

  14. Sub-symbol-rate sampling for PDM-QPSK signals in super-Nyquist WDM systems using quadrature poly-binary shaping.

    Science.gov (United States)

    Xu, Cheng; Gao, Guanjun; Chen, Sai; Zhang, Jie; Luo, Ming; Hu, Rong; Yang, Qi

    2016-11-14

    We compare the performance of sub-symbol-rate sampling for polarization-division-multiplexed quadrature-phase-shift-keying (PDM-QPSK) signals in super-Nyquist wavelength division multiplexing (WDM) system by using quadrature duo-binary (QDB) and quadrature four-level poly-binary (4PB) shaping together with maximum likelihood sequence estimation (MLSE). PDM-16QAM is adopted in the simulation to be compared with PDM-QPSK. The numerical simulations show that, for a software defined communication system, the level number of quadrature poly-binary modulation should be adjusted to achieve the optimal performance according to channel spacing, required OSNR and sampling rate restrictions of optics. In the experiment, we demonstrate 3-channel 12-Gbaud PDM-QPSK transmission with 10-GHz channel spacing and only 8.4-GSa/s ADC sampling rate at lowest. By using QDB or 4PB shaping with 3tap-MLSE, the sampling rate can be reduced to the signal baud rate (1 samples per symbol) without penalty.

  15. A slotted access control protocol for metropolitan WDM ring networks

    Science.gov (United States)

    Baziana, P. A.; Pountourakis, I. E.

    2009-03-01

    In this study we focus on the serious scalability problems that many access protocols for WDM ring networks introduce due to the use of a dedicated wavelength per access node for either transmission or reception. We propose an efficient slotted MAC protocol suitable for WDM ring metropolitan area networks. The proposed network architecture employs a separate wavelength for control information exchange prior to the data packet transmission. Each access node is equipped with a pair of tunable transceivers for data communication and a pair of fixed tuned transceivers for control information exchange. Also, each access node includes a set of fixed delay lines for synchronization reasons; to keep the data packets, while the control information is processed. An efficient access algorithm is applied to avoid both the data wavelengths and the receiver collisions. In our protocol, each access node is capable of transmitting and receiving over any of the data wavelengths, facing the scalability issues. Two different slot reuse schemes are assumed: the source and the destination stripping schemes. For both schemes, performance measures evaluation is provided via an analytic model. The analytical results are validated by a discrete event simulation model that uses Poisson traffic sources. Simulation results show that the proposed protocol manages efficient bandwidth utilization, especially under high load. Also, comparative simulation results prove that our protocol achieves significant performance improvement as compared with other WDMA protocols which restrict transmission over a dedicated data wavelength. Finally, performance measures evaluation is explored for diverse numbers of buffer size, access nodes and data wavelengths.

  16. Coherent detection passive optical access network enabling converged delivery of broadcast and dedicated broadband services

    DEFF Research Database (Denmark)

    Osadchiy, Alexey Vladimirovich; Prince, Kamau; Guerrero Gonzalez, Neil

    2011-01-01

    We propose a passive optical network architecture based on coherent detection for converged delivery of broadcast services from a dedicated remote broadcast server and user-specific services from a local central office. We experimentally demonstrate this architecture with mixed traffic types....... The broadcast channels were transmitted over 78 km of single mode fiber to a central office where they were multiplexed with the unicast channels for further fiber transmission over 34-km to reach the access network. Successful detection of all channels is demonstrated....

  17. Oxidation of hydrogen-passivated silicon surfaces by scanning near-field optical lithography using uncoated and aluminum-coated fiber probes

    DEFF Research Database (Denmark)

    Madsen, Steen; Bozhevolnyi, Sergey I.; Birkelund, Karen

    1997-01-01

    Optically induced oxidation of hydrogen-passivated silicon surfaces using a scanning near-field optical microscope was achieved with both uncoated and aluminum-coated fiber probes. Line scans on amorphous silicon using uncoated fiber probes display a three-peak profile after etching in potassium...... hydroxide. Numerical simulations of the electromagnetic field around the probe-sample interaction region are used to explain the experimental observations. With an aluminum-coated fiber probe, lines of 35 nm in width were transferred into the amorphous silicon layer. (C) 1997 American Institute of Physics....

  18. Monitoring burst (M-burst) — A novel framework of failure localization in all-optical mesh networks

    KAUST Repository

    Ali, Mohammed L.; Ho, Pin-Han; Wu, Bin; Tapolcai, Janos; Shihada, Basem

    2011-01-01

    Achieving instantaneous and precise failure localization in all-optical wavelength division multiplexing (WDM) networks has been an attractive feature of network fault management systems, and is particularly important when failure-dependent protection is employed. The paper introduces a novel framework of real-time failure localization in all-optical WDM mesh networks, called monitoring-burst (m-burst), which aims to initiate a graceful compromise between consumed monitoring resources and monitoring delay. Different from any previously reported solution, the proposed m-burst framework has a single monitoring node (MN) which launches optical bursts along a set of pre-defined close-loop routes, called monitoring cycles (m-cycles), to probe the links along the m-cycles. Bursts along different m-cycles are kept non-overlapping through any link of the network. By identifying the lost bursts due to single link failure events only, the MN can unambiguously localize the failed link in at least 3-connected networks. We will justify the feasibility and applicability of the proposed m-burst framework in the scenario of interest. To avoid possible collision among optical bursts launched by the MN, we define the problem of collision-free scheduling and formulate it into an integer linear program (ILP) in order to minimize the monitoring delay. Numerical results demonstrate the effectiveness of the proposed framework and the proposed solution.

  19. Monitoring burst (M-burst) — A novel framework of failure localization in all-optical mesh networks

    KAUST Repository

    Ali, Mohammed L.

    2011-10-10

    Achieving instantaneous and precise failure localization in all-optical wavelength division multiplexing (WDM) networks has been an attractive feature of network fault management systems, and is particularly important when failure-dependent protection is employed. The paper introduces a novel framework of real-time failure localization in all-optical WDM mesh networks, called monitoring-burst (m-burst), which aims to initiate a graceful compromise between consumed monitoring resources and monitoring delay. Different from any previously reported solution, the proposed m-burst framework has a single monitoring node (MN) which launches optical bursts along a set of pre-defined close-loop routes, called monitoring cycles (m-cycles), to probe the links along the m-cycles. Bursts along different m-cycles are kept non-overlapping through any link of the network. By identifying the lost bursts due to single link failure events only, the MN can unambiguously localize the failed link in at least 3-connected networks. We will justify the feasibility and applicability of the proposed m-burst framework in the scenario of interest. To avoid possible collision among optical bursts launched by the MN, we define the problem of collision-free scheduling and formulate it into an integer linear program (ILP) in order to minimize the monitoring delay. Numerical results demonstrate the effectiveness of the proposed framework and the proposed solution.

  20. Integrated 1 GHz 4-channel InP phasar based WDM-receiver with Si bipolar frontend array

    NARCIS (Netherlands)

    Steenbergen, C.A.M.; Vreede, de L.C.N.; Dam, van C.; Scholtes, T.L.M.; Smit, M.K.; Tauritz, J.L.; Pedersen, J.W.; Moerman, I.; Verbeek, B.H.; Baets, R.G.F.

    1995-01-01

    An integrated 4-channel WDM-receiver frontend with 1 GHz channel bandwidth is described. The receiver consists of an integrated wavelength demultiplexer with photodiodes in InP technology connected through bond wires with a 4 channel Si bipolar transimpedance amplifier mounted on an epoxy board. The

  1. Design of device driver program for PCI data acquisition adapters based on WDM of windows 2000

    International Nuclear Information System (INIS)

    Yuan Weihua; Qiao Weimin; Jing Lan; Zhu Haijun

    2003-01-01

    The paper describes the design of device driver program for PCI data acquisition adapters based on WDM of Windows 2000. Give an actual example of PCI6208. Now, several data acquisition adapters based in this method are using in national big science engineer HIRFL-CSR. (authors)

  2. Comprehensive study of electro-optic and passive Q-switching in solid state lasers for altimeter applications

    Science.gov (United States)

    Bhardwaj, Atul; Agrawal, Lalita; Pal, Suranjan; Kumar, Anil

    2006-12-01

    Laser Science and Technology Center (LASTEC), Delhi, is developing a space qualified diode pumped Nd: YAG laser transmitter capable of generating 10 ns pulses of 30 mJ energy @ 10 pps. This paper presents the results of experiments for comparative studies between electro-optic and passively Q-switched Nd: YAG laser in a crossed porro prism based laser resonator. Experimental studies have been performed by developing an economical bench model of flash lamp pumped Nd: YAG laser (rod dimension, \

  3. 10Gbps monolithic silicon FTTH transceiver for PON

    Science.gov (United States)

    Zhang, J.; Liow, T. Y.; Lo, G. Q.; Kwong, D. L.

    2010-05-01

    We propose a new passive optical network (PON) configuration and a novel silicon photonic transceiver architecture for optical network unit (ONU), eliminating the need for an internal laser source in ONU. We adopt dual fiber network configuration. The internal light source in each of the ONUs is eliminated. Instead, an extra seed laser source in the optical line termination (OLT) operates in continuous wave mode to serve the ONUs in the PON as a shared and centralized laser source. λ1 from OLT Tx and λ2 from the seed laser are combined by using a WDM combiner and connected to serve the multiple ONUs through the downstream fibers. The ONUs receive the data in λ1. Meanwhile, the ONUs encode and transmit data in λ2, which are sent back to OLT. The monolithic ONU transceiver contains a wavelength-division-multiplexing (WDM) filter component, a silicon modulator and a Ge photo-detector. The WDM in ONU selectively guides λ1 to the Ge-PD where the data in λ1 are detected and converted to electrical signals, and λ2 to the transmitter where the light is modulated by upstream data. The modulated optical signals in λ2 from ONUs are connected back to OLT through upstream fibers. The monolithic ONU transceiver chip size is only 2mm by 4mm. The crosstalk between the Tx and Rx is measured to be less than -20dB. The transceiver chip is integrated on a SFP+ transceiver board. Both Tx and Rx demonstrated data rate capabilities of up to 10Gbps. By implementing this scheme, the ONU transceiver size can be significantly reduced and the assembly processes will be greatly simplified. The results demonstrate the feasibility of mass manufacturing monolithic silicon ONU transceivers via low cost

  4. Wavelength converter technology

    DEFF Research Database (Denmark)

    Kloch, Allan; Hansen, Peter Bukhave; Poulsen, Henrik Nørskov

    1999-01-01

    Wavelength conversion is important since it ensures full flexibility of the WDM network layer. Progress in optical wavelength converter technology is reviewed with emphasis on all-optical wavelength converter types based on semiconductor optical amplifiers.......Wavelength conversion is important since it ensures full flexibility of the WDM network layer. Progress in optical wavelength converter technology is reviewed with emphasis on all-optical wavelength converter types based on semiconductor optical amplifiers....

  5. Comparison of Small-Scale Actively and Passively Q-Switched Eye-Safe Intracavity Optical Parametric Oscillators at 1.57 μm

    International Nuclear Information System (INIS)

    Miao Jie-Guang; Pan Yu-Zhai; Qu Shi-Liang

    2012-01-01

    The first experimental comparison between the actively and passively Q-switched intracavity optical parametric oscillators (IOPOs) at 1.57 μm driven by a small-scale diode-pumped Nd:YVO 4 laser are thoroughly presented. It is found that the performances of the two types of IOPOs are complementary. The actively Q-switched IOPO features a shorter pulse duration, a higher peak power, and a superior power and pulse stability. However, in terms of compactness, operation threshold and conversion efficiency, passively Q-switched IOPOs are more attractive. It is further indicated that the passively Q-switched IOPO at 1.57μm is a promising and cost-effective eye-safe laser source, especially at the low and moderate output levels. In addition, instructional improvement measures for the two types of IOPOs are also summarized. (fundamental areas of phenomenology(including applications))

  6. Deploying Monitoring Trails for Fault Localization in All- Optical Networks and Radio-over-Fiber Passive Optical Networks

    Science.gov (United States)

    Maamoun, Khaled Mohamed

    Fault localization is the process of realizing the true source of a failure from a set of collected failure notifications. Isolating failure recovery within the network optical domain is necessary to resolve alarm storm problems. The introduction of the monitoring trail (m-trail) has been proven to deliver better performance by employing monitoring resources in a form of optical trails - a monitoring framework that generalizes all the previously reported counterparts. In this dissertation, the m-trail design is explored and a focus is given to the analysis on using m-trails with established lightpaths to achieve fault localization. This process saves network resources by reducing the number of the m-trails required for fault localization and therefore the number of wavelengths used in the network. A novel approach based on Geographic Midpoint Technique, an adapted version of the Chinese Postman's Problem (CPP) solution and an adapted version of the Traveling Salesman's Problem (TSP) solution algorithms is introduced. The desirable features of network architectures and the enabling of innovative technologies for delivering future millimeter-waveband (mm-WB) Radio-over-Fiber (RoF) systems for wireless services integrated in a Dense Wavelength Division Multiplexing (DWDM) is proposed in this dissertation. For the conceptual illustration, a DWDM RoF system with channel spacing of 12.5 GHz is considered. The mm-WB Radio Frequency (RF) signal is obtained at each Optical Network Unit (ONU) by simultaneously using optical heterodyning photo detection between two optical carriers. The generated RF modulated signal has a frequency of 12.5 GHz. This RoF system is easy, cost-effective, resistant to laser phase noise and also reduces maintenance needs, in principle. A revision of related RoF network proposals and experiments is also included. A number of models for Passive Optical Networks (PON)/ RoF-PON that combine both innovative and existing ideas along with a number of

  7. Surface-passivation-induced optical changes in Ge quantum dots

    International Nuclear Information System (INIS)

    Reboredo, F. A.; Zunger, Alex

    2001-01-01

    One of the most interesting properties of quantum dots is the possibility to tune the band gap as a function of their size. Here we explore the possibility of changing the lifetime of the lowest-energy excited state by altering the surface passivation. We show that a moderately electronegative passivation potential can induce long-lived excitons without appreciable changes to the band gap. In addition, for such passivation the symmetry of the valence-band maximum is γ 8# sub v# (t 1 derived) instead of the more usual γ 8v (t 2 derived). This reverses the effect of the exchange interaction on the bright-dark exciton splitting

  8. Performance analysis of a threshold-based parallel multiple beam selection scheme for WDM-based systems for Gamma-Gamma distributions

    KAUST Repository

    Nam, Sung Sik

    2017-03-02

    In this paper, we statistically analyze the performance of a threshold-based parallel multiple beam selection scheme (TPMBS) for Free-space optical (FSO) based system with wavelength division multiplexing (WDM) in cases where a pointing error has occurred for practical consideration over independent identically distributed (i.i.d.) Gamma-Gamma fading conditions. Specifically, we statistically analyze the characteristics in operation under conventional heterodyne detection (HD) scheme for both adaptive modulation (AM) case in addition to non-AM case (i.e., coherentnon-coherent binary modulation). Then, based on the statistically derived results, we evaluate the outage probability (CDF) of a selected beam, the average spectral efficiency (ASE), the average number of selected beams (ANSB), and the average bit error rate (BER). Some selected results shows that we can obtain the higher spectral efficiency and simultaneously reduce the potential increasing of the complexity of implementation caused by applying the selection based beam selection scheme without a considerable performance loss.

  9. Athermalization of resonant optical devices via thermo-mechanical feedback

    Science.gov (United States)

    Rakich, Peter; Nielson, Gregory N.; Lentine, Anthony L.

    2016-01-19

    A passively athermal photonic system including a photonic circuit having a substrate and an optical cavity defined on the substrate, and passive temperature-responsive provisions for inducing strain in the optical cavity of the photonic circuit to compensate for a thermo-optic effect resulting from a temperature change in the optical cavity of the photonic circuit. Also disclosed is a method of passively compensating for a temperature dependent thermo-optic effect resulting on an optical cavity of a photonic circuit including the step of passively inducing strain in the optical cavity as a function of a temperature change of the optical cavity thereby producing an elasto-optic effect in the optical cavity to compensate for the thermo-optic effect resulting on an optical cavity due to the temperature change.

  10. Self-Seeded RSOA-Fiber Cavity Lasers vs. ASE Spectrum-Sliced or Externally Seeded Transmitters—A Comparative Study

    Directory of Open Access Journals (Sweden)

    Simon A. Gebrewold

    2015-12-01

    Full Text Available Reflective semiconductor optical amplifier fiber cavity lasers (RSOA-FCLs are appealing, colorless, self-seeded, self-tuning and cost-efficient upstream transmitters. They are of interest for wavelength division multiplexed passive optical networks (WDM-PONs based links. In this paper, we compare RSOA-FCLs with alternative colorless sources, namely the amplified spontaneous emission (ASE spectrum-sliced and the externally seeded RSOAs. We compare the differences in output power, signal-to-noise ratio (SNR, relative intensity noise (RIN, frequency response and transmission characteristics of these three sources. It is shown that an RSOA-FCL offers a higher output power over an ASE spectrum-sliced source with SNR, RIN and frequency response characteristics halfway between an ASE spectrum-sliced and a more expensive externally seeded RSOA. The results show that the RSOA-FCL is a cost-efficient WDM-PON upstream source, borrowing simplicity and cost-efficiency from ASE spectrum slicing with characteristics that are, in many instances, good enough to perform short-haul transmission. To substantiate our statement and to quantitatively compare the potential of the three schemes, we perform data transmission experiments at 5 and 10 Gbit/s.

  11. WDM production with intense relativistic electrons

    Science.gov (United States)

    Coleman, Josh; Andrews, Heather; Klasky, Mark; Colgan, James; Burris-Mog, Trevor; Creveling, Dan; Miller, Craig; Welch, Dale; Berninger, Mike

    2016-10-01

    The production of warm dense matter (WDM) through collisional heating with intense relativistic electrons is underway. A 100-ns-long monochromatic bunch of electrons with energies of 19.1-19.8 MeV and currents of 0.2-1.7 kA is used to heat 100- μm-thick foils with Z measuring the equation of state with particle beams and benchmark numerical models. Measurements indicate the formation of a warm dense plasma near the end of the pulse, which is on the order of the beam size. These plasmas expand 5 mm in the first microsecond and slow down to 1018 cm-3. At these densities our plasma is collisionally dominated making it possible to spectrally model the density and temperature in LTE. Preliminary density gradient measurements will also be presented indicating the spatial extent of the solid density cutoff. This work was supported by the National Nuclear Se- curity Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396.

  12. Performance of an optical equalizer in a 10 G wavelength converting optical access network.

    Science.gov (United States)

    Mendinueta, José Manuel D; Cao, Bowen; Thomsen, Benn C; Mitchell, John E

    2011-12-12

    A centralized optical processing unit (COPU) that functions both as a wavelength converter (WC) and optical burst equaliser in a 10 Gb/s wavelength-converting optical access network is proposed and experimentally characterized. This COPU is designed to consolidate drifting wavelengths generated with an uncooled laser in the upstream direction into a stable wavelength channel for WDM backhaul transmission and to equalize the optical loud/soft burst power in order to relax the burst-mode receiver dynamic range requirement. The COPU consists of an optical power equaliser composed of two cascaded SOAs followed by a WC. Using an optical packet generator and a DC-coupled PIN-based digital burst-mode receiver, the COPU is characterized in terms of payload-BER for back-to-back and backhaul transmission distances of 22, 40, and 62 km. We show that there is a compromise between the receiver sensitivity and overload points that can be optimized tuning the WC operating point for a particular backhaul fiber transmission distance. Using the optimized settings, sensitivities of -30.94, -30.17, and -27.26 dBm with overloads of -9.3, -5, and >-5 dBm were demonstrated for backhaul transmission distances of 22, 40 and 62 km, respectively. © 2011 Optical Society of America

  13. Using Metaheuristic Algorithms for Solving a Hub Location Problem: Application in Passive Optical Network Planning

    Directory of Open Access Journals (Sweden)

    Masoud Rabbani

    2017-02-01

    Full Text Available Nowadays, fiber-optic due to having greater bandwidth and being more efficient compared with other similar technologies, are counted as one the most important tools for data transfer. In this article, an integrated mathematical model for a three-level fiber-optic distribution network with consideration of simultaneous backbone and local access networks is presented in which the backbone network is a ring and the access networks has a star-star topology. The aim of the model is to determine the location of the central offices and splitters, how connections are made between central offices, and allocation of each demand node to a splitter or central office in a way that the wiring cost of fiber optical and concentrator installation are minimized. Moreover, each user’s desired bandwidth should be provided efficiently. Then, the proposed model is validated by GAMS software in small-sized problems, afterwards the model is solved by two meta-heuristic methods including differential evolution (DE and genetic algorithm (GA in large-scaled problems and the results of two algorithms are compared with respect to computational time and objective function obtained value. Finally, a sensitivity analysis is provided. Keyword: Fiber-optic, telecommunication network, hub-location, passive splitter, three-level network.

  14. A Self-Referenced Optical Intensity Sensor Network Using POFBGs for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Alberto Tapetado Moraleda

    2014-12-01

    Full Text Available This work bridges the gap between the remote interrogation of multiple optical sensors and the advantages of using inherently biocompatible low-cost polymer optical fiber (POF-based photonic sensing. A novel hybrid sensor network combining both silica fiber Bragg gratings (FBG and polymer FBGs (POFBG is analyzed. The topology is compatible with WDM networks so multiple remote sensors can be addressed providing high scalability. A central monitoring unit with virtual data processing is implemented, which could be remotely located up to units of km away. The feasibility of the proposed solution for potential medical environments and biomedical applications is shown.

  15. A self-referenced optical intensity sensor network using POFBGs for biomedical applications.

    Science.gov (United States)

    Tapetado Moraleda, Alberto; Sánchez Montero, David; Webb, David J; Vázquez García, Carmen

    2014-12-12

    This work bridges the gap between the remote interrogation of multiple optical sensors and the advantages of using inherently biocompatible low-cost polymer optical fiber (POF)-based photonic sensing. A novel hybrid sensor network combining both silica fiber Bragg gratings (FBG) and polymer FBGs (POFBG) is analyzed. The topology is compatible with WDM networks so multiple remote sensors can be addressed providing high scalability. A central monitoring unit with virtual data processing is implemented, which could be remotely located up to units of km away. The feasibility of the proposed solution for potential medical environments and biomedical applications is shown.

  16. Health monitoring of unmanned aerial vehicle based on optical fiber sensor array

    Science.gov (United States)

    Luo, Yuxiang; Shen, Jingshi; Shao, Fei; Guo, Chunhui; Yang, Ning; Zhang, Jiande

    2017-10-01

    The unmanned aerial vehicle (UAV) in flight needs to face the complicated environment, especially to withstand harsh weather conditions, such as the temperature and pressure. Compared with conventional sensors, fiber Bragg grating (FBG) sensor has the advantages of small size, light weight, high reliability, high precision, anti-electromagnetic interference, long lift-span, moistureproof and good resistance to causticity. It's easy to be embedded in composite structural components of UAVs. In the paper, over 1000 FBG sensors distribute regularly on a wide range of UAVs body, combining wavelength division multiplexing (WDM), time division multiplexing (TDM) and multichannel parallel architecture. WDM has the advantage of high spatial resolution. TDM has the advantage of large capacity and wide range. It is worthful to constitute a sensor network by different technologies. For the signal demodulation of FBG sensor array, WDM works by means of wavelength scanning light sources and F-P etalon. TDM adopts the technology of optical time-domain reflectometry. In order to demodulate efficiently, the most proper sensor multiplex number with some reflectivity is given by the curves fitting. Due to the regular array arrangement of FBG sensors on the UAVs, we can acquire the health state of UAVs in the form of 3D visualization. It is helpful to master the information of health status rapidly and give a real-time health evaluation.

  17. Energy efficiency benefits of introducing optical switching in Data Center Networks

    DEFF Research Database (Denmark)

    Pilimon, Artur; Zeimpeki, Alexandra; Fagertun, Anna Manolova

    2017-01-01

    layers of the network topology. The analysis is based on network-level simulations using a transport network planning tool applied to small-scale setups of the considered DCNs. The obtained results show that introducing all-optical switching within the DCN leads to reduced power consumption in all......In this paper we analyze the impact of WDM-enhanced optical circuit switching on the power consumption of multiple Data Center Network (DCN) architectures. Traditional three-tier Tree, Fat-Tree and a ring-based structure are evaluated and optical switching is selectively introduced on different...... an optically switched core benefits most the ring-based network. For the latter, the core ring nodes need fewer long-reach transponders at the trunk interfaces and benefit from more efficient traffic grooming in the access part....

  18. Communication Network Architectures Based on Ethernet Passive Optical Network for Offshore Wind Power Farms

    Directory of Open Access Journals (Sweden)

    Mohamed A. Ahmed

    2016-03-01

    Full Text Available Nowadays, with large-scale offshore wind power farms (WPFs becoming a reality, more efforts are needed to maintain a reliable communication network for WPF monitoring. Deployment topologies, redundancy, and network availability are the main items to enhance the communication reliability between wind turbines (WTs and control centers. Traditional communication networks for monitoring and control (i.e., supervisory control and data acquisition (SCADA systems using switched gigabit Ethernet will not be sufficient for the huge amount of data passing through the network. In this paper, the optical power budget, optical path loss, reliability, and network cost of the proposed Ethernet Passive Optical Network (EPON-based communication network for small-size offshore WPFs have been evaluated for five different network architectures. The proposed network model consists of an optical network unit device (ONU deployed on the WT side for collecting data from different internal networks. All ONUs from different WTs are connected to a central optical line terminal (OLT, placed in the control center. There are no active electronic elements used between the ONUs and the OLT, which reduces the costs and complexity of maintenance and deployment. As fiber access networks without any protection are characterized by poor reliability, three different protection schemes have been configured, explained, and discussed. Considering the cost of network components, the total implementation expense of different architectures with, or without, protection have been calculated and compared. The proposed network model can significantly contribute to the communication network architecture for next generation WPFs.

  19. Parametric amplification and wavelength conversion of a 2.048-Tbit/s WDM PDM 16-QAM signal

    DEFF Research Database (Denmark)

    Hu, Hao; Jopson, R. M.; Gnauck, A. H.

    2014-01-01

    We demonstrate polarisation-insensitive parametric amplification in highly nonlinear fibre of a 2.048-Tbit/s dense WDM PDM 16-QAM signal with ∼10 dB on-off gain and simultaneous wavelength conversion and phase conjugation, with mean Q2 penalties of only 0.6 dB and 0.4 dB....

  20. Wireless and wireline service convergence in next generation optical access networks - the FP7 WISCON project

    DEFF Research Database (Denmark)

    Vegas Olmos, Juan José; Pang, Xiaodan; Lebedev, Alexander

    2014-01-01

    The next generation of information technology demands both high capacity and mobility for applications such as high speed wireless access capable of supporting broadband services. The transport of wireless and wireline signals is converging into a common telecommunication infrastructure....... In this paper, we will present the Marie Curie Framework Program 7 project “Wireless and wireline service convergence in next generation optical access networks” (WISCON), which focuses on the conception and study of novel architectures for wavelength-division-multiplexing (WDM) optical multi-modulation format...

  1. Performance analysis of bi-directional broadband passive optical network using erbium-doped fiber amplifier

    Science.gov (United States)

    Almalaq, Yasser; Matin, Mohammad A.

    2014-09-01

    The broadband passive optical network (BPON) has the ability to support high-speed data, voice, and video services to home and small businesses customers. In this work, the performance of bi-directional BPON is analyzed for both down and up streams traffic cases by the help of erbium doped fiber amplifier (EDFA). The importance of BPON is reduced cost. Because PBON uses a splitter the cost of the maintenance between the providers and the customers side is suitable. In the proposed research, BPON has been tested by the use of bit error rate (BER) analyzer. BER analyzer realizes maximum Q factor, minimum bit error rate, and eye height.

  2. Electrochemical and optical characterisation of passive films on stainless steels

    International Nuclear Information System (INIS)

    Wijesighe, T L Sudesh L; Blackwood, D J

    2006-01-01

    The formation and breakdown of the passive film are mainly controlled by ionic and electronic transport processes; processes that are in turn controlled by the electronic properties of the film. Consequently a comprehensive understanding of mechanisms behind passivity and localised corrosion require a detailed perception of the electronic properties of the passive films together with compositional and structural information. As a step towards this goal the passive film on austenitic stainless steel, AISI 316L, formed in borate solution was characterised by in situ Raman spectroscopy and photocurrent spectroscopy coupled with electrochemical measurements. The composition, structure and semiconductivity of the passive films depended on the potential; Fe rich n-type oxide and a Cr rich p-type oxide dominated at more positive potentials and more negative potentials respectively whilst n-type dual layered film formed at intermediate potentials. Analyses of the bandgap determined for these oxides suggested their structures to be Fe 2 O 3 and a Fe-Cr spinel. This hypothesis was supported by the results of in situ Raman spectroscopy

  3. Laser based analysis using a passively Q-switched laser employing analysis electronics and a means for detecting atomic optical emission of the laser media

    Science.gov (United States)

    Woodruff, Steven D.; Mcintyre, Dustin L.

    2016-03-29

    A device for Laser based Analysis using a Passively Q-Switched Laser comprising an optical pumping source optically connected to a laser media. The laser media and a Q-switch are positioned between and optically connected to a high reflectivity mirror (HR) and an output coupler (OC) along an optical axis. The output coupler (OC) is optically connected to the output lens along the optical axis. A means for detecting atomic optical emission comprises a filter and a light detector. The optical filter is optically connected to the laser media and the optical detector. A control system is connected to the optical detector and the analysis electronics. The analysis electronics are optically connected to the output lens. The detection of the large scale laser output production triggers the control system to initiate the precise timing and data collection from the detector and analysis.

  4. Effects of optical layer impairments on 2.5 Gb/s optical CDMA transmission.

    Science.gov (United States)

    Feng, H; Mendez, A; Heritage, J; Lennon, W

    2000-07-03

    We conducted a computer simulation study to assess the effects of optical layer impairments on optical CDMA (O-CDMA) transmission of 8 asynchronous users at 2.5 Gb/s each user over a 214-km link. It was found that with group velocity dispersion compensation, two other residual effects, namely, the nonzero chromatic dispersion slope of the single mode fiber (which causes skew) and the non-uniform EDFA gain (which causes interference power level to exceed signal power level of some codes) degrade the signal to multi-access interference (MAI) ratio. In contrast, four wave mixing and modulation due to the Kerr and Raman contributions to the fiber nonlinear refractive index are less important. Current wavelength-division multiplexing (WDM) technologies, including dispersion management, EDFA gain flattening, and 3 rd order dispersion compensation, are sufficient to overcome the impairments to the O-CDMA transmission system that we considered.

  5. SPM and XPM crosstalk in WDM systems with DRA: Channel spacing and attenuation effects

    Science.gov (United States)

    Morsy, Emadeldeen; Fayed, Heba A.; Abd El Aziz, Ahmed; Aly, Moustafa H.

    2018-06-01

    This paper presents a theoretical analysis of a closed formula for nonlinear crosstalk due to self-phase modulation (SPM) and cross phase modulation (XPM) in wavelength division multiplexing (WDM) systems. The influence of channel spacing and attenuation on the system behavior is modeled and investigated. The system under consideration is a standard single-mode fiber (SSMF) with a single-span distributed Raman amplifier (DRA) and is operating at 100 Gbps.

  6. MEMS-based wavelength and orbital angular momentum demultiplexer for on-chip applications

    DEFF Research Database (Denmark)

    Lyubopytov, Vladimir; Porfirev, Alexey P.; Gurbatov, Stanislav O.

    2017-01-01

    Summary form only given. We demonstrate a new tunable MEMS-based WDM&OAM Fabry-Pérot filter for simultaneous wavelength (WDM) and Orbital Angular Momentum (OAM) (de)multiplexing. The WDM&OAM filter is suitable for dense on-chip integration and dedicated for the next generation of optical...

  7. Blocking Reduction of Span Restoration Requests in GMPLS Controlled WDM Optical Networks

    DEFF Research Database (Denmark)

    Buron, Jakob Due; Ruepp, Sarah Renée; Andriolli, N.

    2006-01-01

    The proposed label preference scheme reduces blocking of span restoration requests in GMPLS optical networks with limited wavelength conversion. By minimizing resource contention and conversion usage, it increases recovery percentage and reduces control plane load.......The proposed label preference scheme reduces blocking of span restoration requests in GMPLS optical networks with limited wavelength conversion. By minimizing resource contention and conversion usage, it increases recovery percentage and reduces control plane load....

  8. High Dimensional Modulation and MIMO Techniques for Access Networks

    DEFF Research Database (Denmark)

    Binti Othman, Maisara

    Exploration of advanced modulation formats and multiplexing techniques for next generation optical access networks are of interest as promising solutions for delivering multiple services to end-users. This thesis addresses this from two different angles: high dimensionality carrierless...... the capacity per wavelength of the femto-cell network. Bit rate up to 1.59 Gbps with fiber-wireless transmission over 1 m air distance is demonstrated. The results presented in this thesis demonstrate the feasibility of high dimensionality CAP in increasing the number of dimensions and their potentially......) optical access network. 2 X 2 MIMO RoF employing orthogonal frequency division multiplexing (OFDM) with 5.6 GHz RoF signaling over all-vertical cavity surface emitting lasers (VCSEL) WDM passive optical networks (PONs). We have employed polarization division multiplexing (PDM) to further increase...

  9. Validation of Cloud Optical Parameters from Passive Remote Sensing in the Arctic by using the Aircraft Measurements

    Science.gov (United States)

    Chen, H.; Schmidt, S.; Coddington, O.; Wind, G.; Bucholtz, A.; Segal-Rosenhaimer, M.; LeBlanc, S. E.

    2017-12-01

    Cloud Optical Parameters (COPs: e.g., cloud optical thickness and cloud effective radius) and surface albedo are the most important inputs for determining the Cloud Radiative Effect (CRE) at the surface. In the Arctic, the COPs derived from passive remote sensing such as from the Moderate Resolution Imaging Spectroradiometer (MODIS) are difficult to obtain with adequate accuracy owing mainly to insufficient knowledge about the snow/ice surface, but also because of the low solar zenith angle. This study aims to validate COPs derived from passive remote sensing in the Arctic by using aircraft measurements collected during two field campaigns based in Fairbanks, Alaska. During both experiments, ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) and ARISE (Arctic Radiation-IceBridge Sea and Ice Experiment), the Solar Spectral Flux Radiometer (SSFR) measured upwelling and downwelling shortwave spectral irradiances, which can be used to derive surface and cloud albedo, as well as the irradiance transmitted by clouds. We assess the variability of the Arctic sea ice/snow surfaces albedo through these aircraft measurements and incorporate this variability into cloud retrievals for SSFR. We then compare COPs as derived from SSFR and MODIS for all suitable aircraft underpasses of the satellites. Finally, the sensitivities of the COPs to surface albedo and solar zenith angle are investigated.

  10. Non-invasive assessment of hemispheric language dominance by optical topography during a brief passive listening test: a pilot study.

    Science.gov (United States)

    Bembich, Stefano; Demarini, Sergio; Clarici, Andrea; Massaccesi, Stefano; Grasso, Domenico Loenardo

    2011-12-01

    The Wada test is usually used for pre-surgical assessment of language lateralization. Considering its invasiveness and risk of complications, alternative methods have been proposed but they are not always applicable to non-cooperative patients. In this study we explored the possibility of using optical topography (OT)--a multichannel near-infrared system--for non-invasive assessment of hemispheric language dominance during passive listening. Cortical activity was monitored in a sample of healthy, adult Italian native speakers, all right-handed. We assessed changes in oxy-haemoglobin concentration in temporal, parietal and posterior frontal lobes during a passive listening of bi-syllabic words and vowel-consonant-vowel syllables lasting less then 3 minutes. Activated channels were identified by t tests. Left hemisphere showed significant activity only during the passive listening of bi-syllabic words. Specifically, the superior temporal gyrus, the supramarginal gyrus and the posterior inferior parietal lobe were activated. During passive listening of bi-syllabic words, right handed healthy adults showed a significant activation in areas already known to be involved in speech comprehension. Although more research is needed, OT proved to be a promising alternative to the Wada test for non-invasive assessment of hemispheric language lateralization, even if using a particularly brief trial, which has been designed for future applications with non-cooperative subjects.

  11. Parametric Amplification, Wavelength Conversion, and Phase Conjugation of a 2.048-Tbit/s WDM PDM 16-QAM Signal

    DEFF Research Database (Denmark)

    Hu, Hao; Jopson, R. M.; Gnauck, A. H.

    2015-01-01

    We demonstrate polarization-independent parametric amplification of a 2.048-Tbit/s 8-WDM PDM 16-QAM signal and simultaneous wavelength conversion and phase conjugation in a highly nonlinear fiber. Two high-power continuous-wave pumps with orthogonal polarizations and counter-phase modulation are ...

  12. Passive infrared motion sensing technology

    International Nuclear Information System (INIS)

    Doctor, A.P.

    1994-01-01

    In the last 10 years passive IR based (8--12 microns) motion sensing has matured to become the dominant method of volumetric space protection and surveillance. These systems currently cost less than $25 to produce and yet use traditionally expensive IR optics, filters, sensors and electronic circuitry. This IR application is quite interesting in that the volumes of systems produced and the costs and performance level required prove that there is potential for large scale commercial applications of IR technology. This paper will develop the basis and principles of operation of a staring motion sensor system using a technical approach. A model for the motion of the target is developed and compared to the background. The IR power difference between the target and the background as well as the optical requirements are determined from basic principles and used to determine the performance of the system. Low cost reflective and refractive IR optics and bandpass IR filters are discussed. The pyroelectric IR detector commonly used is fully discussed and characterized. Various schemes for ''false alarms'' have been developed and are also explained. This technology is also used in passive IR based motion sensors for other applications such as lighting control. These applications are also discussed. In addition the paper will discuss new developments in IR surveillance technology such as the use of linear motion sensing arrays. This presentation can be considered a ''primer'' on the art of Passive IR Motion Sensing as applied to Surveillance Technology

  13. Selected area growth integrated wavelength converter based on PD-EAM optical logic gate

    International Nuclear Information System (INIS)

    Niu Bin; Zhou Daibing; Zhang Can; Liang Song; Lu Dan; Zhao Lingjuan; Wang Wei; Qiu Jifang; Wu Jian

    2014-01-01

    A selected area growth wavelength converter based on a PD-EAM optical logic gate for WDM application is presented, integrating an EML transmitter and a SOA-PD receiver. The design, fabrication, and DC characters were analyzed. A 2 Gb/s NRZ signal based on the C-band wavelength converted to 1555 nm with the highest extinction ratio of 7 dB was achieved and wavelength converted eye diagrams with eyes opened were presented. (semiconductor devices)

  14. Energy efficiency in elastic-bandwidth optical networks

    DEFF Research Database (Denmark)

    Vizcaino, Jorge Lopez; Ye, Yabin; Tafur Monroy, Idelfonso

    2011-01-01

    of elastic bandwidth allocation, opens new horizons in the operation of optical networks. In this paper, we compare the network planning problem in an elastic bandwidth CO-OFDM-based network and a fixed-grid WDM network. We highlight the benefits that bandwidth elasticity and the selection of different......The forecasted growth in the Internet traffic has made the operators and industry to be concerned about the power consumption of the networks, and to become interested in alternatives to plan and operate the networks in a more energy efficient manner. The introduction of OFDM, and its property...

  15. Experimental demonstration of a cognitive quality of transmission estimator for optical communication systems

    DEFF Research Database (Denmark)

    Caballero Jambrina, Antonio; Aguado, Juan Carlos; Borkowski, Robert

    2012-01-01

    small and not optimized underlying knowledge base, it achieves between 79% and 98.7% successful classifications based on the error vector magnitude (EVM) parameter, and approximately 100% when the classification is based on the optical signal to noise ratio (OSNR).......The impact of physical layer impairments in optical network design and operation has received significant attention in the last years, thereby requiring estimation techniques to predict the quality of transmission (QoT) of optical connections before being established. In this paper, we report...... on the experimental demonstration of a case-based reasoning (CBR) technique to predict whether optical channels fulfill QoT requirements, thus supporting impairment-aware networking. The validation of the cognitive QoT estimator is performed in a WDM 80 Gb/s PDM-QPSK testbed, and we demonstrate that even with a very...

  16. Quantum-Noise-Limited Sensitivity Enhancement of a Passive Optical Cavity by a Fast-Light Medium

    Science.gov (United States)

    Smith, David D.; Luckay, H. A.; Chang, Hongrok; Myneni, Krishna

    2016-01-01

    We demonstrate for a passive optical cavity containing a dispersive atomic medium, the increase in scale factor near the critical anomalous dispersion is not cancelled by mode broadening or attenuation, resulting in an overall increase in the predicted quantum-noise-limited sensitivity. Enhancements of over two orders of magnitude are measured in the scale factor, which translates to greater than an order-of-magnitude enhancement in the predicted quantum-noise-limited measurement precision, by temperature tuning a low-pressure vapor of non-interacting atoms in a low-finesse cavity close to the critical anomalous dispersion condition. The predicted enhancement in sensitivity is confirmed through Monte-Carlo numerical simulations.

  17. Quantum-Noise-Limited Sensitivity-Enhancement of a Passive Optical Cavity by a Fast-Light Medium

    Science.gov (United States)

    Smith, David D.; Luckay, H. A.; Chang, Hongrok; Myneni, Krishna

    2016-01-01

    We demonstrate for a passive optical cavity containing an intracavity dispersive atomic medium, the increase in scale factor near the critical anomalous dispersion is not cancelled by mode broadening or attenuation, resulting in an overall increase in the predicted quantum-noiselimited sensitivity. Enhancements of over two orders of magnitude are measured in the scale factor, which translates to greater than an order-of-magnitude enhancement in the predicted quantumnoise- limited measurement precision, by temperature tuning a low-pressure vapor of noninteracting atoms in a low-finesse cavity close to the critical anomalous dispersion condition. The predicted enhancement in sensitivity is confirmed through Monte-Carlo numerical simulations.

  18. Wavelength division multiplexing a practical engineering guide

    CERN Document Server

    Grobe, Klaus

    2013-01-01

    In this book, Optical Wavelength Division Multiplexing (WDM) is approached from a strictly practical and application-oriented point of view. Based on the characteristics and constraints of modern fiber-optic components, transport systems and fibers, the text provides relevant rules of thumb and practical hints for technology selection, WDM system and link dimensioning, and also for network-related aspects such as wavelength assignment and resilience mechanisms. Actual 10/40 Gb/s WDM systems are considered, and a preview of the upcoming 100 Gb/s systems and technologies for even higher bit rate

  19. Optical bistability controlling light with light

    CERN Document Server

    Gibbs, Hyatt

    1985-01-01

    Optical Bistability: Controlling Light with Light focuses on optical bistability in nonlinear optical systems. Emphasis is on passive (non-laser) systems that exhibit reversible bistability with input intensity as the hysteresis variable, along with the physics and the potential applications of such systems for nonlinear optical signal processing. This book consists of seven chapters and begins with a historical overview of optical bistability in lasers and passive systems. The next chapter describes steady-state theories of optical bistability, including the Bonifacio-Lugiato model, as we

  20. Tradeoffs in process strategy games with application in the WDM reconfiguration problem

    DEFF Research Database (Denmark)

    Cohen, Nathann; Coudert, David; Mazauric, Dorian

    2011-01-01

    We consider a variant of the graph searching games that models the routing reconfiguration problem in WDM networks. In the digraph processing game, a team of agents aims at processing, or clearing, the vertices of a digraph D. We are interested in two different measures: (1) the total number...... tradeoffs may happen even for a basic class of digraphs. On the other hand, we exhibit classes of graphs for which good tradeoffs can be achieved. We finally detail the relationship between this game and the routing reconfiguration problem. In particular, we prove that any instance of the processing game, i...

  1. Electrical and optical characterization of surface passivation in GaAs nanowires.

    Science.gov (United States)

    Chang, Chia-Chi; Chi, Chun-Yung; Yao, Maoqing; Huang, Ningfeng; Chen, Chun-Chung; Theiss, Jesse; Bushmaker, Adam W; Lalumondiere, Stephen; Yeh, Ting-Wei; Povinelli, Michelle L; Zhou, Chongwu; Dapkus, P Daniel; Cronin, Stephen B

    2012-09-12

    We report a systematic study of carrier dynamics in Al(x)Ga(1-x)As-passivated GaAs nanowires. With passivation, the minority carrier diffusion length (L(diff)) increases from 30 to 180 nm, as measured by electron beam induced current (EBIC) mapping, and the photoluminescence (PL) lifetime increases from sub-60 ps to 1.3 ns. A 48-fold enhancement in the continuous-wave PL intensity is observed on the same individual nanowire with and without the Al(x)Ga(1-x)As passivation layer, indicating a significant reduction in surface recombination. These results indicate that, in passivated nanowires, the minority carrier lifetime is not limited by twin stacking faults. From the PL lifetime and minority carrier diffusion length, we estimate the surface recombination velocity (SRV) to range from 1.7 × 10(3) to 1.1 × 10(4) cm·s(-1), and the minority carrier mobility μ is estimated to lie in the range from 10.3 to 67.5 cm(2) V(-1) s(-1) for the passivated nanowires.

  2. Applications and Optimization of Optical Time Lenses based on Four-Wave Mixing in Highly Nonlinear Fibre

    DEFF Research Database (Denmark)

    Lillieholm, Mads

    2017-01-01

    Optical Fourier transformations enabled by the versatile time lens (quadratic phase modulator), have been demonstrated for numerous optical signal processing applications. Applications include ultrafast optical oscilloscopes, high resolution spectralanalysers, and the processing of ultrahigh......-speed communication signals, to enable e.g. such varied applications as phase regeneration for wavelength-division multiplexing (WDM) signals, conversion between spectrally efficient formats and receivers with reduced complexity for advanced optical multiplexing formats. Four-wave mixing (FWM) is showing promise...... of HNLF for different applications, and to a novel generic method based on only two tunable CW lasers, which allows for accurate prediction of the FWM performance in HNLF with chirped pump pulses.Then, a composite dispersion-flattened HNLF (DF-HNLF) is proposed and assembled to mitigate the effects...

  3. Energy Efficiency in TDMA-Based Next-Generation Passive Optical Access Networks

    KAUST Repository

    Dhaini, Ahmad R.; Ho, Pin-Han; Shen, Gangxiang; Shihada, Basem

    2014-01-01

    Next-generation passive optical network (PON) has been considered in the past few years as a cost-effective broadband access technology. With the ever-increasing power saving concern, energy efficiency has been an important issue in its operations. In this paper, we propose a novel sleep-time sizing and scheduling framework for the implementation of green bandwidth allocation (GBA) in TDMA-PONs. The proposed framework leverages the batch-mode transmission feature of GBA to minimize the overhead due to frequent ONU on-off transitions. The optimal sleeping time sequence of each ONU is determined in every cycle without violating the maximum delay requirement. With multiple ONUs possibly accessing the shared media simultaneously, a collision may occur. To address this problem, we propose a new sleep-time sizing mechanism, namely Sort-And-Shift (SAS), in which the ONUs are sorted according to their expected transmission start times, and their sleep times are shifted to resolve any possible collision while ensuring maximum energy saving. Results show the effectiveness of the proposed framework and highlight the merits of our solutions.

  4. Energy Efficiency in TDMA-Based Next-Generation Passive Optical Access Networks

    KAUST Repository

    Dhaini, Ahmad R.

    2014-06-01

    Next-generation passive optical network (PON) has been considered in the past few years as a cost-effective broadband access technology. With the ever-increasing power saving concern, energy efficiency has been an important issue in its operations. In this paper, we propose a novel sleep-time sizing and scheduling framework for the implementation of green bandwidth allocation (GBA) in TDMA-PONs. The proposed framework leverages the batch-mode transmission feature of GBA to minimize the overhead due to frequent ONU on-off transitions. The optimal sleeping time sequence of each ONU is determined in every cycle without violating the maximum delay requirement. With multiple ONUs possibly accessing the shared media simultaneously, a collision may occur. To address this problem, we propose a new sleep-time sizing mechanism, namely Sort-And-Shift (SAS), in which the ONUs are sorted according to their expected transmission start times, and their sleep times are shifted to resolve any possible collision while ensuring maximum energy saving. Results show the effectiveness of the proposed framework and highlight the merits of our solutions.

  5. Capacity utilization in resilient wavelength-routed optical networks using link restoration

    DEFF Research Database (Denmark)

    Limal, Emmanuel; Danielsen, Søren Lykke; Stubkjær, Kristian

    1998-01-01

    The construction of resilient wavelength-routed optical networks has attracted much interest. Many network topologies, path and wavelength assignment strategies have been proposed. The assessment of network strategies is very complex and comparison is difficult. Here, we take a novel analytical...... approach in estimating the maximum capacity utilization that is possible in wavelength-division multiplexing (WDM) networks that are resilient against single link failures. The results apply to general network topologies and can therefore be used to evaluate the performance of more specific wavelength...

  6. Machine Learning on Images: Combining Passive Microwave and Optical Data to Estimate Snow Water Equivalent

    Science.gov (United States)

    Dozier, J.; Tolle, K.; Bair, N.

    2014-12-01

    We have a problem that may be a specific example of a generic one. The task is to estimate spatiotemporally distributed estimates of snow water equivalent (SWE) in snow-dominated mountain environments, including those that lack on-the-ground measurements. Several independent methods exist, but all are problematic. The remotely sensed date of disappearance of snow from each pixel can be combined with a calculation of melt to reconstruct the accumulated SWE for each day back to the last significant snowfall. Comparison with streamflow measurements in mountain ranges where such data are available shows this method to be accurate, but the big disadvantage is that SWE can only be calculated retroactively after snow disappears, and even then only for areas with little accumulation during the melt season. Passive microwave sensors offer real-time global SWE estimates but suffer from several issues, notably signal loss in wet snow or in forests, saturation in deep snow, subpixel variability in the mountains owing to the large (~25 km) pixel size, and SWE overestimation in the presence of large grains such as depth and surface hoar. Throughout the winter and spring, snow-covered area can be measured at sub-km spatial resolution with optical sensors, with accuracy and timeliness improved by interpolating and smoothing across multiple days. So the question is, how can we establish the relationship between Reconstruction—available only after the snow goes away—and passive microwave and optical data to accurately estimate SWE during the snow season, when the information can help forecast spring runoff? Linear regression provides one answer, but can modern machine learning techniques (used to persuade people to click on web advertisements) adapt to improve forecasts of floods and droughts in areas where more than one billion people depend on snowmelt for their water resources?

  7. Energy Efficiency Analysis for Dynamic Routing in Optical Transport Networks

    DEFF Research Database (Denmark)

    Vizcaíno, Jorge López; Ye, Yabin; Tafur Monroy, Idelfonso

    2012-01-01

    The energy efficiency in telecommunication networks is gaining more relevance as the Internet traffic is growing. The introduction of OFDM and dynamic operation opens new horizons in the operation of optical networks, improving the network flexibility and its efficiency. In this paper, we compare...... the performance in terms of energy efficiency of a flexible-grid OFDM-based solution with a fixed-grid WDM network in a dynamic scenario with time-varying connections. We highlight the benefits that the bandwidth elasticity and the flexibility of selecting different modulation formats can offer compared...

  8. Detection and processing of phase modulated optical signals at 40 Gbit/s and beyond

    DEFF Research Database (Denmark)

    Geng, Yan

    the amplitude regeneration capability based on FWM in a highly nonlinear fiber (HNLF). The first reported experimental demonstration of amplitude equalization of 40 Gbit/s RZ-DPSK signals using a 500 m long HNLF is presented. Using four possible phase levels to carry the information, DQPSK allows generation......This thesis addresses demodulation in direct detection systems and signal processing of high speed phase modulated signals in future all-optical wavelength division multiplexing (WDM) communication systems where differential phase shift keying (DPSK) or differential quadrature phase shift keying...... (DQPSK) are used to transport information. All-optical network functionalities -such as optical labeling, wavelength conversion and signal regeneration- are experimentally investigated. Direct detection of phase modulated signals requires phase-to-intensity modulation conversion in a demodulator...

  9. Convergent optical wired and wireless long-reach access network using high spectral-efficient modulation.

    Science.gov (United States)

    Chow, C W; Lin, Y H

    2012-04-09

    To provide broadband services in a single and low cost perform, the convergent optical wired and wireless access network is promising. Here, we propose and demonstrate a convergent optical wired and wireless long-reach access networks based on orthogonal wavelength division multiplexing (WDM). Both the baseband signal and the radio-over-fiber (ROF) signal are multiplexed and de-multiplexed in optical domain, hence it is simple and the operation speed is not limited by the electronic bottleneck caused by the digital signal processing (DSP). Error-free de-multiplexing and down-conversion can be achieved for all the signals after 60 km (long-reach) fiber transmission. The scalability of the system for higher bit-rate (60 GHz) is also simulated and discussed.

  10. Energy-efficient orthogonal frequency division multiplexing-based passive optical network based on adaptive sleep-mode control and dynamic bandwidth allocation

    Science.gov (United States)

    Zhang, Chongfu; Xiao, Nengwu; Chen, Chen; Yuan, Weicheng; Qiu, Kun

    2016-02-01

    We propose an energy-efficient orthogonal frequency division multiplexing-based passive optical network (OFDM-PON) using adaptive sleep-mode control and dynamic bandwidth allocation. In this scheme, a bidirectional-centralized algorithm named the receiver and transmitter accurate sleep control and dynamic bandwidth allocation (RTASC-DBA), which has an overall bandwidth scheduling policy, is employed to enhance the energy efficiency of the OFDM-PON. The RTASC-DBA algorithm is used in an optical line terminal (OLT) to control the sleep mode of an optical network unit (ONU) sleep and guarantee the quality of service of different services of the OFDM-PON. The obtained results show that, by using the proposed scheme, the average power consumption of the ONU is reduced by ˜40% when the normalized ONU load is less than 80%, compared with the average power consumption without using the proposed scheme.

  11. Evaluation of correlated digital back propagation and extended Kalman filtering for non-linear mitigation in PM-16-QAM WDM systems

    Science.gov (United States)

    Pakala, Lalitha; Schmauss, Bernhard

    2017-01-01

    We investigate the individual and combined performance of correlated digital back propagation (CDBP) and extended Kalman filtering (EKF) in mitigating inter and intra-channel non-linearities in wavelength division multiplexed (WDM) systems. The afore-mentioned algorithms are verified through numerical simulations on 28 Gbaud polarization multiplexed (PM) 16-quadrature amplitude modulation (16-QAM) 9-channel WDM system with 50 GHz spacing. A single channel CDBP with one-step-per-span based on asymmetric split step Fourier method (A-SSFM) with optimized non-linear coefficient has been employed. We also study an amplitude dependent optimization (AO) of the non-linear coefficient for CDBP which shows an improvement of ≍ 0.8 dB compared to the conventional optimized CDBP, in the non-linear regime. Moreover, our proposed carrier phase and amplitude noise estimation (CPANE) algorithm based on EKF outperforms AO-CDBP in both linear and non-linear regimes with an enhanced performance besides significantly reduced complexity. We further investigate the combined performance of AO-CDBP and EKF which results in an enhanced non-linear tolerance at the expense of increased computational cost trading off to the number of required CDBP steps per span. Furthermore, we also analyze the impact of cross phase modulation (XPM) on the combined performance of AO-CDBP and EKF by varying the number of WDM channels. Numerical results show that the obtained gain from employing AO-CDBP prior to EKF reduces with increasing effects of XPM. Additionally, we also discuss the computational complexity of the aforementioned algorithms.

  12. VPIsystems industry training program on computer-aided design of fiber optic communication systems

    Science.gov (United States)

    Richter, Andre; Chan, David K. C.

    2002-05-01

    In industry today, professional Photonic Design Automation (PDA) tools are a necessity to enable fast development cycles for the design of optical components, systems and networks. The training of industrial personnel is of great importance in facilitating the full usability of PDA tools tailored to meet these demands. As the market leader of design and planning tools for system integrators and manufacturers of optical transmission systems and components, VPIsystems offers a set of two-day training courses. Attendees are taught on the design of metro WDM networks, high speed DWDM and ultra long-haul WDM systems, analogue and digital cable access systems, EDFA and Raman amplifiers, as well as active devices and circuits. The course work compromises of: (1) lectures on physical and modeling background topics; (2) creation of typical simulation scenarios and; (3) the analysis of results. This course work is facilitated by guided, hands-on lab exercises using VPIsystems software for a variety of practical design situations. In classes of up to 15, each attendee is allocated a computer, thereby allowing for a thorough and speedy training for the individual in all of the covered topics as well as for any extra-curriculum topics to be covered. Since 1999, more than 750 people have graduated from over 60 training courses. In this paper, details of VPIsystems Industry training program will be presented.

  13. Integration of multiwavelength lasers with fast electro-optical modulators

    NARCIS (Netherlands)

    Besten, den J.H.

    2004-01-01

    Photonic Integrated Circuits (PICs) are of key importance in Wavelength-Division Multiplexing (WDM) networks because of their reduced volume and packaging costs compared to discrete components. The research described in this thesis was focussed on the integration of WDM-lasers and Radio-Frequency

  14. Design of a mutual authentication based on NTRUsign with a perturbation and inherent multipoint control protocol frames in an Ethernet-based passive optical network

    Science.gov (United States)

    Yin, Aihan; Ding, Yisheng

    2014-11-01

    Identity-related security issues inherently present in passive optical networks (PON) still exist in the current (1G) and next-generation (10G) Ethernet-based passive optical network (EPON) systems. We propose a mutual authentication scheme that integrates an NTRUsign digital signature algorithm with inherent multipoint control protocol (MPCP) frames over an EPON system between the optical line terminal (OLT) and optical network unit (ONU). Here, a primitive NTRUsign algorithm is significantly modified through the use of a new perturbation so that it can be effectively used for simultaneously completing signature and authentication functions on the OLT and the ONU sides. Also, in order to transmit their individual sensitive messages, which include public key, signature, and random value and so forth, to each other, we redefine three unique frames according to MPCP format frame. These generated messages can be added into the frames and delivered to each other, allowing the OLT and the ONU to go ahead with a mutual identity authentication process to verify their legal identities. Our simulation results show that this proposed scheme performs very well in resisting security attacks and has low influence on the registration efficiency to to-be-registered ONUs. A performance comparison with traditional authentication algorithms is also presented. To the best of our knowledge, no detailed design of mutual authentication in EPON can be found in the literature up to now.

  15. An Overview of Optical Network Bandwidth and Fault Management

    Directory of Open Access Journals (Sweden)

    J.A. Zubairi

    2010-09-01

    Full Text Available This paper discusses the optical network management issues and identifies potential areas for focused research. A general outline of the main components in optical network management is given and specific problems in GMPLS based model are explained. Later, protection and restoration issues are discussed in the broader context of fault management and the tools developed for fault detection are listed. Optical networks need efficient and reliable protection schemes that restore the communications quickly on the occurrence of faults without causing failure of real-time applications using the network. A holistic approach is required that provides mechanisms for fault detection, rapid restoration and reversion in case of fault resolution. Since the role of SDH/SONET is diminishing, the modern optical networks are poised towards the IP-centric model where high performance IP-MPLS routers manage a core intelligent network of IP over WDM. Fault management schemes are developed for both the IP layer and the WDM layer. Faults can be detected and repaired locally and also through centralized network controller. A hybrid approach works best in detecting the faults where the domain controller verifies the established LSPs in addition to the link tests at the node level. On detecting a fault, rapid restoration can perform localized routing of traffic away from the affected port and link. The traffic may be directed to pre-assigned backup paths that are established as shared or dedicated resources. We examine the protection issues in detail including the choice of layer for protection, implementing protection or restoration, backup path routing, backup resource efficiency, subpath protection, QoS traffic survival and multilayer protection triggers and alarm propagation. The complete protection cycle is described and mechanisms incorporated into RSVP-TE and other protocols for detecting and recording path errors are outlined. In addition, MPLS testbed

  16. Wave-optics modeling of the optical-transport line for passive optical stochastic cooling

    Science.gov (United States)

    Andorf, M. B.; Lebedev, V. A.; Piot, P.; Ruan, J.

    2018-03-01

    Optical stochastic cooling (OSC) is expected to enable fast cooling of dense particle beams. Transition from microwave to optical frequencies enables an achievement of stochastic cooling rates which are orders of magnitude higher than ones achievable with the classical microwave based stochastic cooling systems. A subsystemcritical to the OSC scheme is the focusing optics used to image radiation from the upstream "pickup" undulator to the downstream "kicker" undulator. In this paper, we present simulation results using wave-optics calculation carried out with the SYNCHROTRON RADIATION WORKSHOP (SRW). Our simulations are performed in support to a proof-of-principle experiment planned at the Integrable Optics Test Accelerator (IOTA) at Fermilab. The calculations provide an estimate of the energy kick received by a 100-MeV electron as it propagates in the kicker undulator and interacts with the electromagnetic pulse it radiated at an earlier time while traveling through the pickup undulator.

  17. Remotely Interrogated Passive Polarizing Dosimeter (RIPPeD).

    Energy Technology Data Exchange (ETDEWEB)

    Kemme, Shanalyn A.; Buller, Daniel L.; Dirk, Shawn M.; Boye, Robert R.; Samora, Sally; Washburn, Cody M.; Wheeler, David Roger

    2008-09-01

    Conductive polymers have become an extremely useful class of materials for many optical applications. We have developed an electrochemical growth method for depositing highly conductive ({approx}100 S/cm) polypyrrole. Additionally, we have adapted advanced fabrication methods for use with the polypyrrole resulting in gratings with submicron features. This conductive polymer micro-wire grid provides an optical polarizer with unique properties. When the polymer is exposed to ionizing radiation, its conductivity is affected and the polarization properties of the device, specifically the extinction ratio, change in a corresponding manner. This change in polarization properties can be determined by optically interrogating the device, possibly from a remote location. The result is a passive radiation-sensitive sensor with very low optical visibility. The ability to interrogate the device from a safe standoff distance provides a device useful in potentially dangerous environments. Also, the passive nature of the device make it applicable in applications where external power is not available. We will review the polymer deposition, fabrication methods and device design and modeling. The characterization of the polymer's sensitivity to ionizing radiation and optical testing of infrared polarizers before and after irradiation will also be presented. These experimental results will highlight the usefulness of the conductive infrared polarizer to many security and monitoring applications.

  18. Remotely Interrogated Passive Polarizing Dosimeter (RIPPeD)

    International Nuclear Information System (INIS)

    Kemme, Shanalyn A.; Buller, Daniel L.; Dirk, Shawn M.; Boye, Robert R.; Samora, Sally; Washburn, Cody M.; Wheeler, David Roger

    2008-01-01

    Conductive polymers have become an extremely useful class of materials for many optical applications. We have developed an electrochemical growth method for depositing highly conductive (∼100 S/cm) polypyrrole. Additionally, we have adapted advanced fabrication methods for use with the polypyrrole resulting in gratings with submicron features. This conductive polymer micro-wire grid provides an optical polarizer with unique properties. When the polymer is exposed to ionizing radiation, its conductivity is affected and the polarization properties of the device, specifically the extinction ratio, change in a corresponding manner. This change in polarization properties can be determined by optically interrogating the device, possibly from a remote location. The result is a passive radiation-sensitive sensor with very low optical visibility. The ability to interrogate the device from a safe standoff distance provides a device useful in potentially dangerous environments. Also, the passive nature of the device make it applicable in applications where external power is not available. We will review the polymer deposition, fabrication methods and device design and modeling. The characterization of the polymer's sensitivity to ionizing radiation and optical testing of infrared polarizers before and after irradiation will also be presented. These experimental results will highlight the usefulness of the conductive infrared polarizer to many security and monitoring applications

  19. Light Optics for Optical Stochastic Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Andorf, Matthew [NICADD, DeKalb; Lebedev, Valeri [Fermilab; Piot, Philippe [NICADD, DeKalb; Ruan, Jinhao [Fermilab

    2016-06-01

    In Optical Stochastic Cooling (OSC) radiation generated by a particle in a "pickup" undulator is amplified and transported to a downstream "kicker" undulator where it interacts with the same particle which radiated it. Fermilab plans to carry out both passive (no optical amplifier) and active (optical amplifier) tests of OSC at the Integrable Optics Test Accelerator (IOTA) currently in construction*. The performace of the optical system is analyzed with simulations in Synchrotron Radiation Workshop (SRW) accounting for the specific temporal and spectral properties of undulator radiation and being augmented to include dispersion of lens material.

  20. Wave-Optics Modeling of the Optical-Transport Line for Passive Optical Stochastic Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Andorf, M. B. [NICADD, DeKalb; Lebedev, V. A. [Fermilab; Piot, P. [Fermilab; Ruan, J. [Fermilab

    2018-03-01

    Optical stochastic cooling (OSC) is expected to enable fast cooling of dense particle beams. Transition from microwave to optical frequencies enables an achievement of stochastic cooling rates which are orders of magnitude higher than ones achievable with the classical microwave based stochastic cooling systems. A subsytem critical to the OSC scheme is the focusing optics used to image radiation from the upstream "pickup" undulator to the downstream "kicker" undulator. In this paper, we present simulation results using wave-optics calculation carried out with the {\\sc Synchrotron Radiation Workshop} (SRW). Our simulations are performed in support to a proof-of-principle experiment planned at the Integrable Optics Test Accelerator (IOTA) at Fermilab. The calculations provide an estimate of the energy kick received by a 100-MeV electron as it propagates in the kicker undulator and interacts with the electromagnetic pulse it radiated at an earlier time while traveling through the pickup undulator.

  1. Low-peak-to-average power ratio and low-complexity asymmetrically clipped optical orthogonal frequency-division multiplexing uplink transmission scheme for long-reach passive optical network.

    Science.gov (United States)

    Zhou, Ji; Qiao, Yaojun

    2015-09-01

    In this Letter, we propose a discrete Hartley transform (DHT)-spread asymmetrically clipped optical orthogonal frequency-division multiplexing (DHT-S-ACO-OFDM) uplink transmission scheme in which the multiplexing/demultiplexing process also uses the DHT algorithm. By designing a simple encoding structure, the computational complexity of the transmitter can be reduced from O(Nlog(2)(N)) to O(N). At the probability of 10(-3), the peak-to-average power ratio (PAPR) of 2-ary pulse amplitude modulation (2-PAM)-modulated DHT-S-ACO-OFDM is approximately 9.7 dB lower than that of 2-PAM-modulated conventional ACO-OFDM. To verify the feasibility of the proposed scheme, a 4-Gbit/s DHT-S-ACO-OFDM uplink transmission scheme with a 1∶64 way split has been experimentally implemented using 100-km standard single-mode fiber (SSMF) for a long-reach passive optical network (LR-PON).

  2. High-performance parallel processors based on star-coupled wavelength division multiplexing optical interconnects

    Science.gov (United States)

    Deri, Robert J.; DeGroot, Anthony J.; Haigh, Ronald E.

    2002-01-01

    As the performance of individual elements within parallel processing systems increases, increased communication capability between distributed processor and memory elements is required. There is great interest in using fiber optics to improve interconnect communication beyond that attainable using electronic technology. Several groups have considered WDM, star-coupled optical interconnects. The invention uses a fiber optic transceiver to provide low latency, high bandwidth channels for such interconnects using a robust multimode fiber technology. Instruction-level simulation is used to quantify the bandwidth, latency, and concurrency required for such interconnects to scale to 256 nodes, each operating at 1 GFLOPS performance. Performance scales have been shown to .apprxeq.100 GFLOPS for scientific application kernels using a small number of wavelengths (8 to 32), only one wavelength received per node, and achievable optoelectronic bandwidth and latency.

  3. High-order passive photonic temporal integrators.

    Science.gov (United States)

    Asghari, Mohammad H; Wang, Chao; Yao, Jianping; Azaña, José

    2010-04-15

    We experimentally demonstrate, for the first time to our knowledge, an ultrafast photonic high-order (second-order) complex-field temporal integrator. The demonstrated device uses a single apodized uniform-period fiber Bragg grating (FBG), and it is based on a general FBG design approach for implementing optimized arbitrary-order photonic passive temporal integrators. Using this same design approach, we also fabricate and test a first-order passive temporal integrator offering an energetic-efficiency improvement of more than 1 order of magnitude as compared with previously reported passive first-order temporal integrators. Accurate and efficient first- and second-order temporal integrations of ultrafast complex-field optical signals (with temporal features as fast as approximately 2.5ps) are successfully demonstrated using the fabricated FBG devices.

  4. Quantum optical signals in telecommunication networks

    OpenAIRE

    Ciurana Aguilar, Alex; Martinez Mateo, Jesus; Martín Ayuso, Vicente; Soto, M.

    2012-01-01

    Introducción a una red óptica metropolitana cuántica donde señales cuánticas y convencionales son multiplexadas en longitud de onda utilizando bandas separadas del espectro óptico. El enrutado se realiza con componentes pasivos para no perturbar los qubits. Se estudian dos redes: red de acceso WDM-PON y red metropolitana completa con backbone DWDM y redes de acceso WDM-PON.

  5. Passivation of black phosphorus saturable absorbers for reliable pulse formation of fiber lasers.

    Science.gov (United States)

    Na, Dongsoo; Park, Kichul; Park, Ki-Hwan; Song, Yong-Won

    2017-11-24

    Black phosphorus (BP) has attracted increasing attention due to its unique electrical properties. In addition, the outstanding optical nonlinearity of BP has been demonstrated in various ways. Its functionality as a saturable absorber, in particular, has been validated in demonstrations of passive mode-locked lasers. However, normally, the performance of BP is degraded eventually by both thermal and chemical damage in ambient conditions. The passivation of BP is the critical issue to guarantee a stable performance of the optical devices. We quantitatively characterized the mode-locked lasers operated by BP saturable absorbers with diversified passivation materials such as polydimethylsiloxane (PDMS) or Al 2 O 3 , considering the atomic structure of the materials, and therefore the hydro-permeability of the passivation layers. Unlike the BP layers without passivation, we demonstrated that the Al 2 O 3 -passivated BP layer was protected from the surface oxidation reaction in the long-term, and the PDMS-passivated one had a short-term blocking effect. The quantitative analysis showed that the time-dependent characteristics of the pulsed laser without passivation were changed with respect to the pulse duration, spectral width, and time-bandwidth product displaying 550 fs, 2.8 nm, and 0.406, respectively. With passivation, the changes were limited to <43 fs, <0.3 nm, and <0.012, respectively.

  6. Passivation of black phosphorus saturable absorbers for reliable pulse formation of fiber lasers

    Science.gov (United States)

    Na, Dongsoo; Park, Kichul; Park, Ki-Hwan; Song, Yong-Won

    2017-11-01

    Black phosphorus (BP) has attracted increasing attention due to its unique electrical properties. In addition, the outstanding optical nonlinearity of BP has been demonstrated in various ways. Its functionality as a saturable absorber, in particular, has been validated in demonstrations of passive mode-locked lasers. However, normally, the performance of BP is degraded eventually by both thermal and chemical damage in ambient conditions. The passivation of BP is the critical issue to guarantee a stable performance of the optical devices. We quantitatively characterized the mode-locked lasers operated by BP saturable absorbers with diversified passivation materials such as polydimethylsiloxane (PDMS) or Al2O3, considering the atomic structure of the materials, and therefore the hydro-permeability of the passivation layers. Unlike the BP layers without passivation, we demonstrated that the Al2O3-passivated BP layer was protected from the surface oxidation reaction in the long-term, and the PDMS-passivated one had a short-term blocking effect. The quantitative analysis showed that the time-dependent characteristics of the pulsed laser without passivation were changed with respect to the pulse duration, spectral width, and time-bandwidth product displaying 550 fs, 2.8 nm, and 0.406, respectively. With passivation, the changes were limited to <43 fs, <0.3 nm, and <0.012, respectively.

  7. Optics equations for aero-optical analysis

    Science.gov (United States)

    Sutton, George W.; Pond, John E.

    2011-05-01

    Aero-optical effects occur around moving air vehicles and impact passive imaging or active systems. The air flow around the vehicle is compressed, and often there is a turbulent shear and/or boundary layer both of which cause variations in the index of refraction. Examples of these are reconnaissance aircraft, the Stratospheric Observatory for Infrared Optics (SOFIA), and optically homing hypersonic interceptors. In other applications, a laser beam can be formed within the vehicle, and projected outward and focused on an object. These include the Airborne Laser Laboratory, Airborne Laser and the Airborne Tactical Laser. There are many compressible fluid mechanics computer programs that can predict the air density distribution of the surrounding flow field including density fluctuations in turbulent shear and/or boundary layers. It is necessary for the physical optics to be used to predict the properties of the ensuing image plane intensity distribution, whether passive or active. These include the time-averaged image blur circle and instantaneous realizations. (Ray tracing is a poor approximation that gives erroneous results for small aberrations.)

  8. Optical Injection Locking of Vertical Cavity Surface-Emitting Lasers: Digital and Analog Applications

    Science.gov (United States)

    Parekh, Devang

    frequency enhancement was exploited for millimeter-wave radio over fiber communications. Experimental demonstration of 4 Gb/s data transmission over 20 km of fiber and 3 m of wireless transmission at a 60 GHz carrier frequency was achieved. Additionally, optical injection of multi-transverse mode (MM) VCSELs was investigated showing record resonance frequency enhancement of > 54 GHz and 3-dB bandwidth of 38 GHz. Besides these applications, a number of other intriguing applications are also discussed, including an optoelectronic oscillator (OEO) and wavelength-division multiplexed passive optical networks (WDM-PON). Finally, the future of optical injection locking and its direction going forward will be discussed.

  9. Active and passive silica waveguide integration

    DEFF Research Database (Denmark)

    Hübner, Jörg; Guldberg-Kjær, Søren Andreas

    2001-01-01

    . The increasing complexity and functionality of optical networks prompts a demand for highly integrated optical circuits. On-board optical amplifiers, monolithically integrated with functionalities like switching or multiplexing/demultiplexing will allow flexible incorporation of optical integrated circuits...... in existing and future networks without affecting the power budget of the system. Silica on silicon technology offers a unique possibility to selectively dope sections of the integrated circuit with erbium where amplification is desired. Some techniques for active/passive integration are reviewed and a silica......Integrated optical amplifiers are currently regaining interest. Stand-alone single integrated amplifiers offer only limited advantage over current erbium doped fiber amplifiers, whereas arrays of integrated amplifiers are very attractive due to miniaturization and the possibility of mass production...

  10. Novel tunable optical filter employing a fiber loop mirror for synthesis applications in WDM

    OpenAIRE

    Vázquez García, María Carmen; Vargas Palma, Salvador Elías; Sánchez-Pena, José Manuel

    2001-01-01

    A novel optical filter employing a fiber loop mirror within an amplified ring resonator is presented. The fiber loop mirror allows tuning by changing the coupling factor of a coupler. The device can be used as a building block to synthesize optical filters, as previously reported, saving components. Publicado

  11. A threshold-based multiple optical signal selection scheme for WDM FSO systems

    KAUST Repository

    Nam, Sung Sik

    2017-07-20

    In this paper, we propose a threshold-based-multiple optical signal selection scheme (TMOS) for free-space optical systems based on wavelength division multiplexing. With the proposed TMOS, we can obtain higher spectral efficiency while reducing the potential increase in complexity of implementation caused by applying a selection-based beam selection scheme without a considerable performance loss. Here, to accurately characterize the performance of the proposed TMOS, we statistically analyze the characteristics with heterodyne detection technique over independent and identically distributed Log-normal turbulence conditions taking into considerations the impact of pointing error. Specifically, we derive exact closed-form expressions for the average bit error rate, and the average spectral efficiency by adopting an adaptive modulation. Some selected results shows that the average spectral efficiency can be increased with TMOS while the system requirement is satisfied.

  12. A threshold-based multiple optical signal selection scheme for WDM FSO systems

    KAUST Repository

    Nam, Sung Sik; Alouini, Mohamed-Slim; Ko, Young-Chai; Cho, Sung Ho

    2017-01-01

    In this paper, we propose a threshold-based-multiple optical signal selection scheme (TMOS) for free-space optical systems based on wavelength division multiplexing. With the proposed TMOS, we can obtain higher spectral efficiency while reducing the potential increase in complexity of implementation caused by applying a selection-based beam selection scheme without a considerable performance loss. Here, to accurately characterize the performance of the proposed TMOS, we statistically analyze the characteristics with heterodyne detection technique over independent and identically distributed Log-normal turbulence conditions taking into considerations the impact of pointing error. Specifically, we derive exact closed-form expressions for the average bit error rate, and the average spectral efficiency by adopting an adaptive modulation. Some selected results shows that the average spectral efficiency can be increased with TMOS while the system requirement is satisfied.

  13. Signal to Noise Ratio (SNR Enhancement Comparison of Impulse-, Coding- and Novel Linear-Frequency-Chirp-Based Optical Time Domain Reflectometry (OTDR for Passive Optical Network (PON Monitoring Based on Unique Combinations of Wavelength Selective Mirrors

    Directory of Open Access Journals (Sweden)

    Christopher M. Bentz

    2014-03-01

    Full Text Available We compare optical time domain reflectometry (OTDR techniques based on conventional single impulse, coding and linear frequency chirps concerning their signal to noise ratio (SNR enhancements by measurements in a passive optical network (PON with a maximum one-way attenuation of 36.6 dB. A total of six subscribers, each represented by a unique mirror pair with narrow reflection bandwidths, are installed within a distance of 14 m. The spatial resolution of the OTDR set-up is 3.0 m.

  14. Visible light communications using predistortion signal to enhance the response of passive optical receiver

    Science.gov (United States)

    Liu, Yang; Chen, Hung-Yu; Liang, Kevin; Wei, Liang-Yu; Chow, Chi-Wai; Yeh, Chien-Hung

    2016-01-01

    Traditional visible light communication (VLC) uses positive-intrinsic-negative photodiode (PD) or avalanche PD as the optical receivers (Rx). We demonstrate using a solar cell as the VLC Rx. The solar cell is flexible and low cost and converts the optical signal into an electrical signal directly without the need of external power supply. In addition to acting as the VLC passive Rx, the converted electrical signal from the solar cell can charge up the battery of the Rx nodes. Hence, the proposed scheme can be a promising candidate for the future Internet of Things network. However, a solar cell acting as a VLC Rx is very challenging, since the response of the solar cell is limited. Here, we propose and demonstrate using predistortion to significantly enhance the solar cell Rx response for the first time up to the authors' knowledge. Experimental results show that the response of the solar cell Rx is significantly enhanced; and the original 2-kHz detection bandwidth of the solar cell can be enhanced by 250 times for receiving 500-kbit/s VLC signal at a transmission distance of 1 m. The operation principle, the generated voltage by the solar cell, and the maximum data rates achieved at different transmission distances are also studied.

  15. Reflective variable optical attenuators and fibre ring lasers for wavelength-division multiplexing systems

    Science.gov (United States)

    Liu, He Liang

    Wavelength division multiplexing (WDM) optical fibre system is an important enabling technology to fulfill the demands for bandwidth in the modern information age. The main objective of this project is to study novel devices with the potential to enhance the performance of WDM systems. In particular, a novel reflective variable optical attenuator (RVOA) used for dynamic gain equalization (DGE) and fibre lasers based on an entirely new type of erbium-doped fibres with ultrawide tuning range were investigated theoretically and experimentally. We proposed a new type of RVOA device which could be potentially integrated with arrayed waveguide grating (AWG) to reduce the cost of DGE substantially. Initially, fibre-based RVOAs, fabricated with optical fibre components such as fibre coupler and Faraday rotator mirror, were investigated theoretically and experimentally. Larger attenuation range up to 22 dB was realized for fibre coupler-based ROVA with a Faraday rotator mirror and its polarization-dependent loss is about 0.5 dB. Then polymeric waveguide-based RVOAs were investigated theoretically and experimentally. Using an epoxy Novolak resin as core material and an UV-cured resin (Norland's NOA61) as cladding material, a polymeric waveguide RVOA was successfully fabricated. The dynamic 15 dB attenuation range was achieved and the PDL was less than 0.2 dB. The measured insertion loss of the polymeric waveguide RVOA was too large (about 18 dB) and was mainly induced by coupling loss, material loss and poor alignment. In the second part of the study, fibre ring lasers with continuous wavelength tuning over wide wavelength range and fibre ring lasers with discrete wavelength tuning were investigated. Tunable lasers are important devices in WDM systems because they could be employed as reserved sources and therefore avoiding the need to stock large inventory of lasers to cover the ITU-wavelength grid. In this project, erbium ions doped bismuth oxide glass fibres instead of

  16. Evaluation of passive samplers for the collection of dissolved organic matter in streams.

    Science.gov (United States)

    Warner, Daniel L; Oviedo-Vargas, Diana; Royer, Todd V

    2015-01-01

    Traditional sampling methods for dissolved organic matter (DOM) in streams limit opportunities for long-term studies due to time and cost constraints. Passive DOM samplers were constructed following a design proposed previously which utilizes diethylaminoethyl (DEAE) cellulose as a sampling medium, and they were deployed throughout a temperate stream network in Indiana. Two deployments of the passive samplers were conducted, during which grab samples were frequently collected for comparison. Differences in DOM quality between sites and sampling methods were assessed using several common optical analyses. The analyses revealed significant differences in optical properties between sampling methods, with the passive samplers preferentially collecting terrestrial, humic-like DOM. We assert that the differences in DOM composition from each sampling method were caused by preferential binding of complex humic compounds to the DEAE cellulose in the passive samplers. Nonetheless, the passive samplers may provide a cost-effective, integrated sample of DOM in situations where the bulk DOM pool is composed mainly of terrestrial, humic-like compounds.

  17. Device Characterization of High Performance Quantum Dot Comb Laser

    KAUST Repository

    Rafi, Kazi

    2012-01-01

    and video) in FTTH and FTTP-based WDM-PON networks, metropolitan area network (MAN), and short-reach rack-to-rack optical computer communications, a versatile and cost effective WDM transmitter design is required, where several DFB lasers can be replaced

  18. Research on optical access network remote management technology

    Science.gov (United States)

    Wang, Wayne; Zou, Chen; Luo, Wenyi

    2008-11-01

    This paper goal is to provide a framework for the remote configuration and management of services for PON (Passive Optical Network) access and fiber access. Also it defines how Auto-Configuration Servers (ACS) in the network can remotely configure, troubleshoot and manage a Passive Optical Network (PON) optical network termination (ONT) with layer 3 capabilities using the CPE WAN management protocol, TR-069.

  19. Fibre-optic communications

    CERN Document Server

    Lecoy, Pierre

    2010-01-01

    This book describes in a comprehensive manner the components and systems of fiber optic communications and networks. The first section explains the theory of multimode and single-mode fibers, then the technological features, including manufacturing, cabling, and connecting. The second section describes the various components (passive and active optical components, integrated optics, opto-electronic transmitters and receivers, and optical amplifiers) used in fiber optic systems. Finally, the optical transmission system design is explained, and applications to optical networks and fiber optic se

  20. Peptide Integrated Optics.

    Science.gov (United States)

    Handelman, Amir; Lapshina, Nadezda; Apter, Boris; Rosenman, Gil

    2018-02-01

    Bio-nanophotonics is a wide field in which advanced optical materials, biomedicine, fundamental optics, and nanotechnology are combined and result in the development of biomedical optical chips. Silk fibers or synthetic bioabsorbable polymers are the main light-guiding components. In this work, an advanced concept of integrated bio-optics is proposed, which is based on bioinspired peptide optical materials exhibiting wide optical transparency, nonlinear and electrooptical properties, and effective passive and active waveguiding. Developed new technology combining bottom-up controlled deposition of peptide planar wafers of a large area and top-down focus ion beam lithography provides direct fabrication of peptide optical integrated circuits. Finding a deep modification of peptide optical properties by reconformation of biological secondary structure from native phase to β-sheet architecture is followed by the appearance of visible fluorescence and unexpected transition from a native passive optical waveguiding to an active one. Original biocompatibility, switchable regimes of waveguiding, and multifunctional nonlinear optical properties make these new peptide planar optical materials attractive for application in emerging technology of lab-on-biochips, combining biomedical photonic and electronic circuits toward medical diagnosis, light-activated therapy, and health monitoring. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Passive water and ion transport by cotransporters

    DEFF Research Database (Denmark)

    Loo, D D; Hirayama, B A; Meinild, A K

    1999-01-01

    the Lp of control oocytes. Passive Na+ transport (Na+ leak) was obtained from the blocker-sensitive Na+ currents in the absence of substrates (glucose and GABA). 2. Passive Na+ and water transport through SGLT1 were blocked by phlorizin with the same sensitivity (inhibitory constant (Ki), 3-5 micro......1. The rabbit Na+-glucose (SGLT1) and the human Na+-Cl--GABA (GAT1) cotransporters were expressed in Xenopus laevis oocytes, and passive Na+ and water transport were studied using electrical and optical techniques. Passive water permeabilities (Lp) of the cotransporters were determined from......M). When Na+ was replaced with Li+, phlorizin also inhibited Li+ and water transport, but with a lower affinity (Ki, 100 microM). When Na+ was replaced by choline, which is not transported, the SGLT1 Lp was indistinguishable from that in Na+ or Li+, but in this case water transport was less sensitive...

  2. Single channel and WDM transmission of 28 Gbaud zero-guard-interval CO-OFDM.

    Science.gov (United States)

    Zhuge, Qunbi; Morsy-Osman, Mohamed; Mousa-Pasandi, Mohammad E; Xu, Xian; Chagnon, Mathieu; El-Sahn, Ziad A; Chen, Chen; Plant, David V

    2012-12-10

    We report on the experimental demonstration of single channel 28 Gbaud QPSK and 16-QAM zero-guard-interval (ZGI) CO-OFDM transmission with only 1.34% overhead for OFDM processing. The achieved transmission distance is 5120 km for QPSK assuming a 7% forward error correction (FEC) overhead, and 1280 km for 16-QAM assuming a 20% FEC overhead. We also demonstrate the improved tolerance of ZGI CO-OFDM to residual inter-symbol interference compared to reduced-guard-interval (RGI) CO-OFDM. In addition, we report an 8-channel wavelength-division multiplexing (WDM) transmission of 28 Gbaud QPSK ZGI CO-OFDM signals over 4160 km.

  3. Evaluation and application of passive and active optical remote sensing methods for the measurement of atmospheric aerosol properties

    Energy Technology Data Exchange (ETDEWEB)

    Mielonen, T.

    2010-07-01

    Atmospheric aerosol particles affect the atmosphere's radiation balance by scattering and absorbing sunlight. Moreover, the particles act as condensation nuclei for clouds and affect their reflectivity. In addition, aerosols have negative health effects and they reduce visibility. Aerosols are emitted into the atmosphere from both natural and anthropogenic sources. Different types of aerosols have different effects on the radiation balance, thus global monitoring and typing of aerosols is of vital importance. In this thesis, several remote sensing methods used in the measurement of atmospheric aerosols are evaluated. Remote sensing of aerosols can be done with active and passive instruments. Passive instruments measure radiation emitted by the sun and the Earth while active instruments have their own radiation source, for example a black body radiator or laser. The instruments utilized in these studies were sun photometers (PFR, Cimel), lidars (POLLYXT, CALIOP), transmissiometer (OLAF) and a spectroradiometer (MODIS). Retrieval results from spaceborne instruments (MODIS, CALIOP) were evaluated with ground based measurements (PFR, Cimel). In addition, effects of indicative aerosol model assumptions on the calculated radiative transfer were studied. Finally, aerosol particle mass at the ground level was approximated from satellite measurements and vertical profiles of aerosols measured with a lidar were analyzed. For the evaluation part, these studies show that the calculation of aerosol induced attenuation of radiation based on aerosol size distribution measurements is not a trivial task. In addition to dry aerosol size distribution, the effect of ambient relative humidity on the size distribution and the optical properties of the aerosols need to be known in order to achieve correct results from the calculations. Furthermore, the results suggest that aerosol size parameters retrieved from passive spaceborne measurements depend heavily on surgace reflectance

  4. INFLUENCE OF POLARIZATION MODE DISPERSION ON THE EFFECT OF CROSS-PHASE MODULATION IN INTENSITY MODULATION-DIRECT DETECTION WDM TRANSMISSION SYSTEM

    Directory of Open Access Journals (Sweden)

    M S Islam

    2010-03-01

    Full Text Available Cross-phase modulation (XPM changes the state-of-polarization (SOP of the channels through nonlinear polarization rotation and induces nonlinear time dependent phase shift for polarization components that leads to amplitude modulation of the propagating waves in a wavelength division multiplexing (WDM system. Due to the presence of birefringence, the angle between the SOP changes randomly and as a result polarization mode dispersion (PMD causes XPM modulation amplitude fluctuation random in the perturbed channel. In this paper we analytically determine the probability density function of the random angle between the SOP of pump and probe, and evaluate the impact of polarization mode dispersion on XPM in terms of bit error rate, channel spacing etc for a two channel intensity modulation-direct detection WDM system at 10 Gb/s. It is found that the XPM induced crosstalk is polarization independent for channel spacing greater than 3 nm or PMD coefficient larger than 2 ps/√km. We also investigate the dependence of SOP variance on PMD coefficient and channel spacing.

  5. Ionization potential depression and optical spectra in a Debye plasma model

    Science.gov (United States)

    Lin, Chengliang; Röpke, Gerd; Reinholz, Heidi; Kraeft, Wolf-Dietrich

    2017-11-01

    We show how optical spectra in dense plasmas are determined by the shift of energy levels as well as the broadening owing to collisions with the plasma particles. In lowest approximation, the interaction with the plasma particles is described by the RPA dielectric function, leading to the Debye shift of the continuum edge. The bound states remain nearly un-shifted, their broadening is calculated in Born approximation. The role of ionization potential depression as well as the Inglis-Teller effect are shown. The model calculations have to be improved going beyond the lowest (RPA) approximation when applying to WDM spectra.

  6. Passive athermalization of doublets in 8-13 micron waveband

    Science.gov (United States)

    Schuster, Norbert

    2014-10-01

    Passive athermalization of lenses has become a key-technology for automotive and other outdoor applications using modern uncooled 25, 17 and 12 micron pixel pitch bolometer arrays. Typical pixel counts for thermal imaging are 384x288 (qVGA), 640x480 (VGA), and 1024x768 (XGA). Two lens arrangements (called Doublets) represent a cost effective way to satisfy resolution requirements of these detectors with F-numbers 1.4 or faster. Thermal drift of index of refraction and the geometrical changes (in lenses and housing) versus temperature defocus the initial image plane from the detector plane. The passive athermalization restricts this drop of spatial resolution in a wide temperature range (typically -40°C…+80°C) to an acceptable value without any additional external refocus. In particular, lenses with long focal lengths and high apertures claim athermalization. A careful choice of lens and housing materials and a sophistical dimensioning lead to three different principles of passivation: The Passive Mechanical Athermalization (PMA) shifts the complete lens cell, the Passive Optical and Mechanical Athermalization (POMA) shifts only one lens inside the housing, the Passive Optical Athermalization (POA) works without any mechanism. All three principles will be demonstrated for a typical narrow-field lens (HFOV about 12°) with high aperture (aperture based F-number 1.3) for the actual uncooled reference detector (17micron VGA). Six design examples using different combinations of lens materials show the impact on spatial lens resolution, on overall length, and on weight. First order relations are discussed. They give some hints for optimization solutions. Pros and cons of different passive athermalization principles are evaluated in regards of housing design, availability of materials and costing. Examples with a convergent GASIR®1-lens in front distinguish by best resolution, short overall length, and lowest weight.

  7. A design of a wavelength-hopping time-spreading incoherent optical code division multiple access system

    International Nuclear Information System (INIS)

    Glesk, I.; Baby, V.

    2005-01-01

    We present the architecture and code design for a highly scalable, 2.5 Gb/s per user optical code division multiple access (OCDMA) system. The system is scalable to 100 potential and more than 10 simultaneous users, each with a bit error rate (BER) of less than 10 -9 . The system architecture uses a fast wavelength-hopping, time-spreading codes. Unlike frequency and phase sensitive coherent OCDMA systems, this architecture utilizes standard on off keyed optical pulses allocated in the time and wavelength dimensions. This incoherent OCDMA approach is compatible with existing WDM optical networks and utilizes off the shelf components. We discuss the novel optical subsystem design for encoders and decoders that enable the realization of a highly scalable incoherent OCDMA system with rapid reconfigurability. A detailed analysis of the scalability of the two dimensional code is presented and select network deployment architectures for OCDMA are discussed (Authors)

  8. All-VCSEL based digital coherent detection link for multi Gbit/s WDM passive optical networks

    DEFF Research Database (Denmark)

    Rodes Lopez, Roberto; Jensen, Jesper Bevensee; Zibar, Darko

    2010-01-01

    with record receiver sensitivity of -36 dBm after transmission over 40 km standard single mode fiber. Digital signal processing compensates for frequency offset between the transmitter and the local oscillator VCSELs, and for chromatic dispersion. This system allows for uncooled VCSEL operation and fully...

  9. OTDM-to-WDM Conversion of Complex Modulation Formats by Time-Domain Optical Fourier Transformation

    DEFF Research Database (Denmark)

    Palushani, Evarist; Richter, T.; Ludwig, R.

    2012-01-01

    We demonstrate the utilization of the optical Fourier transform technique for serial-to-parallel conversion of 64×10-GBd OTDM data tributaries with complex modulation formats into 50-GHz DWDM grid without loss of phase and amplitude information.......We demonstrate the utilization of the optical Fourier transform technique for serial-to-parallel conversion of 64×10-GBd OTDM data tributaries with complex modulation formats into 50-GHz DWDM grid without loss of phase and amplitude information....

  10. Performance Analysis of a Threshold-Based Parallel Multiple Beam Selection Scheme for WDM FSO Systems

    KAUST Repository

    Nam, Sung Sik

    2018-04-09

    In this paper, we statistically analyze the performance of a threshold-based parallel multiple beam selection scheme for a free-space optical (FSO) based system with wavelength division multiplexing (WDM) in cases where a pointing error has occurred under independent identically distributed Gamma-Gamma fading conditions. To simplify the mathematical analysis, we additionally consider Gamma turbulence conditions, which are a good approximation of Gamma-Gamma distribution. Specifically, we statistically analyze the characteristics in operation under conventional detection schemes (i.e., heterodyne detection (HD) and intensity modulation/direct detection (IM/DD) techniques) for both adaptive modulation (AM) case in addition to non-AM case (i.e., coherent/non-coherent binary modulation). Then, based on the statistically derived results, we evaluate the outage probability of a selected beam, the average spectral efficiency (ASE), the average number of selected beams (ANSB) and the average bit error rate (BER). Selected results show that we can obtain higher spectral efficiency and simultaneously reduce the potential for increasing the complexity of implementation caused by applying the selection-based beam selection scheme without considerable performance loss. Especially for the AM case, the ASE can be increased further compared to the non- AM cases. Our derived results based on the Gamma distribution as an approximation of the Gamma-Gamma distribution can be used as approximated performance measure bounds, especially, they may lead to lower bounds on the approximated considered performance measures.

  11. Assessment of Spacecraft Operational Status Using Electro-Optical Predictive Techniques

    Science.gov (United States)

    2010-09-01

    panel appendages, may require enhanced preflight characterization processes to support monitoring by passive, remote, nonimaging optical sensors...observing and characterizing key spacecraft features. The simulation results are based on electro-optical signatures apparent to nonimaging sensors, along...and communication equipment, may require enhanced preflight characterization processes to support monitoring by passive, remote, nonimaging optical

  12. Four dimensional hybrid ultrasound and optoacoustic imaging via passive element optical excitation in a hand-held probe

    Science.gov (United States)

    Fehm, Thomas Felix; Deán-Ben, Xosé Luís; Razansky, Daniel

    2014-10-01

    Ultrasonography and optoacoustic imaging share powerful advantages related to the natural aptitude for real-time image rendering with high resolution, the hand-held operation, and lack of ionizing radiation. The two methods also possess very different yet highly complementary advantages of the mechanical and optical contrast in living tissues. Nonetheless, efficient integration of these modalities remains challenging owing to the fundamental differences in the underlying physical contrast, optimal signal acquisition, and image reconstruction approaches. We report on a method for hybrid acquisition and reconstruction of three-dimensional pulse-echo ultrasound and optoacoustic images in real time based on passive ultrasound generation with an optical absorber, thus avoiding the hardware complexity of active ultrasound generation. In this way, complete hybrid datasets are generated with a single laser interrogation pulse, resulting in simultaneous rendering of ultrasound and optoacoustic images at an unprecedented rate of 10 volumetric frames per second. Performance is subsequently showcased in phantom experiments and in-vivo measurements from a healthy human volunteer, confirming general clinical applicability of the method.

  13. Four dimensional hybrid ultrasound and optoacoustic imaging via passive element optical excitation in a hand-held probe

    International Nuclear Information System (INIS)

    Fehm, Thomas Felix; Razansky, Daniel; Deán-Ben, Xosé Luís

    2014-01-01

    Ultrasonography and optoacoustic imaging share powerful advantages related to the natural aptitude for real-time image rendering with high resolution, the hand-held operation, and lack of ionizing radiation. The two methods also possess very different yet highly complementary advantages of the mechanical and optical contrast in living tissues. Nonetheless, efficient integration of these modalities remains challenging owing to the fundamental differences in the underlying physical contrast, optimal signal acquisition, and image reconstruction approaches. We report on a method for hybrid acquisition and reconstruction of three-dimensional pulse-echo ultrasound and optoacoustic images in real time based on passive ultrasound generation with an optical absorber, thus avoiding the hardware complexity of active ultrasound generation. In this way, complete hybrid datasets are generated with a single laser interrogation pulse, resulting in simultaneous rendering of ultrasound and optoacoustic images at an unprecedented rate of 10 volumetric frames per second. Performance is subsequently showcased in phantom experiments and in-vivo measurements from a healthy human volunteer, confirming general clinical applicability of the method.

  14. Four dimensional hybrid ultrasound and optoacoustic imaging via passive element optical excitation in a hand-held probe

    Energy Technology Data Exchange (ETDEWEB)

    Fehm, Thomas Felix; Razansky, Daniel, E-mail: dr@tum.de [Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg (Germany); Faculty of Medicine, Technische Universität München, Munich (Germany); Deán-Ben, Xosé Luís [Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg (Germany)

    2014-10-27

    Ultrasonography and optoacoustic imaging share powerful advantages related to the natural aptitude for real-time image rendering with high resolution, the hand-held operation, and lack of ionizing radiation. The two methods also possess very different yet highly complementary advantages of the mechanical and optical contrast in living tissues. Nonetheless, efficient integration of these modalities remains challenging owing to the fundamental differences in the underlying physical contrast, optimal signal acquisition, and image reconstruction approaches. We report on a method for hybrid acquisition and reconstruction of three-dimensional pulse-echo ultrasound and optoacoustic images in real time based on passive ultrasound generation with an optical absorber, thus avoiding the hardware complexity of active ultrasound generation. In this way, complete hybrid datasets are generated with a single laser interrogation pulse, resulting in simultaneous rendering of ultrasound and optoacoustic images at an unprecedented rate of 10 volumetric frames per second. Performance is subsequently showcased in phantom experiments and in-vivo measurements from a healthy human volunteer, confirming general clinical applicability of the method.

  15. On-Chip All-Optical Passive 3.55 Gbit/s NRZ-to-PRZ Format Conversion Using a High-Q Silicon-Based Microring Resonator

    International Nuclear Information System (INIS)

    Yao, Zhai; Shao-Wu, Chen; Guang-Hui, Ren

    2010-01-01

    We report the experimental result of all-optical passive 3.55 Gbit/s non-return-to-zero (NRZ) to pseudo-return-to-zero (PRZ) format conversion using a high-quality-factor (Q-factor) silicon-based microring resonator notch filter on chip. The silicon-based microring resonator has 23800 Q-factor and 22 dB extinction ratio (ER), and the PRZ signals has about 108ps width and 4.98 dB ER

  16. The Analysis of SARDANA HPON Networks Using the HPON Network Configurator

    Directory of Open Access Journals (Sweden)

    Rastislav Roka

    2013-01-01

    Full Text Available NG-PON systems present optical access infrastructures to support various applications of the many service providers. In the near future, we can expect NG-PON technologies with different motivations for developing of HPON networks. The HPON is a hybrid passive optical network in a way that utilizes on a physical layer both TDM and WDM multiplexing principles together. The HPON network utilizes similar or soft revised topologies as TDM-PON architectures. In this second paper, requirements for the SARDANA HPON networks are introduced. A main part of the paper is dedicated to presentation of the HPON network configurator that allows configurating and analyzing the SARDANA HPON characteristics from a viewpoint of various specific network parameters. Finally, a short introduction to the comparison of the SARDANA and SUCCESS HPON networks based on simulation results is presented.

  17. The Analysis of SUCCESS HPON Networks Using the HPON Network Configurator

    Directory of Open Access Journals (Sweden)

    Rastislav Roka

    2013-01-01

    Full Text Available NG-PON systems present optical access infrastructures to support various applications of the many service providers. In the near future, we can expect NG-PON technologies with different motivations for developing of HPON networks. The HPON is a hybrid passive optical network in a way that utilizes on a physical layer both TDM and WDM multiplexing principles together. The HPON network utilizes similar or soft revised topologies as TDM-PON architectures. In this first paper, design requirements for SUCCESS HPON networks are introduced. A main part of the paper is dedicated to presentation of the HPON network configurator that allows configurating and analyzing the SUCCESS HPON characteristics from a viewpoint of various specific network parameters. Finally, a short introduction to the comparison of the SUCCESS and SARDANA HPON networks based on simulation results is presented.

  18. WDM packet switch architectures and analysis of the influence of tunable wavelength converters on the performance

    DEFF Research Database (Denmark)

    Danielsen, Søren Lykke; Mikkelsen, Benny; Jørgensen, Carsten

    1997-01-01

    A detailed analytical traffic model for a photonic wavelength division multiplexing (WDM) packet switch block is presented and the requirements to the buffer size is analyzed. Three different switch architectures are considered, each of them representing different complexities in terms of component.......e., the possibility of several outlets sharing the same physical buffer. For the three architectures presented here, a tradeoff in the buffer architectures is addressed: a buffer physically shared among an outlets requires many wavelengths internally in the switch block, whereas, architectures with buffers dedicated...

  19. A Systematic Scheme for Multiple Access in Ethernet Passive Optical Access Networks

    Science.gov (United States)

    Ma, Maode; Zhu, Yongqing; Hiang Cheng, Tee

    2005-11-01

    While backbone networks have experienced substantial changes in the last decade, access networks have not changed much. Recently, passive optical networks (PONs) seem to be ready for commercial deployment as access networks, due to the maturity of a number of enabling technologies. Among the PON technologies, Ethernet PON (EPON) standardized by the IEEE 802.3ah Ethernet in the First Mile (EFM) Task Force is the most attractive one because of its high speed, low cost, familiarity, interoperability, and low overhead. In this paper, we consider the issue of upstream channel sharing in the EPONs. We propose a novel multiple-access control scheme to provide bandwidth-guaranteed service for high-demand customers, while providing best effort service to low-demand customers according to the service level agreement (SLA). The analytical and simulation results prove that the proposed scheme performs best in what it is designed to do compared to another well-known scheme that has not considered providing differentiated services. With business customers preferring premium services with guaranteed bandwidth and residential users preferring low-cost best effort services, our scheme could benefit both groups of subscribers, as well as the operators.

  20. Experimental Comparison of Gains in Achievable Information Rates from Probabilistic Shaping and Digital Backpropagation for DP-256QAM/1024QAM WDM Systems

    DEFF Research Database (Denmark)

    Porto da Silva, Edson; Yankov, Metodi Plamenov; Da Ros, Francesco

    2016-01-01

    Gains in achievable information rates from probabilistic shaping and digital backpropagation are compared for WDM transmission of 5 × 10 GBd DP-256QAM/1024QAM up to 1700 km of reach. The combination of both techniques its shown to provide gains of up to ∼0.5 bits/QAM symbol...

  1. Contribución al estudio y optimización de dispositivos basados en holografía dinámica para su uso en redes ópticas pasivas multiplexadas en longitud de onda Wdm-Pon

    OpenAIRE

    Martín Minguez, Alfredo

    2007-01-01

    La utilización de Redes Ópticas Pasivas Multiplexadas por División en el Tiempo (TDMPON), y más recientemente de las Redes Ópticas Pasivas Multiplexadas en Longitud de Onda (WDM-PON), con sus dos principales tecnologías, CWDM y DWDM, en distintas topologías de red para optimizar los recursos disponibles, implica el uso de diversos componentes ópticos como transmisores, receptores, de/multiplexores, filtros, etc. Es en este contexto donde el uso de dispositivos holográficos, WDM sintonizables,...

  2. Optical stealth transmission based on super-continuum generation in highly nonlinear fiber over WDM network.

    Science.gov (United States)

    Zhu, Huatao; Wang, Rong; Pu, Tao; Fang, Tao; Xiang, Peng; Zheng, Jilin; Chen, Dalei

    2015-06-01

    In this Letter, the optical stealth transmission carried by super-continuum spectrum optical pulses generated in highly nonlinear fiber is proposed and experimentally demonstrated. In the proposed transmission scheme, super-continuum signals are reshaped in the spectral domain through a wavelength-selective switch and are temporally spread by a chromatic dispersion device to achieve the same noise-like characteristic as the noise in optical networks, so that in both the time domain and the spectral domain, the stealth signals are hidden in public channel. Our experimental results show that compared with existing schemes where stealth channels are carried by amplified spontaneous emission noise, super-continuum signal can increase the transmission performance and robustness.

  3. Application of various surface passivation layers in solar cells

    International Nuclear Information System (INIS)

    Lee, Ji Youn; Lee, Soo Hong

    2004-01-01

    In this work, we have used different techniques for surface passivation: conventional thermal oxidation (CTO), rapid thermal oxidation (RTO), and plasma-enhanced chemical vapour deposition (PECVD). The surface passivation qualities of eight different single and combined double layers have been investigated both on phosphorus non-diffused p-type Float Zone (FZ) silicon wafers and on diffused emitters (100 Ω/□ and 40 Ω/□). CTO/SiN 1 passivates very well not only on a non-diffused surface (τ eff = 1361 μs) but also on an emitter (τ eff = 414 μs). However, we concluded that RTO/SiN 1 and RTO/SiN 2 stacks were more suitable than CTO/SiN stacks for surface passivation in solar cells since those stacks had relatively good passivation qualities and suitable optical reflections. RTO/SiN 1 for rear-surface passivation and RTO/SiN 2 for front-surface passivation were applied to the fabrication of solar cells. We achieved efficiencies of 18.5 % and 18.8 % on 0.5 Ω-cm (FZ) silicon with planar and textured front surfaces, respectively. An excellent open circuit voltage (V oc ) of 675.6 mV was obtained for the planar cell.

  4. In situ passivation of GaAsP nanowires.

    Science.gov (United States)

    Himwas, C; Collin, S; Rale, P; Chauvin, N; Patriarche, G; Oehler, F; Julien, F H; Travers, L; Harmand, J-C; Tchernycheva, M

    2017-12-08

    We report on the structural and optical properties of GaAsP nanowires (NWs) grown by molecular-beam epitaxy. By adjusting the alloy composition in the NWs, the transition energy was tuned to the optimal value required for tandem III-V/silicon solar cells. We discovered that an unintentional shell was also formed during the GaAsP NW growth. The NW surface was passivated by an in situ deposition of a radial Ga(As)P shell. Different shell compositions and thicknesses were investigated. We demonstrate that the optimal passivation conditions for GaAsP NWs (with a gap of 1.78 eV) are obtained with a 5 nm thick GaP shell. This passivation enhances the luminescence intensity of the NWs by 2 orders of magnitude and yields a longer luminescence decay. The luminescence dynamics changes from single exponential decay with a 4 ps characteristic time in non-passivated NWs to a bi-exponential decay with characteristic times of 85 and 540 ps in NWs with GaP shell passivation.

  5. In situ passivation of GaAsP nanowires

    Science.gov (United States)

    Himwas, C.; Collin, S.; Rale, P.; Chauvin, N.; Patriarche, G.; Oehler, F.; Julien, F. H.; Travers, L.; Harmand, J.-C.; Tchernycheva, M.

    2017-12-01

    We report on the structural and optical properties of GaAsP nanowires (NWs) grown by molecular-beam epitaxy. By adjusting the alloy composition in the NWs, the transition energy was tuned to the optimal value required for tandem III-V/silicon solar cells. We discovered that an unintentional shell was also formed during the GaAsP NW growth. The NW surface was passivated by an in situ deposition of a radial Ga(As)P shell. Different shell compositions and thicknesses were investigated. We demonstrate that the optimal passivation conditions for GaAsP NWs (with a gap of 1.78 eV) are obtained with a 5 nm thick GaP shell. This passivation enhances the luminescence intensity of the NWs by 2 orders of magnitude and yields a longer luminescence decay. The luminescence dynamics changes from single exponential decay with a 4 ps characteristic time in non-passivated NWs to a bi-exponential decay with characteristic times of 85 and 540 ps in NWs with GaP shell passivation.

  6. Forward Error Correcting Codes for 100 Gbit/s Optical Communication Systems

    DEFF Research Database (Denmark)

    Li, Bomin

    , a denser WDM grid changes the shape of the BER curve based on the analysis of the experimental results, which requires a stronger FEC code. Furthermore, a proof-of-the-concept hardware implementation is presented. The tradeoff between the code length, the CG and the complexity requires more consideration......-complexity low-power-consumption FEC hardware implementation plays an important role in the next generation energy efficient networks. Thirdly, a joint research is required for FEC integrated applications as the error distribution in channels relies on many factors such as non-linearity in long distance optical...... and their associated experimental demonstration and hardware implementation. The demonstrated high CG, flexibility, robustness and scalability reveal the important role of FEC techniques in the next generation high-speed, high-capacity, high performance and energy-efficient fiber-optic data transmission networks....

  7. Perancancangan Jaringan Fiber To The Home (FTTH Menggunakan Teknologi Gigabyte Passive Optical Network (GPON pada Mall Park23 Tuban

    Directory of Open Access Journals (Sweden)

    I Putu Gede Yudha Pratama

    2017-08-01

    Full Text Available Abstrak-Perancangan jaringan ini berpusat pada sebuah mall baru yang akan dibangun pada daerah Tuban, Bali. Yang dimana mall berada pada pada luas tanah 6,981 m2. Perancangan ini menggunakan sistem IndiHome (100% fiber dengan menggunakan GPON (Gigabyte Passive Optical Network sebagai teknologinya. Perancangan jaringan ini, dimulai dengan perhitungan demand dan menghitung kebutuhan traffik tiap calon tenant yang akan dibagi menjadi 3 kategori jenis tenant. Dilanjutkan dengan proses merancang struktur jaringan yang dimulai dari penyambungan kabel pada closure sebanyak 48 core hingga sampai pada ONT (Optical Network Termination. Hasil analisis dengan menggunakan parameter Power Link Budget diperoleh total redaman untuk uplink dan downlink masing-masing sebesar 23,84 dB dan 23,574 dB. Margin Daya didapat sebesar 4,16 dBm. Sedangkan, Rise Time Budget diperoleh sebesar 0,25 ns untuk uplink dan 0,22 ns untuk downlink. Nilai tersebut masih dibawah standard maksimum rise time yaitu sebesar 0,5833 ns.

  8. Optical luminescence from alkyl-passivated Si nanocrystals under vacuum ultraviolet excitation: Origin and temperature dependence of the blue and orange emissions

    OpenAIRE

    Chao, Y; Houlton, A; Horrocks, BR; Hunt, MRC; Poolton, NRJ; Yang, J; Šiller, L

    2006-01-01

    The origin and stability of luminescence are critical issues for Si nanocrystals which are intended for use as biological probes. The optical luminescence of alkyl-monolayer-passivated silicon nanocrystals was studied under excitation with vacuum ultraviolet photons (5.1–23 eV). Blue and orange emission bands were observed simultaneously, but the blue band only appeared at low temperatures (8.7 eV). At 8 K, the peak wavelengths of the emission bands were 430±2 nm (blue) and 600±2 nm (orange)....

  9. Performance analysis of WS-EWC coded optical CDMA networks with/without LDPC codes

    Science.gov (United States)

    Huang, Chun-Ming; Huang, Jen-Fa; Yang, Chao-Chin

    2010-10-01

    One extended Welch-Costas (EWC) code family for the wavelength-division-multiplexing/spectral-amplitude coding (WDM/SAC; WS) optical code-division multiple-access (OCDMA) networks is proposed. This system has a superior performance as compared to the previous modified quadratic congruence (MQC) coded OCDMA networks. However, since the performance of such a network is unsatisfactory when the data bit rate is higher, one class of quasi-cyclic low-density parity-check (QC-LDPC) code is adopted to improve that. Simulation results show that the performance of the high-speed WS-EWC coded OCDMA network can be greatly improved by using the LDPC codes.

  10. Análisis de prestaciones de láseres en redes de acceso ópticas pasivas de siguiente generación NG-PON2 (Next Generation Passive Optical Networks)

    OpenAIRE

    Martín González, Daniel

    2017-01-01

    Este trabajo se centra en el estudio a nivel físico de las redes ópticas de acceso de siguiente generación (NG-PON2, Next Generation Passive Optical Networks), con las que se llegan a conseguir velocidades de transmisión de datos no inferiores a 40Gbits/s. Esto es gracias a la introducción de 4 longitudes de onda en cada sentido de transmisión. Además, estas redes tienen la ventaja añadida de conseguir transmisiones entre el OLT (Optical Line Termination) y las ONUs (Optical Network Units) de...

  11. Passive thermo-optic feedback for robust athermal photonic systems

    Science.gov (United States)

    Rakich, Peter T.; Watts, Michael R.; Nielson, Gregory N.

    2015-06-23

    Thermal control devices, photonic systems and methods of stabilizing a temperature of a photonic system are provided. A thermal control device thermally coupled to a substrate includes a waveguide for receiving light, an absorption element optically coupled to the waveguide for converting the received light to heat and an optical filter. The optical filter is optically coupled to the waveguide and thermally coupled to the absorption element. An operating point of the optical filter is tuned responsive to the heat from the absorption element. When the operating point is less than a predetermined temperature, the received light is passed to the absorption element via the optical filter. When the operating point is greater than or equal to the predetermined temperature, the received light is transmitted out of the thermal control device via the optical filter, without being passed to the absorption element.

  12. Integrated Optical Content Addressable Memories (CAM and Optical Random Access Memories (RAM for Ultra-Fast Address Look-Up Operations

    Directory of Open Access Journals (Sweden)

    Christos Vagionas

    2017-07-01

    Full Text Available Electronic Content Addressable Memories (CAM implement Address Look-Up (AL table functionalities of network routers; however, they typically operate in the MHz regime, turning AL into a critical network bottleneck. In this communication, we demonstrate the first steps towards developing optical CAM alternatives to enable a re-engineering of AL memories. Firstly, we report on the photonic integration of Semiconductor Optical Amplifier-Mach Zehnder Interferometer (SOA-MZI-based optical Flip-Flop and Random Access Memories on a monolithic InP platform, capable of storing the binary prefix-address data-bits and the outgoing port information for next hop routing, respectively. Subsequently the first optical Binary CAM cell (B-CAM is experimentally demonstrated, comprising an InP Flip-Flop and a SOA-MZI Exclusive OR (XOR gate for fast search operations through an XOR-based bit comparison, yielding an error-free 10 Gb/s operation. This is later extended via physical layer simulations in an optical Ternary-CAM (T-CAM cell and a 4-bit Matchline (ML configuration, supporting a third state of the “logical X” value towards wildcard bits of network subnet masks. The proposed functional CAM and Random Access Memories (RAM sub-circuits may facilitate light-based Address Look-Up tables supporting search operations at 10 Gb/s and beyond, paving the way towards minimizing the disparity with the frantic optical transmission linerates, and fast re-configurability through multiple simultaneous Wavelength Division Multiplexed (WDM memory access requests.

  13. Passive sensor systems for nuclear material monitoring

    International Nuclear Information System (INIS)

    Simpson, M.L.; Boatner, L.A.; Holcomb, D.E.; McElhaney, S.A.; Mihalczo, J.T.; Muhs, J.D.; Roberts, M.R.; Hill, N.W.

    1993-01-01

    Passive fiber optic sensor systems capable of confirming the presence of special nuclear materials in storage or process facilities are being developed at Oak Ridge National Laboratory (ORNL). These sensors provide completely passive, remote measurement capability. No power supplies, amplifiers, or other active components that could degrade system reliability are required at the sensor location. ORNL, through its research programs in scintillator materials, has developed a variety of materials for use in alpha-, beta-, gamma-, and neutron-sensitive scintillator detectors. In addition to sensors for measuring radiation flux, new sensor materials have been developed which are capable of measuring weight, temperature, and source location. An example of a passive sensor for temperature measurement is the combination of a thermophosphor (e.g., rare-earth activated Y 2 O 3 ) with 6 LiF (95% 6 Li). This combination results in a new class of scintillators for thermal neutrons that absorb energy from the radiation particles and remit the energy as a light pulse, the decay rate of which, over a specified temperature range, is temperature dependent. Other passive sensors being developed include pressure-sensitive triboluminescent materials, weight-sensitive silicone rubber fibers, scintillating fibers, and other materials for gamma and neutron detection. The light from the scintillator materials of each sensor would be sent through optical fibers to a monitoring station, where the attribute quantity could be measured and compared with previously recorded emission levels. Confirmatory measurement applications of these technologies are being evaluated to reduce the effort, costs, and employee exposures associated with inventorying stockpiles of highly enriched uranium at the Oak Ridge Y-12 Plant

  14. Structural, optical spectroscopy, optical conductivity, dielectric ...

    Indian Academy of Sciences (India)

    13

    different methods of preparation [36-41]. The electrical insulator materials with low refractive index and low absorption are needed for various optical devices, such as low loss waveguides, resonators, photonic crystals, distributed Bragg reflectors, light-emitting diodes, passive splitters, biosensors, attenuators and filters ...

  15. Energy-saving scheme based on downstream packet scheduling in ethernet passive optical networks

    Science.gov (United States)

    Zhang, Lincong; Liu, Yejun; Guo, Lei; Gong, Xiaoxue

    2013-03-01

    With increasing network sizes, the energy consumption of Passive Optical Networks (PONs) has grown significantly. Therefore, it is important to design effective energy-saving schemes in PONs. Generally, energy-saving schemes have focused on sleeping the low-loaded Optical Network Units (ONUs), which tends to bring large packet delays. Further, the traditional ONU sleep modes are not capable of sleeping the transmitter and receiver independently, though they are not required to transmit or receive packets. Clearly, this approach contributes to wasted energy. Thus, in this paper, we propose an Energy-Saving scheme that is based on downstream Packet Scheduling (ESPS) in Ethernet PON (EPON). First, we design both an algorithm and a rule for downstream packet scheduling at the inter- and intra-ONU levels, respectively, to reduce the downstream packet delay. After that, we propose a hybrid sleep mode that contains not only ONU deep sleep mode but also independent sleep modes for the transmitter and the receiver. This ensures that the energy consumed by the ONUs is minimal. To realize the hybrid sleep mode, a modified GATE control message is designed that involves 10 time points for sleep processes. In ESPS, the 10 time points are calculated according to the allocated bandwidths in both the upstream and the downstream. The simulation results show that ESPS outperforms traditional Upstream Centric Scheduling (UCS) scheme in terms of energy consumption and the average delay for both real-time and non-real-time packets downstream. The simulation results also show that the average energy consumption of each ONU in larger-sized networks is less than that in smaller-sized networks; hence, our ESPS is better suited for larger-sized networks.

  16. THE VELOCITY FUNCTION IN THE LOCAL ENVIRONMENT FROM ΛCDM AND ΛWDM CONSTRAINED SIMULATIONS

    International Nuclear Information System (INIS)

    Zavala, J.; Jing, Y. P.; Faltenbacher, A.; Yepes, G.; Hoffman, Y.; Gottloeber, S.; Catinella, B.

    2009-01-01

    Using constrained simulations of the local universe for generic cold dark matter (CDM) and for 1 keV warm dark matter (WDM), we investigate the difference in the abundance of dark matter halos in the local environment. We find that the mass function (MF) within 20 h -1 Mpc of the Local Group is ∼2 times larger than the universal MF in the 10 9 -10 13 h -1 M sun mass range. Imposing the field of view of the ongoing H I blind survey Arecibo Legacy Fast ALFA (ALFALFA) in our simulations, we predict that the velocity function (VF) in the Virgo-direction region (VdR) exceeds the universal VF by a factor of 3. Furthermore, employing a scheme to translate the halo VF into a galaxy VF, we compare the simulation results with a sample of galaxies from the early catalog release of ALFALFA. We find that our simulations are able to reproduce the VF in the 80-300 km s -1 velocity range, having a value ∼10 times larger than the universal VF in the VdR. In the low-velocity regime, 35-80 km s -1 , the WDM simulation reproduces the observed flattening of the VF. In contrast, the simulation with CDM predicts a steep rise in the VF toward lower velocities; for V max = 35 km s -1 , it forecasts ∼10 times more sources than the ones observed. If confirmed by the complete ALFALFA survey, our results indicate a potential problem for the CDM paradigm or for the conventional assumptions about energetic feedback in dwarf galaxies.

  17. Passive photonic alignment with submicrometer repeatability and accuracy

    NARCIS (Netherlands)

    Gurp, J.F.C.; Tichem, M; Staufer, U.; Zhao, J.

    2013-01-01

    In this paper, we report on passive alignment with submicrometer accuracy of two photonic chips on a silicon optical bench. An effective design principle to minimize the tolerance chain is presented and applied to a case study. The chips have been successfully manufactured and an experimental setup

  18. Passive linear-optics 640 Gbit/s logic NOT gate

    DEFF Research Database (Denmark)

    Maram, Reza; Kong, Deming; Galili, Michael

    2015-01-01

    We experimentally demonstrate a 640 Gbit/s all-optical NOT gate for high-speed telecommunication on-off-keying (OOK) data signals. We employ linear optical signal processing based on spectral phase-only (all-pass) optical filtering to perform the target logic NOT operation....

  19. Call for Papers: Photonics in Switching

    Science.gov (United States)

    Wosinska, Lena; Glick, Madeleine

    2006-04-01

    Call for Papers: Photonics in Switching Guest Editors: Lena Wosinska, Royal Institute of Technology (KTH) / ICT Sweden Madeleine Glick, Intel Research, Cambridge, UK Technologies based on DWDM systems allow data transmission with bit rates of Tbit/s on a single fiber. To facilitate this enormous transmission volume, high-capacity and high-speed network nodes become inevitable in the optical network. Wideband switching, WDM switching, optical burst switching (OBS), and optical packet switching (OPS) are promising technologies for harnessing the bandwidth of WDM optical fiber networks in a highly flexible and efficient manner. As a number of key optical component technologies approach maturity, photonics in switching is becoming an increasingly attractive and practical solution for the next-generation of optical networks. The scope of this special issue is focused on the technology and architecture of optical switching nodes, including the architectural and algorithmic aspects of high-speed optical networks. Scope of Submission The scope of the papers includes, but is not limited to, the following topics: WDM node architectures Novel device technologies enabling photonics in switching, such as optical switch fabrics, optical memory, and wavelength conversion Routing protocols WDM switching and routing Quality of service Performance measurement and evaluation Next-generation optical networks: architecture, signaling, and control Traffic measurement and field trials Optical burst and packet switching OBS/OPS node architectures Burst/Packet scheduling and routing algorithms Contention resolution/avoidance strategies Services and applications for OBS/OPS (e.g., grid networks, storage-area networks, etc.) Burst assembly and ingress traffic shaping Hybrid OBS/TDM or OBS/wavelength routing Manuscript Submission To submit to this special issue, follow the normal procedure for submission to JON and select ``Photonics in Switching' in the features indicator of the online

  20. Towards a versatile active wavelength converter for all-optical networks based on quasi-phase matched intra-cavity difference-frequency generation.

    Science.gov (United States)

    Torregrosa, Adrián J; Maestre, Haroldo; Capmany, Juan

    2013-11-18

    The availability of reconfigurable all-optical wavelength converters for an efficient and flexible use of optical resources in WDM (wavelength division multiplexing) networks is still lacking at present. We propose and report preliminary results on a versatile active technique for multiple and tunable wavelength conversions in the 1500-1700 nm spectral region. The technique is based on combining broadband quasi-phase matched intra-cavity parametric single-pass difference-frequency generation close to degeneracy in a diode-pumped tunable laser. A periodically poled stoichiometric lithium tantalate crystal is used as the nonlinear medium, with a parametric pump wave generated in a continuous-wave self-injection locked Cr3+:LiCAF tunable laser operating at around 800 nm.

  1. Design of all-optical flip-flop by using optical bistability in passive micro-rings

    International Nuclear Information System (INIS)

    Karimi, M.; Abolfazli, M. J.; Rouholamini Nejad, H.; Bahrampour, A.

    2007-01-01

    In this paper at first, Optical bistability in the micro ring resonators in the presence of Kerr and two-photon absorption effects is studied and also, attenuation in micro rings with these nonlinear effects is calculated. An all-optical R-S flip-flop is designed by using optical bistability. Conditions for SET and RESET signals are calculated and their dependences on the optical parameters of micro rings are investigated.

  2. Directional amplifier in an optomechanical system with optical gain

    Science.gov (United States)

    Jiang, Cheng; Song, L. N.; Li, Yong

    2018-05-01

    Directional amplifiers are crucial nonreciprocal devices in both classical and quantum information processing. Here we propose a scheme for realizing a directional amplifier between optical and microwave fields based on an optomechanical system with optical gain, where an active optical cavity and two passive microwave cavities are coupled to a common mechanical resonator via radiation pressure. The two passive cavities are coupled via hopping interaction to facilitate the directional amplification between the active and passive cavities. We obtain the condition of achieving optical directional amplification and find that the direction of amplification can be controlled by the phase differences between the effective optomechanical couplings. The effects of the gain rate of the active cavity and the effective coupling strengths on the maximum gain of the amplifier are discussed. We show that the noise added to this amplifier can be greatly suppressed in the large cooperativity limit.

  3. Examining the impact of overlying aerosols on the retrieval of cloud optical properties from passive remote sensing

    Science.gov (United States)

    Coddington, O. M.; Pilewskie, P.; Redemann, J.; Platnick, S.; Russell, P. B.; Schmidt, K. S.; Gore, W. J.; Livingston, J.; Wind, G.; Vukicevic, T.

    2010-05-01

    Haywood et al. (2004) show that an aerosol layer above a cloud can cause a bias in the retrieved cloud optical thickness and effective radius. Monitoring for this potential bias is difficult because space-based passive remote sensing cannot unambiguously detect or characterize aerosol above cloud. We show that cloud retrievals from aircraft measurements above cloud and below an overlying aerosol layer are a means to test this bias. The data were collected during the Intercontinental Chemical Transport Experiment (INTEX-A) study based out of Portsmouth, New Hampshire, United States, above extensive, marine stratus cloud banks affected by industrial outflow. Solar Spectral Flux Radiometer (SSFR) irradiance measurements taken along a lower level flight leg above cloud and below aerosol were unaffected by the overlying aerosol. Along upper level flight legs, the irradiance reflected from cloud top was transmitted through an aerosol layer. We compare SSFR cloud retrievals from below-aerosol legs to satellite retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) in order to detect an aerosol-induced bias. In regions of small variation in cloud properties, we find that SSFR and MODIS-retrieved cloud optical thickness compares within the uncertainty range for each instrument while SSFR effective radius tend to be smaller than MODIS values (by 1-2 μm) and at the low end of MODIS uncertainty estimates. In regions of large variation in cloud properties, differences in SSFR and MODIS-retrieved cloud optical thickness and effective radius can reach values of 10 and 10 μm, respectively. We include aerosols in forward modeling to test the sensitivity of SSFR cloud retrievals to overlying aerosol layers. We find an overlying absorbing aerosol layer biases SSFR cloud retrievals to smaller effective radii and optical thickness while nonabsorbing aerosols had no impact.

  4. Examining the Impact of Overlying Aerosols on the Retrieval of Cloud Optical Properties from Passive Remote Sensing

    Science.gov (United States)

    Coddington, O. M.; Pilewskie, P.; Redemann, J.; Platnick, S.; Russell, P. B.; Schmidt, K. S.; Gore, W. J.; Livingston, J.; Wind, G.; Vukicevic, T.

    2010-01-01

    Haywood et al. (2004) show that an aerosol layer above a cloud can cause a bias in the retrieved cloud optical thickness and effective radius. Monitoring for this potential bias is difficult because space ]based passive remote sensing cannot unambiguously detect or characterize aerosol above cloud. We show that cloud retrievals from aircraft measurements above cloud and below an overlying aerosol layer are a means to test this bias. The data were collected during the Intercontinental Chemical Transport Experiment (INTEX-A) study based out of Portsmouth, New Hampshire, United States, above extensive, marine stratus cloud banks affected by industrial outflow. Solar Spectral Flux Radiometer (SSFR) irradiance measurements taken along a lower level flight leg above cloud and below aerosol were unaffected by the overlying aerosol. Along upper level flight legs, the irradiance reflected from cloud top was transmitted through an aerosol layer. We compare SSFR cloud retrievals from below ]aerosol legs to satellite retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) in order to detect an aerosol ]induced bias. In regions of small variation in cloud properties, we find that SSFR and MODIS-retrieved cloud optical thickness compares within the uncertainty range for each instrument while SSFR effective radius tend to be smaller than MODIS values (by 1-2 microns) and at the low end of MODIS uncertainty estimates. In regions of large variation in cloud properties, differences in SSFR and MODIS ]retrieved cloud optical thickness and effective radius can reach values of 10 and 10 microns, respectively. We include aerosols in forward modeling to test the sensitivity of SSFR cloud retrievals to overlying aerosol layers. We find an overlying absorbing aerosol layer biases SSFR cloud retrievals to smaller effective radii and optical thickness while nonabsorbing aerosols had no impact.

  5. Four-port mode-selective silicon optical router for on-chip optical interconnect.

    Science.gov (United States)

    Jia, Hao; Zhou, Ting; Fu, Xin; Ding, Jianfeng; Zhang, Lei; Yang, Lin

    2018-04-16

    We propose and demonstrate a four-port mode-selective optical router on a silicon-on-insulator platform. The passive routing property ensures that the router consumes no power to establish the optical links. For each port, input signals with different modes are selectively routed to the target ports through the pre-designed architecture. In general, the device intrinsically supports broadcasting of multiplexed signals from one port to the other three ports through mode division multiplexing. In some applications, the input signal from one port would only be sent to another port as in reconfigurable optical routers. The prototype is constructed by mode multiplexers/de-multiplexers and single-mode interconnect waveguides between them. The insertion losses for all optical links are lower than 8.0 dB, and the largest optical crosstalk values are lower than -18.7 dB and -22.0 dB for the broadcasting and port-to-port routing modes, respectively, at the wavelength range of 1525-1565 nm. In order to verify the routing functionality, a 40-Gbps bidirectional data transmission experiment is performed. The device offers a promising building block for passive routing by utilizing the dimension of the modes.

  6. MEMS: A new approach to micro-optics

    Energy Technology Data Exchange (ETDEWEB)

    Sniegowski, J.J.

    1997-12-31

    MicroElectroMechanical Systems (MEMS) and their fabrication technologies provide great opportunities for application to micro-optical systems (MOEMS). Implementing MOEMS technology ranges from simple, passive components to complicated, active systems. Here, an overview of polysilicon surface micromachining MEMS combined with optics is presented. Recent advancements to the technology, which may enhance its appeal for micro-optics applications are emphasized. Of all the MEMS fabrication technologies, polysilicon surface micromachining technology has the greatest basis in and leverages the most the infrastructure for silicon integrated circuit fabrication. In that respect, it provides the potential for very large volume, inexpensive production of MOEMS. This paper highlights polysilicon surface micromachining technology in regards to its capability to provide both passive and active mechanical elements with quality optical elements.

  7. Traffic classification with passive measurement

    OpenAIRE

    Pham, Hoang Phong

    2005-01-01

    Abstract This is a master thesis from a collaboration between Oslo University College and Uninett Research. Uninett have a passive monitoring device on a 2.5 Gbps backbone link between Trondheim and Narvik. They uses measurement with optical splitters and specialized measuring interfaces to trace traffic with Gigabit speed. We would like to investigate the structure and patterns in these data. It is of special interest to classify the traffic belonging to different services and protocols. ...

  8. Verifying Air Force Weather Passive Satellite Derived Cloud Analysis Products

    Science.gov (United States)

    Nobis, T. E.

    2017-12-01

    Air Force Weather (AFW) has developed an hourly World-Wide Merged Cloud Analysis (WWMCA) using imager data from 16 geostationary and polar-orbiting satellites. The analysis product contains information on cloud fraction, height, type and various optical properties including optical depth and integrated water path. All of these products are derived using a suite of algorithms which rely exclusively on passively sensed data from short, mid and long wave imager data. The system integrates satellites with a wide-range of capabilities, from the relatively simple two-channel OLS imager to the 16 channel ABI/AHI to create a seamless global analysis in real time. Over the last couple of years, AFW has started utilizing independent verification data from active sensed cloud measurements to better understand the performance limitations of the WWMCA. Sources utilized include space based lidars (CALIPSO, CATS) and radar (CloudSat) as well as ground based lidars from the Department of Energy ARM sites and several European cloud radars. This work will present findings from our efforts to compare active and passive sensed cloud information including comparison techniques/limitations as well as performance of the passive derived cloud information against the active.

  9. Underwater fiber-wireless communication with a passive front end

    Science.gov (United States)

    Xu, Jing; Sun, Bin; Lyu, Weichao; Kong, Meiwei; Sarwar, Rohail; Han, Jun; Zhang, Wei; Deng, Ning

    2017-11-01

    We propose and experimentally demonstrate a novel concept on underwater fiber-wireless (Fi-Wi) communication system with a fully passive wireless front end. A low-cost step-index (SI) plastic optical fiber (POF) together with a passive collimating lens at the front end composes the underwater Fi-Wi architecture. We have achieved a 1.71-Gb/s transmission at a mean BER of 4.97 × 10-3 (1.30 × 10-3 when using power loading) over a 50-m SI-POF and 2-m underwater wireless channel using orthogonal frequency division multiplexing (OFDM). Although the wireless part is very short, it actually plays a crucial role in practical underwater implementation, especially in deep sea. Compared with the wired solution (e.g. using a 52-m POF cable without the UWOC part), the proposed underwater Fi-Wi scheme can save optical wet-mate connectors that are sophisticated, very expensive and difficult to install in deep ocean. By combining high-capacity robust POF with the mobility and ubiquity of underwater wireless optical communication (UWOC), the proposed underwater Fi-Wi technology will find wide application in ocean exploration.

  10. The theoretical study of passive and active optical devices via planewave based transfer (scattering) matrix method and other approaches

    Energy Technology Data Exchange (ETDEWEB)

    Zhuo, Ye [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    In this thesis, we theoretically study the electromagnetic wave propagation in several passive and active optical components and devices including 2-D photonic crystals, straight and curved waveguides, organic light emitting diodes (OLEDs), and etc. Several optical designs are also presented like organic photovoltaic (OPV) cells and solar concentrators. The first part of the thesis focuses on theoretical investigation. First, the plane-wave-based transfer (scattering) matrix method (TMM) is briefly described with a short review of photonic crystals and other numerical methods to study them (Chapter 1 and 2). Next TMM, the numerical method itself is investigated in details and developed in advance to deal with more complex optical systems. In chapter 3, TMM is extended in curvilinear coordinates to study curved nanoribbon waveguides. The problem of a curved structure is transformed into an equivalent one of a straight structure with spatially dependent tensors of dielectric constant and magnetic permeability. In chapter 4, a new set of localized basis orbitals are introduced to locally represent electromagnetic field in photonic crystals as alternative to planewave basis. The second part of the thesis focuses on the design of optical devices. First, two examples of TMM applications are given. The first example is the design of metal grating structures as replacements of ITO to enhance the optical absorption in OPV cells (chapter 6). The second one is the design of the same structure as above to enhance the light extraction of OLEDs (chapter 7). Next, two design examples by ray tracing method are given, including applying a microlens array to enhance the light extraction of OLEDs (chapter 5) and an all-angle wide-wavelength design of solar concentrator (chapter 8). In summary, this dissertation has extended TMM which makes it capable of treating complex optical systems. Several optical designs by TMM and ray tracing method are also given as a full complement of this

  11. Compact 84 GHz passive mode-locked fiber laser using dual-fiber coupled fused-quartz microresonator

    Science.gov (United States)

    Liu, Tze-An; Hsu, Yung; Chow, Chi-Wai; Chuang, Yi-Chen; Ting, Wei-Jo; Wang, Bo-Chun; Peng, Jin-Long; Chen, Guan-Hong; Chang, Yuan-Chia

    2017-10-01

    We propose and demonstrate a compact and portable-size 84-GHz passive mode-locked fiber laser, in which a dual-fiber coupled fused-quartz microresonator is employed as the intracavity optical comb filter as well as the optical nonlinear material for optical frequency comb generation. About eight coherent optical tones can be generated in the proposed fiber laser. The 20-dB bandwidth is larger than 588 GHz. The full-width half-maximum pulse-width of the proposed laser is 2.5 ps. We also demonstrate the feasibility of using the proposed passive mode-locked fiber laser to carry a 5-Gbit/s on-off-keying signal and transmit over 20-km standard single mode fiber. A 7% forward error correction requirement can be achieved, showing the proposed fiber laser can be a potential candidate for fiber-wireless applications.

  12. Towards green high capacity optical networks

    Science.gov (United States)

    Glesk, I.; Mohd Warip, M. N.; Idris, S. K.; Osadola, T. B.; Andonovic, I.

    2011-09-01

    The demand for fast, secure, energy efficient high capacity networks is growing. It is fuelled by transmission bandwidth needs which will support among other things the rapid penetration of multimedia applications empowering smart consumer electronics and E-businesses. All the above trigger unparallel needs for networking solutions which must offer not only high-speed low-cost "on demand" mobile connectivity but should be ecologically friendly and have low carbon footprint. The first answer to address the bandwidth needs was deployment of fibre optic technologies into transport networks. After this it became quickly obvious that the inferior electronic bandwidth (if compared to optical fiber) will further keep its upper hand on maximum implementable serial data rates. A new solution was found by introducing parallelism into data transport in the form of Wavelength Division Multiplexing (WDM) which has helped dramatically to improve aggregate throughput of optical networks. However with these advancements a new bottleneck has emerged at fibre endpoints where data routers must process the incoming and outgoing traffic. Here, even with the massive and power hungry electronic parallelism routers today (still relying upon bandwidth limiting electronics) do not offer needed processing speeds networks demands. In this paper we will discuss some novel unconventional approaches to address network scalability leading to energy savings via advance optical signal processing. We will also investigate energy savings based on advanced network management through nodes hibernation proposed for Optical IP networks. The hibernation reduces the network overall power consumption by forming virtual network reconfigurations through selective nodes groupings and by links segmentations and partitionings.

  13. Feasibility of Optical Packet Switched WDM Networks without Packet Synchronisation Under Bursty Traffic Conditions

    DEFF Research Database (Denmark)

    Fjelde, Tina; Hansen, Peter Bukhave; Kloch, Allan

    1999-01-01

    We show that complex packet synchronisation may be avoided in optical packetswitched networks. Detailed traffic analysis demonstrates that packet lossratios of 1e-10 are feasible under bursty traffic conditions for a highcapacity network consisting of asynchronously operated add-drop switch...

  14. Watershed Data Management (WDM) database for West Branch DuPage River streamflow simulation, DuPage County, Illinois, January 1, 2007, through September 30, 2013

    Science.gov (United States)

    Bera, Maitreyee

    2017-10-16

    The U.S. Geological Survey (USGS), in cooperation with the DuPage County Stormwater Management Department, maintains a database of hourly meteorological and hydrologic data for use in a near real-time streamflow simulation system. This system is used in the management and operation of reservoirs and other flood-control structures in the West Branch DuPage River watershed in DuPage County, Illinois. The majority of the precipitation data are collected from a tipping-bucket rain-gage network located in and near DuPage County. The other meteorological data (air temperature, dewpoint temperature, wind speed, and solar radiation) are collected at Argonne National Laboratory in Argonne, Ill. Potential evapotranspiration is computed from the meteorological data using the computer program LXPET (Lamoreux Potential Evapotranspiration). The hydrologic data (water-surface elevation [stage] and discharge) are collected at U.S.Geological Survey streamflow-gaging stations in and around DuPage County. These data are stored in a Watershed Data Management (WDM) database.This report describes a version of the WDM database that is quality-assured and quality-controlled annually to ensure datasets are complete and accurate. This database is named WBDR13.WDM. It contains data from January 1, 2007, through September 30, 2013. Each precipitation dataset may have time periods of inaccurate data. This report describes the methods used to estimate the data for the periods of missing, erroneous, or snowfall-affected data and thereby improve the accuracy of these data. The other meteorological datasets are described in detail in Over and others (2010), and the hydrologic datasets in the database are fully described in the online USGS annual water data reports for Illinois (U.S. Geological Survey, 2016) and, therefore, are described in less detail than the precipitation datasets in this report.

  15. Pulsed Laser Deposition: passive and active waveguides

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav; Flory, F.; Escoubas, L.

    2009-01-01

    Roč. 34, č. 4 (2009), s. 438-449 ISSN 0268-1900 R&D Projects: GA ČR GA202/06/0216 Institutional research plan: CEZ:AV0Z10100522 Keywords : PLD * pulsed laser deposition * laser ablation * passive waveguides * active waveguides * waveguide laser * sensors * thin films * butane detection Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.384, year: 2009

  16. Novel all-optical dispersion monitoring technique for ultra-high-speed WDM networks

    Energy Technology Data Exchange (ETDEWEB)

    Cui Sheng; Li Li; Liu Deming, E-mail: cuisheng@mail.hust.edu.cn [Wuhan National Laboratory for Optoelectronics, No.1037, Luoyu Road, Wuhan, Hubei, 430074 (China)

    2011-02-01

    This paper represents a novel all-optical dispersion monitoring technique based on fiber parametric amplifiers (FOPAs). The monitoring method is truly bit-rate transparent because it is enabled by the exponential power transfer function (PTF) provided by the FOPA gain. The slope of the PTF is increased from 2 to 3 by choosing appropriate phase-matching conditions. Due to the steeper PTF the monitoring sensitivity is greatly improved compared to the other PTF-based methods proposed before. The PTF obtained by numerical simulations agrees very well with the experimental results. Numerical simulations are then used to demonstrate that our method can be used to monitor signals in various modulation formats.

  17. LightFD: A Lightweight Flow Detection Mechanism for Traffic Grooming in Optical Wireless DCNs

    KAUST Repository

    Al-Ghadhban, Amer

    2018-05-05

    State of the art wireless technologies have recently shown a great potential for enabling re-configurable data center network (DCN) topologies by augmenting the cabling complexity and link inflexibility of traditional wired data centers (DCs). In this paper, we propose an optical traffic grooming (TG) method for mice flows (MFs) and elephant flows (EFs) in wireless DCNs which are interconnected with wavelength division multiplexing (WDM) capable free-space optical (FSO) links. Since handling the bandwidth-hungry EFs along with delay-sensitive MFs over the same network resources have undesirable consequences, proposed TG policy handles MFs and EFs over distinctive network resources. MFs/EFs destined to the same rack are groomed into larger rack-to-rack MF/EF flows over dedicated lightpaths whose routes and capacities are jointly determined in a load balancing manner. Performance evaluations of proposed TG policy show a significant throughput improvement thanks to efficient bandwidth utilization of the WDM-FSO links. As MFs and EFs are needed to be separated, proposed TG requires expeditious flow detection mechanisms which can immediately classify EFs with very high accuracy. Since these cannot be met by existing packet-sampling and port-mirroring based solutions, we propose a fast and lightweight in-network flow detection (LightFD) mechanism with perfect accuracy. LightFD is designed as a module on the Virtual-Switch/Hypervisor, which detects EFs based on acknowledgment sequence number of flow packets. Emulation results show that LightFD can provide up to 500 times faster detection speeds than the sampling-based methods with %100 detection precision. We also demonstrate that the EF detection speed has a considerable impact on achievable EF throughput.

  18. Optimizing the next generation optical access networks

    DEFF Research Database (Denmark)

    Amaya Fernández, Ferney Orlando; Soto, Ana Cardenas; Tafur Monroy, Idelfonso

    2009-01-01

    Several issues in the design and optimization of the next generation optical access network (NG-OAN) are presented. The noise, the distortion and the fiber optic nonlinearities are considered to optimize the video distribution link in a passive optical network (PON). A discussion of the effect...

  19. Projeto de EDFAs com controle automatico de ganho totalmente optico para aplicações em redes WDM

    OpenAIRE

    Julio Cesar Rodrigues Fernandes de Oliveira

    2004-01-01

    Resumo: A variação na potência da entrada em amplificadores ópticos a fibra dopada com Érbio (EDFAs) induz alterações em seu ganho. No caso de sistemas ou redes WDM onde o número de canais acoplados ao amplificador varia, o ganho torna-se dependente do número de canais que estão sendo transmitidos, especialmente se o amplificador opera saturado. Este trabalho apresenta o desenvolvimento e a avaliação experimental de uma técnica de controle de ganho totalmente óptica para EDFAs. Esta técnica d...

  20. Q FUNCTION AWARE OPTICAL PACKET SWITCH WITH LOW PACKET LOSS RATE

    Directory of Open Access Journals (Sweden)

    OMPAL SINGH

    2017-03-01

    Full Text Available Optical packet switching (OPS is a very promising technology for the next generation data transfer due to the very large bandwidth of the optical fiber. The success of the OPS relies heavily on design of the node architecture which supports comparatively larger buffering capacity without detiorating signal quality too much and it should provide very low packet loss probability with reasonably low average delay. In this paper, a design analysis of low complexity OPS node architecture is discussed along-with its advantages. The presented architecture support both fixed and variable length packets. The packets are stored in a single piece of fiber using the WDM technology. Physical layer analysis presented in this paper is to obtain the Q function (Bit Error Rate. Finally, the Monte Carlo simulation is done to obtain the packet loss. The average delay performance of the switch and effect of Q values on packet loss rates are discussed.

  1. Sidewall passivation for InGaN/GaN nanopillar light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Won Hyuck; Abraham, Michael; Yu, Shih-Ying [Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); You, Guanjun; Liu, Jie; Wang, Li; Xu, Jian, E-mail: jianxu@engr.psu.edu [Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Mohney, Suzanne E., E-mail: mohney@ems.psu.edu [Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2014-07-07

    We studied the effect of sidewall passivation on InGaN/GaN multiquantum well-based nanopillar light emitting diode (LED) performance. In this research, the effects of varying etch rate, KOH treatment, and sulfur passivation were studied for reducing nanopillar sidewall damage and improving device efficiency. Nanopillars prepared under optimal etching conditions showed higher photoluminescence intensity compared with starting planar epilayers. Furthermore, nanopillar LEDs with and without sulfur passivation were compared through electrical and optical characterization. Suppressed leakage current under reverse bias and four times higher electroluminescence (EL) intensity were observed for passivated nanopillar LEDs compared with unpassivated nanopillar LEDs. The suppressed leakage current and EL intensity enhancement reflect the reduction of non-radiative recombination at the nanopillar sidewalls. In addition, the effect of sulfur passivation was found to be very stable, and further insight into its mechanism was gained through transmission electron microscopy.

  2. Tunable arrayed waveguide grating driven by surface acoustic waves

    Science.gov (United States)

    Crespo-Poveda, Antonio; Hernández-Mínguez, Alberto; Biermann, Klaus; Tahraoui, Abbes; Gargallo, Bernardo; Muñoz, Pascual; Santos, Paulo V.; Cantarero, Andrés.; de Lima, Maurício M.

    2016-03-01

    We present a design approach for compact reconfigurable phased-array wavelength-division multiplexing (WDM) devices with N access waveguides (WGs) based on multimode interference (MMI) couplers. The proposed devices comprise two MMI couplers which are employed as power splitters and combiners, respectively, linked by an array of N single-mode WGs. First, passive devices are explored. Taking advantage of the transfer phases between the access ports of the MMI couplers, we derive very simple phase relations between the arms that provide wavelength dispersion at the output plane of the devices. When the effective refractive index of the WGs is modulated with the proper relative optical phase difference, each wavelength component can switch paths between the preset output channel and the remaining output WGs. Moreover, very simple phase relations between the modulated WGs that enable the reconfiguration of the output channel distribution when the appropriated coupling lengths of the MMI couplers are chosen are also derived. In this way, a very compact expression to calculate the channel assignment of the devices as a function of the applied phase shift is derived for the general case of N access WGs. Finally, the experimental results corresponding to an acoustically driven phased-array WDM device with five access WGs fabricated on (Al,Ga)As are shown.

  3. An Ultraviolet Optical Wireless Sensor Network in Multi-scattering Channels

    Science.gov (United States)

    Kedar, Debbie; Arnon, Shlomi

    2006-10-01

    Networks of wirelessly communicating sensors are a promising technology for future data-gathering systems in both civilian and military applications including medical and environmental monitoring and surveillance, home security and industry. Optical wireless communication is a potential solution for the links, particularly thanks to the small and lightweight hardware and low power consumption. A noteworthy feature of optical wireless communication at ultraviolet wavelengths is that scattering of radiation by atmospheric particles is significant, so that the backscattering of light by these particles can function as a vehicle of communication as if numerous tiny reflecting mirrors were placed in the atmosphere. Also, almost no solar radiation penetrates the atmosphere in this spectral band, which is hence called the solar blind ultraviolet spectrum, so that very large field-of-view receivers can be used. In this paper we present a model of a non-line-of-sight (NLOS) optical wireless sensor network operating in the solar blind ultraviolet spectrum. The system feasibility is evaluated and found to facilitate miniature operational sensor networks. The problem of multi-access interference is addressed and the possibility of overcoming it using WDM diversity methods is investigated.

  4. Sampling strategies to improve passive optical remote sensing of river bathymetry

    Science.gov (United States)

    Legleiter, Carl; Overstreet, Brandon; Kinzel, Paul J.

    2018-01-01

    Passive optical remote sensing of river bathymetry involves establishing a relation between depth and reflectance that can be applied throughout an image to produce a depth map. Building upon the Optimal Band Ratio Analysis (OBRA) framework, we introduce sampling strategies for constructing calibration data sets that lead to strong relationships between an image-derived quantity and depth across a range of depths. Progressively excluding observations that exceed a series of cutoff depths from the calibration process improved the accuracy of depth estimates and allowed the maximum detectable depth ($d_{max}$) to be inferred directly from an image. Depth retrieval in two distinct rivers also was enhanced by a stratified version of OBRA that partitions field measurements into a series of depth bins to avoid biases associated with under-representation of shallow areas in typical field data sets. In the shallower, clearer of the two rivers, including the deepest field observations in the calibration data set did not compromise depth retrieval accuracy, suggesting that $d_{max}$ was not exceeded and the reach could be mapped without gaps. Conversely, in the deeper and more turbid stream, progressive truncation of input depths yielded a plausible estimate of $d_{max}$ consistent with theoretical calculations based on field measurements of light attenuation by the water column. This result implied that the entire channel, including pools, could not be mapped remotely. However, truncation improved the accuracy of depth estimates in areas shallower than $d_{max}$, which comprise the majority of the channel and are of primary interest for many habitat-oriented applications.

  5. Generation of Flattened Multicarrier Signals from a Single Laser Source for 330 Gbps WDM-PON Transmission over 25 km SSMF

    Science.gov (United States)

    Ullah, Sibghat; Liu, Bo; Ullah, Rahat; Ahmad, Muhammad; Wang, Fu; Zhang, Lijia; Xin, Xiangjun; Memon, Kamran Ali; Khalid, Hafiz Ahmad

    2017-12-01

    A novel technique is proposed for optical frequency comb generation with a budget friendly system. A Mach-Zehnder modulator is used in connectivity with continuous wave optical signal which is filtered by rectangle optical filter and the signal is then amplified by erbium-doped fiber amplifier. With a frequency spacing of 10 GHz 33 useable OFC lines were generated with good tone to noise ratio which is quite impressive for such a cost effective setup. Each generated carrier carries differential phase shift keying based data of 10 Gbps. A total of 330 Gbps multiplexed data is successfully transmitted through a standard single mode fiber length of 25-km. During the downlink transmission the power penalties are observed to be negligible. The resulted eye diagrams are wide and promises to be a good system for wavelength division multiplexed-passive optical network.

  6. Hybridization of active and passive elements for planar photonic components and interconnects

    Science.gov (United States)

    Pearson, M.; Bidnyk, S.; Balakrishnan, A.

    2007-02-01

    The deployment of Passive Optical Networks (PON) for Fiber-to-the-Home (FTTH) applications currently represents the fastest growing sector of the telecommunication industry. Traditionally, FTTH transceivers have been manufactured using commodity bulk optics subcomponents, such as thin film filters (TFFs), micro-optic collimating lenses, TO-packaged lasers, and photodetectors. Assembling these subcomponents into a single housing requires active alignment and labor-intensive techniques. Today, the majority of cost reducing strategies using bulk subcomponents has been implemented making future reductions in the price of manufacturing FTTH transceivers unlikely. Future success of large scale deployments of FTTH depends on further cost reductions of transceivers. Realizing the necessity of a radically new packaging approach for assembly of photonic components and interconnects, we designed a novel way of hybridizing active and passive elements into a planar lightwave circuit (PLC) platform. In our approach, all the filtering components were monolithically integrated into the chip using advancements in planar reflective gratings. Subsequently, active components were passively hybridized with the chip using fully-automated high-capacity flip-chip bonders. In this approach, the assembly of the transceiver package required no active alignment and was readily suitable for large-scale production. This paper describes the monolithic integration of filters and hybridization of active components in both silica-on-silicon and silicon-on-insulator PLCs.

  7. Optical wireless communications to OC-768 and beyond

    Science.gov (United States)

    Medved, David B.; Davidovich, Leonid

    2001-10-01

    back to photons we have designed a series of airlinks whose transmitters and receivers operate without electronics. At the PATX (Photonic Airlink Transmitter), instead of demodulating the fiber optic input signals from a Network Interface Unit (NIU) we project the light from the polished terminated fiber end into the air using appropriate optics. Any signal being carried by the fiber from the NIU is now airborne without any intermediate processing electronics thus realizing the full potential of the optical carrier. At the receiver end (PARX - Photonic Airlink Receiver), the weak optical signals are collected by the appropriate optics (including combiners using large area MMF) and guided to the NIU (switch, PABX, etc.) by compatible fiber. It is necessary to maintain a large field-of-view at the receiver to ensure reliability, stability and ease of alignment. This is achieved by use of high N.A. fiber. In this paper we discuss the design trade off's, construction and field test results of several systems implementing the all- photonic wireless concept including: Transmission of WDM signals through the air at distances up to 1 km. Results with wireless transmission of Gigabit Ethernet using the Optiswitch modules as the NIU. Providing high speed wireless (Fast Ethernet and beyond) to the home at a cost of less than $250 per node. The paper will conclude with a discussion on the role of the all-photonic wireless technology in the emerging field of Passive Optical Networking.

  8. Simulative Analysis of Inter-Satellite Optical Wireless Communication (IsOWC) Link with EDFA

    Science.gov (United States)

    Singh, Mehtab; Singh, Navpreet

    2018-04-01

    In this paper, simulative analysis and performance comparison of different EDFA (Erbium-doped fiber amplifier) configurations in a 10 Gbps inter-satellite optical wireless communication (IsOWC) link have been reported for a 5,000 km long link and 1,550 nm operating wavelength. The results show that system in which both pre-amplifier and booster amplifier stages are implemented simultaneously outperforms systems with only pre-amplifier and booster amplifier stage. From the results, it can be seen that by deploying a transmission power level of 15 dBm, a link distance of 9,600 km can be achieved with a quality factor of 6.01 dB and BER (Bit error rate) of 1.07×10-9. Also, in this paper, the performance of an 8×7 Gbps WDM-IsOWC link has been reported. The results show that by using both EDFA pre-amplifier and booster amplifier stages, a link distance of 8,000 km for each channel is achievable with desired performance levels (Q≥6 and BER≤10-9). Also, the effect of channel spacing on the performance of WDM-IsOWC link is investigated. The results show that the received signal has acceptable performance levels when the channel spacing is 100 GHz but when the channel spacing is reduced to 80 GHz, the quality of the received signal degrades and link distance decreases.

  9. Active and Passive Optical Imaging Modality for Unobtrusive Cardiorespiratory Monitoring and Facial Expression Assessment.

    Science.gov (United States)

    Blazek, Vladimir; Blanik, Nikolai; Blazek, Claudia R; Paul, Michael; Pereira, Carina; Koeny, Marcus; Venema, Boudewijn; Leonhardt, Steffen

    2017-01-01

    Because of their obvious advantages, active and passive optoelectronic sensor concepts are being investigated by biomedical research groups worldwide, particularly their camera-based variants. Such methods work noninvasively and contactless, and they provide spatially resolved parameter detection. We present 2 techniques: the active photoplethysmography imaging (PPGI) method for detecting dermal blood perfusion dynamics and the passive infrared thermography imaging (IRTI) method for detecting skin temperature distribution. PPGI is an enhancement of classical pulse oximetry. Approved algorithms from pulse oximetry for the detection of heart rate, heart rate variability, blood pressure-dependent pulse wave velocity, pulse waveform-related stress/pain indicators, respiration rate, respiratory variability, and vasomotional activity can easily be adapted to PPGI. Although the IRTI method primarily records temperature distribution of the observed object, information on respiration rate and respiratory variability can also be derived by analyzing temperature change over time, for example, in the nasal region, or through respiratory movement. Combined with current research areas and novel biomedical engineering applications (eg, telemedicine, tele-emergency, and telemedical diagnostics), PPGI and IRTI may offer new data for diagnostic purposes, including assessment of peripheral arterial and venous oxygen saturation (as well as their differences). Moreover, facial expressions and stress and/or pain-related variables can be derived, for example, during anesthesia, in the recovery room/intensive care unit and during daily activities. The main advantages of both monitoring methods are unobtrusive data acquisition and the possibility to assess vital variables for different body regions. These methods supplement each other to enable long-term monitoring of physiological effects and of effects with special local characteristics. They also offer diagnostic advantages for

  10. Enhanced Visible Transmittance of Thermochromic VO2 Thin Films by SiO2 Passivation Layer and Their Optical Characterization

    Directory of Open Access Journals (Sweden)

    Jung-Hoon Yu

    2016-07-01

    Full Text Available This paper presents the preparation of high-quality vanadium dioxide (VO2 thermochromic thin films with enhanced visible transmittance (Tvis via radio frequency (RF sputtering and plasma enhanced chemical vapor deposition (PECVD. VO2 thin films with high Tvis and excellent optical switching efficiency (Eos were successfully prepared by employing SiO2 as a passivation layer. After SiO2 deposition, the roughness of the films was decreased 2-fold and a denser structure was formed. These morphological changes corresponded to the results of optical characterization including the haze, reflectance and absorption spectra. In spite of SiO2 coating, the phase transition temperature (Tc of the prepared films was not affected. Compared with pristine VO2, the total layer thickness after SiO2 coating was 160 nm, which is an increase of 80 nm. Despite the thickness change, the VO2 thin films showed a higher Tvis value (λ 650 nm, 58% compared with the pristine samples (λ 650 nm, 43%. This enhancement of Tvis while maintaining high Eos is meaningful for VO2-based smart window applications.

  11. Eliminating four-wave-mixing crosstalk in wavelength-division-multiplexing systems

    Science.gov (United States)

    Kwong, Wing C.; Yang, Guu-Chang

    1996-11-01

    To reduce four-wave-mixing crosstalk in long-haul wavelength-division multiplexing (WDM) lightwave systems, the use of unequally spaced channels has recently been proposed. Instead of being solved y integer linear programming, the unequal-spaced channel-allocation problem is here treated as constructing suitable optical orthogonal codes in optical code-division multiple-access (CDMA). Three 'algebraic' algorithms on finding the frequency locations of unequally spaced WDM channels are reported. The constructions are based on generating optical CDMA codewords with a predetermined pulse separation and 'aperiodic' autocorrelation sidelobes no greater than one. The algorithms potentially provide a fast and simple alternative to solve the problem, besides the recently reported computer-search method.

  12. Power budget of direct-detection ultra-dense WDM-Nyquist-SCM PON with low-complexity SSBI mitigation

    Science.gov (United States)

    Soeiro, Ricardo O. J.; Alves, Tiago M. F.; Cartaxo, Adolfo V. T.

    2017-07-01

    The power budget (PB) of a direct-detection ultra-dense wavelength division/subcarrier multiplexing (SCM) passive optical network (PON) is assessed numerically for downstream, when a low-complexity iterative signal-to-signal beat interference (SSBI) mitigation technique is employed. Each SCM signal, inserted in a 12.5 GHz width optical channel, is comprised of two or three electrically generated and multiplexed 16-quadrature-amplitude-modulation (QAM) or 32-QAM Nyquist pulse-shaped subcarriers, each with a 7% forward error correction bit rate of 10.7 Gbit/s. The PB and maximum number of optical network units (ONUs) served by each optical line terminal (OLT) are compared with and without SSBI mitigation. When SSBI mitigation is realized, PB gains up to 4.5 dB are attained relative to the PB in the absence of SSBI mitigation. The PB gain enabled by the SSBI mitigation technique proposed in this work increases the number of ONUs served per OLT at least by a factor of 2, for the cases of higher spectral efficiency. In particular, for a SCM signal comprised of three subcarriers, the maximum number of ONUs served per OLT is between 2 and 32, and between 8 and 64, in the absence of SSBI mitigation, and when SSBI mitigation is employed, respectively, depending on the fiber length (up to 50 km) and order of QAM.

  13. Structure and photoluminescence of Mn-passivated nanocrystalline ZnO:S thin films

    International Nuclear Information System (INIS)

    Tong, Y.H.; Tang, Q.X.; Liu, Y.C.; Shao, C.L.; Xu, C.S.; Liu, Y.X.

    2005-01-01

    Mn-passivated nanocrystalline ZnO:S thin films were fabricated by thermally oxidizing Mn-doped ZnS (ZnS:Mn) films prepared by electron beam evaporation. Mn was introduced to passivate the surface defects of ZnO and to improve the optical properties. X-ray diffraction (XRD) and photoluminescence (PL) spectra at 81.9 K indicated the S content in ZnO thin film gradually decreased with increasing annealing temperature. The fitted result of the temperature-dependent PL spectra in the range from 81.9 to 302.2 K showed that S dopant could broaden the optical band gap energy of ZnO. Room temperature PL spectra confirmed that the ultraviolet peak shifted to lower energy with the decrease of S content in the thin film because of the Burstein-Moss effect

  14. Sensitization of erbium in silicon-rich silica : the effect of annealing temperature and hydrogen passivation

    International Nuclear Information System (INIS)

    Wilkinson, A.R.; Forcales, M.; Elliman, R.G.

    2005-01-01

    This paper reports on the effect of annealing temperature and hydrogen passivation on the excitation cross-section and photoluminescence of erbium in silicon-rich silica. Samples were prepared by co-implantation of Si and Er into SiO 2 followed by a single thermal anneal at temperatures ranging from 800 to 1100 degrees C, and with or without hydrogen passivation performed at 500 degrees C. Using time-resolved photoluminescence, the effective erbium excitation cross-section is shown to increase by a factor 3, while the number of optically active erbium ions decreases by a factor of 4 with increasing annealing temperature. Hydrogen passivation is shown to increase the luminescence intensity and to shorten the luminescence lifetime at 1.54 μm only in the presence of Si nanocrystals. The implications fo these results for realizing a silicon-based optical amplifier are also discussed. (author). 19 refs., 3 figs

  15. DSP-Based Focusing over Optical Fiber Using Time Reversal

    DEFF Research Database (Denmark)

    Piels, Molly; Porto da Silva, Edson; Estaran Tolosa, Jose Manuel

    2014-01-01

    A time-reversal array in multimode fiber is proposed for lossless switching using passive optical splitters. Numerical investigations are performed, and a two-transmitter array that routes a 3GBd QPSK signal through the physical layer is demonstrated experimentally.......A time-reversal array in multimode fiber is proposed for lossless switching using passive optical splitters. Numerical investigations are performed, and a two-transmitter array that routes a 3GBd QPSK signal through the physical layer is demonstrated experimentally....

  16. Transmission analysis in WDM networks

    DEFF Research Database (Denmark)

    Rasmussen, Christian Jørgen

    1999-01-01

    This thesis describes the development of a computer-based simulator for transmission analysis in optical wavelength division multiplexing networks. A great part of the work concerns fundamental optical network simulator issues. Among these issues are identification of the versatility and user...... the different component models are invoked during the simulation of a system. A simple set of rules which makes it possible to simulate any network architectures is laid down. The modelling of the nonlinear fibre and the optical receiver is also treated. The work on the fibre concerns the numerical solution...

  17. Highly Reliable PON Optical Splitters for Optical Access Networks in Outside Environments

    Science.gov (United States)

    Watanabe, Hiroshi; Araki, Noriyuki; Fujimoto, Hisashi

    Broadband optical access services are spreading throughout the world, and the number of fiber to the home (FTTH) subscribers is increasing rapidly. Telecom operators are constructing passive optical networks (PONs) to provide optical access services. Externally installed optical splitters for PONs are very important passive devices in optical access networks, and they must provide satisfactory performance as outdoor plant over long periods. Therefore, we calculate the failure rate of optical access networks and assign a failure rate to the optical splitters in optical access networks. The maximum cumulative failure rate of 1 × 8 optical splitters was calculated as 0.025 for an optical access fiber length of 2.1km and a 20-year operating lifetime. We examined planar lightwave circuit (PLC) type optical splitters for use as outside plant in terms of their optical characteristics and environmental reliability. We confirmed that PLC type optical splitters have sufficient optical performance for a PON splitter and sufficient reliability as outside plant in accordance with ITU-T standard values. We estimated the lifetimes of three kinds of PLC type optical splitters by using accelerated aging tests. The estimated failure rate of these splitters installed in optical access networks was below the target value for the cumulative failure rate, and we confirmed that they have sufficient reliability to maintain the quality of the network service. We developed 1 × 8 optical splitter modules with plug and socket type optical connectors and optical fiber cords for optical aerial closures designed for use as outside plant. These technologies make it easy to install optical splitters in an aerial optical closure. The optical splitter modules have sufficient optical performance levels for PONs because the insertion loss at the commercially used wavelengths of 1.31 and 1.55µm is less than the criterion established by ITU-T Recommendation G.671 for optical splitters. We performed a

  18. Exploring luminescence-based temperature sensing using protein-passivated gold nanoclusters

    Science.gov (United States)

    Chen, Xi; Essner, Jeremy B.; Baker, Gary A.

    2014-07-01

    We explore the analytical performance and limitations of optically monitoring aqueous-phase temperature using protein-protected gold nanoclusters (AuNCs). Although not reported elsewhere, we find that these bio-passivated AuNCs show pronounced hysteresis upon thermal cycling. This unwanted behaviour can be eliminated by several strategies, including sol-gel coating and thermal denaturation of the biomolecular template, introducing protein-templated AuNC probes as viable nanothermometers.We explore the analytical performance and limitations of optically monitoring aqueous-phase temperature using protein-protected gold nanoclusters (AuNCs). Although not reported elsewhere, we find that these bio-passivated AuNCs show pronounced hysteresis upon thermal cycling. This unwanted behaviour can be eliminated by several strategies, including sol-gel coating and thermal denaturation of the biomolecular template, introducing protein-templated AuNC probes as viable nanothermometers. Electronic supplementary information (ESI) available: Supplemental figures and experimental details. See DOI: 10.1039/c4nr02069c

  19. Morphology, chemical composition , and electrochemical characteristics of colored titanium passive layers

    International Nuclear Information System (INIS)

    Jerkiewicz, G.; Hrapovic, S.; Vatankhah, G.; Luan, B.L.

    1999-01-01

    Brightly and uniformly colored passive layers on Ti are formed by application of AC polarization in aqueous NH 4 BF 4 . A wide spectrum of well-defined colors is accomplished by varying the AC voltage. The passive films are stable in the ambient and in aqueous chloride, perchlorate, sulfate solutions. Optical microscopy and SEM analyses indicate that the passive layers are compact and do not reveal fractures or cracks. XPS characterization of the colored passive layers reveals that their surface-chemical composition depends on the AC polarization voltage. The main constituents of the passive layers are Ti z+ , O 2- , and F - (z varies from 4 to 2 depending on the depth). Fluoride in the film originates form decomposition of NH 4 BF 4 and it accumulates at the inner metal/passive-film interface. XPS depth profiling shows that the higher the AC voltage applied, the thicker the passive film formed. Electrochemical properties of the colored Ti passive layers are determined by recording polarization curves in the -0.8 - 3.2 V, RHE, range and Tafel plots in the hydrogen evolution reaction (HER) region in 1.0 M aqueous H 2 SO 4 solution. The polarization curves show that the corrosion potential of the colored passive layers shifts towards less-negative potential indicating that they are more stable than Ti under the same conditions. The Tafel plots for the HER demonstrate that the passive layers have much higher activity than Ti towards the HER. The Tafel relations reveal new features that can be associated with the partial breakdown/decomposition of the passive layers and with H absorption. (author)

  20. An ultra-long cavity passively mode-locked fiber laser based on nonlinear polarization rotation in a semiconductor optical amplifier

    International Nuclear Information System (INIS)

    Liu, Tonghui; Jia, Dongfang; Yang, Jingwen; Chen, Jiong; Wang, Zhaoying; Yang, Tianxin

    2013-01-01

    In this paper we investigate an ultra-long cavity passively mode-locked fiber laser based on a semiconductor optical amplifier (SOA). Experimental results are presented which indicate that stable mode-locked pulses can be obtained by combining nonlinear polarization rotation (NPR) in the SOA with a polarization controller. By adding a 4 km single mode fiber into the ring cavity, a stable fundamental-order mode-locked pulse train with a repetition rate of 50.72 kHz is generated through the NPR effect in the SOA. The central wavelength, 3 dB bandwidth and single pulse energy of the output pulse are 1543.95 nm, 1.506 nm and 33.12 nJ, respectively. Harmonic mode-locked pulses are also observed in experiments when the parameters are chosen properly. (paper)