WorldWideScience

Sample records for wd40 repeat protein

  1. The LuWD40-1 gene encoding WD repeat protein regulates growth and pollen viability in flax (Linum Usitatissimum L.).

    Science.gov (United States)

    Kumar, Santosh; Jordan, Mark C; Datla, Raju; Cloutier, Sylvie

    2013-01-01

    As a crop, flax holds significant commercial value for its omega-3 rich oilseeds and stem fibres. Canada is the largest producer of linseed but there exists scope for significant yield improvements. Implementation of mechanisms such as male sterility can permit the development of hybrids to assist in achieving this goal. Temperature sensitive male sterility has been reported in flax but the leakiness of this system in field conditions limits the production of quality hybrid seeds. Here, we characterized a 2,588 bp transcript differentially expressed in male sterile lines of flax. The twelve intron gene predicted to encode a 368 amino acid protein has five WD40 repeats which, in silico, form a propeller structure with putative nucleic acid and histone binding capabilities. The LuWD40-1 protein localized to the nucleus and its expression increased during the transition and continued through the vegetative stages (seed, etiolated seedling, stem) while the transcript levels declined during reproductive development (ovary, anthers) and embryonic morphogenesis of male fertile plants. Knockout lines for LuWD40-1 in flax failed to develop shoots while overexpression lines showed delayed growth phenotype and were male sterile. The non-viable flowers failed to open and the pollen grains from these flowers were empty. Three independent transgenic lines overexpressing the LuWD40-1 gene had ∼80% non-viable pollen, reduced branching, delayed flowering and maturity compared to male fertile genotypes. The present study provides new insights into a male sterility mechanism present in flax.

  2. The LuWD40-1 gene encoding WD repeat protein regulates growth and pollen viability in flax (Linum Usitatissimum L..

    Directory of Open Access Journals (Sweden)

    Santosh Kumar

    Full Text Available As a crop, flax holds significant commercial value for its omega-3 rich oilseeds and stem fibres. Canada is the largest producer of linseed but there exists scope for significant yield improvements. Implementation of mechanisms such as male sterility can permit the development of hybrids to assist in achieving this goal. Temperature sensitive male sterility has been reported in flax but the leakiness of this system in field conditions limits the production of quality hybrid seeds. Here, we characterized a 2,588 bp transcript differentially expressed in male sterile lines of flax. The twelve intron gene predicted to encode a 368 amino acid protein has five WD40 repeats which, in silico, form a propeller structure with putative nucleic acid and histone binding capabilities. The LuWD40-1 protein localized to the nucleus and its expression increased during the transition and continued through the vegetative stages (seed, etiolated seedling, stem while the transcript levels declined during reproductive development (ovary, anthers and embryonic morphogenesis of male fertile plants. Knockout lines for LuWD40-1 in flax failed to develop shoots while overexpression lines showed delayed growth phenotype and were male sterile. The non-viable flowers failed to open and the pollen grains from these flowers were empty. Three independent transgenic lines overexpressing the LuWD40-1 gene had ∼80% non-viable pollen, reduced branching, delayed flowering and maturity compared to male fertile genotypes. The present study provides new insights into a male sterility mechanism present in flax.

  3. Overexpression of MIP2, a novel WD-repeat protein, promotes proliferation of H9c2 cells

    International Nuclear Information System (INIS)

    Wei, Xing; Song, Lan; Jiang, Lei; Wang, Guiliang; Luo, Xinjing; Zhang, Bin; Xiao, Xianzhong

    2010-01-01

    WD40 repeat proteins have a wide range of diverse biological functions including signal transduction, cell cycle regulation, RNA splicing, and transcription. Myocardial ischemic preconditioning up-regulated protein 2 (MIP2) is a novel member of the WD40 repeat proteins superfamily that contains five WD40 repeats. Little is known about its biological role, and the purpose of this study was to determine the role of MIP2 in regulating cellular proliferation. Transfection and constitutive expression of MIP2 in the rat cardiomyoblast cell line H9c2 results in enhanced growth of those cells as measured by cell number and is proportional to the amount of MIP2 expressed. Overexpression of MIP2 results in a shorter cell cycle, as measured by flow cytometry. Collectively, these data suggest that MIP2 may participate in the progression of cell proliferation in H9c2 cells.

  4. Genome-wide identification, sequence characterization, and protein-protein interaction properties of DDB1 (damaged DNA binding protein-1)-binding WD40-repeat family members in Solanum lycopersicum.

    Science.gov (United States)

    Zhu, Yunye; Huang, Shengxiong; Miao, Min; Tang, Xiaofeng; Yue, Junyang; Wang, Wenjie; Liu, Yongsheng

    2015-06-01

    One hundred DDB1 (damaged DNA binding protein-1)-binding WD40-repeat domain (DWD) family genes were identified in the S. lycopersicum genome. The DWD genes encode proteins presumably functioning as the substrate recognition subunits of the cullin4-ring ubiquitin E3 ligase complex. These findings provide candidate genes and a research platform for further gene functionality and molecular breeding study. A subclass of DDB1 (damaged DNA binding protein-1)-binding WD40-repeat domain (DWD) family proteins has been demonstrated to function as the substrate recognition subunits of the cullin4-ring ubiquitin E3 ligase complex. However, little information is available about the cognate subfamily genes in tomato (S. lycopersicum). In this study, based on the recently released tomato genome sequences, 100 tomato genes encoding DWD proteins that potentially interact with DDB1 were identified and characterized, including analyses of the detailed annotations, chromosome locations and compositions of conserved amino acid domains. In addition, a phylogenetic tree, which comprises of three main groups, of the subfamily genes was constructed. The physical interaction between tomato DDB1 and 14 representative DWD proteins was determined by yeast two-hybrid and co-immunoprecipitation assays. The subcellular localization of these 14 representative DWD proteins was determined. Six of them were localized in both nucleus and cytoplasm, seven proteins exclusively in cytoplasm, and one protein either in nucleus and cytoplasm, or exclusively in cytoplasm. Comparative genomic analysis demonstrated that the expansion of these subfamily members in tomato predominantly resulted from two whole-genome triplication events in the evolution history.

  5. Ternary WD40 repeat-containing protein complexes: evolution, composition and roles in plant immunity

    Directory of Open Access Journals (Sweden)

    Jimi C. Miller

    2016-01-01

    Full Text Available Plants, like mammals, rely on their innate immune system to perceive and discriminate among the majority of their microbial pathogens. Unlike mammals, plants respond to this molecular dialogue by unleashing a complex chemical arsenal of defense metabolites to resist or evade pathogen infection. In basal or non-host resistance, plants utilize signal transduction pathways to detect non-self, damaged-self and altered-self-associated molecular patterns and translate these danger signals into largely inducible chemical defenses. The WD40 repeat (WDR-containing proteins Gβ and TTG1 are constituents of two independent ternary protein complexes functioning at opposite ends of a plant immune signaling pathway. Gβ and TTG1 are also encoded by single-copy genes that are ubiquitous in higher plants, implying the limited diversity and functional conservation of their respective complexes. In this review, we summarize what is currently known about the evolutionary history of these WDR-containing ternary complexes, their repertoire and combinatorial interactions, and their downstream effectors and pathways in plant defense.

  6. WD40-repeat proteins in plant cell wall formation: current evidence and research prospects

    Directory of Open Access Journals (Sweden)

    Gea eGuerriero

    2015-12-01

    Full Text Available The metabolic complexity of living organisms relies on supramolecular protein structures which ensure vital processes, such as signal transduction, transcription, translation and cell wall synthesis. In eukaryotes WD40-repeat (WDR proteins often function as molecular hubs mediating supramolecular interactions. WDR proteins may display a variety of interacting partners and participate in the assembly of complexes involved in distinct cellular functions. In plants, the formation of lignocellulosic biomass involves extensive synthesis of cell wall polysaccharides, a process that requires the assembly of large transmembrane enzyme complexes, intensive vesicle trafficking, interactions with the cytoskeleton, and coordinated gene expression. Because of their function as supramolecular hubs, WDR proteins could participate in each or any of these steps, although to date only few WDR proteins have been linked to the cell wall by experimental evidence. Nevertheless, several potential cell wall-related WDR proteins were recently identified using in silico aproaches, such as analyses of co-expression, interactome and conserved gene neighbourhood. Notably, some WDR genes are frequently genomic neighbours of genes coding for GT2-family polysaccharide synthases in eukaryotes, and this WDR-GT2 collinear microsynteny is detected in diverse taxa. In angiosperms, two WDR genes are collinear to cellulose synthase genes, CESAs, whereas in ascomycetous fungi several WDR genes are adjacent to chitin synthase genes, chs. In this Perspective we summarize and discuss experimental and in silico studies on the possible involvement of WDR proteins in plant cell wall formation. The prospects of biotechnological engineering for enhanced biomass production are discussed.

  7. Genome-wide investigation and expression analyses of WD40 protein family in the model plant foxtail millet (Setaria italica L..

    Directory of Open Access Journals (Sweden)

    Awdhesh Kumar Mishra

    Full Text Available WD40 proteins play a crucial role in diverse protein-protein interactions by acting as scaffolding molecules and thus assisting in the proper activity of proteins. Hence, systematic characterization and expression profiling of these WD40 genes in foxtail millet would enable us to understand the networks of WD40 proteins and their biological processes and gene functions. In the present study, a genome-wide survey was conducted and 225 potential WD40 genes were identified. Phylogenetic analysis categorized the WD40 proteins into 5 distinct sub-families (I-V. Gene Ontology annotation revealed the biological roles of the WD40 proteins along with its cellular components and molecular functions. In silico comparative mapping with sorghum, maize and rice demonstrated the orthologous relationships and chromosomal rearrangements including duplication, inversion and deletion of WD40 genes. Estimation of synonymous and non-synonymous substitution rates revealed its evolutionary significance in terms of gene-duplication and divergence. Expression profiling against abiotic stresses provided novel insights into specific and/or overlapping expression patterns of SiWD40 genes. Homology modeling enabled three-dimensional structure prediction was performed to understand the molecular functions of WD40 proteins. Although, recent findings had shown the importance of WD40 domains in acting as hubs for cellular networks during many biological processes, it has invited a lesser research attention unlike other common domains. Being a most promiscuous interactors, WD40 domains are versatile in mediating critical cellular functions and hence this genome-wide study especially in the model crop foxtail millet would serve as a blue-print for functional characterization of WD40s in millets and bioenergy grass species. In addition, the present analyses would also assist the research community in choosing the candidate WD40s for comprehensive studies towards crop improvement

  8. Genome-wide investigation and expression analyses of WD40 protein family in the model plant foxtail millet (Setaria italica L.).

    Science.gov (United States)

    Mishra, Awdhesh Kumar; Muthamilarasan, Mehanathan; Khan, Yusuf; Parida, Swarup Kumar; Prasad, Manoj

    2014-01-01

    WD40 proteins play a crucial role in diverse protein-protein interactions by acting as scaffolding molecules and thus assisting in the proper activity of proteins. Hence, systematic characterization and expression profiling of these WD40 genes in foxtail millet would enable us to understand the networks of WD40 proteins and their biological processes and gene functions. In the present study, a genome-wide survey was conducted and 225 potential WD40 genes were identified. Phylogenetic analysis categorized the WD40 proteins into 5 distinct sub-families (I-V). Gene Ontology annotation revealed the biological roles of the WD40 proteins along with its cellular components and molecular functions. In silico comparative mapping with sorghum, maize and rice demonstrated the orthologous relationships and chromosomal rearrangements including duplication, inversion and deletion of WD40 genes. Estimation of synonymous and non-synonymous substitution rates revealed its evolutionary significance in terms of gene-duplication and divergence. Expression profiling against abiotic stresses provided novel insights into specific and/or overlapping expression patterns of SiWD40 genes. Homology modeling enabled three-dimensional structure prediction was performed to understand the molecular functions of WD40 proteins. Although, recent findings had shown the importance of WD40 domains in acting as hubs for cellular networks during many biological processes, it has invited a lesser research attention unlike other common domains. Being a most promiscuous interactors, WD40 domains are versatile in mediating critical cellular functions and hence this genome-wide study especially in the model crop foxtail millet would serve as a blue-print for functional characterization of WD40s in millets and bioenergy grass species. In addition, the present analyses would also assist the research community in choosing the candidate WD40s for comprehensive studies towards crop improvement of millets and

  9. Stealing the spotlight: CUL4-DDB1 ubiquitin ligase docks WD40-repeat proteins to destroy

    Directory of Open Access Journals (Sweden)

    Zhang Hui

    2007-02-01

    Full Text Available Abstract Recent investigation of Cullin 4 (CUL4 has ushered this class of multiprotein ubiquitin E3 ligases to center stage as critical regulators of diverse processes including cell cycle regulation, developmental patterning, DNA replication, DNA damage and repair, and epigenetic control of gene expression. CUL4 associates with DNA Damage Binding protein 1 (DDB1 to assemble an ubiquitin E3 ligase that targets protein substrates for ubiquitin-dependent proteolysis. CUL4 ligase activity is also regulated by the covalent attachment of the ubiquitin-like protein NEDD8 to CUL4, or neddylation, and the COP9 signalosome complex (CSN that removes this important modification. Recently, multiple WD40-repeat proteins (WDR were found to interact with DDB1 and serve as the substrate-recognition subunits of the CUL4-DDB1 ubiquitin ligase. As more than 150–300 WDR proteins exist in the human genome, these findings impact a wide array of biological processes through CUL4 ligase-mediated proteolysis. Here, we review the recent progress in understanding the mechanism of CUL4 ubiquitin E3 ligase and discuss the architecture of CUL4-assembled E3 ubiquitin ligase complexes by comparison to CUL1-based E3s (SCF. Then, we will review several examples to highlight the critical roles of CUL4 ubiquitin ligase in genome stability, cell cycle regulation, and histone lysine methylation. Together, these studies provide insights into the mechanism of this novel ubiquitin ligase in the regulation of important biological processes.

  10. A pomegranate (Punica granatum L.) WD40-repeat gene is a functional homologue of Arabidopsis TTG1 and is involved in the regulation of anthocyanin biosynthesis during pomegranate fruit development.

    Science.gov (United States)

    Ben-Simhon, Zohar; Judeinstein, Sylvie; Nadler-Hassar, Talia; Trainin, Taly; Bar-Ya'akov, Irit; Borochov-Neori, Hamutal; Holland, Doron

    2011-11-01

    Anthocyanins are the major pigments responsible for the pomegranate (Punica granatum L.) fruit skin color. The high variability in fruit external color in pomegranate cultivars reflects variations in anthocyanin composition. To identify genes involved in the regulation of anthocyanin biosynthesis pathway in the pomegranate fruit skin we have isolated, expressed and characterized the pomegranate homologue of the Arabidopsis thaliana TRANSPARENT TESTA GLABRA1 (TTG1), encoding a WD40-repeat protein. The TTG1 protein is a regulator of anthocyanins and proanthocyanidins (PAs) biosynthesis in Arabidopsis, and acts by the formation of a transcriptional regulatory complex with two other regulatory proteins: bHLH and MYB. Our results reveal that the pomegranate gene, designated PgWD40, recovered the anthocyanin, PAs, trichome and seed coat mucilage phenotype in Arabidopsis ttg1 mutant. PgWD40 expression and anthocyanin composition in the skin were analyzed during pomegranate fruit development, in two accessions that differ in skin color intensity and timing of appearance. The results indicate high positive correlation between the total cyanidin derivatives quantity (red pigments) and the expression level of PgWD40. Furthermore, strong correlation was found between the steady state levels of PgWD40 transcripts and the transcripts of pomegranate homologues of the structural genes PgDFR and PgLDOX. PgWD40, PgDFR and PgLDOX expression also correlated with the expression of pomegranate homologues of the regulatory genes PgAn1 (bHLH) and PgAn2 (MYB). On the basis of our results we propose that PgWD40 is involved in the regulation of anthocyanin biosynthesis during pomegranate fruit development and that expression of PgWD40, PgAn1 and PgAn2 in the pomegranate fruit skin is required to regulate the expression of downstream structural genes involved in the anthocyanin biosynthesis.

  11. The Jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate Jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana.

    Science.gov (United States)

    Qi, Tiancong; Song, Susheng; Ren, Qingcuo; Wu, Dewei; Huang, Huang; Chen, Yan; Fan, Meng; Peng, Wen; Ren, Chunmei; Xie, Daoxin

    2011-05-01

    Jasmonates (JAs) mediate plant responses to insect attack, wounding, pathogen infection, stress, and UV damage and regulate plant fertility, anthocyanin accumulation, trichome formation, and many other plant developmental processes. Arabidopsis thaliana Jasmonate ZIM-domain (JAZ) proteins, substrates of the CORONATINE INSENSITIVE1 (COI1)-based SCF(COI1) complex, negatively regulate these plant responses. Little is known about the molecular mechanism for JA regulation of anthocyanin accumulation and trichome initiation. In this study, we revealed that JAZ proteins interact with bHLH (Transparent Testa8, Glabra3 [GL3], and Enhancer of Glabra3 [EGL3]) and R2R3 MYB transcription factors (MYB75 and Glabra1), essential components of WD-repeat/bHLH/MYB transcriptional complexes, to repress JA-regulated anthocyanin accumulation and trichome initiation. Genetic and physiological evidence showed that JA regulates WD-repeat/bHLH/MYB complex-mediated anthocyanin accumulation and trichome initiation in a COI1-dependent manner. Overexpression of the MYB transcription factor MYB75 and bHLH factors (GL3 and EGL3) restored anthocyanin accumulation and trichome initiation in the coi1 mutant, respectively. We speculate that the JA-induced degradation of JAZ proteins abolishes the interactions of JAZ proteins with bHLH and MYB factors, allowing the transcriptional function of WD-repeat/bHLH/MYB complexes, which subsequently activate respective downstream signal cascades to modulate anthocyanin accumulation and trichome initiation.

  12. Integrating population variation and protein structural analysis to improve clinical interpretation of missense variation: application to the WD40 domain.

    Science.gov (United States)

    Laskowski, Roman A; Tyagi, Nidhi; Johnson, Diana; Joss, Shelagh; Kinning, Esther; McWilliam, Catherine; Splitt, Miranda; Thornton, Janet M; Firth, Helen V; Wright, Caroline F

    2016-03-01

    We present a generic, multidisciplinary approach for improving our understanding of novel missense variants in recently discovered disease genes exhibiting genetic heterogeneity, by combining clinical and population genetics with protein structural analysis. Using six new de novo missense diagnoses in TBL1XR1 from the Deciphering Developmental Disorders study, together with population variation data, we show that the β-propeller structure of the ubiquitous WD40 domain provides a convincing way to discriminate between pathogenic and benign variation. Children with likely pathogenic mutations in this gene have severely delayed language development, often accompanied by intellectual disability, autism, dysmorphology and gastrointestinal problems. Amino acids affected by likely pathogenic missense mutations are either crucial for the stability of the fold, forming part of a highly conserved symmetrically repeating hydrogen-bonded tetrad, or located at the top face of the β-propeller, where 'hotspot' residues affect the binding of β-catenin to the TBLR1 protein. In contrast, those altered by population variation are significantly less likely to be spatially clustered towards the top face or to be at buried or highly conserved residues. This result is useful not only for interpreting benign and pathogenic missense variants in this gene, but also in other WD40 domains, many of which are associated with disease. © The Author 2016. Published by Oxford University Press.

  13. WD40 domain of Apc1 is critical for the coactivator-induced allosteric transition that stimulates APC/C catalytic activity.

    Science.gov (United States)

    Li, Qiuhong; Chang, Leifu; Aibara, Shintaro; Yang, Jing; Zhang, Ziguo; Barford, David

    2016-09-20

    The anaphase-promoting complex/cyclosome (APC/C) is a large multimeric cullin-RING E3 ubiquitin ligase that orchestrates cell-cycle progression by targeting cell-cycle regulatory proteins for destruction via the ubiquitin proteasome system. The APC/C assembly comprises two scaffolding subcomplexes: the platform and the TPR lobe that together coordinate the juxtaposition of the catalytic and substrate-recognition modules. The platform comprises APC/C subunits Apc1, Apc4, Apc5, and Apc15. Although the role of Apc1 as an APC/C scaffolding subunit has been characterized, its specific functions in contributing toward APC/C catalytic activity are not fully understood. Here, we report the crystal structure of the N-terminal domain of human Apc1 (Apc1N) determined at 2.2-Å resolution and provide an atomic-resolution description of the architecture of its WD40 (WD40 repeat) domain (Apc1(WD40)). To understand how Apc1(WD40) contributes to APC/C activity, a mutant form of the APC/C with Apc1(WD40) deleted was generated and evaluated biochemically and structurally. We found that the deletion of Apc1(WD40) abolished the UbcH10-dependent ubiquitination of APC/C substrates without impairing the Ube2S-dependent ubiquitin chain elongation activity. A cryo-EM structure of an APC/C-Cdh1 complex with Apc1(WD40) deleted showed that the mutant APC/C is locked into an inactive conformation in which the UbcH10-binding site of the catalytic module is inaccessible. Additionally, an EM density for Apc15 is not visible. Our data show that Apc1(WD40) is required to mediate the coactivator-induced conformational change of the APC/C that is responsible for stimulating APC/C catalytic activity by promoting UbcH10 binding. In contrast, Ube2S activity toward APC/C substrates is not dependent on the initiation-competent conformation of the APC/C.

  14. The Jasmonate-ZIM-Domain Proteins Interact with the WD-Repeat/bHLH/MYB Complexes to Regulate Jasmonate-Mediated Anthocyanin Accumulation and Trichome Initiation in Arabidopsis thaliana[C][W

    Science.gov (United States)

    Qi, Tiancong; Song, Susheng; Ren, Qingcuo; Wu, Dewei; Huang, Huang; Chen, Yan; Fan, Meng; Peng, Wen; Ren, Chunmei; Xie, Daoxin

    2011-01-01

    Jasmonates (JAs) mediate plant responses to insect attack, wounding, pathogen infection, stress, and UV damage and regulate plant fertility, anthocyanin accumulation, trichome formation, and many other plant developmental processes. Arabidopsis thaliana Jasmonate ZIM-domain (JAZ) proteins, substrates of the CORONATINE INSENSITIVE1 (COI1)–based SCFCOI1 complex, negatively regulate these plant responses. Little is known about the molecular mechanism for JA regulation of anthocyanin accumulation and trichome initiation. In this study, we revealed that JAZ proteins interact with bHLH (Transparent Testa8, Glabra3 [GL3], and Enhancer of Glabra3 [EGL3]) and R2R3 MYB transcription factors (MYB75 and Glabra1), essential components of WD-repeat/bHLH/MYB transcriptional complexes, to repress JA-regulated anthocyanin accumulation and trichome initiation. Genetic and physiological evidence showed that JA regulates WD-repeat/bHLH/MYB complex-mediated anthocyanin accumulation and trichome initiation in a COI1-dependent manner. Overexpression of the MYB transcription factor MYB75 and bHLH factors (GL3 and EGL3) restored anthocyanin accumulation and trichome initiation in the coi1 mutant, respectively. We speculate that the JA-induced degradation of JAZ proteins abolishes the interactions of JAZ proteins with bHLH and MYB factors, allowing the transcriptional function of WD-repeat/bHLH/MYB complexes, which subsequently activate respective downstream signal cascades to modulate anthocyanin accumulation and trichome initiation. PMID:21551388

  15. Enhanced Expression of WD Repeat-Containing Protein 35 via Nuclear Factor-Kappa B Activation in Bupivacaine-Treated Neuro2a Cells

    Science.gov (United States)

    Huang, Lei; Kondo, Fumio; Harato, Misako; Feng, Guo-Gang; Ishikawa, Naoshisa; Fujiwara, Yoshihiro; Okada, Shoshiro

    2014-01-01

    The family of WD repeat proteins comprises a large number of proteins and is involved in a wide variety of cellular processes such as signal transduction, cell growth, proliferation, and apoptosis. Bupivacaine is a sodium channel blocker administered for local infiltration, nerve block, epidural, and intrathecal anesthesia. Recently, we reported that bupivacaine induces reactive oxygen species (ROS) generation and p38 mitogen-activated protein kinase (MAPK) activation, resulting in an increase in the expression of WD repeat-containing protein 35 (WDR35) in mouse neuroblastoma Neuro2a cells. It has been shown that ROS activate MAPK through phosphorylation, followed by activation of nuclear factor-kappa B (NF-κB) and activator protein 1 (AP-1). The present study was undertaken to test whether NF-κB and c-Jun/AP-1 are involved in bupivacaine-induced WDR35 expression in Neuro2a cells. Bupivacaine activated both NF-κB and c-Jun in Neuro2a cells. APDC, an NF-κB inhibitor, attenuated the increase in NF-κB activity and WDR35 protein expression in bupivacaine-treated Neuro2a cells. GW9662, a selective peroxisome proliferator-activated receptor-γ antagonist, enhanced the increase in NF-κB activity and WDR35 protein expression in bupivacaine-treated Neuro2a cells. In contrast, c-Jun siRNA did not inhibit the bupivacaine-induced increase in WDR35 mRNA expression. These results indicate that bupivacaine induces the activation of transcription factors NF-κB and c-Jun/AP-1 in Neuro2a cells, while activation of NF-κB is involved in bupivacaine-induced increases in WDR35 expression. PMID:24466034

  16. The pleiotropic effect of WD-40 domain containing proteins on cellular differentiation and production of secondary metabolites in Streptomyces coelicolor

    Czech Academy of Sciences Publication Activity Database

    Ulrych, Aleš; Goldová, Jana; Petříček, Miroslav; Benada, Oldřich; Kofroňová, Olga; Rampírová, Petra; Petříčková, Kateřina; Branny, Pavel

    2013-01-01

    Roč. 9, č. 6 (2013), s. 1453-1469 ISSN 1742-206X R&D Projects: GA MŠk LH12191; GA MŠk LH12055; GA MŠk 2B08064 Institutional support: RVO:61388971 Keywords : AERIAL MYCELIUM FORMATION * WD-REPEAT PROTEINS * BIOSYNTHESIS GENE-CLUSTER Subject RIV: EE - Microbiology, Virology Impact factor: 3.183, year: 2013

  17. RING finger and WD repeat domain 3 (RFWD3) associates with replication protein A (RPA) and facilitates RPA-mediated DNA damage response.

    Science.gov (United States)

    Liu, Shangfeng; Chu, Jessica; Yucer, Nur; Leng, Mei; Wang, Shih-Ya; Chen, Benjamin P C; Hittelman, Walter N; Wang, Yi

    2011-06-24

    DNA damage response is crucial for maintaining genomic integrity and preventing cancer by coordinating the activation of checkpoints and the repair of damaged DNA. Central to DNA damage response are the two checkpoint kinases ATM and ATR that phosphorylate a wide range of substrates. RING finger and WD repeat domain 3 (RFWD3) was initially identified as a substrate of ATM/ATR from a proteomic screen. Subsequent studies showed that RFWD3 is an E3 ubiquitin ligase that ubiquitinates p53 in vitro and positively regulates p53 levels in response to DNA damage. We report here that RFWD3 associates with replication protein A (RPA), a single-stranded DNA-binding protein that plays essential roles in DNA replication, recombination, and repair. Binding of RPA to single-stranded DNA (ssDNA), which is generated by DNA damage and repair, is essential for the recruitment of DNA repair factors to damaged sites and the activation of checkpoint signaling. We show that RFWD3 is physically associated with RPA and rapidly localizes to sites of DNA damage in a RPA-dependent manner. In vitro experiments suggest that the C terminus of RFWD3, which encompass the coiled-coil domain and the WD40 domain, is necessary for binding to RPA. Furthermore, DNA damage-induced phosphorylation of RPA and RFWD3 is dependent upon each other. Consequently, loss of RFWD3 results in the persistent foci of DNA damage marker γH2AX and the repair protein Rad51 in damaged cells. These findings suggest that RFWD3 is recruited to sites of DNA damage and facilitates RPA-mediated DNA damage signaling and repair.

  18. Identification of histone H4-like TAF in Schizosaccharomyces pombe as a protein that interacts with WD repeat-containing TAF

    OpenAIRE

    Mitsuzawa, Hiroshi; Ishihama, Akira

    2002-01-01

    The general transcription factor TFIID consists of the TATA-binding protein (TBP) and multiple TBP-associated factors (TAFs). We previously identified two distinct WD repeat-containing TAFs, spTAF72 and spTAF73, in the fission yeast Schizosaccharomyces pombe. Here we report the identification of another S.pombe TAF, spTAF50, which is the S.pombe homolog of histone H4-like TAFs such as human TAF80, Drosophila TAF60 and Saccharomyces cerevisiae TAF60. spTAF50 was identified in a two-hybrid scre...

  19. Discovery of a Highly Potent, Cell-Permeable Macrocyclic Peptidomimetic (MM-589) Targeting the WD Repeat Domain 5 Protein (WDR5)–Mixed Lineage Leukemia (MLL) Protein–Protein Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Karatas, Hacer; Li, Yangbing; Liu, Liu; Ji, Jiao; Lee, Shirley; Chen, Yong; Yang, Jiuling; Huang, Liyue; Bernard, Denzil; Xu, Jing; Townsend, Elizabeth C.; Cao, Fang; Ran, Xu; Li, Xiaoqin; Wen, Bo; Sun, Duxin; Stuckey, Jeanne A; Lei, Ming; Dou, Yali; Wang, Shaomeng (Michigan)

    2017-06-06

    We report herein the design, synthesis, and evaluation of macrocyclic peptidomimetics that bind to WD repeat domain 5 (WDR5) and block the WDR5–mixed lineage leukemia (MLL) protein–protein interaction. Compound 18 (MM-589) binds to WDR5 with an IC50 value of 0.90 nM (Ki value <1 nM) and inhibits the MLL H3K4 methyltransferase (HMT) activity with an IC50 value of 12.7 nM. Compound 18 potently and selectively inhibits cell growth in human leukemia cell lines harboring MLL translocations and is >40 times better than the previously reported compound MM-401. Cocrystal structures of 16 and 18 complexed with WDR5 provide structural basis for their high affinity binding to WDR5. Additionally, we have developed and optimized a new AlphaLISA-based MLL HMT functional assay to facilitate the functional evaluation of these designed compounds. Compound 18 represents the most potent inhibitor of the WDR5–MLL interaction reported to date, and further optimization of 18 may yield a new therapy for acute leukemia.

  20. WD-repeat instability and diversification of the Podospora anserina hnwd non-self recognition gene family.

    Science.gov (United States)

    Chevanne, Damien; Saupe, Sven J; Clavé, Corinne; Paoletti, Mathieu

    2010-05-06

    Genes involved in non-self recognition and host defence are typically capable of rapid diversification and exploit specialized genetic mechanism to that end. Fungi display a non-self recognition phenomenon termed heterokaryon incompatibility that operates when cells of unlike genotype fuse and leads to the cell death of the fusion cell. In the fungus Podospora anserina, three genes controlling this allorecognition process het-d, het-e and het-r are paralogs belonging to the same hnwd gene family. HNWD proteins are STAND proteins (signal transduction NTPase with multiple domains) that display a WD-repeat domain controlling recognition specificity. Based on genomic sequence analysis of different P. anserina isolates, it was established that repeat regions of all members of the gene family are extremely polymorphic and undergoing concerted evolution arguing for frequent recombination within and between family members. Herein, we directly analyzed the genetic instability and diversification of this allorecognition gene family. We have constituted a collection of 143 spontaneous mutants of the het-R (HNWD2) and het-E (hnwd5) genes with altered recognition specificities. The vast majority of the mutants present rearrangements in the repeat arrays with deletions, duplications and other modifications as well as creation of novel repeat unit variants. We investigate the extreme genetic instability of these genes and provide a direct illustration of the diversification strategy of this eukaryotic allorecognition gene family.

  1. Protein (Cyanobacteria): 479132094 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 30 696747:230 ... WD-40 repeat protein Arthrospira platensis NIES-39 MVIASGGASLFNLATGEAVWEIDCPALGGAVSADGRLLALRSNKDIYLWDLSTGQLLRQLTGHTST...VNSVRFSRRGQTLASGSGDNTVRLWDVATGRELRQLTGHTSTVNSVRFSRRGQTLASGSGDNTVRLWDVATGRELRQLTGHTSTVYSVSFSRRGQTLASGSDDGVVRLWRVGF

  2. Enhanced Expression of WD Repeat-Containing Protein 35 via CaMKK/AMPK Activation in Bupivacaine-Treated Neuro2a Cells

    Science.gov (United States)

    Huang, Lei; Kondo, Fumio; Gosho, Masahiko; Feng, Guo-Gang; Harato, Misako; Xia, Zhong-yuan; Ishikawa, Naohisa; Fujiwara, Yoshihiro; Okada, Shoshiro

    2014-01-01

    We previously reported that bupivacaine induces reactive oxygen species (ROS) generation, p38 mitogen-activated protein kinase (MAPK) activation and nuclear factor-kappa B activation, resulting in an increase in expression of WD repeat-containing protein 35 (WDR35) in mouse neuroblastoma Neuro2a cells. However, the identity of signaling upstream of p38 MAPK pathways to WDR35 expression remains unclear. It has been shown that AMP-activated protein kinase (AMPK) can activate p38 MAPK through diverse mechanisms. In addition, several kinases acting upstream of AMPK have been identified including Ca2+/calmodulin-dependent protein kinase kinase (CaMKK). Recent studies reported that AMPK may be involved in bupivacaine-induced cytotoxicity in Schwann cells and in human neuroblastoma SH-SY5Y cells. The present study was undertaken to test whether CaMKK and AMPK are involved in bupivacaine-induced WDR35 expression in Neuro2a cells. Our results showed that bupivacaine induced activation of AMPK and p38 MAPK in Neuro2a cells. The AMPK inhibitors, compound C and iodotubercidin, attenuated the bupivacaine-induced activation of AMPK and p38 MAPK, resulting in an inhibition of the bupivacaine-induced increase in WDR35 expression. Treatment with the CaMKK inhibitor STO-609 also attenuated the bupivacaine-induced activation of AMPK and p38 MAPK, resulting in an inhibition of the bupivacaine-induced increase in WDR35 expression. These results suggest that bupivacaine activates AMPK and p38 MAPK via CaMKK in Neuro2a cells, and that the CaMKK/AMPK/p38 MAPK pathway is involved in regulating WDR35 expression. PMID:24859235

  3. A prefoldin-associated WD-repeat protein (WDR92) is required for the correct architectural assembly of motile cilia

    Science.gov (United States)

    Patel-King, Ramila S.; King, Stephen M.

    2016-01-01

    WDR92 is a highly conserved WD-repeat protein that has been proposed to be involved in apoptosis and also to be part of a prefoldin-like cochaperone complex. We found that WDR92 has a phylogenetic signature that is generally compatible with it playing a role in the assembly or function of specifically motile cilia. To test this hypothesis, we performed an RNAi-based knockdown of WDR92 gene expression in the planarian Schmidtea mediterranea and were able to achieve a robust reduction in mRNA expression to levels undetectable under our standard RT-PCR conditions. We found that this treatment resulted in a dramatic reduction in the rate of organismal movement that was caused by a switch in the mode of locomotion from smooth, cilia-driven gliding to muscle-based, peristaltic contractions. Although the knockdown animals still assembled cilia of normal length and in similar numbers to controls, these structures had reduced beat frequency and did not maintain hydrodynamic coupling. By transmission electron microscopy we observed that many cilia had pleiomorphic defects in their architecture, including partial loss of dynein arms, incomplete closure of the B-tubule, and occlusion or replacement of the central pair complex by accumulated electron-dense material. These observations suggest that WDR92 is part of a previously unrecognized cytoplasmic chaperone system that is specifically required to fold key components necessary to build motile ciliary axonemes. PMID:26912790

  4. Upon Infection the Cellular WD Repeat-containing Protein 5 (WDR5) Localizes to Cytoplasmic Inclusion Bodies and Enhances Measles Virus Replication.

    Science.gov (United States)

    Ma, Dzwokai; George, Cyril X; Nomburg, Jason; Pfaller, Christian K; Cattaneo, Roberto; Samuel, Charles E

    2017-12-13

    Replication of negative-strand RNA viruses occurs in association with discrete cytoplasmic foci called inclusion bodies. Whereas inclusion bodies represent a prominent subcellular structure induced by viral infection, our knowledge of the cellular protein components involved in inclusion body formation and function is limited. Using measles virus-infected HeLa cells, we found that the WD repeat-containing protein 5 (WDR5), a subunit of histone H3 lysine 4 methyltransferases, was selectively recruited to virus-induced inclusion bodies. Furthermore, WDR5 was found in complexes containing viral proteins associated with RNA replication. WDR5 was not detected with mitochondria, stress granules, or other known secretory or endocytic compartments of infected cells. WDR5 deficiency decreased both viral protein production and infectious virus yields. Interferon production was modestly increased in WDR5 deficient cells. Thus, our study identifies WDR5 as a novel viral inclusion body-associated cellular protein and suggests a role for WDR5 in promoting viral replication. IMPORTANCE Measles virus is a human pathogen that remains a global concern with more than 100,000 measles-related deaths annually despite the availability of an effective vaccine. As measles continues to cause significant morbidity and mortality, understanding the virus-host interactions at the molecular level that affect virus replication efficiency is important for development and optimization of treatment procedures. Measles virus is an RNA virus that encodes six genes and replicates in the cytoplasm of infected cells in discrete cytoplasmic replication bodies, though little is known of the biochemical nature of these structures. Here we show that the cellular protein WDR5 is enriched in the cytoplasmic viral replication factories and enhances virus growth. WDR5-containing protein complex includes viral proteins responsible for viral RNA replication. Thus, we have identified WDR5 as a host factor that

  5. Two novel WD40 domain–containing proteins, Ere1 and Ere2, function in the retromer-mediated endosomal recycling pathway

    Science.gov (United States)

    Shi, Yufeng; Stefan, Christopher J.; Rue, Sarah M.; Teis, David; Emr, Scott D.

    2011-01-01

    Regulated secretion, nutrient uptake, and responses to extracellular signals depend on cell-surface proteins that are internalized and recycled back to the plasma membrane. However, the underlying mechanisms that govern membrane protein recycling to the cell surface are not fully known. Using a chemical-genetic screen in yeast, we show that the arginine transporter Can1 is recycled back to the cell surface via two independent pathways mediated by the sorting nexins Snx4/41/42 and the retromer complex, respectively. In addition, we identify two novel WD40-domain endosomal recycling proteins, Ere1 and Ere2, that function in the retromer pathway. Ere1 is required for Can1 recycling via the retromer-mediated pathway, but it is not required for the transport of other retromer cargoes, such as Vps10 and Ftr1. Biochemical studies reveal that Ere1 physically interacts with internalized Can1. Ere2 is present in a complex containing Ere1 on endosomes and functions as a regulator of Ere1. Taken together, our results suggest that Snx4/41/42 and the retromer comprise two independent pathways for the recycling of internalized cell-surface proteins. Moreover, a complex containing the two novel proteins Ere1 and Ere2 mediates cargo-specific recognition by the retromer pathway. PMID:21880895

  6. MUTATION ON WD DIPEPTIDE MOTIFS OF THE p48 SUBUNIT OF CHROMATIN ASSEMBLY FACTOR-1 CAUSING VIABILITY AND GROWTH OF DT40 CHICKEN B CELL LINE

    Directory of Open Access Journals (Sweden)

    Ahyar Ahmad

    2010-07-01

    Full Text Available Chromatin assembly factor-1 (CAF-1, a protein complex consisting of three subunits, p150, p60, and p48, is highly conserved from yeast to humans and facilitated nucleosome assembly of newly replicated DNA. The p48 subunit, CAF-1p48 (p48, with seven WD (Trp-Asp repeat motifs, is a member of the WD protein family. The immunoprecipitation experiment revealed that ß-propeller structure of p48 was less stringent for it's binding to HDAC-1, but more stringent for its binding to both histones H4 and CAF-1p60 but not to ASF-1, indicating that the proper ß-propeller structure of p48 is essential for the binding to these two proteins histone H4 and CAF-1p60. Complementation experiments, involving missense and truncated mutants of FLAG-tagged p48, revealed that mutations of every of seven WD dipeptide motifs, like both the N-terminal and C-terminal truncated mutations, could not rescue for the tet-induced lethality. These results indicate not only that p48 is essential for the viability of vertebrate cells, although the yeast p48 homolog is nonessential, but also that all the seven WD dipeptide motifs are necessary for the maintenance of the proper structure of p48 that is fundamentally important for cell viability.   Keywords: Chromatin assembly factor-1, complementation experiments, viability

  7. Leucine-rich repeat kinase-1 regulates osteoclast function by modulating RAC1/Cdc42 Small GTPase phosphorylation and activation.

    Science.gov (United States)

    Zeng, Canjun; Goodluck, Helen; Qin, Xuezhong; Liu, Bo; Mohan, Subburaman; Xing, Weirong

    2016-10-01

    Leucine-rich repeat kinase-1 (Lrrk1) consists of ankyrin repeats (ANK), leucine-rich repeats (LRR), a GTPase-like domain of Roc (ROC), a COR domain, a serine/threonine kinase domain (KD), and WD40 repeats (WD40). Previous studies have revealed that knockout (KO) of Lrrk1 in mice causes severe osteopetrosis, and a human mutation of Lrrk1 leads to osteosclerotic metaphysial dysplasia. The molecular mechanism by which Lrrk1 regulates osteoclast function is unknown. In this study, we generated a series of Lrrk1 mutants and evaluated their ability to rescue defective bone resorption in Lrrk1-deficient osteoclasts by use of pit formation assays. Overexpression of Lrrk1 or LRR-truncated Lrrk1, but not ANK-truncated Lrrk1, WD40-truncated Lrrk1, Lrrk1-KD, or K651A mutant Lrrk1, rescued bone resorption function of Lrrk1 KO osteoclasts. We next examined whether RAC1/Cdc42 small GTPases are direct substrates of Lrrk1 in osteoclasts. Western blot and pull-down assays revealed that Lrrk1 deficiency in osteoclasts resulted in reduced phosphorylation and activation of RAC1/Cdc42. In vitro kinase assays confirmed that recombinant Lrrk1 phosphorylated RAC1-GST protein, and immunoprecipitation showed that the interaction of Lrrk1 with RAC1 occurred within 10 min after RANKL treatment. Overexpression of constitutively active Q61L RAC1 partially rescued the resorptive function of Lrrk1-deficient osteoclasts. Furthermore, lack of Lrrk1 in osteoclasts led to reduced autophosphorylation of p21 protein-activated kinase-1 at Ser 144 , catalyzed by RAC1/Cdc42 binding and activation. Our data indicate that Lrrk1 regulates osteoclast function by directly modulating phosphorylation and activation of small GTPase RAC1/Cdc42 and that its function depends on ANK, ROC, WD40, and kinase domains. Copyright © 2016 the American Physiological Society.

  8. Enhanced expression of WD repeat-containing protein 35 (WDR35 stimulated by domoic acid in rat hippocampus: involvement of reactive oxygen species generation and p38 mitogen-activated protein kinase activation

    Directory of Open Access Journals (Sweden)

    Tsunekawa Koji

    2013-01-01

    Full Text Available Abstract Background Domoic acid (DA is an excitatory amino acid analogue of kainic acid (KA that acts via activation of glutamate receptors to elicit a rapid and potent excitotoxic response, resulting in neuronal cell death. Recently, DA was shown to elicit reactive oxygen species (ROS production and induce apoptosis accompanied by activation of p38 mitogen-activated protein kinase (MAPK in vitro. We have reported that WDR35, a WD-repeat protein, may mediate apoptosis in several animal models. In the present study, we administered DA to rats intraperitoneally, then used liquid chromatography/ion trap tandem mass spectrometry (LC-MS/MS to identify and quantify DA in the brains of the rats and performed histological examinations of the hippocampus. We further investigated the potential involvement of glutamate receptors, ROS, p38 MAPK, and WDR35 in DA-induced toxicity in vivo. Results Our results showed that intraperitoneally administered DA was present in the brain and induced neurodegenerative changes including apoptosis in the CA1 region of the hippocampus. DA also increased the expression of WDR35 mRNA and protein in a dose- and time-dependent manner in the hippocampus. In experiments using glutamate receptor antagonists, the AMPA/KA receptor antagonist NBQX significantly attenuated the DA-induced increase in WDR35 protein expression, but the NMDA receptor antagonist MK-801 did not. In addition, the radical scavenger edaravone significantly attenuated the DA-induced increase in WDR35 protein expression. Furthermore, NBQX and edaravone significantly attenuated the DA-induced increase in p38 MAPK phosphorylation. Conclusion In summary, our results indicated that DA activated AMPA/KA receptors and induced ROS production and p38 MAPK phosphorylation, resulting in an increase in the expression of WDR35 in vivo.

  9. ST proteins, a new family of plant tandem repeat proteins with a DUF2775 domain mainly found in Fabaceae and Asteraceae.

    Science.gov (United States)

    Albornos, Lucía; Martín, Ignacio; Iglesias, Rebeca; Jiménez, Teresa; Labrador, Emilia; Dopico, Berta

    2012-11-07

    Many proteins with tandem repeats in their sequence have been described and classified according to the length of the repeats: I) Repeats of short oligopeptides (from 2 to 20 amino acids), including structural cell wall proteins and arabinogalactan proteins. II) Repeats that range in length from 20 to 40 residues, including proteins with a well-established three-dimensional structure often involved in mediating protein-protein interactions. (III) Longer repeats in the order of 100 amino acids that constitute structurally and functionally independent units. Here we analyse ShooT specific (ST) proteins, a family of proteins with tandem repeats of unknown function that were first found in Leguminosae, and their possible similarities to other proteins with tandem repeats. ST protein sequences were only found in dicotyledonous plants, limited to several plant families, mainly the Fabaceae and the Asteraceae. ST mRNAs accumulate mainly in the roots and under biotic interactions. Most ST proteins have one or several Domain(s) of Unknown Function 2775 (DUF2775). All deduced ST proteins have a signal peptide, indicating that these proteins enter the secretory pathway, and the mature proteins have tandem repeat oligopeptides that share a hexapeptide (E/D)FEPRP followed by 4 partially conserved amino acids, which could determine a putative N-glycosylation signal, and a fully conserved tyrosine. In a phylogenetic tree, the sequences clade according to taxonomic group. A possible involvement in symbiosis and abiotic stress as well as in plant cell elongation is suggested, although different STs could play different roles in plant development. We describe a new family of proteins called ST whose presence is limited to the plant kingdom, specifically to a few families of dicotyledonous plants. They present 20 to 40 amino acid tandem repeat sequences with different characteristics (signal peptide, DUF2775 domain, conservative repeat regions) from the described group of 20 to 40

  10. WD1145+017

    Science.gov (United States)

    Motta, Mario

    2017-06-01

    WD1145 is a 17th magnitude white dwarf star 570 light years away in Virgo, that was discovered to have a disintegrating planetoid in close orbit by Andrew Vanderburg a graduate student at Harvard CFA, while data mining the Kepler 2 mission. He contacted me to obtain transit data to elucidate the nature of its rather bizarre transit light curves. I obtained multiple observations of WD1145 over the course of a year, and found a series of complex transit light curves that could only be interpreted as a ring complex or torus in close orbit around WD1145. Combined with data from other amateur astronomers, professional observations, and satellite data it became clear that WD1145 has a small planetoid in close orbit at the Roche limit and is breaking apart forming a ring of debris material that is then raining down on the white dwarf. The surface of the star is "polluted" by heavy metals by spectroscopic data. Given that in the intense gravitational field of a white dwarf any heavy metals could not for long last on the surface, this confirms that we are tracking in real time the destruction of a small planet by its host star.

  11. Expansion of protein domain repeats.

    Directory of Open Access Journals (Sweden)

    Asa K Björklund

    2006-08-01

    Full Text Available Many proteins, especially in eukaryotes, contain tandem repeats of several domains from the same family. These repeats have a variety of binding properties and are involved in protein-protein interactions as well as binding to other ligands such as DNA and RNA. The rapid expansion of protein domain repeats is assumed to have evolved through internal tandem duplications. However, the exact mechanisms behind these tandem duplications are not well-understood. Here, we have studied the evolution, function, protein structure, gene structure, and phylogenetic distribution of domain repeats. For this purpose we have assigned Pfam-A domain families to 24 proteomes with more sensitive domain assignments in the repeat regions. These assignments confirmed previous findings that eukaryotes, and in particular vertebrates, contain a much higher fraction of proteins with repeats compared with prokaryotes. The internal sequence similarity in each protein revealed that the domain repeats are often expanded through duplications of several domains at a time, while the duplication of one domain is less common. Many of the repeats appear to have been duplicated in the middle of the repeat region. This is in strong contrast to the evolution of other proteins that mainly works through additions of single domains at either terminus. Further, we found that some domain families show distinct duplication patterns, e.g., nebulin domains have mainly been expanded with a unit of seven domains at a time, while duplications of other domain families involve varying numbers of domains. Finally, no common mechanism for the expansion of all repeats could be detected. We found that the duplication patterns show no dependence on the size of the domains. Further, repeat expansion in some families can possibly be explained by shuffling of exons. However, exon shuffling could not have created all repeats.

  12. WD1145+017 (Abstract)

    Science.gov (United States)

    Motta, M.

    2017-12-01

    (Abstract only) WD1145 is a 17th magnitude white dwarf star 570 light years away in Virgo that was discovered to have a disintegrating planetoid in close orbit by Andrew Vanderburg, a graduate student at Harvard CfA, while data mining the elucidate the nature of its rather bizarre transit light curves. I obtained multiple observations of WD1145 over the course of a year, and found a series of complex transit light curves that could only be interpreted as a ring complex or torus in close orbit around WD1145. Combined with data from other amateur astronomers, professional observations, and satellite data, it became clear that WD1145 has a small planetoid in close orbit at the Roche limit and is breaking apart, forming a ring of debris material that is then raining down on the white dwarf. The surface of the star is "polluted" by heavy metals, determined by spectroscopic data. Given that in the intense gravitational field of a white dwarf any heavy metals could not for long last on the surface, this confirms that we are tracking in real time the destruction of a small planet by its host star.

  13. Missense mutations in the WD40 domain of AHI1 cause non-syndromic retinitis pigmentosa.

    Science.gov (United States)

    Nguyen, Thanh-Minh T; Hull, Sarah; Roepman, Ronald; van den Born, L Ingeborgh; Oud, Machteld M; de Vrieze, Erik; Hetterschijt, Lisette; Letteboer, Stef J F; van Beersum, Sylvia E C; Blokland, Ellen A; Yntema, Helger G; Cremers, Frans P M; van der Zwaag, Paul A; Arno, Gavin; van Wijk, Erwin; Webster, Andrew R; Haer-Wigman, Lonneke

    2017-09-01

    Recent findings suggesting that Abelson helper integration site 1 ( AHI1 ) is involved in non-syndromic retinal disease have been debated, as the functional significance of identified missense variants was uncertain. We assessed whether AHI1 variants cause non-syndromic retinitis pigmentosa (RP). Exome sequencing was performed in three probands with RP. The effects of the identified missense variants in AHI1 were predicted by three-dimensional structure homology modelling. Ciliary parameters were evaluated in patient's fibroblasts, and recombinant mutant proteins were expressed in ciliated retinal pigmented epithelium cells. In the three patients with RP, three sets of compound heterozygous variants were detected in AHI1 (c.2174G>A; p.Trp725* and c.2258A>T; p.Asp753Val, c.660delC; p.Ser221Glnfs*10 and c.2090C>T; p.Pro697Leu, c.2087A>G; p.His696Arg and c.2429C>T; p.Pro810Leu). All four missense variants were present in the conserved WD40 domain of Jouberin, the ciliary protein encoded by AHI1 , with variable predicted implications for the domain structure. No significant changes in the percentage of ciliated cells, nor in cilium length or intraflagellar transport were detected. However, expression of mutant recombinant Jouberin in ciliated cells showed a significantly decreased enrichment at the ciliary base. This report confirms that mutations in AHI1 can underlie autosomal recessive RP. Moreover, it structurally and functionally validates the effect of the RP-associated AHI1 variants on protein function, thus proposing a new genotype-phenotype correlation for AHI1 mutation associated retinal ciliopathies. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  14. Topological characteristics of helical repeat proteins

    NARCIS (Netherlands)

    Groves, M R; Barford, D

    The recent elucidation of protein structures based upon repeating amino acid motifs, including the armadillo motif, the HEAT motif and tetratricopeptide repeats, reveals that they belong to the class of helical repeat proteins. These proteins share the common property of being assembled from tandem

  15. The coat protein complex II, COPII, protein Sec13 directly interacts with presenilin-1

    International Nuclear Information System (INIS)

    Nielsen, Anders Lade

    2009-01-01

    Mutations in the human gene encoding presenilin-1, PS1, account for most cases of early-onset familial Alzheimer's disease. PS1 has nine transmembrane domains and a large loop orientated towards the cytoplasm. PS1 locates to cellular compartments as endoplasmic reticulum (ER), Golgi apparatus, vesicular structures, and plasma membrane, and is an integral member of γ-secretase, a protein protease complex with specificity for intra-membranous cleavage of substrates such as β-amyloid precursor protein. Here, an interaction between PS1 and the Sec13 protein is described. Sec13 takes part in coat protein complex II, COPII, vesicular trafficking, nuclear pore function, and ER directed protein sequestering and degradation control. The interaction maps to the N-terminal part of the large hydrophilic PS1 loop and the first of the six WD40-repeats present in Sec13. The identified Sec13 interaction to PS1 is a new candidate interaction for linking PS1 to secretory and protein degrading vesicular circuits.

  16. The coat protein complex II, COPII, protein Sec13 directly interacts with presenilin-1

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Anders Lade, E-mail: aln@humgen.au.dk [Department of Human Genetics, The Bartholin Building, University of Aarhus, DK-8000 Aarhus C (Denmark)

    2009-10-23

    Mutations in the human gene encoding presenilin-1, PS1, account for most cases of early-onset familial Alzheimer's disease. PS1 has nine transmembrane domains and a large loop orientated towards the cytoplasm. PS1 locates to cellular compartments as endoplasmic reticulum (ER), Golgi apparatus, vesicular structures, and plasma membrane, and is an integral member of {gamma}-secretase, a protein protease complex with specificity for intra-membranous cleavage of substrates such as {beta}-amyloid precursor protein. Here, an interaction between PS1 and the Sec13 protein is described. Sec13 takes part in coat protein complex II, COPII, vesicular trafficking, nuclear pore function, and ER directed protein sequestering and degradation control. The interaction maps to the N-terminal part of the large hydrophilic PS1 loop and the first of the six WD40-repeats present in Sec13. The identified Sec13 interaction to PS1 is a new candidate interaction for linking PS1 to secretory and protein degrading vesicular circuits.

  17. The Pentapeptide Repeat Proteins

    OpenAIRE

    Vetting, Matthew W.; Hegde, Subray S.; Fajardo, J. Eduardo; Fiser, Andras; Roderick, Steven L.; Takiff, Howard E.; Blanchard, John S.

    2006-01-01

    The Pentapeptide Repeat Protein (PRP) family has over 500 members in the prokaryotic and eukaryotic kingdoms. These proteins are composed of, or contain domains composed of, tandemly repeated amino acid sequences with a consensus sequence of [S,T,A,V][D,N][L,F]-[S,T,R][G]. The biochemical function of the vast majority of PRP family members is unknown. The three-dimensional structure of the first member of the PRP family was determined for the fluoroquinolone resistance protein (MfpA) from Myc...

  18. WdStuAp, an APSES transcription factor, is a regulator of yeast-hyphal transitions in Wangiella (Exophiala) dermatitidis.

    Science.gov (United States)

    Wang, Qin; Szaniszlo, Paul J

    2007-09-01

    APSES transcription factors are well-known regulators of fungal cellular development and differentiation. To study the function of an APSES protein in the fungus Wangiella dermatitidis, a conidiogenous and polymorphic agent of human phaeohyphomycosis with yeast predominance, the APSES transcription factor gene WdSTUA was cloned, sequenced, disrupted, and overexpressed. Analysis showed that its derived protein was most similar to the APSES proteins of other conidiogenous molds and had its APSES DNA-binding domain located in the amino-terminal half. Deletion of WdSTUA in W. dermatitidis induced convoluted instead of normal smooth colony surface growth on the rich yeast maintenance agar medium yeast extract-peptone-dextrose agar (YPDA) at 37 degrees C. Additionally, deletion of WdSTUA repressed aerial hyphal growth, conidiation, and invasive hyphal growth on the nitrogen-poor, hypha-inducing agar medium potato dextrose agar (PDA) at 25 degrees C. Ectopic overexpression of WdSTUA repressed the convoluted colony surface growth on YPDA at 37 degrees C, and also strongly repressed hyphal growth on PDA at 25 degrees C and 37 degrees C. These new results provide additional insights into the diverse roles played by APSES factors in fungi. They also suggest that the transcription factor encoded by WdSTUA is both a positive and negative morphotype regulator in W. dermatitidis and possibly other of the numerous human pathogenic, conidiogenous fungi capable of yeast growth.

  19. Repeated restraint stress exposure during early withdrawal accelerates incubation of cue-induced cocaine craving.

    Science.gov (United States)

    Glynn, Ryan M; Rosenkranz, J Amiel; Wolf, Marina E; Caccamise, Aaron; Shroff, Freya; Smith, Alyssa B; Loweth, Jessica A

    2018-01-01

    A major challenge for treating cocaine addiction is the propensity for abstinent users to relapse. Two important triggers for relapse are cues associated with prior drug use and stressful life events. To study their interaction in promoting relapse during abstinence, we used the incubation model of craving and relapse in which cue-induced drug seeking progressively intensifies ('incubates') during withdrawal from extended-access cocaine self-administration. We tested rats for cue-induced cocaine seeking on withdrawal day (WD) 1. Rats were then subjected to repeated restraint stress or control conditions (seven sessions held between WD6 and WD14). All rats were tested again for cue-induced cocaine seeking on WD15, 1 day after the last stress or control session. Although controls showed a time-dependent increase in cue-induced cocaine seeking (incubation), rats exposed to repeated stress in early withdrawal exhibited a more robust increase in seeking behavior between WD1 and WD15. In separate stressed and control rats, equivalent cocaine seeking was observed on WD48. These results indicate that repeated stress in early withdrawal accelerates incubation of cocaine craving, although craving plateaus at the same level were observed in controls. However, 1 month after the WD48 test, rats subjected to repeated stress in early withdrawal showed enhanced cue-induced cocaine seeking following acute (24 hours) food deprivation stress. Together, these data indicate that chronic stress exposure enhances the initial rate of incubation of craving during early withdrawal, resulting in increased vulnerability to cue-induced relapse during this period, and may lead to a persistent increase in vulnerability to the relapse-promoting effects of stress. © 2016 Society for the Study of Addiction.

  20. Microtubule association of EML proteins and the EML4-ALK variant 3 oncoprotein require an N-terminal trimerization domain.

    Science.gov (United States)

    Richards, Mark W; O'Regan, Laura; Roth, Daniel; Montgomery, Jessica M; Straube, Anne; Fry, Andrew M; Bayliss, Richard

    2015-05-01

    Proteins of the echinoderm microtubule (MT)-associated protein (EMAP)-like (EML) family contribute to formation of the mitotic spindle and interphase MT network. EML1-4 consist of Trp-Asp 40 (WD40) repeats and an N-terminal region containing a putative coiled-coil. Recurrent gene rearrangements in non-small cell lung cancer (NSCLC) fuse EML4 to anaplastic lymphoma kinase (ALK) causing expression of several oncogenic fusion variants. The fusions have constitutive ALK activity due to self-association through the EML4 coiled-coil. We have determined crystal structures of the coiled-coils from EML2 and EML4, which describe the structural basis of both EML self-association and oncogenic EML4-ALK activation. The structures reveal a trimeric oligomerization state directed by a conserved pattern of hydrophobic residues and salt bridges. We show that the trimerization domain (TD) of EML1 is necessary and sufficient for self-association. The TD is also essential for MT binding; however, this property requires an adjacent basic region. These observations prompted us to investigate MT association of EML4-ALK and EML1-ABL1 (Abelson 1) fusions in which variable portions of the EML component are present. Uniquely, EML4-ALK variant 3, which includes the TD and basic region of EML4 but none of the WD40 repeats, was localized to MTs, both when expressed recombinantly and when expressed in a patient-derived NSCLC cell line (H2228). This raises the question of whether the mislocalization of ALK activity to MTs might influence downstream signalling and malignant properties of cells. Furthermore, the structure of EML4 TD may enable the development of protein-protein interaction inhibitors targeting the trimerization interface, providing a possible avenue towards therapeutic intervention in EML4-ALK NSCLC.

  1. WD60/FAP163 is a dynein intermediate chain required for retrograde intraflagellar transport in cilia

    Science.gov (United States)

    Patel-King, Ramila S.; Gilberti, Renée M.; Hom, Erik F. Y.; King, Stephen M.

    2013-01-01

    Retrograde intraflagellar transport (IFT) is required for assembly of cilia. We identify a Chlamydomonas flagellar protein (flagellar-associated protein 163 [FAP163]) as being closely related to the D1bIC(FAP133) intermediate chain (IC) of the dynein that powers this movement. Biochemical analysis revealed that FAP163 is present in the flagellar matrix and is actively trafficked by IFT. Furthermore, FAP163 copurified with D1bIC(FAP133) and the LC8 dynein light chain, indicating that it is an integral component of the retrograde IFT dynein. To assess the functional role of FAP163, we generated an RNA interference knockdown of the orthologous protein (WD60) in planaria. The Smed-wd60(RNAi) animals had a severe ciliary assembly defect that dramatically compromised whole-organism motility. Most cilia were present as short stubs that had accumulated large quantities of IFT particle–like material between the doublet microtubules and the membrane. The few remaining approximately full-length cilia had a chaotic beat with a frequency reduced from 24 to ∼10 Hz. Thus WD60/FAP163 is a dynein IC that is absolutely required for retrograde IFT and ciliary assembly. PMID:23864713

  2. Monitoring and modelling of white dwarfs with extremely weak magnetic fields. WD 2047+372 and WD 2359-434

    Science.gov (United States)

    Landstreet, J. D.; Bagnulo, S.; Valyavin, G.; Valeev, A. F.

    2017-11-01

    Magnetic fields are detected in a few percent of white dwarfs. The number of such magnetic white dwarfs known is now some hundreds. Fields range in strength from a few kG to several hundred MG. Almost all the known magnetic white dwarfs have a mean field modulus ≥1 MG. We are trying to fill a major gap in observational knowledge at the low field limit (≤200 kG) using circular spectro-polarimetry. In this paper we report the discovery and monitoring of strong, periodic magnetic variability in two previously discovered "super-weak field" magnetic white dwarfs, WD 2047+372 and WD 2359-434. WD 2047+372 has a mean longitudinal field that reverses between about -12 and + 15 kG, with a period of 0.243 d, while its mean field modulus appears nearly constant at 60 kG. The observations can be interpreted in terms of a dipolar field tilted with respect to the stellar rotation axis. WD 2359-434 always shows a weak positive longitudinal field with values between about 0 and + 12 kG, varying only weakly with stellar rotation, while the mean field modulus varies between about 50 and 100 kG. The rotation period is found to be 0.112 d using the variable shape of the Hα line core, consistent with available photometry. The field of this star appears to be much more complex than a dipole, and is probably not axisymmetric. Available photometry shows that WD 2359-434 is a light variable with an amplitude of only 0.005 mag; our own photometry shows that if WD 2047+372 is photometrically variable, the amplitude is below about 0.01 mag. These are the first models for magnetic white dwarfs with fields below about 100 kG based on magnetic measurements through the full stellar rotation. They reveal two very different magnetic surface configurations, and that, contrary to simple ohmic decay theory, WD 2359-434 has a much more complex surface field than the much younger WD 2047+372. Based, in part, on observations collected at the European Organisation for Astronomical Research in the

  3. Is WD 1437-008 a cataclysmic variable?

    Science.gov (United States)

    Shimansky, V. V.; Nurtdinova, D. N.; Borisov, N. V.; Spiridonova, O. I.

    2011-10-01

    Comprehensive observations of a close binary candidate WD 1437-008 are performed. The shape and amplitude of the observed brightness variations are shown to be inconsistent with the hypothesis of reflection effects, and the photometric period of the system, P phot = 0. d 2775, is found to differ from the period of spectral variations, P sp = 0. d 272060. As a result, WD 1437-008 has been preliminarily classified as a low-inclination cataclysmic variable.

  4. StaRProtein, A Web Server for Prediction of the Stability of Repeat Proteins

    Science.gov (United States)

    Xu, Yongtao; Zhou, Xu; Huang, Meilan

    2015-01-01

    Repeat proteins have become increasingly important due to their capability to bind to almost any proteins and the potential as alternative therapy to monoclonal antibodies. In the past decade repeat proteins have been designed to mediate specific protein-protein interactions. The tetratricopeptide and ankyrin repeat proteins are two classes of helical repeat proteins that form different binding pockets to accommodate various partners. It is important to understand the factors that define folding and stability of repeat proteins in order to prioritize the most stable designed repeat proteins to further explore their potential binding affinities. Here we developed distance-dependant statistical potentials using two classes of alpha-helical repeat proteins, tetratricopeptide and ankyrin repeat proteins respectively, and evaluated their efficiency in predicting the stability of repeat proteins. We demonstrated that the repeat-specific statistical potentials based on these two classes of repeat proteins showed paramount accuracy compared with non-specific statistical potentials in: 1) discriminate correct vs. incorrect models 2) rank the stability of designed repeat proteins. In particular, the statistical scores correlate closely with the equilibrium unfolding free energies of repeat proteins and therefore would serve as a novel tool in quickly prioritizing the designed repeat proteins with high stability. StaRProtein web server was developed for predicting the stability of repeat proteins. PMID:25807112

  5. A Neutron Star-White Dwarf Binary Model for Repeating Fast Radio Burst 121102

    Science.gov (United States)

    Gu, Wei-Min; Dong, Yi-Ze; Liu, Tong; Ma, Renyi; Wang, Junfeng

    2016-06-01

    We propose a compact binary model for the fast radio burst (FRB) repeaters, where the system consists of a magnetic white dwarf (WD) and a neutron star (NS) with strong bipolar magnetic fields. When the WD fills its Roche lobe, mass transfer will occur from the WD to the NS through the inner Lagrange point. The accreted magnetized materials may trigger magnetic reconnection when they approach the NS surface, and therefore the electrons can be accelerated to an ultra-relativistic speed. In this scenario, the curvature radiation of the electrons moving along the NS magnetic field lines can account for the characteristic frequency and the timescale of an FRB. Owing to the conservation of angular momentum, the WD may be kicked away after a burst, and the next burst may appear when the system becomes semi-detached again through the gravitational radiation. By comparing our analyses with the observations, we show that such an intermittent Roche-lobe overflow mechanism can be responsible for the observed repeating behavior of FRB 121102.

  6. A NEUTRON STAR–WHITE DWARF BINARY MODEL FOR REPEATING FAST RADIO BURST 121102

    International Nuclear Information System (INIS)

    Gu, Wei-Min; Dong, Yi-Ze; Liu, Tong; Ma, Renyi; Wang, Junfeng

    2016-01-01

    We propose a compact binary model for the fast radio burst (FRB) repeaters, where the system consists of a magnetic white dwarf (WD) and a neutron star (NS) with strong bipolar magnetic fields. When the WD fills its Roche lobe, mass transfer will occur from the WD to the NS through the inner Lagrange point. The accreted magnetized materials may trigger magnetic reconnection when they approach the NS surface, and therefore the electrons can be accelerated to an ultra-relativistic speed. In this scenario, the curvature radiation of the electrons moving along the NS magnetic field lines can account for the characteristic frequency and the timescale of an FRB. Owing to the conservation of angular momentum, the WD may be kicked away after a burst, and the next burst may appear when the system becomes semi-detached again through the gravitational radiation. By comparing our analyses with the observations, we show that such an intermittent Roche-lobe overflow mechanism can be responsible for the observed repeating behavior of FRB 121102.

  7. A NEUTRON STAR–WHITE DWARF BINARY MODEL FOR REPEATING FAST RADIO BURST 121102

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Wei-Min; Dong, Yi-Ze; Liu, Tong; Ma, Renyi; Wang, Junfeng, E-mail: guwm@xmu.edu.cn [Department of Astronomy, Xiamen University, Xiamen, Fujian 361005 (China)

    2016-06-01

    We propose a compact binary model for the fast radio burst (FRB) repeaters, where the system consists of a magnetic white dwarf (WD) and a neutron star (NS) with strong bipolar magnetic fields. When the WD fills its Roche lobe, mass transfer will occur from the WD to the NS through the inner Lagrange point. The accreted magnetized materials may trigger magnetic reconnection when they approach the NS surface, and therefore the electrons can be accelerated to an ultra-relativistic speed. In this scenario, the curvature radiation of the electrons moving along the NS magnetic field lines can account for the characteristic frequency and the timescale of an FRB. Owing to the conservation of angular momentum, the WD may be kicked away after a burst, and the next burst may appear when the system becomes semi-detached again through the gravitational radiation. By comparing our analyses with the observations, we show that such an intermittent Roche-lobe overflow mechanism can be responsible for the observed repeating behavior of FRB 121102.

  8. Programmable DNA-binding proteins from Burkholderia provide a fresh perspective on the TALE-like repeat domain.

    Science.gov (United States)

    de Lange, Orlando; Wolf, Christina; Dietze, Jörn; Elsaesser, Janett; Morbitzer, Robert; Lahaye, Thomas

    2014-06-01

    The tandem repeats of transcription activator like effectors (TALEs) mediate sequence-specific DNA binding using a simple code. Naturally, TALEs are injected by Xanthomonas bacteria into plant cells to manipulate the host transcriptome. In the laboratory TALE DNA binding domains are reprogrammed and used to target a fused functional domain to a genomic locus of choice. Research into the natural diversity of TALE-like proteins may provide resources for the further improvement of current TALE technology. Here we describe TALE-like proteins from the endosymbiotic bacterium Burkholderia rhizoxinica, termed Bat proteins. Bat repeat domains mediate sequence-specific DNA binding with the same code as TALEs, despite less than 40% sequence identity. We show that Bat proteins can be adapted for use as transcription factors and nucleases and that sequence preferences can be reprogrammed. Unlike TALEs, the core repeats of each Bat protein are highly polymorphic. This feature allowed us to explore alternative strategies for the design of custom Bat repeat arrays, providing novel insights into the functional relevance of non-RVD residues. The Bat proteins offer fertile grounds for research into the creation of improved programmable DNA-binding proteins and comparative insights into TALE-like evolution. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Multiple TPR motifs characterize the Fanconi anemia FANCG protein.

    Science.gov (United States)

    Blom, Eric; van de Vrugt, Henri J; de Vries, Yne; de Winter, Johan P; Arwert, Fré; Joenje, Hans

    2004-01-05

    The genome protection pathway that is defective in patients with Fanconi anemia (FA) is controlled by at least eight genes, including BRCA2. A key step in the pathway involves the monoubiquitylation of FANCD2, which critically depends on a multi-subunit nuclear 'core complex' of at least six FANC proteins (FANCA, -C, -E, -F, -G, and -L). Except for FANCL, which has WD40 repeats and a RING finger domain, no significant domain structure has so far been recognized in any of the core complex proteins. By using a homology search strategy comparing the human FANCG protein sequence with its ortholog sequences in Oryzias latipes (Japanese rice fish) and Danio rerio (zebrafish) we identified at least seven tetratricopeptide repeat motifs (TPRs) covering a major part of this protein. TPRs are degenerate 34-amino acid repeat motifs which function as scaffolds mediating protein-protein interactions, often found in multiprotein complexes. In four out of five TPR motifs tested (TPR1, -2, -5, and -6), targeted missense mutagenesis disrupting the motifs at the critical position 8 of each TPR caused complete or partial loss of FANCG function. Loss of function was evident from failure of the mutant proteins to complement the cellular FA phenotype in FA-G lymphoblasts, which was correlated with loss of binding to FANCA. Although the TPR4 mutant fully complemented the cells, it showed a reduced interaction with FANCA, suggesting that this TPR may also be of functional importance. The recognition of FANCG as a typical TPR protein predicts this protein to play a key role in the assembly and/or stabilization of the nuclear FA protein core complex.

  10. Evolving ONe WD+He star systems to intermediate-mass binary pulsars

    Science.gov (United States)

    Liu, D.; Wang, B.; Chen, W.; Zuo, Z.; Han, Z.

    2018-06-01

    It has been suggested that accretion-induced collapse (AIC) is a non-negligible path for the formation of the observed neutron stars (NSs). An ONe white dwarf (WD) that accretes material from a He star may experience AIC process and eventually produce intermediate-mass binary pulsars (IMBPs), named as the ONe WD+He star scenario. Note that previous studies can only account for part of the observed IMBPs with short orbital periods. In this work, we investigate the evolution of about 900 ONe WD+He star binaries to explore the distribution of IMBPs. We found that the ONe WD+He star scenario could form IMBPs including pulsars with 5-340 ms spin periods and 0.75-1.38 M_{⊙} WD companions, in which the orbital periods range from 0.04 to 900 d. Compared with the 20 observed IMBPs, this scenario can cover the parameters of 13 sources in the final orbital period-WD mass plane and the Corbet diagram, most of which have short orbital periods. We found that the ONe WD+He star scenario can explain almost all the observed IMBPs with short orbital periods. This work can well match the observed parameters of PSR J1802-2124 (one of the two precisely observed IMBPs), providing a possible evolutional path for its formation. We also speculate that the compact companion of HD 49798 (a hydrogen depleted sdO6 star) may be not a NS based on this work.

  11. Structure and Function of Vps15 in the Endosomal G Protein Signaling Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Heenan, Erin J.; Vanhooke, Janeen L.; Temple, Brenda R.; Betts, Laurie; Sondek, John E.; Dohlman, Henrik G.; (UNC)

    2009-09-11

    G protein-coupled receptors mediate cellular responses to a wide variety of stimuli, including taste, light, and neurotransmitters. In the yeast Saccharomyces cerevisiae, activation of the pheromone pathway triggers events leading to mating. The view had long been held that the G protein-mediated signal occurs principally at the plasma membrane. Recently, it has been shown that the G protein {alpha} subunit Gpa1 can promote signaling at endosomes and requires two components of the sole phosphatidylinositol-3-kinase in yeast, Vps15 and Vps34. Vps15 contains multiple WD repeats and also binds to Gpa1 preferentially in the GDP-bound state; these observations led us to hypothesize that Vps15 may function as a G protein {beta} subunit at the endosome. Here we show an X-ray crystal structure of the Vps15 WD domain that reveals a seven-bladed propeller resembling that of typical G{beta} subunits. We show further that the WD domain is sufficient to bind Gpa1 as well as to Atg14, a potential G{gamma} protein that exists in a complex with Vps15. The Vps15 kinase domain together with the intermediate domain (linking the kinase and WD domains) also contributes to Gpa1 binding and is necessary for Vps15 to sustain G protein signaling. These findings reveal that the Vps15 G{beta}-like domain serves as a scaffold to assemble Gpa1 and Atg14, whereas the kinase and intermediate domains are required for proper signaling at the endosome.

  12. Fault detection of feed water treatment process using PCA-WD with parameter optimization.

    Science.gov (United States)

    Zhang, Shirong; Tang, Qian; Lin, Yu; Tang, Yuling

    2017-05-01

    Feed water treatment process (FWTP) is an essential part of utility boilers; and fault detection is expected for its reliability improvement. Classical principal component analysis (PCA) has been applied to FWTPs in our previous work; however, the noises of T 2 and SPE statistics result in false detections and missed detections. In this paper, Wavelet denoise (WD) is combined with PCA to form a new algorithm, (PCA-WD), where WD is intentionally employed to deal with the noises. The parameter selection of PCA-WD is further formulated as an optimization problem; and PSO is employed for optimization solution. A FWTP, sustaining two 1000MW generation units in a coal-fired power plant, is taken as a study case. Its operation data is collected for following verification study. The results show that the optimized WD is effective to restrain the noises of T 2 and SPE statistics, so as to improve the performance of PCA-WD algorithm. And, the parameter optimization enables PCA-WD to get its optimal parameters in an automatic way rather than on individual experience. The optimized PCA-WD is further compared with classical PCA and sliding window PCA (SWPCA), in terms of four cases as bias fault, drift fault, broken line fault and normal condition, respectively. The advantages of the optimized PCA-WD, against classical PCA and SWPCA, is finally convinced with the results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  13. VizieR Online Data Catalog: WD+dMs from the SUPERBLINK proper motion survey (Skinner+, 2017)

    Science.gov (United States)

    Skinner, J. N.; Morgan, D. P.; West, A. A.; Lepine, S.; Thorstensen, J. R.

    2018-06-01

    To select for nearby WD+dMs, we used the SUPERBLINK proper motion survey (Lepine et al. 2002, J/AJ/124/1190; Lepine & Shara 2005, Cat. I/298), an ongoing all-sky survey that identifies and characterizes stars with proper motions μ>40 mas/yr. For this study, we used the 2011 July version of SUPERBLINK, which listed 2270481 stars, and was estimated to be >90% complete to V=19.0. We selected WD+dMs based on a combination of V magnitudes derived from the DSS plates (see Lepine & Shara 2005, Cat. I/298), near-UV magnitudes from GALEX, and Ks magnitudes from 2MASS. Using the UV-optical-IR color selection outlined in Skinner et al. (2014AJ....148..115S), we selected targets for spectroscopic follow-up (see bottom panel of Figure 1). We acquired optical spectroscopy of 178 newly identified WD+dM candidates, with the Boller and Chivens CCD spectrograph (CCDS), using both the Hiltner 2.4 m and McGraw-Hill 1.3 m telescopes located at the MDM Observatory. (3 data files).

  14. A WD40-repeat protein controls proanthocyanidin and phytomelanin pigmentation in the seed coats of the Japanese morning glory.

    Science.gov (United States)

    Park, Kyeung-Il; Hoshino, Atsushi

    2012-03-15

    The protein complex composed of the transcriptional regulators containing R2R3-MYB domains, bHLH domains, and WDR in plants controls various epidermal traits, including anthocyanin and proanthocyanidin pigmentation, trichome and root hair formation, and vacuolar pH. In the Japanese morning glory (Ipomoea nil), InMYB1 having R2R3-MYB domains and InWDR1 containing WDR were shown to regulate anthocyanin pigmentation in flowers, and InWDR1 was reported to control dark-brown pigmentation and trichome formation on seed coats. Here, we report that the seed pigments of I. nil mainly comprise proanthocyanidins and phytomelanins and that these pigments are drastically reduced in the ivory seed coats of an InWDR1 mutant. In addition, a transgenic plant of the InWDR1 mutant carrying the active InWDR1 gene produced dark-brown seeds, further confirming that InWDR1 regulates seed pigmentation. Early steps in anthocyanin and proanthocyanidin biosynthetic pathways are thought to be common. In the InWDR1 mutant, none of the structural genes for anthocyanin biosynthesis that showed reduced expression in the white flowers were down-regulated in the ivory seeds, which suggests that InWDR1 may activate different sets of the structural genes for anthocyanin biosynthesis in flowers and proanthocyanidin production in seeds. As in the flowers, however, we noticed that the expression of InbHLH2 encoding a bHLH regulator was down-regulated in the seeds of the InWDR1 mutant. We discuss the implications of these results with respect to the proanthocyanidin biosynthesis in the seed coats. Copyright © 2011 Elsevier GmbH. All rights reserved.

  15. Dissecting water binding sites at protein-protein interfaces: a lesson from the atomic structures in the Protein Data Bank.

    Science.gov (United States)

    Mukherjee, Sunandan; Nithin, Chandran; Divakaruni, Yasaswi; Bahadur, Ranjit Prasad

    2018-04-04

    We dissect the protein-protein interfaces into water preservation (WP), water hydration (WH) and water dehydration (WD) sites by comparing the water-mediated hydrogen bonds (H-bond) in the bound and unbound states of the interacting subunits. Upon subunit complexation, if a H-bond between an interface water and a protein polar group is retained, we assign it as WP site; if it is lost, we assign it as WD site and if a new H-bond is created, we assign it as WH site. We find that the density of WD sites is highest followed by WH and WP sites except in antigen and (or) antibody complexes, where the density of WH sites is highest followed by WD and WP sites. Furthermore, we find that WP sites are the most conserved followed by WD and WH sites in all class of complexes except in antigen and (or) antibody complexes, where WD sites are the most conserved followed by WH and WP sites. A significant number of WP and WH sites are involved in water bridges that stabilize the subunit interactions. At WH sites, the residues involved in water bridges are significantly better conserved than the other residues. However, no such difference is observed at WP sites. Interestingly, WD sites are generally replaced with direct H-bonds upon subunit complexation. Significantly, we observe many water-mediated H-bonds remain preserved in spite of large conformational changes upon subunit complexation. These findings have implications in predicting and engineering water binding sites at protein-protein interfaces.

  16. The lissencephaly protein Lis1 is present in motile mammalian cilia and requires outer arm dynein for targeting to Chlamydomonas flagella

    DEFF Research Database (Denmark)

    Pedersen, Lotte B; Rompolas, Panteleimon; Christensen, Søren T

    2007-01-01

    Lissencephaly is a developmental brain disorder characterized by a smooth cerebral surface, thickened cortex and misplaced neurons. Classical lissencephaly is caused by mutations in LIS1, which encodes a WD-repeat protein involved in cytoplasmic dynein regulation, mitosis and nuclear migration. S...

  17. Distribution and Evolution of Yersinia Leucine-Rich Repeat Proteins

    Science.gov (United States)

    Hu, Yueming; Huang, He; Hui, Xinjie; Cheng, Xi; White, Aaron P.

    2016-01-01

    Leucine-rich repeat (LRR) proteins are widely distributed in bacteria, playing important roles in various protein-protein interaction processes. In Yersinia, the well-characterized type III secreted effector YopM also belongs to the LRR protein family and is encoded by virulence plasmids. However, little has been known about other LRR members encoded by Yersinia genomes or their evolution. In this study, the Yersinia LRR proteins were comprehensively screened, categorized, and compared. The LRR proteins encoded by chromosomes (LRR1 proteins) appeared to be more similar to each other and different from those encoded by plasmids (LRR2 proteins) with regard to repeat-unit length, amino acid composition profile, and gene expression regulation circuits. LRR1 proteins were also different from LRR2 proteins in that the LRR1 proteins contained an E3 ligase domain (NEL domain) in the C-terminal region or an NEL domain-encoding nucleotide relic in flanking genomic sequences. The LRR1 protein-encoding genes (LRR1 genes) varied dramatically and were categorized into 4 subgroups (a to d), with the LRR1a to -c genes evolving from the same ancestor and LRR1d genes evolving from another ancestor. The consensus and ancestor repeat-unit sequences were inferred for different LRR1 protein subgroups by use of a maximum parsimony modeling strategy. Structural modeling disclosed very similar repeat-unit structures between LRR1 and LRR2 proteins despite the different unit lengths and amino acid compositions. Structural constraints may serve as the driving force to explain the observed mutations in the LRR regions. This study suggests that there may be functional variation and lays the foundation for future experiments investigating the functions of the chromosomally encoded LRR proteins of Yersinia. PMID:27217422

  18. Functionally Similar WRKY Proteins Regulate Vacuolar Acidification in Petunia and Hair Development in Arabidopsis

    NARCIS (Netherlands)

    Verweij, W.; Spelt, C.E.; Bliek, M.; de Vries, M.; Wit, N.; Faraco, M.; Koes, R.; Quattrocchio, F.

    2016-01-01

    The WD40 proteins ANTHOCYANIN11 (AN11) from petunia (Petunia hybrida) and TRANSPARENT TESTA GLABRA1 (TTG1) fromArabidopsis thalianaand associated basic helix-loop-helix (bHLH) and MYB transcription factors activate a variety of differentiation processes. In petunia petals, AN11 and the bHLH protein

  19. WD+RG systems as the progenitors of type Ia supernovae

    International Nuclear Information System (INIS)

    Wang Bo; Han Zhanwen

    2010-01-01

    Type Ia supernovae (SNe Ia) play an important role in the study of cosmic evolution, especially in cosmology. There are several progenitor models for SNe Ia proposed in the past years. By considering the effect of accretion disk instability on the evolution of white dwarf (WD) binaries, we performed detailed binary evolution calculations for the WD + red-giant (RG) channel of SNe Ia, in which a carbon-oxygen WD accretes material from a RG star to increase its mass to the Chandrasekhar mass limit. According to these calculations, we mapped out the initial and final parameters for SNe Ia in the orbital period-secondary mass (log P i - M i 2 ) plane for various WD masses for this channel. We discussed the influence of the variation of the duty cycle value on the regions for producing SNe Ia. Similar to previous studies, this work also indicates that the long-period dwarf novae offer possible ways for producing SNe Ia. Meanwhile, we find that the surviving companion stars from this channel have a low mass after the SN explosion, which may provide a means for the formation of the population of single low-mass WDs ( o-dot ).

  20. Genus-specific protein binding to the large clusters of DNA repeats (short regularly spaced repeats) present in Sulfolobus genomes

    DEFF Research Database (Denmark)

    Peng, Xu; Brügger, Kim; Shen, Biao

    2003-01-01

    terminally modified and corresponds to SSO454, an open reading frame of previously unassigned function. It binds specifically to DNA fragments carrying double and single repeat sequences, binding on one side of the repeat structure, and producing an opening of the opposite side of the DNA structure. It also...... recognizes both main families of repeat sequences in S. solfataricus. The recombinant protein, expressed in Escherichia coli, showed the same binding properties to the SRSR repeat as the native one. The SSO454 protein exhibits a tripartite internal repeat structure which yields a good sequence match...... with a helix-turn-helix DNA-binding motif. Although this putative motif is shared by other archaeal proteins, orthologs of SSO454 were only detected in species within the Sulfolobus genus and in the closely related Acidianus genus. We infer that the genus-specific protein induces an opening of the structure...

  1. The energy landscapes of repeat-containing proteins: topology, cooperativity, and the folding funnels of one-dimensional architectures.

    Directory of Open Access Journals (Sweden)

    Diego U Ferreiro

    2008-05-01

    Full Text Available Repeat-proteins are made up of near repetitions of 20- to 40-amino acid stretches. These polypeptides usually fold up into non-globular, elongated architectures that are stabilized by the interactions within each repeat and those between adjacent repeats, but that lack contacts between residues distant in sequence. The inherent symmetries both in primary sequence and three-dimensional structure are reflected in a folding landscape that may be analyzed as a quasi-one-dimensional problem. We present a general description of repeat-protein energy landscapes based on a formal Ising-like treatment of the elementary interaction energetics in and between foldons, whose collective ensemble are treated as spin variables. The overall folding properties of a complete "domain" (the stability and cooperativity of the repeating array can be derived from this microscopic description. The one-dimensional nature of the model implies there are simple relations for the experimental observables: folding free-energy (DeltaG(water and the cooperativity of denaturation (m-value, which do not ordinarily apply for globular proteins. We show how the parameters for the "coarse-grained" description in terms of foldon spin variables can be extracted from more detailed folding simulations on perfectly funneled landscapes. To illustrate the ideas, we present a case-study of a family of tetratricopeptide (TPR repeat proteins and quantitatively relate the results to the experimentally observed folding transitions. Based on the dramatic effect that single point mutations exert on the experimentally observed folding behavior, we speculate that natural repeat proteins are "poised" at particular ratios of inter- and intra-element interaction energetics that allow them to readily undergo structural transitions in physiologically relevant conditions, which may be intrinsically related to their biological functions.

  2. Dgp71WD is required for the assembly of the acentrosomal Meiosis I spindle, and is not a general targeting factor for the γ-TuRC

    Directory of Open Access Journals (Sweden)

    Richard F. Reschen

    2012-03-01

    Dgp71WD/Nedd1 proteins are essential for mitotic spindle formation. In human cells, Nedd1 targets γ-tubulin to both centrosomes and spindles, but in other organisms the function of Dgp71WD/Nedd1 is less clear. In Drosophila cells, Dgp71WD plays a major part in targeting γ-tubulin to spindles, but not centrosomes, while in Xenopus egg extracts, Nedd1 acts as a more general microtubule (MT organiser that can function independently of γ-tubulin. The interpretation of these studies, however, is complicated by the fact that some residual Dgp71WD/Nedd1 is likely present in the cells/extracts analysed. Here we generate a Dgp71WD null mutant lacking all but the last 12 nucleotides of coding sequence. The complete loss of Dgp71WD has no quantifiable effect on γ-tubulin or Centrosomin recruitment to the centrosome in larval brain cells. The recruitment of γ-tubulin to spindle MTs, however, is severely impaired, and spindle MT density is reduced in a manner that is indistinguishable from cells lacking Augmin or γ-TuRC function. In contrast, the absence of Dgp71WD leads to defects in the assembly of the acentrosomal female Meiosis I spindle that are more severe than those seen in Augmin or γ-TuRC mutants, indicating that Dgp71WD has additional functions that are independent of these complexes in oocytes. Moreover, the localisation of bicoid RNA during oogenesis, which requires γ-TuRC function, is unperturbed in Dgp71WD120 mutants. Thus, Dgp71WD is not simply a general cofactor required for γ-TuRC and/or Augmin targeting, and it appears to have a crucial role independent of these complexes in the acentrosomal Meiosis I spindle.

  3. Repeat Sequence Proteins as Matrices for Nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Drummy, L.; Koerner, H; Phillips, D; McAuliffe, J; Kumar, M; Farmer, B; Vaia, R; Naik, R

    2009-01-01

    Recombinant protein-inorganic nanocomposites comprised of exfoliated Na+ montmorillonite (MMT) in a recombinant protein matrix based on silk-like and elastin-like amino acid motifs (silk elastin-like protein (SELP)) were formed via a solution blending process. Charged residues along the protein backbone are shown to dominate long-range interactions, whereas the SELP repeat sequence leads to local protein/MMT compatibility. Up to a 50% increase in room temperature modulus and a comparable decrease in high temperature coefficient of thermal expansion occur for cast films containing 2-10 wt.% MMT.

  4. Magnetism, X-rays and accretion rates in WD 1145+017 and other polluted white dwarf systems

    Science.gov (United States)

    Farihi, J.; Fossati, L.; Wheatley, P. J.; Metzger, B. D.; Mauerhan, J.; Bachman, S.; Gänsicke, B. T.; Redfield, S.; Cauley, P. W.; Kochukhov, O.; Achilleos, N.; Stone, N.

    2018-02-01

    This paper reports circular spectropolarimetry and X-ray observations of several polluted white dwarfs including WD 1145+017, with the aim to constrain the behaviour of disc material and instantaneous accretion rates in these evolved planetary systems. Two stars with previously observed Zeeman splitting, WD 0322-019 and WD 2105-820, are detected above 5σ and 〈Bz〉 > 1 kG, while WD 1145+017, WD 1929+011, and WD 2326+049 yield (null) detections below this minimum level of confidence. For these latter three stars, high-resolution spectra and atmospheric modelling are used to obtain limits on magnetic field strengths via the absence of Zeeman splitting, finding B* Earth composition material falling on to the magnetic polar regions of white dwarfs, where X-rays and cyclotron radiation may contribute to accretion luminosity. This analysis is applied to X-ray data for WD 1145+017, WD 1729+371, and WD 2326+049, and the upper bound count rates are modelled with spectra for a range of plasma kT = 1-10 keV in both the magnetic and non-magnetic accretion regimes. The results for all three stars are consistent with a typical dusty white dwarf in a steady state at 108-109 g s-1. In particular, the non-magnetic limits for WD 1145+017 are found to be well below previous estimates of up to 1012 g s-1, and likely below 1010 g s-1, thus suggesting the star-disc system may be average in its evolutionary state, and only special in viewing geometry.

  5. Repeat-containing protein effectors of plant-associated organisms

    Directory of Open Access Journals (Sweden)

    Carl H. Mesarich

    2015-10-01

    Full Text Available Many plant-associated organisms, including microbes, nematodes, and insects, deliver effector proteins into the apoplast, vascular tissue, or cell cytoplasm of their prospective hosts. These effectors function to promote colonization, typically by altering host physiology or by modulating host immune responses. The same effectors however, can also trigger host immunity in the presence of cognate host immune receptor proteins, and thus prevent colonization. To circumvent effector-triggered immunity, or to further enhance host colonization, plant-associated organisms often rely on adaptive effector evolution. In recent years, it has become increasingly apparent that several effectors of plant-associated organisms are repeat-containing proteins (RCPs that carry tandem or non-tandem arrays of an amino acid sequence or structural motif. In this review, we highlight the diverse roles that these repeat domains play in RCP effector function. We also draw attention to the potential role of these repeat domains in adaptive evolution with regards to RCP effector function and the evasion of effector-triggered immunity. The aim of this review is to increase the profile of RCP effectors from plant-associated organisms.

  6. Highly Stable Trypsin-Aggregate Coatings on Polymer Nanofibers for Repeated Protein Digestion

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byoung Chan; Lopez-Ferrer, Daniel; Lee, Sang-mok; Ahn, Hye-kyung; Nair, Sujith; Kim, Seong H.; Kim, Beom S.; Petritis, Konstantinos; Camp, David G.; Grate, Jay W.; Smith, Richard D.; Koo, Yoon-mo; Gu, Man Bock; Kim, Jungbae

    2009-04-01

    A stable and robust trypsin-based biocatalytic system was developed and demonstrated for proteomic applications. The system utilizes polymer nanofibers coated with trypsin aggregates for immobilized protease digestions. After covalently attaching an initial layer of trypsin to the polymer nanofibers, highly concentrated trypsin molecules are crosslinked to the layered trypsin by way of a glutaraldehyde treatment. This new process produced a 300-fold increase in trypsin activity compared with a conventional method for covalent trypsin immobilization and proved to be robust in that it still maintained a high level of activity after a year of repeated recycling. This highly stable form of immobilized trypsin was also resistant to autolysis, enabling repeated digestions of bovine serum albumin over 40 days and successful peptide identification by LC-MS/MS. Finally, the immobilized trypsin was resistant to proteolysis when exposed to other enzymes (i.e. chymotrypsin), which makes it suitable for use in “real-world” proteomic applications. Overall, the biocatalytic nanofibers with enzyme aggregate coatings proved to be an effective approach for repeated and automated protein digestion in proteomic analyses.

  7. RACK1, A Multifaceted Scaffolding Protein: Structure and Function

    LENUS (Irish Health Repository)

    Adams, David R

    2011-10-06

    Abstract The Receptor for Activated C Kinase 1 (RACK1) is a member of the tryptophan-aspartate repeat (WD-repeat) family of proteins and shares significant homology to the β subunit of G-proteins (Gβ). RACK1 adopts a seven-bladed β-propeller structure which facilitates protein binding. RACK1 has a significant role to play in shuttling proteins around the cell, anchoring proteins at particular locations and in stabilising protein activity. It interacts with the ribosomal machinery, with several cell surface receptors and with proteins in the nucleus. As a result, RACK1 is a key mediator of various pathways and contributes to numerous aspects of cellular function. Here, we discuss RACK1 gene and structure and its role in specific signaling pathways, and address how posttranslational modifications facilitate subcellular location and translocation of RACK1. This review condenses several recent studies suggesting a role for RACK1 in physiological processes such as development, cell migration, central nervous system (CN) function and circadian rhythm as well as reviewing the role of RACK1 in disease.

  8. THE FIRST DISTANCE CONSTRAINT ON THE RENEGADE HIGH-VELOCITY CLOUD COMPLEX WD

    Energy Technology Data Exchange (ETDEWEB)

    Peek, J. E. G.; Roman-Duval, Julia; Tumlinson, Jason [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Bordoloi, Rongmon [MIT-Kavli Center for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Sana, Hugues [Institute of Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); Zheng, Yong [Department of Astronomy, Columbia University, New York, NY 10027 (United States)

    2016-09-10

    We present medium-resolution, near-ultraviolet Very Large Telescope/FLAMES observations of the star USNO-A0600-15865535. We adapt a standard method of stellar typing to our measurement of the shape of the Balmer ϵ absorption line to demonstrate that USNO-A0600-15865535 is a blue horizontal branch star, residing in the lower stellar halo at a distance of 4.4 kpc from the Sun. We measure the H and K lines of singly ionized calcium and find two isolated velocity components, one originating in the disk, and one associated with the high-velocity cloud complex WD. This detection demonstrated that complex WD is closer than ∼4.4 kpc and is the first distance constraint on the +100 km s{sup −1} Galactic complex of clouds. We find that complex WD is not in corotation with the Galactic disk, which has been assumed for decades. We examine a number of scenarios and find that the most likely scenario is that complex WD was ejected from the solar neighborhood and is only a few kiloparsecs from the Sun.

  9. A TALE-inspired computational screen for proteins that contain approximate tandem repeats.

    Science.gov (United States)

    Perycz, Malgorzata; Krwawicz, Joanna; Bochtler, Matthias

    2017-01-01

    TAL (transcription activator-like) effectors (TALEs) are bacterial proteins that are secreted from bacteria to plant cells to act as transcriptional activators. TALEs and related proteins (RipTALs, BurrH, MOrTL1 and MOrTL2) contain approximate tandem repeats that differ in conserved positions that define specificity. Using PERL, we screened ~47 million protein sequences for TALE-like architecture characterized by approximate tandem repeats (between 30 and 43 amino acids in length) and sequence variability in conserved positions, without requiring sequence similarity to TALEs. Candidate proteins were scored according to their propensity for nuclear localization, secondary structure, repeat sequence complexity, as well as covariation and predicted structural proximity of variable residues. Biological context was tentatively inferred from co-occurrence of other domains and interactome predictions. Approximate repeats with TALE-like features that merit experimental characterization were found in a protein of chestnut blight fungus, a eukaryotic plant pathogen.

  10. Constructs for the expression of repeating triple-helical protein domains

    International Nuclear Information System (INIS)

    Peng, Yong Y; Werkmeister, Jerome A; Vaughan, Paul R; Ramshaw, John A M

    2009-01-01

    The development of novel scaffolds will be an important aspect in future success of tissue engineering. Scaffolds will preferably contain information that directs the cellular content of constructs so that the new tissue that is formed is closely aligned in structure, composition and function to the target natural tissue. One way of approaching this will be the development of novel protein-based constructs that contain one or more repeats of functional elements derived from various proteins. In the present case, we describe a strategy to make synthetic, recombinant triple-helical constructs that contain repeat segments of biologically relevant domains. Copies of a DNA fragment prepared by PCR from human type III collagen have been inserted in a co-linear contiguous fashion into the yeast expression vector YEpFlag-1, using sequential addition between selected restriction sites. Constructs containing 1, 2 and 3 repeats were designed to maintain the (Gly-X-Y) repeat, which is essential for the formation of an extended triple helix. All constructs gave expressed protein, with the best being the 3-repeat construct which was readily secreted. This material had the expected composition and N-terminal sequence. Incubation of the product at low temperature led to triple-helix formation, shown by reaction with a conformation dependent monoclonal antibody.

  11. Constructs for the expression of repeating triple-helical protein domains

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Yong Y; Werkmeister, Jerome A; Vaughan, Paul R; Ramshaw, John A M, E-mail: jerome.werkmeister@csiro.a [CSIRO Molecular and Health Technologies, Bag 10, Clayton South, VIC 3169 (Australia)

    2009-02-15

    The development of novel scaffolds will be an important aspect in future success of tissue engineering. Scaffolds will preferably contain information that directs the cellular content of constructs so that the new tissue that is formed is closely aligned in structure, composition and function to the target natural tissue. One way of approaching this will be the development of novel protein-based constructs that contain one or more repeats of functional elements derived from various proteins. In the present case, we describe a strategy to make synthetic, recombinant triple-helical constructs that contain repeat segments of biologically relevant domains. Copies of a DNA fragment prepared by PCR from human type III collagen have been inserted in a co-linear contiguous fashion into the yeast expression vector YEpFlag-1, using sequential addition between selected restriction sites. Constructs containing 1, 2 and 3 repeats were designed to maintain the (Gly-X-Y) repeat, which is essential for the formation of an extended triple helix. All constructs gave expressed protein, with the best being the 3-repeat construct which was readily secreted. This material had the expected composition and N-terminal sequence. Incubation of the product at low temperature led to triple-helix formation, shown by reaction with a conformation dependent monoclonal antibody.

  12. Quantitative analysis and prediction of curvature in leucine-rich repeat proteins.

    Science.gov (United States)

    Hindle, K Lauren; Bella, Jordi; Lovell, Simon C

    2009-11-01

    Leucine-rich repeat (LRR) proteins form a large and diverse family. They have a wide range of functions most of which involve the formation of protein-protein interactions. All known LRR structures form curved solenoids, although there is large variation in their curvature. It is this curvature that determines the shape and dimensions of the inner space available for ligand binding. Unfortunately, large-scale parameters such as the overall curvature of a protein domain are extremely difficult to predict. Here, we present a quantitative analysis of determinants of curvature of this family. Individual repeats typically range in length between 20 and 30 residues and have a variety of secondary structures on their convex side. The observed curvature of the LRR domains correlates poorly with the lengths of their individual repeats. We have, therefore, developed a scoring function based on the secondary structure of the convex side of the protein that allows prediction of the overall curvature with a high degree of accuracy. We also demonstrate the effectiveness of this method in selecting a suitable template for comparative modeling. We have developed an automated, quantitative protocol that can be used to predict accurately the curvature of leucine-rich repeat proteins of unknown structure from sequence alone. This protocol is available as an online resource at http://www.bioinf.manchester.ac.uk/curlrr/.

  13. Alternative Conformations of the Tau Repeat Domain in Complex with an Engineered Binding Protein*

    Science.gov (United States)

    Grüning, Clara S. R.; Mirecka, Ewa A.; Klein, Antonia N.; Mandelkow, Eckhard; Willbold, Dieter; Marino, Stephen F.; Stoldt, Matthias; Hoyer, Wolfgang

    2014-01-01

    The aggregation of Tau into paired helical filaments is involved in the pathogenesis of several neurodegenerative diseases, including Alzheimer disease. The aggregation reaction is characterized by conformational conversion of the repeat domain, which partially adopts a cross-β-structure in the resulting amyloid-like fibrils. Here, we report the selection and characterization of an engineered binding protein, β-wrapin TP4, targeting the Tau repeat domain. TP4 was obtained by phage display using the four-repeat Tau construct K18ΔK280 as a target. TP4 binds K18ΔK280 as well as the longest isoform of human Tau, hTau40, with nanomolar affinity. NMR spectroscopy identified two alternative TP4-binding sites in the four-repeat domain, with each including two hexapeptide motifs with high β-sheet propensity. Both binding sites contain the aggregation-determining PHF6 hexapeptide within repeat 3. In addition, one binding site includes the PHF6* hexapeptide within repeat 2, whereas the other includes the corresponding hexapeptide Tau(337–342) within repeat 4, denoted PHF6**. Comparison of TP4-binding with Tau aggregation reveals that the same regions of Tau are involved in both processes. TP4 inhibits Tau aggregation at substoichiometric concentration, demonstrating that it interferes with aggregation nucleation. This study provides residue-level insight into the interaction of Tau with an aggregation inhibitor and highlights the structural flexibility of Tau. PMID:24966331

  14. Nucleolar localization of cirhin, the protein mutated in North American Indian childhood cirrhosis

    International Nuclear Information System (INIS)

    Yu, Bin; Mitchell, Grant A.; Richter, Andrea

    2005-01-01

    Cirhin (NP 1 16219), the product of the CIRH1A gene is mutated in North American Indian childhood cirrhosis (NAIC/CIRH1A, OMIM 604901), a severe autosomal recessive intrahepatic cholestasis. It is a 686-amino-acid WD40-repeat containing protein of unknown function that is predicted to contain multiple targeting signals, including an N-terminal mitochondrial targeting signal, a C-terminal monopartite nuclear localization signal (NLS) and a bipartite nuclear localization signal (BNLS). We performed the direct determination of subcellular localization of cirhin as a crucial first step in unraveling its biological function. Using EGFP and His-tagged cirhin fusion proteins expressed in HeLa and HepG2, cells we show that cirhin is a nucleolar protein and that the R565W mutation, for which all NAIC patients are homozygous, has no effect on subcellular localization. Cirhin has an active C-terminal monopartite nuclear localization signal (NLS) and a unique nucleolar localization signal (NrLS) between residues 315 and 432. The nucleolus is not known to be important specifically for intrahepatic cholestasis. These observations provide a new dimension in the study of hereditary cholestasis

  15. DNA-binding proteins from marine bacteria expand the known sequence diversity of TALE-like repeats.

    Science.gov (United States)

    de Lange, Orlando; Wolf, Christina; Thiel, Philipp; Krüger, Jens; Kleusch, Christian; Kohlbacher, Oliver; Lahaye, Thomas

    2015-11-16

    Transcription Activator-Like Effectors (TALEs) of Xanthomonas bacteria are programmable DNA binding proteins with unprecedented target specificity. Comparative studies into TALE repeat structure and function are hindered by the limited sequence variation among TALE repeats. More sequence-diverse TALE-like proteins are known from Ralstonia solanacearum (RipTALs) and Burkholderia rhizoxinica (Bats), but RipTAL and Bat repeats are conserved with those of TALEs around the DNA-binding residue. We study two novel marine-organism TALE-like proteins (MOrTL1 and MOrTL2), the first to date of non-terrestrial origin. We have assessed their DNA-binding properties and modelled repeat structures. We found that repeats from these proteins mediate sequence specific DNA binding conforming to the TALE code, despite low sequence similarity to TALE repeats, and with novel residues around the BSR. However, MOrTL1 repeats show greater sequence discriminating power than MOrTL2 repeats. Sequence alignments show that there are only three residues conserved between repeats of all TALE-like proteins including the two new additions. This conserved motif could prove useful as an identifier for future TALE-likes. Additionally, comparing MOrTL repeats with those of other TALE-likes suggests a common evolutionary origin for the TALEs, RipTALs and Bats. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. A Application of WD Model to EB Type Contact Binary System

    Directory of Open Access Journals (Sweden)

    Su-Yeon Oh

    2000-12-01

    Full Text Available The EB type contact binaries show large temperature difference ( T 1,000K between two components. Thus we have modified the mode 3 of the WD program to adjust albedos, limb darkening coefficients and gravity darkening exponents for both components of such binaries, while the values for those parameters should be same for both components in the original WD program. Both of the modified and the original versions have been applied to the EB type contact binaries such as DO Cas, GO Cyg, and FS Lup. The computed light curves with modified version fit better to the observations.

  17. Effects of 4WD and ABS of safe driving on slippery roads; Tei {mu} ji ni okeru 4WD to ABS no koka to unten sosa hoho

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Y [National Research Inst. of Police Science, Tokyo (Japan); Takigami, K; Asano, K [Japan Safe Driving Center, Tokyo (Japan); Nagai, M [Tokyo University of Agriculture and Technology, Tokyo (Japan)

    1997-10-01

    Effects of 4WD and ABS on safe driving were examined by brake, obstacle avoidance, acceleration, cornering and lane-changing tests on slippery road. The braking operations, used in these tests, are full, intermitted and modulated brakings. As the results of discussion, the major findings are (1) ABS is effective to shorten the stopping distance and to increase the ability of obstacle avoidance in many cases, (2) `Modulated Braking (without wheel locks)` has the same function as ABS, and (3) 4WD is effective to increase the stability while accelerating, cornering and lane-changing. 5 refs., 6 figs.

  18. Identification of a novel Leucine-rich repeat protein and candidate PP1 regulatory subunit expressed in developing spermatids

    Directory of Open Access Journals (Sweden)

    Sperry Ann O

    2008-01-01

    Full Text Available Abstract Background Spermatogenesis is comprised of a series of highly regulated developmental changes that transform the precursor germ cell into a highly specialized spermatozoon. The last phase of spermatogenesis, termed spermiogenesis, involves dramatic morphological change including formation of the acrosome, elongation and condensation of the nucleus, formation of the flagella, and disposal of unnecessary cytoplasm. A prominent cytoskeletal component of the developing spermatid is the manchette, a unique microtubular structure that surrounds the nucleus of the developing spermatid and is thought to assist in both the reshaping of the nucleus and redistribution of spermatid cytoplasm. Although the molecular motor KIFC1 has been shown to associate with the manchette, its precise role in function of the manchette and the identity of its testis specific protein partners are unknown. The purpose of this study was to identify proteins in the testis that interact with KIFC1 using a yeast 2 hybrid screen of a testis cDNA library. Results Thirty percent of the interacting clones identified in our screen contain an identical cDNA encoding a 40 kD protein. This interacting protein has 4 leucine-rich repeats in its amino terminal half and is expressed primarily in the testis; therefore we have named this protein testis leucine-rich repeat protein or TLRR. TLRR was also found to associate tightly with the KIFC1 targeting domain using affinity chromatography. In addition to the leucine-rich repeats, TLRR contains a consensus-binding site for protein phosphatase-1 (PP1. Immunocytochemistry using a TLRR specific antibody demonstrates that this protein is found near the manchette of developing spermatids. Conclusion We have identified a previously uncharacterized leucine-rich repeat protein that is expressed abundantly in the testis and associates with the manchette of developing spermatids, possibly through its interaction with the KIFC1 molecular motor

  19. Molecular mapping of qBK1 WD , a major QTL for bakanae disease resistance in rice.

    Science.gov (United States)

    Lee, Sais-Beul; Hur, Yeon-Jae; Cho, Jun-Hyeon; Lee, Jong-Hee; Kim, Tae-Heon; Cho, Soo-Min; Song, You-Chun; Seo, Young-Su; Lee, Jungkwan; Kim, Tae-Sung; Park, Yong-Jin; Oh, Myung-Kyu; Park, Dong-Soo

    2018-01-10

    Bakanae or foot rot disease is a prominent disease of rice caused by Gibberella fujikuroi. This disease may infect rice plants from the pre-emergence stage to the mature stage. In recent years, raising rice seedlings in seed boxes for mechanical transplanting has increased the incidence of many seedling diseases; only a few rice varieties have been reported to exhibit resistance to bakanae disease. In this study, we attempted to identify quantitative trait loci (QTLs) conferring bakanae disease resistance from the highly resistant japonica variety Wonseadaesoo. A primary QTL study using the genotypes/phenotypes of the recombinant inbred lines (RILs) indicated that the locus qBK1 WD conferring resistance to bakanae disease from Wonseadaesoo was located in a 1.59 Mb interval delimited on the physical map between chr01_13542347 (13.54 Mb) and chr01_15132528 (15.13 Mb). The log of odds (LOD) score of qBK1 WD was 8.29, accounting for 20.2% of the total phenotypic variation. We further identified a gene pyramiding effect of two QTLs, qBK WD and previously developed qBK1. The mean proportion of healthy plant for 31 F 4 RILs that had no resistance genes was 35.3%, which was similar to that of the susceptible check variety Ilpum. The proportion of healthy plants for the lines with only qBK WD or qBK1 was 66.1% and 55.5%, respectively, which was significantly higher than that of the lines without resistance genes and that of Ilpum. The mean proportion of the healthy plant for 15 F 4 RILs harboring both qBK WD and qBK1 was 80.2%, which was significantly higher than that of the lines with only qBK WD or qBK1. Introducing qBK WD or pyramiding the QTLs qBK WD and qBK1 could provide effective tools for breeding rice with bakanae disease resistance. To our knowledge, this is the first report on a gene pyramiding effect that provides higher resistance against bakanae disease.

  20. Improving Assessment of Work Related Mental Health Function Using the Work Disability Functional Assessment Battery (WD-FAB).

    Science.gov (United States)

    Marfeo, Elizabeth E; Ni, Pengsheng; McDonough, Christine; Peterik, Kara; Marino, Molly; Meterko, Mark; Rasch, Elizabeth K; Chan, Leighton; Brandt, Diane; Jette, Alan M

    2018-03-01

    Purpose To improve the mental health component of the Work Disability Functional Assessment Battery (WD-FAB), developed for the US Social Security Administration's (SSA) disability determination process. Specifically our goal was to expand the WD-FAB scales of mood & emotions, resilience, social interactions, and behavioral control to improve the depth and breadth of the current scales and expand the content coverage to include aspects of cognition & communication function. Methods Data were collected from a random, stratified sample of 1695 claimants applying for the SSA work disability benefits, and a general population sample of 2025 working age adults. 169 new items were developed to replenish the WD-FAB scales and analyzed using factor analysis and item response theory (IRT) analysis to construct unidimensional scales. We conducted computer adaptive test (CAT) simulations to examine the psychometric properties of the WD-FAB. Results Analyses supported the inclusion of four mental health subdomains: Cognition & Communication (68 items), Self-Regulation (34 items), Resilience & Sociability (29 items) and Mood & Emotions (34 items). All scales yielded acceptable psychometric properties. Conclusions IRT methods were effective in expanding the WD-FAB to assess mental health function. The WD-FAB has the potential to enhance work disability assessment both within the context of the SSA disability programs as well as other clinical and vocational rehabilitation settings.

  1. Essential role of the NH2-terminal WD/EPF motif in the phosphorylation-activated protective function of mammalian Hsp27.

    Science.gov (United States)

    Thériault, Jimmy R; Lambert, Herman; Chávez-Zobel, Aura T; Charest, Gabriel; Lavigne, Pierre; Landry, Jacques

    2004-05-28

    Hsp27 is expressed at high levels after mild heat shock and contributes to making cells extremely resistant to subsequent treatments. The activity of the protein is regulated at the transcriptional level, but also by phosphorylation, which occurs rapidly during stress and is responsible for causing the dissociation of large 700-kDa Hsp27 oligomers into dimers. We investigated the mechanism by which phosphorylation and oligomerization modulate the protective activity of Chinese hamster Hsp27. In contrast to oligomer dissociation, which only required Ser90 phosphorylation, activation of Hsp27 thermoprotective activity required the phosphorylation of both Ser90 and Ser15. Replacement of Ser90 by Ala90, which prevented the dissociation of the oligomer upon stress, did cause a severe defect in the protective activity. Dissociation was, however, not a sufficient condition to activate the protein because replacement of Ser15 by Ala15, which caused little effect in the oligomeric organization of the protein, also yielded an inactive protein. Analyzes of mutants with short deletions in the NH2 terminus identified the Hsp27 WD/EPF or PF-rich domain as essential for protection, maintenance of the oligomeric structure, and in vitro chaperone activity of the protein. In light of a three-dimensional model of Hsp27 based on the crystallographic structure of wheat Hsp16.9, we propose that the conserved WD/EPF motif of mammalian Hsp27 mediates important intramolecular interactions with hydrophic surfaces of the alpha-crystallin domain of the protein. These interactions are destabilized by Ser90 phosphorylation, making the motif free to interact with heterologous molecular targets upon the additional phosphorylation of the nearby Ser15.

  2. Structure of thrombospondin type 3 repeats in bacterial outer membrane protein A reveals its intra-repeat disulfide bond-dependent calcium-binding capability

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Shuyan; Sun, Cancan; Tan, Kemin; Ye, Sheng; Zhang, Rongguang

    2017-09-01

    Eukaryotic thrombospondin type 3 repeat (TT3R) is an efficient calcium ion (Ca2+) binding motif only found in mammalian thrombospondin family. TT3R has also been found in prokaryotic cellulase Cel5G, which was thought to forfeit the Ca2+-binding capability due to the formation of intra-repeat disulfide bonds, instead of the inter-repeat ones possessed by eukaryotic TT3Rs. In this study, we have identified an enormous number of prokaryotic TT3R-containing proteins belonging to several different protein families, including outer membrane protein A (OmpA), an important structural protein connecting the outer membrane and the periplasmic peptidoglycan layer in gram-negative bacteria. Here, we report the crystal structure of the periplasmic region of OmpA from Capnocytophaga gingivalis, which contains a linker region comprising five consecutive TT3Rs. The structure of OmpA-TT3R exhibits a well-ordered architecture organized around two tightly-coordinated Ca2+ and confirms the presence of abnormal intra-repeat disulfide bonds. Further mutagenesis studies showed that the Ca2+-binding capability of OmpA-TT3R is indeed dependent on the proper formation of intra-repeat disulfide bonds, which help to fix a conserved glycine residue at its proper position for Ca2+ coordination. Additionally, despite lacking inter repeat disulfide bonds, the interfaces between adjacent OmpA-TT3Rs are enhanced by both hydrophobic and conserved aromatic-proline interactions.

  3. Loss of γ-tubulin, GCP-WD/NEDD1 and CDK5RAP2 from the Centrosome of Neurons in Developing Mouse Cerebral and Cerebellar Cortex

    International Nuclear Information System (INIS)

    Yonezawa, Satoshi; Shigematsu, Momoko; Hirata, Kazuto; Hayashi, Kensuke

    2015-01-01

    It has been recently reported that the centrosome of neurons does not have microtubule nucleating activity. Microtubule nucleation requires γ-tubulin as well as its recruiting proteins, GCP-WD/NEDD1 and CDK5RAP2 that anchor γ-tubulin to the centrosome. Change in the localization of these proteins during in vivo development of brain, however, has not been well examined. In this study we investigate the localization of γ-tubulin, GCP-WD and CDK5RAP2 in developing cerebral and cerebellar cortex with immunofluorescence. We found that γ-tubulin and its recruiting proteins were localized at centrosomes of immature neurons, while they were lost at centrosomes in mature neurons. This indicated that the loss of microtubule nucleating activity at the centrosome of neurons is due to the loss of γ-tubulin-recruiting proteins from the centrosome. RT-PCR analysis revealed that these proteins are still expressed after birth, suggesting that they have a role in microtubule generation in cell body and dendrites of mature neurons. Microtubule regrowth experiments on cultured mature neurons showed that microtubules are nucleated not at the centrosome but within dendrites. These data indicated the translocation of microtubule-organizing activity from the centrosome to dendrites during maturation of neurons, which would explain the mixed polarity of microtubules in dendrites

  4. Alanine repeats influence protein localization in splicing speckles and paraspeckles.

    Science.gov (United States)

    Chang, Shuo-Hsiu; Chang, Wei-Lun; Lu, Chia-Chen; Tarn, Woan-Yuh

    2014-12-16

    Mammalian splicing regulatory protein RNA-binding motif protein 4 (RBM4) has an alanine repeat-containing C-terminal domain (CAD) that confers both nuclear- and splicing speckle-targeting activities. Alanine-repeat expansion has pathological potential. Here we show that the alanine-repeat tracts influence the subnuclear targeting properties of the RBM4 CAD in cultured human cells. Notably, truncation of the alanine tracts redistributed a portion of RBM4 to paraspeckles. The alanine-deficient CAD was sufficient for paraspeckle targeting. On the other hand, alanine-repeat expansion reduced the mobility of RBM4 and impaired its splicing activity. We further took advantage of the putative coactivator activator (CoAA)-RBM4 conjoined splicing factor, CoAZ, to investigate the function of the CAD in subnuclear targeting. Transiently expressed CoAZ formed discrete nuclear foci that emerged and subsequently separated-fully or partially-from paraspeckles. Alanine-repeat expansion appeared to prevent CoAZ separation from paraspeckles, resulting in their complete colocalization. CoAZ foci were dynamic but, unlike paraspeckles, were resistant to RNase treatment. Our results indicate that the alanine-rich CAD, in conjunction with its conjoined RNA-binding domain(s), differentially influences the subnuclear localization and biogenesis of RBM4 and CoAZ. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Solution properties of the archaeal CRISPR DNA repeat-binding homeodomain protein Cbp2

    DEFF Research Database (Denmark)

    Kenchappa, Chandra; Heiðarsson, Pétur Orri; Kragelund, Birthe

    2013-01-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) form the basis of diverse adaptive immune systems directed primarily against invading genetic elements of archaea and bacteria. Cbp1 of the crenarchaeal thermoacidophilic order Sulfolobales, carrying three imperfect repeats, binds...... specifically to CRISPR DNA repeats and has been implicated in facilitating production of long transcripts from CRISPR loci. Here, a second related class of CRISPR DNA repeat-binding protein, denoted Cbp2, is characterized that contains two imperfect repeats and is found amongst members of the crenarchaeal...... in facilitating high affinity DNA binding of Cbp2 by tethering the two domains. Structural studies on mutant proteins provide support for Cys(7) and Cys(28) enhancing high thermal stability of Cbp2(Hb) through disulphide bridge formation. Consistent with their proposed CRISPR transcriptional regulatory role, Cbp2...

  6. Inferring repeat-protein energetics from evolutionary information.

    Directory of Open Access Journals (Sweden)

    Rocío Espada

    2017-06-01

    Full Text Available Natural protein sequences contain a record of their history. A common constraint in a given protein family is the ability to fold to specific structures, and it has been shown possible to infer the main native ensemble by analyzing covariations in extant sequences. Still, many natural proteins that fold into the same structural topology show different stabilization energies, and these are often related to their physiological behavior. We propose a description for the energetic variation given by sequence modifications in repeat proteins, systems for which the overall problem is simplified by their inherent symmetry. We explicitly account for single amino acid and pair-wise interactions and treat higher order correlations with a single term. We show that the resulting evolutionary field can be interpreted with structural detail. We trace the variations in the energetic scores of natural proteins and relate them to their experimental characterization. The resulting energetic evolutionary field allows the prediction of the folding free energy change for several mutants, and can be used to generate synthetic sequences that are statistically indistinguishable from the natural counterparts.

  7. Mitochondrial fission proteins regulate programmed cell death in yeast.

    Science.gov (United States)

    Fannjiang, Yihru; Cheng, Wen-Chih; Lee, Sarah J; Qi, Bing; Pevsner, Jonathan; McCaffery, J Michael; Hill, R Blake; Basañez, Gorka; Hardwick, J Marie

    2004-11-15

    The possibility that single-cell organisms undergo programmed cell death has been questioned in part because they lack several key components of the mammalian cell death machinery. However, yeast encode a homolog of human Drp1, a mitochondrial fission protein that was shown previously to promote mammalian cell death and the excessive mitochondrial fragmentation characteristic of apoptotic mammalian cells. In support of a primordial origin of programmed cell death involving mitochondria, we found that the Saccharomyces cerevisiae homolog of human Drp1, Dnm1, promotes mitochondrial fragmentation/degradation and cell death following treatment with several death stimuli. Two Dnm1-interacting factors also regulate yeast cell death. The WD40 repeat protein Mdv1/Net2 promotes cell death, consistent with its role in mitochondrial fission. In contrast to its fission function in healthy cells, Fis1 unexpectedly inhibits Dnm1-mediated mitochondrial fission and cysteine protease-dependent cell death in yeast. Furthermore, the ability of yeast Fis1 to inhibit mitochondrial fission and cell death can be functionally replaced by human Bcl-2 and Bcl-xL. Together, these findings indicate that yeast and mammalian cells have a conserved programmed death pathway regulated by a common molecular component, Drp1/Dnm1, that is inhibited by a Bcl-2-like function.

  8. Myotonin protein-kinase [AGC]n trinucleotide repeat in seven nonhuman primates

    Energy Technology Data Exchange (ETDEWEB)

    Novelli, G.; Sineo, L.; Pontieri, E. [Catholic Univ. of Rome (Italy)]|[Univ. of Milan (Italy)]|[Univ. Florence (Italy)] [and others

    1994-09-01

    Myotonic dystrophy (DM) is due to a genomic instability of a trinucleotide [AGC]n motif, located at the 3{prime} UTR region of a protein-kinase gene (myotonin protein kinase, MT-PK). The [AGC] repeat is meiotically and mitotically unstable, and it is directly related to the manifestations of the disorder. Although a gene dosage effect of the MT-PK has been demonstrated n DM muscle, the mechanism(s) by which the intragenic repeat expansion leads to disease is largely unknown. This non-standard mutational event could reflect an evolutionary mechanism widespread among animal genomes. We have isolated and sequenced the complete 3{prime}UTR region of the MT-PK gene in seven primates (macaque, orangutan, gorilla, chimpanzee, gibbon, owl monkey, saimiri), and examined by comparative sequence nucleotide analysis the [AGC]n intragenic repeat and the surrounding nucleotides. The genomic organization, including the [AGC]n repeat structure, was conserved in all examined species, excluding the gibbon (Hylobates agilis), in which the [AGC]n upstream sequence (GGAA) is replaced by a GA dinucleotide. The number of [AGC]n in the examined species ranged between 7 (gorilla) and 13 repeats (owl monkeys), with a polymorphism informative content (PIC) similar to that observed in humans. These results indicate that the 3{prime}UTR [AGC] repeat within the MT-PK gene is evolutionarily conserved, supporting that this region has important regulatory functions.

  9. Constraints and consequences of the emergence of amino acid repeats in eukaryotic proteins.

    Science.gov (United States)

    Chavali, Sreenivas; Chavali, Pavithra L; Chalancon, Guilhem; de Groot, Natalia Sanchez; Gemayel, Rita; Latysheva, Natasha S; Ing-Simmons, Elizabeth; Verstrepen, Kevin J; Balaji, Santhanam; Babu, M Madan

    2017-09-01

    Proteins with amino acid homorepeats have the potential to be detrimental to cells and are often associated with human diseases. Why, then, are homorepeats prevalent in eukaryotic proteomes? In yeast, homorepeats are enriched in proteins that are essential and pleiotropic and that buffer environmental insults. The presence of homorepeats increases the functional versatility of proteins by mediating protein interactions and facilitating spatial organization in a repeat-dependent manner. During evolution, homorepeats are preferentially retained in proteins with stringent proteostasis, which might minimize repeat-associated detrimental effects such as unregulated phase separation and protein aggregation. Their presence facilitates rapid protein divergence through accumulation of amino acid substitutions, which often affect linear motifs and post-translational-modification sites. These substitutions may result in rewiring protein interaction and signaling networks. Thus, homorepeats are distinct modules that are often retained in stringently regulated proteins. Their presence facilitates rapid exploration of the genotype-phenotype landscape of a population, thereby contributing to adaptation and fitness.

  10. Comparison of serum leptin, glucose, total cholesterol and total protein levels in fertile and repeat breeder cows

    Directory of Open Access Journals (Sweden)

    Saime Guzel

    2014-12-01

    Full Text Available In the present study we measured serum glucose, leptin, total cholesterol and total protein concentrations in repeat breeder cows and compared them with fertile cows. For this aim, 20 repeat breeder cows and 20 fertile cows were used as material. Repeat breeder cows were found to have lower levels of leptin and glucose as compared with fertile ones. No significant differences in total cholesterol and total protein levels were observed between the two groups. No significant correlation of leptin with glucose, total cholesterol and total protein was observed in fertile and repeat breeder cows. Low concentrations of glucose and leptin can have some effects on reproductive problems as repeat breeder and help to understand potential mechanisms impairing fertility in repeat breeder cows.

  11. Functionally Similar WRKY Proteins Regulate Vacuolar Acidification in Petunia and Hair Development in Arabidopsis.

    Science.gov (United States)

    Verweij, Walter; Spelt, Cornelis E; Bliek, Mattijs; de Vries, Michel; Wit, Niek; Faraco, Marianna; Koes, Ronald; Quattrocchio, Francesca M

    2016-03-01

    The WD40 proteins ANTHOCYANIN11 (AN11) from petunia (Petunia hybrida) and TRANSPARENT TESTA GLABRA1 (TTG1) from Arabidopsis thaliana and associated basic helix-loop-helix (bHLH) and MYB transcription factors activate a variety of differentiation processes. In petunia petals, AN11 and the bHLH protein AN1 activate, together with the MYB protein AN2, anthocyanin biosynthesis and, together with the MYB protein PH4, distinct genes, such as PH1 and PH5, that acidify the vacuole. To understand how AN1 and AN11 activate anthocyanin biosynthetic and PH genes independently, we isolated PH3. We found that PH3 is a target gene of the AN11-AN1-PH4 complex and encodes a WRKY protein that can bind to AN11 and is required, in a feed-forward loop, together with AN11-AN1-PH4 for transcription of PH5. PH3 is highly similar to TTG2, which regulates hair development, tannin accumulation, and mucilage production in Arabidopsis. Like PH3, TTG2 can bind to petunia AN11 and the Arabidopsis homolog TTG1, complement ph3 in petunia, and reactivate the PH3 target gene PH5. Our findings show that the specificity of WD40-bHLH-MYB complexes is in part determined by interacting proteins, such as PH3 and TTG2, and reveal an unanticipated similarity in the regulatory circuitry that controls petunia vacuolar acidification and Arabidopsis hair development. © 2016 American Society of Plant Biologists. All rights reserved.

  12. A large complement of the predicted Arabidopsis ARM repeat proteins are members of the U-box E3 ubiquitin ligase family.

    Science.gov (United States)

    Mudgil, Yashwanti; Shiu, Shin-Han; Stone, Sophia L; Salt, Jennifer N; Goring, Daphne R

    2004-01-01

    The Arabidopsis genome was searched to identify predicted proteins containing armadillo (ARM) repeats, a motif known to mediate protein-protein interactions in a number of different animal proteins. Using domain database predictions and models generated in this study, 108 Arabidopsis proteins were identified that contained a minimum of two ARM repeats with the majority of proteins containing four to eight ARM repeats. Clustering analysis showed that the 108 predicted Arabidopsis ARM repeat proteins could be divided into multiple groups with wide differences in their domain compositions and organizations. Interestingly, 41 of the 108 Arabidopsis ARM repeat proteins contained a U-box, a motif present in a family of E3 ligases, and these proteins represented the largest class of Arabidopsis ARM repeat proteins. In 14 of these U-box/ARM repeat proteins, there was also a novel conserved domain identified in the N-terminal region. Based on the phylogenetic tree, representative U-box/ARM repeat proteins were selected for further study. RNA-blot analyses revealed that these U-box/ARM proteins are expressed in a variety of tissues in Arabidopsis. In addition, the selected U-box/ARM proteins were found to be functional E3 ubiquitin ligases. Thus, these U-box/ARM proteins represent a new family of E3 ligases in Arabidopsis.

  13. Superfamily of ankyrin repeat proteins in tomato.

    Science.gov (United States)

    Yuan, Xiaowei; Zhang, Shizhong; Qing, Xiaohe; Sun, Meihong; Liu, Shiyang; Su, Hongyan; Shu, Huairui; Li, Xinzheng

    2013-07-10

    The ankyrin repeat (ANK) protein family plays a crucial role in plant growth and development and in response to biotic and abiotic stresses. However, no detailed information concerning this family is available for tomato (Solanum lycopersicum) due to the limited information on whole genome sequences. In this study, we identified a total of 130 ANK genes in tomato genome (SlANK), and these genes were distributed across all 12 chromosomes at various densities. And chromosomal localizations of SlANK genes indicated 25 SlANK genes were involved in tandem duplications. Based on their domain composition, all of the SlANK proteins were grouped into 13 subgroups. A combined phylogenetic tree was constructed with the aligned SlANK protein sequences. This tree revealed that the SlANK proteins comprise five major groups. An analysis of the expression profiles of SlANK genes in tomato in different tissues and in response to stresses showed that the SlANK proteins play roles in plant growth, development and stress responses. To our knowledge, this is the first report of a genome-wide analysis of the tomato ANK gene family. This study provides valuable information regarding the classification and putative functions of SlANK genes in tomato. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  14. Vaccinia protein F12 has structural similarity to kinesin light chain and contains a motor binding motif required for virion export.

    Directory of Open Access Journals (Sweden)

    Gareth W Morgan

    2010-02-01

    Full Text Available Vaccinia virus (VACV uses microtubules for export of virions to the cell surface and this process requires the viral protein F12. Here we show that F12 has structural similarity to kinesin light chain (KLC, a subunit of the kinesin-1 motor that binds cargo. F12 and KLC share similar size, pI, hydropathy and cargo-binding tetratricopeptide repeats (TPRs. Moreover, molecular modeling of F12 TPRs upon the crystal structure of KLC2 TPRs showed a striking conservation of structure. We also identified multiple TPRs in VACV proteins E2 and A36. Data presented demonstrate that F12 is critical for recruitment of kinesin-1 to virions and that a conserved tryptophan and aspartic acid (WD motif, which is conserved in the kinesin-1-binding sequence (KBS of the neuronal protein calsyntenin/alcadein and several other cellular kinesin-1 binding proteins, is essential for kinesin-1 recruitment and virion transport. In contrast, mutation of WD motifs in protein A36 revealed they were not required for kinesin-1 recruitment or IEV transport. This report of a viral KLC-like protein containing a KBS that is conserved in several cellular proteins advances our understanding of how VACV recruits the kinesin motor to virions, and exemplifies how viruses use molecular mimicry of cellular components to their advantage.

  15. Deletion of Repeats in the Alpha C Protein Enhances the Pathogenicity of Group B Streptococci in Immune Mice

    OpenAIRE

    Gravekamp, C.; Rosner, Bernard; Madoff, L. C.

    1998-01-01

    The alpha C protein is a protective surface-associated antigen of group B streptococci (GBS). The prototype alpha C protein of GBS (strain A909) contains nine identical tandem repeats, each comprising 82 amino acids, flanked by N- and C-terminal domains. Clinical isolates of GBS show variable numbers of repeats with a normal distribution and a median of 9 to 10 repeats. Here, we show that escape mutants of GBS expressing one-repeat alpha C protein were 100-fold more pathogenic than GBS expres...

  16. Effect of low carbohydrate high protein (LCHP) diet on lipid metabolism, liver and kidney function in rats.

    Science.gov (United States)

    Kostogrys, Renata B; Franczyk-Żarów, Magdalena; Maślak, Edyta; Topolska, Kinga

    2015-03-01

    The objective of this study was to compare effects of Western diet (WD) with low carbohydrate high protein (LCHP) diet on lipid metabolism, liver and kidney function in rats. Eighteen rats were randomly assigned to three experimental groups and fed for the next 2 months. The experimental diets were: Control (7% of soybean oil, 20% protein), WD (21% of butter, 20% protein), and LCHP (21% of butter and 52.4% protein) diet. The LCHP diet significantly decreased the body weight of the rats. Diet consumption was differentiated among groups, however significant changes were observed since third week of the experiment duration. Rats fed LCHP diet ate significantly less (25.2g/animal/day) than those from Control (30.2g/animal/day) and WD (27.8 g/animal/day) groups. Additionally, food efficiency ratio (FER) tended to decrease in LCHP fed rats. Serum homocysteine concentration significantly decreased in rats fed WD and LCHP diets. Liver weights were significantly higher in rats fed WD and LCHP diets. At the end of the experiment (2 months) the triacylglycerol (TAG) was significantly decreased in animals fed LCHP compared to WD. qRT-PCR showed that SCD-1 and FAS were decreased in LCHP fed rats, but WD diet increased expression of lipid metabolism genes. Rats receiving LCHP diet had two fold higher kidney weight and 54.5% higher creatinin level compared to Control and WD diets. In conclusion, LCHP diet decreased animal's body weight and decreased TAG in rat's serum. However, kidney damage in LCHP rats was observed. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. The WD+He star binaries as the progenitors of type Ia supernovae

    Directory of Open Access Journals (Sweden)

    Wang Bo

    2017-12-01

    Full Text Available Employing the MESA stellar evolution code, we computed He accretion onto carbon-oxygen white dwarfs (CO WDs.We found two possible outcomes for models in which the WD steadily grows in mass towards the Chandrasekhar limit. For relatively low He-accretion rates carbon ignition occurs in the center, leading to a type Ia supernova (SN Ia explosion, whereas for relatively high accretion rates carbon is ignited off-center, probably leading to collapse. Thus the parameter space producing SNe Ia is reduced compared to what was assumed in earlier papers, in which the possibility of off-center ignition was ignored. We then applied these results in binary population synthesis modelling, finding a modest reduction in the expected birthrate of SNe Ia resulting from the WD+He star channel.

  18. In vitro thermodynamic dissection of human copper transfer from chaperone to target protein.

    Science.gov (United States)

    Niemiec, Moritz S; Weise, Christoph F; Wittung-Stafshede, Pernilla

    2012-01-01

    Transient protein-protein and protein-ligand interactions are fundamental components of biological activity. To understand biological activity, not only the structures of the involved proteins are important but also the energetics of the individual steps of a reaction. Here we use in vitro biophysical methods to deduce thermodynamic parameters of copper (Cu) transfer from the human copper chaperone Atox1 to the fourth metal-binding domain of the Wilson disease protein (WD4). Atox1 and WD4 have the same fold (ferredoxin-like fold) and Cu-binding site (two surface exposed cysteine residues) and thus it is not clear what drives metal transfer from one protein to the other. Cu transfer is a two-step reaction involving a metal-dependent ternary complex in which the metal is coordinated by cysteines from both proteins (i.e., Atox1-Cu-WD4). We employ size exclusion chromatography to estimate individual equilibrium constants for the two steps. This information together with calorimetric titration data are used to reveal enthalpic and entropic contributions of each step in the transfer process. Upon combining the equilibrium constants for both steps, a metal exchange factor (from Atox1 to WD4) of 10 is calculated, governed by a negative net enthalpy change of ∼10 kJ/mol. Thus, small variations in interaction energies, not always obvious upon comparing protein structures alone, may fuel vectorial metal transfer.

  19. The LRRK2 G2385R variant is a partial loss-of-function mutation that affects synaptic vesicle trafficking through altered protein interactions.

    Science.gov (United States)

    Carrion, Maria Dolores Perez; Marsicano, Silvia; Daniele, Federica; Marte, Antonella; Pischedda, Francesca; Di Cairano, Eliana; Piovesana, Ester; von Zweydorf, Felix; Kremmer, Elisabeth; Gloeckner, Christian Johannes; Onofri, Franco; Perego, Carla; Piccoli, Giovanni

    2017-07-14

    Mutations in the Leucine-rich repeat kinase 2 gene (LRRK2) are associated with familial Parkinson's disease (PD). LRRK2 protein contains several functional domains, including protein-protein interaction domains at its N- and C-termini. In this study, we analyzed the functional features attributed to LRRK2 by its N- and C-terminal domains. We combined TIRF microscopy and synaptopHluorin assay to visualize synaptic vesicle trafficking. We found that N- and C-terminal domains have opposite impact on synaptic vesicle dynamics. Biochemical analysis demonstrated that different proteins are bound at the two extremities, namely β3-Cav2.1 at N-terminus part and β-Actin and Synapsin I at C-terminus domain. A sequence variant (G2385R) harboured within the C-terminal WD40 domain increases the risk for PD. Complementary biochemical and imaging approaches revealed that the G2385R variant alters strength and quality of LRRK2 interactions and increases fusion of synaptic vesicles. Our data suggest that the G2385R variant behaves like a loss-of-function mutation that mimics activity-driven events. Impaired scaffolding capabilities of mutant LRRK2 resulting in perturbed vesicular trafficking may arise as a common pathophysiological denominator through which different LRRK2 pathological mutations cause disease.

  20. A Large Complement of the Predicted Arabidopsis ARM Repeat Proteins Are Members of the U-Box E3 Ubiquitin Ligase Family1[w

    Science.gov (United States)

    Mudgil, Yashwanti; Shiu, Shin-Han; Stone, Sophia L.; Salt, Jennifer N.; Goring, Daphne R.

    2004-01-01

    The Arabidopsis genome was searched to identify predicted proteins containing armadillo (ARM) repeats, a motif known to mediate protein-protein interactions in a number of different animal proteins. Using domain database predictions and models generated in this study, 108 Arabidopsis proteins were identified that contained a minimum of two ARM repeats with the majority of proteins containing four to eight ARM repeats. Clustering analysis showed that the 108 predicted Arabidopsis ARM repeat proteins could be divided into multiple groups with wide differences in their domain compositions and organizations. Interestingly, 41 of the 108 Arabidopsis ARM repeat proteins contained a U-box, a motif present in a family of E3 ligases, and these proteins represented the largest class of Arabidopsis ARM repeat proteins. In 14 of these U-box/ARM repeat proteins, there was also a novel conserved domain identified in the N-terminal region. Based on the phylogenetic tree, representative U-box/ARM repeat proteins were selected for further study. RNA-blot analyses revealed that these U-box/ARM proteins are expressed in a variety of tissues in Arabidopsis. In addition, the selected U-box/ARM proteins were found to be functional E3 ubiquitin ligases. Thus, these U-box/ARM proteins represent a new family of E3 ligases in Arabidopsis. PMID:14657406

  1. Influence of training intensity on adaptations in acid/base transport proteins, muscle buffer capacity, and repeated-sprint ability in active men.

    Science.gov (United States)

    McGinley, Cian; Bishop, David J

    2016-12-01

    McGinley C, Bishop DJ. Influence of training intensity on adaptations in acid/base transport proteins, muscle buffer capacity, and repeated-sprint ability in active men. J Appl Physiol 121: 1290-1305, 2016. First published October 14, 2016; doi:10.1152/japplphysiol.00630.2016-This study measured the adaptive response to exercise training for each of the acid-base transport protein families, including providing isoform-specific evidence for the monocarboxylate transporter (MCT)1/4 chaperone protein basigin and for the electrogenic sodium-bicarbonate cotransporter (NBCe)1. We investigated whether 4 wk of work-matched, high-intensity interval training (HIIT), performed either just above the lactate threshold (HIITΔ20; n = 8), or close to peak aerobic power (HIITΔ90; n = 8), influenced adaptations in acid-base transport protein abundance, nonbicarbonate muscle buffer capacity (βm in vitro ), and exercise capacity in active men. Training intensity did not discriminate between adaptations for most proteins measured, with abundance of MCT1, sodium/hydrogen exchanger (NHE) 1, NBCe1, carbonic anhydrase (CA) II, and CAXIV increasing after 4 wk, whereas there was little change in CAIII and CAIV abundance. βm in vitro also did not change. However, MCT4 protein content only increased for HIITΔ20 [effect size (ES): 1.06, 90% confidence limits × / ÷ 0.77], whereas basigin protein content only increased for HIITΔ90 (ES: 1.49, × / ÷ 1.42). Repeated-sprint ability (5 × 6-s sprints; 24 s passive rest) improved similarly for both groups. Power at the lactate threshold only improved for HIITΔ20 (ES: 0.49; 90% confidence limits ± 0.38), whereas peak O 2 uptake did not change for either group. Detraining was characterized by the loss of adaptations for all of the proteins measured and for repeated-sprint ability 6 wk after removing the stimulus of HIIT. In conclusion, 4 wk of HIIT induced improvements in each of the acid-base transport protein families, but, remarkably, a 40

  2. Discovery of a Detached, Eclipsing 40 Minute Period Double White Dwarf Binary and a Friend: Implications for He+CO White Dwarf Mergers

    International Nuclear Information System (INIS)

    Brown, Warren R.; Kilic, Mukremin; Kosakowski, Alekzander; Gianninas, A.

    2017-01-01

    We report the discovery of two detached double white dwarf (WD) binaries, SDSS J082239.546+304857.19 and SDSS J104336.275+055149.90, with orbital periods of 40 and 46 minutes, respectively. The 40 minute system is eclipsing; it is composed of a 0.30 M ⊙ and a 0.52 M ⊙ WD. The 46 minute system is a likely LISA verification binary. The short 20 ± 2 Myr and ∼34 Myr gravitational-wave merger times of the two binaries imply that many more such systems have formed and merged over the age of the Milky Way. We update the estimated Milky Way He+CO WD binary merger rate and affirm our previously published result: He+CO WD binaries merge at a rate at least 40 times greater than the formation rate of stable mass-transfer AM CVn binaries, and so the majority must have unstable mass-transfer. The implication is that spin–orbit coupling in He+CO WD mergers is weak, or perhaps nova-like outbursts drive He+CO WDs into merger, as proposed by Shen.

  3. Discovery of a Detached, Eclipsing 40 Minute Period Double White Dwarf Binary and a Friend: Implications for He+CO White Dwarf Mergers

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Warren R. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Kilic, Mukremin; Kosakowski, Alekzander; Gianninas, A., E-mail: wbrown@cfa.harvard.edu, E-mail: kilic@ou.edu, E-mail: alexg@nhn.ou.edu [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks Street, Norman, OK 73019 (United States)

    2017-09-20

    We report the discovery of two detached double white dwarf (WD) binaries, SDSS J082239.546+304857.19 and SDSS J104336.275+055149.90, with orbital periods of 40 and 46 minutes, respectively. The 40 minute system is eclipsing; it is composed of a 0.30 M {sub ⊙} and a 0.52 M {sub ⊙} WD. The 46 minute system is a likely LISA verification binary. The short 20 ± 2 Myr and ∼34 Myr gravitational-wave merger times of the two binaries imply that many more such systems have formed and merged over the age of the Milky Way. We update the estimated Milky Way He+CO WD binary merger rate and affirm our previously published result: He+CO WD binaries merge at a rate at least 40 times greater than the formation rate of stable mass-transfer AM CVn binaries, and so the majority must have unstable mass-transfer. The implication is that spin–orbit coupling in He+CO WD mergers is weak, or perhaps nova-like outbursts drive He+CO WDs into merger, as proposed by Shen.

  4. Rancang Bangun Sistem Smart Charging menggunakan Panel Surya pada Robot 6WD berbasis Mikrokontroler Arduino

    Directory of Open Access Journals (Sweden)

    made yogi hendrayanto

    2018-03-01

    Full Text Available Ilmu pengetahuan dan teknologi dalam bidang robotika pada saat ini berkembang dengan sangat cepat. Teknologi robotika pada dasarnya dikembangkan dengan tujuan untuk membantu manusia dalam melakukan pekerjaan tertentu, seperti pekerjaan yang berisiko tinggi, pekerjaan yang tidak bisa dikerjakan oleh tangan manusia secara langsung dan pekerjaan yang membutuhkan ketelitian tinggi. Pada saat ini, robot masih dikendalikan secara manual oleh manusia menggunakan Baterai sebagai sumber energi robot dan melakukan pengisian secara manual. Berdasarkan hal tersebut maka ada suatu keinginan untuk berkontribusi dalam pengembangan teknologi robot 6WD yaitu dengan merancang sebuah sistem Smart charging menggunakan Panel surya sebagai sumber energi untuk melakukan pengisian baterai robot secara langsung. Sistem yang dibuat, nantinya dapat membuat robot 6WD, bergerak dengan cara manual menggunakan inputan dari komputer yang dikontrol manual dari manusia. Manusia hanya perlu menggerakkan dan dapat melihat kondisi dari 2 buah baterai robot 6WD dari Komputer, kemudian komunikasi yang terjadi antara komputer dengan robot dapat dilakukan secara dua arah, agar robot dapat memberikan informasi balik kepada komputer, baik itu daya baterai, loss area dan lain sebagainya.Arduino Mega 2560 digunakan sebagai sistem utama yang mengolah semua data input dan output pada sistem. Modul HM-TRP befungsi untuk mengirimkan data dari robot ke komputer untuk ditampilkan.Pengiriman informasi robot 6WD meliputi informasi kondisi status 2 buah baterai, arus baterai, tegangan baterai, dan arah dari gerakan robot yang akan dikendalikan melalui GCS(Ground Control Station.   [TURNITIN CHECK 8%, 18042017

  5. Structure-Function Analysis of Cf-9, a Receptor-Like Protein with Extracytoplasmic Leucine-Rich Repeats

    NARCIS (Netherlands)

    Hoorn, van der R.A.L.; Wulff, B.B.H.; Rivas, S.; Durrant, M.C.; Ploeg, van der A.; Wit, de P.J.G.M.; Jones, J.D.G.

    2005-01-01

    The tomato (Lycopersicon pimpinellifolium) resistance protein Cf-9 belongs to a large class of plant proteins with extracytoplasmic Leu-rich repeats (eLRRs). eLRR proteins play key roles in plant defense and development, mainly as receptor-like proteins or receptor-like kinases, conferring

  6. Identification of TTAGGG-binding proteins in Neurospora crassa, a fungus with vertebrate-like telomere repeats.

    Science.gov (United States)

    Casas-Vila, Núria; Scheibe, Marion; Freiwald, Anja; Kappei, Dennis; Butter, Falk

    2015-11-17

    To date, telomere research in fungi has mainly focused on Saccharomyces cerevisiae and Schizosaccharomyces pombe, despite the fact that both yeasts have degenerated telomeric repeats in contrast to the canonical TTAGGG motif found in vertebrates and also several other fungi. Using label-free quantitative proteomics, we here investigate the telosome of Neurospora crassa, a fungus with canonical telomeric repeats. We show that at least six of the candidates detected in our screen are direct TTAGGG-repeat binding proteins. While three of the direct interactors (NCU03416 [ncTbf1], NCU01991 [ncTbf2] and NCU02182 [ncTay1]) feature the known myb/homeobox DNA interaction domain also found in the vertebrate telomeric factors, we additionally show that a zinc-finger protein (NCU07846) and two proteins without any annotated DNA-binding domain (NCU02644 and NCU05718) are also direct double-strand TTAGGG binders. We further find two single-strand binders (NCU02404 [ncGbp2] and NCU07735 [ncTcg1]). By quantitative label-free interactomics we identify TTAGGG-binding proteins in Neurospora crassa, suggesting candidates for telomeric factors that are supported by phylogenomic comparison with yeast species. Intriguingly, homologs in yeast species with degenerated telomeric repeats are also TTAGGG-binding proteins, e.g. in S. cerevisiae Tbf1 recognizes the TTAGGG motif found in its subtelomeres. However, there is also a subset of proteins that is not conserved. While a rudimentary core TTAGGG-recognition machinery may be conserved across yeast species, our data suggests Neurospora as an emerging model organism with unique features.

  7. Mapping of immunogenic and protein-interacting regions at the surface of the seven-bladed β-propeller domain of the HIV-1 cellular interactor EED

    Directory of Open Access Journals (Sweden)

    Gouet Patrice

    2008-02-01

    Full Text Available Abstract Background The human EED protein, a member of the superfamily of Polycomb group proteins, is involved in multiple cellular protein complexes. Its C-terminal domain, which is common to the four EED isoforms, contains seven repeats of a canonical WD-40 motif. EED is an interactor of three HIV-1 proteins, matrix (MA, integrase (IN and Nef. An antiviral activity has been found to be associated with isoforms EED3 and EED4 at the late stage of HIV-1 replication, due to a negative effect on virus assembly and genomic RNA packaging. The aim of the present study was to determine the regions of the EED C-terminal core domain which were accessible and available to protein interactions, using three-dimensional (3D protein homology modelling with a WD-40 protein of known structure, and epitope mapping of anti-EED antibodies. Results Our data suggested that the C-terminal domain of EED was folded as a seven-bladed β-propeller protein. During the completion of our work, crystallographic data of EED became available from co-crystals of the EED C-terminal core with the N-terminal domain of its cellular partner EZH2. Our 3D-model was in good congruence with the refined structural model determined from crystallographic data, except for a unique α-helix in the fourth β-blade. More importantly, the position of flexible loops and accessible β-strands on the β-propeller was consistent with our mapping of immunogenic epitopes and sites of interaction with HIV-1 MA and IN. Certain immunoreactive regions were found to overlap with the EZH2, MA and IN binding sites, confirming their accessibility and reactivity at the surface of EED. Crystal structure of EED showed that the two discrete regions of interaction with MA and IN did not overlap with each other, nor with the EZH2 binding pocket, but were contiguous, and formed a continuous binding groove running along the lateral face of the β-propeller. Conclusion Identification of antibody-, MA-, IN- and EZH2

  8. The leucine-rich repeat structure.

    Science.gov (United States)

    Bella, J; Hindle, K L; McEwan, P A; Lovell, S C

    2008-08-01

    The leucine-rich repeat is a widespread structural motif of 20-30 amino acids with a characteristic repetitive sequence pattern rich in leucines. Leucine-rich repeat domains are built from tandems of two or more repeats and form curved solenoid structures that are particularly suitable for protein-protein interactions. Thousands of protein sequences containing leucine-rich repeats have been identified by automatic annotation methods. Three-dimensional structures of leucine-rich repeat domains determined to date reveal a degree of structural variability that translates into the considerable functional versatility of this protein superfamily. As the essential structural principles become well established, the leucine-rich repeat architecture is emerging as an attractive framework for structural prediction and protein engineering. This review presents an update of the current understanding of leucine-rich repeat structure at the primary, secondary, tertiary and quaternary levels and discusses specific examples from recently determined three-dimensional structures.

  9. Rancang Bangun Robot 6WD Dengan Sensor Gas TGS2600 Menggunakan Metode Wall Following Berbasis Arduino Mega 2560

    Directory of Open Access Journals (Sweden)

    I Made Arya Budhana

    2017-07-01

    Full Text Available Intisari— Perkembangan teknologi khususnya dibidang robotika saat ini sangat pesat, Salah satu bentuk aplikasi dari teknologi robotika yang erat kaitannya dengan sistem kontrol adalah wheel mobile robot. Beberapa metode dapat dilakukan untuk mendistribusikan gas alam salah satunya dengan pipa. Distribusi gas alam dengan menggunakan pipa sering mengalami kendala kebocoran yang disebabkan usia dari pipa distribusi yang sudah cukup tua. Untuk mempermudah pemantauan pipa gas yang berada di bawah tanah digunakan robot 6 WD (wheel drive yang memiliki 6 roda dan penggerak pada setiap rodanya untuk mengatasi medan yang berat. Pergerakan dari robot 6 WD mengacu pada sensor ultrasonik SRF HC-SR04, metode ini dinamakan wall following. Sensor gas tipe TGS dari figaro dimanfaatkan untuk mengetahui adanya kebocoran gas  pada pipa atau tidak. Selain itu, robot ini juga dilengkapi dengan kamera untuk mengirim gambar kerusakan pipa pada user agar dapat segera dilakukan perbaikan. Arduino Mega 2560 digunakan sebagai otak pada robot 6 WD yang bertugas untuk mengolah data yang masuk dan memberikan instruksi pada robot 6WD. Pengiriman data dari robot 6 WD pada pengguna meliputi, data sensor gas, data sensor kompas, data sensor jarak dan gambar kerusakan pada pipa. Seluruh data dapat dilihat pada GCS (Ground Control Station.   [TRUNITIN CHECK 20%, 26042017

  10. Pentapeptide-repeat proteins that act as topoisomerase poison resistance factors have a common dimer interface

    International Nuclear Information System (INIS)

    Vetting, Matthew W.; Hegde, Subray S.; Zhang, Yong; Blanchard, John S.

    2011-01-01

    The pentapeptide repeat protein AlbG, provides self-resistance to the nonribosomally encoded hybrid polyketide-peptide termed albicidin. Analysis of the AlbG three-dimensional structure and the sequences of other pentapeptide repeat proteins that confer resistance to topiosomerase poisons suggests they have a similar dimer interface which may be critical to their interaction with topoisomerases. The protein AlbG is a self-resistance factor against albicidin, a nonribosomally encoded hybrid polyketide-peptide with antibiotic and phytotoxic properties produced by Xanthomonas albilineans. Primary-sequence analysis indicates that AlbG is a member of the pentapeptide-repeat family of proteins (PRP). The structure of AlbG from X. albilineans was determined at 2.0 Å resolution by SAD phasing using data collected from a single trimethyllead acetate derivative on a home source. AlbG folds into a right-handed quadrilateral β-helix composed of approximately eight semi-regular coils. The regularity of the β-helix is blemished by a large loop/deviation in the β-helix between coils 4 and 5. The C-terminus of the β-helix is capped by a dimerization module, yielding a dimer with a 110 Å semi-collinear β-helical axis. This method of dimer formation appears to be common to all PRP proteins that confer resistance to topoisomerase poisons and contrasts with most PRP proteins, which are typically monomeric

  11. TRDistiller: a rapid filter for enrichment of sequence datasets with proteins containing tandem repeats.

    Science.gov (United States)

    Richard, François D; Kajava, Andrey V

    2014-06-01

    The dramatic growth of sequencing data evokes an urgent need to improve bioinformatics tools for large-scale proteome analysis. Over the last two decades, the foremost efforts of computer scientists were devoted to proteins with aperiodic sequences having globular 3D structures. However, a large portion of proteins contain periodic sequences representing arrays of repeats that are directly adjacent to each other (so called tandem repeats or TRs). These proteins frequently fold into elongated fibrous structures carrying different fundamental functions. Algorithms specific to the analysis of these regions are urgently required since the conventional approaches developed for globular domains have had limited success when applied to the TR regions. The protein TRs are frequently not perfect, containing a number of mutations, and some of them cannot be easily identified. To detect such "hidden" repeats several algorithms have been developed. However, the most sensitive among them are time-consuming and, therefore, inappropriate for large scale proteome analysis. To speed up the TR detection we developed a rapid filter that is based on the comparison of composition and order of short strings in the adjacent sequence motifs. Tests show that our filter discards up to 22.5% of proteins which are known to be without TRs while keeping almost all (99.2%) TR-containing sequences. Thus, we are able to decrease the size of the initial sequence dataset enriching it with TR-containing proteins which allows a faster subsequent TR detection by other methods. The program is available upon request. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. RNA recognition motif (RRM)-containing proteins in Bombyx mori

    African Journals Online (AJOL)

    STORAGESEVER

    2009-03-20

    Mar 20, 2009 ... Recognition Motif (RRM), sometimes referred to as. RNP1, is one of the first identified domains for RNA interaction. RRM is very common ..... Apart from the RRM motif, eIF3-S9 has a Trp-Asp. (WD) repeat domain, Poly (A) ...

  13. Bovine proteins containing poly-glutamine repeats are often polymorphic and enriched for components of transcriptional regulatory complexes

    LENUS (Irish Health Repository)

    Whan, Vicki

    2010-11-23

    Abstract Background About forty human diseases are caused by repeat instability mutations. A distinct subset of these diseases is the result of extreme expansions of polymorphic trinucleotide repeats; typically CAG repeats encoding poly-glutamine (poly-Q) tracts in proteins. Polymorphic repeat length variation is also apparent in human poly-Q encoding genes from normal individuals. As these coding sequence repeats are subject to selection in mammals, it has been suggested that normal variations in some of these typically highly conserved genes are implicated in morphological differences between species and phenotypic variations within species. At present, poly-Q encoding genes in non-human mammalian species are poorly documented, as are their functions and propensities for polymorphic variation. Results The current investigation identified 178 bovine poly-Q encoding genes (Q ≥ 5) and within this group, 26 genes with orthologs in both human and mouse that did not contain poly-Q repeats. The bovine poly-Q encoding genes typically had ubiquitous expression patterns although there was bias towards expression in epithelia, brain and testes. They were also characterised by unusually large sizes. Analysis of gene ontology terms revealed that the encoded proteins were strongly enriched for functions associated with transcriptional regulation and many contributed to physical interaction networks in the nucleus where they presumably act cooperatively in transcriptional regulatory complexes. In addition, the coding sequence CAG repeats in some bovine genes impacted mRNA splicing thereby generating unusual transcriptional diversity, which in at least one instance was tissue-specific. The poly-Q encoding genes were prioritised using multiple criteria for their likelihood of being polymorphic and then the highest ranking group was experimentally tested for polymorphic variation within a cattle diversity panel. Extensive and meiotically stable variation was identified

  14. DETECTION OF WEAK CIRCUMSTELLAR GAS AROUND THE DAZ WHITE DWARF WD 1124-293: EVIDENCE FOR THE ACCRETION OF MULTIPLE ASTEROIDS

    Energy Technology Data Exchange (ETDEWEB)

    Debes, J. H. [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States); Kilic, M. [Homer L. Dodge Department of Physics and Astronomy, The University of Oklahoma, 440 W. Brooks St., Norman, OK 73019 (United States); Faedi, F. [Astrophysics Research Centre, School of Mathematics and Physics, Queen' s University Belfast, University Road, Belfast, BT7 1NN (United Kingdom); Shkolnik, E. L. [Lowell Observatory, Flagstaff, AZ 86001 (United States); Lopez-Morales, M. [Institut de Ciencies de l' Espai (CSIC-IEEC), Campus UAB, Facultat de Ciencies, Torre C5, parell, 2a pl, E-08193 Bellaterra, Barcelona (Spain); Weinberger, A. J.; Slesnick, C. [Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5249 Broad Branch RD, N.W., Washington, DC 20015 (United States); West, R. G. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH (United Kingdom)

    2012-07-20

    Single metal-polluted white dwarfs with no dusty disks are believed to be actively accreting metals from a circumstellar disk of gas caused by the destruction of asteroids perturbed by planetary systems. We report, for the first time, the detection of circumstellar Ca II gas in absorption around the DAZ WD 1124-293, which lacks an infrared excess. We constrain the gas to >7 R{sub WD} and <32000 AU, and estimate it to be at {approx}54 R{sub WD}, well within WD 1124-293's tidal disruption radius. This detection is based on several epochs of spectroscopy around the Ca II H and K lines ({lambda} = 3968 A, 3933 A) with the MIKE spectrograph on the Magellan/Clay Telescope at Las Campanas Observatory. We confirm the circumstellar nature of the gas by observing nearby sightlines and finding no evidence for gas from the local interstellar medium. Through archival data we have measured the equivalent width of the two photospheric Ca lines over a period of 11 years. We see <5%-7% epoch-to-epoch variation in equivalent widths over this time period, and no evidence for long term trends. The presence of a circumstellar gas implies a near edge-on inclination to the system, thus we place limits to short period transiting planetary companions with R > R{sub Circled-Plus} using the Wide Angle Search for Planets survey. The presence of gas in orbit around WD 1124-293 implies that most DAZs could harbor planetary systems. Since 25%-30% of white dwarfs show metal line absorption, the dynamical process for perturbing small bodies must be robust.

  15. Discovery of a Detached, Eclipsing 40 Minute Period Double White Dwarf Binary and a Friend: Implications for He+CO White Dwarf Mergers

    Science.gov (United States)

    Brown, Warren R.; Kilic, Mukremin; Kosakowski, Alekzander; Gianninas, A.

    2017-09-01

    We report the discovery of two detached double white dwarf (WD) binaries, SDSS J082239.546+304857.19 and SDSS J104336.275+055149.90, with orbital periods of 40 and 46 minutes, respectively. The 40 minute system is eclipsing; it is composed of a 0.30 M ⊙ and a 0.52 M ⊙ WD. The 46 minute system is a likely LISA verification binary. The short 20 ± 2 Myr and ˜34 Myr gravitational-wave merger times of the two binaries imply that many more such systems have formed and merged over the age of the Milky Way. We update the estimated Milky Way He+CO WD binary merger rate and affirm our previously published result: He+CO WD binaries merge at a rate at least 40 times greater than the formation rate of stable mass-transfer AM CVn binaries, and so the majority must have unstable mass-transfer. The implication is that spin-orbit coupling in He+CO WD mergers is weak, or perhaps nova-like outbursts drive He+CO WDs into merger, as proposed by Shen. Based on observations obtained at the MMT Observatory, a joint facility of the Smithsonian Institution and the University of Arizona, and on observations obtained with the Apache Point Observatory 3.5 m telescope, which is owned and operated by the Astrophysical Research Consortium.

  16. Hexanucleotide Repeats in ALS/FTD Form Length-Dependent RNA Foci, Sequester RNA Binding Proteins, and Are Neurotoxic

    Directory of Open Access Journals (Sweden)

    Youn-Bok Lee

    2013-12-01

    Full Text Available The GGGGCC (G4C2 intronic repeat expansion within C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS and frontotemporal dementia (FTD. Intranuclear neuronal RNA foci have been observed in ALS and FTD tissues, suggesting that G4C2 RNA may be toxic. Here, we demonstrate that the expression of 38× and 72× G4C2 repeats form intranuclear RNA foci that initiate apoptotic cell death in neuronal cell lines and zebrafish embryos. The foci colocalize with a subset of RNA binding proteins, including SF2, SC35, and hnRNP-H in transfected cells. Only hnRNP-H binds directly to G4C2 repeats following RNA immunoprecipitation, and only hnRNP-H colocalizes with 70% of G4C2 RNA foci detected in C9ORF72 mutant ALS and FTD brain tissues. We show that expanded G4C2 repeats are potently neurotoxic and bind hnRNP-H and other RNA binding proteins. We propose that RNA toxicity and protein sequestration may disrupt RNA processing and contribute to neurodegeneration.

  17. History, rare, and multiple events of mechanical unfolding of repeat proteins

    Science.gov (United States)

    Sumbul, Fidan; Marchesi, Arin; Rico, Felix

    2018-03-01

    Mechanical unfolding of proteins consisting of repeat domains is an excellent tool to obtain large statistics. Force spectroscopy experiments using atomic force microscopy on proteins presenting multiple domains have revealed that unfolding forces depend on the number of folded domains (history) and have reported intermediate states and rare events. However, the common use of unspecific attachment approaches to pull the protein of interest holds important limitations to study unfolding history and may lead to discarding rare and multiple probing events due to the presence of unspecific adhesion and uncertainty on the pulling site. Site-specific methods that have recently emerged minimize this uncertainty and would be excellent tools to probe unfolding history and rare events. However, detailed characterization of these approaches is required to identify their advantages and limitations. Here, we characterize a site-specific binding approach based on the ultrastable complex dockerin/cohesin III revealing its advantages and limitations to assess the unfolding history and to investigate rare and multiple events during the unfolding of repeated domains. We show that this approach is more robust, reproducible, and provides larger statistics than conventional unspecific methods. We show that the method is optimal to reveal the history of unfolding from the very first domain and to detect rare events, while being more limited to assess intermediate states. Finally, we quantify the forces required to unfold two molecules pulled in parallel, difficult when using unspecific approaches. The proposed method represents a step forward toward more reproducible measurements to probe protein unfolding history and opens the door to systematic probing of rare and multiple molecule unfolding mechanisms.

  18. Astrophysical Implications of a New Dynamical Mass for the Nearby White Dwarf 40 Eridani B

    Science.gov (United States)

    Bond, Howard E.; Bergeron, P.; Bédard, A.

    2017-10-01

    The bright, nearby DA-type white dwarf (WD) 40 Eridani B is orbited by the M dwarf 40 Eri C, allowing determination of the WD’s mass. Until recently, however, the mass depended on orbital elements determined four decades ago, and that mass was so low that it created several astrophysical puzzles. Using new astrometric measurements, the binary-star group at the U.S. Naval Observatory has revised the dynamical mass upward, to 0.573 ± 0.018 M ⊙. In this paper, we use model-atmosphere analysis to update other parameters of the WD, including effective temperature, surface gravity, radius, and luminosity. We then compare these results with WD interior models. Within the observational uncertainties, theoretical cooling tracks for CO-core WDs of its measured mass are consistent with the position of 40 Eri B in the H-R diagram; equivalently, the theoretical mass-radius relation (MRR) is consistent with the star’s location in the mass-radius plane. This consistency is, however, achieved only if we assume a “thin” outer hydrogen layer, with q H = M H/M WD ≃ 10-10. We discuss other evidence that a significant fraction of DA WDs have such thin H layers, in spite of the expectation from canonical stellar-evolution theory of “thick” H layers with q H ≃ 10-4. The cooling age of 40 Eri B is ˜122 Myr, and its total age is ˜1.8 Gyr. We present the MRRs for 40 Eri B and three other nearby WDs in visual binaries with precise mass determinations, and show that the agreement of current theory with observations is excellent in all cases.

  19. Identification of Pentatricopeptide Repeat Proteins in the Model Organism Dictyostelium discoideum

    Directory of Open Access Journals (Sweden)

    Sam Manna

    2013-01-01

    Full Text Available Pentatricopeptide repeat (PPR proteins are RNA binding proteins with functions in organelle RNA metabolism. They are found in all eukaryotes but have been most extensively studied in plants. We report on the identification of 12 PPR-encoding genes in the genome of the protist Dictyostelium discoideum, with potential homologs in other members of the same lineage and some predicted novel functions for the encoded gene products in protists. For one of the gene products, we show that it localizes to the mitochondria, and we also demonstrate that antisense inhibition of its expression leads to slower growth, a phenotype associated with mitochondrial dysfunction.

  20. Wdr18 is required for Kupffer's vesicle formation and regulation of body asymmetry in zebrafish.

    Directory of Open Access Journals (Sweden)

    Wei Gao

    Full Text Available Correct specification of the left-right (L-R axis is important for organ morphogenesis. Conserved mechanisms involving cilia rotation inside node-like structures and asymmetric Nodal signaling in the lateral plate mesoderm (LPM, which are important symmetry-breaking events, have been intensively studied. In zebrafish, the clustering and migration of dorsal forerunner cells (DFCs is critical for the formation of the Kuppfer's vesicle (KV. However, molecular events underlying DFC clustering and migration are less understood. The WD-repeat proteins function in a variety of biological processes, including cytoskeleton assembly, intracellular trafficking, mRNA splicing, transcriptional regulation and cell migration. However, little is known about the function of WD-repeat proteins in L-R asymmetry determination. Here, we report the identification and functional analyses of zebrafish wdr18, a novel gene that encodes a WD-repeat protein that is highly conserved among vertebrate species. wdr18 was identified from a Tol2 transposon-mediated enhancer trap screen. Follow-up analysis of wdr18 mRNA expression showed that it was detected in DFCs or the KV progenitor cells and later in the KV at early somitogenesis stages. Morpholino knockdown of wdr18 resulted in laterality defects in the visceral organs, which were preceded by the mis-expression of Nodal-related genes, including spaw and pitx2. Examination of morphants at earlier stages revealed that the KV had fewer and shorter cilia which are immotile and a smaller cavity. We further investigated the organization of DFCs in wdr18 morphant embryos using ntl and sox17 as specific markers and found that the clustering and migration of DFC was altered, leading to a disorganized KV. Finally, through a combination of wdr18 and itgb1b morpholino injections, we provided evidence that wdr18 and itgb1b genetically interact in the laterality determination process. Thus, we reveal a new and essential role for WD-repeat

  1. Synapse associated protein 102 (SAP102 binds the C-terminal part of the scaffolding protein neurobeachin.

    Directory of Open Access Journals (Sweden)

    Juliane Lauks

    Full Text Available Neurobeachin (Nbea is a multidomain scaffold protein abundant in the brain, where it is highly expressed during development. Nbea-null mice have severe defects in neuromuscular synaptic transmission resulting in lethal paralysis of the newborns. Recently, it became clear that Nbea is important also for the functioning of central synapses, where it is suggested to play a role in trafficking membrane proteins to both, the pre- and post-synaptic sites. So far, only few binding partners of Nbea have been found and the precise mechanism of their trafficking remains unclear. Here, we used mass spectrometry to identify SAP102, a MAGUK protein implicated in trafficking of the ionotropic glutamate AMPA- and NMDA-type receptors during synaptogenesis, as a novel Nbea interacting protein in mouse brain. Experiments in heterologous cells confirmed this interaction and revealed that SAP102 binds to the C-terminal part of Nbea that contains the DUF, PH, BEACH and WD40 domains. Furthermore, we discovered that introducing a mutation in Nbea's PH domain, which disrupts its interaction with the BEACH domain, abolishes this binding, thereby creating an excellent starting point to further investigate Nbea-SAP102 function in the central nervous system.

  2. Analysis of heterogeneous gallstones using laser-induced breakdown spectroscopy (LIBS) and wavelength dispersive X-ray fluorescence (WD-XRF).

    Science.gov (United States)

    Jaswal, Brij Bir S; Kumar, Vinay; Sharma, Jitendra; Rai, Pradeep K; Gondal, Mohammed A; Gondal, Bilal; Singh, Vivek K

    2016-04-01

    Laser-induced breakdown spectroscopy (LIBS) is an emerging analytical technique with numerous advantages such as rapidity, multi-elemental analysis, no specific sample preparation requirements, non-destructiveness, and versatility. It has been proven to be a robust elemental analysis tool attracting interest because of being applied to a wide range of materials including biomaterials. In this paper, we have performed spectroscopic studies on gallstones which are heterogeneous in nature using LIBS and wavelength dispersive X-ray fluorescence (WD-XRF) techniques. It has been observed that the presence and relative concentrations of trace elements in different kind of gallstones (cholesterol and pigment gallstones) can easily be determined using LIBS technique. From the experiments carried out on gallstones for trace elemental mapping and detection, it was found that LIBS is a robust tool for such biomedical applications. The stone samples studied in the present paper were classified using the Fourier transform infrared (FTIR) spectroscopy. WD-XRF spectroscopy has been applied for the qualitative and quantitative analysis of major and trace elements present in the gallstone which was compared with the LIBS data. The results obtained in the present paper show interesting prospects for LIBS and WD-XRF to study cholelithiasis better.

  3. Poly-dipeptides encoded by the C9ORF72 repeats block global protein translation.

    Science.gov (United States)

    Kanekura, Kohsuke; Yagi, Takuya; Cammack, Alexander J; Mahadevan, Jana; Kuroda, Masahiko; Harms, Matthew B; Miller, Timothy M; Urano, Fumihiko

    2016-05-01

    The expansion of the GGGGCC hexanucleotide repeat in the non-coding region of the Chromosome 9 open-reading frame 72 (C9orf72) gene is the most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). This genetic alteration leads to the accumulation of five types of poly-dipeptides translated from the GGGGCC hexanucleotide repeat. Among these, poly-proline-arginine (poly-PR) and poly-glycine-arginine (poly-GR) peptides are known to be neurotoxic. However, the mechanisms of neurotoxicity associated with these poly-dipeptides are not clear. A proteomics approach identified a number of interacting proteins with poly-PR peptide, including mRNA-binding proteins, ribosomal proteins, translation initiation factors and translation elongation factors. Immunostaining of brain sections from patients with C9orf72 ALS showed that poly-GR was colocalized with a mRNA-binding protein, hnRNPA1. In vitro translation assays showed that poly-PR and poly-GR peptides made insoluble complexes with mRNA, restrained the access of translation factors to mRNA, and blocked protein translation. Our results demonstrate that impaired protein translation mediated by poly-PR and poly-GR peptides plays a role in neurotoxicity and reveal that the pathways altered by the poly-dipeptides-mRNA complexes are potential therapeutic targets for treatment of C9orf72 FTD/ALS. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Astrophysical Implications of a New Dynamical Mass for the Nearby White Dwarf 40 Eridani B

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Howard E. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Bergeron, P.; Bédard, A., E-mail: heb11@psu.edu [Département de Physique, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, QC H3C 3J7 (Canada)

    2017-10-10

    The bright, nearby DA-type white dwarf (WD) 40 Eridani B is orbited by the M dwarf 40 Eri C, allowing determination of the WD’s mass. Until recently, however, the mass depended on orbital elements determined four decades ago, and that mass was so low that it created several astrophysical puzzles. Using new astrometric measurements, the binary-star group at the U.S. Naval Observatory has revised the dynamical mass upward, to 0.573 ± 0.018 M {sub ☉}. In this paper, we use model-atmosphere analysis to update other parameters of the WD, including effective temperature, surface gravity, radius, and luminosity. We then compare these results with WD interior models. Within the observational uncertainties, theoretical cooling tracks for CO-core WDs of its measured mass are consistent with the position of 40 Eri B in the H-R diagram; equivalently, the theoretical mass–radius relation (MRR) is consistent with the star’s location in the mass–radius plane. This consistency is, however, achieved only if we assume a “thin” outer hydrogen layer, with q {sub H} = M {sub H}/ M {sub WD} ≃ 10{sup −10}. We discuss other evidence that a significant fraction of DA WDs have such thin H layers, in spite of the expectation from canonical stellar-evolution theory of “thick” H layers with q {sub H} ≃ 10{sup −4}. The cooling age of 40 Eri B is ∼122 Myr, and its total age is ∼1.8 Gyr. We present the MRRs for 40 Eri B and three other nearby WDs in visual binaries with precise mass determinations, and show that the agreement of current theory with observations is excellent in all cases.

  5. Low-Normal FMR1 CGG Repeat Length: Phenotypic Associations

    Directory of Open Access Journals (Sweden)

    Marsha eMailick

    2014-09-01

    Full Text Available This population-based study investigates genotype-phenotype correlations of low-normal CGG repeats in the fragile X mental retardation 1 (FMR1 gene. FMR1 plays an important role in brain development and function, and encodes FMRP (fragile X mental retardation protein, an RNA-binding protein that regulates protein synthesis impacting activity-dependent synaptic development and plasticity. Most past research has focused on CGG premutation expansions (41 to 200 CGG repeats and on fragile X syndrome (200+ CGG repeats, with considerably less attention on the other end of the spectrum of CGG repeats. Using existing data, older adults with 23 or fewer CGG repeats (2 SDs below the mean were compared with age-peers who have normal numbers of CGGs (24-40 with respect to cognition, mental health, cancer, and having children with disabilities. Men (n = 341 with an allele in the low-normal range and women (n = 46 with two low-normal alleles had significantly more difficulty with their memory and ability to solve day to day problems. Women with both FMR1 alleles in the low-normal category had significantly elevated odds of feeling that they need to drink more to get the same effect as in the past. These women also had two and one-half times the odds of having had breast cancer and four times the odds of uterine cancer. Men and women with low-normal CGGs had higher odds of having a child with a disability, either a developmental disability or a mental health condition. These findings are in line with the hypothesis that there is a need for tight neuronal homeostatic control mechanisms for optimal cognitive and behavioral functioning, and more generally that low numbers as well as high numbers of CGG repeats may be problematic for health.

  6. Gemin5: A Multitasking RNA-Binding Protein Involved in Translation Control

    Directory of Open Access Journals (Sweden)

    David Piñeiro

    2015-04-01

    Full Text Available Gemin5 is a RNA-binding protein (RBP that was first identified as a peripheral component of the survival of motor neurons (SMN complex. This predominantly cytoplasmic protein recognises the small nuclear RNAs (snRNAs through its WD repeat domains, allowing assembly of the SMN complex into small nuclear ribonucleoproteins (snRNPs. Additionally, the amino-terminal end of the protein has been reported to possess cap-binding capacity and to interact with the eukaryotic initiation factor 4E (eIF4E. Gemin5 was also shown to downregulate translation, to be a substrate of the picornavirus L protease and to interact with viral internal ribosome entry site (IRES elements via a bipartite non-canonical RNA-binding site located at its carboxy-terminal end. These features link Gemin5 with translation control events. Thus, beyond its role in snRNPs biogenesis, Gemin5 appears to be a multitasking protein cooperating in various RNA-guided processes. In this review, we will summarise current knowledge of Gemin5 functions. We will discuss the involvement of the protein on translation control and propose a model to explain how the proteolysis fragments of this RBP in picornavirus-infected cells could modulate protein synthesis.

  7. DNA triplet repeats mediate heterochromatin-protein-1-sensitive variegated gene silencing.

    Science.gov (United States)

    Saveliev, Alexander; Everett, Christopher; Sharpe, Tammy; Webster, Zoë; Festenstein, Richard

    2003-04-24

    Gene repression is crucial to the maintenance of differentiated cell types in multicellular organisms, whereas aberrant silencing can lead to disease. The organization of DNA into chromatin and heterochromatin is implicated in gene silencing. In chromatin, DNA wraps around histones, creating nucleosomes. Further condensation of chromatin, associated with large blocks of repetitive DNA sequences, is known as heterochromatin. Position effect variegation (PEV) occurs when a gene is located abnormally close to heterochromatin, silencing the affected gene in a proportion of cells. Here we show that the relatively short triplet-repeat expansions found in myotonic dystrophy and Friedreich's ataxia confer variegation of expression on a linked transgene in mice. Silencing was correlated with a decrease in promoter accessibility and was enhanced by the classical PEV modifier heterochromatin protein 1 (HP1). Notably, triplet-repeat-associated variegation was not restricted to classical heterochromatic regions but occurred irrespective of chromosomal location. Because the phenomenon described here shares important features with PEV, the mechanisms underlying heterochromatin-mediated silencing might have a role in gene regulation at many sites throughout the mammalian genome and modulate the extent of gene silencing and hence severity in several triplet-repeat diseases.

  8. Protein-protein interactions within late pre-40S ribosomes.

    Directory of Open Access Journals (Sweden)

    Melody G Campbell

    2011-01-01

    Full Text Available Ribosome assembly in eukaryotic organisms requires more than 200 assembly factors to facilitate and coordinate rRNA transcription, processing, and folding with the binding of the ribosomal proteins. Many of these assembly factors bind and dissociate at defined times giving rise to discrete assembly intermediates, some of which have been partially characterized with regards to their protein and RNA composition. Here, we have analyzed the protein-protein interactions between the seven assembly factors bound to late cytoplasmic pre-40S ribosomes using recombinant proteins in binding assays. Our data show that these factors form two modules: one comprising Enp1 and the export adaptor Ltv1 near the beak structure, and the second comprising the kinase Rio2, the nuclease Nob1, and a regulatory RNA binding protein Dim2/Pno1 on the front of the head. The GTPase-like Tsr1 and the universally conserved methylase Dim1 are also peripherally connected to this second module. Additionally, in an effort to further define the locations for these essential proteins, we have analyzed the interactions between these assembly factors and six ribosomal proteins: Rps0, Rps3, Rps5, Rps14, Rps15 and Rps29. Together, these results and previous RNA-protein crosslinking data allow us to propose a model for the binding sites of these seven assembly factors. Furthermore, our data show that the essential kinase Rio2 is located at the center of the pre-ribosomal particle and interacts, directly or indirectly, with every other assembly factor, as well as three ribosomal proteins required for cytoplasmic 40S maturation. These data suggest that Rio2 could play a central role in regulating cytoplasmic maturation steps.

  9. Identification and functional characterization of a novel MYOC mutation in two primary open angle glaucoma families from The Netherlands.

    NARCIS (Netherlands)

    Hogewind, B.F.T.; Gaplovska-Kysela, K.; Theelen, T.; Cremers, F.P.M.; Yam, G.H.; Hoyng, C.B.; Mukhopadhyay, A.

    2007-01-01

    PURPOSE: Glaucoma is the second most prevalent cause of blindness worldwide, projected to affect more than 60 million people by 2010, 75% of which represents primary open angle glaucoma (POAG). Of the three genes, namely, Myocilin (MYOC), Optineurin (OPTN), and WD repeat-containing protein 36

  10. Force Spectroscopy of the Plasmodium falciparum Vaccine Candidate Circumsporozoite Protein Suggests a Mechanically Pliable Repeat Region.

    Science.gov (United States)

    Patra, Aditya Prasad; Sharma, Shobhona; Ainavarapu, Sri Rama Koti

    2017-02-10

    The most effective vaccine candidate of malaria is based on the Plasmodium falciparum circumsporozoite protein (CSP), a major surface protein implicated in the structural strength, motility, and immune evasion properties of the infective sporozoites. It is suspected that reversible conformational changes of CSP are required for infection of the mammalian host, but the detailed structure and dynamic properties of CSP remain incompletely understood, limiting our understanding of its function in the infection. Here, we report the structural and mechanical properties of the CSP studied using single-molecule force spectroscopy on several constructs, one including the central region of CSP, which is rich in NANP amino acid repeats (CSP rep ), and a second consisting of a near full-length sequence without the signal and anchor hydrophobic domains (CSP ΔHP ). Our results show that the CSP rep is heterogeneous, with 40% of molecules requiring virtually no mechanical force to unfold (<10 piconewtons (pN)), suggesting that these molecules are mechanically compliant and perhaps act as entropic springs, whereas the remaining 60% are partially structured with low mechanical resistance (∼70 pN). CSP ΔHP having multiple force peaks suggests specifically folded domains, with two major populations possibly indicating the open and collapsed forms. Our findings suggest that the overall low mechanical resistance of the repeat region, exposed on the outer surface of the sporozoites, combined with the flexible full-length conformations of CSP, may provide the sporozoites not only with immune evasion properties, but also with lubricating capacity required during its navigation through the mosquito and vertebrate host tissues. We anticipate that these findings would further assist in the design and development of future malarial vaccines. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Glial-Specific Functions of Microcephaly Protein WDR62 and Interaction with the Mitotic Kinase AURKA Are Essential for Drosophila Brain Growth.

    Science.gov (United States)

    Lim, Nicholas R; Shohayeb, Belal; Zaytseva, Olga; Mitchell, Naomi; Millard, S Sean; Ng, Dominic C H; Quinn, Leonie M

    2017-07-11

    The second most commonly mutated gene in primary microcephaly (MCPH) patients is wd40-repeat protein 62 (wdr62), but the relative contribution of WDR62 function to the growth of major brain lineages is unknown. Here, we use Drosophila models to dissect lineage-specific WDR62 function(s). Interestingly, although neural stem cell (neuroblast)-specific depletion of WDR62 significantly decreased neuroblast number, brain size was unchanged. In contrast, glial lineage-specific WDR62 depletion significantly decreased brain volume. Moreover, loss of function in glia not only decreased the glial population but also non-autonomously caused neuroblast loss. We further demonstrated that WDR62 controls brain growth through lineage-specific interactions with master mitotic signaling kinase, AURKA. Depletion of AURKA in neuroblasts drives brain overgrowth, which was suppressed by WDR62 co-depletion. In contrast, glial-specific depletion of AURKA significantly decreased brain volume, which was further decreased by WDR62 co-depletion. Thus, dissecting relative contributions of MCPH factors to individual neural lineages will be critical for understanding complex diseases such as microcephaly. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  12. Interaction between a plasma membrane-localized ankyrin-repeat protein ITN1 and a nuclear protein RTV1

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Hikaru [Department of Bioproduction, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri-shi, Hokkaido 093-2422 (Japan); Sakata, Keiko; Kusumi, Kensuke [Department of Biology, Faculty of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Kojima, Mikiko; Sakakibara, Hitoshi [RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045 (Japan); Iba, Koh, E-mail: koibascb@kyushu-u.org [Department of Biology, Faculty of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan)

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer ITN1, a plasma membrane ankyrin protein, interacts with a nuclear DNA-binding protein RTV1. Black-Right-Pointing-Pointer The nuclear transport of RTV1 is partially inhibited by interaction with ITN1. Black-Right-Pointing-Pointer RTV1 can promote the nuclear localization of ITN1. Black-Right-Pointing-Pointer Both overexpression of RTV1 and the lack of ITN1 increase salicylic acids sensitivity in plants. -- Abstract: The increased tolerance to NaCl 1 (ITN1) protein is a plasma membrane (PM)-localized protein involved in responses to NaCl stress in Arabidopsis. The predicted structure of ITN1 is composed of multiple transmembrane regions and an ankyrin-repeat domain that is known to mediate protein-protein interactions. To elucidate the molecular functions of ITN1, we searched for interacting partners using a yeast two-hybrid assay, and a nuclear-localized DNA-binding protein, RTV1, was identified as a candidate. Bimolecular fluorescence complementation analysis revealed that RTV1 interacted with ITN1 at the PM and nuclei in vivo. RTV1 tagged with red fluorescent protein localized to nuclei and ITN1 tagged with green fluorescent protein localized to PM; however, both proteins localized to both nuclei and the PM when co-expressed. These findings suggest that RTV1 and ITN1 regulate the subcellular localization of each other.

  13. Expression Differences of Pigment Structural Genes and Transcription Factors Explain Flesh Coloration in Three Contrasting Kiwifruit Cultivars

    Directory of Open Access Journals (Sweden)

    Yanfei Liu

    2017-09-01

    Full Text Available Fruits of kiwifruit cultivars (Actinidia chinensis and A. deliciosa generally have green or yellow flesh when ripe. A small number of genotypes have red flesh but this coloration is usually restricted to the inner pericarp. Three kiwifruit cultivars having red (‘Hongyang’, or yellow (‘Jinnong-2’, or green (‘Hayward’ flesh were investigated for their color characteristics and pigment contents during development and ripening. The results show the yellow of the ‘Jinnong-2’ fruit is due to the combined effects of chlorophyll degradation and of beta-carotene accumulation. The red inner pericarps of ‘Hongyang’ fruit are due to anthocyanin accumulation. Expression differences of the pathway genes in the inner pericarps of the three different kiwifruits suggest that stay-green (SGR controls the degradation of chlorophylls, while lycopene beta-cyclase (LCY-β controls the biosynthesis of beta-carotene. The abundance of anthocyanin in the inner pericarps of the ‘Hongyang’ fruit is the results of high expressions of UDP flavonoid glycosyltransferases (UFGT. At the same time, expressions of anthocyanin transcription factors show that AcMYBF110 expression parallels changes in anthocyanin concentration, so seems to be a key R2R3 MYB, regulating anthocyanin biosynthesis. Further, transient color assays reveal that AcMYBF110 can autonomously induce anthocyanin accumulation in Nicotiana tabacum leaves by activating the transcription of dihydroflavonol 4-reductase (NtDFR, anthocyanidin synthase (NtANS and NtUFGT. For basic helix-loop-helix proteins (bHLHs and WD-repeat proteins (WD40s, expression differences show these may depend on AcMYBF110 forming a MYB-bHLH-WD40 complex to regulate anthocyanin biosynthesis, instead of it having a direct involvement.

  14. The protein network surrounding the human telomere repeat binding factors TRF1, TRF2, and POT1.

    Directory of Open Access Journals (Sweden)

    Richard J Giannone

    2010-08-01

    Full Text Available Telomere integrity (including telomere length and capping is critical in overall genomic stability. Telomere repeat binding factors and their associated proteins play vital roles in telomere length regulation and end protection. In this study, we explore the protein network surrounding telomere repeat binding factors, TRF1, TRF2, and POT1 using dual-tag affinity purification in combination with multidimensional protein identification technology liquid chromatography--tandem mass spectrometry (MudPIT LC-MS/MS. After control subtraction and data filtering, we found that TRF2 and POT1 co-purified all six members of the telomere protein complex, while TRF1 identified five of six components at frequencies that lend evidence towards the currently accepted telomere architecture. Many of the known TRF1 or TRF2 interacting proteins were also identified. Moreover, putative associating partners identified for each of the three core components fell into functional categories such as DNA damage repair, ubiquitination, chromosome cohesion, chromatin modification/remodeling, DNA replication, cell cycle and transcription regulation, nucleotide metabolism, RNA processing, and nuclear transport. These putative protein-protein associations may participate in different biological processes at telomeres or, intriguingly, outside telomeres.

  15. Quantitative proteomics identifies Gemin5, a scaffolding protein involved in ribonucleoprotein assembly, as a novel partner for eukaryotic initiation factor 4E

    DEFF Research Database (Denmark)

    Fierro-Monti, Ivo; Mohammed, Shabaz; Matthiesen, Rune

    2006-01-01

    Protein complexes are dynamic entities; identification and quantitation of their components is critical in elucidating functional roles under specific cellular conditions. We report the first quantitative proteomic analysis of the human cap-binding protein complex. Components and proteins......-starved tumorigenic human mesenchymal stromal cells, attested to their activated translational states. The WD-repeat, scaffolding-protein Gemin5 was identified as a novel eIF4E binding partner, which interacted directly with eIF4E through a motif (YXXXXLPhi) present in a number of eIF4E-interacting partners. Elevated...... levels of Gemin5:eIF4E complexes were found in phorbol ester treated HEK293 cells. Gemin5 and eIF4E co-localized to cytoplasmic P-bodies in human osteosarcoma U2OS cells. Interaction between eIF4E and Gemin5 and their co-localization to the P-bodies, may serve to recruit capped mRNAs to these RNP...

  16. Effect of Water Deficit-Induced at Vegetative and Reproductive Stages on Protein and Oil Content in Soybean Grains

    Directory of Open Access Journals (Sweden)

    Liliane M. Mertz-Henning

    2017-12-01

    Full Text Available Soybean is one of the most common grain crops worldwide, representing an important protein and oil source. Although genetic variability in the chemical composition of grains is seen in soybean, the mean levels of proteins have remained stagnant or, in some cases, have decreased over time, arousing concern in the agricultural industry. Furthermore, environmental conditions influence the chemical composition of grains. Thus, the present study evaluated the effect of water deficit (WD induced at the vegetative period (vegetative stress (VS and reproductive period (reproductive stress (RS on the protein and oil contents of grains in different soybean genotypes. Yield and its components were evaluated to evaluate the interrelation of these traits. The experiment was completed over three crop seasons under field conditions in Londrina, Paraná (PR, Brazil. WD was induced using rainout shelters and then stress treatments with irrigated and non-irrigated conditions were compared. WD negatively affected yield and its components. All evaluated genotypes showed similar responses for oil and protein contents under different water conditions. Higher protein content and lower oil content were observed in grains under RS. Such a relationship was not equally established under VS. Additionally, negative relationships between protein and oil content and between protein content and yield were confirmed.

  17. Repeated Transient Jets from a Warped Disk in the Symbiotic Prototype Z And: A Link to the Long-lasting Active Phase

    Science.gov (United States)

    Skopal, Augustin; Tarasova, Taya. N.; Wolf, Marek; Dubovský, Pavol A.; Kudzej, Igor

    2018-05-01

    Active phases of some symbiotic binaries survive for a long time, from years to decades. The accretion process onto a white dwarf (WD) sustaining long-lasting activity, and sometimes leading to collimated ejection, is not well understood. We present the repeated emergence of highly collimated outflows (jets) from the symbiotic prototype Z And during its 2008 and 2009–10 outbursts and suggest their link to the current long-lasting (from 2000) active phase. We monitored Z And with high-resolution spectroscopy, multicolor UBVR C—and high time resolution—photometry. The well-pronounced bipolar jets were ejected again during the 2009–10 outburst together with the simultaneous emergence of the rapid photometric variability (Δm ≈ 0.06 mag) on the timescale of hours, showing similar properties as those during the 2006 outburst. These phenomena and the measured disk–jets connection could be caused by the radiation-induced warping of the inner disk due to a significant increase of the burning WD luminosity. Ejection of transient jets by Z And around outburst maxima signals a transient accretion at rates above the upper limit of the stable hydrogen burning on the WD surface, and thus proves the nature of Z And-type outbursts. The enhanced accretion through the disk warping, supplemented by the accretion from the giant’s wind, can keep a high luminosity of the WD for a long time, until depletion of the disk. In this way, the jets provide a link to long-lasting active phases of Z And.

  18. Differential effects of simple repeating DNA sequences on gene expression from the SV40 early promoter.

    Science.gov (United States)

    Amirhaeri, S; Wohlrab, F; Wells, R D

    1995-02-17

    The influence of simple repeat sequences, cloned into different positions relative to the SV40 early promoter/enhancer, on the transient expression of the chloramphenicol acetyltransferase (CAT) gene was investigated. Insertion of (G)29.(C)29 in either orientation into the 5'-untranslated region of the CAT gene reduced expression in CV-1 cells 50-100 fold when compared with controls with random sequence inserts. Analysis of CAT-specific mRNA levels demonstrated that the effect was due to a reduction of CAT mRNA production rather than to posttranscriptional events. In contrast, insertion of the same insert in either orientation upstream of the promoter-enhancer or downstream of the gene stimulated gene expression 2-3-fold. These effects could be reversed by cotransfection of a competitor plasmid carrying (G)25.(C)25 sequences. The results suggest that a G.C-binding transcription factor modulates gene expression in this system and that promoter strength can be regulated by providing protein-binding sites in trans. Although constructs containing longer tracts of alternating (C-G), (T-G), or (A-T) sequences inhibited CAT expression when inserted in the 5'-untranslated region of the CAT gene, the amount of CAT mRNA was unaffected. Hence, these inhibitions must be due to posttranscriptional events, presumably at the level of translation. These effects of microsatellite sequences on gene expression are discussed with respect to recent data on related simple repeat sequences which cause several human genetic diseases.

  19. Leucine-rich repeat-containing G-protein-coupled receptors as markers of adult stem cells

    NARCIS (Netherlands)

    Barker, N.; Clevers, H.

    2010-01-01

    Molecular markers are used to characterize and track adult stem cells. Colon cancer research has led to the identification of 2 related receptors, leucine-rich repeat-containing, G-protein-coupled receptors (Lgr)5 and Lgr6, that are expressed by small populations of cells in a variety of adult

  20. Gender, obesity and repeated elevation of C-reactive protein: data from the CARDIA cohort.

    Directory of Open Access Journals (Sweden)

    Shinya Ishii

    Full Text Available C-reactive Protein (CRP measurements above 10 mg/L have been conventionally treated as acute inflammation and excluded from epidemiologic studies of chronic inflammation. However, recent evidence suggest that such CRP elevations can be seen even with chronic inflammation. The authors assessed 3,300 participants in The Coronary Artery Risk Development in Young Adults study, who had two or more CRP measurements between 1992/3 and 2005/6 to a investigate characteristics associated with repeated CRP elevation above 10 mg/L; b identify subgroups at high risk of repeated elevation; and c investigate the effect of different CRP thresholds on the probability of an elevation being one-time rather than repeated. 225 participants (6.8% had one-time and 103 (3.1% had repeated CRP elevation above 10 mg/L. Repeated elevation was associated with obesity, female gender, low income, and sex hormone use. The probability of an elevation above 10 mg/L being one-time rather than repeated was lowest (51% in women with body mass index above 31 kg/m(2, compared to 82% in others. These findings suggest that CRP elevations above 10 mg/L in obese women are likely to be from chronic rather than acute inflammation, and that CRP thresholds above 10 mg/L may be warranted to distinguish acute from chronic inflammation in obese women.

  1. The Long Non-coding RNA HOTTIP Enhances Pancreatic Cancer Cell Proliferation, Survival and Migration

    Science.gov (United States)

    ABSTRACTHOTTIP is a long non-coding RNA (lncRNA) transcribed from the 5' tip of the HOXA locus and is associated with the polycomb repressor complex 2 (PRC2) and WD repeat containing protein 5 (WDR5)/mixed lineage leukemia 1 (MLL1) chromatin modifying complexes. HOTTIP is expres...

  2. The repeatability of interleukin-6, tumor necrosis factor-alpha, and C-reactive protein in COPD patients over one year

    DEFF Research Database (Denmark)

    Kolsum, Umme; Roy, Kay; Starkey, Cerys

    2009-01-01

    BACKGROUND: Many of the systemic manifestations of chronic obstructive pulmonary disease (COPD) are mediated through increased systemic levels of inflammatory proteins. We assessed the long term repeatability of interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-alpha), and C-reactive protein......(i)) and the Bland-Altman method. Pearson correlations were used to determine the relationships between the systemic markers at both visits. RESULTS: There was moderate repeatability with a very high degree of statistical significance (p...... (CRP) over one year and examined the relationships between these systemic markers in COPD. METHODS: Fifty-eight stable COPD patients completed a baseline and one-year visit. Serum IL-6, plasma CRP, and plasma TNF-alpha were measured. Repeatability was expressed by intraclass correlation coefficient (R...

  3. The repeatability of interleukin-6, tumor necrosis factor-alpha, and C-reactive protein in COPD patients over one year

    DEFF Research Database (Denmark)

    Kolsum, Umme; Roy, Kay; Starkey, Cerys

    2009-01-01

    BACKGROUND: Many of the systemic manifestations of chronic obstructive pulmonary disease (COPD) are mediated through increased systemic levels of inflammatory proteins. We assessed the long term repeatability of Interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-alpha), and C-reactive protein......(i)) and the Bland-Altman method. Pearson correlations were used to determine the relationships between the systemic markers at both visits. RESULTS: There was moderate repeatability with a very high degree of statistical significance (p...... (CRP) over one year and examined the relationships between these systemic markers in COPD. METHODS: Fifty-eight stable COPD patients completed a baseline and one-year visit. Serum IL-6, plasma CRP, and plasma TNF-alpha were measured. Repeatability was expressed by intraclass correlation coefficient (R...

  4. Protein arginine methyltransferase 5 regulates multiple signaling pathways to promote lung cancer cell proliferation

    International Nuclear Information System (INIS)

    Sheng, Xiumei; Wang, Zhengxin

    2016-01-01

    Protein arginine methyltransferase 5 (PRMT5) catalyzes the formation of symmetrical dimethylation of arginine residues in proteins. WD repeat domain 77 (WDR77), also known as p44, MEP50, or WD45, forms a stoichiometric complex with PRMT5. The PRMT5/p44 complex is required for cellular proliferation of lung and prostate epithelial cells during earlier stages of development and is re-activated during prostate and lung tumorigenesis. The molecular mechanisms by which PRMT5 and p44 promote cellular proliferation are unknown. Expression of PRMT5 and p44 in lung and prostate cancer cells was silenced and their target genes were identified. The regulation of target genes was validated in various cancer cells during lung development and tumorigenesis. Altered expression of target genes was achieved by ectopic cDNA expression and shRNA-mediated silencing. PRMT5 and p44 regulate expression of a specific set of genes encoding growth and anti-growth factors, including receptor tyrosine kinases and antiproliferative proteins. Genes whose expression was suppressed by PRMT5 and p44 encoded anti-growth factors and inhibited cell growth when ectopically expressed. In contrast, genes whose expression was enhanced by PRMT5 and p44 encoded growth factors and increased cell growth when expressed. Altered expression of target genes is associated with re-activation of PRMT5 and p44 during lung tumorigenesis. Our data provide the molecular basis by which PRMT5 and p44 regulate cell growth and lay a foundation for further investigation of their role in lung tumor initiation. The online version of this article (doi:10.1186/s12885-016-2632-3) contains supplementary material, which is available to authorized users

  5. The White-Dwarf Mass-Radius Relation from 40 Eridani B and Other Nearby Visual Binaries

    Science.gov (United States)

    Bond, Howard E.; Bergeron, P.; Bedard, A.

    2018-01-01

    The bright, nearby DA-type white dwarf (WD) 40 Eridani B is orbited by the M dwarf 40 Eri C, allowing determination of the WD's mass. Until recently, however, the mass depended on orbital elements determined four decades ago, and that mass was so low that it created several astrophysical puzzles. Using new astrometric measurements, the binary-star group at the U.S. Naval Observatory has revised the dynamical mass upward, to 0.573 ± 0.018 M⊙. We have used model-atmosphere analysis to update other parameters of the WD, including effective temperature, surface gravity, radius, and luminosity. We then comparethese results with WD interior models.Within the observational uncertainties, theoretical cooling tracks for CO-core WDs of its measured mass are consistent with the position of 40 Eri B in the H-R diagram; equivalently, the theoretical mass-radius relation (MRR) is consistent with the star's location in the mass-radius plane. This consistency is, however, achieved only if we assume a "thin'' outer hydrogen layer, with qH = MH/MWD ∼ 10–10.We discuss other evidence that a significant fraction of DA WDs have such thin H layers, in spite of expectation from canonical stellar-evolution theory of "thick'' H layers with qH ∼ 10–4 . The cooling age of 40 Eri B is ~122 Myr, and its total age is ~1.8 Gyr. We present the MRRs for 40 Eri B and three other nearby WDs in visual binaries with precise mass determinations, and show that the agreement of current theory with observation is excellent in all cases.However, astrophysical puzzles remain. The eccentricity of the BC orbit has remained high (0.43), even though the progenitor of B ought to have interacted tidally with C when it was an AGB star. This puzzle exists also for the Sirius and Procyon systems. If thin hydrogen layers are common among WDs, the mass scale will need to be shifted downwards by a few hundredths of a solar mass.

  6. Arabidopsis leucine-rich repeat extensin (LRX) proteins modify cell wall composition and influence plant growth.

    Science.gov (United States)

    Draeger, Christian; Ndinyanka Fabrice, Tohnyui; Gineau, Emilie; Mouille, Grégory; Kuhn, Benjamin M; Moller, Isabel; Abdou, Marie-Therese; Frey, Beat; Pauly, Markus; Bacic, Antony; Ringli, Christoph

    2015-06-24

    Leucine-rich repeat extensins (LRXs) are extracellular proteins consisting of an N-terminal leucine-rich repeat (LRR) domain and a C-terminal extensin domain containing the typical features of this class of structural hydroxyproline-rich glycoproteins (HRGPs). The LRR domain is likely to bind an interaction partner, whereas the extensin domain has an anchoring function to insolubilize the protein in the cell wall. Based on the analysis of the root hair-expressed LRX1 and LRX2 of Arabidopsis thaliana, LRX proteins are important for cell wall development. The importance of LRX proteins in non-root hair cells and on the structural changes induced by mutations in LRX genes remains elusive. The LRX gene family of Arabidopsis consists of eleven members, of which LRX3, LRX4, and LRX5 are expressed in aerial organs, such as leaves and stem. The importance of these LRX genes for plant development and particularly cell wall formation was investigated. Synergistic effects of mutations with gradually more severe growth retardation phenotypes in double and triple mutants suggest a similar function of the three genes. Analysis of cell wall composition revealed a number of changes to cell wall polysaccharides in the mutants. LRX3, LRX4, and LRX5, and most likely LRX proteins in general, are important for cell wall development. Due to the complexity of changes in cell wall structures in the lrx mutants, the exact function of LRX proteins remains to be determined. The increasingly strong growth-defect phenotypes in double and triple mutants suggests that the LRX proteins have similar functions and that they are important for proper plant development.

  7. PRMT5: A novel regulator of Hepatitis B virus replication and an arginine methylase of HBV core

    Czech Academy of Sciences Publication Activity Database

    Lubyová, Barbora; Hodek, Jan; Zábranský, Aleš; Prouzová, Hana; Hubálek, Martin; Hirsch, Ivan; Weber, Jan

    2017-01-01

    Roč. 12, č. 10 (2017), č. článku e0186982. E-ISSN 1932-6203 R&D Projects: GA MŠk(CZ) LK11207 Institutional support: RVO:61388963 Keywords : WD repeat protein * Sm proteins * in vitro Subject RIV: EE - Microbiology, Virology OBOR OECD: Virology Impact factor: 2.806, year: 2016 http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0186982

  8. Modulation of CRISPR locus transcription by the repeat-binding protein Cbp1 in Sulfolobus

    DEFF Research Database (Denmark)

    Deng, Ling; Kenchappa, Chandra Shekar; Peng, Xu

    2012-01-01

    CRISPR loci are essential components of the adaptive immune system of archaea and bacteria. They consist of long arrays of repeats separated by DNA spacers encoding guide RNAs (crRNA), which target foreign genetic elements. Cbp1 (CRISPR DNA repeat binding protein) binds specifically to the multiple...... direct repeats of CRISPR loci of members of the acidothermophilic, crenarchaeal order Sulfolobales. cbp1 gene deletion from Sulfolobus islandicus REY15A produced a strong reduction in pre-crRNA yields from CRISPR loci but did not inhibit the foreign DNA targeting capacity of the CRISPR/Cas system....... Conversely, overexpression of Cbp1 in S. islandicus generated an increase in pre-crRNA yields while the level of reverse strand transcripts from CRISPR loci remained unchanged. It is proposed that Cbp1 modulates production of longer pre-crRNA transcripts from CRISPR loci. A possible mechanism...

  9. The repeatability of interleukin-6, tumor necrosis factor-α, and C-reactive protein in COPD patients over one year

    Directory of Open Access Journals (Sweden)

    Umme Kolsum

    2009-04-01

    Full Text Available Umme Kolsum, Kay Roy, Cerys Starkey, Zoë Borrill, Nick Truman, Jørgen Vestbo, Dave SinghNorth West Lung Research Centre, University of Manchester, South Manchester University Hospitals Trust, Wythenshawe, Manchester, UKBackground: Many of the systemic manifestations of chronic obstructive pulmonary disease (COPD are mediated through increased systemic levels of inflammatory proteins. We assessed the long term repeatability of Interleukin-6 (IL-6, tumor necrosis factor-α (TNF-α, and C-reactive protein (CRP over one year and examined the relationships between these systemic markers in COPD.Methods: Fifty-eight stable COPD patients completed a baseline and one-year visit. Serum IL-6, plasma CRP, and plasma TNF-α were measured. Repeatability was expressed by intraclass correlation coefficient (Ri and the Bland–Altman method. Pearson correlations were used to determine the relationships between the systemic markers at both visits.Results: There was moderate repeatability with a very high degree of statistical significance (p ≤ 0.001 between the two visits for all the systemic biomarkers (IL-6, CRP, and TNF-α. CRP was significantly associated with IL-6 at both visits (r = 0.55, p = 0.0001, r = 0.51, p = 0.0002, respectively. There were no other significant associations between the systemic markers at either of the visits.Conclusions: Systemic inflammatory biomarkers IL-6, CRP, and TNF-α were moderately repeatable over a twelve month period in COPD patients. We have also shown that a robust and repeatable association between IL-6 and CRP exists.Keywords: interleukin-6, tumor necrosis factor-α, C-reactive protein, repeatability, COPD   

  10. Characterization of tetratricopeptide repeat-containing proteins critical for cilia formation and function.

    Directory of Open Access Journals (Sweden)

    Yanan Xu

    Full Text Available Cilia formation and function require a special set of trafficking machinery termed intraflagellar transport (IFT, consisting mainly of protein complexes IFT-A, IFT-B, BBSome, and microtubule-dependent molecular motors. Tetratricopeptide repeat-containing (TTC proteins are widely involved in protein complex formation. Nine of them are known to serve as components of the IFT or BBSome complexes. How many TTC proteins are cilia-related and how they function, however, remain unclear. Here we show that twenty TTC genes were upregulated by at least 2-fold during the differentiation of cultured mouse tracheal epithelial cells (MTECs into multiciliated cells. Our systematic screen in zebrafish identified four novel TTC genes, ttc4, -9c, -36, and -39c, that are critical for cilia formation and motility. Accordingly, their zebrafish morphants displayed typical ciliopathy-related phenotypes, including curved body, abnormal otolith, hydrocephalus, and defective left-right patterning. The morphants of ttc4 and ttc25, a known cilia-related gene, additionally showed pronephric cyst formation. Immunoprecipitation indicated associations of TTC4, -9c, -25, -36, and -39c with components or entire complexes of IFT-A, IFT-B, or BBSome, implying their participations in IFT or IFT-related activities. Our results provide a global view for the relationship between TTC proteins and cilia.

  11. Creation and structure determination of an artificial protein with three complete sequence repeats

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Motoyasu, E-mail: adachi.motoyasu@jaea.go.jp; Shimizu, Rumi; Kuroki, Ryota [Japan Atomic Energy Agency, Shirakatashirane 2-4, Nakagun Tokaimura, Ibaraki 319-1195 (Japan); Blaber, Michael [Japan Atomic Energy Agency, Shirakatashirane 2-4, Nakagun Tokaimura, Ibaraki 319-1195 (Japan); Florida State University, Tallahassee, FL 32306-4300 (United States)

    2013-11-01

    An artificial protein with three complete sequence repeats was created and the structure was determined by X-ray crystallography. The structure showed threefold symmetry even though there is an amino- and carboxy-terminal. The artificial protein with threefold symmetry may be useful as a scaffold to capture small materials with C3 symmetry. Symfoil-4P is a de novo protein exhibiting the threefold symmetrical β-trefoil fold designed based on the human acidic fibroblast growth factor. First three asparagine–glycine sequences of Symfoil-4P are replaced with glutamine–glycine (Symfoil-QG) or serine–glycine (Symfoil-SG) sequences protecting from deamidation, and His-Symfoil-II was prepared by introducing a protease digestion site into Symfoil-QG so that Symfoil-II has three complete repeats after removal of the N-terminal histidine tag. The Symfoil-QG and SG and His-Symfoil-II proteins were expressed in Eschericha coli as soluble protein, and purified by nickel affinity chromatography. Symfoil-II was further purified by anion-exchange chromatography after removing the HisTag by proteolysis. Both Symfoil-QG and Symfoil-II were crystallized in 0.1 M Tris-HCl buffer (pH 7.0) containing 1.8 M ammonium sulfate as precipitant at 293 K; several crystal forms were observed for Symfoil-QG and II. The maximum diffraction of Symfoil-QG and II crystals were 1.5 and 1.1 Å resolution, respectively. The Symfoil-II without histidine tag diffracted better than Symfoil-QG with N-terminal histidine tag. Although the crystal packing of Symfoil-II is slightly different from Symfoil-QG and other crystals of Symfoil derivatives having the N-terminal histidine tag, the refined crystal structure of Symfoil-II showed pseudo-threefold symmetry as expected from other Symfoils. Since the removal of the unstructured N-terminal histidine tag did not affect the threefold structure of Symfoil, the improvement of diffraction quality of Symfoil-II may be caused by molecular characteristics of

  12. Cardiac ankyrin repeat protein (CARP) expression in human and murine atherosclerotic lesions - Activin induces carp in smooth muscle cells

    NARCIS (Netherlands)

    de Waard, Vivian; van Achterberg, Tanja A. E.; Beauchamp, Nicholas J.; Pannekoek, Hans; de Vries, Carlie J. M.

    2003-01-01

    Objective-Cardiac ankyrin repeat protein (CARP) is a transcription factor-related protein that has been studied most extensively in the heart. In the present study, we investigated the expression and the potential function of CARP in human and murine atherosclerosis. Methods and Results-CARP

  13. Differential interaction and aggregation of 3-repeat and 4-repeat tau isoforms with 14-3-3ζ protein

    International Nuclear Information System (INIS)

    Sadik, Golam; Tanaka, Toshihisa; Kato, Kiyoko; Yanagi, Kentaro; Kudo, Takashi; Takeda, Masatoshi

    2009-01-01

    Tau isoforms, 3-repeat (3R) and 4-repeat tau (4R), are differentially involved in neuronal development and in several tauopathies. 14-3-3 protein binds to tau and 14-3-3/tau association has been found both in the development and in tauopathies. To understand the role of 14-3-3 in the differential regulation of tau isoforms, we have performed studies on the interaction and aggregation of 3R-tau and 4R-tau, either phosphorylated or unphosphorylated, with 14-3-3ζ. We show by surface plasmon resonance studies that the interaction between unphosphorylated 3R-tau and 14-3-3ζ is ∼3-folds higher than that between unphosphorylated 4R-tau and 14-3-3ζ. Phosphorylation of tau by protein kinase A (PKA) increases the affinity of both 3R- and 4R-tau for 14-3-3ζ to a similar level. An in vitro aggregation assay employing both transmission electron microscopy and fluorescence spectroscopy revealed the aggregation of unphosphorylated 4R-tau to be significantly higher than that of unphosphorylated 3R-tau following the induction of 14-3-3ζ. The filaments formed from 3R- and 4R-tau were almost similar in morphology. In contrast, the aggregation of both 3R- and 4R-tau was reduced to a similar low level after phosphorylation with PKA. Taken together, these results suggest that 14-3-3ζ exhibits a similar role for tau isoforms after PKA-phosphorylation, but a differential role for unphosphorylated tau. The significant aggregation of 4R-tau by 14-3-3ζ suggests that 14-3-3 may act as an inducer in the generation of 4R-tau-predominant neurofibrillary tangles in tauopathies.

  14. Effects of disrupting the polyketide synthase gene WdPKS1 in Wangiella [Exophiala] dermatitidis on melanin production and resistance to killing by antifungal compounds, enzymatic degradation, and extremes in temperature

    Directory of Open Access Journals (Sweden)

    Mandal Piyali

    2006-06-01

    Full Text Available Abstract Background Wangiella dermatitidis is a human pathogenic fungus that is an etiologic agent of phaeohyphomycosis. W. dermatitidis produces a black pigment that has been identified as a dihydroxynaphthalene melanin and the production of this pigment is associated with its virulence. Cell wall pigmentation in W. dermatitidis depends on the WdPKS1 gene, which encodes a polyketide synthase required for generating the key precursor for dihydroxynaphthalene melanin biosynthesis. Results We analyzed the effects of disrupting WdPKS1 on dihydroxynaphthalene melanin production and resistance to antifungal compounds. Transmission electron microscopy revealed that wdpks1Δ-1 yeast had thinner cell walls that lacked an electron-opaque layer compared to wild-type cells. However, digestion of the wdpks1Δ-1 yeast revealed small black particles that were consistent with a melanin-like compound, because they were acid-resistant, reacted with melanin-binding antibody, and demonstrated a free radical signature by electron spin resonance analysis. Despite lacking the WdPKS1 gene, the mutant yeast were capable of catalyzing the formation of melanin from L-3,4-dihyroxyphenylalanine. The wdpks1Δ-1 cells were significantly more susceptible to killing by voriconazole, amphotericin B, NP-1 [a microbicidal peptide], heat and cold, and lysing enzymes than the heavily melanized parental or complemented strains. Conclusion In summary, W. dermatitidis makes WdPKS-dependent and -independent melanins, and the WdPKS1-dependent deposition of melanin in the cell wall confers protection against antifungal agents and environmental stresses. The biological role of the WdPKS-independent melanin remains unclear.

  15. Lack of WDR36 leads to preimplantation embryonic lethality in mice and delays the formation of small subunit ribosomal RNA in human cells in vitro.

    Science.gov (United States)

    Gallenberger, Martin; Meinel, Dominik M; Kroeber, Markus; Wegner, Michael; Milkereit, Philipp; Bösl, Michael R; Tamm, Ernst R

    2011-02-01

    Mutations in WD repeat domain 36 gene (WDR36) play a causative role in some forms of primary open-angle glaucoma, a leading cause of blindness worldwide. WDR36 is characterized by the presence of multiple WD40 repeats and shows homology to Utp21, an essential protein component of the yeast small subunit (SSU) processome required for maturation of 18S rRNA. To clarify the functional role of WDR36 in the mammalian organism, we generated and investigated mutant mice with a targeted deletion of Wdr36. In parallel experiments, we used RNA interference to deplete WDR36 mRNA in mouse embryos and cultured human trabecular meshwork (HTM-N) cells. Deletion of Wdr36 in the mouse caused preimplantation embryonic lethality, and essentially similar effects were observed when WDR36 mRNA was depleted in mouse embryos by RNA interference. Depletion of WDR36 mRNA in HTM-N cells caused apoptotic cell death and upregulation of mRNA for BAX, TP53 and CDKN1A. By immunocytochemistry, staining for WDR36 was observed in the nucleolus of cells, which co-localized with that of nucleolar proteins such as nucleophosmin and PWP2. In addition, recombinant and epitope-tagged WDR36 localized to the nucleolus of HTM-N cells. By northern blot analysis, a substantial decrease in 21S rRNA, the precursor of 18S rRNA, was observed following knockdown of WDR36. In addition, metabolic-labeling experiments consistently showed a delay of 18S rRNA maturation in WDR36-depleted cells. Our results provide evidence that WDR36 is an essential protein in mammalian cells which is involved in the nucleolar processing of SSU 18S rRNA.

  16. RRW: repeated random walks on genome-scale protein networks for local cluster discovery

    Directory of Open Access Journals (Sweden)

    Can Tolga

    2009-09-01

    Full Text Available Abstract Background We propose an efficient and biologically sensitive algorithm based on repeated random walks (RRW for discovering functional modules, e.g., complexes and pathways, within large-scale protein networks. Compared to existing cluster identification techniques, RRW implicitly makes use of network topology, edge weights, and long range interactions between proteins. Results We apply the proposed technique on a functional network of yeast genes and accurately identify statistically significant clusters of proteins. We validate the biological significance of the results using known complexes in the MIPS complex catalogue database and well-characterized biological processes. We find that 90% of the created clusters have the majority of their catalogued proteins belonging to the same MIPS complex, and about 80% have the majority of their proteins involved in the same biological process. We compare our method to various other clustering techniques, such as the Markov Clustering Algorithm (MCL, and find a significant improvement in the RRW clusters' precision and accuracy values. Conclusion RRW, which is a technique that exploits the topology of the network, is more precise and robust in finding local clusters. In addition, it has the added flexibility of being able to find multi-functional proteins by allowing overlapping clusters.

  17. rigor mortis encodes a novel nuclear receptor interacting protein required for ecdysone signaling during Drosophila larval development.

    Science.gov (United States)

    Gates, Julie; Lam, Geanette; Ortiz, José A; Losson, Régine; Thummel, Carl S

    2004-01-01

    Pulses of the steroid hormone ecdysone trigger the major developmental transitions in Drosophila, including molting and puparium formation. The ecdysone signal is transduced by the EcR/USP nuclear receptor heterodimer that binds to specific response elements in the genome and directly regulates target gene transcription. We describe a novel nuclear receptor interacting protein encoded by rigor mortis (rig) that is required for ecdysone responses during larval development. rig mutants display defects in molting, delayed larval development, larval lethality, duplicated mouth parts, and defects in puparium formation--phenotypes that resemble those seen in EcR, usp, E75A and betaFTZ-F1 mutants. Although the expression of these nuclear receptor genes is essentially normal in rig mutant larvae, the ecdysone-triggered switch in E74 isoform expression is defective. rig encodes a protein with multiple WD-40 repeats and an LXXLL motif, sequences that act as specific protein-protein interaction domains. Consistent with the presence of these elements and the lethal phenotypes of rig mutants, Rig protein interacts with several Drosophila nuclear receptors in GST pull-down experiments, including EcR, USP, DHR3, SVP and betaFTZ-F1. The ligand binding domain of betaFTZ-F1 is sufficient for this interaction, which can occur in an AF-2-independent manner. Antibody stains reveal that Rig protein is present in the brain and imaginal discs of second and third instar larvae, where it is restricted to the cytoplasm. In larval salivary gland and midgut cells, however, Rig shuttles between the cytoplasm and nucleus in a spatially and temporally regulated manner, at times that correlate with the major lethal phase of rig mutants and major switches in ecdysone-regulated gene expression. Taken together, these data indicate that rig exerts essential functions during larval development through gene-specific effects on ecdysone-regulated transcription, most likely as a cofactor for one or more

  18. WDR1 Presence in the Songbird Basilar Papilla

    Science.gov (United States)

    Adler, Henry J.; Sanovich, Elena; Brittan-Powell, Elizabeth F.; Yan, Kai; Dooling, Robert J.

    2009-01-01

    WD40 repeat 1 protein (WDR1) was first reported in the acoustically injured chicken inner ear, and bioinformatics revealed that WDR1 has numerous WD40 repeats, important for protein-protein interactions. It has significant homology to actin interacting protein 1 (Aip1) in several lower species such as yeast, roundworm, fruitfly and frog. Several studies have shown that Aip1 binds cofilin/actin depolymerizing factor, and that these interactions are pivotal for actin disassembly via actin filament severing and actin monomer capping. However, the role of WDR1 in auditory function has yet to be determined. WDR1 is typically restricted to hair cells of the normal avian basilar papilla, but is redistributed towards supporting cells after acoustic overstimulation, suggesting that WDR1 may be involved in inner ear response to noise stress. One aim of the present study was to resolve the question as to whether stress factors, other than intense sound, could induce changes in WDR1 presence in the affected avian inner ear. Several techniques were used to assess WDR1 presence in the inner ears of songbird strains, including Belgian Waterslager (BW) canary, an avian strain with degenerative hearing loss thought to have a genetic basis. Reverse transcription, followed by polymerase chain reactions with WDR1-specific primers, confirmed WDR1 presence in the basilar papillae of adult BW, non-BW canaries, and zebra finches. Confocal microscopy examinations, following immunocytochemistry with anti-WDR1 antibody, localized WDR1 to the hair cell cytoplasm along the avian sensory epithelium. In addition, little, if any, staining by anti-WDR1 antibody was observed among supporting cells in the chicken or songbird ear. The present observations confirm and extend the early findings of WDR1 localization in hair cells, but not in supporting cells, in the normal avian basilar papilla. However, unlike supporting cells in the acoustically damaged chicken basilar papilla, the inner ear of the BW

  19. The candidate phylum Poribacteria by single-cell genomics: new insights into phylogeny, cell-compartmentation, eukaryote-like repeat proteins, and other genomic features.

    Directory of Open Access Journals (Sweden)

    Janine Kamke

    Full Text Available The candidate phylum Poribacteria is one of the most dominant and widespread members of the microbial communities residing within marine sponges. Cell compartmentalization had been postulated along with their discovery about a decade ago and their phylogenetic association to the Planctomycetes, Verrucomicrobia, Chlamydiae superphylum was proposed soon thereafter. In the present study we revised these features based on genomic data obtained from six poribacterial single cells. We propose that Poribacteria form a distinct monophyletic phylum contiguous to the PVC superphylum together with other candidate phyla. Our genomic analyses supported the possibility of cell compartmentalization in form of bacterial microcompartments. Further analyses of eukaryote-like protein domains stressed the importance of such proteins with features including tetratricopeptide repeats, leucin rich repeats as well as low density lipoproteins receptor repeats, the latter of which are reported here for the first time from a sponge symbiont. Finally, examining the most abundant protein domain family on poribacterial genomes revealed diverse phyH family proteins, some of which may be related to dissolved organic posphorus uptake.

  20. Changes in Liver Proteome Expression of Senegalese Sole (Solea senegalensis) in Response to Repeated Handling Stress

    DEFF Research Database (Denmark)

    Cordeiro, O. D.; Silva, Tomé Santos; Alves, R. N.

    2012-01-01

    The Senegalese sole, a high-value flatfish, is a good candidate for aquaculture production. Nevertheless, there are still issues regarding this species’ sensitivity to stress in captivity. We aimed to characterize the hepatic proteome expression for this species in response to repeated handling...... and identify potential molecular markers that indicate a physiological response to chronic stress. Two groups of fish were reared in duplicate for 28 days, one of them weekly exposed to handling stress (including hypoxia) for 3 min, and the other left undisturbed. Two-dimensional electrophoresis enabled...... the detection of 287 spots significantly affected by repeated handling stress (Wilcoxon–Mann–Whitney U test, p stress seems to have affected protein synthesis, folding and turnover (40S ribosomal protein S12...

  1. 40 CFR 79.67 - Glial fibrillary acidic protein assay.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Glial fibrillary acidic protein assay... Glial fibrillary acidic protein assay. (a) Purpose. Chemical-induced injury of the nervous system, i.e... paragraph (e)(3) in this section). Assays of glial fibrillary acidic protein (GFAP), the major intermediate...

  2. Revisiting the TALE repeat.

    Science.gov (United States)

    Deng, Dong; Yan, Chuangye; Wu, Jianping; Pan, Xiaojing; Yan, Nieng

    2014-04-01

    Transcription activator-like (TAL) effectors specifically bind to double stranded (ds) DNA through a central domain of tandem repeats. Each TAL effector (TALE) repeat comprises 33-35 amino acids and recognizes one specific DNA base through a highly variable residue at a fixed position in the repeat. Structural studies have revealed the molecular basis of DNA recognition by TALE repeats. Examination of the overall structure reveals that the basic building block of TALE protein, namely a helical hairpin, is one-helix shifted from the previously defined TALE motif. Here we wish to suggest a structure-based re-demarcation of the TALE repeat which starts with the residues that bind to the DNA backbone phosphate and concludes with the base-recognition hyper-variable residue. This new numbering system is consistent with the α-solenoid superfamily to which TALE belongs, and reflects the structural integrity of TAL effectors. In addition, it confers integral number of TALE repeats that matches the number of bound DNA bases. We then present fifteen crystal structures of engineered dHax3 variants in complex with target DNA molecules, which elucidate the structural basis for the recognition of bases adenine (A) and guanine (G) by reported or uncharacterized TALE codes. Finally, we analyzed the sequence-structure correlation of the amino acid residues within a TALE repeat. The structural analyses reported here may advance the mechanistic understanding of TALE proteins and facilitate the design of TALEN with improved affinity and specificity.

  3. High-Pressure NMR and SAXS Reveals How Capping Modulates Folding Cooperativity of the pp32 Leucine-rich Repeat Protein.

    Science.gov (United States)

    Zhang, Yi; Berghaus, Melanie; Klein, Sean; Jenkins, Kelly; Zhang, Siwen; McCallum, Scott A; Morgan, Joel E; Winter, Roland; Barrick, Doug; Royer, Catherine A

    2018-04-27

    Many repeat proteins contain capping motifs, which serve to shield the hydrophobic core from solvent and maintain structural integrity. While the role of capping motifs in enhancing the stability and structural integrity of repeat proteins is well documented, their contribution to folding cooperativity is not. Here we examined the role of capping motifs in defining the folding cooperativity of the leucine-rich repeat protein, pp32, by monitoring the pressure- and urea-induced unfolding of an N-terminal capping motif (N-cap) deletion mutant, pp32-∆N-cap, and a C-terminal capping motif destabilization mutant pp32-Y131F/D146L, using residue-specific NMR and small-angle X-ray scattering. Destabilization of the C-terminal capping motif resulted in higher cooperativity for the unfolding transition compared to wild-type pp32, as these mutations render the stability of the C-terminus similar to that of the rest of the protein. In contrast, deletion of the N-cap led to strong deviation from two-state unfolding. In both urea- and pressure-induced unfolding, residues in repeats 1-3 of pp32-ΔN-cap lost their native structure first, while the C-terminal half was more stable. The residue-specific free energy changes in all regions of pp32-ΔN-cap were larger in urea compared to high pressure, indicating a less cooperative destabilization by pressure. Moreover, in contrast to complete structural disruption of pp32-ΔN-cap at high urea concentration, its pressure unfolded state remained compact. The contrasting effects of the capping motifs on folding cooperativity arise from the differential local stabilities of pp32, whereas the contrasting effects of pressure and urea on the pp32-ΔN-cap variant arise from their distinct mechanisms of action. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Label-Free LC-MS/MS Proteomic Analysis of Cerebrospinal Fluid Identifies Protein/Pathway Alterations and Candidate Biomarkers for Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Collins, Mahlon A; An, Jiyan; Hood, Brian L; Conrads, Thomas P; Bowser, Robert P

    2015-11-06

    Analysis of the cerebrospinal fluid (CSF) proteome has proven valuable to the study of neurodegenerative disorders. To identify new protein/pathway alterations and candidate biomarkers for amyotrophic lateral sclerosis (ALS), we performed comparative proteomic profiling of CSF from sporadic ALS (sALS), healthy control (HC), and other neurological disease (OND) subjects using label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total of 1712 CSF proteins were detected and relatively quantified by spectral counting. Levels of several proteins with diverse biological functions were significantly altered in sALS samples. Enrichment analysis was used to link these alterations to biological pathways, which were predominantly related to inflammation, neuronal activity, and extracellular matrix regulation. We then used our CSF proteomic profiles to create a support vector machines classifier capable of discriminating training set ALS from non-ALS (HC and OND) samples. Four classifier proteins, WD repeat-containing protein 63, amyloid-like protein 1, SPARC-like protein 1, and cell adhesion molecule 3, were identified by feature selection and externally validated. The resultant classifier distinguished ALS from non-ALS samples with 83% sensitivity and 100% specificity in an independent test set. Collectively, our results illustrate the utility of CSF proteomic profiling for identifying ALS protein/pathway alterations and candidate disease biomarkers.

  5. Characterization of the regulatory network of BoMYB2 in controlling anthocyanin biosynthesis in purple cauliflower.

    Science.gov (United States)

    Chiu, Li-Wei; Li, Li

    2012-10-01

    Purple cauliflower (Brassica oleracea L. var. botrytis) Graffiti represents a unique mutant in conferring ectopic anthocyanin biosynthesis, which is caused by the tissue-specific activation of BoMYB2, an ortholog of Arabidopsis PAP2 or MYB113. To gain a better understanding of the regulatory network of anthocyanin biosynthesis, we investigated the interaction among cauliflower MYB-bHLH-WD40 network proteins and examined the interplay of BoMYB2 with various bHLH transcription factors in planta. Yeast two-hybrid studies revealed that cauliflower BoMYBs along with the other regulators formed the MYB-bHLH-WD40 complexes and BobHLH1 acted as a bridge between BoMYB and BoWD40-1 proteins. Different BoMYBs exhibited different binding activity to BobHLH1. Examination of the BoMYB2 transgenic lines in Arabidopsis bHLH mutant backgrounds demonstrated that TT8, EGL3, and GL3 were all involved in the BoMYB2-mediated anthocyanin biosynthesis. Expression of BoMYB2 in Arabidopsis caused up-regulation of AtTT8 and AtEGL3 as well as a subset of anthocyanin structural genes encoding flavonoid 3'-hydroxylase, dihydroflavonol 4-reductase, and leucoanthocyanidin dioxygenase. Taken together, our results show that MYB-bHLH-WD40 network transcription factors regulated the bHLH gene expression, which may represent a critical feature in the control of anthocyanin biosynthesis. BoMYB2 together with various BobHLHs specifically regulated the late anthocyanin biosynthetic pathway genes for anthocyanin biosynthesis. Our findings provide additional information for the complicated regulatory network of anthocyanin biosynthesis and the transcriptional regulation of transcription factors in vegetable crops.

  6. Plasmodium cysteine repeat modular proteins 1-4: complex proteins with roles throughout the malaria parasite life cycle.

    Science.gov (United States)

    Thompson, Joanne; Fernandez-Reyes, Delmiro; Sharling, Lisa; Moore, Sally G; Eling, Wijnand M; Kyes, Sue A; Newbold, Christopher I; Kafatos, Fotis C; Janse, Chris J; Waters, Andrew P

    2007-06-01

    The Cysteine Repeat Modular Proteins (PCRMP1-4) of Plasmodium, are encoded by a small gene family that is conserved in malaria and other Apicomplexan parasites. They are very large, predicted surface proteins with multipass transmembrane domains containing motifs that are conserved within families of cysteine-rich, predicted surface proteins in a range of unicellular eukaryotes, and a unique combination of protein-binding motifs, including a >100 kDa cysteine-rich modular region, an epidermal growth factor-like domain and a Kringle domain. PCRMP1 and 2 are expressed in life cycle stages in both the mosquito and vertebrate. They colocalize with PfEMP1 (P. falciparum Erythrocyte Membrane Antigen-1) during its export from P. falciparum blood-stage parasites and are exposed on the surface of haemolymph- and salivary gland-sporozoites in the mosquito, consistent with a role in host tissue targeting and invasion. Gene disruption of pcrmp1 and 2 in the rodent malaria model, P. berghei, demonstrated that both are essential for transmission of the parasite from the mosquito to the mouse and has established their discrete and important roles in sporozoite targeting to the mosquito salivary gland. The unprecedented expression pattern and structural features of the PCRMPs thus suggest a variety of roles mediating host-parasite interactions throughout the parasite life cycle.

  7. Repeated exposures to roadside particulate matter extracts suppresses pulmonary defense mechanisms, resulting in lipid and protein oxidative damage

    International Nuclear Information System (INIS)

    Pardo, Michal; Porat, Ziv; Rudich, Assaf; Schauer, James J.; Rudich, Yinon

    2016-01-01

    Exposure to particulate matter (PM) pollution in cities and urban canyons can be harmful to the exposed population. However, the underlying mechanisms that lead to health effects are not yet elucidated. It is postulated that exposure to repeated, small, environmentally relevant concentrations can affect lung homeostasis. This study examines the impact of repeated exposures to urban PM on mouse lungs with focus on inflammatory and oxidative stress parameters. Aqueous extracts from collected urban PM were administered to mice by 5 repeated intra-tracheal instillations (IT). Multiple exposures, led to an increase in cytokine levels in both bronchoalveolar lavage fluid and in the blood serum, indicating a systemic reaction. Lung mRNA levels of antioxidant/phase II detoxifying enzymes decreased by exposure to the PM extract, but not when metals were removed by chelation. Finally, disruption of lung tissue oxidant-inflammatory/defense balance was evidenced by increased levels of lipid and protein oxidation. Unlike response to a single IT exposure to the same dose and source of extract, multiple exposures result in lung oxidative damage and a systemic inflammatory reaction. These could be attributed to compromised capacity to activate the protective Nrf2 tissue defense system. It is suggested that water-soluble metals present in urban PM, potentially from break and tire wear, may constitute major drivers of the pulmonary and systemic responses to multiple exposure to urban PM. - Highlights: • Repeated exposure to urban PM cause systemic inflammation and oxidative damage to lung tissue lipids and proteins. • Repeated exposure to these PM extracts decreased transcription of Nrf2 protective genes. • Single as opposed to repeated exposure, induced confined lung response accompanied by activated defense mechanisms. • Metals, potentially from break and tire wear, drive the pulmonary response with exposure to urban PM. - Repeated exposures to urban PM water extracts

  8. Sense-encoded poly-GR dipeptide repeat proteins correlate to neurodegeneration and uniquely co-localize with TDP-43 in dendrites of repeat expanded C9orf72 amyotrophic lateral sclerosis

    Science.gov (United States)

    Saberi, Shahram; Stauffer, Jennifer E.; Jiang, Jie; Garcia, Sandra Diaz; Taylor, Amy E; Schulte, Derek; Ohkubo, Takuya; Schloffman, Cheyenne L.; Maldonado, Marcus; Baughn, Michael; Rodriguez, Maria J; Pizzo, Don; Cleveland, Don; Ravits, John

    2018-01-01

    Hexanucleotide repeat expansions in C9orf72 are the most common genetic cause of amyotrophic lateral sclerosis (C9 ALS). The main hypothesized pathogenic mechanisms are C9orf72 haploinsufficiency and/or toxicity from one or more of bi-directionally transcribed repeat RNAs and their dipeptide repeat proteins (DPRs) poly-GP, poly-GA, poly-GR, poly-PR and poly-PA. Recently, nuclear import and/or export defects especially caused by arginine-containing poly-GR or poly-PR have been proposed as significant contributors to pathogenesis based on disease models. We quantitatively studied and compared DPRs, nuclear pore proteins and C9orf72 protein in clinically-related and clinically-unrelated regions of the central nervous system, and compared them to phosphorylated TDP-43 (pTDP-43), the hallmark protein of ALS. Of the five DPRs, only poly-GR was significantly abundant in clinically-related areas compared to unrelated areas (p<0.001), and formed dendritic-like aggregates in the motor cortex that co-localized with pTDP-43 (p<0.0001). While most poly-GR dendritic inclusions were pTDP-43-positive, only 4% of pTDP-43 dendritic inclusions were poly-GR-positive. Staining for arginine-containing poly-GR and poly-PR in nuclei of neurons produced signals that were not specific to C9 ALS. We could not detect significant differences of nuclear markers RanGap, Lamin B1, and Importin β1 in C9 ALS, although we observed subtle nuclear changes in ALS, both C9 and non-C9, compared to control. The C9orf72 protein itself was diffusely expressed in cytoplasm of large neurons and glia, and nearly 50% reduced, in both clinically-related frontal cortex and unrelated occipital cortex, but not in cerebellum. In summary, sense-encoded poly-GR DPR was unique, and localized to neurites and pTDP43 in motor regions of C9 ALS CNS. This is consistent with new emerging ideas about TDP-43 functions in dendrites. PMID:29196813

  9. 40 CFR 1065.305 - Verifications for accuracy, repeatability, and noise.

    Science.gov (United States)

    2010-07-01

    ..., repeatability, and noise. 1065.305 Section 1065.305 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Verifications for accuracy, repeatability, and noise. (a) This section describes how to determine the accuracy, repeatability, and noise of an instrument. Table 1 of § 1065.205 specifies recommended values for individual...

  10. Imperfect DNA mirror repeats in the gag gene of HIV-1 (HXB2 identify key functional domains and coincide with protein structural elements in each of the mature proteins

    Directory of Open Access Journals (Sweden)

    Lang Dorothy M

    2007-10-01

    Full Text Available Abstract Background A DNA mirror repeat is a sequence segment delimited on the basis of its containing a center of symmetry on a single strand, e.g. 5'-GCATGGTACG-3'. It is most frequently described in association with a functionally significant site in a genomic sequence, and its occurrence is regarded as noteworthy, if not unusual. However, imperfect mirror repeats (IMRs having ≥ 50% symmetry are common in the protein coding DNA of monomeric proteins and their distribution has been found to coincide with protein structural elements – helices, β sheets and turns. In this study, the distribution of IMRs is evaluated in a polyprotein – to determine whether IMRs may be related to the position or order of protein cleavage or other hierarchal aspects of protein function. The gag gene of HIV-1 [GenBank:K03455] was selected for the study because its protein motifs and structural components are well documented. Results There is a highly specific relationship between IMRs and structural and functional aspects of the Gag polyprotein. The five longest IMRs in the polyprotein translate a key functional segment in each of the five cleavage products. Throughout the protein, IMRs coincide with functionally significant segments of the protein. A detailed annotation of the protein, which combines structural, functional and IMR data illustrates these associations. There is a significant statistical correlation between the ends of IMRs and the ends of PSEs in each of the mature proteins. Weakly symmetric IMRs (≥ 33% are related to cleavage positions and processes. Conclusion The frequency and distribution of IMRs in HIV-1 Gag indicates that DNA symmetry is a fundamental property of protein coding DNA and that different levels of symmetry are associated with different functional aspects of the gene and its protein. The interaction between IMRs and protein structure and function is precise and interwoven over the entire length of the polyprotein. The

  11. Water deficit mechanisms in perennial shrubs Cerasus humilis leaves revealed by physiological and proteomic analyses.

    Science.gov (United States)

    Yin, Zepeng; Ren, Jing; Zhou, Lijuan; Sun, Lina; Wang, Jiewan; Liu, Yulong; Song, Xingshun

    2016-01-01

    Drought (Water deficit, WD) poses a serious threat to extensively economic losses of trees throughout the world. Chinese dwarf cherry ( Cerasus humilis ) is a good perennial plant for studying the physiological and sophisticated molecular network under WD. The aim of this study is to identify the effect of WD on C. humilis through physiological and global proteomics analysis and improve understanding of the WD resistance of plants. Currently, physiological parameters were applied to investigate C. humilis response to WD. Moreover, we used two-dimensional gel electrophoresis (2DE) to identify differentially expressed proteins in C. humilis leaves subjected to WD (24 d). Furthermore, we also examined the correlation between protein and transcript levels. Several physiological parameters, including relative water content and Pn were reduced by WD. In addition, the malondialdehyde (MDA), relative electrolyte leakage (REL), total soluble sugar, and proline were increased in WD-treated C. humilis . Comparative proteomic analysis revealed 46 protein spots (representing 43 unique proteins) differentially expressed in C. humilis leaves under WD. These proteins were mainly involved in photosynthesis, ROS scavenging, carbohydrate metabolism, transcription, protein synthesis, protein processing, and nitrogen and amino acid metabolisms, respectively. WD promoted the CO 2 assimilation by increase light reaction and Calvin cycle, leading to the reprogramming of carbon metabolism. Moreover, the accumulation of osmolytes (i.e., proline and total soluble sugar) and enhancement of ascorbate-glutathione cycle and glutathione peroxidase/glutathione s-transferase pathway in leaves could minimize oxidative damage of membrane and other molecules under WD. Importantly, the regulation role of carbohydrate metabolisms (e. g. glycolysis, pentose phosphate pathways, and TCA) was enhanced. These findings provide key candidate proteins for genetic improvement of perennial plants metabolism under

  12. mTORC1 Coordinates Protein Synthesis and Immunoproteasome Formation via PRAS40 to Prevent Accumulation of Protein Stress.

    Science.gov (United States)

    Yun, Young Sung; Kim, Kwan Hyun; Tschida, Barbara; Sachs, Zohar; Noble-Orcutt, Klara E; Moriarity, Branden S; Ai, Teng; Ding, Rui; Williams, Jessica; Chen, Liqiang; Largaespada, David; Kim, Do-Hyung

    2016-02-18

    Reduction of translational fidelity often occurs in cells with high rates of protein synthesis, generating defective ribosomal products. If not removed, such aberrant proteins can be a major source of cellular stress causing human diseases. Here, we demonstrate that mTORC1 promotes the formation of immunoproteasomes for efficient turnover of defective proteins and cell survival. mTORC1 sequesters precursors of immunoproteasome β subunits via PRAS40. When activated, mTORC1 phosphorylates PRAS40 to enhance protein synthesis and simultaneously to facilitate the assembly of the β subunits for forming immunoproteasomes. Consequently, the PRAS40 phosphorylations play crucial roles in clearing aberrant proteins that accumulate due to mTORC1 activation. Mutations of RAS, PTEN, and TSC1, which cause mTORC1 hyperactivation, enhance immunoproteasome formation in cells and tissues. Those mutations increase cellular dependence on immunoproteasomes for stress response and survival. These results define a mechanism by which mTORC1 couples elevated protein synthesis with immunoproteasome biogenesis to protect cells against protein stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Evaluating the Effects of Restraint Systems on 4WD Testing Methodologies: A Collaborative Effort between the NVFEL and ANL

    Science.gov (United States)

    Testing vehicles for emissions and fuel economy has traditionally been conducted with a single-axle chassis dynamometer. The 2006 SAE All Wheel Drive Symposium cited four wheel drive (4WD) and all wheel drive (AWD) sales as climbing from 20% toward 30% of a motor vehicle mar...

  14. Practical nutritional recovery strategies for elite soccer players when limited time separates repeated matches.

    Science.gov (United States)

    Ranchordas, Mayur Krachna; Dawson, Joel T; Russell, Mark

    2017-01-01

    Specific guidelines that aim to facilitate the recovery of soccer players from the demands of training and a congested fixture schedule are lacking; especially in relation to evidence-based nutritional recommendations. The importance of repeated high level performance and injury avoidance while addressing the challenges of fixture scheduling, travel to away venues, and training commitments requires a strategic and practically feasible method of implementing specific nutritional strategies. Here we present evidence-based guidelines regarding nutritional recovery strategies within the context of soccer. An emphasis is placed on providing practically applicable guidelines for facilitation of recovery when multiple matches are played within a short period of time (i.e. 48 h). Following match-play, the restoration of liver and muscle glycogen stores (via consumption of ~1.2 g⋅kg -1 ⋅h -1 of carbohydrate) and augmentation of protein synthesis (via ~40 g of protein) should be prioritised in the first 20 min of recovery. Daily intakes of 6-10 g⋅kg -1 body mass of carbohydrate are recommended when limited time separates repeated matches while daily protein intakes of >1.5 g⋅kg -1 body mass should be targeted; possibly in the form of multiple smaller feedings (e.g., 6 × 20-40 g). At least 150% of the body mass lost during exercise should be consumed within 1 h and electrolytes added such that fluid losses are ameliorated. Strategic use of protein, leucine, creatine, polyphenols and omega-3 supplements could also offer practical means of enhancing post-match recovery.

  15. Repeated short climatic change affects the epidermal differentiation program and leads to matrix remodeling in a human organotypic skin model.

    Science.gov (United States)

    Boutrand, Laetitia-Barbollat; Thépot, Amélie; Muther, Charlotte; Boher, Aurélie; Robic, Julie; Guéré, Christelle; Vié, Katell; Damour, Odile; Lamartine, Jérôme

    2017-01-01

    Human skin is subject to frequent changes in ambient temperature and humidity and needs to cope with these environmental modifications. To decipher the molecular response of human skin to repeated climatic change, a versatile model of skin equivalent subject to "hot-wet" (40°C, 80% relative humidity [RH]) or "cold-dry" (10°C, 40% RH) climatic stress repeated daily was used. To obtain an exhaustive view of the molecular mechanisms elicited by climatic change, large-scale gene expression DNA microarray analysis was performed and modulated function was determined by bioinformatic annotation. This analysis revealed several functions, including epidermal differentiation and extracellular matrix, impacted by repeated variations in climatic conditions. Some of these molecular changes were confirmed by histological examination and protein expression. Both treatments (hot-wet and cold-dry) reduced the expression of genes encoding collagens, laminin, and proteoglycans, suggesting a profound remodeling of the extracellular matrix. Strong induction of the entire family of late cornified envelope genes after cold-dry exposure, confirmed at protein level, was also observed. These changes correlated with an increase in epidermal differentiation markers such as corneodesmosin and a thickening of the stratum corneum, indicating possible implementation of defense mechanisms against dehydration. This study for the first time reveals the complex pattern of molecular response allowing adaption of human skin to repeated change in its climatic environment.

  16. Translation of dipeptide repeat proteins from the C9ORF72 expanded repeat is associated with cellular stress.

    Science.gov (United States)

    Sonobe, Yoshifumi; Ghadge, Ghanashyam; Masaki, Katsuhisa; Sendoel, Ataman; Fuchs, Elaine; Roos, Raymond P

    2018-08-01

    Expansion of a hexanucleotide repeat (HRE), GGGGCC, in the C9ORF72 gene is recognized as the most common cause of familial amyotrophic lateral sclerosis (FALS), frontotemporal dementia (FTD) and ALS-FTD, as well as 5-10% of sporadic ALS. Despite the location of the HRE in the non-coding region (with respect to the main C9ORF72 gene product), dipeptide repeat proteins (DPRs) that are thought to be toxic are translated from the HRE in all three reading frames from both the sense and antisense transcript. Here, we identified a CUG that has a good Kozak consensus sequence as the translation initiation codon. Mutation of this CTG significantly suppressed polyglycine-alanine (GA) translation. GA was translated when the G 4 C 2 construct was placed as the second cistron in a bicistronic construct. CRISPR/Cas9-induced knockout of a non-canonical translation initiation factor, eIF2A, impaired GA translation. Transfection of G 4 C 2 constructs induced an integrated stress response (ISR), while triggering the ISR led to a continuation of translation of GA with a decline in conventional cap-dependent translation. These in vitro observations were confirmed in chick embryo neural cells. The findings suggest that DPRs translated from an HRE in C9ORF72 aggregate and lead to an ISR that then leads to continuing DPR production and aggregation, thereby creating a continuing pathogenic cycle. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Cloning and Molecular Characterization of the Schistosoma mansoni Genes RbAp48 and Histone H4

    Directory of Open Access Journals (Sweden)

    Patrícia P Souza

    2002-10-01

    Full Text Available The human nuclear protein RbAp48 is a member of the tryptophan/aspartate (WD repeat family, which binds to the retinoblastoma (Rb protein. It also corresponds to the smallest subunit of the chromatin assembly factor and is able to bind to the helix 1 of histone H4, taking it to the DNA in replication. A cDNA homologous to the human gene RbAp48 was isolated from a Schistosoma mansoni adult worm library and named SmRbAp48. The full length sequence of SmRbAp48 cDNA is 1036 bp long, encoding a protein of 308 amino acids. The transcript of SmRbAp48 was detected in egg, cercariae and schistosomulum stages. The protein shows 84% similarity with the human RbAp48, possessing four WD repeats on its C-terminus. A hypothetical tridimensional structure for the SmRbAp48 C-terminal domain was constructed by computational molecular modeling using the b-subunit of the G protein as a model. To further verify a possible interaction between SmRbAp48 and S. mansoni histone H4, the histone H4 gene was amplified from adult worm genomic DNA using degenerated primers. The gene fragment of SmH4 is 294 bp long, encoding a protein of 98 amino acids which is 100% identical to histone H4 from Drosophila melanogaster.

  18. High-temperature protein G is essential for activity of the Escherichia coli clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system.

    Science.gov (United States)

    Yosef, Ido; Goren, Moran G; Kiro, Ruth; Edgar, Rotem; Qimron, Udi

    2011-12-13

    Prokaryotic DNA arrays arranged as clustered regularly interspaced short palindromic repeats (CRISPR), along with their associated proteins, provide prokaryotes with adaptive immunity by RNA-mediated targeting of alien DNA or RNA matching the sequences between the repeats. Here, we present a thorough screening system for the identification of bacterial proteins participating in immunity conferred by the Escherichia coli CRISPR system. We describe the identification of one such protein, high-temperature protein G (HtpG), a homolog of the eukaryotic chaperone heat-shock protein 90. We demonstrate that in the absence of htpG, the E. coli CRISPR system loses its suicidal activity against λ prophage and its ability to provide immunity from lysogenization. Transcomplementation of htpG restores CRISPR activity. We further show that inactivity of the CRISPR system attributable to htpG deficiency can be suppressed by expression of Cas3, a protein that is essential for its activity. Accordingly, we also find that the steady-state level of overexpressed Cas3 is significantly enhanced following HtpG expression. We conclude that HtpG is a newly identified positive modulator of the CRISPR system that is essential for maintaining functional levels of Cas3.

  19. ACCA phosphopeptide recognition by the BRCT repeats of BRCA1.

    Science.gov (United States)

    Ray, Hind; Moreau, Karen; Dizin, Eva; Callebaut, Isabelle; Venezia, Nicole Dalla

    2006-06-16

    The tumour suppressor gene BRCA1 encodes a 220 kDa protein that participates in multiple cellular processes. The BRCA1 protein contains a tandem of two BRCT repeats at its carboxy-terminal region. The majority of disease-associated BRCA1 mutations affect this region and provide to the BRCT repeats a central role in the BRCA1 tumour suppressor function. The BRCT repeats have been shown to mediate phospho-dependant protein-protein interactions. They recognize phosphorylated peptides using a recognition groove that spans both BRCT repeats. We previously identified an interaction between the tandem of BRCA1 BRCT repeats and ACCA, which was disrupted by germ line BRCA1 mutations that affect the BRCT repeats. We recently showed that BRCA1 modulates ACCA activity through its phospho-dependent binding to ACCA. To delineate the region of ACCA that is crucial for the regulation of its activity by BRCA1, we searched for potential phosphorylation sites in the ACCA sequence that might be recognized by the BRCA1 BRCT repeats. Using sequence analysis and structure modelling, we proposed the Ser1263 residue as the most favourable candidate among six residues, for recognition by the BRCA1 BRCT repeats. Using experimental approaches, such as GST pull-down assay with Bosc cells, we clearly showed that phosphorylation of only Ser1263 was essential for the interaction of ACCA with the BRCT repeats. We finally demonstrated by immunoprecipitation of ACCA in cells, that the whole BRCA1 protein interacts with ACCA when phosphorylated on Ser1263.

  20. MEGADOCK 4.0: an ultra-high-performance protein-protein docking software for heterogeneous supercomputers.

    Science.gov (United States)

    Ohue, Masahito; Shimoda, Takehiro; Suzuki, Shuji; Matsuzaki, Yuri; Ishida, Takashi; Akiyama, Yutaka

    2014-11-15

    The application of protein-protein docking in large-scale interactome analysis is a major challenge in structural bioinformatics and requires huge computing resources. In this work, we present MEGADOCK 4.0, an FFT-based docking software that makes extensive use of recent heterogeneous supercomputers and shows powerful, scalable performance of >97% strong scaling. MEGADOCK 4.0 is written in C++ with OpenMPI and NVIDIA CUDA 5.0 (or later) and is freely available to all academic and non-profit users at: http://www.bi.cs.titech.ac.jp/megadock. akiyama@cs.titech.ac.jp Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.

  1. A novel tetratricopeptide repeat (TPR containing PP5 serine/threonine protein phosphatase in the malaria parasite, Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Adams Brian

    2001-11-01

    Full Text Available Abstract Background The malarial parasite, Plasmodium falciparum (Pf, is responsible for nearly 2 million deaths worldwide. However, the mechanisms of cellular signaling in the parasite remain largely unknown. Recent discovery of a few protein kinases and phosphatases point to a thriving reversible phosphorylation system in the parasite, although their function and regulation need to be determined. Results We provide biochemical and sequence evidence for a protein serine/threonine phosphatase type PP5 in Plasmodium falciparum, and named it PfPP5. The 594-amino acid polypeptide was encoded by a 1785 nucleotide long intronless gene in the parasite. The recombinant protein, expressed in bacteria, was indistinguishable from native PfPP5. Sequencing comparison indicated that the extra-long N-terminus of PfPP5 outside the catalytic core contained four tetratricopeptide repeats (TPRs, compared to three such repeats in other PP5 phosphatases. The PfPP5 N-terminus was required for stimulation of the phosphatase activity by polyunsaturated fatty acids. Co-immunoprecipitation demonstrated an interaction between native PfPP5 and Pf heat shock protein 90 (hsp90. PfPP5 was expressed in all the asexual erythrocytic stages of the parasite, and was moderately sensitive to okadaic acid. Conclusions This is the first example of a TPR-domain protein in the Apicomplexa family of parasites. Since TPR domains play important roles in protein-protein interaction, especially relevant to the regulation of PP5 phosphatases, PfPP5 is destined to have a definitive role in parasitic growth and signaling pathways. This is exemplified by the interaction between PfPP5 and the cognate chaperone hsp90.

  2. Tetratricopeptide repeat domain 9A is an interacting protein for tropomyosin Tm5NM-1

    International Nuclear Information System (INIS)

    Cao, Shenglan; Ho, Gay Hui; Lin, Valerie CL

    2008-01-01

    Tetratricopeptide repeat domain 9A (TTC9A) protein is a recently identified protein which contains three tetratricopeptide repeats (TPRs) on its C-terminus. In our previous studies, we have shown that TTC9A was a hormonally-regulated gene in breast cancer cells. In this study, we found that TTC9A was over-expressed in breast cancer tissues compared with the adjacent controls (P < 0.00001), suggesting it might be involved in the breast cancer development process. The aim of the current study was to further elucidate the function of TTC9A. Breast samples from 25 patients including the malignant breast tissues and the adjacent normal tissues were processed for Southern blot analysis. Yeast-two-hybrid assay, GST pull-down assay and co-immunoprecipitation were used to identify and verify the interaction between TTC9A and other proteins. Tropomyosin Tm5NM-1 was identified as one of the TTC9A partner proteins. The interaction between TTC9A and Tm5NM-1 was further confirmed by GST pull-down assay and co-immunoprecipitation in mammalian cells. TTC9A domains required for the interaction were also characterized in this study. The results suggested that the first TPR domain and the linker fragment between the first two TPR domains of TTC9A were important for the interaction with Tm5NM-1 and the second and the third TPR might play an inhibitory role. Since the primary function of tropomyosin is to stabilize actin filament, its interaction with TTC9A may play a role in cell shape and motility. In our previous results, we have found that progesterone-induced TTC9A expression was associated with increased cell motility and cell spreading. We speculate that TTC9A acts as a chaperone protein to facilitate the function of tropomyosins in stabilizing microfilament and it may play a role in cancer cell invasion and metastasis

  3. Small glutamine-rich tetratricopeptide repeat-containing protein alpha is present in human ovaries but may not be differentially expressed in relation to polycystic ovary syndrome.

    Science.gov (United States)

    Butler, Miriam S; Yang, Xing; Ricciardelli, Carmela; Liang, Xiaoyan; Norman, Robert J; Tilley, Wayne D; Hickey, Theresa E

    2013-06-01

    To evaluate the expression and function of small glutamine-rich tetratricopeptide repeat-containing protein alpha (SGTA), an androgen receptor (AR) molecular chaperone, in human ovarian tissues. Examine the effect of SGTA on AR subcellular localization in granulosa tumor cells (KGN) and SGTA expression in ovarian tissues. University-based research laboratory. Archived tissues from premenopausal women and granulosa cells from infertile women receiving assisted reproduction. None. AR subcellular localization and SGTA protein or mRNA levels. SGTA and AR proteins were expressed in the cytoplasm of KGN cells and exposure to androgen stimulated AR nuclear localization. SGTA protein knockdown increased AR nuclear localization at low (0-0.1 nmol/L) but not high (1-10 nmol/L) concentrations of androgen hormone. In ovarian tissues, SGTA was localized to the cytoplasm of granulosa cells at all stages of folliculogenesis and in thecal cells of antral follicles. SGTA protein levels were similar when comparing primordial and primary follicles within core biopsies (n = 40) from women with and without polycystic ovary syndrome (PCOS). Likewise, SGTA mRNA levels were not significantly different in granulosa cells from preovulatory follicles after hyperstimulation of women with and without PCOS. SGTA is present in human ovaries and has the potential to modulate AR signalling, but it may not be differentially expressed in PCOS. Copyright © 2013 American Society for Reproductive Medicine. All rights reserved.

  4. Positive selection and propeptide repeats promote rapid interspecific divergence of a gastropod sperm protein.

    Science.gov (United States)

    Hellberg, M E; Moy, G W; Vacquier, V D

    2000-03-01

    Male-specific proteins have increasingly been reported as targets of positive selection and are of special interest because of the role they may play in the evolution of reproductive isolation. We report the rapid interspecific divergence of cDNA encoding a major acrosomal protein of unknown function (TMAP) of sperm from five species of teguline gastropods. A mitochondrial DNA clock (calibrated by congeneric species divided by the Isthmus of Panama) estimates that these five species diverged 2-10 MYA. Inferred amino acid sequences reveal a propeptide that has diverged rapidly between species. The mature protein has diverged faster still due to high nonsynonymous substitution rates (> 25 nonsynonymous substitutions per site per 10(9) years). cDNA encoding the mature protein (89-100 residues) shows evidence of positive selection (Dn/Ds > 1) for 4 of 10 pairwise species comparisons. cDNA and predicted secondary-structure comparisons suggest that TMAP is neither orthologous nor paralogous to abalone lysin, and thus marks a second, phylogenetically independent, protein subject to strong positive selection in free-spawning marine gastropods. In addition, an internal repeat in one species (Tegula aureotincta) produces a duplicated cleavage site which results in two alternatively processed mature proteins differing by nine amino acid residues. Such alternative processing may provide a mechanism for introducing novel amino acid sequence variation at the amino-termini of proteins. Highly divergent TMAP N-termini from two other tegulines (Tegula regina and Norrisia norrisii) may have originated by such a mechanism.

  5. Molecular characterization of the pL40 protein in Leptospira interrogans.

    Science.gov (United States)

    Zhao, Wei; Chen, Chun-Yan; Zhang, Xiang-Yan; Lai, Wei-Qiang; Hu, Bao-Yu; Zhao, Guo-Ping; Qin, Jin-Hong; Guo, Xiao-Kui

    2009-06-01

    Leptospirosis is a widespread zoonotic disease caused by pathogenic leptospires. The identification of outer membrane proteins (OMPs) conserved among pathogenic leptospires, which are exposed on the leptospiral surface and expressed during mammalian infection, has become a major focus of leptospirosis research. pL40, a 40 kDa protein coded by the LA3744 gene in Leptospira interrogans, was found to be unique to Leptospira. Triton X-114 fractionation and flow cytometry analyses indicate that pL40 is a component of the leptospiral outer membrane. The conservation of pL40 among Leptospira strains prevalent in China was confirmed by both Western blotting and PCR screening. Furthermore, the pL40 antigen could be recognized by sera from guinea pigs and mice infected with low-passage L. interrogans. These findings indicate that pL40 may serve as a useful serodiagnostic antigen and vaccine candidate for L. interrogans.

  6. A study of small-scale foliation in lengths of core enclosing fault zones in borehole WD-3, Permit Area D, Lac du Bonnet Batholith

    Energy Technology Data Exchange (ETDEWEB)

    Ejeckam, R. B.

    1992-12-01

    Small-scale foliation measurements in lengths of core from borehole WD-3 of Permit Area D of the Lac du Bonnet Batholith have defined five major mean orientation sets. They strike NW, N and NE. The orientations (strike to the left of the dip direction/dip) of these sets are as follows: Set I - 028/74 deg; II - 001/66 deg; III - 100/58 deg; IV - 076/83 deg; and V - 210/40 deg. The small-scale foliations were defined by different mineral types such as biotite crystals, plagioclase, mineral banding and quartz lenses. Well-developed biotite foliation is commonly present whenever well-developed plagioclase foliation exists, but as the strength of development weakens, the preferred orientations of plagioclase foliation do not correspond to those of biotite. It is also noted that the foliations appear to strike in directions orthogonal to the fractures in the fracture zones in the same depth interval. No significant change in foliation orientation was observed in Zones I to IV. Set V, however, whose mean orientation is 210/40 deg, is absent from the Zone IV interval, ranging from 872 to 905 m. (auth)

  7. Solution structure of the human signaling protein RACK1

    Directory of Open Access Journals (Sweden)

    Papa Priscila F

    2010-06-01

    Full Text Available Abstract Background The adaptor protein RACK1 (receptor of activated kinase 1 was originally identified as an anchoring protein for protein kinase C. RACK1 is a 36 kDa protein, and is composed of seven WD repeats which mediate its protein-protein interactions. RACK1 is ubiquitously expressed and has been implicated in diverse cellular processes involving: protein translation regulation, neuropathological processes, cellular stress, and tissue development. Results In this study we performed a biophysical analysis of human RACK1 with the aim of obtaining low resolution structural information. Small angle X-ray scattering (SAXS experiments demonstrated that human RACK1 is globular and monomeric in solution and its low resolution structure is strikingly similar to that of an homology model previously calculated by us and to the crystallographic structure of RACK1 isoform A from Arabidopsis thaliana. Both sedimentation velocity and sedimentation equilibrium analytical ultracentrifugation techniques showed that RACK1 is predominantly a monomer of around 37 kDa in solution, but also presents small amounts of oligomeric species. Moreover, hydrodynamic data suggested that RACK1 has a slightly asymmetric shape. The interaction of RACK1 and Ki-1/57 was tested by sedimentation equilibrium. The results suggested that the association between RACK1 and Ki-1/57(122-413 follows a stoichiometry of 1:1. The binding constant (KB observed for RACK1-Ki-1/57(122-413 interaction was of around (1.5 ± 0.2 × 106 M-1 and resulted in a dissociation constant (KD of (0.7 ± 0.1 × 10-6 M. Moreover, the fluorescence data also suggests that the interaction may occur in a cooperative fashion. Conclusion Our SAXS and analytical ultracentrifugation experiments indicated that RACK1 is predominantly a monomer in solution. RACK1 and Ki-1/57(122-413 interact strongly under the tested conditions.

  8. Chaperone-Mediated Autophagy Protein BAG3 Negatively Regulates Ebola and Marburg VP40-Mediated Egress.

    Science.gov (United States)

    Liang, Jingjing; Sagum, Cari A; Bedford, Mark T; Sidhu, Sachdev S; Sudol, Marius; Han, Ziying; Harty, Ronald N

    2017-01-01

    Ebola (EBOV) and Marburg (MARV) viruses are members of the Filoviridae family which cause outbreaks of hemorrhagic fever. The filovirus VP40 matrix protein is essential for virus assembly and budding, and its PPxY L-domain motif interacts with WW-domains of specific host proteins, such as Nedd4 and ITCH, to facilitate the late stage of virus-cell separation. To identify additional WW-domain-bearing host proteins that interact with VP40, we used an EBOV PPxY-containing peptide to screen an array of 115 mammalian WW-domain-bearing proteins. Using this unbiased approach, we identified BCL2 Associated Athanogene 3 (BAG3), a member of the BAG family of molecular chaperone proteins, as a specific VP40 PPxY interactor. Here, we demonstrate that the WW-domain of BAG3 interacts with the PPxY motif of both EBOV and MARV VP40 and, unexpectedly, inhibits budding of both eVP40 and mVP40 virus-like particles (VLPs), as well as infectious VSV-EBOV recombinants. BAG3 is a stress induced protein that regulates cellular protein homeostasis and cell survival through chaperone-mediated autophagy (CMA). Interestingly, our results show that BAG3 alters the intracellular localization of VP40 by sequestering VP40 away from the plasma membrane. As BAG3 is the first WW-domain interactor identified that negatively regulates budding of VP40 VLPs and infectious virus, we propose that the chaperone-mediated autophagy function of BAG3 represents a specific host defense strategy to counteract the function of VP40 in promoting efficient egress and spread of virus particles.

  9. Chaperone-Mediated Autophagy Protein BAG3 Negatively Regulates Ebola and Marburg VP40-Mediated Egress.

    Directory of Open Access Journals (Sweden)

    Jingjing Liang

    2017-01-01

    Full Text Available Ebola (EBOV and Marburg (MARV viruses are members of the Filoviridae family which cause outbreaks of hemorrhagic fever. The filovirus VP40 matrix protein is essential for virus assembly and budding, and its PPxY L-domain motif interacts with WW-domains of specific host proteins, such as Nedd4 and ITCH, to facilitate the late stage of virus-cell separation. To identify additional WW-domain-bearing host proteins that interact with VP40, we used an EBOV PPxY-containing peptide to screen an array of 115 mammalian WW-domain-bearing proteins. Using this unbiased approach, we identified BCL2 Associated Athanogene 3 (BAG3, a member of the BAG family of molecular chaperone proteins, as a specific VP40 PPxY interactor. Here, we demonstrate that the WW-domain of BAG3 interacts with the PPxY motif of both EBOV and MARV VP40 and, unexpectedly, inhibits budding of both eVP40 and mVP40 virus-like particles (VLPs, as well as infectious VSV-EBOV recombinants. BAG3 is a stress induced protein that regulates cellular protein homeostasis and cell survival through chaperone-mediated autophagy (CMA. Interestingly, our results show that BAG3 alters the intracellular localization of VP40 by sequestering VP40 away from the plasma membrane. As BAG3 is the first WW-domain interactor identified that negatively regulates budding of VP40 VLPs and infectious virus, we propose that the chaperone-mediated autophagy function of BAG3 represents a specific host defense strategy to counteract the function of VP40 in promoting efficient egress and spread of virus particles.

  10. The 1.7 Å resolution structure of At2g44920, a pentapeptide-repeat protein in the thylakoid lumen of Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Ni, Shuisong; McGookey, Michael E.; Tinch, Stuart L.; Jones, Alisha N.; Jayaraman, Seetharaman; Tong, Liang; Kennedy, Michael A.

    2011-01-01

    The crystal structure of At2g44920, a pentapeptide repeat protein (PRP) from Arabidopsis thaliana, has been determined at 1.7 Å resolution. The structure represents the first PRP protein whose subcellular localization has been experimentally confirmed to be the thylakoid lumen of a plant species. At2g44920 belongs to a diverse family (Pfam PF00805) of pentapeptide-repeat proteins (PRPs) that are present in all known organisms except yeast. PRPs contain at least eight tandem-repeating sequences of five amino acids with an approximate consensus sequence (STAV)(D/N)(L/F)(S/T/R)(X). Recent crystal structures show that PRPs adopt a highly regular four-sided right-handed β-helical structure consisting mainly of type II and type IV β-turns, sometimes referred to as a repeated five-residue (or Rfr) fold. Among sequenced genomes, PRP genes are most abundant in cyanobacteria, leading to speculation that PRPs play an important role in the unique lifestyle of photosynthetic cyanobacteria. Despite the recent structural characterization of several cyanobacterial PRPs, most of their functions remain unknown. Plants, whose chloroplasts are of cyanobacterial origin, have only four PRP genes in their genomes. At2g44920 is one of three PRPs located in the thylakoid lumen. Here, the crystal structure of a double methionine mutant of residues 81–224 of At2g44920, the naturally processed fragment of one of its full-length isoforms, is reported at 1.7 Å resolution. The structure of At2g44920 consists of the characteristic Rfr fold with five uninterrupted coils made up of 25 pentapeptide repeats and α-helical elements capping both termini. A disulfide bridge links the two α-helices with a conserved loop between the helical elements at its C-terminus. This structure represents the first structure of a PRP protein whose subcellular location has been experimentally confirmed to be the thylakoid lumen in a plant species

  11. Body protein losses estimated by nitrogen balance and potassium-40 counting

    International Nuclear Information System (INIS)

    Belyea, R.L.; Babbitt, C.L.; Sedgwick, H.T.; Zinn, G.M.

    1986-01-01

    Body protein losses estimated from N balance were compared with those estimated by 40K counting. Six nonlactating dairy cows were fed an adequate N diet for 7 wk, a low N diet for 9 wk, and a replete N diet for 3 wk. The low N diet contained high cell wall grass hay plus ground corn, starch, and molasses. Soybean meal was added to the low N diet to increase N in the adequate N and replete N diets. Intake was measured daily. Digestibilities, N balance, and body composition (estimated by 40K counting) were determined during each dietary regimen. During low N treatment, hay dry matter intake declined 2 kg/d, and supplement increased about .5 kg/d. Dry matter digestibility was not altered by N treatment. Protein and acid detergent fiber digestibilities decreased from 40 and 36% during adequate N to 20 and 2%, respectively, during low N. Fecal and urinary N also declined when cows were fed the low N diet. By the end of repletion, total intake, fiber, and protein digestibilities as well as N partition were similar to or exceeded those during adequate N intake. Body protein (N) loss was estimated by N balance to be about 3 kg compared with 8 kg by 40K counting. Body fat losses (32 kg) were large because of low energy digestibility and intake. Seven kilograms of body fat were regained during repletion, but there was no change in body protein

  12. Highly sensitive detection of individual HEAT and ARM repeats with HHpred and COACH.

    Science.gov (United States)

    Kippert, Fred; Gerloff, Dietlind L

    2009-09-24

    HEAT and ARM repeats occur in a large number of eukaryotic proteins. As these repeats are often highly diverged, the prediction of HEAT or ARM domains can be challenging. Except for the most clear-cut cases, identification at the individual repeat level is indispensable, in particular for determining domain boundaries. However, methods using single sequence queries do not have the sensitivity required to deal with more divergent repeats and, when applied to proteins with known structures, in some cases failed to detect a single repeat. Testing algorithms which use multiple sequence alignments as queries, we found two of them, HHpred and COACH, to detect HEAT and ARM repeats with greatly enhanced sensitivity. Calibration against experimentally determined structures suggests the use of three score classes with increasing confidence in the prediction, and prediction thresholds for each method. When we applied a new protocol using both HHpred and COACH to these structures, it detected 82% of HEAT repeats and 90% of ARM repeats, with the minimum for a given protein of 57% for HEAT repeats and 60% for ARM repeats. Application to bona fide HEAT and ARM proteins or domains indicated that similar numbers can be expected for the full complement of HEAT/ARM proteins. A systematic screen of the Protein Data Bank for false positive hits revealed their number to be low, in particular for ARM repeats. Double false positive hits for a given protein were rare for HEAT and not at all observed for ARM repeats. In combination with fold prediction and consistency checking (multiple sequence alignments, secondary structure prediction, and position analysis), repeat prediction with the new HHpred/COACH protocol dramatically improves prediction in the twilight zone of fold prediction methods, as well as the delineation of HEAT/ARM domain boundaries. A protocol is presented for the identification of individual HEAT or ARM repeats which is straightforward to implement. It provides high

  13. Elfin: An algorithm for the computational design of custom three-dimensional structures from modular repeat protein building blocks.

    Science.gov (United States)

    Yeh, Chun-Ting; Brunette, T J; Baker, David; McIntosh-Smith, Simon; Parmeggiani, Fabio

    2018-02-01

    Computational protein design methods have enabled the design of novel protein structures, but they are often still limited to small proteins and symmetric systems. To expand the size of designable proteins while controlling the overall structure, we developed Elfin, a genetic algorithm for the design of novel proteins with custom shapes using structural building blocks derived from experimentally verified repeat proteins. By combining building blocks with compatible interfaces, it is possible to rapidly build non-symmetric large structures (>1000 amino acids) that match three-dimensional geometric descriptions provided by the user. A run time of about 20min on a laptop computer for a 3000 amino acid structure makes Elfin accessible to users with limited computational resources. Protein structures with controlled geometry will allow the systematic study of the effect of spatial arrangement of enzymes and signaling molecules, and provide new scaffolds for functional nanomaterials. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Armadillo Repeat Containing 8α Binds to HRS and Promotes HRS Interaction with Ubiquitinated Proteins

    Science.gov (United States)

    Tomaru, Koji; Ueda, Atsuhisa; Suzuki, Takeyuki; Kobayashi, Nobuaki; Yang, Jun; Yamamoto, Masaki; Takeno, Mitsuhiro; Kaneko, Takeshi; Ishigatsubo, Yoshiaki

    2010-01-01

    Recently, we reported that a complex with an essential role in the degradation of Fructose-1,6-bisphosphatase in yeast is well conserved in mammalian cells; we named this mammalian complex C-terminal to the Lissencephaly type-1-like homology (CTLH) complex. Although the function of the CTLH complex remains unclear, here we used yeast two-hybrid screening to isolate Hepatocyte growth factor-regulated tyrosine kinase substrate (HRS) as a protein binding to a key component of CTLH complex, Armadillo repeat containing 8 (ARMc8) α. The association was confirmed by a yeast two-hybrid assay and a co-immunoprecipitation assay. The proline-rich domain of HRS was essential for the association. As demonstrated through immunofluorescence microscopy, ARMc8α co-localized with HRS. ARMc8α promoted the interaction of HRS with various ubiquitinated proteins through the ubiquitin-interacting motif. These findings suggest that HRS mediates protein endosomal trafficking partly through its interaction with ARMc8α. PMID:20224683

  15. Transgenesis of the Wolffian duct visualizes dynamic behavior of cells undergoing tubulogenesis in vivo.

    Science.gov (United States)

    Atsuta, Yuji; Tadokoro, Ryosuke; Saito, Daisuke; Takahashi, Yoshiko

    2013-05-01

    Deciphering how the tubulogenesis is regulated is an essential but unsolved issue in developmental biology. Here, using Wolffian duct (WD) formation in chicken embryos, we have developed a novel method that enables gene manipulation during tubulogenesis in vivo. Exploiting that WD arises from a defined site located anteriorly in the embryo (pronephric region), we targeted this region with the enhanced green fluorescent protein (EGFP) gene by the in ovo electroporation technique. EGFP-positive signals were detected in a wide area of elongating WD, where transgenic cells formed an epithelial component in a mosaic manner. Time-lapse live imaging analyses further revealed dynamic behavior of cells during WD elongation: some cells possessed numerous filopodia, and others exhibited cellular tails that repeated elongation and retraction. The retraction of the tail was precisely regulated by Rho activity via actin dynamics. When electroporated with the C3 gene, encoding Rho inhibitor, WD cells failed to contract their tails, resulting in an aberrantly elongated process. We further combined with the Tol2 transposon-mediated gene transfer technique, and could trace EGFP-positive cells at later stages in the ureteric bud sprouting from WD. This is the first demonstration that exogenous gene(s) can directly be introduced into elongating tubular structures in living amniote embryos. This method has opened a way to investigate how a complex tubulogenesis proceeds in higher vertebrates. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  16. Repeated pulses of serotonin required for long-term facilitation activate mitogen-activated protein kinase in sensory neurons of Aplysia

    Science.gov (United States)

    Michael, Dan; Martin, Kelsey C.; Seger, Rony; Ning, Ming-Ming; Baston, Rene; Kandel, Eric R.

    1998-01-01

    Long-term facilitation of the connections between the sensory and motor neurons of the gill-withdrawal reflex in Aplysia requires five repeated pulses of serotonin (5-HT). The repeated pulses of 5-HT initiate a cascade of gene activation that leads ultimately to the growth of new synaptic connections. Several genes in this process have been identified, including the transcriptional regulators apCREB-1, apCREB-2, apC/EBP, and the cell adhesion molecule apCAM, which is thought to be involved in the formation of new synaptic connections. Here we report that the transcriptional regulators apCREB-2 and apC/EBP, as well as a peptide derived from the cytoplasmic domain of apCAM, are phosphorylated in vitro by Aplysia mitogen-activated protein kinase (apMAPK). We have cloned the cDNA encoding apMAPK and show that apMAPK activity is increased in sensory neurons treated with repeated pulses of 5-HT and by the cAMP pathway. These results suggest that apMAPK may participate with cAMP-dependent protein kinase during long-term facilitation in sensory cells by modifying some of the key elements involved in the consolidation of short- to long-lasting changes in synaptic strength. PMID:9465108

  17. Crystal structure of a PFU-PUL domain pair of Saccharomyces cerevisiae Doa1/Ufd3.

    Science.gov (United States)

    Nishimasu, Rieko; Komori, Hirofumi; Higuchi, Yoshiki; Nishimasu, Hiroshi; Hiroaki, Hidekazu

    2010-10-21

    Doa1/Ufd3 is involved in ubiquitin (Ub)-dependent cellular processes in Saccharomyces cerevisiae, and consists of WD40, PFU, and PUL domains. Previous studies showed that the PFU and PUL domains interact with Ub and Hse1, and Cdc48, respectively. However, their detailed functional interactions with Doa1 remained elusive. We report the crystal structure of the PFU-PUL domain pair of yeast Doa1 at 1.9 Å resolution. The conserved surface of the PFU domain may be involved in binding to Ub and Hse1. Unexpectedly, the PUL domain consists of an Armadillo (ARM)-like repeat structure. The positively charged concave surface of the PUL domain may bind to the negatively charged C-terminal region of Cdc48. A structural comparison of Doa1 with Ufd2 revealed that they share a similar ARM-like repeat, supporting a model in which Doa1 and Ufd2 compete for Cdc48 binding and may dictate the fate of ubiquitinated proteins in the proteasome pathway.

  18. Cyclophilin 40 facilitates HSP90-mediated RISC assembly in plants.

    Science.gov (United States)

    Iki, Taichiro; Yoshikawa, Manabu; Meshi, Tetsuo; Ishikawa, Masayuki

    2012-01-18

    Posttranscriptional gene silencing is mediated by RNA-induced silencing complexes (RISCs) that contain AGO proteins and single-stranded small RNAs. The assembly of plant AGO1-containing RISCs depends on the molecular chaperone HSP90. Here, we demonstrate that cyclophilin 40 (CYP40), protein phosphatase 5 (PP5), and several other proteins with the tetratricopeptide repeat (TPR) domain associates with AGO1 in an HSP90-dependent manner in extracts of evacuolated tobacco protoplasts (BYL). Intriguingly, CYP40, but not the other TPR proteins, could form a complex with small RNA duplex-bound AGO1. Moreover, CYP40 that was synthesized by in-vitro translation using BYL uniquely facilitated binding of small RNA duplexes to AGO1, and as a result, increased the amount of mature RISCs that could cleave target RNAs. CYP40 was not contained in mature RISCs, indicating that the association is transient. Addition of PP5 or cyclophilin-binding drug cyclosporine A prevented the association of endogenous CYP40 with HSP90-AGO1 complex and inhibited RISC assembly. These results suggest that a complex of AGO1, HSP90, CYP40, and a small RNA duplex is a key intermediate of RISC assembly in plants.

  19. Phospho-Ser/Thr-binding domains: navigating the cell cycle and DNA damage response.

    Science.gov (United States)

    Reinhardt, H Christian; Yaffe, Michael B

    2013-09-01

    Coordinated progression through the cell cycle is a complex challenge for eukaryotic cells. Following genotoxic stress, diverse molecular signals must be integrated to establish checkpoints specific for each cell cycle stage, allowing time for various types of DNA repair. Phospho-Ser/Thr-binding domains have emerged as crucial regulators of cell cycle progression and DNA damage signalling. Such domains include 14-3-3 proteins, WW domains, Polo-box domains (in PLK1), WD40 repeats (including those in the E3 ligase SCF(βTrCP)), BRCT domains (including those in BRCA1) and FHA domains (such as in CHK2 and MDC1). Progress has been made in our understanding of the motif (or motifs) that these phospho-Ser/Thr-binding domains connect with on their targets and how these interactions influence the cell cycle and DNA damage response.

  20. Generating markers based on biotic stress of protein system in and tandem repeats sequence for Aquilaria sp

    International Nuclear Information System (INIS)

    Azhar Mohamad; Muhammad Hanif Azhari N; Siti Norhayati Ismail

    2014-01-01

    Aquilaria sp. belongs to the Thymelaeaceae family and is well distributed in Asia region. The species has multipurpose use from root to shoot and is an economically important crop, which generates wide interest in understanding genetic diversity of the species. Knowledge on DNA-based markers has become a prerequisite for more effective application of molecular marker techniques in breeding and mapping programs. In this work, both targeted genes and tandem repeat sequences were used for DNA fingerprinting in Aquilaria sp. A total of 100 ISSR (inter simple sequence repeat) primers and 50 combination pairs of specific primers derived from conserved region of a specific protein known as system in were optimized. 38 ISSR primers were found affirmative for polymorphism evaluation study and were generated from both specific and degenerate ISSR primers. And one utmost combination of system in primers showed significant results in distinguishing the Aquilaria sp. In conclusion, polymorphism derived from ISSR profiling and targeted stress genes of protein system in proved as a powerful approach for identification and molecular classification of Aquilaria sp. which will be useful for diversification in identifying any mutant lines derived from nature. (author)

  1. Origin and diversification of leucine-rich repeat receptor-like protein kinase (LRR-RLK) genes in plants

    OpenAIRE

    Liu, Ping-Li; Du, Liang; Huang, Yuan; Gao, Shu-Min; Yu, Meng

    2017-01-01

    Background Leucine-rich repeat receptor-like protein kinases (LRR-RLKs) are the largest group of receptor-like kinases in plants and play crucial roles in development and stress responses. The evolutionary relationships among LRR-RLK genes have been investigated in flowering plants; however, no comprehensive studies have been performed for these genes in more ancestral groups. The subfamily classification of LRR-RLK genes in plants, the evolutionary history and driving force for the evolution...

  2. Conformational plasticity of the Ebola virus matrix protein.

    Science.gov (United States)

    Radzimanowski, Jens; Effantin, Gregory; Weissenhorn, Winfried

    2014-11-01

    Filoviruses are the causative agents of a severe and often fatal hemorrhagic fever with repeated outbreaks in Africa. They are negative sense single stranded enveloped viruses that can cross species barriers from its natural host bats to primates including humans. The small size of the genome poses limits to viral adaption, which may be partially overcome by conformational plasticity. Here we review the different conformational states of the Ebola virus (EBOV) matrix protein VP40 that range from monomers, to dimers, hexamers, and RNA-bound octamers. This conformational plasticity that is required for the viral life cycle poses a unique opportunity for development of VP40 specific drugs. Furthermore, we compare the structure to homologous matrix protein structures from Paramyxoviruses and Bornaviruses and we predict that they do not only share the fold but also the conformational flexibility of EBOV VP40. © 2014 The Protein Society.

  3. Human mismatch repair protein hMutLα is required to repair short slipped-DNAs of trinucleotide repeats.

    Science.gov (United States)

    Panigrahi, Gagan B; Slean, Meghan M; Simard, Jodie P; Pearson, Christopher E

    2012-12-07

    Mismatch repair (MMR) is required for proper maintenance of the genome by protecting against mutations. The mismatch repair system has also been implicated as a driver of certain mutations, including disease-associated trinucleotide repeat instability. We recently revealed a requirement of hMutSβ in the repair of short slip-outs containing a single CTG repeat unit (1). The involvement of other MMR proteins in short trinucleotide repeat slip-out repair is unknown. Here we show that hMutLα is required for the highly efficient in vitro repair of single CTG repeat slip-outs, to the same degree as hMutSβ. HEK293T cell extracts, deficient in hMLH1, are unable to process single-repeat slip-outs, but are functional when complemented with hMutLα. The MMR-deficient hMLH1 mutant, T117M, which has a point mutation proximal to the ATP-binding domain, is defective in slip-out repair, further supporting a requirement for hMLH1 in the processing of short slip-outs and possibly the involvement of hMHL1 ATPase activity. Extracts of hPMS2-deficient HEC-1-A cells, which express hMLH1, hMLH3, and hPMS1, are only functional when complemented with hMutLα, indicating that neither hMutLβ nor hMutLγ is sufficient to repair short slip-outs. The resolution of clustered short slip-outs, which are poorly repaired, was partially dependent upon a functional hMutLα. The joint involvement of hMutSβ and hMutLα suggests that repeat instability may be the result of aberrant outcomes of repair attempts.

  4. MoDnm1 Dynamin Mediating Peroxisomal and Mitochondrial Fission in Complex with MoFis1 and MoMdv1 Is Important for Development of Functional Appressorium in Magnaporthe oryzae.

    Directory of Open Access Journals (Sweden)

    Kaili Zhong

    2016-08-01

    Full Text Available Dynamins are large superfamily GTPase proteins that are involved in various cellular processes including budding of transport vesicles, division of organelles, cytokinesis, and pathogen resistance. Here, we characterized several dynamin-related proteins from the rice blast fungus Magnaporthe oryzae and found that MoDnm1 is required for normal functions, including vegetative growth, conidiogenesis, and full pathogenicity. In addition, we found that MoDnm1 co-localizes with peroxisomes and mitochondria, which is consistent with the conserved role of dynamin proteins. Importantly, MoDnm1-dependent peroxisomal and mitochondrial fission involves functions of mitochondrial fission protein MoFis1 and WD-40 repeat protein MoMdv1. These two proteins display similar cellular functions and subcellular localizations as MoDnm1, and are also required for full pathogenicity. Further studies showed that MoDnm1, MoFis1 and MoMdv1 are in complex to regulate not only peroxisomal and mitochondrial fission, pexophagy and mitophagy progression, but also appressorium function and host penetration. In summary, our studies provide new insights into how MoDnm1 interacts with its partner proteins to mediate peroxisomal and mitochondrial functions and how such regulatory events may link to differentiation and pathogenicity in the rice blast fungus.

  5. Repeatability and Reproducibility in Proteomic Identifications by Liquid Chromatography—Tandem Mass Spectrometry

    Science.gov (United States)

    Tabb, David L.; Vega-Montoto, Lorenzo; Rudnick, Paul A.; Variyath, Asokan Mulayath; Ham, Amy-Joan L.; Bunk, David M.; Kilpatrick, Lisa E.; Billheimer, Dean D.; Blackman, Ronald K.; Cardasis, Helene L.; Carr, Steven A.; Clauser, Karl R.; Jaffe, Jacob D.; Kowalski, Kevin A.; Neubert, Thomas A.; Regnier, Fred E.; Schilling, Birgit; Tegeler, Tony J.; Wang, Mu; Wang, Pei; Whiteaker, Jeffrey R.; Zimmerman, Lisa J.; Fisher, Susan J.; Gibson, Bradford W.; Kinsinger, Christopher R.; Mesri, Mehdi; Rodriguez, Henry; Stein, Steven E.; Tempst, Paul; Paulovich, Amanda G.; Liebler, Daniel C.; Spiegelman, Cliff

    2009-01-01

    The complexity of proteomic instrumentation for LC-MS/MS introduces many possible sources of variability. Data-dependent sampling of peptides constitutes a stochastic element at the heart of discovery proteomics. Although this variation impacts the identification of peptides, proteomic identifications are far from completely random. In this study, we analyzed interlaboratory data sets from the NCI Clinical Proteomic Technology Assessment for Cancer to examine repeatability and reproducibility in peptide and protein identifications. Included data spanned 144 LC-MS/MS experiments on four Thermo LTQ and four Orbitrap instruments. Samples included yeast lysate, the NCI-20 defined dynamic range protein mix, and the Sigma UPS 1 defined equimolar protein mix. Some of our findings reinforced conventional wisdom, such as repeatability and reproducibility being higher for proteins than for peptides. Most lessons from the data, however, were more subtle. Orbitraps proved capable of higher repeatability and reproducibility, but aberrant performance occasionally erased these gains. Even the simplest protein digestions yielded more peptide ions than LC-MS/MS could identify during a single experiment. We observed that peptide lists from pairs of technical replicates overlapped by 35–60%, giving a range for peptide-level repeatability in these experiments. Sample complexity did not appear to affect peptide identification repeatability, even as numbers of identified spectra changed by an order of magnitude. Statistical analysis of protein spectral counts revealed greater stability across technical replicates for Orbitraps, making them superior to LTQ instruments for biomarker candidate discovery. The most repeatable peptides were those corresponding to conventional tryptic cleavage sites, those that produced intense MS signals, and those that resulted from proteins generating many distinct peptides. Reproducibility among different instruments of the same type lagged behind

  6. In Vivo and in Vitro Evaluations of Repeatability and Accuracy of VITA Easyshade® Advance 4.0 Dental Shade-Matching Device

    Directory of Open Access Journals (Sweden)

    Davor Illeš

    2015-01-01

    Full Text Available Objectives: The objective of this study was to evaluate the intra-device repeatability and accuracy of dental shade-matching device (VITA Easyshade® Advance 4.0 using both in vitro and in vivo models. Materials and methods: For the repeatability assessment, the in vivo model utilized shade-matching device to measure the central region of the labial surface of right maxillary central incisors of 10 people twice. The following tooth colors were measured: B1, A1, A2, A3, C1 and C3. The in vitro model included the same six Vitapan Classical tabs. Two measurements were made of the central region of each shade tab. For the accuracy assessment, each shade tab from 3 Vitapan Classical shade guides was measured once. CIE L*a*b* values were determined. Intraclass correlation coefficients (ICCs were used to analyze the in vitro and in vivo intra-device repeatability of the shade-matching device. The difference between in vitro and in vivo models was analyzed. Accuracy of the device tested was calculated. Results: The mean color differences for in vivo and in vitro models were 3.51 and 1.25 E units, respectively. The device repeatability ICCs for in vivo measurements ranged from 0.858 to 0.971 and for in vitro from 0.992 to 0.994. Accuracy of the device tested was 93.75%. Conclusion: Within the limitations of the experiment, VITA Easyshade®Advance 4.0 dental shade-matching device enabled reliable and accurate measurement. It can be a valuable tool for the determination of tooth colours.

  7. Detection, characterization and evolution of internal repeats in Chitinases of known 3-D structure.

    Directory of Open Access Journals (Sweden)

    Manigandan Sivaji

    Full Text Available Chitinase proteins have evolved and diversified almost in all organisms ranging from prokaryotes to eukaryotes. During evolution, internal repeats may appear in amino acid sequences of proteins which alter the structural and functional features. Here we deciphered the internal repeats from Chitinase and characterized the structural similarities between them. Out of 24 diverse Chitinase sequences selected, six sequences (2CJL, 2DSK, 2XVP, 2Z37, 3EBV and 3HBE did not contain any internal repeats of amino acid sequences. Ten sequences contained repeats of length <50, and the remaining 8 sequences contained repeat length between 50 and 100 residues. Two Chitinase sequences, 1ITX and 3SIM, were found to be structurally similar when analyzed using secondary structure of Chitinase from secondary and 3-Dimensional structure database of Protein Data Bank. Internal repeats of 3N17 and 1O6I were also involved in the ligand-binding site of those Chitinase proteins, respectively. Our analyses enhance our understanding towards the identification of structural characteristics of internal repeats in Chitinase proteins.

  8. Identification and function of leucine-rich repeat flightless-I-interacting protein 2 (LRRFIP2 in Litopenaeus vannamei.

    Directory of Open Access Journals (Sweden)

    Shuang Zhang

    Full Text Available Leucine-rich repeat flightless-I-interacting protein 2 (LRRFIP2 is a myeloid differentiation factor 88-interacting protein with a positive regulatory function in toll-like receptor signaling. In this study, seven LRRFIP2 protein variants (LvLRRFIP2A-G were identified in Litopenaeus vannamei. All the seven LvLRRFIP2 protein variants encode proteins with a DUF2051 domain. LvLRRFIP2s were upregulated in hemocytes after challenged with lipopolysaccharide, poly I:C, CpG-ODN2006, Vibrio parahaemolyticus, Staphylococcus aureus, and white spot syndrome virus (WSSV. Dual-luciferase reporter assays in Drosophila Schneider 2 cells revealed that LvLRRFIP2 activates the promoters of Drosophila and shrimp AMP genes. The knockdown of LvLRRFIP2 by RNA interference resulted in higher cumulative mortality of L. vannamei upon V. parahaemolyticus but not S. aureus and WSSV infections. The expression of L. vannamei AMP genes were reduced by dsLvLRRFIP2 interference. These results indicate that LvLRRFIP2 has an important function in antibacterials via the regulation of AMP gene expression.

  9. Genome-wide analyses and functional classification of proline repeat-rich proteins: potential role of eIF5A in eukaryotic evolution.

    Directory of Open Access Journals (Sweden)

    Ajeet Mandal

    Full Text Available The eukaryotic translation factor, eIF5A has been recently reported as a sequence-specific elongation factor that facilitates peptide bond formation at consecutive prolines in Saccharomyces cerevisiae, as its ortholog elongation factor P (EF-P does in bacteria. We have searched the genome databases of 35 representative organisms from six kingdoms of life for PPP (Pro-Pro-Pro and/or PPG (Pro-Pro-Gly-encoding genes whose expression is expected to depend on eIF5A. We have made detailed analyses of proteome data of 5 selected species, Escherichia coli, Saccharomyces cerevisiae, Drosophila melanogaster, Mus musculus and Homo sapiens. The PPP and PPG motifs are low in the prokaryotic proteomes. However, their frequencies markedly increase with the biological complexity of eukaryotic organisms, and are higher in newly derived proteins than in those orthologous proteins commonly shared in all species. Ontology classifications of S. cerevisiae and human genes encoding the highest level of polyprolines reveal their strong association with several specific biological processes, including actin/cytoskeletal associated functions, RNA splicing/turnover, DNA binding/transcription and cell signaling. Previously reported phenotypic defects in actin polarity and mRNA decay of eIF5A mutant strains are consistent with the proposed role for eIF5A in the translation of the polyproline-containing proteins. Of all the amino acid tandem repeats (≥3 amino acids, only the proline repeat frequency correlates with functional complexity of the five organisms examined. Taken together, these findings suggest the importance of proline repeat-rich proteins and a potential role for eIF5A and its hypusine modification pathway in the course of eukaryotic evolution.

  10. m-Trifluoromethyl-diphenyl Diselenide Regulates Prefrontal Cortical MOR and KOR Protein Levels and Abolishes the Phenotype Induced by Repeated Forced Swim Stress in Mice.

    Science.gov (United States)

    Rosa, Suzan Gonçalves; Pesarico, Ana Paula; Martini, Franciele; Nogueira, Cristina Wayne

    2018-04-05

    The present study aimed to investigate the m-trifluoromethyl-diphenyl diselenide [(m-CF 3 -PhSe) 2 ] effects on prefrontal cortical MOR and KOR protein levels and phenotype induced by repeated forced swim stress (FSS) in mice. Adult Swiss mice were subjected to repeated FSS sessions, and after that, they performed the spontaneous locomotor/exploratory activity, tail suspension, and splash tests. (m-CF 3 -PhSe) 2 (0.1 to 5 mg/kg) was administered to mice 30 min before the first FSS session and 30 min before the subsequent repeated FSS. (m-CF 3 -PhSe) 2 abolished the phenotype induced by repeated FSS in mice. In addition, a single FSS session increased μ but reduced δ-opioid receptor contents, without changing the κ content. Mice subjected to repeated FSS had an increase in the μ content when compared to those of naïve group or subjected to single FSS. Repeated FSS induced an increase of δ-opioid receptor content compared to those mice subjected to single FSS. However, the δ-opioid receptor contents were lower than those found in the naïve group. The mice subjected to repeated FSS showed an increase in the κ-opioid receptor content when compared to that of the naïve mice. (m-CF 3 -PhSe) 2 regulated the protein contents of μ and κ receptors in mice subjected to repeated FSS. These findings demonstrate that (m-CF 3 -PhSe) 2 was effective to abolish the phenotype induced by FSS, which was accompanied by changes in the contents of cortical μ- and κ-opioid receptors.

  11. A diverse host thrombospondin-type-1 repeat protein repertoire promotes symbiont colonization during establishment of cnidarian-dinoflagellate symbiosis.

    Science.gov (United States)

    Neubauer, Emilie-Fleur; Poole, Angela Z; Neubauer, Philipp; Detournay, Olivier; Tan, Kenneth; Davy, Simon K; Weis, Virginia M

    2017-05-08

    The mutualistic endosymbiosis between cnidarians and dinoflagellates is mediated by complex inter-partner signaling events, where the host cnidarian innate immune system plays a crucial role in recognition and regulation of symbionts. To date, little is known about the diversity of thrombospondin-type-1 repeat (TSR) domain proteins in basal metazoans or their potential role in regulation of cnidarian-dinoflagellate mutualisms. We reveal a large and diverse repertoire of TSR proteins in seven anthozoan species, and show that in the model sea anemone Aiptasia pallida the TSR domain promotes colonization of the host by the symbiotic dinoflagellate Symbiodinium minutum . Blocking TSR domains led to decreased colonization success, while adding exogenous TSRs resulted in a 'super colonization'. Furthermore, gene expression of TSR proteins was highest at early time-points during symbiosis establishment. Our work characterizes the diversity of cnidarian TSR proteins and provides evidence that these proteins play an important role in the establishment of cnidarian-dinoflagellate symbiosis.

  12. Human Polycomb group EED protein negatively affects HIV-1 assembly and release

    Directory of Open Access Journals (Sweden)

    Darlix Jean-Luc

    2007-06-01

    Full Text Available Abstract Background The human EED protein, a member of the superfamily of Polycomb group (PcG proteins with WD-40 repeats, has been found to interact with three HIV-1 components, namely the structural Gag matrix protein (MA, the integrase enzyme (IN and the Nef protein. The aim of the present study was to analyze the possible biological role of EED in HIV-1 replication, using the HIV-1-based vector HIV-Luc and EED protein expressed by DNA transfection of 293T cells. Results During the early phase of HIV-1 infection, a slight negative effect on virus infectivity occurred in EED-expressing cells, which appeared to be dependent on EED-MA interaction. At late times post infection, EED caused an important reduction of virus production, from 20- to 25-fold as determined by CAp24 immunoassay, to 10- to 80-fold based on genomic RNA levels, and this decrease was not due to a reduction of Gag protein synthesis. Coexpression of WTNef, or the non-N-myristoylated mutant NefG2A, restored virus yields to levels obtained in the absence of exogenous EED protein. This effect was not observed with mutant NefΔ57 mimicking the Nef core, or with the lipid raft-retargeted fusion protein LAT-Nef. LATAA-Nef, a mutant defective in the lipid raft addressing function, had the same anti-EED effect as WTNef. Cell fractionation and confocal imaging showed that, in the absence of Nef, EED mainly localized in membrane domains different from the lipid rafts. Upon co-expression with WTNef, NefG2A or LATAA-Nef, but not with NefΔ57 or LAT-Nef, EED was found to relocate into an insoluble fraction along with Nef protein. Electron microscopy of HIV-Luc producer cells overexpressing EED showed significant less virus budding at the cell surface compared to control cells, and ectopic assembly and clustering of nuclear pore complexes within the cytoplasm. Conclusion Our data suggested that EED exerted an antiviral activity at the late stage of HIV-1 replication, which included genomic

  13. Constraining convection parameters from the light curve shapes of pulsating white dwarf stars: the cases of EC 14012-1446 and WD 1524-0030

    Energy Technology Data Exchange (ETDEWEB)

    Handler, G; Lendl, M; Beck, P [Institut fuer Astronomie, Universitaet Wien, Tuerkenschanzstrasse 17, A-1180 Wien (Austria); Provencal, J L; Montgomery, M H [Mt. Cuba Observatory and Department of Physics and Astronomy, University of Delaware, 223 Sharp Laboratory, Newark, DE 19716 (Cuba); Romero-Colmenero, E [South AfricAN Astronomical Observatory, PO Box 9, Observatory 7935 (South Africa); Sanchawala, K; Chen, W-P [Graduate Institute of Astronomy, National Central University, Chung-Li 32054, Taiwan (China); Wood, M A; Silver, I [Department of Physics and Space Sciences and SARA Observatory, Florida Institute of Technology, Melbourne, FL 32901 (United States)], E-mail: handler@astro.univie.ac.at

    2008-10-15

    Montgomery [1] developed a method to probe convection in pulsating white dwarf stars which allows the recovery of the thermal response time of the convection zone by fitting observed nonsinusoidal light curves. He applied this method to two objects; the Whole Earth Telescope (WET) observed the pulsating DB white dwarf GD 358 for just this purpose. Given this WET run's success, it is time to extend Montgomery's method to pulsating DA white dwarf (ZZ Ceti) stars. We present observations of two ZZ Ceti stars, WD 1524-0030 and EC 14012-1446, both observed from multiple sites. EC 14012-1446 seems better suited thAN WD1524-0030 for a future WET run because it has more pulsation modes excited and because it pulsation spectrum appears to be more stable in time. We call for participation in this effort to take place in April 2008.

  14. TMPyP4 porphyrin distorts RNA G-quadruplex structures of the disease-associated r(GGGGCC)n repeat of the C9orf72 gene and blocks interaction of RNA-binding proteins.

    Science.gov (United States)

    Zamiri, Bita; Reddy, Kaalak; Macgregor, Robert B; Pearson, Christopher E

    2014-02-21

    Certain DNA and RNA sequences can form G-quadruplexes, which can affect genetic instability, promoter activity, RNA splicing, RNA stability, and neurite mRNA localization. Amyotrophic lateral sclerosis and frontotemporal dementia can be caused by expansion of a (GGGGCC)n repeat in the C9orf72 gene. Mutant r(GGGGCC)n- and r(GGCCCC)n-containing transcripts aggregate in nuclear foci, possibly sequestering repeat-binding proteins such as ASF/SF2 and hnRNPA1, suggesting a toxic RNA pathogenesis, as occurs in myotonic dystrophy. Furthermore, the C9orf72 repeat RNA was recently demonstrated to undergo the noncanonical repeat-associated non-AUG translation (RAN translation) into pathologic dipeptide repeats in patient brains, a process that is thought to depend upon RNA structure. We previously demonstrated that the r(GGGGCC)n RNA forms repeat tract length-dependent G-quadruplex structures that bind the ASF/SF2 protein. Here we show that the cationic porphyrin (5,10,15,20-tetra(N-methyl-4-pyridyl) porphyrin (TMPyP4)), which can bind some G-quadruplex-forming sequences, can bind and distort the G-quadruplex formed by r(GGGGCC)8, and this ablates the interaction of either hnRNPA1 or ASF/SF2 with the repeat. These findings provide proof of concept that nucleic acid binding small molecules, such as TMPyP4, can distort the secondary structure of the C9orf72 repeat, which may beneficially disrupt protein interactions, which may ablate either protein sequestration and/or RAN translation into potentially toxic dipeptides. Disruption of secondary structure formation of the C9orf72 RNA repeats may be a viable therapeutic avenue, as well as a means to test the role of RNA structure upon RAN translation.

  15. Proteomic Analysis of Prostate Cancer Field Effect

    Science.gov (United States)

    2011-02-01

    sodium dodecylsulfate), Triton X-100, and protease inhibitor buffer gave a similar yield of protein as PPS Silent Surfactant (3-[3-(1,1-bisalkyloxyethyl...pyridin-1-yl]propoane-1- 4 sulfonate); the former was chosen because it was much less expensive and was not time sensitive as PPS Silent Surfactant... thyroid hormone receptor interactor 11 [Homo sapiens] KRI1 homolog [Homo sapiens] ninein isoform 2 [Homo sapiens] REVERSED WD repeat domain 47 [Homo

  16. Large Polyglutamine Repeats Cause Muscle Degeneration in SCA17 Mice

    Directory of Open Access Journals (Sweden)

    Shanshan Huang

    2015-10-01

    Full Text Available In polyglutamine (polyQ diseases, large polyQ repeats cause juvenile cases with different symptoms than those of adult-onset patients, who carry smaller expanded polyQ repeats. The mechanisms behind the differential pathology mediated by different polyQ repeat lengths remain unknown. By studying knockin mouse models of spinal cerebellar ataxia-17 (SCA17, we found that a large polyQ (105 glutamines in the TATA-box-binding protein (TBP preferentially causes muscle degeneration and reduces the expression of muscle-specific genes. Direct expression of TBP with different polyQ repeats in mouse muscle revealed that muscle degeneration is mediated only by the large polyQ repeats. Different polyQ repeats differentially alter TBP’s interaction with neuronal and muscle-specific transcription factors. As a result, the large polyQ repeat decreases the association of MyoD with TBP and DNA promoters. Our findings suggest that specific alterations in protein interactions by large polyQ repeats may account for the unique pathology in juvenile polyQ diseases.

  17. Large Polyglutamine Repeats Cause Muscle Degeneration in SCA17 Mice

    Science.gov (United States)

    Huang, Shanshan; Yang, Su; Guo, Jifeng; Yan, Sen; Gaertig, Marta A.; Li, Shihua; Li, Xiao-Jiang

    2015-01-01

    SUMMARY In polyglutamine (polyQ) diseases, large polyQ repeats cause juvenile cases with different symptoms than adult-onset patients, who carry smaller expanded polyQ repeats. The mechanisms behind the differential pathology mediated by different polyQ repeat lengths remain unknown. By studying knock-in mouse models of spinal cerebellar ataxia-17 (SCA17), we found that a large polyQ (105 glutamines) in the TATA box-binding protein (TBP) preferentially causes muscle degeneration and reduces the expression of muscle-specific genes. Direct expression of TBP with different polyQ repeats in mouse muscle revealed that muscle degeneration is mediated only by the large polyQ repeats. Different polyQ repeats differentially alter TBP’s interaction with neuronal and muscle-specific transcription factors. As a result, the large polyQ repeat decreases the association of MyoD with TBP and DNA promoters. Our findings suggest that specific alterations in protein interactions by large polyQ repeats may account for the unique pathology in juvenile polyQ diseases. PMID:26387956

  18. Effect of repeat unit structure and molecular mass of lactic acid bacteria hetero-exopolysaccharides on binding to milk proteins

    DEFF Research Database (Denmark)

    Birch, Johnny; HarÐarson, HörÐur Kári; Khan, Sanaullah

    2017-01-01

    -exopolysaccharides (HePSs) of 0.14–4.9 MDa from lactic acid bacteria to different milk proteins (β-casein, κ-casein, native and heat-treated β-lactoglobulin) at pH 4.0–5.0. Maximum binding capacity (RUmax) and apparent affinity (KA,app) were HePS- and protein-dependent and varied for example 10- and 600-fold......, respectively, in the complexation with native β-lactoglobulin at pH 4.0. Highest RUmax and KA,app were obtained with heat-treated β-lactoglobulin and β-casein, respectively. Overall, RUmax and KA,app decreased 6- and 20-fold, respectively, with increasing pH from 4.0 to 5.0. KA,app was influenced by ionic......Interactions of exopolysaccharides and proteins are of great importance in food science, but complicated to analyze and quantify at the molecular level. A surface plasmon resonance procedure was established to characterize binding of seven structure-determined, branched hetero...

  19. Poxviral Ankyrin Proteins

    Directory of Open Access Journals (Sweden)

    Michael H. Herbert

    2015-02-01

    Full Text Available Multiple repeats of the ankyrin motif (ANK are ubiquitous throughout the kingdoms of life but are absent from most viruses. The main exception to this is the poxvirus family, and specifically the chordopoxviruses, with ANK repeat proteins present in all but three species from separate genera. The poxviral ANK repeat proteins belong to distinct orthologue groups spread over different species, and align well with the phylogeny of their genera. This distribution throughout the chordopoxviruses indicates these proteins were present in an ancestral vertebrate poxvirus, and have since undergone numerous duplication events. Most poxviral ANK repeat proteins contain an unusual topology of multiple ANK motifs starting at the N-terminus with a C-terminal poxviral homologue of the cellular F-box enabling interaction with the cellular SCF ubiquitin ligase complex. The subtle variations between ANK repeat proteins of individual poxviruses suggest an array of different substrates may be bound by these protein-protein interaction domains and, via the F-box, potentially directed to cellular ubiquitination pathways and possible degradation. Known interaction partners of several of these proteins indicate that the NF-κB coordinated anti-viral response is a key target, whilst some poxviral ANK repeat domains also have an F-box independent affect on viral host-range.

  20. The diversity and evolution of Wolbachia ankyrin repeat domain genes.

    Directory of Open Access Journals (Sweden)

    Stefanos Siozios

    Full Text Available Ankyrin repeat domain-encoding genes are common in the eukaryotic and viral domains of life, but they are rare in bacteria, the exception being a few obligate or facultative intracellular Proteobacteria species. Despite having a reduced genome, the arthropod strains of the alphaproteobacterium Wolbachia contain an unusually high number of ankyrin repeat domain-encoding genes ranging from 23 in wMel to 60 in wPip strain. This group of genes has attracted considerable attention for their astonishing large number as well as for the fact that ankyrin proteins are known to participate in protein-protein interactions, suggesting that they play a critical role in the molecular mechanism that determines host-Wolbachia symbiotic interactions. We present a comparative evolutionary analysis of the wMel-related ankyrin repeat domain-encoding genes present in different Drosophila-Wolbachia associations. Our results show that the ankyrin repeat domain-encoding genes change in size by expansion and contraction mediated by short directly repeated sequences. We provide examples of intra-genic recombination events and show that these genes are likely to be horizontally transferred between strains with the aid of bacteriophages. These results confirm previous findings that the Wolbachia genomes are evolutionary mosaics and illustrate the potential that these bacteria have to generate diversity in proteins potentially involved in the symbiotic interactions.

  1. High-protein diet improves sensitivity to cholecystokinin and shifts the cecal microbiome without altering brain inflammation in diet-induced obesity in rats.

    Science.gov (United States)

    Wang, Lixin; Jacobs, Jonathan P; Lagishetty, Venu; Yuan, Pu-Qing; Wu, Shuping V; Million, Mulugeta; Reeve, Joseph R; Pisegna, Joseph R; Taché, Yvette

    2017-10-01

    High-protein diet (HPD) curtails obesity and/or fat mass, but it is unknown whether it reverses neuroinflammation or alters glucose levels, CCK sensitivity, and gut microbiome in rats fed a Western diet (WD)-induced obesity (DIO). Male rats fed a WD (high fat and sugar) for 12 wk were switched to a HPD for 6 wk. Body composition, food intake, meal pattern, sensitivity to intraperitoneal CCK-8S, blood glucose, brain signaling, and cecal microbiota were assessed. When compared with a normal diet, WD increased body weight (9.3%) and fat mass (73.4%). CCK-8S (1.8 or 5.2 nmol/kg) did not alter food intake and meal pattern in DIO rats. Switching to a HPD for 6 wk reduced fat mass (15.7%) with a nonsignificantly reduced body weight gain, normalized blood glucose, and decreased feeding after CCK-8S. DIO rats on the WD or switched to a HPD showed comparable microbial diversity. However, in HPD versus WD rats, there was enrichment of 114 operational taxonomic units (OTUs) and depletion of 188 OTUs. Of those, Akkermansia muciniphila (enriched on a HPD), an unclassified Clostridiales, a member of the RF39 order, and a Phascolarctobacterium were significantly associated with fat mass. The WD increased cytokine expression in the hypothalamus and dorsal medulla that was unchanged by switching to HPD. These data indicate that HPD reduces body fat and restores glucose homeostasis and CCK sensitivity, while not modifying brain inflammation. In addition, expansion of cecal Akkermansia muciniphila correlated to fat mass loss may represent a potential peripheral mechanism of HPD beneficial effects.

  2. Sexy gene conversions: locating gene conversions on the X-chromosome.

    Science.gov (United States)

    Lawson, Mark J; Zhang, Liqing

    2009-08-01

    Gene conversion can have a profound impact on both the short- and long-term evolution of genes and genomes. Here, we examined the gene families that are located on the X-chromosomes of human (Homo sapiens), chimpanzee (Pan troglodytes), mouse (Mus musculus) and rat (Rattus norvegicus) for evidence of gene conversion. We identified seven gene families (WD repeat protein family, Ferritin Heavy Chain family, RAS-related Protein RAB-40 family, Diphosphoinositol polyphosphate phosphohydrolase family, Transcription Elongation Factor A family, LDOC1-related family, Zinc Finger Protein ZIC, and GLI family) that show evidence of gene conversion. Through phylogenetic analyses and synteny evidence, we show that gene conversion has played an important role in the evolution of these gene families and that gene conversion has occurred independently in both primates and rodents. Comparing the results with those of two gene conversion prediction programs (GENECONV and Partimatrix), we found that both GENECONV and Partimatrix have very high false negative rates (i.e. failed to predict gene conversions), which leads to many undetected gene conversions. The combination of phylogenetic analyses with physical synteny evidence exhibits high resolution in the detection of gene conversions.

  3. A casein-kinase-2-related protein kinase is tightly associated with the large T antigen of simian virus 40

    DEFF Research Database (Denmark)

    Götz, C; Koenig, M G; Issinger, O G

    1995-01-01

    by the addition of protein kinase CK2 suggest that at least one of the T-antigen-associated protein kinases is CK2 or a protein-kinase-CK2-related enzyme. The association of recombinant CK2 with T antigen was strongly confirmed by in vitro binding studies. Experiments with temperature-sensitive SV40-transformed......The simian virus 40 (SV40) large T antigen is a multifunctional protein involved in SV40 cell transformation and lytic virus infection. Some of its activities are regulated by interaction with cellular proteins and/or by phosphorylation of T antigen by various protein kinases. In this study, we...... show that immuno-purified T antigen from SV40-transformed cells and from baculovirus-infected insect cells is tightly associated with a protein kinase that phosphorylates T antigen in vitro. In the presence of heparin or a peptide resembling a protein kinase CK2 recognition site, the phosphorylation...

  4. PRAS40 and PRR5-like protein are new mTOR interactors that regulate apoptosis.

    Directory of Open Access Journals (Sweden)

    Kathrin Thedieck

    Full Text Available TOR (Target of Rapamycin is a highly conserved protein kinase and a central controller of cell growth. TOR is found in two functionally and structurally distinct multiprotein complexes termed TOR complex 1 (TORC1 and TOR complex 2 (TORC2. In the present study, we developed a two-dimensional liquid chromatography tandem mass spectrometry (2D LC-MS/MS based proteomic strategy to identify new mammalian TOR (mTOR binding proteins. We report the identification of Proline-rich Akt substrate (PRAS40 and the hypothetical protein Q6MZQ0/FLJ14213/CAE45978 as new mTOR binding proteins. PRAS40 binds mTORC1 via Raptor, and is an mTOR phosphorylation substrate. PRAS40 inhibits mTORC1 autophosphorylation and mTORC1 kinase activity toward eIF-4E binding protein (4E-BP and PRAS40 itself. HeLa cells in which PRAS40 was knocked down were protected against induction of apoptosis by TNFalpha and cycloheximide. Rapamycin failed to mimic the pro-apoptotic effect of PRAS40, suggesting that PRAS40 mediates apoptosis independently of its inhibitory effect on mTORC1. Q6MZQ0 is structurally similar to proline rich protein 5 (PRR5 and was therefore named PRR5-Like (PRR5L. PRR5L binds specifically to mTORC2, via Rictor and/or SIN1. Unlike other mTORC2 members, PRR5L is not required for mTORC2 integrity or kinase activity, but dissociates from mTORC2 upon knock down of tuberous sclerosis complex 1 (TSC1 and TSC2. Hyperactivation of mTOR by TSC1/2 knock down enhanced apoptosis whereas PRR5L knock down reduced apoptosis. PRR5L knock down reduced apoptosis also in mTORC2 deficient cells. The above suggests that mTORC2-dissociated PRR5L may promote apoptosis when mTOR is hyperactive. Thus, PRAS40 and PRR5L are novel mTOR-associated proteins that control the balance between cell growth and cell death.

  5. Extraction of resins from WD-22 tank in Jose Cabrera Nuclear Power Plant

    International Nuclear Information System (INIS)

    Benavides, E.

    1997-01-01

    The Spent Resin Tank (WD-22) is located in the Auxiliary Building of Jose Cabrera Nuclear Plant (PWR 150 Mwe). This tank has a nominal capacity of 4 m 3 and is almost full of spent resins that has been stored from the late sixties to early eighties. As the lines are completely plugged with resins and due to the difficulties in the pipe lay-out, it has not been possible to transfer the resins to the cementation plant since that date. The plant decided, by an open bid quotation, to select the most suitable process to transfer the resins to the cementation plant avoiding the high doses existing in the tank cubicle and in a reasonable time schedule. The solution given in this paper contemplates that sometimes there is an imaginative answer to a problem that seems to be difficult to solve. (authors)

  6. Expression, purification, crystallization and preliminary X-ray diffraction studies of the human keratin 4-binding domain of serine-rich repeat protein 1 from Streptococcus agalactiae

    International Nuclear Information System (INIS)

    Sundaresan, Ramya; Samen, Ulrike; Ponnuraj, Karthe

    2011-01-01

    Expression, purification and crystallization of Srr-1-K4BD, a human keratin 4-binding domain of serine-rich repeat protein 1 from S. agalactiae, was carried out. Native crystals of Srr-1-K4BD diffracted to 3.8 Å resolution using synchrotron radiation. Serine-rich repeat protein 1 (Srr-1) is a surface protein from Streptococcus agalactiae. A 17 kDa region of this protein has been identified to bind to human keratin 4 (K4) and is termed the Srr-1 K4-binding domain (Srr-1-K4BD). Recombinant Srr-1-K4BD was overexpressed in Escherichia coli BL21 (DE3) cells. Native and selenomethionine-substituted proteins were prepared using Luria–Bertani (LB) and M9 minimal media, respectively. A two-step purification protocol was carried out to obtain a final homogenous sample of Srr-1-K4BD. Crystals of native Srr-1-K4BD were obtained using PEG 3350 as a precipitant. The crystals diffracted to 3.8 Å resolution using synchrotron radiation and belonged to space group P2 1 , with unit-cell parameters a = 47.56, b = 59.48, c = 94.71 Å, β = 93.95°

  7. 'Public theology' from within the church? A reflection on aspects of the theology of W.D. Jonker (1929-2006)

    OpenAIRE

    Naudé, Piet J.

    2014-01-01

    In this essay, aspects of the work of theologian W.D. (Willie) Jonker are reframed to complement current debates about �public theology� in South Africa. The introduction points out that Jonker worked during a crucial period in South Africa�s history and that his theology is intrinsically linked to the church struggle between 1955 and 1994. The second part reframes Jonker�s theology as a public theology from within the church by referring to his understanding of preaching, confessions and pub...

  8. YKL-40 protein expression is not a prognostic marker in patients with primary breast cancer

    DEFF Research Database (Denmark)

    Roslind, Anne; Knoop, Ann; Jensen, Maj-Britt

    2007-01-01

    in tumor tissue was assessed by immunohistochemistry in a cohort of 630 high-risk breast cancer patients with a median estimated potential follow-up time of 10 and 13 years for disease-free (DFS) and overall survival (OS), respectively. YKL-40 protein expression was found in malignant tumor cells......YKL-40 is a new biomarker in serum with a prognostic value in several localized and metastatic malignancies. The current knowledge regarding the biological functions of YKL-40 in cancer links YKL-40 to increased aggressiveness of the tumor. Utilizing tissue microarrays, YKL-40 protein expression...... and in inflammatory cells. High expression was associated with positive estrogen and progesterone receptor status and high tumor differentiation. Contrary to studies on serum YKL-40 as a prognostic biomarker, a high YKL-40 expression in tumor cells was not significantly associated with DSF and OS in univariate...

  9. Ten tandem repeats of β-hCG 109-118 enhance immunogenicity and anti-tumor effects of β-hCG C-terminal peptide carried by mycobacterial heat-shock protein HSP65

    International Nuclear Information System (INIS)

    Zhang Yankai; Yan Rong; He Yi; Liu Wentao; Cao Rongyue; Yan Ming; Li Taiming; Liu Jingjing; Wu Jie

    2006-01-01

    The β-subunit of human chorionic gonadotropin (β-hCG) is secreted by many kinds of tumors and it has been used as an ideal target antigen to develop vaccines against tumors. In view of the low immunogenicity of this self-peptide,we designed a method based on isocaudamer technique to repeat tandemly the 10-residue sequence X of β-hCG (109-118), then 10 tandemly repeated copies of the 10-residue sequence combined with β-hCG C-terminal 37 peptides were fused to mycobacterial heat-shock protein 65 to construct a fusion protein HSP65-X10-βhCGCTP37 as an immunogen. In this study, we examined the effect of the tandem repeats of this 10-residue sequence in eliciting an immune by comparing the immunogenicity and anti-tumor effects of the two immunogens, HSP65-X10-βhCGCTP37 and HSP65-βhCGCTP37 (without the 10 tandem repeats). Immunization of mice with the fusion protein HSP65-X10-βhCGCTP37 elicited much higher levels of specific anti-β-hCG antibodies and more effectively inhibited the growth of Lewis lung carcinoma (LLC) in vivo than with HSP65-βhCGCTP37, which should suggest that HSP65-X10-βhCGCTP37 may be an effective protein vaccine for the treatment of β-hCG-dependent tumors and multiple tandem repeats of a certain epitope are an efficient method to overcome the low immunogenicity of self-peptide antigens

  10. The Protein Data Bank at 40: Reflecting on the Past to Prepare for the Future

    OpenAIRE

    Berman, Helen M.; Kleywegt, Gerard J.; Nakamura, Haruki; Markley, John L.

    2012-01-01

    A symposium celebrating the 40th anniversary of the Protein Data Bank archive (PDB), organized by the Worldwide Protein Data Bank, was held at Cold Spring Harbor Laboratory (CSHL) October 28–30, 2011. PDB40’s distinguished speakers highlighted four decades of innovation in structural biology, from the early era of structural determination to future directions for the field.

  11. SERUM ANALYSIS OF AMYLOID BETA-PROTEIN 1-40 IN HEALTHY SUBJECTS, AUTISTIC CHILDREN AND ALZHEIMER’S PATIENTS

    Directory of Open Access Journals (Sweden)

    Vijendra K. SINGH

    2008-06-01

    Full Text Available Amyloid beta-protein1-40 (AP40 is a low molecu­lar weight peptide produced throughout life during normal cell metabolism and neurodegenerative diseases. Owing to its neurotrophic and neurotoxic effects, the present study was conducted to evalu­ate serum levels of AP40 in healthy subjects, au­tistic children and Alzheimer’s disease patients. Serum AP40 was measured by enzyme-linked im­munosorbent assay (ELISA. AP40 was signifi­cantly higher in normal children compared to nor­mal older controls, in normal children compared to autistic children, and in autistic children compared to Alzheimer’s patients (p value was less than 0.05 for all groups. This finding suggests an age-re­lated decline of serum AP40 in normal aging, as well as in autism and Alzheimer’s disease. This decline may result from abnormal processing of amyloid beta-protein precursor (APP during nor­mal aging and age-related diseases such as autism in children and Alzheimer’s disease in elderly. Possible explanations for this decline may include age-related increased interactions of AP40 with cytoskeletal proteins for brain tissue deposition, increased serine proteases for APP metabolism or hyperimmune reaction (antibodies to AP40 for removal of circulating AP40. To conclude, the AP40 metabolism declines with normal aging and in addition to its role in Alzheimer’s disease this protein might also be a contributing factor in au­tism.

  12. Cloning of a cDNA encoding a novel human nuclear phosphoprotein belonging to the WD-40 family

    DEFF Research Database (Denmark)

    Honoré, B; Leffers, H; Madsen, Peder

    1994-01-01

    We have cloned and expressed in vaccinia virus a cDNA encoding an ubiquitous 501-amino-acid (aa) phosphoprotein that corresponds to protein IEF SSP 9502 (79,400 Da, pI 4.5) in the master 2-D-gel keratinocyte protein database [Celis et al., Electrophoresis 14 (1993) 1091-1198]. The deduced aa...

  13. Repair and maintenance costs of 4WD tractors and self propelled combine harvesters in Italy

    Directory of Open Access Journals (Sweden)

    Aldo Calcante

    2013-09-01

    Full Text Available Purchasing and maintaining tractors and operating machines are two of the most considerable costs of the agricultural sector, which includes farm equipment manufacturers, farm contractors and farms. In this context, repair and maintenance costs (R&M costs generally constitute 10-15% of the total costs related to agricultural equipment and tend to increase with the age of the equipment; hence, an important consideration in farm management is the optimal time for equipment replacement. Classical, R&M cost estimation models, calculated as a function of accumulated working hours, are usually developed by ASAE/ASABE for the United States operating conditions. However, R&M costs are strongly influenced by farming practices, operative conditions, crop and soil type, climatic conditions, etc. which can be specific for individual countries. In this study, R&M cost model parameters were recalculated for the current Italian situation. For this purpose, data related to the R&M costs of 100 4WD tractors with engine power ranging from 59 to 198 kW, and of 20 SP combine harvesters (10 straw walkers combines and 10 axial flow combines with engine power ranging from 159 to 368 kW working in Italy were collected. According to the model, which was obtained by interpolating the data through a two-parameter power function (proposed by ASAE/ASABE, the R&M cost incidence on the list price of Italian tractors at 12,000 working hours (estimated life of the machines was 48.6%, as compared with 43.2% calculated through the most recent U.S. model while, for self propelled combine harvesters, the R&M cost incidence at 3,000 working hours was 23.1 % as compared with 40.2% calculated through the same U.S. model.

  14. Protection against Syphilis Correlates with Specificity of Antibodies to the Variable Regions of Treponema pallidum Repeat Protein K

    OpenAIRE

    Morgan, Cecilia A.; Lukehart, Sheila A.; Van Voorhis, Wesley C.

    2003-01-01

    Syphilis has been recognized as a disease since the late 1400s, yet there is no practical vaccine available. One impediment to the development of a vaccine is the lack of understanding of multiple reinfections in humans despite the development of robust immune responses during the first episode. It has been shown that the Treponema pallidum repeat protein K (TprK) differs in seven discrete variable (V) regions in isolates and that the antibody response during infection is directed to these V ...

  15. Spectroscopic Evolution of Disintegrating Planetesimals: Minute to Month Variability in the Circumstellar Gas Associated with WD 1145+017

    Energy Technology Data Exchange (ETDEWEB)

    Redfield, Seth; Cauley, P. Wilson; Duvvuri, Girish M. [Astronomy Department and Van Vleck Observatory, Wesleyan University, Middletown, CT 06459 (United States); Farihi, Jay [Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom); Parsons, Steven G. [Department of Physics and Astronomy, University of Sheffield, Sheffield, S3 7RH (United Kingdom); Gänsicke, Boris T., E-mail: sredfield@wesleyan.edu [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2017-04-10

    With the recent discovery of transiting planetary material around WD 1145+017, a critical target has been identified that links the evolution of planetary systems with debris disks and their accretion onto the star. We present a series of observations, five epochs over a year, taken with Keck and the VLT, which for the first time show variability of circumstellar absorption in the gas disk surrounding WD 1145+017 on timescales of minutes to months. Circumstellar absorption is measured in more than 250 lines of 14 ions among 10 different elements associated with planetary composition, e.g., O, Mg, Ca, Ti, Cr, Mn, Fe, and Ni. Broad circumstellar gas absorption with a velocity spread of 225 km s{sup −1} is detected, but over the course of a year blueshifted absorption disappears, while redshifted absorption systematically increases. A correlation of equivalent width and oscillator strength indicates that the gas is not highly optically thick (median τ ≈ 2). We discuss simple models of an eccentric disk coupled with magnetospheric accretion to explain the basic observed characteristics of these high-resolution and high signal-to-noise observations. Variability is detected on timescales of minutes in the two most recent observations, showing a loss of redshifted absorption for tens of minutes, coincident with major transit events and consistent with gas hidden behind opaque transiting material. This system currently presents a unique opportunity to learn how the gas causing the spectroscopic, circumstellar absorption is associated with the ongoing accretion evidenced by photospheric contamination, as well as the transiting planetary material detected in photometric observations.

  16. Oligomerization and polymerization of the filovirus matrix protein VP40

    International Nuclear Information System (INIS)

    Timmins, Joanna; Schoehn, Guy; Kohlhaas, Christine; Klenk, Hans-Dieter; Ruigrok, Rob W.H.; Weissenhorn, Winfried

    2003-01-01

    The matrix protein VP40 from Ebola virus plays an important role in the assembly process of virus particles by interacting with cellular factors, cellular membranes, and the ribonuclearprotein particle complex. Here we show that the N-terminal domain of VP40 folds into a mixture of two different oligomeric states in vitro, namely hexameric and octameric ringlike structures, as detected by gel filtration chromatography, chemical cross-linking, and electron microscopy. Octamer formation depends largely on the interaction with nucleic acids, which in turn confers in vitro SDS resistance. Refolding experiments with a nucleic acid free N-terminal domain preparation reveal a mostly dimeric form of VP40, which is transformed into an SDS resistant octamer upon incubation with E. coli nucleic acids. In addition, we demonstrate that the N-terminal domain of Marburg virus VP40 also folds into ringlike structures, similar to Ebola virus VP40. Interestingly, Marburg virus VP40 rings reveal a high tendency to polymerize into rods composed of stacked rings. These results may suggest distinct roles for different oligomeric forms of VP40 in the filovirus life cycle

  17. In vitro activation of transcription by the human T-cell leukemia virus type I Tax protein.

    Science.gov (United States)

    Matthews, M A; Markowitz, R B; Dynan, W S

    1992-05-01

    The human T-cell leukemia virus type I (HTLV-I) regulatory protein Tax activates transcription of the proviral long terminal repeats and a number of cellular promoters. We have developed an in vitro system to characterize the mechanism by which Tax interacts with the host cell transcription machinery. Tax was purified from cells infected with a baculovirus expression vector. Addition of these Tax preparations to nuclear extracts from uninfected human T lymphocytes activated transcription of the HTLV-I long terminal repeat approximately 10-fold. Transcription-stimulatory activity copurified with the immunoreactive 40-kDa Tax polypeptide on gel filtration chromatography, and, as expected, the effect of recombinant Tax was diminished in HTLV-I-infected T-lymphocyte extracts containing endogenous Tax. Tax-mediated transactivation in vivo has been previously shown to require 21-bp-repeat Tax-responsive elements (TxREs) in the promoter DNA. Stimulation of transcription in vitro was also strongly dependent on these sequences. To investigate the mechanism of Tax transactivation, cellular proteins that bind the 21-bp-repeat TxREs were prepared by DNA affinity chromatography. Recombinant Tax markedly increased the formation of a specific host protein-DNA complex detected in an electrophoretic mobility shift assay. These data suggest that Tax activates transcription through a direct interaction with cellular proteins that bind to the 21-bp-repeat TxREs.

  18. Effect of Ebola virus proteins GP, NP and VP35 on VP40 VLP morphology

    Directory of Open Access Journals (Sweden)

    Harty Ronald N

    2006-05-01

    Full Text Available Abstract Recently we described a role for Ebola virus proteins, NP, GP, and VP35 in enhancement of VP40 VLP budding. To explore the possibility that VLP structure was altered by co-expression of EBOV proteins leading to the observed enhancement of VP40 VLP budding, we performed density gradient analysis as well as electron microscopy studies. Our data suggest that VP40 is the major determinant of VLP morphology, as co-expression of NP, GP and VP35 did not significantly change VLP density, length, and diameter. Ultra-structural changes were noted in the core of the VLPs when NP was co-expressed with VP40. Overall, these findings indicate that major changes in morphology of VP40 VLPs were likely not responsible for enhanced budding of VP40 VLPs in the presence of GP, NP and/or VP35.

  19. AAA-ATPase NVL2 acts on MTR4-exosome complex to dissociate the nucleolar protein WDR74

    Energy Technology Data Exchange (ETDEWEB)

    Hiraishi, Nobuhiro; Ishida, Yo-ichi; Nagahama, Masami, E-mail: nagahama@my-pharm.ac.jp

    2015-11-20

    Nuclear VCP-like 2 (NVL2) is a chaperone-like nucleolar ATPase of the AAA (ATPase associated with diverse cellular activities) family, which exhibits a high level of amino acid sequence similarity with the cytosolic AAA-ATPase VCP/p97. These proteins generally act on macromolecular complexes to stimulate energy-dependent release of their constituents. We previously showed that NVL2 interacts with RNA processing/degradation machinery containing an RNA helicase MTR4/DOB1 and an exonuclease complex, nuclear exosome, and involved in the biogenesis of 60S ribosomal subunits. These observations implicate NVL2 as a remodeling factor for the MTR4-exosome complex during the maturation of pre-ribosomal particles. Here, we used a proteomic screen and identified a WD repeat-containing protein 74 (WDR74) as a factor that specifically dissociates from this complex depending on the ATPase activity of NVL2. WDR74 shows weak amino acid sequence similarity with the yeast ribosome biogenesis protein Nsa1 and is co-localized with NVL2 in the nucleolus. Knockdown of WDR74 decreases 60S ribosome levels. Taken together, our results suggest that WDR74 is a novel regulatory protein of the MTR4-exsosome complex whose interaction is regulated by NVL2 and is involved in ribosome biogenesis. - Highlights: • WDR74 accumulates in MTR4-exosome complex upon expression of dominant-negative NVL2. • WDR74 is co-localized with NVL2 in the nucleolus. • WDR74, along with NVL2, is involved in the synthesis of 60S ribosomal subunits.

  20. AAA-ATPase NVL2 acts on MTR4-exosome complex to dissociate the nucleolar protein WDR74

    International Nuclear Information System (INIS)

    Hiraishi, Nobuhiro; Ishida, Yo-ichi; Nagahama, Masami

    2015-01-01

    Nuclear VCP-like 2 (NVL2) is a chaperone-like nucleolar ATPase of the AAA (ATPase associated with diverse cellular activities) family, which exhibits a high level of amino acid sequence similarity with the cytosolic AAA-ATPase VCP/p97. These proteins generally act on macromolecular complexes to stimulate energy-dependent release of their constituents. We previously showed that NVL2 interacts with RNA processing/degradation machinery containing an RNA helicase MTR4/DOB1 and an exonuclease complex, nuclear exosome, and involved in the biogenesis of 60S ribosomal subunits. These observations implicate NVL2 as a remodeling factor for the MTR4-exosome complex during the maturation of pre-ribosomal particles. Here, we used a proteomic screen and identified a WD repeat-containing protein 74 (WDR74) as a factor that specifically dissociates from this complex depending on the ATPase activity of NVL2. WDR74 shows weak amino acid sequence similarity with the yeast ribosome biogenesis protein Nsa1 and is co-localized with NVL2 in the nucleolus. Knockdown of WDR74 decreases 60S ribosome levels. Taken together, our results suggest that WDR74 is a novel regulatory protein of the MTR4-exsosome complex whose interaction is regulated by NVL2 and is involved in ribosome biogenesis. - Highlights: • WDR74 accumulates in MTR4-exosome complex upon expression of dominant-negative NVL2. • WDR74 is co-localized with NVL2 in the nucleolus. • WDR74, along with NVL2, is involved in the synthesis of 60S ribosomal subunits.

  1. Role of Heterochromatin Epigenetic Factors in CML

    Science.gov (United States)

    2008-08-01

    ORGANIZATION : Pennsylvania State University Hershey, PA 17033 REPORT DATE: August 2008...7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Pennsylvania State University Hershey, PA...VGLL4 Homo sapiens vestigial like 4 (Drosophila) (VGLL4), mRNA. 1.05 0.50 0.71 NM_033644.2 FBXW11 Homo sapiens F-box and WD-40 domain protein 11

  2. CD4-specific designed ankyrin repeat proteins are novel potent HIV entry inhibitors with unique characteristics.

    Directory of Open Access Journals (Sweden)

    Andreas Schweizer

    2008-07-01

    Full Text Available Here, we describe the generation of a novel type of HIV entry inhibitor using the recently developed Designed Ankyrin Repeat Protein (DARPin technology. DARPin proteins specific for human CD4 were selected from a DARPin DNA library using ribosome display. Selected pool members interacted specifically with CD4 and competed with gp120 for binding to CD4. DARPin proteins derived in the initial selection series inhibited HIV in a dose-dependent manner, but showed a relatively high variability in their capacity to block replication of patient isolates on primary CD4 T cells. In consequence, a second series of CD4-specific DARPins with improved affinity for CD4 was generated. These 2nd series DARPins potently inhibit infection of genetically divergent (subtype B and C HIV isolates in the low nanomolar range, independent of coreceptor usage. Importantly, the actions of the CD4 binding DARPins were highly specific: no effect on cell viability or activation, CD4 memory cell function, or interference with CD4-independent virus entry was observed. These novel CD4 targeting molecules described here combine the unique characteristics of DARPins-high physical stability, specificity and low production costs-with the capacity to potently block HIV entry, rendering them promising candidates for microbicide development.

  3. Immediate-early gene response to repeated immobilization: Fos protein and arc mRNA levels appear to be less sensitive than c-fos mRNA to adaptation.

    Science.gov (United States)

    Ons, Sheila; Rotllant, David; Marín-Blasco, Ignacio J; Armario, Antonio

    2010-06-01

    Stress exposure resulted in brain induction of immediate-early genes (IEGs), considered as markers of neuronal activation. Upon repeated exposure to the same stressor, reduction of IEG response (adaptation) has been often observed, but there are important discrepancies in literature that may be in part related to the particular IEG and methodology used. We studied the differential pattern of adaptation of the IEGs c-fos and arc (activity-regulated cytoskeleton-associated protein) after repeated exposure to a severe stressor: immobilization on wooden boards (IMO). Rats repeatedly exposed to IMO showed reduced c-fos mRNA levels in response to acute IMO in most brain areas studied: the medial prefrontal cortex (mPFC), lateral septum (LS), medial amygdala (MeA), paraventricular nucleus of the hypothalamus (PVN) and locus coeruleus. In contrast, the number of neurons showing Fos-like immunoreactivity was only reduced in the MeA and the various subregions of the PVN. IMO-induced increases in arc gene expression were restricted to telencephalic regions and reduced by repeated IMO only in the mPFC. Double-labelling in the LS of IMO-exposed rats revealed that arc was expressed in only one-third of Fos+ neurons, suggesting two populations of Fos+ neurons. These data suggest that c-fos mRNA levels are more affected by repeated IMO than corresponding protein, and that arc gene expression does not reflect adaptation in most brain regions, which may be related to its constitutive expression. Therefore, the choice of a particular IEG and the method of measurement are important for proper interpretation of the impact of chronic repeated stress on brain activation.

  4. Serine-rich repeat proteins and pili promote Streptococcus agalactiae colonization of the vaginal tract.

    Science.gov (United States)

    Sheen, Tamsin R; Jimenez, Alyssa; Wang, Nai-Yu; Banerjee, Anirban; van Sorge, Nina M; Doran, Kelly S

    2011-12-01

    Streptococcus agalactiae (group B streptococcus [GBS]) is a Gram-positive bacterium found in the female rectovaginal tract and is capable of producing severe disease in susceptible hosts, including newborns and pregnant women. The vaginal tract is considered a major reservoir for GBS, and maternal vaginal colonization poses a significant risk to the newborn; however, little is known about the specific bacterial factors that promote GBS colonization and persistence in the female reproductive tract. We have developed in vitro models of GBS interaction with the human female cervicovaginal tract using human vaginal and cervical epithelial cell lines. Analysis of isogenic mutant GBS strains deficient in cell surface organelles such as pili and serine-rich repeat (Srr) proteins shows that these factors contribute to host cell attachment. As Srr proteins are heavily glycosylated, we confirmed that carbohydrate moieties contribute to the effective interaction of Srr-1 with vaginal epithelial cells. Antibody inhibition assays identified keratin 4 as a possible host receptor for Srr-1. Our findings were further substantiated in an in vivo mouse model of GBS vaginal colonization, where mice inoculated with an Srr-1-deficient mutant exhibited decreased GBS vaginal persistence compared to those inoculated with the wild-type (WT) parental strain. Furthermore, competition experiments in mice showed that WT GBS exhibited a significant survival advantage over the ΔpilA or Δsrr-1 mutant in the vaginal tract. Our results suggest that these GBS surface proteins contribute to vaginal colonization and may offer new insights into the mechanisms of vaginal niche establishment.

  5. Leptospira borgpetersenii hybrid leucine-rich repeat protein: Cloning and expression, immunogenic identification and molecular docking evaluation.

    Science.gov (United States)

    Sritrakul, Tepyuda; Nitipan, Supachai; Wajjwalku, Worawidh; La-Ard, Anchalee; Suphatpahirapol, Chattip; Petkarnjanapong, Wimol; Ongphiphadhanakul, Boonsong; Prapong, Siriwan

    2017-11-01

    Leptospirosis is an important zoonotic disease, and the major outbreak of this disease in Thailand in 1999 was due largely to the Leptospira borgpetersenii serovar Sejroe. Identification of the leucine-rich repeat (LRR) LBJ_2271 protein containing immunogenic epitopes and the discovery of the LBJ_2271 ortholog in Leptospira serovar Sejroe, KU_Sej_R21_2271, led to further studies of the antigenic immune properties of KU_Sej_LRR_2271. The recombinant hybrid (rh) protein was created and expressed from a hybrid PCR fragment of KU_Sej_R21_2271 fused with DNA encoding the LBJ_2271 signal sequence for targeting protein as a membrane-anchoring protein. The fusion DNA was cloned into pET160/GW/D-TOPO® to form the pET160_hKU_R21_2271 plasmid. The plasmid was used to express the rhKU_Sej_LRR_2271 protein in Escherichia coli BL21 Star™ (DE3). The expressed protein was immunologically detected by Western blotting and immunoreactivity detection with hyperimmune sera, T cell epitope prediction by HLA allele and epitope peptide binding affinity, and potential T cell reactivity analysis. The immunogenic epitopes of the protein were evaluated and verified by HLA allele and epitope peptide complex structure molecular docking. Among fourteen best allele epitopes of this protein, binding affinity values of 12 allele epitopes remained unchanged compared to LBJ_2271. Two epitopes for alleles HLA-A0202 and -A0301 had higher IC 50 values, while T cell reactivity values of these peptides were better than values from LBJ_2271 epitopes. Eight of twelve epitope peptides had positive T-cell reactivity scores. Although the molecular docking of two epitopes, 3FPLLKEFLV11/47FPLLKEFLV55 and 50KLSTVPEGV58, into an HLA-A0202 model revealed a good fit in the docked structures, 50KLSTVPEGV58 and 94KLSTVPEEV102 are still considered as the proteins' best epitopes for allele HLA-A0202. The results of this study showed that rhKU_Sej_LRR_2271 protein contained natural immunological properties that should

  6. A chalcone isomerase-like protein enhances flavonoid production and flower pigmentation.

    Science.gov (United States)

    Morita, Yasumasa; Takagi, Kyoko; Fukuchi-Mizutani, Masako; Ishiguro, Kanako; Tanaka, Yoshikazu; Nitasaka, Eiji; Nakayama, Masayoshi; Saito, Norio; Kagami, Takashi; Hoshino, Atsushi; Iida, Shigeru

    2014-04-01

    Flavonoids are major pigments in plants, and their biosynthetic pathway is one of the best-studied metabolic pathways. Here we have identified three mutations within a gene that result in pale-colored flowers in the Japanese morning glory (Ipomoea nil). As the mutations lead to a reduction of the colorless flavonoid compound flavonol as well as of anthocyanins in the flower petal, the identified gene was designated enhancer of flavonoid production (EFP). EFP encodes a chalcone isomerase (CHI)-related protein classified as a type IV CHI protein. CHI is the second committed enzyme of the flavonoid biosynthetic pathway, but type IV CHI proteins are thought to lack CHI enzymatic activity, and their functions remain unknown. The spatio-temporal expression of EFP and structural genes encoding enzymes that produce flavonoids is very similar. Expression of both EFP and the structural genes is coordinately promoted by genes encoding R2R3-MYB and WD40 family proteins. The EFP gene is widely distributed in land plants, and RNAi knockdown mutants of the EFP homologs in petunia (Petunia hybrida) and torenia (Torenia hybrida) had pale-colored flowers and low amounts of anthocyanins. The flavonol and flavone contents in the knockdown petunia and torenia flowers, respectively, were also significantly decreased, suggesting that the EFP protein contributes in early step(s) of the flavonoid biosynthetic pathway to ensure production of flavonoid compounds. From these results, we conclude that EFP is an enhancer of flavonoid production and flower pigmentation, and its function is conserved among diverse land plant species. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  7. Experimental investigations on the fluid flow through an asymmetric rod bundle (W/D = 1.026)

    International Nuclear Information System (INIS)

    Rehme, K.

    1982-05-01

    Measurements of the distributions of the mean velocity, the wall shear stresses and the turbulence were performed in a wall subchannel of a rod bundle of four parallel rods arranged asymmetrically in a rectangular channel (P/D = 1.07, W/D = 1.026). The Reynolds number of this investigation was Re = 5.46 x 10 4 . The experimental results show that the momentum transport is highly anisotropic especially in the gaps of the rod bundle. Influences of secondary flow cannot be detected in the distribution of the time-mean velocity, however, such influences are found in the distributions of the turbulence intensities and the kinetic energy of turbulence. The comparison between experimental wall shear stress distributions and those calculated with the VELASCO-code shows discrepancies especially in the gap between the rod and channel walls. (orig.) [de

  8. Replication Stalling and Heteroduplex Formation within CAG/CTG Trinucleotide Repeats by Mismatch Repair

    KAUST Repository

    Viterbo, David; Michoud, Gregoire; Mosbach, Valentine; Dujon, Bernard; Richard, Guy-Franck

    2016-01-01

    Trinucleotide repeat expansions are responsible for at least two dozen neurological disorders. Mechanisms leading to these large expansions of repeated DNA are still poorly understood. It was proposed that transient stalling of the replication fork by the repeat tract might trigger slippage of the newly-synthesized strand over its template, leading to expansions or contractions of the triplet repeat. However, such mechanism was never formally proven. Here we show that replication fork pausing and CAG/CTG trinucleotide repeat instability are not linked, stable and unstable repeats exhibiting the same propensity to stall replication forks when integrated in a yeast natural chromosome. We found that replication fork stalling was dependent on the integrity of the mismatch-repair system, especially the Msh2p-Msh6p complex, suggesting that direct interaction of MMR proteins with secondary structures formed by trinucleotide repeats in vivo, triggers replication fork pauses. We also show by chromatin immunoprecipitation that Msh2p is enriched at trinucleotide repeat tracts, in both stable and unstable orientations, this enrichment being dependent on MSH3 and MSH6. Finally, we show that overexpressing MSH2 favors the formation of heteroduplex regions, leading to an increase in contractions and expansions of CAG/CTG repeat tracts during replication, these heteroduplexes being dependent on both MSH3 and MSH6. These heteroduplex regions were not detected when a mutant msh2-E768A gene in which the ATPase domain was mutated was overexpressed. Our results unravel two new roles for mismatch-repair proteins: stabilization of heteroduplex regions and transient blocking of replication forks passing through such repeats. Both roles may involve direct interactions between MMR proteins and secondary structures formed by trinucleotide repeat tracts, although indirect interactions may not be formally excluded.

  9. Replication Stalling and Heteroduplex Formation within CAG/CTG Trinucleotide Repeats by Mismatch Repair

    KAUST Repository

    Viterbo, David

    2016-03-16

    Trinucleotide repeat expansions are responsible for at least two dozen neurological disorders. Mechanisms leading to these large expansions of repeated DNA are still poorly understood. It was proposed that transient stalling of the replication fork by the repeat tract might trigger slippage of the newly-synthesized strand over its template, leading to expansions or contractions of the triplet repeat. However, such mechanism was never formally proven. Here we show that replication fork pausing and CAG/CTG trinucleotide repeat instability are not linked, stable and unstable repeats exhibiting the same propensity to stall replication forks when integrated in a yeast natural chromosome. We found that replication fork stalling was dependent on the integrity of the mismatch-repair system, especially the Msh2p-Msh6p complex, suggesting that direct interaction of MMR proteins with secondary structures formed by trinucleotide repeats in vivo, triggers replication fork pauses. We also show by chromatin immunoprecipitation that Msh2p is enriched at trinucleotide repeat tracts, in both stable and unstable orientations, this enrichment being dependent on MSH3 and MSH6. Finally, we show that overexpressing MSH2 favors the formation of heteroduplex regions, leading to an increase in contractions and expansions of CAG/CTG repeat tracts during replication, these heteroduplexes being dependent on both MSH3 and MSH6. These heteroduplex regions were not detected when a mutant msh2-E768A gene in which the ATPase domain was mutated was overexpressed. Our results unravel two new roles for mismatch-repair proteins: stabilization of heteroduplex regions and transient blocking of replication forks passing through such repeats. Both roles may involve direct interactions between MMR proteins and secondary structures formed by trinucleotide repeat tracts, although indirect interactions may not be formally excluded.

  10. Ebi/AP-1 suppresses pro-apoptotic genes expression and permits long-term survival of Drosophila sensory neurons.

    Directory of Open Access Journals (Sweden)

    Young-Mi Lim

    Full Text Available Sensory organs are constantly exposed to physical and chemical stresses that collectively threaten the survival of sensory neurons. Failure to protect stressed neurons leads to age-related loss of neurons and sensory dysfunction in organs in which the supply of new sensory neurons is limited, such as the human auditory system. Transducin β-like protein 1 (TBL1 is a candidate gene for ocular albinism with late-onset sensorineural deafness, a form of X-linked age-related hearing loss. TBL1 encodes an evolutionarily conserved F-box-like and WD40 repeats-containing subunit of the nuclear receptor co-repressor/silencing mediator for retinoid and thyroid hormone receptor and other transcriptional co-repressor complexes. Here we report that a Drosophila homologue of TBL1, Ebi, is required for maintenance of photoreceptor neurons. Loss of ebi function caused late-onset neuronal apoptosis in the retina and increased sensitivity to oxidative stress. Ebi formed a complex with activator protein 1 (AP-1 and was required for repression of Drosophila pro-apoptotic and anti-apoptotic genes expression. These results suggest that Ebi/AP-1 suppresses basal transcription levels of apoptotic genes and thereby protects sensory neurons from degeneration.

  11. Surface antigens and potential virulence factors from parasites detected by comparative genomics of perfect amino acid repeats

    Directory of Open Access Journals (Sweden)

    Adler Joël

    2007-12-01

    Full Text Available Abstract Background Many parasitic organisms, eukaryotes as well as bacteria, possess surface antigens with amino acid repeats. Making up the interface between host and pathogen such repetitive proteins may be virulence factors involved in immune evasion or cytoadherence. They find immunological applications in serodiagnostics and vaccine development. Here we use proteins which contain perfect repeats as a basis for comparative genomics between parasitic and free-living organisms. Results We have developed Reptile http://reptile.unibe.ch, a program for proteome-wide probabilistic description of perfect repeats in proteins. Parasite proteomes exhibited a large variance regarding the proportion of repeat-containing proteins. Interestingly, there was a good correlation between the percentage of highly repetitive proteins and mean protein length in parasite proteomes, but not at all in the proteomes of free-living eukaryotes. Reptile combined with programs for the prediction of transmembrane domains and GPI-anchoring resulted in an effective tool for in silico identification of potential surface antigens and virulence factors from parasites. Conclusion Systemic surveys for perfect amino acid repeats allowed basic comparisons between free-living and parasitic organisms that were directly applicable to predict proteins of serological and parasitological importance. An on-line tool is available at http://genomics.unibe.ch/dora.

  12. The Potato Nucleotide-binding Leucine-rich Repeat (NLR) Immune Receptor Rx1 Is a Pathogen-dependent DNA-deforming Protein*

    Science.gov (United States)

    Fenyk, Stepan; Townsend, Philip D.; Dixon, Christopher H.; Spies, Gerhard B.; de San Eustaquio Campillo, Alba; Slootweg, Erik J.; Westerhof, Lotte B.; Gawehns, Fleur K. K.; Knight, Marc R.; Sharples, Gary J.; Goverse, Aska; Pålsson, Lars-Olof; Takken, Frank L. W.; Cann, Martin J.

    2015-01-01

    Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable cells to respond to pathogen attack. Several NLRs act in the nucleus; however, conserved nuclear targets that support their role in immunity are unknown. Previously, we noted a structural homology between the nucleotide-binding domain of NLRs and DNA replication origin-binding Cdc6/Orc1 proteins. Here we show that the NB-ARC (nucleotide-binding, Apaf-1, R-proteins, and CED-4) domain of the Rx1 NLR of potato binds nucleic acids. Rx1 induces ATP-dependent bending and melting of DNA in vitro, dependent upon a functional P-loop. In situ full-length Rx1 binds nuclear DNA following activation by its cognate pathogen-derived effector protein, the coat protein of potato virus X. In line with its obligatory nucleocytoplasmic distribution, DNA binding was only observed when Rx1 was allowed to freely translocate between both compartments and was activated in the cytoplasm. Immune activation induced by an unrelated NLR-effector pair did not trigger an Rx1-DNA interaction. DNA binding is therefore not merely a consequence of immune activation. These data establish a role for DNA distortion in Rx1 immune signaling and define DNA as a molecular target of an activated NLR. PMID:26306038

  13. An overview of the gene regulatory network controlling trichome development in the model plant, Arabidopsis

    Directory of Open Access Journals (Sweden)

    Sitakanta ePattanaik

    2014-06-01

    Full Text Available Trichomes are specialized epidermal cells located on aerial parts of plants and are associated with a wide array of biological processes. Trichomes protect plants from adverse conditions including UV light and herbivore attack and are also an important source of a number of phytochemicals. The simple unicellular trichomes of Arabidopsis serve as an excellent model to study molecular mechanism of cell differentiation and pattern formation in plants. The emerging picture suggests that the developmental process is controlled by a transcriptional network involving three major groups of transcription factors: the R2R3 MYB, basic helix-loop-helix (bHLH and WD40 repeat (WDR protein. These regulatory proteins form a trimeric activator complex that positively regulates trichome development. The single repeat R3 MYBs act as negative regulators of trichome development. They compete with the R2R3 MYBs to bind the bHLH factor and form a repressor complex. In addition to activator-repressor mechanism, a depletion mechanism may operate in parallel during trichome development. In this mechanism, the bHLH factor traps the WDR protein which results in depletion of WDR protein in neighboring cells. Consequently, the cells with high levels of bHLH and WDR proteins are developed into trichomes. A group of C2H2 zinc finger TFs has also been implicated in trichome development. Phytohormones, including gibberellins and jasmonic acid, play significant roles in this developmental process. Recently, microRNAs have been shown to be involved in trichome development. Furthermore, it has been demonstrated that the activities of the key regulatory proteins involved in trichome development are controlled by the 26S/ubiquitin proteasome system (UPS, highlighting the complexity of the regulatory network controlling this developmental process. To complement several excellent recent relevant reviews, this review focuses on the transcriptional network and hormonal interplay

  14. C-terminal low-complexity sequence repeats of Mycobacterium smegmatis Ku modulate DNA binding.

    Science.gov (United States)

    Kushwaha, Ambuj K; Grove, Anne

    2013-01-24

    Ku protein is an integral component of the NHEJ (non-homologous end-joining) pathway of DSB (double-strand break) repair. Both eukaryotic and prokaryotic Ku homologues have been characterized and shown to bind DNA ends. A unique feature of Mycobacterium smegmatis Ku is its basic C-terminal tail that contains several lysine-rich low-complexity PAKKA repeats that are absent from homologues encoded by obligate parasitic mycobacteria. Such PAKKA repeats are also characteristic of mycobacterial Hlp (histone-like protein) for which they have been shown to confer the ability to appose DNA ends. Unexpectedly, removal of the lysine-rich extension enhances DNA-binding affinity, but an interaction between DNA and the PAKKA repeats is indicated by the observation that only full-length Ku forms multiple complexes with a short stem-loop-containing DNA previously designed to accommodate only one Ku dimer. The C-terminal extension promotes DNA end-joining by T4 DNA ligase, suggesting that the PAKKA repeats also contribute to efficient end-joining. We suggest that low-complexity lysine-rich sequences have evolved repeatedly to modulate the function of unrelated DNA-binding proteins.

  15. Diet-induced obesity, energy metabolism and gut microbiota in C57BL/6J mice fed Western diets based on lean seafood or lean meat mixtures.

    Science.gov (United States)

    Holm, Jacob Bak; Rønnevik, Alexander; Tastesen, Hanne Sørup; Fjære, Even; Fauske, Kristin Røen; Liisberg, Ulrike; Madsen, Lise; Kristiansen, Karsten; Liaset, Bjørn

    2016-05-01

    High protein diets may protect against diet-induced obesity, but little is known regarding the effects of different protein sources consumed at standard levels. We investigated how a mixture of lean seafood or lean meat in a Western background diet modulated diet-induced obesity, energy metabolism and gut microbiota. Male C57BL/6J mice fed a Western diet (WD) containing a mixture of lean seafood (seafood WD) for 12weeks accumulated less fat mass than mice fed a WD containing a mixture of lean meat (meat WD). Meat WD-fed mice exhibited increased fasting blood glucose, impaired glucose clearance, elevated fasting plasma insulin and increased plasma and liver lipid levels. We observed no first choice preference for either of the WDs, but over time, mice fed the seafood WD consumed less energy than mice fed the meat WD. Mice fed the seafood WD exhibited higher spontaneous locomotor activity and a lower respiratory exchange ratio (RER) than mice fed the meat WD. Thus, higher activity together with the decreased energy intake contributed to the different phenotypes observed in mice fed the seafood WD compared to mice fed the meat WD. Comparison of the gut microbiomes of mice fed the two WDs revealed significant differences in the relative abundance of operational taxonomic units (OTUs) belonging to the orders Bacteroidales and Clostridiales, with genes involved in metabolism of aromatic amino acids exhibiting higher relative abundance in the microbiomes of mice fed the seafood WD. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Membrane association and localization dynamics of the Ebola virus matrix protein VP40.

    Science.gov (United States)

    Gc, Jeevan B; Gerstman, Bernard S; Chapagain, Prem P

    2017-10-01

    The Ebola virus matrix protein VP40 is a major structural protein that provides the scaffolding for new Ebola virus particles. For this, VP40 is first trafficked to the lower leaflet of the plasma membrane (PM) in its dimeric form. Once associated with the PM, the VP40 dimers undergo structural rearrangements and oligomerize into hexamers and filaments that make up the virus matrix. Therefore, association of the VP40 dimers and their stabilization at the PM is a crucial step in the Ebola life-cycle. To understand the molecular details of the VP40 dimer-PM interactions, we investigated the dimer association with the inner leaflet of the PM using detailed all-atom molecular dynamics (MD) simulations. The formation of the dimer-PM complex is facilitated by the interactions of the VP40 lysine residues and the anionic lipids POPS, POPI, and PIP 2 in the PM. In contrast, the dimer fails to associate with a membrane without POPS, POPI, or PIP 2 lipids. We explored the mechanisms of the association and identified important residues and lipids involved in localization and stabilization of VP40 dimers at the PM. MD simulations elucidate the role of a C-terminal α-helix alignment parallel to the lipid bilayer surface as well as the creation of membrane defects that allow partial insertion of the hydrophobic residue V276 into the membrane to further stabilize the VP40 dimer-PM complex. Understanding the mechanisms of the VP40 dimer-PM association that facilitate oligomerization can be important for potentially targeting the VP40 for small molecules that can interfere with the virus life-cycle. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. PRO40 is a scaffold protein of the cell wall integrity pathway, linking the MAP kinase module to the upstream activator protein kinase C.

    Directory of Open Access Journals (Sweden)

    Ines Teichert

    2014-09-01

    Full Text Available Mitogen-activated protein kinase (MAPK pathways are crucial signaling instruments in eukaryotes. Most ascomycetes possess three MAPK modules that are involved in key developmental processes like sexual propagation or pathogenesis. However, the regulation of these modules by adapters or scaffolds is largely unknown. Here, we studied the function of the cell wall integrity (CWI MAPK module in the model fungus Sordaria macrospora. Using a forward genetic approach, we found that sterile mutant pro30 has a mutated mik1 gene that encodes the MAPK kinase kinase (MAPKKK of the proposed CWI pathway. We generated single deletion mutants lacking MAPKKK MIK1, MAPK kinase (MAPKK MEK1, or MAPK MAK1 and found them all to be sterile, cell fusion-deficient and highly impaired in vegetative growth and cell wall stress response. By searching for MEK1 interaction partners via tandem affinity purification and mass spectrometry, we identified previously characterized developmental protein PRO40 as a MEK1 interaction partner. Although fungal PRO40 homologs have been implicated in diverse developmental processes, their molecular function is currently unknown. Extensive affinity purification, mass spectrometry, and yeast two-hybrid experiments showed that PRO40 is able to bind MIK1, MEK1, and the upstream activator protein kinase C (PKC1. We further found that the PRO40 N-terminal disordered region and the central region encompassing a WW interaction domain are sufficient to govern interaction with MEK1. Most importantly, time- and stress-dependent phosphorylation studies showed that PRO40 is required for MAK1 activity. The sum of our results implies that PRO40 is a scaffold protein for the CWI pathway, linking the MAPK module to the upstream activator PKC1. Our data provide important insights into the mechanistic role of a protein that has been implicated in sexual and asexual development, cell fusion, symbiosis, and pathogenicity in different fungal systems.

  18. Repeated exposures to roadside particulate matter extracts suppresses pulmonary defense mechanisms, resulting in lipid and protein oxidative damage.

    Science.gov (United States)

    Pardo, Michal; Porat, Ziv; Rudich, Assaf; Schauer, James J; Rudich, Yinon

    2016-03-01

    Exposure to particulate matter (PM) pollution in cities and urban canyons can be harmful to the exposed population. However, the underlying mechanisms that lead to health effects are not yet elucidated. It is postulated that exposure to repeated, small, environmentally relevant concentrations can affect lung homeostasis. This study examines the impact of repeated exposures to urban PM on mouse lungs with focus on inflammatory and oxidative stress parameters. Aqueous extracts from collected urban PM were administered to mice by 5 repeated intra-tracheal instillations (IT). Multiple exposures, led to an increase in cytokine levels in both bronchoalveolar lavage fluid and in the blood serum, indicating a systemic reaction. Lung mRNA levels of antioxidant/phase II detoxifying enzymes decreased by exposure to the PM extract, but not when metals were removed by chelation. Finally, disruption of lung tissue oxidant-inflammatory/defense balance was evidenced by increased levels of lipid and protein oxidation. Unlike response to a single IT exposure to the same dose and source of extract, multiple exposures result in lung oxidative damage and a systemic inflammatory reaction. These could be attributed to compromised capacity to activate the protective Nrf2 tissue defense system. It is suggested that water-soluble metals present in urban PM, potentially from break and tire wear, may constitute major drivers of the pulmonary and systemic responses to multiple exposure to urban PM. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. The chitinase-like protein YKL-40 increases mucin5AC production in human bronchial epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chunyi; Li, Qi [Division of Respiratory Medicine, Second Affiliated Hospital, Chongqing Medical University, No. 74, Linjiang Road, Yuzhong District, Chongqing 400010 (China); Zhou, Xiangdong, E-mail: zxd999@263.net [Division of Respiratory Medicine, Second Affiliated Hospital, Chongqing Medical University, No. 74, Linjiang Road, Yuzhong District, Chongqing 400010 (China); Kolosov, Victor P.; Perelman, Juliy M. [Far Eastern Scientific Center of Physiology and Pathology of Respiration, Siberian Branch, Russian Academy of Medical Sciences, Blagoveshchensk (Russian Federation)

    2013-11-01

    Mucus overproduction is an important feature in patients with chronic inflammatory airway diseases. However, the regulatory mechanisms that mediate excessive mucin production remain elusive. Recently, the level of YKL-40, a chitinase-like protein, has been found to be significantly increased in chronic inflammatory airway diseases and has been shown to be associated with the severity of these diseases. In this study, we sought to explore the effect of YKL-40 on mucin5AC (MUC5AC) production in chronic inflammatory airway diseases and the potential signaling pathways involved in this process. We found that elevated YKL-40 levels increased the mRNA and protein expression of MUC5AC in a dose- and time-dependent manner, in association with the phosphorylation of extracellular signal-regulated kinase (ERK) and nuclear factor κB (NF-κB), reflecting their activation. These responses were significantly suppressed by the knockdown of protease-activating receptor 2 (PAR2) with specific small interfering RNA or the inhibitors of ERK and NF-κB. YKL-40-induced MUC5AC overproduction was also effectively attenuated by the inhibitor of focal adhesion kinase (FAK). Taken together, these results imply that YKL-40 can stimulate excessive MUC5AC production through PAR2- and FAK-mediated mechanisms. - Highlights: • MUC5AC is the major secreted mucin in chronic inflammatory airway diseases. • YKL-40 is a prototype of the chitinase-like protein in mammals. • YKL-40 is an active player in chronic inflammatory airway diseases. • YKL-40 can increase MUC5AC production via PAR2-mediated pathway. • FAK is another candidate to mediate YKL-40-induced MUC5AC overexpression.

  20. The chitinase-like protein YKL-40 increases mucin5AC production in human bronchial epithelial cells

    International Nuclear Information System (INIS)

    Liu, Chunyi; Li, Qi; Zhou, Xiangdong; Kolosov, Victor P.; Perelman, Juliy M.

    2013-01-01

    Mucus overproduction is an important feature in patients with chronic inflammatory airway diseases. However, the regulatory mechanisms that mediate excessive mucin production remain elusive. Recently, the level of YKL-40, a chitinase-like protein, has been found to be significantly increased in chronic inflammatory airway diseases and has been shown to be associated with the severity of these diseases. In this study, we sought to explore the effect of YKL-40 on mucin5AC (MUC5AC) production in chronic inflammatory airway diseases and the potential signaling pathways involved in this process. We found that elevated YKL-40 levels increased the mRNA and protein expression of MUC5AC in a dose- and time-dependent manner, in association with the phosphorylation of extracellular signal-regulated kinase (ERK) and nuclear factor κB (NF-κB), reflecting their activation. These responses were significantly suppressed by the knockdown of protease-activating receptor 2 (PAR2) with specific small interfering RNA or the inhibitors of ERK and NF-κB. YKL-40-induced MUC5AC overproduction was also effectively attenuated by the inhibitor of focal adhesion kinase (FAK). Taken together, these results imply that YKL-40 can stimulate excessive MUC5AC production through PAR2- and FAK-mediated mechanisms. - Highlights: • MUC5AC is the major secreted mucin in chronic inflammatory airway diseases. • YKL-40 is a prototype of the chitinase-like protein in mammals. • YKL-40 is an active player in chronic inflammatory airway diseases. • YKL-40 can increase MUC5AC production via PAR2-mediated pathway. • FAK is another candidate to mediate YKL-40-induced MUC5AC overexpression

  1. Serine-Rich Repeat Proteins and Pili Promote Streptococcus agalactiae Colonization of the Vaginal Tract ▿

    Science.gov (United States)

    Sheen, Tamsin R.; Jimenez, Alyssa; Wang, Nai-Yu; Banerjee, Anirban; van Sorge, Nina M.; Doran, Kelly S.

    2011-01-01

    Streptococcus agalactiae (group B streptococcus [GBS]) is a Gram-positive bacterium found in the female rectovaginal tract and is capable of producing severe disease in susceptible hosts, including newborns and pregnant women. The vaginal tract is considered a major reservoir for GBS, and maternal vaginal colonization poses a significant risk to the newborn; however, little is known about the specific bacterial factors that promote GBS colonization and persistence in the female reproductive tract. We have developed in vitro models of GBS interaction with the human female cervicovaginal tract using human vaginal and cervical epithelial cell lines. Analysis of isogenic mutant GBS strains deficient in cell surface organelles such as pili and serine-rich repeat (Srr) proteins shows that these factors contribute to host cell attachment. As Srr proteins are heavily glycosylated, we confirmed that carbohydrate moieties contribute to the effective interaction of Srr-1 with vaginal epithelial cells. Antibody inhibition assays identified keratin 4 as a possible host receptor for Srr-1. Our findings were further substantiated in an in vivo mouse model of GBS vaginal colonization, where mice inoculated with an Srr-1-deficient mutant exhibited decreased GBS vaginal persistence compared to those inoculated with the wild-type (WT) parental strain. Furthermore, competition experiments in mice showed that WT GBS exhibited a significant survival advantage over the ΔpilA or Δsrr-1 mutant in the vaginal tract. Our results suggest that these GBS surface proteins contribute to vaginal colonization and may offer new insights into the mechanisms of vaginal niche establishment. PMID:21984789

  2. The Potato Nucleotide-binding Leucine-rich Repeat (NLR) Immune Receptor Rx1 Is a Pathogen-dependent DNA-deforming Protein.

    Science.gov (United States)

    Fenyk, Stepan; Townsend, Philip D; Dixon, Christopher H; Spies, Gerhard B; de San Eustaquio Campillo, Alba; Slootweg, Erik J; Westerhof, Lotte B; Gawehns, Fleur K K; Knight, Marc R; Sharples, Gary J; Goverse, Aska; Pålsson, Lars-Olof; Takken, Frank L W; Cann, Martin J

    2015-10-09

    Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable cells to respond to pathogen attack. Several NLRs act in the nucleus; however, conserved nuclear targets that support their role in immunity are unknown. Previously, we noted a structural homology between the nucleotide-binding domain of NLRs and DNA replication origin-binding Cdc6/Orc1 proteins. Here we show that the NB-ARC (nucleotide-binding, Apaf-1, R-proteins, and CED-4) domain of the Rx1 NLR of potato binds nucleic acids. Rx1 induces ATP-dependent bending and melting of DNA in vitro, dependent upon a functional P-loop. In situ full-length Rx1 binds nuclear DNA following activation by its cognate pathogen-derived effector protein, the coat protein of potato virus X. In line with its obligatory nucleocytoplasmic distribution, DNA binding was only observed when Rx1 was allowed to freely translocate between both compartments and was activated in the cytoplasm. Immune activation induced by an unrelated NLR-effector pair did not trigger an Rx1-DNA interaction. DNA binding is therefore not merely a consequence of immune activation. These data establish a role for DNA distortion in Rx1 immune signaling and define DNA as a molecular target of an activated NLR. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Structural model for the interaction of a designed Ankyrin Repeat Protein with the human epidermal growth factor receptor 2.

    Directory of Open Access Journals (Sweden)

    V Chandana Epa

    Full Text Available Designed Ankyrin Repeat Proteins are a class of novel binding proteins that can be selected and evolved to bind to targets with high affinity and specificity. We are interested in the DARPin H10-2-G3, which has been evolved to bind with very high affinity to the human epidermal growth factor receptor 2 (HER2. HER2 is found to be over-expressed in 30% of breast cancers, and is the target for the FDA-approved therapeutic monoclonal antibodies trastuzumab and pertuzumab and small molecule tyrosine kinase inhibitors. Here, we use computational macromolecular docking, coupled with several interface metrics such as shape complementarity, interaction energy, and electrostatic complementarity, to model the structure of the complex between the DARPin H10-2-G3 and HER2. We analyzed the interface between the two proteins and then validated the structural model by showing that selected HER2 point mutations at the putative interface with H10-2-G3 reduce the affinity of binding up to 100-fold without affecting the binding of trastuzumab. Comparisons made with a subsequently solved X-ray crystal structure of the complex yielded a backbone atom root mean square deviation of 0.84-1.14 Ångstroms. The study presented here demonstrates the capability of the computational techniques of structural bioinformatics in generating useful structural models of protein-protein interactions.

  4. Brain and behavioral perturbations in rats following Western diet access.

    Science.gov (United States)

    Hargrave, Sara L; Davidson, Terry L; Lee, Tien-Jui; Kinzig, Kimberly P

    2015-10-01

    Energy dense "Western" diets (WD) are known to cause obesity as well as learning and memory impairments, blood-brain barrier damage, and psychological disturbances. Impaired glucose (GLUT1) and monocarboxylate (MCT1) transport may play a role in diet-induced dementia development. In contrast, ketogenic diets (KD) have been shown to be neuroprotective. We assessed the effect of 10, 40 and 90 days WD, KD and Chow maintenance on spontaneous alternation (SA) and vicarious trial and error (VTE) behaviors in male rats, then analyzed blood glucose, insulin, and ketone levels; and hippocampal GLUT1 and MCT1 mRNA. Compared to Chow and KD, rats fed WD had increased 90 day insulin levels. SA was decreased in WD rats at 10, but not 40 or 90 days. VTE was perturbed in WD-fed rats, particularly at 10 and 90 days, indicating hippocampal deficits. WD rats had lower hippocampal GLUT1 and MCT1 expression compared to Chow and KD, and KD rats had increased 90 day MCT1 expression compared to Chow and WD. These data suggest that WD reduces glucose and monocarboxylate transport at the hippocampus, which may result in learning and memory deficits. Further, KD consumption may be useful for MCT1 transporter recovery, which may benefit cognition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Glove box adaptation, installation and commissioning of WD-XRF system for determination of PuO2 in MOX fuel samples

    International Nuclear Information System (INIS)

    Aher, Sachin; Pandey, Ashish; Khan, F.A.; Das, D.K.; Kumar, Surendra; Behere, P.G.; Mohd Afzal

    2015-01-01

    Glove Box facility forms the foremost important confinement system at nuclear fuel fabrication facility for handling of Plutonium based MOX fuels. Due to limited resources of Natural Uranium and maximum utilization of thorium, India has adopted 'Close Fuel Cycle Strategy' which involves use of Plutonium based fuels in Thermal and Fast reactors. Plutonium being radio toxic material with a higher biological half-life, Plutonium based fuel fabrication facility requires special techniques and confinement as a primary method for protection against spreading of powder contamination. Glove Box along with dynamic ventilation and HEPA Filters forms the preeminent facility for safe handling of plutonium based MOX fuels. Various equipment's, systems and instruments associated with MOX fuel production are need to be adapted inside the Glove Box with considerations of safety, ergonomics, accessibility for operations and maintenance, connections of various feed through like electrical connections, gas line supply etc. Quality Control plays the vital role in production of MOX fuels to ensure the finest quality of product to meet the defined specifications of MOX fuels. Presently AFFF is fabricating MOX fuel containing 21% and 28% PuO 2 along with DDUO 2 the first core of PFBR. Precise quantification of PuO 2 in MOX fuel pellets is necessary process control steps after batch preparation in Milling and Mixing operation. At AFFF, WD-XRF is one of the system used for determination of percentage of PuO 2 in MOX fuel batch. Glove Box adaptation of WD-XRF system along with 30 Tones Hydraulic press for sample preparation is being carried out in Type VI and Type IV Glove Boxes connected through transfer tunnel. Due to restrictions of space inside the Glove Box, a special mechanism is developed and installed for safe titling of WD-XRF system inside the Glove Box during the need of maintenance. These Glove Boxes are leak tested by various leak testing technique to meet the

  6. A complex of Cas proteins 5, 6, and 7 is required for the biogenesis and stability of clustered regularly interspaced short palindromic repeats (crispr)-derived rnas (crrnas) in Haloferax volcanii.

    Science.gov (United States)

    Brendel, Jutta; Stoll, Britta; Lange, Sita J; Sharma, Kundan; Lenz, Christof; Stachler, Aris-Edda; Maier, Lisa-Katharina; Richter, Hagen; Nickel, Lisa; Schmitz, Ruth A; Randau, Lennart; Allers, Thorsten; Urlaub, Henning; Backofen, Rolf; Marchfelder, Anita

    2014-03-07

    The clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR-Cas) system is a prokaryotic defense mechanism against foreign genetic elements. A plethora of CRISPR-Cas versions exist, with more than 40 different Cas protein families and several different molecular approaches to fight the invading DNA. One of the key players in the system is the CRISPR-derived RNA (crRNA), which directs the invader-degrading Cas protein complex to the invader. The CRISPR-Cas types I and III use the Cas6 protein to generate mature crRNAs. Here, we show that the Cas6 protein is necessary for crRNA production but that additional Cas proteins that form a CRISPR-associated complex for antiviral defense (Cascade)-like complex are needed for crRNA stability in the CRISPR-Cas type I-B system in Haloferax volcanii in vivo. Deletion of the cas6 gene results in the loss of mature crRNAs and interference. However, cells that have the complete cas gene cluster (cas1-8b) removed and are transformed with the cas6 gene are not able to produce and stably maintain mature crRNAs. crRNA production and stability is rescued only if cas5, -6, and -7 are present. Mutational analysis of the cas6 gene reveals three amino acids (His-41, Gly-256, and Gly-258) that are essential for pre-crRNA cleavage, whereas the mutation of two amino acids (Ser-115 and Ser-224) leads to an increase of crRNA amounts. This is the first systematic in vivo analysis of Cas6 protein variants. In addition, we show that the H. volcanii I-B system contains a Cascade-like complex with a Cas7, Cas5, and Cas6 core that protects the crRNA.

  7. A highly conserved Poc1 protein characterized in embryos of the hydrozoan Clytia hemisphaerica: localization and functional studies.

    Directory of Open Access Journals (Sweden)

    Cécile Fourrage

    Full Text Available Poc1 (Protein of Centriole 1 proteins are highly conserved WD40 domain-containing centriole components, well characterized in the alga Chlamydomonas, the ciliated protazoan Tetrahymena, the insect Drosophila and in vertebrate cells including Xenopus and zebrafish embryos. Functions and localizations related to the centriole and ciliary axoneme have been demonstrated for Poc1 in a range of species. The vertebrate Poc1 protein has also been reported to show an additional association with mitochondria, including enrichment in the specialized "germ plasm" region of Xenopus oocytes. We have identified and characterized a highly conserved Poc1 protein in the cnidarian Clytia hemisphaerica. Clytia Poc1 mRNA was found to be strongly expressed in eggs and early embryos, showing a punctate perinuclear localization in young oocytes. Fluorescence-tagged Poc1 proteins expressed in developing embryos showed strong localization to centrioles, including basal bodies. Anti-human Poc1 antibodies decorated mitochondria in Clytia, as reported in human cells, but failed to recognise endogenous or fluorescent-tagged Clytia Poc1. Injection of specific morpholino oligonucleotides into Clytia eggs prior to fertilization to repress Poc1 mRNA translation interfered with cell division from the blastula stage, likely corresponding to when neosynthesis normally takes over from maternally supplied protein. Cell cycle lengthening and arrest were observed, phenotypes consistent with an impaired centriolar biogenesis or function. The specificity of the defects could be demonstrated by injection of synthetic Poc1 mRNA, which restored normal development. We conclude that in Clytia embryos, Poc1 has an essentially centriolar localization and function.

  8. Telomerase Repeated Amplification Protocol (TRAP).

    Science.gov (United States)

    Mender, Ilgen; Shay, Jerry W

    2015-11-20

    Telomeres are found at the end of eukaryotic linear chromosomes, and proteins that bind to telomeres protect DNA from being recognized as double-strand breaks thus preventing end-to-end fusions (Griffith et al. , 1999). However, due to the end replication problem and other factors such as oxidative damage, the limited life span of cultured cells (Hayflick limit) results in progressive shortening of these protective structures (Hayflick and Moorhead, 1961; Olovnikov, 1973). The ribonucleoprotein enzyme complex telomerase-consisting of a protein catalytic component hTERT and a functional RNA component hTR or hTERC - counteracts telomere shortening by adding telomeric repeats to the end of chromosomes in ~90% of primary human tumors and in some transiently proliferating stem-like cells (Shay and Wright, 1996; Shay and Wright, 2001). This results in continuous proliferation of cells which is a hallmark of cancer. Therefore, telomere biology has a central role in aging, cancer progression/metastasis as well as targeted cancer therapies. There are commonly used methods in telomere biology such as Telomere Restriction Fragment (TRF) (Mender and Shay, 2015b), Telomere Repeat Amplification Protocol (TRAP) and Telomere dysfunction Induced Foci (TIF) analysis (Mender and Shay, 2015a). In this detailed protocol we describe Telomere Repeat Amplification Protocol (TRAP). The TRAP assay is a popular method to determine telomerase activity in mammalian cells and tissue samples (Kim et al. , 1994). The TRAP assay includes three steps: extension, amplification, and detection of telomerase products. In the extension step, telomeric repeats are added to the telomerase substrate (which is actually a non telomeric oligonucleotide, TS) by telomerase. In the amplification step, the extension products are amplified by the polymerase chain reaction (PCR) using specific primers (TS upstream primer and ACX downstream primer) and in the detection step, the presence or absence of telomerase is

  9. Interaction of monomeric Ebola VP40 protein with a plasma membrane: A coarse-grained molecular dynamics (CGMD) simulation study.

    Science.gov (United States)

    Mohamad Yusoff, Mohamad Ariff; Abdul Hamid, Azzmer Azzar; Mohammad Bunori, Noraslinda; Abd Halim, Khairul Bariyyah

    2018-06-01

    Ebola virus is a lipid-enveloped filamentous virus that affects human and non-human primates and consists of several types of protein: nucleoprotein, VP30, VP35, L protein, VP40, VP24, and transmembrane glycoprotein. Among the Ebola virus proteins, its matrix protein VP40 is abundantly expressed during infection and plays a number of critical roles in oligomerization, budding and egress from the host cell. VP40 exists predominantly as a monomer at the inner leaflet of the plasma membrane, and has been suggested to interact with negatively charged lipids such as phosphatidylinositol 4,5-bisphosphate (PIP 2 ) and phosphatidylserine (PS) via its cationic patch. The hydrophobic loop at the C-terminal domain has also been shown to be important in the interaction between the VP40 and the membrane. However, details of the molecular mechanisms underpinning their interactions are not fully understood. This study aimed at investigating the effects of mutation in the cationic patch and hydrophobic loop on the interaction between the VP40 monomer and the plasma membrane using coarse-grained molecular dynamics simulation (CGMD). Our simulations revealed that the interaction between VP40 and the plasma membrane is mediated by the cationic patch residues. This led to the clustering of PIP 2 around the protein in the inner leaflet as a result of interactions between some cationic residues including R52, K127, K221, K224, K225, K256, K270, K274, K275 and K279 and PIP 2 lipids via electrostatic interactions. Mutation of the cationic patch or hydrophobic loop amino acids caused the protein to bind at the inner leaflet of the plasma membrane in a different orientation, where no significant clustering of PIP 2 was observed around the mutated protein. This study provides basic understanding of the interaction of the VP40 monomer and its mutants with the plasma membrane. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. MNF, an ankyrin repeat protein of myxoma virus, is part of a native cellular SCF complex during viral infection

    Directory of Open Access Journals (Sweden)

    Gelfi Jacqueline

    2010-03-01

    Full Text Available Abstract Myxoma virus (MYXV, a member of the Poxviridae family, is the agent responsible for myxomatosis, a fatal disease in the European rabbit (Oryctolagus cuniculus. Like all poxviruses, MYXV is known for encoding multiple proteins that regulate cellular signaling pathways. Among them, four proteins share the same ANK/PRANC structure: M148R, M149R, MNF (Myxoma Nuclear factor and M-T5, all of them described as virulence factors. This family of poxvirus proteins, recently identified, has drawn considerable attention for its potential role in modulating the host ubiquitin-proteasome system during viral infection. To date, many members of this novel protein family have been shown to interact with SCF components, in vitro. Here, we focus on MNF gene, which has been shown to express a nuclear protein presenting nine ANK repeats, one of which has been identified as a nuclear localization signal. In transfection, MNF has been shown to colocalise with the transcription factor NF-κB in the nucleus of TNFα-stimulated cells. Functionally, MNF is a critical virulence factor since its deletion generates an almost apathogenic virus. In this study, to pursue the investigation of proteins interacting with MNF and of its mechanism of action, we engineered a recombinant MYXV expressing a GFP-linked MNF under the control of MNF native promoter. Infection of rabbits with MYXV-GFPMNF recombinant virus provided the evidence that the GFP fusion does not disturb the main function of MNF. Hence, cells were infected with MYXV-GFPMNF and immunoprecipitation of the GFPMNF fusion protein was performed to identify MNF's partners. For the first time, endogenous components of SCF (Cullin-1 and Skp1 were co-precipitated with an ANK myxoma virus protein, expressed in an infectious context, and without over-expression of any protein.

  11. MNF, an ankyrin repeat protein of myxoma virus, is part of a native cellular SCF complex during viral infection

    Science.gov (United States)

    2010-01-01

    Myxoma virus (MYXV), a member of the Poxviridae family, is the agent responsible for myxomatosis, a fatal disease in the European rabbit (Oryctolagus cuniculus). Like all poxviruses, MYXV is known for encoding multiple proteins that regulate cellular signaling pathways. Among them, four proteins share the same ANK/PRANC structure: M148R, M149R, MNF (Myxoma Nuclear factor) and M-T5, all of them described as virulence factors. This family of poxvirus proteins, recently identified, has drawn considerable attention for its potential role in modulating the host ubiquitin-proteasome system during viral infection. To date, many members of this novel protein family have been shown to interact with SCF components, in vitro. Here, we focus on MNF gene, which has been shown to express a nuclear protein presenting nine ANK repeats, one of which has been identified as a nuclear localization signal. In transfection, MNF has been shown to colocalise with the transcription factor NF-κB in the nucleus of TNFα-stimulated cells. Functionally, MNF is a critical virulence factor since its deletion generates an almost apathogenic virus. In this study, to pursue the investigation of proteins interacting with MNF and of its mechanism of action, we engineered a recombinant MYXV expressing a GFP-linked MNF under the control of MNF native promoter. Infection of rabbits with MYXV-GFPMNF recombinant virus provided the evidence that the GFP fusion does not disturb the main function of MNF. Hence, cells were infected with MYXV-GFPMNF and immunoprecipitation of the GFPMNF fusion protein was performed to identify MNF's partners. For the first time, endogenous components of SCF (Cullin-1 and Skp1) were co-precipitated with an ANK myxoma virus protein, expressed in an infectious context, and without over-expression of any protein. PMID:20211013

  12. C-terminal sequences of hsp70 and hsp90 as non-specific anchors for tetratricopeptide repeat (TPR) proteins.

    Science.gov (United States)

    Ramsey, Andrew J; Russell, Lance C; Chinkers, Michael

    2009-10-12

    Steroid-hormone-receptor maturation is a multi-step process that involves several TPR (tetratricopeptide repeat) proteins that bind to the maturation complex via the C-termini of hsp70 (heat-shock protein 70) and hsp90 (heat-shock protein 90). We produced a random T7 peptide library to investigate the roles played by the C-termini of the two heat-shock proteins in the TPR-hsp interactions. Surprisingly, phages with the MEEVD sequence, found at the C-terminus of hsp90, were not recovered from our biopanning experiments. However, two groups of phages were isolated that bound relatively tightly to HsPP5 (Homo sapiens protein phosphatase 5) TPR. Multiple copies of phages with a C-terminal sequence of LFG were isolated. These phages bound specifically to the TPR domain of HsPP5, although mutation studies produced no evidence that they bound to the domain's hsp90-binding groove. However, the most abundant family obtained in the initial screen had an aspartate residue at the C-terminus. Two members of this family with a C-terminal sequence of VD appeared to bind with approximately the same affinity as the hsp90 C-12 control. A second generation pseudo-random phage library produced a large number of phages with an LD C-terminus. These sequences acted as hsp70 analogues and had relatively low affinities for hsp90-specific TPR domains. Unfortunately, we failed to identify residues near hsp90's C-terminus that impart binding specificity to individual hsp90-TPR interactions. The results suggest that the C-terminal sequences of hsp70 and hsp90 act primarily as non-specific anchors for TPR proteins.

  13. Kale BoRACK1 is involved in the plant response to salt stress and Peronospora brassicae Gaumann.

    Science.gov (United States)

    Li, Da-Hong; Shen, Fu-Jia; Li, Hong-Yan; Li, Wei

    2017-06-01

    The receptor for activated C kinase 1 (RACK1) belongs to a protein subfamily containing a tryptophan-aspartic acid-domain (WD) repeat structure. Compelling evidence indicates that RACK1 can interact with many signal molecules and affect different signal transduction pathways. In this study, a kale (Brassica oleracea var. acephala f.tricolor) RACK1 gene (BoRACK1) was cloned by RT-PCR. The amino acid sequence of BoRACK1 had seven WD repeats in which there were typical GH (glycine-histidine) and WD dipeptides. Comparison with AtRACK1 from Arabidopsis revealed 87.1% identity at the amino acid level. Expression pattern analysis by RT-PCR showed that BoRACK1 was expressed in all analyzed tissues of kale and that its transcription in leaves was down-regulated by salt, abscisic acid, and H 2 O 2 at a high concentration. Overexpression of BoRACK1 in kale led to a reduction in symptoms caused by Peronospora brassicae Gaumann on kale leaves. The expression levels of the pathogenesis-related protein genes, PR-1 and PRB-1, increased 2.5-4-fold in transgenic kale, and reactive oxygen species production was more active than in the wild-type. They also exhibited increased tolerance to salt stress in seed germination. H 2 O 2 may also be involved in the regulation of BoRACK1 during seed germination under salt stress. Quantitative real-time PCR analyses showed that the transcript levels of BoRbohs genes were significantly higher in overexpression of BoRACK1 transgenic lines. Yeast two-hybrid assays showed that BoRACK1 could interact with WNK8, eIF6, RAR1, and SGT1. This study and previous work lead us to believe that BoRACK1 may form a complex with regulators of plant salt and disease resistance to coordinate kale reactions to pathogens. Copyright © 2017 Elsevier GmbH. All rights reserved.

  14. Capillary gel electrophoresis for the quantification and purity determination of recombinant proteins in inclusion bodies.

    Science.gov (United States)

    Espinosa-de la Garza, Carlos E; Perdomo-Abúndez, Francisco C; Campos-García, Víctor R; Pérez, Néstor O; Flores-Ortiz, Luis F; Medina-Rivero, Emilio

    2013-09-01

    In this work, a high-resolution CGE method for quantification and purity determination of recombinant proteins was developed, involving a single-component inclusion bodies (IBs) solubilization solution. Different recombinant proteins expressed as IBs were used to show method capabilities, using recombinant interferon-β 1b as the model protein for method validation. Method linearity was verified in the range from 0.05 to 0.40 mg/mL and a determination coefficient (r(2) ) of 0.99 was obtained. The LOQs and LODs were 0.018 and 0.006 mg/mL, respectively. RSD for protein content repeatability test was 2.29%. In addition, RSD for protein purity repeatability test was 4.24%. Method accuracy was higher than 90%. Specificity was confirmed, as the method was able to separate recombinant interferon-β 1b monomer from other aggregates and impurities. Sample content and purity was demonstrated to be stable for up to 48 h. Overall, this method is suitable for the analysis of recombinant proteins in IBs according to the attributes established on the International Conference for Harmonization guidelines. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Heat-shock protein 40 is the key farnesylation target in meristem size control, abscisic acid signaling, and drought resistance.

    Science.gov (United States)

    Barghetti, Andrea; Sjögren, Lars; Floris, Maïna; Paredes, Esther Botterweg; Wenkel, Stephan; Brodersen, Peter

    2017-11-15

    Protein farnesylation is central to molecular cell biology. In plants, protein farnesyl transferase mutants are pleiotropic and exhibit defective meristem organization, hypersensitivity to the hormone abscisic acid, and increased drought resistance. The precise functions of protein farnesylation in plants remain incompletely understood because few relevant farnesylated targets have been identified. Here, we show that defective farnesylation of a single factor-heat-shock protein 40 (HSP40), encoded by the J2 and J3 genes-is sufficient to confer ABA hypersensitivity, drought resistance, late flowering, and enlarged meristems, indicating that altered function of chaperone client proteins underlies most farnesyl transferase mutant phenotypes. We also show that expression of an abiotic stress-related microRNA (miRNA) regulon controlled by the transcription factor SPL7 requires HSP40 farnesylation. Expression of a truncated SPL7 form mimicking its activated proteolysis fragment of the membrane-bound SPL7 precursor partially restores accumulation of SPL7-dependent miRNAs in farnesyl transferase mutants. These results implicate the pathway directing SPL7 activation from its membrane-bound precursor as an important target of farnesylated HSP40, consistent with our demonstration that HSP40 farnesylation facilitates its membrane association. The results also suggest that altered gene regulation via select miRNAs contributes to abiotic stress-related phenotypes of farnesyl transferase mutants. © 2017 Barghetti et al.; Published by Cold Spring Harbor Laboratory Press.

  16. Effects of acute versus repeated cocaine exposure on the expression of endocannabinoid signaling-related proteins in the mouse cerebellum

    Directory of Open Access Journals (Sweden)

    Ana ePalomino

    2014-03-01

    Full Text Available Growing awareness of cerebellar involvement in addiction is based on the cerebellum’s intermediary position between motor and reward, potentially acting as an interface between motivational and cognitive functions. Here, we examined the impact of acute and repeated cocaine exposure on the two main signaling systems in the mouse cerebellum: the endocannabinoid (eCB and glutamate systems. To this end, we investigated whether eCB signaling-related gene and protein expression (CB1 receptors and enzymes that produce (DAGLα/β and NAPE-PLD and degrade (MAGL and FAAH eCB were altered. In addition, we analyzed the gene expression of relevant components of the glutamate signaling system (glutamate synthesizing enzymes LGA and KGA, mGluR3/5 metabotropic receptors, and NR1/2A/2B/2C-NMDA and GluR1/2/3/4-AMPA ionotropic receptor subunits and the gene expression of tyrosine hydroxylase (TH, the rate-limiting enzyme in catecholamine biosynthesis, because noradrenergic terminals innervate the cerebellar cortex. Results indicated that acute cocaine exposure decreased DAGLα expression, suggesting a down-regulation of 2-AG production, as well as gene expression of TH, KGA, mGluR3 and all ionotropic receptor subunits analyzed in the cerebellum. The acquisition of conditioned locomotion and sensitization after repeated cocaine exposure were associated with an increased NAPE-PLD/FAAH ratio, suggesting enhanced anandamide production, and a decreased DAGLβ/MAGL ratio, suggesting decreased 2-AG generation. Repeated cocaine also increased LGA gene expression but had no effect on glutamate receptors. These findings indicate that acute cocaine modulates the expression of the eCB and glutamate systems. Repeated cocaine results in normalization of glutamate receptor expression, although sustained changes in eCB is observed. We suggest that cocaine-induced alterations to cerebellar eCB should be considered when analyzing the adaptations imposed by psychostimulants that

  17. A Complex of Cas Proteins 5, 6, and 7 Is Required for the Biogenesis and Stability of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-derived RNAs (crRNAs) in Haloferax volcanii*

    Science.gov (United States)

    Brendel, Jutta; Stoll, Britta; Lange, Sita J.; Sharma, Kundan; Lenz, Christof; Stachler, Aris-Edda; Maier, Lisa-Katharina; Richter, Hagen; Nickel, Lisa; Schmitz, Ruth A.; Randau, Lennart; Allers, Thorsten; Urlaub, Henning; Backofen, Rolf; Marchfelder, Anita

    2014-01-01

    The clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR-Cas) system is a prokaryotic defense mechanism against foreign genetic elements. A plethora of CRISPR-Cas versions exist, with more than 40 different Cas protein families and several different molecular approaches to fight the invading DNA. One of the key players in the system is the CRISPR-derived RNA (crRNA), which directs the invader-degrading Cas protein complex to the invader. The CRISPR-Cas types I and III use the Cas6 protein to generate mature crRNAs. Here, we show that the Cas6 protein is necessary for crRNA production but that additional Cas proteins that form a CRISPR-associated complex for antiviral defense (Cascade)-like complex are needed for crRNA stability in the CRISPR-Cas type I-B system in Haloferax volcanii in vivo. Deletion of the cas6 gene results in the loss of mature crRNAs and interference. However, cells that have the complete cas gene cluster (cas1–8b) removed and are transformed with the cas6 gene are not able to produce and stably maintain mature crRNAs. crRNA production and stability is rescued only if cas5, -6, and -7 are present. Mutational analysis of the cas6 gene reveals three amino acids (His-41, Gly-256, and Gly-258) that are essential for pre-crRNA cleavage, whereas the mutation of two amino acids (Ser-115 and Ser-224) leads to an increase of crRNA amounts. This is the first systematic in vivo analysis of Cas6 protein variants. In addition, we show that the H. volcanii I-B system contains a Cascade-like complex with a Cas7, Cas5, and Cas6 core that protects the crRNA. PMID:24459147

  18. RPA-Mediated Recruitment of the E3 Ligase RFWD3 Is Vital for Interstrand Crosslink Repair and Human Health.

    Science.gov (United States)

    Feeney, Laura; Muñoz, Ivan M; Lachaud, Christophe; Toth, Rachel; Appleton, Paul L; Schindler, Detlev; Rouse, John

    2017-06-01

    Defects in the repair of DNA interstrand crosslinks (ICLs) are associated with the genome instability syndrome Fanconi anemia (FA). Here we report that cells with mutations in RFWD3, an E3 ubiquitin ligase that interacts with and ubiquitylates replication protein A (RPA), show profound defects in ICL repair. An amino acid substitution in the WD40 repeats of RFWD3 (I639K) found in a new FA subtype abolishes interaction of RFWD3 with RPA, thereby preventing RFWD3 recruitment to sites of ICL-induced replication fork stalling. Moreover, single point mutations in the RPA32 subunit of RPA that abolish interaction with RFWD3 also inhibit ICL repair, demonstrating that RPA-mediated RFWD3 recruitment to stalled replication forks is important for ICL repair. We also report that unloading of RPA from sites of ICL induction is perturbed in RFWD3-deficient cells. These data reveal important roles for RFWD3 localization in protecting genome stability and preserving human health. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. YKL-40, a mammalian member of the chitinase family, is a matrix protein of specific granules in human neutrophils

    DEFF Research Database (Denmark)

    Volck, B; Price, P A; Johansen, J S

    1998-01-01

    YKL-40, also called human cartilage glycoprotein-39 (HC gp-39), is a member of family 18 glycosyl hydrolases. YKL-40 is secreted by chondrocytes, synovial cells, and macrophages, and recently it has been reported that YKL-40 has a role as an autoantigen in rheumatoid arthritis (RA). The function...... of patients with RA, and the cells are assumed to play a role in joint destruction in that disorder. Therefore, we examined whether neutrophils are a source of YKL-40. YKL-40 was found to colocalize and comobilize with lactoferrin (the most abundant protein of specific granules) but not with gelatinase...... YKL-40 at the myelocyte-metamyelocyte stage, the stage of maturation at which other specific granule proteins are formed. Assuming that YKL-40 has a role as an autoantigen in RA by inducing T cell-mediated autoimmune response, YKL-40 released from neutrophils in the inflamed joint could be essential...

  20. Structure and dynamics of Ebola virus matrix protein VP40 by a coarse-grained Monte Carlo simulation

    Science.gov (United States)

    Pandey, Ras; Farmer, Barry

    Ebola virus matrix protein VP40 (consisting of 326 residues) plays a critical role in viral assembly and its functions such as regulation of viral transcription, packaging, and budding of mature virions into the plasma membrane of infected cells. How does the protein VP40 go through structural evolution during the viral life cycle remains an open question? Using a coarse-grained Monte Carlo simulation we investigate the structural evolution of VP40 as a function of temperature with the input of a knowledge-based residue-residue interaction. A number local and global physical quantities (e.g. mobility profile, contact map, radius of gyration, structure factor) are analyzed with our large-scale simulations. Our preliminary data show that the structure of the protein evolves through different state with well-defined morphologies which can be identified and quantified via a detailed analysis of structure factor.

  1. Application of MRIL-WD (Magnetic Resonance Imaging Logging While Drilling) for irreducible water saturation, total reservoir, free-fluid, bound-fluid porosity measurements and its value for the petrophysical analysis of RT/RM data from the Shah Deniz well

    Science.gov (United States)

    Amirov, Elnur

    2016-04-01

    Sperry-Sun (Sperry Drilling Services) is the leader in MWD/LWD reliability, has developed the industry's first LWD NMR/MRIL-WD (nuclear magnetic resonance) tool. The MRIL-WD (magnetic resonance imaging logging-while-drilling) service directly measures the T1 component of hydrogen in subsurface rock units while drilling to obtain total reservoir porosity and to dissect the observed total porosity into its respective components of free fluid and bound fluid porosity. These T1 data are used to secure accurate total, free-fluid, capillary-bound water, and clay-bound water porosity of the reservoir sections which can be drilled in the several Runs. Over the last decade, results from Magnetic Resonance Imaging logs (NMR) have added significant value to petrophysical analysis and understanding by providing total, free-fluid and bound-fluid porosities, combined with fluid typing capabilities. With MRIL-WD very valuable Real-Time or Recorded Memory data/information is now available during or shortly after the drilling operation (formation properties measurement can be taken right after a drill bit penetration), while trip in and trip out as well. A key point in utilizing MRIL in an LWD environment is motion-tolerant measurements. Recent MRIL-WD logging runs from the Shah Deniz wells located in the Khazarian-Caspian Sea of the Azerbaijan Republic helped to delineate and assess hydrocarbon bearing zones. Acquired results demonstrate how MRIL data can be acquired while-drilling and provide reliable/high quality measurements. Magnetic Resonance Imaging logs at some developments wells have become a cornerstone in formation evaluation and petrophysical understanding. By providing total, free-fluid, and bound-fluid porosities together with fluid typing, MRIL results have significantly added to the assessment of reservoirs. In order to reduce NPT (Non-Productive Time) and save the rig operations time, there is always the desire to obtain logging results as soon as possible

  2. Heat shock protein (Hsp) 40 mutants inhibit Hsp70 in mammalian cells

    NARCIS (Netherlands)

    Michels, AA; Kanon, B; Bensaude, O; Kampinga, HH

    1999-01-01

    Heat shock protein (Hsp) 70 and Hsp40 expressed in mammalian cells had been previously shown to cooperate in accelerating the reactivation of heat-denatured firefly luciferase (Michels, A. A., Kanon, B., Konings, A. W. T., Ohtsuka, K,, Bensaude, O., and Kampinga, H. H. (1997) J. Biol. Chem. 272,

  3. 40 CFR 174.512 - Coat Protein of Potato Virus Y; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Coat Protein of Potato Virus Y...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.512 Coat Protein of Potato Virus Y; exemption from the requirement of a tolerance. Residues of Coat Protein of Potato Virus Y are exempt from...

  4. [open quotes]Cryptic[close quotes] repeating triplets of purines and pyrimidines (cRRY(i)) are frequent and polymorphic: Analysis of coding cRRY(i) in the proopiomelanocortin (POMC) and TATA-binding protein (TBP) genes

    Energy Technology Data Exchange (ETDEWEB)

    Gostout, B.; Qiang Liu; Sommer, S.S. (Mayo Clinic/Foundation, Rochester, MN (United States))

    1993-06-01

    Triplets of the form of purine, purine, pyrimidine (RRY(i)) are enhanced in frequency in the genomes of primates, rodents, and bacteria. Some RRY(i) are [open quotes]cryptic[close quotes] repeats (cRRY(i)) in which no one tandem run of a trinucleotide predominates. A search of human GenBank sequence revealed that the sequences of cRRY(i) are highly nonrandom. Three randomly chosen human cRRY(i) were sequenced in search of polymorphic alleles. Multiple polymorphic alleles were found in cRRY(i) in the coding regions of the genes for proopiomelanocortin (POMC) and TATA-binding protein (TBP). The highly polymorphic TBP cRRY(i) was characterized in detail. Direct sequencing of 157 unrelated human alleles demonstrated the presence of 20 different alleles which resulted in 29--40 consecutive glutamines in the amino-terminal region of TBP. These alleles are differently distributed among the races. PCR was used to screen 1,846 additional alleles in order to characterize more fully the range of variation in the population. Three additional alleles were discovered, but there was no example of a substantial sequence amplification as is seen in the repeat sequences associated with X-linked spinal and bulbar muscular atrophy, myotonic dystrophy, or the fragile-X syndrome. The structure of the TBP cRRY(i) is conserved in the five monkey species examined. In the chimpanzee, examination of four individuals revealed that the cRRY(i) was highly polymorphic, but the pattern of polymorphism differed from that in humans. The TBP cRRY(i) displays both similarities with and differences from the previously described RRY(i) in the coding sequence of the androgen receptor. The data suggest how simple tandem repeats could evolve from cryptic repeats. 18 refs., 3 figs., 6 tabs.

  5. Effects of short-term Western diet on cerebral oxidative stress and diabetes related factors in APP x PS1 knock-in mice.

    Science.gov (United States)

    Studzinski, Christa M; Li, Feng; Bruce-Keller, Annadora J; Fernandez-Kim, Sun Ok; Zhang, Le; Weidner, Adam M; Markesbery, William R; Murphy, M Paul; Keller, Jeffrey N

    2009-02-01

    A chronic high fat Western diet (WD) promotes a variety of morbidity factors although experimental evidence for short-term WD mediating brain dysfunction remains to be elucidated. The amyloid precursor protein and presenilin-1 (APP x PS1) knock-in mouse model has been demonstrated to recapitulate some key features of Alzheimer's disease pathology, including amyloid-beta (Abeta) pathogenesis. In this study, we placed 1-month-old APP x PS1 mice and non-transgenic littermates on a WD for 4 weeks. The WD resulted in a significant elevation in protein oxidation and lipid peroxidation in the brain of APP x PS1 mice relative to non-transgenic littermates, which occurred in the absence of increased Abeta levels. Altered adipokine levels were also observed in APP x PS1 mice placed on a short-term WD, relative to non-transgenic littermates. Taken together, these data indicate that short-term WD is sufficient to selectively promote cerebral oxidative stress and metabolic disturbances in APP x PS1 knock-in mice, with increased oxidative stress preceding alterations in Abeta. These data have important implications for understanding how WD may potentially contribute to brain dysfunction and the development of neurodegenerative disorders such as Alzheimer's disease.

  6. 40 CFR 174.531 - Coat protein of plum pox virus; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Coat protein of plum pox virus...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.531 Coat protein of plum pox virus; exemption from the requirement of a tolerance. Residues of the coat protein of plum pox virus in or on the...

  7. Oxidative stress adaptation with acute, chronic, and repeated stress.

    Science.gov (United States)

    Pickering, Andrew M; Vojtovich, Lesya; Tower, John; A Davies, Kelvin J

    2013-02-01

    Oxidative stress adaptation, or hormesis, is an important mechanism by which cells and organisms respond to, and cope with, environmental and physiological shifts in the level of oxidative stress. Most studies of oxidative stress adaption have been limited to adaptation induced by acute stress. In contrast, many if not most environmental and physiological stresses are either repeated or chronic. In this study we find that both cultured mammalian cells and the fruit fly Drosophila melanogaster are capable of adapting to chronic or repeated stress by upregulating protective systems, such as their proteasomal proteolytic capacity to remove oxidized proteins. Repeated stress adaptation resulted in significant extension of adaptive responses. Repeated stresses must occur at sufficiently long intervals, however (12-h or more for MEF cells and 7 days or more for flies), for adaptation to be successful, and the levels of both repeated and chronic stress must be lower than is optimal for adaptation to acute stress. Regrettably, regimens of adaptation to both repeated and chronic stress that were successful for short-term survival in Drosophila nevertheless also caused significant reductions in life span for the flies. Thus, although both repeated and chronic stress can be tolerated, they may result in a shorter life. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Hsp40s specify functions of Hsp104 and Hsp90 protein chaperone machines.

    Directory of Open Access Journals (Sweden)

    Michael Reidy

    2014-10-01

    Full Text Available Hsp100 family chaperones of microorganisms and plants cooperate with the Hsp70/Hsp40/NEF system to resolubilize and reactivate stress-denatured proteins. In yeast this machinery also promotes propagation of prions by fragmenting prion polymers. We previously showed the bacterial Hsp100 machinery cooperates with the yeast Hsp40 Ydj1 to support yeast thermotolerance and with the yeast Hsp40 Sis1 to propagate [PSI+] prions. Here we find these Hsp40s similarly directed specific activities of the yeast Hsp104-based machinery. By assessing the ability of Ydj1-Sis1 hybrid proteins to complement Ydj1 and Sis1 functions we show their C-terminal substrate-binding domains determined distinctions in these and other cellular functions of Ydj1 and Sis1. We find propagation of [URE3] prions was acutely sensitive to alterations in Sis1 activity, while that of [PIN+] prions was less sensitive than [URE3], but more sensitive than [PSI+]. These findings support the ideas that overexpressing Ydj1 cures [URE3] by competing with Sis1 for interaction with the Hsp104-based disaggregation machine, and that different prions rely differently on activity of this machinery, which can explain the various ways they respond to alterations in chaperone function.

  9. Computational study of the human dystrophin repeats: interaction properties and molecular dynamics.

    Directory of Open Access Journals (Sweden)

    Baptiste Legrand

    Full Text Available Dystrophin is a large protein involved in the rare genetic disease Duchenne muscular dystrophy (DMD. It functions as a mechanical linker between the cytoskeleton and the sarcolemma, and is able to resist shear stresses during muscle activity. In all, 75% of the dystrophin molecule consists of a large central rod domain made up of 24 repeat units that share high structural homology with spectrin-like repeats. However, in the absence of any high-resolution structure of these repeats, the molecular basis of dystrophin central domain's functions has not yet been deciphered. In this context, we have performed a computational study of the whole dystrophin central rod domain based on the rational homology modeling of successive and overlapping tandem repeats and the analysis of their surface properties. Each tandem repeat has very specific surface properties that make it unique. However, the repeats share enough electrostatic-surface similarities to be grouped into four separate clusters. Molecular dynamics simulations of four representative tandem repeats reveal specific flexibility or bending properties depending on the repeat sequence. We thus suggest that the dystrophin central rod domain is constituted of seven biologically relevant sub-domains. Our results provide evidence for the role of the dystrophin central rod domain as a scaffold platform with a wide range of surface features and biophysical properties allowing it to interact with its various known partners such as proteins and membrane lipids. This new integrative view is strongly supported by the previous experimental works that investigated the isolated domains and the observed heterogeneity of the severity of dystrophin related pathologies, especially Becker muscular dystrophy.

  10. Crystal structure of LGR4-Rspo1 complex: insights into the divergent mechanisms of ligand recognition by leucine-rich repeat G-protein-coupled receptors (LGRs).

    Science.gov (United States)

    Xu, Jin-Gen; Huang, Chunfeng; Yang, Zhengfeng; Jin, Mengmeng; Fu, Panhan; Zhang, Ni; Luo, Jian; Li, Dali; Liu, Mingyao; Zhou, Yan; Zhu, Yongqun

    2015-01-23

    Leucine-rich repeat G-protein-coupled receptors (LGRs) are a unique class of G-protein-coupled receptors characterized by a large extracellular domain to recognize ligands and regulate many important developmental processes. Among the three groups of LGRs, group B members (LGR4-6) recognize R-spondin family proteins (Rspo1-4) to stimulate Wnt signaling. In this study, we successfully utilized the "hybrid leucine-rich repeat technique," which fused LGR4 with the hagfish VLR protein, to obtain two recombinant human LGR4 proteins, LGR415 and LGR49. We determined the crystal structures of ligand-free LGR415 and the LGR49-Rspo1 complex. LGR4 exhibits a twisted horseshoe-like structure. Rspo1 adopts a flat and β-fold architecture and is bound in the concave surface of LGR4 in the complex through electrostatic and hydrophobic interactions. All the Rspo1-binding residues are conserved in LGR4-6, suggesting that LGR4-6 bind R-spondins through an identical surface. Structural analysis of our LGR4-Rspo1 complex with the previously determined LGR4 and LGR5 structures revealed that the concave surface of LGR4 is the sole binding site for R-spondins, suggesting a one-site binding model of LGR4-6 in ligand recognition. The molecular mechanism of LGR4-6 is distinct from the two-step mechanism of group A receptors LGR1-3 and the multiple-interface binding model of group C receptors LGR7-8, suggesting LGRs utilize the divergent mechanisms for ligand recognition. Our structures, together with previous reports, provide a comprehensive understanding of the ligand recognition by LGRs. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. The proliferation marker pKi-67 becomes masked to MIB-1 staining after expression of its tandem repeats.

    Science.gov (United States)

    Schmidt, Mirko H H; Broll, Rainer; Bruch, Hans-Peter; Duchrow, Michael

    2002-11-01

    The Ki-67 antigen, pKi-67, is one of the most commonly used markers of proliferating cells. The protein can only be detected in dividing cells (G(1)-, S-, G(2)-, and M-phase) but not in quiescent cells (G(0)). The standard antibody to detect pKi-67 is MIB-1, which detects the so-called 'Ki-67 motif' FKELF in 9 of the protein's 16 tandem repeats. To investigate the function of these repeats we expressed three of them in an inducible gene expression system in HeLa cells. Surprisingly, addition of a nuclear localization sequence led to a complete absence of signal in the nuclei of MIB-1-stained cells. At the same time antibodies directed against different epitopes of pKi-67 did not fail to detect the protein. We conclude that the overexpression of the 'Ki-67 motif', which is present in the repeats, can lead to inability of MIB-1 to detect its antigen as demonstrated in adenocarcinoma tissue samples. Thereafter, in order to prevent the underestimation of Ki-67 proliferation indices in MIB-1-labeled preparations, additional antibodies (for example, MIB-21) should be used. Additionally, we could show in a mammalian two-hybrid assay that recombinant pKi-67 repeats are capable of self-associating with endogenous pKi-67. Speculating that the tandem repeats are intimately involved in its protein-protein interactions, this offers new insights in how access to these repeats is regulated by pKi-67 itself.

  12. Arabidopsis Tic40 expression in tobacco chloroplasts results in massive proliferation of the inner envelope membrane and upregulation of associated proteins.

    Science.gov (United States)

    Singh, Nameirakpam Dolendro; Li, Ming; Lee, Sueng-Bum; Schnell, Danny; Daniell, Henry

    2008-12-01

    The chloroplast inner envelope membrane (IM) plays essential roles in lipid synthesis, metabolite transport, and cellular signaling in plants. We have targeted a model nucleus-encoded IM protein from Arabidopsis thaliana, pre-Tic40-His, by relocating its expression from the nucleus to the chloroplast genome. Pre-Tic40-His was properly targeted, processed, and inserted. It attained correct topology and was folded and assembled into a TIC complex, where it accounted for up to 15% of the total chloroplast protein. These results confirm the existence of a novel pathway for protein targeting to the IM. Tic40-His overexpression resulted in a massive proliferation of the IM (up to 19 layers in electron micrographs) without significant effects on plant growth or reproduction. Consistent with IM proliferation, the expression levels of other endogenous IM proteins (IEP37, PPT, Tic110) were significantly (10-fold) upregulated but those of outer envelope membrane (Toc159), stromal (hsp93, cpn60), or thylakoid (LHCP, OE23) proteins were not increased, suggesting retrograde signal transduction between chloroplast and nuclear genomes to increase lipid and protein components for accommodation of increased accumulation of Tic40. This study opens the door for understanding the regulation of membrane biogenesis within the organelle and the utilization of transgenic chloroplasts as bioreactors for hyperaccumulation of membrane proteins for biotechnological applications.

  13. A comparative in-silico analysis of autophagy proteins in ciliates

    Directory of Open Access Journals (Sweden)

    Erhan Aslan

    2017-01-01

    Full Text Available Autophagy serves as a turnover mechanism for the recycling of redundant and/or damaged macromolecules present in eukaryotic cells to re-use them under starvation conditions via a double-membrane structure known as autophagosome. A set of eukaryotic genes called autophagy-related genes (ATGs orchestrate this highly elaborative process. The existence of these genes and the role they play in different eukaryotes are well-characterized. However, little is known of their role in some eukaryotes such as ciliates. Here, we report the computational analyses of ATG genes in five ciliate genomes to understand their diversity. Our results show that Oxytricha trifallax is the sole ciliate which has a conserved Atg12 conjugation system (Atg5-Atg12-Atg16. Interestingly, Oxytricha Atg16 protein includes WD repeats in addition to its N-terminal Atg16 domain as is the case in multicellular organisms. Additionally, phylogenetic analyses revealed that E2-like conjugating protein Atg10 is only present in Tetrahymena thermophila. We fail to find critical autophagy components Atg5, Atg7 and Atg8 in the parasitic ciliate Ichthyophthirius multifiliis. Contrary to previous reports, we also find that ciliate genomes do not encode typical Atg1 since all the candidate sequences lack an Atg1-specific C-terminal domain which is essential for Atg1 complex formation. Consistent with the absence of Atg1, ciliates also lack other members of the Atg1 complex. However, the presence of Atg6 in all ciliates examined here may rise the possibility that autophagosome formation could be operated through Atg6 in ciliates, since Atg6 has been shown as an alternative autophagy inducer. In conclusion, our results highlight that Atg proteins are partially conserved in ciliates. This may provide a better understanding for the autophagic destruction of the parental macronucleus, a developmental process also known as programmed nuclear death in ciliates.

  14. Muscarinic agonists and phorbol esters increase tyrosine phosphorylation of a 40-kilodalton protein in hippocampal slices

    International Nuclear Information System (INIS)

    Stratton, K.R.; Worley, P.F.; Huganir, R.L.; Baraban, J.M.

    1989-01-01

    The authors have used the hippocampal slice preparation to investigate the regulation of protein tyrosine phosphorylation in brain. After pharmacological treatment of intact slices, proteins were separated by electrophoresis, and levels of protein tyrosine phosphorylation were assessed by immunoblotting with specific anti-phosphotyrosine antibodies. Phorbol esters, activators of the serine- and threonine-phosphorylating enzyme protein kinase C, selectively increase tyrosine phosphorylation of a soluble protein with an apparent molecular mass of approximately 40 kilodaltons. Muscarinic agonists such as carbachol and oxotremorine M that strongly activate the inositol phospholipid system also increase tyrosine phosphorylation of this protein. Neurotransmitter activation of the inositol phospholipid system and protein kinase C appears to trigger a cascade leading to increased tyrosine phosphorylation

  15. Actin-interacting Protein 1 Promotes Disassembly of Actin-depolymerizing Factor/Cofilin-bound Actin Filaments in a pH-dependent Manner.

    Science.gov (United States)

    Nomura, Kazumi; Hayakawa, Kimihide; Tatsumi, Hitoshi; Ono, Shoichiro

    2016-03-04

    Actin-interacting protein 1 (AIP1) is a conserved WD repeat protein that promotes disassembly of actin filaments when actin-depolymerizing factor (ADF)/cofilin is present. Although AIP1 is known to be essential for a number of cellular events involving dynamic rearrangement of the actin cytoskeleton, the regulatory mechanism of the function of AIP1 is unknown. In this study, we report that two AIP1 isoforms from the nematode Caenorhabditis elegans, known as UNC-78 and AIPL-1, are pH-sensitive in enhancement of actin filament disassembly. Both AIP1 isoforms only weakly enhance disassembly of ADF/cofilin-bound actin filaments at an acidic pH but show stronger disassembly activity at neutral and basic pH values. However, a severing-defective mutant of UNC-78 shows pH-insensitive binding to ADF/cofilin-decorated actin filaments, suggesting that the process of filament severing or disassembly, but not filament binding, is pH-dependent. His-60 of AIP1 is located near the predicted binding surface for the ADF/cofilin-actin complex, and an H60K mutation of AIP1 partially impairs its pH sensitivity, suggesting that His-60 is involved in the pH sensor for AIP1. These biochemical results suggest that pH-dependent changes in AIP1 activity might be a novel regulatory mechanism of actin filament dynamics. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Group B streptococcal serine-rich repeat proteins promote interaction with fibrinogen and vaginal colonization.

    Science.gov (United States)

    Wang, Nai-Yu; Patras, Kathryn A; Seo, Ho Seong; Cavaco, Courtney K; Rösler, Berenice; Neely, Melody N; Sullam, Paul M; Doran, Kelly S

    2014-09-15

    Group B streptococcus (GBS) can cause severe disease in susceptible hosts, including newborns, pregnant women, and the elderly. GBS serine-rich repeat (Srr) surface glycoproteins are important adhesins/invasins in multiple host tissues, including the vagina. However, exact molecular mechanisms contributing to their importance in colonization are unknown. We have recently determined that Srr proteins contain a fibrinogen-binding region (BR) and hypothesize that Srr-mediated fibrinogen binding may contribute to GBS cervicovaginal colonization. In this study, we observed that fibrinogen enhanced wild-type GBS attachment to cervical and vaginal epithelium, and that this was dependent on Srr1. Moreover, purified Srr1-BR peptide bound directly to host cells, and peptide administration in vivo reduced GBS recovery from the vaginal tract. Furthermore, a GBS mutant strain lacking only the Srr1 "latching" domain exhibited decreased adherence in vitro and decreased persistence in a mouse model of GBS vaginal colonization, suggesting the importance of Srr-fibrinogen interactions in the female reproductive tract. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Were protein internal repeats formed by "bricolage"?

    Science.gov (United States)

    Lavorgna, G; Patthy, L; Boncinelli, E

    2001-03-01

    Is evolution an engineer, or is it a tinkerer--a "bricoleur"--building up complex molecules in organisms by increasing and adapting the materials at hand? An analysis of completely sequenced genomes suggests the latter, showing that increasing repetition of modules within the proteins encoded by these genomes is correlated with increasing complexity of the organism.

  18. Interaction of Prevotella intermedia strain 17 leucine-rich repeat domain protein AdpF with eukaryotic cells promotes bacterial internalization.

    Science.gov (United States)

    Sengupta, Dipanwita; Kang, Dae-Joong; Anaya-Bergman, Cecilia; Wyant, Tiana; Ghosh, Arnab K; Miyazaki, Hiroshi; Lewis, Janina P

    2014-06-01

    Prevotella intermedia is an oral bacterium implicated in a variety of oral diseases. Although internalization of this bacterium by nonphagocytic host cells is well established, the molecular players mediating the process are not well known. Here, the properties of a leucine-rich repeat (LRR) domain protein, designated AdpF, are described. This protein contains a leucine-rich region composed of 663 amino acid residues, and molecular modeling shows that it folds into a classical curved solenoid structure. The cell surface localization of recombinant AdpF (rAdpF) was confirmed by electron and confocal microscopy analyses. The recombinant form of this protein bound fibronectin in a dose-dependent manner. Furthermore, the protein was internalized by host cells, with the majority of the process accomplished within 30 min. The internalization of rAdpF was inhibited by nystatin, cytochalasin, latrunculin, nocodazole, and wortmannin, indicating that microtubules, microfilaments, and signal transduction are required for the invasion. It is noteworthy that preincubation of eukaryotic cells with AdpF increased P. intermedia 17 internalization by 5- and 10-fold for HeLa and NIH 3T3 fibroblast cell lines, respectively. The addition of the rAdpF protein was also very effective in inducing bacterial internalization into the oral epithelial cell line HN4, as well as into primary cells, including human oral keratinocytes (HOKs) and human umbilical vein endothelial cells (HUVECs). Finally, cells exposed to P. intermedia 17 internalized the bacteria more readily upon reinfection. Taken together, our data demonstrate that rAdpF plays a role in the internalization of P. intermedia 17 by a variety of host cells.

  19. Double-stranded endonuclease activity in Bacillus halodurans clustered regularly interspaced short palindromic repeats (CRISPR)-associated Cas2 protein.

    Science.gov (United States)

    Nam, Ki Hyun; Ding, Fran; Haitjema, Charles; Huang, Qingqiu; DeLisa, Matthew P; Ke, Ailong

    2012-10-19

    The CRISPR (clustered regularly interspaced short palindromic repeats) system is a prokaryotic RNA-based adaptive immune system against extrachromosomal genetic elements. Cas2 is a universally conserved core CRISPR-associated protein required for the acquisition of new spacers for CRISPR adaptation. It was previously characterized as an endoribonuclease with preference for single-stranded (ss)RNA. Here, we show using crystallography, mutagenesis, and isothermal titration calorimetry that the Bacillus halodurans Cas2 (Bha_Cas2) from the subtype I-C/Dvulg CRISPR instead possesses metal-dependent endonuclease activity against double-stranded (ds)DNA. This activity is consistent with its putative function in producing new spacers for insertion into the 5'-end of the CRISPR locus. Mutagenesis and isothermal titration calorimetry studies revealed that a single divalent metal ion (Mg(2+) or Mn(2+)), coordinated by a symmetric Asp pair in the Bha_Cas2 dimer, is involved in the catalysis. We envision that a pH-dependent conformational change switches Cas2 into a metal-binding competent conformation for catalysis. We further propose that the distinct substrate preferences among Cas2 proteins may be determined by the sequence and structure in the β1-α1 loop.

  20. Repeated measures of body mass index and C-reactive protein in relation to all-cause mortality and cardiovascular disease

    DEFF Research Database (Denmark)

    O'Doherty, Mark G; Jørgensen, Torben; Borglykke, Anders

    2014-01-01

    Obesity has been linked with elevated levels of C-reactive protein (CRP), and both have been associated with increased risk of mortality and cardiovascular disease (CVD). Previous studies have used a single 'baseline' measurement and such analyses cannot account for possible changes in these which...... may lead to a biased estimation of risk. Using four cohorts from CHANCES which had repeated measures in participants 50 years and older, multivariate time-dependent Cox proportional hazards was used to estimate hazard ratios (HR) and 95 % confidence intervals (CI) to examine the relationship between......, they may participate in distinct/independent pathways. Accounting for independent changes in risk factors over time may be crucial for unveiling their effects on mortality and disease morbidity....

  1. Usefulness of vitamin A binding protein as a marker for capillary endothelial permeability

    Energy Technology Data Exchange (ETDEWEB)

    Ishizaka, Akitoshi; Suzuki, Yukio; Kanazawa, Minoru; Kubo, Atsushi; Kawashiro, Takeo [Keio Univ., Tokyo (Japan). School of Medicine

    1992-06-01

    We performed a preliminary study to assess the usefulness of Vitamin A binding protein (VABP) as a gamma-camera marker for capillary endothelial permeability. We used a guinea pig model of endotoxin (LPS) induced acute lung injury. We calculated the concentration ratio of either {sup 125}I-albumin or {sup 125}I-VABP in lung tissue to that in plasma (tissue plasma ratio; T/P) as a parameter of capillary endothelial permeability. {sup 99m}Tc-diethylene triamine pentaacetic acid (DTPA) was used as marker for pulmonary interstitial volume. We estimated wet to dry lung weight ratio as a parameter of lung water accumulation (W/D). LPS increased the T/P of {sup 125}I-albumin and W/D, suggesting the development of permeability edema. The T/P for {sup 125}I-VABP was also increased, indicating that {sup 125}I-VABP can be used to detect elevated capillary endothelial permeability. In both groups, LPS and saline, the T/P was higher for {sup 125}I-VABP than for {sup 125}I-albumin. These data suggest that the pulmonary capillary endothelium is more permeable to VABP than albumin. (author).

  2. 40 CFR 1065.525 - Engine starting, restarting, shutdown, and optional repeating of void discrete modes.

    Science.gov (United States)

    2010-07-01

    ..., and optional repeating of void discrete modes. 1065.525 Section 1065.525 Protection of Environment... repeating of void discrete modes. (a) Start the engine using one of the following methods: (1) Start the... during one of the modes of a discrete-mode test, you may void the results only for that individual mode...

  3. NMR Analysis of Amide Hydrogen Exchange Rates in a Pentapeptide-Repeat Protein from A. thaliana.

    Science.gov (United States)

    Xu, Shenyuan; Ni, Shuisong; Kennedy, Michael A

    2017-05-23

    At2g44920 from Arabidopsis thaliana is a pentapeptide-repeat protein (PRP) composed of 25 repeats capped by N- and C-terminal α-helices. PRP structures are dominated by four-sided right-handed β-helices typically consisting of mixtures of type II and type IV β-turns. PRPs adopt repeated five-residue (Rfr) folds with an Rfr consensus sequence (STAV)(D/N)(L/F)(S/T/R)(X). Unlike other PRPs, At2g44920 consists exclusively of type II β-turns. At2g44920 is predicted to be located in the thylakoid lumen although its biochemical function remains unknown. Given its unusual structure, we investigated the biophysical properties of At2g44920 as a representative of the β-helix family to determine if it had exceptional global stability, backbone dynamics, or amide hydrogen exchange rates. Circular dichroism measurements yielded a melting point of 62.8°C, indicating unexceptional global thermal stability. Nuclear spin relaxation measurements indicated that the Rfr-fold core was rigid with order parameters ranging from 0.7 to 0.9. At2g44920 exhibited a striking range of amide hydrogen exchange rates spanning 10 orders of magnitude, with lifetimes ranging from minutes to several months. A weak correlation was found among hydrogen exchange rates, hydrogen bonding energies, and amino acid solvent-accessible areas. Analysis of contributions from fast (approximately picosecond to nanosecond) backbone dynamics to amide hydrogen exchange rates revealed that the average order parameter of amides undergoing fast exchange was significantly smaller compared to those undergoing slow exchange. Importantly, the activation energies for amide hydrogen exchange were found to be generally higher for the slowest exchanging amides in the central Rfr coil and decreased toward the terminal coils. This could be explained by assuming that the concerted motions of two preceding or following coils required for hydrogen bond disruption and amide hydrogen exchange have a higher activation energy

  4. Structure of filamin A immunoglobulin-like repeat 10 from Homo sapiens

    International Nuclear Information System (INIS)

    Page, Richard C.; Clark, Jeffrey G.; Misra, Saurav

    2011-01-01

    The structure of immunoglobulin-like repeat 10 from human filamin A solved at 2.44 Å resolution suggests the potential effects of mutations correlated with otopalatodigital syndrome spectrum disorders. Filamin A (FlnA) plays a critical role in cytoskeletal organization, cell motility and cellular signaling. FlnA utilizes different binding sites on a series of 24 immunoglobulin-like domains (Ig repeats) to interact with diverse cytosolic proteins and with cytoplasmic portions of membrane proteins. Mutations in a specific domain, Ig10 (FlnA-Ig10), are correlated with two severe forms of the otopalatodigital syndrome spectrum disorders Melnick–Needles syndrome and frontometaphyseal dysplasia. The crystal structure of FlnA-Ig10 determined at 2.44 Å resolution provides insight into the perturbations caused by these mutations

  5. A versatile palindromic amphipathic repeat coding sequence horizontally distributed among diverse bacterial and eucaryotic microbes

    Directory of Open Access Journals (Sweden)

    Glass John I

    2010-07-01

    Full Text Available Abstract Background Intragenic tandem repeats occur throughout all domains of life and impart functional and structural variability to diverse translation products. Repeat proteins confer distinctive surface phenotypes to many unicellular organisms, including those with minimal genomes such as the wall-less bacterial monoderms, Mollicutes. One such repeat pattern in this clade is distributed in a manner suggesting its exchange by horizontal gene transfer (HGT. Expanding genome sequence databases reveal the pattern in a widening range of bacteria, and recently among eucaryotic microbes. We examined the genomic flux and consequences of the motif by determining its distribution, predicted structural features and association with membrane-targeted proteins. Results Using a refined hidden Markov model, we document a 25-residue protein sequence motif tandemly arrayed in variable-number repeats in ORFs lacking assigned functions. It appears sporadically in unicellular microbes from disparate bacterial and eucaryotic clades, representing diverse lifestyles and ecological niches that include host parasitic, marine and extreme environments. Tracts of the repeats predict a malleable configuration of recurring domains, with conserved hydrophobic residues forming an amphipathic secondary structure in which hydrophilic residues endow extensive sequence variation. Many ORFs with these domains also have membrane-targeting sequences that predict assorted topologies; others may comprise reservoirs of sequence variants. We demonstrate expressed variants among surface lipoproteins that distinguish closely related animal pathogens belonging to a subgroup of the Mollicutes. DNA sequences encoding the tandem domains display dyad symmetry. Moreover, in some taxa the domains occur in ORFs selectively associated with mobile elements. These features, a punctate phylogenetic distribution, and different patterns of dispersal in genomes of related taxa, suggest that the

  6. Does Dry Eye Affect Repeatability of Corneal Topography Measurements?

    Directory of Open Access Journals (Sweden)

    Aysun Şanal Doğan

    2018-04-01

    Full Text Available Objectives: The purpose of this study was to assess the repeatability of corneal topography measurements in dry eye patients and healthy controls. Materials and Methods: Participants underwent consecutive corneal topography measurements (Sirius; Costruzione Strumenti Oftalmici, Florence, Italy. Two images with acquisition quality higher than 90% were accepted. The following parameters were evaluated: minimum and central corneal thickness, aqueous depth, apex curvature, anterior chamber volume, horizontal anterior chamber diameter, iridocorneal angle, cornea volume, and average simulated keratometry. Repeatability was assessed by calculating intra-class correlation coefficient. Results: Thirty-three patients with dry eye syndrome and 40 healthy controls were enrolled to the study. The groups were similar in terms of age (39 [18-65] vs. 30.5 [18-65] years, p=0.198 and gender (M/F: 4/29 vs. 8/32, p=0.366. Intra-class correlation coefficients among all topography parameters within both groups showed excellent repeatability (>0.90. Conclusion: The anterior segment measurements provided by the Sirius corneal topography system were highly repeatable for dry eye patients and are sufficiently reliable for clinical practice and research.

  7. Does Dry Eye Affect Repeatability of Corneal Topography Measurements?

    Science.gov (United States)

    Doğan, Aysun Şanal; Gürdal, Canan; Köylü, Mehmet Talay

    2018-04-01

    The purpose of this study was to assess the repeatability of corneal topography measurements in dry eye patients and healthy controls. Participants underwent consecutive corneal topography measurements (Sirius; Costruzione Strumenti Oftalmici, Florence, Italy). Two images with acquisition quality higher than 90% were accepted. The following parameters were evaluated: minimum and central corneal thickness, aqueous depth, apex curvature, anterior chamber volume, horizontal anterior chamber diameter, iridocorneal angle, cornea volume, and average simulated keratometry. Repeatability was assessed by calculating intra-class correlation coefficient. Thirty-three patients with dry eye syndrome and 40 healthy controls were enrolled to the study. The groups were similar in terms of age (39 [18-65] vs. 30.5 [18-65] years, p=0.198) and gender (M/F: 4/29 vs. 8/32, p=0.366). Intra-class correlation coefficients among all topography parameters within both groups showed excellent repeatability (>0.90). The anterior segment measurements provided by the Sirius corneal topography system were highly repeatable for dry eye patients and are sufficiently reliable for clinical practice and research.

  8. 40 CFR 180.1204 - Harpin protein; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Harpin protein; exemption from the requirement of a tolerance. 180.1204 Section 180.1204 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1204 Harpi...

  9. Emerging role for leucine-rich repeat-containing G-protein-coupled receptors LGR5 and LGR4 in cancer stem cells

    International Nuclear Information System (INIS)

    Nakata, Susumu; Phillips, Emma; Goidts, Violaine

    2014-01-01

    The concept of cancer stem cells has gained considerable interest in the last few decades, partly because of their potential implication in therapy resistance. However, the lack of specific cellular surface markers for these cells has impeded their isolation, making the characterization of this cellular subpopulation technically challenging. Recent studies have indicated that leucine-rich repeat-containing G-protein-coupled receptor 4 and 5 (LGR4 and LGR5) expression in multiple organs may represent a global marker of adult stem cells. This review aims to give an overview of LGR4 and LGR5 as cancer stem cell markers and their function in development

  10. A lactobacillus rhamnosus GG-derived soluble protein, p40, stimulates ligand release from intestinal epithelial cells to transactivate epidermal growth factor receptor

    Science.gov (United States)

    Protein p40, a Lactobacillus rhamnosus GG (LGG)-derived soluble protein, ameliorates intestinal injury and colitis, reduces apoptosis and preserves barrier function by activation of EGF receptor (EGFR) in intestinal epithelial cells. The aim of this study was to determine the mechanisms by which p40...

  11. Expression, crystallization and preliminary crystallographic data analysis of filamin A repeats 14–16

    International Nuclear Information System (INIS)

    Aguda, Adeleke Halilu; Sakwe, Amos Malle; Rask, Lars; Robinson, Robert Charles

    2007-01-01

    The crystallization and crystallographic data analysis of filamin repeats 14–16 are reported. Human filamin A is a 280 kDa protein involved in actin-filament cross-linking. It is structurally divided into an actin-binding headpiece (ABD) and a rod domain containing 24 immunoglobulin-like (Ig) repeats. A fragment of human filamin A (Ig repeats 14–16) was cloned and expressed in Escherichia coli and the purified protein was crystallized in 1.6 M ammonium sulfate, 2% PEG 1000 and 100 mM HEPES pH 7.5. The crystals diffracted to 1.95 Å and belong to space group P2 1 2 1 2 1 , with unit-cell parameters a = 50.63, b = 52.10, c = 98.46 Å, α = β = γ = 90°

  12. Study of simple sequence repeat (SSR) polymorphism for biotic ...

    African Journals Online (AJOL)

    home

    2013-10-02

    Oct 2, 2013 ... G. Siva Kumar1, K. Aruna Kumari1*, Ch. V. Durga Rani1, R. M. Sundaram2, S. Vanisree3, Md. ..... review by Jena and Mackill (2008) provided the list of .... repeat protein and is a member of a resistance gene cluster on rice.

  13. PASTA repeats of the protein kinase StkP interconnect cell constriction and separation of Streptococcus pneumoniae.

    Science.gov (United States)

    Zucchini, Laure; Mercy, Chryslène; Garcia, Pierre Simon; Cluzel, Caroline; Gueguen-Chaignon, Virginie; Galisson, Frédéric; Freton, Céline; Guiral, Sébastien; Brochier-Armanet, Céline; Gouet, Patrice; Grangeasse, Christophe

    2018-02-01

    Eukaryotic-like serine/threonine kinases (eSTKs) with extracellular PASTA repeats are key membrane regulators of bacterial cell division. How PASTA repeats govern eSTK activation and function remains elusive. Using evolution- and structural-guided approaches combined with cell imaging, we disentangle the role of each PASTA repeat of the eSTK StkP from Streptococcus pneumoniae. While the three membrane-proximal PASTA repeats behave as interchangeable modules required for the activation of StkP independently of cell wall binding, they also control the septal cell wall thickness. In contrast, the fourth and membrane-distal PASTA repeat directs StkP localization at the division septum and encompasses a specific motif that is critical for final cell separation through interaction with the cell wall hydrolase LytB. We propose a model in which the extracellular four-PASTA domain of StkP plays a dual function in interconnecting the phosphorylation of StkP endogenous targets along with septal cell wall remodelling to allow cell division of the pneumococcus.

  14. Update on Wilson disease.

    Science.gov (United States)

    Aggarwal, Annu; Bhatt, Mohit

    2013-01-01

    Wilson disease (WD) is an inherited disorder of chronic copper toxicosis characterized by excessive copper deposition in the body, primarily in the liver and the brain. It is a progressive disease and fatal if untreated. Excessive copper accumulation results from the inability of liver to excrete copper in bile. Copper is an essential trace metal and has a crucial role in many metabolic processes. Almost all of the body copper is protein bound. In WD, the slow but relentless copper accumulation overwhelms the copper chaperones (copper-binding proteins), resulting in high levels of free copper and copper-induced tissue injury. Liver is the central organ for copper metabolism, and copper is initially accumulated in the liver but over time spills to other tissues. WD has protean clinical manifestations mainly attributable to liver, brain, and osseomuscular impairment. Diagnosis of WD is challenging and based on combination of clinical features and laboratory tests. Identification of various high-frequency mutations identified in different population studies across the world has revived interest in developing DNA chips for rapid genetic diagnosis of WD. All symptomatic and all presymptomatic patients require lifelong decoppering with careful clinical tracking. Decoppering ensures that presymptomatic individuals remain symptom free. With judicious decoppering, given time, even patients with severe neurological disability improve and can return to normal life and resume school or work at par with their peers. Treatment regimens and tracking patients using the WD-specific Global Assessment Scale for WD (GAS for WD) are discussed. © 2013 Elsevier Inc. All rights reserved.

  15. Expression, purification and preliminary biochemical and structural characterization of the leucine rich repeat namesake domain of leucine rich repeat kinase 2.

    Science.gov (United States)

    Vancraenenbroeck, Renée; Lobbestael, Evy; Weeks, Stephen D; Strelkov, Sergei V; Baekelandt, Veerle; Taymans, Jean-Marc; De Maeyer, Marc

    2012-03-01

    Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial Parkinson's disease. Much research effort has been directed towards the catalytic core region of LRRK2 composed of GTPase (ROC, Ras of complex proteins) and kinase domains and a connecting COR (C-terminus of ROC) domain. In contrast, the precise functions of the protein-protein interaction domains, such as the leucine-rich repeat (LRR) domain, are not known. In the present study, we modeled the LRRK2 LRR domain (LRR(LRRK2)) using a template assembly approach, revealing the presence of 14 LRRs. Next, we focused on the expression and purification of LRR(LRRK2) in Escherichia coli. Buffer optimization revealed that the protein requires the presence of a zwitterionic detergent, namely Empigen BB, during solubilization and the subsequent purification and characterization steps. This indicates that the detergent captures the hydrophobic surface patches of LRR(LRRK2) thereby suppressing its aggregation. Circular dichroism (CD) spectroscopy measured 18% α-helices and 21% β-sheets, consistent with predictions from the homology model. Size exclusion chromatography (SEC) and dynamic light scattering measurements showed the presence of a single species, with a Stokes radius corresponding to the model dimensions of a protein monomer. Furthermore, no obvious LRR(LRRK2) multimerization was detected via cross-linking studies. Finally, the LRR(LRRK2) clinical mutations did not influence LRR(LRRK2) secondary, tertiary or quaternary structure as determined via SEC and CD spectroscopy. We therefore conclude that these mutations are likely to affect putative LRR(LRRK2) inter- and intramolecular interactions. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. A COMPARISON OF PAIRS FIGURE SKATERS IN REPEATED JUMPS

    Directory of Open Access Journals (Sweden)

    William A. Sands

    2012-03-01

    Full Text Available Trends in pairs figure skating have shown that increasingly difficult jumps have become an essential aspect of high-level performance, especially in the latter part of a competitive program. We compared a repeated jump power index in a 60 s repeated jump test to determine the relationship of repeated jump test to competitive rank and to measure 2D hip, knee, and ankle angles and angular velocities at 0, 20, 40, and 60 s. Eighteen National Team Pairs Figure Skaters performed a 60 s repeated jump test on a large switch-mat with timing of flight and ground durations and digital video recording. Each 60-s period was divided into 6, 10-s intervals, with power indexes (W/kg calculated for each 10-s interval. Power index by 10-s interval repeated measures ANOVAs (RMANOVA showed that males exceeded females at all intervals, and the highest power index interval was during 10 to 20 s for both sexes. RMANOVAs of angles and angular velocities showed main effects for time only. Power index and jumping techniques among figure skaters showed rapid and steady declines over the test duration. Power index can predict approximately 50% of competitive rank variance, and sex differences in jumping technique were rare

  17. Mouse Models of C9orf72 Hexanucleotide Repeat Expansion in Amyotrophic Lateral Sclerosis/ Frontotemporal Dementia

    Directory of Open Access Journals (Sweden)

    Ranjan Batra

    2017-07-01

    Full Text Available The presence of hexanucleotide repeat expansion (HRE in the first intron of the human C9orf72 gene is the most common genetic cause underlying both familial amyotrophic lateral sclerosis (ALS and frontotemporal dementia (FTD. Studies aimed at elucidating the pathogenic mechanisms associated of C9orf72 FTD and ALS (C9FTD/ALS have focused on the hypothesis of RNA and protein toxic gain-of-function models, including formation of nuclear RNA foci containing GGGGCC (G4C2 HRE, inclusions containing dipeptide repeat proteins through a non-canonical repeat associated non-ATG (RAN translation mechanism, and on loss-of-function of the C9orf72 protein. Immense effort to elucidate these mechanisms has been put forth and toxic gain-of-function models have especially gained attention. Various mouse models that recapitulate distinct disease-related pathological, functional, and behavioral phenotypes have been generated and characterized. Although these models express the C9orf72 HRE mutation, there are numerous differences among them, including the transgenesis approach to introduce G4C2-repeat DNA, genomic coverage of C9orf72 features in the transgene, G4C2-repeat length after genomic stabilization, spatiotemporal expression profiles of RNA foci and RAN protein aggregates, neuropathological features, and neurodegeneration-related clinical symptoms. This review aims to (1 provide an overview of the key characteristics; (2 provide insights into potential pathological factors contributing to neurotoxicity and clinical phenotypes through systematic comparison of these models.

  18. Repeat-associated plasticity in the Helicobacter pylori RD gene family.

    Science.gov (United States)

    Shak, Joshua R; Dick, Jonathan J; Meinersmann, Richard J; Perez-Perez, Guillermo I; Blaser, Martin J

    2009-11-01

    The bacterium Helicobacter pylori is remarkable for its ability to persist in the human stomach for decades without provoking sterilizing immunity. Since repetitive DNA can facilitate adaptive genomic flexibility via increased recombination, insertion, and deletion, we searched the genomes of two H. pylori strains for nucleotide repeats. We discovered a family of genes with extensive repetitive DNA that we have termed the H. pylori RD gene family. Each gene of this family is composed of a conserved 3' region, a variable mid-region encoding 7 and 11 amino acid repeats, and a 5' region containing one of two possible alleles. Analysis of five complete genome sequences and PCR genotyping of 42 H. pylori strains revealed extensive variation between strains in the number, location, and arrangement of RD genes. Furthermore, examination of multiple strains isolated from a single subject's stomach revealed intrahost variation in repeat number and composition. Despite prior evidence that the protein products of this gene family are expressed at the bacterial cell surface, enzyme-linked immunosorbent assay and immunoblot studies revealed no consistent seroreactivity to a recombinant RD protein by H. pylori-positive hosts. The pattern of repeats uncovered in the RD gene family appears to reflect slipped-strand mispairing or domain duplication, allowing for redundancy and subsequent diversity in genotype and phenotype. This novel family of hypervariable genes with conserved, repetitive, and allelic domains may represent an important locus for understanding H. pylori persistence in its natural host.

  19. The breathing of webs under repeated partial edge loading

    Czech Academy of Sciences Publication Activity Database

    Škaloud, Miroslav; Zörnerová, Marie; Urushadze, Shota

    2012-01-01

    Roč. 40, č. 1 (2012), s. 463-468 E-ISSN 1877-7058. [Steel structures and bridges. Podbanske, 26.09.2012-28.09.2012] R&D Projects: GA ČR GA103/08/1340 Institutional support: RVO:68378297 Keywords : slender webs * breathing * fatigue limit state * design * repeated partial edge loading Subject RIV: JM - Building Engineering

  20. Promoter Engineering Reveals the Importance of Heptameric Direct Repeats for DNA Binding by Streptomyces Antibiotic Regulatory Protein-Large ATP-Binding Regulator of the LuxR Family (SARP-LAL) Regulators in Streptomyces natalensis.

    Science.gov (United States)

    Barreales, Eva G; Vicente, Cláudia M; de Pedro, Antonio; Santos-Aberturas, Javier; Aparicio, Jesús F

    2018-05-15

    The biosynthesis of small-size polyene macrolides is ultimately controlled by a couple of transcriptional regulators that act in a hierarchical way. A Streptomyces antibiotic regulatory protein-large ATP-binding regulator of the LuxR family (SARP-LAL) regulator binds the promoter of a PAS-LuxR regulator-encoding gene and activates its transcription, and in turn, the gene product of the latter activates transcription from various promoters of the polyene gene cluster directly. The primary operator of PimR, the archetype of SARP-LAL regulators, contains three heptameric direct repeats separated by four-nucleotide spacers, but the regulator can also bind a secondary operator with only two direct repeats separated by a 3-nucleotide spacer, both located in the promoter region of its unique target gene, pimM A similar arrangement of operators has been identified for PimR counterparts encoded by gene clusters for different antifungal secondary metabolites, including not only polyene macrolides but peptidyl nucleosides, phoslactomycins, or cycloheximide. Here, we used promoter engineering and quantitative transcriptional analyses to determine the contributions of the different heptameric repeats to transcriptional activation and final polyene production. Optimized promoters have thus been developed. Deletion studies and electrophoretic mobility assays were used for the definition of DNA-binding boxes formed by 22-nucleotide sequences comprising two conserved heptameric direct repeats separated by four-nucleotide less conserved spacers. The cooperative binding of PimR SARP appears to be the mechanism involved in the binding of regulator monomers to operators, and at least two protein monomers are required for efficient binding. IMPORTANCE Here, we have shown that a modulation of the production of the antifungal pimaricin in Streptomyces natalensis can be accomplished via promoter engineering of the PAS-LuxR transcriptional activator pimM The expression of this gene is

  1. Molecular Characterization of Respiratory Syncytial Virus in Children with Repeated Infections with Subgroup B in the Philippines.

    Science.gov (United States)

    Okamoto, Michiko; Dapat, Clyde P; Sandagon, Ann Marie D; Batangan-Nacion, Leilanie P; Lirio, Irene C; Tamaki, Raita; Saito, Mayuko; Saito-Obata, Mariko; Lupisan, Socorro P; Oshitani, Hitoshi

    2018-05-02

    Human respiratory syncytial virus (RSV) is the leading cause of severe acute respiratory infection in infants and young children, which is characterized by repeated infections. However, the role of amino acid substitutions in repeated infections remains unclear. Hence, this study aimed to elucidate the genetic characteristics of RSV in children with repeated infections using molecular analyses of F and G genes. We conducted a cohort study for children younger than 5 years in the Philippines. We collected nasopharyngeal swabs from children with acute respiratory symptoms and compared F and G sequences between prior and subsequent RSV infections. We examined 1,802 children from May 2014 to January 2016 and collected 3,471 samples. Repeated infections were observed in 25 children, including 4 with homologous RSV-B reinfections. Viruses from the 4 pairs of homologous reinfections had amino acid substitutions in the G protein mostly at O-glycosylation sites, whereas changes in the F protein were identified at antigenic sites V (L173S) and θ (Q209K), considered essential epitopes for the prefusion conformation of the F protein. Amino acid substitutions in G and F proteins of RSV-B might have led to antigenic changes, potentially contributing to homologous reinfections observed in this study.

  2. Random mutagenesis of the nucleotide-binding domain of NRC1 (NB-LRR Required for Hypersensitive Response-Associated Cell Death-1), a downstream signalling nucleotide-binding, leucine-rich repeat (NB-LRR) protein, identifies gain-of-function mutations in the nucleotide-binding pocket

    NARCIS (Netherlands)

    Sueldo, D.J.; Shimels, M.Z.; Spiridon, L.N.; Caldararu, O.; Petrescu, A.J.; Joosten, M.H.A.J.; Tameling, W.I.L.

    2015-01-01

    •Plant nucleotide-binding, leucine-rich repeat (NB-LRR) proteins confer immunity to pathogens possessing the corresponding avirulence proteins. Activation of NB-LRR proteins is often associated with induction of the hypersensitive response (HR), a form of programmed cell death. •NRC1 (NB-LRR

  3. Detection of lipid-induced structural changes of the Marburg virus matrix protein VP40 using hydrogen/deuterium exchange-mass spectrometry.

    Science.gov (United States)

    Wijesinghe, Kaveesha J; Urata, Sarah; Bhattarai, Nisha; Kooijman, Edgar E; Gerstman, Bernard S; Chapagain, Prem P; Li, Sheng; Stahelin, Robert V

    2017-04-14

    Marburg virus (MARV) is a lipid-enveloped virus from the Filoviridae family containing a negative sense RNA genome. One of the seven MARV genes encodes the matrix protein VP40, which forms a matrix layer beneath the plasma membrane inner leaflet to facilitate budding from the host cell. MARV VP40 (mVP40) has been shown to be a dimeric peripheral protein with a broad and flat basic surface that can associate with anionic phospholipids such as phosphatidylserine. Although a number of mVP40 cationic residues have been shown to facilitate binding to membranes containing anionic lipids, much less is known on how mVP40 assembles to form the matrix layer following membrane binding. Here we have used hydrogen/deuterium exchange (HDX) mass spectrometry to determine the solvent accessibility of mVP40 residues in the absence and presence of phosphatidylserine and phosphatidylinositol 4,5-bisphosphate. HDX analysis demonstrates that two basic loops in the mVP40 C-terminal domain make important contributions to anionic membrane binding and also reveals a potential oligomerization interface in the C-terminal domain as well as a conserved oligomerization interface in the mVP40 N-terminal domain. Lipid binding assays confirm the role of the two basic patches elucidated with HD/X measurements, whereas molecular dynamics simulations and membrane insertion measurements complement these studies to demonstrate that mVP40 does not appreciably insert into the hydrocarbon region of anionic membranes in contrast to the matrix protein from Ebola virus. Taken together, we propose a model by which association of the mVP40 dimer with the anionic plasma membrane facilitates assembly of mVP40 oligomers. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Experimental investigations on the fluid flow through an asymmetric rod bundle (P/D = 1.148, W/D = 1.045)

    International Nuclear Information System (INIS)

    Rehme, K.

    1983-11-01

    Measurements of the distributions of the mean velocity, the wall shear stresses and the turbulence were performed in a wall subchannel of a rod bundle of four parallel rods arranged asymmetrically in a rectangular channel (P/D = 1.148, W/D = 1.045). The Reynolds number of this investigations was Re = 5.88 x 10 4 . The experimental results show that the momentum transport is highly anisotropic especially in the gaps of the rod bundle. Influences of secondary flow cannot be detected in the distribution of the time-mean velocity. The comparison between experimental wall shear stress distributions and those calculated with the VELASCO-code shows discrepancies both in the gap between the rod and channel walls and in the gap between the rods caused by the high momentum transport between the two subchannels. (orig.) [de

  5. The number of genes encoding repeat domain-containing proteins positively correlates with genome size in amoebal giant viruses

    Science.gov (United States)

    Shukla, Avi; Chatterjee, Anirvan

    2018-01-01

    Abstract Curiously, in viruses, the virion volume appears to be predominantly driven by genome length rather than the number of proteins it encodes or geometric constraints. With their large genome and giant particle size, amoebal viruses (AVs) are ideally suited to study the relationship between genome and virion size and explore the role of genome plasticity in their evolutionary success. Different genomic regions of AVs exhibit distinct genealogies. Although the vertically transferred core genes and their functions are universally conserved across the nucleocytoplasmic large DNA virus (NCLDV) families and are essential for their replication, the horizontally acquired genes are variable across families and are lineage-specific. When compared with other giant virus families, we observed a near–linear increase in the number of genes encoding repeat domain-containing proteins (RDCPs) with the increase in the genome size of AVs. From what is known about the functions of RDCPs in bacteria and eukaryotes and their prevalence in the AV genomes, we envisage important roles for RDCPs in the life cycle of AVs, their genome expansion, and plasticity. This observation also supports the evolution of AVs from a smaller viral ancestor by the acquisition of diverse gene families from the environment including RDCPs that might have helped in host adaption. PMID:29308275

  6. Heart failure re-admission: measuring the ever shortening gap between repeat heart failure hospitalizations.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Bakal

    Full Text Available Many quality-of-care and risk prediction metrics rely on time to first rehospitalization even though heart failure (HF patients may undergo several repeat hospitalizations. The aim of this study is to compare repeat hospitalization models. Using a population-based cohort of 40,667 patients, we examined both HF and all cause re-hospitalizations using up to five years of follow-up. Two models were examined: the gap-time model which estimates the adjusted time between hospitalizations and a multistate model which considered patients to be in one of four states; community-dwelling, in hospital for HF, in hospital for any reason, or dead. The transition probabilities and times were then modeled using patient characteristics and number of repeat hospitalizations. We found that during the five years of follow-up roughly half of the patients returned for a subsequent hospitalization for each repeat hospitalization. Additionally, we noted that the unadjusted time between hospitalizations was reduced ∼40% between each successive hospitalization. After adjustment each additional hospitalization was associated with a 28 day (95% CI: 22-35 reduction in time spent out of hospital. A similar pattern was seen when considering the four state model. A large proportion of patients had multiple repeat hospitalizations. Extending the gap between hospitalizations should be an important goal of treatment evaluation.

  7. Differential requirements of arrestin-3 and clathrin for ligand-dependent and -independent internalization of human G protein-coupled receptor 40.

    Science.gov (United States)

    Qian, Jing; Wu, Chun; Chen, Xiaopan; Li, Xiangmei; Ying, Guoyuan; Jin, Lili; Ma, Qiang; Li, Guo; Shi, Ying; Zhang, Guozheng; Zhou, Naiming

    2014-11-01

    G protein-coupled receptor 40 (GPR40) is believed to be an attractive target to enhance insulin secretion in patients with type 2 diabetes. GPR40 has been found to couple to Gq protein, leading to the activation of phospholipase C and subsequent increases in the intracellular Ca(2+) level. However, the underlying mechanisms that regulate the internalization and desensitization of GPR40 remain to be elucidated. In the present study, a construct of GPR40 fused with enhanced green fluorescent protein (EGFP) at its C-terminus was constructed for direct imaging of the localization and internalization of GPR40 by confocal microscopy. In stably transfected HEK-293 cells, GPR40 receptors underwent rapid agonist-induced internalization and constitutive ligand-independent internalization. Our data demonstrated that the agonist-mediated internalization of GPR40 was significantly blocked by hypertonic sucrose treatment and by siRNA mediated depletion of the heavy chain of clathrin. In contrast, constitutive GPR40 internalization was not affected by hypertonic sucrose or by knock-down of clathrin expression, but it was affected by treatment with methyl-β-cyclodextrin (MβCD) and nystatin. Furthermore, our results using an arrestin-3-EGFP redistribution assay and siRNA-mediated knock-down of arrestin-3 and GRK2 expression revealed that arrestin-3 and GRK2 play an essential role in the regulation of agonist-mediated GPR40 internalization, but are not involved in the regulation of constitutive GPR40 internalization. Additionally, our observation showed that upon activation by agonist, the internalized GPR40 receptors were rapidly recycled back to the plasma membrane via Rab4/Rab5 positive endosomes, whereas the constitutively internalized GPR40 receptors were recycled back to the cell surface through Rab5 positive endosomes. Because FFA receptors exhibit a high level of homology, our observations could be applicable to other members of this family. Copyright © 2014 Elsevier Inc

  8. Transmissible familial Creutzfeldt-Jakob disease associated with five, seven, and eight extra octapeptide coding repeats in the PRNP gene

    Energy Technology Data Exchange (ETDEWEB)

    Goldfarb, L.G.; Brown, P.; McCombie, W.R.; Gibbs, C.J. Jr.; Gajdusek, D.C. (National Inst. of Health, Bethesda, MD (United States)); Goldgaber, D. (State Univ. of New York, Stony Brook (United States)); Swergold, G.D. (National Inst. of Health, Bethesda, MD (United States)); Wills, P.R. (Univ. of Auckland (New Zealand)); Cervenakova, L. (Inst. of Preventive and Clinical Medicine, Bratislava (Czechoslovakia)); Baron, H. (Searle Pharmaceuticals, Paris (France))

    1991-12-01

    The PRNP gene, encoding the amyloid precursor protein that is centrally involved in Creutzfeldt-Jakob disease (CJD), has an unstable region of five variant tandem octapeptide coding repeats between codons 51 and 91. The authors screened a total of 535 individuals for the presence of extra repeats in this region, including patients with sporadic and familial forms of spongiform encephalopathy, members of their families, other neurological and non-neurological patients, and normal controls. They identified three CJD families (in each of which the proband's disease was neuropathologically confirmed and experimentally transmitted to primates) that were heterozygous for alleles with 10, 12, or 13 repeats, some of which had wobble nucleotide substitutions. They also found one individual with 9 repeats and no nucleotide substitutions who had no evidence of neurological disease. These observations, together with data on published British patients with 11 and 14 repeats, strongly suggest that the occurrence of 10 or more octapeptide repeats in the encoded amyloid precursor protein predisposes to CJD.

  9. A novel seven-octapeptide repeat insertion in the prion protein gene (PRNP) in a Dutch pedigree with Gerstmann-Sträussler-Scheinker disease phenotype: comparison with similar cases from the literature

    NARCIS (Netherlands)

    Jansen, Casper; Voet, Willem; Head, Mark W.; Parchi, Piero; Yull, Helen; Verrips, Aad; Wesseling, Pieter; Meulstee, Jan; Baas, Frank; van Gool, Willem A.; Ironside, James W.; Rozemuller, Annemieke J. M.

    2011-01-01

    Human prion diseases can be sporadic, inherited or acquired by infection and show considerable phenotypic heterogeneity. We describe the clinical, histopathological and pathological prion protein (PrP(Sc)) characteristics of a Dutch family with a novel 7-octapeptide repeat insertion (7-OPRI) in

  10. Selfish DNA in protein-coding genes of Rickettsia.

    Science.gov (United States)

    Ogata, H; Audic, S; Barbe, V; Artiguenave, F; Fournier, P E; Raoult, D; Claverie, J M

    2000-10-13

    Rickettsia conorii, the aetiological agent of Mediterranean spotted fever, is an intracellular bacterium transmitted by ticks. Preliminary analyses of the nearly complete genome sequence of R. conorii have revealed 44 occurrences of a previously undescribed palindromic repeat (150 base pairs long) throughout the genome. Unexpectedly, this repeat was found inserted in-frame within 19 different R. conorii open reading frames likely to encode functional proteins. We found the same repeat in proteins of other Rickettsia species. The finding of a mobile element inserted in many unrelated genes suggests the potential role of selfish DNA in the creation of new protein sequences.

  11. Identification of the centromeric repeat in the threespine stickleback fish (Gasterosteus aculeatus).

    Science.gov (United States)

    Cech, Jennifer N; Peichel, Catherine L

    2015-12-01

    Centromere sequences exist as gaps in many genome assemblies due to their repetitive nature. Here we take an unbiased approach utilizing centromere protein A (CENP-A) chomatin immunoprecipitation followed by high-throughput sequencing to identify the centromeric repeat sequence in the threespine stickleback fish (Gasterosteus aculeatus). A 186-bp, AT-rich repeat was validated as centromeric using both fluorescence in situ hybridization (FISH) and immunofluorescence combined with FISH (IF-FISH) on interphase nuclei and metaphase spreads. This repeat hybridizes strongly to the centromere on all chromosomes, with the exception of weak hybridization to the Y chromosome. Together, our work provides the first validated sequence information for the threespine stickleback centromere.

  12. Repeat-swap homology modeling of secondary active transporters: updated protocol and prediction of elevator-type mechanisms.

    Science.gov (United States)

    Vergara-Jaque, Ariela; Fenollar-Ferrer, Cristina; Kaufmann, Desirée; Forrest, Lucy R

    2015-01-01

    Secondary active transporters are critical for neurotransmitter clearance and recycling during synaptic transmission and uptake of nutrients. These proteins mediate the movement of solutes against their concentration gradients, by using the energy released in the movement of ions down pre-existing concentration gradients. To achieve this, transporters conform to the so-called alternating-access hypothesis, whereby the protein adopts at least two conformations in which the substrate binding sites are exposed to one or other side of the membrane, but not both simultaneously. Structures of a bacterial homolog of neuronal glutamate transporters, GltPh, in several different conformational states have revealed that the protein structure is asymmetric in the outward- and inward-open states, and that the conformational change connecting them involves a elevator-like movement of a substrate binding domain across the membrane. The structural asymmetry is created by inverted-topology repeats, i.e., structural repeats with similar overall folds whose transmembrane topologies are related to each other by two-fold pseudo-symmetry around an axis parallel to the membrane plane. Inverted repeats have been found in around three-quarters of secondary transporter folds. Moreover, the (a)symmetry of these systems has been successfully used as a bioinformatic tool, called "repeat-swap modeling" to predict structural models of a transporter in one conformation using the known structure of the transporter in the complementary conformation as a template. Here, we describe an updated repeat-swap homology modeling protocol, and calibrate the accuracy of the method using GltPh, for which both inward- and outward-facing conformations are known. We then apply this repeat-swap homology modeling procedure to a concentrative nucleoside transporter, VcCNT, which has a three-dimensional arrangement related to that of GltPh. The repeat-swapped model of VcCNT predicts that nucleoside transport also

  13. Repeat-swap homology modeling of secondary active transporters: updated protocol and prediction of elevator-type mechanisms

    Directory of Open Access Journals (Sweden)

    Cristina eFenollar Ferrer

    2015-09-01

    Full Text Available Secondary active transporters are critical for neurotransmitter clearance and recycling during synaptic transmission and uptake of nutrients. These proteins mediate the movement of solutes against their concentration gradients, by using the energy released in the movement of ions down pre-existing concentration gradients. To achieve this, transporters conform to the so-called alternating-access hypothesis, whereby the protein adopts at least two conformations in which the substrate binding sites are exposed to either the outside or inside of the membrane, but not both simultaneously. Structures of a bacterial homolog of neuronal glutamate transporters, GltPh, in several different conformational states have revealed that the protein structure is asymmetric in the outward- and inward-open states, and that the conformational change connecting them involves a elevator-like movement of a substrate binding domain across the membrane. The structural asymmetry is created by inverted-topology repeats, i.e., structural repeats with similar overall folds whose transmembrane topologies are related to each other by two-fold pseudo-symmetry around an axis parallel to the membrane plane. Inverted repeats have been found in around three-quarters of secondary transporter folds. Moreover, the (asymmetry of these systems has been successfully used as a bioinformatic tool, called repeat-swap modeling to predict structural models of a transporter in one conformation using the known structure of the transporter in the complementary conformation as a template. Here, we describe an updated repeat-swap homology modeling protocol, and calibrate the accuracy of the method using GltPh, for which both inward- and outward-facing conformations are known. We then apply this repeat-swap homology modeling procedure to a concentrative nucleoside transporter, VcCNT, which has a three-dimensional arrangement related to that of GltPh. The repeat-swapped model of VcCNT predicts that

  14. The BARD1 C-Terminal Domain Structure and Interactions with Polyadenylation Factor CstF-50

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Ross A.; Lee, Megan S.; Tsutakawa, Susan E.; Williams, R. Scott; Tainer, John A.; Glover, J. N. Mark

    2009-07-13

    The BARD1 N-terminal RING domain binds BRCA1 while the BARD1 C-terminal ankyrin and tandem BRCT repeat domains bind CstF-50 to modulate mRNA processing and RNAP II stability in response to DNA damage. Here we characterize the BARD1 structural biochemistry responsible for CstF- 50 binding. The crystal structure of the BARD1 BRCT domain uncovers a degenerate phosphopeptide binding pocket lacking the key arginine required for phosphopeptide interactions in other BRCT proteins.Small angle X-ray scattering together with limited proteolysis results indicates that ankyrin and BRCT domains are linked by a flexible tether and do not adopt a fixed orientation relative to one another. Protein pull-down experiments utilizing a series of purified BARD1 deletion mutants indicate that interactions between the CstF-50 WD-40 domain and BARD1 involve the ankyrin-BRCT linker but do not require ankyrin or BRCT domains. The structural plasticity imparted by the ANK-BRCT linker helps to explain the regulated assembly of different protein BARD1 complexes with distinct functions in DNA damage signaling including BARD1-dependent induction of apoptosis plus p53 stabilization and interactions. BARD1 architecture and plasticity imparted by the ANK-BRCT linker are suitable to allow the BARD1 C-terminus to act as a hub with multiple binding sites to integrate diverse DNA damage signals directly to RNA polymerase.

  15. Triplet repeat DNA structures and human genetic disease: dynamic ...

    Indian Academy of Sciences (India)

    Unknown

    formed at the loop-outs. [Sinden R R, Potaman V N, Oussatcheva E A, Pearson C E, Lyubchenko Y L and Shlyakhtenko L S 2002 Triplet repeat DNA structures .... 36–39. 40–121 Huntingtin/polyglutamine expansion. Spinocerebellar ataxia 1. SCA1. 6p23. (CAG)n. 6–44. –. 39–82 (pure) Ataxin-1/polyglutamine expansion.

  16. Microsatellite instability at a tetranucleotide repeat in type I endometrial carcinoma

    Directory of Open Access Journals (Sweden)

    Choi Ho

    2008-12-01

    Full Text Available Abstract Background Microsatellite instability (MSI at tri- or tetranucleotide repeat markers (elevated microsatellite alterations at selected tetranucleotide repeat, EMAST has been recently described. But, the underlying genetic mechanism of EMAST is unclear. This study was to investigate the prevalence of EMAST, in type I endometrial carcinoma, and to determine the correlation between the MSI status and mismatch repair genes (MMR or p53. Methods We examined the 3 mono-, 3 di-, and 6 tetranucleotide repeat markers by PCR in 39 cases of type I endometrial carcinoma and performed the immunohistochemistry of hMSH2, hMLH1, and p53 protein. Results More than two MSI at mono- and dinucleotide repeat markers was noted in 8 cases (MSI-H, 20.5%. MSI, at a tetranucleotide repeat, was detected in 15 cases (EMAST, 38.5%. In remaining 16 cases, any MSI was not observed. (MSS, 42.1%, MSI status was not associated with FIGO stage, grade or depth of invasion. The absence of expression of either one of both hMSH2 or hMLH1 was noted in seven (87.5% of eight MSI-H tumors, one (6.3% of 16 MSS tumors, and five (33.3% of 15 EMAST tumors. (p = 0.010 The expression of p53 protein was found in one (12.5% of eight MSI-H tumors, five (31.3% of 16 MSS tumors, and seven of 15 EMAST tumors. (p = 0.247 Conclusion Our results showed that about 38.5% of type I endometrial carcinomas exhibited EMAST, and that EMAST was rarely associated with alteration of hMSH2 or hMLH1.

  17. Crystal structure of clustered regularly interspaced short palindromic repeats (CRISPR)-associated Csn2 protein revealed Ca2+-dependent double-stranded DNA binding activity.

    Science.gov (United States)

    Nam, Ki Hyun; Kurinov, Igor; Ke, Ailong

    2011-09-02

    Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated protein genes (cas genes) are widespread in bacteria and archaea. They form a line of RNA-based immunity to eradicate invading bacteriophages and malicious plasmids. A key molecular event during this process is the acquisition of new spacers into the CRISPR loci to guide the selective degradation of the matching foreign genetic elements. Csn2 is a Nmeni subtype-specific cas gene required for new spacer acquisition. Here we characterize the Enterococcus faecalis Csn2 protein as a double-stranded (ds-) DNA-binding protein and report its 2.7 Å tetrameric ring structure. The inner circle of the Csn2 tetrameric ring is ∼26 Å wide and populated with conserved lysine residues poised for nonspecific interactions with ds-DNA. Each Csn2 protomer contains an α/β domain and an α-helical domain; significant hinge motion was observed between these two domains. Ca(2+) was located at strategic positions in the oligomerization interface. We further showed that removal of Ca(2+) ions altered the oligomerization state of Csn2, which in turn severely decreased its affinity for ds-DNA. In summary, our results provided the first insight into the function of the Csn2 protein in CRISPR adaptation by revealing that it is a ds-DNA-binding protein functioning at the quaternary structure level and regulated by Ca(2+) ions.

  18. Unraveling the Role of RNA Mediated Toxicity of C9orf72 Repeats in C9-FTD/ALS

    Directory of Open Access Journals (Sweden)

    Vijay Kumar

    2017-12-01

    Full Text Available The most frequent genetic cause of amyotrophic lateral sclerosis (ALS and frontotemporal dementia (FTD is intronic hexanucleotide (G4C2 repeat expansions (HRE in the C9orf72 gene. The non-exclusive pathogenic mechanisms by which C9orf72 repeat expansions contribute to these neurological disorders include loss of C9orf72 function and gain-of-function determined by toxic RNA molecules and dipeptides repeats protein toxicity. The expanded repeats are transcribed bidirectionally and forms RNA foci in the central nervous system, and sequester key RNA-binding proteins (RBPs leading to impairment in RNA processing events. Many studies report widespread transcriptome changes in ALS carrying a C9orf72 repeat expansion. Here we review the contribution of RNA foci interaction with RBPs as well as transcriptome changes involved in the pathogenesis of C9orf72- associated FTD/ALS. These informations are essential to elucidate the pathology and therapeutic intervention of ALS and/or FTD.

  19. Repeat-Associated Plasticity in the Helicobacter pylori RD Gene Family▿ †

    Science.gov (United States)

    Shak, Joshua R.; Dick, Jonathan J.; Meinersmann, Richard J.; Perez-Perez, Guillermo I.; Blaser, Martin J.

    2009-01-01

    The bacterium Helicobacter pylori is remarkable for its ability to persist in the human stomach for decades without provoking sterilizing immunity. Since repetitive DNA can facilitate adaptive genomic flexibility via increased recombination, insertion, and deletion, we searched the genomes of two H. pylori strains for nucleotide repeats. We discovered a family of genes with extensive repetitive DNA that we have termed the H. pylori RD gene family. Each gene of this family is composed of a conserved 3′ region, a variable mid-region encoding 7 and 11 amino acid repeats, and a 5′ region containing one of two possible alleles. Analysis of five complete genome sequences and PCR genotyping of 42 H. pylori strains revealed extensive variation between strains in the number, location, and arrangement of RD genes. Furthermore, examination of multiple strains isolated from a single subject's stomach revealed intrahost variation in repeat number and composition. Despite prior evidence that the protein products of this gene family are expressed at the bacterial cell surface, enzyme-linked immunosorbent assay and immunoblot studies revealed no consistent seroreactivity to a recombinant RD protein by H. pylori-positive hosts. The pattern of repeats uncovered in the RD gene family appears to reflect slipped-strand mispairing or domain duplication, allowing for redundancy and subsequent diversity in genotype and phenotype. This novel family of hypervariable genes with conserved, repetitive, and allelic domains may represent an important locus for understanding H. pylori persistence in its natural host. PMID:19749042

  20. Endurance training alters YKL40, PERM1, and HSP70 skeletal muscle protein contents in men with type 2 diabetes mellitus.

    Science.gov (United States)

    Brinkmann, Christian; Kuckertz, Anika; Schiffer, Thorsten; Bloch, Wilhelm; Predel, Hans-Georg; Brixius, Klara

    2018-05-21

    The fight against type 2 diabetes mellitus (T2DM) is tremendously challenging. This pilot study investigates whether endurance training (3 times per week for 3 months, moderate intensity) can change the skeletal muscle protein contents of chitinase-3-like protein-1 (YKL40), peroxisome proliferator-activated receptor y coactivator-1 and estrogen-related receptor-induced regulator in muscle-1 (PERM1) and heat-shock protein-70 (HSP70), which have been discussed as novel therapeutically relevant targets. Muscle biopsies were obtained from overweight/obese men with T2DM (n = 7, years = 63 ± 9) at T1 (6 weeks pre-training), T2 (1 week pre-training) and T3 (3 to 4 days post-training). The protein levels of YKL40, PERM1, and HSP70 were determined by immunohistochemistry. YKL40, PERM1, and HSP70 were significantly upregulated following endurance training (T2-T3: +103%, +61%, +89%, p = 0.012, p = 0.010, p = 0.028). There was a fiber type-specific distribution of HSP70 with increased protein contents in type I fibers. A significant change in the fiber type distribution with an increase in type I fibers and a decrease in type II fibers was observed post-training. There were no significant differences for YKL40, PERM1, HSP70, or the fiber type distribution between T1 and T2. The training-induced upregulation of YKL40, PERM1, and HSP70 could help manage the diabetic disease and reduce its complications.

  1. Fas-associated factor 1 is a scaffold protein that promotes β-transducin repeat-containing protein (β-TrCP)-mediated β-catenin ubiquitination and degradation.

    Science.gov (United States)

    Zhang, Long; Zhou, Fangfang; Li, Yihao; Drabsch, Yvette; Zhang, Juan; van Dam, Hans; ten Dijke, Peter

    2012-08-31

    FAS-associated factor 1 (FAF1) antagonizes Wnt signaling by stimulating β-catenin degradation. However, the molecular mechanism underlying this effect is unknown. Here, we demonstrate that the E3 ubiquitin ligase β-transducin repeat-containing protein (β-TrCP) is required for FAF1 to suppress Wnt signaling and that FAF1 specifically associates with the SCF (Skp1-Cul1-F-box protein)-β-TrCP complex. Depletion of β-TrCP reduced FAF1-mediated β-catenin polyubiquitination and impaired FAF1 in antagonizing Wnt/β-catenin signaling. FAF1 was shown to act as a scaffold for β-catenin and β-TrCP and thereby to potentiate β-TrCP-mediated β-catenin ubiquitination and degradation. Data mining revealed that FAF1 expression is statistically down-regulated in human breast carcinoma compared with normal breast tissue. Consistent with this, FAF1 expression is higher in epithelial-like MCF7 than mesenchymal-like MDA-MB-231 human breast cancer cells. Depletion of FAF1 in MCF7 cells resulted in increased β-catenin accumulation and signaling. Importantly, FAF1 knockdown promoted a decrease in epithelial E-cadherin and an increase in mesenchymal vimentin expression, indicative for an epithelial to mesenchymal transition. Moreover, ectopic FAF1 expression reduces breast cancer cell migration in vitro and invasion/metastasis in vivo. Thus, our studies strengthen a tumor-suppressive function for FAF1.

  2. Studies of relationships between variation of the human G protein-coupled receptor 40 Gene and Type 2 diabetes and insulin release

    DEFF Research Database (Denmark)

    Hamid, Y H; Vissing, H; Holst, B

    2005-01-01

    AIMS: Recently, a novel human G protein-coupled receptor 40 (GPR40), which is predominantly expressed in pancreatic islets, was shown to mediate an amplifying effect of long-chain fatty acids on glucose-induced insulin secretion. The present aim was to examine the coding region of GPR40 for varia......AIMS: Recently, a novel human G protein-coupled receptor 40 (GPR40), which is predominantly expressed in pancreatic islets, was shown to mediate an amplifying effect of long-chain fatty acids on glucose-induced insulin secretion. The present aim was to examine the coding region of GPR40...... compared with the wild type (P = 0.01). The Arg211His polymorphism had a similar allele frequency among 1384 Type 2 diabetic patients [MAF%; 23.4 (95% CI: 21.8-25.0)] and 4424 middle-aged glucose-tolerant subjects [24.1% (23.2-25.0)]. A genotype-quantitative trait study of 5597 non-diabetic, middle...

  3. Experimental investigations on the fluid flow through an asymmetric rod bundle (P/D = 1.148, W/D = 1.074)

    International Nuclear Information System (INIS)

    Rehme, K.

    1984-12-01

    Measurements of the distributions of the mean velocity, the wall shear stresses and the turbulence were performed in a wall subchannel of a rod bundle of four prallel rods arranged asymmetrically in a rectangular (P/D = 1.148, W/D = 1.074). The Reynolds number of this investigations was Re = 7.89 x 10 4 . The results obtained by a fully automated rig are compared with those from manual operation. The experimental results show that the momentum transport is highly anisotropyc especially in the gaps of the rod bundle. Influences of secondary flow cannot be detected in the distribution of the time-mean velocity. The comparison between experimental wall shear stress distributions and those calculated with the VELASCO-code shows discrepancies both in the gap between the rod and channel walls and in the gap between the rods caused by the high momentum transport between the two subchannels. (orig.) [de

  4. High attributable risk due to arsenic for lung cancer in Yunnan tin mine reported by WD Hazelton et al

    International Nuclear Information System (INIS)

    Sun Shiquan

    2004-01-01

    Using two-stage clonal expansion model with data-base provided by Lubin, WD Hazelton et al indicated the high risk of arsenic, but not radon, in the etiology of Yunnan tin miner's lung cancer. The author of this review iterated the problems in the data-base of Lubin, and considered that it may result in low estimate for the risk of radon in paper of Hazelton et al. Attributable risk was estimated by them with changing exposure patterns of each individual ,but the efficacy of this two-stage model will be violated by the invariability of appointed radon/arsenic exposures. Risk comparison was used to distinguish the contribution from radon/arsenic, which was hampered by the high correlation between their joint exposures. As Lubin, Hazelton et al neglected the confounding from environmental arsenic pollution in early years. From all of above, their viewpoint is worth to be deliberated

  5. RACK(1) to the future - a historical perspective

    LENUS (Irish Health Repository)

    Ron, Dorit

    2013-08-01

    This perspective summarises the first and long overdue RACK1 meeting held at the University of Limerick, Ireland, May 2013, in which RACK1’s role in the immune system, the heart and the brain were discussed and its contribution to disease states such as cancer, cardiac hypertrophy and addiction were described. RACK1 is a scaffolding protein and a member of the WD repeat family of proteins. These proteins have a unique architectural assembly that facilitates protein anchoring and the stabilisation of protein activity. A large body of evidence is accumulating which is helping to define the versatile role of RACK1 in assembling and dismantling complex signaling pathways from the cell membrane to the nucleus in health and disease. In this commentary, we first provide a historical perspective on RACK1. We also address many of the pertinent and topical questions about this protein such as its role in transcription, epigenetics and translation, its cytoskeletal contribution and the merits of targeting RACK1 in disease.

  6. An allosteric conduit facilitates dynamic multisite substrate recognition by the SCFCdc4 ubiquitin ligase

    Science.gov (United States)

    Csizmok, Veronika; Orlicky, Stephen; Cheng, Jing; Song, Jianhui; Bah, Alaji; Delgoshaie, Neda; Lin, Hong; Mittag, Tanja; Sicheri, Frank; Chan, Hue Sun; Tyers, Mike; Forman-Kay, Julie D.

    2017-01-01

    The ubiquitin ligase SCFCdc4 mediates phosphorylation-dependent elimination of numerous substrates by binding one or more Cdc4 phosphodegrons (CPDs). Methyl-based NMR analysis of the Cdc4 WD40 domain demonstrates that Cyclin E, Sic1 and Ash1 degrons have variable effects on the primary Cdc4WD40 binding pocket. Unexpectedly, a Sic1-derived multi-CPD substrate (pSic1) perturbs methyls around a previously documented allosteric binding site for the chemical inhibitor SCF-I2. NMR cross-saturation experiments confirm direct contact between pSic1 and the allosteric pocket. Phosphopeptide affinity measurements reveal negative allosteric communication between the primary CPD and allosteric pockets. Mathematical modelling indicates that the allosteric pocket may enhance ultrasensitivity by tethering pSic1 to Cdc4. These results suggest negative allosteric interaction between two distinct binding pockets on the Cdc4WD40 domain may facilitate dynamic exchange of multiple CPD sites to confer ultrasensitive dependence on substrate phosphorylation.

  7. Functional and genomic analyses of alpha-solenoid proteins.

    Science.gov (United States)

    Fournier, David; Palidwor, Gareth A; Shcherbinin, Sergey; Szengel, Angelika; Schaefer, Martin H; Perez-Iratxeta, Carol; Andrade-Navarro, Miguel A

    2013-01-01

    Alpha-solenoids are flexible protein structural domains formed by ensembles of alpha-helical repeats (Armadillo and HEAT repeats among others). While homology can be used to detect many of these repeats, some alpha-solenoids have very little sequence homology to proteins of known structure and we expect that many remain undetected. We previously developed a method for detection of alpha-helical repeats based on a neural network trained on a dataset of protein structures. Here we improved the detection algorithm and updated the training dataset using recently solved structures of alpha-solenoids. Unexpectedly, we identified occurrences of alpha-solenoids in solved protein structures that escaped attention, for example within the core of the catalytic subunit of PI3KC. Our results expand the current set of known alpha-solenoids. Application of our tool to the protein universe allowed us to detect their significant enrichment in proteins interacting with many proteins, confirming that alpha-solenoids are generally involved in protein-protein interactions. We then studied the taxonomic distribution of alpha-solenoids to discuss an evolutionary scenario for the emergence of this type of domain, speculating that alpha-solenoids have emerged in multiple taxa in independent events by convergent evolution. We observe a higher rate of alpha-solenoids in eukaryotic genomes and in some prokaryotic families, such as Cyanobacteria and Planctomycetes, which could be associated to increased cellular complexity. The method is available at http://cbdm.mdc-berlin.de/~ard2/.

  8. Genome-wide cloning and sequence analysis of leucine-rich repeat receptor-like protein kinase genes in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Yuan Tong

    2010-01-01

    Full Text Available Abstract Background Transmembrane receptor kinases play critical roles in both animal and plant signaling pathways regulating growth, development, differentiation, cell death, and pathogenic defense responses. In Arabidopsis thaliana, there are at least 223 Leucine-rich repeat receptor-like kinases (LRR-RLKs, representing one of the largest protein families. Although functional roles for a handful of LRR-RLKs have been revealed, the functions of the majority of members in this protein family have not been elucidated. Results As a resource for the in-depth analysis of this important protein family, the complementary DNA sequences (cDNAs of 194 LRR-RLKs were cloned into the GatewayR donor vector pDONR/ZeoR and analyzed by DNA sequencing. Among them, 157 clones showed sequences identical to the predictions in the Arabidopsis sequence resource, TAIR8. The other 37 cDNAs showed gene structures distinct from the predictions of TAIR8, which was mainly caused by alternative splicing of pre-mRNA. Most of the genes have been further cloned into GatewayR destination vectors with GFP or FLAG epitope tags and have been transformed into Arabidopsis for in planta functional analysis. All clones from this study have been submitted to the Arabidopsis Biological Resource Center (ABRC at Ohio State University for full accessibility by the Arabidopsis research community. Conclusions Most of the Arabidopsis LRR-RLK genes have been isolated and the sequence analysis showed a number of alternatively spliced variants. The generated resources, including cDNA entry clones, expression constructs and transgenic plants, will facilitate further functional analysis of the members of this important gene family.

  9. Mechanism of Repeat-Associated MicroRNAs in Fragile X Syndrome

    Directory of Open Access Journals (Sweden)

    Karen Kelley

    2012-01-01

    Full Text Available The majority of the human genome is comprised of non-coding DNA, which frequently contains redundant microsatellite-like trinucleotide repeats. Many of these trinucleotide repeats are involved in triplet repeat expansion diseases (TREDs such as fragile X syndrome (FXS. After transcription, the trinucleotide repeats can fold into RNA hairpins and are further processed by Dicer endoribonuclases to form microRNA (miRNA-like molecules that are capable of triggering targeted gene-silencing effects in the TREDs. However, the function of these repeat-associated miRNAs (ramRNAs is unclear. To solve this question, we identified the first native ramRNA in FXS and successfully developed a transgenic zebrafish model for studying its function. Our studies showed that ramRNA-induced DNA methylation of the FMR1 5′-UTR CGG trinucleotide repeat expansion is responsible for both pathological and neurocognitive characteristics linked to the transcriptional FMR1 gene inactivation and the deficiency of its protein product FMRP. FMRP deficiency often causes synapse deformity in the neurons essential for cognition and memory activities, while FMR1 inactivation augments metabotropic glutamate receptor (mGluR-activated long-term depression (LTD, leading to abnormal neuronal responses in FXS. Using this novel animal model, we may further dissect the etiological mechanisms of TREDs, with the hope of providing insights into new means for therapeutic intervention.

  10. MicroRNAs in CAG trinucleotide repeat expansion disorders: an integrated review of the literature.

    Science.gov (United States)

    Dumitrescu, Laura; Popescu, Bogdan O

    2015-01-01

    MicroRNAs are small RNAs involved in gene silencing. They play important roles in transcriptional regulation and are selectively and abundantly expressed in the central nervous system. A considerable amount of the human genome is comprised of tandem repeating nucleotide streams. Several diseases are caused by above-threshold expansion of certain trinucleotide repeats occurring in a protein-coding or non-coding region. Though monogenic, CAG trinucleotide repeat expansion disorders have a complex pathogenesis, various combinations of multiple coexisting pathways resulting in one common final consequence: selective neurodegeneration. Mutant protein and mutant transcript gain of toxic function are considered to be the core pathogenic mechanisms. The profile of microRNAs in CAG trinucleotide repeat disorders is scarcely described, however microRNA dysregulation has been identified in these diseases and microRNA-related intereference with gene expression is considered to be involved in their pathogenesis. Better understanding of microRNAs functions and means of manipulation promises to offer further insights into the pathogenic pathways of CAG repeat expansion disorders, to point out new potential targets for drug intervention and to provide some of the much needed etiopathogenic therapeutic agents. A number of disease-modifying microRNA silencing strategies are under development, but several implementation impediments still have to be resolved. CAG targeting seems feasible and efficient in animal models and is an appealing approach for clinical practice. Preliminary human trials are just beginning.

  11. Single Strand Annealing Plays a Major Role in RecA-Independent Recombination between Repeated Sequences in the Radioresistant Deinococcus radiodurans Bacterium.

    Directory of Open Access Journals (Sweden)

    Solenne Ithurbide

    2015-10-01

    Full Text Available The bacterium Deinococcus radiodurans is one of the most radioresistant organisms known. It is able to reconstruct a functional genome from hundreds of radiation-induced chromosomal fragments. Our work aims to highlight the genes involved in recombination between 438 bp direct repeats separated by intervening sequences of various lengths ranging from 1,479 bp to 10,500 bp to restore a functional tetA gene in the presence or absence of radiation-induced DNA double strand breaks. The frequency of spontaneous deletion events between the chromosomal direct repeats were the same in recA+ and in ΔrecA, ΔrecF, and ΔrecO bacteria, whereas recombination between chromosomal and plasmid DNA was shown to be strictly dependent on the RecA and RecF proteins. The presence of mutations in one of the repeated sequence reduced, in a MutS-dependent manner, the frequency of the deletion events. The distance between the repeats did not influence the frequencies of deletion events in recA+ as well in ΔrecA bacteria. The absence of the UvrD protein stimulated the recombination between the direct repeats whereas the absence of the DdrB protein, previously shown to be involved in DNA double strand break repair through a single strand annealing (SSA pathway, strongly reduces the frequency of RecA- (and RecO- independent deletions events. The absence of the DdrB protein also increased the lethal sectoring of cells devoid of RecA or RecO protein. γ-irradiation of recA+ cells increased about 10-fold the frequencies of the deletion events, but at a lesser extend in cells devoid of the DdrB protein. Altogether, our results suggest a major role of single strand annealing in DNA repeat deletion events in bacteria devoid of the RecA protein, and also in recA+ bacteria exposed to ionizing radiation.

  12. Intra-examiner repeatability and agreement in accommodative response measurements.

    Science.gov (United States)

    Antona, B; Sanchez, I; Barrio, A; Barra, F; Gonzalez, E

    2009-11-01

    Clinical measurement of the accommodative response (AR) identifies the focusing plane of a subject with respect to the accommodative target. To establish whether a significant change in AR has occurred, it is important to determine the repeatability of this measurement. This study had two aims: First, to determine the intraexaminer repeatability of AR measurements using four clinical methods: Nott retinoscopy, monocular estimate method (MEM) retinoscopy, binocular crossed cylinder test (BCC) and near autorefractometry. Second, to study the level of agreement between AR measurements obtained with the different methods. The AR of the right eye at one accommodative demand of 2.50 D (40 cm) was measured on two separate occasions in 61 visually normal subjects of mean age 19.7 years (range 18-32 years). The intraexaminer repeatability of the tests, and agreement between them, were estimated by the Bland-Altman method. We determined mean differences (MD) and the 95% limits of agreement [coefficient of repeatability (COR) and coefficient of agreement (COA)]. Nott retinoscopy and BCC offered the best repeatability, showing the lowest MD and narrowest 95% interval of agreement (Nott: -0.10 +/- 0.66 D, BCC: -0.05 +/- 0.75 D). The 95% limits of agreement for the four techniques were similar (COA = +/- 0.92 to +/-1.00 D) yet clinically significant, according to the expected values of the AR. The two dynamic retinoscopy techniques (Nott and MEM) had a better agreement (COA = +/-0.64 D) although this COA must be interpreted in the context of the low MEM repeatability (COR = +/-0.98 D). The best method of assessing AR was Nott retinoscopy. The BCC technique was also repeatable, and both are recommended as suitable methods for clinical use. Despite better agreement between MEM and Nott, agreement among the remaining methods was poor such that their interchangeable use in clinical practice is not recommended.

  13. Characterization of α-isopropylmalate synthases containing different copy numbers of tandem repeats in Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Palittapongarnpim Prasit

    2009-06-01

    Full Text Available Abstract Background Alpha-isopropylmalate synthase (α-IPMS is the key enzyme that catalyzes the first committed step in the leucine biosynthetic pathway. The gene encoding α-IPMS in Mycobacterium tuberculosis, leuA, is polymorphic due to the insertion of 57-bp repeat units referred to as Variable Number of Tandem Repeats (VNTR. The role of the VNTR found within the M. tuberculosis genome is unclear. To investigate the role of the VNTR in leuA, we compared two α-IPMS proteins with different numbers of amino acid repeats, one with two copies and the other with 14 copies. We have cloned leuA with 14 copies of the repeat units into the pET15b expression vector with a His6-tag at the N-terminus, as was previously done for the leuA gene with two copies of the repeat units. Results The recombinant His6-α-IPMS proteins with two and 14 copies (α-IPMS-2CR and α-IPMS-14CR, respectively of the repeat units were purified by immobilized metal ion affinity chromatography and gel filtration. Both enzymes were found to be dimers by gel filtration. Both enzymes work well at pH values of 7–8.5 and temperatures of 37–42°C. However, α-IPMS-14CR tolerates pH values and temperatures outside of this range better than α-IPMS-2CR does. α-IPMS-14CR has higher affinity than α-IPMS-2CR for the two substrates, α-ketoisovalerate and acetyl CoA. Furthermore, α-IPMS-2CR was feedback inhibited by the end product l-leucine, whereas α-IPMS-14CR was not. Conclusion The differences in the kinetic properties and the l-leucine feedback inhibition between the two M. tuberculosis α-IPMS proteins containing low and high numbers of VNTR indicate that a large VNTR insertion affects protein structure and function. Demonstration of l-leucine binding to α-IPMS-14CR would confirm whether or not α-IPMS-14CR responds to end-product feedback inhibition.

  14. Novel POC1A mutation in primordial dwarfism reveals new insights for centriole biogenesis.

    Science.gov (United States)

    Koparir, Asuman; Karatas, Omer F; Yuceturk, Betul; Yuksel, Bayram; Bayrak, Ali O; Gerdan, Omer F; Sagiroglu, Mahmut S; Gezdirici, Alper; Kirimtay, Koray; Selcuk, Ece; Karabay, Arzu; Creighton, Chad J; Yuksel, Adnan; Ozen, Mustafa

    2015-10-01

    POC1A encodes a WD repeat protein localizing to centrioles and spindle poles and is associated with short stature, onychodysplasia, facial dysmorphism and hypotrichosis (SOFT) syndrome. These main features are related to the defect in cell proliferation of chondrocytes in growth plate. In the current study, we aimed at identifying the molecular basis of two patients with primordial dwarfism (PD) in a single family through utilization of whole-exome sequencing. A novel homozygous p.T120A missense mutation was detected in POC1A in both patients, a known causative gene of SOFT syndrome, and confirmed using Sanger sequencing. To test the pathogenicity of the detected mutation, primary fibroblast cultures obtained from the patients and a control individual were used. For evaluating the global gene expression profile of cells carrying p.T120A mutation in POC1A, we performed the gene expression array and compared their expression profiles to those of control fibroblast cells. The gene expression array analysis showed that 4800 transcript probes were significantly deregulated in cells with p.T120A mutation in comparison to the control. GO term association results showed that deregulated genes are mostly involved in the extracellular matrix and cytoskeleton. Furthermore, the p.T120A missense mutation in POC1A caused the formation of abnormal mitotic spindle structure, including supernumerary centrosomes, and changes in POC1A were accompanied by alterations in another centrosome-associated WD repeat protein p80-katanin. As a result, we identified a novel mutation in POC1A of patients with PD and showed that this mutation causes the formation of multiple numbers of centrioles and multipolar spindles with abnormal chromosome arrangement. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Rhoptry-associated protein (rap-1) genes in the sheep pathogen Babesia sp. Xinjiang: Multiple transcribed copies differing by 3' end repeated sequences.

    Science.gov (United States)

    Niu, Qingli; Marchand, Jordan; Yang, Congshan; Bonsergent, Claire; Guan, Guiquan; Yin, Hong; Malandrin, Laurence

    2015-07-30

    Sheep babesiosis occurs mainly in tropical and subtropical areas. The sheep parasite Babesia sp. Xinjiang is widespread in China, and our goal is to characterize rap-1 (rhoptry-associated protein 1) gene diversity and expression as a first step of a long term goal aiming at developing a recombinant subunit vaccine. Seven different rap-1a genes were amplified in Babesia sp. Xinjiang, using degenerate primers designed from conserved motifs. Rap-1b and rap-1c gene types could not be identified. In all seven rap-1a genes, the 5' regions exhibited identical sequences over 936 nt, and the 3' regions differed at 28 positions over 147 nt, defining two types of genes designated α and β. The remaining 3' part varied from 72 to 360 nt in length, depending on the gene. This region consists of a succession of two to ten 36 nt repeats, which explains the size differences. Even if the nucleotide sequences varied, 6 repeats encoded the same stretch of amino acids. Transcription of at least four α and two β genes was demonstrated by standard RT-PCR. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Interrogating Key Positions of Size-Reduced TALE Repeats Reveals a Programmable Sensor of 5-Carboxylcytosine.

    Science.gov (United States)

    Maurer, Sara; Giess, Mario; Koch, Oliver; Summerer, Daniel

    2016-12-16

    Transcription-activator-like effector (TALE) proteins consist of concatenated repeats that recognize consecutive canonical nucleobases of DNA via the major groove in a programmable fashion. Since this groove displays unique chemical information for the four human epigenetic cytosine nucleobases, TALE repeats with epigenetic selectivity can be engineered, with potential to establish receptors for the programmable decoding of all human nucleobases. TALE repeats recognize nucleobases via key amino acids in a structurally conserved loop whose backbone is positioned very close to the cytosine 5-carbon. This complicates the engineering of selectivities for large 5-substituents. To interrogate a more promising structural space, we engineered size-reduced repeat loops, performed saturation mutagenesis of key positions, and screened a total of 200 repeat-nucleobase interactions for new selectivities. This provided insight into the structural requirements of TALE repeats for affinity and selectivity, revealed repeats with improved or relaxed selectivity, and resulted in the first selective sensor of 5-carboxylcytosine.

  17. Protection against syphilis correlates with specificity of antibodies to the variable regions of Treponema pallidum repeat protein K.

    Science.gov (United States)

    Morgan, Cecilia A; Lukehart, Sheila A; Van Voorhis, Wesley C

    2003-10-01

    Syphilis has been recognized as a disease since the late 1400s, yet there is no practical vaccine available. One impediment to the development of a vaccine is the lack of understanding of multiple reinfections in humans despite the development of robust immune responses during the first episode. It has been shown that the Treponema pallidum repeat protein K (TprK) differs in seven discrete variable (V) regions in isolates and that the antibody response during infection is directed to these V regions. Immunization with TprK confers significant protection against infection with the homologous strain. We hypothesize that the antigenic diversity of TprK is involved in immune evasion, which contributes to the lack of heterologous protection. Here, using the rabbit model, we show a correlation between limited heterologous protection and tprK diversity in the challenge inoculum. We demonstrate that antibody responses to the V regions of one TprK molecule show limited cross-reactivity with heterologous TprK V regions.

  18. Viral delivery of C9orf72 hexanucleotide repeat expansions in mice leads to repeat-length-dependent neuropathology and behavioural deficits

    Directory of Open Access Journals (Sweden)

    Saul Herranz-Martin

    2017-07-01

    Full Text Available Intronic GGGGCC repeat expansions in C9orf72 are the most common genetic cause of amyotrophic lateral sclerosis (ALS and frontotemporal dementia (FTD. Two major pathologies stemming from the hexanucleotide RNA expansions (HREs have been identified in postmortem tissue: intracellular RNA foci and repeat-associated non-ATG dependent (RAN dipeptides, although it is unclear how these and other hallmarks of disease contribute to the pathophysiology of neuronal injury. Here, we describe two novel lines of mice that overexpress either 10 pure or 102 interrupted GGGGCC repeats mediated by adeno-associated virus (AAV and recapitulate the relevant human pathology and disease-related behavioural phenotypes. Similar levels of intracellular RNA foci developed in both lines of mice, but only mice expressing 102 repeats generated C9orf72 RAN pathology, neuromuscular junction (NMJ abnormalities, dispersal of the hippocampal CA1, enhanced apoptosis, and deficits in gait and cognition. Neither line of mice, however, showed extensive TAR DNA-binding protein 43 (TDP-43 pathology or neurodegeneration. Our data suggest that RNA foci pathology is not a good predictor of C9orf72 RAN dipeptide formation, and that RAN dipeptides and NMJ dysfunction are drivers of C9orf72 disease pathogenesis. These AAV-mediated models of C9orf72-associated ALS/FTD will be useful tools for studying disease pathophysiology and developing new therapeutic approaches.

  19. Identification of genes containing expanded purine repeats in the human genome and their apparent protective role against cancer.

    Science.gov (United States)

    Singh, Himanshu Narayan; Rajeswari, Moganty R

    2016-01-01

    Purine repeat sequences present in a gene are unique as they have high propensity to form unusual DNA-triple helix structures. Friedreich's ataxia is the only human disease that is well known to be associated with DNA-triplexes formed by purine repeats. The purpose of this study was to recognize the expanded purine repeats (EPRs) in human genome and find their correlation with cancer pathogenesis. We developed "PuRepeatFinder.pl" algorithm to identify non-overlapping EPRs without pyrimidine interruptions in the human genome and customized for searching repeat lengths, n ≥ 200. A total of 1158 EPRs were identified in the genome which followed Wakeby distribution. Two hundred and ninety-six EPRs were found in geneic regions of 282 genes (EPR-genes). Gene clustering of EPR-genes was done based on their cellular function and a large number of EPR-genes were found to be enzymes/enzyme modulators. Meta-analysis of 282 EPR-genes identified only 63 EPR-genes in association with cancer, mostly in breast, lung, and blood cancers. Protein-protein interaction network analysis of all 282 EPR-genes identified proteins including those in cadherins and VEGF. The two observations, that EPRs can induce mutations under malignant conditions and that identification of some EPR-gene products in vital cell signaling-mediated pathways, together suggest the crucial role of EPRs in carcinogenesis. The new link between EPR-genes and their functionally interacting proteins throws a new dimension in the present understanding of cancer pathogenesis and can help in planning therapeutic strategies. Validation of present results using techniques like NGS is required to establish the role of the EPR genes in cancer pathology.

  20. Phosphorylation of human link proteins

    International Nuclear Information System (INIS)

    Oester, D.A.; Caterson, B.; Schwartz, E.R.

    1986-01-01

    Three link proteins of 48, 44 and 40 kDa were purified from human articular cartilage and identified with monoclonal anti-link protein antibody 8-A-4. Two sets of lower molecular weight proteins of 30-31 kDa and 24-26 kDa also contained link protein epitopes recognized by the monoclonal antibody and were most likely degradative products of the intact link proteins. The link proteins of 48 and 40 kDa were identified as phosphoproteins while the 44 kDa link protein did not contain 32 P. The phosphorylated 48 and 40 kDa link proteins contained approximately 2 moles PO 4 /mole link protein

  1. Repeat: a framework to assess empirical reproducibility in biomedical research

    Directory of Open Access Journals (Sweden)

    Leslie D. McIntosh

    2017-09-01

    Full Text Available Abstract Background The reproducibility of research is essential to rigorous science, yet significant concerns of the reliability and verifiability of biomedical research have been recently highlighted. Ongoing efforts across several domains of science and policy are working to clarify the fundamental characteristics of reproducibility and to enhance the transparency and accessibility of research. Methods The aim of the proceeding work is to develop an assessment tool operationalizing key concepts of research transparency in the biomedical domain, specifically for secondary biomedical data research using electronic health record data. The tool (RepeAT was developed through a multi-phase process that involved coding and extracting recommendations and practices for improving reproducibility from publications and reports across the biomedical and statistical sciences, field testing the instrument, and refining variables. Results RepeAT includes 119 unique variables grouped into five categories (research design and aim, database and data collection methods, data mining and data cleaning, data analysis, data sharing and documentation. Preliminary results in manually processing 40 scientific manuscripts indicate components of the proposed framework with strong inter-rater reliability, as well as directions for further research and refinement of RepeAT. Conclusions The use of RepeAT may allow the biomedical community to have a better understanding of the current practices of research transparency and accessibility among principal investigators. Common adoption of RepeAT may improve reporting of research practices and the availability of research outputs. Additionally, use of RepeAT will facilitate comparisons of research transparency and accessibility across domains and institutions.

  2. Repeated radiation injuries by fission products

    International Nuclear Information System (INIS)

    Vasilenko, I.Ya.

    1986-01-01

    Attention is given to repeated radiation injuries during internal irradiation of theoretical and practical interest, particularly in case of the intake into organism of young products of nuclear fission (PNF). The results of experiments with dogs with repeated radioactive iodine injury the isotopes of which (131-135sub(I)) constitute a considerable part of PNF activity are discussed. The blood reaction and protein metabolism state have been studied. Observations for dogs have been continued for about 4 years. The doses for thyroid, gastrointestinal tract and liver subjected to the most intensive irradiation consituted in the first series of experiments after the first intake about 3;0.3;0.05 Gy, after the second - 5;0.5;0.08 Gy and in the second series of experiments - 3;0.3;0.05 Gy and 0.6;0.06;0.01 Gy, respectively. Hematologic factors,thyroid function, changes in exchange and immunologic reactivity have been studied. The dogs have been under observation for 5 years. It is shown in case of repeated intake of Isup(131) PNF into animals organism in quantity which does not cause during the acute period a clinically outlined sickness, substantial differences in the organism reaction as compared with the first intake of radionuclides have not been found. The presence of residual radiation injuries did not cause charging action during the acute period during PNF and repeated intake which in the author's opinion testifies to perfection of compensator mechanisms in case of intake of such quantities of radioactive products. At the remote periods blastomogenic action manifested which is estimated as a result of general biological action of radionuclides administered to the organism. The necessity in subsequent investigations for obtaining the data on organism reactivity, clinic and pathogenesis with the aim of prophylaxis and treatment of such injuries is indicated

  3. Repeated cue exposure effects on subjective and physiological indices of chocolate craving

    NARCIS (Netherlands)

    van Gucht, D.; Vansteenwegen, D.; Beckers, T.; Hermans, D.; Baeyens, F.; Van den Bergh, O.

    2008-01-01

    The aim of this study is to investigate the effects of repeated unreinforced exposure to chocolate cues in persons reporting chocolate craving. Participants in the experimental group (n ¼ 40) received 10 consecutive brief exposures to chocolate cues in each of two sessions, separated by 1-3 days.

  4. Breaks in the 45S rDNA Lead to Recombination-Mediated Loss of Repeats

    Directory of Open Access Journals (Sweden)

    Daniël O. Warmerdam

    2016-03-01

    Full Text Available rDNA repeats constitute the most heavily transcribed region in the human genome. Tumors frequently display elevated levels of recombination in rDNA, indicating that the repeats are a liability to the genomic integrity of a cell. However, little is known about how cells deal with DNA double-stranded breaks in rDNA. Using selective endonucleases, we show that human cells are highly sensitive to breaks in 45S but not the 5S rDNA repeats. We find that homologous recombination inhibits repair of breaks in 45S rDNA, and this results in repeat loss. We identify the structural maintenance of chromosomes protein 5 (SMC5 as contributing to recombination-mediated repair of rDNA breaks. Together, our data demonstrate that SMC5-mediated recombination can lead to error-prone repair of 45S rDNA repeats, resulting in their loss and thereby reducing cellular viability.

  5. Designed ankyrin repeat proteins: a new approach to mimic complex antigens for diagnostic purposes?

    Directory of Open Access Journals (Sweden)

    Stefanie Hausammann

    Full Text Available Inhibitory antibodies directed against coagulation factor VIII (FVIII can be found in patients with acquired and congenital hemophilia A. Such FVIII-inhibiting antibodies are routinely detected by the functional Bethesda Assay. However, this assay has a low sensitivity and shows a high inter-laboratory variability. Another method to detect antibodies recognizing FVIII is ELISA, but this test does not allow the distinction between inhibitory and non-inhibitory antibodies. Therefore, we aimed at replacing the intricate antigen FVIII by Designed Ankyrin Repeat Proteins (DARPins mimicking the epitopes of FVIII inhibitors. As a model we used the well-described inhibitory human monoclonal anti-FVIII antibody, Bo2C11, for the selection on DARPin libraries. Two DARPins were selected binding to the antigen-binding site of Bo2C11, which mimic thus a functional epitope on FVIII. These DARPins inhibited the binding of the antibody to its antigen and restored FVIII activity as determined in the Bethesda assay. Furthermore, the specific DARPins were able to recognize the target antibody in human plasma and could therefore be used to test for the presence of Bo2C11-like antibodies in a large set of hemophilia A patients. These data suggest, that our approach might be used to isolate epitopes from different sets of anti-FVIII antibodies in order to develop an ELISA-based screening assay allowing the distinction of inhibitory and non-inhibitory anti-FVIII antibodies according to their antibody signatures.

  6. C9orf72 nucleotide repeat structures initiate molecular cascades of disease.

    Science.gov (United States)

    Haeusler, Aaron R; Donnelly, Christopher J; Periz, Goran; Simko, Eric A J; Shaw, Patrick G; Kim, Min-Sik; Maragakis, Nicholas J; Troncoso, Juan C; Pandey, Akhilesh; Sattler, Rita; Rothstein, Jeffrey D; Wang, Jiou

    2014-03-13

    A hexanucleotide repeat expansion (HRE), (GGGGCC)n, in C9orf72 is the most common genetic cause of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here we identify a molecular mechanism by which structural polymorphism of the HRE leads to ALS/FTD pathology and defects. The HRE forms DNA and RNA G-quadruplexes with distinct structures and promotes RNA•DNA hybrids (R-loops). The structural polymorphism causes a repeat-length-dependent accumulation of transcripts aborted in the HRE region. These transcribed repeats bind to ribonucleoproteins in a conformation-dependent manner. Specifically, nucleolin, an essential nucleolar protein, preferentially binds the HRE G-quadruplex, and patient cells show evidence of nucleolar stress. Our results demonstrate that distinct C9orf72 HRE structural polymorphism at both DNA and RNA levels initiates molecular cascades leading to ALS/FTD pathologies, and provide the basis for a mechanistic model for repeat-associated neurodegenerative diseases.

  7. Cardiac ankyrin repeat protein attenuates cardiac hypertrophy by inhibition of ERK1/2 and TGF-β signaling pathways.

    Directory of Open Access Journals (Sweden)

    Yao Song

    Full Text Available AIMS: It has been reported that cardiac ankyrin repeat protein is associated with heart development and diseases. This study is aimed to investigate the role of CARP in heart hypertrophy in vivo. METHODS AND RESULTS: We generated a cardiac-specific CARP-overexpressing transgenic mouse. Although such animals did not display any overt physiological abnormality, they developed less cardiac hypertrophy in response to pressure overload than did wildtype mice, as indicated by heart weight/body weight ratios, echocardiographic and histological analyses, and expression of hypertrophic markers. These mice also exhibited less cardiac hypertrophy after infusion of isoproterenol. To gain a molecular insight into how CARP attenuated heart hypertrophy, we examined expression of the mitogen-activated protein kinase cascade and found that the concentrations of phosphorylated ERK1/2 and MEK were markedly reduced in the hearts of transgenic mice subjected to pressure overload. In addition, the expressions of TGF-β and phosphorylated Smad3 were significantly downregulated in the hearts of CARP Tg mice in response to pressure overload. Furthermore, addition of human TGF-β1 could reverse the inhibitory effect of CARP on the hypertrophic response induced by phenylephrine in cardiomyocytes. It was also evidenced that the inhibitory effect of CARP on cardiac hypertrophy was not attributed to apoptosis. CONCLUSION: CARP attenuates cardiac hypertrophy, in which the ERK and TGF-β pathways may be involved. Our findings highlight the significance of CARP as an anti-hypertrophic factor in therapy of cardiac hypertrophy.

  8. Dipeptide repeat protein inclusions are rare in the spinal cord and almost absent from motor neurons in C9ORF72 mutant amyotrophic lateral sclerosis and are unlikely to cause their degeneration.

    Science.gov (United States)

    Gomez-Deza, Jorge; Lee, Youn-Bok; Troakes, Claire; Nolan, Matthew; Al-Sarraj, Safa; Gallo, Jean-Marc; Shaw, Christopher E

    2015-06-25

    Cytoplasmic TDP-43 inclusions are the pathological hallmark of amyotrophic lateral sclerosis (ALS) and tau-negative frontotemporal lobar dementia (FTLD). The G4C2 repeat mutation in C9ORF72 is the most common cause of ALS and FTLD in which, in addition to TDP-43 inclusions, five different di-peptide repeat (DPR) proteins have been identified. Di-peptide repeat proteins are translated in a non-canonical fashion from sense and antisense transcripts of the G4C2 repeat (GP, GA, GR, PA, PR). DPR inclusions are abundant in the cerebellum, as well as in the frontal and temporal lobes of ALS and FTLD patients and some are neurotoxic in a range of cellular and animal models, implying that DPR aggregation directly contributes to disease pathogenesis. Here we sought to quantify inclusions for each DPR and TDP-43 in ALS cases with and without the C9ORF72 mutation. We characterised the abundance of DPRs and their cellular location and compared this to cytoplasmic TDP-43 inclusions in order to explore the role of each inclusion in lower motor neuron degeneration. Spinal cord sections from ten cases positive for the C9ORF72 repeat expansion (ALS-C9+ve) and five cases that were not were probed by double immunofluorescence staining for individual DPRs and TDP-43. Inclusions immunoreactive for each of the DPRs were present in the spinal cord but they were rare or very rare in abundance (in descending order of frequency: GA, GP, GR, PA and PR). TDP-43 cytoplasmic inclusions were 45- to 750-fold more frequent than any DPR, and fewer than 4 % of DPR inclusions colocalized with TDP-43 inclusions. In motor neurons, a single cytoplasmic DPR inclusion was detected (0.1 %) in contrast to the 34 % of motor neurons that contained cytoplasmic TDP-43 inclusions. Furthermore, the number of TDP-43 inclusions in ALS cases with and without the C9ORF72 mutation was nearly identical. For all other neurodegenerative diseases, the neurotoxic protein aggregates are detected in the affected

  9. Differential protein expression, DNA binding and interaction with SV40 large tumour antigen implicate the p63-family of proteins in replicative senescence.

    Science.gov (United States)

    Djelloul, Siham; Tarunina, Marina; Barnouin, Karin; Mackay, Alan; Jat, Parmjit S

    2002-02-07

    P53 activity plays a key role in mammalian cells when they undergo replicative senescence at their Hayflick limit. To determine whether p63 proteins, members of the family of p53-related genes, are also involved in this process, we examined their expression in serially passaged rat embryo fibroblasts. Upon senescence, two truncated DeltaNp63 proteins decreased in abundance whereas two TAp63 isoforms accumulated. 2-D gel analysis showed that the DeltaNp63 proteins underwent post-translational modifications in both proliferating and senescent cells. Direct binding of DeltaNp63 proteins to a p53 consensus motif was greater in proliferating cells than senescent cells. In contrast p63alpha isoforms bound to DNA in a p53 dependent manner and this was higher in senescent cells than proliferating cells. An interaction of p63alpha proteins with SV40 large tumour antigen was also detected and ectopic expression of DeltaNp63alpha can extend the lifespan of rat embryo fibroblasts. Taken together the results indicate that p63 proteins may play a role in replicative senescence either by competition for p53 DNA binding sites or by direct interaction with p53 protein bound to DNA.

  10. Characterization of the variable-number tandem repeats in vrrA from different Bacillus anthracis isolates

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, P.J.; Walthers, E.A.; Richmond, K.L. [Los Alamos National Lab., NM (United States)] [and others

    1997-04-01

    PCR analysis of 198 Bacillus anthracis isolates revealed a variable region of DNA sequence differing in length among the isolates. Five Polymorphisms differed by the presence Of two to six copies of the 12-bp tandem repeat 5{prime}-CAATATCAACAA-3{prime}. This variable-number tandem repeat (VNTR) region is located within a larger sequence containing one complete open reading frame that encodes a putative 30-kDa protein. Length variation did not change the reading frame of the encoded protein and only changed the copy number of a 4-amino-acid sequence (QYQQ) from 2 to 6. The structure of the VNTR region suggests that these multiple repeats are generated by recombination or polymerase slippage. Protein structures predicted from the reverse-translated DNA sequence suggest that any structural changes in the encoded protein are confined to the region encoded by the VNTR sequence. Copy number differences in the VNTR region were used to define five different B. anthracis alleles. Characterization of 198 isolates revealed allele frequencies of 6.1, 17.7, 59.6, 5.6, and 11.1% sequentially from shorter to longer alleles. The high degree of polymorphism in the VNTR region provides a criterion for assigning isolates to five allelic categories. There is a correlation between categories and geographic distribution. Such molecular markers can be used to monitor the epidemiology of anthrax outbreaks in domestic and native herbivore populations. 22 refs., 4 figs., 3 tabs.

  11. Significant molecular and systemic adaptations after repeated sprint training in hypoxia.

    Directory of Open Access Journals (Sweden)

    Raphael Faiss

    Full Text Available While intermittent hypoxic training (IHT has been reported to evoke cellular responses via hypoxia inducible factors (HIFs but without substantial performance benefits in endurance athletes, we hypothesized that repeated sprint training in hypoxia could enhance repeated sprint ability (RSA performed in normoxia via improved glycolysis and O(2 utilization. 40 trained subjects completed 8 cycling repeated sprint sessions in hypoxia (RSH, 3000 m or normoxia (RSN, 485 m. Before (Pre- and after (Post- training, muscular levels of selected mRNAs were analyzed from resting muscle biopsies and RSA tested until exhaustion (10-s sprint, work-to-rest ratio 1:2 with muscle perfusion assessed by near-infrared spectroscopy. From Pre- to Post-, the average power output of all sprints in RSA was increased (p<0.01 to the same extent (6% vs 7%, NS in RSH and in RSN but the number of sprints to exhaustion was increased in RSH (9.4±4.8 vs. 13.0±6.2 sprints, p<0.01 but not in RSN (9.3±4.2 vs. 8.9±3.5. mRNA concentrations of HIF-1α (+55%, carbonic anhydrase III (+35% and monocarboxylate transporter-4 (+20% were augmented (p<0.05 whereas mitochondrial transcription factor A (-40%, peroxisome proliferator-activated receptor gamma coactivator 1α (-23% and monocarboxylate transporter-1 (-36% were decreased (p<0.01 in RSH only. Besides, the changes in total hemoglobin variations (Δ[tHb] during sprints throughout RSA test increased to a greater extent (p<0.01 in RSH. Our findings show larger improvement in repeated sprint performance in RSH than in RSN with significant molecular adaptations and larger blood perfusion variations in active muscles.

  12. Crystal Structure of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated Csn2 Protein Revealed Ca[superscript 2+]-dependent Double-stranded DNA Binding Activity

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ki Hyun; Kurinov, Igor; Ke, Ailong (Cornell); (NWU)

    2012-05-22

    Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated protein genes (cas genes) are widespread in bacteria and archaea. They form a line of RNA-based immunity to eradicate invading bacteriophages and malicious plasmids. A key molecular event during this process is the acquisition of new spacers into the CRISPR loci to guide the selective degradation of the matching foreign genetic elements. Csn2 is a Nmeni subtype-specific cas gene required for new spacer acquisition. Here we characterize the Enterococcus faecalis Csn2 protein as a double-stranded (ds-) DNA-binding protein and report its 2.7 {angstrom} tetrameric ring structure. The inner circle of the Csn2 tetrameric ring is {approx}26 {angstrom} wide and populated with conserved lysine residues poised for nonspecific interactions with ds-DNA. Each Csn2 protomer contains an {alpha}/{beta} domain and an {alpha}-helical domain; significant hinge motion was observed between these two domains. Ca{sup 2+} was located at strategic positions in the oligomerization interface. We further showed that removal of Ca{sup 2+} ions altered the oligomerization state of Csn2, which in turn severely decreased its affinity for ds-DNA. In summary, our results provided the first insight into the function of the Csn2 protein in CRISPR adaptation by revealing that it is a ds-DNA-binding protein functioning at the quaternary structure level and regulated by Ca{sup 2+} ions.

  13. Arginine vasopressin neuronal loss results from autophagy-associated cell death in a mouse model for familial neurohypophysial diabetes insipidus

    Science.gov (United States)

    Hagiwara, D; Arima, H; Morishita, Y; Wenjun, L; Azuma, Y; Ito, Y; Suga, H; Goto, M; Banno, R; Sugimura, Y; Shiota, A; Asai, N; Takahashi, M; Oiso, Y

    2014-01-01

    Familial neurohypophysial diabetes insipidus (FNDI) characterized by progressive polyuria is mostly caused by mutations in the gene encoding neurophysin II (NPII), which is the carrier protein of the antidiuretic hormone, arginine vasopressin (AVP). Although accumulation of mutant NPII in the endoplasmic reticulum (ER) could be toxic for AVP neurons, the precise mechanisms of cell death of AVP neurons, reported in autopsy studies, remain unclear. Here, we subjected FNDI model mice to intermittent water deprivation (WD) in order to promote the phenotypes. Electron microscopic analyses demonstrated that, while aggregates are confined to a certain compartment of the ER in the AVP neurons of FNDI mice with water access ad libitum, they were scattered throughout the dilated ER lumen in the FNDI mice subjected to WD for 4 weeks. It is also demonstrated that phagophores, the autophagosome precursors, emerged in the vicinity of aggregates and engulfed the ER containing scattered aggregates. Immunohistochemical analyses revealed that expression of p62, an adapter protein between ubiquitin and autophagosome, was elicited on autophagosomal membranes in the AVP neurons, suggesting selective autophagy induction at this time point. Treatment of hypothalamic explants of green fluorescent protein (GFP)-microtubule-associated protein 1 light chain 3 (LC3) transgenic mice with an ER stressor thapsigargin increased the number of GFP-LC3 puncta, suggesting that ER stress could induce autophagosome formation in the hypothalamus of wild-type mice as well. The cytoplasm of AVP neurons in FNDI mice was occupied with vacuoles in the mice subjected to WD for 12 weeks, when 30–40% of AVP neurons are lost. Our data thus demonstrated that autophagy was induced in the AVP neurons subjected to ER stress in FNDI mice. Although autophagy should primarily be protective for neurons, it is suggested that the organelles including ER were lost over time through autophagy, leading to autophagy

  14. Exceptionally long 5' UTR short tandem repeats specifically linked to primates.

    Science.gov (United States)

    Namdar-Aligoodarzi, P; Mohammadparast, S; Zaker-Kandjani, B; Talebi Kakroodi, S; Jafari Vesiehsari, M; Ohadi, M

    2015-09-10

    We have previously reported genome-scale short tandem repeats (STRs) in the core promoter interval (i.e. -120 to +1 to the transcription start site) of protein-coding genes that have evolved identically in primates vs. non-primates. Those STRs may function as evolutionary switch codes for primate speciation. In the current study, we used the Ensembl database to analyze the 5' untranslated region (5' UTR) between +1 and +60 of the transcription start site of the entire human protein-coding genes annotated in the GeneCards database, in order to identify "exceptionally long" STRs (≥5-repeats), which may be of selective/adaptive advantage. The importance of this critical interval is its function as core promoter, and its effect on transcription and translation. In order to minimize ascertainment bias, we analyzed the evolutionary status of the human 5' UTR STRs of ≥5-repeats in several species encompassing six major orders and superorders across mammals, including primates, rodents, Scandentia, Laurasiatheria, Afrotheria, and Xenarthra. We introduce primate-specific STRs, and STRs which have expanded from mouse to primates. Identical co-occurrence of the identified STRs of rare average frequency between 0.006 and 0.0001 in primates supports a role for those motifs in processes that diverged primates from other mammals, such as neuronal differentiation (e.g. APOD and FGF4), and craniofacial development (e.g. FILIP1L). A number of the identified STRs of ≥5-repeats may be human-specific (e.g. ZMYM3 and DAZAP1). Future work is warranted to examine the importance of the listed genes in primate/human evolution, development, and disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. What we have learned about scheduling elective repeat cesarean delivery at term.

    Science.gov (United States)

    Tita, Alan T N

    2016-08-01

    The optimal timing of delivery in the setting of various clinical conditions and scenarios remains one of the most common questions for obstetric providers. Over the past 5-10 years, the optimal timing of delivery at term, particularly for elective repeat cesareans, has been the subject of considerable investigation and discussion. There is an increasing consensus that when women opt for an elective repeat cesarean delivery, it should be performed at term rather than preterm. The recent redefinition of the "term" period into early term (37-38 weeks), full-term (39-40 weeks), late term (41 weeks), and post term designations (≥42 weeks) underscores observed heterogeneity in outcomes following delivery at term. The American College of Obstetricians and Gynecologists currently recommends that elective repeat cesarean delivery be performed at full-term. Herein, the available data to support this recommendation regarding timing of elective repeat cesarean delivery are reviewed, including contributions from the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) Maternal-Fetal Medicine Units (MFMU) Network. Copyright © 2016. Published by Elsevier Inc.

  16. The role of Slr0151, a tetratricopeptide repeat protein from Synechocystis sp. PCC 6803, during Photosystem II assembly and repair

    Directory of Open Access Journals (Sweden)

    Anna eRast

    2016-05-01

    Full Text Available The assembly and repair of photosystem II (PSII is facilitated by a variety of assembly factors. Among those, the tetratricopeptide repeat (TPR protein Slr0151 from Synechocystis sp. PCC 6803 (hereafter Synechocystis has previously been assigned a repair function under high light conditions (Yang et al., 2014, J. Integr. Plant Biol. 56, 1136-50. Here, we show that inactivation of Slr0151 affects thylakoid membrane ultrastructure even under normal light conditions. Moreover, the level and localization of Slr0151 are affected in a variety of PSII-related mutants. In particular, the data suggest a close functional relationship between Slr0151 and Sll0933, which interacts with Ycf48 during PSII assembly and is homologous to PAM68 in Arabidopsis thaliana. Immunofluorescence analysis revealed a punctate distribution of Slr0151 within several different membrane types in Synechocystis cells.

  17. Repeating and non-repeating fast radio bursts from binary neutron star mergers

    Science.gov (United States)

    Yamasaki, Shotaro; Totani, Tomonori; Kiuchi, Kenta

    2018-04-01

    Most fast radio bursts (FRB) do not show evidence of repetition, and such non-repeating FRBs may be produced at the time of a merger of binary neutron stars (BNS), provided that the BNS merger rate is close to the high end of the currently possible range. However, the merger environment is polluted by dynamical ejecta, which may prohibit the radio signal from propagating. We examine this by using a general-relativistic simulation of a BNS merger, and show that the ejecta appears about 1 ms after the rotation speed of the merged star becomes the maximum. Therefore there is a time window in which an FRB signal can reach outside, and the short duration of non-repeating FRBs can be explained by screening after ejecta formation. A fraction of BNS mergers may leave a rapidly rotating and stable neutron star, and such objects may be the origin of repeating FRBs like FRB 121102. We show that a merger remnant would appear as a repeating FRB on a time scale of ˜1-10 yr, and expected properties are consistent with the observations of FRB 121102. We construct an FRB rate evolution model that includes these two populations of repeating and non-repeating FRBs from BNS mergers, and show that the detection rate of repeating FRBs relative to non-repeating ones rapidly increases with improving search sensitivity. This may explain why only the repeating FRB 121102 was discovered by the most sensitive FRB search with Arecibo. Several predictions are made, including the appearance of a repeating FRB 1-10 yr after a BNS merger that is localized by gravitational waves and subsequent electromagnetic radiation.

  18. Repeated anaesthesia with isoflurane and medetomidine-midazolam-fentanyl in guinea pigs and its influence on physiological parameters.

    Directory of Open Access Journals (Sweden)

    Sabrina Schmitz

    Full Text Available Repeated anaesthesia may be required in experimental protocols and in daily veterinary practice, but anaesthesia is known to alter physiological parameters in GPs (Cavia porcellus, GPs. This study investigated the effects of repeated anaesthesia with either medetomidine-midazolam-fentanyl (MMF or isoflurane (Iso on physiological parameters in the GP. Twelve GPs were repeatedly administered with MMF or Iso in two anaesthesia sets. One set consisted of six 40-min anaesthesias, performed over 3 weeks (2 per week; the anaesthetic used first was randomized. Prior to Iso anaesthesia, atropine was injected. MMF anaesthesia was antagonized with AFN (atipamezole-flumazenil-naloxone. Abdominally implanted radio-telemetry devices recorded the mean arterial blood pressure (MAP, heart rate (HR and core body temperature continuously. Additionally, respiratory rate, blood glucose and body weight were assessed. An operable state could be achieved and maintained for 40 min in all GPs. During the surgical tolerance with MMF, the GPs showed a large MAP range between the individuals. In the MMF wake- up phase, the time was shortened until the righting reflex (RR returned and that occurred at lower MAP and HR values. Repeated Iso anaesthesia led to an increasing HR during induction (anaesthesias 2-6, non-surgical tolerance (anaesthesias 3-6 and surgical tolerance (anaesthesias 4, 6. Both anaesthetics may be used repeatedly, as repeating the anaesthesias resulted in only slightly different physiological parameters, compared to those seen with single anaesthesias. The regular atropine premedication induced HR increases and repeated MMF anaesthesia resulted in a metabolism increase which led to the faster return of RR. Nevertheless, Iso's anaesthesia effects of strong respiratory depression and severe hypotension remained. Based on this increased anaesthesia risk with Iso, MMF anaesthesia is preferable for repeated use in GPs.

  19. Breaks in the 45S rDNA Lead to Recombination-Mediated Loss of Repeats.

    Science.gov (United States)

    Warmerdam, Daniël O; van den Berg, Jeroen; Medema, René H

    2016-03-22

    rDNA repeats constitute the most heavily transcribed region in the human genome. Tumors frequently display elevated levels of recombination in rDNA, indicating that the repeats are a liability to the genomic integrity of a cell. However, little is known about how cells deal with DNA double-stranded breaks in rDNA. Using selective endonucleases, we show that human cells are highly sensitive to breaks in 45S but not the 5S rDNA repeats. We find that homologous recombination inhibits repair of breaks in 45S rDNA, and this results in repeat loss. We identify the structural maintenance of chromosomes protein 5 (SMC5) as contributing to recombination-mediated repair of rDNA breaks. Together, our data demonstrate that SMC5-mediated recombination can lead to error-prone repair of 45S rDNA repeats, resulting in their loss and thereby reducing cellular viability. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Freely Chosen Index Finger Tapping Frequency Is Increased in Repeated Bouts of Tapping.

    Science.gov (United States)

    Hansen, Ernst Albin; Ebbesen, Brian Duborg; Dalsgaard, Ane; Mora-Jensen, Mark Holten; Rasmussen, Jakob

    2015-01-01

    Healthy individuals (n = 40) performed index finger tapping at freely chosen frequency during repeated bouts and before and after near-maximal muscle action consisting of 3 intense flexions of the index finger metacarpal phalangeal joint. One experiment showed, unexpectedly, that a bout of tapping increased the tapping frequency in the subsequent bout. Thus, a cumulating increase of 8.2 ± 5.4% (p tapping frequency was still increased in consecutive bouts when rest periods were extended to 20 min. Besides, near-maximal muscle activation, followed by 5 min rest, did not affect the tapping frequency. In conclusion, freely chosen tapping frequency was increased in repeated bouts of tapping, which were separated by 10-20 min rest periods. The observed phenomenon is suggested to be termed repeated bout rate enhancement.

  1. t2prhd: a tool to study the patterns of repeat evolution

    Directory of Open Access Journals (Sweden)

    Pénzes Zsolt

    2008-01-01

    Full Text Available Abstract Background The models developed to characterize the evolution of multigene families (such as the birth-and-death and the concerted models have also been applied on the level of sequence repeats inside a gene/protein. Phylogenetic reconstruction is the method of choice to study the evolution of gene families and also sequence repeats in the light of these models. The characterization of the gene family evolution in view of the evolutionary models is done by the evaluation of the clustering of the sequences with the originating loci in mind. As the locus represents positional information, it is straightforward that in the case of the repeats the exact position in the sequence should be used, as the simple numbering according to repeat order can be misleading. Results We have developed a novel rapid visual approach to study repeat evolution, that takes into account the exact repeat position in a sequence. The "pairwise repeat homology diagram" visualizes sequence repeats detected by a profile HMM in a pair of sequences and highlights their homology relations inferred by a phylogenetic tree. The method is implemented in a Perl script (t2prhd available for downloading at http://t2prhd.sourceforge.net and is also accessible as an online tool at http://t2prhd.brc.hu. The power of the method is demonstrated on the EGF-like and fibronectin-III-like (Fn-III domain repeats of three selected mammalian Tenascin sequences. Conclusion Although pairwise repeat homology diagrams do not carry all the information provided by the phylogenetic tree, they allow a rapid and intuitive assessment of repeat evolution. We believe, that t2prhd is a helpful tool with which to study the pattern of repeat evolution. This method can be particularly useful in cases of large datasets (such as large gene families, as the command line interface makes it possible to automate the generation of pairwise repeat homology diagrams with the aid of scripts.

  2. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings.

    Science.gov (United States)

    Gonzalez, Antonio; Zhao, Mingzhe; Leavitt, John M; Lloyd, Alan M

    2008-03-01

    In all higher plants studied to date, the anthocyanin pigment pathway is regulated by a suite of transcription factors that include Myb, bHLH and WD-repeat proteins. However, in Arabidopsis thaliana, the Myb regulators remain to be conclusively identified, and little is known about anthocyanin pathway regulation by TTG1-dependent transcriptional complexes. Previous overexpression of the PAP1 Myb suggested that genes from the entire phenylpropanoid pathway are targets of regulation by Myb/bHLH/WD-repeat complexes in Arabidopsis, in contrast to other plants. Here we demonstrate that overexpression of Myb113 or Myb114 results in substantial increases in pigment production similar to those previously seen as a result of over-expression of PAP1, and pigment production in these overexpressors remains TTG1- and bHLH-dependent. Also, plants harboring an RNAi construct targeting PAP1 and three Myb candidates (PAP2, Myb113 and Myb114) showed downregulated Myb gene expression and obvious anthocyanin deficiencies. Correlated with these anthocyanin deficiencies is downregulation of the same late anthocyanin structural genes that are downregulated in ttg1 and bHLH anthocyanin mutants. Expression studies using GL3:GR and TTG1:GR fusions revealed direct regulation of the late biosynthetic genes only. Functional diversification between GL3 and EGL3 with regard to activation of gene targets was revealed by GL3:GR studies in single and double bHLH mutant seedlings. Expression profiles for Myb and bHLH regulators are also presented in the context of pigment production in young seedlings.

  3. Feasibilty of zein proteins, simple sequence repeats and phenotypic ...

    African Journals Online (AJOL)

    Widespread adoption of quality protein maize (QPM), especially among tropical farming systems has been slow mainly due to the slow process of generating varieties with acceptable kernel quality and adaptability to different agroecological contexts. A molecular based foreground selection system for opaque 2 (o2), the ...

  4. Dissecting the critical factors for thermodynamic stability of modular proteins using molecular modeling approach.

    Directory of Open Access Journals (Sweden)

    Yuno Lee

    Full Text Available Repeat proteins have recently attracted much attention as alternative scaffolds to immunoglobulin antibodies due to their unique structural and biophysical features. In particular, repeat proteins show high stability against temperature and chaotic agents. Despite many studies, structural features for the stability of repeat proteins remain poorly understood. Here we present an interesting result from in silico analyses pursuing the factors which affect the stability of repeat proteins. Previously developed repebody structure based on variable lymphocytes receptors (VLRs which consists of leucine-rich repeat (LRR modules was used as initial structure for the present study. We constructed extra six repebody structures with varying numbers of repeat modules and those structures were used for molecular dynamics simulations. For the structures, the intramolecular interactions including backbone H-bonds, van der Waals energy, and hydrophobicity were investigated and then the radius of gyration, solvent-accessible surface area, ratio of secondary structure, and hydration free energy were also calculated to find out the relationship between the number of LRR modules and stability of the protein. Our results show that the intramolecular interactions lead to more compact structure and smaller surface area of the repebodies, which are critical for the stability of repeat proteins. The other features were also well compatible with the experimental results. Based on our observations, the repebody-5 was proposed as the best structure from the all repebodies in structure optimization process. The present study successfully demonstrated that our computer-based molecular modeling approach can significantly contribute to the experiment-based protein engineering challenge.

  5. SKR-1, a homolog of Skp1 and a member of the SCFSEL-10 complex, regulates sex-determination and LIN-12/Notch signaling in C. elegans

    Science.gov (United States)

    Killian, Darrell J.; Harvey, Elizabeth; Johnson, Peter; Otori, Muneyoshi; Mitani, Shohei; Xue, Ding

    2008-01-01

    Sex-determination in C. elegans requires regulation of gene transcription and protein activity and stability. sel-10 encodes a WD40-repeat-containing F-box protein that likely mediates the ubiquitin-mediated degradation of important sex-determination factors. Loss of sel-10 results in a mild masculinization of hermaphrodites, whereas dominant alleles of sel-10, such as sel-10(n1074), cause a more severe masculinization, including a reversal of the life versus death decision in sex-specific neurons. To investigate about how sel-10 regulates sex-determination, we conducted a sel-10(n1074) suppressor screen and isolated a weak loss-of-function allele of skr-1, one of 21 Skp1-related genes in C. elegans. Skp1, Cullin, and F-box proteins, such as SEL-10, are components of the SCF E3 ubiquitin ligase complex. We present genetic evidence that the sel-10(n1074) masculinization phenotype is dependent upon skr-1 and cul-1 activity. Furthermore, we show that the SKR-1(M140I) weak loss-of-function mutation interferes with SKR-1/SEL-10 binding. Unexpectedly, we found that the G567E substitution in SEL-10 caused by the n1074 allele impairs the binding of SEL-10 to SKR-1 and the dimerization of SEL-10, which may be important for SEL-10 function. Our results suggest that SKR-1, CUL-1 and SEL-10 constitute an SCF E3 ligase complex that plays an important role in modulating sex-determination and LIN-12/Notch signaling in C. elegans. PMID:18718460

  6. Regulation of anthocyanin and proanthocyanidin biosynthesis by Medicago truncatula bHLH transcription factor MtTT8.

    Science.gov (United States)

    Li, Penghui; Chen, Beibei; Zhang, Gaoyang; Chen, Longxiang; Dong, Qiang; Wen, Jiangqi; Mysore, Kirankumar S; Zhao, Jian

    2016-05-01

    The MYB- basic helix-loop-helix (bHLH)-WD40 complexes regulating anthocyanin and proanthocyanidin (PA) biosynthesis in plants are not fully understood. Here Medicago truncatula bHLH MtTT8 was characterized as a central component of these ternary complexes that control anthocyanin and PA biosynthesis. Mttt8 mutant seeds have a transparent testa phenotype with reduced PAs and anthocyanins. MtTT8 restores PA and anthocyanin productions in Arabidopsis tt8 mutant. Ectopic expression of MtTT8 restores anthocyanins and PAs in mttt8 plant and hairy roots and further enhances both productions in wild-type hairy roots. Transcriptomic analyses and metabolite profiling of mttt8 mutant seeds and M. truncatula hairy roots (mttt8 mutant, mttt8 mutant complemented with MtTT8, or MtTT8 overexpression lines) indicate that MtTT8 regulates a subset of genes involved in PA and anthocyanin biosynthesis. MtTT8 is genetically regulated by MtLAP1, MtPAR and MtWD40-1. Combinations of MtPAR, MtLAP1, MtTT8 and MtWD40-1 activate MtTT8 promoter in yeast assay. MtTT8 interacts with these transcription factors to form regulatory complexes. MtTT8, MtWD40-1 and an MYB factor, MtPAR or MtLAP1, interacted and activated promoters of anthocyanidin reductase and anthocyanidin synthase to regulate PA and anthocyanin biosynthesis, respectively. Our results provide new insights into the complex regulation of PA and anthocyanin biosynthesis in M. truncatula. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  7. Potential Role of the Last Half Repeat in TAL Effectors Revealed by a Molecular Simulation Study

    Directory of Open Access Journals (Sweden)

    Hua Wan

    2016-01-01

    Full Text Available TAL effectors (TALEs contain a modular DNA-binding domain that is composed of tandem repeats. In all naturally occurring TALEs, the end of tandem repeats is invariantly a truncated half repeat. To investigate the potential role of the last half repeat in TALEs, we performed comparative molecular dynamics simulations for the crystal structure of DNA-bound TALE AvrBs3 lacking the last half repeat and its modeled structure having the last half repeat. The structural stability analysis indicates that the modeled system is more stable than the nonmodeled system. Based on the principle component analysis, it is found that the AvrBs3 increases its structural compactness in the presence of the last half repeat. The comparison of DNA groove parameters of the two systems implies that the last half repeat also causes the change of DNA major groove binding efficiency. The following calculation of hydrogen bond reveals that, by stabilizing the phosphate binding with DNA at the C-terminus, the last half repeat helps to adopt a compact conformation at the protein-DNA interface. It further mediates more contacts between TAL repeats and DNA nucleotide bases. Finally, we suggest that the last half repeat is required for the high-efficient recognition of DNA by TALE.

  8. Protein (Cyanobacteria): 175822 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available agen triple helix repeat-containing protein 'Nostoc azollae' 0708 MRLIEDGEDGEDGEDGEDGEDGEDGEDGEDGEDGEDGEDGEDGGEIFLMPYALCPMPYALCPMPYALCPMPYALCPMPYALCPMPYAQNQDFSHPNRESSVKLFSSVAPKP ...

  9. The Interaction Pattern between a Homology Model of 40S Ribosomal S9 Protein of Rhizoctonia solani and 1-Hydroxyphenaize by Docking Study

    Directory of Open Access Journals (Sweden)

    Seema Dharni

    2014-01-01

    Full Text Available 1-Hydroxyphenazine (1-OH-PHZ, a natural product from Pseudomonas aeruginosa strain SD12, was earlier reported to have potent antifungal activity against Rhizoctonia solani. In the present work, the antifungal activity of 1-OH-PHZ on 40S ribosomal S9 protein was validated by molecular docking approach. 1-OH-PHZ showed interaction with two polar contacts with residues, Arg69 and Phe19, which inhibits the synthesis of fungal protein. Our study reveals that 1-OH-PHZ can be a potent inhibitor of 40S ribosomal S9 protein of R. solani that may be a promising approach for the management of fungal diseases.

  10. Protein phosphatase 2a (PP2A binds within the oligomerization domain of striatin and regulates the phosphorylation and activation of the mammalian Ste20-Like kinase Mst3

    Directory of Open Access Journals (Sweden)

    Jones Candace A

    2011-10-01

    Full Text Available Abstract Background Striatin, a putative protein phosphatase 2A (PP2A B-type regulatory subunit, is a multi-domain scaffolding protein that has recently been linked to several diseases including cerebral cavernous malformation (CCM, which causes symptoms ranging from headaches to stroke. Striatin association with the PP2A A/C (structural subunit/catalytic subunit heterodimer alters PP2A substrate specificity, but targets and roles of striatin-associated PP2A are not known. In addition to binding the PP2A A/C heterodimer to form a PP2A holoenzyme, striatin associates with cerebral cavernous malformation 3 (CCM3 protein, the mammalian Mps one binder (MOB homolog, Mob3/phocein, the mammalian sterile 20-like (Mst kinases, Mst3, Mst4 and STK25, and several other proteins to form a large signaling complex. Little is known about the molecular architecture of the striatin complex and the regulation of these sterile 20-like kinases. Results To help define the molecular organization of striatin complexes and to determine whether Mst3 might be negatively regulated by striatin-associated PP2A, a structure-function analysis of striatin was performed. Two distinct regions of striatin are capable of stably binding directly or indirectly to Mob3--one N-terminal, including the coiled-coil domain, and another more C-terminal, including the WD-repeat domain. In addition, striatin residues 191-344 contain determinants necessary for efficient association of Mst3, Mst4, and CCM3. PP2A associates with the coiled-coil domain of striatin, but unlike Mob3 and Mst3, its binding appears to require striatin oligomerization. Deletion of the caveolin-binding domain on striatin abolishes striatin family oligomerization and PP2A binding. Point mutations in striatin that disrupt PP2A association cause hyperphosphorylation and activation of striatin-associated Mst3. Conclusions Striatin orchestrates the regulation of Mst3 by PP2A. It binds Mst3 likely as a dimer with CCM3 via

  11. Hybrid Sterility in Rice (Oryza sativa L.) Involves the Tetratricopeptide Repeat Domain Containing Protein.

    Science.gov (United States)

    Yu, Yang; Zhao, Zhigang; Shi, Yanrong; Tian, Hua; Liu, Linglong; Bian, Xiaofeng; Xu, Yang; Zheng, Xiaoming; Gan, Lu; Shen, Yumin; Wang, Chaolong; Yu, Xiaowen; Wang, Chunming; Zhang, Xin; Guo, Xiuping; Wang, Jiulin; Ikehashi, Hiroshi; Jiang, Ling; Wan, Jianmin

    2016-07-01

    Intersubspecific hybrid sterility is a common form of reproductive isolation in rice (Oryza sativa L.), which significantly hampers the utilization of heterosis between indica and japonica varieties. Here, we elucidated the mechanism of S7, which specially causes Aus-japonica/indica hybrid female sterility, through cytological and genetic analysis, map-based cloning, and transformation experiments. Abnormal positioning of polar nuclei and smaller embryo sac were observed in F1 compared with male and female parents. Female gametes carrying S7(cp) and S7(i) were aborted in S7(ai)/S7(cp) and S7(ai)/S7(i), respectively, whereas they were normal in both N22 and Dular possessing a neutral allele, S7(n) S7 was fine mapped to a 139-kb region in the centromere region on chromosome 7, where the recombination was remarkably suppressed due to aggregation of retrotransposons. Among 16 putative open reading frames (ORFs) localized in the mapping region, ORF3 encoding a tetratricopeptide repeat domain containing protein was highly expressed in the pistil. Transformation experiments demonstrated that ORF3 is the candidate gene: downregulated expression of ORF3 restored spikelet fertility and eliminated absolutely preferential transmission of S7(ai) in heterozygote S7(ai)/S7(cp); sterility occurred in the transformants Cpslo17-S7(ai) Our results may provide implications for overcoming hybrid embryo sac sterility in intersubspecific hybrid rice and utilization of hybrid heterosis for cultivated rice improvement. Copyright © 2016 by the Genetics Society of America.

  12. Mesothelioma Cells Escape Heat Stress by Upregulating Hsp40/Hsp70 Expression via Mitogen-Activated Protein Kinases

    Directory of Open Access Journals (Sweden)

    Michael Roth

    2009-01-01

    Full Text Available Therapy with hyperthermal chemotherapy in pleural diffuse malignant mesothelioma had limited benefits for patients. Here we investigated the effect of heat stress on heat shock proteins (HSP, which rescue tumour cells from apoptosis. In human mesothelioma and mesothelial cells heat stress (39–42°C induced the phosphorylation of two mitogen activated kinases (MAPK Erk1/2 and p38, and increased Hsp40, and Hsp70 expression. Mesothelioma cells expressed more Hsp40 and were less sensitive to heat stress compared to mesothelial cells. Inhibition of Erk1/2 MAPK by PD98059 or by Erk1 siRNA down-regulated heat stress-induced Hsp40 and Hsp70 expression and reduced mesothelioma cell survival. Inhibition of p38MAPK by SB203580 or siRNA reduced Hsp40, but not Hsp70, expression and also increased mesothelioma cell death. Thus hyperthermia combined with suppression of p38 MAPK or Hsp40 may represent a novel approach to improve mesothelioma therapy.

  13. Integrated Computational Approach for Virtual Hit Identification against Ebola Viral Proteins VP35 and VP40

    Directory of Open Access Journals (Sweden)

    Muhammad Usman Mirza

    2016-10-01

    Full Text Available The Ebola virus (EBOV has been recognised for nearly 40 years, with the most recent EBOV outbreak being in West Africa, where it created a humanitarian crisis. Mortalities reported up to 30 March 2016 totalled 11,307. However, up until now, EBOV drugs have been far from achieving regulatory (FDA approval. It is therefore essential to identify parent compounds that have the potential to be developed into effective drugs. Studies on Ebola viral proteins have shown that some can elicit an immunological response in mice, and these are now considered essential components of a vaccine designed to protect against Ebola haemorrhagic fever. The current study focuses on chemoinformatic approaches to identify virtual hits against Ebola viral proteins (VP35 and VP40, including protein binding site prediction, drug-likeness, pharmacokinetic and pharmacodynamic properties, metabolic site prediction, and molecular docking. Retrospective validation was performed using a database of non-active compounds, and early enrichment of EBOV actives at different false positive rates was calculated. Homology modelling and subsequent superimposition of binding site residues on other strains of EBOV were carried out to check residual conformations, and hence to confirm the efficacy of potential compounds. As a mechanism for artefactual inhibition of proteins through non-specific compounds, virtual hits were assessed for their aggregator potential compared with previously reported aggregators. These systematic studies have indicated that a few compounds may be effective inhibitors of EBOV replication and therefore might have the potential to be developed as anti-EBOV drugs after subsequent testing and validation in experiments in vivo.

  14. Integrated Computational Approach for Virtual Hit Identification against Ebola Viral Proteins VP35 and VP40.

    Science.gov (United States)

    Mirza, Muhammad Usman; Ikram, Nazia

    2016-10-26

    The Ebola virus (EBOV) has been recognised for nearly 40 years, with the most recent EBOV outbreak being in West Africa, where it created a humanitarian crisis. Mortalities reported up to 30 March 2016 totalled 11,307. However, up until now, EBOV drugs have been far from achieving regulatory (FDA) approval. It is therefore essential to identify parent compounds that have the potential to be developed into effective drugs. Studies on Ebola viral proteins have shown that some can elicit an immunological response in mice, and these are now considered essential components of a vaccine designed to protect against Ebola haemorrhagic fever. The current study focuses on chemoinformatic approaches to identify virtual hits against Ebola viral proteins (VP35 and VP40), including protein binding site prediction, drug-likeness, pharmacokinetic and pharmacodynamic properties, metabolic site prediction, and molecular docking. Retrospective validation was performed using a database of non-active compounds, and early enrichment of EBOV actives at different false positive rates was calculated. Homology modelling and subsequent superimposition of binding site residues on other strains of EBOV were carried out to check residual conformations, and hence to confirm the efficacy of potential compounds. As a mechanism for artefactual inhibition of proteins through non-specific compounds, virtual hits were assessed for their aggregator potential compared with previously reported aggregators. These systematic studies have indicated that a few compounds may be effective inhibitors of EBOV replication and therefore might have the potential to be developed as anti-EBOV drugs after subsequent testing and validation in experiments in vivo.

  15. SG2NA enhances cancer cell survival by stabilizing DJ-1 and thus activating Akt

    Energy Technology Data Exchange (ETDEWEB)

    Tanti, Goutam Kumar, E-mail: goutamjnu@hotmail.com; Pandey, Shweta; Goswami, Shyamal K.

    2015-08-07

    SG2NA in association with striatin and zinedin forms a striatin family of WD-40 repeat proteins. This family of proteins functions as scaffold in different signal transduction pathways. They also act as a regulatory subunit of protein phosphatase 2A. We have shown that SG2NA which evolved first in the metazoan evolution among the striatin family members expresses different isoforms generated out of alternative splicing. We have also shown that SG2NA protects cells from oxidative stress by recruiting DJ-1 and Akt to mitochondria and membrane in the post-mitotic neuronal cells. DJ-1 is both cancer and Parkinson's disease related protein. In the present study we have shown that SG2NA protects DJ-1 from proteasomal degradation in cancer cells. Hence, downregulation of SG2NA reduces DJ-1/Akt colocalization in cancer cells resulting in the reduction of anchorage dependent and independent growth. Thus SG2NA enhances cancer cell survival. Reactive oxygen species enhances SG2NA, DJ-1 and Akt trimerization. Removal of the reactive oxygen species by N-acetyl-cysteine thus reduces cancer cell growth. - Highlights: • Reactive oxygen species (ROS) play potential role in cancer cell proliferation. • It enhances the association between DJ-1 and Akt mediated by SG2NA. • In cancer cells SG2NA stabilizes DJ-1 by inhibiting it from proteosomal degradation. • DJ-1 then activates Akt and cancer cells get their property of enhanced proliferation by sustained activation of Akt. • Further study on this field could lead to new target for cancer therapy.

  16. SG2NA enhances cancer cell survival by stabilizing DJ-1 and thus activating Akt

    International Nuclear Information System (INIS)

    Tanti, Goutam Kumar; Pandey, Shweta; Goswami, Shyamal K.

    2015-01-01

    SG2NA in association with striatin and zinedin forms a striatin family of WD-40 repeat proteins. This family of proteins functions as scaffold in different signal transduction pathways. They also act as a regulatory subunit of protein phosphatase 2A. We have shown that SG2NA which evolved first in the metazoan evolution among the striatin family members expresses different isoforms generated out of alternative splicing. We have also shown that SG2NA protects cells from oxidative stress by recruiting DJ-1 and Akt to mitochondria and membrane in the post-mitotic neuronal cells. DJ-1 is both cancer and Parkinson's disease related protein. In the present study we have shown that SG2NA protects DJ-1 from proteasomal degradation in cancer cells. Hence, downregulation of SG2NA reduces DJ-1/Akt colocalization in cancer cells resulting in the reduction of anchorage dependent and independent growth. Thus SG2NA enhances cancer cell survival. Reactive oxygen species enhances SG2NA, DJ-1 and Akt trimerization. Removal of the reactive oxygen species by N-acetyl-cysteine thus reduces cancer cell growth. - Highlights: • Reactive oxygen species (ROS) play potential role in cancer cell proliferation. • It enhances the association between DJ-1 and Akt mediated by SG2NA. • In cancer cells SG2NA stabilizes DJ-1 by inhibiting it from proteosomal degradation. • DJ-1 then activates Akt and cancer cells get their property of enhanced proliferation by sustained activation of Akt. • Further study on this field could lead to new target for cancer therapy

  17. Repeat-mediated epigenetic dysregulation of the FMR1 gene in the fragile X-related disorders.

    Science.gov (United States)

    Usdin, Karen; Kumari, Daman

    2015-01-01

    The fragile X-related disorders are members of the Repeat Expansion Diseases, a group of genetic conditions resulting from an expansion in the size of a tandem repeat tract at a specific genetic locus. The repeat responsible for disease pathology in the fragile X-related disorders is CGG/CCG and the repeat tract is located in the 5' UTR of the FMR1 gene, whose protein product FMRP, is important for the proper translation of dendritic mRNAs in response to synaptic activation. There are two different pathological FMR1 allele classes that are distinguished only by the number of repeats. Premutation alleles have 55-200 repeats and confer risk of fragile X-associated tremor/ataxia syndrome and fragile X-associated primary ovarian insufficiency. Full mutation alleles on the other hand have >200 repeats and result in fragile X syndrome, a disorder that affects learning and behavior. Different symptoms are seen in carriers of premutation and full mutation alleles because the repeat number has paradoxical effects on gene expression: Epigenetic changes increase transcription from premutation alleles and decrease transcription from full mutation alleles. This review will cover what is currently known about the mechanisms responsible for these changes in FMR1 expression and how they may relate to other Repeat Expansion Diseases that also show repeat-mediated changes in gene expression.

  18. Sequestration of DROSHA and DGCR8 by Expanded CGG RNA Repeats Alters MicroRNA Processing in Fragile X-Associated Tremor/Ataxia Syndrome

    Directory of Open Access Journals (Sweden)

    Chantal Sellier

    2013-03-01

    Full Text Available Fragile X-associated tremor/ataxia syndrome (FXTAS is an inherited neurodegenerative disorder caused by the expansion of 55–200 CGG repeats in the 5′ UTR of FMR1. These expanded CGG repeats are transcribed and accumulate in nuclear RNA aggregates that sequester one or more RNA-binding proteins, thus impairing their functions. Here, we have identified that the double-stranded RNA-binding protein DGCR8 binds to expanded CGG repeats, resulting in the partial sequestration of DGCR8 and its partner, DROSHA, within CGG RNA aggregates. Consequently, the processing of microRNAs (miRNAs is reduced, resulting in decreased levels of mature miRNAs in neuronal cells expressing expanded CGG repeats and in brain tissue from patients with FXTAS. Finally, overexpression of DGCR8 rescues the neuronal cell death induced by expression of expanded CGG repeats. These results support a model in which a human neurodegenerative disease originates from the alteration, in trans, of the miRNA-processing machinery.

  19. A Unified Model for Repeating and Non-repeating Fast Radio Bursts

    International Nuclear Information System (INIS)

    Bagchi, Manjari

    2017-01-01

    The model that fast radio bursts (FRBs) are caused by plunges of asteroids onto neutron stars can explain both repeating and non-repeating bursts. If a neutron star passes through an asteroid belt around another star, there would be a series of bursts caused by a series of asteroid impacts. Moreover, the neutron star would cross the same belt repetitively if it were in a binary with the star hosting the asteroid belt, leading to a repeated series of bursts. I explore the properties of neutron star binaries that could lead to the only known repeating FRB so far (FRB121102). In this model, the next two epochs of bursts are expected around 2017 February 27 and 2017 December 18. On the other hand, if the asteroid belt is located around the neutron star itself, then a chance fall of an asteroid from that belt onto the neutron star would lead to a non-repeating burst. Even a neutron star grazing an asteroid belt can lead to a non-repeating burst caused by just one asteroid plunge during the grazing. This is possible even when the neutron star is in a binary with the asteroid-hosting star, if the belt and the neutron star orbit are non-coplanar.

  20. A Unified Model for Repeating and Non-repeating Fast Radio Bursts

    Energy Technology Data Exchange (ETDEWEB)

    Bagchi, Manjari, E-mail: manjari@imsc.res.in [The Institute of Mathematical Sciences (IMSc-HBNI), 4th Cross Road, CIT Campus, Taramani, Chennai 600113 (India)

    2017-04-01

    The model that fast radio bursts (FRBs) are caused by plunges of asteroids onto neutron stars can explain both repeating and non-repeating bursts. If a neutron star passes through an asteroid belt around another star, there would be a series of bursts caused by a series of asteroid impacts. Moreover, the neutron star would cross the same belt repetitively if it were in a binary with the star hosting the asteroid belt, leading to a repeated series of bursts. I explore the properties of neutron star binaries that could lead to the only known repeating FRB so far (FRB121102). In this model, the next two epochs of bursts are expected around 2017 February 27 and 2017 December 18. On the other hand, if the asteroid belt is located around the neutron star itself, then a chance fall of an asteroid from that belt onto the neutron star would lead to a non-repeating burst. Even a neutron star grazing an asteroid belt can lead to a non-repeating burst caused by just one asteroid plunge during the grazing. This is possible even when the neutron star is in a binary with the asteroid-hosting star, if the belt and the neutron star orbit are non-coplanar.

  1. Repeatability of Cryogenic Multilayer Insulation

    Science.gov (United States)

    Johnson, W. L.; Vanderlaan, M.; Wood, J. J.; Rhys, N. O.; Guo, W.; Van Sciver, S.; Chato, D. J.

    2017-12-01

    Due to the variety of requirements across aerospace platforms, and one off projects, the repeatability of cryogenic multilayer insulation (MLI) has never been fully established. The objective of this test program is to provide a more basic understanding of the thermal performance repeatability of MLI systems that are applicable to large scale tanks. There are several different types of repeatability that can be accounted for: these include repeatability between identical blankets, repeatability of installation of the same blanket, and repeatability of a test apparatus. The focus of the work in this report is on the first two types of repeatability. Statistically, repeatability can mean many different things. In simplest form, it refers to the range of performance that a population exhibits and the average of the population. However, as more and more identical components are made (i.e. the population of concern grows), the simple range morphs into a standard deviation from an average performance. Initial repeatability testing on MLI blankets has been completed at Florida State University. Repeatability of five Glenn Research Center (GRC) provided coupons with 25 layers was shown to be +/- 8.4% whereas repeatability of repeatedly installing a single coupon was shown to be +/- 8.0%. A second group of 10 coupons has been fabricated by Yetispace and tested by Florida State University, the repeatability between coupons has been shown to be +/- 15-25%. Based on detailed statistical analysis, the data has been shown to be statistically significant.

  2. A tensegrity model for hydrogen bond networks in proteins.

    Science.gov (United States)

    Bywater, Robert P

    2017-05-01

    Hydrogen-bonding networks in proteins considered as structural tensile elements are in balance separately from any other stabilising interactions that may be in operation. The hydrogen bond arrangement in the network is reminiscent of tensegrity structures in architecture and sculpture. Tensegrity has been discussed before in cells and tissues and in proteins. In contrast to previous work only hydrogen bonds are studied here. The other interactions within proteins are either much stronger - covalent bonds connecting the atoms in the molecular skeleton or weaker forces like the so-called hydrophobic interactions. It has been demonstrated that the latter operate independently from hydrogen bonds. Each category of interaction must, if the protein is to have a stable structure, balance out. The hypothesis here is that the entire hydrogen bond network is in balance without any compensating contributions from other types of interaction. For sidechain-sidechain, sidechain-backbone and backbone-backbone hydrogen bonds in proteins, tensegrity balance ("closure") is required over the entire length of the polypeptide chain that defines individually folding units in globular proteins ("domains") as well as within the repeating elements in fibrous proteins that consist of extended chain structures. There is no closure to be found in extended structures that do not have repeating elements. This suggests an explanation as to why globular domains, as well as the repeat units in fibrous proteins, have to have a defined number of residues. Apart from networks of sidechain-sidechain hydrogen bonds there are certain key points at which this closure is achieved in the sidechain-backbone hydrogen bonds and these are associated with demarcation points at the start or end of stretches of secondary structure. Together, these three categories of hydrogen bond achieve the closure that is necessary for the stability of globular protein domains as well as repeating elements in fibrous proteins.

  3. Selection pressure on human STR loci and its relevance in repeat expansion disease

    KAUST Repository

    Shimada, Makoto K.

    2016-06-11

    Short Tandem Repeats (STRs) comprise repeats of one to several base pairs. Because of the high mutability due to strand slippage during DNA synthesis, rapid evolutionary change in the number of repeating units directly shapes the range of repeat-number variation according to selection pressure. However, the remaining questions include: Why are STRs causing repeat expansion diseases maintained in the human population; and why are these limited to neurodegenerative diseases? By evaluating the genome-wide selection pressure on STRs using the database we constructed, we identified two different patterns of relationship in repeat-number polymorphisms between DNA and amino-acid sequences, although both patterns are evolutionary consequences of avoiding the formation of harmful long STRs. First, a mixture of degenerate codons is represented in poly-proline (poly-P) repeats. Second, long poly-glutamine (poly-Q) repeats are favored at the protein level; however, at the DNA level, STRs encoding long poly-Qs are frequently divided by synonymous SNPs. Furthermore, significant enrichments of apoptosis and neurodevelopment were biological processes found specifically in genes encoding poly-Qs with repeat polymorphism. This suggests the existence of a specific molecular function for polymorphic and/or long poly-Q stretches. Given that the poly-Qs causing expansion diseases were longer than other poly-Qs, even in healthy subjects, our results indicate that the evolutionary benefits of long and/or polymorphic poly-Q stretches outweigh the risks of long CAG repeats predisposing to pathological hyper-expansions. Molecular pathways in neurodevelopment requiring long and polymorphic poly-Q stretches may provide a clue to understanding why poly-Q expansion diseases are limited to neurodegenerative diseases. © 2016, Springer-Verlag Berlin Heidelberg.

  4. Evidence that C9ORF72 Dipeptide Repeat Proteins Associate with U2 snRNP to Cause Mis-splicing in ALS/FTD Patients.

    Science.gov (United States)

    Yin, Shanye; Lopez-Gonzalez, Rodrigo; Kunz, Ryan C; Gangopadhyay, Jaya; Borufka, Carl; Gygi, Steven P; Gao, Fen-Biao; Reed, Robin

    2017-06-13

    Hexanucleotide repeat expansion in the C9ORF72 gene results in production of dipeptide repeat (DPR) proteins that may disrupt pre-mRNA splicing in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) patients. At present, the mechanisms underlying this mis-splicing are not understood. Here, we show that addition of proline-arginine (PR) and glycine-arginine (GR) toxic DPR peptides to nuclear extracts blocks spliceosome assembly and splicing, but not other types of RNA processing. Proteomic and biochemical analyses identified the U2 small nuclear ribonucleoprotein particle (snRNP) as a major interactor of PR and GR peptides. In addition, U2 snRNP, but not other splicing factors, mislocalizes from the nucleus to the cytoplasm both in C9ORF72 patient induced pluripotent stem cell (iPSC)-derived motor neurons and in HeLa cells treated with the toxic peptides. Bioinformatic studies support a specific role for U2-snRNP-dependent mis-splicing in C9ORF72 patient brains. Together, our data indicate that DPR-mediated dysfunction of U2 snRNP could account for as much as ∼44% of the mis-spliced cassette exons in C9ORF72 patient brains. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Evidence that C9ORF72 Dipeptide Repeat Proteins Associate with U2 snRNP to Cause Mis-splicing in ALS/FTD Patients

    Directory of Open Access Journals (Sweden)

    Shanye Yin

    2017-06-01

    Full Text Available Hexanucleotide repeat expansion in the C9ORF72 gene results in production of dipeptide repeat (DPR proteins that may disrupt pre-mRNA splicing in amyotrophic lateral sclerosis (ALS and frontotemporal dementia (FTD patients. At present, the mechanisms underlying this mis-splicing are not understood. Here, we show that addition of proline-arginine (PR and glycine-arginine (GR toxic DPR peptides to nuclear extracts blocks spliceosome assembly and splicing, but not other types of RNA processing. Proteomic and biochemical analyses identified the U2 small nuclear ribonucleoprotein particle (snRNP as a major interactor of PR and GR peptides. In addition, U2 snRNP, but not other splicing factors, mislocalizes from the nucleus to the cytoplasm both in C9ORF72 patient induced pluripotent stem cell (iPSC-derived motor neurons and in HeLa cells treated with the toxic peptides. Bioinformatic studies support a specific role for U2-snRNP-dependent mis-splicing in C9ORF72 patient brains. Together, our data indicate that DPR-mediated dysfunction of U2 snRNP could account for as much as ∼44% of the mis-spliced cassette exons in C9ORF72 patient brains.

  6. Synergistic effect of SRY and its direct target, WDR5, on Sox9 expression.

    Directory of Open Access Journals (Sweden)

    Zhen Xu

    Full Text Available SRY is a sex-determining gene that encodes a transcription factor, which triggers male development in most mammals. The molecular mechanism of SRY action in testis determination is, however, poorly understood. In this study, we demonstrate that WDR5, which encodes a WD-40 repeat protein, is a direct target of SRY. EMSA experiments and ChIP assays showed that SRY could bind to the WDR5 gene promoter directly. Overexpression of SRY in LNCaP cells significantly increased WDR5 expression concurrent with histone H3K4 methylation on the WDR5 promoter. To specifically address whether SRY contributes to WDR5 regulation, we introduced a 4-hydroxy-tamoxifen-inducible SRY allele into LNCaP cells. Conditional SRY expression triggered enrichment of SRY on the WDR5 promoter resulting in induction of WDR5 transcription. We found that WDR5 was self regulating through a positive feedback loop. WDR5 and SRY interacted and were colocalized in cells. In addition, the interaction of WDR5 with SRY resulted in activation of Sox9 while repressing the expression of β-catenin. These results suggest that, in conjunction with SRY, WDR5 plays an important role in sex determination.

  7. Deployment Repeatability

    Science.gov (United States)

    2016-04-01

    evaluating the deployment repeatability builds upon the testing or analysis of deployment kinematics (Chapter 6) and adds repetition. Introduction...material yield or failure during a test. For the purposes of this chapter, zero shift will refer to permanent changes in the structure, while reversible ...the content of other chapters in this book: Gravity Compensation (Chapter 4) and Deployment Kinematics and Dynamics (Chapter 6). Repeating the

  8. Virtual screening of the inhibitors targeting at the viral protein 40 of Ebola virus.

    Science.gov (United States)

    Karthick, V; Nagasundaram, N; Doss, C George Priya; Chakraborty, Chiranjib; Siva, R; Lu, Aiping; Zhang, Ge; Zhu, Hailong

    2016-02-17

    The Ebola virus is highly pathogenic and destructive to humans and other primates. The Ebola virus encodes viral protein 40 (VP40), which is highly expressed and regulates the assembly and release of viral particles in the host cell. Because VP40 plays a prominent role in the life cycle of the Ebola virus, it is considered as a key target for antiviral treatment. However, there is currently no FDA-approved drug for treating Ebola virus infection, resulting in an urgent need to develop effective antiviral inhibitors that display good safety profiles in a short duration. This study aimed to screen the effective lead candidate against Ebola infection. First, the lead molecules were filtered based on the docking score. Second, Lipinski rule of five and the other drug likeliness properties are predicted to assess the safety profile of the lead candidates. Finally, molecular dynamics simulations was performed to validate the lead compound. Our results revealed that emodin-8-beta-D-glucoside from the Traditional Chinese Medicine Database (TCMD) represents an active lead candidate that targets the Ebola virus by inhibiting the activity of VP40, and displays good pharmacokinetic properties. This report will considerably assist in the development of the competitive and robust antiviral agents against Ebola infection.

  9. An ankyrin-like protein with transmembrane domains is specifically lost after oncogenic transformation of human fibroblasts.

    Science.gov (United States)

    Jaquemar, D; Schenker, T; Trueb, B

    1999-03-12

    We have identified a novel transformation-sensitive mRNA, which is present in cultured fibroblasts but is lacking in SV40 transformed cells as well as in many mesenchymal tumor cell lines. The corresponding gene is located on human chromosome 8 in band 8q13. The open reading frame of the mRNA encodes a protein of 1119 amino acids forming two distinct domains. The N-terminal domain consists of 18 repeats that are related to the cytoskeletal protein ankyrin. The C-terminal domain contains six putative transmembrane segments that resemble many ion channels. This overall structure is reminiscent of TRP-like proteins that function as store-operated calcium channels. The novel protein with an Mr of 130 kDa is expressed at a very low level in human fibroblasts and at a moderate level in liposarcoma cells. Overexpression in eukaryotic cells appears to interfere with normal growth, suggesting that it might play a direct or indirect role in signal transduction and growth control.

  10. Identification and expression analysis of the interferon-induced protein with tetratricopeptide repeats 5 (IFIT5 gene in duck (Anas platyrhynchos domesticus.

    Directory of Open Access Journals (Sweden)

    Bin Wang

    Full Text Available The interferon-induced proteins with tetratricopeptide repeats (IFITs protein family mediates antiviral effects by inhibiting translation initiation, cell proliferation, and migration in the interferon (IFN dependent innate immune system. Several members of this family, including IFIT1, IFIT2, IFIT3 and IFIT5, have been heavily studied in mammals. Avian species contain only one family member, IFIT5, and little is known about the role of this protein in birds. In this study, duck IFIT5 (duIFIT5 full-length mRNA was cloned by reverse transcription polymerase chain reaction (RT-PCR and rapid amplification of the cDNA ends (RACE. Based on the sequence obtained, we performed a series of bioinformatics analyses, and found that duIFIT5 was most similar to homologs in other avian species. Also, duIFIT5 contained eight conserved TPR motifs and two conserved multi-domains (TPR_11 and TPR_12. Finally, we used duck hepatitis virus type 1 (DHV-1 and polyriboinosinicpolyribocytidylic acid (poly (I:C as a pathogen or a pathogen-associated molecular pattern induction to infect three-day-old domestic ducklings. The liver and spleen were collected to detect the change in duIFIT5 transcript level upon infection by quantitative real-time PCR (qRT-PCR. DuIFIT5 expression rapidly increased after DHV-1 infection and maintained a high level, while the transcripts of duIFIT5 peaked at 8h after poly (I:C infection and then returned to normal. Taken together, these results provide a greater understanding of avian IFIT5.

  11. Identification and Expression Analysis of the Interferon-Induced Protein with Tetratricopeptide Repeats 5 (IFIT5) Gene in Duck (Anas platyrhynchos domesticus)

    Science.gov (United States)

    Mu, Chunyu; Su, Yanhui; Liu, Ran; Huang, Zhengyang; Li, Yang; Yu, Qingming; Chang, Guobin; Xu, Qi; Chen, Guohong

    2015-01-01

    The interferon-induced proteins with tetratricopeptide repeats (IFITs) protein family mediates antiviral effects by inhibiting translation initiation, cell proliferation, and migration in the interferon (IFN) dependent innate immune system. Several members of this family, including IFIT1, IFIT2, IFIT3 and IFIT5, have been heavily studied in mammals. Avian species contain only one family member, IFIT5, and little is known about the role of this protein in birds. In this study, duck IFIT5 (duIFIT5) full-length mRNA was cloned by reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of the cDNA ends (RACE). Based on the sequence obtained, we performed a series of bioinformatics analyses, and found that duIFIT5 was most similar to homologs in other avian species. Also, duIFIT5 contained eight conserved TPR motifs and two conserved multi-domains (TPR_11 and TPR_12). Finally, we used duck hepatitis virus type 1 (DHV-1) and polyriboinosinicpolyribocytidylic acid (poly (I:C)) as a pathogen or a pathogen-associated molecular pattern induction to infect three-day-old domestic ducklings. The liver and spleen were collected to detect the change in duIFIT5 transcript level upon infection by quantitative real-time PCR (qRT-PCR). DuIFIT5 expression rapidly increased after DHV-1 infection and maintained a high level, while the transcripts of duIFIT5 peaked at 8h after poly (I:C) infection and then returned to normal. Taken together, these results provide a greater understanding of avian IFIT5. PMID:25816333

  12. Illuminating massive black holes with white dwarfs: orbital dynamics and high-energy transients from tidal interactions

    International Nuclear Information System (INIS)

    MacLeod, Morgan; Goldstein, Jacqueline; Ramirez-Ruiz, Enrico; Guillochon, James; Samsing, Johan

    2014-01-01

    White dwarfs (WDs) can be tidally disrupted only by massive black holes (MBHs) with masses less than ∼10 5 M ☉ . These tidal interactions feed material to the MBH well above its Eddington limit, with the potential to launch a relativistic jet. The corresponding beamed emission is a promising indication of an otherwise quiescent MBH of relatively low mass. We show that the mass transfer history, and thus the light curve, is quite different when the disruptive orbit is parabolic, eccentric, or circular. The mass lost each orbit exponentiates in the eccentric-orbit case, leading to the destruction of the WD after several tens of orbits. We examine the stellar dynamics of clusters surrounding MBHs to show that single-passage WD disruptions are substantially more common than repeating encounters. The 10 49 erg s –1 peak luminosity of these events makes them visible to cosmological distances. They may be detectible at rates of as many as tens per year by instruments like Swift. In fact, WD-disruption transients significantly outshine their main-sequence star counterparts and are the tidal interaction most likely to be detected arising from MBHs with masses less than 10 5 M ☉ . The detection or nondetection of such WD-disruption transients by Swift is, therefore, a powerful tool to constrain the lower end of the MBH mass function. The emerging ultralong gamma-ray burst class of events all have peak luminosities and durations reminiscent of WD disruptions, offering a hint that WD-disruption transients may already be present in existing data sets.

  13. Schizosaccharomyces pombe MutSα and MutLα Maintain Stability of Tetra-Nucleotide Repeats and Msh3 of Hepta-Nucleotide Repeats

    Directory of Open Access Journals (Sweden)

    Desirée Villahermosa

    2017-05-01

    Full Text Available Defective mismatch repair (MMR in humans is associated with colon cancer and instability of microsatellites, that is, DNA sequences with one or several nucleotides repeated. Key factors of eukaryotic MMR are the heterodimers MutSα (Msh2-Msh6, which recognizes base-base mismatches and unpaired nucleotides in DNA, and MutLα (Mlh1-Pms1, which facilitates downstream steps. In addition, MutSβ (Msh2-Msh3 recognizes DNA loops of various sizes, although our previous data and the data presented here suggest that Msh3 of Schizosaccharomyces pombe does not play a role in MMR. To test microsatellite stability in S. pombe and hence DNA loop repair, we have inserted tetra-, penta-, and hepta-nucleotide repeats in the ade6 gene and determined their Ade+ reversion rates and spectra in wild type and various mutants. Our data indicate that loops with four unpaired nucleotides in the nascent and the template strand are the upper limit of MutSα- and MutLα-mediated MMR in S. pombe. Stability of hepta-nucleotide repeats requires Msh3 and Exo1 in MMR-independent processes as well as the DNA repair proteins Rad50, Rad51, and Rad2FEN1. Most strikingly, mutation rates in the double mutants msh3 exo1 and msh3 rad51 were decreased when compared to respective single mutants, indicating that Msh3 prevents error prone processes carried out by Exo1 and Rad51. We conclude that Msh3 has no obvious function in MMR in S. pombe, but contributes to DNA repeat stability in MMR-independent processes.

  14. Reconfigurable multiport EPON repeater

    Science.gov (United States)

    Oishi, Masayuki; Inohara, Ryo; Agata, Akira; Horiuchi, Yukio

    2009-11-01

    An extended reach EPON repeater is one of the solutions to effectively expand FTTH service areas. In this paper, we propose a reconfigurable multi-port EPON repeater for effective accommodation of multiple ODNs with a single OLT line card. The proposed repeater, which has multi-ports in both OLT and ODN sides, consists of TRs, BTRs with the CDR function and a reconfigurable electrical matrix switch, can accommodate multiple ODNs to a single OLT line card by controlling the connection of the matrix switch. Although conventional EPON repeaters require full OLT line cards to accommodate subscribers from the initial installation stage, the proposed repeater can dramatically reduce the number of required line cards especially when the number of subscribers is less than a half of the maximum registerable users per OLT. Numerical calculation results show that the extended reach EPON system with the proposed EPON repeater can save 17.5% of the initial installation cost compared with a conventional repeater, and can be less expensive than conventional systems up to the maximum subscribers especially when the percentage of ODNs in lightly-populated areas is higher.

  15. Enhancing Membrane Protein Identification Using a Simplified Centrifugation and Detergent-Based Membrane Extraction Approach.

    Science.gov (United States)

    Zhou, Yanting; Gao, Jing; Zhu, Hongwen; Xu, Jingjing; He, Han; Gu, Lei; Wang, Hui; Chen, Jie; Ma, Danjun; Zhou, Hu; Zheng, Jing

    2018-02-20

    Membrane proteins may act as transporters, receptors, enzymes, and adhesion-anchors, accounting for nearly 70% of pharmaceutical drug targets. Difficulties in efficient enrichment, extraction, and solubilization still exist because of their relatively low abundance and poor solubility. A simplified membrane protein extraction approach with advantages of user-friendly sample processing procedures, good repeatability and significant effectiveness was developed in the current research for enhancing enrichment and identification of membrane proteins. This approach combining centrifugation and detergent along with LC-MS/MS successfully identified higher proportion of membrane proteins, integral proteins and transmembrane proteins in membrane fraction (76.6%, 48.1%, and 40.6%) than in total cell lysate (41.6%, 16.4%, and 13.5%), respectively. Moreover, our method tended to capture membrane proteins with high degree of hydrophobicity and number of transmembrane domains as 486 out of 2106 (23.0%) had GRAVY > 0 in membrane fraction, 488 out of 2106 (23.1%) had TMs ≥ 2. It also provided for improved identification of membrane proteins as more than 60.6% of the commonly identified membrane proteins in two cell samples were better identified in membrane fraction with higher sequence coverage. Data are available via ProteomeXchange with identifier PXD008456.

  16. 40 CFR 174.516 - Coat protein of cucumber mosaic virus; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Coat protein of cucumber mosaic virus; exemption from the requirement of a tolerance. 174.516 Section 174.516 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance...

  17. 40 CFR 174.515 - Coat Protein of Papaya Ringspot Virus; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Coat Protein of Papaya Ringspot Virus; exemption from the requirement of a tolerance. 174.515 Section 174.515 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance...

  18. 40 CFR 174.509 - Bacillus thuringiensis Cry3A protein; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis Cry3A protein; exemption from the requirement of a tolerance. 174.509 Section 174.509 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance...

  19. 40 CFR 174.526 - Hygromycin B phosphotransferase (APH4) marker protein in all plants; exemption from the...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Hygromycin B phosphotransferase (APH4) marker protein in all plants; exemption from the requirement of a tolerance. 174.526 Section 174.526 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED...

  20. Molecular characterization of a novel human hybrid-type receptor that binds the alpha2-macroglobulin receptor-associated protein

    DEFF Research Database (Denmark)

    Jacobsen, Linda; Madsen, P; Moestrup, S K

    1996-01-01

    the corresponding cDNA. The gene, designated SORL1, maps to chromosome 11q 23/24 and encodes a 2214-residue type 1 receptor containing a furin cleavage site immediately preceding the N terminus determined in the purified protein. The receptor, designated sorLA-1, has a short cytoplasmic tail containing a tyrosine...... density lipoprotein receptor gene family receptors, and 3) six tandemly arranged fibronectin type III repeats also found in certain neural adhesion proteins. sorLA-1 may therefore be classified as a hybrid receptor. Northern blotting revealed specific mRNA transcripts in brain, spinal cord, and testis......The 39-40-kDa receptor-associated protein (RAP) binds to the members of the low density lipoprotein receptor gene family and functions as a specialized endoplasmic reticulum/Golgi chaperone. Using RAP affinity chromatography, we have purified a novel approximately 250-kDa brain protein and isolated...

  1. The Orphan G Protein-coupled Receptor Gpr175 (Tpra40) Enhances Hedgehog Signaling by Modulating cAMP Levels.

    Science.gov (United States)

    Singh, Jaskirat; Wen, Xiaohui; Scales, Suzie J

    2015-12-04

    The Hedgehog (Hh) signaling pathway plays an essential role in vertebrate embryonic tissue patterning of many developing organs. Signaling occurs predominantly in primary cilia and is initiated by the entry of the G protein-coupled receptor (GPCR)-like protein Smoothened into cilia and culminates in gene transcription via the Gli family of transcription factors upon their nuclear entry. Here we identify an orphan GPCR, Gpr175 (also known as Tpra1 or Tpra40: transmembrane protein, adipocyte associated 1 or of 40 kDa), which also localizes to primary cilia upon Hh stimulation and positively regulates Hh signaling. Interaction experiments place Gpr175 at the level of PKA and upstream of the Gαi component of heterotrimeric G proteins, which itself localizes to cilia and can modulate Hh signaling. Gpr175 or Gαi1 depletion leads to increases in cellular cAMP levels and in Gli3 processing into its repressor form. Thus we propose that Gpr175 coupled to Gαi1 normally functions to inhibit the production of cAMP by adenylyl cyclase upon Hh stimulation, thus maximizing signaling by turning off PKA activity and hence Gli3 repressor formation. Taken together our data suggest that Gpr175 is a novel positive regulator of the Hh signaling pathway. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. DNA Replication Dynamics of the GGGGCC Repeat of the C9orf72 Gene.

    Science.gov (United States)

    Thys, Ryan Griffin; Wang, Yuh-Hwa

    2015-11-27

    DNA has the ability to form a variety of secondary structures in addition to the normal B-form DNA, including hairpins and quadruplexes. These structures are implicated in a number of neurological diseases and cancer. Expansion of a GGGGCC repeat located at C9orf72 is associated with familial amyotrophic lateral sclerosis and frontotemporal dementia. This repeat expands from two to 24 copies in normal individuals to several hundreds or thousands of repeats in individuals with the disease. Biochemical studies have demonstrated that as little as four repeats have the ability to form a stable DNA secondary structure known as a G-quadruplex. Quadruplex structures have the ability to disrupt normal DNA processes such as DNA replication and transcription. Here we examine the role of GGGGCC repeat length and orientation on DNA replication using an SV40 replication system in human cells. Replication through GGGGCC repeats leads to a decrease in overall replication efficiency and an increase in instability in a length-dependent manner. Both repeat expansions and contractions are observed, and replication orientation is found to influence the propensity for expansions or contractions. The presence of replication stress, such as low-dose aphidicolin, diminishes replication efficiency but has no effect on instability. Two-dimensional gel electrophoresis analysis demonstrates a replication stall with as few as 20 GGGGCC repeats. These results suggest that replication of the GGGGCC repeat at C9orf72 is perturbed by the presence of expanded repeats, which has the potential to result in further expansion, leading to disease. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Antidepressant-like effect of oleanolic acid in mice exposed to the repeated forced swimming test.

    Science.gov (United States)

    Yi, Li-Tao; Li, Jing; Liu, Qing; Geng, Di; Zhou, Ya-Fei; Ke, Xiao-Qing; Chen, Huan; Weng, Lian-Jin

    2013-05-01

    The study aimed to explore the antidepressant-like effect of oleanolic acid and its possible mechanism related to the monoaminergic system and neurotrophin in mice exposed to the repeated forced swimming test (FST). Both the duration and the latency of immobility affected by oleanolic acid (10, 20 and 40 mg/kg) were evaluated in the FST repeated at intervals on days 1, 7 and 14, followed by neurochemical and brain-derived neurotrophic factor (BDNF) analyses in the mouse brain regions of frontal cortex and whole hippocampus. A repeated analysis of variance (ANOVA) indicated that over retesting the immobility time increased, whereas latency to immobility tended to decrease. Minute-by-minute analysis showed that immobility time also increased during the 4-min course of the test. In addition, post-hoc Dunnett's test demonstrated that sub-chronic and chronic, but not acute, oleanolic acid treatment reduced the immobility time (sub-chronic: 20 mg/kg, 43.5%; chronic: 10 mg/kg, 19.3%; 20 mg/kg, 31.8%) and increased the latency to immobility (sub-chronic: 10 mg/kg, 60.6%; 20 mg/kg, 80.1%; chronic: 10 mg/kg, 121.8%; 20 mg/kg, 140.8%; 40 mg/kg, 80.0%). Furthermore, chronic administration of oleanolic acid significantly increased serotonin (5-HT) levels (frontal cortex: 44.5%, 41.9%, 27.5% for 10, 20, 40 mg/kg; hippocampus: 57.2%, 80.9% for 10, 20 mg/kg), decreased 5-hydroxyindoleacetic acid (5-HIAA)/5-HT ratio (frontal cortex: 31.6%, 30.1%, 23.5%; hippocampus: 40.6%, 47.7%, 29.2% for 10, 20, 40 mg/kg) and elevated norepinephrine (NE) levels (hippocampus: 20 mg/kg, 45.4%) but did not alter dopamine (DA) levels. Moreover, BDNF levels in the two brain regions were also elevated by chronic oleanolic acid treatment (frontal cortex: 20 mg/kg, 67.2%; hippocampus: 10 mg/kg, 36.4%; 20 mg/kg, 55.1%). Taken together, these findings imply that functions of 5-HT, NE and BDNF may be involved in the antidepressant-like effect of oleanolic acid.

  4. HOT1 is a mammalian direct telomere repeat-binding protein contributing to telomerase recruitment

    NARCIS (Netherlands)

    Kappei, D.; Butter, F.; Benda, C.; Scheibe, M.; Draskovic, Irena; Stevense, M.; Novo, C.L.; Basquin, C.; Araki, M.; Araki, K.; Krastev, D.B.; Kittler, R.; Jessberger, R.; Londono-Vallejo, J.A.; Mann, M.; Buchholz, F.

    2013-01-01

    Telomeres are repetitive DNA structures that, together with the shelterin and the CST complex, protect the ends of chromosomes. Telomere shortening is mitigated in stem and cancer cells through the de novo addition of telomeric repeats by telomerase. Telomere elongation requires the delivery of the

  5. Repeated Administration of D-Amphetamine Induces Distinct Alterations in Behavior and Metabolite Levels in 129Sv and Bl6 Mouse Strains

    Directory of Open Access Journals (Sweden)

    Taavi Vanaveski

    2018-06-01

    Full Text Available The main goal of the study was to characterize the behavioral and metabolomic profiles of repeated administration (for 11 days of d-amphetamine (AMPH, 3 mg/kg i. p., indirect agonist of dopamine (DA, in widely used 129S6/SvEvTac (129Sv and C57BL/6NTac (Bl6 mouse strains. Acute administration of AMPH (acute AMPH induced significantly stronger motor stimulation in Bl6. However, repeated administration of AMPH (repeated AMPH caused stronger motor sensitization in 129Sv compared acute AMPH. Body weight of 129Sv was reduced after repeated saline and AMPH, whereas no change occurred in Bl6. In the metabolomic study, acute AMPH induced an elevation of isoleucine and leucine, branched chain amino acids (BCAA, whereas the level of hexoses was reduced in Bl6. Both BCAAs and hexoses remained on level of acute AMPH after repeated AMPH in Bl6. Three biogenic amines [asymmetric dimethylarginine (ADMA, alpha-aminoadipic acid (alpha-AAA, kynurenine] were significantly reduced after repeated AMPH. Acute AMPH caused in 129Sv a significant reduction of valine, lysophosphatidylcholines (lysoPC a C16:0, lysoPC a C18:2, lysoPC a C20:4, phosphatidylcholine (PC diacyls (PC aa C34:2, PC aa C36:2, PC aa C36:3, PC aa C36:4 and alkyl-acyls (PC ae C38:4, PC ae C40:4. However, repeated AMPH increased the levels of valine and isoleucine, long-chain acylcarnitines (C14, C14:1-OH, C16, C18:1, PC diacyls (PC aa C38:4, PC aa C38:6, PC aa C42:6, PC acyl-alkyls (PC ae C38:4, PC ae C40:4, PC ae C40:5, PC ae C40:6, PC ae C42:1, PC ae C42:3 and sphingolipids [SM(OHC22:1, SM C24:0] compared to acute AMPH in 129Sv. Hexoses and kynurenine were reduced after repeated AMPH compared to saline in 129Sv. The established changes probably reflect a shift in energy metabolism toward lipid molecules in 129Sv because of reduced level of hexoses. Pooled data from both strains showed that the elevation of isoleucine and leucine was a prominent biomarker of AMPH-induced behavioral sensitization

  6. β-Adrenergic receptor antagonism prevents anxiety-like behavior and microglial reactivity induced by repeated social defeat.

    Science.gov (United States)

    Wohleb, Eric S; Hanke, Mark L; Corona, Angela W; Powell, Nicole D; Stiner, La'Tonia M; Bailey, Michael T; Nelson, Randy J; Godbout, Jonathan P; Sheridan, John F

    2011-04-27

    Psychosocial stress is associated with altered immune function and development of psychological disorders including anxiety and depression. Here we show that repeated social defeat in mice increased c-Fos staining in brain regions associated with fear and threat appraisal and promoted anxiety-like behavior in a β-adrenergic receptor-dependent manner. Repeated social defeat also significantly increased the number of CD11b(+)/CD45(high)/Ly6C(high) macrophages that trafficked to the brain. In addition, several inflammatory markers were increased on the surface of microglia (CD14, CD86, and TLR4) and macrophages (CD14 and CD86) after social defeat. Repeated social defeat also increased the presence of deramified microglia in the medial amygdala, prefrontal cortex, and hippocampus. Moreover, mRNA analysis of microglia indicated that repeated social defeat increased levels of interleukin (IL)-1β and reduced levels of glucocorticoid responsive genes [glucocorticoid-induced leucine zipper (GILZ) and FK506 binding protein-51 (FKBP51)]. The stress-dependent changes in microglia and macrophages were prevented by propranolol, a β-adrenergic receptor antagonist. Microglia isolated from socially defeated mice and cultured ex vivo produced markedly higher levels of IL-6, tumor necrosis factor-α, and monocyte chemoattractant protein-1 after stimulation with lipopolysaccharide compared with microglia from control mice. Last, repeated social defeat increased c-Fos activation in IL-1 receptor type-1-deficient mice, but did not promote anxiety-like behavior or microglia activation in the absence of functional IL-1 receptor type-1. These findings indicate that repeated social defeat-induced anxiety-like behavior and enhanced reactivity of microglia was dependent on activation of β-adrenergic and IL-1 receptors.

  7. Hydrodynamic Studies of the Evolution of Recurrent, Symbiotic and Dwarf Novae: the White Dwarf Components are Growing in Mass

    Directory of Open Access Journals (Sweden)

    Starrfield S.

    2012-06-01

    Full Text Available Symbiotic binaries are systems containing white dwarfs (WDs and red giants. Symbiotic novae are those systems in which thermonuclear eruptions occur on the WD components. These are to be distinguished from events driven by accretion disk instabilities analogous to dwarf novae eruptions in cataclysmic variable outbursts. Another class of symbiotic systems are those in which the WD is extremely luminous and it seems likely that quiescent nuclear burning is ongoing on the accreting WD. A fundamental question is the secular evolution of the WD. Do the repeated outbursts or quiescent burning in these accreting systems cause the WD to gain or lose mass? If it is gaining mass, can it eventually reach the Chandrasekhar Limit and become a supernova (a SN Ia if it can hide the hydrogen and helium in the system? In order to better understand these systems, we have begun a new study of the evolution of Thermonuclear Runaways (TNRs in the accreted envelopes of WDs using a variety of initial WD masses, luminosities and mass accretion rates. We use our 1-D hydro code, NOVA, which includes the new convective algorithm of Arnett, Meakin and Young, the Hix and Thielemann nuclear reaction solver, the Iliadis reaction rate library, the Timmes equation of state, and the OPAL opacities. We assume a solar composition (Lodders abundance distribution and do not allow any mixing of accreted material with core material. This assumption strongly influences our results. We report here (1 that the WD grows in mass for all simulations so that ‘steady burning’ does not occur, and (2 that only a small fraction of the accreted matter is ejected in some (but not all simulations. We also find that the accreting systems, before thermonuclear runaway, are too cool to be seen in X-ray searches for SN Ia progenitors.

  8. Overview of platelet physiology and laboratory evaluation of platelet function.

    Science.gov (United States)

    Rodgers, G M

    1999-06-01

    Appropriate laboratory testing for the platelet-type bleeding disorders hinges on an adequate assessment in the history and physical examination. Patients with histories and screening laboratory results consistent with coagulation disorders (hemophilia, disseminated intravascular coagulation) are not appropriate candidates for platelet function testing. In contrast, patients with a lifelong history of platelet-type bleeding symptoms and perhaps a positive family history of bleeding would be appropriate for testing. Figure 6 depicts one strategy to evaluate these patients. Platelet morphology can easily be evaluated to screen for two uncommon qualitative platelet disorders: Bernard-Soulier syndrome (associated with giant platelets) and gray platelet syndrome, a subtype of storage pool disorder in which platelet granulation is morphologically abnormal by light microscopy. If the bleeding disorder occurred later in life (no bleeding with surgery or trauma early in life), the focus should be on acquired disorders of platelet function. For those patients thought to have an inherited disorder, testing for vWD should be done initially because approximately 1% of the population has vWD. The complete vWD panel (factor VIII coagulant activity, vWf antigen, ristocetin cofactor activity) should be performed because many patients will have abnormalities of only one particular panel component. Patients diagnosed with vWD should be classified using multimeric analysis to identify the type 1 vWD patients likely to respond to DDAVP. If vWD studies are normal, platelet aggregation testing should be performed, ensuring that no antiplatelet medications have been ingested at least 1 week before testing. If platelet aggregation tests are normal and if suspicion for an inherited disorder remains high, vWD testing should be repeated. The evaluation of thrombocytopenia may require bone marrow examination to exclude primary hematologic disorders. If future studies with thrombopoietin assays

  9. Deletion in the first cysteine-rich repeat of low density lipoprotein receptor impairs its transport but not lipoprotein binding in fibroblasts from a subject with familial hypercholesterolemia

    International Nuclear Information System (INIS)

    Leitersdorf, E.; Hobbs, H.H.; Fourie, A.M.; Jacobs, M.; Van Der Westhuyzen, D.R.; Coetzee, G.A.

    1988-01-01

    The ligand-binding domain of the low density lipoprotein (LDL) receptor is composed of seven cysteine-rich repeats, each ∼ 40 amino acids long. Previous studies showed that if the first repeat of the ligand-binding domain (encoded by exon 2) is deleted, the receptor fails to bind an anti-LDL receptor monoclonal antibody (IgG-C7) but continues to bind LDL with high affinity. Cultured fibroblasts from a Black South African Xhosa patient (TT) with the clinical syndrome of homozygous familial hypercholesterolemia demonstrated high-affinity cell-surface binding of 125 I-labeled LDL but not 125 I-labeled IgG-C7. previous haplotype analysis, using 10 restriction fragment length polymorphic sites, suggested that the patient inherited two identical LDL receptor alleles. The polymerase chain reaction technique was used to selectively amplify exon 2 of the LDL receptor gene from this patient. Sequence analysis of the amplified fragment disclosed a deletion of six base pairs that removes two amino acids, aspartic acid and glycine, from the first cysteine-rich ligand binding repeat. The mutation creates a new Pst I restriction site that can be used to detect the deletion. The existence of this mutant allele confirms that the epitope of IgG-C7 is located in the first cysteine-rich repeat and that this repeat is not necessary for LDL binding. The mutant gene produced a normally sized 120-kilodalton LDL receptor precursor protein that matured to the 160-kilodalton form at less than one-fourth the normal rate

  10. Comparison of three commercially available prescription diet regimens on short-term post-prandial serum glucose and insulin concentrations in healthy cats.

    Science.gov (United States)

    Mori, A; Sako, T; Lee, P; Nishimaki, Y; Fukuta, H; Mizutani, H; Honjo, T; Arai, T

    2009-10-01

    Dietary therapy is an important treatment component for diabetes mellitus (DM). In this study, the impact of three different commercially available diet regiments (1 general use and 2 aimed for treating obesity and DM) on short-term post-prandial serum glucose and insulin concentrations of five healthy cats to better understand what impact each of these diets may have for diabetic cats. The diet regiments used in this study were as follows: C/D dry (General Use- Low protein, High fat, High carbohydrate, and Low fiber), M/D dry (DM- High protein, High fat, Low carbohydrate, and High Fiber), and W/D dry (DM- Low Protein, Low Fat, High Carbohydrate, and High Fiber). No significant difference in post-prandial serum glucose levels were observed with the C/D (84.6 +/- 1.5 mg/dl) and W/D (83.8 +/- 1.4 mg/dl) dry diets when compared to pre-prandial fasting levels (83.9 +/- 1.4 mg/dl). However, a significant reduction was observed with the M/D diet (78.9 +/- 0.8 mg/dl) which had 50-60% less carbohydrates than either C/D or W/D diet. Unlike what was observed with post-prandial glucose levels, an interesting pattern emerged with post-prandial insulin levels, which were increasing with W/D, C/D, and M/D diets in that order (1.1 +/- 0.2, 1.7 +/- 0.2, and 2.3 +/- 0.2 ng/ml respectively). Most surprising, though, was the fact that the W/D diet did not seem to stimulate insulin secretion as compared to pre-prandial levels (1.1 +/- 0.1 ng/ml) in healthy cats. Interestingly, the W/D diet had high levels of carbohydrate and low levels of protein. Coincidentally, the only diet (M/D) which had a significant reduction in post-prandial glucose also showed the highest increase in post-prandial insulin in healthy cats. Therefore, dietary amounts of carbohydrate, fat, protein and fiber can all have an individual impact on post-prandial glycemia and subsequent insulin requirement levels. Just as concepts regarding dietary management of people with DM are evolving, investigators are

  11. A Single Amino Acid Change in the Marburg Virus Matrix Protein VP40 Provides a Replicative Advantage in a Species-Specific Manner

    Science.gov (United States)

    Koehler, Alexander; Kolesnikova, Larissa; Welzel, Ulla; Schudt, Gordian; Herwig, Astrid

    2015-01-01

    ABSTRACT Marburg virus (MARV) induces severe hemorrhagic fever in humans and nonhuman primates but only transient nonlethal disease in rodents. However, sequential passages of MARV in rodents boosts infection leading to lethal disease. Guinea pig-adapted MARV contains one mutation in the viral matrix protein VP40 at position 184 (VP40D184N). The contribution of the D184N mutation to the efficacy of replication in a new host is unknown. In the present study, we demonstrated that recombinant MARV containing the D184N mutation in VP40 [rMARVVP40(D184N)] grew to higher titers than wild-type recombinant MARV (rMARVWT) in guinea pig cells. Moreover, rMARVVP40(D184N) displayed higher infectivity in guinea pig cells. Comparative analysis of VP40 functions indicated that neither the interferon (IFN)-antagonistic function nor the membrane binding capabilities of VP40 were affected by the D184N mutation. However, the production of VP40-induced virus-like particles (VLPs) and the recruitment of other viral proteins to the budding site was improved by the D184N mutation in guinea pig cells, which resulted in the higher infectivity of VP40D184N-induced infectious VLPs (iVLPs) compared to that of VP40-induced iVLPs. In addition, the function of VP40 in suppressing viral RNA synthesis was influenced by the D184N mutation specifically in guinea pig cells, thus allowing greater rates of transcription and replication. Our results showed that the improved viral fitness of rMARVVP40(D184N) in guinea pig cells was due to the better viral assembly function of VP40D184N and its lower inhibitory effect on viral transcription and replication rather than modulation of the VP40-mediated suppression of IFN signaling. IMPORTANCE The increased virulence achieved by virus passaging in a new host was accompanied by mutations in the viral genome. Analyzing how these mutations affect the functions of viral proteins and the ability of the virus to grow within new host cells helps in the understanding

  12. Molecular cloning, genomic organization, developmental regulation, and a knock-out mutant of a novel leu-rich repeats-containing G protein-coupled receptor (DLGR-2) from Drosophila melanogaster

    DEFF Research Database (Denmark)

    Eriksen, Kathrine Krageskov; Hauser, Frank; Schiøtt, Morten

    2000-01-01

    After screening the Berkeley Drosophila Genome Project database with sequences from a recently characterized Leu-rich repeats-containing G protein-coupled receptor (LGR) fromDrosophila (DLGR-1), we identified a second gene for a different LGR (DLGR-2) and cloned its cDNA. DLGR-2 is 1360 amino aci...... knock-out mutants, where the DLGR-2 gene is interrupted by a P element insertion, die around the time of hatching. This finding, together with the expression data, strongly suggests that DLGR-2 is exclusively involved in development....

  13. Experimental investigations on the fluid flow through a wall subchannel of a rod bundle (P/D = 1.036, W/D = 1.072)

    International Nuclear Information System (INIS)

    Rehme, K.

    1982-07-01

    Measurements of the distributions of the mean velocity, the wall shear stresses and the turbulence were performed in a wall subchannel of a rod bundle of four parallel rods arranged symmetrically in a rectangular channel (P/D = 1.036, W/D = 1.072). The Reynolds number of this investigation was Re = 7.60 x 10 4 . The experimental results show that the momentum transport is highly anisotropic especially in the gaps of the rod bundle. Influences of secondary flow cannot be detected in the distribution of the time-mean velocity, however, such influences are found in the distributions of the turbulence intensities and the kinetic energy of turbulence. Very high turbulence intensities were observed in the gap between the rods. The comparison between experimental wall shear stress distributions and those calculated with the VELASCO-code shows discrepancies especially in the gap between the rods. (orig.) [de

  14. NCBI nr-aa BLAST: CBRC-CJAC-01-1298 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CJAC-01-1298 ref|ZP_01054714.1| type I secretion target repeat protein [Roseob...acter sp. MED193] gb|EAQ47205.1| type I secretion target repeat protein [Roseobacter sp. MED193] ZP_01054714.1 5e-17 40% ...

  15. Thermal, cardiac and adrenergic responses to repeated local cooling.

    Science.gov (United States)

    Janský, L; Matousková, E; Vávra, V; Vybíral, S; Janský, P; Jandová, D; Knízková, I; Kunc, P

    2006-01-01

    The aim of this study was to ascertain whether repeated local cooling induces the same or different adaptational responses as repeated whole body cooling. Repeated cooling of the legs (immersion into 12 degrees C water up to the knees for 30 min, 20 times during 4 weeks = local cold adaptation - LCA) attenuated the initial increase in heart rate and blood pressure currently observed in control subjects immersed in cold water up to the knees. After LCA the initial skin temperature decrease tended to be lower, indicating reduced vasoconstriction. Heart rate and systolic blood pressure appeared to be generally lower during rest and during the time course of cooling in LCA humans, when compared to controls. All these changes seem to indicate attenuation of the sympathetic tone. In contrast, the sustained skin temperature in different areas of the body (finger, palm, forearm, thigh, chest) appeared to be generally lower in LCA subjects than in controls (except for temperatures on the forehead). Plasma levels of catecholamines (measured 20 and 40 min after the onset of cooling) were also not influenced by local cold adaptation. Locally cold adapted subjects, when exposed to whole body cold water immersion test, showed no change in the threshold temperature for induction of cold thermogenesis. This indicates that the hypothermic type of cold adaptation, typically occurring after systemic cold adaptation, does not appear after local cold adaptation of the intensity used. It is concluded that in humans the cold adaptation due to repeated local cooling of legs induces different physiological changes than systemic cold adaptation.

  16. Structural and biochemical analysis of nuclease domain of clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 3 (Cas3).

    Science.gov (United States)

    Mulepati, Sabin; Bailey, Scott

    2011-09-09

    RNA transcribed from clustered regularly interspaced short palindromic repeats (CRISPRs) protects many prokaryotes from invasion by foreign DNA such as viruses, conjugative plasmids, and transposable elements. Cas3 (CRISPR-associated protein 3) is essential for this CRISPR protection and is thought to mediate cleavage of the foreign DNA through its N-terminal histidine-aspartate (HD) domain. We report here the 1.8 Å crystal structure of the HD domain of Cas3 from Thermus thermophilus HB8. Structural and biochemical studies predict that this enzyme binds two metal ions at its active site. We also demonstrate that the single-stranded DNA endonuclease activity of this T. thermophilus domain is activated not by magnesium but by transition metal ions such as manganese and nickel. Structure-guided mutagenesis confirms the importance of the metal-binding residues for the nuclease activity and identifies other active site residues. Overall, these results provide a framework for understanding the role of Cas3 in the CRISPR system.

  17. Quantitative analysis of polyethylene glycol (PEG) and PEGylated proteins in animal tissues by LC-MS/MS coupled with in-source CID.

    Science.gov (United States)

    Gong, Jiachang; Gu, Xiaomei; Achanzar, William E; Chadwick, Kristina D; Gan, Jinping; Brock, Barry J; Kishnani, Narendra S; Humphreys, W Griff; Iyer, Ramaswamy A

    2014-08-05

    The covalent conjugation of polyethylene glycol (PEG, typical MW > 10k) to therapeutic peptides and proteins is a well-established approach to improve their pharmacokinetic properties and diminish the potential for immunogenicity. Even though PEG is generally considered biologically inert and safe in animals and humans, the slow clearance of large PEGs raises concerns about potential adverse effects resulting from PEG accumulation in tissues following chronic administration, particularly in the central nervous system. The key information relevant to the issue is the disposition and fate of the PEG moiety after repeated dosing with PEGylated proteins. Here, we report a novel quantitative method utilizing LC-MS/MS coupled with in-source CID that is highly selective and sensitive to PEG-related materials. Both (40K)PEG and a tool PEGylated protein (ATI-1072) underwent dissociation in the ionization source of mass spectrometer to generate a series of PEG-specific ions, which were subjected to further dissociation through conventional CID. To demonstrate the potential application of the method to assess PEG biodistribution following PEGylated protein administration, a single dose study of ATI-1072 was conducted in rats. Plasma and various tissues were collected, and the concentrations of both (40K)PEG and ATI-1072 were determined using the LC-MS/MS method. The presence of (40k)PEG in plasma and tissue homogenates suggests the degradation of PEGylated proteins after dose administration to rats, given that free PEG was absent in the dosing solution. The method enables further studies for a thorough characterization of disposition and fate of PEGylated proteins.

  18. The heat shock protein-90 co-chaperone, Cyclophilin 40, promotes ALK-positive, anaplastic large cell lymphoma viability and its expression is regulated by the NPM-ALK oncoprotein

    International Nuclear Information System (INIS)

    Pearson, Joel D; Mohammed, Zubair; Bacani, Julinor T C; Lai, Raymond; Ingham, Robert J

    2012-01-01

    Anaplastic lymphoma kinase-positive, anaplastic large cell lymphoma (ALK+ ALCL) is a T cell lymphoma defined by the presence of chromosomal translocations involving the ALK tyrosine kinase gene. These translocations generate fusion proteins (e.g. NPM-ALK) with constitutive tyrosine kinase activity, which activate numerous signalling pathways important for ALK+ ALCL pathogenesis. The molecular chaperone heat shock protein-90 (Hsp90) plays a critical role in allowing NPM-ALK and other signalling proteins to function in this lymphoma. Co-chaperone proteins are important for helping Hsp90 fold proteins and for directing Hsp90 to specific clients; however the importance of co-chaperone proteins in ALK+ ALCL has not been investigated. Our preliminary findings suggested that expression of the immunophilin co-chaperone, Cyclophilin 40 (Cyp40), is up-regulated in ALK+ ALCL by JunB, a transcription factor activated by NPM-ALK signalling. In this study we examined the regulation of the immunophilin family of co-chaperones by NPM-ALK and JunB, and investigated whether the immunophilin co-chaperones promote the viability of ALK+ ALCL cell lines. NPM-ALK and JunB were knocked-down in ALK+ ALCL cell lines with siRNA, and the effect on the expression of the three immunophilin co-chaperones: Cyp40, FK506-binding protein (FKBP) 51, and FKBP52 examined. Furthermore, the effect of knock-down of the immunophilin co-chaperones, either individually or in combination, on the viability of ALK+ ALCL cell lines and NPM-ALK levels and activity was also examined. We found that NPM-ALK promoted the transcription of Cyp40 and FKBP52, but only Cyp40 transcription was promoted by JunB. We also observed reduced viability of ALK+ ALCL cell lines treated with Cyp40 siRNA, but not with siRNAs directed against FKBP52 or FKBP51. Finally, we demonstrate that the decrease in the viability of ALK+ ALCL cell lines treated with Cyp40 siRNA does not appear to be due to a decrease in NPM-ALK levels or the

  19. The Cx43-like connexin protein Cx40.8 is differentially localized during fin ontogeny and fin regeneration.

    Directory of Open Access Journals (Sweden)

    Sarah V Gerhart

    Full Text Available Connexins (Cx are the subunits of gap junctions, membraneous protein channels that permit the exchange of small molecules between adjacent cells. Cx43 is required for cell proliferation in the zebrafish caudal fin. Previously, we found that a Cx43-like connexin, cx40.8, is co-expressed with cx43 in the population of proliferating cells during fin regeneration. Here we demonstrate that Cx40.8 exhibits novel differential subcellular localization in vivo, depending on the growth status of the fin. During fin ontogeny, Cx40.8 is found at the plasma membrane, but Cx40.8 is retained in the Golgi apparatus during regeneration. We next identified a 30 amino acid domain of Cx40.8 responsible for its dynamic localization. One possible explanation for the differential localization is that Cx40.8 contributes to the regulation of Cx43 in vivo, perhaps modifying channel activity during ontogenetic growth. However, we find that the voltage-gating properties of Cx40.8 are similar to Cx43. Together our findings reveal that Cx40.8 exhibits differential subcellular localization in vivo, dependent on a discrete domain in its carboxy terminus. We suggest that the dynamic localization of Cx40.8 differentially influences Cx43-dependent cell proliferation during ontogeny and regeneration.

  20. Effects of four weeks of repeated sprint training on physiological indices in futsal players

    Directory of Open Access Journals (Sweden)

    Paulo Cesar do Nascimento

    2014-12-01

    Full Text Available DOI: http://dx.doi.org/10.5007/1980-0037.2015v17n1p91   The aim of this study was to investigate the effects of short repeated-sprint ability (RSA training on the neuromuscular and physiological indices in U17 futsal players during the competitive period. Fourteen players were divided into two groups: intervention group (n = 8 and control group (n = 6. Both groups performed a repeated maximal sprint test (40-m MST, intermittent shuttle-running test (Carminatti’s test and vertical jumps before and after the training period. The intervention group was submitted to an additional four-week repeated sprints program, twice a week, while the control group maintained their normal training routine. There was no significant interaction between time and groups for all variables analysed (p > 0.05. However, a significant main effect was observed for time (p < 0.01 indicating an increase on speed at heart rate deflection point (VHRDP and the continuous jump performance while the peak lactate (40m-LACpeak and sprint decrement decreased after training, in both groups. Still, based on effect sizes (ES the greater changes with practical relevance were verified for intervention group in important variables such as peak velocity (ES = 0,71, VHRDP (ES = 0,83 and 40m-LACpeak (ES = 1,00. This study showed that RSA-based and normal training routine are equally effective in producing changes in the analysed variables during a short period of intervention. However, the effect size suggests that four weeks of RSA training would be a minimum time that could induce the first changes of futsal player’s physical fitness.

  1. [Bioinformatics Analysis of Clustered Regularly Interspaced Short Palindromic Repeats in the Genomes of Shigella].

    Science.gov (United States)

    Wang, Pengfei; Wang, Yingfang; Duan, Guangcai; Xue, Zerun; Wang, Linlin; Guo, Xiangjiao; Yang, Haiyan; Xi, Yuanlin

    2015-04-01

    This study was aimed to explore the features of clustered regularly interspaced short palindromic repeats (CRISPR) structures in Shigella by using bioinformatics. We used bioinformatics methods, including BLAST, alignment and RNA structure prediction, to analyze the CRISPR structures of Shigella genomes. The results showed that the CRISPRs existed in the four groups of Shigella, and the flanking sequences of upstream CRISPRs could be classified into the same group with those of the downstream. We also found some relatively conserved palindromic motifs in the leader sequences. Repeat sequences had the same group with corresponding flanking sequences, and could be classified into two different types by their RNA secondary structures, which contain "stem" and "ring". Some spacers were found to homologize with part sequences of plasmids or phages. The study indicated that there were correlations between repeat sequences and flanking sequences, and the repeats might act as a kind of recognition mechanism to mediate the interaction between foreign genetic elements and Cas proteins.

  2. The C9orf72 repeat expansion disrupts nucleocytoplasmic transport.

    Science.gov (United States)

    Zhang, Ke; Donnelly, Christopher J; Haeusler, Aaron R; Grima, Jonathan C; Machamer, James B; Steinwald, Peter; Daley, Elizabeth L; Miller, Sean J; Cunningham, Kathleen M; Vidensky, Svetlana; Gupta, Saksham; Thomas, Michael A; Hong, Ingie; Chiu, Shu-Ling; Huganir, Richard L; Ostrow, Lyle W; Matunis, Michael J; Wang, Jiou; Sattler, Rita; Lloyd, Thomas E; Rothstein, Jeffrey D

    2015-09-03

    The hexanucleotide repeat expansion (HRE) GGGGCC (G4C2) in C9orf72 is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Recent studies support an HRE RNA gain-of-function mechanism of neurotoxicity, and we previously identified protein interactors for the G4C2 RNA including RanGAP1. A candidate-based genetic screen in Drosophila expressing 30 G4C2 repeats identified RanGAP (Drosophila orthologue of human RanGAP1), a key regulator of nucleocytoplasmic transport, as a potent suppressor of neurodegeneration. Enhancing nuclear import or suppressing nuclear export of proteins also suppresses neurodegeneration. RanGAP physically interacts with HRE RNA and is mislocalized in HRE-expressing flies, neurons from C9orf72 ALS patient-derived induced pluripotent stem cells (iPSC-derived neurons), and in C9orf72 ALS patient brain tissue. Nuclear import is impaired as a result of HRE expression in the fly model and in C9orf72 iPSC-derived neurons, and these deficits are rescued by small molecules and antisense oligonucleotides targeting the HRE G-quadruplexes. Nucleocytoplasmic transport defects may be a fundamental pathway for ALS and FTD that is amenable to pharmacotherapeutic intervention.

  3. Nonlinear analysis of sequence repeats of multi-domain proteins

    Energy Technology Data Exchange (ETDEWEB)

    Huang Yanzhao [Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China); Li Mingfeng [Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China); Xiao Yi [Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China)]. E-mail: lmf_bill@sina.com

    2007-11-15

    Many multi-domain proteins have repetitive three-dimensional structures but nearly-random amino acid sequences. In the present paper, by using a modified recurrence plot proposed by us previously, we show that these amino acid sequences have hidden repetitions in fact. These results indicate that the repetitive domain structures are encoded by the repetitive sequences. This also gives a method to detect the repetitive domain structures directly from amino acid sequences.

  4. Identification of a novel receptor-like protein kinase that interacts with a geminivirus nuclear shuttle protein

    International Nuclear Information System (INIS)

    Mariano, Andrea C.; Andrade, Maxuel O.; Santos, Anesia A.; Carolino, Sonia M.B.; Oliveira, Marli L.; Baracat-Pereira, Maria Cristina; Brommonshenkel, Sergio H.; Fontes, Elizabeth P.B.

    2004-01-01

    Despite extensive studies in plant virus-host interactions, the molecular mechanisms of geminivirus movement and interactions with host components remain largely unknown. A tomato kinase protein and its soybean homolog were found to interact specifically with the nuclear shuttle protein (NSP) of Tomato golden mosaic virus (TGMV) and Tomato crinkle leaf yellows virus (TCrLYV) through yeast two-hybrid screening and in vitro protein binding assays. These proteins, designated LeNIK (Lycopersicon esculentum NSP-Interacting Kinase) and GmNIK (Glycine max NIK), belong to the LRR-RLK (leucine rich-repeat receptor-like kinase) family that is involved in plant developmental processes and/or resistance response. As such, NIK is structurally organized into characteristic domains, including a serine/threonine kinase domain with a nucleotide binding site at the C-terminal region, an internal transmembrane segment and leucine-rich repeats (LRR) at the N-terminal portion. The potential significance of the NSP-NIK interaction is discussed

  5. The protective effect of different airway humidification liquids to lung after tracheotomy in traumatic brain injury: The role of pulmonary surfactant protein-A (SP-A).

    Science.gov (United States)

    Su, Xinyang; Li, Zefu; Wang, Meilin; Li, Zhenzhu; Wang, Qingbo; Lu, Wenxian; Li, Xiaoli; Zhou, Youfei; Xu, Hongmei

    2016-02-10

    The purpose of this study was to establish a rat model of a brain injury with tracheotomy and compared the wetting effects of different airway humidification liquids, afterward, the best airway humidification liquid was selected for the clinical trial, thus providing a theoretical basis for selecting a proper airway humidification liquid in a clinical setting. Rats were divided into a sham group, group A (0.9% NaCl), group B (0.45% NaCl), group C (0.9% NaCl+ambroxol) and group D (0.9% NaCl+Pulmicort). An established rat model of traumatic brain injury with tracheotomy was used. Brain tissue samples were taken to determine water content, while lung tissue samples were taken to determine wet/dry weight ratio (W/D), histological changes and expression levels of SP-A mRNA and SP-A protein. 30 patients with brain injury and tracheotomy were selected and divided into two groups based on the airway humidification liquid instilled in the trachea tube, 0.45% NaCl and 0.9% NaCl+ambroxol. Blood was then extracted from the patients to measure the levels of SP-A, interleukin-6 (IL-6), interleukin-8 (IL-8) and tumour necrosis factor-α (TNF-α). The difference between group C and other groups in lung W/D and expression levels of SP-A mRNA and SP-A protein was significant (Phumidification liquid. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Thermal stability of chicken brain {alpha}-spectrin repeat 17: a spectroscopic study

    Energy Technology Data Exchange (ETDEWEB)

    Brenner, Annette K. [University of Bergen, Department of Chemistry (Norway); Kieffer, Bruno [Ecole Superieure de Biotechnologie de Strasbourg, IGBMC Biomolecular NMR Group, CNRS UMR 7104 (France); Trave, Gilles [Ecole Superieure de Biotechnologie de Strasbourg, Equipe Oncoproteines, IREBS, UMR 7242 (France); Froystein, Nils Age [University of Bergen, Department of Chemistry (Norway); Raae, Arnt J., E-mail: arnt.raae@mbi.uib.no [University of Bergen, Department of Molecular Biology (Norway)

    2012-06-15

    Spectrin is a rod-like multi-modular protein that is mainly composed of triple-helical repeats. These repeats show very similar 3D-structures but variable conformational and thermodynamical stabilities, which may be of great importance for the flexibility and dynamic behaviour of spectrin in the cell. For instance, repeat 17 (R17) of the chicken brain spectrin {alpha}-chain is four times less stable than neighbouring repeat 16 (R16) in terms of Increment G. The structure of spectrin repeats has mainly been investigated by X-ray crystallography, but the structures of a few repeats, e.g. R16, have also been determined by NMR spectroscopy. Here, we undertook a detailed characterization of the neighbouring R17 by NMR spectroscopy. We assigned most backbone resonances and observed NOE restraints, relaxation values and coupling constants that all indicated that the fold of R17 is highly similar to that of R16, in agreement with previous X-ray analysis of a tandem repeat of the two domains. However, {sup 15}N heteronuclear NMR spectra measured at different temperatures revealed particular features of the R17 domain that might contribute to its lower stability. Conformational exchange appeared to alter the linker connecting R17 to R16 as well as the BC-loop in close proximity. In addition, heat-induced splitting was observed for backbone resonances of a few spatially related residues including V99 of helix C, which in R16 is replaced by the larger hydrophobic tryptophan residue that is relatively conserved among other spectrin repeats. These data support the view that the substitution of tryptophan by valine at this position may contribute to the lower stability of R17.

  7. Decreased risk of prematurity after elective repeat cesarean delivery in Hispanics.

    Science.gov (United States)

    Vilchez, Gustavo; Chelliah, Anushka; Bratley, Elaine; Bahado-Singh, Ray; Sokol, Robert

    2015-01-01

    The current recommendation is to delay elective repeat cesarean deliveries (ERCD) until 39 weeks to decrease prematurity risks. Prior reports suggest accelerated maturity of fetuses according to race (African-Americans and Asians). To analyze the effect of the Hispanic ethnicity on the prematurity risk after ERCD. The US Natality Database from 2004 to 2008 was reviewed. Inclusion criteria were singleton delivery, no trial of labor, repeat cesarean. Exclusion criteria were fetal anomalies, history of diabetes/hypertension related disorders. Outcomes analyzed were Apgar score, assisted ventilation, intensive care admission, surfactant/antibiotic use and seizures. Two groups were identified: non-Hispanic Whites (NHW) and Hispanic Whites (HW). Regression analysis was performed to calculate adjusted odds ratios. Deliveries at 36-40 weeks were studied with 40 weeks as the reference group. A total of 930421 ERCDs were identified, 396823 NHW and 236733 HW. For NHW, the risk of prematurity was lower at 39 weeks. For HW, there was no difference in the risks of prematurity at/beyond 38 weeks. There appears to be accelerated maturity with no increase in prematurity risk at 38 weeks in HW delivered by ERCD. Ethnicity can be considered for patient counseling and decision making regarding optimal timing of elective interventions.

  8. Hysteresis analysis of graphene transistor under repeated test and gate voltage stress

    International Nuclear Information System (INIS)

    Yang Jie; Jia Kunpeng; Su Yajuan; Zhao Chao; Chen Yang

    2014-01-01

    The current transport characteristic is studied systematically based on a back-gate graphene field effect transistor, under repeated test and gate voltage stress. The interface trapped charges caused by the gate voltage sweep process screens the gate electric field, and results in the neutral point voltage shift between the forth and back sweep direction. In the repeated test process, the neutral point voltage keeps increasing with test times in both forth and back sweeps, which indicates the existence of interface trapped electrons residual and accumulation. In gate voltage stress experiment, the relative neutral point voltage significantly decreases with the reducing of stress voltage, especially in −40 V, which illustrates the driven-out phenomenon of trapped electrons under negative voltage stress. (semiconductor devices)

  9. The Type II Hsp40 Sis1 cooperates with Hsp70 and the E3 ligase Ubr1 to promote degradation of terminally misfolded cytosolic protein.

    Directory of Open Access Journals (Sweden)

    Daniel W Summers

    Full Text Available Mechanisms for cooperation between the cytosolic Hsp70 system and the ubiquitin proteasome system during protein triage are not clear. Herein, we identify new mechanisms for selection of misfolded cytosolic proteins for degradation via defining functional interactions between specific cytosolic Hsp70/Hsp40 pairs and quality control ubiquitin ligases. These studies revolved around the use of S. cerevisiae to elucidate the degradation pathway of a terminally misfolded reporter protein, short-lived GFP (slGFP. The Type I Hsp40 Ydj1 acts with Hsp70 to suppress slGFP aggregation. In contrast, the Type II Hsp40 Sis1 is required for proteasomal degradation of slGFP. Sis1 and Hsp70 operate sequentially with the quality control E3 ubiquitin ligase Ubr1 to target slGFP for degradation. Compromise of Sis1 or Ubr1 function leads slGFP to accumulate in a Triton X-100-soluble state with slGFP degradation intermediates being concentrated into perinuclear and peripheral puncta. Interestingly, when Sis1 activity is low the slGFP that is concentrated into puncta can be liberated from puncta and subsequently degraded. Conversely, in the absence of Ubr1, slGFP and the puncta that contain slGFP are relatively stable. Ubr1 mediates proteasomal degradation of slGFP that is released from cytosolic protein handling centers. Pathways for proteasomal degradation of misfolded cytosolic proteins involve functional interplay between Type II Hsp40/Hsp70 chaperone pairs, PQC E3 ligases, and storage depots for misfolded proteins.

  10. Experimental Investigation on Asphalt Binders Ageing Behavior and Rejuvenating Feasibility in Multicycle Repeated Ageing and Recycling

    Directory of Open Access Journals (Sweden)

    Yihua Nie

    2018-01-01

    Full Text Available Multicycle repeated utilization of reclaimed asphalt pavement (RAP is a quite recent development of sustainable pavement materials technology. To investigate ageing rules and recycling possibility of asphalt binders in repeatedly used asphalt mixture, virgin asphalt AH-70 samples were heated by the rolling thin film oven test (RTFOT at 163°C, respectively, for 40, 85, 180, 240, and 300 minutes to simulate different ageing degrees, and then the aged ones were rejuvenated by adding a self-made rejuvenator. This ageing and recycling process was repeated altogether for 5 cycles to simulate repeated use of RAP binders. In repeated recycling, rejuvenator contents for different cycle numbers or ageing durations were not the same, and the optimum ones were initially estimated by an empirical formula and finally obtained by comparative tests. Empirical rheological tests and the infrared spectral (IR analysis were done before and after each cycle of recycling. Results indicate that for impact on deterioration of asphalt binders, ageing time is more important than cycle number. Meanwhile, the asphalt after multicycle repeated ageing and recycling can be restored to the empirical rheological indices level of the virgin asphalt and meet specifications requirements.

  11. Wilson Disease: Case Report

    Directory of Open Access Journals (Sweden)

    Esra Tuğ

    2007-01-01

    Full Text Available Wilson Disease (WD is an autosomal recessive hereditary disease of human copper metabolism, which causes hepatic and neuropsychiatric diseases. Estimated prevalence is 1: 30.000. In WD, ATP7B gene located on chromosome 13 (13q14.3-q21.1, coding the protein for hepatic copper transport and, having an important role in copper metabolism has been affected. Clinical findings in WD are complex and, neurological symptoms such as tremor, disartria and psychiatric disorders, acute liver deficiency, chronic hepatit or cirrhosis may develop. For the last year, 27 years old female patient observed in other medical centre owing to benign positional vertigo applied to our department. Her sister and brother have been diagnosed as WD. No peripheral syptoms of hepatic disease or hepatosplenomegaly existed in our patient. Neurological examination was normal to except for positional tremor. Because our patient had rare clinical features for WD and bad prognosis, presented by us to emphasize necessity of the researched of the most frequent mutations seen in Turkiye.

  12. P-Finder: Reconstruction of Signaling Networks from Protein-Protein Interactions and GO Annotations.

    Science.gov (United States)

    Young-Rae Cho; Yanan Xin; Speegle, Greg

    2015-01-01

    Because most complex genetic diseases are caused by defects of cell signaling, illuminating a signaling cascade is essential for understanding their mechanisms. We present three novel computational algorithms to reconstruct signaling networks between a starting protein and an ending protein using genome-wide protein-protein interaction (PPI) networks and gene ontology (GO) annotation data. A signaling network is represented as a directed acyclic graph in a merged form of multiple linear pathways. An advanced semantic similarity metric is applied for weighting PPIs as the preprocessing of all three methods. The first algorithm repeatedly extends the list of nodes based on path frequency towards an ending protein. The second algorithm repeatedly appends edges based on the occurrence of network motifs which indicate the link patterns more frequently appearing in a PPI network than in a random graph. The last algorithm uses the information propagation technique which iteratively updates edge orientations based on the path strength and merges the selected directed edges. Our experimental results demonstrate that the proposed algorithms achieve higher accuracy than previous methods when they are tested on well-studied pathways of S. cerevisiae. Furthermore, we introduce an interactive web application tool, called P-Finder, to visualize reconstructed signaling networks.

  13. A tensegrity model for hydrogen bond networks in proteins

    Directory of Open Access Journals (Sweden)

    Robert P. Bywater

    2017-05-01

    Full Text Available Hydrogen-bonding networks in proteins considered as structural tensile elements are in balance separately from any other stabilising interactions that may be in operation. The hydrogen bond arrangement in the network is reminiscent of tensegrity structures in architecture and sculpture. Tensegrity has been discussed before in cells and tissues and in proteins. In contrast to previous work only hydrogen bonds are studied here. The other interactions within proteins are either much stronger − covalent bonds connecting the atoms in the molecular skeleton or weaker forces like the so-called hydrophobic interactions. It has been demonstrated that the latter operate independently from hydrogen bonds. Each category of interaction must, if the protein is to have a stable structure, balance out. The hypothesis here is that the entire hydrogen bond network is in balance without any compensating contributions from other types of interaction. For sidechain-sidechain, sidechain-backbone and backbone-backbone hydrogen bonds in proteins, tensegrity balance (“closure” is required over the entire length of the polypeptide chain that defines individually folding units in globular proteins (“domains” as well as within the repeating elements in fibrous proteins that consist of extended chain structures. There is no closure to be found in extended structures that do not have repeating elements. This suggests an explanation as to why globular domains, as well as the repeat units in fibrous proteins, have to have a defined number of residues. Apart from networks of sidechain-sidechain hydrogen bonds there are certain key points at which this closure is achieved in the sidechain-backbone hydrogen bonds and these are associated with demarcation points at the start or end of stretches of secondary structure. Together, these three categories of hydrogen bond achieve the closure that is necessary for the stability of globular protein domains as well as repeating

  14. Comparative and functional characterization of intragenic tandem repeats in 10 Aspergillus genomes.

    Science.gov (United States)

    Gibbons, John G; Rokas, Antonis

    2009-03-01

    Intragenic tandem repeats (ITRs) are consecutive repeats of three or more nucleotides found in coding regions. ITRs are the underlying cause of several human genetic diseases and have been associated with phenotypic variation, including pathogenesis, in several clades of the tree of life. We have examined the evolution and functional role of ITRs in 10 genomes spanning the fungal genus Aspergillus, a clade of relevance to medicine, agriculture, and industry. We identified several hundred ITRs in each of the species examined. ITR content varied extensively between species, with an average 79% of ITRs unique to a given species. For the fraction of conserved ITR regions, sequence comparisons within species and between close relatives revealed that they were highly variable. ITR-containing proteins were evolutionarily less conserved, compositionally distinct, and overrepresented for domains associated with cell-surface localization and function relative to the rest of the proteome. Furthermore, ITRs were preferentially found in proteins involved in transcription, cellular communication, and cell-type differentiation but were underrepresented in proteins involved in metabolism and energy. Importantly, although ITRs were evolutionarily labile, their functional associations appeared. To be remarkably conserved across eukaryotes. Fungal ITRs likely participate in a variety of developmental processes and cell-surface-associated functions, suggesting that their contribution to fungal lifestyle and evolution may be more general than previously assumed.

  15. Assembly of Ebola virus matrix protein VP40 is regulated by latch-like properties of N and C terminal tails.

    Directory of Open Access Journals (Sweden)

    Leslie P Silva

    Full Text Available The matrix protein VP40 coordinates numerous functions in the viral life cycle of the Ebola virus. These range from the regulation of viral transcription to morphogenesis, packaging and budding of mature virions. Similar to the matrix proteins of other nonsegmented, negative-strand RNA viruses, VP40 proceeds through intermediate states of assembly (e.g. octamers but it remains unclear how these intermediates are coordinated with the various stages of the life cycle. In this study, we investigate the molecular basis of synchronization as governed by VP40. Hydrogen/deuterium exchange mass spectrometry was used to follow induced structural and conformational changes in VP40. Together with computational modeling, we demonstrate that both extreme N and C terminal tail regions stabilize the monomeric state through a direct association. The tails appear to function as a latch, released upon a specific molecular trigger such as RNA ligation. We propose that triggered release of the tails permits the coordination of late-stage events in the viral life cycle, at the inner membrane of the host cell. Specifically, N-tail release exposes the L-domain motifs PTAP/PPEY to the transport and budding complexes, whereas triggered C-tail release could improve association with the site of budding.

  16. Heat shock proteins of higher plants

    International Nuclear Information System (INIS)

    Key, J.L.; Lin, C.Y.; Chen, Y.M.

    1981-01-01

    The pattern of protein synthesis changes rapidly and dramatically when the growth temperture of soybean seedling tissue is increased from 28 0 C (normal) to about 40 0 C (heat shock). The synthesis of normal proteins is greatly decreased and a new set of proteins, heat shock proteins, is induced. The heat shock proteins of soybean consist of 10 new bands on one-dimensional NaDodSO 4 gels; a more complex pattern is observed on two-dimensional gels. when the tissue is returned to 28 0 C after 4 hr at 40 0 C, there is progressive decline in the synthesis of heat shock proteins and reappearance of a normal pattern of synthesis by 3 or 4 hr. In vitro translation of poly(A) + RNAs isolated from tissued grown at 28 and 40 0 C shows that the heat shock proteins are translated from a ndw set of mRNAs induced at 40 0 C; furthermore, the abundant class mRNAs for many of the normal proteins persist even though they are translated weakly (or not at all) in vivo at 40 or 42.5 0 C. The heat shock response in soybean appears similar to the much-studied heat shock phenomenon in Drosophila

  17. 'From Man to Bacteria': W.D. Hamilton, the theory of inclusive fitness, and the post-war social order.

    Science.gov (United States)

    Swenson, Sarah A

    2015-02-01

    W.D. Hamilton's theory of inclusive fitness aimed to define the evolved limits of altruism with mathematical precision. Although it was meant to apply universally, it has been almost irretrievably entwined with the particular case of social insects that featured in his famous 1964 papers. The assumption that social insects were central to Hamilton's early work contradicts material in his rich personal archive. In fact, careful study of Hamilton's notes, letters, diaries, and early essays indicates the extent to which he had humans in mind when he decided altruism was a topic worthy of biological inquiry. For this reason, this article reconsiders the role of extra-scientific factors in Hamilton's early theorizing. In doing so, it offers an alternative perspective as to why Hamilton saw self-sacrifice to be an important subject. Although the traditional narrative prioritizes his distaste for benefit-of-the-species explanations as a motivating factor behind his foundational work, I argue that greater attention ought to be given to Hamilton's hope that science could be used to address social ills. By reconsidering the meaning Hamilton intended inclusive fitness to have, we see that while he was no political ideologue, the socio-political relevance of his theory was nevertheless integral to its development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Cheese whey protein recovery by ultrafiltration through transglutaminase (TG) catalysis whey protein cross-linking.

    Science.gov (United States)

    Wen-Qiong, Wang; Lan-Wei, Zhang; Xue, Han; Yi, Lu

    2017-01-15

    In whey ultrafiltration (UF) production, two main problems are whey protein recovery and membrane fouling. In this study, membrane coupling protein transglutaminase (TG) catalysis protein cross-linking was investigated under different conditions to find out the best treatment. We found that the optimal conditions for protein recovery involved catalyzing whey protein cross-linking with TG (40U/g whey proteins) at 40°C for 60min at pH 5.0. Under these conditions, the recovery rate was increased 15-20%, lactose rejection rate was decreased by 10%, and relative permeate flux was increase 30-40% compared to the sample without enzyme treatment (control). It was noticeable that the total resistance and cake resistance were decreased after enzyme catalysis. This was mainly due to the increased particle size and decreased zeta potential. Therefore, membrane coupling enzyme catalysis protein cross-linking is a potential means for further use. Copyright © 2016. Published by Elsevier Ltd.

  19. Repeated measurements of NT-pro-B-type natriuretic peptide, troponin T or C-reactive protein do not predict future allograft rejection in heart transplant recipients.

    Science.gov (United States)

    Battes, Linda C; Caliskan, Kadir; Rizopoulos, Dimitris; Constantinescu, Alina A; Robertus, Jan L; Akkerhuis, Martijn; Manintveld, Olivier C; Boersma, Eric; Kardys, Isabella

    2015-03-01

    Studies on the prognostic value of serial biomarker assays for future occurrence of allograft rejection (AR) are scarce. We examined whether repeated measurements of NT-pro-B-type natriuretic peptide (NT-proBNP), troponin T (TropT) and C-reactive protein (CRP) predict AR. From 2005 to 2010, 77 consecutive heart transplantation (HTx) recipients were included. The NT-proBNP, TropT, and CRP were measured at 16 ± 4 (mean ± standard deviation) consecutive routine endomyocardial biopsy surveillance visits during the first year of follow-up. Allograft rejection was defined as International Society for Heart and Lung Transplantation (ISHLT) grade 2R or higher at endomyocardial biopsy. Joint modeling was used to assess the association between repeated biomarker measurements and occurrence of future AR. Joint modeling accounts for dependence among repeated observations in individual patients. The mean age of the patients at HTx was 49 ± 9.2 years, and 68% were men. During the first year of follow-up, 1,136 biopsies and concurrent blood samples were obtained, and 56 patients (73%) experienced at least one episode of AR. All biomarkers were elevated directly after HTx and achieved steady-state after ∼ 12 weeks, both in patients with or without AR. No associations were present between the repeated measurements of NT-proBNP, TropT, or CRP and AR both early (weeks 0-12) and late (weeks 13-52) in the course after HTx (hazard ratios for weeks 13-52: 0.96 (95% confidence interval, 0.55-1.68), 0.67 (0.27-1.69), and 1.44 (0.90-2.30), respectively, per ln[unit]). Combining the three biomarkers in one model also rendered null results. The temporal evolution of NT-proBNP, TropT, and CRP before AR did not predict occurrence of acute AR both in the early and late course of the first year after HTx.

  20. The superfamily of C3b/C4b-binding proteins

    DEFF Research Database (Denmark)

    Kristensen, Torsten; D'Eustachio, P; Ogata, R T

    1987-01-01

    The determination of primary structures by amino acid and nucleotide sequencing for the C3b-and/or C4b-binding proteins H, C4BP, CR1, B, and C2 has revealed the presence of a common structural element. This element is approximately 60 amino acids long and is repeated in a tandem fashion, commencing...... at the amino-terminal end of each molecule. Two other complement components, C1r and C1s, have two of these repeating units in the carboxy-terminal region of their noncatalytic A chains. Three noncomplement proteins, beta 2-glycoprotein I (beta 2I), the interleukin 2 receptor (IL 2 receptor), and the b chain...... of factor XIII, have 4, 2 and 10 of these repeating units, respectively. These proteins obviously belong to the above family, although there is no evidence that they interact with C3b and/or C4b. Human haptoglobin and rat leukocyte common antigen also contain two and three repeating units, respectively...

  1. Hysteresis of magnetostructural transitions: Repeatable and non-repeatable processes

    Science.gov (United States)

    Provenzano, Virgil; Della Torre, Edward; Bennett, Lawrence H.; ElBidweihy, Hatem

    2014-02-01

    The Gd5Ge2Si2 alloy and the off-stoichiometric Ni50Mn35In15 Heusler alloy belong to a special class of metallic materials that exhibit first-order magnetostructural transitions near room temperature. The magnetic properties of this class of materials have been extensively studied due to their interesting magnetic behavior and their potential for a number of technological applications such as refrigerants for near-room-temperature magnetic refrigeration. The thermally driven first-order transitions in these materials can be field-induced in the reverse order by applying a strong enough field. The field-induced transitions are typically accompanied by the presence of large magnetic hysteresis, the characteristics of which are a complicated function of temperature, field, and magneto-thermal history. In this study we show that the virgin curve, the major loop, and sequentially measured MH loops are the results of both repeatable and non-repeatable processes, in which the starting magnetostructural state, prior to the cycling of field, plays a major role. Using the Gd5Ge2Si2 and Ni50Mn35In15 alloys, as model materials, we show that a starting single phase state results in fully repeatable processes and large magnetic hysteresis, whereas a mixed phase starting state results in non-repeatable processes and smaller hysteresis.

  2. Hysteresis of magnetostructural transitions: Repeatable and non-repeatable processes

    International Nuclear Information System (INIS)

    Provenzano, Virgil; Della Torre, Edward; Bennett, Lawrence H.; ElBidweihy, Hatem

    2014-01-01

    The Gd 5 Ge 2 Si 2 alloy and the off-stoichiometric Ni 50 Mn 35 In 15 Heusler alloy belong to a special class of metallic materials that exhibit first-order magnetostructural transitions near room temperature. The magnetic properties of this class of materials have been extensively studied due to their interesting magnetic behavior and their potential for a number of technological applications such as refrigerants for near-room-temperature magnetic refrigeration. The thermally driven first-order transitions in these materials can be field-induced in the reverse order by applying a strong enough field. The field-induced transitions are typically accompanied by the presence of large magnetic hysteresis, the characteristics of which are a complicated function of temperature, field, and magneto-thermal history. In this study we show that the virgin curve, the major loop, and sequentially measured MH loops are the results of both repeatable and non-repeatable processes, in which the starting magnetostructural state, prior to the cycling of field, plays a major role. Using the Gd 5 Ge 2 Si 2 and Ni 50 Mn 35 In 15 alloys, as model materials, we show that a starting single phase state results in fully repeatable processes and large magnetic hysteresis, whereas a mixed phase starting state results in non-repeatable processes and smaller hysteresis

  3. Repeated treatment with nitric oxide synthase inhibitor attenuates learned helplessness development in rats and increases hippocampal BDNF expression.

    Science.gov (United States)

    Stanquini, Laura Alves; Biojone, Caroline; Guimarães, Francisco Silveira; Joca, Sâmia Regiane

    2017-11-20

    Nitric oxide synthase (NOS) inhibitors induce antidepressant-like effects in animal models sensitive to acute drug treatment such as the forced swimming test. However, it is not yet clear if repeated treatment with these drugs is required to induce antidepressant-like effects in preclinical models. The aim of this study was to test the effect induced by acute or repeated (7 days) treatment with 7-nitroindazole (7-NI), a preferential inhibitor of neuronal NOS, in rats submitted to the learned helplessness (LH) model. In addition, we aimed at investigating if 7-NI treatment would increase brain-derived neurotrophic factor (BDNF) protein levels in the hippocampus, similarly to the effect of prototype antidepressants. Animals were submitted to a pre-test (PT) session with inescapable footshocks or habituation (no shocks) to the experimental shuttle box. Six days later they were exposed to a test with escapable footshocks. Independent groups received acute (a single injection after PT or before test) or repeated (once a day for 7 days) treatment with vehicle or 7-NI (30 mg/kg). Repeated, but not acute, treatment with 7-NI attenuated LH development. The effect was similar to repeated imipramine treatment. Moreover, in an independent experimental group, only repeated treatment with 7-NI and imipramine increased BDNF protein levels in the hippocampus. The results suggest the nitrergic system could be a target for the treatment of depressive-like conditions. They also indicate that, similar to the positive control imipramine, the antidepressant-like effects of NOS inhibition could involve an increase in hippocampal BDNF levels.

  4. 40 CFR 174.502 - Bacillus thuringiensis Cry1A.105 protein; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis Cry1A.105 protein; exemption from the requirement of a tolerance. 174.502 Section 174.502 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and...

  5. PGC-1{alpha} is required for AICAR induced expression of GLUT4 and mitochondrial proteins in mouse skeletal muscle

    DEFF Research Database (Denmark)

    Leick, Lotte; Fentz, Joachim; Biensø, Rasmus S

    2010-01-01

    We tested the hypothesis that repeated activation of AMPK induces mitochondrial and glucose membrane transporter gene/protein expression via a peroxisome proliferator activated receptor Upsilon co-activator (PGC)-1alpha dependent mechanism. Whole body PGC-1alpha knockout (KO) and littermate wild...... GLUT4, cytochrome c oxidase (COX)I and cytochrome (cyt) c protein expression ~10-40% relative to saline in white muscles of the WT mice, but not of the PGC-1alpha KO mice. In line, GLUT4 and cyt c mRNA content increased 30-60% 4h after a single AICAR injection relative to saline only in WT mice. One...... and PGC-1alpha KO mice. In conclusion, we here provide genetic evidence for a major role of PGC-1alpha in AMPK mediated regulation of mitochondrial and glucose membrane transport protein expression in skeletal muscle....

  6. YKL-40 protein in osteosarcoma tumor tissue

    DEFF Research Database (Denmark)

    Thorn, Andrea Pohly; Daugaard, Søren; Christensen, Lise Hanne

    2016-01-01

    YKL-40, a cellular glycoprotein isolated from the human osteosarcoma (OS) cell line MG63, is increased in the blood of patients with various types of cancer, and is found as an independent prognostic variable for survival. YKL-40 is also present with variable intensity in the tumor cells of some...... cancer types, but survival results have been conflicting. The aim of this study was to investigate the tissue expression of YKL-40 and its possible role as a predictive marker in patients with OS. Forty-eight patients were included in the study. Diagnostic biopsies were analyzed by immunohistochemistry...

  7. CTG repeat-targeting oligonucleotides for down-regulating Huntingtin expression

    DEFF Research Database (Denmark)

    Zaghloul, Eman M; Gissberg, Olof; Moreno, Pedro M D

    2017-01-01

    Huntington's disease (HD) is a fatal, neurodegenerative disorder in which patients suffer from mobility, psychological and cognitive impairments. Existing therapeutics are only symptomatic and do not significantly alter the disease progression or increase life expectancy. HD is caused by expansion....... Thus, reduction of both muHTT mRNA and protein levels would ideally be the most useful therapeutic option. We herein present a novel strategy for HD treatment using oligonucleotides (ONs) directly targeting the HTT trinucleotide repeat DNA. A partial, but significant and potentially long-term, HTT...

  8. All-photonic quantum repeaters

    Science.gov (United States)

    Azuma, Koji; Tamaki, Kiyoshi; Lo, Hoi-Kwong

    2015-01-01

    Quantum communication holds promise for unconditionally secure transmission of secret messages and faithful transfer of unknown quantum states. Photons appear to be the medium of choice for quantum communication. Owing to photon losses, robust quantum communication over long lossy channels requires quantum repeaters. It is widely believed that a necessary and highly demanding requirement for quantum repeaters is the existence of matter quantum memories. Here we show that such a requirement is, in fact, unnecessary by introducing the concept of all-photonic quantum repeaters based on flying qubits. In particular, we present a protocol based on photonic cluster-state machine guns and a loss-tolerant measurement equipped with local high-speed active feedforwards. We show that, with such all-photonic quantum repeaters, the communication efficiency scales polynomially with the channel distance. Our result paves a new route towards quantum repeaters with efficient single-photon sources rather than matter quantum memories. PMID:25873153

  9. Complement system proteins which interact with C3b or C4b A superfamily of structurally related proteins

    DEFF Research Database (Denmark)

    Reid, K B M; Bentley, D R; Campbell, R D

    1986-01-01

    Recent cDNA sequencing data has allowed the prediction of the entire amino acid sequences of complement components factor B and C2, the complement control proteins factor H and C4b-binding protein and a partial sequence for the Cab/C4b receptor CR1. These proteins all contain internal repeating u...

  10. Amino acid sequence analysis of the annexin super-gene family of proteins.

    Science.gov (United States)

    Barton, G J; Newman, R H; Freemont, P S; Crumpton, M J

    1991-06-15

    The annexins are a widespread family of calcium-dependent membrane-binding proteins. No common function has been identified for the family and, until recently, no crystallographic data existed for an annexin. In this paper we draw together 22 available annexin sequences consisting of 88 similar repeat units, and apply the techniques of multiple sequence alignment, pattern matching, secondary structure prediction and conservation analysis to the characterisation of the molecules. The analysis clearly shows that the repeats cluster into four distinct families and that greatest variation occurs within the repeat 3 units. Multiple alignment of the 88 repeats shows amino acids with conserved physicochemical properties at 22 positions, with only Gly at position 23 being absolutely conserved in all repeats. Secondary structure prediction techniques identify five conserved helices in each repeat unit and patterns of conserved hydrophobic amino acids are consistent with one face of a helix packing against the protein core in predicted helices a, c, d, e. Helix b is generally hydrophobic in all repeats, but contains a striking pattern of repeat-specific residue conservation at position 31, with Arg in repeats 4 and Glu in repeats 2, but unconserved amino acids in repeats 1 and 3. This suggests repeats 2 and 4 may interact via a buried saltbridge. The loop between predicted helices a and b of repeat 3 shows features distinct from the equivalent loop in repeats 1, 2 and 4, suggesting an important structural and/or functional role for this region. No compelling evidence emerges from this study for uteroglobin and the annexins sharing similar tertiary structures, or for uteroglobin representing a derivative of a primordial one-repeat structure that underwent duplication to give the present day annexins. The analyses performed in this paper are re-evaluated in the Appendix, in the light of the recently published X-ray structure for human annexin V. The structure confirms most of

  11. Prostate atypia: does repeat biopsy detect clinically significant prostate cancer?

    Science.gov (United States)

    Dorin, Ryan P; Wiener, Scott; Harris, Cory D; Wagner, Joseph R

    2015-05-01

    While the treatment pathway in response to benign or malignant prostate biopsies is well established, there is uncertainty regarding the risk of subsequently diagnosing prostate cancer when an initial diagnosis of prostate atypia is made. As such, we investigated the likelihood of a repeat biopsy diagnosing prostate cancer (PCa) in patients in which an initial biopsy diagnosed prostate atypia. We reviewed our prospectively maintained prostate biopsy database to identify patients who underwent a repeat prostate biopsy within one year of atypia (atypical small acinar proliferation; ASAP) diagnosis between November 1987 and March 2011. Patients with a history of PCa were excluded. Chart review identified patients who underwent radical prostatectomy (RP), radiotherapy (RT), or active surveillance (AS). For some analyses, patients were divided into two subgroups based on their date of service. Ten thousand seven hundred and twenty patients underwent 13,595 biopsies during November 1987-March 2011. Five hundred and sixty seven patients (5.3%) had ASAP on initial biopsy, and 287 (50.1%) of these patients underwent a repeat biopsy within one year. Of these, 122 (42.5%) were negative, 44 (15.3%) had atypia, 19 (6.6%) had prostatic intraepithelial neoplasia, and 102 (35.6%) contained PCa. Using modified Epstein's criteria, 27/53 (51%) patients with PCa on repeat biopsy were determined to have clinically significant tumors. 37 (36.3%) proceeded to RP, 25 (24.5%) underwent RT, and 40 (39.2%) received no immediate treatment. In patients who underwent surgery, Gleason grade on final pathology was upgraded in 11 (35.5%), and downgraded 1 (3.2%) patient. ASAP on initial biopsy was associated with a significant risk of PCa on repeat biopsy in patients who subsequently underwent definitive local therapy. Patients with ASAP should be counseled on the probability of harboring both clinically significant and insignificant prostate cancer. © 2015 Wiley Periodicals, Inc.

  12. Design and analysis of effects of triplet repeat oligonucleotides in cell models for myotonic dystrophy

    NARCIS (Netherlands)

    Gonzalez-Barriga, A.; Mulders, S.A.M.; Giessen, J. van der; Hooijer, J.D.; Bijl, S.; Kessel, I.D.G. van; Beers, J. van; Deutekom, J.C. van; Fransen, J.A.M.; Wieringa, B.; Wansink, D.G.

    2013-01-01

    Myotonic dystrophy type 1 (DM1) is caused by DM protein kinase (DMPK) transcripts containing an expanded (CUG)n repeat. Antisense oligonucleotide (AON)-mediated suppression of these mutant RNAs is considered a promising therapeutic strategy for this severe disorder. Earlier, we identified a

  13. The coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left-right axis formation

    DEFF Research Database (Denmark)

    Becker-Heck, Anita; Zohn, Irene E; Okabe, Noriko

    2011-01-01

    Primary ciliary dyskinesia (PCD) is a genetically heterogeneous autosomal recessive disorder characterized by recurrent infections of the respiratory tract associated with the abnormal function of motile cilia. Approximately half of individuals with PCD also have alterations in the left-right...... organization of their internal organ positioning, including situs inversus and situs ambiguous (Kartagener's syndrome). Here, we identify an uncharacterized coiled-coil domain containing a protein, CCDC40, essential for correct left-right patterning in mouse, zebrafish and human. In mouse and zebrafish, Ccdc40...

  14. Estimates of Genetic Parameters of Production Traits for Khuzestan Buffaloes of Iran using Repeated-Records Animal Model

    Directory of Open Access Journals (Sweden)

    Maryam Baharizadeh

    2012-10-01

    Full Text Available Buffalo milk yield records were obtained from monthly records of the Animal Breeding Organization of Iran from 1992 to 2009 in 33 herds raised in the Khuzestan province. Variance components, heritability and repeatability were estimated for milk yield, fat yield, fat percentage, protein yield and protein percentage. These estimates were carried out through single trait animal model using DFREML program. Herd-year-season was considered as fixed effect in the model. For milk production traits, age at calving was fitted as a covariate. The additive genetic and permanent environmental effects were also included in the model. The mean values (±SD for milk yield, fat yield, fat percentage, protein yield and protein percentage were 2285.08±762.47 kg, 144.35±54.86 kg, 6.25±0.90%, 97.30±26.73 kg and 4.19±0.27%, respectively. The heritability (±SE of milk yield, fat yield, fat percentage, protein yield and protein percentage were 0.093±0.08, 0.054±0.06, 0.043±0.05, 0.093±0.16 and zero, respectively. These estimates for repeatability were 0.272, 0.132, 0.043, 0.674 and 0.0002, respectively. Lower values of genetic parameter estimates require more data and reliable pedigree records.

  15. Inter-relationships among Diet, Obesity and Hippocampal-dependent Cognitive Function

    OpenAIRE

    Davidson, Terry L.; Hargrave, Sara L.; Swithers, Susan E.; Sample, Camille H.; Fu, Xue; Kinzig, Kimberly P.; Zheng, Wei

    2013-01-01

    Intake of a Western diet (WD), which is high in saturated fat and sugar, is associated with deficits in hippocampal-dependent learning and memory processes as well as with markers of hippocampal pathology. In the present study, rats were trained to asymptote on hippocampal-dependent serial feature negative (FN) and hippocampal-independent simple discrimination problems. Performance was then assessed following 7 days on ad libitum chow and after 10, 24, 40, 60, and 90 days of maintenance on WD...

  16. SM50 repeat-polypeptides self-assemble into discrete matrix subunits and promote appositional calcium carbonate crystal growth during sea urchin tooth biomineralization.

    Science.gov (United States)

    Mao, Yelin; Satchell, Paul G; Luan, Xianghong; Diekwisch, Thomas G H

    2016-01-01

    The two major proteins involved in vertebrate enamel formation and echinoderm sea urchin tooth biomineralization, amelogenin and SM50, are both characterized by elongated polyproline repeat domains in the center of the macromolecule. To determine the role of polyproline repeat polypeptides in basal deuterostome biomineralization, we have mapped the localization of SM50 as it relates to crystal growth, conducted self-assembly studies of SM50 repeat polypeptides, and examined their effect on calcium carbonate and apatite crystal growth. Electron micrographs of the growth zone of Strongylocentrotus purpuratus sea urchin teeth documented a series of successive events from intravesicular mineral nucleation to mineral deposition at the interface between tooth surface and odontoblast syncytium. Using immunohistochemistry, SM50 was detected within the cytoplasm of cells associated with the developing tooth mineral, at the mineral secreting front, and adjacent to initial mineral deposits, but not in muscles and ligaments. Polypeptides derived from the SM50 polyproline alternating hexa- and hepta-peptide repeat region (SM50P6P7) formed highly discrete, donut-shaped self-assembly patterns. In calcium carbonate crystal growth studies, SM50P6P7 repeat peptides triggered the growth of expansive networks of fused calcium carbonate crystals while in apatite growth studies, SM50P6P7 peptides facilitated the growth of needle-shaped and parallel arranged crystals resembling those found in developing vertebrate enamel. In comparison, SM50P6P7 surpassed the PXX24 polypeptide repeat region derived from the vertebrate enamel protein amelogenin in its ability to promote crystal nucleation and appositional crystal growth. Together, these studies establish the SM50P6P7 polyproline repeat region as a potent regulator in the protein-guided appositional crystal growth that occurs during continuous tooth mineralization and eruption. In addition, our studies highlight the role of species

  17. Neuromuscular adjustments of the quadriceps muscle after repeated cycling sprints.

    Directory of Open Access Journals (Sweden)

    Olivier Girard

    Full Text Available PURPOSE: This study investigated the supraspinal processes of fatigue of the quadriceps muscle in response to repeated cycling sprints. METHODS: Twelve active individuals performed 10 × 6-s "all-out" sprints on a cycle ergometer (recovery = 30 s, followed 6 min later by 5 × 6-s sprints (recovery = 30 s. Transcranial magnetic and electrical femoral nerve stimulations during brief (5-s and sustained (30-s isometric contractions of the knee extensors were performed before and 3 min post-exercise. RESULTS: Maximal strength of the knee extensors decreased during brief and sustained contractions (~11% and 9%, respectively; P0.05. While cortical voluntary activation declined (P 40% reduced (P<0.001 following exercise. CONCLUSION: The capacity of the motor cortex to optimally drive the knee extensors following a repeated-sprint test was shown in sustained, but not brief, maximal isometric contractions. Additionally, peripheral factors were largely involved in the exercise-induced impairment in neuromuscular function, while corticospinal excitability was well-preserved.

  18. FR-like EBNA1 binding repeats in the human genome

    International Nuclear Information System (INIS)

    D'Herouel, Aymeric Fouquier; Birgersdotter, Anna; Werner, Maria

    2010-01-01

    Epstein-Barr virus (EBV) is widely spread in the human population. EBV nuclear antigen 1 (EBNA1) is a transcription factor that activates viral genes and is necessary for viral replication and partitioning, which binds the EBV genome cooperatively. We identify similar EBNA1 repeat binding sites in the human genome using a nearest-neighbor positional weight matrix. Previously experimentally verified EBNA1 sites in the human genome are successfully recovered by our approach. Most importantly, 40 novel regions are identified in the human genome, constituted of tandemly repeated binding sites for EBNA1. Genes located in the vicinity of these regions are presented as possible targets for EBNA1-mediated regulation. Among these, four are discussed in more detail: IQCB1, IMPG1, IRF2BP2 and TPO. Incorporating the cooperative actions of EBNA1 is essential when identifying regulatory regions in the human genome and we believe the findings presented here are highly valuable for the understanding of EBV-induced phenotypic changes.

  19. APOA-1Milano muteins, orally delivered via genetically modified rice, show anti-atherogenic and anti-inflammatory properties in vitro and in Apoe-/- atherosclerotic mice.

    Science.gov (United States)

    Romano, Gabriele; Reggi, Serena; Kutryb-Zajac, Barbara; Facoetti, Amanda; Chisci, Elisa; Pettinato, Mariateresa; Giuffrè, Maria Rita; Vecchio, Federica; Leoni, Silvia; De Giorgi, Marco; Avezza, Federica; Cadamuro, Massimiliano; Crippa, Luca; Leone, Biagio Eugenio; Lavitrano, Marialuisa; Rivolta, Ilaria; Barisani, Donatella; Smolenski, Ryszard Tomasz; Giovannoni, Roberto

    2018-06-11

    Atherosclerosis is a slowly progressing, chronic multifactorial disease characterized by the accumulation of lipids, inflammatory cells, and fibrous tissue that drives to the formation of asymmetric focal thickenings in the tunica intima of large and mid-sized arteries. Despite the high therapeutic potential of ApoA-1 proteins, the purification and delivery into the disordered organisms of these drugs is still limited by low efficiency in these processes. We report here a novel production and delivery system of anti-atherogenic APOA-1Milano muteins (APOA-1M) by means of genetically modified rice plants. APOA-1M, delivered as protein extracts from transgenic rice seeds, significantly reduced macrophage activation and foam cell formation in vitro in oxLDL-loaded THP-1 model. The APOA-1M delivery method and therapeutic efficacy was tested in healthy mice and in Apoe -/- mice fed with high cholesterol diet (Western Diet, WD). APOA-1M rice milk significantly reduced atherosclerotic plaque size and lipids composition in aortic sinus and aortic arch of WD-fed Apoe -/- mice as compared to wild type rice milk-treated, WD-fed Apoe -/- mice. APOA-1M rice milk also significantly reduced macrophage number in liver of WD-fed Apoe -/- mice as compared to WT rice milk treated mice. The delivery of therapeutic APOA-1M full length proteins via oral administration of rice seeds protein extracts (the 'rice milk') to the disordered organism, without any need of purification, might overcome the main APOA1-based therapies' limitations and improve the use of this molecules as therapeutic agents for cardiovascular patients. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Structure and Function of the Ankyrin Repeats in the Sw14/Sw16 Transcription Complex of Budding Yeast

    National Research Council Canada - National Science Library

    Breeden, Linda

    1998-01-01

    ANK repeats were first found in the Swi6 transcription factor of Saccharomyces cerevisiae and since then were identified in many proteins, including oncogenes and tumor suppressors We have previously...

  1. A genetic screen in Drosophila implicates Sex comb on midleg (Scm) in tissue overgrowth and mechanisms of Scm degradation by Wds.

    Science.gov (United States)

    Guo, Jiwei; Jin, Dan

    2015-05-01

    The sex comb on midleg (scm) gene encodes a transcriptional repressor and belongs to the Polycomb group (PcG) of genes, which regulates growth in Drosophila. Scm interacts with Polyhomeotic (a PcG protein) in vitro by recognizing its SPM domain. The homologous human protein, Sex comb on midleg-like 2 (Scml2), has been implicated in malignant brain tumors. Will die slowly (Wds) is another factor that regulates Drosophila development, and its homologous human protein, WD repeat domain 5(Wdr5), is part of the mixed lineage leukemia 1(MLL1) complex that promotes histone H3Lys4 methylation. Like Scml2, Wdr5 has been implicated in certain cancers; this protein plays an important role in leukemogenesis. In this study, we find that loss-of-function mutations in Scm result in non-autonomous tissue overgrowth in Drosophila, and determine that Scm is essential for ommatidium development and important for cell survival in Drosophila. Furthermore, our research suggests a relationship between Wds and Scm; Wds promotes Scm degradation through ubiquitination in vitro in Drosophila. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. PRELP (proline/arginine-rich end leucine-rich repeat protein) promotes osteoblastic differentiation of preosteoblastic MC3T3-E1 cells by regulating the β-catenin pathway

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haiying; Cui, Yazhou; Luan, Jing [School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Science, Ji' nan, Shandong (China); Key Laboratory for Rare Disease Research of Shandong Province, Key Laboratory for Biotech Drugs of the Ministry of Health, Shandong Medical Biotechnological Center, Shandong Academy of Medical Sciences, Ji' nan, Shandong (China); Zhang, Xiumei [School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Science, Ji' nan, Shandong (China); Li, Chengzhi; Zhou, Xiaoyan; Shi, Liang [School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Science, Ji' nan, Shandong (China); Key Laboratory for Rare Disease Research of Shandong Province, Key Laboratory for Biotech Drugs of the Ministry of Health, Shandong Medical Biotechnological Center, Shandong Academy of Medical Sciences, Ji' nan, Shandong (China); Wang, Huaxin [Shandong University of Traditional Chinese Medicine, Ji' an, Shandong (China); Han, Jinxiang, E-mail: jxhan9888@aliyun.com [School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Science, Ji' nan, Shandong (China); Key Laboratory for Rare Disease Research of Shandong Province, Key Laboratory for Biotech Drugs of the Ministry of Health, Shandong Medical Biotechnological Center, Shandong Academy of Medical Sciences, Ji' nan, Shandong (China)

    2016-02-12

    Proline/arginine-rich end leucine-rich repeat protein (PRELP) is a collagen-binding proteoglycan highly expressed in the developing bones. Recent studies indicated that PRELP could inhibit osteoclastogenesis as a NF-κB inhibitor. However, its role during osteoblast differentiation is still unclear. In this study, we confirmed that the expression of PRELP increased with the osteogenesis induction of preosteoblastic MC3T3-E1 cells. Down-regulation of PRELP expression by shRNA reduced ALP activity, mineralization and expression of osteogenic marker gene Runx2. Our microarray analysis data suggested that β-catenin may act as a hub gene in the PRELP-mediated gene network. We validated furtherly that PRELP knockdown could inhibit the level of connexin43, a key regulator of osteoblast differentiation by affecting β-catenin protein expression, and its nuclear translocation in MC3T3-E1 preosteoblasts. Therefore, this study established a new role of PRELP in modulating β-catenin/connexin43 pathway and osteoblast differentiation.

  3. Cloning, expression, purification, and characterisation of the HEAT-repeat domain of TOR from the thermophilic eukaryote Chaetomium thermophilum.

    Science.gov (United States)

    Robinson, Graham C; Vegunta, Yogesh; Gabus, Caroline; Gaubitz, Christl; Thore, Stéphane

    2017-05-01

    The Target of Rapamycin Complex is a central controller of cell growth and differentiation in eukaryotes. Its global architecture has been described by cryoelectron microscopy, and regions of its central TOR protein have been described by X-ray crystallography. However, the N-terminal region of this protein, which consists of a series of HEAT repeats, remains uncharacterised at high resolution, most likely due to the absence of a suitable purification procedure. Here, we present a robust method for the preparation of the HEAT-repeat domain, utilizing the thermophilic fungus Chaetomium thermophilum as a source organism. We describe construct design and stable expression in insect cells. An efficient two-step purification procedure is presented, and the purified product is characterised by SEC and MALDI-TOF MS. The methods described pave the way for a complete high-resolution characterisation of this elusive region of the TOR protein. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Solution structure of the twelfth cysteine-rich ligand-binding repeat in rat megalin

    International Nuclear Information System (INIS)

    Wolf, Christian A.; Dancea, Felician; Shi Meichen; Bade-Noskova, Veronika; Rueterjans, Heinz; Kerjaschki, Dontscho; Luecke, Christian

    2007-01-01

    Megalin, an approx. 600 kDa transmembrane glycoprotein that acts as multi-ligand transporter, is a member of the low density lipoprotein receptor gene family. Several cysteine-rich repeats, each consisting of about 40 residues, are responsible for the multispecific binding of ligands. The solution structure of the twelfth cysteine-rich ligand-binding repeat with class A motif found in megalin features two short β-strands and two helical turns, yielding the typical fold with a I-III, II-V and IV-VI disulfide bridge connectivity pattern and a calcium coordination site at the C-terminal end. The resulting differences in electrostatic surface potential compared to other ligand-binding modules of this gene family, however, may be responsible for the functional divergence

  5. Aggregation propensity of critical regions of the protein Tau

    Science.gov (United States)

    Muthee, Micaiah; Ahmed, Azka; Larini, Luca

    The Alzheimer's disease is an irreversible, progressive brain disorder that slowly destroys memory and thinking skills, which eventually leads to the ability to not able to carry out the simplest tasks. The Alzheimer's disease is characterized by the formation of protein aggregates both within and outside of the brain's cells, the neurons. Within the neurons, the aggregation of the protein tau leads to the destruction of the microtubules in the axon of the neuron. Tau belongs to a group of proteins referred to as Microtubule-Associated Proteins. It is extremely flexible and is classified as an intrinsically unstructured protein due to its low propensity to form secondary structure. Tau promotes tubulin assembly into microtubules thereby stabilizing the cytoskeleton of the axon of the neurons. The microtubule binding region of tau consists of 4 pseudo-repeats. In this study, we will focus on the aggregation propensity of two fragments. In this study we will focus on the PHF43 fragment that contains the third pseudo-repeat and has been shown experimentally to aggregate readily. Another fragment that contains the second pseudo-repeat will be considered as well. Mutations in this region are associated with various form of dementia and for this reason we will consider the mutant P301L.

  6. Inhibitory effects of ginseng total saponin on up-regulation of cAMP pathway induced by repeated administration of morphine.

    Science.gov (United States)

    Seo, Jeong-Ju; Lee, Jae-Woong; Lee, Wan-Kyu; Hong, Jin-Tae; Lee, Chong-Kil; Lee, Myung-Koo; Oh, Ki-Wan

    2008-02-01

    We have reported that ginseng total saponin (GTS) inhibited the development of physical and psychological dependence on morphine. However, the possible molecular mechanisms of GTS are unclear. Therefore, this study was undertaken to understand the possible molecular mechanism of GTS on the inhibitory effects of morphine-induced dependence. It has been reported that the up-regulated cAMP pathway in the LC of the mouse brain after repeated administration of morphine contributes to the feature of withdrawals. GTS inhibited up-regulation of cAMP pathway in the LC after repeated administration of morphine in this experiment. GTS inhibited cAMP levels and protein expression of protein kinase A (PKA). In addition, GTS inhibited the increase of cAMP response element binding protein (CREB) phosphorylation. Therefore, we conclude that the inhibitory effects of GTS on morphine-induced dependence might be mediated by the inhibition of cAMP pathway.

  7. 78 FR 65594 - Vehicular Repeaters

    Science.gov (United States)

    2013-11-01

    ... coordinators estimate the effect on coordination fees? Does the supposed benefit that mobile repeater stations... allow the licensing and operation of vehicular repeater systems and other mobile repeaters by public... email: [email protected] or phone: 202-418- 0530 or TTY: 202-418-0432. For detailed instructions for...

  8. Tevatron serial data repeater system

    International Nuclear Information System (INIS)

    Ducar, R.J.

    1981-01-01

    A ten megabit per second serial data repeater system has been developed for the 6.28km Tevatron accelerator. The repeaters are positioned at each of the thirty service buildings and accommodate control and abort system communications as well as distribution of the Tevatron time and energy clocks. The repeaters are transparent to the particular protocol of the transmissions. Serial data are encoded locally as unipolar two volt signals employing the self-clocking Manchester Bi-Phase code. The repeaters modulate the local signals to low-power bursts of 50 MHz rf carrier for the 260m transmission between service buildings. The repeaters also demodulate the transmission and restructure the data for local utilization. The employment of frequency discrimination techniques yields high immunity to the characteristic noise spectrum

  9. Plasmodium falciparum encodes a single cytosolic type I Hsp40 that functionally interacts with Hsp70 and is upregulated by heat shock

    CSIR Research Space (South Africa)

    Botha, M

    2011-07-01

    Full Text Available M, and growth was 385 continued at 30?C for 4 h. Cells were pelleted by 386 centrifugation, quick-frozen, and stored at ?80?C. To 387 isolate the expressed PfHsp40, the cell pellets were thawed 388 and resuspended in 10 ml of lysis buffer (10 mM Tris, 389 p... (Shonhai et al. 2008), ATP has been 522included to demonstrate the nucleotide dependence of the 523MDH aggregation suppression; this control was not repeated 524here. Protein concentrations were calculated assuming the 525monomeric forms of the relevant...

  10. Immunogenicity of Recombinant Proteins Consisting of Plasmodium vivax Circumsporozoite Protein Allelic Variant-Derived Epitopes Fused with Salmonella enterica Serovar Typhimurium Flagellin

    Science.gov (United States)

    Leal, Monica Teixeira Andrade; Camacho, Ariane Guglielmi Ariza; Teixeira, Laís Helena; Bargieri, Daniel Youssef; Soares, Irene Silva; Tararam, Cibele Aparecida

    2013-01-01

    A Plasmodium falciparum circumsporozoite protein (CSP)-based recombinant fusion vaccine is the first malaria vaccine to reach phase III clinical trials. Resistance to infection correlated with the production of antibodies to the immunodominant central repeat region of the CSP. In contrast to P. falciparum, vaccine development against the CSP of Plasmodium vivax malaria is far behind. Based on this gap in our knowledge, we generated a recombinant chimeric protein containing the immunodominant central repeat regions of the P. vivax CSP fused to Salmonella enterica serovar Typhimurium-derived flagellin (FliC) to activate the innate immune system. The recombinant proteins that were generated contained repeat regions derived from each of the 3 different allelic variants of the P. vivax CSP or a fusion of regions derived from each of the 3 allelic forms. Mice were subcutaneously immunized with the fusion proteins alone or in combination with the Toll-like receptor 3 (TLR-3) agonist poly(I·C), and the anti-CSP serum IgG response was measured. Immunization with a mixture of the 3 recombinant proteins, each containing immunodominant epitopes derived from a single allelic variant, rather than a single recombinant protein carrying a fusion of regions derived from each of 3 allelic forms elicited a stronger immune response. This response was independent of TLR-4 but required TLR-5/MyD88 activation. Antibody titers significantly increased when poly(I·C) was used as an adjuvant with a mixture of the 3 recombinant proteins. These recombinant fusion proteins are novel candidates for the development of an effective malaria vaccine against P. vivax. PMID:23863502

  11. Fibril Formation by pH and Temperature Responsive Silk-Elastin Block Copolymers

    NARCIS (Netherlands)

    Golinska, M.D.; Pham, T.T.H.; Werten, M.W.T.; Wolf, de F.A.; Cohen Stuart, M.A.; Gucht, van der J.

    2013-01-01

    In this report, we study the self-assembly of two silk-elastin-like proteins: one is a diblock S24E40 composed of 24 silk-like (S) repeats and 40 elastin-like (E) repeats; the other is a triblock S12C4E40, in which the S and E blocks are separated by a random coil block (C4). Upon lowering the pH,

  12. Local chromatin structure of heterochromatin regulates repeated DNA stability, nucleolus structure, and genome integrity

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Jamy C. [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    Heterochromatin constitutes a significant portion of the genome in higher eukaryotes; approximately 30% in Drosophila and human. Heterochromatin contains a high repeat DNA content and a low density of protein-encoding genes. In contrast, euchromatin is composed mostly of unique sequences and contains the majority of single-copy genes. Genetic and cytological studies demonstrated that heterochromatin exhibits regulatory roles in chromosome organization, centromere function and telomere protection. As an epigenetically regulated structure, heterochromatin formation is not defined by any DNA sequence consensus. Heterochromatin is characterized by its association with nucleosomes containing methylated-lysine 9 of histone H3 (H3K9me), heterochromatin protein 1 (HP1) that binds H3K9me, and Su(var)3-9, which methylates H3K9 and binds HP1. Heterochromatin formation and functions are influenced by HP1, Su(var)3-9, and the RNA interference (RNAi) pathway. My thesis project investigates how heterochromatin formation and function impact nuclear architecture, repeated DNA organization, and genome stability in Drosophila melanogaster. H3K9me-based chromatin reduces extrachromosomal DNA formation; most likely by restricting the access of repair machineries to repeated DNAs. Reducing extrachromosomal ribosomal DNA stabilizes rDNA repeats and the nucleolus structure. H3K9me-based chromatin also inhibits DNA damage in heterochromatin. Cells with compromised heterochromatin structure, due to Su(var)3-9 or dcr-2 (a component of the RNAi pathway) mutations, display severe DNA damage in heterochromatin compared to wild type. In these mutant cells, accumulated DNA damage leads to chromosomal defects such as translocations, defective DNA repair response, and activation of the G2-M DNA repair and mitotic checkpoints that ensure cellular and animal viability. My thesis research suggests that DNA replication, repair, and recombination mechanisms in heterochromatin differ from those in

  13. Seventeen copies of the human 37 kDa laminin receptor precursor/p40 ribosome-associated protein gene are processed pseudogenes arisen from retropositional events

    DEFF Research Database (Denmark)

    Jackers, P; Clausse, N; Fernandez, M

    1996-01-01

    A cDNA coding for a 37 kDa polypeptide has been identified in several species as both the potential precursor of the 67 kDa laminin receptor (37LRP) and a putative ribosome-associated protein (p40). Interestingly, increased expression of this polypeptide (37LRP/p40) is consistently observed...

  14. Genetic variation in WDR1 is associated with gout risk and gout-related metabolic indices in the Han Chinese population.

    Science.gov (United States)

    Liu, L J; Zhang, X Y; He, N; Liu, K; Shi, X G; Feng, T; Geng, T T; Yuan, D Y; Kang, L L; Jin, T B

    2016-04-28

    Gout is the most common form of inflammatory arthritis affecting men, and current evidence suggests that genetic factors contribute to its progression. As a previous study identified that WD40 repeat protein 1 (WDR1) is associated with gout in populations of European descent, we sought to investigate its relationship with this disease in the Han Chinese population. We genotyped six WDR1 single nucleotide polymorphisms in 143 gout cases and 310 controls using Sequenom MassARRAY technology. The SPSS 16.0 software was used to perform statistical analyses. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated by unconditional logistic regression, with adjustments for age and gender. In an analysis using an allelic model, we identified that the minor alleles of rs3756230 (OR = 0.64, 95%CI = 0.450-0.911, P = 0.013) and rs12498927 (OR = 1.377, 95%CI = 1.037-1.831, P = 0.027) were associated with gout risk. In addition, we found that the "A/A" genotype of rs12498927 was associated with increased risk of gout under codominant (OR = 2.22, 95%CI = 1.12- 4.40, P = 0.042) and recessive models (OR = 2.24, 95%CI = 1.20-4.17, P = 0.012). We also determined the "A/G" genotype of rs12498927 to be significantly associated with higher urea levels in gout patients (P = 0.017). Our data shed new light on the association between genetic variations in the WDR1 gene and gout susceptibility in the Han Chinese population.

  15. Transcriptome analysis and anthocyanin-related genes in red leaf lettuce.

    Science.gov (United States)

    Zhang, Y Z; Xu, S Z; Cheng, Y W; Ya, H Y; Han, J M

    2016-01-29

    This study aimed to analyze the transcriptome profile of red lettuce and identify the genes involved in anthocyanin accumulation. Red leaf lettuce is a popular vegetable and popular due to its high anthocyanin content. However, there is limited information available about the genes involved in anthocyanin biosynthesis in this species. In this study, transcriptomes of 15-day-old seedlings and 40-day-old red lettuce leaves were analyzed using an Illuminia HiseqTM 2500 platform. A total of 10.6 GB clean data were obtained and de novo assembled into 83,333 unigenes with an N50 of 1067. After annotation against public databases, 51,850 unigene sequences were identified, among which 46,087 were annotated in the NCBI non-redundant protein database, and 41,752 were annotated in the Swiss-Prot database. A total of 9125 unigenes were mapped into 163 pathways using the Kyoto Encyclopedia of Genes and Genomes database. Thirty-four structural genes were found to cover the main steps of the anthocyanin pathway, including chalcone synthase, chalcone isomerase, flavanone 3-hydroxylase, flavonoid 3'-hydroxylase, flavonoid 3',5'-hydroxylase, dihydroflavonol 4-reductase, and anthocyanidin synthase. Seven MYB, three bHLH, and two WD40 genes, considered anthocyanin regulatory genes, were also identified. In addition, 3607 simple sequence repeat (SSR) markers were identified from 2916 unigenes. This research uncovered the transcriptomic characteristics of red leaf lettuce seedlings and mature plants. The identified candidate genes related to anthocyanin biosynthesis and the detected SSRs provide useful tools for future molecular breeding studies.

  16. Parkinson's Disease: Leucine-Rich Repeat Kinase 2 and Autophagy, Intimate Enemies

    Directory of Open Access Journals (Sweden)

    José M. Bravo-San Pedro

    2012-01-01

    Full Text Available Parkinson's disease is the second common neurodegenerative disorder, after Alzheimer's disease. It is a clinical syndrome characterized by loss of dopamine-generating cells in the substancia nigra, a region of the midbrain. The etiology of Parkinson's disease has long been through to involve both genetic and environmental factors. Mutations in the leucine-rich repeat kinase 2 gene cause late-onset Parkinson's disease with a clinical appearance indistinguishable from Parkinson's disease idiopathic. Autophagy is an intracellular catabolic mechanism whereby a cell recycles or degrades damage proteins and cytoplasmic organelles. This degradative process has been associated with cellular dysfunction in neurodegenerative processes including Parkinson's disease. We discuss the role of leucine-rich repeat kinase 2 in autophagy, and how the deregulations of this degradative mechanism in cells can be implicated in the Parkinson's disease etiology.

  17. Repeat Customer Success in Extension

    Science.gov (United States)

    Bess, Melissa M.; Traub, Sarah M.

    2013-01-01

    Four multi-session research-based programs were offered by two Extension specialist in one rural Missouri county. Eleven participants who came to multiple Extension programs could be called "repeat customers." Based on the total number of participants for all four programs, 25% could be deemed as repeat customers. Repeat customers had…

  18. Film repeats in radiology department

    International Nuclear Information System (INIS)

    Suwan, A. Z.; Al-Shakharah, A. I

    1997-01-01

    During a one year period, 4910 radiographs of 55780 films were repeated. The objective of our study was to analyse and to classify the causes in order to minimize the repeats, cut the expenses and to provide optimal radiographs for accurate diagnosis. Analysis of the different factors revealed that, 43.6% of film repeats in our service were due to faults in exposure factors, centering comprises 15.9% of the repeats, while too much collimation was responsible for 7.6% of these repeats. All of which can be decreased by awareness and programmed training of technicians. Film blurring caused by patient motion was also responsible for 4.9% for radiographs reexamination, which can be minimized by detailed explanation to the patient and providing the necessary privacy. Fogging of X-Ray films by improper storage or inadequate handling or processing faults were responsible for 14.5% in repeats in our study. Methods and criteria for proper storage and handling of films were discussed. Recommendation for using modern day-light and laser processor has been high lighted. Artefacts are noticeably high in our cases, due to spinal dresses and frequent usage of precious metals for c osmotic purposes in this part of the world. The repeated films comprise 8.8% of all films We conclude that, the main factor responsible for repeats of up to 81.6% of cases was the technologists, thus emphasizing the importance of adequate training of the technologists. (authors). 15 refs., 9 figs., 1 table

  19. 40 CFR 174.530 - Bacillus thuringiensis Cry2Ae protein in cotton; temporary exemption from the requirement of a...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis Cry2Ae protein in cotton; temporary exemption from the requirement of a tolerance. 174.530 Section 174.530 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS...

  20. Crystal Structures of the Tetratricopeptide Repeat Domains of Kinesin Light Chains: Insight into Cargo Recognition Mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Haizhong; Lee, Han Youl; Tong, Yufeng; Hong, Bum-Soo; Kim, Kyung-Phil; Shen, Yang; Lim, Kyung Jik; Mackenzie, Farrell; Tempel, Wolfram; Park, Hee-Won (SGC-Toronto); (PPCS); (Toronto)

    2012-10-23

    Kinesin-1 transports various cargos along the axon by interacting with the cargos through its light chain subunit. Kinesin light chains (KLC) utilize its tetratricopeptide repeat (TPR) domain to interact with over 10 different cargos. Despite a high sequence identity between their TPR domains (87%), KLC1 and KLC2 isoforms exhibit differential binding properties towards some cargos. We determined the structures of human KLC1 and KLC2 tetratricopeptide repeat (TPR) domains using X-ray crystallography and investigated the different mechanisms by which KLCs interact with their cargos. Using isothermal titration calorimetry, we attributed the specific interaction between KLC1 and JNK-interacting protein 1 (JIP1) cargo to residue N343 in the fourth TRP repeat. Structurally, the N343 residue is adjacent to other asparagines and lysines, creating a positively charged polar patch within the groove of the TPR domain. Whereas, KLC2 with the corresponding residue S328 did not interact with JIP1. Based on these finding, we propose that N343 of KLC1 can form 'a carboxylate clamp' with its neighboring asparagine to interact with JIP1, similar to that of HSP70/HSP90 organizing protein-1's (HOP1) interaction with heat shock proteins. For the binding of cargos shared by KLC1 and KLC2, we propose a different site located within the groove but not involving N343. We further propose a third binding site on KLC1 which involves a stretch of polar residues along the inter-TPR loops that may form a network of hydrogen bonds to JIP3 and JIP4. Together, these results provide structural insights into possible mechanisms of interaction between KLC TPR domains and various cargo proteins.