WorldWideScience

Sample records for way-mass dark matter

  1. The formation of Milky Way-mass disk galaxies in the first 500 million years of a cold dark matter universe

    CERN Document Server

    Feng, Yu; Croft, Rupert; Tenneti, Ananth; Bird, Simeon; Battaglia, Nicholas; Wilkins, Stephen

    2015-01-01

    In current cosmological models, galaxies form from the gravitational collapse of small perturbations in the matter distribution. This process involves both a hierarchy of merging structures and smooth accretion, so that early galaxies are predicted to be morphologically irregular, clumpy, and compact. This is supported by recent observational data on samples of galaxies at redshift $z=8$ and beyond. The volumes accessible to these studies, both computational and observational are however thousands of times smaller than those that will be probed by upcoming telescopes, such as WFIRST. As a result, studies so far have never been able to reach the realm of massive galaxies. Whether among the myriad tiny proto-galaxies there exists a population with similarities to present day galaxies is an open question. Here we show, using BlueTides, the first hydrodynamic simulation large enough to resolve the relevant scales, that the first massive galaxies to form are in fact predicted to have extensive rotationally-support...

  2. Dark Matter

    OpenAIRE

    Einasto, Jaan

    2013-01-01

    I give a review of the development of the concept of dark matter. The dark matter story passed through several stages from a minor observational puzzle to a major challenge for theory of elementary particles. Modern data suggest that dark matter is the dominant matter component in the Universe, and that it consists of some unknown non-baryonic particles. Dark matter is the dominant matter component in the Universe, thus properties of dark matter particles determine the structure of the cosmic...

  3. Dark matter

    OpenAIRE

    Einasto, J.

    2011-01-01

    I give a review of the development of the concept of dark matter. The dark matter story passed through several stages from a minor observational puzzle to a major challenge for theory of elementary particles. Modern data suggest that dark matter is the dominant matter component in the Universe, and that it consists of some unknown non-baryonic particles. Properties of dark matter particles determine the structure of the cosmic web.

  4. Dark matter and dark energy

    CERN Multimedia

    Caldwell, Robert

    2009-01-01

    "Observations continue to indicate that the Universe is dominated by invisible components - dark matter and dark energy. Shedding light on this cosmic darkness is a priority for astronomers and physicists" (3 pages)

  5. Mimicking Dark Matter

    OpenAIRE

    Bel, Lluís

    2017-01-01

    I show that a very simple model in the context of Newtonian physics promoted to a first approximation of general relativity can mimic Dark matter and explain most of its intriguing properties. Namely: i) Dark matter is a halo associated to ordinary matter; ii) Dark matter does not interact with ordinary matter nor with itself; iii) Its influence grows with the size of the aggregate of ordinary matter that is considered, and iv) Dark matter influences the propagation of light.

  6. Dark Matter

    Science.gov (United States)

    Lincoln, Don

    2013-01-01

    It's a dark, dark universe out there, and I don't mean because the night sky is black. After all, once you leave the shadow of the Earth and get out into space, you're surrounded by countless lights glittering everywhere you look. But for all of Sagan's billions and billions of stars and galaxies, it's a jaw-dropping fact that the ordinary kind of…

  7. Dark Matter and Dark Radiation

    CERN Document Server

    Ackerman, Lotty; Carroll, Sean M; Kamionkowski, Marc

    2008-01-01

    We explore the feasibility and astrophysical consequences of a new long-range U(1) gauge field ("dark electromagnetism") that couples only to dark matter, not to the Standard Model. The dark matter consists of an equal number of positive and negative charges under the new force, but annihilations are suppressed if the dark matter mass is sufficiently high and the dark fine-structure constant $\\hat\\alpha$ is sufficiently small. The correct relic abundance can be obtained if the dark matter also couples to the conventional weak interactions, and we verify that this is consistent with particle-physics constraints. The primary limit on $\\hat\\alpha$ comes from the demand that the dark matter be effectively collisionless in galactic dynamics, which implies $\\hat\\alpha \\lesssim 10^{-4}$ for TeV-scale dark matter. These values are easily compatible with constraints from structure formation and primordial nucleosynthesis. We raise the prospect of interesting new plasma effects in dark matter dynamics, which remain to ...

  8. Cannibal Dark Matter

    CERN Document Server

    Pappadopulo, Duccio; Trevisan, Gabriele

    2016-01-01

    A thermally decoupled hidden sector of particles, with a mass gap, generically enters a phase of cannibalism in the early Universe. The Standard Model sector becomes exponentially colder than the hidden sector. We propose the Cannibal Dark Matter framework, where dark matter resides in a cannibalizing sector with a relic density set by 2-to-2 annihilations. Observable signals of Cannibal Dark Matter include a boosted rate for indirect detection, new relativistic degrees of freedom, and warm dark matter.

  9. Dark Matter Effective Theory

    DEFF Research Database (Denmark)

    Del Nobile, Eugenio; Sannino, Francesco

    2012-01-01

    We organize the effective (self)interaction terms for complex scalar dark matter candidates which are either an isosinglet, isodoublet or an isotriplet with respect to the weak interactions. The classification has been performed ordering the operators in inverse powers of the dark matter cutoff...... scale. We assume Lorentz invariance, color and charge neutrality. We also introduce potentially interesting dark matter induced flavor-changing operators. Our general framework allows for model independent investigations of dark matter properties....

  10. Impeded Dark Matter

    OpenAIRE

    Kopp, Joachim; Liu, Jia; Slatyer, Tracy R.; Wang, Xiao-Ping; Xue, Wei

    2016-01-01

    We consider a new class of thermal dark matter models, dubbed "Impeded Dark Matter", in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. We demonstrate that either case can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonst...

  11. Dark Matter Constituents

    CERN Document Server

    Bergström, L

    2005-01-01

    As cosmology has entered a phase of precision experiments, the content of the universe has been established to contain interesting and not yet fully understood components, namely dark energy and dark matter. While the cause and exact nature of the dark energy remains mysterious, there is greater hope to connect the dark matter to current models of particle physics. Supersymmetric models provide several excellent candidates for dark matter, with the lightest neutralino the prime example. This and other dark matter candidates are discussed, and prospects for their detection summarized. Some methods of detection are explained, and indications of signals in present data are critically examined.

  12. Codecaying Dark Matter.

    Science.gov (United States)

    Dror, Jeff Asaf; Kuflik, Eric; Ng, Wee Hao

    2016-11-18

    We propose a new mechanism for thermal dark matter freeze-out, called codecaying dark matter. Multicomponent dark sectors with degenerate particles and out-of-equilibrium decays can codecay to obtain the observed relic density. The dark matter density is exponentially depleted through the decay of nearly degenerate particles rather than from Boltzmann suppression. The relic abundance is set by the dark matter annihilation cross section, which is predicted to be boosted, and the decay rate of the dark sector particles. The mechanism is viable in a broad range of dark matter parameter space, with a robust prediction of an enhanced indirect detection signal. Finally, we present a simple model that realizes codecaying dark matter.

  13. Impeded Dark Matter

    CERN Document Server

    Kopp, Joachim; Slatyer, Tracy R; Wang, Xiao-Ping; Xue, Wei

    2016-01-01

    We consider a new class of thermal dark matter models, dubbed "Impeded Dark Matter", in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. We demonstrate that either case can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may even be kinematically forbidden, making this scenario almost insensitive to constraints from the cosmic microwave background and from observations of dwarf galaxies. Accordingly, it may be possible for Impeded Dark Matter to yield observable signals in clusters or the Galactic center, with no corresponding signal in dwarfs. For positive mass splitting, we show that the annihilation cross-section is suppress...

  14. Neutrinos and dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Ibarra, Alejandro [Physik-Department T30d, Technische Universität München, James-Franck-Straße, 85748 Garching (Germany)

    2015-07-15

    Neutrinos could be key particles to unravel the nature of the dark matter of the Universe. On the one hand, sterile neutrinos in minimal extensions of the Standard Model are excellent dark matter candidates, producing potentially observable signals in the form of a line in the X-ray sky. On the other hand, the annihilation or the decay of dark matter particles produces, in many plausible dark matter scenarios, a neutrino flux that could be detected at neutrino telescopes, thus providing non-gravitational evidence for dark matter. More conservatively, the non-observation of a significant excess in the neutrino fluxes with respect to the expected astrophysical backgrounds can be used to constrain dark matter properties, such as the self-annihilation cross section, the scattering cross section with nucleons and the lifetime.

  15. Dark matter and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ``cold`` and ``hot`` non-baryonic candidates is shown to depend on the assumed ``seeds`` that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.

  16. Dark matter and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between cold'' and hot'' non-baryonic candidates is shown to depend on the assumed seeds'' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.

  17. Dipolar Dark Matter

    CERN Document Server

    Blanchet, Luc

    2015-01-01

    Massive gravity theories have been developed as viable IR modifications of gravity motivated by dark energy and the problem of the cosmological constant. On the other hand, modified gravity and modified dark matter theories were developed with the aim of solving the problems of standard cold dark matter at galactic scales. Here we propose to adapt the framework of ghost-free massive bigravity theories to reformulate the problem of dark matter at galactic scales. We investigate a promising alternative to dark matter called dipolar dark matter (DDM) in which two different species of dark matter are separately coupled to the two metrics of bigravity and are linked together by an internal vector field. We show that this model successfully reproduces the phenomenology of dark matter at galactic scales (i.e. MOND) as a result of a mechanism of gravitational polarisation. The model is safe in the gravitational sector, but because the two types of dark matter interact through the vector field, a ghostly degree of fre...

  18. Dark Matter Detection in Space

    OpenAIRE

    Feng, Jonathan L.

    2004-01-01

    I review prospects for detecting dark matter in space-based experiments, with an emphasis on recent developments. I propose the ``Martha Stewart criterion'' for identifying dark matter candidates that are particularly worth investigation and focus on three that satisfy it: neutralino dark matter, Kaluza-Klein dark matter, and superWIMP gravitino dark matter.

  19. Asymptotically Safe Dark Matter

    DEFF Research Database (Denmark)

    Sannino, Francesco; Shoemaker, Ian M.

    2015-01-01

    We introduce a new paradigm for dark matter (DM) interactions in which the interaction strength is asymptotically safe. In models of this type, the coupling strength is small at low energies but increases at higher energies, and asymptotically approaches a finite constant value. The resulting...... searches are the primary ways to constrain or discover asymptotically safe dark matter....

  20. Asymptotically Safe Dark Matter

    DEFF Research Database (Denmark)

    Sannino, Francesco; Shoemaker, Ian M.

    2015-01-01

    We introduce a new paradigm for dark matter (DM) interactions in which the interaction strength is asymptotically safe. In models of this type, the coupling strength is small at low energies but increases at higher energies, and asymptotically approaches a finite constant value. The resulting...... searches are the primary ways to constrain or discover asymptotically safe dark matter....

  1. Searches for dark matter

    CERN Document Server

    Feinstein, Fabrice

    2000-01-01

    The fact that the mass of the visible stars could not account for the gravitational cohesion of the galaxies was the first sign of non-visible (i.e. dark) matter in the Universe. Since then, many observational evidences tell us that most of the matter is indeed dark. The nature of this dark matter is still unknown. There are good reasons to think that most of it is not composed of normal matter. These lectures will review the experimental methods, which have been developed to unravel this mystery and will compare their results with theoretical predictions.

  2. Antibaryonic dark matter

    CERN Document Server

    Gorbunov, D

    2013-01-01

    Assuming existence of (very) heavy fourth generation of quarks and antiquarks we argue that antibaryon composed of the three heavy antiquarks can be light, stable and invisible, hence a good candidate for the Dark matter particle. Such opportunity allows to keep the baryon number conservation for the generation of the visible baryon asymmetry. The dark matter particles traveling through the ordinary matter will annihilate with nucleons inducing proton(neutron)-decay-like events with ~5GeV energy release in outcoming particles.

  3. Dark matter searches

    CERN Document Server

    Baudis, Laura

    2015-01-01

    One of the major challenges of modern physics is to decipher the nature of dark matter. Astrophysical observations provide ample evidence for the existence of an invisible and dominant mass component in the observable universe, from the scales of galaxies up to the largest cosmological scales. The dark matter could be made of new, yet undiscovered elementary particles, with allowed masses and interaction strengths with normal matter spanning an enormous range. Axions, produced non-thermally in the early universe, and weakly interacting massive particles (WIMPs), which froze out of thermal equilibrium with a relic density matching the observations, represent two well-motivated, generic classes of dark matter candidates. Dark matter axions could be detected by exploiting their predicted coupling to two photons, where the highest sensitivity is reached by experiments using a microwave cavity permeated by a strong magnetic field. WIMPs could be directly observed via scatters off atomic nuclei in underground, ultr...

  4. Dark Matter is Baryons

    CERN Document Server

    Soberman, R K; Soberman, Robert K.; Dubin, Maurice

    2001-01-01

    A comet-like, but magnitudes smaller, extremely low albedo interstellar meteoroid population of fragile aggregates with solar type composition, measured in space and terrestrially, is most probably the universal dark matter. Although non-baryonic particles cannot be excluded, only "Big Bang" cosmology predicts an appreciable fraction of such alternate forms. As more counter-physics hypotheses are added to fit observation to the expanding universe assumption, a classical physics alternative proffers dark matter interactive red shifts normally correlated with distance. The cosmic microwave background results from size-independent thermal plateau radiation that emanates from dark matter gravitationally drawn into the Galaxy.

  5. Dark Matter 2014

    Directory of Open Access Journals (Sweden)

    Schumann Marc

    2015-01-01

    Full Text Available This article gives an overview on the status of experimental searches for dark matter at the end of 2014. The main focus is on direct searches for weakly interacting massive particles (WIMPs using underground-based low-background detectors, especially on the new results published in 2014. WIMPs are excellent dark matter candidates, predicted by many theories beyond the standard model of particle physics, and are expected to interact with the target nuclei either via spin-independent (scalar or spin-dependent (axial-vector couplings. Non-WIMP dark matter candidates, especially axions and axion-like particles are also briefly discussed.

  6. Dark matter in voids

    Science.gov (United States)

    Fong, Richard; Doroshkevich, Andrei G.; Turchaninov, Victor I.

    1995-07-01

    The theory of the formation of large-scale structure in the universe through the action of gravitational instability imply the existence of substantial amounts of baryonic dark matter, of the order of 50% of the total baryon content in the universe, in the ``voids'' or under-dense regions seen in the large-scale distribution of galaxies. We discuss also the large-scale structure of dark matter expected in voids and the present and future possibilities for the observation of this baryonic dark matter in ``voids.''

  7. Dark matter in voids

    Energy Technology Data Exchange (ETDEWEB)

    Fong, R. [Department of Physics, University of Durham, Durham, DH1 3LE (United Kingdom); Doroshkevich, A.G. [Keldysh Institute of Applied Mathematics, 125047 Moscow (Russian Federation)]|[Teoretical Astrophysics Centrum, Blegsdamsvej 17, Copenhagen DK 2100 (Denmark); Turchaninov, V.I. [Keldysh Institute of Applied Mathematics, 125047 Moscow (Russian Federation)

    1995-07-01

    The theory of the formation of large-scale structure in the universe through the action of gravitational instability imply the existence of substantial amounts of baryonic dark matter, of the order of 50% of the total baryon content in the universe, in the ``voids`` or under-dense regions seen in the large-scale distribution of galaxies. We discuss also the large-scale structure of dark matter expected in voids and the present and future possibilities for the observation of this baryonic dark matter in ``voids.`` {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  8. Dark Matter in ATLAS

    CERN Document Server

    Resconi, Silvia; The ATLAS collaboration

    2016-01-01

    Results of Dark Matter searches in mono-X analysis with the ATLAS experiment at the Large Hadron Collider are reported. The data were collected in proton–proton collisions at a centre-of-mass energy of 13 TeV and correspond to an integrated luminosity of 3.2 fb-1. A description of the main characteristics of each analysis and how the main backgrounds are estimated is shown. The observed data are in agreement with the expected Standard Model backgrounds for all analysis described. Exclusion limits are presented for Dark Matter models including pair production of dark matter candidates.

  9. Enabling Forbidden Dark Matter

    OpenAIRE

    Cline, James; Liu, Hongwan; Slatyer, Tracy; Xue, Wei

    2017-01-01

    The thermal relic density of dark matter is conventionally set by two-body annihilations. We point out that in many simple models, $3 \\to 2$ annihilations can play an important role in determining the relic density over a broad range of model parameters. This occurs when the two-body annihilation is kinematically forbidden, but the $3\\to 2$ process is allowed; we call this scenario "Not-Forbidden Dark Matter". We illustrate this mechanism for a vector portal dark matter model, showing that fo...

  10. Dark Matter 2014

    CERN Document Server

    Schumann, Marc

    2015-01-01

    This article gives an overview on the status of experimental searches for dark matter at the end of 2014. The main focus is on direct searches for weakly interacting massive particles (WIMPs) using underground-based low-background detectors, especially on the new results published in 2014. WIMPs are excellent dark matter candidates, predicted by many theories beyond the standard model of particle physics, and are expected to interact with the target nuclei either via spin-independent (scalar) or spin-dependent (axial-vector) couplings. Non-WIMP dark matter candidates, especially axions and axion-like particles are also briefly discussed.

  11. Dark matter universe.

    Science.gov (United States)

    Bahcall, Neta A

    2015-10-06

    Most of the mass in the universe is in the form of dark matter--a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations--from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is "cold" (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology--a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)--fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle.

  12. Baryons as dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Carr, B.J. [Queen Mary and Westfield Coll., London (United Kingdom). Astronomy Unit]|[Fermi National Accelerator Lab., Batavia, IL (United States). NASA/Fermilab Astrophysics Center

    1997-03-01

    Dark matter may reside in galactic disks, galactic halos, clusters of galaxies and the background Universe. Cosmological nucleosynthesis arguments suggest that only some fraction of the baryons in the Universe are in visible form, so at least some of the dark matter problems could be baryonic. The dark matter in galactic disks (if real) is almost certainly baryonic and, in this case, it is either in white dwarfs or brown dwarfs. The dark matter in galactic halos could be at least partly baryonic and, in this case, it is likely to be contained in the remnants of a first generation of pregalactic or protogalatic stars. The various constrains on the nature of such remnants suggest that brown dwarfs are the most plausible candidates, although (rather perplexingly) microlensing searches currently favor white dwarfs. The dark matter in clusters or intergalactic space could be baryonic only if one gives up the standard cosmological nucleosynthesis scenario or assumes that the dark objects are primordial black holes which formed before nucleosynthesis. If it is non-baryonic and in the form of cold WIMPs (Weakly Interacting Massive Particles), then such particles should also provide some of the halo dark matter. 89 refs., 1 fig., 2 tabs.

  13. Resonant SIMP dark matter

    Directory of Open Access Journals (Sweden)

    Soo-Min Choi

    2016-07-01

    Full Text Available We consider a resonant SIMP dark matter in models with two singlet complex scalar fields charged under a local dark U(1D. After the U(1D is broken down to a Z5 discrete subgroup, the lighter scalar field becomes a SIMP dark matter which has the enhanced 3→2 annihilation cross section near the resonance of the heavier scalar field. Bounds on the SIMP self-scattering cross section and the relic density can be fulfilled at the same time for perturbative couplings of SIMP. A small gauge kinetic mixing between the SM hypercharge and dark gauge bosons can be used to make SIMP dark matter in kinetic equilibrium with the SM during freeze-out.

  14. Dark Matter: Introduction

    CERN Document Server

    Rees, Martin J

    2003-01-01

    This short review was prepared as an introduction to the Royal Society's 'Dark Matter' conference. It addresses the embarrassing fact that 95% of the universe is unaccounted for. Favoured dark matter candidates are axions or weakly-interacting particles that have survived from the very early universe, but more exotic options cannot be excluded. Experimental searches are being made for the 'dark' particles but we have indirect clues to their nature too. Comparisons of data (from, eg, gravitational lensing) with numerical simulations of galaxy formation can constrain (eg) the particle velocities and collision cross sections. The mean cosmic density of dark matter (plus baryons) is now pinned down to be only about 30% of the critical density However, other recent evidence -- microwave background anisotropies, complemented by data on distant supernovae -- reveals that our universe actually is 'flat', and that its dominant ingredient (about 70% of the total mass-energy) is something quite unexpected -- 'dark energ...

  15. Scalar Field Dark Matter

    CERN Document Server

    Matos, T; Urena-Lopez, L A; Núñez, D

    2001-01-01

    This work is a review of the last results of research on the Scalar Field Dark Matter model of the Universe at cosmological and at galactic level. We present the complete solution to the scalar field cosmological scenario in which the dark matter is modeled by a scalar field $\\Phi$ with the scalar potential $V(\\Phi)=V_{0}(cosh {(\\lambda \\sqrt{\\kappa_{0}}\\Phi)}-1)$ and the dark energy is modeled by a scalar field $\\Psi$, endowed with the scalar potential $\\tilde{V}(\\Psi)= \\tilde{V_{0}}(\\sinh{(\\alpha \\sqrt{\\kappa_{0}}\\Psi)})^{\\beta}$, which together compose the 95% of the total matter energy in the Universe. The model presents successfully deals with the up to date cosmological observations, and is a good candidate to treat the dark matter problem at the galactic level.

  16. Cleaning up dark matter

    CERN Multimedia

    Bignami, Giovanni Fabrizio

    2006-01-01

    "An experiment in Italy has found tantalizing but puzzling evidence for axions, one if the leading candidates for dark matter. The authors explain how a pair of spinning neutron stars should settle the issue once and for all." (3 pages)

  17. Inflatable Dark Matter.

    Science.gov (United States)

    Davoudiasl, Hooman; Hooper, Dan; McDermott, Samuel D

    2016-01-22

    We describe a general scenario, dubbed "inflatable dark matter," in which the density of dark matter particles can be reduced through a short period of late-time inflation in the early Universe. The overproduction of dark matter that is predicted within many, otherwise, well-motivated models of new physics can be elegantly remedied within this context. Thermal relics that would, otherwise, be disfavored can easily be accommodated within this class of scenarios, including dark matter candidates that are very heavy or very light. Furthermore, the nonthermal abundance of grand unified theory or Planck scale axions can be brought to acceptable levels without invoking anthropic tuning of initial conditions. A period of late-time inflation could have occurred over a wide range of scales from ∼MeV to the weak scale or above, and could have been triggered by physics within a hidden sector, with small but not necessarily negligible couplings to the standard model.

  18. Dark matter warms up

    CERN Multimedia

    Peplow, Mark

    2006-01-01

    "Unseen mass looks to be more "tepid" than thought. Astronomers have measured the temperature of dark matter for the first time. The discovery should help particle hunters to identify exactly what this mysterious substance is made of" (1 page)

  19. The Dark Matter Problem

    NARCIS (Netherlands)

    Sanders, Robert H.

    2014-01-01

    1. Introduction; 2. Early history of the dark matter hypothesis; 3. The stability of disk galaxies: the dark halo solutions; 4. Direct evidence: extended rotation curves of spiral galaxies; 5. The maximum disk: light traces mass; 6. Cosmology and the birth of astroparticle physics; 7. Clusters revis

  20. The Dark Matter Problem

    NARCIS (Netherlands)

    Sanders, Robert H.

    1. Introduction; 2. Early history of the dark matter hypothesis; 3. The stability of disk galaxies: the dark halo solutions; 4. Direct evidence: extended rotation curves of spiral galaxies; 5. The maximum disk: light traces mass; 6. Cosmology and the birth of astroparticle physics; 7. Clusters

  1. Elastically Decoupling Dark Matter

    CERN Document Server

    Kuflik, Eric; Lorier, Nicolas Rey-Le; Tsai, Yu-Dai

    2015-01-01

    We present a novel dark matter candidate, an Elastically Decoupling Relic (ELDER), which is a cold thermal relic whose present abundance is determined by the cross-section of its elastic scattering on Standard Model particles. The dark matter candidate is predicted to have a mass ranging from a few to a few hundred MeV, and an elastic scattering cross-section with electrons, photons and/or neutrinos in the $10^{-3}-1$ fb range.

  2. Elastically Decoupling Dark Matter.

    Science.gov (United States)

    Kuflik, Eric; Perelstein, Maxim; Lorier, Nicolas Rey-Le; Tsai, Yu-Dai

    2016-06-03

    We present a novel dark matter candidate, an elastically decoupling relic, which is a cold thermal relic whose present abundance is determined by the cross section of its elastic scattering on standard model particles. The dark matter candidate is predicted to have a mass ranging from a few to a few hundred MeV, and an elastic scattering cross section with electrons, photons and/or neutrinos in the 10^{-3}-1  fb range.

  3. Light Dark Matter and Dark Radiation

    CERN Document Server

    Heo, Jae Ho

    2015-01-01

    The light dark matter particles freeze out after neutrino decoupling. If the dark matter particle couples to neutrino or electromagnetic plasma, the late time entropy production by dark matter annihilations can change the neutrino-to-photon temperature ratio, and equally effective number of neutrinos. We study the effect of dark matter annihilations in the thermal equilibrium approximation and non-equilibrium method (freeze-out mechanism), and constrain both results with Planck observations. We demonstrate that the bound of dark matter mass and the possibility of the existence of extra radiation particles are more tightly constrained in the non-equilibrium method.

  4. Dark Matter Candidates

    Energy Technology Data Exchange (ETDEWEB)

    Baltz, E.

    2004-12-03

    It is now widely accepted that most of mass-energy in the universe is unobserved except by its gravitational effects. Baryons make only about 4% of the total, with ''dark matter'' making up about 23% and the ''dark energy'' responsible for the accelerated expansion of the universe making up the remainder. We focus on the dark matter, which is the primary constituent of galaxies. We outline the observed properties of this material, enumerating some candidates covering 90 orders of magnitude in mass. Finally, we argue that the weak scale (100 GeV) is relevant to new physics, including the dark matter problem.

  5. GUTzilla Dark Matter

    CERN Document Server

    Harigaya, Keisuke; Lou, Hou Keong

    2016-01-01

    Motivated by gauge coupling unification and dark matter, we present an extension to the Standard Model where both are achieved by adding an extra new matter multiplet. Such considerations lead to a Grand Unified Theory with very heavy WIMPzilla dark matter, which has mass greater than ~10^7 GeV and must be produced before reheating ends. Naturally, we refer to this scenario as GUTzilla dark matter. Here we present a minimal GUTzilla model, adding a vector-like quark multiplet to the Standard Model. Proton decay constraints require the new multiplet to be both color and electroweak charged, which prompts us to include a new confining SU(3) gauge group that binds the multiplet into a neutral composite dark matter candidate. Current direct detection constraints are evaded due to the large dark matter mass; meanwhile, next-generation direct detection and proton decay experiments will probe much of the parameter space. The relic abundance is strongly dependent on the dynamics of the hidden confining sector, and we...

  6. Superheavy dark matter

    CERN Document Server

    Chung, Daniel J.H.; Riotto, Antonio; Chung, Daniel J. H.; Kolb, Edward W.; Riotto, Antonio

    1999-01-01

    We show that, contrary to the standard lore, dark matter may be superheavy (many orders of magnitude larger than the weak scale). We show that massive particles may be produced naturally during the transition from the inflationary phase to either a matter-dominated or radiation-dominated phase as a result of the expansion of the background spacetime acting on vacuum quantum fluctuations of the dark matter field. We find that as long as there are stable particles whose mass is of the order of the inflaton mass (presumably around 10^13 GeV), they will be produced in sufficient abundance to give Omega_0=1 quite independently of any details of the non-gravitational interactions of the dark-matter field.

  7. Vectorlike sneutrino dark matter

    Science.gov (United States)

    Tang, Yi-Lei; Zhu, Shou-hua

    2016-05-01

    In this paper, we discuss the minimal supersymmetric standard model (MSSM) extended with one vectorlike lepton doublet L -L ¯ and one right-handed neutrino N . The neutral vecotorlike sneutrino can be a candidate of dark matter. To avoid the interaction with the nucleons by exchanging a Z boson, the mass splitting between the real part and the imaginary part of the sneutrino field is needed. Compared with the MSSM sneutrino dark matter, the mass splitting between the vectorlike sneutrino field can be more naturally acquired without large A terms and constraints on the neutralino masses. We have also calculated the relic density and the elastic scattering cross sections with the nucleons in the cases that the dark matter particles coannihilate with or without the MSSM slepton doublets. The elastic scattering cross sections with the nucleons are well below the LUX bounds. In the case that the dark matter coannihilates with all the MSSM slepton doublets, the mass of the dark matter can be as light as 370 GeV.

  8. WISPy cold dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Arias, Paola [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Pontificia Univ. Catolica de Chile, Santiago (Chile). Facultad de Fisica; Cadamuro, Davide; Redondo, Javier [Max-Planck-Institut fuer Physik, Muenchen (Germany); Goodsell, Mark [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Jaeckel, Joerg [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology; Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-01-15

    Very weakly interacting slim particles (WISPs), such as axion-like particles (ALPs) or hidden photons (HPs), may be non-thermally produced via the misalignment mechanism in the early universe and survive as a cold dark matter population until today. We find that, both for ALPs and HPs whose dominant interactions with the standard model arise from couplings to photons, a huge region in the parameter spaces spanned by photon coupling and ALP or HP mass can give rise to the observed cold dark matter. Remarkably, a large region of this parameter space coincides with that predicted in well motivated models of fundamental physics. A wide range of experimental searches - exploiting haloscopes (direct dark matter searches exploiting microwave cavities), helioscopes (searches for solar ALPs or HPs), or light-shining-through-a-wall techniques - can probe large parts of this parameter space in the foreseeable future. (orig.)

  9. Natural minimal dark matter

    CERN Document Server

    Fabbrichesi, Marco

    2015-01-01

    We show how the Higgs boson mass is protected from the potentially large corrections due to the introduction of minimal dark matter if the new physics sector is made supersymmetric. The fermionic dark matter candidate (a 5-plet of $SU(2)_L$) is accompanied by a scalar state. The weak gauge sector is made supersymmetric and the Higgs boson is embedded in a supersymmetric multiplet. The remaining standard model states are non-supersymmetric. Non vanishing corrections to the Higgs boson mass only appear at three-loop level and the model is natural for dark matter masses up to 15 TeV--a value larger than the one required by the cosmological relic density. The construction presented stands as an example of a general approach to naturalness that solves the little hierarchy problem which arises when new physics is added beyond the standard model at an energy scale around 10 TeV.

  10. Dark Matter and MOOCs

    CERN Document Server

    Salucci, Paolo

    2013-01-01

    To teach the topic of Dark Matter in Galaxies to undergraduate and PhD students is not easy, one reason being that the scientific community has not converged yet to a generally shared knowledge. We argue that the teaching of this topic and its subsequent scientific progress may benefit by Massive Online and Open Courses. The reader of this paper can express his/her opinion on this by means of a confidence vote at: https://moocfellowship.org/submissions/dark-matter-in-galaxies-the-last-mystery

  11. A Dark Matter Superfluid

    CERN Document Server

    Khoury, Justin

    2015-01-01

    In this talk we present a novel framework that unifies the stunning success of MOND on galactic scales with the triumph of the LambdaCDM model on cosmological scales. This is achieved through the rich and well-studied physics of superfluidity. The dark matter and MOND components have a common origin, representing different phases of a single underlying substance. In galaxies, dark matter thermalizes and condenses to form a superfluid phase. The superfluid phonons couple to baryonic matter particles and mediate a MOND-like force. Our framework naturally distinguishes between galaxies (where MOND is successful) and galaxy clusters (where MOND is not): dark matter has a higher temperature in clusters, and hence is in a mixture of superfluid and normal phase. The rich and well-studied physics of superfluidity leads to a number of striking observational signatures, which we briefly discuss. Remarkably the critical temperature and equation of state of the dark matter superfluid are similar to those of known cold at...

  12. Dark Matter Superfluidity

    CERN Document Server

    Khoury, Justin

    2016-01-01

    In this talk I summarize a novel framework that unifies the stunning success of MOND on galactic scales with the triumph of the $\\Lambda$CDM model on cosmological scales. This is achieved through the rich and well-studied physics of superfluidity. The dark matter and MOND components have a common origin, representing different phases of a single underlying substance. In galaxies, dark matter thermalizes and condenses to form a superfluid phase. The superfluid phonons couple to baryonic matter particles and mediate a MOND-like force. This framework naturally distinguishes between galaxies (where MOND is successful) and galaxy clusters (where MOND is not): dark matter has a higher temperature in clusters, and hence is in a mixture of superfluid and normal phase. The rich and well-studied physics of superfluidity leads to a number of striking observational signatures, which we briefly discuss. Remarkably the critical temperature and equation of state of the dark matter superfluid are similar to those of known co...

  13. Asymmetric condensed dark matter

    Science.gov (United States)

    Aguirre, Anthony; Diez-Tejedor, Alberto

    2016-04-01

    We explore the viability of a boson dark matter candidate with an asymmetry between the number densities of particles and antiparticles. A simple thermal field theory analysis confirms that, under certain general conditions, this component would develop a Bose-Einstein condensate in the early universe that, for appropriate model parameters, could survive the ensuing cosmological evolution until now. The condensation of a dark matter component in equilibrium with the thermal plasma is a relativistic process, hence the amount of matter dictated by the charge asymmetry is complemented by a hot relic density frozen out at the time of decoupling. Contrary to the case of ordinary WIMPs, dark matter particles in a condensate must be lighter than a few tens of eV so that the density from thermal relics is not too large. Big-Bang nucleosynthesis constrains the temperature of decoupling to the scale of the QCD phase transition or above. This requires large dark matter-to-photon ratios and very weak interactions with standard model particles.

  14. Alternatives to Dark Matter (?)

    OpenAIRE

    Aguirre, Anthony

    2003-01-01

    It has long been known that Newtonian dynamics applied to the visible matter in galaxies and clusters does not correctly describe the dynamics of those systems. While this is generally taken as evidence for dark matter it is in principle possible that instead Newtonian dynamics (and with it General Relativity) breaks down in these systems. Indeed there have been a number of proposals as to how standard gravitational dynamics might be modified so as to correctly explain galactic dynamics witho...

  15. Dark matter detection

    Science.gov (United States)

    Baudis, Laura

    2016-08-01

    More than 80 years after its first postulation in modern form, the existence and distribution of dark matter in our Universe is well established. Dark matter is the gravitational glue that holds together galaxies, galaxy clusters and structures on the largest cosmological scales, and an essential component to explain the observed fluctuations in the cosmic microwave background. Yet its existence is inferred indirectly, through its gravitational influence on luminous matter, and its nature is not known. A viable hypothesis is that dark matter is made of new, elementary particles, with allowed masses and interaction strengths spanning a wide range. Two well-motivated classes of candidates are axions and weakly interacting massive particles (WIMPs), and experimental efforts have now reached sensitivities that allow them to test this hypothesis. Axions, produced non-thermally in the early Universe, can be detected by exploiting their predicted couplings to photons and electrons. WIMPs can be detected directly by looking for their collisions with atomic nuclei ultra-low background detectors, or indirectly, through the observation of their annihilation products such as neutrinos, gamma rays, positrons and antiprotons over the astrophysical background. A complementary method is the production of dark matter particles at colliders such as the Large Hadron Collider, where they could be observed indirectly via missing transverse energy, or via associated particle production. I will review the main experimental efforts to search for dark matter particles, and the existing constraints on the interaction cross sections. I will also discuss future experiments, their complementarity and their ability to measure the properties of these particles.

  16. Dichromatic Dark Matter

    CERN Document Server

    Bai, Yang; Zhao, Yue

    2012-01-01

    Both the robust INTEGRAL 511 keV gamma-ray line and the recent tentative hint of the 135 GeV gamma-ray line from Fermi-LAT have similar signal morphologies, and may be produced from the same dark matter annihilation. Motivated by this observation, we construct a dark matter model to explain both signals and to accommodate the two required annihilation cross sections that are different by more than six orders of magnitude. In our model, to generate the low-energy positrons for INTEGRAL, dark matter particles annihilate into a complex scalar that couples to photon via a charge-radius operator. The complex scalar contains an excited state decaying into the ground state plus an off-shell photon to generate a pair of positron and electron. Two charged particles with non-degenerate masses are necessary for generating this charge-radius operator. One charged particle is predicted to be long-lived and have a mass around 3.8 TeV to explain the dark matter thermal relic abundance from its late decay. The other charged ...

  17. Dichromatic dark matter

    Science.gov (United States)

    Bai, Yang; Su, Meng; Zhao, Yue

    2013-02-01

    Both the robust INTEGRAL 511 keV gamma-ray line and the recent tentative hint of the 135 GeV gamma-ray line from Fermi-LAT have similar signal morphologies, and may be produced from the same dark matter annihilation. Motivated by this observation, we construct a dark matter model to explain both signals and to accommodate the two required annihilation cross sections that are different by more than six orders of magnitude. In our model, to generate the low-energy positrons for INTEGRAL, dark matter particles annihilate into a complex scalar that couples to photon via a charge-radius operator. The complex scalar contains an excited state decaying into the ground state plus an off-shell photon to generate a pair of positron and electron. Two charged particles with non-degenerate masses are necessary for generating this charge-radius operator. One charged particle is predicted to be long-lived and have a mass around 3.8 TeV to explain the dark matter thermal relic abundance from its late decay. The other charged particle is predicted to have a mass below 1 TeV given the ratio of the two signal cross sections. The 14 TeV LHC will concretely test the main parameter space of this lighter charged particle.

  18. The Universal Dark Matter

    CERN Document Server

    Soberman, R K; Soberman, Robert K.; Dubin, Maurice

    2006-01-01

    Fragile volatile aggregates with extremely low albedo, gravitationally drawn into the solar system are likely from the dark matter dominating the universal mass. Characteristics of this meteoric population permitted avoiding detection through a half-century's search. Measurements from space probes and in the upper atmosphere prove their existence and confirm their elusive properties.

  19. Template Composite Dark Matter

    DEFF Research Database (Denmark)

    Drach, Vincent; Hietanen, Ari; Pica, Claudio

    2015-01-01

    We present a non perturbative study of SU(2) gauge theory with two fundamental Dirac flavours. We discuss how the model can be used as a template for composite Dark Matter (DM). We estimate one particular interaction of the DM candidate with the Standard Model : the interaction through photon...

  20. Template Composite Dark Matter

    DEFF Research Database (Denmark)

    Drach, Vincent; Hietanen, Ari; Pica, Claudio

    2015-01-01

    We present a non perturbative study of SU(2) gauge theory with two fundamental Dirac flavours. We discuss how the model can be used as a template for composite Dark Matter (DM). We estimate one particular interaction of the DM candidate with the Standard Model : the interaction through photon...

  1. Exceptional composite dark matter

    Science.gov (United States)

    Ballesteros, Guillermo; Carmona, Adrián; Chala, Mikael

    2017-07-01

    We study the dark matter phenomenology of non-minimal composite Higgs models with SO(7) broken to the exceptional group G_2. In addition to the Higgs, three pseudo-Nambu-Goldstone bosons arise, one of which is electrically neutral. A parity symmetry is enough to ensure this resonance is stable. In fact, if the breaking of the Goldstone symmetry is driven by the fermion sector, this Z_2 symmetry is automatically unbroken in the electroweak phase. In this case, the relic density, as well as the expected indirect, direct and collider signals are then uniquely determined by the value of the compositeness scale, f. Current experimental bounds allow one to account for a large fraction of the dark matter of the Universe if the dark matter particle is part of an electroweak triplet. The totality of the relic abundance can be accommodated if instead this particle is a composite singlet. In both cases, the scale f and the dark matter mass are of the order of a few TeV.

  2. Inflatable Dark Matter

    CERN Document Server

    Davoudiasl, Hooman; McDermott, Samuel D

    2016-01-01

    We describe a general scenario, dubbed "Inflatable Dark Matter", in which the density of dark matter particles can be reduced through a short period of late-time inflation in the early universe. The overproduction of dark matter that is predicted within many otherwise well-motivated models of new physics can be elegantly remedied within this context, without the need to tune underlying parameters or to appeal to anthropic considerations. Thermal relics that would otherwise be disfavored can easily be accommodated within this class of scenarios, including dark matter candidates that are very heavy or very light. Furthermore, the non-thermal abundance of GUT or Planck scale axions can be brought to acceptable levels, without invoking anthropic tuning of initial conditions. A period of late-time inflation could have occurred over a wide range of scales from ~ MeV to the weak scale or above, and could have been triggered by physics within a hidden sector, with small but not necessarily negligible couplings to the...

  3. The Dark Matter Telescope

    CERN Document Server

    Tyson, J A; Angel, J R P; Wittman, David

    2001-01-01

    Weak gravitational lensing enables direct reconstruction of dark matter maps over cosmologically significant volumes. This research is currently telescope-limited. The Dark Matter Telescope (DMT) is a proposed 8.4 m telescope with a 3 degree field of view, with an etendue of 260 $(m. degree)^2$, ten times greater than any other current or planned telescope. With its large etendue and dedicated observational mode, the DMT fills a nearly unexplored region of parameter space and enables projects that would take decades on current facilities. The DMT will be able to reach 10-sigma limiting magnitudes of 27-28 magnitude in the wavelength range .3 - 1 um over a 7 square degree field in 3 nights of dark time. Here we review its unique weak lensing cosmology capabilities and the design that enables those capabilities.

  4. Dark matter from unification

    DEFF Research Database (Denmark)

    Kainulainen, Kimmo; Tuominen, Kimmo; Virkajärvi, Jussi Tuomas

    2013-01-01

    We consider a minimal extension of the Standard Model (SM), which leads to unification of the SM coupling constants, breaks electroweak symmetry dynamically by a new strongly coupled sector and leads to novel dark matter candidates. In this model, the coupling constant unification requires...... eigenstates of this sector and determine the resulting relic density. The results are constrained by available data from colliders and direct and indirect dark matter experiments. We find the model viable and outline briefly future research directions....... the existence of electroweak triplet and doublet fermions singlet under QCD and new strong dynamics underlying the Higgs sector. Among these new matter fields and a new right handed neutrino, we consider the mass and mixing patterns of the neutral states. We argue for a symmetry stabilizing the lightest mass...

  5. Radiative light dark matter

    Science.gov (United States)

    Dedes, A.; Karamitros, D.; Pilaftsis, A.

    2017-06-01

    We present a Peccei-Quinn (PQ)-symmetric two-Higgs doublet model that naturally predicts a fermionic singlet dark matter in the mass range 10 keV-1 GeV. The origin of the smallness of the mass of this light singlet fermion arises predominantly at the one-loop level, upon soft or spontaneous breakdown of the PQ symmetry via a complex scalar field in a fashion similar to the so-called Dine-Fischler-Sredniki-Zhitnitsky axion model. The mass generation of this fermionic radiative light dark matter (RLDM) requires the existence of two heavy vectorlike SU(2) isodoublets, which are not charged under the PQ symmetry. We show how the RLDM can be produced via the freeze-in mechanism, thus accounting for the missing matter in the Universe. Finally, we briefly discuss possible theoretical and phenomenological implications of the RLDM model for the strong C P problem and the CERN Large Hadron Collider (LHC).

  6. Levitating dark matter

    Science.gov (United States)

    Kaloper, Nemanja; Padilla, Antonio

    2009-10-01

    A sizable fraction of the total energy density of the universe may be in heavy particles with a net dark U(1)' charge comparable to its mass. When the charges have the same sign the cancellation between their gravitational and gauge forces may lead to a mismatch between different measures of masses in the universe. Measuring galactic masses by orbits of normal matter, such as galaxy rotation curves or lensing, will give the total mass, while the flows of dark matter agglomerates may yield smaller values if the gauge repulsion is not accounted for. If distant galaxies which house light beacons like SNe Ia contain such dark particles, the observations of their cosmic recession may mistake the weaker forces for an extra `antigravity', and infer an effective dark energy equation of state smaller than the real one. In some cases, including that of a cosmological constant, these effects can mimic w < -1. They can also lead to a local variation of galaxy-galaxy forces, yielding a larger `Hubble Flow' in those regions of space that could be taken for a dynamical dark energy, or superhorizon effects.

  7. Taming astrophysical bias in direct dark matter searches

    Energy Technology Data Exchange (ETDEWEB)

    Pato, Miguel [Physik-Department T30d, Technische Universität München, James-Franck-Straße, 85748 Garching (Germany); Strigari, Louis E. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305 (United States); Trotta, Roberto [Astrophysics Group and Imperial Centre for Inference and Cosmology, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom); Bertone, Gianfranco, E-mail: miguel.pato@tum.de, E-mail: strigari@stanford.edu, E-mail: r.trotta@imperial.ac.uk, E-mail: gf.bertone@gmail.com [GRAPPA Institute, University of Amsterdam, Science Park 904, 1090 GL Amsterdam (Netherlands)

    2013-02-01

    We explore systematic biases in the identification of dark matter in future direct detection experiments and compare the reconstructed dark matter properties when assuming a self-consistent dark matter distribution function and the standard Maxwellian velocity distribution. We find that the systematic bias on the dark matter mass and cross-section determination arising from wrong assumptions for its distribution function is of order ∼ 1σ. A much larger systematic bias can arise if wrong assumptions are made on the underlying Milky Way mass model. However, in both cases the bias is substantially mitigated by marginalizing over galactic model parameters. We additionally show that the velocity distribution can be reconstructed in an unbiased manner for typical dark matter parameters. Our results highlight both the robustness of the dark matter mass and cross-section determination using the standard Maxwellian velocity distribution and the importance of accounting for astrophysical uncertainties in a statistically consistent fashion.

  8. Dark Matter Searches at LHC

    CERN Document Server

    Terashi, Koji; The ATLAS collaboration

    2017-01-01

    This talk will present dark matter searches at the LHC in the PIC2017 conference. The main emphasis is placed on the direct dark matter searches while the interpretation of searches for SUSY and invisible Higgs signals for the dark matter is also presented.

  9. Dark Matter in the Universe

    Indian Academy of Sciences (India)

    2017-02-01

    Vera Rubin gave an evening lecture during the 19th General Assembly of the International Astronomical Union, in 1985 at New Delhi, on dark matter. It was a lucid introduction to the issues regarding dark matter, as well as a comprehensive review of the evidences for dark matter. This extraordinary lecture, aimed towards non-specialists, is reprinted below.

  10. Tunguska Dark Matter Ball

    CERN Document Server

    Froggatt, C D

    2014-01-01

    It is suggested that the Tunguska event in June 1908 cm-large was due to a cm-large ball of a condensate of bound states of 6 top and 6 anti-top quarks containing highly compressed ordinary matter. Such balls are supposed to make up the dark matter as we earlier proposed. The expected rate of impact of this kind of dark matter ball with the earth seems to crudely match a time scale of 200 years between the impacts. The main explosion of the Tunguska event is explained in our picture as material coming out from deep within the earth, where it has been heated and compressed by the ball penetrating to a depth of several thousand km. Thus the effect has some similarity with volcanic activity as suggested by Kundt. We discuss the possible identification of kimberlite pipes with earlier Tunguska-like events. A discussion of how the dark matter balls may have formed in the early universe is also given.

  11. Asymmetric condensed dark matter

    CERN Document Server

    Aguirre, Anthony

    2015-01-01

    We explore the viability of a boson dark matter candidate with an asymmetry between the number densities of particles and antiparticles. A simple thermal field theory analysis confirms that, under certain general conditions, this component would develop a Bose-Einstein condensate in the early universe that, for appropriate model parameters, could survive the ensuing cosmological evolution until now. The condensation of a dark matter component in equilibrium with the thermal plasma is a relativistic process, hence the amount of matter dictated by the charge asymmetry is complemented by a hot relic density frozen out at the time of decoupling. Contrary to the case of ordinary WIMPs, dark matter particles in a condensate can be very light, $10^{-22}\\,{\\rm eV} \\lesssim m \\lesssim 10^2\\,{\\rm eV}$; the lower limit arises from constraints on small-scale structure formation, while the upper bound ensures that the density from thermal relics is not too large. Big-Bang nucleosynthesis constrains the temperature of deco...

  12. Levitating Dark Matter

    CERN Document Server

    Kaloper, Nemanja

    2009-01-01

    A sizable fraction of the total energy density of the universe may be in heavy particles with a net dark $U(1)'$ charge equal to its mass, such as the BPS states in string theory. When the charges have the same sign the cancellation between their gravitational and gauge forces may lead to a mismatch between different measures of masses in the universe. Measuring galactic masses by orbits of normal matter, such as galaxy rotation curves or lensing, will give the total mass, while the flows of dark matter agglomerates may yield smaller values if the gauge repulsion is not accounted for. If distant galaxies which house light beacons like SNe Ia contain such dark particles, the observations of their cosmic recession may mistake the weaker forces for an extra `antigravity', and infer an effective dark energy equation of state smaller than the real one. In some cases, including that of a cosmological constant, these effects can mimic $w<-1$. They can also lead to a {\\it local} variation of galaxy-galaxy forces, ...

  13. Dilaton-assisted dark matter.

    Science.gov (United States)

    Bai, Yang; Carena, Marcela; Lykken, Joseph

    2009-12-31

    A dilaton could be the dominant messenger between standard model fields and dark matter. The measured dark matter relic abundance relates the dark matter mass and spin to the conformal breaking scale. The dark matter-nucleon spin-independent cross section is predicted in terms of the dilaton mass. We compute the current constraints on the dilaton from LEP and Tevatron experiments, and the gamma-ray signal from dark matter annihilation to dilatons that could be observed by Fermi Large Area Telescope.

  14. Dark matter search in CMS

    CERN Document Server

    Vartak, Adish

    2017-01-01

    The dark matter search program at the LHC covers a wide range of final states and targets a variety of possible interactions between dark matter and standard model particles. A summary of the dark matter searches performed at the CMS experiment, using proton-proton collision data collected at a center of energy of 13 TeV, is presented.Searches performed in various final states are described, and results interpreted in terms of several dark matter models are presented. These results are also compared to the results from direct and indirect dark matter searches.

  15. R^2 Dark Matter

    CERN Document Server

    Cembranos, Jose A R

    2010-01-01

    There is a non-trivial four-derivative extension of the gravitational spectrum that is free of ghosts and phenomenologically viable. It is the so called $R^2$-gravity since it is defined by the only addition of a term proportional to the square of the scalar curvature. Just the presence of this term does not improve the ultraviolet behaviour of Einstein gravity but introduces one additional scalar degree of freedom that can account for the dark matter of our Universe.

  16. An elusive vector dark matter

    Directory of Open Access Journals (Sweden)

    Chuan-Ren Chen

    2015-02-01

    Full Text Available Even though the sensitivity of direct dark matter search experiments reaches the level of about 10−45 cm2, no confident signal of dark matter has been observed. We point out that, if dark matter is a vector boson, the null result in direct dark matter search experiments may be due to the destructive effects in dark-matter–nucleon elastic scattering. We illustrate the scenario using a modified Higgs portal model that includes exotic quarks. The significant cancellation can occur for a certain mass gap between new heavy quark and dark matter. As a result, the spin-independent dark-matter–nucleon elastic scattering is so suppressed that the future direct search experiments will hardly observe the signal of dark matter.

  17. Signals of Supersymmetric Dark Matter

    CERN Document Server

    Abbas, A

    2000-01-01

    The Lightest Supersymmetric Particle predicted in most of the supersymmetric scenarios is an ideal candidate for the dark matter of cosmology. Their detection is of extreme significance today. Recently there have been intriguing signals of a 59 Gev neutralino dark matter at DAMA in Gran Sasso. We look at other possible signatures of dark matter in astrophysical and geological frameworks. The passage of the earth through dense clumps of dark matter would produce large quantities of heat in the interior of this planet through the capture and subsequent annihilation of dark matter particles. This heat would lead to large-scale volcanism which could in turn have caused mass extinctions. The periodicity of such volcanic outbursts agrees with the frequency of palaeontological mass extinctions as well as the observed periodicity in the occurrence of the largest flood basalt provinces on the globe. Binary character of these extinctions is another unique aspect of this signature of dark matter. In addition dark matter...

  18. Conformal Gravity: Dark Matter and Dark Energy

    Directory of Open Access Journals (Sweden)

    Robert K. Nesbet

    2013-01-01

    Full Text Available This short review examines recent progress in understanding dark matter, dark energy, and galactic halos using theory that departs minimally from standard particle physics and cosmology. Strict conformal symmetry (local Weyl scaling covariance, postulated for all elementary massless fields, retains standard fermion and gauge boson theory but modifies Einstein–Hilbert general relativity and the Higgs scalar field model, with no new physical fields. Subgalactic phenomenology is retained. Without invoking dark matter, conformal gravity and a conformal Higgs model fit empirical data on galactic rotational velocities, galactic halos, and Hubble expansion including dark energy.

  19. Dark matter on the lattice

    OpenAIRE

    Lewis, Randy

    2014-01-01

    Several collaborations have recently performed lattice calculations aimed specifically at dark matter, including work with SU(2), SU(3), SU(4) and SO(4) gauge theories to represent the dark sector. Highlights of these studies are presented here, after a reminder of how lattice calculations in QCD itself are helping with the hunt for dark matter.

  20. Dark matter in the Galaxy

    OpenAIRE

    Bilic, Neven; Tupper, Gary B.; Viollier, Raoul D.

    2002-01-01

    After a brief introduction to standard cosmology and the dark matter problem in the the Universe, we consider a self-gravitating noninteracting fermion gas at nonzero temperature as a model for the dark matter halo of the Galaxy. This fermion gas model is then shown to imply the existence of a supermassive compact dark object at the Galactic center.

  1. Dark Matter remains obscure

    CERN Multimedia

    Fabio Capello

    2011-01-01

    It is one of the hidden secrets that literally surround the Universe. Experiments have shown no result so far because trying to capture particles that do not seem to interact with ordinary matter is no trivial exercise. The OSQAR experiment at CERN is dedicated to the search for axions, one of the candidates for Dark Matter. For its difficult challenge, OSQAR counts on one of the world’s most powerful magnets borrowed from the LHC. In a recent publication, the OSQAR collaboration was able to confirm that no axion signal appears out of the background. In other words: the quest is still on.   The OSQAR experiment installed in the SM18 hall. (Photo by F. Capello) The OSQAR “Light Shining Through a Wall” experiment was officially launched in 2007 with the aim of detecting axions, that is, particles that might be the main components of Dark Matter. OSQAR uses the powerful LHC dipole magnet to intensify the predicted photon-axion conversions in the presence of strong m...

  2. Dark Forces and Light Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Weiner, Neal [New York Univ., NY (United States); Xue, Wei [Rue University (Canada)

    2012-09-01

    We consider a simple class of models in which the dark matter, X, is coupled to a new gauge boson, phi, with a relatively low mass (m_phi \\sim 100 MeV-3 GeV). Neither the dark matter nor the new gauge boson have tree-level couplings to the Standard Model. The dark matter in this model annihilates to phi pairs, and for a coupling of g_X \\sim 0.06 (m_X/10 GeV)^1/2 yields a thermal relic abundance consistent with the cosmological density of dark matter. The phi's produced in such annihilations decay through a small degree of kinetic mixing with the photon to combinations of Standard Model leptons and mesons. For dark matter with a mass of \\sim10 GeV, the shape of the resulting gamma-ray spectrum provides a good fit to that observed from the Galactic Center, and can also provide the very hard electron spectrum required to account for the observed synchrotron emission from the Milky Way's radio filaments. For kinetic mixing near the level naively expected from loop-suppressed operators (epsilon \\sim 10^{-4}), the dark matter is predicted to scatter elastically with protons with a cross section consistent with that required to accommodate the signals reported by DAMA/LIBRA, CoGeNT and CRESST-II.

  3. Dark Matter Velocity Spectroscopy.

    Science.gov (United States)

    Speckhard, Eric G; Ng, Kenny C Y; Beacom, John F; Laha, Ranjan

    2016-01-22

    Dark matter decays or annihilations that produce linelike spectra may be smoking-gun signals. However, even such distinctive signatures can be mimicked by astrophysical or instrumental causes. We show that velocity spectroscopy-the measurement of energy shifts induced by relative motion of source and observer-can separate these three causes with minimal theoretical uncertainties. The principal obstacle has been energy resolution, but upcoming experiments will have the precision needed. As an example, we show that the imminent Astro-H mission can use Milky Way observations to separate possible causes of the 3.5-keV line. We discuss other applications.

  4. Dark Matter Velocity Spectroscopy

    CERN Document Server

    Speckhard, Eric G; Beacom, John F; Laha, Ranjan

    2016-01-01

    Dark matter decays or annihilations that produce line-like spectra may be smoking-gun signals. However, even such distinctive signatures can be mimicked by astrophysical or instrumental causes. We show that velocity spectroscopy-the measurement of energy shifts induced by relative motion of source and observer-can separate these three causes with minimal theoretical uncertainties. The principal obstacle has been energy resolution, but upcoming and proposed experiments will make significant improvements. As an example, we show that the imminent Astro-H mission can use Milky Way observations to separate possible causes of the 3.5-keV line. We discuss other applications.

  5. Plasma dark matter direct detection

    CERN Document Server

    Clarke, Jackson D

    2015-01-01

    Dark matter in spiral galaxies like the Milky Way may take the form of a dark plasma. Hidden sector dark matter charged under an unbroken $U(1)'$ gauge interaction provides a simple and well defined particle physics model realising this possibility. The assumed $U(1)'$ neutrality of the Universe then implies (at least) two oppositely charged dark matter components with self-interactions mediated via a massless "dark photon" (the $U(1)'$ gauge boson). In addition to nuclear recoils such dark matter can give rise to keV electron recoils in direct detection experiments. In this context, the detailed physical properties of the dark matter plasma interacting with the Earth is required. This is a complex system, which is here modelled as a fluid governed by the magnetohydrodynamic equations. These equations are numerically solved for some illustrative examples, and implications for direct detection experiments discussed. In particular, the analysis presented here leaves open the intriguing possibility that the DAMA...

  6. Perturbations of Dark Matter Gravity

    CERN Document Server

    Maia, M D; Müller, D; 10.1142/S0218271809015072

    2009-01-01

    Until recently the study of the gravitational field of dark matter was primarily concerned with its local effects on the motion of stars in galaxies and galaxy clusters. On the other hand, the WMAP experiment has shown that the gravitational field produced by dark matter amplifies the higher acoustic modes of the CMBR power spectrum, more intensely than the gravitational field of baryons. Such a wide range of experimental evidences from cosmology to local gravity suggests the necessity of a comprehensive analysis of the dark matter gravitational field per se, regardless of any other attributes that dark matter may eventually possess. In this paper we introduce and apply Nash's theory of perturbative geometry to the study of the dark matter gravitational field alone, in a higher-dimensional framework. It is shown that the dark matter gravitational perturbations in the early universe can be explained by the extrinsic curvature of the standard cosmology. Together with the estimated presence of massive neutrinos,...

  7. Dark matter searches with CMS

    CERN Document Server

    Jeitler, Manfred

    2016-01-01

    The existence of dark matter, indicated by astronomical observations, is one of the main proofs of physics beyond the standard model. Despite its abundance, dark matter has not been directly observed yet. This talk presents several searches for dark matter production in proton-proton collisions at 7, 8, and 13 TeV at the LHC, performed by the CMS collaboration. They are interpreted in terms of simplified models with different structures and mediators, as well as generic effective theory terms.

  8. DarkSide search for dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, T.; Alton, D.; Arisaka, K.; Back, H. O.; Beltrame, P.; Benziger, J.; Bonfini, G.; Brigatti, A.; Brodsky, J.; Bussino, S.; Cadonati, L.; Calaprice, F.; Candela, A.; Cao, H.; Cavalcante, P.; Chepurnov, A.; Chidzik, S.; Cocco, A. G.; Condon, C.; D' Angelo, D.; Davini, S.; Vincenzi, M. De; Haas, E. De; Derbin, A.; Pietro, G. Di; Dratchnev, I.; Durben, D.; Empl, A.; Etenko, A.; Fan, A.; Fiorillo, G.; Franco, D.; Fomenko, K.; Forster, G.; Gabriele, F.; Galbiati, C.; Gazzana, S.; Ghiano, C.; Goretti, A.; Grandi, L.; Gromov, M.; Guan, M.; Guo, C.; Guray, G.; Hungerford, E. V.; Ianni, Al; Ianni, An; Joliet, C.; Kayunov, A.; Keeter, K.; Kendziora, C.; Kidner, S.; Klemmer, R.; Kobychev, V.; Koh, G.; Komor, M.; Korablev, D.; Korga, G.; Li, P.; Loer, B.; Lombardi, P.; Love, C.; Ludhova, L.; Luitz, S.; Lukyanchenko, L.; Lund, A.; Lung, K.; Ma, Y.; Machulin, I.; Mari, S.; Maricic, J.; Martoff, C. J.; Meregaglia, A.; Meroni, E.; Meyers, P.; Mohayai, T.; Montanari, D.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B.; Muratova, V.; Nelson, A.; Nemtzow, A.; Nurakhov, N.; Orsini, M.; Ortica, F.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Parsells, R.; Pelliccia, N.; Perasso, L.; Perasso, S.; Perfetto, F.; Pinsky, L.; Pocar, A.; Pordes, S.; Randle, K.; Ranucci, G.; Razeto, A.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Saggese, P.; Saldanha, R.; Salvo, C.; Sands, W.; Seigar, M.; Semenov, D.; Shields, E.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvarov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Thompson, J.; Tonazzo, A.; Unzhakov, E.; Vogelaar, R. B.; Wang, H.; Westerdale, S.; Wojcik, M.; Wright, A.; Xu, J.; Yang, C.; Zavatarelli, S.; Zehfus, M.; Zhong, W.; Zuzel, G.

    2013-11-22

    The DarkSide staged program utilizes a two-phase time projection chamber (TPC) with liquid argon as the target material for the scattering of dark matter particles. Efficient background reduction is achieved using low radioactivity underground argon as well as several experimental handles such as pulse shape, ratio of ionization over scintillation signal, 3D event reconstruction, and active neutron and muon vetos. The DarkSide-10 prototype detector has proven high scintillation light yield, which is a particularly important parameter as it sets the energy threshold for the pulse shape discrimination technique. The DarkSide-50 detector system, currently in commissioning phase at the Gran Sasso Underground Laboratory, will reach a sensitivity to dark matter spin-independent scattering cross section of 10-45 cm2 within 3 years of operation.

  9. Monodromy Dark Matter

    Science.gov (United States)

    Jaeckel, Joerg; Mehta, Viraf M.; Witkowski, Lukas T.

    2017-01-01

    Light pseudo-Nambu-Goldstone bosons (pNGBs) such as, e.g. axion-like particles, that are non-thermally produced via the misalignment mechanism are promising dark matter candidates. An important feature of pNGBs is their periodic potential, whose scale of periodicity controls their couplings. As a consequence of the periodicity the maximal potential energy is limited and, hence, producing the observed dark matter density poses significant constraints on the allowed masses and couplings. In the presence of a monodromy, the field range as well as the range of the potential can be significantly extended. As we argue in this paper this has important phenomenological consequences. The constraints on the masses and couplings are ameliorated and couplings to Standard Model particles could be significantly stronger, thereby opening up considerable experimental opportunities. Yet, monodromy models can also give rise to new and qualitatively different features. As a remnant of the periodicity the potential can feature pronounced ``wiggles''. When the field is passing through them quantum fluctuations are enhanced and particles with non-vanishing momentum are produced. Here, we perform a first analysis of this effect and delineate under which circumstances this becomes important. We briefly discuss some possible cosmological consequences.

  10. (Mainly) axion dark matter

    Science.gov (United States)

    Baer, Howard

    2016-06-01

    The strong CP problem of QCD is at heart a problem of naturalness: why is the FF ˜ term highly suppressed in the QCD Lagrangian when it seems necessary to explain why there are three and not four light pions? The most elegant solution posits a spontaneously broken Peccei-Quinn (PQ) symmetry which requires the existence of the axion field a. The axion field settles to the minimum of its potential thus removing the offensive term but giving rise to the physical axion whose coherent oscillations can make up the cold dark matter. Only now are experiments such as ADMX beginning to explore QCD axion parameter space. Since a bonafide scalar particle- the Higgs boson- has been discovered, one might expect its mass to reside at the axion scale fa ˜ 1011 GeV. The Higgs mass is elegantly stabilized by supersymmetry: in this case the axion is accompanied by its axino and saxion superpartners. Requiring naturalness also in the electroweak sector implies higgsino-like WIMPs so then we expect mixed axion-WIMP dark matter. Ultimately we would expect detection of both an axion and a WIMP while signals for light higgsinos may show up at LHC and must show up at ILC.

  11. Dark matter and cosmological nucleosynthesis

    Science.gov (United States)

    Schramm, D. N.

    1986-01-01

    Existing dark matter problems, i.e., dynamics, galaxy formation and inflation, are considered, along with a model which proposes dark baryons as the bulk of missing matter in a fractal universe. It is shown that no combination of dark, nonbaryonic matter can either provide a cosmological density parameter value near unity or, as in the case of high energy neutrinos, allow formation of condensed matter at epochs when quasars already existed. The possibility that correlations among galactic clusters are scale-free is discussed. Such a distribution of matter would yield a fractal of 1.2, close to a one-dimensional universe. Biasing, cosmic superstrings, and percolated explosions and hot dark matter are theoretical approaches that would satisfy the D = 1.2 fractal model of the large-scale structure of the universe and which would also allow sufficient dark matter in halos to close the universe.

  12. Interactions between dark energy and dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Baldi, Marco

    2009-03-20

    We have investigated interacting dark energy cosmologies both concerning their impact on the background evolution of the Universe and their effects on cosmological structure growth. For the former aspect, we have developed a cosmological model featuring a matter species consisting of particles with a mass that increases with time. In such model the appearance of a Growing Matter component, which is negligible in early cosmology, dramatically slows down the evolution of the dark energy scalar field at a redshift around six, and triggers the onset of the accelerated expansion of the Universe, therefore addressing the Coincidence Problem. We propose to identify this Growing Matter component with cosmic neutrinos, in which case the present dark energy density can be related to the measured average mass of neutrinos. For the latter aspect, we have implemented the new physical features of interacting dark energy models into the cosmological N-body code GADGET-2, and we present the results of a series of high-resolution simulations for a simple realization of dark energy interaction. As a consequence of the new physics, cold dark matter and baryon distributions evolve differently both in the linear and in the non-linear regime of structure formation. Already on large scales, a linear bias develops between these two components, which is further enhanced by the non-linear evolution. We also find, in contrast with previous work, that the density profiles of cold dark matter halos are less concentrated in coupled dark energy cosmologies compared with {lambda}{sub CDM}. Also, the baryon fraction in halos in the coupled models is significantly reduced below the universal baryon fraction. These features alleviate tensions between observations and the {lambda}{sub CDM} model on small scales. Our methodology is ideally suited to explore the predictions of coupled dark energy models in the fully non-linear regime, which can provide powerful constraints for the viable parameter

  13. Dark matter. A light move

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Javier [Muenchen Univ. (Germany). Arnold Sommerfeld Center; Max-Planck-Institut fuer Physik, Muenchen (Germany); Doebrich, Babette [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-11-15

    This proceedings contribution reports from the workshop Dark Matter - a light move, held at DESY in Hamburg in June 2013. Dark Matter particle candidates span a huge parameter range. In particular, well motivated candidates exist also in the sub-eV mass region, for example the axion. Whilst a plethora of searches for rather heavy Dark Matter particles exists, there are only very few experiments aimed at direct detection of sub-eV Dark Matter to this date. The aim of our workshop was to discuss if and how this could be changed in the near future.

  14. Make Dark Matter Charged Again

    CERN Document Server

    Agrawal, Prateek; Randall, Lisa; Scholtz, Jakub

    2016-01-01

    We revisit constraints on dark matter that is charged under a $U(1)$ gauge group in the dark sector, decoupled from Standard Model forces. We find that the strongest constraints in the literature are subject to a number of mitigating factors. For instance, the naive dark matter thermalization timescale in halos is corrected by saturation effects that slow down isotropization for modest ellipticities. The weakened bounds uncover interesting parameter space, making models with weak-scale charged dark matter viable, even with electromagnetic strength interaction. This also leads to the intriguing possibility that dark matter self-interactions within small dwarf galaxies are extremely large, a relatively unexplored regime in current simulations. Such strong interactions suppress heat transfer over scales larger than the dark matter mean free path, inducing a dynamical cutoff length scale above which the system appears to have only feeble interactions. These effects must be taken into account to assess the viabili...

  15. Familon model of dark matter

    Science.gov (United States)

    Burdyuzha, V.; Lalakulich, O.; Ponomarev, Yu.; Vereshkov, G.

    2004-05-01

    If the next fundamental level of matter occurs (preons), then dark matter must consist of familons containing a 'hot' component from massless particles and a 'cold' component from massive particles. During the evolution of the Universe this dark matter occurred up to late-time relativistic phase transitions the temperatures of which were different. Fluctuations created by these phase transitions had a fractal character. As a result the structuration of dark matter (and therefore the baryon subsystem) occurred, and in the Universe some characteristic scales which have caused this phenomenon arise naturally. Familons are collective excitations of non-perturbative preon condensates that could be produced during an earlier relativistic phase transition. For structuration of dark matter (and the baryon component), three generations of particles are necessary. The first generation of particles produced the observed baryon world. The second and third generations produced dark matter from particles that appeared when symmetry between the generations was spontaneously broken.

  16. Familon Model of Dark Matter

    CERN Document Server

    Burdyuzha, V; Ponomarev, Yu; Vereshkov, G

    2008-01-01

    If the next fundamental level of matter occurs (preons) then dark matter must consist of familons containing a "hot" component from massless particles and a "cold" component from massive particles. During evolution of the Universe this dark matter was undergone to late-time relativistic phase transitions temperatures of which were different. Fluctuations created by these phase transitions have had a fractal character. In the result the structurization of dark matter (and therefore the baryon subsystem) has taken place and in the Universe some characteristic scales which have printed this phenomenon arise naturally. Familons are collective excitations of nonperturbative preon condensates which could be produced during more early relativistic phase transition. For structurization of dark matter (and baryon component) three generations of particles are necessary. The first generation of particles has produced the observed baryon world. The second and third generations have produced dark matter from particles whi...

  17. Skew-Flavored Dark Matter

    CERN Document Server

    Agrawal, Prateek; Fortes, Elaine C F S; Kilic, Can

    2015-01-01

    We explore a novel flavor structure in the interactions of dark matter with the Standard Model. We consider theories in which both the dark matter candidate, and the particles that mediate its interactions with the Standard Model fields, carry flavor quantum numbers. The interactions are skewed in flavor space, so that a dark matter particle does not directly couple to the Standard Model matter fields of the same flavor, but only to the other two flavors. This framework respects Minimal Flavor Violation, and is therefore naturally consistent with flavor constraints. We study the phenomenology of a benchmark model in which dark matter couples to right-handed charged leptons. In large regions of parameter space the dark matter can emerge as a thermal relic, while remaining consistent with the constraints from direct and indirect detection. The collider signatures of this scenario include events with multiple leptons and missing energy. These events exhibit a characteristic flavor pattern that may allow this cla...

  18. Gravitational Origin of Dark Matter

    CERN Document Server

    Babichev, Eugeny; Raidal, Martti; Schmidt-May, Angnis; Urban, Federico; Veermäe, Hardi; von Strauss, Mikael

    2016-01-01

    Observational evidence for the existence of Dark Matter is limited to its gravitational effects. The extensive program for dedicated searches has yielded null results so far, challenging the most popular models. Here we propose that this is the case because the very existence of cold Dark Matter is a manifestation of gravity itself. The consistent bimetric theory of gravity, the only known ghost-free extension of General Relativity involving a massless and a massive spin-2 field, automatically contains a perfect Dark Matter candidate. We demonstrate that the massive spin-2 particle can be heavy, stable on cosmological scales, and that it interacts with matter only through a gravitational type of coupling. Remarkably, these features persist in the same region of parameter space where bimetric theory satisfies the current gravity tests. We show that the observed Dark Matter abundance can be generated via freeze-in and suggest possible particle physics and gravitational signatures of our bimetric Dark Matter mod...

  19. Neutrino signals from dark matter

    Science.gov (United States)

    Erkoca, Arif Emre

    Large-scale neutrino telescopes will be powerful tools to observe multitude of mysterious phenomena happening in the Universe. The dark matter puzzle is listed as one of them. In this study, indirect detection of dark matter via neutrino signals is presented. The upward muon, the contained muon and the hadronic shower fluxes are calculated, assuming annihilation/decay of the dark matter in the core of the astrophysical objects and in the Galactic center. Direct neutrino production and secondary neutrino production from the decay of Standard Model particles produced in the annihilation/decay of dark matter are studied. The results are contrasted to the ones previously obtained in the literature, illustrating the importance of properly treating muon propagation and energy loss for the upward muon flux. The dependence of the dark matter signals on the density profile, the dark matter mass and the detector threshold are discussed. Different dark matter models (gravitino, Kaluza-Klein and leptophilic) which can account for recent observations of some indirect searches are analyzed regarding their detection in the kilometer size neutrino detectors in the near future. Muon and shower rates and the minimum observation times in order to reach 2sigma detection significance are evaluated, with the result suggesting that the optimum cone half angles chosen about the Galactic center are about 10° (50°) for the muon (shower) events. A detailed analysis shows that for the annihilating dark matter models such as the leptophilic and Kaluza-Klein models, upward and contained muon as well as showers yield promising signals for dark matter detection in just a few years of observation, whereas for decaying dark matter models, the same observation times can only be reached with showers. The analytical results for the final fluxes are also obtained as well as parametric forms for the muon and shower fluxes for the dark matter models considered in this study.

  20. Superheavy dark matter

    CERN Document Server

    Riotto, Antonio

    2000-01-01

    It is usually thought that the present mass density of the Universe is dominated by a weakly interacting massive particle (WIMP), a fossil relic of the early Universe. Theoretical ideas and experimental efforts have focused mostly on production and detection of thermal relics, with mass typically in the range a few GeV to a hundred GeV. Here, we will review scenarios for production of nonthermal dark matter whose mass may be in the range 10/sup 12/ to 10/sup 19/ GeV, much larger than the mass of thermal wimpy WIMPS. We will also review recent related results in understanding the production of very heavy fermions through preheating after inflation. (19 refs).

  1. Dark Matter Burners

    Energy Technology Data Exchange (ETDEWEB)

    Moskalenko, Igor V.; /Stanford U., HEPL; Wai, Lawrence L.; /SLAC

    2007-02-28

    We show that a star orbiting close enough to an adiabatically grown supermassive black hole (SMBH) can capture weakly interacting massive particles (WIMPs) at an extremely high rate. The stellar luminosity due to annihilation of captured WIMPs in the stellar core may be comparable to or even exceed the luminosity of the star due to thermonuclear burning. The model thus predicts the existence of unusual stars, essentially WIMP burners, in the vicinity of a SMBH. We find that the most efficient WIMP burners are stars with degenerate electron cores, e.g. white dwarfs (WDs); such WDs may have a very high surface temperature. If found, such stars would provide evidence for the existence of particle dark matter and can possibly be used to establish its density profile. On the other hand, the lack of such unusual stars may provide constraints on the WIMP density near the SMBH, as well as the WIMP-nucleus scattering and pair annihilation cross-sections.

  2. Cold dark matter resuscitated?

    CERN Document Server

    White, M; Silk, J; Davis, M; White, Martin; Scott, Douglas; Silk, Joe; Davis, Marc

    1995-01-01

    The Cold Dark Matter (CDM) model has an elegant simplicitly which makes it very predictive, but when its parameters are fixed at their `canonical' values its predictions are in conflict with observational data. There is, however, much leeway in the initial conditions within the CDM framework. We advocate a re-examination of the CDM model, taking into account modest variation of parameters from their canonical values. We find that CDM models with n=0.8--0.9 and h=0.45--0.50 can fit the available data. Our ``best fit'' CDM model has n=0.9, h=0.45 and C_2^{T}/C_2^{S}=0.7. We discuss the current state of observations which could definitely rule out this model.

  3. Ultralight particle dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Ringwald, A.

    2013-10-15

    We review the physics case for very weakly coupled ultralight particles beyond the Standard Model, in particular for axions and axion-like particles (ALPs): (i) the axionic solution of the strong CP problem and its embedding in well motivated extensions of the Standard Model; (ii) the possibility that the cold dark matter in the Universe is comprised of axions and ALPs; (iii) the ALP explanation of the anomalous transparency of the Universe for TeV photons; and (iv) the axion or ALP explanation of the anomalous energy loss of white dwarfs. Moreover, we present an overview of ongoing and near-future laboratory experiments searching for axions and ALPs: haloscopes, helioscopes, and light-shining-through-a-wall experiments.

  4. Lectures on Dark Matter Physics

    CERN Document Server

    Lisanti, Mariangela

    2016-01-01

    Rotation curve measurements from the 1970s provided the first strong indication that a significant fraction of matter in the Universe is non-baryonic. In the intervening years, a tremendous amount of progress has been made on both the theoretical and experimental fronts in the search for this missing matter, which we now know constitutes nearly 85% of the Universe's matter density. These series of lectures, first given at the TASI 2015 summer school, provide an introduction to the basics of dark matter physics. They are geared for the advanced undergraduate or graduate student interested in pursuing research in high-energy physics. The primary goal is to build an understanding of how observations constrain the assumptions that can be made about the astro- and particle physics properties of dark matter. The lectures begin by delineating the basic assumptions that can be inferred about dark matter from rotation curves. A detailed discussion of thermal dark matter follows, motivating Weakly Interacting Massive P...

  5. Dark Energy Scaling from Dark Matter to Acceleration

    OpenAIRE

    Bielefeld, Jannis; Caldwell, Robert R.; Linder, Eric V.

    2014-01-01

    The dark sector of the Universe need not be completely separable into distinct dark matter and dark energy components. We consider a model of early dark energy in which the dark energy mimics a dark matter component in both evolution and perturbations at early times. Barotropic aether dark energy scales as a fixed fraction, possibly greater than one, of the dark matter density and has vanishing sound speed at early times before undergoing a transition. This gives signatures not only in cosmic...

  6. Non-baryonic dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Berkes, I.

    1996-12-31

    This article discusses the nature of the dark matter and the possibility of the detection of non-baryonic dark matter in an underground experiment. Among the useful detectors the low temperature bolometers are considered in some detail. (author). 19 refs.

  7. Antideuterons from supersymmetric dark matter

    CERN Document Server

    Donato, F; Maurin, D

    2007-01-01

    We calculate the antideuteron flux expected from dark matter annihilation in the galactic halo. The propagation is treated in a full 2-D propagation model consistent with the results obtained from the propagation of B/C and other galactic species. We discuss the potentials of this indirect dark matter detection means, with special emphasis on the possible sources of uncertainties affecting future measurements

  8. Phases of Cannibal Dark Matter

    CERN Document Server

    Farina, Marco; Ruderman, Joshua T; Trevisan, Gabriele

    2016-01-01

    A hidden sector with a mass gap undergoes an epoch of cannibalism if number changing interactions are active when the temperature drops below the mass of the lightest hidden particle. During cannibalism, the hidden sector temperature decreases only logarithmically with the scale factor. We consider the possibility that dark matter resides in a hidden sector that underwent cannibalism, and has relic density set by the freeze-out of two-to-two annihilations. We identify three novel phases, depending on the behavior of the hidden sector when dark matter freezes out. During the cannibal phase, dark matter annihilations decouple while the hidden sector is cannibalizing. During the chemical phase, only two-to-two interactions are active and the total number of hidden particles is conserved. During the one way phase, the dark matter annihilation products decay out of equilibrium, suppressing the production of dark matter from inverse annihilations. We map out the distinct phenomenology of each phase, which includes ...

  9. Bimetric gravity and dark matter

    CERN Document Server

    Bernard, Laura; Heisenberg, Lavinia

    2015-01-01

    We review some recent proposals for relativistic models of dark matter in the context of bimetric gravity. The aim is to solve the problems of cold dark matter (CDM) at galactic scales, and to reproduce the phenomenology of the modified Newtonian dynamics (MOND), while still being in agreement with the standard cosmological model $\\Lambda$-CDM at large scales. In this context a promising alternative is dipolar dark matter (DDM) in which two different species of dark matter particles are separately coupled to the two metrics of bigravity and are linked together by an internal vector field. The phenomenology of MOND then results from a mechanism of gravitational polarization. Probably the best formulation of the model is within the framework of recently developed massive bigravity theories. Then the gravitational sector of the model is safe by construction, but a ghostly degree of freedom in the decoupling limit is still present in the dark matter sector. Future work should analyse the cosmological solutions of...

  10. AMS-02 fits Dark Matter

    CERN Document Server

    Balázs, Csaba

    2015-01-01

    In this work we perform a comprehensive statistical analysis of the AMS-02 electron, positron fluxes and the antiproton-to-proton ratio in the context of a simplified dark matter model. We include known, standard astrophysical sources and a dark matter component in the cosmic ray injection spectra. To predict the AMS-02 observables we use propagation parameters extracted from observed fluxes of heavier nuclei and the low energy part of the AMS-02 data. We assume that the dark matter particle is a Majorana fermion coupling to third generation fermions via a spin-0 mediator, and annihilating to multiple channels at once. The simultaneous presence of various annihilation channels provides the dark matter model with additional flexibility, and this enables us to simultaneously fit all cosmic ray spectra using a simple particle physics model and coherent astrophysical assumptions. Our results indicate that AMS-02 observations are not only consistent with the dark matter hypothesis within the uncertainties, but add...

  11. Dark energy and extended dark matter halos

    Science.gov (United States)

    Chernin, A. D.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Byrd, G. G.

    2012-03-01

    The cosmological mean matter (dark and baryonic) density measured in the units of the critical density is Ωm = 0.27. Independently, the local mean density is estimated to be Ωloc = 0.08-0.23 from recent data on galaxy groups at redshifts up to z = 0.01-0.03 (as published by Crook et al. 2007, ApJ, 655, 790 and Makarov & Karachentsev 2011, MNRAS, 412, 2498). If the lower values of Ωloc are reliable, as Makarov & Karachentsev and some other observers prefer, does this mean that the Local Universe of 100-300 Mpc across is an underdensity in the cosmic matter distribution? Or could it nevertheless be representative of the mean cosmic density or even be an overdensity due to the Local Supercluster therein. We focus on dark matter halos of groups of galaxies and check how much dark mass the invisible outer layers of the halos are able to host. The outer layers are usually devoid of bright galaxies and cannot be seen at large distances. The key factor which bounds the size of an isolated halo is the local antigravity produced by the omnipresent background of dark energy. A gravitationally bound halo does not extend beyond the zero-gravity surface where the gravity of matter and the antigravity of dark energy balance, thus defining a natural upper size of a system. We use our theory of local dynamical effects of dark energy to estimate the maximal sizes and masses of the extended dark halos. Using data from three recent catalogs of galaxy groups, we show that the calculated mass bounds conform with the assumption that a significant amount of dark matter is located in the invisible outer parts of the extended halos, sufficient to fill the gap between the observed and expected local matter density. Nearby groups of galaxies and the Virgo cluster have dark halos which seem to extend up to their zero-gravity surfaces. If the extended halo is a common feature of gravitationally bound systems on scales of galaxy groups and clusters, the Local Universe could be typical or even

  12. The Local Dark Matter Density

    CERN Document Server

    Read, J I

    2014-01-01

    I review current efforts to measure the mean density of dark matter near the Sun. This encodes valuable dynamical information about our Galaxy and is also of great importance for 'direct detection' dark matter experiments. I discuss theoretical expectations in our current cosmology; the theory behind mass modelling of the Galaxy; and I show how combining local and global measures probes the shape of the Milky Way dark matter halo and the possible presence of a 'dark disc'. I stress the strengths and weaknesses of different methodologies and highlight the continuing need for detailed tests on mock data - particularly in the light of recently discovered evidence for disequilibria in the Milky Way disc. I highlight several recent measurements in order of increasing data complexity and prior, and, correspondingly, decreasing formal error bars. Comparing these measurements with spherical extrapolations from the Milky Way's rotation curve, I show that the Milky Way is consistent with having a spherical dark matter ...

  13. Phases of cannibal dark matter

    Science.gov (United States)

    Farina, Marco; Pappadopulo, Duccio; Ruderman, Joshua T.; Trevisan, Gabriele

    2016-12-01

    A hidden sector with a mass gap undergoes an epoch of cannibalism if number changing interactions are active when the temperature drops below the mass of the lightest hidden particle. During cannibalism, the hidden sector temperature decreases only logarithmically with the scale factor. We consider the possibility that dark matter resides in a hidden sector that underwent cannibalism, and has relic density set by the freeze-out of two-to-two annihilations. We identify three novel phases, depending on the behavior of the hidden sector when dark matter freezes out. During the cannibal phase, dark matter annihilations decouple while the hidden sector is cannibalizing. During the chemical phase, only two-to-two interactions are active and the total number of hidden particles is conserved. During the one way phase, the dark matter annihilation products decay out of equilibrium, suppressing the production of dark matter from inverse annihilations. We map out the distinct phenomenology of each phase, which includes a boosted dark matter annihilation rate, new relativistic degrees of freedom, warm dark matter, and observable distortions to the spectrum of the cosmic microwave background.

  14. Astrophysical Probes of Dark Matter

    Science.gov (United States)

    Profumo, S.

    2013-08-01

    What is the connection between how the dark matter was produced in the early universe and how we can detect it today? Where does the WIMP miracle come from, and is it really a "WIMP" miracle? What brackets the mass range for thermal relics? Where does come from, and what does it mean? What is the difference between chemical and kinetic decoupling? Why do some people think that dark matter cannot be lighter than 40 GeV? Why is bbar b such a popular annihilation final state? Why is antimatter a good way to look for dark matter? Why should the cosmic-ray positron fraction decline with energy? How do you calculate the flux of neutrinos from dark matter annihilation in a celestial body, and when is it independent of the dark matter pair-annihilation rate? How does dark matter produce photons? -- Read these lecture notes, do the suggested 10 exercises, and you will find answers to all of these questions (and to many more on what You Always Wanted to Know About Dark Matter But Were Afraid to Ask).

  15. Phases of cannibal dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Farina, Marco [New High Energy Theory Center, Department of Physics, Rutgers University,136 Frelinghuisen Road, Piscataway, NJ 08854 (United States); Pappadopulo, Duccio; Ruderman, Joshua T.; Trevisan, Gabriele [Center for Cosmology and Particle Physics, Department of Physics, New York University,New York, NY 10003 (United States)

    2016-12-13

    A hidden sector with a mass gap undergoes an epoch of cannibalism if number changing interactions are active when the temperature drops below the mass of the lightest hidden particle. During cannibalism, the hidden sector temperature decreases only logarithmically with the scale factor. We consider the possibility that dark matter resides in a hidden sector that underwent cannibalism, and has relic density set by the freeze-out of two-to-two annihilations. We identify three novel phases, depending on the behavior of the hidden sector when dark matter freezes out. During the cannibal phase, dark matter annihilations decouple while the hidden sector is cannibalizing. During the chemical phase, only two-to-two interactions are active and the total number of hidden particles is conserved. During the one way phase, the dark matter annihilation products decay out of equilibrium, suppressing the production of dark matter from inverse annihilations. We map out the distinct phenomenology of each phase, which includes a boosted dark matter annihilation rate, new relativistic degrees of freedom, warm dark matter, and observable distortions to the spectrum of the cosmic microwave background.

  16. Holographic dark energy interacting with dark matter

    CERN Document Server

    Forte, Mónica I

    2012-01-01

    We investigate a spatially flat Friedmann-Robertson-Walker (FRW) cosmological model with cold dark matter coupled to a dark energy which is given by the modified holographic Ricci cutoff. The interaction used is linear in both dark energy densities, the total energy density and its derivative. Using the statistical method of $\\chi^2$-function for the Hubble data, we obtain $H_0=73.6km/sMpc$, $\\omega_s=\\gamma_s -1=-0.842$ for the asymptotic equation of state and $ z_{acc}= 0.89 $. The estimated values of $\\Omega_{c0}$ which fulfill the current observational bounds corresponds to a dark energy density varying in the range $0.25R < \\ro_x < 0.27R$.

  17. The dark side of cosmology: dark matter and dark energy.

    Science.gov (United States)

    Spergel, David N

    2015-03-06

    A simple model with only six parameters (the age of the universe, the density of atoms, the density of matter, the amplitude of the initial fluctuations, the scale dependence of this amplitude, and the epoch of first star formation) fits all of our cosmological data . Although simple, this standard model is strange. The model implies that most of the matter in our Galaxy is in the form of "dark matter," a new type of particle not yet detected in the laboratory, and most of the energy in the universe is in the form of "dark energy," energy associated with empty space. Both dark matter and dark energy require extensions to our current understanding of particle physics or point toward a breakdown of general relativity on cosmological scales.

  18. Dark Matter and Potential fields

    CERN Document Server

    Pestov, I

    2004-01-01

    A general concept of potential field is introduced. The potential field that one puts in correspondence with dark matter, has fundamental geometrical interpretation (parallel transport) and has intrinsically inherent in local symmetry. The equations of dark matter field are derived that are invariant with respect to the local transformations. It is shown how to reduce these equations to the Maxwell equations. Thus, the dark matter field may be considered as generalized electromagnetic field and a simple solution is given of the old problem to connect electromagnetic field with geometrical properties of the physical manifold itself. It is shown that gauge fixing renders generalized electromagnetic field effectively massive while the Maxwell electromagnetic field remains massless. To learn more about interactions between matter and dark matter on the microscopical level (and to recognize the fundamental role of internal symmetry) the general covariant Dirac equation is derived in the Minkowski space--time which...

  19. Composite Scalar Dark Matter

    CERN Document Server

    Frigerio, Michele; Riva, Francesco; Urbano, Alfredo

    2012-01-01

    We show that the dark matter (DM) could be a light composite scalar $\\eta$, emerging from a TeV-scale strongly-coupled sector as a pseudo Nambu-Goldstone boson (pNGB). Such state arises naturally in scenarios where the Higgs is also a composite pNGB, as in $O(6)/O(5)$ models, which are particularly predictive, since the low-energy interactions of $\\eta$ are determined by symmetry considerations. We identify the region of parameters where $\\eta$ has the required DM relic density, satisfying at the same time the constraints from Higgs searches at the LHC, as well as DM direct searches. Compositeness, in addition to justify the lightness of the scalars, can enhance the DM scattering rates and lead to an excellent discovery prospect for the near future. For a Higgs mass $m_h\\simeq 125$ GeV and a pNGB characteristic scale $f \\lesssim 1$ TeV, we find that the DM mass is either $m_\\eta \\simeq 50-70$ GeV, with DM annihilations driven by the Higgs resonance, or in the range 100-500 GeV, where the DM derivative interac...

  20. (Mainly) axion dark matter

    CERN Document Server

    Baer, Howard

    2015-01-01

    The strong CP problem of QCD is at heart a problem of naturalness: why is the F\\tilde{F} term highly suppressed in the QCD Lagrangian when it seems necessary to explain why there are three and not four light pions? The most elegant solution posits a spontaneously broken Peccei-Quinn (PQ) symmetry which requires the existence of the axion field a. The axion field settles to the minimum of its potential thus removing the offensive term but giving rise to the physical axion whose coherent oscillations can make up the cold dark matter. Only now are experiments such as ADMX beginning to explore QCD axion parameter space. Since a bonafide scalar particle-- the Higgs boson-- has been discovered, one might expect its mass to reside at the axion scale f_a~ 10^{11} GeV. The Higgs mass is elegantly stabilized by supersymmetry: in this case the axion is accompanied by its axino and saxion superpartners. Requiring naturalness also in the electroweak sector implies higgsino-like WIMPs so then we expect mixed axion-WIMP dar...

  1. Deceleration without dark matter

    CERN Document Server

    Jackson, J C; Dodgson, Marina

    1997-01-01

    Despite its title, a prominent conclusion is that if the Universe is spatially flat, then the best cosmological parameters are Omega_m=0.2, Omega_Lambda=0.8, with probable range 0.1dark matter model(Omega_0=1, Lambda_0=0) app...

  2. Mixed dark matter from technicolor

    DEFF Research Database (Denmark)

    Belyaev, Alexander; T. Frandsen, Mads; Sannino, Francesco

    2011-01-01

    We study natural composite cold dark matter candidates which are pseudo Nambu-Goldstone bosons (pNGB) in models of dynamical electroweak symmetry breaking. Some of these can have a significant thermal relic abundance, while others must be mainly asymmetric dark matter. By considering the thermal...... abundance alone we find a lower bound of MW on the pNGB mass when the (composite) Higgs is heavier than 115 GeV. Being pNGBs, the dark matter candidates are in general light enough to be produced at the LHC....

  3. Capturing prokaryotic dark matter genomes.

    Science.gov (United States)

    Gasc, Cyrielle; Ribière, Céline; Parisot, Nicolas; Beugnot, Réjane; Defois, Clémence; Petit-Biderre, Corinne; Boucher, Delphine; Peyretaillade, Eric; Peyret, Pierre

    2015-12-01

    Prokaryotes are the most diverse and abundant cellular life forms on Earth. Most of them, identified by indirect molecular approaches, belong to microbial dark matter. The advent of metagenomic and single-cell genomic approaches has highlighted the metabolic capabilities of numerous members of this dark matter through genome reconstruction. Thus, linking functions back to the species has revolutionized our understanding of how ecosystem function is sustained by the microbial world. This review will present discoveries acquired through the illumination of prokaryotic dark matter genomes by these innovative approaches.

  4. Constraining Dark Matter with ATLAS

    CERN Document Server

    Czodrowski, Patrick; The ATLAS collaboration

    2017-01-01

    The presence of a non-baryonic dark matter component in the Universe is inferred from the observation of its gravitational interaction. If dark matter interacts weakly with the Standard Model it would be produced at the LHC, escaping the detector and leaving a large missing transverse momentum as their signature. The ATLAS detector has developed a broad and systematic search program for dark matter production in LHC collisions. The results of these searches on the first 13 TeV data, their interpretation, and the design and possible evolution of the search program will be presented.

  5. "Dark Matter searches at ATLAS"

    CERN Document Server

    Gustavino, Giuliano; The ATLAS collaboration

    2016-01-01

    Although the existence of Dark Matter is a well-established hypothesis to explain a range of astrophysical and cosmological measurements, its nature and particle properties still remain one of the greatest unsolved puzzles of particle and astro-particle physics. The collider experiments have developed a comprehensive search program in this sector looking at a wide spectrum of channels in which a Dark Matter evidence can be traced. In this context the last results using the data sample collected at LHC at the new centre-of-mass energy of 13 TeV will be presented giving an outlook of the Dark Matter search status in the ATLAS experiment.

  6. Dark matter searches at ATLAS

    CERN Document Server

    Gustavino, Giuliano; The ATLAS collaboration

    2016-01-01

    Although the existence of Dark Matter is a well-established hypothesis to explain a range of astrophysical and cosmological measurements, its nature and particle properties still remain one of the greatest unsolved puzzles of particle and astro-particle physics. The collider experiments have developed a comprehensive search program in this sector looking at a wide spectrum of channels in which a Dark Matter evidence can be traced. In this context the last results using the data sample collected at LHC at the new centre-of-mass energy of 13 TeV will be presented giving an outlook of the Dark Matter search status in the ATLAS experiment.

  7. Decoupling Dark Energy from Matter

    CERN Document Server

    Brax, Philippe; Martin, Jerome; Davis, Anne-Christine

    2009-01-01

    We examine the embedding of dark energy in high energy models based upon supergravity and extend the usual phenomenological setting comprising an observable sector and a hidden supersymmetry breaking sector by including a third sector leading to the acceleration of the expansion of the universe. We find that gravitational constraints on the non-existence of a fifth force naturally imply that the dark energy sector must possess an approximate shift symmetry. When exact, the shift symmetry provides an example of a dark energy sector with a runaway potential and a nearly massless dark energy field whose coupling to matter is very weak, contrary to the usual lore that dark energy fields must couple strongly to matter and lead to gravitational inconsistencies. Moreover, the shape of the potential is stable under one-loop radiative corrections. When the shift symmetry is slightly broken by higher order terms in the Kahler potential, the coupling to matter remains small. However, the cosmological dynamics are largel...

  8. Unified Description of Dark Energy and Dark Matter

    OpenAIRE

    Petry, Walter

    2008-01-01

    Dark energy in the universe is assumed to be vacuum energy. The energy-momentum of vacuum is described by a scale-dependent cosmological constant. The equations of motion imply for the density of matter (dust) the sum of the usual matter density (luminous matter) and an additional matter density (dark matter) similar to the dark energy. The scale-dependent cosmological constant is given up to an exponent which is approximated by the experimentally decided density parameters of dark matter and...

  9. Dark matter and cosmic structure

    OpenAIRE

    2012-01-01

    We review the current standard model for the evolution of cosmic structure, tracing its development over the last forty years and focusing specifically on the role played by numerical simulations and on aspects related to the nature of dark matter.

  10. The LZ dark matter experiment

    Science.gov (United States)

    McKinsey, D. N.; LZ Collaboration

    2016-05-01

    The LUX and ZEPLIN collaborations have merged to construct a 7 tonne two-phase Xe dark matter detector, known as LUX-ZEPLIN or LZ. Chosen as one of the Generation 2 suite of dark matter direct detection experiments, LZ will probe spin-independent WIMP-nucleon cross sections down to 2 × 10-48 cm2 at 50 GeV/c2 within 3 years of operation, covering a substantial range of theoretically-motivated dark matter candidates. Along with dark matter interactions with Xe nuclei, LZ will also be sensitive to solar neutrinos emitted by the pp fusion process in the sun, neutrinos emitted by a nearby supernova and detected by coherent neutrino-nucleus scattering, certain classes of axions and axion-like particles, and neutrinoless double-beta decay of 136Xe. The design of LZ is presented, along with its expected backgrounds and projected sensitivity.

  11. Dark Matter search at LHC

    CERN Document Server

    Pazzini, Jacopo

    2016-01-01

    The results of recent searches for dark matter at the Large Hadron Collider at CERN are reported.The searches for dark matter performed with the first data collected during the LHC Run-2 by the CMS and ATLAS collaborations, corresponding to 2.1~\\fb and 3.2~\\fb of proton-proton collisions at $\\sqrt{s}=13~\\TeV$ respectively, are presented and categorized according to the event topology characteristics.No excesses are found above the standard model expectations and the results are interpreted in terms of upper limits in the production of dark matter using simplified theory models.The results are also translated into limits on the dark matter-nucleon spin-dependent and spin-independent cross section to compare with the results of direct detection experiments.

  12. Branon dark matter: an introduction

    CERN Document Server

    Cembranos, J A R; Maroto, A L

    2004-01-01

    This is a brief introduction to branon physics and its role in the dark matter problem. We pay special attention to the phenomenological consequences, both in high-energy particle physics experiments and in astrophysical and cosmological observations.

  13. The Dark Matter of Biology.

    Science.gov (United States)

    Ross, Jennifer L

    2016-09-06

    The inside of the cell is full of important, yet invisible species of molecules and proteins that interact weakly but couple together to have huge and important effects in many biological processes. Such "dark matter" inside cells remains mostly hidden, because our tools were developed to investigate strongly interacting species and folded proteins. Example dark-matter species include intrinsically disordered proteins, posttranslational states, ion species, and rare, transient, and weak interactions undetectable by biochemical assays. The dark matter of biology is likely to have multiple, vital roles to regulate signaling, rates of reactions, water structure and viscosity, crowding, and other cellular activities. We need to create new tools to image, detect, and understand these dark-matter species if we are to truly understand fundamental physical principles of biology.

  14. Gamma rays from dark matter

    CERN Document Server

    Bringmann, Torsten

    2011-01-01

    A leading hypothesis for the nature of the elusive dark matter are thermally produced, weakly interacting massive particles that arise in many theories beyond the standard model of particle physics. Their self-annihilation in astrophysical regions of high density provides a potential means of indirectly detecting dark matter through the annihilation products, which nicely complements direct and collider searches. Here, I review the case of gamma rays which are particularly promising in this respect: distinct and unambiguous spectral signatures would not only allow a clear discrimination from astrophysical backgrounds but also to extract important properties of the dark matter particles; powerful observational facilities like the Fermi Gamma-ray Space Telescope or upcoming large, ground-based Cherenkov telescope arrays will be able to probe a considerable part of the underlying, e.g. supersymmetric, parameter space. I conclude with a more detailed comparison of indirect and direct dark matter searches, showing...

  15. Tachyonic models of dark matter

    CERN Document Server

    Nikitin, Igor

    2016-01-01

    We consider a spherically symmetric stationary problem in General Relativity, including a black hole, inflow of normal and tachyonic matter and outflow of tachyonic matter. Computations in a weak field limit show that the resulting concentration of matter around the black hole leads to gravitational effects equivalent to those associated with dark matter halo. In particular, the model reproduces asymptotically constant galactic rotation curves, if the tachyonic flows of the central supermassive black hole in the galaxy are considered as a main contribution.

  16. Dark Matter searches at CMS

    CERN Document Server

    Kumar, Ashok

    2016-01-01

    This talk describes searches for directly produced Dark Matter particles in CMS. The searches are performed using the datasets recorded with the CMS detector in proton-proton collisions at center-of-mass energies of 8 and 13 TeV. Final states with a monojet, monophoton, and monolepton signature are among the final states considered, as well as dark-matter particles produced in association with bottom and top quarks.

  17. A History of Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Bertone, Gianfranco [U. Amsterdam, GRAPPA; Hooper, Dan [Fermilab

    2016-05-16

    Although dark matter is a central element of modern cosmology, the history of how it became accepted as part of the dominant paradigm is often ignored or condensed into a brief anecdotical account focused around the work of a few pioneering scientists. The aim of this review is to provide the reader with a broader historical perspective on the observational discoveries and the theoretical arguments that led the scientific community to adopt dark matter as an essential part of the standard cosmological model.

  18. Dark Matter from Starobinsky Supergravity

    OpenAIRE

    Addazi, Andrea; Khlopov, Maxim Yu.

    2017-01-01

    We review our recent results on dark matter from Starobinsky supergravity. In this context, a natural candidate for Cold Dark Matter is the gravitino. On the other hand, assuming the supersymmetry broken at scales much higher than the electroweak scale, gravitinos are super heavy particles. In this case, they may be non-thermally produced during inflation, in turn originated by the scalaron field with Starobinsky's potential.Assuming gravitinos as Lightest supersymmetric particles (LSSP), the...

  19. Dark matter and global symmetries

    Science.gov (United States)

    Mambrini, Yann; Profumo, Stefano; Queiroz, Farinaldo S.

    2016-09-01

    General considerations in general relativity and quantum mechanics are known to potentially rule out continuous global symmetries in the context of any consistent theory of quantum gravity. Assuming the validity of such considerations, we derive stringent bounds from gamma-ray, X-ray, cosmic-ray, neutrino, and CMB data on models that invoke global symmetries to stabilize the dark matter particle. We compute up-to-date, robust model-independent limits on the dark matter lifetime for a variety of Planck-scale suppressed dimension-five effective operators. We then specialize our analysis and apply our bounds to specific models including the Two-Higgs-Doublet, Left-Right, Singlet Fermionic, Zee-Babu, 3-3-1 and Radiative See-Saw models. Assuming that (i) global symmetries are broken at the Planck scale, that (ii) the non-renormalizable operators mediating dark matter decay have O (1) couplings, that (iii) the dark matter is a singlet field, and that (iv) the dark matter density distribution is well described by a NFW profile, we are able to rule out fermionic, vector, and scalar dark matter candidates across a broad mass range (keV-TeV), including the WIMP regime.

  20. Sterile neutrinos as dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Dodelson, S. [Fermi National Accelerator Lab., Batavia, IL (United States); Widrow, L.M. [Queen`s Univ., Kingston, ON (Canada). Dept. of Physics]|[Toronto Univ., ON (Canada). Canadian Inst. for Theoretical Astrophysics

    1993-03-01

    The simplest model that can accommodate a viable nonbaryonic dark matter candidate is the standard electroweak theory with the addition of right-handed or sterile neutrinos. This model has been studied extensively in the context of the hot dark matter scenario. We reexamine this model and find that hot, warm, and cold dark matter are all possibilities. We focus on the case where sterile neutrinos are the dark matter. Since their only direct coupling is to left-handed or active neutrinos, the most efficient production mechanism is via neutrino oscillations. If the production rate is always less than the expansion rate, then these neutrinos will never be in thermal equilibrium. However, they may still play a significant role in the dynamics of the Universe and possibly provide the missing mass necessary for closure. We consider a single generation of neutrino fields ({nu}{sub L}, {nu}{sub R}) with a Dirac mass, {mu}, and a Majorana mass for the right-handed components only, M. For M {much_gt} {mu} we show that the number density of sterile neutrinos is proportional to {mu}{sup 2}/M so that the energy density today is independent of M. However M is crucial in determining the large scale structure of the Universe. In particular, M {approx_equal} 0.1--1.0 key leads to warm dark matter and a structure formation scenario that may have some advantages over both the standard hot and cold dark matter scenarios.

  1. Modified Gravity Explains Dark Matter?

    CERN Document Server

    Katsuragawa, Taishi

    2016-01-01

    We explore a new horizon of modified gravity from the viewpoint of the particle physics. As a concrete example, we take the $F(R)$ gravity to raise a question: can a scalar particle ("scalaron") derived from the $F(R)$ gravity be a dark matter candidate? We place the limit on the form of function $F(R)$ from the constraint on the scalaron as a dark matter. The role of the screening mechanism and compatibility with the dark energy problem are addressed.

  2. Cold dark matter heats up.

    Science.gov (United States)

    Pontzen, Andrew; Governato, Fabio

    2014-02-13

    A principal discovery in modern cosmology is that standard model particles comprise only 5 per cent of the mass-energy budget of the Universe. In the ΛCDM paradigm, the remaining 95 per cent consists of dark energy (Λ) and cold dark matter. ΛCDM is being challenged by its apparent inability to explain the low-density 'cores' of dark matter measured at the centre of galaxies, where centrally concentrated high-density 'cusps' were predicted. But before drawing conclusions, it is necessary to include the effect of gas and stars, historically seen as passive components of galaxies. We now understand that these can inject heat energy into the cold dark matter through a coupling based on rapid gravitational potential fluctuations, explaining the observed low central densities.

  3. Dark Matter with Variable Masses

    Science.gov (United States)

    García-Bellido, Juan

    String effective theories contain a dilaton scalar field which couples to gravity, matter and radiation. In general, particle masses will have different dilaton couplings. We can always choose a conformal frame in which baryons have constant masses while (nonbaryonic) dark matter have variable masses, in the context of a scalar-tensor gravity theory. We are interested in the phenomenology of this scenario. Dark matter with variable masses could have a measurable effect on the dynamical motion of the halo of spiral galaxies, which may affect cold dark matter models of galaxy formation. As a consequence of variable masses, the energy-momentum tensor is not conserved; there is a dissipative effect, due to the dilaton coupling, associated with a “dark entropy” production. In particular, if axions had variable masses they could be diluted away, thus opening the “axion window.” Assuming that dark matter with variable masses dominates the cosmological evolution during the matter era, it will affect the primordial nucleosynthesis predictions on the abundances of light elements. Furthermore, the dilaton also couples to radiation in the form of a variable gauge coupling. Experimental bounds will constrain the parameters of this model.

  4. Lectures on Dark Matter Physics

    Science.gov (United States)

    Lisanti, Mariangela

    Rotation curve measurements from the 1970s provided the first strong indication that a significant fraction of matter in the Universe is non-baryonic. In the intervening years, a tremendous amount of progress has been made on both the theoretical and experimental fronts in the search for this missing matter, which we now know constitutes nearly 85% of the Universe's matter density. These series of lectures provide an introduction to the basics of dark matter physics. They are geared for the advanced undergraduate or graduate student interested in pursuing research in high-energy physics. The primary goal is to build an understanding of how observations constrain the assumptions that can be made about the astro- and particle physics properties of dark matter. The lectures begin by delineating the basic assumptions that can be inferred about dark matter from rotation curves. A detailed discussion of thermal dark matter follows, motivating Weakly Interacting Massive Particles, as well as lighter-mass alternatives. As an application of these concepts, the phenomenology of direct and indirect detection experiments is discussed in detail.

  5. Maverick dark matter at colliders

    Science.gov (United States)

    Beltrán, Maria; Hooper, Dan; Kolb, Edward W.; Krusberg, Zosia A. C.; Tait, Tim M. P.

    2010-09-01

    Assuming that dark matter is a weakly interacting massive particle (WIMP) species X produced in the early Universe as a cold thermal relic, we study the collider signal of pp or pbar{p} rightarrow bar{X}X + jets and its distinguishability from standard-model background processes associated with jets and missing energy. We assume that the WIMP is the sole particle related to dark matter within reach of the LHC — a “maverick” particle — and that it couples to quarks through a higher dimensional contact interaction. We simulate the WIMP final-state signal Xbar{X} + jets and dominant standard-model (SM) background processes and find that the dark-matter production process results in higher energies for the colored final state partons than do the standard-model background processes. As a consequence, the detectable signature of maverick dark matter is an excess over standard-model expectations of events consisting of large missing transverse energy, together with large leading jet transverse momentum and scalar sum of the transverse momenta of the jets. Existing Tevatron data and forthcoming LHC data can constrain (or discover!) maverick dark matter.

  6. Inflationary Imprints on Dark Matter

    CERN Document Server

    Nurmi, Sami; Tuominen, Kimmo

    2015-01-01

    We show that dark matter abundance and the inflationary scale $H$ could be intimately related. Standard Model extensions with Higgs mediated couplings to new physics typically contain extra scalars displaced from vacuum during inflation. If their coupling to Standard Model is weak, they will not thermalize and may easily constitute too much dark matter reminiscent to the moduli problem. As an example we consider Standard Model extended by a $Z_2$ symmetric singlet $s$ coupled to the Standard Model Higgs $\\Phi$ via $\\lambda \\Phi^{\\dag}\\Phi s^2$. Dark matter relic density is generated non-thermally for $\\lambda \\lesssim 10^{-7}$. We show that the dark matter yield crucially depends on the inflationary scale. For $H\\sim 10^{10}$ GeV we find that the singlet self-coupling and mass should lie in the regime $\\lambda_{\\rm s}\\gtrsim 10^{-9}$ and $m_{\\rm s}\\lesssim 50$ GeV to avoid dark matter overproduction.

  7. Dark Energy vs. Dark Matter: Towards a Unifying Scalar Field?

    OpenAIRE

    Arbey, A.

    2008-01-01

    The standard model of cosmology suggests the existence of two components, "dark matter" and "dark energy", which determine the fate of the Universe. Their nature is still under investigation, and no direct proof of their existences has emerged yet. There exist alternative models which reinterpret the cosmological observations, for example by replacing the dark energy/dark matter hypothesis by the existence of a unique dark component, the dark fluid, which is able to mimic the behaviour of bot...

  8. Quantum Haplodynamics, Dark Matter, and Dark Energy

    Directory of Open Access Journals (Sweden)

    Harald Fritzsch

    2014-01-01

    of the associated gauge group SU(2h is of the order of Λh≃0.3 TeV. One scalar state has zero haplon number and is the resonance observed at the LHC. In addition, there exist new bound states of haplons with no counterpart in the SM, having a mass of the order of 0.5 TeV up to a few TeV. In particular, a neutral scalar state with haplon number 4 is stable and can provide the dark matter in the universe. The QHD, QCD, and QED couplings can unify at the Planck scale. If this scale changes slowly with cosmic time, all of the fundamental couplings, the masses of the nucleons and of the DM particles, including the cosmological term (or vacuum energy density, will evolve with time. This could explain the dark energy of the universe.

  9. How dark matter came to matter

    Science.gov (United States)

    de Swart, J. G.; Bertone, G.; van Dongen, J.

    2017-03-01

    The history of the dark matter problem can be traced back to at least the 1930s, but it was not until the early 1970s that the issue of 'missing matter' was widely recognized as problematic. In the latter period, previously separate issues involving missing mass were brought together in a single anomaly. We argue that reference to a straightforward accumulation of evidence alone is inadequate to comprehend this episode. Rather, the rise of cosmological research, the accompanying renewed interest in the theory of relativity and changes in the manpower division of astronomy in the 1960s are key to understanding how dark matter came to matter. At the same time, this story may also enlighten us on the methodological dimensions of past practices of physics and cosmology.

  10. Studying dark matter haloes with weak lensing

    NARCIS (Netherlands)

    Velander, Malin Barbro Margareta

    2012-01-01

    Our Universe is comprised not only of normal matter but also of unknown components: dark matter and dark energy. This Thesis recounts studies of dark matter haloes, using a technique known as weak gravitational lensing, in order to learn more about the nature of these dark components. The haloes

  11. Studying dark matter haloes with weak lensing

    NARCIS (Netherlands)

    Velander, Malin Barbro Margareta

    2012-01-01

    Our Universe is comprised not only of normal matter but also of unknown components: dark matter and dark energy. This Thesis recounts studies of dark matter haloes, using a technique known as weak gravitational lensing, in order to learn more about the nature of these dark components. The haloes ana

  12. How Dark Matter Came to Matter

    OpenAIRE

    de Swart, Jaco; Bertone, Gianfranco; Dongen, Jeroen

    2017-01-01

    The history of the dark matter problem can be traced back to at least the 1930s, but it was not until the early 1970s that the issue of 'missing matter' was widely recognized as problematic. In the latter period, previously separate issues involving missing mass were brought together in a single anomaly. We argue that reference to a straightforward 'accumulation of evidence' alone is inadequate to comprehend this episode. Rather, the rise of cosmological research, the accompanying renewed int...

  13. Dark Matter searches at ATLAS

    CERN Document Server

    Cortes-Gonzalez, Arely; The ATLAS collaboration

    2016-01-01

    If Dark Matter interacts weakly with the Standard Model it can be produced at the LHC. It can be identified via initial state radiation (ISR) of the incoming partons, leaving a signature in the detector of the ISR particle (jet, photon, Z or W) recoiling off of the invisible Dark Matter particles, resulting in a large momentum imbalance. Many signatures of large missing transverse momentum recoiling against jets, photons, heavy-flavor quarks, weak gauge bosons or Higgs bosons provide an interesting channel for Dark Matter searches. These LHC searches complement those from (in)direct detection experiments. Results of these searches with the ATLAS experiment, in both effective field theory and simplified models with pair WIMP production are discussed. Both 8TeV and 13TeV pp collision data has been used in these results.

  14. Dark Matter in 3D

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Daniele S.M.; Hedri, Sonia El; Wacker, Jay G.

    2012-04-01

    We discuss the relevance of directional detection experiments in the post-discovery era and propose a method to extract the local dark matter phase space distribution from directional data. The first feature of this method is a parameterization of the dark matter distribution function in terms of integrals of motion, which can be analytically extended to infer properties of the global distribution if certain equilibrium conditions hold. The second feature of our method is a decomposition of the distribution function in moments of a model independent basis, with minimal reliance on the ansatz for its functional form. We illustrate our method using the Via Lactea II N-body simulation as well as an analytical model for the dark matter halo. We conclude that O(1000) events are necessary to measure deviations from the Standard Halo Model and constrain or measure the presence of anisotropies.

  15. Dark matter in 3D

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Daniele S.M. [Center for Particle Astrophysics, Fermi National Accelerator Laboratory,Wilson St & Kirk Rd, Batavia, IL 60510 (United States); Hedri, Sonia El; Wacker, Jay G. [SLAC National Accelerator Laboratory, Stanford University,2575 Sand Hill Rd, Menlo Park, CA 94025 (United States); Stanford Institute for Theoretical Physics, Department of Physics, Stanford University,382 Via Pueblo Mall, Stanford, CA 94305 (United States)

    2016-03-21

    We discuss the relevance of directional detection experiments in the post-discovery era and propose a method to extract the local dark matter phase space distribution from directional data. The first feature of this method is a parameterization of the dark matter distribution function in terms of integrals of motion, which can be analytically extended to infer properties of the global distribution if certain equilibrium conditions hold. The second feature of our method is a decomposition of the distribution function in moments of a model independent basis, with minimal reliance on the ansatz for its functional form. We illustrate our method using the Via Lactea II N-body simulation as well as an analytical model for the dark matter halo. We conclude that O(1000) events are necessary to measure deviations from the Standard Halo Model and constrain or measure the presence of anisotropies.

  16. The DAMIC Dark Matter Experiment

    Energy Technology Data Exchange (ETDEWEB)

    de Mello Neto, J. R.T. [Federal Univ. of Rio de Janeiro (Brazil). et al

    2015-10-07

    The DAMIC (DArk Matter In CCDs) experiment uses high-resistivity, scientific-grade CCDs to search for dark matter. The CCD’s low electronic noise allows an unprecedently low energy threshold of a few tens of eV; this characteristic makes it possible to detect silicon recoils resulting from interactions of low-mass WIMPs. In addition, the CCD’s high spatial resolution and the excellent energy response results in very effective background identification techniques. The experiment has a unique sensitivity to dark matter particles with masses below 10 GeV/c2. Previous results have motivated the construction of DAMIC100, a 100 grams silicon target detector currently being installed at SNOLAB. The mode of operation and unique imaging capabilities of the CCDs, and how they may be exploited to characterize and suppress backgrounds are discussed, as well as physics results after one year of data taking.

  17. Dark matter via massive bigravity

    Science.gov (United States)

    Blanchet, Luc; Heisenberg, Lavinia

    2015-05-01

    In this work we investigate the existence of relativistic models for dark matter in the context of bimetric gravity, used here to reproduce the modified Newtonian dynamics (MOND) at galactic scales. For this purpose we consider two different species of dark matter particles that separately couple to the two metrics of bigravity. These two sectors are linked together via an internal U (1 ) vector field, and some effective composite metric built out of the two metrics. Among possible models only certain classes of kinetic and interaction terms are allowed without invoking ghost degrees of freedom. Along these lines we explore the number of allowed kinetic terms in the theory and point out the presence of ghosts in a previous model. Finally, we propose a promising class of ghost-free candidate theories that could provide the MOND phenomenology at galactic scales while reproducing the standard cold dark matter model at cosmological scales.

  18. Heavy spin-2 Dark Matter

    CERN Document Server

    Babichev, Eugeny; Raidal, Martti; Schmidt-May, Angnis; Urban, Federico; Veermäe, Hardi; von Strauss, Mikael

    2016-01-01

    We provide further details on a recent proposal addressing the nature of the dark sectors in cosmology and demonstrate that all current observations related to Dark Matter can be explained by the presence of a heavy spin-2 particle. Massive spin-2 fields and their gravitational interactions are uniquely described by ghost-free bimetric theory, which is a minimal and natural extension of General Relativity. In this setup, the largeness of the physical Planck mass is naturally related to extremely weak couplings of the heavy spin-2 field to baryonic matter and therefore explains the absence of signals in experiments dedicated to Dark Matter searches. It also ensures the phenomenological viability of our model as we confirm by comparing it with cosmological and local tests of gravity. At the same time, the spin-2 field possesses standard gravitational interactions and it decays universally into all Standard Model fields but not into massless gravitons. Matching the measured DM abundance together with the require...

  19. Caustics in dark matter haloes

    CERN Document Server

    Mohayaee, R; Mohayaee, Roya; Colombi, Stephane; Fort, Bernard; Gavazzi, Raphael; Shandarin, Sergei; Touma, Jihad

    2005-01-01

    Cold dark matter haloes are populated by high-density structures with sharply-peaked profiles known as caustics which have not yet been resolved by 3-dimensional numerical simulations. Here, we derive semi-analytic expressions for the density profiles near caustics in haloes which form by self-similar accretions of dark matter with infinitesimal velocity dispersion. A simple rescaling shows that these profiles are universal: they are valid for all caustics and irrespective of physical parameters of the halo. We derive the maximum density of the caustics and show that it depends on the velocity dispersion and the caustic location. Finally, we demonstrate that there can be a significant contribution to the emission measure from dark matter particle annihilation in the caustics.

  20. Dipolar Dark Matter and Cosmology

    CERN Document Server

    Blanchet, Luc; Tiec, Alexandre Le; Marsat, Sylvain

    2013-01-01

    The phenomenology of the modified Newtonian dynamics (MOND) can be recovered from a mechanism of "gravitational polarization" of some dipolar medium playing the role of dark matter. We review a relativistic model of dipolar dark matter (DDM) within standard general relativity to describe, at some effective level, a fluid polarizable in a gravitational field. At first order in cosmological perturbation theory, this model is equivalent to the concordance cosmological scenario, or Lambda-cold dark matter (CDM) model. At second order, however, the internal energy of DDM modifies the curvature perturbation generated by CDM. This correction, which depends quadratically on the dipole, induces a new type of non-Gaussianity in the bispectrum of the curvature perturbation with respect to standard CDM. Recent observations by the Planck satellite impose stringent constraints on the primordial value of the dipole field.

  1. Dark matter in the universe

    CERN Document Server

    Seigar, Marc S

    2015-01-01

    The study of dark matter, in both astrophysics and particle physics, has emerged as one of the most active and exciting topics of research in recent years. This book reviews the history behind the discovery of missing mass (or unseen mass) in the universe, and ties this into the proposed extensions to the Standard Model of Particle Physics (such as Supersymmetry), which were being proposed within the same time frame. This book is written as an introduction to these problems at the forefront of astrophysics and particle physics, with the goal of conveying the physics of dark matter to beginning undergraduate majors in scientific fields. The book goes on to describe existing and upcoming experiments and techniques, which will be used to detect dark matter either directly or indirectly.

  2. Dark Matter and Global Symmetries

    CERN Document Server

    Mambrini, Yann; Queiroz, Farinaldo S

    2015-01-01

    General considerations in general relativity and quantum mechanics rule out global symmetries in the context of any consistent theory of quantum gravity. Motivated by this, we derive stringent and robust bounds from gamma-ray, X-ray, cosmic ray, neutrino and CMB data on models that invoke global symmetries to stabilize the dark matter particle. Under realistic assumptions we are able to rule out fermionic, vector, and scalar dark matter candidates across a broad mass range (keV-TeV), including the WIMP regime. We then specialize our analysis and apply our bounds to specific models such as the Two-Higgs-Doublet, Left-Right, Singlet Fermionic, Zee-Babu, 3-3-1 and Radiative See-Saw models. In the supplemental material we derive robust, updated model-independent limits on the dark matter lifetime.

  3. Indirect searches for dark matter

    Indian Academy of Sciences (India)

    Marco Cirelli

    2012-11-01

    The current status of indirect searches for dark matter has been reviewed in a schematic way here. The main relevant experimental results of the recent years have been listed and the excitements and disappointments that their phenomenological interpretations in terms of almost-standard annihilating dark matter have brought along have been discussed. The main sources of uncertainties that affect this kind of searches are also listed. [Report number: Saclay T11/206, CERN-PH-TH/2011-257, extended version in arXiv:1202.1454], [Prepared for the Proceedings of Lepton–Photon 2011, Mumbai, India, 22–27 Aug. 2011].

  4. Invisible Higgs and Dark Matter

    DEFF Research Database (Denmark)

    Heikinheimo, Matti; Tuominen, Kimmo; Virkajärvi, Jussi Tuomas

    2012-01-01

    We investigate the possibility that a massive weakly interacting fermion simultaneously provides for a dominant component of the dark matter relic density and an invisible decay width of the Higgs boson at the LHC. As a concrete model realizing such dynamics we consider the minimal walking...... technicolor, although our results apply more generally. Taking into account the constraints from the electroweak precision measurements and current direct searches for dark matter particles, we find that such scenario is heavily constrained, and large portions of the parameter space are excluded....

  5. Dark Matter Searches at ATLAS

    CERN Document Server

    Mehlhase, Sascha; The ATLAS collaboration

    2015-01-01

    The large excess of Dark Matter observed in the Universe and its particle nature is one of the key problems yet to be solved in particle physics. Despite the extensive success of the Standard Model, it is not able to explain this excess, which instead might be due to yet unknown particles, such as Weakly Interacting Massive Particles, that could be produced at the Large Hadron Collider. This contribution will give an overview of different approaches to finding evidence for Dark Matter with the ATLAS experiment in $\\sqrt{s}=8~\\mathrm{TeV}$ Run-1 data.

  6. On Gaugino Dominated Dark Matter

    CERN Document Server

    Ennadifi, S E; 10.4236/jmp.2010.16056

    2011-01-01

    Using the neutral gauginos of SU(2)L* U(1)Y and hybridization ideas below the GUT scale, we approach the Dark Matter particle within the Minimal Supersymmetric Standard Model. In the energy range MGUT-MZ where supergravity effects can be ignored, it is proposed that such DM particle could be interpreted in terms of a mixture of Bino and Wino states with a lower bound mass MDM sup or eq to 65GeV not far above the electroweak scale to account for the observed Dark Matter density. We establish the theoretical origin of this particle and study as well its compositeness and its mass bound.

  7. Did LIGO detect dark matter?

    CERN Document Server

    Bird, Simeon; Muñoz, Julian B; Ali-Haïmoud, Yacine; Kamionkowski, Marc; Kovetz, Ely D; Raccanelli, Alvise; Riess, Adam G

    2016-01-01

    We consider the possibility that the black-hole (BH) binary detected by LIGO may be a signature of dark matter. Interestingly enough, there remains a window for masses $10\\,M_\\odot \\lesssim M_{\\rm bh} \\lesssim 100\\, M_\\odot$ where primordial black holes (PBHs) may constitute the dark matter. If two BHs in a galactic halo pass sufficiently close, they can radiate enough energy in gravitational waves to become gravitationally bound. The bound BHs will then rapidly spiral inward due to emission of gravitational radiation and ultimately merge. Uncertainties in the rate for such events arise from our imprecise knowledge of the phase-space structure of galactic halos on the smallest scales. Still, reasonable estimates span a range that overlaps the $2-53$ Gpc$^{-3}$ yr$^{-1}$ rate estimated from GW150914, thus raising the possibility that LIGO has detected PBH dark matter. PBH mergers are likely to be distributed spatially more like dark matter than luminous matter and have no optical nor neutrino counterparts. The...

  8. Did LIGO Detect Dark Matter?

    Science.gov (United States)

    Bird, Simeon; Cholis, Ilias; Muñoz, Julian B; Ali-Haïmoud, Yacine; Kamionkowski, Marc; Kovetz, Ely D; Raccanelli, Alvise; Riess, Adam G

    2016-05-20

    We consider the possibility that the black-hole (BH) binary detected by LIGO may be a signature of dark matter. Interestingly enough, there remains a window for masses 20M_{⊙}≲M_{bh}≲100M_{⊙} where primordial black holes (PBHs) may constitute the dark matter. If two BHs in a galactic halo pass sufficiently close, they radiate enough energy in gravitational waves to become gravitationally bound. The bound BHs will rapidly spiral inward due to the emission of gravitational radiation and ultimately will merge. Uncertainties in the rate for such events arise from our imprecise knowledge of the phase-space structure of galactic halos on the smallest scales. Still, reasonable estimates span a range that overlaps the 2-53  Gpc^{-3} yr^{-1} rate estimated from GW150914, thus raising the possibility that LIGO has detected PBH dark matter. PBH mergers are likely to be distributed spatially more like dark matter than luminous matter and have neither optical nor neutrino counterparts. They may be distinguished from mergers of BHs from more traditional astrophysical sources through the observed mass spectrum, their high ellipticities, or their stochastic gravitational wave background. Next-generation experiments will be invaluable in performing these tests.

  9. Dark Matter and Dark Energy The Critical Questions

    CERN Document Server

    Turner, M S

    2002-01-01

    Stars account for only about 0.5% of the content of the Universe; the bulk of the Universe is optically dark. The dark side of the Universe is comprised of: at least 0.1% light neutrinos; 3.5% +/- 1% baryons; 29% +/- 4% cold dark matter; and 66% +/- 6% dark energy. Now that we have characterized the dark side of the Universe, the challenge is to understand it. The critical questions are: (1) What form do the dark baryons take? (2) What is (are) the constituent(s) of the cold dark matter? (3) What is the nature of the mysterious dark energy that is causing the Universe to speed up.

  10. Two-portal Dark Matter

    CERN Document Server

    Ghorbani, Karim

    2015-01-01

    We propose a dark matter model in which a fermionic dark matter (DM) candidate communicates with standard model particles through two distinct portals: Higgs and vector portals. The dark sector is charged under a $U(1)'$ gauge symmetry while the standard model has a leptophobic interaction with the dark vector boson. The leading contribution of DM-nucleon elastic scattering cross section begins at one-loop level. The model meets all the constraints imposed by direct detection experiments provided by LUX and XENON100, observed relic abundance according to WMAP and Planck, and the invisible Higgs decay width measured at the LHC. It turns out that the dark matter mass in the viable parameter space can take values from a few GeV up to 1 TeV. In addition, we can find in the constrained regions of the parameter space a DM mass of $\\sim 34$ GeV annihilating into $b$ quark pair, which explains the Fermi-LAT gamma-ray excess.

  11. Dark Matter Searches

    CERN Document Server

    Baudis, L

    2006-01-01

    More than 90% of matter in the Universe could be composed of heavy particles, which were non-relativistic, or 'cold', when they froze-out from the primordial soup. I will review current searches for these hypothetical particles, both via interactions with nuclei in deep underground detectors, and via the observation of their annihilation products in the Sun, galactic halo and galactic center.

  12. Diphoton resonance confronts dark matter

    Science.gov (United States)

    Choi, Soo-Min; Kang, Yoo-Jin; Lee, Hyun Min

    2016-07-01

    As an interpretation of the 750 GeV diphoton excesses recently reported by both ATLAS and CMS collaborations, we consider a simple extension of the Standard Model with a Dirac fermion dark matter where a singlet complex scalar field mediates between dark matter and SM particles via effective couplings to SM gauge bosons and/or Higgs-portal. In this model, we can accommodate the diphoton events through the direct and/or cascade decays of pseudo-scalar and real scalar partners of the complex scalar field. We show that mono-jet searches and gamma-ray observations are complementary in constraining the region where the width of the diphoton resonance can be enhanced due to the couplings of the resonance to dark matter and the correct relic density is obtained. In the case of cascade decay of the resonance, the effective couplings of singlet scalars can be smaller, but the model is still testable by the future discrimination between single photon and photon-jet at the LHC as well as the gamma-ray searches for the cascade annihilation of dark matter.

  13. Dark matter in NGC 4472

    Science.gov (United States)

    Loewenstein, Michael

    1992-01-01

    An attempt is made to constrain the total mass distribution of the giant elliptical galaxy NGC 4472 by constructing simultaneous equilibrium models for the gas and stars. Emphasis is given to reconciling the value of the emission-weighted average value of kT derived from the Ginga spectrum with the amount of dark matter needed to account for velocity dispersion observations.

  14. Modified gravity without dark matter

    NARCIS (Netherlands)

    Sanders, Robert; Papantonopoulos, L

    2007-01-01

    On an empirical level, the most successful alternative to dark matter in bound gravitational systems is the modified Newtonian dynamics, or MOND, proposed by Milgrom. Here I discuss the attempts to formulate MOND as a modification of General Relativity. I begin with a summary of the phenomenological

  15. Black Component of Dark Matter

    Directory of Open Access Journals (Sweden)

    A. V. Grobov

    2014-01-01

    Full Text Available A mechanism of primordial black hole formation with specific mass spectrum is discussed. It is shown that these black holes could contribute to the energy density of dark matter. Our approach is elaborated in the framework of universal extra dimensions.

  16. Modified Gravity or Dark Matter?

    CERN Document Server

    Moffat, J W

    2011-01-01

    Modified Gravity (MOG) has been used successfully to explain the rotation curves of galaxies, the motion of galaxy clusters, the Bullet Cluster, and cosmological observations without the use of dark matter or Einstein's cosmological constant. We review the main theoretical ideas and applications of the theory to astrophysical and cosmological data.

  17. MSSM Dark Matter Without Prejudice

    CERN Document Server

    Gainer, James S

    2009-01-01

    Recently we examined a large number of points in a 19-dimensional parameter subspace of the CP-conserving MSSM with Minimal Flavor Violation. We determined whether each of these points satisfied existing theoretical, experimental, and observational constraints. Here we discuss the properties of the parameter space points allowed by existing data that are relevant for dark matter searches.

  18. MSSM Dark Matter Without Prejudice

    Science.gov (United States)

    Gainer, James S.

    2010-02-01

    Recently we examined a large number of points in a 19-dimensional parameter subspace of the CP-conserving MSSM with Minimal Flavor Violation. We determined whether each of these points satisfied existing theoretical, experimental, and observational constraints. Here we discuss the properties of the parameter space points allowed by existing data that are relevant for dark matter searches.

  19. The anomaly of dark matter

    CERN Document Server

    Sidharth, Burra G

    2016-01-01

    Recent observations by Riess and coworkers have indicated that the universe is expanding some seven percent faster than the currently accepted cosmological model described. In this paper we argue that this discrepancy can be eliminated by considering a universe consisting only of matter and dark energy.

  20. Dark Matter searches at ATLAS

    CERN Document Server

    Schramm, S; The ATLAS collaboration

    2014-01-01

    Numerous independent astrophysical experiments have observed and measured the influence of the phenomenon named Dark Matter, but its nature is still unknown. If the assumption that Dark Matter is a particle which has a weak coupling to the Standard Model is valid, then collider searches have the ability to search for the production of this new Weakly Interacting Massive Particle (WIMP). Any Dark Matter particles produced in collisions would escape the detector without being observed. Signatures which include an initial-state radiated particle balancing a large amount of Missing Transverse Momentum, known as mono-X topologies, provide a generic means of conducting Dark Matter searches. ATLAS has conducted several mono-X searches, including recoiling jets, photons, W/Z bosons which decay hadronically, and Z bosons which decay leptonically. Searches were carried out with centre of mass energies of both 7 and 8 TeV, and with up to 20/fb of data. No evidence for physics beyond the Standard Model is observed, and t...

  1. Scalar Field (Wave) Dark Matter

    CERN Document Server

    Matos, T

    2016-01-01

    Recent high-quality observations of dwarf and low surface brightness (LSB) galaxies have shown that their dark matter (DM) halos prefer flat central density profiles. On the other hand the standard cold dark matter model simulations predict a more cuspy behavior. Feedback from star formation has been widely used to reconcile simulations with observations, this might be successful in field dwarf galaxies but its success in low mass galaxies remains uncertain. One model that have received much attention is the scalar field dark matter model. Here the dark matter is a self-interacting ultra light scalar field that forms a cosmological Bose-Einstein condensate, a mass of $10^{-22}$eV/c$^2$ is consistent with flat density profiles in the centers of dwarf spheroidal galaxies, reduces the abundance of small halos, might account for the rotation curves even to large radii in spiral galaxies and has an early galaxy formation. The next generation of telescopes will provide better constraints to the model that will help...

  2. Unified Dark Matter Scalar Field Models

    Directory of Open Access Journals (Sweden)

    Daniele Bertacca

    2010-01-01

    of a single scalar field accounts for a unified description of the Dark Matter and Dark Energy sectors, dubbed Unified Dark Matter (UDM models. In this framework, we consider the general Lagrangian of -essence, which allows to find solutions around which the scalar field describes the desired mixture of Dark Matter and Dark Energy. We also discuss static and spherically symmetric solutions of Einstein's equations for a scalar field with noncanonical kinetic term, in connection with galactic halo rotation curves.

  3. Dark matter assimilation into the baryon asymmetry

    Energy Technology Data Exchange (ETDEWEB)

    D' Eramo, Francesco; Fei, Lin; Thaler, Jesse, E-mail: fderamo@mit.edu, E-mail: lfei@mit.edu, E-mail: jthaler@mit.edu [Center for Theoretical Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2012-03-01

    Pure singlets are typically disfavored as dark matter candidates, since they generically have a thermal relic abundance larger than the observed value. In this paper, we propose a new dark matter mechanism called {sup a}ssimilation{sup ,} which takes advantage of the baryon asymmetry of the universe to generate the correct relic abundance of singlet dark matter. Through assimilation, dark matter itself is efficiently destroyed, but dark matter number is stored in new quasi-stable heavy states which carry the baryon asymmetry. The subsequent annihilation and late-time decay of these heavy states yields (symmetric) dark matter as well as (asymmetric) standard model baryons. We study in detail the case of pure bino dark matter by augmenting the minimal supersymmetric standard model with vector-like chiral multiplets. In the parameter range where this mechanism is effective, the LHC can discover long-lived charged particles which were responsible for assimilating dark matter.

  4. Vacuum energy as dark matter

    Science.gov (United States)

    Albareti, F. D.; Cembranos, J. A. R.; Maroto, A. L.

    2014-12-01

    We consider the vacuum energy of massive quantum fields in an expanding universe. We define a conserved renormalized energy-momentum tensor by means of a comoving cutoff regularization. Using exact solutions for de Sitter space-time, we show that in a certain range of mass and renormalization scales there is a contribution to the vacuum energy density that scales as nonrelativistic matter and that such a contribution becomes dominant at late times. By means of the WKB approximation, we find that these results can be extended to arbitrary Robertson-Walker geometries. We study the range of parameters in which the vacuum energy density would be compatible with current limits on dark matter abundance. Finally, by calculating the vacuum energy in a perturbed Robertson-Walker background, we obtain the speed of sound of density perturbations and show that the vacuum energy density contrast can grow on sub-Hubble scales as in standard cold dark matter scenarios.

  5. Vacuum energy as dark matter

    CERN Document Server

    Albareti, F D; Maroto, A L

    2014-01-01

    We consider the vacuum energy of massive quantum fields in an expanding universe. We define a conserved renormalized energy-momentum tensor by means of a comoving cutoff regularization. Using exact solutions for de Sitter space-time, we show that in a certain range of mass and renormalization scales there is a contribution to the vacuum energy density that scales as non-relativistic matter and that such a contribution becomes dominant at late times. By means of the WKB approximation, we find that these results can be extended to arbitrary Robertson-Walker geometries. We study the range of parameters in which the vacuum energy density would be compatible with current limits on dark matter abundance. Finally, by calculating the vacuum energy in a perturbed Robertson-Walker background, we obtain the speed of sound of density perturbations and show that the vacuum energy density contrast can grow on sub-Hubble scales as in standard cold dark matter scenarios.

  6. Sterile neutrino portal to Dark Matter II: exact dark symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Escudero, Miguel; Rius, Nuria [Universidad de Valencia-CSIC, Departamento de Fisica Teorica and IFIC, C/Catedratico Jose Beltran, 2, 46980, Paterna (Spain); Sanz, Veronica [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom)

    2017-06-15

    We analyze a simple extension of the standard model (SM) with a dark sector composed of a scalar and a fermion, both singlets under the SM gauge group but charged under a dark sector symmetry group. Sterile neutrinos, which are singlets under both groups, mediate the interactions between the dark sector and the SM particles, and generate masses for the active neutrinos via the seesaw mechanism. We explore the parameter space region where the observed Dark Matter relic abundance is determined by the annihilation into sterile neutrinos, both for fermion and scalar Dark Matter particles. The scalar Dark Matter case provides an interesting alternative to the usual Higgs portal scenario. We also study the constraints from direct Dark Matter searches and the prospects for indirect detection via sterile neutrino decays to leptons, which may be able to rule out Dark Matter masses below and around 100 GeV. (orig.)

  7. Sterile Neutrino portal to Dark Matter II: Exact Dark symmetry

    CERN Document Server

    Escudero, Miguel; Sanz, Verónica

    2016-01-01

    We analyze a simple extension of the Standard Model (SM) with a dark sector composed of a scalar and a fermion, both singlets under the SM gauge group but charged under a dark sector symmetry group. Sterile neutrinos, which are singlets under both groups, mediate the interactions between the dark sector and the SM particles, and generate masses for the active neutrinos via the seesaw mechanism. We explore the parameter space region where the observed Dark Matter relic abundance is determined by the annihilation into sterile neutrinos, both for fermion and scalar Dark Matter particles. The scalar Dark Matter case provides an interesting alternative to the usual Higgs portal scenario. We also study the constraints from direct Dark Matter searches and the prospects for indirect detection via sterile neutrino decays to leptons, which may be able to rule out Dark Matter masses below and around 100 GeV.

  8. New Spectral Features from Bound Dark Matter

    CERN Document Server

    Catena, Riccardo

    2016-01-01

    We demonstrate that dark matter particles gravitationally bound to the Earth can induce a characteristic nuclear recoil signal at low energies in direct detection experiments. The new spectral feature we predict can provide the ultimate smoking gun for dark matter discovery for experiments with positive signal but unclear background. The new feature is universal, in that the ratio of bound over halo dark matter event rates at detectors is independent of the dark matter-nucleon cross section.

  9. New Frontiers in Dark Matter Detection

    Science.gov (United States)

    Thaler, Jesse

    2017-01-01

    Dark matter, detected thus far only through its couplings to gravity, remains an enigma. It is therefore essential to pursue a broad portfolio of search strategies to test for non-gravitational interactions between dark matter and visible matter. In this talk, I give an overview of recent progress in detecting dark matter and related particles, ranging from ultralight axion-like particles to hidden sector dark forces.

  10. New Spectral Features from Bound Dark Matter

    DEFF Research Database (Denmark)

    Catena, Riccardo; Kouvaris, Chris

    2016-01-01

    We demonstrate that dark matter particles gravitationally bound to the Earth can induce a characteristic nuclear recoil signal at low energies in direct detection experiments. The new spectral feature we predict can provide the ultimate smoking gun for dark matter discovery for experiments...... with positive signal but unclear background. The new feature is universal, in that the ratio of bound over halo dark matter event rates at detectors is independent of the dark matter-nucleon cross section....

  11. New Spectral Features from Bound Dark Matter

    DEFF Research Database (Denmark)

    Catena, Riccardo; Kouvaris, Chris

    2016-01-01

    We demonstrate that dark matter particles gravitationally bound to the Earth can induce a characteristic nuclear recoil signal at low energies in direct detection experiments. The new spectral feature we predict can provide the ultimate smoking gun for dark matter discovery for experiments...... with positive signal but unclear background. The new feature is universal, in that the ratio of bound over halo dark matter event rates at detectors is independent of the dark matter-nucleon cross section....

  12. New spectral features from bound dark matter

    Science.gov (United States)

    Catena, Riccardo; Kouvaris, Chris

    2016-07-01

    We demonstrate that dark matter particles gravitationally bound to the Earth can induce a characteristic nuclear recoil signal at low energies in direct detection experiments. The new spectral feature that we predict can provide a complementary verification of dark matter discovery at experiments with positive signal but unclear background. The effect is generically expected, in that the ratio of bound over halo dark matter event rates at detectors is independent of the dark matter-nucleon cross section.

  13. Dark matter in a bouncing universe

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Yeuk-Kwan E.; Kang, Jin U; Li, Changhong, E-mail: cheung@nju.edu.cn, E-mail: jin.u.kang2@gmail.com, E-mail: chellifegood@gmail.com [Department of Physics, Nanjing University, 22 Hankou Road, Nanjing, 210093 China (China)

    2014-11-01

    We investigate a new scenario of dark matter production in a bouncing universe, in which dark matter was produced completely out of equilibrium in the contracting as well as expanding phase. We explore possibilities of using dark matter as a probe of the bouncing universe, focusing on the relationship between a critical temperature of the bouncing universe and the present relic abundance of dark matter.

  14. Dark Matter in a Bouncing Universe

    CERN Document Server

    Cheung, Yeuk Kwan E; Li, Changhong

    2014-01-01

    We investigate a new scenario of dark matter production in a bouncing universe, in which dark matter was produced completely out of equilibrium in the contracting as well as expanding phase. We explore possibilities of using dark matter as a probe of the bouncing universe, focusing on the relationship between a critical temperature of the bouncing universe and the present relic abundance of dark matter.

  15. Self-interacting Dark Matter Benchmarks

    OpenAIRE

    Kaplinghat, M.; Tulin, S.; Yu, H-B

    2017-01-01

    Dark matter self-interactions have important implications for the distributions of dark matter in the Universe, from dwarf galaxies to galaxy clusters. We present benchmark models that illustrate characteristic features of dark matter that is self-interacting through a new light mediator. These models have self-interactions large enough to change dark matter densities in the centers of galaxies in accord with observations, while remaining compatible with large-scale structur...

  16. Dark matter searches at the LHC

    CERN Document Server

    Hong, Tae Min; The ATLAS collaboration

    2017-01-01

    We present a summary of the current status of searches for dark matter at the LHC from the ATLAS and CMS experiments. For various assumptions in the simplified parameter space, the LHC exclusions is complementary to direct detection results. Mono-object analyses in search of dark matter and various analyses searching for dark matter mediators are presented.

  17. Non-minimally flavour violating dark matter

    CERN Document Server

    Blanke, Monika

    2015-01-01

    Flavour symmetries provide an appealing mechanism to stabilize the dark matter particle. I present a simple model of quark flavoured dark matter that goes beyond the framework of minimal flavour violation. I discuss the phenomenological implications for direct and indirect dark matter detection experiments, high energy collider searches as well as flavour violating precision data.

  18. Dark Energy from Quantum Matter

    CERN Document Server

    Dappiaggi, Claudio; Möller, Jan; Pinamonti, Nicola

    2010-01-01

    We study the backreaction of free quantum fields on a flat Robertson-Walker spacetime. Apart from renormalization freedom, the vacuum energy receives contributions from both the trace anomaly and the thermal nature of the quantum state. The former represents a dynamical realisation of dark energy, while the latter mimics an effective dark matter component. The semiclassical dynamics yield two classes of asymptotically stable solutions. The first reproduces the concordance model in a suitable regime. The second lacks a classical counterpart, but is in excellent agreement with recent observations.

  19. Dark energy from quantum matter

    Energy Technology Data Exchange (ETDEWEB)

    Dappiaggi, Claudio; Hack, Thomas-Paul [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Moeller, Jan [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie; Pinamonti, Nicola [Rome-2 Univ. (Italy). Dipt. di Matematica

    2010-07-15

    We study the backreaction of free quantum fields on a flat Robertson-Walker spacetime. Apart from renormalization freedom, the vacuum energy receives contributions from both the trace anomaly and the thermal nature of the quantum state. The former represents a dynamical realisation of dark energy, while the latter mimics an effective dark matter component. The semiclassical dynamics yield two classes of asymptotically stable solutions. The first reproduces the CDM model in a suitable regime. The second lacks a classical counterpart, but is in excellent agreement with recent observations. (orig.)

  20. Dark Matter Annihilation at the Galactic Center

    Energy Technology Data Exchange (ETDEWEB)

    Linden, Timothy Ryan [Univ. of California, Santa Cruz, CA (United States)

    2013-06-01

    Observations by the WMAP and PLANCK satellites have provided extraordinarily accurate observations on the densities of baryonic matter, dark matter, and dark energy in the universe. These observations indicate that our universe is composed of approximately ve times as much dark matter as baryonic matter. However, e orts to detect a particle responsible for the energy density of dark matter have been unsuccessful. Theoretical models have indicated that a leading candidate for the dark matter is the lightest supersymmetric particle, which may be stable due to a conserved R-parity. This dark matter particle would still be capable of interacting with baryons via weak-force interactions in the early universe, a process which was found to naturally explain the observed relic abundance of dark matter today. These residual annihilations can persist, albeit at a much lower rate, in the present universe, providing a detectable signal from dark matter annihilation events which occur throughout the universe. Simulations calculating the distribution of dark matter in our galaxy almost universally predict the galactic center of the Milky Way Galaxy (GC) to provide the brightest signal from dark matter annihilation due to its relative proximity and large simulated dark matter density. Recent advances in telescope technology have allowed for the rst multiwavelength analysis of the GC, with suitable e ective exposure, angular resolution, and energy resolution in order to detect dark matter particles with properties similar to those predicted by the WIMP miracle. In this work, I describe ongoing e orts which have successfully detected an excess in -ray emission from the region immediately surrounding the GC, which is di cult to describe in terms of standard di use emission predicted in the GC region. While the jury is still out on any dark matter interpretation of this excess, I describe several related observations which may indicate a dark matter origin. Finally, I discuss the

  1. Quantum Field Theory of Interacting Dark Matter/Dark Energy: Dark Monodromies

    OpenAIRE

    D'Amico, Guido; Hamill, Teresa; Kaloper, Nemanja

    2016-01-01

    We discuss how to formulate a quantum field theory of dark energy interacting with dark matter. We show that the proposals based on the assumption that dark matter is made up of heavy particles with masses which are very sensitive to the value of dark energy are strongly constrained. Quintessence-generated long range forces and radiative stability of the quintessence potential require that such dark matter and dark energy are completely decoupled. However, if dark energy and a fraction of dar...

  2. Non-Abelian dark matter and dark radiation

    CERN Document Server

    Buen-Abad, Manuel A; Schmaltz, Martin

    2015-01-01

    We propose a new class of dark matter models with unusual phenomenology. What is ordinary about our models is that dark matter particles are WIMPs, they are weakly coupled to the Standard Model and have weak scale masses. What is unusual is that they come in multiplets of a new "dark" non-Abelian gauge group with milli-weak coupling. The massless dark gluons of this dark gauge group contribute to the energy density of the universe as a form of weakly self-interacting dark radiation. In this paper we explore the consequences of having i.) dark matter in multiplets ii.) self-interacting dark radiation and iii.) dark matter which is weakly coupled to dark radiation. We find that i.) dark matter cross sections are modified by multiplicity factors which have significant consequences for collider searches and indirect detection, ii.) dark gluons have thermal abundances which affect the CMB as dark radiation. Unlike additional massless neutrino species the dark gluons are interacting and have vanishing viscosity and...

  3. Indirect Searches of Dark Matter in Spacc

    Institute of Scientific and Technical Information of China (English)

    CHANG Jin; FAN Yizhong

    2011-01-01

    Dark matter (DM) is a form of matter necessary to account for gravitational effects observed in very large scale structures such as anomalies in the rotation of galaxies and the gravitational lensing of light by galaxy clusters that cannot be accounted for by the quantity of observed matter (Bertone et al. 2005). In the standard cosmology model, dark matter, dark energy and normal matter constitute about 23%, 72% and 5% of the energy density of the universe,

  4. Dark Matter in Axion Landscape

    CERN Document Server

    Daido, Ryuji; Takahashi, Fuminobu

    2016-01-01

    If there are a plethora of axions in nature, they may have a complicated potential and create an axion landscape. We study a possibility that one of the axions is so light that it is cosmologically stable, explaining the observed dark matter density. In particular we focus on a case in which two (or more) shift-symmetry breaking terms conspire to make the axion sufficiently light at the potential minimum. In this case the axion has a flat-bottomed potential. In contrast to the case in which a single cosine term dominates the potential, the axion abundance as well as its isocurvature perturbations are significantly suppressed. This allows an axion with a rather large mass to serve as dark matter without fine-tuning of the initial misalignment, and further makes higher-scale inflation to be consistent with the scenario.

  5. Dark matter in axion landscape

    Directory of Open Access Journals (Sweden)

    Ryuji Daido

    2017-02-01

    Full Text Available If there are a plethora of axions in nature, they may have a complicated potential and create an axion landscape. We study a possibility that one of the axions is so light that it is cosmologically stable, explaining the observed dark matter density. In particular we focus on a case in which two (or more shift-symmetry breaking terms conspire to make the axion sufficiently light at the potential minimum. In this case the axion has a flat-bottomed potential. In contrast to the case in which a single cosine term dominates the potential, the axion abundance as well as its isocurvature perturbations are significantly suppressed. This allows an axion with a rather large mass to serve as dark matter without fine-tuning of the initial misalignment, and further makes higher-scale inflation to be consistent with the scenario.

  6. Dark matter in axion landscape

    Science.gov (United States)

    Daido, Ryuji; Kobayashi, Takeshi; Takahashi, Fuminobu

    2017-02-01

    If there are a plethora of axions in nature, they may have a complicated potential and create an axion landscape. We study a possibility that one of the axions is so light that it is cosmologically stable, explaining the observed dark matter density. In particular we focus on a case in which two (or more) shift-symmetry breaking terms conspire to make the axion sufficiently light at the potential minimum. In this case the axion has a flat-bottomed potential. In contrast to the case in which a single cosine term dominates the potential, the axion abundance as well as its isocurvature perturbations are significantly suppressed. This allows an axion with a rather large mass to serve as dark matter without fine-tuning of the initial misalignment, and further makes higher-scale inflation to be consistent with the scenario.

  7. Dark energy and dark matter from primordial QGP

    Energy Technology Data Exchange (ETDEWEB)

    Vaidya, Vaishali, E-mail: vaidvavaishali24@gmail.com; Upadhyaya, G. K., E-mail: gopalujiain@yahoo.co.in [School of Studies in Physics, Vikram University Ujjain (India)

    2015-07-31

    Coloured relics servived after hadronization might have given birth to dark matter and dark energy. Theoretical ideas to solve mystery of cosmic acceleration, its origin and its status with reference to recent past are of much interest and are being proposed by many workers. In the present paper, we present a critical review of work done to understand the earliest appearance of dark matter and dark energy in the scenario of primordial quark gluon plasma (QGP) phase after Big Bang.

  8. Dark Matter and Dark Energy: Summary and Future Directions

    OpenAIRE

    Ellis, John

    2003-01-01

    This paper reviews the progress reported at this Royal Society Discussion Meeting and advertizes some possible future directions in our drive to understand dark matter and dark energy. Additionally, a first attempt is made to place in context the exciting new results from the WMAP satellite, which were published shortly after this Meeting. In the first part of this review, pieces of observational evidence shown here that bear on the amounts of dark matter and dark energy are reviewed. Subsequ...

  9. Interactive Unified Dark Energy and Dark Matter from Scalar Fields

    OpenAIRE

    Benisty, David; Guendelman, E. I.

    2017-01-01

    Here we generalize ideas of unified Dark Matter Dark Energy in the context of Two Measure Theories and of Dynamical space time Theories. In Two Measure Theories one uses metric independent volume elements and this allows to construct unified Dark Matter Dark Energy, where the cosmological constant appears as an integration constant associated to the eq. of motion of the measure fields. The Dynamical space time Theories generalize the Two Measure Theories by introducing a vector field whose eq...

  10. Non-baryonic dark matter in cosmology

    Science.gov (United States)

    Del Popolo, A.

    2013-07-01

    This paper is based on lectures given at the IX Mexican School on Gravitation and Mathematical Physics. The lectures (as the paper) were a broad-band review of the current status of non-baryonic dark matter research. I start with a historical overview of the evidences of dark matter existence, then I discuss how dark matter is distributed from small scale to large scale, and I then verge the attention to dark matter nature: dark matter candidates and their detection. I finally discuss some of the limits of the ΛCDM model, with particular emphasis on the small scale problems of the paradigm.

  11. Superconducting Detectors for Superlight Dark Matter.

    Science.gov (United States)

    Hochberg, Yonit; Zhao, Yue; Zurek, Kathryn M

    2016-01-08

    We propose and study a new class of superconducting detectors that are sensitive to O(meV) electron recoils from dark matter-electron scattering. Such devices could detect dark matter as light as the warm dark-matter limit, m(X)≳1  keV. We compute the rate of dark-matter scattering off of free electrons in a (superconducting) metal, including the relevant Pauli blocking factors. We demonstrate that classes of dark matter consistent with terrestrial and cosmological or astrophysical constraints could be detected by such detectors with a moderate size exposure.

  12. Non-Baryonic Dark Matter in Cosmology

    CERN Document Server

    Del Popolo, A

    2014-01-01

    This paper is a broad-band review of the current status of non-baryonic dark matter research. I start with a historical overview of the evidences of dark matter existence, then I discuss how dark matter is distributed from small scale to large scale, and I then verge the attention to dark matter nature: dark matter candidates and their detection. I finally discuss some of the limits of the $\\Lambda$CDM model, with particular emphasis on the small scale problems of the paradigm.

  13. The DRIFT Dark Matter Experiments

    CERN Document Server

    Daw, E; Fox, J R; Gauvreau, J -L; Ghag, C; Harmon, L J; Harton, J L; Gold, M; Lee, E R; Loomba, D; Miller, E H; Murphy, A St J; Paling, S M; Landers, J M; Phan, N; Pipe, M; Pushkin, K; Robinson, M; Sadler, S W; Snowden-Ifft, D P; Spooner, N J C; Walker, D; Warner, D

    2011-01-01

    The current status of the DRIFT (Directional Recoil Identification From Tracks) experiment at Boulby Mine is presented, including the latest limits on the WIMP spin-dependent cross-section from 1.5 kg days of running with a mixture of CS2 and CF4. Planned upgrades to DRIFT IId are detailed, along with ongoing work towards DRIFT III, which aims to be the world's first 10 m3-scale directional Dark Matter detector.

  14. Dark Matter and Higgs Sector

    CERN Document Server

    Cembranos, Jose A R; Prado, Lilian

    2010-01-01

    The inert doublet model is an extension of the Standard Model of Elementary Particles that is defined by the only addition of a second Higgs doublet without couplings to quarks or leptons. This minimal framework has been studied for many reasons. In particular, it has been suggested that the new degrees of freedom contained in this doublet can account for the Dark Matter of the Universe.

  15. Dark Atoms and Puzzles of Dark Matter Searches

    CERN Document Server

    Khlopov, M Yu

    2014-01-01

    The nonbaryonic dark matter of the Universe is assumed to consist of new stable forms of matter. Their stability reflects symmetry of micro world and particle candidates for cosmological dark matter are the lightest particles that bear new conserved quantum numbers. Dark matter candidates can appear in the new families of quarks and leptons and the existence of new stable charged leptons and quarks is possible, if they are hidden in elusive "dark atoms". Such possibility, strongly restricted by the constraints on anomalous isotopes of light elements, is not excluded in scenarios that predict stable double charged particles. The excessive -2 charged particles are bound in these scenarios with primordial helium in O-helium "atoms", maintaining specific nuclear-interacting form of the dark matter, which may provide an interesting solution for the puzzles of the direct dark matter searches.

  16. Astronomical Signatures of Dark Matter

    Directory of Open Access Journals (Sweden)

    Paul Gorenstein

    2014-01-01

    Full Text Available Several independent astronomical observations in different wavelength bands reveal the existence of much larger quantities of matter than what we would deduce from assuming a solar mass to light ratio. They are very high velocities of individual galaxies within clusters of galaxies, higher than expected rotation rates of stars in the outer regions of galaxies, 21 cm line studies indicative of increasing mass to light ratios with radius in the halos of spiral galaxies, hot gaseous X-ray emitting halos around many elliptical galaxies, and clusters of galaxies requiring a much larger component of unseen mass for the hot gas to be bound. The level of gravitational attraction needed for the spatial distribution of galaxies to evolve from the small perturbations implied by the very slightly anisotropic cosmic microwave background radiation to its current web-like configuration requires much more mass than is observed across the entire electromagnetic spectrum. Distorted shapes of galaxies and other features created by gravitational lensing in the images of many astronomical objects require an amount of dark matter consistent with other estimates. The unambiguous detection of dark matter and more recently evidence for dark energy has positioned astronomy at the frontier of fundamental physics as it was in the 17th century.

  17. Diphoton resonance confronts dark matter

    CERN Document Server

    Choi, Soo-Min; Lee, Hyun Min

    2016-01-01

    As an interpretation of the 750 GeV diphoton excesses recently reported by both ATLAS and CMS collaborations, we consider a simple extension of the Standard Model with a Dirac fermion dark matter where a singlet complex scalar field mediates between dark matter and SM particles via effective couplings to SM gauge bosons and/or Higgs-portal. In this model, we can accommodate the diphoton events through the direct and/or cascade decays of pseudo-scalar and real scalar partners of the complex scalar field. We show that mono-jet searches and gamma-ray observations are complementary in constraining the region where the width of the diphoton resonance can be enhanced due to the couplings of the resonance to dark matter and the correct relic density is obtained. In the case of cascade decay of the resonance, the effective couplings of singlet scalars can be smaller, but the model is still testable by the future discrimination between single photon and photon-jet at the LHC as well as the gamma-ray searches for the c...

  18. Heavy spin-2 Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Babichev, Eugeny [Laboratoire de Physique Théorique, CNRS, Univ. Paris-Sud, Université Paris-Saclay,91405 Orsay (France); UPMC-CNRS, UMR7095, Institut d’Astrophysique de Paris, GReCO,98bis boulevard Arago, F-75014 Paris (France); Marzola, Luca; Raidal, Martti [National Institute of Chemical Physics and Biophysics,Rävala 10, 10143 Tallinn (Estonia); Laboratory of Theoretical Physics, Institute of Physics, University of Tartu,Ravila 14c, 50411 Tartu (Estonia); Schmidt-May, Angnis [Institut für Theoretische Physik, Eidgenössische Technische Hochschule Zürich,Wolfgang-Pauli-Strasse 27, 8093 Zürich (Switzerland); Urban, Federico; Veermäe, Hardi [National Institute of Chemical Physics and Biophysics,Rävala 10, 10143 Tallinn (Estonia); Strauss, Mikael von [UPMC-CNRS, UMR7095, Institut d’Astrophysique de Paris, GReCO,98bis boulevard Arago, F-75014 Paris (France)

    2016-09-12

    We provide further details on a recent proposal addressing the nature of the dark sectors in cosmology and demonstrate that all current observations related to Dark Matter can be explained by the presence of a heavy spin-2 particle. Massive spin-2 fields and their gravitational interactions are uniquely described by ghost-free bimetric theory, which is a minimal and natural extension of General Relativity. In this setup, the largeness of the physical Planck mass is naturally related to extremely weak couplings of the heavy spin-2 field to baryonic matter and therefore explains the absence of signals in experiments dedicated to Dark Matter searches. It also ensures the phenomenological viability of our model as we confirm by comparing it with cosmological and local tests of gravity. At the same time, the spin-2 field possesses standard gravitational interactions and it decays universally into all Standard Model fields but not into massless gravitons. Matching the measured DM abundance together with the requirement of stability constrains the spin-2 mass to be in the 1 to 100 TeV range.

  19. On local dark matter density

    CERN Document Server

    Bidin, C Moni; Carraro, G; Mendez, R A; Moyano, M

    2014-01-01

    In 2012, we applied a three-dimensional formulation to kinematic measurements of the Galactic thick disk and derived a surprisingly low dark matter density at the solar position. This result was challenged by Bovy & Tremaine (2012, ApJ, 756, 89), who claimed that the observational data are consistent with the expected dark matter density if a one-dimensional approach is adopted. We analyze the assumption at the bases of their formulation and their claim that this returns a lower limit for the local dark matter density, which is accurate within 20%. We find that the validity of their formulation depends on the underlying mass distribution. We therefore analyze the predictions that their hypothesis casts on the radial gradient of the azimuthal velocity dV/dR and compare it with observational data as a testbed for the validity of their formulation. We find that their hypothesis requires too steep a profile of dV(Z)/dR, which is inconsistent with the observational data both in the Milky Way and in external ga...

  20. Dark Energy Coupled with Dark Matter in the Accelerating Universe

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yang

    2004-01-01

    @@ To model the observed Universe containing both dark energy and dark matter, we study the effective Yang-Mills condensate model of dark energy and add a non-relativistic matter component as the dark matter, which is generated out of the decaying dark energy at a constant rate Г, a parameter of our model. For the Universe driven by these two components, the dynamic evolution still has asymptotic behaviour: the expansion of the Universe is accelerating with an asymptotically constant rate H, and the densities of both components approach to finite constant values. Moreover, ΩA≈ 0.7 for dark energy and Ωm ≈ 0.3 for dark matter are achieved if the decay rate Г is chosen such that Г/H~ 1.

  1. Nonthermal production of dark radiation and dark matter

    Science.gov (United States)

    Reece, Matthew; Roxlo, Thomas

    2016-09-01

    Dark matter may be coupled to dark radiation: light degrees of freedom that mediate forces between dark sector particles. Cosmological constraints favor dark radiation that is colder than Standard Model radiation. In models with fixed couplings between dark matter and the Standard Model, these constraints can be difficult to satisfy if thermal equilibrium is assumed in the early universe. We construct a model of asymmetric reheating of the visible and dark sectors from late decays of a long-lived particle (for instance, a modulus). We show, as a proof of principle, that such a model can populate a sufficiently cold dark sector while also generating baryon and dark matter asymmetries through the out-of-equilibrium decay. We frame much of our discussion in terms of the scenario of dissipative dark matter, as in the Double-Disk Dark Matter scenario. However, our results may also be of interest for other scenarios like the Twin Higgs model that are in danger of overproducing dark radiation due to nonnegligible dark-visible couplings.

  2. Theoretical Comparison Between Candidates for Dark Matter

    Science.gov (United States)

    McKeough, James; Hira, Ajit; Valdez, Alexandra

    2017-01-01

    Since the generally-accepted view among astrophysicists is that the matter component of the universe is mostly dark matter, the search for dark matter particles continues unabated. The Large Underground Xenon (LUX) improvements, aided by advanced computer simulations at the U.S. Department of Energy's Lawrence Berkeley National Laboratory's (Berkeley Lab) National Energy Research Scientific Computing Center (NERSC) and Brown University's Center for Computation and Visualization (CCV), can potentially eliminate some particle models of dark matter. Generally, the proposed candidates can be put in three categories: baryonic dark matter, hot dark matter, and cold dark matter. The Lightest Supersymmetric Particle(LSP) of supersymmetric models is a dark matter candidate, and is classified as a Weakly Interacting Massive Particle (WIMP). Similar to the cosmic microwave background radiation left over from the Big Bang, there is a background of low-energy neutrinos in our Universe. According to some researchers, these may be the explanation for the dark matter. One advantage of the Neutrino Model is that they are known to exist. Dark matter made from neutrinos is termed ``hot dark matter''. We formulate a novel empirical function for the average density profile of cosmic voids, identified via the watershed technique in ΛCDM N-body simulations. This function adequately treats both void size and redshift, and describes the scale radius and the central density of voids. We started with a five-parameter model. Our research is mainly on LSP and Neutrino models.

  3. Dark Matter Searches at Accelerator Facilities

    CERN Document Server

    Dutta, Bhaskar

    2014-01-01

    About 80 percent of the matter content of the universe is dark matter. However, the particle origin of dark matter is yet to be established. Many extensions of the Standard Model (SM) contain candidates of dark matter. The search for the particle origin is currently ongoing at the large hadron collider (LHC). In this review, I will summarize the different search strategies for this elusive particle.

  4. Ricerca di produzione associata con dark matter

    CERN Document Server

    Valerio Ippolito

    2016-01-01

    Among the experimental strategies for the search for Dark Matter, collider experiments provideunique sensitivity to its non-gravitational interactions with ordinary matter, for a range of DarkMatter masses between a few GeV and hundreds of GeV. We discuss the status of the main DarkMatter searches at the Large Hadron Collider by the ATLAS and CMS experiments, underliningthe complementarity between searches in different final states and between collider and directdetection results.

  5. Cosmological Evolution With Interaction Between Dark Energy And Dark Matter

    CERN Document Server

    Bolotin, Yu L; Lemets, O A; Yerokhin, D A

    2013-01-01

    In this review we consider in detail different theoretical topics associated with interaction in the dark sector. We study linear and nonlinear interactions which depend on the dark matter and dark energy densities. We consider a number of different models (including the holographic dark energy and dark energy in a fractal universe) with interacting dark energy (DE) and dark matter (DM), have done a thorough analysis of these models. The main task of this review was not only to give an idea about the modern set of different models of dark energy, but to show how much can be diverse dynamics of the universe in these models. We find that the dynamics of a Universe that contains interaction in the dark sector can differ significantly from the Standard Cosmological Model (SCM).

  6. Astrophysical Probes of Dark Matter Interactions

    Science.gov (United States)

    Reece, Matthew

    The majority of matter in the universe is dark matter, made up of some particle beyond those in the Standard Model of particle physics. So far we have very little information about what dark matter is and how it interacts, except through gravity. Constraints from halo shapes and the Bullet Cluster give upper bounds on the self-interaction strength of dark matter, but these bounds are very weak: roughly the same size as nuclear physics cross sections, which are very large by the standards of particle physics. Given how little we know about dark matter, it is important to search for it in as broad a context as possible. Existing direct and indirect detection analyses are typically motivated by simple particle physics models like WIMP dark matter. This research will aim to widen the scope of searches for dark matter by considering a more complete range of particle physics models, working out their implications for astrophysical data, and interpreting existing data in terms of these new models. New models of dark matter can affect searches in a variety of ways. Signals may show up in conventional indirect detection searches, e.g. in gamma rays detected by Fermi-LAT or in antiprotons detected by AMS-02. The new particle physics content of the models could be reflected in surprising spectral shapes or other features of such signals, or in gamma rays with a different profile on the sky than expected in typical models. The PI has worked, for example, on a model in which signals may arise from a dark disk, which is just one of many possibilities. Signals of new dark matter models might also arise in more subtle ways. Structure in the dark sector could influence the development of structure in the visible sector, indirectly. For instance, a dark matter disk or other dark structures could alter the orbits of stars in the galaxy and may be detectable through detailed studies of the kinematics of stellar populations. Dark accretion disks could exist around astrophysical objects

  7. Superheavy thermal dark matter and primordial asymmetries

    Science.gov (United States)

    Bramante, Joseph; Unwin, James

    2017-02-01

    The early universe could feature multiple reheating events, leading to jumps in the visible sector entropy density that dilute both particle asymmetries and the number density of frozen-out states. In fact, late time entropy jumps are usually required in models of Affleck-Dine baryogenesis, which typically produces an initial particle-antiparticle asymmetry that is much too large. An important consequence of late time dilution, is that a smaller dark matter annihilation cross section is needed to obtain the observed dark matter relic density. For cosmologies with high scale baryogenesis, followed by radiation-dominated dark matter freeze-out, we show that the perturbative unitarity mass bound on thermal relic dark matter is relaxed to 1010 GeV. We proceed to study superheavy asym-metric dark matter models, made possible by a sizable entropy injection after dark matter freeze-out, and identify how the Affleck-Dine mechanism would generate the baryon and dark asymmetries.

  8. Twin Higgs Asymmetric Dark Matter.

    Science.gov (United States)

    García García, Isabel; Lasenby, Robert; March-Russell, John

    2015-09-18

    We study asymmetric dark matter (ADM) in the context of the minimal (fraternal) twin Higgs solution to the little hierarchy problem, with a twin sector with gauged SU(3)^{'}×SU(2)^{'}, a twin Higgs doublet, and only third-generation twin fermions. Naturalness requires the QCD^{'} scale Λ_{QCD}^{'}≃0.5-20  GeV, and that t^{'} is heavy. We focus on the light b^{'} quark regime, m_{b^{'}}≲Λ_{QCD}^{'}, where QCD^{'} is characterized by a single scale Λ_{QCD}^{'} with no light pions. A twin baryon number asymmetry leads to a successful dark matter (DM) candidate: the spin-3/2 twin baryon, Δ^{'}∼b^{'}b^{'}b^{'}, with a dynamically determined mass (∼5Λ_{QCD}^{'}) in the preferred range for the DM-to-baryon ratio Ω_{DM}/Ω_{baryon}≃5. Gauging the U(1)^{'} group leads to twin atoms (Δ^{'}-τ^{'}[over ¯] bound states) that are successful ADM candidates in significant regions of parameter space, sometimes with observable changes to DM halo properties. Direct detection signatures satisfy current bounds, at times modified by dark form factors.

  9. Dissipative dark matter explains rotation curves

    CERN Document Server

    Foot, R

    2015-01-01

    Dissipative dark matter, where dark matter particles interact with a massless (or very light) boson, is studied. Such dark matter can arise in simple hidden sector gauge models, including those featuring an unbroken $U(1)'$ gauge symmetry, leading to a dark photon. Previous work has shown that such models can not only explain the LSS and CMB, but potentially also dark matter phenomena on small scales, such as the inferred cored structure of dark matter halos. In this picture, dark matter halos of disk galaxies not only cool via dissipative interactions but are also heated via ordinary supernovae (facilitated by an assumed photon - dark photon kinetic mixing interaction). This interaction between the dark matter halo and ordinary baryons, a very special feature of these types of models, plays a critical role in governing the physical properties of the dark matter halo. Here, we further study the implications of this type of dissipative dark matter for disk galaxies. Building on earlier work, we develop a simpl...

  10. Bigravitons as dark matter and gravitational waves

    CERN Document Server

    Aoki, Katsuki

    2016-01-01

    We consider the possibility that the massive graviton is a viable candidate of dark matter in the context of bimetric gravity. We first derive the energy-momentum tensor of the massive graviton and show that it indeed behaves as that of dark matter fluid. We then discuss a production mechanism and the present abundance of massive gravitons as dark matter. Since the metric to which ordinary matter fields couple is a linear combination of the two mass eigenstates of bigravity, production of massive gravitons, i.e. the dark matter particles, is inevitably accompanied by generation of massless gravitons, i.e. the gravitational waves. Therefore, in this scenario some information about dark matter in our universe is encoded in gravitational waves. For instance, if LIGO detects gravitational waves generated by the preheating after inflation then the massive graviton with the mass of $\\sim 0.01$ GeV is a candidate of the dark matter.

  11. A Physical Source of Dark Energy and Dark Matter

    CERN Document Server

    Gontijo, I

    2012-01-01

    A physical mechanism that produces three energy components is proposed as the common origin of dark energy and dark matter. The first two have equations of state W ~ 0 and act like dark matter, while the last has W ~ -1 at low redshifts making it a candidate for dark energy. These are used to model the supernovae Union2 data resulting in a curve fitting identical to the LAMBDACDM model. This model opens new avenues for Cosmology research and implies a re-interpretation of the dark components as a scalar field stored in the metric of spacetime.

  12. Dynamics of dark energy with a coupling to dark matter

    CERN Document Server

    Boehmer, Christian G; Lazkoz, Ruth; Maartens, Roy

    2008-01-01

    Dark energy and dark matter are the dominant sources in the evolution of the late universe. They are currently only indirectly detected via their gravitational effects, and there could be a coupling between them without violating observational constraints. We investigate the background dynamics when dark energy is modelled as exponential quintessence, and is coupled to dark matter via simple models of energy exchange. We introduce a new form of dark sector coupling, which leads to a more complicated dynamical phase space and has a better physical motivation than previous mathematically similar couplings.

  13. Top-Flavoured Dark Matter in Dark Minimal Flavour Violation

    OpenAIRE

    Blanke, Monika; Kast, Simon

    2017-01-01

    We study a simplified model of top-flavoured dark matter in the framework of Dark Minimal Flavour Violation. In this setup the coupling of the dark matter flavour triplet to up-type quarks constitutes the only new source of flavour and CP violation. The parameter space of the model is restricted by LHC searches with missing energy final states, by neutral $D$ meson mixing data, by the observed dark matter relic abundance, and by the absence of signal in direct detection experiments. We consid...

  14. Dark Viscous Fluid coupled with Dark Matter and future singularity

    CERN Document Server

    Sebastiani, Lorenzo

    2010-01-01

    We study effects of viscous fluid coupled with dark matter in our universe. We consider bulk viscosity in the cosmic fluid and we suppose the existence of a coupling between fluid and dark matter, in order to reproduce a stable de Sitter universe protected against future-time singularities. More general inhomogeneous fluids are studied related to future singularities.

  15. Superheavy Dark Matter in Light of Dark Radiation

    CERN Document Server

    Park, Jong-Chul

    2014-01-01

    Superheavy dark matter can satisfy the observed dark matter abundance if the stability condition is fulfilled. Here, we propose a new Abelian gauge symmetry ${\\rm U(1)}_H$ for the stability of superheavy dark matter as the electromagnetic gauge symmetry to the electron. The new gauge boson associated with ${\\rm U(1)}_H$ contributes to the effective number of relativistic degrees of freedom in the universe as dark radiation, which has been recently measured by several experiments, e.g., PLANCK. We calculate the contribution to dark radiation from the decay of a scalar particle via the superheavy dark matter in the loop. Interestingly enough, this scenario will be probed by a future LHC run in the invisible decay signatures of the Higgs boson.

  16. Dark Matter and Galaxy Formation

    Science.gov (United States)

    Primack, Joel R.

    2009-12-01

    The four lectures that I gave in the XIII Ciclo de Cursos Especiais at the National Observatory of Brazil in Rio in October 2008 were (1) a brief history of dark matter and structure formation in a ΛCDM universe; (2) challenges to ΛCDM on small scales: satellites, cusps, and disks; (3) data on galaxy evolution and clustering compared with simulations; and (4) semi-analytic models. These lectures, themselves summaries of much work by many people, are summarized here briefly. The slides [1] contain much more information.

  17. Dark Matter and Galaxy Formation

    CERN Document Server

    Primack, Joel R

    2009-01-01

    The four lectures that I gave in the XIII Ciclo de Cursos Especiais at the National Observatory of Brazil in Rio in October 2008 were (1) a brief history of dark matter and structure formation in a LambdaCDM universe; (2) challenges to LambdaCDM on small scales: satellites, cusps, and disks; (3) data on galaxy evolution and clustering compared with simulations; and (4) semi-analytic models. These lectures, themselves summaries of much work by many people, are summarized here briefly.

  18. Strongly interacting light dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Bruggisser, Sebastian [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Riva, Francesco; Urbano, Alfredo [CERN, Geneva (Switzerland). Theoretical Physics Dept.

    2016-07-15

    In the presence of approximate global symmetries that forbid relevant interactions, strongly coupled light Dark Matter (DM) can appear weakly coupled at small-energy and generate a sizable relic abundance. Fundamental principles like unitarity restrict these symmetries to a small class, where the leading interactions are captured by effective operators up to dimension-8. Chiral symmetry, spontaneously broken global symmetries and non-linearly realized supersymmetry are examples of this. Their DM candidates (composite fermions, pseudo-Nambu-Goldstone Bosons and Goldstini) are interesting targets for LHC missing-energy searches.

  19. Strongly Interacting Light Dark Matter

    CERN Document Server

    Bruggisser, Sebastian; Urbano, Alfredo

    2016-01-01

    In the presence of approximate global symmetries that forbid relevant interactions, strongly coupled light Dark Matter (DM) can appear weakly coupled at small energy and generate a sizable relic abundance. Fundamental principles like unitarity restrict these symmetries to a small class, where the leading interactions are captured by effective operators up to dimension-8. Chiral symmetry, spontaneously broken global symmetries and non-linearly realized supersymmetry are examples of this. Their DM candidates (composite fermions, pseudo Nambu-Goldstone Bosons and Goldstini) are interesting targets for LHC missing-energy searches.

  20. Dark matter searches in ATLAS

    CERN Document Server

    Diehl, Edward; The ATLAS collaboration

    2016-01-01

    Dark matter particles may be produced at the LHC in combination with other particles, typically from initial state radiation. We present results from the ATLAS experiment from searches for phenomena with jets, photons, heavy quarks, electroweak gauge bosons, or Higgs bosons recoiling against large missing transverse momentum. The measurements are interpreted using several theoretical frameworks including simplified models with pair production of Weakly Interacting Massive Particles, effective field theories, and other beyond the Standard Model scenarios. Constraints from dijet searches are compared with results from the “Mono-X” searches to provide a combined interpretation in the context of simplified models.

  1. Axion hot dark matter bounds

    CERN Document Server

    Raffelt, G; Mirizzi, A; Wong, Y Y Y

    2008-01-01

    We derive cosmological limits on two-component hot dark matter consisting of neutrinos and axions. We restrict the large-scale structure data to the safely linear regime, excluding the Lyman-alpha forest. We derive Bayesian credible regions in the two-parameter space consisting of m_a and sum(m_nu). Marginalizing over sum(m_nu) provides m_a<1.02 eV (95% CL). In the absence of axions the same data and methods give sum(m_nu)< 0.63 eV (95% CL).

  2. Observable Heavy Higgs Dark Matter

    CERN Document Server

    Keus, Venus; Moretti, Stefano; Sokolowska, Dorota

    2015-01-01

    Dark Matter (DM), arising from an Inert Higgs Doublet, may either be light, below the $W$ mass, or heavy, above about 525 GeV. While the light region may soon be excluded, the heavy region is known to be very difficult to probe with either Direct Detection (DD) experiments or the Large Hadron Collider (LHC). We show that adding a second Inert Higgs Doublet helps to make the heavy DM region accessible to both DD and the LHC, by either increasing its couplings to the observed Higgs boson, or lowering its mass to $360 \\gev \\lesssim m_{DM}$, or both.

  3. Observable heavy Higgs dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Keus, Venus [Department of Physics and Helsinki Institute of Physics,Gustaf Hallstromin katu 2, FIN-00014 University of Helsinki (Finland); School of Physics and Astronomy, University of Southampton,Southampton, SO17 1BJ (United Kingdom); King, Stephen F. [School of Physics and Astronomy, University of Southampton,Southampton, SO17 1BJ (United Kingdom); Moretti, Stefano [School of Physics and Astronomy, University of Southampton,Southampton, SO17 1BJ (United Kingdom); Particle Physics Department, Rutherford Appleton Laboratory,Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Sokolowska, Dorota [University of Warsaw, Faculty of Physics, Pasteura 5,02-093 Warsaw (Poland)

    2015-11-04

    Dark Matter (DM), arising from an Inert Higgs Doublet, may either be light, below the W mass, or heavy, above about 525 GeV. While the light region may soon be excluded, the heavy region is known to be very difficult to probe with either Direct Detection (DD) experiments or the Large Hadron Collider (LHC). We show that adding a second Inert Higgs Doublet helps to make the heavy DM region accessible to both DD and the LHC, by either increasing its couplings to the observed Higgs boson, or lowering its mass to 360 GeV≲m{sub DM}, or both.

  4. BBN with light dark matter

    CERN Document Server

    Berezhiani, Zurab; Tkachev, Igor

    2012-01-01

    Effects of light millicharged dark matter particles on primordial nucleosynthesis are considered. It is shown that if the mass of such particles is much smaller than the electron mass, they lead to strong overproduction of Helium-4. An agreement with observations can be achieved by non-vanishing lepton asymmetry. Baryon-to-photon ratio at BBN and neutrino-to-photon ratio both at BBN and at recombination are noticeably different as compared to the standard cosmological model. The latter ratio and possible lepton asymmetry could be checked by Planck. For higher mass of new particles the effect is much less pronounced and may even have opposite sign.

  5. Dark Matter in the MSSM

    CERN Document Server

    Cotta, R C; Hewett, J L; Rizzo, T G

    2009-01-01

    We have recently examined a large number of points in the parameter space of the phenomenological MSSM, the 19-dimensional parameter space of the CP-conserving MSSM with Minimal Flavor Violation. We determined whether each of these points satisfied existing experimental and theoretical constraints. This analysis provides insight into general features of the MSSM without reference to a particular SUSY breaking scenario or any other assumptions at the GUT scale. This study opens up new possibilities for SUSY phenomenology both in colliders and in astrophysical experiments. Here we shall discuss the implications of this analysis relevant to the study of dark matter.

  6. Sourcing Dark Matter and Dark Energy from $\\alpha$-attractors

    OpenAIRE

    Mishra, Swagat S.; Sahni, Varun; Shtanov, Yuri(Department of Physics, Taras Shevchenko National University, Kiev, Ukraine)

    2017-01-01

    Recently, Kallosh and Linde have drawn attention to a new family of superconformal inflationary potentials, subsequently called $\\alpha$-attractors. The $\\alpha$-attractor family can interpolate between a large class of inflationary models. It also has an important theoretical underpinning within the framework of supergravity. We demonstrate that the $\\alpha$-attractors have an even wider appeal since they may describe dark matter and perhaps even dark energy. The dark matter associated with ...

  7. 10 years of dark atoms of composite dark matter

    CERN Document Server

    Khlopov, M Yu

    2015-01-01

    In 2005 Sheldon Glashow has proposed his sinister model, opening the path to composite-dark-matter scenarios, in which heavy stable electrically charged particles bound in neutral atoms play the role of dark matter candidates. Though the general problem of new stable single charged particles, forming with ordinary electrons anomalous isotopes of hydrogen, turned out to be unresolvable in Glashow's scenario, this scenario stimulated development of composite dark matter models, which can avoid the trouble of anomalous isotope overproduction. In the simplest case composite dark matter may consist of -2 charged particles, bound by ordinary Coulomb interaction with primordial helium in OHe dark matter model. The advantage and open problems of this model are discussed.

  8. Asymmetric Dark Matter Models in SO(10)

    CERN Document Server

    Nagata, Natsumi; Zheng, Jiaming

    2016-01-01

    We systematically study the possibilities for asymmetric dark matter in the context of non-supersymmetric SO(10) models of grand unification. Dark matter stability in SO(10) is guaranteed by a remnant $\\mathbb{Z}_2$ symmetry which is preserved when the intermediate scale gauge subgroup of SO(10) is broken by a ${\\bf 126}$ dimensional representation. The asymmetry in the dark matter states is directly generated through the out-of-equilibrium decay of particles around the intermediate scale, or transferred from the baryon/lepton asymmetry generated in the Standard Model sector by leptogenesis. We systematically classify possible asymmetric dark matter candidates in terms of their quantum numbers, and derive the conditions for each case that the observed dark matter density is (mostly) explained by the asymmetry of dark matter particles.

  9. Dark matter dynamics and indirect detection

    Energy Technology Data Exchange (ETDEWEB)

    Bertone, Gianfranco; /Fermilab; Merritt, David; /Rochester Inst. Tech.

    2005-04-01

    Non-baryonic, or ''dark'', matter is believed to be a major component of the total mass budget of the universe. We review the candidates for particle dark matter and discuss the prospects for direct detection (via interaction of dark matter particles with laboratory detectors) and indirect detection (via observations of the products of dark matter self-annihilations), focusing in particular on the Galactic center, which is among the most promising targets for indirect detection studies. The gravitational potential at the Galactic center is dominated by stars and by the supermassive black hole, and the dark matter distribution is expected to evolve on sub-parsec scales due to interaction with these components. We discuss the dominant interaction mechanisms and show how they can be used to rule out certain extreme models for the dark matter distribution, thus increasing the information that can be gleaned from indirect detection searches.

  10. Natural Implementation of Neutralino Dark Matter

    CERN Document Server

    King, S F

    2006-01-01

    The prediction of neutralino dark matter is generally regarded as one of the successes of the Minimal Supersymmetric Standard Model (MSSM). However the successful regions of parameter space allowed by WMAP and collider constraints are quite restricted. We discuss fine-tuning with respect to both dark matter and Electroweak Symmetry Breaking (EWSB) and explore regions of MSSM parameter space with non-universal gaugino and third family scalar masses in which neutralino dark matter may be implemented naturally. In particular allowing non-universal gauginos opens up the bulk region that allows Bino annihilation via t-channel slepton exchange, leading to ``supernatural dark matter'' corresponding to no fine-tuning at all with respect to dark matter. By contrast we find that the recently proposed ``well tempered neutralino'' regions involve substantial fine-tuning of MSSM parameters in order to satisfy the dark matter constraints, although the fine tuning may be ameliorated if several annihilation channels act simu...

  11. Asymmetric dark matter models in SO(10)

    Science.gov (United States)

    Nagata, Natsumi; Olive, Keith A.; Zheng, Jiaming

    2017-02-01

    We systematically study the possibilities for asymmetric dark matter in the context of non-supersymmetric SO(10) models of grand unification. Dark matter stability in SO(10) is guaranteed by a remnant Z2 symmetry which is preserved when the intermediate scale gauge subgroup of SO(10) is broken by a {126} dimensional representation. The asymmetry in the dark matter states is directly generated through the out-of-equilibrium decay of particles around the intermediate scale, or transferred from the baryon/lepton asymmetry generated in the Standard Model sector by leptogenesis. We systematically classify possible asymmetric dark matter candidates in terms of their quantum numbers, and derive the conditions for each case that the observed dark matter density is (mostly) explained by the asymmetry of dark matter particles.

  12. Residual Non-Abelian Dark Matter and Dark Radiation

    OpenAIRE

    Ko, P.; Tang, Yong

    2016-01-01

    We propose a novel particle physics model in which vector dark matter (VDM) and dark radiation (DR) originate from the same non-Abelian dark sector. We show an illustrating example where dark $SU(3)$ is spontaneously broken into $SU(2)$ subgroup by the nonzero vacuum expectation value of a complex scalar in fundamental representation of $SU(3)$. The massless gauge bosons associated with the residual unbroken $SU(2)$ constitute DR and help to relieve the tension in Hubble constant measurements...

  13. Coupling q-deformed dark energy to dark matter

    CERN Document Server

    Dil, Emre

    2016-01-01

    We propose a novel coupled dark energy model which is assumed to occur as a q-deformed scalar field and investigate whether it will provide an expanding universe phase. We consider the q-deformed dark energy as coupled to dark matter inhomogeneities. We perform the phase-space analysis of the model by numerical methods and find the late-time accelerated attractor solutions. The attractor solutions imply that the coupled q-deformed dark energy model is consistent with the conventional dark energy models satisfying an acceleration phase of universe. At the end, we compare the cosmological parameters of deformed and standard dark energy models and interpret the implications.

  14. Axion Dark Matter Detection using Atomic Transitions

    CERN Document Server

    Sikivie, P

    2014-01-01

    Dark matter axions may cause transitions between atomic states that differ in energy by an amount equal to the axion mass. Such energy differences are conveniently tuned using the Zeeman effect. It is proposed to search for dark matter axions by cooling a kilogram-sized sample to milliKelvin temperatures and count axion induced transitions using laser techniques. This appears an appropriate approach to axion dark matter detection in the $10^{-4}$ eV mass range.

  15. Dark matter as a cancer hazard

    CERN Document Server

    Chashchina, Olga

    2015-01-01

    We comment on the paper "Dark Matter collisions with the Human Body" by K.~Freese and C.~Savage (Phys.\\ Lett.\\ B {\\bf 717}, 25 (2012) [arXiv:1204.1339]) and describe a dark matter model for which the results of the previous paper do not apply. Within this mirror dark matter model, potentially hazardous objects, mirror micrometeorites, can exist potentially leading to diseases triggered by multiple mutations, such as cancer.

  16. Recent developments in dark matter searches

    Indian Academy of Sciences (India)

    A Berera

    2011-05-01

    A brief review is first given of the forms of dark matter that are hypothesized, and a summary of the basic observational evidence for dark matter is provided. Then a summary of recent results from indirect and direct detection dark matter search experiments is given. Some discussion is also done of MOND theories along with recent analysis of galaxy surface density data that provides some support for such theories.

  17. Dark matter reflection of particle symmetry

    Science.gov (United States)

    Khlopov, Maxim Yu.

    2017-05-01

    In the context of the relationship between physics of cosmological dark matter and symmetry of elementary particles, a wide list of dark matter candidates is possible. New symmetries provide stability of different new particles and their combination can lead to a multicomponent dark matter. The pattern of symmetry breaking involves phase transitions in the very early Universe, extending the list of candidates by topological defects and even primordial nonlinear structures.

  18. Dark matter as a cancer hazard

    Science.gov (United States)

    Chashchina, Olga; Silagadze, Zurab

    2016-07-01

    We comment on the paper "Dark matter collisions with the human body" by K. Freese and C. Savage (2012) [1] and describe a dark matter model for which the results of the previous paper do not quite apply. Within this mirror dark matter model, potentially hazardous objects, mirror micrometeorites, can exist and may lead to diseases triggered by multiple mutations, such as cancer, though with very low probability.

  19. Axion dark matter detection using atomic transitions.

    Science.gov (United States)

    Sikivie, P

    2014-11-14

    Dark matter axions may cause transitions between atomic states that differ in energy by an amount equal to the axion mass. Such energy differences are conveniently tuned using the Zeeman effect. It is proposed to search for dark matter axions by cooling a kilogram-sized sample to millikelvin temperatures and count axion induced transitions using laser techniques. This appears to be an appropriate approach to axion dark matter detection in the 10^{-4}  eV mass range.

  20. TASI 2008 Lectures on Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan; /Fermilab /Chicago U., Astron. Astrophys. Ctr.

    2009-01-01

    Based on lectures given at the 2008 Theoretical Advanced Study Institute (TASI), I review here some aspects of the phenomenology of particle dark matter, including the process of thermal freeze-out in the early universe, and the direct and indirect detection of WIMPs. I also describe some of the most popular particle candidates for dark matter and summarize the current status of the quest to discover dark matter's particle identity.

  1. Dark matter as a cancer hazard

    Energy Technology Data Exchange (ETDEWEB)

    Chashchina, Olga, E-mail: chashchina.olga@gmail.com [École Polytechnique, Palaiseau (France); Silagadze, Zurab, E-mail: Z.K.Silagadze@inp.nsk.su [Budker Institute of Nuclear Physics and Novosibirsk State University, Novosibirsk 630 090 (Russian Federation)

    2016-07-10

    We comment on the paper “Dark matter collisions with the human body” by K. Freese and C. Savage (2012) [1] and describe a dark matter model for which the results of the previous paper do not quite apply. Within this mirror dark matter model, potentially hazardous objects, mirror micrometeorites, can exist and may lead to diseases triggered by multiple mutations, such as cancer, though with very low probability.

  2. Dark Matter Jets at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yang; /SLAC; Rajaraman, Arvind; /UC, Irvine

    2012-03-28

    We argue that dark matter particles which have strong interactions with the Standard Model particles are not excluded by current astrophysical constraints. These dark matter particles have unique signatures at colliders; instead of missing energy, the dark matter particles produce jets. We propose a new search strategy for such strongly interacting particles by looking for a signal of two trackless jets. We show that suitable cuts can plausibly allow us to find these signals at the LHC even in early data.

  3. Asymmetric dark matter bound state

    Science.gov (United States)

    Bi, Xiao-Jun; Kang, Zhaofeng; Ko, P.; Li, Jinmian; Li, Tianjun

    2017-02-01

    We propose an interesting framework for asymmetric scalar dark matter (ADM), which has novel collider phenomenology in terms of an unstable ADM bound state (ADMonium) produced via Higgs portals. ADMonium is a natural consequence of the basic features of ADM: the (complex scalar) ADM is charged under a dark local U (1 )d symmetry which is broken at a low scale and provides a light gauge boson X . The dark gauge coupling is strong and then ADM can annihilate away into X -pair effectively. Therefore, the ADM can form a bound state due to its large self-interaction via X mediation. To explore the collider signature of ADMonium, we propose that ADM has a two-Higgs doublet portal. The ADMonium can have a sizable mixing with the heavier Higgs boson, which admits a large cross section of ADMonium production associated with b b ¯. The resulting signature at the LHC depends on the decays of X . In this paper we consider a case of particular interest: p p →b b ¯ +ADMonium followed by ADMonium→2 X →2 e+e- where the electrons are identified as (un)converted photons. It may provide a competitive explanation to heavy di-photon resonance searches at the LHC.

  4. Searching for SUSY dark matter

    CERN Document Server

    Arnowitt, Richard Lewis; Nath, Pran

    1994-01-01

    {\\tenrm The possibility of detecting supersymmetric dark matter is examined within the framework of the minimal supergravity model (MSGM) where the \\tilde{Z}_{1} is the LSP for almost the entire parameter space. A brief discussion is given of experimental strategies for detecting dark matter. The relic density is constrained to obey 0.10 \\leq \\Omega_{\\tilde{Z}_{1}}h^2 \\leq0.35, consistent with COBE data. Expected event rates for an array of possible terrestrial detectors (^3He, CaF_2, Ge, GaAs, NaI and Pb) are examined. In general, detectors relying on coherrent \\tilde{Z}_{1}-nucleus scattering are more sensitive than detectors relying on incoherrent (spin-dependent) scattering. The dependence of the event rates as a function of the SUSY parameters are described. The detectors are generally most sensitive to the small m_0 and small m_{\\tilde{q}} and large tan\\beta part of the parameter space. The current b\\rightarrow s+\\gamma decay rate eliminates regions of large event rates for \\mu >0, but allows large even...

  5. Sterile Neutrino Dark Matter with Supersymmetry

    CERN Document Server

    Shakya, Bibhushan

    2016-01-01

    Sterile neutrino dark matter, a popular alternative to the WIMP paradigm, has generally been studied in non-supersymmetric setups. If the underlying theory is supersymmetric, we find that several interesting and novel dark matter features can arise. In particular, in scenarios of freeze-in production of sterile neutrino dark matter, its superpartner, the sterile sneutrino, can play a crucial role in early Universe cosmology as the dominant source of cold, warm, or hot dark matter, or of a subdominant relativistic population of sterile neutrinos that can contribute to the effective number of relativistic degrees of freedom Neff during Big Bang nucleosynthesis.

  6. Search for Dark Matter at ATLAS

    CERN Document Server

    Conventi, Francesco; The ATLAS collaboration

    2017-01-01

    Dark Matter composes almost 25% of our Universe, but its identity is still unknown which makes it a large challenge for current fundamental physics. A lot of approaches are used to discover the identity of Dark Matter and one of them, collider searches, are discussed in this talk. The latest results on Dark Matter search at ATLAS using 2015 and 2016 data are presented. Results from searches for new physics in the events with final states containing large missing transverse energy + X (photons, jets, boson) are shown. Higgs to invisible and dijet searches are used in sense of complementarity to constrain properties of Dark Matter.

  7. Direct Dark Matter Searches: Status and Perspectives

    CERN Document Server

    CERN. Geneva

    2016-01-01

    There is overwhelming indirect evidence that dark matter exists, however, the dark matter particle has not yet been directly detected in laboratory experiments. In order to be able to identify the rare dark matter interactions with the target nuclei, such instruments have to feature a very low threshold and an extremely low radioactive background. They are therefore installed in underground laboratories to reduce cosmic ray backgrounds. I will review the status of direct dark matter searches and will discuss the perspectives for the future.

  8. Dipolar dark matter with massive bigravity

    Energy Technology Data Exchange (ETDEWEB)

    Blanchet, Luc [GRECO Institut d’Astrophysique de Paris - UMR 7095 du CNRS,Université Pierre & Marie Curie,98" b" i" s boulevard Arago, 75014 Paris (France); Heisenberg, Lavinia [Nordita, KTH Royal Institute of Technology and Stockholm University,Roslagstullsbacken 23, 10691 Stockholm (Sweden); Department of Physics & The Oskar Klein Centre, AlbaNova University Centre,Roslagstullsbacken 21, 10691 Stockholm (Sweden)

    2015-12-14

    Massive gravity theories have been developed as viable IR modifications of gravity motivated by dark energy and the problem of the cosmological constant. On the other hand, modified gravity and modified dark matter theories were developed with the aim of solving the problems of standard cold dark matter at galactic scales. Here we propose to adapt the framework of ghost-free massive bigravity theories to reformulate the problem of dark matter at galactic scales. We investigate a promising alternative to dark matter called dipolar dark matter (DDM) in which two different species of dark matter are separately coupled to the two metrics of bigravity and are linked together by an internal vector field. We show that this model successfully reproduces the phenomenology of dark matter at galactic scales (i.e. MOND) as a result of a mechanism of gravitational polarisation. The model is safe in the gravitational sector, but because of the particular couplings of the matter fields and vector field to the metrics, a ghost in the decoupling limit is present in the dark matter sector. However, it might be possible to push the mass of the ghost beyond the strong coupling scale by an appropriate choice of the parameters of the model. Crucial questions to address in future work are the exact mass of the ghost, and the cosmological implications of the model.

  9. Dipolar dark matter with massive bigravity

    Science.gov (United States)

    Blanchet, Luc; Heisenberg, Lavinia

    2015-12-01

    Massive gravity theories have been developed as viable IR modifications of gravity motivated by dark energy and the problem of the cosmological constant. On the other hand, modified gravity and modified dark matter theories were developed with the aim of solving the problems of standard cold dark matter at galactic scales. Here we propose to adapt the framework of ghost-free massive bigravity theories to reformulate the problem of dark matter at galactic scales. We investigate a promising alternative to dark matter called dipolar dark matter (DDM) in which two different species of dark matter are separately coupled to the two metrics of bigravity and are linked together by an internal vector field. We show that this model successfully reproduces the phenomenology of dark matter at galactic scales (i.e. MOND) as a result of a mechanism of gravitational polarisation. The model is safe in the gravitational sector, but because of the particular couplings of the matter fields and vector field to the metrics, a ghost in the decoupling limit is present in the dark matter sector. However, it might be possible to push the mass of the ghost beyond the strong coupling scale by an appropriate choice of the parameters of the model. Crucial questions to address in future work are the exact mass of the ghost, and the cosmological implications of the model.

  10. DAMIC: a novel dark matter experiment

    CERN Document Server

    Aguilar-Arevalo, Alexis A; Butner, Melissa J; Cancelo, Gustavo; Chavarria, Alvaro; D'Olivo, Juan Carlos; Vigil, Juan Cruz Estrada; Moroni, Guillermo Fernandez; Izraelevitch, Federico; Kilminster, Ben; Lawson, Ian T; Marsal, Fernando; Molina, Jorge; Privitera, Paolo; Schwarz, Tom; Haro, Miguel Sofo; Tiffenberg, Javier; Trillaud, Frederic; Zhou, Jing

    2013-01-01

    DAMIC (Dark Matter in CCDs) is a novel dark matter experiment that has unique sensitivity to dark matter particles with masses below 10 GeV. Due to its low electronic readout noise (R.M.S. ~3 e-) this instrument is able to reach a detection threshold below 0.5 keV nuclear recoil energy, making the search for dark matter particles with low masses possible. We report on early results and experience gained from a detector that has been running at SNOLAB from Dec 2012. We also discuss the measured and expected backgrounds and present the plan for future detectors to be installed in 2014.

  11. Regenerating a symmetry in asymmetric dark matter.

    Science.gov (United States)

    Buckley, Matthew R; Profumo, Stefano

    2012-01-06

    Asymmetric dark matter theories generically allow for mass terms that lead to particle-antiparticle mixing. Over the age of the Universe, dark matter can thus oscillate from a purely asymmetric configuration into a symmetric mix of particles and antiparticles, allowing for pair-annihilation processes. Additionally, requiring efficient depletion of the primordial thermal (symmetric) component generically entails large annihilation rates. We show that unless some symmetry completely forbids dark matter particle-antiparticle mixing, asymmetric dark matter is effectively ruled out for a large range of masses, for almost any oscillation time scale shorter than the age of the Universe.

  12. Vector dark matter annihilation with internal bremsstrahlung

    OpenAIRE

    Bambhaniya, Gulab; Kumar, Jason; Marfatia, Danny; Nayak, Alekha C.; Tomar, Gaurav

    2016-01-01

    We consider scenarios in which the annihilation of self-conjugate spin-1 dark matter to a Standard Model fermion-antifermion final state is chirality suppressed, but where this suppression can be lifted by the emission of an additional photon via internal bremsstrahlung. We find that this scenario can only arise if the initial dark matter state is polarized, which can occur in the context of self-interacting dark matter. In particular, this is possible if the dark matter pair forms a bound st...

  13. DAMIC: a novel dark matter experiment

    Energy Technology Data Exchange (ETDEWEB)

    Tiffenberg, Javier; Bertou, Xavier [Centro Atomico Bariloche; Butner, Melissa J. [Fermilab; Cancelo, Gustavo [Fermilab; Chavarria, Alvaro [Chicago U., KICP; D' Olivo, Juan Carlos [Mexico U., ICN; Estrada Vigil, Juan Cruz [Fermilab; Moroni, Guillermo Fernandez [Bahia Blanca, U. Natl. Del Sur; Izraelevitch, Federico [Fermilab; Kilminster, Ben [Zurich U.; Lawson, Ian T. [SNOLAB, Lively; Marsal, Fernando [Asuncion Natl. U.; Molina, Jorge [Asuncion Natl. U.; Privitera, Paolo [Chicago U., KICP; Schwarz, Tom [Michigan U.; Sofo haro, Miguel [Centro Atomico Bariloche; Tiffenberg, Javier [Fermilab; Trillaud, Frederic [Mexico U.; Zhou, Jing [Chicago U., KICP

    2013-10-24

    DAMIC (Dark Matter in CCDs) is a novel dark matter experiment that has unique sensitivity to dark matter particles with masses below 10 GeV. Due to its low electronic readout noise (R.M.S. ~3 e-) this instrument is able to reach a detection threshold below 0.5 keV nuclear recoil energy, making the search for dark matter particles with low masses possible. We report on early results and experience gained from a detector that has been running at SNOLAB from Dec 2012. We also discuss the measured and expected backgrounds and present the plan for future detectors to be installed in 2014.

  14. Unified dark energy-dark matter model with inverse quintessence

    Energy Technology Data Exchange (ETDEWEB)

    Ansoldi, Stefano [ICRA — International Center for Relativistic Astrophysics, INFN — Istituto Nazionale di Fisica Nucleare, and Dipartimento di Matematica e Informatica, Università degli Studi di Udine, via delle Scienze 206, I-33100 Udine (UD) (Italy); Guendelman, Eduardo I., E-mail: ansoldi@fulbrightmail.org, E-mail: guendel@bgu.ac.il [Department of Physics, Ben-Gurion University of the Negeev, Beer-Sheva 84105 (Israel)

    2013-05-01

    We consider a model where both dark energy and dark matter originate from the coupling of a scalar field with a non-canonical kinetic term to, both, a metric measure and a non-metric measure. An interacting dark energy/dark matter scenario can be obtained by introducing an additional scalar that can produce non constant vacuum energy and associated variations in dark matter. The phenomenology is most interesting when the kinetic term of the additional scalar field is ghost-type, since in this case the dark energy vanishes in the early universe and then grows with time. This constitutes an ''inverse quintessence scenario'', where the universe starts from a zero vacuum energy density state, instead of approaching it in the future.

  15. Dark-matter dispute intensifies

    Energy Technology Data Exchange (ETDEWEB)

    Avignone, Frank T. [Department of Physics and Astronomy, University of South Carolina, Columbia, SC (United States)

    2000-04-01

    Recent results from a dark-matter experiment in Italy suggest that the elusive weakly interacting massive particle or WIMP has finally been detected - but a rival experimental collaboration in the US disagrees. The controversy surrounding evidence for the discovery of ''dark matter'' particles has heated up following two conflicting talks given at a conference at the end of February. The papers were presented at the 4th International Symposium on Sources and Detection of Dark Matter/Energy in the Universe held in Marina del Ray, California. For almost 70 years astronomers have known that dust, gas and other ordinary matter cannot account for almost 90% of the mass of many galaxies. The galaxies must contain other ''dark'' matter to explain the orbital motions of stars around their centres. Many astrophysicists, cosmologists and particle physicists have conjectured that this seemingly empty space could be populated by a dense body of massive, but very weakly interacting, particles called WIMPs. Such particles would then provide the gravitational fields needed to keep the stars moving as observed. Since the results of the first experimental efforts to detect these particles were published in 1987, literally dozens of experiments have been performed around the world. Two of the most sensitive experiments to date are the DAMA experiment at the Gran Sasso laboratory in Italy, and the CDMS experiment at Stanford University in the US. The DAMA collaboration - which includes physicists from the University of Rome Tor Vergata, the University of Rome La Sapienza and the Chinese Academy in Beijing - has been searching for WIMPs for several years using a large array of sodium-iodide detectors located 1400 m below ground. The CDMS experiment uses cryogenic detectors and is located just 10 m underground. The collaboration includes researchers from several centres in the US and Russia. Assuming that they do exist, a WIMP will occasionally

  16. Absorption of light dark matter in semiconductors

    CERN Document Server

    Hochberg, Yonit; Zurek, Kathryn M

    2016-01-01

    Semiconductors are by now well-established targets for direct detection of MeV to GeV dark matter via scattering off electrons. We show that semiconductor targets can also detect significantly lighter dark matter via an absorption process. When the dark matter mass is above the band gap of the semiconductor (around an eV), absorption proceeds by excitation of an electron into the conduction band. Below the band gap, multi-phonon excitations enable absorption of dark matter in the 0.01 eV to eV mass range. Energetic dark matter particles emitted from the sun can also be probed for masses below an eV. We show that the reach for absorption of a relic kinetically mixed dark photon or pseudoscalar in semiconductors such as germanium or silicon can exceed current astrophysical and terrestrial constraints, with only a moderate exposure.

  17. Lorentz symmetry violation, dark matter and dark energy

    CERN Document Server

    Gonzalez-Mestres, Luis

    2009-01-01

    Taking into account the experimental results of the HiRes and AUGER collaborations, the present status of bounds on Lorentz symmetry violation (LSV) patterns is discussed. Although significant constraints will emerge, a wide range of models and values of parameters will still be left open. Cosmological implications of allowed LSV patterns are discussed focusing on the origin of our Universe, the cosmological constant, dark matter and dark energy. Superbradyons (superluminal preons) may be the actual constituents of vacuum and of standard particles, and form equally a cosmological sea leading to new forms of dark matter and dark energy.

  18. Dark matter and the LHC

    CERN Document Server

    Baer, Howard

    2008-01-01

    An abundance of astrophysical evidence indicates that the bulk of matter in the universe is made up of massive, electrically neutral particles that form the dark matter (DM). While the density of DM has been precisely measured, the identity of the DM particle (or particles) is a complete mystery. In fact, within the laws of physics as we know them (the Standard Model, or SM), none of the particles have the right properties to make up DM. Remarkably, many new physics extensions of the SM -- designed to address theoretical issues with the electroweak symmetry breaking sector -- require the introduction of new particles, some of which are excellent DM candidates. As the LHC era begins, there are high hopes that DM particles, along with their associated new matter states, will be produced in pp collisions. We discuss how LHC experiments, along with other DM searches, may serve to determine the identity of DM particles and elucidate the associated physics. Most of our discussion centers around theories with weak-s...

  19. How Cold is Cold Dark Matter?

    CERN Document Server

    Armendariz-Picon, Cristian

    2013-01-01

    If cold dark matter consists of particles, these must be non-interacting and non-relativistic by definition. In most cold dark matter models, however, dark matter particles inherit a non-vanishing velocity dispersion from interactions in the early universe, a velocity that redshifts with cosmic expansion but certainly remains non-zero. In this article, we place model-independent constraints on the dark matter temperature to mass ratio, whose square root determines the dark matter velocity dispersion. We only assume that dark matter particles decoupled kinetically while non-relativistic, when galactic scales had not entered the horizon yet, and that their momentum distribution has been Maxwellian since that time. Under these assumptions, using cosmic microwave background and matter power spectrum observations, we place upper limits on the temperature to mass ratio of cold dark matter. The latter imply that its velocity dispersion extrapolated to the present has to be smaller than 56 m/s. Cold dark matter has t...

  20. Singlet scalar Dark Matter in Dark Two Higgs Doublet Model

    CERN Document Server

    Gaitan, R; de Oca, J H Montes

    2014-01-01

    We consider the case of the Dark Two Higgs Doublet Model (D2HDM) where a $U(1)'$ symmetry group and an extra Higgs doublet are added to the Standard Model. This model leads to a gauge singlet particle as an interesting Dark Matter (DM) candidate. We obtain phenomenological constraints to the parameter space of the model considering the one necessary to produce the correct density of thermal relic dark matter $\\Omega h^2$. We find a relation between the masses of the DM matter candidate $m_S$ and $m_{Z'}$ that satisfy the relic density for given values of $\\tan\\beta$.

  1. Supplying Dark Energy from Scalar Field Dark Matter

    OpenAIRE

    Gogberashvili, Merab; Sakharov, Alexander S.

    2017-01-01

    We consider the hypothesis that the dark matter consists of ultra-light bosons residing in the state of a Bose-Einstein condensate, which behaves as a single coherent wave rather than as individual particles. In galaxies, spatial distribution of scalar field dark matter can be described by the relativistic Klein-Gordon equation on a background space-time with Schwarzschild metric. In such a setup, the equation of state of scalar field dark matter is found to be changing along with galactocent...

  2. Coupling q-deformed dark energy to dark matter

    OpenAIRE

    Emre Dil

    2016-01-01

    We propose a novel coupled dark energy model which is assumed to occur as a q-deformed scalar field and investigate whether it will provide an expanding universe phase. We consider the q-deformed dark energy as coupled to dark matter inhomogeneities. We perform the phase-space analysis of the model by numerical methods and find the late-time accelerated attractor solutions. The attractor solutions imply that the coupled q-deformed dark energy model is consistent with the conventional dark ene...

  3. Correlation between Dark Matter and Dark Radiation in String Compactifications

    CERN Document Server

    Allahverdi, Rouzbeh; Dutta, Bhaskar; Sinha, Kuver

    2014-01-01

    Reheating in string compactifications is generically driven by the decay of the lightest modulus which produces Standard Model particles, dark matter and light hidden sector degrees of freedom that behave as dark radiation. This common origin allows us to find an interesting correlation between dark matter and dark radiation. By combining present upper bounds on the effective number of neutrino species N_eff with lower bounds on the reheating temperature as a function of the dark matter mass m_DM from Fermi data, we obtain strong constraints on the (N_eff,m_DM)-plane. Most of the allowed region in this plane corresponds to non-thermal scenarios with Higgsino-like dark matter. Thermal dark matter can be allowed only if N_eff tends to its Standard Model value. We show that the above situation is realised in models with perturbative moduli stabilisation where the production of dark radiation is unavoidable since bulk closed string axions remain light and do not get eaten up by anomalous U(1)s.

  4. Detection of supersymmetric dark matter.

    Science.gov (United States)

    Xinrui, Hou; Li, Xueqian; Xinhe, Meng; Zhijian, Tao

    1997-10-01

    A re-analysis of a heavy charged particle production event observed at the cloudy chamber of the Yunnan Cosmic Ray Station (YCRS) in 1972 indicates that the mysterious heavy particle may be identified as a supersymmetric (SUSY) particle produced by bombarding a neutral SUSY cosmic ray particle on a proton. Based on the assumption, following literature studies that the neutral SUSY particle which constitutes the main fraction of the cold dark matter is a scalar neutrino (sneutrino) or neutralino (photino), the authors evaluate the flux of such SUSY particles which gain sufficient energies via elastic scattering with charged cosmic particles on the way to an Earth detector and the capture rates in both the sneutrino and photino cases respectively. The errors appearing in the study are briefly discussed and this work may provide a basis of designing cosmic ray detectors to search for SUSY particles.

  5. CP violating scalar Dark Matter

    CERN Document Server

    Cordero-Cid, A; Keus, V; King, S F; Moretti, S; Rojas, D; Sokołowska, D

    2016-01-01

    We study an extension of the Standard Model (SM) in which two copies of the SM scalar $SU(2)$ doublet which do not acquire a Vacuum Expectation Value (VEV), and hence are \\textit{inert}, are added to the scalar sector. We allow for CP-violation in the \\textit{inert} sector, where the lightest \\textit{inert} state is protected from decaying to SM particles through the conservation of a $Z_2$ symmetry. The lightest neutral particle from the \\textit{inert} sector, which has a mixed CP-charge due to CP-violation, is hence a Dark Matter (DM) candidate. We discuss the new regions of DM relic density opened up by CP-violation, and compare our results to the CP-conserving limit and the Inert Doublet Model (IDM). We constrain the parameter space of the CP-violating model using recent results from the Large Hadron Collider (LHC) and DM direct and indirect detection experiments.

  6. Singlet-Doublet Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Timothy; /SLAC /Michigan U., MCTP; Kearney, John; Pierce, Aaron; /Michigan U., MCTP; Tucker-Smith, David; /Williams Coll.

    2012-02-15

    In light of recent data from direct detection experiments and the Large Hadron Collider, we explore models of dark matter in which an SU(2){sub L} doublet is mixed with a Standard Model singlet. We impose a thermal history. If the new particles are fermions, this model is already constrained due to null results from XENON100. We comment on remaining regions of parameter space and assess prospects for future discovery. We do the same for the model where the new particles are scalars, which at present is less constrained. Much of the remaining parameter space for both models will be probed by the next generation of direct detection experiments. For the fermion model, DeepCore may also play an important role.

  7. The Cryogenic Dark Matter Search

    Science.gov (United States)

    Sander, Joel

    2004-05-01

    The Cryogenic Dark Matter Search (CDMS) is an experiment to search for Weakly Interacting Massive Particles (WIMPs). The experiment initially was deployed at a shallow underground site, and is currently deployed at a deep underground site at the Soudan Mine in Minnesota. The detectors operate at cryogenic temperature, and are capable of distinguishing nuclear recoils from WIMP interactions from various backgrounds. The detectors are shielded from background by both active and passive elements. We will describe the components of the overall experiment, and focus on the novel data acquisition system that has been develop to control and monitor the experiment via the World Wide Web. Preliminary signals from the operation at Soudan will be discussed.

  8. DEAP-3600 dark matter experiment

    CERN Document Server

    Fatemighomi, Nasim

    2016-01-01

    DEAP-3600 is a single phase liquid argon (LAr) dark matter experiment, located 2 km underground at SNOLAB, in Sudbury, Canada. The detector has 1 tonne fiducial mass of LAr. The target sensitivity to spin-independent scattering of 100 GeV weakly interacting massive particles (WIMPs) is 10$^{-46}$ cm$^{2}$. The DEAP-3600 background target is $<$ 0.6 background events in the WIMP region of interest in 3 tonne-years. The strategies to achieve this background include pulse shape discrimination to mitigate electron recoil and using ultra low radioactive materials for detector construction. Furthermore, to reduce neutron and alpha backgrounds, the DEAP-3600 acrylic vessel was sanded in situ to mitigate radon exposure of surfaces during construction and fabrication. The experiment is currently in the commissioning phase and will begin physics data taking later this year. This paper presents an overview of the experiment, its cross-section sensitivity to WIMPs and its current status.

  9. CP violating scalar Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Cordero-Cid, A.; Hernández-Sánchez, J. [Instituto de Física and Facultad de Ciencias de la Electrónica, Benemérita Universidad Autónoma de Puebla, Apdo. Postal 542, C.P. 72570 Puebla (Mexico); Keus, V. [Department of Physics and Helsinki Institute of Physics, University of Helsinki, Gustaf Hallstromin katu 2, Helsinki, FIN-00014 (Finland); School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); King, S.F. [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Moretti, S. [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Particle Physics Department, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX (United Kingdom); Rojas, D. [Instituto de Física and Facultad de Ciencias de la Electrónica, Benemérita Universidad Autónoma de Puebla, Apdo. Postal 542, C.P. 72570 Puebla (Mexico); Sokołowska, D. [Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw (Poland)

    2016-12-05

    We study an extension of the Standard Model (SM) in which two copies of the SM scalar SU(2) doublet which do not acquire a Vacuum Expectation Value (VEV), and hence are inert, are added to the scalar sector. We allow for CP-violation in the inert sector, where the lightest inert state is protected from decaying to SM particles through the conservation of a Z{sub 2} symmetry. The lightest neutral particle from the inert sector, which has a mixed CP-charge due to CP-violation, is hence a Dark Matter (DM) candidate. We discuss the new regions of DM relic density opened up by CP-violation, and compare our results to the CP-conserving limit and the Inert Doublet Model (IDM). We constrain the parameter space of the CP-violating model using recent results from the Large Hadron Collider (LHC) and DM direct and indirect detection experiments.

  10. Unbound particles in dark matter halos

    Energy Technology Data Exchange (ETDEWEB)

    Behroozi, Peter S.; Wechsler, Risa H. [Kavli Institute for Particle Astrophysics and Cosmology, Physics Department, Stanford University and SLAC National Accelerator Laboratory 2575 Sand Hill Road, Menlo Park, CA (United States); Loeb, Abraham, E-mail: behroozi@stanford.edu, E-mail: aloeb@cfa.harvard.edu, E-mail: rwechsler@stanford.edu [Department of Astronomy, Harvard University 60 Garden St, Cambridge, MA (United States)

    2013-06-01

    We investigate unbound dark matter particles in halos by tracing particle trajectories in a simulation run to the far future (a = 100). We find that the traditional sum of kinetic and potential energies is a very poor predictor of which dark matter particles will eventually become unbound from halos. We also study the mass fraction of unbound particles, which increases strongly towards the edges of halos, and decreases significantly at higher redshifts. We discuss implications for dark matter detection experiments, precision calibrations of the halo mass function, the use of baryon fractions to constrain dark energy, and searches for intergalactic supernovae.

  11. Unbound particles in dark matter halos

    Energy Technology Data Exchange (ETDEWEB)

    Behroozi, Peter S.; Loeb, Abraham; Wechsler, Risa H.

    2013-06-13

    We investigate unbound dark matter particles in halos by tracing particle trajectories in a simulation run to the far future (a = 100). We find that the traditional sum of kinetic and potential energies is a very poor predictor of which dark matter particles will eventually become unbound from halos. We also study the mass fraction of unbound particles, which increases strongly towards the edges of halos, and decreases significantly at higher redshifts. We discuss implications for dark matter detection experiments, precision calibrations of the halo mass function, the use of baryon fractions to constrain dark energy, and searches for intergalactic supernovae.

  12. Scalar-field theory of dark matter

    CERN Document Server

    Huang, Kerson; Zhao, Xiaofei

    2013-01-01

    We develop a theory of dark matter based on a previously proposed picture, in which a complex vacuum scalar field makes the universe a superfluid, with the energy density of the superfluid giving rise to dark energy, and variations from vacuum density giving rise to dark matter. We formulate a nonlinear Klein-Gordon equation to describe the superfluid, treating galaxies as external sources. We study the response of the superfluid to the galaxies, in particular, the emergence of the dark-matter galactic halo, contortions during galaxy collisions, and the creation of vortices due to galactic rotation.

  13. ℤ{sub 2} SIMP dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Bernal, Nicolás [ICTP South American Institute for Fundamental Research,Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo (Brazil); Chu, Xiaoyong [ICTP International Centre for Theoretical PhysicsStrada Costiera 11, 34014 Trieste (Italy)

    2016-01-05

    Dark matter with strong self-interactions provides a compelling solution to several small-scale structure puzzles. Under the assumption that the coupling between dark matter and the Standard Model particles is suppressed, such strongly interacting massive particles (SIMPs) allow for a successful thermal freeze-out through N-to-N{sup ′} processes, where N dark matter particles annihilate to N{sup ′} of them. In the most common scenarios, where dark matter stability is guaranteed by a ℤ{sub 2} symmetry, the seemingly leading annihilating channel, i.e. 3-to-2 process, is forbidden, so the 4-to-2 one dominate the production of the dark matter relic density. Moreover, cosmological observations require that the dark matter sector is colder than the thermal bath of Standard Model particles, a condition that can be dynamically generated via a small portal between dark matter and Standard Model particles, à la freeze-in. This scenario is exemplified in the context of the Singlet Scalar dark matter model.

  14. New Spectral Features from Bound Dark Matter

    DEFF Research Database (Denmark)

    Catena, Riccardo; Kouvaris, Chris

    2016-01-01

    We demonstrate that dark matter particles gravitationally bound to the Earth can induce a characteristic nuclear recoil signal at low energies in direct detection experiments. The new spectral feature we predict can provide the ultimate smoking gun for dark matter discovery for experiments...

  15. Intergalactic medium heating by dark matter

    NARCIS (Netherlands)

    Ripamonti, E.; Mapelli, M.; Ferrara, A.

    2007-01-01

    We derive the evolution of the energy deposition in the intergalactic medium (IGM) by dark matter (DM) decays/annihilations for both sterile neutrinos and light dark matter (LDM) particles. At z > 200 sterile neutrinos transfer a fraction f(abs) similar to 0.5 of their rest mass energy into the IGM;

  16. Intergalactic medium heating by dark matter

    NARCIS (Netherlands)

    Ripamonti, E.; Mapelli, M.; Ferrara, A.

    2006-01-01

    Abstract: We derive the evolution of the energy deposition in the intergalactic medium (IGM) by dark matter (DM) decays/annihilations for both sterile neutrinos and light dark matter (LDM) particles. At z > 200 sterile neutrinos transfer a fraction f_abs~0.5 of their rest mass energy into the IGM; a

  17. The CRESST II Dark Matter Search

    CERN Document Server

    Stodolsky, Leo; Bauer, M; Bavykina, I; Bento, A; Bucci, C; Ciemniak, C; Deuter, G; Feilitzsch, F v; Hauff, D; Huff, P; Isaila, C; Jochum, J; Kiefer, M; Kimmerle, M; Lanfranchi, J C; Pfister, S; Petricca, F; Potzel, W; Proebst, F; Reindl, F; Roth, S; Rottler, K; Sailer, C; Schaeffner, K; Schmaler, J; Scholl, S; Seidel, W; Sivers, M v; Strandhagen, C; Strauss, R; Tanzke, A; Usherov, I; Wawoczny, S; Willers, M; Zoeller, A

    2012-01-01

    Direct Dark Matter detection with cryodetectors is briefly discussed, with particular mention of the possibility of the identification of the recoil nucleus. Preliminary results from the CREEST II Dark Matter search, with 730 kg-days of data, are presented. Major backgrounds and methods of identifying and dealing with them are indicated.

  18. Tiny galaxies help unravel dark matter mystery

    CERN Multimedia

    O'Hanlon, Larry

    2007-01-01

    "The 70-year effort to unravel the mysteries of dark matter just got a big boost from some very puny galaxies. In the pas few years, a score of dwarf galaxies have been discovered hanging about the fringes of the Milky way. Now new measurements of the few stars int hese dwarfs reveal them to be dark mater distilleries, with upwards of 1'000 times more dark than normal matter." (3 pages)

  19. Dark matter direct-detection experiments

    Science.gov (United States)

    Marrodán Undagoitia, Teresa; Rauch, Ludwig

    2016-01-01

    In recent decades, several detector technologies have been developed with the quest to directly detect dark matter interactions and to test one of the most important unsolved questions in modern physics. The sensitivity of these experiments has improved with a tremendous speed due to a constant development of the detectors and analysis methods, proving uniquely suited devices to solve the dark matter puzzle, as all other discovery strategies can only indirectly infer its existence. Despite the overwhelming evidence for dark matter from cosmological indications at small and large scales, clear evidence for a particle explaining these observations remains absent. This review summarises the status of direct dark matter searches, focusing on the detector technologies used to directly detect a dark matter particle producing recoil energies in the keV energy scale. The phenomenological signal expectations, main background sources, statistical treatment of data and calibration strategies are discussed.

  20. Scalar dark matter with type II seesaw

    Directory of Open Access Journals (Sweden)

    Arnab Dasgupta

    2014-12-01

    Full Text Available We study the possibility of generating tiny neutrino mass through a combination of type I and type II seesaw mechanism within the framework of an abelian extension of standard model. The model also provides a naturally stable dark matter candidate in terms of the lightest neutral component of a scalar doublet. We compute the relic abundance of such a dark matter candidate and also point out how the strength of type II seesaw term can affect the relic abundance of dark matter. Such a model which connects neutrino mass and dark matter abundance has the potential of being verified or ruled out in the ongoing neutrino, dark matter, as well as accelerator experiments.

  1. An introduction to particle dark matter

    CERN Document Server

    Profumo, Stefano

    2017-01-01

    What is the dark matter that fills the Universe and binds together galaxies? How was it produced? What are its interactions and particle properties?The paradigm of dark matter is one of the key developments at the interface of cosmology and elementary particle physics. It is also one of the foundations of the standard cosmological model. This book presents the state of the art in building and testing particle models for dark matter. Each chapter gives an analysis of questions, research directions, and methods within the field. More than 200 problems are included to challenge and stimulate the reader's knowledge and provide guidance in the practical implementation of the numerous 'tools of the trade' presented. Appendices summarize the basics of cosmology and particle physics needed for any quantitative understanding of particle models for dark matter.This interdisciplinary textbook is essential reading for anyone interested in the microscopic nature of dark matter as it manifests itself in particle physics ex...

  2. Galilean Equivalence for Galactic Dark Matter

    CERN Document Server

    Kesden, M; Kesden, Michael; Kamionkowski, Marc

    2006-01-01

    Satellite galaxies of the Milky Way experience a tidal disruption as they orbit in the Milky Way's dark halo. While the bound core of the satellite remains dominated by dark matter, the tidally disrupted stars behave like purely baryonic tracers of the Milky Way's potential well. If dark matter experiences a stronger self attraction than visible matter, stars will preferentially gain rather than lose energy during tidal disruption. This leads to a relative enhancement in the trailing as compared to the leading tidal stream. We show that the absence of a strong asymmetry in the surface brightness of the leading and trailing tidal streams already constrains the equivalence of acceleration of dark matter and baryons in a gravitational field to less than ten percent--thus ruling out a recently proposed mechanism to clear dwarf galaxies from voids. Future observations should be sensitive at the percent level to departures from the equivalence of dark matter and baryons.

  3. Dark matter direct-detection experiments

    CERN Document Server

    Undagoitia, Teresa Marrodan

    2015-01-01

    In the past decades, several detector technologies have been developed with the quest to directly detect dark matter interactions and to test one of the most important unsolved questions in modern physics. The sensitivity of these experiments has improved with a tremendous speed due to a constant development of the detectors and analysis methods, proving uniquely suited devices to solve the dark matter puzzle, as all other discovery strategies can only indirectly infer its existence. Despite the overwhelming evidence for dark matter from cosmological indications at small and large scales, a clear evidence for a particle explaining these observations remains absent. This review summarises the status of direct dark matter searches, focussing on the detector technologies used to directly detect a dark matter particle producing recoil energies in the keV energy scale. The phenomenological signal expectations, main background sources, statistical treatment of data and calibration strategies are discussed.

  4. Origins and challenges of viral dark matter.

    Science.gov (United States)

    Krishnamurthy, Siddharth R; Wang, David

    2017-02-09

    The accurate classification of viral dark matter - metagenomic sequences that originate from viruses but do not align to any reference virus sequences - is one of the major obstacles in comprehensively defining the virome. Depending on the sample, viral dark matter can make up from anywhere between 40 and 90% of sequences. This review focuses on the specific nature of dark matter as it relates to viral sequences. We identify three factors that contribute to the existence of viral dark matter: the divergence and length of virus sequences, the limitations of alignment based classification, and limited representation of viruses in reference sequence databases. We then discuss current methods that have been developed to at least partially circumvent these limitations and thereby reduce the extent of viral dark matter.

  5. Vector dark matter annihilation with internal bremsstrahlung

    Science.gov (United States)

    Bambhaniya, Gulab; Kumar, Jason; Marfatia, Danny; Nayak, Alekha C.; Tomar, Gaurav

    2017-03-01

    We consider scenarios in which the annihilation of self-conjugate spin-1 dark matter to a Standard Model fermion-antifermion final state is chirality suppressed, but where this suppression can be lifted by the emission of an additional photon via internal bremsstrahlung. We find that this scenario can only arise if the initial dark matter state is polarized, which can occur in the context of self-interacting dark matter. In particular, this is possible if the dark matter pair forms a bound state that decays to its ground state before the constituents annihilate. We show that the shape of the resulting photon spectrum is the same as for self-conjugate spin-0 and spin-1/2 dark matter, but the normalization is less heavily suppressed in the limit of heavy mediators.

  6. Vector dark matter annihilation with internal bremsstrahlung

    Directory of Open Access Journals (Sweden)

    Gulab Bambhaniya

    2017-03-01

    Full Text Available We consider scenarios in which the annihilation of self-conjugate spin-1 dark matter to a Standard Model fermion–antifermion final state is chirality suppressed, but where this suppression can be lifted by the emission of an additional photon via internal bremsstrahlung. We find that this scenario can only arise if the initial dark matter state is polarized, which can occur in the context of self-interacting dark matter. In particular, this is possible if the dark matter pair forms a bound state that decays to its ground state before the constituents annihilate. We show that the shape of the resulting photon spectrum is the same as for self-conjugate spin-0 and spin-1/2 dark matter, but the normalization is less heavily suppressed in the limit of heavy mediators.

  7. Vector dark matter annihilation with internal bremsstrahlung

    CERN Document Server

    Bambhaniya, Gulab; Marfatia, Danny; Nayak, Alekha C; Tomar, Gaurav

    2016-01-01

    We consider scenarios in which the annihilation of self-conjugate spin-1 dark matter to a Standard Model fermion-antifermion final state is chirality suppressed, but where this suppression can be lifted by the emission of an additional photon via internal bremsstrahlung. We find that this scenario can only arise if the initial dark matter state is polarized, which can occur in the context of self-interacting dark matter. In particular, this is possible if the dark matter pair forms a bound state that decays to its ground state before the constituents annihilate. We show that the shape of the resulting photon spectrum is the same as for self-conjugate spin-0 and spin-1/2 dark matter, but the normalization is less heavily suppressed in the limit of heavy mediators.

  8. On the dissipation of the dark matter

    CERN Document Server

    Velten, Hermano

    2012-01-01

    Fluids often display dissipative properties. We explore dissipation in the form of bulk viscosity in the cold dark matter fluid. We constrain this model using current data from supernovae, baryon acoustic oscillations and the cosmic microwave background. Considering the isotropic and homogeneous background only, viscous dark matter is allowed to have a bulk viscosity $\\lesssim 10^7$ Pa$\\cdot$s, also consistent with the expected integrated Sachs-Wolfe effect (which plagues some models with bulk viscosity). We also investigate the small-scale formation of viscous dark matter halos. This analysis places significantly stronger constraints on the dark matter viscosity. The existence of dwarf galaxies is guaranteed only for very small values of the dark matter viscosity, $\\lesssim 10^{-3}$ Pa$\\cdot$s.

  9. Cosmological simulations of multicomponent cold dark matter.

    Science.gov (United States)

    Medvedev, Mikhail V

    2014-08-15

    The nature of dark matter is unknown. A number of dark matter candidates are quantum flavor-mixed particles but this property has never been accounted for in cosmology. Here we explore this possibility from the first principles via extensive N-body cosmological simulations and demonstrate that the two-component dark matter model agrees with observational data at all scales. Substantial reduction of substructure and flattening of density profiles in the centers of dark matter halos found in simulations can simultaneously resolve several outstanding puzzles of modern cosmology. The model shares the "why now?" fine-tuning caveat pertinent to all self-interacting models. Predictions for direct and indirect detection dark matter experiments are made.

  10. Twin Higgs WIMP Dark Matter

    CERN Document Server

    García, Isabel García; March-Russell, John

    2015-01-01

    Dark matter (DM) without a matter asymmetry is studied in the context of Twin Higgs (TH) theories in which the LHC naturalness problem is addressed. These possess a twin sector related to the Standard Model (SM) by a (broken) $\\mathbb{Z}_2$ symmetry, and interacting with the SM via a specific Higgs portal. We focus on the minimal realisation of the TH mechanism, the Fraternal Twin Higgs, with only a single generation of twin quarks and leptons, and $SU(3)'\\times SU(2)'$ gauge group. We show that a variety of natural twin-WIMP DM candidates are present (directly linked to the weak scale by naturalness), the simplest and most attractive being the $\\tau^\\prime$ lepton with a mass $m_{\\tau^\\prime} > m_{\\rm Higgs}/2$, although spin-1 $W^{\\prime\\pm}$ DM and multicomponent DM are also possible (twin baryons are strongly disfavoured by tuning). We consider in detail the dynamics of the possibly (meta)stable glueballs in the twin sector, the nature of the twin QCD phase transition, and possible new contributions to th...

  11. Bouncing Cosmologies with Dark Matter and Dark Energy

    Directory of Open Access Journals (Sweden)

    Yi-Fu Cai

    2016-12-01

    Full Text Available We review matter bounce scenarios where the matter content is dark matter and dark energy. These cosmologies predict a nearly scale-invariant power spectrum with a slightly red tilt for scalar perturbations and a small tensor-to-scalar ratio. Importantly, these models predict a positive running of the scalar index, contrary to the predictions of the simplest inflationary and ekpyrotic models, and hence, could potentially be falsified by future observations. We also review how bouncing cosmological space-times can arise in theories where either the Einstein equations are modified or where matter fields that violate the null energy condition are included.

  12. Bouncing Cosmologies with Dark Matter and Dark Energy

    Science.gov (United States)

    Cai, Yi-Fu; Marcianò, Antonino; Wang, Dong-Gang; Wilson-Ewing, Edward

    2017-01-01

    We review matter bounce scenarios where the matter content is dark matter and dark energy. These cosmologies predict a nearly scale-invariant power spectrum with a slightly red tilt for scalar perturbations and a small tensor-to-scalar ratio. Importantly, these models predict a positive running of the scalar index, contrary to the predictions of the simplest inflationary and ekpyrotic models, and hence could potentially be falsified by future observations. We also review how bouncing cosmological space-times can arise in theories where either the Einstein equations are modified or where matter fields that violate the null energy condition are included.

  13. Bouncing cosmologies with dark matter and dark energy

    CERN Document Server

    Cai, Yi-Fu; Wang, Dong-Gang; Wilson-Ewing, Edward

    2016-01-01

    We review matter bounce scenarios where the matter content is dark matter and dark energy. These cosmologies predict a nearly scale-invariant power spectrum with a slightly red tilt for scalar perturbations and a small tensor-to-scalar ratio. Importantly, these models predict a positive running of the scalar index, contrary to the predictions of the simplest inflationary and ekpyrotic models, and hence could potentially be falsified by future observations. We also review how bouncing cosmological space-times can arise in theories where either the Einstein equations are modified or where matter fields that violate the null energy condition are included.

  14. Unified description of dark energy and dark matter in mimetic matter model

    OpenAIRE

    Matsumoto, Jiro

    2016-01-01

    The existence of dark matter and dark energy in cosmology is implied by various observations, however, they are still unclear because they have not been directly detected. In this Letter, an unified model of dark energy and dark matter that can explain the evolution history of the Universe later than inflationary era, the time evolution of the growth rate function of the matter density contrast, the flat rotation curves of the spiral galaxies, and the gravitational experiments in the solar sy...

  15. Parallel Universe, Dark Matter and Invisible Higgs Decays

    OpenAIRE

    Chakdar, Shreyashi; Ghosh, Kirtiman(Department of Physics and Oklahoma Center for High Energy Physics, Oklahoma State University, Stillwater, OK 74078-3072, USA); Nandi, S

    2013-01-01

    The existence of the dark matter with amount about five times the ordinary matter is now well established experimentally. There are now many candidates for this dark matter. However, dark matter could be just like the ordinary matter in a parallel universe. If both universes are described by a non-abelian gauge symmetries, then there will be no kinetic mixing between the ordinary photon and the dark photon, and the dark proton, dark electron and the corresponding dark nuclei, belonging to the...

  16. Parallel universe, dark matter and invisible Higgs decays

    OpenAIRE

    2014-01-01

    The existence of the dark matter with amount about five times the ordinary matter is now well established experimentally. There are now many candidates for this dark matter. However, dark matter could be just like the ordinary matter in a parallel universe. If both universes are described by a non-abelian gauge symmetries, then there will be no kinetic mixing between the ordinary photon and the dark photon, and the dark proton, dark electron and the corresponding dark nuclei, belonging to the...

  17. Dark matter halo formation in the multicomponent dark matter models

    CERN Document Server

    Semenov, Vadim; Doroshkevich, Andrei; Lukash, Vladimir; Mikheeva, Elena

    2013-01-01

    This work investigates a set of cosmological collisionless N-body simulations with featured power spectra of initial perturbations in the context of the core-cusp and satellites problems. On the studied power spectra some scales of fluctuations were suppressed. Such spectral features can be caused by multicomponent dark matter. The density profiles innermost resolved slopes $\\alpha\\equiv d \\log(\\rho) /d \\log(r) $ of the five largest haloes were measured and its dependence on the parameters of the suppression was traced. In a certain range of the parameters the slopes flatten from initial value of about -1.2 to -0.6 or even to -0.2 in one of the cases. This qualitatively demonstrates that (i) profiles shape depends on initial power spectrum and (ii) this effect may be responsible for the solution of the core-cusp problem. The suppression of some part of the initial power spectrum also leads to the decrease of the number of massive subhaloes.

  18. Sensitivity of dark matter dectectors to SUSY dark matter

    CERN Document Server

    Arnowitt, Richard Lewis; PRAN NATH

    1994-01-01

    ABSTRACT The sensitivity of dark matter detectors to the lightest neutralino ({\\tilde {Z}_1}) is considered within the framework of supergravity grand unification with radiative breaking of SU(2)xU(1). The relic density of the {\\tilde {Z}_1} is constrained to obey 0.10 \\leq \\Omega_{\\tilde {Z}_1}h^2 \\leq 0.35, consistent with COBE data and current measurements of the Hubble constant. Detectors can be divided into two classes: those most sensitive to spin dependent incoherent scattering of the {\\tilde {Z}_1} (e.g. CaF_2) and those most sensitive to spin independent coherent scattering (high A nuclei e.g. Pb). The parameter space is studied over the range of 100GeV \\leq m_0, m_{\\tilde {g}} \\leq 1~TeV; 2 \\leq tan\\beta \\leq 20; and -2 \\leq A_t/m_0 \\leq 3 and it is found that the latter type detector is generally more sensitive than the former type. Thus at a sensitivity level of R \\geq 0.1 events/kg da, a lead detector could scan roughtly 30\\% of the ~parameter space studied, and an increase of ~this sensitivity b...

  19. Ratcheting Up The Search for Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    McDermott, Samuel Dylan [Univ. of Michigan, Ann Arbor, MI (United States)

    2014-01-01

    The last several years have included remarkable advances in two of the primary areas of fundamental particle physics: the search for dark matter and the discovery of the Higgs boson. This dissertation will highlight some contributions made on the forefront of these exciting fields. Although the circumstantial evidence supporting the dark matter hypothesis is now almost undeniably significant, indisputable direct proof is still lacking. As the direct searches for dark matter continue, we can maximize our prospects of discovery by using theoretical techniques complementary to the observational searches to rule out additional, otherwise accessible parameter space. In this dissertation, I report bounds on a wide range of dark matter theories. The models considered here cover the spectrum from the canonical case of self-conjugate dark matter with weak-scale interactions, to electrically charged dark matter, to non-annihilating, non-fermionic dark matter. These bounds are obtained from considerations of astrophysical and cosmological data, including, respectively: diffuse gamma ray photon observations; structure formation considerations, along with an explication of the novel local dark matter structure due to galactic astrophysics; and the existence of old pulsars in dark-matter-rich environments. I also consider the prospects for a model of neutrino dark matter which has been motivated by a wide set of seemingly contradictory experimental results. In addition, I include a study that provides the tools to begin solving the speculative ``inverse'' problem of extracting dark matter properties solely from hypothetical nuclear energy spectra, which we may face if dark matter is discovered with multiple direct detection experiments. In contrast to the null searches for dark matter, we have the example of the recent discovery of the Higgs boson. The Higgs boson is the first fundamental scalar particle ever observed, and precision measurements of the production and

  20. Dark Energy Coupled with Relativistic Dark Matter in Accelerating Universe

    Institute of Scientific and Technical Information of China (English)

    张杨

    2003-01-01

    Recent observations favour an accelerating Universe dominated by the dark energy. We take the effective YangMills condensate as the dark energy and couple it to a relativistic matter which is created by the decaying condensate. The dynamic evolution has asymptotic behaviour with finite constant energy densities, and the fractional densities Ω∧~ 0.7 for dark energy and Ωm ~ 0.3 for relativistic matter are achieved at proper values of the decay rate. The resulting expansion of the Universe is in the de Sitter acceleration.

  1. Planckian Interacting Massive Particles as Dark Matter

    DEFF Research Database (Denmark)

    Garny, Mathias; Sandora, McCullen; Sloth, Martin S.

    2016-01-01

    . In this case the WIMP miracle is a mirage, and instead minimality as dictated by Occam's razor would indicate that dark matter is related to the Planck scale, where quantum gravity is anyway expected to manifest itself. Assuming within this framework that dark matter is a Planckian Interacting Massive Particle......, we show that the most natural mass larger than $0.01\\,\\textrm{M}_p$ is already ruled out by the absence of tensor modes in the CMB. This also indicates that we expect tensor modes in the CMB to be observed soon for this type of minimal dark matter model. Finally, we touch upon the KK graviton mode...... as a possible realization of this scenario within UV complete models, as well as further potential signatures and peculiar properties of this type of dark matter candidate. This paradigm therefore leads to a subtle connection between quantum gravity, the physics of primordial inflation, and the nature of dark...

  2. Di-photon excess illuminates dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Backović, Mihailo [Center for Cosmology, Particle Physics and Phenomenology - CP3,Universite Catholique de Louvain, Louvain-la-neuve (Belgium); Mariotti, Alberto [Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel,Pleinlaan 2, B-1050 Brussels (Belgium); International Solvay Institutes,Pleinlaan 2, B-1050 Brussels (Belgium); Redigolo, Diego [Laboratoire de Physique Théorique et Hautes Energies, CNRS UMR 7589,Universiteé Pierre et Marie Curie, 4 place Jussieu, F-75005, Paris (France)

    2016-03-22

    We propose a simplified model of dark matter with a scalar mediator to accommodate the di-photon excess recently observed by the ATLAS and CMS collaborations. Decays of the resonance into dark matter can easily account for a relatively large width of the scalar resonance, while the magnitude of the total width combined with the constraint on dark matter relic density leads to sharp predictions on the parameters of the Dark Sector. Under the assumption of a rather large width, the model predicts a signal consistent with ∼300 GeV dark matter particle and ∼750 GeV scalar mediator in channels with large missing energy. This prediction is not yet severely bounded by LHC Run I searches and will be accessible at the LHC Run II in the jet plus missing energy channel with more luminosity. Our analysis also considers astro-physical constraints, pointing out that future direct detection experiments will be sensitive to this scenario.

  3. Residual non-Abelian dark matter and dark radiation

    Directory of Open Access Journals (Sweden)

    P. Ko

    2017-05-01

    Full Text Available We propose a novel particle physics model in which vector dark matter (VDM and dark radiation (DR originate from the same non-Abelian dark sector. We show an illustrating example where dark SU(3 is spontaneously broken into SU(2 subgroup by the nonzero vacuum expectation value (VEV of a complex scalar in fundamental representation of SU(3. The massless gauge bosons associated with the residual unbroken SU(2 constitute DR and help to relieve the tension in Hubble constant measurements between Planck and Hubble Space Telescope. In the meantime, massive dark gauge bosons associated with the broken generators are VDM candidates. Intrinsically, this non-Abelian VDM can interact with non-Abelian DR in the cosmic background, which results in a suppressed matter power spectrum and leads to a smaller σ8 for structure formation.

  4. Dark matter decay through gravity portals

    CERN Document Server

    Catà, Oscar; Ingenhütt, Sebastian

    2016-01-01

    Motivated by the fact that, so far, the whole body of evidence for dark matter is of gravitational origin, we study the decays of dark matter into Standard Model particles mediated by gravity portals, i.e., through nonminimal gravitational interactions of dark matter. We investigate the decays in several widely studied frameworks of scalar and fermionic dark matter where the dark matter is stabilized in flat spacetime via global symmetries. We find that the constraints on the scalar singlet dark matter candidate are remarkably strong and exclude large regions of the parameter space, suggesting that an additional stabilizing symmetry should be in place. In contrast, the scalar doublet and the fermionic singlet candidates are naturally protected against too fast decays by gauge and Lorentz symmetry, respectively. For a nonminimal coupling parameter $\\xi\\sim {\\cal{O}}(1)$, decays through the gravity portal are consistent with observations if the dark matter mass is smaller than $\\sim 10^5$ GeV, for the scalar do...

  5. Single top quarks and dark matter

    Science.gov (United States)

    Pinna, Deborah; Zucchetta, Alberto; Buckley, Matthew R.; Canelli, Florencia

    2017-08-01

    Processes with dark matter interacting with the standard model fermions through new scalars or pseudoscalars with flavor-diagonal couplings proportional to fermion mass are well motivated theoretically, and provide a useful phenomenological model with which to interpret experimental results. Two modes of dark matter production from these models have been considered in the existing literature: pairs of dark matter produced through top quark loops with an associated monojet in the event, and pair production of dark matter with pairs of heavy flavored quarks (tops or bottoms). In this paper, we demonstrate that a third, previously overlooked channel yields a non-negligible contribution to LHC dark matter searches in these models. In spite of a generally lower production cross section at LHC when compared to the associated top-pair channel, non-flavor violating single top quark processes are kinematically favored and can significantly increase the sensitivity to these models. Including dark matter production in association with a single top quark through scalar or pseudoscalar mediators, the exclusion limit set by the LHC searches for dark matter can be improved by 30% up to a factor of two, depending on the mass assumed for the mediator particle.

  6. Dark matter decay through gravity portals

    Science.gov (United States)

    Catà, Oscar; Ibarra, Alejandro; Ingenhütt, Sebastian

    2017-02-01

    Motivated by the fact that, so far, the whole body of evidence for dark matter is of gravitational origin, we study the decays of dark matter into Standard Model particles mediated by gravity portals, i.e., through nonminimal gravitational interactions of dark matter. We investigate the decays in several widely studied frameworks of scalar and fermionic dark matter where the dark matter is stabilized in flat spacetime via global symmetries. We find that the constraints on the scalar singlet dark matter candidate are remarkably strong and exclude large regions of the parameter space, suggesting that an additional stabilizing symmetry should be in place. In contrast, the scalar doublet and the fermionic singlet candidates are naturally protected against too-fast decays by gauge and Lorentz symmetry, respectively. For a nonminimal coupling parameter ξ ˜O (1 ), decays through the gravity portal are consistent with observations if the dark matter mass is smaller than ˜105 GeV , for the scalar doublet, and ˜1 06 GeV , for the fermionic singlet.

  7. The dark matter of galaxy voids

    Science.gov (United States)

    Sutter, P. M.; Lavaux, Guilhem; Wandelt, Benjamin D.; Weinberg, David H.; Warren, Michael S.

    2014-03-01

    How do observed voids relate to the underlying dark matter distribution? To examine the spatial distribution of dark matter contained within voids identified in galaxy surveys, we apply Halo Occupation Distribution models representing sparsely and densely sampled galaxy surveys to a high-resolution N-body simulation. We compare these galaxy voids to voids found in the halo distribution, low-resolution dark matter and high-resolution dark matter. We find that voids at all scales in densely sampled surveys - and medium- to large-scale voids in sparse surveys - trace the same underdensities as dark matter, but they are larger in radius by ˜20 per cent, they have somewhat shallower density profiles and they have centres offset by ˜ 0.4Rv rms. However, in void-to-void comparison we find that shape estimators are less robust to sampling, and the largest voids in sparsely sampled surveys suffer fragmentation at their edges. We find that voids in galaxy surveys always correspond to underdensities in the dark matter, though the centres may be offset. When this offset is taken into account, we recover almost identical radial density profiles between galaxies and dark matter. All mock catalogues used in this work are available at http://www.cosmicvoids.net.

  8. Condensation of galactic cold dark matter

    Science.gov (United States)

    Visinelli, Luca

    2016-07-01

    We consider the steady-state regime describing the density profile of a dark matter halo, if dark matter is treated as a Bose-Einstein condensate. We first solve the fluid equation for ``canonical'' cold dark matter, obtaining a class of density profiles which includes the Navarro-Frenk-White profile, and which diverge at the halo core. We then solve numerically the equation obtained when an additional ``quantum pressure'' term is included in the computation of the density profile. The solution to this latter case is finite at the halo core, possibly avoiding the ``cuspy halo problem'' present in some cold dark matter theories. Within the model proposed, we predict the mass of the cold dark matter particle to be of the order of Mχ c2 ≈ 10-24 eV, which is of the same order of magnitude as that predicted in ultra-light scalar cold dark matter models. Finally, we derive the differential equation describing perturbations in the density and the pressure of the dark matter fluid.

  9. Indirect and direct search for dark matter

    CERN Document Server

    Klasen, Michael; Sigl, Günter

    2015-01-01

    The majority of the matter in the universe is still unidentified and under investigation by both direct and indirect means. Many experiments searching for the recoil of dark-matter particles off target nuclei in underground laboratories have established increasingly strong constraints on the mass and scattering cross sections of weakly interacting particles, and some have even seen hints at a possible signal. Other experiments search for a possible mixing of photons with light scalar or pseudo-scalar particles that could also constitute dark matter. Furthermore, annihilation or decay of dark matter can contribute to charged cosmic rays, photons at all energies, and neutrinos. Many existing and future ground-based and satellite experiments are sensitive to such signals. Finally, data from the Large Hadron Collider at CERN are scrutinized for missing energy as a signature of new weakly interacting particles that may be related to dark matter. In this review article we summarize the status of the field with an e...

  10. Bosonic-Seesaw Portal Dark Matter

    CERN Document Server

    Ishida, Hiroyuki; Yamaguchi, Yuya

    2016-01-01

    We propose a new type of Higgs-portal dark matter-production mechanism, called bosonic-seesaw portal scenario. Bosonic seesaw provides the dynamical origin of the electroweak symmetry breaking, triggered by mixing between the elementary Higgs and a composite Higgs generated by a new-color strong dynamics (hypercolor) which dynamically breaks the classical-scale invariance of the model. The composite hypercolor-baryonic matter can then be a dark matter candidate, which significantly couples to the standard-model Higgs via the bosonic seesaw, and can be produced from the thermal plasma below the decoupling temperature around the new strong coupling scale, to account for the observed relic abundance of the dark matter: the dark matter can closely be related to the mechanism of the electroweak symmetry breaking.

  11. Results from the DarkSide-50 Dark Matter Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Alden [Univ. of California, Los Angeles, CA (United States)

    2016-01-01

    While there is tremendous astrophysical and cosmological evidence for dark matter, its precise nature is one of the most significant open questions in modern physics. Weakly interacting massive particles (WIMPs) are a particularly compelling class of dark matter candidates with masses of the order 100 GeV and couplings to ordinary matter at the weak scale. Direct detection experiments are aiming to observe the low energy (<100 keV) scattering of dark matter off normal matter. With the liquid noble technology leading the way in WIMP sensitivity, no conclusive signals have been observed yet. The DarkSide experiment is looking for WIMP dark matter using a liquid argon target in a dual-phase time projection chamber located deep underground at Gran Sasso National Laboratory (LNGS) in Italy. Currently filled with argon obtained from underground sources, which is greatly reduced in radioactive 39Ar, DarkSide-50 recently made the most sensitive measurement of the 39Ar activity in underground argon and used it to set the strongest WIMP dark matter limit using liquid argon to date. This work describes the full chain of analysis used to produce the recent dark matter limit, from reconstruction of raw data to evaluation of the final exclusion curve. The DarkSide- 50 apparatus is described in detail, followed by discussion of the low level reconstruction algorithms. The algorithms are then used to arrive at three broad analysis results: The electroluminescence signals in DarkSide-50 are used to perform a precision measurement of ii longitudinal electron diffusion in liquid argon. A search is performed on the underground argon data to identify the delayed coincidence signature of 85Kr decays to the 85mRb state, a crucial ingredient in the measurement of the 39Ar activity in the underground argon. Finally, a full description of the WIMP search is given, including development of cuts, efficiencies, energy scale, and exclusion

  12. DEAP-3600 Dark Matter Search

    CERN Document Server

    Amaudruz, P -A; Beltran, B; Bonatt, J; Boulay, M G; Broerman, B; Bueno, J F; Butcher, A; Cai, B; Chen, M; Chouinard, R; Cleveland, B T; Dering, K; DiGioseffo, J; Duncan, F; Flower, T; Ford, R; Giampa, P; Gorel, P; Graham, K; Grant, D R; Guliyev, E; Hallin, A L; Hamstra, M; Harvey, P; Jillings, C J; Kuźniak, M; Lawson, I; Li, O; Liimatainen, P; Majewski, P; McDonald, A B; McElroy, T; McFarlane, K; Monroe, J; Muir, A; Nantais, C; Ng, C; Noble, A J; Ouellet, C; Palladino, K; Pasuthip, P; Peeters, S J M; Pollmann, T; Rau, W; Retière, F; Seeburn, N; Singhrao, K; Skensved, P; Smith, B; Sonley, T; Tang, J; Vázquez-Jáuregui, E; Veloce, L; Walding, J; Ward, M

    2014-01-01

    The DEAP-3600 experiment is located 2 km underground at SNOLAB, in Sudbury, Ontario. It is a single-phase detector that searches for dark matter particle interactions within a 1000-kg fiducial mass target of liquid argon. A first generation prototype detector (DEAP-1) with a 7-kg liquid argon target mass demonstrated a high level of pulse-shape discrimination (PSD) for reducing $\\beta$/$\\gamma$ backgrounds and helped to develop low radioactivity techniques to mitigate surface-related $\\alpha$ backgrounds. Construction of the DEAP-3600 detector is nearly complete and commissioning is starting in 2014. The target sensitivity to spin-independent scattering of Weakly Interacting Massive Particles (WIMPs) on nucleons of 10$^{-46}$ cm$^2$ will allow one order of magnitude improvement in sensitivity over current searches at 100 GeV WIMP mass. This paper presents an overview and status of the DEAP-3600 project and discusses plans for a future multi-tonne experiment, DEAP-50T.

  13. Dark Matter Triggers of Supernovae

    CERN Document Server

    Graham, Peter W; Varela, Jaime

    2015-01-01

    The transit of primordial black holes through a white dwarf causes localized heating around the trajectory of the black hole through dynamical friction. For sufficiently massive black holes, this heat can initiate runaway thermonuclear fusion causing the white dwarf to explode as a supernova. The shape of the observed distribution of white dwarfs with masses up to $1.25 M_{\\odot}$ rules out primordial black holes with masses $\\sim 10^{19}$ gm - $10^{20}$ gm as a dominant constituent of the local dark matter density. Black holes with masses as large as $10^{24}$ gm will be excluded if recent observations by the NuStar collaboration of a population of white dwarfs near the galactic center are confirmed. Black holes in the mass range $10^{20}$ gm - $10^{22}$ gm are also constrained by the observed supernova rate, though these bounds are subject to astrophysical uncertainties. These bounds can be further strengthened through measurements of white dwarf binaries in gravitational wave observatories. The mechanism p...

  14. Naturalness of MSSM dark matter

    CERN Document Server

    Cabrera, Maria Eugenia; Delgado, Antonio; Robles, Sandra; de Austri, Roberto Ruiz

    2016-01-01

    There exists a vast literature examining the electroweak (EW) fine-tuning problem in supersymmetric scenarios, but little concerned with the dark matter (DM) one, which should be combined with the former. In this paper, we study this problem in an, as much as possible, exhaustive and rigorous way. We have considered the MSSM framework, assuming that the LSP is the lightest neutralino, $\\chi_1^0$, and exploring the various possibilities for the mass and composition of $\\chi_1^0$, as well as different mechanisms for annihilation of the DM particles in the early Universe (well-tempered neutralinos, funnels and co-annihilation scenarios). We also present a discussion about the statistical meaning of the fine-tuning and how it should be computed for the DM abundance, and combined with the EW fine-tuning. The results are very robust and model-independent and favour some scenarios (like the h-funnel when $M_{\\chi_1^0}$ is not too close to $m_h/2$) with respect to others (such as the pure wino case). These features s...

  15. Searches for Dark Matter at the LHC

    CERN Document Server

    Sciolla, Gabriella; The ATLAS collaboration

    2016-01-01

    Dark Matter can be produced in large amounts in pp collisions at the Large Hadron Collider (LHC) assuming it interacts non-gravitationally with Standard Model particles. While Dark Matter escapes direct detection at the LHC, it leaves a distinct signature of significant missing transverse momentum. In this talk, recent results from the ATLAS and CMS detectors will be presented, based on events with large missing transverse momentum accompanied by a variety of other objects such as jets, photons, heavy-flavor quarks, weak gauge bosons, or Higgs bosons. These measurements are complementary to those obtained in direct and indirect Dark Matter detection experiments.

  16. Can Neutron stars constrain Dark Matter?

    DEFF Research Database (Denmark)

    Kouvaris, Christoforos; Tinyakov, Peter

    2010-01-01

    We argue that observations of old neutron stars can impose constraints on dark matter candidates even with very small elastic or inelastic cross section, and self-annihilation cross section. We find that old neutron stars close to the galactic center or in globular clusters can maintain a surface...... temperature that could in principle be detected. Due to their compactness, neutron stars can acrete WIMPs efficiently even if the WIMP-to-nucleon cross section obeys the current limits from direct dark matter searches, and therefore they could constrain a wide range of dark matter candidates....

  17. Gamma ray constraints on decaying dark matter

    DEFF Research Database (Denmark)

    Cirelli, M.; Moulin, E.; Panci, P.

    2012-01-01

    We derive new bounds on decaying dark matter from the gamma ray measurements of (i) the isotropic residual (extragalactic) background by Fermi and (ii) the Fornax galaxy cluster by H.E.S.S. We find that those from (i) are among the most stringent constraints currently available, for a large range...... of dark matter masses and a variety of decay modes, excluding half-lives up to similar to 10(26) to few 10(27) seconds. In particular, they rule out the interpretation in terms of decaying dark matter of the e(+/-) spectral features in PAMELA, Fermi and H.E.S.S., unless very conservative choices...

  18. Asymmetric dark matter in braneworld cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Meehan, Michael T.; Whittingham, Ian B., E-mail: Michael.Meehan@my.jcu.edu.au, E-mail: Ian.Whittingham@jcu.edu.au [School of Engineering and Physical Sciences, James Cook University, Townsville, 4811 Australia (Australia)

    2014-06-01

    We investigate the effect of a braneworld expansion era on the relic density of asymmetric dark matter. We find that the enhanced expansion rate in the early universe predicted by the Randall-Sundrum II (RSII) model leads to earlier particle freeze-out and an enhanced relic density. This effect has been observed previously by Okada and Seto (2004) for symmetric dark matter models and here we extend their results to the case of asymmetric dark matter. We also discuss the enhanced asymmetric annihilation rate in the braneworld scenario and its implications for indirect detection experiments.

  19. Gamma ray constraints on decaying dark matter

    DEFF Research Database (Denmark)

    Cirelli, M.; Moulin, E.; Panci, P.

    2012-01-01

    We derive new bounds on decaying dark matter from the gamma ray measurements of (i) the isotropic residual (extragalactic) background by Fermi and (ii) the Fornax galaxy cluster by H.E.S.S. We find that those from (i) are among the most stringent constraints currently available, for a large range...... of dark matter masses and a variety of decay modes, excluding half-lives up to similar to 10(26) to few 10(27) seconds. In particular, they rule out the interpretation in terms of decaying dark matter of the e(+/-) spectral features in PAMELA, Fermi and H.E.S.S., unless very conservative choices...

  20. Dark Matter searches with the ATLAS Detector

    CERN Document Server

    Ippolito, Valerio; The ATLAS collaboration

    2017-01-01

    The presence of a non-baryonic Dark Matter component in the Universe is inferred from the observation of its gravitational interaction. If Dark Matter interacts weakly with the Standard Model particles it may be produced at the Large Hadron Collider (LHC), escaping detection and leaving large missing transverse momentum as its signature. New results from the Dark Matter search programme of the ATLAS experiment are presented, based on LHC proton-proton collision data collected at a center-of-mass energy of 13 TeV.

  1. The cosmic cocktail three parts dark matter

    CERN Document Server

    Freese, Katherine

    2014-01-01

    The ordinary atoms that make up the known universe-from our bodies and the air we breathe to the planets and stars-constitute only 5 percent of all matter and energy in the cosmos. The rest is known as dark matter and dark energy, because their precise identities are unknown. The Cosmic Cocktail is the inside story of the epic quest to solve one of the most compelling enigmas of modern science - what is the universe made of? - told by one of today's foremost pioneers in the study of dark matter. Blending cutting-edge science with her own behind-the-scenes insights as a leading researcher in the

  2. Constraints on hadronically decaying dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Garny, Mathias [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ibarra, Alejandro [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Tran, David [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Minnesota Univ., Minneapolis, MN (United States). School of Physics and Astronomy

    2012-05-15

    We present general constraints on dark matter stability in hadronic decay channels derived from measurements of cosmic-ray antiprotons.We analyze various hadronic decay modes in a model-independent manner by examining the lowest-order decays allowed by gauge and Lorentz invariance for scalar and fermionic dark matter particles and present the corresponding lower bounds on the partial decay lifetimes in those channels. We also investigate the complementarity between hadronic and gamma-ray constraints derived from searches for monochromatic lines in the sky, which can be produced at the quantum level if the dark matter decays into quark-antiquark pairs at leading order.

  3. Quintessence with quadratic coupling to dark matter

    CERN Document Server

    Boehmer, Christian G; Chan, Nyein; Lazkoz, Ruth; Maartens, Roy

    2009-01-01

    We introduce a new form of coupling between dark energy and dark matter that is quadratic in their energy densities. Then we investigate the background dynamics when dark energy is in the form of exponential quintessence. The three types of quadratic coupling all admit late-time accelerating critical points, but these are not scaling solutions. We also show that two types of coupling allow for a suitable matter era at early times and acceleration at late times, while the third type of coupling does not admit a suitable matter era.

  4. Dark Matter searches with the ATLAS Detector

    CERN Document Server

    Cortes-Gonzalez, Arely; The ATLAS collaboration

    2017-01-01

    The presence of a non-baryonic dark matter component in the Universe is inferred from the observation of its gravitational interaction. If dark matter interacts weakly with the Standard Model it would be produced at the LHC, escaping the detector and leaving a large missing transverse momentum as their signature. The ATLAS detector has developed a broad and systematic search program for dark matter production in LHC collisions. The results of these searches on the first 13 TeV data, their interpretation, and the design and possible evolution of the search program will be presented.

  5. Dark Matter Searches with the ATLAS detector

    CERN Document Server

    Elliot, Alison; The ATLAS collaboration

    2017-01-01

    The presence of a non-baryonic dark matter component in the Universe is inferred from the observation of its gravitational interaction. If dark matter interacts weakly with the Standard Model it would be produced at the LHC, escaping the detector and leaving a large missing transverse momentum as its signature. The ATLAS detector has developed a broad and systematic search program for dark matter production in LHC collisions. The results of these searches on the first 13 TeV data, their interpretation, and the design and possible evolution of the search program will be presented.

  6. Models of Supersymmetry for Dark Matter

    Directory of Open Access Journals (Sweden)

    Muñoz Carlos

    2017-01-01

    Full Text Available A brief review of supersymmetric models and their candidates for dark matter is carried out. The neutralino is a WIMP candidate in the MSSM where R-parity is conserved, but this model has the μ problem. There are natural solutions to this problem that necessarily introduce new structure beyond the MSSM, including new candidates for dark matter. In particular, in an extension of the NMSSM, the right-handed sneutrino can be used for this job. In R-parity violating models such as the μvSSM, the gravitino can be the dark matter, and could be detected by its decay products in gamma-ray experiments.

  7. Updated galactic radio constraints on Dark Matter

    CERN Document Server

    Cirelli, Marco

    2016-01-01

    We perform a detailed analysis of the synchrotron signals produced by Dark Matter annihilations and decays. We consider different set-ups for the propagation of electrons and positrons, the galactic magnetic field and Dark Matter properties. We then confront these signals with radio and microwave maps, including Planck measurements, from a frequency of 22 MHz up to 70 GHz. We derive two sets of constraints: conservative and progressive, the latter based on a modeling of the astrophysical emission. Radio and microwave constraints are complementary to those obtained with other indirect detection methods, especially for dark matter annihilating into leptonic channels.

  8. Updated galactic radio constraints on Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Cirelli, Marco [Laboratoire de Physique Théorique et Hautes Energies (LPTHE),UMR 7589 CNRS & UPMC, 4 Place Jussieu, Paris, F-75252 (France); Taoso, Marco [Instituto de Física Teórica (IFT) UAM/CSIC,calle Nicolás Cabrera 13-15, Cantoblanco, Madrid, 28049 (Spain)

    2016-07-25

    We perform a detailed analysis of the synchrotron signals produced by dark matter annihilations and decays. We consider different set-ups for the propagation of electrons and positrons, the galactic magnetic field and dark matter properties. We then confront these signals with radio and microwave maps, including PLANCK measurements, from a frequency of 22 MHz up to 70 GHz. We derive two sets of constraints: conservative and progressive, the latter based on a modeling of the astrophysical emission. Radio and microwave constraints are complementary to those obtained with other indirect detection methods, especially for dark matter annihilating into leptonic channels.

  9. Searches for Dark Matter in ATLAS

    CERN Document Server

    Alpigiani, Cristiano; The ATLAS collaboration

    2017-01-01

    Although the existence of Dark Matter (DM) is well established by many astronomical measurements, its nature still remains one of the unsolved puzzles of particles physics. The unprecedented energy reached by the Large Hadron Collider (LHC) at CERN has allowed exploration of previously unaccessible kinematic regimes in the search for new phenomena. An overview of most recent searches for dark matter with the ATLAS detector at LHC is presented and the interpretation of the results in terms of effective field theory and simplified models is discussed. The exclusion limits set by the ATLAS searches are compared to the constraints from direct dark matter detection experiments.

  10. Hidden photons in connection to dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Andreas, Sarah; Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Goodsell, Mark D. [CPhT, Ecole Polytechnique, Palaiseau (France)

    2013-06-15

    Light extra U(1) gauge bosons, so called hidden photons, which reside in a hidden sector have attracted much attention since they are a well motivated feature of many scenarios beyond the Standard Model and furthermore could mediate the interaction with hidden sector dark matter.We review limits on hidden photons from past electron beam dump experiments including two new limits from such experiments at KEK and Orsay. In addition, we study the possibility of having dark matter in the hidden sector. A simple toy model and different supersymmetric realisations are shown to provide viable dark matter candidates in the hidden sector that are in agreement with recent direct detection limits.

  11. Dark matter searches with the ATLAS detector

    CERN Document Server

    Whalen, Kathleen; The ATLAS collaboration

    2017-01-01

    The presence of a non-baryonic dark matter component in the Universe is inferred from the observation of its gravitational interaction. If dark matter interacts weakly with the Standard Model it would be produced at the LHC, escaping the detector and leaving a large missing transverse momentum as its signature. The ATLAS detector has developed a broad and systematic search program for dark matter production in LHC collisions. The results of these searches using the first 13 TeV data, their interpretation, and the design and possible evolution of the search program will be presented.

  12. Coupling q-Deformed Dark Energy to Dark Matter

    Directory of Open Access Journals (Sweden)

    Emre Dil

    2016-01-01

    Full Text Available We propose a novel coupled dark energy model which is assumed to occur as a q-deformed scalar field and investigate whether it will provide an expanding universe phase. We consider the q-deformed dark energy as coupled to dark matter inhomogeneities. We perform the phase-space analysis of the model by numerical methods and find the late-time accelerated attractor solutions. The attractor solutions imply that the coupled q-deformed dark energy model is consistent with the conventional dark energy models satisfying an acceleration phase of universe. At the end, we compare the cosmological parameters of deformed and standard dark energy models and interpret the implications.

  13. Constraints on dissipative unified dark matter

    CERN Document Server

    Velten, Hermano

    2011-01-01

    Modern cosmology suggests that the Universe contains two dark components -- dark matter and dark energy -- both unkown in laboratory physics and both lacking direct evidence. Alternatively, a unified dark sector, described by a single fluid, has been proposed. Dissipation is a common phenomenon in nature and it thus seems natural to consider models dominated by a viscous dark fluid. We focus on the study of bulk viscosity, as isotropy and homogeneity at large scales implies the suppression of shear viscosity, heat flow and diffusion. The generic ansatz $\\xi \\propto \\rho^{\

  14. New Efforts to Identify Dark Matter

    Science.gov (United States)

    Kohler, Susanna

    2016-09-01

    Could the dark matter in our universe be warm instead of cold? Recent observations have placed new constraints on the warm dark matter model.Whats the Deal with Cold/Warm/Hot Dark Matter?An example of cold dark matter: MACHOs, massive objects like black holes that are hiding in the halo of our galaxy. [Alain r]Nobody knows what dark matter is made of, but we have a few theories. The objects or particles that could make up dark matter fall into three broad categories cold, warm, and hot dark matter based on something called their free streaming length, or how far they moved due to random motions in the early universe.Neutrinos are an example of hot dark matter: very light particles with free streaming lengths much longer than the size of a typical galaxy. Cold dark matter could consist of objects like black holes or brown dwarfs, or particles like WIMPs all of which are very heavy and therefore have free streaming lengths much shorter than the size of a galaxy.Warm dark matter is whats in between: middle-mass particles with free streaming lengths roughly the size of a galaxy. There arent any known particles that fit this description, but there are theorized particles such as sterile neutrinos or gravitinos that do.Cumulative mass functions at z = 6 for different values of the warm dark matter particle mass mX. The shaded boxs on the left correspond to the observed number density of faint galaxies within different confidence levels. [Menci et al. 2016]Smoothing Out the UniverseThe widely favored model is lambda-CDM, in which cold dark matter makes up the missing matter in our universe. This model nicely explains much of what we observe, but it still has a few problems. The biggest issue with lambda-CDM is that it predicts that there should be many more small, dwarf galaxies than we observe.While this could just mean that we havent yet managed to see all the existing, faint dwarf galaxies, we should also consider alternative models the warm dark matter model chief

  15. Quantum field theory of interacting dark matter and dark energy: Dark monodromies

    Science.gov (United States)

    D'Amico, Guido; Hamill, Teresa; Kaloper, Nemanja

    2016-11-01

    We discuss how to formulate a quantum field theory of dark energy interacting with dark matter. We show that the proposals based on the assumption that dark matter is made up of heavy particles with masses which are very sensitive to the value of dark energy are strongly constrained. Quintessence-generated long-range forces and radiative stability of the quintessence potential require that such dark matter and dark energy are completely decoupled. However, if dark energy and a fraction of dark matter are very light axions, they can have significant mixings which are radiatively stable and perfectly consistent with quantum field theory. Such models can naturally occur in multi-axion realizations of monodromies. The mixings yield interesting signatures which are observable and are within current cosmological limits but could be constrained further by future observations.

  16. Quantum Field Theory of Interacting Dark Matter/Dark Energy: Dark Monodromies

    CERN Document Server

    D'Amico, Guido; Kaloper, Nemanja

    2016-01-01

    We discuss how to formulate a quantum field theory of dark energy interacting with dark matter. We show that the proposals based on the assumption that dark matter is made up of heavy particles with masses which are very sensitive to the value of dark energy are strongly constrained. Quintessence-generated long range forces and radiative stability of the quintessence potential require that such dark matter and dark energy are completely decoupled. However, if dark energy and a fraction of dark matter are very light axions, they can have significant mixings which are radiatively stable and perfectly consistent with quantum field theory. Such models can naturally occur in multi-axion realizations of monodromies. The mixings yield interesting signatures which are observable and are within current cosmological limits but could be constrained further by future observations.

  17. Boosted Dark Matter at Neutrino Experiments

    CERN Document Server

    Necib, Lina; Wongjirad, Taritree; Conrad, Janet M

    2016-01-01

    Current and future neutrino experiments can be used to discover dark matter, not only in searches for dark matter annihilating to neutrinos, but also in scenarios where dark matter itself scatters off Standard Model particles in the detector. In this work, we study the sensitivity of different neutrino detectors to a class of models called boosted dark matter, in which a subdominant component of a dark sector acquires a large Lorentz boost today through annihilation of a dominant component in a dark matter-dense region, such as the galactic center or dwarf spheroidal galaxies. This analysis focuses on the sensitivity of different neutrino detectors, specifically the Cherenkov-based Super-K and the future argon-based DUNE to boosted dark matter that scatters off electrons. We study the dependence of the expected limits on the experimental features, such as energy threshold, volume and exposure in the limit of constant scattering amplitude. We highlight experiment-specific features that enable current and futur...

  18. The effect of dark matter velocity profile on directional detection of dark matter

    CERN Document Server

    Laha, Ranjan

    2016-01-01

    Directional detection is an important way to detect dark matter. An input to these experiments is the dark matter velocity distribution. Recent hydrodynamical simulations have shown that the dark matter velocity distribution differs substantially from the Standard Halo Model. We study the impact of some of these updated velocity distribution in dark matter directional detection experiments. We calculate the ratio of events required to confirm the forward-backward asymmetry and the existence of the ring of maximum recoil rate using different dark matter velocity distributions for $^{19}$F and Xe targets. We show that with the use of updated dark matter velocity profiles, the forward-backward asymmetry and the ring of maximum recoil rate can be confirmed using a factor of $\\sim$2 -- 3 less events when compared to that using the Standard Halo Model.

  19. Dark-matter QCD-axion searches.

    Science.gov (United States)

    Rosenberg, Leslie J

    2015-10-06

    In the late 20th century, cosmology became a precision science. Now, at the beginning of the next century, the parameters describing how our universe evolved from the Big Bang are generally known to a few percent. One key parameter is the total mass density of the universe. Normal matter constitutes only a small fraction of the total mass density. Observations suggest this additional mass, the dark matter, is cold (that is, moving nonrelativistically in the early universe) and interacts feebly if at all with normal matter and radiation. There's no known such elementary particle, so the strong presumption is the dark matter consists of particle relics of a new kind left over from the Big Bang. One of the most important questions in science is the nature of this dark matter. One attractive particle dark-matter candidate is the axion. The axion is a hypothetical elementary particle arising in a simple and elegant extension to the standard model of particle physics that nulls otherwise observable CP-violating effects (where CP is the product of charge reversal C and parity inversion P) in quantum chromo dynamics (QCD). A light axion of mass 10(-(6-3)) eV (the invisible axion) would couple extraordinarily weakly to normal matter and radiation and would therefore be extremely difficult to detect in the laboratory. However, such an axion is a compelling dark-matter candidate and is therefore a target of a number of searches. Compared with other particle dark-matter candidates, the plausible range of axion dark-matter couplings and masses is narrowly constrained. This focused search range allows for definitive searches, where a nonobservation would seriously impugn the dark-matter QCD-axion hypothesis. Axion searches use a wide range of technologies, and the experiment sensitivities are now reaching likely dark-matter axion couplings and masses. This article is a selective overview of the current generation of sensitive axion searches. Not all techniques and experiments

  20. Fundamental plane: dark matter and dissipation contributions

    CERN Document Server

    Ribeiro, Andre L B

    2010-01-01

    Stellar and galactic systems are objects in dynamical equilibrium that are composed of ordinary baryonic matter hypothetically embedded in extended dominant dark matter halos. Our aim is to investigate the scaling relations and dissipational features of these objects over a wide range of their properties, taking the dynamical influence of the dark matter component into account. We study the physical properties of these self-gravitating systems using the two-component virial theorem in conjunction with data that embrace a wide range of astrophysical systems. We find that the scaling relations defined by the properties of these objects admit a dark-to-luminous density ratio parameter as a natural requirement in this framework. We also probe dissipational effects on the fundamental surface defined by the two-component virial theorem and discuss their relations with respect to the region devoid of objects in the data distribution. Our results indicate complementary contributions of dissipation and dark matter to ...

  1. Disentangling Dark Matter Dynamics with Directional Detection

    Energy Technology Data Exchange (ETDEWEB)

    Lisanti, Mariangela; Wacker, Jay G.; /SLAC

    2009-12-16

    Inelastic dark matter reconciles the DAMA anomaly with other null direct detection experiments and points to a non-minimal structure in the dark matter sector. In addition to the dominant inelastic interaction, dark matter scattering may have a subdominant elastic component. If these elastic interactions are suppressed at low momentum transfer, they will have similar nuclear recoil spectra to inelastic scattering events. While upcoming direct detection experiments will see strong signals from such models, they may not be able to unambiguously determine the presence of the subdominant elastic scattering from the recoil spectra alone. We show that directional detection experiments can separate elastic and inelastic scattering events and discover the underlying dynamics of dark matter models.

  2. New Techniques in Dark Matter Mapping

    Science.gov (United States)

    Lorenz, Suzanne; Peterson, J. R.

    2013-06-01

    We have developed a new pipeline for mapping dark matter associated with clusters of galaxies via weak gravitational lensing. This method will be useful both with current datasets and future large optical survey telescopes, such as the Large Synoptic Survey Telescope (LSST). We use a novel source finding technique using a wavelet detection method. We then find known photometric and spectroscopic redshifts associated with our sources and measure the ellipticities of galaxies using a second moment technique. The ellipticity and photometric redshift distribution are then converted to a dark matter map. We have represented the dark matter as smoothed particles to invert the ellipticity map. This had yielded dark matter distributions when applied to our Subaru archive image of Abell 2218.

  3. Scalar Dark Matter: Direct vs. Indirect Detection

    CERN Document Server

    Duerr, Michael; Smirnov, Juri

    2015-01-01

    We revisit the simplest model for dark matter. In this context the dark matter candidate is a real scalar field which interacts with the Standard Model particles through the Higgs portal. We discuss the relic density constraints as well as the predictions for direct and indirect detection. The final state radiation processes are investigated in order to understand the visibility of the gamma lines from dark matter annihilation. We find two regions where one could observe the gamma lines at gamma-ray telescopes. We point out that the region where the dark matter mass is between 100 and 300 GeV can be tested in the near future at direct and indirect detection experiments.

  4. Dark Matter searches with the ATLAS Detector

    CERN Document Server

    Suchek, Stanislav; The ATLAS collaboration

    2017-01-01

    Dark Matter composes almost 25% of our Universe, but its identity is still unknown which makes it a large challenge for current fundamental physics. A lot of approaches are used to discover the identity of Dark Matter and one of them, collider searches, are discussed in this talk. The latest results on Dark Matter search at ATLAS using 2015 and 2016 data are presented. Results from searches for new physics in the events with final states containing large missing transverse energy and a single photon or Higgs boson are shown. Higgs to invisible and dijet searches are used in sense of complementarity to constrain properties of Dark Matter. Results and perspectives for all these searches are presented.

  5. Vector dark matter at the LHC

    CERN Document Server

    Kumar, Jason; Yaylali, David

    2015-01-01

    We consider monojet searches at the Large Hadron Collider (LHC) for spin-1 dark matter that interacts with quarks through a contact operator. If the dark matter particles are produced with longitudinal polarizations, then the production matrix element is enhanced by factors of the energy. We show that this particularly effective search strategy can test models for which the energy suppression scale of the operator is as large as $10^5$ TeV. As such, these searches can probe a large class of models for which the contact operator approximation is valid. We find that for contact operators that permit velocity-independent dark matter-nucleon scattering, LHC monojet searches for spin-1 dark matter are competitive with or far surpass direct detection searches depending on whether the scattering is spin-independent or spin-dependent, respectively.

  6. Dark matter annihilation near a naked singularity

    CERN Document Server

    Patil, Mandar

    2011-01-01

    We investigate here the dark matter annihilation near a Kerr naked singularity. We show that when dark matter particles collide and annihilate in vicinity of the singularity, the escape fraction to infinity of particles produced is much larger, at least 10^2 - 10^3 times the corresponding black hole values. As high energy collisions are generically possible near a naked singularity, this provides an excellent environment for efficient conversion of dark matter into ordinary standard model particles. If the center of galaxy harbored such a naked singularity, it follows that the observed emergent flux of particles with energy comparable to mass of the dark matter particles is much larger compared to the blackhole case, thus providing an intriguing observational test on the nature of the galactic center

  7. Directional detection of galactic Dark Matter

    CERN Document Server

    Mayet, F; Bernard, G; Bosson, G; Bourrion, O; Grignon, C; Guillaudin, O; Koumeir, C; Richer, J P; Santos, D; Colas, P; Ferer, E; Giomataris, I; Allaoua, A; Lebreton, L

    2010-01-01

    Directional detection of galactic Dark Matter is a promising search strategy for discriminating geniune WIMP events from background ones. We present technical progress on gaseous detectors as well as recent phenomenological studies, allowing the design and construction of competitive experiments.

  8. Detection prospects of singlet fermionic dark matter

    CERN Document Server

    Esch, Sonja; Yaguna, Carlos E

    2013-01-01

    A singlet fermion which interacts only with a new singlet scalar provides a viable and minimal scenario that can explain the dark matter. The singlet fermion is the dark matter particle whereas the new scalar mixes with the Higgs boson providing a link between the dark matter sector and the Standard Model. In this paper, we present an updated analysis of this model focused on its detection prospects. Both, the parity-conserving case and the most general case are considered. First, the full parameter space of the model is analyzed, and the regions compatible with the dark matter constraint are obtained and characterized. Then, the implications of current and future direct detection experiments are taken into account. Specifically, we determine the regions of the multidimensional parameter space that are currently excluded and those that are going to be probed by next generation experiments. Finally, indirect detection prospects are discussed and the expected signal at neutrino telescopes is calculated.

  9. Detection prospects of singlet fermionic dark matter

    Science.gov (United States)

    Esch, Sonja; Klasen, Michael; Yaguna, Carlos E.

    2013-10-01

    A singlet fermion which interacts only with a new singlet scalar provides a viable and minimal scenario that can explain the dark matter. The singlet fermion is the dark matter particle whereas the new scalar mixes with the Higgs boson providing a link between the dark matter sector and the standard model. In this paper, we present an updated analysis of this model focused on its detection prospects. Both the parity-conserving case and the most general case are considered. First, the full parameter space of the model is analyzed, and the regions compatible with the dark matter constraint are obtained and characterized. Then, the implications of current and future direct detection experiments are taken into account. Specifically, we determine the regions of the multidimensional parameter space that are currently excluded and those that are going to be probed by next generation experiments. Finally, indirect detection prospects are discussed and the expected signal at neutrino telescopes is calculated.

  10. Perspectives of dark matter searches with antideuterons

    Energy Technology Data Exchange (ETDEWEB)

    Vittino, A., E-mail: vittino.andrea@gmail.com [Department of Physics, University of Torino, via P. Giuria 1, 10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare, via P. Giuria 1, 10125 Torino (Italy); Fornengo, N., E-mail: fornengo@to.infn.it [Department of Physics, University of Torino, via P. Giuria 1, 10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare, via P. Giuria 1, 10125 Torino (Italy); Maccione, L., E-mail: luca.maccione@lmu.de [Ludwig-Maximilians-Universität, Theresienstraße 37, D-80333 München (Germany); Max-Planck-Institut für Physik (Werner Heisenberg Institut), Föhringer Ring 6, D-80805 München (Germany)

    2014-04-01

    The search for an excess of antideuterons in the cosmic rays flux has been proposed as a very promising channel for dark matter indirect detection, especially for WIMPs with a low or an intermediate mass. With the development of the AMS experiment and the proposal of a future dedicated experiment, i.e. the General Antiparticle Spectrometer (GAPS), there are exciting possibilities for a dark matter detection in the near future. We give an overview on the principal issues related both to the antideuterons production in dark matter annihilation reactions and to their propagation through the interstellar medium and the heliosphere, with a particular focus on the impact of various solar modulation models on the flux at Earth. Lastly, we provide an updated calculation of the reaching capabilities for current and future experiments compatible with the constraints on the dark matter annihilation cross-section imposed by the antiproton measurements of PAMELA.

  11. Dark matter heating in strange stars

    Science.gov (United States)

    Huang, Xi; Wang, Wen; Zheng, XiaoPing

    2014-04-01

    We study the effect of dark matter heating on the temperature of typical strange star (SS hereafter) ( M = 1.4 M⊙, R = 10 km) in normal phase (NSS hereafter) and in a possible existing colour-flavour locked (CFL)phase (CSS hereafter). For NSS, the influence of dark matter heating is ignored until roughly 107 yr. After 107 yr, the dark matter heating is dominant that significantly delays the star cooling, which maintains a temperature much higher than that predicted by standard cooling model for old stars. Especially for CSS, the emissivity of dark matter will play a leading role after roughly 104 yr, which causes the temperature to rise. This leads to the plateau of surface temperature appearing in ˜106.5 yr which is earlier than that of NSS (˜107 yr).

  12. Dimensionless constants, cosmology and other dark matters

    CERN Document Server

    Tegmark, M; Rees, M; Wilczek, F; Tegmark, Max; Aguirre, Anthony; Rees, Martin; Wilczek, Frank

    2006-01-01

    We identify 31 dimensionless physical constants required by particle physics and cosmology, and emphasize that both microphysical constraints and selection effects might help elucidate their origin. Axion cosmology provides an instructive example, in which these two kinds of arguments must both be taken into account, and work well together. If a Peccei-Quinn phase transition occurred before or during inflation, then the axion dark matter density will vary from place to place with a probability distribution. By calculating the net dark matter halo formation rate as a function of all four relevant cosmological parameters and assessing other constraints, we find that this probability distribution, computed at stable solar systems, is arguably peaked near the observed dark matter density. If cosmologically relevant WIMP dark matter is discovered, then one naturally expects comparable densities of WIMPs and axions, making it important to follow up with precision measurements to determine whether WIMPs account for ...

  13. Muon Fluxes From Dark Matter Annihilation

    CERN Document Server

    Erkoca, Arif Emre; Sarcevic, Ina

    2009-01-01

    We calculate the muon flux from annihilation of the dark matter in the core of the Sun, in the core of the Earth and from cosmic diffuse neutrinos produced in dark matter annihilation in the halos. We consider model-independent direct neutrino production and secondary neutrino production from the decay of taus produced in the annihilation of dark matter. We illustrate how muon energy distribution from dark matter annihilation has a very different shape than muon flux from atmospheric neutrinos. We consider both the upward muon flux, when muons are created in the rock below the detector, and the contained flux when muons are created in the (ice) detector. We contrast our results to the ones previously obtained in the literature, illustrating the importance of properly treating muon propagation and energy loss. We comment on neutrino flavor dependence and their detection.

  14. Dark Matter Direct Detection with Accelerometers

    CERN Document Server

    Graham, Peter W; Mardon, Jeremy; Rajendran, Surjeet; Terrano, William A

    2015-01-01

    The mass of the dark matter particle is unknown, and may be as low as ~$10^{-22}$ eV. The lighter part of this range, below ~eV, is relatively unexplored both theoretically and experimentally but contains an array of natural dark matter candidates. An example is the relaxion, a light boson predicted by cosmological solutions to the hierarchy problem. One of the few generic signals such light dark matter can produce is a time-oscillating, EP-violating force. We propose searches for this using accelerometers, and consider in detail the examples of torsion balances, atom interferometry, and pulsar timing. These approaches have the potential to probe large parts of unexplored parameter space in the next several years. Thus such accelerometers provide radically new avenues for the direct detection of dark matter.

  15. Shocking Signals of Dark Matter Annihilation

    CERN Document Server

    Davis, Jonathan H; Boehm, Celine; Kotera, Kumiko; Norman, Colin

    2015-01-01

    We examine whether charged particles injected by self-annihilating Dark Matter into regions undergoing Diffuse Shock Acceleration (DSA) can be accelerated to high energies. We consider three astrophysical sites where shock acceleration is supposed to occur, namely the Galactic Centre, galaxy clusters and Active Galactic Nuclei (AGN). For the Milky Way, we find that the acceleration of cosmic rays injected by dark matter could lead to a bump in the cosmic ray spectrum provided that the product of the efficiency of the acceleration mechanism and the concentration of DM particles is high enough. Among the various acceleration sources that we consider (namely supernova remnants (SNRs), Fermi bubbles and AGN jets), we find that the Fermi bubbles are a potentially more efficient accelerator than SNRs. However both could in principle accelerate electrons and protons injected by dark matter to very high energies. At the extragalactic level, the acceleration of dark matter annihilation products could be responsible fo...

  16. Astroparticle physics: Dark matter remains elusive

    Science.gov (United States)

    Ji, Xiangdong

    2017-02-01

    WIMPs, or weakly interacting massive particles, are the leading candidates for dark matter, the 'missing' mass in the Universe. An experiment has obtained no evidence for such particles, despite an impressive increase in sensitivity.

  17. Observationally Determining the Properties of Dark Matter

    CERN Document Server

    Hu, W; Tegmark, M; White, M; Hu, Wayne; Eisenstein, Daniel J.; Tegmark, Max; White, Martin

    1999-01-01

    Determining the properties of the dark components of the universe remains one of the outstanding challenges in cosmology. We explore how upcoming CMB anisotropy measurements, galaxy power spectrum data, and supernova (SN) distance measurements can observationally constrain their gravitational properties with minimal assumptions on the theoretical side. SN observations currently suggest the existence of dark matter with an exotic equation of state p/rho -1/2, then the clustering behavior (sound speed) of the dark component can be determined so as to test the scalar-field ``quintessence'' hypothesis. If the exotic matter turns out instead to be simply a cosmological constant (p/rho = -1), the combination of CMB and galaxy survey data should provide a significant detection of the remaining dark matter, the neutrino background radiation (NBR). The gross effect of its density or temperature on the expansion rate is ill-constrained as it is can be mimicked by a change in the matter density. However, anisotropies o...

  18. Direct dark matter detection: the next decade

    CERN Document Server

    Baudis, Laura

    2012-01-01

    Direct dark matter searches are promising techniques to identify the nature of dark matter particles. I describe the future of this field of research, focussing on the question of what can be achieved in the next decade. I will present the main techniques and R&D projects that will allow to build so-called ultimate WIMP detectors, capable of probing spin-independent interactions down to the unimaginably low cross section of 1e-48 cm2, before the irreducible neutrino background takes over. If a discovery is within the reach of a near-future dark matter experiment, these detectors will be able to constrain WIMP properties such as its mass, scattering cross section and possibly spin. With input from the LHC and from indirect searches, direct detection experiments will hopefully allow to determine the local density and to constrain the local phase-space structure of our dark matter halo.

  19. Illuminating Dark Matter at the ILC

    CERN Document Server

    Dreiner, Herbert; Krämer, Michael; Schmeier, Daniel; Tattersall, Jamie

    2012-01-01

    The WIMP (weakly interacting massive particle) paradigm for dark matter is currently being probed via many different experiments. Direct detection, indirect detection and collider searches are all hoping to catch a glimpse of these elusive particles. Here, we examine the potential of the ILC (International Linear Collider) to shed light on the origin of dark matter. By using an effective field theory approach we are also able to compare the reach of the ILC with that of the other searches. We find that for low mass dark matter (< 10 GeV), the ILC offers a unique opportunity to search for WIMPS beyond any other experiment. In addition, if dark matter happens to only couple to leptons or via a spin dependent interaction, the ILC can give an unrivalled window to these models. We improve on previous ILC studies by constructing a comprehensive list of effective theories that allows us to move beyond the non-relativistic approximation.

  20. Direct Detection of Dynamical Dark Matter

    CERN Document Server

    Dienes, Keith R; Thomas, Brooks

    2012-01-01

    Dynamical dark matter (DDM) is an alternative framework for dark-matter physics in which the dark-matter candidate is an ensemble of constituent fields with differing masses, lifetimes, and cosmological abundances. In this framework, it is the balancing of these quantities against each other across the ensemble as a whole which ensures phenomenological viability. In this paper, we examine the prospects for the direct detection of a DDM ensemble. In particular, we study the constraints imposed by current limits from direct-detection experiments on the parameter space of DDM models, and we assess the prospects for detecting such an ensemble and distinguishing it from traditional dark-matter candidates on the basis of data from the next generation of direct-detection experiments. For concreteness, we focus primarily on the case in which elastic scattering via spin-independent interactions dominates the interaction rate between atomic nuclei and the constituent particles of the ensemble. We also briefly discuss t...

  1. Dark matter and the neutrino portal paradigm

    CERN Document Server

    González-Macías, Vannia; Wudka, José

    2016-01-01

    A simple extension of the Standard Model (SM) that provides an explicit realization of the dark-matter (DM) neutrino-portal paradigm is presented. The leading interactions between the dark sector, containing scalars and relic fermions, and the SM involve neutrinos. This model meets all observational constraints.

  2. A two measure model of dark energy and dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Guendelman, Eduardo [Department of Physics, Ben-Gurion University, Beer-Sheva (Israel); Singleton, Douglas; Yongram, N., E-mail: guendel@bgu.ac.il, E-mail: dougs@csufresno.edu, E-mail: nattapongy@nu.ac.th [Physics Department, California State University Fresno, Fresno, CA 93740 (United States)

    2012-11-01

    In this work we construct a unified model of dark energy and dark matter. This is done with the following three elements: a gravitating scalar field, φ with a non-conventional kinetic term, as in the string theory tachyon; an arbitrary potential, V(φ); two measures — a metric measure ((−g){sup 1/2}) and a non-metric measure (Φ). The model has two interesting features: (i) For potentials which are unstable and would give rise to tachyonic scalar field, this model can stabilize the scalar field. (ii) The form of the dark energy and dark matter that results from this model is fairly insensitive to the exact form of the scalar field potential.

  3. Coupled dark energy and dark matter from dilatation anomaly

    CERN Document Server

    Beyer, Joschka; Wetterich, Christof

    2010-01-01

    Cosmological runaway solutions may exhibit an exact dilatation symmetry in the asymptotic limit of infinite time. In this limit, the massless dilaton or cosmon could be accompanied by another massless scalar field - the geon. At finite time, small time-dependent masses for both the cosmon and geon are still present due to imperfect dilatation symmetry. For a sufficiently large mass the geon will start oscillating and play the role of dark matter, while the cosmon is responsible for dark energy. The common origin of the mass of both fields leads to an effective interaction between dark matter and dark energy. Realistic cosmologies are possible for a simple form of the effective cosmon-geon-potential. We find an inverse geon mass of a size where it could reduce subgalactic structure formation.

  4. Vacuum stability from vector dark matter

    CERN Document Server

    Duch, Mateusz; McGarrie, Moritz

    2015-01-01

    We study a model of vector dark matter with the complex scalar Higgs portal. Renormalisation group equations at the 2-loop level are used to analyse perturbativity and stability of the vacuum. We impose experimental and theoretical constraints on the model and find regions in the parameter space consistent with the dark matter relic abundance inferred from the Planck data and bounds on DM-nucleon scattering cross-section from XENON and LUX experiments.

  5. Directional detection of galactic dark matter

    CERN Document Server

    Mayet, F; Santos, D

    2012-01-01

    Directional detection is a promising Dark Matter search strategy. Taking advantage on the rotation of the Solar system around the galactic center through the Dark Matter halo, it allows to show a direction dependence of WIMP events that may be a powerful tool to identify genuine WIMP events as such. Directional detection strategy requires the simultaneous measurement of the energy and the 3D track of low energy recoils, which is a common challenge for all current projects of directional detectors.

  6. The C-4 Dark Matter Experiment

    CERN Document Server

    Bonicalzi, R M; Colaresi, J; Fast, J E; Fields, N E; Fuller, E S; Hai, M; Hossbach, T W; Kos, M S; Orrell, J L; Overman, C T; Reid, D J; VanDevender, B A; Wiseman, C; Yocum, K M

    2012-01-01

    We describe the experimental design of C-4, an expansion of the CoGeNT dark matter search to four identical detectors each approximately three times the mass of the p-type point contact germanium diode presently taking data at the Soudan Underground Laboratory. Expected reductions of radioactive backgrounds and energy threshold are discussed, including an estimate of the additional sensitivity to low-mass dark matter candidates to be obtained with this search.

  7. The C-4 dark matter experiment

    Science.gov (United States)

    Bonicalzi, R. M.; Collar, J. I.; Colaresi, J.; Fast, J. E.; Fields, N. E.; Fuller, E. S.; Hai, M.; Hossbach, T. W.; Kos, M. S.; Orrell, J. L.; Overman, C. T.; Reid, D. J.; VanDevender, B. A.; Wiseman, C.; Yocum, K. M.

    2013-06-01

    We describe the experimental design of C-4, an expansion of the CoGeNT dark matter search to four identical detectors each approximately three times the mass of the p-type point contact germanium diode presently taking data at the Soudan Underground Laboratory. Expected reductions of radioactive backgrounds and energy threshold are discussed, including an estimate of the additional sensitivity to low-mass dark matter candidates to be obtained with this search.

  8. Searches for Dark Matter with top quarks

    CERN Document Server

    Andrea, Jeremy

    2016-01-01

    This proceeding presents searches for Dark Matter particles produced in association with top quarks at the LHC. The searches are performed by the ATLAS and CMS collaborations and various models and topologies are investigated. They are exploiting $t\\bar{t}$ and single top experimental signatures by searching for an excess of missing transverse energy $\\slashed{E}_T$. No signs of Dark Matter particles haven been observed and limits on the models are set.

  9. Electroweak Kaluza-Klein Dark Matter

    OpenAIRE

    Flacke, Thomas; Kang, Dong Woo; Kong, Kyoungchul; Mohlabeng, Gopolang; Park, Seong Chan

    2017-01-01

    In models with universal extra dimensions (UED), the lightest Kaluza-Klein excitation of neutral electroweak gauge bosons is a stable, weakly interacting massive particle and thus is a candidate for dark matter thanks to Kaluza-Klein parity. We examine concrete model realizations of such dark matter in the context of non-minimal UED extensions. The boundary localized kinetic terms for the electroweak gauge bosons lead to a non-trivial mixing among the first Kaluza-Klein excitations of the ${\\...

  10. Relativistic Dark Matter at the Galactic Center

    Energy Technology Data Exchange (ETDEWEB)

    Amin, Mustafa A.; /Stanford U., Phys. Dept. /KIPAC, Menlo Park; Wizansky, Tommer; /SLAC

    2007-11-16

    In a large region of the supersymmetry parameter space, the annihilation cross section for neutralino dark matter is strongly dependent on the relative velocity of the incoming particles. We explore the consequences of this velocity dependence in the context of indirect detection of dark matter from the galactic center. We find that the increase in the annihilation cross section at high velocities leads to a flattening of the halo density profile near the galactic center and an enhancement of the annihilation signal.

  11. Unifying dark energy and dark matter with a scalar field

    OpenAIRE

    Arbey, A.

    2005-01-01

    The standard model of cosmology considers the existence of two components of unknown nature, ``dark matter'' and ``dark energy'', which determine the cosmological evolution. Their nature remains unknown, and other models can also be considered. In particular, it may be possible to reinterpret the recent cosmological observations so that the Universe does not contain two fluids of unknown natures, but only one fluid with particular properties. After a brief review of constraints on this unifyi...

  12. Unified description of dark energy and dark matter in mimetic matter model

    CERN Document Server

    Matsumoto, Jiro

    2016-01-01

    The existence of dark matter and dark energy in cosmology is implied by various observations, however, they are still unclear because they have not been directly detected. In this Letter, an unified model of dark energy and dark matter that can explain the evolution history of the Universe later than inflationary era, the time evolution of the growth rate function of the matter density contrast, the flat rotation curves of the spiral galaxies, and the gravitational experiments in the solar system is proposed in mimetic matter model.

  13. Wanted! Nuclear Data for Dark Matter Astrophysics

    Science.gov (United States)

    Gondolo, P.

    2014-06-01

    Astronomical observations from small galaxies to the largest scales in the universe can be consistently explained by the simple idea of dark matter. The nature of dark matter is however still unknown. Empirically it cannot be any of the known particles, and many theories postulate it as a new elementary particle. Searches for dark matter particles are under way: production at high-energy accelerators, direct detection through dark matter-nucleus scattering, indirect detection through cosmic rays, gamma rays, or effects on stars. Particle dark matter searches rely on observing an excess of events above background, and a lot of controversies have arisen over the origin of observed excesses. With the new high-quality cosmic ray measurements from the AMS-02 experiment, the major uncertainty in modeling cosmic ray fluxes is in the nuclear physics cross sections for spallation and fragmentation of cosmic rays off interstellar hydrogen and helium. The understanding of direct detection backgrounds is limited by poor knowledge of cosmic ray activation in detector materials, with order of magnitude differences between simulation codes. A scarcity of data on nucleon spin densities blurs the connection between dark matter theory and experiments. What is needed, ideally, are more and better measurements of spallation cross sections relevant to cosmic rays and cosmogenic activation, and data on the nucleon spin densities in nuclei.

  14. The dark matter of galaxy voids

    CERN Document Server

    Sutter, P M; Wandelt, Benjamin D; Weinberg, David H; Warren, Michael S

    2013-01-01

    How do observed voids relate to the underlying dark matter distribution? To examine the spatial distribution of dark matter contained within voids identified in galaxy surveys, we apply Halo Occupation Distribution models representing sparsely and densely sampled galaxy surveys to a high-resolution N-body simulation. We compare these galaxy voids to voids found in the halo distribution, low-resolution dark matter, and high-resolution dark matter. We find that voids at all scales in densely sampled surveys - and medium- to large-scale voids in sparse surveys - trace the same underdensities as dark matter, but they are larger in radius by ~20%, they have somewhat shallower density profiles, and they have centers offset by ~0.4Rv rms. However, in void-to-void comparison we find that shape estimators are less robust to sampling, and the largest voids in sparsely sampled surveys suffer fragmentation at their edges. We find that voids in galaxy surveys always correspond to underdensities in the dark matter, though ...

  15. Interaction between bosonic dark matter and stars

    Science.gov (United States)

    Brito, Richard; Cardoso, Vitor; Macedo, Caio F. B.; Okawa, Hirotada; Palenzuela, Carlos

    2016-02-01

    We provide a detailed analysis of how bosonic dark matter "condensates" interact with compact stars, extending significantly the results of a recent Letter [1]. We focus on bosonic fields with mass mB , such as axions, axion-like candidates and hidden photons. Self-gravitating bosonic fields generically form "breathing" configurations, where both the spacetime geometry and the field oscillate, and can interact and cluster at the center of stars. We construct stellar configurations formed by a perfect fluid and a bosonic condensate, and which may describe the late stages of dark matter accretion onto stars, in dark-matter-rich environments. These composite stars oscillate at a frequency which is a multiple of f =2.5 ×1014(mBc2/eV ) Hz . Using perturbative analysis and numerical relativity techniques, we show that these stars are generically stable, and we provide criteria for instability. Our results also indicate that the growth of the dark matter core is halted close to the Chandrasekhar limit. We thus dispel a myth concerning dark matter accretion by stars: dark matter accretion does not necessarily lead to the destruction of the star, nor to collapse to a black hole. Finally, we argue that stars with long-lived bosonic cores may also develop in other theories with effective mass couplings, such as (massless) scalar-tensor theories.

  16. New Atomic Methods for Dark Matter Detection

    Science.gov (United States)

    Roberts, Benjamin; Stadnik, Yevgeny; Dzuba, Vladimir; Flambaum, Victor; Leefer, Nathan; Budker, Dmitry

    2015-05-01

    We propose to exploit P and T violating effects in atoms, nuclei, and molecules to search for dark matter (eg axions) and various other cosmic fields. We perform calculations of electric dipole moments (EDMs) that a dark matter field would induce in atoms. Crucially, the effects we consider here are linear in the small parameter that quantifies the dark matter interaction strength; most current searches rely on effects that are at least quadratic in this parameter. The induced oscillating EDMs have the potential to be measured with very high accuracy, and experimental techniques in this field are evolving fast. Pairs of closely spaced opposite parity levels that are found in diatomic molecules will also lead to a significant enhancement in these effects. We are also interested in a possible explanation for the anomalous DAMA dark matter detection results based on DM-electron scattering. Our calculations may provide a possible mechanism for dark matter induced ionisation modulations that are not ruled out by other experiments. Alternatively, they could further reduce the available parameter space for certain dark matter models.

  17. Exactly solved models of interacting dark matter and dark energy

    CERN Document Server

    Chimento, Luis P

    2012-01-01

    We introduce an effective one-fluid description of the interacting dark sector in a spatially flat Friedmann-Robertson-Walker space-time and investigate the stability of the power-law solutions. We find the "source equation" for the total energy density and determine the energy density of each dark component. We study linear and nonlinear interactions which depend on the dark matter and dark energy densities, their first derivatives, the total energy density with its derivatives up to second order and the scale factor. We solve the evolution equations of the dark components for both interactions, examine exhaustively several examples and show cases where the problem of the coincidence is alleviated. We show that a generic nonlinear interaction gives rise to the "relaxed Chaplygin gas model" whose effective equation of state includes the variable modified Chaplygin gas model while some others nonlinear interactions yield de Sitter and power-law scenarios.

  18. Dark Matter and Experiments for its Identification

    Directory of Open Access Journals (Sweden)

    V. Singh

    2015-08-01

    Full Text Available After Fritz Zwicky, through various theoretical models, several dark matter events have been proposed. But none of them is yet discovered. Recent experiment shows that only around 5% of the total matters present in the whole universe are visual. Rest matter is still unknown to us by any present experimental tools. This leads that detection of dark matter is one of the very challenging & curios goal for experimental physicists. For the search of suitable dark matter candidates and for rear physics events, High Purity Germanium detectors, Spherical gaseous chamber detector and few more hybrid-detectors are suitable for these purposes. We proposed that any suitable detector hosted under deep sea water will be more effective than the under ground or mountain caverns.

  19. Constraints on dark photon dark matter using Voyager magnetometric survey

    CERN Document Server

    Pignol, G; Guigue, M; Rebreyend, D; Voirin, B

    2015-01-01

    The dark photon, an new hypothetical light spin 1 field, constitutes a well-motivated dark matter candidate. It manifests as an oscillating electric field with a fixed direction, which can be observed in magnetometric records. In this letter, we use magnetometer data from the Voyager probes to look for the dark photon in the 10^-24 eV to 10^-19 eV mass range, corresponding to frequencies between 10^-9 Hz and 10^-4 Hz. We also discuss the sensitivity of possible future SQUID magnetometry experiments.

  20. Fluid Mechanics Explains Cosmology, Dark Matter, Dark Energy, and Life

    CERN Document Server

    Gibson, Carl H

    2012-01-01

    Observations of the interstellar medium by the Herschel, Planck etc. infrared satellites throw doubt on standard {\\Lambda}CDMHC cosmological processes to form gravitational structures. According to the Hydro-Gravitational-Dynamics (HGD) cosmology of Gibson (1996), and the quasar microlensing observations of Schild (1996), the dark matter of galaxies consists of Proto-Globular-star-Cluster (PGC) clumps of Earth-mass primordial gas planets in metastable equilibrium since PGCs began star production at 0.3 Myr by planet mergers. Dark energy and the accelerating expansion of the universe inferred from SuperNovae Ia are systematic dimming errors produced as frozen gas dark matter planets evaporate to form stars. Collisionless cold dark matter that clumps and hierarchically clusters does not exist. Clumps of PGCs began diffusion from the Milky Way Proto-Galaxy upon freezing at 14 Myr to give the Magellanic Clouds and the faint dwarf galaxies of the 10^22 m diameter baryonic dark matter Galaxy halo. The first stars p...

  1. Top-flavoured dark matter in Dark Minimal Flavour Violation

    Science.gov (United States)

    Blanke, Monika; Kast, Simon

    2017-05-01

    We study a simplified model of top-flavoured dark matter in the framework of Dark Minimal Flavour Violation. In this setup the coupling of the dark matter flavour triplet to right-handed up-type quarks constitutes the only new source of flavour and CP violation. The parameter space of the model is restricted by LHC searches with missing energy final states, by neutral D meson mixing data, by the observed dark matter relic abundance, and by the absence of signal in direct detection experiments. We consider all of these constraints in turn, studying their implications for the allowed parameter space. Imposing the mass limits and coupling benchmarks from collider searches, we then conduct a combined analysis of all the other constraints, revealing their non-trivial interplay. Especially interesting is the combination of direct detection and relic abundance constraints, having a severe impact on the structure of the dark matter coupling matrix. We point out that future bounds from upcoming direct detection experiments, such as XENON1T, XENONnT, LUX-ZEPLIN, and DARWIN, will exclude a large part of the parameter space and push the DM mass to higher values.

  2. Chaining Mimes in the Dark: Dark Energy Scaling from Dark Matter to Acceleration

    CERN Document Server

    Bielefeld, Jannis; Linder, Eric V

    2014-01-01

    The dark sector of the Universe need not be completely separable into distinct dark matter and dark energy components. We consider a model of early dark energy in which the dark energy mimics a dark matter component in both evolution and perturbations at early times. Barotropic aether dark energy scales as a fixed fraction, possibly greater than one, of the dark matter density and has vanishing sound speed at early times before undergoing a transition. This gives signatures not only in cosmic expansion but in sound speed and inhomogeneities, and in number of effective neutrino species. Model parameters describe the timing, sharpness of the transition, and the relative abundance at early times. Upon comparison with current data, we find viable regimes in which the dark energy behaves like dark matter at early times: for transitions well before recombination the dark energy to dark matter fraction can equal or exceed unity, while for transitions near recombination the ratio can only be a few percent. After the ...

  3. Astronomical Constraints on Quantum Cold Dark Matter

    Science.gov (United States)

    Spivey, Shane; Musielak, Z.; Fry, J.

    2012-01-01

    A model of quantum (`fuzzy') cold dark matter that accounts for both the halo core problem and the missing dwarf galaxies problem, which plague the usual cold dark matter paradigm, is developed. The model requires that a cold dark matter particle has a mass so small that its only allowed physical description is a quantum wave function. Each such particle in a galactic halo is bound to a gravitational potential that is created by luminous matter and by the halo itself, and the resulting wave function is described by a Schrödinger equation. To solve this equation on a galactic scale, we impose astronomical constraints that involve several density profiles used to fit data from simulations of dark matter galactic halos. The solutions to the Schrödinger equation are quantum waves which resemble the density profiles acquired from simulations, and they are used to determine the mass of the cold dark matter particle. The effects of adding certain types of baryonic matter to the halo, such as a dwarf elliptical galaxy or a supermassive black hole, are also discussed.

  4. Darkon dark matter, unparticle effects and collider physics

    Institute of Scientific and Technical Information of China (English)

    HE Xiao-Gang

    2009-01-01

    In this talk I report recent results on the simplest dark matter model, the Darkon model, and supersymmetric unparticle effects on dark matter, and some implications for coUider physics. I first discuss dark matter properties and collider signatures in the Darkon model, and then I discuss some implications for dark matter if a scalar unparticle is introduced to the MSSM.

  5. On baryogenesis from dark matter annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Bernal, Nicolás [ICTP South American Institute for Fundamental Research and Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo, SP 01140-070 (Brazil); Colucci, Stefano; Ubaldi, Lorenzo [Bethe Center for Theoretical Physics and Physikalisches Institut, Universität Bonn, Nußallee 12, D-53115 Bonn (Germany); Josse-Michaux, François-Xavier [Centro de Física Teórica de Partículas CFTP, Instituto Superior Técnico, Technical University of Lisbon, 1049-001 Lisbon (Portugal); Racker, J., E-mail: nicolas@ift.unesp.br, E-mail: colucci@th.physik.uni-bonn.de, E-mail: fxjossemichaux@gmail.com, E-mail: racker@ific.uv.es, E-mail: ubaldi@th.physik.uni-bonn.de [Instituto de Física corpuscular (IFIC), Universidad de Valencia-CSIC Edificio de Institutos de Paterna, Apt. 22085, 46071 Valencia (Spain)

    2013-10-01

    We study in detail the conditions to generate the baryon asymmetry of the universe from the annihilation of dark matter. This scenario requires a low energy mechanism for thermal baryogenesis, hence we first discuss some of these mechanisms together with the specific constraints due to the connection with the dark matter sector. Then we show that, contrary to what stated in previous studies, it is possible to generate the cosmological asymmetry without adding a light sterile dark sector, both in models with violation and with conservation of B−L. In addition, one of the models we propose yields some connection to neutrino masses.

  6. Cosmological effects of coupled dark matter

    CERN Document Server

    Morris, Sophie C F; Padilla, Antonio; Tarrant, Ewan R M

    2013-01-01

    Many models have been studied that contain more than one species of dark matter and some of these couple the Cold Dark Matter (CDM) to a light scalar field. In doing this we introduce additional long range forces, which in turn can significantly affect our estimates of cosmological parameters if not properly accounted for. It is, therefore, important to study these models and their resulting cosmological implications. We present a model in which a fraction of the total cold dark matter density is coupled to a scalar field. We study the background and perturbation evolution and calculate the resulting Cosmic Microwave Background anisotropy spectra. The greater the fraction of dark matter coupled to the scalar field and the stronger the coupling strength, the greater the deviation of the background evolution from LCDM. Previous work, with a single coupled dark matter species, has found an upper limit on the coupling strength of order O(0.1). We find that with a coupling of this magnitude more than half the dark...

  7. Effective theory for electroweak doublet dark matter

    Science.gov (United States)

    Dedes, A.; Karamitros, D.; Spanos, V. C.

    2016-11-01

    We perform a detailed study of an effective field theory which includes the standard model particle content extended by a pair of Weyl fermionic SU(2) doublets with opposite hypercharges. A discrete symmetry guarantees that a linear combination of the doublet components is stable and can act as a candidate particle for dark matter. The dark sector fermions interact with the Higgs and gauge bosons through renormalizable d =4 operators, and nonrenormalizable d =5 operators that appear after integrating out extra degrees of freedom above the TeV scale. We study collider, cosmological and astrophysical probes for this effective theory of dark matter. We find that a weakly interacting dark matter particle with a mass nearby the electroweak scale, and thus observable at the LHC, is consistent with collider and astrophysical data only when fairly large magnetic dipole moment transition operators with the gauge bosons exist, together with moderate Yukawa interactions.

  8. The Dark-Matter World: are There Dark-Matter Galaxies?

    Science.gov (United States)

    Pauchy Hwang, W.-Y.

    2012-12-01

    We attempt to answer whether neutrinos and antineutrinos, such as those in the cosmic neutrino background, would clusterize among themselves or even with other dark-matter particles, under certain time span, say 1 Gyr. With neutrino masses in place, the similarity with the ordinary matter increases and so is our confidence for neutrino clustering if time is long enough. In particular, the clusterings could happen with some seeds (cf. see the text for definition), the chance in the dark-matter world to form dark-matter galaxies increases. If the dark-matter galaxies would exist in a time span of 1 Gyr, then they might even dictate the formation of the ordinary galaxies (i.e. the dark-matter galaxies get formed first); thus, the implications for the structure of our Universe would be tremendous.

  9. Reionization histories of Milky Way mass halos

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tony Y.; Wechsler, Risa H.; Abel, Tom [Kavli Institute for Particle Astrophysics and Cosmology, Physics Department, Stanford University, Stanford, CA 94305 (United States); Alvarez, Marcelo A., E-mail: tonyyli@stanford.edu, E-mail: rwechsler@stanford.edu, E-mail: tabel@stanford.edu, E-mail: malvarez@cita.utoronto.ca [CITA, University of Toronto, Toronto, Ontario M5S 3H8 (Canada)

    2014-04-20

    We investigate the connection between the reionization era and the present-day universe by examining the mass reionization histories of z = 0 dark matter halos. In a 600{sup 3} Mpc{sup 3} volume, we combine a dark matter N-body simulation with a three-dimensional seminumerical reionization model. This tags each particle with a reionization redshift, so that individual present-day halos can be connected to their reionization histories and environments. We find that the vast majority of present-day halos with masses larger than ∼ few × 10{sup 11} M {sub ☉} reionize earlier than the rest of the universe. We also find significant halo-to-halo diversity in mass reionization histories, and find that in realistic inhomogeneous models, the material within a given halo is not expected to reionize at the same time. In particular, the scatter in reionization times within individual halos is typically larger than the scatter among halos. From our fiducial reionization model, we find that the typical 68% scatter in reionization times within halos is ∼115 Myr for 10{sup 12±0.25} M {sub ☉} halos, decreasing slightly to ∼95 Myr for 10{sup 15±0.25} M {sub ☉} halos. We find a mild correlation between reionization history and environment: halos with shorter reionization histories are typically in more clustered environments, with the strongest trend on a scale of ∼20 Mpc. Material in Milky Way mass halos with short reionization histories is preferentially reionized in relatively large H II regions, implying reionization mostly by sources external to the progenitors of the present-day halo. We investigate the impact on our results of varying the reionization model parameters, which span a range of reionization scenarios with varying timing and morphology.

  10. Dark matter directional detection in non-relativistic effective theories

    CERN Document Server

    Catena, Riccardo

    2015-01-01

    We extend the formalism of dark matter directional detection to arbitrary one-body dark matter-nucleon interactions. The new theoretical framework generalizes the one currently used, which is based on 2 types of dark matter-nucleon interaction only. It includes 14 dark matter-nucleon interaction operators, 8 isotope-dependent nuclear response functions, and the Radon transform of the first 2 moments of the dark matter velocity distribution. We calculate the recoil energy spectra at dark matter directional detectors made of CF$_4$, CS$_2$ and $^{3}$He for the 14 dark matter-nucleon interactions, using nuclear response functions recently obtained through numerical nuclear structure calculations. We highlight the new features of the proposed theoretical framework, and present our results for a spherical dark matter halo and for a stream of dark matter particles. This study lays the foundations for model independent analyses of dark matter directional detection experiments.

  11. Asymmetric dark matter and the Sun

    DEFF Research Database (Denmark)

    Frandsen, Mads Toudal; Sarkar, Subir

    2010-01-01

    Cold dark matter particles with an intrinsic matter-antimatter asymmetry do not annihilate after gravitational capture by the Sun and can affect its interior structure. The rate of capture is exponentially enhanced when such particles have self-interactions of the right order to explain structure...

  12. Geometry of Manifolds and Dark Matter

    CERN Document Server

    Pestov, I B

    2002-01-01

    It is shown that the theory of dark matter can be derived from the first principles. Particles representing a new form of matter gravitate but do not interact electromagnetically, strongly and weakly with the known elementary particles. Physics of these particles is defined by the Planck scales.

  13. Dark Matter and Energy as Antimatter

    Science.gov (United States)

    Lundberg, Wayne

    2005-04-01

    A new interpretation of dark matter observations via gravitational lensing through galaxy clusters is proposed. Gravitational lensing studies of SDSS J1004+4112 by Williams and Saha (astro-ph/0412445) indicate that any dark matter contribution to lensing is smoothly distributed in space. All particle theories (i.e WIMPs) which propose to explain dark matter inevitably yield gravitational clumping. Note that string theory requires that matter at radii, R, less than the Planck scale, α', is equivalent to matter at distance D=α'/R. The proposed interpretation involves antimatter existing within anti-deSitter spaces to explain the unexpected smoothness. This proposal asserts that a (non-Hawking) black hole exists with an AdS space at its singularity. Antimatter interactions also explain Galactic Annihilation Fountain(s) and similar observed phenomena. Non-temporal matter is thereby defined as matter which exists in 4-space, either advanced or retarded wrt the present. A `radical' form of cosmology is then developed in which the curvature tensor of Einstein's general relativity is treated as complex. FRW cosmology plus dark matter and energy results. Theories regarding the black hole ``end state'' and Seiberg's chronology protection lend support to this approach. Previous work (http://www-astro-theory.fnal.gov/Conferences/cosmo02/poster/lundberg.pdfhttp://www-astro-theory.fnal.gov/Conferences/cosmo02/poster/lundberg.pdf) to establish the architecture of a comprehensive theory is thus modified.

  14. Wave Dark Matter and Dwarf Spheroidal Galaxies

    Science.gov (United States)

    Parry, Alan R.

    We explore a model of dark matter called wave dark matter (also known as scalar field dark matter and boson stars) which has recently been motivated by a new geometric perspective by Bray. Wave dark matter describes dark matter as a scalar field which satisfies the Einstein-Klein-Gordon equations. These equations rely on a fundamental constant Upsilon (also known as the "mass term'' of the Klein-Gordon equation). Specifically, in this dissertation, we study spherically symmetric wave dark matter and compare these results with observations of dwarf spheroidal galaxies as a first attempt to compare the implications of the theory of wave dark matter with actual observations of dark matter. This includes finding a first estimate of the fundamental constant Upsilon. In the introductory Chapter 1, we present some preliminary background material to define and motivate the study of wave dark matter and describe some of the properties of dwarf spheroidal galaxies. In Chapter 2, we present several different ways of describing a spherically symmetric spacetime and the resulting metrics. We then focus our discussion on an especially useful form of the metric of a spherically symmetric spacetime in polar-areal coordinates and its properties. In particular, we show how the metric component functions chosen are extremely compatible with notions in Newtonian mechanics. We also show the monotonicity of the Hawking mass in these coordinates. Finally, we discuss how these coordinates and the metric can be used to solve the spherically symmetric Einstein-Klein-Gordon equations. In Chapter 3, we explore spherically symmetric solutions to the Einstein-Klein-Gordon equations, the defining equations of wave dark matter, where the scalar field is of the form f(t, r) = eiotF(r) for some constant o ∈ R and complex-valued function F(r). We show that the corresponding metric is static if and only if F( r) = h(r)eia for some constant alpha ∈ R and real-valued function h(r). We describe the

  15. Laser Interferometers as Dark Matter Detectors

    CERN Document Server

    Hall, Evan D; Müller, Holger; Pospelov, Maxim; Adhikari, Rana X

    2016-01-01

    While global cosmological and local galactic abundance of dark matter is well established, its identity, physical size and composition remain a mystery. In this paper, we analyze an important question of dark matter detectability through its gravitational interaction, using current and next generation gravitational-wave observatories to look for macroscopic (kilogram-scale or larger) objects. Keeping the size of the dark matter objects to be smaller than the physical dimensions of the detectors, and keeping their mass as free parameters, we derive the expected event rates. For favorable choice of mass, we find that dark matter interactions could be detected in space-based detectors such as LISA at a rate of one per ten years. We then assume the existence of an additional Yukawa force between dark matter and regular matter. By choosing the range of the force to be comparable to the size of the detectors, we derive the levels of sensitivity to such a new force, which exceeds the sensitivity of other probes in a...

  16. Gravitational focusing of imperfect dark matter

    Science.gov (United States)

    Babichev, Eugeny; Ramazanov, Sabir

    2017-01-01

    Motivated by the projectable Horava-Lifshitz model/mimetic matter scenario, we consider a particular modification of standard gravity, which manifests as an imperfect low pressure fluid. While practically indistinguishable from a collection of nonrelativistic weakly interacting particles on cosmological scales, it leaves drastically different signatures in the Solar system. The main effect stems from gravitational focusing of the flow of imperfect dark matter passing near the Sun. This entails strong amplification of imperfect dark matter energy density compared to its average value in the surrounding halo. The enhancement is many orders of magnitude larger than in the case of cold dark matter, provoking deviations of the metric in the second order in the Newtonian potential. Effects of gravitational focusing are prominent enough to substantially affect the planetary dynamics. Using the existing bound on the post-Newtonian parameter βPPN, we deduce a stringent constraint on the unique constant of the model.

  17. Gravitational focusing of Imperfect Dark Matter

    CERN Document Server

    Babichev, Eugeny

    2016-01-01

    Motivated by the projectable Horava-Lifshitz model/mimetic matter scenario, we consider a particular modification of standard gravity, which manifests as an imperfect low pressure fluid. While practically indistinguishable from collection of non-relativistic weakly interacting particles on cosmological scales, it leaves drastically different signatures in the Solar system. The main effect stems from gravitational focusing of the flow of {\\it Imperfect Dark Matter} passing near the Sun. This entails the strong amplification of Imperfect Dark Matter energy density compared to its average value in the surrounding halo. The enhancement is many orders of magnitude larger than in the case of Cold Dark Matter, provoking deviations of the metric in the second order in the Newtonian potential. Effects of gravitational focusing are prominent enough to substantially affect the planetary dynamics. Using the existing bound on the PPN parameter $\\beta_{PPN}$, we deduce the stringent constraint on the unique constant of the...

  18. DAMA annual modulation and mirror Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Cerulli, R.; Cappella, F. [INFN, Laboratori Nazionali del Gran Sasso, Assergi, AQ (Italy); Villar, P. [Universidad de Zaragoza, Laboratorio de Fisica Nuclear y Astroparticulas, Saragossa (Spain); Laboratorio Subterraneo de Canfranc, Canfranc Estacion, Huesca (Spain); Bernabei, R.; Belli, P. [Universita di Roma ' ' Tor Vergata' ' , Dipartimento di Fisica, Rome (Italy); INFN ' ' Tor Vergata' ' , Rome (Italy); Incicchitti, A. [Universita di Roma ' ' La Sapienza' ' , Dipartimento di Fisica, Rome (Italy); INFN, Rome (Italy); Addazi, A.; Berezhiani, Z. [INFN, Laboratori Nazionali del Gran Sasso, Assergi, AQ (Italy); Universita di L' Aquila, Dipartimento di Scienze Fisiche e Chimiche, Coppito, AQ (Italy)

    2017-02-15

    The DAMA experiment using ultra low background NaI(Tl) crystal scintillators has measured an annual modulation effect in the keV region which satisfies all the peculiarities of an effect induced by Dark Matter particles. In this paper we analyze this annual modulation effect in terms of mirror Dark Matter, an exact duplicate of ordinary matter from parallel hidden sector, which chemical composition is dominated by mirror helium while it can also contain significant fractions of heavier elements as Carbon and Oxygen. Dark mirror atoms are considered to interact with the target nuclei in the detector via Rutherford-like scattering induced by kinetic mixing between mirror and ordinary photons, both being massless. In the present analysis we consider various possible scenarios for the mirror matter chemical composition. For all the scenarios, the relevant ranges for the kinetic mixing parameter have been obtained taking also into account various existing uncertainties in nuclear and particle physics quantities. (orig.)

  19. DAMA annual modulation and mirror Dark Matter

    Science.gov (United States)

    Cerulli, R.; Villar, P.; Cappella, F.; Bernabei, R.; Belli, P.; Incicchitti, A.; Addazi, A.; Berezhiani, Z.

    2017-02-01

    The DAMA experiment using ultra low background NaI(Tl) crystal scintillators has measured an annual modulation effect in the keV region which satisfies all the peculiarities of an effect induced by Dark Matter particles. In this paper we analyze this annual modulation effect in terms of mirror Dark Matter, an exact duplicate of ordinary matter from parallel hidden sector, which chemical composition is dominated by mirror helium while it can also contain significant fractions of heavier elements as Carbon and Oxygen. Dark mirror atoms are considered to interact with the target nuclei in the detector via Rutherford-like scattering induced by kinetic mixing between mirror and ordinary photons, both being massless. In the present analysis we consider various possible scenarios for the mirror matter chemical composition. For all the scenarios, the relevant ranges for the kinetic mixing parameter have been obtained taking also into account various existing uncertainties in nuclear and particle physics quantities.

  20. Working Group Report: Dark Matter Complementarity (Dark Matter in the Coming Decade: Complementary Paths to Discovery and Beyond)

    Energy Technology Data Exchange (ETDEWEB)

    Arrenberg, Sebastian; et al.,

    2013-10-31

    In this Report we discuss the four complementary searches for the identity of dark matter: direct detection experiments that look for dark matter interacting in the lab, indirect detection experiments that connect lab signals to dark matter in our own and other galaxies, collider experiments that elucidate the particle properties of dark matter, and astrophysical probes sensitive to non-gravitational interactions of dark matter. The complementarity among the different dark matter searches is discussed qualitatively and illustrated quantitatively in several theoretical scenarios. Our primary conclusion is that the diversity of possible dark matter candidates requires a balanced program based on all four of those approaches.

  1. Spintessence! New Models for Dark Matter and Dark Energy

    CERN Document Server

    Boyle, L A; Kamionkowski, M P; Boyle, Latham A.; Caldwell, Robert R.; Kamionkowski, Marc

    2002-01-01

    We propose a new class of ``spintessence'' models for dark matter and/or negative-pressure, dynamical dark energy consisting of a complex scalar field $\\phi$ spinning in a U(1)-symmetric potential $V(\\phi)=V(|\\phi|)$. As the Universe expands, the field spirals slowly toward the origin. The choice of $V(\\phi)$ determines the equation-of-state parameter ${w}$, which may be either constant or evolving with time. Spintessence models can introduce a variety of novel effects in the growth of density perturbations. We discuss connections with quintessence and self-interacting and fuzzy cold dark matter, possible implications for the coincidence problem, baryogenesis, and cosmological birefringence, as well as generalizations of spintessence to models with higher global symmetry and models in which the symmetry is not exact.

  2. Dark Matter and Dark Energy - Fact or Fantasy?

    Science.gov (United States)

    Mannheim, Philip

    We show that the origin of the dark matter and dark energy problems originates in the assumption of standard Einstein gravity that Newton's constant is fundamental. We discuss an alternate, conformal invariant, metric theory of gravity in which Newton's constant is induced dynamically, with the global induced one which is effective for cosmology being altogether weaker than the local induced one needed for the solar system. We find that in the theory dark matter is no longer needed, and that the accelerating universe data can be fitted without fine-tuning using a cosmological constant as large as particle physics suggests. In the conformal theory then it is not the cosmological constant which is quenched but rather the amount of gravity that it produces.

  3. Dark Stars and Boosted Dark Matter Annihilation Rates

    CERN Document Server

    Ilie, Cosmin; Spolyar, Douglas

    2010-01-01

    Dark Stars (DS) may constitute the first phase of stellar evolution, powered by dark matter (DM) annihilation. We will investigate here the properties of DS assuming the DM particle has the required properties to explain the excess positron and elec- tron signals in the cosmic rays detected by the PAMELA and FERMI satellites. Any possible DM interpretation of these signals requires exotic DM candidates, with an- nihilation cross sections a few orders of magnitude higher than the canonical value required for correct thermal relic abundance for Weakly Interacting Dark Matter can- didates; additionally in most models the annihilation must be preferentially to lep- tons. Secondly, we study the dependence of DS properties on the concentration pa- rameter of the initial DM density profile of the halos where the first stars are formed. We restrict our study to the DM in the star due to simple (vs. extended) adiabatic contraction and minimal (vs. extended) capture; this simple study is sufficient to illustrate depend...

  4. Implications of the observation of dark matter self-interactions for singlet scalar dark matter

    CERN Document Server

    Campbell, Robyn; Logan, Heather E; Peterson, Andrea D; Poulin, Alexandre

    2015-01-01

    Evidence for dark matter self-interactions has recently been reported based on the observation of a spatial offset between the dark matter halo and the stars in a galaxy in the cluster Abell 3827. Interpreting the offset as due to dark matter self-interactions leads to a cross section measurement of sigma_DM/m ~ (1-1.5) cm^2/g, where m is the mass of the dark matter particle. We use this observation to constrain singlet scalar dark matter coupled to the Standard Model and to two-Higgs-doublet models. We show that the most natural scenario in this class of models is very light dark matter, below about 0.1 GeV, whose relic abundance is set by freeze-in, i.e., by slow production of dark matter in the early universe via extremely tiny interactions with the Higgs boson, never reaching thermal equilibrium. We also show that the dark matter abundance can be established through the usual thermal freeze-out mechanism in the singlet scalar extension of the Yukawa-aligned two-Higgs-doublet model, but that it requires ra...

  5. Spheroidal galactic halos and mirror dark matter

    CERN Document Server

    Foot, R

    2004-01-01

    Mirror matter has been proposed as a dark matter candidate. It has several very attractive features, including automatic stability and darkness, the ability to mimic the broad features of cold dark matter while in the linear density perturbation regime, and consistency with all direct dark matter search experiments, both negative (e.g. CDMS II) and positive (DAMA). In this paper we consider an important unsolved problem: Are there plausible reasons to explain why most of the mirror matter in spiral galaxies exists in the form of gaseous {\\it spheroidal} galactic halos around ordinary matter {\\it disks}? We compute an order-of-magnitude estimate that the mirror photon luminosity of a typical spiral galaxy today is around $10^{44}$ erg/s. Interestingly, this rate of energy loss is similar to the power supplied by ordinary supernova explosions. We discuss circumstances under which supernova power can be used to heat the gaseous part of the mirror matter halo and hence prevent its collapse to a disk. The {\\it mac...

  6. Review of dark matter direct detection experiments

    Indian Academy of Sciences (India)

    Rupak Mahapatra

    2012-11-01

    Matter, as we know it, makes up less than 5% of the Universe. Various astrophysical observations have confirmed that one quarter of the Universe and most of the matter content in the Universe is made up of dark matter. The nature of dark matter is yet to be discovered and is one of the biggest questions in physics. Particle physics combined with astrophysical measurements of the abundance gives rise to a dark matter candidate called weakly interacting massive particle (WIMP). The low density of WIMPs in the galaxies and the extremely weak nature of the interaction with ordinary matter make detection of the WIMP an extraordinarily challenging task, with abundant fakes from various radioactive and cosmogenic backgrounds with much stronger electromagnetic interaction. The extremely weak nature of the WIMP interaction dictates detectors that have extremely low naturally occurring radioactive background, a large active volume (mass) of sensitive detector material to maximize statistics, a highly efficient detector-based rejection mechanism for the dominant electromagnetic background and sophisticated analysis techniques to reject any residual background. This paper reviews currently available major technologies being pursued by various collaborations, with special emphasis on the cryogenic Ge detector technology used by the Cryogenic Dark Matter Search Collaboration (CDMS).

  7. The Light Dark Matter eXperiment

    Science.gov (United States)

    Colegrove, Owen; LDMX Collaboration

    2017-01-01

    The Light Dark Matter eXperiment (LDMX) proposes a high-statistics search for low-mass dark matter at a new experimental facility, Dark Sector Experiments at LCLS-II (DASEL), at SLAC. LDMX employs the missing momentum technique, where electrons scattering in a thin target can produce dark matter via ``dark bremsstrahlung'' that are not observed in the detector. To identify these rare signal events, LDMX individually tags incoming beam-energy electrons, unambiguously associates them with low energy, moderate transverse-momentum recoils of the incoming electron, and establishes the absence of any additional forward-recoiling charged particles or neutral hadrons. LDMX will employ low mass tracking to tag incoming beam-energy electrons with high purity and cleanly reconstruct recoils. A high-speed, granular calorimeter with MIP sensitivity is used to reject the high rate of bremsstrahlung background at trigger level while working in tandem with a hadronic calorimeter to veto rare photo nuclear reactions. Ultimately, LDMX aims to probe thermal dark matter over most of the viable sub-GeV mass range to a decisive level of sensitivity. This talk will summarize the current status of the LDMX design and performance studies and progress in developing the DASEL beamline.

  8. Limits in late time conversion of cold dark matter into hot dark matter

    CERN Document Server

    Motta, M; de Holanda, P C

    2013-01-01

    Structure formation creates high temperature and density regions in the Universe that allow the conversion of matter into more stable states, with a corresponding emission of relativistic matter and radiation. An example of such a mechanism is the supernova event, that releases relativistic neutrinos corresponding to 99% of the binding energy of remnant neutron star. We take this phenomena as a starting point for an assumption that similar processes could occur in the dark sector, where structure formation would generate a late time conversion of cold dark matter into a relativistic form of dark matter. We performed a phenomenological study about the limits of this conversion, where we assumed a transition profile that is a generalized version of the process responsible for the neutrino production in supernovae events. With this assumption, we obtained interesting modifications for the constraints over some parameters such as the dark energy equation of state and the cold dark matter density. We show that whe...

  9. Meta-Cold Dark Matter: Dark Matter Halos with Cores from Hierarchical Structure Formation

    CERN Document Server

    Strigari, L E; Bullock, J S; Strigari, Louis E.; Kaplinghat, Manoj; Bullock, James S.

    2006-01-01

    We show that dark matter emerging from late decays (z 0.1 Mpc), and simultaneously generates observable constant-density cores in small dark matter halos. We refer to this class of models as meta-Cold Dark Matter (mCDM), because it is born with non-relativistic velocities from the decays of cold thermal relics. The constant-density cores are a result of the low phase-space density of mCDM at birth. Warm dark matter cannot produce similar size phase-space limited cores without saturating the Ly-alpha power spectrum bounds. Dark matter dominated galaxy rotation curves and stellar velocity dispersion profiles may provide the best means to discriminate between mCDM and CDM. mCDM candidates are motivated by the particle spectrum of supersymmetric and extra dimensional extensions to the standard model of particle physics.

  10. Dark Sunshine: Detecting Dark Matter through Dark Photons from the Sun

    CERN Document Server

    Feng, Jonathan L; Tanedo, Philip

    2016-01-01

    Dark matter may interact with the Standard Model through the kinetic mixing of dark photons, $A'$, with Standard Model photons. Such dark matter will accumulate in the Sun and annihilate into dark photons. The dark photons may then leave the Sun and decay into pairs of charged Standard Model particles that can be detected by the Alpha Magnetic Spectrometer. The directionality of this "dark sunshine" is distinct from all astrophysical backgrounds, providing an opportunity for unambiguous dark matter discovery by AMS. We perform a complete analysis of this scenario including Sommerfeld enhancements of dark matter annihilation and the effect of the Sun's magnetic field on the signal, and we define a set of cuts to optimize the signal probability. With the three years of data already collected, AMS may discover dark matter with mass 1 TeV $\\lesssim m_X \\lesssim$ 10 TeV, dark photon masses $m_{A'} \\sim \\mathcal O(100)$ MeV, and kinetic mixing parameters $10^{-11} \\lesssim \\varepsilon \\lesssim 10^{-8}$. The propose...

  11. How clustering dark energy affects matter perturbations

    CERN Document Server

    Mehrabi, A; Pace, F

    2015-01-01

    The rate of structure formation in the Universe is different in homogeneous and clustered dark energy models. The degree of dark energy clustering depends on the magnitude of its effective sound speed $c^{2}_{\\rm eff}$ and for $c_{\\rm eff}=0$ dark energy clusters in a similar fashion to dark matter while for $c_{\\rm eff}=1$ it stays (approximately) homogeneous. In this paper we consider two distinct equations of state for the dark energy component, $w_{\\rm d}=const$ and $w_{\\rm d}=w_0+w_1\\left(\\frac{z}{1+z}\\right)$ with $c_{\\rm eff}$ as a free parameter and we try to constrain the dark energy effective sound speed using current available data including SnIa, Baryon Acoustic Oscillation, CMB shift parameter ({\\em Planck} and {\\em WMAP}), Hubble parameter, Big Bang Nucleosynthesis and the growth rate of structures $f\\sigma_{8}(z)$. At first we derive the most general form of the equations governing dark matter and dark energy clustering under the assumption that $c_{\\rm eff}=const$. Finally we constrain the mod...

  12. Vector-like Sneutrino Dark Matter

    CERN Document Server

    Tang, Yi-Lei

    2016-01-01

    In this paper, we discuss the MSSM extended with one vector-like lepton doublets $L$-$\\overline{L}$ and one right-handed neutrino $N$. The neutral vecotor-like sneutrino can be a candidate of dark matter. In order to avoid the interaction with the necleons by exchanging a $Z$-boson, the mass splitting between the real part and the imaginary part of the sneutrino field is needed. Compared with the MSSM sneutrino dark matter, the mass splitting between the vector-like sneutrino field can be more naturally acquired without large A-terms and constraints on the neutralino masses. We have also calculated the relic density and the elastic scattering cross sections with the neucleons in the cases that the dark matter particles coannihilate with or without the MSSM slepton doublets. The elastic scattering cross sections with the neucleons are well below the LUX bounds. In the case that the dark matter coannihilate with all the MSSM slepton doublets, the mass of the dark matter can be as light as 370 GeV.

  13. Searches for Particle Dark Matter: An Introduction

    CERN Document Server

    Scott, Pat

    2011-01-01

    The identity of dark matter is one of the key outstanding problems in both particle and astrophysics. In this thesis, I describe a number of complementary searches for particle dark matter. I discuss how the impact of dark matter on stars can constrain its interaction with nuclei, focussing on main sequence stars close to the Galactic Centre, and on the first stars as seen through the upcoming James Webb Space Telescope. The mass and annihilation cross-section of dark matter particles can be probed with searches for gamma rays produced in astronomical targets. Dwarf galaxies and ultracompact, primordially-produced dark matter minihalos turn out to be especially promising in this respect. I illustrate how the results of these searches can be combined with constraints from accelerators and cosmology to produce a single global fit to all available data. Global fits in supersymmetry turn out to be quite technically demanding, even with the simplest predictive models and the addition of complementary data from a b...

  14. Warm-plus-hot neutrino dark matter

    CERN Document Server

    Malaney, R A; Widrow, L M; Malaney, R A; Starkman, G D; Widrow, L

    1995-01-01

    We investigate a new hybrid-model universe containing two types of dark matter, one ``warm'' and the other ``hot''. The hot component is an ordinary light neutrino with mass \\sim 25h^2~eV while the warm component is a sterile neutrino with mass \\sim 700h^2~eV. The two types of dark matter arise entirely within the neutrino sector and do not require separate physical origins. We calculate the linear transfer functions for a representative sample of warm-plus-hot models. The transfer functions, and results from several observational tests of structure formation, are compared with those for the cold-plus-hot models that have been studied extensively in the literature. On the basis of these tests, we conclude that warm-plus-hot dark matter is essentially indistinguishable from cold-plus-hot dark matter, and therefore provides a viable scenario for large scale structure. We demonstrate that a neutrino mass matrix can be constructed which provides the requisite dark matter constituents, while remaining consistent w...

  15. Planckian Interacting Massive Particles as Dark Matter

    Science.gov (United States)

    Garny, Mathias; Sandora, McCullen; Sloth, Martin S.

    2016-03-01

    The standard model could be self-consistent up to the Planck scale according to the present measurements of the Higgs boson mass and top quark Yukawa coupling. It is therefore possible that new physics is only coupled to the standard model through Planck suppressed higher dimensional operators. In this case the weakly interacting massive particle miracle is a mirage, and instead minimality as dictated by Occam's razor would indicate that dark matter is related to the Planck scale, where quantum gravity is anyway expected to manifest itself. Assuming within this framework that dark matter is a Planckian interacting massive particle, we show that the most natural mass larger than 0.01 Mp is already ruled out by the absence of tensor modes in the cosmic microwave background (CMB). This also indicates that we expect tensor modes in the CMB to be observed soon for this type of minimal dark matter model. Finally, we touch upon the Kaluza-Klein graviton mode as a possible realization of this scenario within UV complete models, as well as further potential signatures and peculiar properties of this type of dark matter candidate. This paradigm therefore leads to a subtle connection between quantum gravity, the physics of primordial inflation, and the nature of dark matter.

  16. Direct Detection of Dark Matter Debris Flows

    CERN Document Server

    Kuhlen, Michael; Spergel, David N

    2012-01-01

    Tidal stripping of dark matter from subhalos falling into the Milky Way produces narrow, cold tidal streams as well as more spatially extended "debris flows" in the form of shells, sheets, and plumes. Here we focus on the debris flow in the Via Lactea II simulation, and show that this incompletely phase-mixed material exhibits distinctive high-velocity behavior. Unlike tidal streams, which may not necessarily intersect the Earth's location, debris flow is spatially uniform at 8 kpc and thus guaranteed to be present in the dark matter flux incident on direct detection experiments. At Earth-frame velocities greater than 450 km/s, debris flow comprises more than half of the dark matter at the Sun's location, and up to 80% at even higher velocities. Therefore, debris flow is most important for experiments that are particularly sensitive to the high velocity tail of the dark matter distribution, such as searches for light or inelastic dark matter or experiments with directional sensitivity. We show that debris flo...

  17. Magnetic Enhancements to Dark Matter Annihilation

    Science.gov (United States)

    Gardner, William G.; Tinsley, Todd

    2017-01-01

    The rate of dark matter annihilation should be greatest where the dark matter density is maximal. This is typically in the gravity wells of large stars where it also happens to be true that magnetic fields can be very large. In this poster we present an examination of how these intense magnetic fields can alter the cross section for dark matter annihilation into electron-positron pairs. We work within the framework of the minimally supersymmetric extension to the Standard Model (MSSM), and we choose its lightest neutralino as our dark matter candidate. Within this theory, dark matter can annihilate into many different final-state particles through several channels. We restrict our analysis to an electron-positron pair final state because of the low mass and reasonable detection signature. Since strong magnetic fields change how momentum is conserved for charged particles, this calculation investigates the relationship between the annihilation cross section and the electron's and positron's landau level. This is work is supported by NASA/Arkansas Space Grant Consortium and the Hendrix College Odyssey Program.

  18. Planckian Interacting Massive Particles as Dark Matter.

    Science.gov (United States)

    Garny, Mathias; Sandora, McCullen; Sloth, Martin S

    2016-03-11

    The standard model could be self-consistent up to the Planck scale according to the present measurements of the Higgs boson mass and top quark Yukawa coupling. It is therefore possible that new physics is only coupled to the standard model through Planck suppressed higher dimensional operators. In this case the weakly interacting massive particle miracle is a mirage, and instead minimality as dictated by Occam's razor would indicate that dark matter is related to the Planck scale, where quantum gravity is anyway expected to manifest itself. Assuming within this framework that dark matter is a Planckian interacting massive particle, we show that the most natural mass larger than 0.01M_{p} is already ruled out by the absence of tensor modes in the cosmic microwave background (CMB). This also indicates that we expect tensor modes in the CMB to be observed soon for this type of minimal dark matter model. Finally, we touch upon the Kaluza-Klein graviton mode as a possible realization of this scenario within UV complete models, as well as further potential signatures and peculiar properties of this type of dark matter candidate. This paradigm therefore leads to a subtle connection between quantum gravity, the physics of primordial inflation, and the nature of dark matter.

  19. Dark Matter searches at the LHC

    CERN Document Server

    Calfayan, P; The ATLAS collaboration

    2014-01-01

    Multiple cosmological observations indicate the existence of Dark Matter, which may be a weakly interacting massive particle (WIMP). In this case, Dark Matter could be produced in proton-proton collisions at the LHC, but would escape the detector without interacting. Final states consisting in pair-produced Dark Matter candidates would however be balanced by radiated particles from colliding partons. ATLAS and CMS experiments can therefore search for Dark Matter signal in events involving large amount of missing transverse energy in the detector. Analyses have been carried out in the context of the mono-jet, mono-photon, mono-W and mono-Z signatures, including both hadronic and leptonic W and Z decays. No evidence of physics beyond the Standard Model expectation has been observed, and the pair production of Dark Matter particles has been interpreted in the context of an effective field theory and simplified models. Limits on the suppression scale of the effective theory have been translated into bounds on the...

  20. Dark matter in the hidden gauge theory

    CERN Document Server

    Yamanaka, Nodoka; Gongyo, Shinya; Iida, Hideaki

    2014-01-01

    The cosmological scenario of the dark matter generated in the hidden gauge theory based on the grand unification is discussed. It is found that the stability of the dark matter halo of our Galaxy and the cosmic ray observation constrain, respectively, the dark matter mass and the unification scale between the standard model and the hidden gauge theory sectors. To obtain a phenomenologically consistent thermal evolution, the entropy of the standard model sector needs to be increased. We therefore propose a scenario where the mini-inflation is induced from the potential coupled to the Standard model sector, in particular the Higgs sector. This scenario makes consistent the current dark matter density as well as the baryon-to-photon ratio for the case of pion dark matter. For the glueball or heavy pion of hidden gauge theory, an additional mini-inflation in the standard model sector before the leptogenesis is required. We also propose the possibility to confirm this scenario by known prospective experimental app...

  1. Dark Matter Millilensing and VSOP-2

    Science.gov (United States)

    Wiik, K.; Zackrisson, E.; Riehm, T.

    2009-08-01

    According to the cold dark matter scenario, a large number of dark subhalos should be located within the halo of each Milky-way sized galaxy. One promising possibility for detecting such subhalos is to try to observe their gravitational lensing effects on background sources. Dark matter subhalos in the 10^6 -- 1010 M⊙ mass range should cause strong gravitational lensing on the (sub)milliarcsecond scales, which can be observed only using space VLBI. We study the feasibility of a strong-lensing detection of dark subhalos by deriving the image separations expected for density profiles favoured by current simulations and comparing it to the angular resolution of both existing and upcoming observational facilities. We show that the detection of subhalos is likely much more difficult than suggested in previous studies, due to the smaller image separations predicted for subhalo density profiles that are more realistic than the singular isothermal sphere models often adopted.

  2. A balance for Dark Matter bound states

    CERN Document Server

    Nozzoli, F

    2016-01-01

    Massive particles with self interactions of the order of 0.2 barn/GeV are intriguing Dark Matter candidates from an astrophysical point of view. Direct detection searches for very massive particles, with relatively high cross sections with ordinary matter, cannot rule out $\\sigma/M > 0.01$ barn/GeV, due to atmosphere and material shielding. Here, the possibility of the existence of bound states with ordinary matter, for Dark Matter candidates with not negligible interactions, is considered. The existence of bound states, with binding energy larger than $\\sim$1 meV, would offer the possibility to test in laboratory capture cross sections of the order of a barn (or larger). The signature of the detection of a mass increasing of cryogenic samples, due to the possible Dark Matter accumulation, would allow the investigation of Dark Matter particles with mass up to the GUT scale. A proof of concept for a possible detection set-up and the evaluation of some noise sources are described.

  3. Probing the Dark Sector with Dark Matter Bound States.

    Science.gov (United States)

    An, Haipeng; Echenard, Bertrand; Pospelov, Maxim; Zhang, Yue

    2016-04-15

    A model of the dark sector where O(few  GeV) mass dark matter particles χ couple to a lighter dark force mediator V, m_{V}≪m_{χ}, is motivated by the recently discovered mismatch between simulated and observed shapes of galactic halos. Such models, in general, provide a challenge for direct detection efforts and collider searches. We show that for a large range of coupling constants and masses, the production and decay of the bound states of χ, such as 0^{-+} and 1^{--} states, η_{D} and ϒ_{D}, is an important search channel. We show that e^{+}e^{-}→η_{D}+V or ϒ_{D}+γ production at B factories for α_{D}>0.1 is sufficiently strong to result in multiple pairs of charged leptons and pions via η_{D}→2V→2(l^{+}l^{-}) and ϒ_{D}→3V→3(l^{+}l^{-}) (l=e,μ,π). The absence of such final states in the existing searches performed at BABAR and Belle sets new constraints on the parameter space of the model. We also show that a search for multiple bremsstrahlung of dark force mediators, e^{+}e^{-}→χχ[over ¯]+nV, resulting in missing energy and multiple leptons, will further improve the sensitivity to self-interacting dark matter.

  4. Solitonic axion condensates modeling dark matter halos

    Energy Technology Data Exchange (ETDEWEB)

    Castañeda Valle, David, E-mail: casvada@gmail.com; Mielke, Eckehard W., E-mail: ekke@xanum.uam.mx

    2013-09-15

    Instead of fluid type dark matter (DM), axion-like scalar fields with a periodic self-interaction or some truncations of it are analyzed as a model of galaxy halos. It is probed if such cold Bose–Einstein type condensates could provide a viable soliton type interpretation of the DM ‘bullets’ observed by means of gravitational lensing in merging galaxy clusters. We study solitary waves for two self-interacting potentials in the relativistic Klein–Gordon equation, mainly in lower dimensions, and visualize the approximately shape-invariant collisions of two ‘lump’ type solitons. -- Highlights: •An axion model of dark matter is considered. •Collision of axion type solitons are studied in a two dimensional toy model. •Relations to dark matter collisions in galaxy clusters are proposed.

  5. Accretion of dark matter by stars

    CERN Document Server

    Brito, Richard; Okawa, Hirotada

    2015-01-01

    Searches for dark matter imprints are one of the most active areas of current research. We focus here on light fields with mass $m_B$, such as axions and axion-like candidates. Using perturbative techniques and full-blown nonlinear Numerical Relativity methods, we show that (i) dark matter can pile up in the center of stars, leading to configurations and geometries oscillating with frequency which is a multiple of f=$2.5 10^{14}$ $m_B c^2$/eV Hz. These configurations are stable throughout most of the parameter space, and arise out of credible mechanisms for dark-matter capture. Stars with bosonic cores may also develop in other theories with effective mass couplings, such as (massless) scalar-tensor theories. We also show that (ii) collapse of the host star to a black hole is avoided by efficient gravitational cooling mechanisms.

  6. Cold dark matter: controversies on small scales

    CERN Document Server

    Weinberg, David H; Governato, Fabio; de Naray, Rachel Kuzio; Peter, Annika H G

    2013-01-01

    The cold dark matter (CDM) cosmological model has been remarkably successful in explaining cosmic structure over an enormous span of redshift, but it has faced persistent challenges from observations that probe the innermost regions of dark matter halos and the properties of the Milky Way's dwarf galaxy satellites. We review the current observational and theoretical status of these "small scale controversies." Cosmological simulations that incorporate only gravity and collisionless CDM predict halos with abundant substructure and central densities that are too high to match constraints from galaxy dynamics. The solution could lie in baryonic physics: recent numerical simulations and analytic models suggest that gravitational potential fluctuations tied to efficient supernova feedback can flatten the central cusps of halos in massive galaxies, and a combination of feedback and low star-formation efficiency could explain why most of the dark matter subhalos orbiting the Milky Way do not host visible galaxies. H...

  7. Hiding Scalar Higgs Portal Dark Matter

    CERN Document Server

    Chao, Wei

    2016-01-01

    We investigate a Higgs portal dark matter model by extending the Standard model (SM) with a complex singlet, $S=(s+ia )/\\sqrt{2}$, where $a $ is a dark matter candidate and $S$ gets no vacuum expectation value but $s$ mixies with the SM Higgs via a trilinear interaction. We point out an interesting scenario, where only quartic coupling contributes to the dark matter relic abundance and there is no tree level contribution to the direct detection. Numerical analysis shows that the direction detection cross section, which arises at the one-loop level, is about $2\\sim 5$ orders below the current LUX bound. Constraints from Higgs measurements as well as collider signatures of the model at the LHC are studied.

  8. Elementary Goldstone Higgs Boson and Dark Matter

    DEFF Research Database (Denmark)

    Alanne, Tommi; Gertov, Helene; Sannino, Francesco

    2015-01-01

    We investigate a perturbative extension of the Standard Model featuring elementary pseudo-Goldstone Higgs and dark matter particles. These are two of the five Goldstone bosons parametrising the SU(4)/Sp(4) coset space. They acquire masses, and therefore become pseudo-Goldstone bosons, due...... of the theory, the quantum corrections are precisely calculable. The remaining pseudo-Goldstone boson is identified with the dark matter candidate because it is neutral with respect to the Standard Model and stable. By a direct comparison with the Large Hadron Collider experiments, the model is found...... to be phenomenologically viable. Furthermore the dark matter particle leads to the observed thermal relic density while respecting the most stringent current experimental constraints....

  9. Braneworld model of dark matter: structure formation

    Science.gov (United States)

    García-Aspeitia, Miguel A.; Magaña, Juan A.; Matos, Tonatiuh

    2012-03-01

    Following a previous work (García-Aspeitia in Gen Rel Grav 43:315-329, 2011), we further study the behavior of a real scalar field in a hidden brane in a configuration of two branes embedded in a five dimensional bulk. We find an expression for the equation of state for this scalar field in the visible brane in terms of the fields of the hidden one. Additionally, we investigated the perturbations produced by this scalar field in the visible brane with the aim to study their dynamical properties. Our results show that if the kinetic energy of the scalar field dominates during the early universe the perturbed scalar field could mimic the observed dynamics for the dark matter in the standard paradigm. Thus, the scalar field dark matter hypothesis in the context of braneworld theory could be an interesting alternative to the nature of dark matter in the Universe.

  10. Dark Matter via Massive (bi-)Gravity

    CERN Document Server

    Blanchet, Luc

    2015-01-01

    In this work we investigate the existence of relativistic models for dark matter in the context of bimetric gravity, used here to reproduce the modified Newtonian dynamics (MOND) at galactic scales. For this purpose we consider two different species of dark matter particles that separately couple to the two metrics of bigravity. These two sectors are linked together \\textit{via} an internal $U(1)$ vector field, and some effective composite metric built out of the two metrics. Among possible models only certain class of kinetic and interaction terms are allowed without invoking ghost degrees of freedom. Along these lines we explore the number of allowed kinetic terms in the theory and point out the presence of ghosts in a previous model. Finally, we propose a promising class of ghost-free candidate theories that could provide the MOND phenomenology at galactic scales while reproducing the standard cold dark matter (CDM) model at cosmological scales.

  11. Structure Formation with Generalized Dark Matter

    CERN Document Server

    Hu, W

    1998-01-01

    The next generation of cosmic microwave background (CMB) experiments, galaxy surveys, and high-redshift observations can potentially determine the nature of the dark matter observationally. With this in mind, we introduce a phenomenological model for a generalized dark matter (GDM) component and discuss its effect on large-scale structure and CMB anisotropies. Specifying the gravitational influence of the otherwise non-interacting GDM requires not merely a model for its equation of state but one for its full stress tensor. From consideration of symmetries, conservation laws, and gauge invariance, we construct a simple but powerful 3 component parameterization of these stresses that exposes the new phenomena produced by GDM. Limiting cases include: a particle component (e.g. WIMPS, radiation or massive neutrinos), a cosmological constant, and a scalar field component. Intermediate cases illustrate how the clustering properties of the dark matter can be specified independently of its equation of state. This fre...

  12. Accretion of dark matter by stars.

    Science.gov (United States)

    Brito, Richard; Cardoso, Vitor; Okawa, Hirotada

    2015-09-11

    Searches for dark matter imprints are one of the most active areas of current research. We focus here on light fields with mass m_{B}, such as axions and axionlike candidates. Using perturbative techniques and full-blown nonlinear numerical relativity methods, we show the following. (i) Dark matter can pile up in the center of stars, leading to configurations and geometries oscillating with a frequency that is a multiple of f=2.5×10^{14}(m_{B}c^{2}/eV)  Hz. These configurations are stable throughout most of the parameter space, and arise out of credible mechanisms for dark-matter capture. Stars with bosonic cores may also develop in other theories with effective mass couplings, such as (massless) scalar-tensor theories. We also show that (ii) collapse of the host star to a black hole is avoided by efficient gravitational cooling mechanisms.

  13. Dark matter search project PICO-LON

    Science.gov (United States)

    Fushimi, K.; Ejiri, H.; Hazama, R.; Ikeda, H.; Imagawa, K.; Inoue, K.; Kanzaki, G.; Kozlov, A.; Orito, R.; Shima, T.; Takemoto, Y.; Teraoka, Y.; Umehara, S.; Yasuda, K.; Yoshida, S.; PICO-LON Collaboration

    2016-05-01

    The PICO-LON project aims at search for cold dark matter by means of highly radio-pure and large volume NaI(Tl) scintillator. The NaI powder was purified by chemical processing to remove lead isotopes and selecting a high purity graphite crucible. The concentrations of radioactive impurities of 226Ra and 228Th were effectively reduced to 58 ± 4 µBq/kg and 1.5 ± 1.9 µBq/kg, respectively. It should be remarked that the concentration of 210Pb, which is crucial for the sensitivity to dark matter, was reduced to 24 ± 2 µBq/kg. The total background rate at 10 keVee was as low as 8 keV-1kg-1day-1, which was sufficiently low to search for dark matter. Further purification of NaI(Tl) ingot and future prospect of PICO-LON project is discussed.

  14. Dark matter search project PICO-LON

    CERN Document Server

    Fushimi, K; Hazama, R; Ikeda, H; Imagawa, K; Inoue, K; Kanzaki, G; Kozlov, A; Orito, R; Shima, T; Takemoto, Y; Teraoka, Y; Umehara, S; Yasuda, K; Yoshida, S

    2015-01-01

    The PICO-LON project aims at search for cold dark matter by means of highly radio-pure and large volume NaI(Tl) scintillator. The NaI powder was purifed by chemical processing to remove lead isotopes and selecting a high purity graphite crucible. The concentrations of radioactive impurities of $^{226}$Ra and $^{228}$Th were effectively reduced to 58$\\pm$4 $\\mu$Bq/kg and 1.5$\\pm$1.9 $\\mu$Bq/kg, respectively. It should be remarked that the concentration of $^{210}$Pb, which is crucial for the sensitivity to dark matter, was reduced to 24$\\pm$2 $\\mu$Bq/kg. The total background rate at 10 keVee was as low as 8 keV$^{-1}$kg$^{-1}$day$^{-1}$, which was sufficiently low to search for dark matter. Further purification of NaI(Tl) ingot and future prospect of PICO-LON project is discussed.

  15. Chromo-Rayleigh Interactions of Dark Matter

    CERN Document Server

    Bai, Yang

    2015-01-01

    For a wide range of models, dark matter can interact with QCD gluons via chromo-Rayleigh interactions. We point out that the Large Hadron Collider (LHC), as a gluon machine, provides a superb probe of such interactions. In this paper, we introduce simplified models to UV-complete two effective dark matter chromo-Rayleigh interactions and identify the corresponding collider signatures, including four jets or a pair of di-jet resonances plus missing transverse energy. After performing collider studies for both the 8 TeV and 14 TeV LHC, we find that the LHC can be more sensitive to dark matter chromo-Rayleigh interactions than direct detection experiments and thus provides the best opportunity for future discovery of this class of models.

  16. Gravitationally bound BCS state as dark matter

    Science.gov (United States)

    Alexander, Stephon; Cormack, Sam

    2017-04-01

    We explore the possibility that fermionic dark matter undergoes a BCS transition to form a superfluid. This requires an attractive interaction between fermions and we describe a possible source of this interaction induced by torsion. We describe the gravitating fermion system with the Bogoliubov-de Gennes formalism in the local density approximation. We solve the Poisson equation along with the equations for the density and gap energy of the fermions to find a self-gravitating, superfluid solution for dark matter halos. In order to produce halos the size of dwarf galaxies, we require a particle mass of ~ 200 eV. We find a maximum attractive coupling strength before the halo becomes unstable. If dark matter halos do have a superfluid component, this raises the possibility that they contain vortex lines.

  17. Revisiting gravitino dark matter in thermal leptogenesis

    Science.gov (United States)

    Ibe, Masahiro; Suzuki, Motoo; Yanagida, Tsutomu T.

    2017-02-01

    In this paper, we revisit the gravitino dark matter scenario in the presence of the bilinear R-parity violating interaction. In particular, we discuss a consistency with the thermal leptogenesis. For a high reheating temperature required for the thermal leptogenesis, the gravitino dark matter tends to be overproduced, which puts a severe upper limit on the gluino mass. As we will show, a large portion of parameter space of the gravitino dark matter scenario has been excluded by combining the constraints from the gravitino abundance and the null results of the searches for the superparticles at the LHC experiments. In particular, the models with the stau (and other charged slepton) NLSP has been almost excluded by the searches for the long-lived charged particles at the LHC unless the required reheating temperature is somewhat lowered by assuming, for example, a degenerated right-handed neutrino mass spectrum.

  18. Revisiting gravitino dark matter in thermal leptogenesis

    CERN Document Server

    Ibe, Masahiro; Yanagida, Tsutomu T

    2016-01-01

    In this paper, we revisit the gravitino dark matter scenario in the presence of the bilinear $R$-parity violating interaction. In particular, we discuss a consistency with the thermal leptogenesis. For a high reheating temperature required for the thermal leptogenesis, the gravitino dark matter tends to be overproduced, which puts a severe upper limit on the gluino mass. As we will show, a large portion of parameter space of the gravitino dark matter scenario has been excluded by combining the constraints from the gravitino abundance and the null results of the searches for the superparticles at the LHC experiments. In particular, the models with the stau (and other charged slepton) NLSP has been almost excluded by the searches for the long-lived charged particles at the LHC unless the required reheating temperature is somewhat lowered by assuming, for example, a degenerated right-handed neutrino mass spectrum.

  19. Antimatter signatures of gravitino dark matter decay

    Energy Technology Data Exchange (ETDEWEB)

    Ibarra, A.; Tran, D.

    2008-04-15

    The scenario of gravitino dark matter with broken R-parity naturally reconciles three paradigms that, albeit very well motivated separately, seem to be in mutual conflict: supersymmetric dark matter, thermal leptogenesis and standard Big Bang nucleosynthesis. Interestingly enough, the products of the gravitino decay could be observed, opening the possibility of indirect detection of gravitino dark matter. In this paper, we compute the positron and the antiproton fluxes from gravitino decay. We find that a gravitino with a mass of m{sub 3/2}{proportional_to}150 GeV and a lifetime of {tau}{sub 3/2}{proportional_to}10{sup 26} s could simultaneously explain the EGRET anomaly in the extragalactic diffuse gamma ray background and the HEAT excess in the positron fraction. However, the predicted antiproton flux tends to be too large, although the prediction suffers from large uncertainties and might be compatible with present observations for certain choices of propagation parameters. (orig.)

  20. $\\Upsilon$ Decays into Light Scalar Dark Matter

    CERN Document Server

    Yeghiyan, Gagik K

    2009-01-01

    We examine decays of a spin-1 bottomonium into a pair of light scalar Dark Matter (DM) particles, assuming that Dark Matter is produced due to exchange of heavy degrees of freedom. We perform a model-independent analysis and derive formulae for the branching ratios of these decays. We confront our calculation results with the experimental data. We show that the considered branching ratios are within the reach of the present BaBaR experimental sensitivity. Thus, Dark Matter production in $\\Upsilon$ decays leads to constraints on parameters of various models containing a light spin-0 DM particle. We illustrate this for the models with a "WIMPless miracle", in particular for a Gauge Mediated SUSY breaking scenario, with a spin-0 DM particle in the hidden sector. Another example considered is the type II 2HDM with a scalar DM particle.

  1. Υ decays into light scalar dark matter

    Science.gov (United States)

    Yeghiyan, Gagik K.

    2009-12-01

    We examine decays of a spin-1 bottomonium into a pair of light scalar dark matter (DM) particles, assuming that dark matter is produced due to exchange of heavy degrees of freedom. We perform a model-independent analysis and derive formulae for the branching ratios of these decays. We confront our calculation results with the experimental data. We show that the considered branching ratios are within the reach of the present BABAR experimental sensitivity. Thus, dark matter production in Υ decays leads to constraints on parameters of various models containing a light spin-0 DM particle. We illustrate this for the models with a “WIMPless miracle”, in particular, for a gauge-mediated SUSY breaking scenario, with a spin-0 DM particle in the hidden sector. Another example considered is the type II two-Higgs doublet model with a scalar DM particle.

  2. Minimal Left-Right Symmetric Dark Matter.

    Science.gov (United States)

    Heeck, Julian; Patra, Sudhanwa

    2015-09-18

    We show that left-right symmetric models can easily accommodate stable TeV-scale dark matter particles without the need for an ad hoc stabilizing symmetry. The stability of a newly introduced multiplet either arises accidentally as in the minimal dark matter framework or comes courtesy of the remaining unbroken Z_{2} subgroup of B-L. Only one new parameter is introduced: the mass of the new multiplet. As minimal examples, we study left-right fermion triplets and quintuplets and show that they can form viable two-component dark matter. This approach is, in particular, valid for SU(2)×SU(2)×U(1) models that explain the recent diboson excess at ATLAS in terms of a new charged gauge boson of mass 2 TeV.

  3. Minimal Left-Right Dark Matter

    CERN Document Server

    Heeck, Julian

    2015-01-01

    We show that left-right-symmetric models can easily accommodate stable TeV-scale dark matter particles. The stability of a newly introduced multiplet arises either accidentally as in the Minimal Dark Matter framework or comes courtesy of the remaining unbroken $\\mathbb{Z}_2$ subgroup of $B-L$. As a minimal example we study left-right fermion triplets and quintuplets and show that they can form viable two-component dark matter. This approach is in particular valid for $SU(2)\\times SU(2)\\times U(1)$ models that explain the recent diboson excess at ATLAS in terms of a new charged gauge boson of mass 2 TeV.

  4. Observational Properties of Feebly Coupled Dark Matter

    CERN Document Server

    Heikinheimo, Matti; Tuominen, Kimmo; Vaskonen, Ville

    2016-01-01

    We show that decoupled hidden sectors can have observational consequences. As a representative model example, we study dark matter production in the Higgs portal model with one real singlet scalar $s$ coupled to the Standard Model Higgs via $\\lambda_{\\rm hs}\\Phi^\\dagger\\Phi s^2$ and demonstrate how the combination of non-observation of cosmological isocurvature perturbations and astrophysical limits on dark matter self-interactions imply stringent bounds on the magnitude of the scalar self-coupling $\\lambda_{\\rm s}s^4$. For example, for dark matter mass $m_{\\rm s}=10$ MeV and Hubble scale during cosmic inflation $H_*=10^{12}$ GeV, we find $10^{-4}\\lesssim \\lambda_{\\rm s}\\lesssim 0.2$.

  5. Cold Positrons from Decaying Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Boubekeur, Lotfi [Universitate de Valencia (Spain); Dodelson, Scott [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Vives, Oscar [Universitate de Valencia (Spain)

    2012-11-01

    Many models of dark matter contain more than one new particle beyond those in the Standard Model. Often heavier particles decay into the lightest dark matter particle as the Universe evolves. Here we explore the possibilities that arise if one of the products in a (Heavy Particle) $\\rightarrow$ (Dark Matter) decay is a positron, and the lifetime is shorter than the age of the Universe. The positrons cool down by scattering off the cosmic microwave background and eventually annihilate when they fall into Galactic potential wells. The resulting 511 keV flux not only places constraints on this class of models but might even be consistent with that observed by the INTEGRAL satellite.

  6. Gravitationally bound BCS state as dark matter

    CERN Document Server

    Alexander, Stephon

    2016-01-01

    We explore the possibility that fermionic dark matter undergoes a BCS transition to form a superfluid. This requires an attractive interaction between fermions and we describe a possible source of this interaction induced by torsion. We describe the gravitating fermion system with the Bogoliubov-de Gennes formalism in the local density approximation. We solve the Poisson equation along with the equations for the density and gap energy of the fermions to find a self-gravitating, superfluid solution for dark matter halos. In order to produce halos the size of dwarf galaxies, we require a particle mass of $\\sim 200\\mathrm{eV}$. We find a maximum attractive coupling strength before the halo becomes unstable. If dark matter halos do have a superfluid component, this raises the possibility that they contain vortex lines which may be detectable via gravitational lensing.

  7. Low-metallicity stellar halo populations as tracers of dark matter haloes

    CERN Document Server

    Tissera, Patricia B

    2014-01-01

    We analyse the density profiles of the stellar halo populations in eight Milky-Way mass galaxies, simulated within the $\\Lambda$-Cold Dark Matter scenario. We find that accreted stars can be well-fitted by an Einasto profile, as well as any subsample defined according to metallicity. We detect a clear correlation between the Einasto fitting parameters of the low-metallicity stellar populations and those of the dark matter haloes. The correlations for stars with [Fe/H]$<-3$ allow us to predict the shape of the dark matter profiles within residuals of $\\sim 10 $ per cent, in case the contribution from in situ stars remains small. Using Einasto parameters estimated for the stellar halo of the Milky Way and assuming the later formed with significant contributions from accreted low-mass satellite, our simulations predict $\\alpha \\sim 0.15 $ and $r_2 \\sim 15$ kpc for its dark matter profile. These values, combined with observed estimations of the local dark matter density, yield an enclosed dark matter mass at $...

  8. Dynamical Dark Matter from strongly-coupled dark sectors

    Science.gov (United States)

    Dienes, Keith R.; Huang, Fei; Su, Shufang; Thomas, Brooks

    2017-02-01

    Dynamical Dark Matter (DDM) is an alternative framework for dark-matter physics in which the dark sector comprises a vast ensemble of particle species whose Standard-Model decay widths are balanced against their cosmological abundances. Previous studies of this framework have focused on a particular class of DDM ensembles—motivated primarily by Kaluza-Klein towers in theories with extra dimensions—in which the density of dark states scales roughly as a polynomial of the mass. In this paper, by contrast, we study the properties of a different class of DDM ensembles in which the density of dark states grows exponentially with mass. Ensembles with this Hagedorn-like property arise naturally as the "hadronic" resonances associated with the confining phase of a strongly-coupled dark sector; they also arise naturally as the gauge-neutral bulk states of Type I string theories. We study the dynamical properties of such ensembles, and demonstrate that an appropriate DDM-like balancing between decay widths and abundances can emerge naturally—even with an exponentially rising density of states. We also study the effective equations of state for such ensembles, and investigate some of the model-independent observational constraints on such ensembles that follow directly from these equations of state. In general, we find that such constraints tend to introduce correlations between various properties of these DDM ensembles such as their associated mass scales, lifetimes, and abundance distributions. For example, we find that these constraints allow DDM ensembles with energy scales ranging from the GeV scale all the way to the Planck scale, but that the total present-day cosmological abundance of the dark sector must be spread across an increasing number of different states in the ensemble as these energy scales are dialed from the Planck scale down to the GeV scale. Numerous other correlations and constraints are also discussed.

  9. Inverted dipole feature in directional detection of exothermic dark matter

    CERN Document Server

    Bozorgnia, Nassim; Gondolo, Paolo

    2016-01-01

    Directional dark matter detection attempts to measure the direction of motion of nuclei recoiling after having interacted with dark matter particles in the halo of our Galaxy. Due to Earth's motion with respect to the Galaxy, the dark matter flux is concentrated around a preferential direction. An anisotropy in the recoil direction rate is expected as an unmistakable signature of dark matter. The average nuclear recoil direction is expected to coincide with the average direction of dark matter particles arriving to Earth. Here we point out that for a particular type of dark matter, inelastic exothermic dark matter, the mean recoil direction as well as a secondary feature, a ring of maximum recoil rate around the mean recoil direction, could instead be opposite to the average dark matter arrival direction. Thus, the detection of an average nuclear recoil direction opposite to the usually expected direction would constitute a spectacular experimental confirmation of this type of dark matter.

  10. Dark matter and dark forces from a supersymmetric hidden sector

    Energy Technology Data Exchange (ETDEWEB)

    Andreas, S.; Goodsell, M.D.; Ringwald, A.

    2011-09-15

    We show that supersymmetric ''Dark Force'' models with gravity mediation are viable. To this end, we analyse a simple supersymmetric hidden sector model that interacts with the visible sector via kinetic mixing of a light Abelian gauge boson with the hypercharge. We include all induced interactions with the visible sector such as neutralino mass mixing and the Higgs portal term. We perform a detailed parameter space scan comparing the produced dark matter relic abundance and direct detection cross-sections to current experiments. (orig.)

  11. Gamma-Ray Bursts and Dark Energy - Dark Matter interaction

    CERN Document Server

    Barreiro, T; Torres, P

    2010-01-01

    In this work Gamma Ray Burst (GRB) data is used to place constraints on a putative coupling between dark energy and dark matter. Type Ia supernovae (SNe Ia) constraints from the Sloan Digital Sky Survey II (SDSS-II) first-year results, the cosmic microwave background radiation (CMBR) shift parameter from WMAP seven year results and the baryon acoustic oscillation (BAO) peak from the Sloan Digital Sky Survey (SDSS) are also discussed. The prospects for the field are assessed, as more GRB events become available.

  12. Dark matter monopoles, vectors and photons

    CERN Document Server

    Khoze, Valentin V

    2014-01-01

    In a secluded dark sector which is coupled to the Standard Model via a Higgs portal interaction we arrange for the existence of 't Hooft-Polyakov magnetic monopoles and study their implications for cosmology. We point out that a dark sector which can accommodate stable monopoles will also contain massless dark photons gamma' as well as charged massive vector bosons W'. The dark matter in this scenario will be a combination of magnetically and electrically charged species under the unbroken U(1) subgroup of the dark sector. We estimate the cosmological production rate of monopoles and the rate of monopole-anti-monopole annihilation and conclude that monopoles with masses of few hundred TeV or greater, can produce sizeable contributions to the observed dark matter relic density. We scan over the parameter space and compute the relic density for monopoles and vector bosons. Turning to the dark photon radiation, we compute their contribution to the measured density of relativistic particles Neff and also apply ob...

  13. Angular Momentum of Dark Matter Black Holes

    CERN Document Server

    Frampton, Paul H

    2016-01-01

    The putative black holes which may constitute all the dark matter are described by a Kerr metric with only two parameters, mass M and angular momentum J. There has been little discussion of J since it plays no role in the upcoming attempt at detection by microlensing. Nevertheless J does play a central role in understanding the previous lack of detection, especially of CMB distortion. We explain why bounds previously derived from lack of CMB distortion are too strong for primordial black holes with J non-vanishing. Almost none of the dark matter black holes can be from stellar collapse, and nearly all are primordial, to avoid excessive CMB distortion.

  14. Axions as Hot and Cold Dark Matter

    CERN Document Server

    Jeong, Kwang Sik; Takahashi, Fuminobu

    2014-01-01

    The presence of a hot dark matter component has been hinted at 3 sigma by a combination of the results from different cosmological observations. We examine a possibility that pseudo Nambu-Goldstone bosons account for both hot and cold dark matter components. We show that the QCD axions can do the job for the axion decay constant f_a < O(10^10) GeV, if they are produced by the saxion decay and the domain wall annihilation. We also investigate the cases of thermal QCD axions, pseudo Nambu-Goldstone bosons coupled to the standard model sector through the Higgs portal, and axions produced by modulus decay.

  15. Scalar Dark Matter: Real vs Complex

    CERN Document Server

    Wu, Hongyan

    2016-01-01

    We update the parameter spaces for both a real and complex scalar dark matter via the Higgs portal. In the light of constraints arising from the LUX 2016 data, the latest Higgs invisible decay and the gamma ray spectrum, the dark matter mass region is further restricted to a narrow window between $54-62.2$ GeV in both cases, and it is excluded up to 660 GeV and 2800 GeV for the real and complex scalar, respectively.

  16. The LUX direct dark matter search

    Science.gov (United States)

    Murphy, A. St. J.

    2016-06-01

    As evidenced by the numerous contributions on the topic at this meeting, the IX International Conference on Interconnections between Particle Physics and Cosmology (PPC2015), the direct detection of dark matter remains as one of the highest priorities in both particle physics and cosmology. In 2013 the LUX direct dark matter search collaboration reported the most stringent constraints to-date on the spin-independent WIMP-nucleon interaction cross section. Here we present a summary of that work, describe recent technical improvements, and results from new calibrations. Prospects for the future of the LUX scientific program are reported, together with the outlook for its successor project, LZ.

  17. Indirect searches for gravitino dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Grefe, Michael [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Univ. Autonoma de Madrid (Spain). Dept. de Fisica Teorica and Inst. de Fisica Teorica UAM/CSIC

    2011-11-15

    The gravitino in models with a small violation of R-parity is a well-motivated decaying dark matter candidate that leads to a cosmological scenario that is consistent with big bang nucleosynthesis and thermal leptogenesis. The gravitino lifetime is cosmologically long-lived since its decays are suppressed by the Planck-scale as well as the small R-parity violating parameter. We discuss the signals in different cosmic-ray species coming from the decay of gravitino dark matter, namely gamma rays, positrons, antiprotons, antideuterons and neutrinos. Comparison to cosmic-ray data can be used to constrain the parameters of the model. (orig.)

  18. Composite Higgs models, Dark Matter and Lambda

    CERN Document Server

    Diaz-Cruz, J Lorenzo

    2009-01-01

    We suggest that dark matter can be identified with a stable composite fermion X^0, that arises within the holographic AdS/CFT models, where the Higgs boson emerges as a composite pseudo-goldstone boson. The predicted properties of X^0 satisfies the cosmological bounds, with m_X = O(TeV). Thus, through a deeper understanding of the mechanism of electroweak symmetry breaking, a resolution of the Dark Matter enigma is found. Furthermore, by proposing a discrete structure of the Higgs vacuum, one can get a distinct approach to the cosmological constant problem.

  19. Dark Matter detection via lepton cosmic rays

    CERN Document Server

    Lineros, Roberto A

    2010-01-01

    Recent observations of lepton cosmic rays, coming from the PAMELA and FERMI experiments, have pushed our understanding of the interstellar medium and cosmic rays sources to unprecedented levels. The imprint of dark matter on lepton cosmic rays is the most exciting explanation of both PAMELA's positron excess and FERMI's total flux of electrons. Alternatively, supernovae are astrophysical objects with the same potential to explain these observations. In this work, we present an updated study of the astrophysical sources of lepton cosmic rays and the possible trace of a dark matter signal on the positron excess and total flux of electrons.

  20. A cosmological solution to mimetic dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Saadi, Hassan, E-mail: hls01@mail.aub.edu [Physics Department, American University of Beirut, Beirut (Lebanon)

    2016-01-11

    In this paper, a cosmological solution to Mimetic Dark Matter (MDM) for an exponential potential is provided. Then a solution for the 0-i perturbed Einstein differential equation of MDM is obtained based on an exponential potential that satisfies inflation for some initial conditions. Another general potential is suggested that incorporates inflation too. Then quantum perturbations are included. The constants in the model can be tuned to be in agreement with the fluctuation amplitude of the cosmic microwave background (CMB) radiation. Finally, the spectral index is calculated for the suggested potentials. Moreover, MDM is shown to be a viable model to produce dark matter, inflation, and CMB’s fluctuation.

  1. A cosmological solution to mimetic dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Saadi, Hassan [American University of Beirut, Physics Department, Beirut (Lebanon)

    2016-01-15

    In this paper, a cosmological solution to Mimetic Dark Matter (MDM) for an exponential potential is provided. Then a solution for the 0 - i perturbed Einstein differential equation of MDM is obtained based on an exponential potential that satisfies inflation for some initial conditions. Another general potential is suggested that incorporates inflation too. Then quantum perturbations are included. The constants in the model can be tuned to be in agreement with the fluctuation amplitude of the cosmic microwave background (CMB) radiation. Finally, the spectral index is calculated for the suggested potentials. Moreover, MDM is shown to be a viable model to produce dark matter, inflation, and CMB's fluctuation. (orig.)

  2. Probing Big Bounce with Dark Matter

    CERN Document Server

    Li, Changhong

    2014-01-01

    We investigate the production of dark matter in a generic bouncing universe framework. Our result shows that, if the future-experimentally-measured cross section and mass of dark matter particle satisfy the cosmological constraint, $\\langle \\sigma v\\rangle m_\\chi^2 < 1.82\\times 10^{-26}$, it becomes a strong indication that our universe went through a Big Bounce---instead of the inflationary phase as postulated in Standard Big Bang Cosmology---at the early stage of the cosmological evolution.

  3. Indirect constraints to branon dark matter

    CERN Document Server

    Cembranos, J A R; Gammaldi, V; Maroto, A L

    2012-01-01

    If the present dark matter in the Universe annihilates into Standard Model particles, it must contribute to the gamma ray fluxes detected on the Earth. Here we briefly review the present constraints for the detection of gamma ray photons produced in the annihilation of branon dark matter. We show that observations of dwarf spheroidal galaxies and the galactic center by EGRET, Fermi-LAT or MAGIC are below the sensitivity limits for branon detection. However,future experiments such as CTA could be able to detect gamma-ray photons from annihilating branons of masses above 150 GeV.

  4. Volcanogenic Dark Matter and Mass Extinctions

    CERN Document Server

    Abbas, S; Abbas, Samar; Abbas, Afsar

    1996-01-01

    The passage of the Earth through dense clumps of dark matter, the presence of which are predicted by certain cosmologies, would produce large quantities of heat in the interior of this planet through the capture and subsequent annihilation of dark matter particles. This heat can cause large-scale volcanism which could in turn have caused the extinction of the dinosaurs and other mass extinctions. The periodicity of such volcanic outbursts agrees with the frequency of palaeontological mass extinctions as well as the observed periodicity in the occurrence of the largest flood basalt provinces on the globe.

  5. Reconciling dark matter, solar and atmospheric neutrinos

    CERN Document Server

    Peltoniemi, J T

    1993-01-01

    We present models that can reconcile the solar and atmospheric neutrino data with the existence of a hot dark matter component in the universe. This dark matter is a quasi-Dirac neutrino whose mass $m_{DM}$ arises at the one-loop level. The solar neutrino deficit is explained via nonadiabatic conversions of electron neutrino to a sterile neutrino and the atmospheric neutrino data via maximal muon neutrino to tau neutrino oscillations generated by higher order loop diagrams. For $m_{DM} \\sim 30$ eV the radiative neutrino decay can lead to photons that can ionize interstellar hydrogen. In one of the models one can have observable $\

  6. Deformed Matter Bounce with Dark Energy Epoch

    CERN Document Server

    Odintsov, S D

    2016-01-01

    We extend the Loop Quantum Cosmology matter bounce scenario in order to include a dark energy era, which ends abruptly at a Rip singularity where the scale factor and the Hubble rate diverge. In the "deformed matter bounce scenario", the Universe is contracting from an initial non-causal matter dominated era until it reaches a minimal radius. After that it expands in a decelerating way, until at late times, where it expands in an accelerating way, thus the model is described by a dark energy era that follows the matter dominated era. Depending on the choice of the free parameters of the model, the dark energy era is quintessential like which follows the matter domination era, and eventually it crosses the phantom divide line and becomes phantom. At the end of the dark energy era, a Rip singularity exists, where the scale factor and Hubble rate diverge, however the physical system cannot reach the singularity, since the effective energy density and pressure become complex. This indicates two things, firstly th...

  7. Ultralight repulsive dark matter and BEC

    Science.gov (United States)

    Fan, JiJi

    2016-12-01

    Ultralight scalar dark matter with mass at or below the eV scale and pressure from repulsive self-interaction could form a Bose-Einstein condensate in the early Universe and maybe in galaxies as well. It has been suggested to be a possible solution to the cusp/core problem or even to explain MOND phenomenology. In this paper, I initiate a study of possible self-interactions of ultralight scalar dark matter from the particle physics point of view. To protect its mass, the scalar dark matter is identified as a pseudo Nambu-Goldstone boson (pNGB). Quite a few pNGB models with different potentials such as the QCD axion and the dilaton lead to attractive self-interactions. Yet if an axion is a remnant of a 5D gauged U(1) symmetry, its self-interactions could be repulsive provided the masses and charges of the 5D matter contributing to its potential satisfy certain constraints. Collective symmetry breaking could also lead to a repulsive self-interaction yet with too large a strength that is ruled out by Bullet Cluster constraints. I also discuss cosmological and astrophysical constraints on ultralight repulsive dark matter in terms of a parametrization motivated by particle physics considerations.

  8. Indirect and direct search for dark matter

    Science.gov (United States)

    Klasen, M.; Pohl, M.; Sigl, G.

    2015-11-01

    The majority of the matter in the universe is still unidentified and under investigation by both direct and indirect means. Many experiments searching for the recoil of dark-matter particles off target nuclei in underground laboratories have established increasingly strong constraints on the mass and scattering cross sections of weakly interacting particles, and some have even seen hints at a possible signal. Other experiments search for a possible mixing of photons with light scalar or pseudo-scalar particles that could also constitute dark matter. Furthermore, annihilation or decay of dark matter can contribute to charged cosmic rays, photons at all energies, and neutrinos. Many existing and future ground-based and satellite experiments are sensitive to such signals. Finally, data from the Large Hadron Collider at CERN are scrutinized for missing energy as a signature of new weakly interacting particles that may be related to dark matter. In this review article we summarize the status of the field with an emphasis on the complementarity between direct detection in dedicated laboratory experiments, indirect detection in the cosmic radiation, and searches at particle accelerators.

  9. Structure Formation with Generalized Dark Matter

    Science.gov (United States)

    Hu, Wayne

    1998-10-01

    The next generation of cosmic microwave background (CMB) experiments, galaxy surveys, and high-redshift observations can potentially determine the nature of the dark matter observationally. With this in mind, we introduce a phenomenological model for a generalized dark matter (GDM) component and discuss its effect on large-scale structure and CMB anisotropies. Specifying the gravitational influence of the otherwise noninteracting GDM requires not merely a model for its equation of state but one for its full stress tensor. From consideration of symmetries, conservation laws, and gauge invariance, we construct a simple but powerful three-component parameterization of these stresses that exposes the new phenomena produced by GDM. Limiting cases include: a particle component (e.g., weakly interacting massive particles, radiation, or massive neutrinos), a cosmological constant, and a scalar field component. Intermediate cases illustrate how the clustering properties of the dark matter can be specified independently of its equation of state. This freedom allows one to alter the amplitude and features in the matter-power spectrum relative to those of the CMB anisotropies while leaving the background cosmology fixed. Conversely, observational constraints on such phenomena can help determine the nature of the dark matter.

  10. The Distribution of Dark Matter in the Milky Way's Disk

    Science.gov (United States)

    Pillepich, Annalisa; Kuhlen, Michael; Guedes, Javiera; Madau, Piero

    2014-04-01

    We present an analysis of the effects of dissipational baryonic physics on the local dark matter (DM) distribution at the location of the Sun, with an emphasis on the consequences for direct detection experiments. Our work is based on a comparative analysis of two cosmological simulations with identical initial conditions of a Milky Way halo, one of which (Eris) is a full hydrodynamic simulation and the other (ErisDark) is a DM-only one. We find that in Eris two distinct processes lead to a 30% enhancement of DM in the disk plane at the location of the Sun: the accretion and disruption of satellites resulting in a DM component with net angular momentum, and the contraction of baryons pulling the DM into the disk plane without forcing it to co-rotate. Owing to its particularly quiescent merger history for dark halos of Milky Way mass, the co-rotating dark disk in Eris is less massive than what has been suggested by previous work, contributing only 9% of the local DM density. Yet, since the simulation results in a realistic Milky Way analog galaxy, its DM halo provides a plausible alternative to the Maxwellian standard halo model (SHM) commonly used in direct detection analyses. The speed distribution in Eris is broadened and shifted to higher speeds, compared to its DM-only twin simulation ErisDark. At high speeds f(v) falls more steeply in Eris than in ErisDark or the SHM, easing the tension between recent results from the CDMS-II and XENON100 experiments. The non-Maxwellian aspects of f(v) are still present, but much less pronounced in Eris than in the DM-only runs. The weak dark disk increases the time-averaged scattering rate by only a few percent at low recoil energies. On the high velocity tail, however, the increase in typical speeds due to baryonic contraction results in strongly enhanced mean scattering rates compared to ErisDark, although they are still suppressed compared to the SHM. Similar trends are seen regarding the amplitude of the annual modulation

  11. Dissipative dark matter and the rotation curves of dwarf galaxies

    CERN Document Server

    Foot, R

    2015-01-01

    There is ample evidence from rotation curves that dark matter halo's around disk galaxies have nontrivial dynamics. Of particular significance are: a) the cored dark matter profile of disk galaxies, b) correlations of the shape of rotation curves with baryonic properties, and c) the Tully-Fisher relation. Dark matter halo's around disk galaxies may have nontrivial dynamics if dark matter is strongly self interacting and dissipative. Multicomponent hidden sector dark matter featuring a massless `dark photon' (from an unbroken dark $U(1)$ gauge interaction) which kinetically mixes with the ordinary photon provides a concrete example of such dark matter. The kinetic mixing interaction facilitates halo heating by enabling ordinary supernovae to be a source of these `dark photons'. Dark matter halo's can expand and contract in response to the heating and cooling processes, but for a sufficiently isolated halo should have evolved to a steady state or `equilibrium' configuration where heating and cooling rates local...

  12. Earth's Stopping Effect in Directional Dark Matter Detectors

    CERN Document Server

    Kouvaris, Chris

    2015-01-01

    We explore the stopping effect that results from interactions between dark matter and nuclei as the dark matter particles travel undergound towards the detector. Although this effect is negligible for heavy dark matter particles, there is parameter phase space where the underground interactions of the dark matter particles with the nuclei can create observable differences in the spectrum. Dark matter particles that arrive on the detector from below can have less energy from the ones arriving from above. These differences can be potentially detectable by upcoming directional detectors. This can unveil a large amount of information regarding the type and strength of interactions between nuclei and light dark matter candidates.

  13. Dark matter and dark energy induced by condensates

    CERN Document Server

    Capolupo, Antonio

    2016-01-01

    It is shown that the vacuum condensate induced by many phenomena behaves as a perfect fluid which, under particular conditions, has zero or negative pressure. In particular, the condensates of thermal states, of fields in curved space and of mixed particles have been analyzed. It is shown that the thermal states with the cosmic microwave radiation temperature, the Unruh and the Hawking radiations give negligible contributions to the critical energy density of the universe, while the thermal vacuum of the intercluster medium could contribute to the dark matter, together with the vacuum energy of fields in curved space-time and of mixed neutrinos. Moreover, a component of the dark energy can be represented by the vacuum of axion-like particles mixed with photons and superpartners of neutrinos. The formal analogy among the systems characterized by the condensates can open new scenarios in the possibility to detect the dark components of the universe in table top experiments.

  14. Dark Matter and Dark Energy Induced by Condensates

    Directory of Open Access Journals (Sweden)

    Antonio Capolupo

    2016-01-01

    Full Text Available It is shown that the vacuum condensate induced by many phenomena behaves as a perfect fluid which, under particular conditions, has zero or negative pressure. In particular, the condensates of thermal states of fields in curved space and of mixed particles have been analyzed. It is shown that the thermal states with the cosmic microwave radiation temperature and the Unruh and the Hawking radiations give negligible contributions to the critical energy density of the universe, while the thermal vacuum of the intercluster medium could contribute to the dark matter, together with the vacuum energy of fields in curved space-time and of mixed neutrinos. Moreover, a component of the dark energy can be represented by the vacuum of axion-like particles mixed with photons and superpartners of neutrinos. The formal analogy among the systems characterized by the condensates can open new scenarios in the possibility of detecting the dark components of the universe in table top experiments.

  15. Fermion field as inflaton, dark energy and dark matter

    CERN Document Server

    Grams, Guilherme; Kremer, Gilberto M

    2014-01-01

    The search for constituents that can explain the periods of accelerating expansion of the Universe is a fundamental topic in cosmology. In this context, we investigate how fermionic fields minimally and non-minimally coupled with the gravitational field may be responsible for accelerated regimes during the evolution of the Universe. The forms of the potential and coupling of the model are determined through the technique of the Noether symmetry for two cases. The first case comprises a Universe filled only with the fermion field. Cosmological solutions are straightforwardly obtained for this case and an exponential inflation mediated by the fermion field is possible with a non-minimal coupling. The second case takes account of the contributions of radiation and baryonic matter in the presence of the fermion field. In this case the fermion field plays the role of dark energy and dark matter, and when a non-minimal coupling is allowed, it mediates a power-law inflation.

  16. Dark Matter and Dark Energy: Breaking the Continuum Hypothesis?

    Directory of Open Access Journals (Sweden)

    Casuso Romate E.

    2006-07-01

    Full Text Available In the present paper an attempt is made to develop a fractional integral and differential, deterministic and projective method based on the assumption of the essential discontinuity observed in real systems (note that more than 99% of the volume occupied by an atom in real space has no matter. The differential treatment assumes continuous behaviour (in the form of averaging over the recent past of the system to predict the future time evolution, such that the real history of the system is "forgotten". So it is easy to understand how problems such as unpredictability (chaos arise for many dynamical systems, as well as the great difficulty to connecting Quantum Mechanics (a probabilistic differential theory with General Relativity (a deterministic differential theory. I focus here on showing how the present theory can throw light on crucial astrophysical problems like dark matter and dark energy.

  17. Dark Matter and Dark Energy: Breaking the Continuum Hypothesis?

    Directory of Open Access Journals (Sweden)

    Casuso Romate E.

    2006-07-01

    Full Text Available In the present paper an attempt is made to develop a fractional integral and differential, deterministic and projective method based on the assumption of the essential discontinuity observed in real systems (note that more than 99 % of the volume occupied by an atom in real space has no matter. The differential treatment assumes continuous behaviour (in the form of averaging over the recent past of the system to predict the future time evolution, such that the real history of the system is “forgotten”. So it is easy to understand how problems such as unpredictability (chaos arise for many dynamical systems, as well as the great difficulty to connecting Quantum Mechanics (a probabilistic differential theory with General Relativity (a deterministic differential theory. I focus here on showing how the present theory can throw light on crucial astrophysical problems like dark matter and dark energy.

  18. Growth of the nonbaryonic dark matter theory

    Science.gov (United States)

    Peebles, P. J. E.

    2017-03-01

    The evidence that has accumulated since the 1930s is that the mass of the Universe is dominated by an exotic nonbaryonic form of matter largely draped around the galaxies. This dark matter approximates an initially low-pressure gas of particles that interact only with gravity, but we know little more than that. Searches for detection thus must follow many difficult paths to a great discovery: what the Universe is made of.

  19. Cultural Differences and Acculturation in Dark Matter

    Institute of Scientific and Technical Information of China (English)

    刘海梅

    2015-01-01

    The film Dark Matter, based on the actual event of Chinese student Lu Gang shooting in America, tells the protagonist Liu Xing's cultural tragedy. Through the analysis of cultural differences in Black Matter from the perspective of Hofstede's theory of cultural dimensions, this paper explores the reasons for Liu Xing's failure of across-cultural communication, which gives us thought on how to improve intercultural communication in the context of globalization.

  20. The phenomenology of maverick dark matter

    Science.gov (United States)

    Krusberg, Zosia Anna Celina

    Astrophysical observations from galactic to cosmological scales point to a substantial non-baryonic component to the universe's total matter density. Although very little is presently known about the physical properties of dark matter, its existence offers some of the most compelling evidence for physics beyond the standard model (BSM). In the weakly interacting massive particle (WIMP) scenario, the dark matter consists of particles that possess weak-scale interactions with the particles of the standard model, offering a compelling theoretical framework that allows us to understand the relic abundance of dark matter as a natural consequence of the thermal history of the early universe. From the perspective of particle physics phenomenology, the WIMP scenario is appealing for two additional reasons. First, many theories of BSM physics contain attractive WIMP candidates. Second, the weak-scale interactions between WIMPs and standard model particles imply the possibility of detecting scatterings between relic WIMPs and detector nuclei in direct detection experiments, products of WIMP annihilations at locations throughout the galaxy in indirect detection programs, and WIMP production signals at high-energy particle colliders. In this work, we use an effective field theory approach to study model-independent dark matter phenomenology in direct detection and collider experiments. The maverick dark matter scenario is defined by an effective field theory in which the WIMP is the only new particle within the energy range accessible to the Large Hadron Collider (LHC). Although certain assumptions are necessary to keep the problem tractable, we describe our WIMP candidate generically by specifying only its spin and dominant interaction form with standard model particles. Constraints are placed on the masses and coupling constants of the maverick WIMPs using the Wilkinson Microwave Anisotropy Probe (WMAP) relic density measurement and direct detection exclusion data from both