WorldWideScience

Sample records for waxy maize starch

  1. Swelling Kinetics of Waxy Maize Starch

    Science.gov (United States)

    Desam, Gnana Prasuna Reddy

    Starch pasting behavior greatly influences the texture of a variety of food products such as canned soup, sauces, baby foods, batter mixes etc. The annual consumption of starch in the U.S. is 3 million metric tons. It is important to characterize the relationship between the structure, composition and architecture of the starch granules with its pasting behavior in order to arrive at a rational methodology to design modified starch of desirable digestion rate and texture. In this research, polymer solution theory was applied to predict the evolution of average granule size of starch at different heating temperatures in terms of its molecular weight, second virial coefficient and extent of cross-link. Evolution of granule size distribution of waxy native maize starch when subjected to heating at constant temperatures of 65, 70, 75, 80, 85 and 90 C was characterized using static laser light scattering. As expected, granule swelling was more pronounced at higher temperatures and resulted in a shift of granule size distribution to larger sizes with a corresponding increase in the average size by 100 to 120% from 13 mum to 25-28 mum. Most of the swelling occurred within the first 10 min of heating. Pasting behavior of waxy maize at different temperatures was also characterized from the measurements of G' and G" for different heating times. G' was found to increase with temperature at holding time of 2 min followed by its decrease at larger holding times. This behavior is believed to be due to the predominant effect of swelling at small times. However, G" was insensitive to temperature and holding times. The structure of waxy maize starch was characterized by cryoscanning electron microscopy. Experimental data of average granule size vs time at different temperatures were compared with model predictions. Also the Experimental data of particle size distribution vs particle size at different times and temperatures were compared with model predictions.

  2. Analysis of a preferential action of α-amylase from B. licheniformis towards amorphous regions of waxy maize starch.

    Science.gov (United States)

    Foresti, María Laura; Williams, María del Pilar; Martínez-García, Ricardo; Vázquez, Analía

    2014-02-15

    Waxy maize starch was subjected to α-amylase (Bacillus licheniformis) hydrolysis in buffered medium to determine the evolution of reaction in quantitative terms and also in terms of the morphology and crystallinity of the partially hydrolyzed starch granules. Gathered data allowed studying the pattern of action of this α-amylase over waxy maize starch granules, with particular focus on a preferential hydrolysis of the amorphous regions of starch. Results showed that waxy maize starch hydrolysis followed a two-stage kinetic profile with an initial stage characterized by high reaction rate, followed by a slower second stage. The change of hydrolysis rate occurred at approximately 6h of reaction, a time for which X-ray diffraction data quantitatively analyzed by three different techniques showed a maximum of crystallinity in partially hydrolyzed granules. Scanning electron microscopy images illustrated the action of α-amylases which implied the exoerosion of the granules surface, the entry of α-amylases into the granules through radial channels, their endoerosion towards the granule exterior, and their fragmentation. Fragmentation of waxy maize starch granules revealed internal layered structures of starch which were interpreted as hydrolyzed/non-hydrolyzed growth rings. Under the conditions chosen, kinetic, electron microscopy and X-ray data all gave evidence of a preferential action of α-amylase from Bacillus licheniformis towards the less ordered regions of waxy maize starch. Results showed that, provided the proper hydrolysis time is chosen, starch granules with increased crystallinity can be obtained by a pure enzymatic treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Syneresis and chemical characteristics of fermented rice extract with probiotic bacteria and waxy maize starch

    Directory of Open Access Journals (Sweden)

    Kassia Kiss Firmino Dourado COSTA

    2017-09-01

    Full Text Available Abstract The objective of this work was to elaborate fermented extracts using rice bran and broken rice grains (proportion 8:92 with probiotic bacteria and different concentrations of waxy maize starch (WMS in order to obtain products with low level of syneresis and desirable physical-chemical characteristics, and to evaluate the content of phenolic compounds, antioxidant capacity and chemical composition of the extract selected and flavored with strawberry aroma and strawberry syrup. A randomized design was used with five treatments (0, 4, 8, 12 and 16 g 100 g–1 of WMS and four replications. The fermented rice extract had increased soluble solids (from 12.97 to 14.23 °Brix and total acidity (from 0.29 to 0.30 g 100 g–1, whereas total soluble sugars (from 9.24 to 8.73 g 100 g–1 and syneresis (from 10.16 to 0.99 g 100 g–1 decreased with gradual increments of waxy maize starch. The fermented rice extract containing 12 g 100 g–1 WMS reduced the syneresis by 89% compared to the control without waxy maize starch. The fermented rice extract with 12 g 100 g-1 of waxy maize starch flavored with strawberry aroma and strawberry syrup shows high nutritional value, antioxidant capacity, content of total phenolic compounds, and marketing potential, particularly for consumers with special needs, such as those allergic to lactose or soybean proteins, as an alternative food ready for consumption.

  4. Some aspects of cultivation and utilization of waxy maize (Zea mays L. ssp. ceratina

    Directory of Open Access Journals (Sweden)

    Agnieszka Klimek-Kopyra

    2012-10-01

    Full Text Available This paper is a review of available literature on Zea mays L.ssp.ceratina. It contains information on the origin, cul- tivation and utilization of waxy maize in the world and can be a contribution to the development of new research on maize cultivation and starch processing technology. Maize, as an old and economically important cereal, played an enormous role in the ancient civilisations of the New World. Among the maize subspecies compared, Z. mays ssp. indurata and Z. mays ssp. indentata are now the most important in Poland. The subspecies Z. mays ssp. saccharata has a marginal role, while Z. mays ssp. ceratina has not been hitherto cultivated. Decisions to introduce the subspecies Z. mays ssp. ceratina into cultivation are based on different grounds, taking into account both agro-climatic conditions and industrial uses of grain processing products. The growing demand for maize grain, stimulated by the increased demand for maize starch and oil in the global market as raw materials that are important in food production, is an impulse for the development of agrobiological research. The development of the starch industry, associated with the demand for industrial starch, will probably contribute to increased interest in this subspecies in Central Europe, also including Poland. Waxy maize grain can be a major ingredient of high-energy feeds for livestock, replacing in this role the type of maize that has been grown for this purpose until now. A great advantage of waxy maize is its specific structure of starch, due to its unique and high amylopectin content (95-98%, which creates unlimited possibilities of industrial use. Currently, waxy maize acreage in Europe does not exceed 2% of the maize crop area in this continent.

  5. Influence of galactooligosaccharides and modified waxy maize starch on some attributes of yogurt.

    Science.gov (United States)

    Prasad, Laxmi N; Sherkat, Frank; Shah, Nagendra P

    2013-01-01

    This study examined the influence of galactooligosaccharides (GOS) and modified waxy maize starch (MWMS) addition on the growth of starter cultures, and syneresis and firmness of low-fat yogurt during storage for 28 d at 4 °C. The control yogurt (CY) was prepared without any prebiotics. Incorporation of 2.0% (w/v) GOS improved the growth of L. delbrueckii ssp. bulgaricus ATCC 11842 resulting in a shorter fermentation time. There was a significant (P yogurt made with GOS (GOSY) as measured by absorbance value (0.728). Addition of GOS resulted in higher (P 0.05) difference in the firmness among the 3 types of yogurt. © 2012 Institute of Food Technologists®

  6. Influence of phosphate esters on the annealing properties of starch

    DEFF Research Database (Denmark)

    Wischmann, Bente; Muhrbeck, Per

    1998-01-01

    The effects of annealing on native potato, waxy maize, and phosphorylated waxy maize starches were compared. Phosphorylated waxy maize starch responded to annealing in a manner between that of the naturally phosphorylated potato starch and that of the native waxy maize starch. The gelatinisation...... end-point temperature was increased, whereas in the native waxy maize it was decreased. On the other hand, the onset temperature change was much larger in potato starch than in the two waxy maize starches. Steeping also yielded intermediate effects on the phosphorylated waxy maize starch....... It was concluded that the phosphate groups have similar effects as they do in the native, naturally phosphorylated potato starch, although the substitution pattern is not entirely the same in the artificially phosphorylated starch....

  7. Inducing PLA/starch compatibility through butyl-etherification of waxy and high amylose starch.

    Science.gov (United States)

    Wokadala, Obiro Cuthbert; Emmambux, Naushad Mohammad; Ray, Suprakas Sinha

    2014-11-04

    In this study, waxy and high amylose starches were modified through butyl-etherification to facilitate compatibility with polylactide (PLA). Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy and wettability tests showed that hydrophobic butyl-etherified waxy and high amylose starches were obtained with degree of substitution values of 2.0 and 2.1, respectively. Differential scanning calorimetry, tensile testing, and scanning electron microscopy (SEM) demonstrated improved PLA/starch compatibility for both waxy and high amylose starch after butyl-etherification. The PLA/butyl-etherified waxy and high amylose starch composite films had higher tensile strength and elongation at break compared to PLA/non-butyl-etherified composite films. The morphological study using SEM showed that PLA/butyl-etherified waxy starch composites had a more homogenous microstructure compared to PLA/butyl-etherified high amylose starch composites. Thermogravimetric analysis showed that PLA/starch composite thermal stability decreased with starch butyl-etherification for both waxy and high amylose starches. This study mainly demonstrates that PLA/starch compatibility can be improved through starch butyl-etherification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Retrogradation of Maize Starch after High Hydrostatic Pressure Gelation: Effect of Amylose Content and Depressurization Rate

    KAUST Repository

    Yang, Zhi; Swedlund, Peter; Gu, Qinfen; Hemar, Yacine; Chaieb, Saharoui

    2016-01-01

    High hydrostatic pressure (HHP) has been employed to gelatinize or physically modify starch dispersions. In this study, waxy maize starch, normal maize starch, and two high amylose content starch were processed by a HHP of the order of 600 MPa

  9. Retrogradation of Maize Starch after High Hydrostatic Pressure Gelation: Effect of Amylose Content and Depressurization Rate

    KAUST Repository

    Yang, Zhi

    2016-05-24

    High hydrostatic pressure (HHP) has been employed to gelatinize or physically modify starch dispersions. In this study, waxy maize starch, normal maize starch, and two high amylose content starch were processed by a HHP of the order of 600 MPa, at 25°C for 15min. The effect of HHP processing on the crystallization of maize starches with various amylose content during storage at 4°C was investigated. Crystallization kinetics of HHP treated starch gels were investigated using rheology and FTIR. The effect of crystallization on the mechanical properties of starch gel network were evaluated in terms of dynamic complex modulus (G*). The crystallization induced increase of short-range helices structures were investigated using FTIR. The pressure releasing rate does not affect the starch retrogradation behaviour. The rate and extent of retrogradation depends on the amylose content of amylose starch. The least retrogradation was observed in HHP treated waxy maize starch. The rate of retrogradation is higher for HHP treated high amylose maize starch than that of normal maize starch. A linear relationship between the extent of retrogradation (phase distribution) measured by FTIR and G* is proposed.

  10. Retrogradation of Maize Starch after High Hydrostatic Pressure Gelation: Effect of Amylose Content and Depressurization Rate

    Science.gov (United States)

    Yang, Zhi; Swedlund, Peter; Gu, Qinfen; Hemar, Yacine; Chaieb, Sahraoui

    2016-01-01

    High hydrostatic pressure (HHP) has been employed to gelatinize or physically modify starch dispersions. In this study, waxy maize starch, normal maize starch, and two high amylose content starch were processed by a HHP of the order of 600 MPa, at 25°C for 15min. The effect of HHP processing on the crystallization of maize starches with various amylose content during storage at 4°C was investigated. Crystallization kinetics of HHP treated starch gels were investigated using rheology and FTIR. The effect of crystallization on the mechanical properties of starch gel network were evaluated in terms of dynamic complex modulus (G*). The crystallization induced increase of short-range helices structures were investigated using FTIR. The pressure releasing rate does not affect the starch retrogradation behaviour. The rate and extent of retrogradation depends on the amylose content of amylose starch. The least retrogradation was observed in HHP treated waxy maize starch. The rate of retrogradation is higher for HHP treated high amylose maize starch than that of normal maize starch. A linear relationship between the extent of retrogradation (phase distribution) measured by FTIR and G* is proposed. PMID:27219066

  11. Retrogradation of Maize Starch after High Hydrostatic Pressure Gelation: Effect of Amylose Content and Depressurization Rate.

    Directory of Open Access Journals (Sweden)

    Zhi Yang

    Full Text Available High hydrostatic pressure (HHP has been employed to gelatinize or physically modify starch dispersions. In this study, waxy maize starch, normal maize starch, and two high amylose content starch were processed by a HHP of the order of 600 MPa, at 25°C for 15min. The effect of HHP processing on the crystallization of maize starches with various amylose content during storage at 4°C was investigated. Crystallization kinetics of HHP treated starch gels were investigated using rheology and FTIR. The effect of crystallization on the mechanical properties of starch gel network were evaluated in terms of dynamic complex modulus (G*. The crystallization induced increase of short-range helices structures were investigated using FTIR. The pressure releasing rate does not affect the starch retrogradation behaviour. The rate and extent of retrogradation depends on the amylose content of amylose starch. The least retrogradation was observed in HHP treated waxy maize starch. The rate of retrogradation is higher for HHP treated high amylose maize starch than that of normal maize starch. A linear relationship between the extent of retrogradation (phase distribution measured by FTIR and G* is proposed.

  12. Measurement and characterization of external oil in the fried waxy maize starch granules using ATR-FTIR and XRD.

    Science.gov (United States)

    Chen, Long; Tian, Yaoqi; Sun, Binghua; Cai, Canxin; Ma, Rongrong; Jin, Zhengyu

    2018-03-01

    Concerns regarding increased dietary oil uptake have prompted efforts to investigate the oil absorption and distribution in fried starchy foods. In the present study, attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, together with a chloroform-methanol method, was used to analyze the external and internal oil contents in fried starchy samples. The micromorphology of fried starchy samples was further investigated using scanning electron microscope (SEM), polarized light microscope (PLM) and confocal laser scanning microscopy (CLSM). The results indicated that large amounts of oil were absorbed in or within waxy maize starch, but the majority of oil was located near the surface layer of the starch granules. After defatting, the internal oil was thoroughly removed, while a small amount of external oil remained. As evidenced by the changes of the crystalline characteristics with the help of X-ray diffraction (XRD), the interaction between starch and lipids on the surface was confirmed to form V-type complex compounds during frying at high moisture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The effect of α- or β-casein addition to waxy maize starch on postprandial levels of glucose, insulin, and incretin hormones in pigs as a model for humans

    Directory of Open Access Journals (Sweden)

    Anthony P. Kett

    2012-04-01

    Full Text Available Background:Starch is a main source of glucose and energy in the human diet. The extent to which it is digested in the gastrointestinal tract plays a major role in variations in postprandial blood glucose levels. Interactions with other biopolymers, such as dairy proteins, during processing can influence both the duration and extent of this postprandial surge.Objective:To evaluate the effect of the addition of bovine α- or β-casein to waxy maize starch on changes in postprandial blood glucose, insulin, and incretin hormones [glucose-dependent insulinotropic polypeptide (GIP and glucagon-like peptide 1 (GLP-1] in 30 kg pigs used as an animal model for humans.Design:Gelatinised starch, Results:starch gelatinised with α-casein, and starch gelatinised with β-casein were orally administered to trained pigs (n = 8 at a level of 60 g of available carbohydrate. Pre- and postprandial glucose measurements were taken every 15 min for the first hour and every 30 min thereafter up to 180 min. Insulin, GIP, and GLP-1 levels were measured in plasma samples up to 90 min postprandial.Starch gelatinised with α-casein had a significantly (p < 0.05 lower peak viscosity on pasting and resulted in significantly lower glucose release at 15, 30, and 90 min postprandial compared to starch gelatinised with β-casein. During the first 45-min postprandial, the area under the glucose curve (AUC for starch gelatinised with α-casein was significantly (p < 0.05 lower than that for starch gelatinised with β-casein. There was also a significant (p < 0.05 difference at T30 in GIP levels in response to the control compared to starch gelatinised with α- or β-casein. Significant (p < 0.05 increases in several free amino acid concentrations were observed on ingestion of either α- or β-casein gelatinised with starch at 30 and 90 min postprandial compared to starch alone. In addition, plasma levels of six individual amino acids were increased on ingestion of starch

  14. DISINTEGRATION EFFICIENCY OF SODIUM STARCH GLYCOLATES, PREPARED FROM DIFFERENT NATIVE STARCHES

    NARCIS (Netherlands)

    BOLHUIS, GK; ARENDSCHOLTE, AW; STUUT, GJ; DEVRIES, JA

    1994-01-01

    In a comparative evaluation, the disintegration efficiency of sodium starch glycolates prepared from seven different native starches (potato, maize, waxy maize, wheat, rice, sago and tapioca) were compared. All the sodium starch glycolates tested had a high swelling capacity, but the rate of water

  15. COMPARISON AMONG PRE-GELATINIZED STARCHES OF DIFFERENT BOTANICAL ORIGINS USED IN NOBLE CRAYFISH ASTACUS ASTACUS DIETS

    Directory of Open Access Journals (Sweden)

    D’AGARO E.

    2006-01-01

    Full Text Available The objective of the present experiment was to compare the biological value and the binding functionality of four pre-gelatinized starches (wheat, diet 1; waxy maize, diet 2; maize, diet 3 and potato, diet 4 used in crayfish diets. 360 juvenile of A. astacus (initial b.w.: 0.70 ± 0.15 g were cultured in 12 tanks for 43d. Growth performance were significantly higher in crayfish fed diets containing wheat and waxy maize compared to those containing maize and potato pre-gelatinized starches. Disintegration in water and shear force tests of diets confirmed the superior binding capability of pre-gelatinized starches obtained from wheat and waxy maize. These results suggest that the pregelatinized wheat and waxy maize starches are the best choice for the production of diets for the noble crayfish.

  16. The effect of high hydrostatic pressure treatment on the molecular structure of starches with different amylose content.

    Science.gov (United States)

    Szwengiel, Artur; Lewandowicz, Grażyna; Górecki, Adrian R; Błaszczak, Wioletta

    2018-02-01

    The effect of high hydrostatic pressure processing (650MPa/9min) on molecular mass distribution, and hydrodynamic and structural parameters of amylose (maize, sorghum, Hylon VII) and amylopectin (waxy maize, amaranth) starches was studied. The starches were characterized by high-performance size-exclusion chromatography (HPSEC) equipped with static light scattering and refractive index detectors and by Fourier Transform Infrared (FTIR) spectroscopy. Significant changes were observed in molecular mass distribution of pressurized waxy maize starch. Changes in branches/branch frequency, intrinsic viscosity, and radius of gyration were observed for all treated starches. The combination of SEC and FTIR data showed that α-1,6-glycosidic bonds are more frequently split in pressurized amaranth, Hylon VII, and waxy maize starch, while in sorghum and maize starches, the α-1,4 bonds are most commonly split. Our results show that the structural changes found for pressurized starches were more strongly determined by the starch origin than by the processing applied. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Effect of defatting on acid hydrolysis rate of maize starch with different amylose contents.

    Science.gov (United States)

    Wei, Benxi; Hu, Xiuting; Zhang, Bao; Li, Hongyan; Xu, Xueming; Jin, Zhengyu; Tian, Yaoqi

    2013-11-01

    The effect of defatting on the physiochemical properties and the acid hydrolysis rate of maize starch with different amylose contents was evaluated in this study. The increase in the number of pores and the stripping of starch surface layers were observed after defatting by scanning electron microscopy. X-ray diffraction spectrum showed that the peaks attributing to the amylose-lipid complex disappeared. The relative crystallinity increased by 19% for high-amylose maize starch (HMS) on defatting, while the other tested starches virtually unchanged. Differential scanning calorimetry study indicated an increase in the thermal stability for the defatted starches. Compared with native waxy maize starch, the acid hydrolysis rate of the defatted one increased by 6% after 10 days. For normal maize starch (NMS) and HMS, the higher rate of hydrolysis was observed during the first 5 days. Thereafter, the hydrolysis rate was lower than that of their native counterpart. The increase in susceptibility to acid hydrolysis (in the first 5 days) was mainly attributed to the defective and porous structures formed during defatting process, while the decrease of hydrolysis rate for NMS and HMS samples (after the first 5 days) probably resulted from the increase in the relative crystallinity. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  18. Resistant starch and protein intake enhances fat oxidation and feelings of fullness in lean and overweight/obese women

    DEFF Research Database (Denmark)

    Gentile, Christopher L; Ward, Emery; Holst, Jens Juul

    2015-01-01

    and overweight/obese women. METHODS: Women of varying levels of adiposity consumed one of four pancake test meals in a single-blind, randomized crossover design: 1) waxy maize (control) starch (WMS); 2) waxy maize starch and whey protein (WMS+WP); 3) resistant starch (RS); or 4) RS and whey protein (RS...

  19. Structural properties and digestibility of pulsed electric field treated waxy rice starch.

    Science.gov (United States)

    Zeng, Feng; Gao, Qun-Yu; Han, Zhong; Zeng, Xin-An; Yu, Shu-Juan

    2016-03-01

    Waxy rice starch was subjected to pulsed electric field (PEF) treatment at intensity of 30, 40 and 50kVcm(-1). The impact of PEF treatment on the granular morphology, molecular weight, semi-crystalline structure, thermal properties, and digestibility were investigated. The micrographs suggested that electric energy could act on the granule structure of starch granule, especially at high intensity of 50kVcm(-1). Gelatinization onset temperature, peak temperature, conclusion temperature and enthalpy value of PEF treated starches were lower than that of native starch. The 9nm lamellar peak of PEF treated starches decreased as revealed by small angle X-ray scattering. The relative crystallinity of treated starches decreased as the increase of electric field intensity. Increased rapidly digestible starch level and decreased slowly digestible starch level was found on PEF treated starches. These results would imply that PEF treatment induced structural changes in waxy rice starch significantly affected its digestibility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Inducing PLA/starch compatibility through butyl-etherification of waxy and high amylose starch

    CSIR Research Space (South Africa)

    Wokadala, OC

    2014-06-01

    Full Text Available In this study, waxy and high amylose starches were modified through butyl-etherification to facilitatecompatibility with polylactide (PLA). Fourier transform infrared spectroscopy, proton nuclear magneticresonance spectroscopy and wettability tests...

  1. Mechanical and barrier properties of maize starch-gelatin composite films: effects of amylose content.

    Science.gov (United States)

    Wang, Kun; Wang, Wenhang; Ye, Ran; Xiao, Jingdong; Liu, Yaowei; Ding, Junsheng; Zhang, Shaojing; Liu, Anjun

    2017-08-01

    In order to obtain new reinforcing bio-fillers to improve the physicochemical properties of gelatin-based films, three types of maize starch, waxy maize starch (Ap), normal starch (Ns) and high-amylose starch (Al), were incorporated into gelatin film and the resulting film properties were investigated, focusing on the impact of amylose content. The thickness, opacity and roughness of gelatin film increased depending on the amylose content along with the starch concentration. The effects of the three starches on the mechanical properties of gelatin film were governed by amylose content, starch concentration as well as environmental relative humidity (RH). At 75% RH, the presence of Al and Ns in the gelatin matrix increased the film strength but decreased its elongation, while Ap exhibited an inverse effect. Starch addition decreased the oxygen permeability of the film, with the lowest value at 20% Al and Ns. All starches, notably at 30% content, led to a decrease in the water vapor permeability of the film at 90% RH, especially Ns starch. Furthermore, the starches improved the thermal stability of the film to some extent. Fourier transform infrared spectra indicated that some weak intermolecular interactions such as hydrogen bonding occurred between gelatin and starch. Moreover, a high degree of B-type crystallinity of starch was characterized in Gel-Al film by X-ray diffraction. Tailoring the properties of gelatin film by the incorporation of different types of maize starch provides the potential to extend its applications in edible food packaging. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  2. Graft copolymers of ethyl methacrylate on waxy maize starch derivatives as novel excipients for matrix tablets: physicochemical and technological characterisation.

    Science.gov (United States)

    Marinich, J A; Ferrero, C; Jiménez-Castellanos, M R

    2009-05-01

    Nowadays, graft copolymers are being used as an interesting option when developing a direct compression excipient for controlled release matrix tablets. New graft copolymers of ethyl methacrylate (EMA) on waxy maize starch (MS) and hydroxypropylstarch (MHS) were synthesised by free radical polymerization and alternatively dried in a vacuum oven (OD) or freeze-dried (FD). This paper evaluates the performance of these new macromolecules and discusses the effect of the carbohydrate nature and drying process on their physicochemical and technological properties. Grafting of EMA on the carbohydrate backbone was confirmed by IR and NMR spectroscopy, and the grafting yields revealed that graft copolymers present mainly a hydrophobic character. The graft copolymerization also leads to more amorphous materials with larger particle size and lower apparent density and water content than carbohydrates (MS, MHS). All the products show a lack of flow, except MHSEMA derivatives. MSEMA copolymers underwent much plastic flow and less elastic recovery than MHSEMA copolymers. Concerning the effect of drying method, FD derivatives were characterised by higher plastic deformation and less elasticity than OD derivatives. Tablets obtained from graft copolymers showed higher crushing strength and disintegration time than tablets obtained from raw starches. This behaviour suggests that these copolymers could be used as excipients in matrix tablets obtained by direct compression and with a potential use in controlled release.

  3. Effect of high hydrostatic pressure and retrogradation treatments on structural and physicochemical properties of waxy wheat starch.

    Science.gov (United States)

    Hu, Xiao-Pei; Zhang, Bao; Jin, Zheng-Yu; Xu, Xue-Ming; Chen, Han-Qing

    2017-10-01

    In this study, the effects of high hydrostatic pressure and retrogradation (HHPR) treatments on in vitro digestibility, structural and physicochemical properties of waxy wheat starch were investigated. The waxy wheat starch slurries (10%, w/v) were treated with high hydrostatic pressures of 300, 400, 500, 600MPa at 20°C for 30min, respectively, and then retrograded at 4°C for 4d. The results indicated that the content of slowly digestible starch (SDS) in HHPR-treated starch samples increased with increasing pressure level, and it reached the maximum (31.12%) at 600MPa. HHPR treatment decreased the gelatinization temperatures, the gelatinization enthalpy, the relative crystallinity and the peak viscosity of the starch samples. Moreover, HHPR treatment destroyed the surface and interior structures of starch granules. These results suggest that the in vitro digestibility, physicochemical, and structural properties of waxy wheat starch are effectively modified by HHPR. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Effects of heat-moisture treatment reaction conditions on the physicochemical and structural properties of maize starch: moisture and length of heating.

    Science.gov (United States)

    Sui, Zhongquan; Yao, Tianming; Zhao, Yue; Ye, Xiaoting; Kong, Xiangli; Ai, Lianzhong

    2015-04-15

    Changes in the properties of normal maize starch (NMS) and waxy maize starch (WMS) after heat-moisture treatment (HMT) under various reaction conditions were investigated. NMS and WMS were adjusted to moisture levels of 20%, 25% and 30% and heated at 100 °C for 2, 4, 8 and 16 h. The results showed that moisture content was the most important factor in determining pasting properties for NMS, whereas the heating length was more important for WMS. Swelling power decreased in NMS but increased in WMS, and while the solubility index decreased for both samples, the changes were largely determined by moisture content. The gelatinisation temperatures of both samples increased with increasing moisture content but remained unchanged with increasing heating length. The Fourier transform infrared (FT-IR) absorbance ratio was affected to different extents by the moisture levels but remained constant with increasing the heating length. The X-ray intensities increased but relative crystallinity decreased to a greater extent with increasing moisture content. This study showed that the levels of moisture content and length of heating had significant impacts on the structural and physicochemical properties of normal and waxy maize starches but to different extents. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Effect of fatty acids on functional properties of normal wheat and waxy wheat starches: A structural basis.

    Science.gov (United States)

    Wang, Shujun; Wang, Jinrong; Yu, Jinglin; Wang, Shuo

    2016-01-01

    The effects of three saturated fatty acids on functional properties of normal wheat and waxy wheat starches were investigated. The complexing index (CI) of normal wheat starch-fatty acid complexes decreased with increasing carbon chain length. In contrast, waxy wheat starch-fatty acid complexes presented much lower CI. V-type crystalline polymorphs were formed between normal wheat starch and three fatty acids, with shorter chain fatty acids producing more crystalline structure. FTIR and Raman spectroscopy presented the similar results with XRD. The formation of amylose-fatty acid complex inhibited granule swelling, gelatinization progression, retrogradation and pasting development of normal wheat starch, with longer chain fatty acids showing greater inhibition. Amylopectin can also form complexes with fatty acids, but the amount of complex was too little to be detected by XRD, FTIR, Raman and DSC. As a consequence, small changes were observed in the functional properties of waxy wheat starch with the addition of fatty acids. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Development of waxy cassava with different Biological and physico-chemical characteristics of starches for industrial applications.

    Science.gov (United States)

    Zhao, Shan-Shan; Dufour, Dominique; Sánchez, Teresa; Ceballos, Hernan; Zhang, Peng

    2011-08-01

    The quality of cassava starch, an important trait in cassava breeding programs, determines its applications in various industries. For example, development of waxy (having a low level of amylose) cassava is in demand. Amylose is synthesized by granule-bound starch synthase I (GBSSI) in plants, and therefore, down-regulation of GBSSI expression in cassava might lead to reduced amylose content. We produced 63 transgenic cassava plant lines that express hair-pin dsRNAs homologous to the cassava GBSSI conserved region under the control of the vascular-specific promoter p54/1.0 from cassava (p54/1.0::GBSSI-RNAi) or cauliflower mosaic virus (CaMV) 35S (35S::GBSSI-RNAi). After the screening storage roots and starch granules from field-grown plants with iodine staining, the waxy phenotype was discovered: p54/1.0::GBSSI-RNAi line A8 and 35S::GBSSI-RNAi lines B9, B10, and B23. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that there was no detectable GBSSI protein in the starch granules of plants with the waxy phenotype. Further, the amylose content of transgenic starches was significantly reduced (industrial utilization. Copyright © 2011 Wiley Periodicals, Inc.

  7. Effect of Multiple Freezing/Thawing Cycles on the Structural and Functional Properties of Waxy Rice Starch

    Science.gov (United States)

    Tao, Han; Yan, Juan; Zhao, Jianwei; Tian, Yaoqi; Jin, Zhengyu; Xu, Xueming

    2015-01-01

    The structural and functional properties of non-gelatinized waxy rice starch were investigated after 1, 3, 7, and 10 freezing/thawing cycles. Freezing caused an increasing damaged starch from 1.36% in native waxy rice starch to 5.77% in 10 freezing/thawing-treated starch (FTS), as evidenced by the cracking surface on starch granules. More dry matter concentration was leached, which was characterized by high amylopectin concentration (4.34 mg/mL). The leaching was accompanied by a decrease in relative crystallinity from 35.19% in native starch to 31.34% in 10 FTS. Freezing treatment also led to significant deviations in the functional characteristics, for instance decreased gelatinization temperature range, enthalpy, and pasting viscosities. The resistant starch content of 10FTS significantly decreased from 58.9% to 19%, whereas the slowly digested starch content greatly increased from 23.8% in native starch to 50.3%. The increase in susceptibility to enzyme hydrolysis may be attributed to porous granular surface, amylopectin leaching, and the decrease in the relative crystallinity caused by freezing water. PMID:26018506

  8. Effect of multiple freezing/thawing cycles on the structural and functional properties of waxy rice starch.

    Directory of Open Access Journals (Sweden)

    Han Tao

    Full Text Available The structural and functional properties of non-gelatinized waxy rice starch were investigated after 1, 3, 7, and 10 freezing/thawing cycles. Freezing caused an increasing damaged starch from 1.36% in native waxy rice starch to 5.77% in 10 freezing/thawing-treated starch (FTS, as evidenced by the cracking surface on starch granules. More dry matter concentration was leached, which was characterized by high amylopectin concentration (4.34 mg/mL. The leaching was accompanied by a decrease in relative crystallinity from 35.19% in native starch to 31.34% in 10 FTS. Freezing treatment also led to significant deviations in the functional characteristics, for instance decreased gelatinization temperature range, enthalpy, and pasting viscosities. The resistant starch content of 10FTS significantly decreased from 58.9% to 19%, whereas the slowly digested starch content greatly increased from 23.8% in native starch to 50.3%. The increase in susceptibility to enzyme hydrolysis may be attributed to porous granular surface, amylopectin leaching, and the decrease in the relative crystallinity caused by freezing water.

  9. Establishing whether the structural feature controlling the mechanical properties of starch films is molecular or crystalline.

    Science.gov (United States)

    Li, Ming; Xie, Fengwei; Hasjim, Jovin; Witt, Torsten; Halley, Peter J; Gilbert, Robert G

    2015-03-06

    The effects of molecular and crystalline structures on the tensile mechanical properties of thermoplastic starch (TPS) films from waxy, normal, and high-amylose maize were investigated. Starch structural variations were obtained through extrusion and hydrothermal treatment (HTT). The molecular and crystalline structures were characterized using size-exclusion chromatography and X-ray diffractometry, respectively. TPS from high-amylose maize showed higher elongation at break and tensile strength than those from normal maize and waxy maize starches when processed with 40% plasticizer. Within the same amylose content, the mechanical properties were not affected by amylopectin molecular size or the crystallinity of TPS prior to HTT. This lack of correlation between the molecular size, crystallinity and mechanical properties may be due to the dominant effect of the plasticizer on the mechanical properties. Further crystallization of normal maize TPS by HTT increased the tensile strength and Young's modulus, while decreasing the elongation at break. The results suggest that the crystallinity from the remaining ungelatinized starch granules has less significant effect on the mechanical properties than that resulting from starch recrystallization, possibly due to a stronger network from leached-out amylose surrounding the remaining starch granules. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Effect of waxy rice flour and cassava starch on freeze-thaw stability of rice starch gels.

    Science.gov (United States)

    Charoenrein, Sanguansri; Preechathammawong, Nutsuda

    2012-10-01

    Repeatedly frozen and thawed rice starch gel affects quality. This study investigated how incorporating waxy rice flour (WF) and cassava starch (CS) in rice starch gel affects factors used to measure quality. When rice starch gels containing 0-2% WF and CS were subjected to 5 freeze-thaw cycles, both WF and CS reduced the syneresis in first few cycles. However CS was more effective in reducing syneresis than WF. The different composite arrangement of rice starch with WF or CS caused different mechanisms associated with the rice starch gel retardation of retrogradation, reduced the spongy structure and lowered syneresis. Both swollen granules of rice starch and CS caused an increase in the hardness of the unfrozen and freeze-thawed starch gel while highly swollen WF granules caused softer gels. These results suggested that WF and CS were effective in preserving quality in frozen rice starch based products. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Impact of α-amylase combined with hydrochloric acid hydrolysis on structure and digestion of waxy rice starch.

    Science.gov (United States)

    Li, Hongyan; Zhu, Yanqiao; Jiao, Aiquan; Zhao, Jianwei; Chen, Xiaoming; Wei, Benxi; Hu, Xiuting; Wu, Chunsen; Jin, Zhengyu; Tian, Yaoqi

    2013-04-01

    The structure and in vitro digestibility of native waxy rice starch by the combined hydrolysis of α-amylase and hydrochloric acid were investigated in this study. The combined hydrolysis technique generated higher hydrolysis rate and extent than the enzymatic hydrolysis. The granular appearance and chromatograph profile demonstrated that α-amylase and hydrochloric acid exhibited different patterns of hydrolysis. The rise in the ratio of absorbance 1047/1022cm(-1), the melting temperature range (Tc-To), and the melting enthalpy (ΔH) were observed during the combined hydrolysis. These results suggest that α-amylase simultaneously cleaves the amorphous and crystalline regions, whereas the amorphous regions of starch granules are preferentially hydrolyzed during the acid hydrolysis. Furthermore, the combined hydrolysis increased rapidly digestible starch (RDS) while decreased slowly digestible starch (SDS) and resistant starch (RS), indicating that the hydrolysis mode affected the digestion property of native waxy rice starch. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Comparison of waxy and normal potato starch remaining granules after chemical surface gelatinization: Pasting behavior and surface morphology

    NARCIS (Netherlands)

    Huang, J.; Chen Zenghong,; Xu, Yalun; Li, Hongliang; Liu, Shuxing; Yang, Daqing; Schols, H.A.

    2014-01-01

    o understand the contribution of granule inner portion to the pasting property of starch, waxy potato starch and two normal potato starches and their acetylated starch samples were subjected to chemical surface gelatinization by 3.8 mol/L CaCl2 to obtain remaining granules. Native and acetylated,

  13. Mechanical properties and solubility in water of corn starch-collagen composite films: Effect of starch type and concentrations.

    Science.gov (United States)

    Wang, Kun; Wang, Wenhang; Ye, Ran; Liu, Anjun; Xiao, Jingdong; Liu, Yaowei; Zhao, Yana

    2017-02-01

    This study investigated the possibility of enhancing the properties of collagen with three different maize starches: waxy maize starch, normal starch, and high amylose starch. Scanning electron microscopy images revealed that starch-collagen films had a rougher surface compared to pure collagen films which became smoother upon heating. Amylose starch and normal starch increased the tensile strength of unheated collagen films in both dry and wet states, while all starches increased tensile strength of collagen film by heating. Depending upon the amylose content and starch concentrations, film solubility in water decreased with the addition of starch. DSC thermograms demonstrated that addition of all starches improved the thermal stability of the collagen film. Moreover, X-ray diffraction results indicated that except for high amylose starch, the crystallinity of both starch and collagen was significantly decreased when subject to heating. FTIR spectra indicated that intermolecular interactions between starch and collagen were enhanced upon heating. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Material properties and glass transition temperatures of different thermoplastic starches after extrusion processing

    NARCIS (Netherlands)

    Janssen, Léon P.B.M.; Karman, Andre P.; Graaf, Robbert A. de

    Four different starch sources, namely waxy maize, wheat, potato and pea starch were extruded with the plasticizer glycerol, the latter in concentrations of 15, 20 and 25% (w/w). The glass transition temperatures of the resulting thermoplastic products were measured by Dynamic Mechanical Thermal

  15. Sugarcane starch: quantitative determination and characterization

    Directory of Open Access Journals (Sweden)

    Joelise de Alencar Figueira

    2011-09-01

    Full Text Available Starch is found in sugarcane as a storage polysaccharide. Starch concentrations vary widely depending on the country, variety, developmental stage, and growth conditions. The purpose of this study was to determine the starch content in different varieties of sugarcane, between May and November 2007, and some characteristics of sugarcane starch such as structure and granules size; gelatinization temperature; starch solution filterability; and susceptibility to glucoamylase, pullulanase, and commercial bacterial and fungal α-amylase enzymes. Susceptibility to debranching amylolytic isoamylase enzyme from Flavobacterium sp. was also tested. Sugarcane starch had spherical shape with a diameter of 1-3 µm. Sugarcane starch formed complexes with iodine, which showed greater absorption in the range of 540 to 620 nm. Sugarcane starch showed higher susceptibility to glucoamylase compared to that of waxy maize, cassava, and potato starch. Sugarcane starch also showed susceptibility to debranching amylolytic pullulanases similar to that of waxy rice starch. It also showed susceptibility to α-amylase from Bacillus subtilis, Bacillus licheniformis, and Aspergillus oryzae similar to that of the other tested starches producing glucose, maltose, maltotriose, maltotetraose, maltopentose and limit α- dextrin.

  16. Mechanical, barrier and morphological properties of starch nanocrystals-reinforced pea starch films.

    Science.gov (United States)

    Li, Xiaojing; Qiu, Chao; Ji, Na; Sun, Cuixia; Xiong, Liu; Sun, Qingjie

    2015-05-05

    To characterize the pea starch films reinforced with waxy maize starch nanocrystals, the mechanical, water vapor barrier and morphological properties of the composite films were investigated. The addition of starch nanocrystals increased the tensile strength of the composite films, and the value of tensile strength of the composite films was highest when starch nanocrystals content was 5% (w/w). The moisture content (%), water vapor permeability, and water-vapor transmission rate of the composite films significantly decreased as starch nanocrystals content increased. When their starch nanocrystals content was 1-5%, the starch nanocrystals dispersed homogeneously in the composite films, resulting in a relatively smooth and compact film surface and better thermal stability. However, when starch nanocrystals content was more than 7%, the starch nanocrystals began to aggregate, which resulted in the surface of the composite films developing a longitudinal fibrous structure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Resistant starch but not enzymatic treated waxy maize delays development of diabetes in Zucker Diabetic Fatty rats

    DEFF Research Database (Denmark)

    Hedemann, Mette Skou; Hermansen, Kjeld; Pedersen, Sven

    2017-01-01

    excretion during week 8 in rats fed the GLU and EMS diets than that of rats fed S and RS showed that they were diabetic. Urinary nontargeted metabolomics revealed that the diabetic state of rats fed S, GLU, and EMS diets influenced microbial metabolism, as well as amino acid, lipid, and vitamin metabolism......Background: The incidence of type 2 diabetes (T2D) is increasing worldwide, and nutritional management of circulating glucose may be a strategic tool in the prevention of T2D. Objective: We studied whether enzymatically modified waxy maize with an increased degree of branching delayed the onset...... glucose concentrations in feed-deprived rats, none of the groups developed diabetes. However, in week 9, plasma glucose after feed deprivation was significantly lower in rats fed the S and RS diets (13.5 mmol/L) than in rats fed the GLU and EMS diets (17.0–18.9 mmol/L), and rats fed RS had lower HbA1c (4...

  18. Preparation of stable Pickering emulsions with short, medium and long chain fats and starch nanocrystals and their in vitro digestion properties

    Science.gov (United States)

    Pickering emulsions are receiving more attention as delivery systems in food and pharmaceuticals because they can be formulated with nontoxic food ingredients to form stable emulsions. In this study, 40-100 nm starch nanocrystals (SNCs) prepared from acid hydrolysis of waxy maize starches were used ...

  19. Influence of botanic origin and amylose content on the morphology of starch nanocrystals

    Science.gov (United States)

    LeCorre, Déborah; Bras, Julien; Dufresne, Alain

    2011-12-01

    Starch nanocrystals (SNC) are crystalline platelets resulting from the disruption of the semi-crystalline structure of starch granules by the acid hydrolysis of amorphous parts. The aim of this study was to assess the influence of botanic origin and amylose content of native starches on the morphology and properties of resulting nanoparticles. SNC were prepared from five different starches normal maize, high amylose maize, waxy maize, potato, and wheat; covering three botanic origins, two crystalline types, and three range of amylose content (0, 25, and 70%) for maize starch. Different types of nanocrystals were obtained with a thickness ranging between 4 and 8 nm and diameter from about 50 to 120 nm depending on the source. The comparison of their morphology, crystallinity, and rheological properties is proposed for the first time. For the same amylose content, maize, potato, and wheat resulted in rather similar size and crystallinity of SNC proving the limited influence of the botanic origin. For the same botanic origin (maize), differences in size were more important indicating the influence of the amylopectin content. Also, particles tended to show square shapes with increasing native starch's amylopectin content and A-type crystalinity. Thus, only high amylose content starches should be avoided to prepare SNC.

  20. Production of starch nanoparticles by dissolution and non-solvent precipitation for use in food-grade Pickering emulsions.

    Science.gov (United States)

    Saari, Hisfazilah; Fuentes, Catalina; Sjöö, Malin; Rayner, Marilyn; Wahlgren, Marie

    2017-02-10

    The aim of this study was to investigate non-solvent precipitation of starch to produce nanoparticles that could be used in Pickering emulsions. The material used was waxy maize, modified with octenyl succinic anhydride. Different methods of non-solvent precipitation were investigated, and a method based on direct mixing of an 8% starch solution and ethanol (ratio 1:1) was found to produce the smallest particles. The particle size was measured using AFM and AF4, and was found to be in the range 100-200nm. However, both larger particles and aggregates of nanoparticles were observed. The emulsion produced using the precipitated starch particles had a droplet size that between 0.5 and 45μm, compared to emulsions produced from waxy maize granules, in which had a size of 10-100μm. The drop in size contributed to increased stability against creaming. The amount of starch used for emulsion stabilization could also be substantially reduced. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  1. Influence of botanic origin and amylose content on the morphology of starch nanocrystals

    International Nuclear Information System (INIS)

    LeCorre, Déborah; Bras, Julien; Dufresne, Alain

    2011-01-01

    Starch nanocrystals (SNC) are crystalline platelets resulting from the disruption of the semi-crystalline structure of starch granules by the acid hydrolysis of amorphous parts. The aim of this study was to assess the influence of botanic origin and amylose content of native starches on the morphology and properties of resulting nanoparticles. SNC were prepared from five different starches normal maize, high amylose maize, waxy maize, potato, and wheat; covering three botanic origins, two crystalline types, and three range of amylose content (0, 25, and 70%) for maize starch. Different types of nanocrystals were obtained with a thickness ranging between 4 and 8 nm and diameter from about 50 to 120 nm depending on the source. The comparison of their morphology, crystallinity, and rheological properties is proposed for the first time. For the same amylose content, maize, potato, and wheat resulted in rather similar size and crystallinity of SNC proving the limited influence of the botanic origin. For the same botanic origin (maize), differences in size were more important indicating the influence of the amylopectin content. Also, particles tended to show square shapes with increasing native starch’s amylopectin content and A-type crystalinity. Thus, only high amylose content starches should be avoided to prepare SNC.

  2. Physical and structural changes induced by high pressure on corn starch, rice flour and waxy rice flour.

    Science.gov (United States)

    Cappa, Carola; Lucisano, Mara; Barbosa-Cánovas, Gustavo V; Mariotti, Manuela

    2016-07-01

    The impact of high pressure (HP) processing on corn starch, rice flour and waxy rice flour was investigated as a function of pressure level (400MPa; 600MPa), pressure holding time (5min; 10min), and temperature (20°C; 40°C). Samples were pre-conditioned (final moisture level: 40g/100g) before HP treatments. Both the HP treated and the untreated raw materials were evaluated for pasting properties and solvent retention capacity, and investigated by differential scanning calorimetry, X-ray diffractometry and environmental scanning electron microscopy. Different pasting behaviors and solvent retention capacities were evidenced according to the applied pressure. Corn starch presented a slower gelatinization trend when treated at 600MPa. Corn starch and rice flour treated at 600MPa showed a higher retention capacity of carbonate and lactic acid solvents, respectively. Differential scanning calorimetry and environmental scanning electron microscopy investigations highlighted that HP affected the starch structure of rice flour and corn starch. Few variations were evidenced in waxy rice flour. These results can assist in advancing the HP processing knowledge, as the possibility to successfully process raw samples in a very high sample-to-water concentration level was evidenced. This work investigates the effect of high pressure as a potential technique to modify the processing characteristics of starchy materials without using high temperature. In this case the starches were processed in the powder form - and not as a slurry as in previously reported studies - showing the flexibility of the HP treatment. The relevance for industrial application is the possibility to change the structure of flour starches, and thus modifying the processability of the mentioned products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Effect of waxy (Low Amylose) on Fungal Infection of Sorghum Grain.

    Science.gov (United States)

    Funnell-Harris, Deanna L; Sattler, Scott E; O'Neill, Patrick M; Eskridge, Kent M; Pedersen, Jeffrey F

    2015-06-01

    Loss of function mutations in waxy, encoding granule bound starch synthase (GBSS) that synthesizes amylose, results in starch granules containing mostly amylopectin. Low amylose grain with altered starch properties has increased usability for feed, food, and grain-based ethanol. In sorghum, two classes of waxy (wx) alleles had been characterized for absence or presence of GBSS: wx(a) (GBSS(-)) and wx(b) (GBSS(+), with reduced activity). Field-grown grain of wild-type; waxy, GBSS(-); and waxy, GBSS(+) plant introduction accessions were screened for fungal infection. Overall, results showed that waxy grains were not more susceptible than wild-type. GBSS(-) and wild-type grain had similar infection levels. However, height was a factor with waxy, GBSS(+) lines: short accessions (wx(b) allele) were more susceptible than tall accessions (undescribed allele). In greenhouse experiments, grain from accessions and near-isogenic wx(a), wx(b), and wild-type lines were inoculated with Alternaria sp., Fusarium thapsinum, and Curvularia sorghina to analyze germination and seedling fitness. As a group, waxy lines were not more susceptible to these pathogens than wild-type, supporting field evaluations. After C. sorghina and F. thapsinum inoculations most waxy and wild-type lines had reduced emergence, survival, and seedling weights. These results are valuable for developing waxy hybrids with resistance to grain-infecting fungi.

  4. Mixture design of rice flour, maize starch and wheat starch for optimization of gluten free bread quality.

    Science.gov (United States)

    Mancebo, Camino M; Merino, Cristina; Martínez, Mario M; Gómez, Manuel

    2015-10-01

    Gluten-free bread production requires gluten-free flours or starches. Rice flour and maize starch are two of the most commonly used raw materials. Over recent years, gluten-free wheat starch is available on the market. The aim of this research was to optimize mixtures of rice flour, maize starch and wheat starch using an experimental mixture design. For this purpose, dough rheology and its fermentation behaviour were studied. Quality bread parameters such as specific volume, texture, cell structure, colour and acceptability were also analysed. Generally, starch incorporation reduced G* and increased the bread specific volume and cell density, but the breads obtained were paler than the rice flour breads. Comparing the starches, wheat starch breads had better overall acceptability and had a greater volume than maize-starch bread. The highest value for sensorial acceptability corresponded to the bread produced with a mixture of rice flour (59 g/100 g) and wheat starch (41 g/100 g).

  5. African maize porridge: a food with slow in vitro starch digestibility

    CSIR Research Space (South Africa)

    Van der Merwe, B

    2001-02-15

    Full Text Available maize porridge to bread. An in vitro method was used to determine the starch digestibility of African maize porridge compared to other cereal foods. Maize porridge had a much lower in vitro starch digestibility than white bread (P<0.001). There was a...

  6. Oven-drying reduces ruminal starch degradation in maize kernels

    NARCIS (Netherlands)

    Ali, M.; Cone, J.W.; Hendriks, W.H.; Struik, P.C.

    2014-01-01

    The degradation of starch largely determines the feeding value of maize (Zea mays L.) for dairy cows. Normally, maize kernels are dried and ground before chemical analysis and determining degradation characteristics, whereas cows eat and digest fresh material. Drying the moist maize kernels

  7. Electron beam technology for modifying the functional properties of maize starch

    International Nuclear Information System (INIS)

    Nemtanu, M.R.; Minea, R.; Kahraman, K.; Koksel, H.; Ng, P.K.W.; Popescu, M.I.; Mitru, E.

    2007-01-01

    Maize starch is a versatile biopolymer with a wide field of applications (e.g. foods, pharmaceutical products, adhesives, etc.). Nowadays there is a continuous and intensive search for new methods and techniques to modify its functional properties due to the fact that native form of starch may exhibit some disadvantages in certain applications. Radiation technology is frequently used to change the properties of different polymeric materials. Thus, the goal of the work is to discuss the application of accelerated electron beams on maize starch in the view of changing some of its functional properties. Maize starch has been irradiated with doses up to 52.15 kGy by using electron beam technology and the modifications of differential scanning calorimetry (DSC) and pasting characteristics, paste clarity, freezing and thawing stability as well as colorimetric characteristics have been investigated. The results of the study revealed that the measured properties can be modified by electron beam treatment and, therefore, this method can be an efficient and ecological alternative to obtain modified maize starch

  8. Effect of maize starch concentration in the diet on starch and cell wall digestion in the dairy cow.

    Science.gov (United States)

    van Vuuren, A M; Hindle, V A; Klop, A; Cone, J W

    2010-06-01

    An in vivo experiment was performed to determine the effect of level of maize starch in the diet on digestion and site of digestion of organic matter, starch and neutral detergent fibre (NDF). In a repeated change-over design experiment, three cows fitted with a rumen cannula and T-piece cannulae in duodenum and ileum received a low-starch (12% of ration dry matter) and a high-starch (33% of ration dry matter) diet. Starch level was increased by exchanging dried sugar beet pulp by ground maize. After a 2-week adaptation period, feed intake, rumen fermentation parameters (in vivo and in situ), intestinal flows, faecal excretion of organic matter, starch and NDF were estimated. When the high-starch diet was fed, dry matter intake was higher (19.0 kg/day vs. 17.8 kg/day), and total tract digestibility of organic matter, starch and NDF was lower when the low-starch diet was fed. Maize starch concentration had no significant effect on rumen pH and volatile fatty acid concentration nor on the site of digestion of organic matter and starch and rate of passage of ytterbium-labelled forage. On the high-starch diet, an extra 1.3 kg of maize starch was supplied at the duodenum in relation to the low-starch diet, but only an extra 0.3 kg of starch was digested in the small intestine. Digestion of NDF was only apparent in the rumen and was lower on the high-starch diet than on the low-starch diet, mainly attributed to the reduction in sugar beet pulp in the high-starch diet. It was concluded that without the correction for the reduction in NDF digestion in the rumen, the extra supply of glucogenic (glucose and propionic acid) and ketogenic nutrients (acetic and butyric acid) by supplemented starch will be overestimated. The mechanisms responsible for these effects need to be addressed in feed evaluation.

  9. In vitro utilization of amylopectin and high-amylose maize (Amylomaize) starch granules by human colonic bacteria.

    Science.gov (United States)

    Wang, X; Conway, P L; Brown, I L; Evans, A J

    1999-11-01

    It has been well established that a certain amount of ingested starch can escape digestion in the human small intestine and consequently enters the large intestine, where it may serve as a carbon source for bacterial fermentation. Thirty-eight types of human colonic bacteria were screened for their capacity to utilize soluble starch, gelatinized amylopectin maize starch, and high-amylose maize starch granules by measuring the clear zones on starch agar plates. The six cultures which produced clear zones on amylopectin maize starch- containing plates were selected for further studies for utilization of amylopectin maize starch and high-amylose maize starch granules A (amylose; Sigma) and B (Culture Pro 958N). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used to detect bacterial starch-degrading enzymes. It was demonstrated that Bifidobacterium spp., Bacteroides spp., Fusobacterium spp., and strains of Eubacterium, Clostridium, Streptococcus, and Propionibacterium could hydrolyze the gelatinized amylopectin maize starch, while only Bifidobacterium spp. and Clostridium butyricum could efficiently utilize high-amylose maize starch granules. In fact, C. butyricum and Bifidobacterium spp. had higher specific growth rates in the autoclaved medium containing high-amylose maize starch granules and hydrolyzed 80 and 40% of the amylose, respectively. Starch-degrading enzymes were cell bound on Bifidobacterium and Bacteroides cells and were extracellular for C. butyricum. Active staining for starch-degrading enzymes on SDS-PAGE gels showed that the Bifidobacterium cells produced several starch-degrading enzymes with high relative molecular (M(r)) weights (>160,000), medium-sized relative molecular weights (>66,000), and low relative molecular weights (spp. and C. butyricum degraded and utilized granules of amylomaize starch.

  10. Maize starch biphasic pasting curves

    CSIR Research Space (South Africa)

    Nelles, EM

    2000-05-01

    Full Text Available (150–500 rev/min). The second pasting peak is attributed to the formation of complexes between amylose and low levels of lipid present in maize starch. When lipid was partially removed by extraction with methanol-chloroform (1: 3 v/v), the second...

  11. Tribology of swollen starch granule suspensions from maize and potato.

    Science.gov (United States)

    Zhang, Bin; Selway, Nichola; Shelat, Kinnari J; Dhital, Sushil; Stokes, Jason R; Gidley, Michael J

    2017-01-02

    The tribological properties of suspensions of cooked swollen starch granules are characterised for systems based on maize starch and potato starch. These systems are known as granule 'ghosts' due to the release (and removal) of polymer from their structure during cooking. Maize starch ghosts are less swollen than potato starch ghosts, resulting in a higher packing concentration and greater mechanical stability. In a soft-tribological contact, maize ghost suspensions reduce friction compared to the solvent (water), generate bell-shaped tribological profiles characteristic of particle entrainment and show a marked concentration dependence, whereas potato ghost suspensions exhibit lubrication behaviour similar to water. Microscopy analysis of the samples following tribological testing suggests that this is due to the rapid break-up of potato ghosts under the shear and rolling conditions within the tribological contact. A reduction in the small deformation moduli (associated with a weak gel structure) is also observed when the potato ghost suspensions are subjected to steady shear using parallel plate rheometry; both microscopy and particle size analysis show that this is accompanied by the partial shear-induced breakage of ghost particles. This interplay between particle microstructure and the resultant rheological and lubrication dynamics of starch ghost suspensions contributes to an enhanced mechanistic understanding of textural and other functional properties of cooked starches in food and other applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Occurrence of amylose-lipid complexes in teff and maize starch biphasic pastes

    CSIR Research Space (South Africa)

    Wokadala, OC

    2012-09-01

    Full Text Available The occurrence of amylose–lipid complexes was determined in maize and teff starch biphasic pastes i.e. peak viscosity pastes at short and prolonged pasting times. Maize and teff starches were pasted for 11.5 and 130 min with or without added stearic...

  13. Barley grain constituents, starch composition, and structure affect starch in vitro enzymatic hydrolysis.

    Science.gov (United States)

    Asare, Eric K; Jaiswal, Sarita; Maley, Jason; Båga, Monica; Sammynaiken, Ramaswami; Rossnagel, Brian G; Chibbar, Ravindra N

    2011-05-11

    The relationship between starch physical properties and enzymatic hydrolysis was determined using ten different hulless barley genotypes with variable carbohydrate composition. The ten barley genotypes included one normal starch (CDC McGwire), three increased amylose starches (SH99250, SH99073, and SB94893), and six waxy starches (CDC Alamo, CDC Fibar, CDC Candle, Waxy Betzes, CDC Rattan, and SB94912). Total starch concentration positively influenced thousand grain weight (TGW) (r(2) = 0.70, p starch concentration (r(2) = -0.80, p hydrolysis of pure starch (r(2) = -0.67, p starch concentration (r(2) = 0.46, p starch (RS) in meal and pure starch samples. The rate of starch hydrolysis was high in pure starch samples as compared to meal samples. Enzymatic hydrolysis rate both in meal and pure starch samples followed the order waxy > normal > increased amylose. Rapidly digestible starch (RDS) increased with a decrease in amylose concentration. Atomic force microscopy (AFM) analysis revealed a higher polydispersity index of amylose in CDC McGwire and increased amylose genotypes which could contribute to their reduced enzymatic hydrolysis, compared to waxy starch genotypes. Increased β-glucan and dietary fiber concentration also reduced the enzymatic hydrolysis of meal samples. An average linkage cluster analysis dendrogram revealed that variation in amylose concentration significantly (p starch concentration in meal and pure starch samples. RS is also associated with B-type granules (5-15 μm) and the amylopectin F-III (19-36 DP) fraction. In conclusion, the results suggest that barley genotype SH99250 with less decrease in grain weight in comparison to that of other increased amylose genotypes (SH99073 and SH94893) could be a promising genotype to develop cultivars with increased amylose grain starch without compromising grain weight and yield.

  14. Extrusion induced low-order starch matrices: Enzymic hydrolysis and structure.

    Science.gov (United States)

    Zhang, Bin; Dhital, Sushil; Flanagan, Bernadine M; Luckman, Paul; Halley, Peter J; Gidley, Michael J

    2015-12-10

    Waxy, normal and highwaymen maize starches were extruded with water as sole plasticizer to achieve low-order starch matrices. Of the three starches, we found that only high-amylose extrudate showed lower digestion rate/extent than starches cooked in excess water. The ordered structure of high-amylose starches in cooked and extruded forms was similar, as judged by NMR, XRD and DSC techniques, but enzyme resistance was much greater for extruded forms. Size exclusion chromatography suggested that longer chains were involved in enzyme resistance. We propose that the local molecular density of packing of amylose chains can control the digestion kinetics rather than just crystallinity, with the principle being that density sufficient to either prevent/limit binding and/or slow down catalysis can be achieved by dense amorphous packing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Effects of cooking methods and starch structures on starch hydrolysis rates of rice.

    Science.gov (United States)

    Reed, Michael O; Ai, Yongfeng; Leutcher, Josh L; Jane, Jay-lin

    2013-07-01

    This study aimed to understand effects of different cooking methods, including steamed, pilaf, and traditional stir-fried, on starch hydrolysis rates of rice. Rice grains of 3 varieties, japonica, indica, and waxy, were used for the study. Rice starch was isolated from the grain and characterized. Amylose contents of starches from japonica, indica, and waxy rice were 13.5%, 18.0%, and 0.9%, respectively. The onset gelatinization temperature of indica starch (71.6 °C) was higher than that of the japonica and waxy starch (56.0 and 56.8 °C, respectively). The difference was attributed to longer amylopectin branch chains of the indica starch. Starch hydrolysis rates and resistant starch (RS) contents of the rice varieties differed after they were cooked using different methods. Stir-fried rice displayed the least starch hydrolysis rate followed by pilaf rice and steamed rice for each rice variety. RS contents of freshly steamed japonica, indica, and waxy rice were 0.7%, 6.6%, and 1.3%, respectively; those of rice pilaf were 12.1%, 13.2%, and 3.4%, respectively; and the stir-fried rice displayed the largest RS contents of 15.8%, 16.6%, and 12.1%, respectively. Mechanisms of the large RS contents of the stir-fried rice were studied. With the least starch hydrolysis rate and the largest RS content, stir-fried rice would be a desirable way of preparing rice for food to reduce postprandial blood glucose and insulin responses and to improve colon health of humans. © 2013 Institute of Food Technologists®

  16. Genome-wide association study identifies candidate genes for starch content regulation in maize kernels

    Directory of Open Access Journals (Sweden)

    Na Liu

    2016-07-01

    Full Text Available Kernel starch content is an important trait in maize (Zea mays L. as it accounts for 65% to 75% of the dry kernel weight and positively correlates with seed yield. A number of starch synthesis-related genes have been identified in maize in recent years. However, many loci underlying variation in starch content among maize inbred lines still remain to be identified. The current study is a genome-wide association study that used a set of 263 maize inbred lines. In this panel, the average kernel starch content was 66.99%, ranging from 60.60% to 71.58% over the three study years. These inbred lines were genotyped with the SNP50 BeadChip maize array, which is comprised of 56,110 evenly spaced, random SNPs. Population structure was controlled by a mixed linear model (MLM as implemented in the software package TASSEL. After the statistical analyses, four SNPs were identified as significantly associated with starch content (P ≤ 0.0001, among which one each are located on chromosomes 1 and 5 and two are on chromosome 2. Furthermore, 77 candidate genes associated with starch synthesis were found within the 100-kb intervals containing these four QTLs, and four highly associated genes were within 20-kb intervals of the associated SNPs. Among the four genes, Glucose-1-phosphate adenylyltransferase (APS1; Gene ID GRMZM2G163437 is known as an important regulator of kernel starch content. The identified SNPs, QTLs, and candidate genes may not only be readily used for germplasm improvement by marker-assisted selection in breeding, but can also elucidate the genetic basis of starch content. Further studies on these identified candidate genes may help determine the molecular mechanisms regulating kernel starch content in maize and other important cereal crops.

  17. Mechanisms Underlying the Formation of Complexes between Maize Starch and Lipids.

    Science.gov (United States)

    Chao, Chen; Yu, Jinglin; Wang, Shuo; Copeland, Les; Wang, Shujun

    2018-01-10

    This study aimed to reveal the mechanism of formation of complexes between native maize starch (NMS) and different types of lipids, namely palmitic acid (PA), monopalmitate glycerol (MPG), dipalmitate glycerol (DPG), and tripalmitate glycerol (TPG). The complexing index followed the order of MPG (96.3%) > PA (41.8%) > TPG (8.3%) > DPG (1.1%), indicating that MPG formed more complexes with NMS than PA, and that few complexes were formed between NMS and DPG and TPG. The NMS-PA complex presented higher thermal transition temperatures and lower enthalpy change than the NMS-MPG complex, indicating that although MPG formed more starch complexes, they had less stable crystalline structures than the complex between NMS and PA. X-ray diffraction (XRD) and Raman spectroscopy showed that both MPG and PA formed V-type crystalline structures with NMS, and confirmed that no complexes were formed between NMS and DPG and TPG. We conclude that the monoglyceride formed more starch-lipid complex with maize starch than PA, but that the monoglyceride complex had a less stable structure than that formed with PA. The di- and triglycerides did not form complexes with maize starch.

  18. Starch and cellulose nanocrystals together into thermoplastic starch bionanocomposites.

    Science.gov (United States)

    González, Kizkitza; Retegi, Aloña; González, Alba; Eceiza, Arantxa; Gabilondo, Nagore

    2015-03-06

    In the present work, thermoplastic maize starch based bionanocomposites were prepared as transparent films, plasticized with 35% of glycerol and reinforced with both waxy starch (WSNC) and cellulose nanocrystals (CNC), previously extracted by acidic hydrolysis. The influence of the nanofiller content was evaluated at 1 wt.%, 2.5 wt.% and 5 wt.% of WSNC. The effect of adding the two different nanoparticles at 1 wt.% was also investigated. As determined by tensile measurements, mechanical properties were improved at any composition of WSNC. Water vapour permeance values maintained constant, whereas barrier properties to oxygen reduced in a 70%, indicating the effectiveness of hydrogen bonding at the interphase. The use of CNC or CNC and WSNC upgraded mechanical results, but no significant differences in barrier properties were obtained. A homogeneous distribution of the nanofillers was demonstrated by atomic force microscopy, and a shift of the two relaxation peaks to higher temperatures was detected by dynamic mechanical analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Copper-mediated homogeneous living radical polymerization of acrylamide with waxy potato starch-based macroinitiator.

    Science.gov (United States)

    Fan, Yifei; Cao, Huatang; van Mastrigt, Frank; Pei, Yutao; Picchioni, Francesco

    2018-07-15

    Cu 0 -mediated living radical polymerization (Cu 0 -mediated LRP) was employed in this research for the synthesis of starch-g-polyacrylamide (St-g-PAM). The use of a controlled radical grafting technique is necessary, as compared to the traditional free-radical polymerization methods, in order to obtain a well-defined structure of the final product. This is in turn essential for studying the relationship between such structure and the end-properties. Waxy potato starch-based water-soluble macroinitiator was first synthesized by esterification with 2-bromopropionyl bromide in the mixture of dimethylacetamide and lithium chloride. With the obtained macroinitiator, St-g-PAM was homogeneously synthesized by aqueous Cu 0 -mediated LRP using CuBr/hexamethylated tris(2-aminoethyl)amine (Me 6 Tren) as catalyst. The successful synthesis of the macroinitiator and St-g-PAM was proved by NMR, FT-IR, SEM, XRD and TGA analysis. The molecular weight and polydispersity of PAM chains were analyzed by gel permeation chromatography (GPC) after hydrolyzing the starch backbone. Monomer conversion was monitored by gas chromatography (GC), on the basis of which the kinetics were determined. A preliminarily rheological study was performed on aqueous solutions of the prepared materials. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Use of rice straw and radiation-modified maize starch/acrylonitrile in the treatment of wastewater

    International Nuclear Information System (INIS)

    Abdel-Aal, S.E.; Gad, Y.H.; Dessouki, A.M.

    2006-01-01

    Graft copolymerization of acrylonitrile onto maize starch by a simultaneous irradiation technique using gamma-rays as the initiator was studied with regard to the various parameters of importance: the monomer-to-maize starch ratio and total dose (kGy). The water absorption of the modified maize starch was measured. The starch modified by acrylonitrile gives low water absorbance. Conversion of the copolymer to the amidoxime form gives high swelling. The gel (%) and the grafting efficiency were measured. An investigation was carried out to study the adsorption of basic violet 7, basic blue 3, direct yellow 50 and acid red 37 from aqueous solutions by the water-insoluble modified starch containing amidoxime groups and rice straw. The effects of initial pH of the solution, pollutant concentration and treatment time on the adsorption were studied and it was found that the maximum adsorption was at 1:2 (starch/acrylonitrile) at irradiation dose 30 kGy

  1. Grain filling, starch degradation and feeding value of maize for ruminants

    NARCIS (Netherlands)

    Ali, M.

    2013-01-01

    Keywords; Maize (Zea mays L), Genotypes, Grain filling, Growth temperature, Kernels, Gas production, Starch degradation, Oven-drying, Silage, Ensiling temperature, Ensiling duration, Feeding value, Lactating cows

    Maize (Zea mays L.) is a major component in the ration of dairy cows in

  2. In situ study starch gelatinization under ultra-high hydrostatic pressure using synchrotron SAXS

    KAUST Repository

    Yang, Zhi

    2015-12-13

    The gelatinization of waxy (very low amylose) corn and potato starches by high hydrostatic pressure (HHP) (up to ∼1 GPa) was investigated in situ using synchrotron small-angle X-ray scattering (SAXS) on samples held in a diamond anvil cell (DAC). The starch pastes, made by mixing starch and water in a 1:1 ratio (by weight), were pressurized and measured at room temperature. During HHP, both SAXS peak areas (corresponding to the lamellar phase) of waxy corn and potato starches decreased suggesting the starch gelatinization increases with increasing pressure. As pressure increased, lamellar peak broadened and the power law exponent increased in low q region. 1D linear correlation function was further employed to analyse SAXS data. For both waxy potato and waxy corn starches, the long period length and the average thickness of amorphous layers decreased when the pressure increased. While for both of waxy starches, the thickness of the crystalline layer first increased, then decreased when the pressure increased. The former is probably due to the out-phasing of starch molecules, and the latter is due to the water penetrating into the crystalline region during gelatinization and to pressure induced compression.

  3. Influência do amido e carragena nas propriedades texturiais de surimi de tilápia (Oreochomis sp. Influence of starch and carrageenan on textural properties on tilapia (Oreochomis sp. surimi

    Directory of Open Access Journals (Sweden)

    Pedro Luiz Manique BARRETO

    1999-05-01

    Full Text Available Foram utilizadas carcaças residuais da filetagem industrial de tilápias (Oreochomis sp. na obtenção de carne de pescado separada mecanicamente (CPSM para elaboração de surimi. Amidos de diferentes fontes, como milho ceroso, milho ceroso modificado e mandioca, e o polissacarídeo carragena foram usados como ingredientes, e estudados seus efeitos no comportamento do gel de surimi. O surimi elaborado a partir de carcaças residuais da filetagem industrial, apresentou um rendimento final de 25% (peso/peso. A análise instrumental de textura apresentou um efeito fortalecedor, em relação à força de penetração dos amidos no gel de surimi, sendo esse efeito proporcional à viscosidade (r = 0,81, pFillet frames from industrial processing of tilapias (Oreochomis sp. was utilized to obtained minced meat for surimi. Starch from differents sources ( waxy maize starch, modified waxy maize starch and tapioca and the polysaccharide carrageenan was utilized like additives, and then studied their effects on surimi gel behaviour. Tilapia surimi showed a yield of 25% (weight/weight. The instrumental analysis of texture showed a strong effect of starch in relation to penetration force in surimi gel, these effect was proportional to starches viscosity (r = 0,81, p<0,05, studied by Brabender amylograph, by other hand, both starch and carrageenan showed a decresed in viscoelasticity of surimi gel (p<0,005.

  4. Identification and phylogenetic analysis of a novel starch synthase in maize

    Directory of Open Access Journals (Sweden)

    Hanmei eLiu

    2015-11-01

    Full Text Available Starch is an important reserve of carbon and energy in plants, providing the majority of calories in the human diet and animal feed. Its synthesis is orchestrated by several key enzymes, and the amount and structure of starch, affecting crop yield and quality, are determined mainly by starch synthase (SS activity. To date, five SS isoforms, including SSI-IV and Granule Bound Starch Synthase (GBSS have been identified and their physiological functions have been well characterized. Here, we report the identification of a new SS isoform in maize, designated SSV. By searching sequenced genomes, SSV has been found in all green plants with conserved sequences and gene structures. Our phylogenetic analysis based on 780 base pairs has suggested that SSIV and SSV resulted from a gene duplication event, which may have occurred before the algae formation. An expression profile analysis of SSV in maize has indicated that ZmSSV is mainly transcribed in the kernel and ear leaf during the grain filling stage, which is partly similar to other SS isoforms. Therefore, it is likely that SSV may play an important role in starch biosynthesis. Subsequent analysis of SSV function may facilitate understanding the mechanism of starch granules formation, number and structure.

  5. Effect of maize starch concentration in the diet on starch and cell wall digestion in the dairy cow

    NARCIS (Netherlands)

    Vuuren, van A.M.; Hindle, V.A.; Klop, A.; Cone, J.W.

    2010-01-01

    An in vivo experiment was performed to determine the effect of level of maize starch in the diet on digestion and site of digestion of organic matter, starch and neutral detergent fibre (NDF). In a repeated change-over design experiment, three cows fitted with a rumen cannula and T-piece cannulae in

  6. Molecular characterization and in vitro digestibility of normal maize starch hydrolyzed by maltotriohydrolase.

    Science.gov (United States)

    Wu, Chunsen; Zhou, Xing; Wei, Benxi; Li, Hongyan; Tian, Yaoqi; Ali, Barkat; Xu, Xueming; Jin, Zhengyu

    2015-03-01

    Normal maize starch was hydrolyzed by the glucan 1,4-alpha-maltotriohydrolase (AMTS), and the changes in molecular characteristics and digestibility of starch were evaluated. Upon hydrolysis, maltotriose purity could be modified via controlled AMTS action. The transglycosylation of AMTS possibly happened during the extensive hydrolysis of starch. No single linear association between the z-average radius of gyration (Rz), conformation exponent (ν), apparent molecular density (ρ) and weight average molar mass (Mw) of the starch molecules could be established in the entire process of AMTS hydrolysis. Under mild hydrolysis (≤240 min), Rz and ρ displayed linear relationships with Mw. However, transitions of ν, Rz and ρ appeared after extensive hydrolysis (>240 min), due to the increase in the amount of short chains [degree of polymerization (DP)≤5]. The spherical starch molecule tends toward less compact and a structure between sphere and random coil after extensive hydrolysis. And the increase in the amount of DP≤12 chains and reduction of molecular dimension after AMTS hydrolysis restrict the digestibility of starch. The results of this study suggest that normal maize starch can be modulated by AMTS to produce the desired maltotriose syrup, starch molecular characteristics, and starch digestibility. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Sugar uptake and starch biosynthesis by slices of developing maize endosperm

    International Nuclear Information System (INIS)

    Felker, F.C.; Liu, Kangchien; Shannon, J.C.

    1990-01-01

    14 C-Sugar uptake and incorporation into starch by slices of developing maize (Zea mays L.) endosperm were examined and compared with sugar uptake by maize endosperm-derived suspension cultures. Rates of sucrose, fructose, and D- and L-glucose uptake by slices were similar, whereas uptake rates for these sugars differed greatly in suspension cultures. Concentration dependence of sucrose, fructose, and D-glucose uptake was biphasic (consisting of linear plus saturable components) with suspension cultures but linear with slices. These and other differences suggest that endosperm slices are freely permeable to sugars. After diffusion into the slices, sugars were metabolized and incorporated into starch. Starch synthesis, but not sugar accumulation, was greatly reduced by 2.5 millimolar p-chloromercuribenzenesulfonic acid and 0.1 millimolar carbonyl cyanide m-chlorophenylhydrazone. Starch synthesis was dependent on kernel age and incubation temperature, but not on external pH (5 through 8). Competing sugars generally did not affect the distribution of 14 C among the soluble sugars extracted from endosperm slices incubated in 14 C-sugars. Competing hexoses reduced the incorporation of 14 C into starch, but competing sucrose did not, suggesting that sucrose is not a necessary intermediate in starch biosynthesis. The bidirectional permeability of endosperm slices to sugars makes the characterization of sugar transport into endosperm slices impossible, however the model system is useful for experiments dealing with starch biosynthesis which occurs in the metabolically active tissue

  8. Directly dated starch residues document early formative maize (Zea mays L.) in tropical Ecuador.

    Science.gov (United States)

    Zarrillo, Sonia; Pearsall, Deborah M; Raymond, J Scott; Tisdale, Mary Ann; Quon, Dugane J

    2008-04-01

    The study of maize (Zea mays L.) domestication has advanced from questions of its origins to the study-and debate-of its dietary role and the timing of its dispersal from Mexico. Because the investigation of maize's spread is hampered by poor preservation of macrobotanical remains in the Neotropics, research has focused on microbotanical remains whose contexts are often dated by association, leading some to question the dates assigned. Furthermore, some scholars have argued that maize was not introduced to southwestern Ecuador until approximately 4150-3850 calendar years before the present (cal B.P.), that it was used first and foremost as a fermented beverage in ceremonial contexts, and that it was not important in everyday subsistence, challenging previous studies based on maize starch and phytoliths. To further investigate these questions, we analyzed every-day cooking vessels, food-processing implements, and sediments for starch and phytoliths from an archaeological site in southwestern Ecuador constituting a small Early Formative village. Employing a new technique to recover starch granules from charred cooking-pot residues we show that maize was present, cultivated, and consumed here in domestic contexts by at least 5300-4950 cal B.P. Directly dating the residues by accelerator mass spectrometry (AMS) radiocarbon measurement, our results represent the earliest direct dates for maize in Early Formative Ecuadorian sites and provide further support that, once domesticated approximately 9000 calendar years ago, maize spread rapidly from southwestern Mexico to northwestern South America.

  9. Emulsion stabilizing capacity of intact starch granules modified by heat treatment or octenyl succinic anhydride.

    Science.gov (United States)

    Timgren, Anna; Rayner, Marilyn; Dejmek, Petr; Marku, Diana; Sjöö, Malin

    2013-03-01

    Starch granules are an interesting stabilizer candidate for food-grade Pickering emulsions. The stabilizing capacity of seven different intact starch granules for making oil-in-water emulsions has been the topic of this screening study. The starches were from quinoa; rice; maize; waxy varieties of rice, maize, and barley; and high-amylose maize. The starches were studied in their native state, heat treated, and modified by octenyl succinic anhydride (OSA). The effect of varying the continuous phase, both with and without salt in a phosphate buffer, was also studied. Quinoa, which had the smallest granule size, had the best capacity to stabilize oil drops, especially when the granules had been hydrophobically modified by heat treatment or by OSA. The average drop diameter (d 32) in these emulsions varied from 270 to 50 μm, where decreasing drop size and less aggregation was promoted by high starch concentration and absence of salt in the system. Of all the starch varieties studied, quinoa had the best overall emulsifying capacity, and OSA modified quinoa starch in particular. Although the size of the drops was relatively large, the drops themselves were in many instances extremely stable. In the cases where the system could stabilize droplets, even when they were so large that they were visible to the naked eye, they remained stable and the measured droplet sizes after 2 years of storage were essentially unchanged from the initial droplet size. This somewhat surprising result has been attributed to the thickness of the adsorbed starch layer providing steric stabilization. The starch particle-stabilized Pickering emulsion systems studied in this work has potential practical application such as being suitable for encapsulation of ingredients in food and pharmaceutical products.

  10. Examination of injection moulded thermoplastic maize starch

    Directory of Open Access Journals (Sweden)

    2007-12-01

    Full Text Available This paper focuses on the effect of the different injection moulding parameters and storing methods on injection moulded thermoplastic maize starch (TPS. The glycerol and water plasticized starch was processed in a twin screw extruder and then with an injection moulding machine to produce TPS dumbbell specimens. Different injection moulding set-ups and storing conditions were used to analyse the effects on the properties of thermoplastic starch. Investigated parameters were injection moulding pressure, holding pressure, and for the storage: storage at 50% relative humidity, and under ambient conditions. After processing the mechanical and shrinkage properties of the manufactured TPS were determined as a function of the ageing time. While conditioning, the characteristics of the TPS changed from a soft material to a rigid material. Although this main behaviour remained, the different injection moulding parameters changed the characteristics of TPS. Scanning electron microscope observations revealed the changes in the material on ageing.

  11. Starch degradation in rumen fluid as influenced by genotype, climatic conditions and maturity stage of maize, grown under controlled conditions

    NARCIS (Netherlands)

    Ali, M.; Cone, J.W.; Hendriks, W.H.; Struik, P.C.

    2014-01-01

    Starch is the major component of maize kernels, contributing significantly to the feeding value of forage maize when fed to ruminants. The effects of genotype, climatic conditions and maturity stage on starch content in the kernels and on in vitro starch degradability in rumen fluid were

  12. Influence of Wheat and Maize Starch on Fermentation in the Rumen, Duodenal Nutrient Flow and Nutrient Digestibility

    Directory of Open Access Journals (Sweden)

    Milan Šimko

    2010-01-01

    Full Text Available We investigated the effects of feeding diets with different starch sources on fermentation in the rumen, duodenal nutrient flow and nutrient digestibility. The basis of the diets was maize silage and alfalfa hay supplemented with wheat meal in diet W, or maize meal in diet M. The experiment was performed on four Black-Spotted bulls with mean live weight of 525 kg, which were fed twice daily at 06.30 and 18.30 h. Experimental animals were fitted with ruminal fistulae and duodenal T-shaped cannulae. Cr2O3 was used as a marker of nutrient flow to the duodenum. Rations were formulated so that the ratio of starch to crude fibre (CF was 2.1:1 and the percentage of CF was maintained at 17% (DM. Duodenal chymus was collected at 2-h time intervals. Starch origin significantly affected ruminal fermentation. Concentration of propionic, butyric and lactic acid was higher with wheat than with maize meal. When the maize meal was the source of starch there was a significantly higher flow of fat, CF, nitrogen-free extract, and starch into duodenum. Differences in duodenal flow of crude protein were not significant across the starch sources. Intake of wheat meal or maize meal increased duodenal flow relative to intake by 33% or 42 % respectively. The apparent digestibility of dry matter (76 ± 2%, crude protein (67 ± 0.9%, CF (64 ± 1.9%, nitrogen-free extract (82 ± 1.5% and organic matter (76 ± 1.3% was significantly higher by offering wheat meal.

  13. Determination of the gelatinization temperature of starch presented in maize flours

    Energy Technology Data Exchange (ETDEWEB)

    Coral, D F; Pineda-Gomez, P; Rosales-Rivera, A [Laboratorio de Magnetismo y Materiales Avanzados, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Colombia, Manizales, Caldas (Colombia); Rodriguez-Garcia, M E, E-mail: dfcoralc@unal.edu.c [Departamento de Nanotecnologia, Centro de Fisica Aplicada y Tecnologia Avanzada, UNAM, Queretaro, Qro. (Mexico)

    2009-05-01

    A study of the influence of the moisture and the grain size on the gelatinization temperature (Tp1) of starch from four industrial maize flours as well as an unprocessed maize sample is presented. The gelatinization is a phase transition that can be observed using Differential Scanning Calorimetry (DSC), and it is manifest as an endothermic peak in the DSC thermogram. Results show that for 60, 65, 70 and 75% of moisture, the endothermic peak temperature increases from 70 to 75 deg. C when the moisture increases, and decrease when the grain size increases from 250 to 420mum. A study of the gelatinization enthalpy (DELTAHp) is also presented, this is related with the gelatinized starch present in the sample. The enthalpy decrease when the moisture increases and it decrease when grain size is increased.

  14. Hydrolysis of maize starch using amylolytic enzymes extracted from ...

    African Journals Online (AJOL)

    Amylases, a-amylase (EC 3.2.1.1, α-1, 4-glucan-4-glucanohydrolase) and glucoamylase (EC 3.2.1.3, α-1, 4; α-1, 6-glucan glucohydrolase; amyloglucosidase), extracted and partially purified from sorghum malt were used to hydrolyze maize starch. The process and products of the enzymatic hydrolysis were also compared ...

  15. Breeding of maize types with specific traits at the Maize Research Institute, Zemun Polje

    OpenAIRE

    Pajić Zorica

    2007-01-01

    Maize is primarily grown as an energy crop, but the use of different specific versions, such as high-oil maize, high-lysine maize, waxy maize, white-seeded maize, popping maize and sweet maize, is quite extensive. Speciality maize, due to its traits and genetic control of these traits, requires a particular attention in handling breeding material during the processes of breeding. It is especially related to prevention of uncontrolled pollination. In order to provide successful selection for a...

  16. Development of functional milk desserts enriched with resistant starch based on consumers' perception.

    Science.gov (United States)

    Ares, Florencia; Arrarte, Eloísa; De León, Tania; Ares, Gastón; Gámbaro, Adriana

    2012-10-01

    Sensory characteristics play a key role in determining consumers' acceptance of functional foods. In this context, the aim of the present work was to apply a combination of sensory and consumer methodologies to the development of chocolate milk desserts enriched with resistant starch. Chocolate milk desserts containing modified waxy maize starch were formulated with six different concentrations of two types of resistant starch (which are part of insoluble dietary fiber). The desserts were evaluated by trained assessors using Quantitative Descriptive Analysis. Moreover, consumers scored their overall liking and willingness to purchase and answered an open-ended question. Resistant starch caused significant changes in the sensory characteristics of the desserts and a significant decrease in consumers' overall liking and willingness to purchase. Consumer data was analyzed applying survival analysis on overall liking scores, considering the risk on consumers liking and willing to purchase the functional products less than their regular counterparts. The proposed methodologies proved to be useful to develop functional foods taking into account consumers' perception, which could increase their success in the market.

  17. Preparation of crystalline starch nanoparticles using cold acid hydrolysis and ultrasonication.

    Science.gov (United States)

    Kim, Hee-Young; Park, Dong June; Kim, Jong-Yea; Lim, Seung-Taik

    2013-10-15

    Waxy maize starch in an aqueous sulfuric acid solution (3.16 M, 14.7% solids) was hydrolyzed for 2-6 days, either isothermally at 40 °C or 4 °C, or at cycled temperatures of 4 and 40 °C (1 day each). The starch hydrolyzates were recovered as precipitates after centrifuging the dispersion (10,000 rpm, 10 min). The yield of starch hydrolyzates depended on the hydrolysis temperature and time, which varied from 6.8% to 78%. The starch hydrolyzed at 40 °C or 4/40 °C exhibited increased crystallinity determined by X-ray diffraction analysis, but melted in broader temperature range (from 60 °C to 110 °C). However, the starch hydrolyzed at 4 °C displayed the crystallinity and melting endotherm similar to those of native starch. The starch hydrolyzates recovered by centrifugation were re-dispersed in water (15% solids), and the dispersion was treated by an ultrasonic treatment (60% amplitude, 3min). The ultrasonication effectively fragmented the starch hydrolyzates to nanoparticles. The hydrolyzates obtained after 6 days of hydrolysis were more resistant to the ultrasonication than those after 2 or 4 days, regardless of hydrolysis temperatures. The starch nanoparticles could be prepared with high yield (78%) and crystallinity by 4 °C hydrolysis for 6 days followed by ultrasonication. Scanning electron microscopy revealed that the starch nanoparticles had globular shapes with diameters ranging from 50 to 90 nm. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Effects of chitin nano-whiskers on the antibacterial and physicochemical properties of maize starch films.

    Science.gov (United States)

    Qin, Yang; Zhang, Shuangling; Yu, Jing; Yang, Jie; Xiong, Liu; Sun, Qingjie

    2016-08-20

    We investigated the effects of chitin nano-whiskers (CNWs) on the antibacterial and physiochemical properties of maize starch-based films. The microstructures, crystalline structures, and thermal, mechanical and barrier properties of the nanocomposite films were characterized by using transmission electron microscopy, X-ray diffraction analysis, thermogravimetric, differential scanning calorimeter, and texture profile analysis. The tensile strength of the maize starch films increased from 1.64MPa to 3.69MPa (Pstarch films. Furthermore, the nanocomposite films exhibited strong antimicrobial activity against Gram-positive Listeria monocytogenes but not against Gram-negative Escherichia coli. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Preparation and characterization of starch-based loose-fill packaging foams

    Science.gov (United States)

    Fang, Qi

    Regular and waxy corn starches were blended in various ratios with biodegradable polymers including polylactic acid (PLA), Eastar Bio Copolyester 14766 (EBC) and Mater-Bi ZF03U (MBI) and extruded with a C. W. Brabender laboratory twin screw extruder using a 3-mm die nozzle at 150°C and 150 rev/min. Physical characteristics including radial expansion, unit density and bulk density and water solubility index, water absorption characteristics, mechanical properties including compressibility, Young's modulus, spring index, bulk compressibility and bulk spring index and abrasion resistance were investigated as affected by the ingredient formulations, i.e. type of polymers, type of starches, polymer to starch ratio and starch moisture content. A completely randomized factorial blocking experimental design was used. Fifty-four treatments resulted. Each treatment was replicated three times. SAS statistical software package was used to analyze the data. Foams made of waxy starch had better radial expansion, lower unit density and bulk density than did foams made of regular starch. Regular starch foams had significantly lower water solubility index than did the waxy starch foams. PLA-starch foams had the lowest compressibility and Young's modulus. MBI-starch foams were the most rigid. All foams had excellent spring indices and bulk spring indices which were comparable to the spring index of commercial expanded polystyrene foam. Correlations were established between the foam mechanical properties and the physical characteristics. Foam compressibility and Young's modulus decreased as increases in radial expansion and decreases in unit and bulk densities. Their relationships were modeled with power law equations. No correlation was observed between spring index and bulk spring index and foam physical characteristics. MBI-starch foams had the highest equilibrium moisture content. EBC-starch and PLA-starch foams had similar water absorption characteristics. No significant

  20. Technological characteristics of yeast-containing cakes production using waxy wheat flour

    Directory of Open Access Journals (Sweden)

    K. Iorgachova

    2016-12-01

    Full Text Available This article shows the feasibility of using waxy wheat flour, the starch of which doesn`t contain amylose, in order to stabilize the quality of yeast-containing cakes. The influence of the waxy wheat flour mass fraction and the stage of its adding on the physical, chemical and organoleptic characteristics of the products are studied. According to the technological properties of a new type of wheat flour, two methods of its adding are proposed ‒ adding the maximum amount of waxy wheat flour at dough kneading stage or using the mixture of waxy and bakery wheat flours for kneading sourdough and dough. It is shown that the replacement of 60 % bakery wheat flour with waxy wheat flour in the recipe of yeast-containing cakes at the dough kneading stage contributes to the production of products with higher quality and organoleptic characteristics compared to both the control and cakes based on a mixture of different types of wheat flour. These samples are characterized by increased by 1.7 – 11.3 % specific volume, porosity – 2.6 – 5.5 % and the total deformation of the crumb – 6.5 – 41.4 %.

  1. Postruminal degradation of crude protein, neutral detergent fibre and starch of maize and grass silages in dairy cows

    DEFF Research Database (Denmark)

    Ali, M.; Weisbjerg, Martin Riis; Cone, J.W.

    2012-01-01

    samples of grass silage were used. The samples were selected to represent a broad range in digestibility and chemical composition. Prior to the intestinal incubations, samples were incubated in the rumen for 6 h (starch), 12 h (CP) or 24 h (aNDFom) using the rumen nylon bag technique. Residues from....... The objective of this study was to develop a unique dataset on the ruminal degradability and the postruminal digestibility of CP, NDF (aNDFom, amylase neutral detergent fibre organic matter basis) and starch in maize and grass silages, using the mobile nylon bag technique. Twenty samples of maize silage and 20...... in the maize and grass silages. The results proved the assumption of the Dutch feed evaluation system that the rumen undegraded starch is completely digested in the small intestine of dairy cows. Regression showed that the rumen degradability, the intestinal digestibility and the total tract undigested...

  2. Influence of Sugars, Modified Starches and Hydrocolloids Addition on Colour and Thermal Properties of Raspberry Cream Fillings

    Directory of Open Access Journals (Sweden)

    Pichler Anita

    2017-03-01

    Full Text Available This paper deals with the influence of the addition of sugars (sucrose, fructose and trehalose, modified starches (tapioca or waxy maize starch and hydrocolloids (karaya or guar gum on colour and thermal properties of raspberry cream fillings. In addition, the influence of the above-mentioned additives on the colour and thermal properties of raspberry cream fillings stored at room temperature over a period of 8 and 16 months was investigated. Results showed that the highest anthocyanin content and total phenolic content were detected in raspberry cream filling prepared with sucrose and trehalose in combination with guar gum. During storage, after 8 and 16 months at room temperature, anthocyanin content and total phenolic content decreased. Results also showed that the kind of sugar and added modified starches or hydrocolloids influenced the thermal properties of cream fillings. During storage, a decrease was observed in both freezing temperature as well as enthalpy of cream fillings.

  3. Significance of starch properties and quantity on sponge cake volume

    Science.gov (United States)

    We evaluated the qualitative and quantitative effects of wheat starch on sponge cake (SC) baking quality. Twenty wheat flours, including soft white and club wheat of normal, partial waxy and waxy endosperm, and hard wheat, were tested for amylose content, pasting properties, and SC baking quality. S...

  4. Effect of lime concentration on gelatinized maize starch dispersions properties.

    Science.gov (United States)

    Lobato-Calleros, C; Hernandez-Jaimes, C; Chavez-Esquivel, G; Meraz, M; Sosa, E; Lara, V H; Alvarez-Ramirez, J; Vernon-Carter, E J

    2015-04-01

    Maize starch was lime-cooked at 92 °C with 0.0-0.40% w/w Ca(OH)2. Optical micrographs showed that lime disrupted the integrity of insoluble remnants (ghosts) and increased the degree of syneresis of the gelatinized starch dispersions (GSD). The particle size distribution was monomodal, shifting to smaller sizes and narrower distributions with increasing lime concentration. X-ray patterns and FTIR spectra showed that crystallinity decreased to a minimum at lime concentration of 0.20% w/w. Lime-treated GSD exhibited thixotropic and viscoelastic behaviour. In the linear viscoelastic region the storage modulus was higher than the loss modulus, but a crossover between these moduli occurred in the non-linear viscoelastic region. The viscoelastic properties decreased with increased lime concentration. The electrochemical properties suggested that the amylopectin-rich remnants and the released amylose contained in the continuous matrix was firstly attacked by calcium ions at low lime levels (<0.20% w/w), disrupting the starch gel microstructure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Rheological properties of lactose-free dairy desserts.

    Science.gov (United States)

    Sahin, Serpil; Hamamci, Haluk; Garayev, Sultan

    2016-10-01

    People suffering from lactose intolerance cannot digest milk or lactose-containing foods. Lactose-free diet is essential for them since they do not have the ability to produce lactase to breakdown milk sugar. Physical properties of lactose-free dairy desserts will most probably be different than that of lactose containing ones because of lactose hydrolysis. In this study, it was aimed to analyze the rheological and textural behaviors of different lactose-free dessert formulations containing different gum types and different waxy maize starch and sucrose concentrations. Waxy maize starch was used at concentrations of 0.032 g·mL -1 , 0.040 g·mL -1 , and 0.048 g·mL -1 In addition to waxy maize starch, guar gum, gum arabic, or κ-carrageenan at two different concentrations (1.0% w/w and 0.5% w/w) was added. Sucrose was added at concentrations of 0.14 g·mL -1 and 0.10 g·mL -1 in lactose-free desserts. Power law model was found to be suitable to explain the flow behavior of desserts. The storage and loss modulus of lactose-free desserts were higher than that of lactose-containing desserts. The κ-Carrageenan was found to be the most effective gum for structure build-up. © The Author(s) 2016.

  6. Physicochemical properties of black pepper (Piper nigrum) starch.

    Science.gov (United States)

    Zhu, Fan; Mojel, Reuben; Li, Guantian

    2018-02-01

    Black pepper (Piper nigrum) is among the most popular spices around the world. Starch is the major component of black pepper. However, little is known about functional properties of this starch. In this study, swelling, solubility, thermal properties, rheology, and enzyme susceptibility of 2 black pepper starches were studied and compared with those of maize starch. Pepper starch had lower water solubility and swelling power than maize starch. It had higher viscosity during pasting event. In dynamic oscillatory analysis, pepper starch had lower storage modulus. Thermal analysis showed that pepper starch had much higher gelatinization temperatures (e.g., conclusion temperature of 94°C) than maize starch. The susceptibility to α-amylolysis of pepper starch was not very different from that of maize starch. Overall, the differences in the physicochemical properties of the 2 pepper starches are non-significant. The relationships between structure (especially amylopectin internal molecular structure) and properties of starch components are highlighted. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Isolation and characterisation of nanoparticles from tef and maize starch modified with stearic acid

    CSIR Research Space (South Africa)

    Cuthbert, WO

    2017-07-01

    Full Text Available Nanoparticles were isolated from tef and maize starch modified with added stearic acid after pasting at 90 °C for 130 min. This was followed by thermo-stable alpha-amylase hydrolysis of the paste. The resultant residues were then characterized using...

  8. Starch hydrolysis modeling: application to fuel ethanol production.

    Science.gov (United States)

    Murthy, Ganti S; Johnston, David B; Rausch, Kent D; Tumbleson, M E; Singh, Vijay

    2011-09-01

    Efficiency of the starch hydrolysis in the dry grind corn process is a determining factor for overall conversion of starch to ethanol. A model, based on a molecular approach, was developed to simulate structure and hydrolysis of starch. Starch structure was modeled based on a cluster model of amylopectin. Enzymatic hydrolysis of amylose and amylopectin was modeled using a Monte Carlo simulation method. The model included the effects of process variables such as temperature, pH, enzyme activity and enzyme dose. Pure starches from wet milled waxy and high-amylose corn hybrids and ground yellow dent corn were hydrolyzed to validate the model. Standard deviations in the model predictions for glucose concentration and DE values after saccharification were less than ± 0.15% (w/v) and ± 0.35%, respectively. Correlation coefficients for model predictions and experimental values were 0.60 and 0.91 for liquefaction and 0.84 and 0.71 for saccharification of amylose and amylopectin, respectively. Model predictions for glucose (R2 = 0.69-0.79) and DP4+ (R2 = 0.8-0.68) were more accurate than the maltotriose and maltose for hydrolysis of high-amylose and waxy corn starch. For yellow dent corn, simulation predictions for glucose were accurate (R2 > 0.73) indicating that the model can be used to predict the glucose concentrations during starch hydrolysis.

  9. Comparing the effects of sucrose and glucose on functional properties of pregelatinized maize starch.

    Science.gov (United States)

    Hedayati, Sara; Shahidi, Fakhri; Koocheki, Arash; Farahnaky, Asgar; Majzoobi, Mahsa

    2016-07-01

    Pregelatinized (PG) starches are extensively used in food products which are processed at low temperature, to increase viscosity and offer a desirable texture. The functional properties of PG starch can be influenced by other constituents used in food matrices. Therefore the main purpose of this study was to investigate the effects of different levels of sucrose and glucose (0, 10, 20, 30 and 40% of dry starch weight basis) as two common sweeteners on drum dried pregelatinized maize starch. Samples were characterized by light microscopy, water absorption, syneresis, cold paste viscosity, texture and turbidity measurements. The results indicated that the amount of leached glucose chains to the aqueous phase, water absorption, viscosity and mechanical properties increased when increasing the sugar concentration while, syneresis and turbidity decreased. However, these effects were more obvious in samples containing sucrose than those with glucose. Copyright © 2016. Published by Elsevier B.V.

  10. Caracterização físico-química, reológica, morfológica e térmica dos amidos de milho normal, ceroso e com alto teor de amilose Physicochemical, rheological, morphological, and thermal characterization of normal, waxy, and high amylose corn starches

    Directory of Open Access Journals (Sweden)

    Fernanda Hart Weber

    2009-12-01

    Full Text Available O objetivo do presente estudo foi avaliar os amidos de milho normal, ceroso e com alto teor de amilose, fabricados pela National Starch, por meio da determinação das suas características físico-químicas, morfológicas, térmicas e reológicas. O amido de milho com alto teor de amilose (AM apresentou teor de amilose igual a 71%, sendo que os valores obtidos para o amido de milho normal (M e o amido de milho ceroso (AP foram de 27,8 e 1,8%, respectivamente. Traços de proteína e lipídios foram encontrados nas amostras. O amido de milho ceroso apresentou maior viscosidade máxima e uma menor tendência à retrogradação, se comparado ao amido de milho normal. O amido AP apresentou menor entalpia de gelatinização, como pode ser observado nas análises de calorimetria exploratória diferencial (DSC, na qual a temperatura de gelatinização foi de 75 °C e o ΔH de 3,34 J.g-1, e também na análise de RVA (Rapid Visco Analyser, em que a temperatura de pasta foi de 71 °C. Apresentando, dessa forma, valores inferiores aos verificados para os outros amidos. O valor do ΔH de retrogradação do amido AP, mostrou-se 25,8% inferior ao ΔH do amido M. O amido AM apresentou o valor de 26,38 J.g-1, demonstrando o maior envolvimento da molécula de amilose no processo de retrogradação. Isso também foi evidenciado pela medida da força dos géis: o gel de AM apresentou força 99,18% superior, retrogradando mais que os outros amidos. As análises de difração de raio X mostraram que os amidos de milho normal e ceroso apresentaram um padrão de difração do tipo A e o amido de milho com alto teor de amilose apresentou padrão do tipo B.The objective of this work was to evaluate normal, waxy, and high amylose corn starches from National Starch, through the determination of the physicochemical, morphological, thermal, and rheological properties. The high amylose corn starch (AM presented amylose content of 71%, and the value of this component for the

  11. Studies on gamma-irradiation of high amylose corn starch, 1

    International Nuclear Information System (INIS)

    Watanabe, Yukio; Ayano, Yuko; Obara, Tetsujiro.

    1976-01-01

    Amylomaize 7, amylomaize 5, normal corn, waxy corn and potato starches were irradiated with 60 Co-gamma rays at the dose levels from 2x10 4 to 100x10 4 rad to determine the changes in physicochemical properties by irradiation. Irradiated starches were characterized by determination of amylography, specific viscosity, blue value, pH, acidity, carbonyl content, reducing value and limit of β-amylolysis. Irradiated starches showed a decrease in viscosity and blue value, and an increase in reducing value with increasing dose levels. These results were seemed to indicate the degradation of starch molecule. A slight oxidation of starch was suggested by a decrease in pH and an increase in acidity and carbonyl content. Amylomaize 7 and amylomaize 5 starches were less sensitive than the other starches in terms of irradiation effects. The rheological properties determined by amylography and Ostwald viscometer changed at the lowest dose (5x10 4 rad) and the other properties changed above 20x10 4 rad. The limits of β-amylase hydrolysis of normal corn, waxy corn and potato starches increased slightly by irradiation (100x10 4 rad). On the other hand, β-amylolysis limits of amylomaize 7 and amylomaize 5 starches were lower about 5.5% and 2.5% respectively than that of nonirradiated samples. The decrease of β-amylolysis limit enlarged with increasing amylose content. (auth.)

  12. Facile Precursor for Synthesis of Silver Nanoparticles Using Alkali Treated Maize Starch

    Science.gov (United States)

    El-Rafie, M. H.; Ahmed, Hanan B.; Zahran, M. K.

    2014-01-01

    Silver nanoparticles were prepared by using alkali treated maize starch which plays a dual role as reducer for AgNO3 and stabilizer for the produced AgNPs. The redox reaction which takes a place between AgNO3 and alkali treated starch was followed up and controlled in order to obtain spherical shaped silver nanoparticles with mean size 4–6 nm. The redox potentials confirmed the principle role of alkali treatment in increasing the reducibility of starch macromolecules. The measurements of reducing sugars at the end of reaction using dinitrosalicylic acid reagent (DNS) were carried out in order to control the chemical reduction reaction. The UV/Vis spectra show that an absorption peak, occurring due to surface plasmon resonance (SPR), exists at 410 nm, which is characteristic to yellow color of silver nanoparticles solution. The samples have been characterized by transmission electron microscopy (TEM), which reveal the nanonature of the particles. PMID:27433508

  13. Internal structure of normal maize starch granules revealed by chemical surface gelatinization.

    Science.gov (United States)

    Pan, D D; Jane, J I

    2000-01-01

    Normal maize starch was fractionated into two sizes: large granules with diameters more than 5 microns and small granules with diameters less than 5 microns. The large granules were surface gelatinized by treating them with an aqueous LiCl solution (13 M) at 22-23 degrees C. Surface-gelatinized remaining granules were obtained by mechanical blending, and gelatinized surface starch was obtained by grinding with a mortar and a pestle. Starches of different granular sizes and radial locations, obtained after different degrees of surface gelatinization, were subjected to scanning electron microscopy, iodine potentiometric titration, gel-permeation chromatography, and amylopectin branch chain length analysis. Results showed that the remaining granules had a rough surface with a lamella structure. Amylose was more concentrated at the periphery than at the core of the granule. Amylopectin had longer long B-chains at the core than at the periphery of the granule. Greater proportions of the long B-chains were present at the core than at the periphery of the granule.

  14. Thermal effects on granules and direct determination of swelling ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-08-04

    Aug 4, 2009 ... DEA. UAA. Abidjan. Côte d'Ivoire, pp. 25-28. Larrigue S, Alvarez G, Cuvelier G, Flick D (2008). Swelling kinetics of waxy maize and starches at high temperatures and heating rates. Carbohydr. Polym. 73: 148-155. Leach HW, MC Cowen LD, Schoch JJ (1959). Structure of the starch granule swelling and ...

  15. Production of starch nanoparticles using normal maize starch via heat-moisture treatment under mildly acidic conditions and homogenization.

    Science.gov (United States)

    Park, Eun Young; Kim, Min-Jung; Cho, MyoungLae; Lee, Ju Hun; Kim, Jong-Yea

    2016-10-20

    Normal maize starch was subjected to heat-moisture treatment (HMT) under mildly acidic conditions (0.000, 0.050, or 0.075M H2SO4) for various treatment times (3, 5, or 8h) followed by homogenization up to 60min to prepare nanoparticles. The combination of HMT (0.075M, for 8h) and homogenization (60min) produced nanoparticles with diameters of less than 50nm at a yield higher than 80%. X-ray diffractometry and size-exclusion chromatography revealed that HMT under mildly acidic conditions selectively hydrolyzed the starch chains (especially amylose and/or long chains of amylopectin) in the amorphous region of the granules without significant damage to the crystalline structure, however, modification of the molecular structure in the amorphous region increased fragility of the granules during homogenization. Homogenization for 60min caused obvious damage in the long-range crystalline structure of the HMT starch (0.15N, for 8h), while the short-range chain associations (FT-IR) remained intact. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Allelic variation of the Waxy gene in foxtail millet [Setaria italica (L.) P. Beauv.] by single nucleotide polymorphisms.

    Science.gov (United States)

    Van, K; Onoda, S; Kim, M Y; Kim, K D; Lee, S-H

    2008-03-01

    The Waxy (Wx) gene product controls the formation of a straight chain polymer of amylose in the starch pathway. Dominance/recessiveness of the Wx allele is associated with amylose content, leading to non-waxy/waxy phenotypes. For a total of 113 foxtail millet accessions, agronomic traits and the molecular differences of the Wx gene were surveyed to evaluate genetic diversities. Molecular types were associated with phenotypes determined by four specific primer sets (non-waxy, Type I; low amylose, Type VI; waxy, Type IV or V). Additionally, the insertion of transposable element in waxy was confirmed by ex1/TSI2R, TSI2F/ex2, ex2int2/TSI7R and TSI7F/ex4r. Seventeen single nucleotide polymorphims (SNPs) were observed from non-coding regions, while three SNPs from coding regions were non-synonymous. Interestingly, the phenotype of No. 88 was still non-waxy, although seven nucleotides (AATTGGT) insertion at 2,993 bp led to 78 amino acids shorter. The rapid decline of r (2) in the sequenced region (exon 1-intron 1-exon 2) suggested a low level of linkage disequilibrium and limited haplotype structure. K (s) values and estimation of evolutionary events indicate early divergence of S. italica among cereal crops. This study suggested the Wx gene was one of the targets in the selection process during domestication.

  17. Modeling and analysis of film composition on mechanical properties of maize starch based edible films.

    Science.gov (United States)

    Prakash Maran, J; Sivakumar, V; Thirugnanasambandham, K; Kandasamy, S

    2013-11-01

    The present study investigates the influence of composition (content of maize starch (1-3 g), sorbitol (0.5-1.0 ml), agar (0.5-1.0 g) and tween-80 (0.1-0.5 ml)) on the mechanical properties (tensile strength, elongation, Young's modulus, puncture force and puncture deformation) of the maize starch based edible films using four factors with three level Box-Behnken design. The edible films were obtained by casting method. The results showed that, tween-80 increases the permeation of sorbitol in to the polymer matrix. Increasing concentration of sorbitol (hydrophilic nature and plasticizing effect of sorbitol) decreases the tensile strength, Young's modulus and puncture force of the films. The results were analyzed by Pareto analysis of variance (ANOVA) and second order polynomial models were obtained for all responses with high R(2) values (R(2)>0.95). 3D response surface plots were constructed to study the relationship between process variables and the responses. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Influence of waxy rice flour substitution for wheat flour on characteristics of batter and freeze-thawed cake.

    Science.gov (United States)

    Jongsutjarittam, Nisachon; Charoenrein, Sanguansri

    2013-09-12

    This study aimed to improve the freeze-thawed cake properties by10-20% waxy rice flour (WRF) substitution for wheat flour (WF). Viscosity of WRF-substituted batters was lower; consequently, trapped air was less uniformly distributed than WF batter. After five freeze-thaw cycles, firmness and enthalpy of melting retrograded amylopectin of WF- and WRF-substituted cakes increased and the matrix surrounding the air pores from SEM images was denser than in fresh-baked cakes. Sensory evaluation showed an increase in firmness and a decrease in firmness acceptability of freeze-thawed cakes. However, freeze-thawed cake with WRF substitution had significantly less firmness, less dense matrix and more acceptability than WF cake. This could have been due to a low amylose content of WRF and the spread of ruptured waxy rice starch granules around swollen wheat starch granules as observed by CLSM. Thus, WRF could be used for WF substitution to improve the firmness in freeze-thawed cake. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Chemical Composition, Starch Digestibility and Antioxidant Capacity of Tortilla Made with a Blend of Quality Protein Maize and Black Bean

    Directory of Open Access Journals (Sweden)

    Luis A. Bello-Pérez

    2011-12-01

    Full Text Available Tortilla and beans are the basic components in the diet of people in the urban and rural areas of Mexico. Quality protein maize is suggested for tortilla preparation because it presents an increase in lysine and tryptophan levels. Beans contain important amounts of dietary fiber. The objective of this study was to prepare tortilla with bean and assesses the chemical composition, starch digestibility and antioxidant capacity using a quality protein maize variety. Tortilla with bean had higher protein, ash, dietary fiber and resistant starch content, and lower digestible starch than control tortilla. The hydrolysis rate (60 to 50% and the predicted glycemic index (88 to 80 of tortilla decreased with the addition of bean in the blend. Extractable polyphenols and proanthocyanidins were higher in the tortilla with bean than control tortilla. This pattern produced higher antioxidant capacity of tortilla with bean (17.6 μmol Trolox eq/g than control tortilla (7.8 μmol Trolox eq/g. The addition of bean to tortilla modified the starch digestibility and antioxidant characteristics of tortilla, obtaining a product with nutraceutical characteristics.

  20. Elucidation of substituted ester group position in octenylsuccinic anhydride modified sugary maize soluble starch.

    Science.gov (United States)

    Ye, Fan; Miao, Ming; Huang, Chao; Lu, Keyu; Jiang, Bo; Zhang, Tao

    2014-12-03

    The octenylsuccinic groups in esterification-modified sugary maize soluble starches with a low (0.0191) or high (0.0504) degree of substitution (DS) were investigated by amyloglucosidase hydrolysis followed by a combination of chemical and physical analysis. The results showed the zeta-potential remained at approximately the same value regardless of excessive hydrolysis. The weight-average molecular weight decreased rapidly and reached 1.22 × 10(7) and 1.60 × 10(7) g/mol after 120 min for low-DS and high-DS octenylsuccinic anhydride (OSA) modified starch, respectively. The pattern of z-average radius of gyration as well as particle size change was similar to that of Mw, and z-average radius of gyration decreased much more slowly, especially for high-DS OSA starch. Compared to native starch, two characteristic absorption peaks at 1726.76 and 1571.83 cm(-1) were observed in FT-IR spectra, and the intensity of absorption peaks increased with increasing DS. The NMR results showed that OSA starch had several additional peaks at 0.8-3.0 ppm and a shoulder at 5.56 ppm for OSA substituents, which were grafted at O-2 and O-3 positions in soluble starch. The even distribution of OSA groups in the center area of soluble starch particle has been directly shown under CLSM. Most substitutions were located near branching points of soluble starch particles for a low-DS modified starch, whereas the substituted ester groups were located near branching points as well as at the nonreducing ends in OSA starch with a high DS.

  1. Pollen genetic markers for detection of mutagens in the environment

    International Nuclear Information System (INIS)

    Nilan, R.A.; Rosichan, J.L.; Arenaz, P.; Hodgdon, A.L.; Kleinhofs, A.

    1980-01-01

    To utilize and exploit pollen for in situ mutagen monitoring, screening and toxicology, the range of genetic traits in pollen must be identified and analyzed. To be useful for the development of mutagen detection systems proteins should be: (1) activity stainable or immunologically identifiable in the pollen, (2) the products of one to three loci; and (3) gametophytic and nuclear in origin. Several proteins, including alcohol dehydrogenase in maize, which meet these criteria are discussed. The waxy locus in barley and maize which controls starch deposition for pollen screening and mutant detection. Thirty waxy mutant lines, induced by sodium azide and gamma-rays are characterized for spontaneous and induced reversion frequencies, allelism, karyotype, amylose content, and UDPglucose glucosyltransferase (waxy gene product) activity. Twelve mutant alleles are being mapped by recombinant frequencies

  2. Deficiency of maize starch-branching enzyme i results in altered starch fine structure, decreased digestibility and reduced coleoptile growth during germination

    Directory of Open Access Journals (Sweden)

    Yandeau-Nelson Marna

    2011-05-01

    Full Text Available Abstract Background Two distinct starch branching enzyme (SBE isoforms predate the divergence of monocots and dicots and have been conserved in plants since then. This strongly suggests that both SBEI and SBEII provide unique selective advantages to plants. However, no phenotype for the SBEI mutation, sbe1a, had been previously observed. To explore this incongruity the objective of the present work was to characterize functional and molecular phenotypes of both sbe1a and wild-type (Wt in the W64A maize inbred line. Results Endosperm starch granules from the sbe1a mutant were more resistant to digestion by pancreatic α-amylase, and the sbe1a mutant starch had an altered branching pattern for amylopectin and amylose. When kernels were germinated, the sbe1a mutant was associated with shorter coleoptile length and higher residual starch content, suggesting that less efficient starch utilization may have impaired growth during germination. Conclusions The present report documents for the first time a molecular phenotype due to the absence of SBEI, and suggests strongly that it is associated with altered physiological function of the starch in vivo. We believe that these results provide a plausible rationale for the conservation of SBEI in plants in both monocots and dicots, as greater seedling vigor would provide an important survival advantage when resources are limited.

  3. Effects of CaCO3 treatment on the morphology, crystallinity, rheology and hydrolysis of gelatinized maize starch dispersions.

    Science.gov (United States)

    Garcia-Diaz, S; Hernandez-Jaimes, C; Escalona-Buendia, H B; Bello-Perez, L A; Vernon-Carter, E J; Alvarez-Ramirez, J

    2016-09-15

    Using calcium salts instead of lime allows for an ecological nixtamalization of maize grains, where the negative contamination impact of the traditional lime nixtamalization is reduced. This work assessed the effects of calcium carbonate (0.0-2.0%w/w CaCO3) on the morphology, crystallinity, rheology and hydrolysis of gelatinized maize starch dispersions (GMSD). Microscopy analysis showed that CaCO3 changed the morphology of insoluble remnants (ghosts) and decreased the degree of syneresis. Analysis of particle size distribution showed a slight shift to smaller sizes as the CaCO3 was increased. Also, X-ray patterns indicated that crystallinity achieved a minimum value at CaCO3 concentration in the range of 1%w/w. GMSD with higher CaCO3 concentrations exhibited higher thixotropy area and complex viscoelastic behavior that was frequency dependent. A possible mechanism involved in the starch chain modification by CaCO3 is that starch may act as a weak acid ion exchanger capable of exchanging alcoholic group protons for cations (Ca(+2)). Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Propriedades químicas e de pasta dos amidos de trigo e milho fosforilados Chemical and past properties of wheat and maize starches phosphorilads

    Directory of Open Access Journals (Sweden)

    Williams Pereira Batista

    2010-03-01

    Full Text Available Os amidos de trigo e milho foram fosforilados com tripolifosfato de sódio (TPS em 4 diferentes níveis de adição. As viscosidades máximas da pasta de trigo aumentaram e as temperaturas de pasta diminuíram à medida que cresceram os graus de substituição de grupos fosfato, enquanto que, para o amido de milho, as viscosidades máximas aumentaram e as temperaturas de pasta mantiveram-se constantes. Os amidos fosforilados (amido/água 1:10 foram submetidos à cocção (100,0 ºC/1,0 minuto, secagem (40,0 ºC/~4,0% de umidade e moagem (diâmetro de partícula, Φ = 0,149 mm para determinar o teor de amido resistente (AR. Para o menor grau de substituição de grupos fosfato no amido de trigo (0,0029, foi encontrado um teor de amido resistente de 30,46% e no amido de milho de 24,36%. Para o maior grau de substituição no amido de trigo (0,0127, foi encontrado um teor de AR de 46,69%, enquanto para o amido de milho, 28,40%. O aumento do grau de substituição, em ambos os casos, parece induzir um aumento no teor de amido resistente, e a fosforilação com TPS mostrou ser um excelente método para produzir quantidades significativas de amido resistente tanto no amido de trigo como no amido de milho.Wheat and maize starches were phosphorylated with sodium tripolyphosphate (TPS at 4 different levels of addition. The maximum viscosities of the wheat doughs formed were increased and the dough temperatures decreased as the degrees of substitution of phosphate groups were increased; while for the maize starch the viscosities were increased and the dough temperatures remained constant. The phosphorylated starches (starch/water, 1:10 were subjected to cooking (100 ºC/1 minute, followed by drying (40 ºC/~ 4.0 per cent moisture and milling (particle diameter, Φ = 0.149 mm to determine the resistant starch (RS content. For the lowest degree of substitution of phosphate groups in wheat starch (0.0029, resistant starch content of 30.46 per cent was found

  5. Properties of starch-polyglutamic acid (PGA) graft copolymer prepared by microwave irradiation - Fourier transform infrared spectroscopy (FTIR) and rheology studies

    Science.gov (United States)

    The rheological properties of waxy starch-'-polygutamic acid (PGA) graft copolymers were investigated. Grafting was confirmed by FTIR spectroscopy. The starch-PGA copolymers absorbed water and formed gels, which exhibited concentration-dependent viscoelastic solid properties. Higher starch-PGA conce...

  6. Sensory characteristics of high-amylose maize-resistant starch in three food products

    OpenAIRE

    Maziarz, Mindy; Sherrard, Melanie; Juma, Shanil; Prasad, Chandan; Imrhan, Victorine; Vijayagopal, Parakat

    2012-01-01

    Type 2 resistant starch from high-amylose maize (HAM-RS2) is considered a functional ingredient due to its positive organoleptic and physiochemical modifications associated with food and physiological benefits related to human health. The sensory characteristics of three types of food products (muffins, focaccia bread, and chicken curry) with and without HAM-RS2 were evaluated using a 9-point hedonic scale. The HAM-RS2-enriched muffins, focaccia bread, and chicken curry contained 5.50 g/100 g...

  7. 13CO2 breath test to measure the hydrolysis of various starch formulations in healthy subjects.

    OpenAIRE

    Hiele, M; Ghoos, Y; Rutgeerts, P; Vantrappen, G; de Buyser, K

    1990-01-01

    13CO2 starch breath test was used to study the effect of physicochemical characteristics of starch digestion. As starch is hydrolysed to glucose, which is subsequently oxidised to CO2, differences in 13CO2 excretion after ingestion of different starch products must be caused by differences in hydrolysis rate. To study the effect of the degree of chain branching, waxy starch, containing 98% amylopectin, was compared with high amylose starch, containing 30% amylopectin, and normal crystalline s...

  8. [Starch synthesis in the maize endosperm as affected by starch-synthesizing mutants]. [Annual report, March 1994--June 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, O.

    1995-07-01

    Progress is reported in several areas relevant to maize endosperm development. These areas are (1) The tentative identification of the enzymatic deficiency in a previously unknown endosperm mutant, sugary3-1 (su3-1). The evidence leading to this conclusion will be presented below. (2) The recognition that the endosperm mutant that produces an interesting starch resembling some starches that have been chemically modified is actually an unusual, hypomorphic allele (8132) at the brittle2 (bt2) locus; (3) The orange endosperm color present in some progenies derived from a cross between the original bt2-8132 and W22N apparently results from an interaction between two genes, one of which behaves as though linked to the bt2 locus. In the orange endosperm derivative, our limited evidence suggests that the quantity of all the carotinoids present in the yellow endosperm stocks appear to be increased proportionally.

  9. Quality characteristics of northern-style Chinese steamed bread prepared from soft red winter wheat flours with waxy wheat flour substitution

    Science.gov (United States)

    Quality characteristics of Chinese steamed bread (CSB) prepared from two soft red winter (SRW) wheat flours blended with 0-30% waxy wheat flour (WWF) were determined to estimate the influence of starch amylose content. The increased proportion of WWF in blends raised mixograph absorption with insign...

  10. Breeding of maize types with specific traits at the Maize Research Institute, Zemun Polje

    Directory of Open Access Journals (Sweden)

    Pajić Zorica

    2007-01-01

    Full Text Available Maize is primarily grown as an energy crop, but the use of different specific versions, such as high-oil maize, high-lysine maize, waxy maize, white-seeded maize, popping maize and sweet maize, is quite extensive. Speciality maize, due to its traits and genetic control of these traits, requires a particular attention in handling breeding material during the processes of breeding. It is especially related to prevention of uncontrolled pollination. In order to provide successful selection for a certain trait, the following specific procedures in evaluation of the trait are necessary: the estimation of a popping volume and flake quality in popping maize; the determination of sugars and harvest maturity in sweet maize; the determination of oil in selected samples of high-oil maize types, and so forth. Breeding programmes for speciality maize, except high-amylose maize, have been implemented at the Maize Research Institute, Zemun Polje, Belgrade, for the last 45 years. A great number of high-yielding sweet maize hybrids, popping maize, high-oil and high-lysine, flint and white-seeded maize hybrids were developed during this 45-year period. Auspicious selection and breeding for these traits is facilitated by the abundant genetic variability and technical and technological possibilities necessary for successful selection.

  11. Development of a non-commercial sugar-free barbecue sauce

    Science.gov (United States)

    The challenge has always been to be able to manufacture a sugar free sauce. A basic barbecue sauce formulation was used to make 5 sugar-free preparations combining selected levels of xanthan gum, modified waxy maize starch, sucralose, and acesulfame-K. Physical, chemical, microbial and sensory prope...

  12. Effect of thickening agent in the in vitro mouth, stomach and intestine release of tyrosol from enriched custards

    NARCIS (Netherlands)

    Sanz, T.; Luyten, J.M.J.G.

    2006-01-01

    Custards prepared with four thickeners (two modified starches: waxy maize and tapioca, and two derives of cellulose: CMC and HPMC) and at two levels of consistency were enriched with a water-soluble functional ingredient (tyrosol) and its release evaluated after in vitro mouth, stomach and small

  13. Comparative studies of starch susceptibilities to α-amylase ...

    African Journals Online (AJOL)

    ayoade

    of the four starch samples varied; amylose content of starch from maize varieties was higher than ... plants as an energy store. ... staple foods as potatoes, wheat, maize (corn), rice and ... of its various chemical and physical properties, can be.

  14. Effect of phytase application during high gravity (HG) maize mashes preparation on the availability of starch and yield of the ethanol fermentation process.

    Science.gov (United States)

    Mikulski, D; Kłosowski, G; Rolbiecka, A

    2014-10-01

    Phytic acid present in raw materials used in distilling industry can form complexes with starch and divalent cations and thus limit their biological availability. The influence of the enzymatic hydrolysis of phytate complexes on starch availability during the alcoholic fermentation process using high gravity (HG) maize mashes was analyzed. Indicators of the alcoholic fermentation as well as the fermentation activity of Saccharomyces cerevisiae D-2 strain were statistically evaluated. Phytate hydrolysis improved the course of the alcoholic fermentation of HG maize mashes. The final ethanol concentration in the media supplemented with phytase applied either before or after the starch hydrolysis increased by 1.0 and 0.6 % v/v, respectively, as compared to the control experiments. This increase was correlated with an elevated fermentation yield that was higher by 5.5 and 2.0 L EtOH/100 kg of starch, respectively. Phytate hydrolysis resulted also in a statistically significant increase in the initial concentration of fermenting sugars by 14.9 mg/mL of mash, on average, which was a consequence of a better availability of starch for enzymatic hydrolysis. The application of phytase increased the attenuation of HG media fermentation thus improving the economical aspect of the ethanol fermentation process.

  15. Digestion of Starch Granules from Maize, Potato and Wheat by Larvae of the the Yellow Mealworm, Tenebrio molitor and the Mexican Bean Weevil, Zabrotes subfasciatus

    Science.gov (United States)

    Meireles, Elaine A.; Carneiro, Cíntia N. B.; DaMatta, Renato A.; Samuels, Richard I.; Silva, Carlos P.

    2009-01-01

    Scanning electron microscopy images were taken of starch granules from different sources following exposure in vivo and in vitro to gut α-amylases isolated from Tenebrio molitor L. (Coleoptera: Tenebrionidae) and Zabrotes subfasciatus Boheman (Coleoptera: Bruchidae). One α-amylase was isolated from whole larval midguts of T. molitor using non-denaturing SDS-PAGE, while two other α-amylase fractions were isolated from whole larval midguts of Z. subfasciatus using hydrophobic interaction chromatography., Digested starch granules from larvae fed on maize, potato or wheat were isolated from midgut contents. Combinations of starch granules with isolated α-amylases from both species showed similar patterns of granule degradation. In vitro enzymatic degradation of maize starch granules by the three different α-amylase fractions began by creating small holes and crater-like areas on the surface of the granules. Over time, these holes increased in number and area resulting in extensive degradation of the granule structure. Granules from potato did not show formation of pits and craters on their surface, but presented extensive erosion in their interior. For all types of starch, as soon as the interior of the starch granule was reached, the inner layers of amylose and amylopectin were differentially hydrolyzed, resulting in a striated pattern. These data support the hypothesis that the pattern of starch degradation depends more on the granule type than on the α-amylase involved. PMID:19619014

  16. Contribution to an understanding of the action of gamma radiation on granular starch - interpretation of results obtained using the enzymatic and chromatographic method

    International Nuclear Information System (INIS)

    Robin, J.P.; Tollier, M.Th.; Guilbot, A.

    1978-01-01

    Besides compounds of low molecular mass, the gamma irradiation of granular starch produces radiodextrins with a mass lying between that of the low-molecular-mass compounds and that of the amylose and amylopectin macromolecules from which they derive. The authors present the main results relating to characterization of the radiodextrins of strongly irradiated relating to characterization of the radiodextrins of strongly irradiated normal and waxy maize starches. The method of study - both enzymatic and chromatographic - is the one that has been in use for some ten years for studying the fine structure of α-1.4-1.6 glucanes. An attempt is made to interpret and integrate the results in the light of new data derived from a study of the controlled acid hydrolysis of starch. In particular, the following hypothesis is advanced: the 'hydrolytic' effect of irradiation is, at the qualitative level, independent of the nature of the starch and similar to the effect produced by acid hydrolysis; as with acid hydrolysis, the breaking of the covalent bonds is a function of the internal strucutre of the grain and especially of its amorphous/crystalline organization; the zones of an amorphous character are more easily degraded; on the other hand, the 'crystalline' zones are better protected; in fact, the 'hydrolytic' effect of irradiation is not homogeneous and does not conform to a statistical pattern. (author)

  17. Complexation of rice starch/flour and maize oil through heat moisture treatment: Structural, in vitro digestion and physicochemical properties.

    Science.gov (United States)

    Chen, Xu; He, Xiaowei; Fu, Xiong; Zhang, Bin; Huang, Qiang

    2017-05-01

    This study investigated structural, in vitro digestion and physicochemical properties of normal rice starch (NRS)/flour (NRF) complexed with maize oil (MO) through heat-moisture treatment (HMT). The NRS-/NRF-MO complex displayed an increased pasting temperature and a decreased peak viscosity. After HMT, less ordered Maltese and more granule fragments were observed for NRS-/NRF-MO complex. Meanwhile, more aggregation was observed in the HMT samples with higher moisture contents. We found that higher onset temperature, lower enthalpy change and relative crystallinity of the NRS-/NRF-MO complex were associated with a higher moisture content of HMT samples. The higher moisture content of HMT was also favorable for the amylose-lipid complex formation. Differences in starch digestion properties were found for NRS-MO and NRF-MO complex. All of the NRS/NRF complexed MO after cooking showed lower rapidly digestible starch (RDS) contents compared with the control sample, therein NRS-/NRF- MO 20% exhibited the highest sum of the slowly digestible starch and resistant starch contents. In general, HMT had a greater impact on the in vitro digestion and physicochemical properties of flour samples compared with starch counterparts. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. GABA content and Antioxidant activity of Thai waxy corn seeds germinated by hypoxia method

    Directory of Open Access Journals (Sweden)

    Pisamai Polthum

    2014-06-01

    Full Text Available Germinated seeds have a greater amount of the naturally-occurring -aminobutyric acid (GABA which has many health benefits. Further, colored seeds have higher antioxidant activity. Thai waxy corn is widely consumed after cooking, due to its palatable glutinous texture. However, it is not commonly germinated before use. In this study, two varieties of Thai waxy corn, KKU-KND (purple seed and KKU-SLE (white seed, were germinated and converted to corn flour with the aim of investigating the effect of germination on GABA content and antioxidant activity. Further, the microstructure of starch granules was also examined. KKU-KND and KKU-SLE were grown and harvested in 2012. The seeds were soaked in distilled water for 6 hrs to attain a moisture content of 31-32%wb and then germinated by employing two methods, i in an open plastic box, and ii in a closed plastic box with a headspace of 3 cm for devoid oxygen (hypoxia method; the germination period varied between 12-48 hrs at 35±2°C in both cases. The germinated samples were then dried at 50°C to a moisture content of 10±2%wb. The results showed that non-germinated KKU-KND and KKU-SLE contained 2.68±0.77 and 1.58±0.05 mgGABA/ 100gdb, respectively, whereas the samples germinated by the hypoxia method contained significantly higher GABA which increased with germination time (p<0.05. The highest GABA contents found in KKU-KND and KKU-SLE were 37.20±3.27 and 54.47±2.08 mg/100gdb, respectively after 48 hrs of germination under the hypoxia method. In addition, the germinated KKU-KND gave ABTS and DPPH values of 388.32±0.53 and 140.29±0.57 mgTrolox/100gdb, whereas the germinated KKU-SLE gave ABTS and DPPH values of 183.69±1.75 and 38.43±1.64 mgTrolox/100gdb, respectively. The pictures of starch granules obtained by means of SEM displayed differences in the shape and size of the non-germinated and germinated granules in both verities. In conclusion, the hypoxia method is able to induce higher GABA

  19. ( Phaseolus lunatus ) starch as a tablet disintegrant

    African Journals Online (AJOL)

    ) was evaluated. The starch from the seeds was extracted and its disintegrant ability was compared with that of maize starch BP in paracetamol based tablets at concentrations of 0, 2.5, 5, 7.5 and 10 %w/w. The following properties of the starch ...

  20. In situ study starch gelatinization under ultra-high hydrostatic pressure using synchrotron SAXS

    KAUST Repository

    Yang, Zhi; Gu, Qinfen; Lam, Elisa; Tian, Feng; Chaieb, Saharoui; Hemar, Yacine

    2015-01-01

    The gelatinization of waxy (very low amylose) corn and potato starches by high hydrostatic pressure (HHP) (up to ∼1 GPa) was investigated in situ using synchrotron small-angle X-ray scattering (SAXS) on samples held in a diamond anvil cell (DAC

  1. Behavior of some micro-organisms cultivated in the presence of extracts of irradiated maize starch

    International Nuclear Information System (INIS)

    Mucchielli, Alain; Fretton, Robert; Saint-Lebe, Louis

    1977-01-01

    The bactericidal effect of water soluble radiolysis products of Maize starch on Escherichia coli cultures declines when the initial population grows. This toxicity varies with the culture environment and the bacterial species: Bacillus subtilis, Lactobacillus plantarum, Streptococcus faecalis, Enterobacter sp. Moreover, for the eucaryote cell Saccharomyces cerevisiae, wild strain or muting 'small colonies', only the generating time is altered by the active parts of radiolysis products. The results are analysed with regard to the hypothesis that the hydrogen peroxide is responsible for this toxicity [fr

  2. Rheology of waxy oils

    Energy Technology Data Exchange (ETDEWEB)

    Alicke, Alexandra A.; Marchesini, Flavio H.; Mendes, Paulo R. de Souza [Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil)], e-mails: fhmo@puc-rio.br, pmendes@puc-rio.br; Ziglio, Claudio [Petrobras Research Center, Rio de Janeiro, RJ (Brazil)], e-mail: ziglio@petrobras.com.br

    2010-07-01

    It is well known that below the crystallization temperature the rheology of waxy oils changes from Newtonian to an extremely complex non-Newtonian behavior, which is shear-rate and temperature-history dependent. Along the last decades a lot of effort has been put into obtaining reliable rheological measurements from different oils so as to understand the yielding of waxy oils as well as the effects of shear and temperature histories on rheological properties, such as viscosity, yield stress, storage and loss moduli. In this paper we examine in detail the related literature, discussing the main reasons for some disagreements concerning the history effects on the flow properties of waxy oils. In addition, we performed temperature ramps and stress-amplitude-sweep tests and compared the results obtained with the main trends observed, highlighting the effects of cooling and shear on the microstructure and consequently on the rheological properties of these oils. (author)

  3. Evaluation of the Disintegrant Properties of Native Starches of Five New Cassava Varieties in Paracetamol Tablet Formulations

    Directory of Open Access Journals (Sweden)

    Frank Kumah Adjei

    2017-01-01

    Full Text Available The disintegrant potential of native starches of five new cassava (Manihot esculenta Crantz. varieties developed by the Crops Research Institute of Ghana (CRIG was studied in paracetamol tablet formulations. The yield of the starches ranged from 8.0 to 26.7%. The starches were basic (pH: 8.1–9.9, with satisfactory moisture content (≤15%, swelling capacity (≥20%, ash values (0.05 to those containing maize starch BP. The disintegration times of the tablets decreased with increase in concentration of the cassava starches. The tablets passed the disintegration test (DT ≤ 15 min and exhibited faster disintegration times (p>0.05 than those containing maize starch BP. The disintegration efficiency ratio (DER and the disintegration parameter DERc of the tablets showed that cassava starches V20, V40, and V50 had better disintegrant activity than maize starch BP. The tablets passed the dissolution test for immediate release tablets (≥70% release in 45 min with dissolution rates similar to those containing maize starch BP.

  4. Molecular analysis of waxy mutants in rice

    International Nuclear Information System (INIS)

    Yatou, O.; Amano, E.

    1990-01-01

    Full text: The 'waxy' gene is a structural gene coding a glycosyl transferase which synthesises amylose in the endosperm tissue. 'Non-waxy' rice cultivars have an active gene and their amylose content is 18-25% depending upon gene performance and modifier genes. In 'waxy' rice, no amylose is found because the enzyme is absent. In mutants induced by gamma rays, neutrons, EI or EMS, amylose content ranged from 0 to 20%, i.e. there are intermediate phenotypes as well. Some of them had the same amount of the enzyme as a 'non-waxy' cultivar, even fully 'waxy' mutants showed a certain amount of the enzyme. This suggests that in mutants there may be no structural change in the enzyme gene but the enzyme produced might be less active. By molecular analysis of the mutants' genes it was found that only two mutants induced by thermal neutrons show structural alterations, the changes in other mutants are either too small to be detected by Southern analysis or are outside the structural gene in question. (author)

  5. A comparative study of the physicochemical properties of starches ...

    African Journals Online (AJOL)

    Some properties of starches from cassava, potato and sweet potato were compared with cereal starches from maize, wheat, millet and sorghum. The aim was to determine the properties of tuber and root crop starches and compare them with cereal starches in addition to unravelling the potential of commonly grown ...

  6. Impact of full range of amylose contents on the architecture of starch granules*

    DEFF Research Database (Denmark)

    Goldstein, Avi; Annor, George; Putaux, Jean Luc

    2016-01-01

    The effects of amylose deposition on crystalline regions of barley starch granules were studied in granules containing zero to 99.1% amylose using "waxy" (WBS, 0% amylose), normal (NBS, 18% amylose) and amylose-only barley lines (AOS, 99.1% amylose). The effects were probed after hydrolysis of am...

  7. Physicochemical characterization of starches from seven improved ...

    African Journals Online (AJOL)

    SARAH

    2014-01-31

    Jan 31, 2014 ... Key words: Cassava, starch, functional properties, industrial utilization. ... in demand for starch (Davis et al., 2002). Potato, maize, wheat and cassava are the major ... ambient temperature and stored at 4 °C for 4 weeks.

  8. Process for the production of starch and alcohol from substances containing starch

    Energy Technology Data Exchange (ETDEWEB)

    Smith, N B; McFate, H A; Eubanks, E M

    1969-01-01

    Almost complete extraction of starch from wheat, rice, maize, etc., is achieved more economically then by conventional processes. Starch-containing cereal is soaked, the magma is broken and the seed removed. The magma is then drained and separated into a liquid filtrate consisting of starch, gluten and fine fibers, and a solid residue made up of coarse fibers, husks and grit. The liquid filtrate is sieved to remove the fine fibers, and then centrifuged to obtain pure, gluten-free starch. The solid residue is treated with a mineral acid in a converter to give sugar, thus forming a material which is fermented and distilled to give alcohol.

  9. From rice bag to table: Fate of phenolic chemical compositions and antioxidant activities in waxy and non-waxy black rice during home cooking.

    Science.gov (United States)

    Tang, Yayuan; Cai, Weixi; Xu, Baojun

    2016-01-15

    The objectives of this study were to systematically analyze degradation rate of functional substances, such as total phenolic content (TPC), total flavonoid content (TFC), condensed tannin content (CTC), monomeric anthocyanin content (MAC), cyanidin-3-glucoside (Cy3glc), and peonidin-3-glucoside (Pn3glc), as well as antioxidant activities in cooked waxy and non-waxy black rice through different home cooking manners. Results showed that greater phenolics and antioxidant capacities were detected in non-waxy rice rather than waxy one. All processed black rice exhibited significantly (price. Different processing methods significantly degraded the content and activities of antioxidants of both waxy and non-waxy black rice. Under the same cooking time, black rice porridge retained more active substances than that of cooked rice by rice cooker. Therefore, to maintain bioavailability of active components, black rice porridge may gain more health promoting effects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Global maize production, utilization, and consumption.

    Science.gov (United States)

    Ranum, Peter; Peña-Rosas, Juan Pablo; Garcia-Casal, Maria Nieves

    2014-04-01

    Maize (Zea mays), also called corn, is believed to have originated in central Mexico 7000 years ago from a wild grass, and Native Americans transformed maize into a better source of food. Maize contains approximately 72% starch, 10% protein, and 4% fat, supplying an energy density of 365 Kcal/100 g and is grown throughout the world, with the United States, China, and Brazil being the top three maize-producing countries in the world, producing approximately 563 of the 717 million metric tons/year. Maize can be processed into a variety of food and industrial products, including starch, sweeteners, oil, beverages, glue, industrial alcohol, and fuel ethanol. In the last 10 years, the use of maize for fuel production significantly increased, accounting for approximately 40% of the maize production in the United States. As the ethanol industry absorbs a larger share of the maize crop, higher prices for maize will intensify demand competition and could affect maize prices for animal and human consumption. Low production costs, along with the high consumption of maize flour and cornmeal, especially where micronutrient deficiencies are common public health problems, make this food staple an ideal food vehicle for fortification. © 2014 New York Academy of Sciences. The World Health Organization retains copyright and all other rights in the manuscript of this article as submitted for publication.

  11. Effects of acid hydrolysis intensity on the properties of starch/xanthan mixtures.

    Science.gov (United States)

    Jiang, Min; Hong, Yan; Gu, Zhengbiao; Cheng, Li; Li, Zhaofeng; Li, Caiming

    2018-01-01

    The effects of acid hydrolysis intensity on the physicochemical properties of starch/xanthan gum (XG) system were studied. Waxy corn starch (WCS) was subjected to different concentrations of hydrochloric acid, and crystallization and relative molecular weight analysis were performed. The results revealed that the starch granules became smaller during acid hydrolysis. X-ray diffraction pattern analysis showed that the crystal structure did not change with acid hydrolysis. Evaluation of the properties and digestibility of different acid-thinned starch/XG systems indicated that the viscosity of acid-thinned starch/XG decreased with increased acid hydrolysis intensity. Rheological property measurements indicated that the compound systems were a pseudo-plastic fluid, which is a typical weak gel structure. Finally, we show that the WCS1.0M/XG has the highest stability of the tested mixtures. We conclude that adjusting the conditions of acid hydrolysis improves the stability and food quality-enhancing properties of starch. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. SEQUENCE OF THE STRUCTURAL GENE FOR GRANULE-BOUND STARCH SYNTHASE OF POTATO (SOLANUM-TUBEROSUM L) AND EVIDENCE FOR A SINGLE POINT DELETION IN THE AMF ALLELE

    NARCIS (Netherlands)

    van der Leij, Feike R.; VISSER, RGF; Ponstein, Anne S.; Jacobsen, Evert; Feenstra, Willem

    The genomic sequence of the potato gene for starch granule-bound starch synthase (GBSS; "waxy protein") has been determined for the wild-type allele of a monoploid genotype from which an amylose-free (amf) mutant was derived, and for the mutant part of the amf allele. Comparison of the wild-type

  13. Variation in ruminal in situ degradation of crude protein and starch from maize grains compared to in vitro gas production kinetics and physical and chemical characteristics.

    Science.gov (United States)

    Seifried, Natascha; Steingaß, Herbert; Schipprack, Wolfgang; Rodehutscord, Markus

    2016-10-01

    The objectives of this study were (1) to evaluate in situ ruminal dry matter (DM), crude protein (CP) and starch degradation characteristics and in vitro gas production (GP) kinetics using a set of 20 different maize grain genotypes and (2) to predict the effective degradation (ED) of CP and starch from chemical and physical characteristics alone or in combination with in vitro GP measurements. Maize grains were characterised by different chemical and physical characteristics. Ruminal in situ degradation was measured in three lactating Jersey cows. Ground grains (sieve size: 2 mm) were incubated in bags for 1, 2, 4, 8, 16, 24, 48 and 72 h. Bag residues were analysed for CP and starch content. Degradation kinetics was determined and the ED of DM, CP and starch calculated using a ruminal passage rate of 5%/h and 8%/h. The GP of the grains (sieve size: 1 mm) was recorded after 2, 4, 6, 8, 12, 24, 48 and 72 h incubation in buffered rumen fluid and fitted to an exponential equation to determine GP kinetics. Correlations and stepwise multiple linear regressions were evaluated for the prediction of ED calculated for a passage rate of 5%/h (ED5) for CP (EDCP5) and starch (EDST5). The in situ parameters and ED5 varied widely between genotypes with average values (±SD) of 64% ± 4.2, 62% ± 4.1 and 65% ± 5.2 for ED5 of DM, EDCP5 and EDST5 and were on average 10 percentage points lower for a passage rate of 8%/h. Degradation rates varied between 4.8%/h and 7.4%/h, 4.1%/h and 6.5%/h and 5.3%/h and 8.9%/h for DM, CP and starch, respectively. These rates were in the same range as GP rates (6.0-8.3%/h). The EDCP5 and EDST5 were related to CP concentration and could be evaluated in detail using CP fractions and specific amino acids. In vitro GP measurements and GP rates correlated well with EDCP5 and EDST5 and predicted EDCP5 and EDST5 in combination with the chemical characteristics of the samples. Equations can be used to obtain quick and cost effective information

  14. Isolation, Modification and Characterization of Tiger-Nut, Maize ...

    African Journals Online (AJOL)

    PROF HORSFALL

    2018-04-13

    Apr 13, 2018 ... ... starch properties. SEM images showed that morphological architecture of granules was ... food starch are corn, potato, wheat, cassava/tapioca, rice and maize are ... rice, pea, sago, oat, barley, rye, amaranth and certain other source of .... Micrographs of native and oxidized starch are shown in Figure 1.

  15. Investigating the Mechanisms of Amylolysis of Starch Granules by Solution-State NMR

    Science.gov (United States)

    2015-01-01

    Starch is a prominent component of the human diet and is hydrolyzed by α-amylase post-ingestion. Probing the mechanism of this process has proven challenging, due to the intrinsic heterogeneity of individual starch granules. By means of solution-state NMR, we demonstrate that flexible polysaccharide chains protruding from the solvent-exposed surfaces of waxy rice starch granules are highly mobile and that during hydrothermal treatment, when the granules swell, the number of flexible residues on the exposed surfaces increases by a factor of 15. Moreover, we show that these flexible chains are the primary substrates for α-amylase, being cleaved in the initial stages of hydrolysis. These findings allow us to conclude that the quantity of flexible α-glucan chains protruding from the granule surface will greatly influence the rate of energy acquisition from digestion of starch. PMID:25815624

  16. Production of high-amylose maize lines using RNA interference in ...

    African Journals Online (AJOL)

    amylose maize lines with a low T-DNA copy number, demonstrating that RNAi is an efficient method for the production of high-amylose maize lines. Key words: Maize, high-amylose, RNA interference, starch branching enzyme gene sbe2a.

  17. Thermo-Responsive Starch-g-(PAM-co-PNIPAM) : Controlled Synthesis and Effect of Molecular Components on Solution Rheology

    NARCIS (Netherlands)

    Fan, Yifei; Boulif, Nadia; Picchioni, Francesco

    2018-01-01

    A series of highly branched random copolymers of acrylamide (AM) and N-isopropylacrylamide (NIPAM) have been prepared from a waxy potato starch-based macroinitiator by aqueous Cu-0-mediated living radical polymerization (Cu-0-mediated LRP). The NIPAM intake in the copolymer was varied between 0% and

  18. Effects of storage and gamma irradiation on (japonica) waxy rice

    International Nuclear Information System (INIS)

    Sung, W.-C.; Hong, Mei-Chu; Chang, T.-S.

    2008-01-01

    Japonica cultivar, Taichung waxy 70 (TCW 70), was exposed to gamma radiation with doses ranging from 0 to 2.0 kGy. The effects of gamma irradiation on waxy rice pasting properties and the qualities of its food product, mochi, were compared to the effects of storage over 12 months. Doses ranging from 0.5 to 2 kGy can decrease the paste viscosity of waxy rice as those obtained after 6 months of storage. Radiation treatments were less effective to decrease the hardness of mochi than waxy rice samples stored over 6 months. It was shown the effects of gamma irradiation on shortening the japonica waxy rice aging time and improving the quality of rice products, like mochi, were not as good as the effects of storage

  19. Effects of storage and gamma irradiation on (japonica) waxy rice

    Energy Technology Data Exchange (ETDEWEB)

    Sung, W.-C. [Department of Hotel and Restaurant Management, Chia Nan University of Pharmacy and Science, 60 Erh-Jen Road, Sec. 1, Pao-An, Jen-Te Hsiang, Tainan 717, Taiwan (China)], E-mail: sungwilliam2001@yahoo.com.tw; Hong, Mei-Chu [TaiChung District Agricultural Research and Extension Station Council of Agriculture Executive Yuan, Taichung, Taiwan (China); Chang, T.-S. [Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan (China)

    2008-01-15

    Japonica cultivar, Taichung waxy 70 (TCW 70), was exposed to gamma radiation with doses ranging from 0 to 2.0 kGy. The effects of gamma irradiation on waxy rice pasting properties and the qualities of its food product, mochi, were compared to the effects of storage over 12 months. Doses ranging from 0.5 to 2 kGy can decrease the paste viscosity of waxy rice as those obtained after 6 months of storage. Radiation treatments were less effective to decrease the hardness of mochi than waxy rice samples stored over 6 months. It was shown the effects of gamma irradiation on shortening the japonica waxy rice aging time and improving the quality of rice products, like mochi, were not as good as the effects of storage.

  20. Impact of the degree of cooking on starch digestibility of rice - An in vitro study.

    Science.gov (United States)

    Tamura, Masatsugu; Singh, Jaspreet; Kaur, Lovedeep; Ogawa, Yukiharu

    2016-01-15

    The impact of cooking degree on the starch digestibility of a non-waxy, cooked rice was examined through a simulated gastro-small intestinal in vitro digestion model. The starch hydrolysis of both non-homogenised and homogenised cooked rice samples during simulated digestion was also compared in order to examine the impact of grain structure on starch digestibility. Polished rice grains were cooked in boiling water for 10min (partially cooked) and 20min (fully cooked) to obtain samples of different cooking degree. No significant differences in the equilibrium starch hydrolysis (%) were observed among the partially and fully cooked grains, although significant differences were observed among the uncooked and cooked samples. The equilibrium starch hydrolysis (%) of homogenised rice was higher than its non-homogenised counterpart. These results showed that rice starch digestibility should not be affected by the cooking degrees related to starch gelatinisation, but was influenced by the modification/destruction of the grain structure during mechanical processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Main biological characters of series of mutant waxy rices developed from irradiation-induced mutation

    International Nuclear Information System (INIS)

    Huang Ronghua; Zhang Shubiao; Zhang Qingqi; Yang Rencui; Lin Jinhu

    2008-01-01

    The main biological characters of the waxy male sterile lines, maintainer lines, restorer lines and waxy hybrids which had been developed by radiation-induced mutation were studied, and the grain quality of the waxy hybrids were analyzed as well. Sesults indicated that the mutant waxy rice had the same growth duration, similar agronomic characters, panicle and spikelet traits as parent. The waxy male-sterile line had the same pollen sterility characteristic as its parent male-sterile line. The waxy hybrid rice retained the yield potential as original hybrid rice, and the grain quality of the waxy hybrids was similar to the conventional waxy rice Ejinnuo 6. (authors)

  2. Effects of Native and Pregelatinised Fonio starches on compression ...

    African Journals Online (AJOL)

    Native and modified (pregelatinised) Fonio starches were evaluated as binding agents in comparison with maize starch B.P. in paracetamol tablet formulations. Compressional properties of the formulations were analyzed using density measurements and assessed by the compression equation of Heckel. The mechanical ...

  3. Impact of amylosucrase modification on the structural and physicochemical properties of native and acid-thinned waxy corn starch.

    Science.gov (United States)

    Zhang, Hao; Zhou, Xing; He, Jian; Wang, Tao; Luo, Xiaohu; Wang, Li; Wang, Ren; Chen, Zhengxing

    2017-04-01

    Recombinant amylosucrase from Neisseria polysaccharea was utilized to modify native and acid-thinned starches. The molecular structures and physicochemical properties of modified starches were investigated. Acid-thinned starch displayed much lower viscosity after gelatinization than did the native starch. However, the enzyme exhibited similar catalytic efficiency for both forms of starch. The modified starches had higher proportions of long (DP>33) and intermediate chains (DP 13-33), and X-ray diffraction showed a B-type crystalline structure for all modified starches. With increasing reaction time, the relative crystallinity and endothermic enthalpy of the modified starches gradually decreased, whereas the melting peak temperatures and resistant starch contents increased. Slight differences were observed in thermal parameters, relative crystallinity, and branch chain length distribution between the modified native and acid-thinned starches. Moreover, the digestibility of the modified starches was not affected by acid hydrolysis pretreatment, but was affected by the percentage of intermediate and long chains. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Hot-melt extrusion of sugar-starch-pellets.

    Science.gov (United States)

    Yeung, Chi-Wah; Rein, Hubert

    2015-09-30

    Sugar-starch-pellets (syn. sugar spheres) are usually manufactured through fluidized bed granulation or wet extrusion techniques. This paper introduces hot-melt extrusion (HME) as an alternative method to manufacture sugar-starch-pellets. A twin-screw extruder coupled with a Leistritz Micro Pelletizer (LMP) cutting machine was utilized for the extrusion of different types (normal-, waxy-, and high-amlyose) of corn starch, blended with varying amounts of sucrose. Pellets were characterized for their physicochemical properties including crystallinity, particle size distribution, tensile strength, and swelling expansion. Furthermore, the influence of sugar content and humidity on the product was investigated. Both sucrose and water lowered the Tg of the starch system allowing a convenient extrusion process. Mechanical strength and swelling behavior could be associated with varying amylose and amylopectin. X-ray powder diffractometric (XRPD) peaks of increasing sucrose contents appeared above 30%. This signified the oversaturation of the extruded starch matrix system with sucrose. Otherwise, had the dissolved sucrose been embedded into the molten starch matrix, no crystalline peak could have been recognized. The replacement of starch with sucrose reduced the starch pellets' swelling effect, which resulted in less sectional expansion (SEI) and changed the surface appearance. Further, a nearly equal tensile strength could be detected for sugar spheres with more than 40% sucrose. This observation stands in good relation with the analyzed values of the commercial pellets. Both techniques (fluidized bed and HME) allowed a high yield of spherical pellets (less friability) for further layering processes. Thermal influence on the sugar-starch system is still an obstacle to be controlled. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. ENZYME RESISTANCE OF GENETICALLY MODIFIED STARCH POTATOES

    Directory of Open Access Journals (Sweden)

    A. Sh. Mannapova

    2015-01-01

    Full Text Available Here in this article the justification of expediency of enzyme resistant starch use in therapeutic food products is presented . Enzyme resistant starch is capable to resist to enzymatic hydrolysis in a small intestine of a person, has a low glycemic index, leads to decrease of postprandial concentration of glucose, cholesterol, triglycerides in blood and insulin reaction, to improvement of sensitivity of all organism to insulin, to increase in sense of fulness and to reduction of adjournment of fats. Resistant starch makes bifidogenшс impact on microflora of a intestine of the person, leads to increase of a quantity of lactobacillus and bifidobacterium and to increased production of butyric acid in a large intestine. In this regard the enzyme resistant starch is an important component in food for prevention and curing of human diseases such as diabetes, obesity, colitis, a cancer of large and direct intestine. One method is specified by authors for imitation of starch digestion in a human body. This method is based on the definition of an enzyme resistance of starch in vitro by its hydrolysis to glucose with application of a glucoamylase and digestive enzyme preparation Pancreatin. This method is used in researches of an enzyme resistance of starch, of genetically modified potato, high amylose corn starch Hi-Maize 1043 and HYLON VII (National Starch Food Innovation, USA, amylopectin and amylose. It is shown that the enzyme resistance of the starch emitted from genetically modified potatoes conforms to the enzyme resistance of the high amylose corn starch “Hi-Maize 1043 and HYLON VII starch”, (National Starch Food Innovation, the USA relating to the II type of enzyme resistant starch. It is established that amylopectin doesn't have the enzyme resistant properties. The results of researches are presented. They allow us to make the following conclusion: amylose in comparison with amylopectin possesses higher enzyme resistance and gives to

  6. Physicochemical properties of maca starch.

    Science.gov (United States)

    Zhang, Ling; Li, Guantian; Wang, Sunan; Yao, Weirong; Zhu, Fan

    2017-03-01

    Maca (Lepidium meyenii Walpers) is gaining research attention due to its unique bioactive properties. Starch is a major component of maca roots, thus representing a novel starch source. In this study, the properties of three maca starches (yellow, purple and black) were compared with commercially maize, cassava, and potato starches. The starch granule sizes ranged from 9.0 to 9.6μm, and the granules were irregularly oval. All the maca starches presented B-type X-ray diffraction patterns, with the relative degree of crystallinity ranging from 22.2 to 24.3%. The apparent amylose contents ranged from 21.0 to 21.3%. The onset gelatinization temperatures ranged from 47.1 to 47.5°C as indicated by differential scanning calorimetry. Significant differences were observed in the pasting properties and textural parameters among all of the studied starches. These characteristics suggest the utility of native maca starch in products subjected to low temperatures during food processing and other industrial applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Relationship between gas production and starch degradation in feed samples

    NARCIS (Netherlands)

    Chai, W.Z.; Gelder, van A.H.; Cone, J.W.

    2004-01-01

    An investigation was completed of the possibilities to estimate starch fermentation in rumen fluid using the gas production technique by incubating the total sample. Gas production from six starchy feed ingredients and eight maize silage samples were recorded and related to starch degradation

  8. Ultrasonic assisted production of starch nanoparticles: Structural characterization and mechanism of disintegration.

    Science.gov (United States)

    Boufi, Sami; Bel Haaj, Sihem; Magnin, Albert; Pignon, Frédéric; Impéror-Clerc, Marianne; Mortha, Gérard

    2018-03-01

    In this paper, the disintegration of starch (waxy and standard starch) granules into nanosized particles under the sole effect of high power ultrasonication treatment in water/isopropanol is investigated, by using wide methods of analysis. The present work aims at a fully characterization of the starch nanoparticles produced by ultrasonication, in terms of size, morphology and structural properties, and the proposition of a possible mechanism explaining the top-down generation of starch nanoparticles (SNPs) via high intensity ultrasonication. Dynamic light scattering measurements have indicated a leveling of the particle size to about 40nm after 75min of ultrasonication. The WAXD, DSC and Raman have revealed the amorphous character of the SNPs. FE-SEM. AFM observations have confirmed the size measured by DLS and suggested that SNPs exhibited 2D morphology of platelet-like shapes. This morphology is further supported by SAXS. On the basis of data collected from the different characterization techniques, a possible mechanism explaining the disintegration process of starch granules into NPs is proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Controlled release of D-glucose from starch granules containing 29% free D-glucose and Eudragit L100-55 as a binding and coating agent.

    Science.gov (United States)

    Kim, Yeon-Kye; Mukerjea, Rupendra; Robyt, John F

    2010-05-27

    Waxy maize starch (100% amylopectin) granules were modified by reaction of the granules with glucoamylase in a minimum amount of water to give 29% (w/w) D-glucose inside the granules [Kim, Y.-K.; Robyt, J. F. Carbohydr. Res.1999, 318, 129-134]. These granules were made into beads by dropping an ethanol slurry of starch and different amounts of Eudragit L100-55 in a constant ratio of 100:1 from a pipette onto Whatman 3MM filter paper. The starch beads were air dried and then repeatedly sprayed 0-12 times with 2.0% (w/v) Eudragit L100-55 in ethanol, with drying between each spraying, to coat the surface of the starch beads, giving different amounts of Eudragit L100-55 coating. Seven different kinds of beads, with different amounts of Eudragit L100-55 binding and coating agent, were obtained. The rates of release of D-glucose into water from the seven kinds of beads were inversely proportional to the amount of binding and coating agent. Bead type I, which was without any binding and coating gave a fast 100% release of D-glucose in 30 min. Beads II and III also gave a fast 100% release in 60 min and 90 min, respectively. Bead IV gave a near linear release of 97% D-glucose in 150 min; Bead V gave a 50% release in 120 min followed by the remaining 50% in 60 min; and Beads VI and VII gave a slow release of 10% and 4%, respectively, from 0 to 120 min, followed by a rapid 100% release from 120 to 180 min. (c) 2010 Elsevier Ltd. All rights reserved.

  10. Properties and applications of starch-converting enzymes of the α-amylase family

    NARCIS (Netherlands)

    Maarel, Marc J.E.C. van der; Veen, Bart van der; Uitdehaag, Joost C.M.; Leemhuis, Hans; Dijkhuizen, L.

    2002-01-01

    Starch is a major storage product of many economically important crops such as wheat, rice, maize, tapioca, and potato. A large-scale starch processing industry has emerged in the last century. In the past decades, we have seen a shift from the acid hydrolysis of starch to the use of

  11. Properties and applications of starch-converting enzymes of the alpha-amylase family

    NARCIS (Netherlands)

    van der Maarel, MJEC; van der Veen, B; Uitdehaag, JCM; Leemhuis, H; Dijkhuizen, L

    2002-01-01

    Starch is a major storage product of many economically important crops such as wheat, rice, maize, tapioca, and potato. A large-scale starch processing industry has emerged in the last century. In the past decades, we have seen a shift from the acid hydrolysis of starch to the use of

  12. All-natural bio-plastics using starch-betaglucan composites

    DEFF Research Database (Denmark)

    Sagnelli, Domenico; Kirkensgaard, Jacob Judas Kain; Giosafatto, Concetta Valeria L.

    2017-01-01

    functionalities chemical modifications or blending with synthetic polymers, such as polycaprolactone are required (e.g. Mater-Bi). As an alternative, all-natural and compostable bio-plastics can be produced by blending starch with other polysaccharides. In this study, we used a maize starch (ST) and an oat β...... BG content. Our data show that the blending of starch with other natural polysaccharides is a noteworthy path to improve the functionality of all-natural polysaccharide bio-plastics systems....

  13. Impact of sodium chloride on breakfast cereal products

    OpenAIRE

    Moreau, Lydie

    2009-01-01

    To reduce the amount of sodium chloride in breakfast cereals without changing their properties, it is necessary to understand the role of this salt. Hence, a model system was developed. This model, composed of native waxy maize starch, glucose and a mixture of amino-acids generated similar colour and residual volatiles after heating compared to commercial breakfast cereals. Systematically designed experiments used this model to study the influence of NaCl concentration (0 % to 5.44 %) on colo...

  14. Improved end-stage high-intensity performance but similar glycemic responses after waxy barley starch ingestion compared to dextrose in type 1 diabetes.

    Science.gov (United States)

    Gray, Benjamin J; Page, Rhydian; Turner, Daniel; West, Daniel J; Campbell, Matthew D; Kilduff, Liam P; Stephens, Jeffrey W; Bain, Stephen C; Bracken, Richard M

    2016-11-01

    Pre-exercise carbohydrate (CHO) ingestion is an effective strategy for reducing the occurrence of hypoglycemia during or after exercise in individuals with type 1 diabetes (T1DM). The metabolic effects of ingestion of different CHOs for glycemic or performance gains have been under-researched. This study compared metabolic responses and fuel use during sub-maximal and high-intensity performance running following pre-exercise ingestion of waxy barley starch (WBS) or dextrose (DEX) in T1DM. Seven participants attended the laboratory on two separate occasions following preliminary testing. On each visit participants consumed either 0.6 g/kg body mass of DEX or WBS 2 hours before a 26-minute discontinuous incremental treadmill protocol (4-minute running: 1.5-min rest) finishing at 80±4% V̇O2peak followed by a 10-min performance run on a non-motorized treadmill. Capillary blood samples were taken at rest, during and following exercise and analyzed for glucose (BG) and acid-base variables. Data (mean ± SEM) were analyzed using repeated measures ANOVA (P0.05). In the final quartile of the performance run, a greater distance was completed under WBS (WBS 323±21 vs. DEX 301±20 m, P=0.02). Consumption of WBS demonstrated similar hyperglycemic responses to dextrose ingestion but a greater rate of CHO use at rest. Interestingly, T1DM individuals displayed an improved performance at the latter stages of a high-intensity run test.

  15. Evaluation of the net energy value of glucose (cerelose) and maize starch in diets for rainbow trout (Salmo gairdneri).

    Science.gov (United States)

    Hilton, J W; Atkinson, J L; Slinger, S J

    1987-11-01

    1. Quadruplicate groups of rainbow trout (Salmo gairdneri) (mean body-weight 24.9 g) were reared on six dietary treatments (practical-type diets) in a modified paired-feeding experiment for 12 weeks at 15 degrees to determine the net energy (NE) value of starch and glucose to rainbow trout. 2. Three test diets were prepared to contain (g/kg): 0 supplemented carbohydrate (diet 1), 250 maize starch (diet 2) and 250 glucose (diet 3) and were given ad lib. to the trout with the feeding rate of the glucose- and starch-fed groups being monitored after each feeding. The remaining three treatments involved controlled feeding of the trout with diet 1 at 75% of the feed intake of trout reared on diets 2 and 3, so as to provide the same levels of protein and lipids without carbohydrate, and with diet 2 at 100% of the feed intake of trout reared on diet 3. 3. The difference in the final carcass energy of the ad lib.-fed group and the respective controlled-fed group divided by the amount of dietary glucose or starch energy consumed by the trout is the NE value for that carbohydrate. 4. The determined NE value of glucose was 3.99 kJ/g and starch 2.17 kJ/g, which is 24.6 and 12.6% respectively of the gross energy values of these carbohydrates in rainbow trout. 5. The results indicate that digestible energy and calculated metabolizable energy values for carbohydrates in rainbow trout overestimate the utilizable energy content of the diet.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Effect of starch fermentation in the rumen on voluntary intake of ...

    African Journals Online (AJOL)

    The effect of starch fermentation in the rumen on the kinetics of roughage digestion, was studied using 12 sheep fed three roughages, viz. lucerne hay, maize cob leaves and wheat straw. The amount of starch infused per day was increased from o to 600 g/d in steps of 20 g/d over 30 days. The amount of starch infused was ...

  17. Impacts of irrigation and genotype on yield, protein, starch and oil contents in grain of maize inbred lines

    Directory of Open Access Journals (Sweden)

    Josipovic Marko

    2014-01-01

    Full Text Available Four inbred lines of maize (Os 438-95 = C1, Os 30-8 = C2, Os 6 = C3 and Os 1-44 =C4 were grown for 4-year period (2006-2009 in the stationary field experiment on Osijek eutric cambisol. Impact of irrigation, nitrogen fertilization and genotype were tested. Soil moisture was maintained by two irrigation rates from 60-100% and 80-100% of the field water capacity. Two steps of N (0, 100 and 200 kg N ha-1 were applied, while P and K fertilization was equal (500 kg/ha NPK 0:30:20. Eight maize genotypes (four inbred lines and four hybrids were grown on each basic plot of fertilization. The experiment was duplicated for maize - soybean rotation. The experiment was set by split-split plot method according to randomized block design in three replicates. The basic plot areas were 617.2 m2 (irrigation, 313.6 m2 (fertilization and 39.2 m2 (genotype. Selection of N non-fertilized treatment and four inbred lines were made for this study with aim of testing year (A irrigation (B and genotype (C effects under natural N-soil conditions. Average grain yield in level 1809 kg ha-1without N fertilization is indication of very high fertility of the soil. Differences of yield among the years were from 823 (2007 to 2450 (2006 kg ha-1. Excessive drought and high air-temperature stress is responsible for the low maize yield in 2007. Irrigation considerable affected on maize yields (4-year averages: 1500, 1809 and 2118 kg ha-1, for B1, B2 and B3, respectively. Differences of the 4-year average yields among the genotypes were from 1259 (C3 to 2765 (C1 kg ha-1. Differences of yield among the genotypes in the different years were also considerable because the lowest yield was for 71% (A1, 23% (A2, 63% (A3 and 40% (A4 lower in comparison to the highest yield. The genotype effects under different water supplies were less influencing factor because the high-yielding C1 had for 128%, 129% and 106% the higher yield compared to the low-yielding C3, for B1, B2 and B3, respectively

  18. Degradation of corn starch under the influence of gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    El Saadany, R M.A.; El Saadany, F M; Foda, Y H

    1976-01-01

    Irradiation of corn (maize) starch with different doses of gamma irradiation ranging from 1 x 10/sup 5/ rad to 1 x 10/sup 6/ rad resulted in the increase of starch acidity and reducing power. Molecular degradation was observed as a result of marked decrease in starch viscosity and intinsic viscosity as well as swelling capacity. The gelatinization time and temperature of the irradiated starch became shorter than in the control sample. Internal changes in the irradiated starch occured as a result of lowering the number of glucose unit per segment in the irradiated starch molecules. All changes were proportional to the doses of gamma irradiation used.

  19. Degradation of corn starch under the influence of gamma irradiation

    International Nuclear Information System (INIS)

    El Saadany, R.M.A.; El Saadany, F.M.; Foda, Y.H.

    1976-01-01

    Irradiation of corn (maize) starch with different doses of gamma irradiation ranging from 1 x 10 5 rad to 1 x 10 6 rad resulted in the increase of starch acidity and reducing power. Molecular degradation was observed as a result of marked decrease in starch viscosity and intinsic viscosity as well as swelling capacity. The gelatinization time and temperature of the irradiated starch became shorter than in the control sample. Internal changes in the irradiated starch occured as a result of lowering the number of glucose unit per segment in the irradiated starch molecules. All changes were proportional to the doses of gamma irradiation used. (orig.) [de

  20. Dextrins from Maize Starch as Substances Activating the Growth of Bacteroidetes and Actinobacteria Simultaneously Inhibiting the Growth of Firmicutes, Responsible for the Occurrence of Obesity.

    Science.gov (United States)

    Barczynska, Renata; Kapusniak, Janusz; Litwin, Mieczyslaw; Slizewska, Katarzyna; Szalecki, Mieczyslaw

    2016-06-01

    Unarguably, diet has a significant impact on human intestinal microbiota. The role of prebiotics as substances supporting the maintenance of appropriate body weight and reducing the demand for energy via stimulation of the growth of beneficial microbiota of the gut and formation products such as short-chain fatty acids, is more and more often highlighted. The objective of this study was to evaluate whether dextrins from maize starch resistant to enzymatic digestion stimulate the growth of Bacteroidetes and Actinobacteria strains representing a majority of the population of colon microbiota in lean individuals and limit the growth of Firmicutes bacterial strains representing a majority of the population of colon microbiota in obese individuals. The study was conducted with the use of in vitro method, using isolates from faeces of children characterized by normal weight, overweight and obesity. It was demonstrated that dextrins from maize starch equally efficient stimulate the growth of the isolates derived from normal-weight, overweight and obese children, and therefore may be added to foods as a beneficial component stimulating growth of strains belonging to Actinobacteria and Bacteroidetes for both overweight, obese and normal-weight children.

  1. Hypolipidemic effects of starch and γ-oryzanol from wx/ae double-mutant rice on BALB/c.KOR-Apoe(shl) mice.

    Science.gov (United States)

    Nakaya, Makoto; Shojo, Aiko; Hirai, Hiroaki; Matsumoto, Kenji; Kitamura, Shinichi

    2013-01-01

    waxy/amylose-extender (wx/ae) double-mutant japonica rice (Oryza sativa L.) produces resistant starch (RS) and a large amount of γ-oryzanol. Our previous study has shown the hypolipidemic effect of wx/ae brown rice on mice. To identify the functional constituents of the hypolipidemic activity in wx/ae rice, we prepared pure wx/ae starch and γ-oryzanol from wx/ae rice and investigated their effect on the lipid metabolism in BALB/c.KOR/Stm Slc-Apoe(shl) mice. The mice were fed for 3 weeks a diet containing non-mutant rice starch, non-mutant rice starch plus γ-oryzanol, wx/ae starch, or wx/ae starch plus γ-oryzanol. γ-Oryzanol by itself had no effect on the lipid metabolism, and wx/ae starch prevented an accumulation of triacylglycerol (TAG) in the liver. Interestingly, the combination of wx/ae starch plus γ-oryzanol not only prevented a TAG accumulation in the liver, but also partially suppressed the rise in plasma TAG concentration, indicating that wx/ae starch and γ-oryzanol could have a synergistic effect on the lipid metabolism.

  2. Waxy crude oil flow restart ability

    Energy Technology Data Exchange (ETDEWEB)

    Sierra, Andre Gaona; Varges, Priscilla Ribeiro; Mendes, Paulo Roberto de Souza [Dept. of Mechanical Engineering. Pontificia Universidade Catolica do Rio de Janeiro, RJ (Brazil)], e-mails: prvarges@puc-rio.br, pmendes@puc-rio.br; Ziglio, Claudio [PETROBRAS S.A, R.J., Rio de Janeiro, RJ (Brazil)], e-mail: ziglio@petrobras.com.br

    2010-07-01

    Under the hot reservoir conditions, waxy crudes behave like Newtonian fluids but once they experience very cold temperatures on the sea floor, the heavy paraffin's begin to precipitate from the solution impacting non- Newtonian flow behavior to the crude (Chang 2000, Lee 2009, Davidson 2004) and begin to deposit on the pipe wall leave blocked of pipeline. This gel cannot be broken with the original steady state flow operating pressure applied before gelation (Chang 1998). Restarting waxy crude oil flows in pipelines is a difficult issue because of the complex rheological behavior of the gelled oil. Indeed, below the WAT, the gelled oil exhibits viscoplastic, thixotropic, temperature-dependent, and compressible properties due to the interlocking gel-like structure formed by the crystallized paraffin compounds and the thermal shrinkage of the oil. The main objective of this work is to determine the minimal pressure to restart the flow, and the relationship between the fluid rheology , pipe geometry and the restart pressure of the flow. Experiments will be performed to investigate the displacement of carbopol aqueous solutions (viscoplastic fluid without thixotropic effects) by Newtonian oil flowing through a strait pipe to validate the experimental apparatus. Therefore, tests will be made with different fluids, like Laponite and waxy crude oils. (author)

  3. [Contamination with genetically modified maize MON863 of processed foods on the market].

    Science.gov (United States)

    Ohgiya, Yoko; Sakai, Masaaki; Miyashita, Taeko; Yano, Koichi

    2009-06-01

    Genetically modified maize MON863 (MON863), which has passed a safety examination in Japan, is commercially cultivated in the United States as a food and a resource for fuel. Maize is an anemophilous flower, which easily hybridizes. However, an official method for quantifying the content of MON863 has not been provided yet in Japan. We here examined MON863 contamination in maize-processed foods that had no labeling indicating of the use of genetically modified maize.From March 2006 to July 2008, we purchased 20 frozen maize products, 8 maize powder products, 7 canned maize products and 4 other maize processed foods. Three primer pairs named MON 863 primer, MON863-1, and M3/M4 for MON863-specific integrated cassette were used for qualitative polymerase chain reaction (PCR). A primer pair "SSIIb-3" for starch synthase gene was used to confirm the quality of extracted DNA. The starch synthase gene was detected in all samples. In qualitative tests, the MON863-specific fragments were detected in 7 (18%) maize powder products out of the 39 processed foods with all the three primer pairs.We concluded that various maize processed foods on the market were contaminated with MON863. It is important to accumulate further information on MON863 contamination in maize-processed foods that have no label indication of the use of genetically modified maize.

  4. Estabilidade de géis de amido de milho normal, ceroso e com alto teor de amilose adicionados de gomas guar e xantana durante os processos de congelamento e descongelamento Freeze-thaw stability of normal, waxy and high amylose corn starch gels with added guar and xanthan gums

    Directory of Open Access Journals (Sweden)

    Fernanda Hart Weber

    2008-06-01

    Full Text Available O objetivo do presente trabalho foi estudar os efeitos das gomas guar e xantana sobre a estabilidade dos géis de amido de milho normal, ceroso e com alto teor de amilose submetidos aos processos de congelamento e descongelamento. Os géis desses amidos, com concentração total de sólidos de 10% e adicionados das gomas (0,15; 0,50; 0,85 e 1%, foram submetidos a 5 ciclos de congelamento (20 horas a -18 °C e descongelamento (4 horas a 25 °C, com exceção dos géis com alto teor de amilose, que foram submetidos a apenas 1 ciclo, devido à perda da estrutura de gel. A determinação da sinérese (porcentagem de água liberada foi realizada pela diferença entre a massa inicial e a massa final das amostras. O gel de amido de milho normal liberou 74,45% de água, sendo que a adição de 1% da goma xantana reduziu significativamente a sinérese para 66,43%. A adição de 0,85 e 1% da goma xantana também reduziu a sinérese dos géis de amido ceroso. O menor teor de sinérese foi obtido com a utilização de 1% de goma xantana ao gel de amido de milho com alto teor de amilose, evidenciando a ação crioprotetora desta goma.The objective of the present work was to study the effects of guar and xanthan gums on the stability of normal, waxy and high amylose corn starch gels, submitted to freeze-thaw processes. The gels of these starches with a total solids content of 10% and added gums (0.15;0.50;0.85and1%, were submitted to 5 freezing (20 hours, -18 °C and thawing (4 hours, 25 °C cycles, with exception of the high amylose gels that were submitted to only 1 cycle. Syneresis (% water released was determined by the difference between the initial and final masses of the samples. The normal corn starch gel released 74.45% water and the addition of 1% xanthan gum significantly reduced syneresis to 66.43%. The incorporation of 0.85 and 1% xanthan gum also reduced syneresis of waxy starch gels. The lowest level of syneresis was reached with the use of 1

  5. The adaptability of upland rice waxy mutant (Oryza sativa L.) to marginal land in Batumarta

    International Nuclear Information System (INIS)

    Dwimahyani, Ita; Mitrosuhardjo, M.M.

    1998-01-01

    A field experiment had been conducted at Batumarta, Lampung Province to test the adaptability of upland rice waxy mutant (DT 20.11.84) at marginal land. Similar experiments had also been conducted in fertilize soil at Ps. Jumat, Jakarta and Citayam, Kabupaten Bogor. Agronomic evaluation such as number of tiller, panicle length number of seeds per tiller, and weight of 1000 grains from waxy mutant line, which were cultivated at Batumarta showed adaptability was better than the original variety (Danau Tempe). Grains yield of waxy mutant line per ha at marginal land (Batubara) was higher than Danau Tempe i.e 2,34 and 1,89 ton/ha respectively. In addition to grain yield of waxy mutant line at Psr Jumat, Jakarta and Citayam, Bogor was lower than Danau Tempe. The Low of grain yield that waxy mutant compared with the original variety line was caused by number of tiller and panicle length of waxy mutant line also low. Results of experiment can be concluded that waxy mutant line was favourable growing at marginal land when compared with the original variety. (author)

  6. Effects of extrusion variables on the properties of waxy hulless barley extrudates.

    Science.gov (United States)

    Köksel, Hamit; Ryu, Gy-Hyung; Başman, Arzu; Demiralp, Hande; Ng, Perry K W

    2004-02-01

    The objective of this research was to investigate the extrudability of waxy hulless barley flour under various extrusion conditions. Waxy hulless barley flour was processed in a laboratory-scale corotating twin-screw extruder with different levels of feed moisture content (22.3, 26.8, and 30.7%) and die temperature (130, 150, and 170 degrees C) to develop a snack food with high beta-glucan content. The effects of extrusion condition variables (screw configuration, moisture, and temperature) on the system variables (pressure and specific mechanical energy), the extrudate physical properties (sectional expansion index, bulk density), starch gelatinization, pasting properties (cold peak viscosity, trough viscosity, and final viscosity), and beta-glucan contents were determined. Results were evaluated by using response surface methodology. Increased extrusion temperature and feed moisture content resulted in decreases in exit die pressure and specific mechanical energy values. For extrudates extruded under low shear screw configuration (LS), increased barrel temperature decreased sectional expansion index (SEI) values at both low and high moisture contents. The feed moisture seems to have an inverse relationship with SEI over the range studied. Bulk density was higher at higher moisture contents, for both low and high barrel temperatures, for samples extruded under high shear screw configuration (HS) and LS. Cold peak viscosities (CV) were observed in all samples. The CV increased with the increase in extrusion temperature and feed moisture content. Although beta-glucan contents of the LS extrudates were comparable to that of barley flour sample, HS samples had generally lower beta-glucan contents. The extrusion cooking technique seems to be promising for the production of snack foods with high beta-glucan content, especially using LS conditions.

  7. Fractional rate of degradation (kd) of starch in the rumen and its ...

    African Journals Online (AJOL)

    Fractional rate of degradation (kd) of fermentable nutrients in the rumen is an important parameter in modern feed evaluation systems based on mechanistic models. Estimates of kd for starch was obtained on 19 starch sources originating from barley, wheat, oat, maize and peas and treated in different ways both chemically ...

  8. Changes in physicochemical properties and in vitro starch digestion of native and extruded maize flours subjected to branching enzyme and maltogenic α-amylase treatment.

    Science.gov (United States)

    Román, Laura; Martínez, Mario M; Rosell, Cristina M; Gómez, Manuel

    2017-08-01

    Extrusion is an increasingly used type of processing which combined with enzymatic action could open extended possibilities for obtaining clean label modified flours. In this study, native and extruded maize flours were modified using branching enzyme (B) and a combination of branching enzyme and maltogenic α-amylase (BMA) in order to modulate their hydrolysis properties. The microstructure, pasting properties, in vitro starch hydrolysis and resistant starch content of the flours were investigated. Whereas BMA treatment led to greater number of holes on the granule surface in native samples, B and BMA extruded samples showed rougher surfaces with cavities. A reduction in the retrogradation trend was observed for B and BMA native flours, in opposition to the flat pasting profile of their extruded counterparts. The glucose release increased gradually for native flours as the time of reaction did, whereas for extruded flours a fast increase of glucose release was observed during the first minutes of reaction, and kept till the end, indicating a greater accessibility to their porous structure. These results suggested that, in enzymatically treated extruded samples, changes produced at larger hierarchical levels in their starch structure could have masked a slowdown in the starch digestion properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Effects of lipids on enzymatic hydrolysis and physical properties of starch.

    Science.gov (United States)

    Ai, Yongfeng; Hasjim, Jovin; Jane, Jay-lin

    2013-01-30

    This study aimed to understand effects of lipids, including corn oil (CO), soy lecithin (SL), palmitic acid (PA), stearic acid (SA), oleic acid (OA), and linoleic acid (LA), on the enzymatic hydrolysis and physical properties of normal corn (NCS), tapioca (TPS), waxy corn (WCS), and high-amylose corn (HA7) starch, and to elucidate mechanisms of interactions between the starches and lipids. After cooking with the lipids (10%, w/w, dsb), NCS, TPS, and HA7 showed significant decreases in enzymatic hydrolysis, and their DSC thermograms displayed amylose-lipid-complex dissociation peaks except with the CO. (13)C NMR spectra of amylodextrin with CO showed downfield changes in the chemical shifts of carbons 1 and 4 of the anhydroglucose unit, indicating helical complex formation. Generally, free fatty acids (FFAs) reduced, but SL increased the peak viscosities of starches. FFAs and SL decreased, but CO increased the gel strength of NCS. These lipids displayed little impacts on the enzymatic hydrolysis and physical properties of WCS because it lacked amylose. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Importance of amylases for physiological quality in maize seeds

    Directory of Open Access Journals (Sweden)

    Camila Aparecida Lopes

    2017-09-01

    Full Text Available Seed quality is the result of the sum of genetic, physical, physiological and sanitary attributes that affect seed ability to perform vital functions related to germination, vigor, and longevity. The expression of genes associated with physiological quality can be assessed by means of germination and vigor analyses, as well as by transcript and protein analyses. The objective in this work was to review the relevance of amylase group enzymes to the physiological quality of maize seeds. Within this group, α-amylase (1,4-α-D-glucan glucanohydrolase E.C 3.2.1.1 plays an important role in starch hydrolysis, and is responsible for 90% of the amylolytic activity in maize seeds. It is responsible for starch conversion into sugars (e.g., destrin, which is used for embryo growth. β-amylase (1,4-α-D-glucan maltohydrolase E.C 3.2.1.2 catalyzes the release of maltose and dextrins from the non-reducing ends of starch. Research has shown that amylase enzymes are directly linked to physiological quality of maize seeds. Alpha- and beta-amylases are mainly involved in the germination process and seed heterosis, and can also be used as molecular markers associated with seed tolerance for drying.

  11. Comparative study of the physico-chemical properties of rice and corn starches grown in Indian temperate climate

    Directory of Open Access Journals (Sweden)

    Abida Ali

    2016-01-01

    Full Text Available Starches isolated from the rice (Jhelum and Kohsar and corn (PS-43 and Shalimar-maize cultivars were studied for their physico-chemical and morphological properties. Physico-chemical properties such as composition, water and oil absorption capacity, swelling power, syneresis, freeze–thaw stability and light transmittance showed significant differences among the starches. Amylose contents of starches separated from the Jhelum and Kohsar rice cultivars and PS-43 and Shalimar-maize corn cultivars were 6.33%, 4.90%, 7.52% and 8.09%, respectively. The granular size varied from 5.2 to 5.9 μm for rice starches and 11.4–12.0 μm for corn starches. Transmittance value of gelatinized pastes from all starches progressively decreased up to the 2nd day during refrigerated storage, except Kohsar rice starch which lost its clarity significantly up to 3rd day of storage. The pasting property revealed peak, breakdown and setback viscosity which were in the range of 2479–3021 cP, 962–1713 cP and 1293–2003 cP respectively.

  12. Effect of the particle size of maize, rice, and sorghum in extruded diets for dogs on starch gelatinization, digestibility, and the fecal concentration of fermentation products.

    Science.gov (United States)

    Bazolli, R S; Vasconcellos, R S; de-Oliveira, L D; Sá, F C; Pereira, G T; Carciofi, A C

    2015-06-01

    The influence of rice, maize, and sorghum raw material particle size in extruded dry dog food on the digestibility of nutrients and energy and the fecal concentration of fermentation products was investigated. Three diets with similar nutrient compositions were formulated, each with 1 starch source. Before incorporation into diets, the cereals were ground into 3 different particle sizes (approximately 300, 450, and 600 µm); therefore, a total of 9 diets were in a 3 × 3 factorial arrangement (3 cereals and 3 particle sizes). Fifty-four beagle dogs (12.0 ± 0.1 kg BW) were randomly assigned to the diets, with 6 dogs per diet. The digestibility was measured with the chromium oxide method. The data were evaluated with ANOVA considering the carbohydrate source, grinding effect, and interactions. The means were compared with the Tukey test and polynomial contrasts (P 0.05); only GE digestibility was reduced at the largest MGD (P production of feces with less lactate (P dogs fed maize and sorghum foods, an increase in propionate and butyrate concentrations were observed as MGD increased (P dogs fed different particle sizes of the cereal starches in the extruded diets, the digestibility and fecal characteristics were affected, and this effect was ingredient dependent.

  13. combustion properties of briquettes produced from maize cob

    African Journals Online (AJOL)

    joke

    2014-03-01

    Mar 1, 2014 ... were densified into briquettes using starch as binder. Combustion related ... Keywords: Briquette, maize cob, combustion properties, mesh sizes, binding agent ... smaller space requirement for storage (Yaman et al., 2000 and ...

  14. Determination of surface energies of hot-melt extruded sugar-starch pellets.

    Science.gov (United States)

    Yeung, Chi-Wah; Rein, Hubert

    2018-02-01

    Hot-melt extruded sugar-starch pellets are an alternative for commercial sugar spheres, but their coating properties remain to be studied. Both the European Pharmcopoeia 8.6 and the United States Pharmacopoeia 40 specify the composition of sugar-starch pellets without giving requirements for the manufacturing process. Due to various fabrication techniques, the physicochemical properties of pellets may differ. Therefore, the adhesion energies of three coating dispersions (sustained, enteric and immediate release) on different types of pellets were investigated. In this context, the surface energies of various kinds of corn starch (normal, waxy, high-amylose) and sucrose pellets were analyzed using the sessile drop method, whereas the surface tensions of the coating dispersions were examined using the pendant drop method. The adhesion forces were calculated from the results of these studies. Furthermore, sugar spheres were characterized in terms of particle size distribution, porosity and specific surface area. An increase of the pellets' sucrose content leads to a more porous surface structure, which gives them an enhanced wetting behavior with coating dispersions. The adhesion energies of extruded sugar-starch pellets are similar to those of commercial sugar spheres, which comply with pharmacopeial requirements. Both types of pellets are equally suited for coating.

  15. Modified Starch-Chitosan Edible Films: Physicochemical and Mechanical Characterization

    Directory of Open Access Journals (Sweden)

    Monserrat Escamilla-García

    2017-12-01

    Full Text Available Starch and chitosan are widely used for preparation of edible films that are of great interest in food preservation. This work was aimed to analyze the relationship between structural and physical properties of edible films based on a mixture of chitosan and modified starches. In addition, films were tested for antimicrobial activity against Listeria innocua. Films were prepared by the casting method using chitosan (CT, waxy (WS, oxidized (OS and acetylated (AS corn starches and their mixtures. The CT-starches films showed improved barrier and mechanical properties as compared with those made from individual components, CT-OS film presented the lowest thickness (74 ± 7 µm, water content (11.53% ± 0.85%, w/w, solubility (26.77% ± 1.40%, w/v and water vapor permeability ((1.18 ± 0.48 × 10−9 g·s−1·m−1·Pa−1. This film showed low hardness (2.30 ± 0.19 MPa, low surface roughness (Rq = 3.20 ± 0.41 nm and was the most elastic (Young’s modulus = 0.11 ± 0.06 GPa. In addition, films made from CT-starches mixtures reduced CT antimicrobial activity against L. innocua, depending on the type of modified starch. This was attributed to interactions between acetyl groups of AS with the carbonyl and amino groups of CT, leaving CT with less positive charge. Interaction of the pyranose ring of OS with CT led to increased OH groups that upon interaction with amino groups, decreased the positive charge of CT, and this effect is responsible for the reduced antimicrobial activity. It was found that the type of starch modification influenced interactions with chitosan, leading to different films properties.

  16. The effect of moisture content on physicochemical properties of extruded waxy and non-waxy rice flour.

    Science.gov (United States)

    Jongsutjarittam, Ornpicha; Charoenrein, Sanguansri

    2014-12-19

    The properties of waxy rice flour (WRF) and non-waxy rice flour (RF) were modified using an extrusion process with different feeding material moisture contents. WRF was more affected by the thermomechanical stress from extrusion; consequently, it had a lower glass transition temperature but higher water solubility index (WSI) indicating higher molecular degradation than extruded RF. The lower moisture content of the feeding flour caused more severe flour damage (coarser surface of the extruded flour) and lowered relative crystallinity compared to higher moisture content processing. Moreover, low moisture content processing led to complete gelatinization, whereas, partial gelatinization occurred in the higher moisture content extrusion. Consequently, the extruded flours had a lower peak viscosity and gelatinization enthalpy but a higher water absorption index and WSI than native flour. In conclusion, the rice flour type and the moisture content of the extrusion feeding flour affected the physicochemical properties of the extruded flour. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Rheological Investigation on the Effect of Shear and Time Dependent Behavior of Waxy Crude Oil

    Directory of Open Access Journals (Sweden)

    Japper-Jaafar A.

    2014-07-01

    Full Text Available Rheological measurements are essential in transporting crude oil, especially for waxy crude oil. Several rheological measurements have been conducted to determine various rheological properties of waxy crude oil including the viscosity, yield strength, wax appearance temperature (WAT, wax disappearance temperature (WDT, storage modulus and loss modulus, amongst others, by using controlled stress rheometers. However, a procedure to determine the correct parameters for rheological measurements is still unavailable in the literature. The paper aims to investigate the effect of shear and time dependent behaviours of waxy crude oil during rheological measurements. It is expected that the preliminary work could lead toward a proper rheological measurement guideline for reliable rheological measurement of waxy crude oil.

  18. A new approach to model strain change of gelled waxy crude oil under constant stress

    DEFF Research Database (Denmark)

    Hou, Lei; Song, Changyu; Yan, Wei

    2014-01-01

    Deformation of gelled waxy crude oil with loaded stress is worthy of research for the flow assurance of pipelining system. A dispersion parameter was introduced to characterize the disruption degree of wax crystal structure in crude oil with shear action. Based on fractional calculus theory, a rh...... monotonously with test temperature. Multiple creep curves of gelled waxy crude oil at a certain temperature can be described with this model......., a rheological model incorporating dispersion parameter was proposed to describe creep of gelled waxy crude. A discrete and numerical algorithm was proposed to solve the model. Combining with the experimental results of five kinds of waxy crude oil, the model parameters were regressed and found to change...

  19. Transglycosylated Starch Improves Insulin Response and Alters Lipid and Amino Acid Metabolome in a Growing Pig Model.

    Science.gov (United States)

    Newman, Monica A; Zebeli, Qendrim; Eberspächer, Eva; Grüll, Dietmar; Molnar, Timea; Metzler-Zebeli, Barbara U

    2017-03-16

    Due to the functional properties and physiological effects often associated with chemically modified starches, significant interest lies in their development for incorporation in processed foods. This study investigated the effect of transglycosylated cornstarch (TGS) on blood glucose, insulin, and serum metabolome in the pre- and postprandial phase in growing pigs. Eight jugular vein-catheterized barrows were fed two diets containing 72% purified starch (waxy cornstarch (CON) or TGS). A meal tolerance test (MTT) was performed with serial blood sampling for glucose, insulin, lipids, and metabolome profiling. TGS-fed pigs had reduced postprandial insulin ( p phosphatidylcholines and sphingomyelins were generally increased ( p phosphatidylcholines and lysophosphatidylcholines were decreased ( p insulin and glucose metabolism, which may have caused the alterations in serum amino acid and phospholipid metabolome profiles.

  20. Enzyme modification of starch with amylomaltase results in increasing gel melting point

    DEFF Research Database (Denmark)

    Hansen, Michael Riis; Blennow, Per Gunnar Andreas; Pedersen, Sven

    2009-01-01

    -enzyme-modified starches and 2 gelatins were investigated using differential scanning calorimetry (DSC). AM modification generally increased gel peak temperature (Tp) and enthalpy of transition (¿H). The increase in Tp for the potato starches was from 65 to 74 °C, whereas for the maize starches it was elevated from 57...... to 70 °C. Only for the combined AM and branching enzyme (BE) modified pea starches decreased Tp (from 79 to 61 °C) was obtained. This effect was followed by a decreased gel formation and hence a fully gelatin comparable gel was not obtained. A two-component principal component analysis (PCA) model...

  1. Evaluation of disintegrant properties of Neorautanenia mitis starch ...

    African Journals Online (AJOL)

    Tablet formulations containing NMS had similar hardness with those containing MS at 0.5 MT while hardness was observed to increase with increase in compression pressure. Tablets containing NMS were found to elicit faster tablet disintegration than those containing maize starch BP and also had higher t75 values.

  2. Rheological behavior of gamma-irradiated cassava (Manihot esculenta crantz) starch

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Orelio L.; Uehara, Vanessa B.; Mastro, Nelida L. del, E-mail: nlmastro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Cassava starch is the by-product of the process of pressing water out of cassava to make cassava meal. The juice has a fine starch, similar to rice or potato starch that, when dried, yields polvilho doce (sweet manioc starch); from the fermented juice comes polvilho azedo (sour manioc starch). Cassava starch can perform most of the functions where maize, rice and wheat starch are currently used. The aim of the present work was to determine the influence or ionizing radiation on the rheological behavior of aqueous preparations of gamma-irradiated cassava starch at different concentrations. Samples of polvilho doce and polvilho azedo were obtained at the local market and irradiated in plastic bags in a Gammacell 220 with doses of 1, 3 e 5 kGy, dose rate ∼ 1.2 kGy h-1. A Brooksfield viscometer was employed for the viscosity measurements. The results showed a strong dependence of the viscosity with the concentration of the starch solutions. In most of the cases there was a decrease of viscosity with the increase of the radiation dose usually seen in irradiated polysaccharides. Nevertheless, the dose response relation of the two kind of starch was different. (author)

  3. Rheological behavior of gamma-irradiated cassava (Manihot esculenta crantz) starch

    International Nuclear Information System (INIS)

    Silva, Orelio L.; Uehara, Vanessa B.; Mastro, Nelida L. del

    2013-01-01

    Cassava starch is the by-product of the process of pressing water out of cassava to make cassava meal. The juice has a fine starch, similar to rice or potato starch that, when dried, yields polvilho doce (sweet manioc starch); from the fermented juice comes polvilho azedo (sour manioc starch). Cassava starch can perform most of the functions where maize, rice and wheat starch are currently used. The aim of the present work was to determine the influence or ionizing radiation on the rheological behavior of aqueous preparations of gamma-irradiated cassava starch at different concentrations. Samples of polvilho doce and polvilho azedo were obtained at the local market and irradiated in plastic bags in a Gammacell 220 with doses of 1, 3 e 5 kGy, dose rate ∼ 1.2 kGy h-1. A Brooksfield viscometer was employed for the viscosity measurements. The results showed a strong dependence of the viscosity with the concentration of the starch solutions. In most of the cases there was a decrease of viscosity with the increase of the radiation dose usually seen in irradiated polysaccharides. Nevertheless, the dose response relation of the two kind of starch was different. (author)

  4. Near infrared hyperspectral imaging of blends of conventional and waxy hard wheats

    Directory of Open Access Journals (Sweden)

    Stephen R. Delwiche

    2018-02-01

    Full Text Available Recent development of hard winter waxy (amylose-free wheat adapted to the North American climate has prompted the quest to find a rapid method that will determine mixture levels of conventional wheat in lots of identity preserved waxy wheat. Previous work documented the use of conventional near infrared (NIR reflectance spectroscopy to determine the mixture level of conventional wheat in waxy wheat, with an examined range, through binary sample mixture preparation, of 0–100% (weight conventional / weight total. The current study examines the ability of NIR hyperspectral imaging of intact kernels to determine mixture levels. Twenty-nine mixtures (0, 1, 2, 3, 4, 5, 10, 15, …, 95, 96, 97, 98, 99, 100% were formed from known genotypes of waxy and conventional wheat. Two-class partial least squares discriminant analysis (PLSDA and statistical pattern recognition classifier models were developed for identifying each kernel in the images as conventional or waxy. Along with these approaches, conventional PLS1 regression modelling was performed on means of kernel spectra within each mixture test sample. Results indicated close agreement between all three approaches, with standard errors of prediction for the better preprocess transformations (PLSDA models or better classifiers (pattern recognition models of approximately 9 percentage units. Although such error rates were slightly greater than ones previously published using non-imaging NIR analysis of bulk whole kernel wheat and wheat meal, the HSI technique offers an advantage of its potential use in sorting operations.

  5. Enzymatically Modified Starch Ameliorates Postprandial Serum Triglycerides and Lipid Metabolome in Growing Pigs.

    Science.gov (United States)

    Metzler-Zebeli, Barbara U; Eberspächer, Eva; Grüll, Dietmar; Kowalczyk, Lidia; Molnar, Timea; Zebeli, Qendrim

    2015-01-01

    Developing host digestion-resistant starches to promote human health is of great research interest. Chemically modified starches (CMS) are widely used in processed foods and although the modification of the starch molecule allows specific reduction in digestibility, the metabolic effects of CMS have been less well described. This short-term study evaluated the impact of enzymatically modified starch (EMS) on fasting and postprandial profiles of blood glucose, insulin and lipids, and serum metabolome in growing pigs. Eight jugular-vein catheterized pigs (initial body weight, 37.4 kg; 4 months of age) were fed 2 diets containing 72% purified starch (EMS or waxy corn starch (control)) in a cross-over design for 7 days. On day 8, an 8-hour meal tolerance test (MTT) was performed with serial blood samplings. Besides biochemical analysis, serum was analysed for 201 metabolites through targeted mass spectrometry-based metabolomic approaches. Pigs fed the EMS diet showed increased (Pmetabolome profiling identified characteristic changes in glycerophospholipid, lysophospholipids, sphingomyelins and amino acid metabolome profiles with EMS diet compared to control diet. Results showed rapid adaptations of blood metabolites to dietary starch shifts within 7 days. In conclusion, EMS ingestion showed potential to attenuate postprandial raise in serum lipids and suggested constant alteration in the synthesis or breakdown of sphingolipids and phospholipids which might be a health benefit of EMS consumption. Because serum insulin was not lowered, more research is warranted to reveal possible underlying mechanisms behind the observed changes in the profile of serum lipid metabolome in response to EMS consumption.

  6. Slowing the Starch Digestion by Structural Modification through Preparing Zein/Pectin Particle Stabilized Water-in-Water Emulsion.

    Science.gov (United States)

    Chen, Jia-Feng; Guo, Jian; Zhang, Tao; Wan, Zhi-Li; Yang, Juan; Yang, Xiao-Quan

    2018-04-25

    Slowing the digestion of starch is one of the dominant concerns in the food industry. A colloidal structural modification strategy for solving this problem was proposed in this work. Due to thermodynamic incompatibility between two biopolymers, water/water emulsion of waxy corn starch (WCS) droplets dispersed in a continuous aqueous guar gum (GG) was prepared, and zein particles (ZPs), obtained by antisolvent precipitation and pectin modification, were used as stabilizer. As the ratio of zein to pectin in the particles was 1:1, their wetting properties in the two polysaccharides were similar, which made them accumulate at the interface and cover the WCS-rich droplets. The analysis of digestibility curves indicated that a rapid (rate constant k 1 : 0.145 min -1 ) and a slow phase ( k 2 : 0.022 min -1 ) existed during WCS digestion. However, only one slow phase ( k 2 : 0.019 min -1 ) was found in the WCS/GG emulsion, suggesting that this structure was effective in slowing starch digestion.

  7. Understanding shape and morphology of unusual tubular starch nanocrystals.

    Science.gov (United States)

    Gong, Bei; Liu, Wenxia; Tan, Hua; Yu, Dehai; Song, Zhaoping; Lucia, Lucian A

    2016-10-20

    Starch nanocrystals (SNC) are aptly described as the insoluble degradation byproducts of starch granules that purportedly display morphologies that are platelet-like, round, square, and oval-like. In this work, we reported the preparation of SNC with unprecedented tubular structures through sulfuric acid hydrolysis of normal maize starch, subsequent exposure to ammonia and relaxation at 4°C. High-resolution transmission electron microscopy observation clearly proved that the SNCs possess tubular nanostructures with polygonal cross-section. After further reviewing the transformations of SNC by acid hydrolysis, ammonia treatment, and curing time at 4°C, a mechanism for T-SNC formation is suggested. It is conjectured that T-SNC gradually self-assembles by combination of smaller platelet-like/square nanocrystals likely loosely aggregated by starch molecular chains from residual amorphous regions. This work paves the way for the pursuit of new approaches for the preparation of starch-based nanomaterials possessing unique morphologies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Preparation of hydroxypropyl corn and amaranth starch hydrolyzate and its evaluation as wall material in microencapsulation.

    Science.gov (United States)

    Kshirsagar, Amol C; Singhal, Rekha S

    2008-06-01

    Hydroxypropylation of starches lends it useful physicochemical and functional properties that are industrially important. The literature on hydroxypropylation using organic solvents for obtaining higher molar substitution (MS) is scantily available. The present work reports on hydroxypropylation of corn and a waxy amaranth starch to different MS with propylene oxide in an alkaline-organic medium (isopropanol). The synthesis was followed in terms of MS. The parameters optimized were starch:isopropanol ratio (w/w), reaction temperature, reaction time and the quantity of alkali required in the process. A maximal MS of 0.180 and 0.162 were obtained for hydroxypropyl corn starch (HPSC) and hydroxypropyl amaranth starch (HPSA), respectively. Enzymatic hydrolysis of the HPSC and HPSA of the above MS was carried out on a 30% (w/v) solution at a pH of 6.5 and 95°C for varying time periods using 0.1% (w/w based on starch) bacterial α-amylase, termamyl. The hydrolysis was terminated by adjusting the pH to 3.5 using 0.1N HCl. The hydrolyzates were characterized in terms of dextrose equivalent and viscosity. The hydrolyzate obtained after 3h of hydrolysis was spray dried and compared to gum arabic with respect to encapsulation of model flavourings, orange oil and lemon oil. Copyright © 2007 Elsevier Ltd. All rights reserved.

  9. The use of dialdehyde starch derivatives in the phytoremediation of soils contaminated with heavy metals.

    Science.gov (United States)

    Antonkiewicz, Jacek; Para, Andrzej

    2016-01-01

    Products of the reaction between dialdehyde starch and Y-NH2 compounds (e.g. semicarbazide or hydrazine) are effective ligands for metal ions. The usefulness of these derivatives was tested in the experiment, both in terms of the immobilization of heavy metal ions in soil and the potential application in phytoextraction processes. The experimental model comprised maize and the ions of such metals as: Zn(II), Pb(II), Cu(II), Cd(II), and Ni(II). The amount of maize yield, as well as heavy metal content and uptake by the aboveground parts and roots of maize, were studied during a three-year pot experiment. The results of the study indicate the significant impact of heavy metals on reduced yield and increased heavy metal content in maize. Soil-applied dialdehyde starch derivatives resulted in lower yields, particularly disemicarbazone (DASS), but in heavy metal-contaminated soils they largely limited the negative impact of these metals both on yielding and heavy metal content in plants, particularly dihydrazone (DASH). It was demonstrated that the application of dihydrazone (DASH) to a soil polluted with heavy metals boosted the uptake of Zn, Pb, Cu, and Cd from the soil, hence there is a possibility to use this compound in the phytoextraction of these metals from the soil. Decreased Ni uptake was also determined, hence the possibility of using this compound in the immobilization of this metal. The study showed that dialdehyde starch disemicarbazone was ineffective in the discussed processes.

  10. Isolation and partial characterization of starch from banana cultivars grown in Colombia.

    Science.gov (United States)

    Chávez-Salazar, A; Bello-Pérez, L A; Agama-Acevedo, E; Castellanos-Galeano, F J; Álvarez-Barreto, C I; Pacheco-Vargas, G

    2017-05-01

    Banana starch is resistant to hydrolysis by digestive enzymes due to its structure and dietary fibre content. Starch was isolated from the following three cultivars of Colombian Musaceae: Gros Michel (dessert), Dominico Harton and FHIA 20 (cooking); also, the amylose and amylopectin contents, morphology of the granules, thermal properties, pasting, molecular characteristics and digestibility were determined. The total starch content, amylose content and digestibility (gelatinized starch) were higher in cooking varieties; the purity and gelatinization temperature were similar for the three varieties, but the enthalpy was higher in the dessert variety. The three varieties showed higher viscosities in the pasting profile compared to commercial maize starch in both acid and neutral conditions. Starch granules presented with heterogeneous sizes and shapes (elongated and ovals) that had birefringence. The Dominico Hartón variety showed the lowest rapidly digestible starch (RDS) value in the gelatinized sample that is in agreement with the greater proportion of long chains. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Amylolytic hydrolysis of native starch granules affected by granule surface area.

    Science.gov (United States)

    Kim, J C; Kong, B W; Kim, M J; Lee, S H

    2008-11-01

    Initial stage of hydrolysis of native starch granules with various amylolytic enzymes, alpha-amylase from Bacillus subtilis, glucoamylase I (GA-I) and II (GA-II) from Aspergillus niger, and beta-amylase from sweet potato showed that the reaction was apparently affected by a specific surface area of the starch granules. The ratios of the reciprocal of initial velocity of each amylolytic hydrolysis for native potato and maize starch to that for rice with the amylolytic enzymes were nearly equivalent to the ratio of surface area per mass of the 2 starch granules to that of rice, that is, 6.94 and 2.25, respectively. Thus, the reciprocal of initial velocity of each enzymatic hydrolysis as expressed in a Lineweaver-Burk plot was a linear function of the reciprocal of surface area for each starch granule. As a result, it is concluded that amylolytic hydrolysis of native starch granules is governed by the specific surface area, not by the mass concentration, of each granule.

  12. Substituting Normal and Waxy-Type Whole Wheat Flour on Dough and Baking Properties

    Science.gov (United States)

    Choi, Induck; Kang, Chun-Sik; Cheong, Young-Keun; Hyun, Jong-Nae; Kim, Kee-Jong

    2012-01-01

    Normal (cv. Keumkang, KK) and waxy-type (cv. Shinmichal, SMC) whole wheat flour was substituted at 20 and 40% for white wheat flour (WF) during bread dough formulation. The flour blends were subjected to dough and baking property measurement in terms of particle size distribution, dough mixing, bread loaf volume and crumb firmness. The particle size of white wheat flour was the finest, with increasing coarseness as the level of whole wheat flour increased. Substitution of whole wheat flour decreased pasting viscosity, showing all RVA parameters were the lowest in SMC40 composite flour. Water absorption was slightly higher with 40% whole wheat flour regardless of whether the wheat was normal or waxy. An increased mixing time was observed when higher levels of KK flour were substituted, but the opposite reaction occurred when SMC flour was substituted at the same levels. Bread loaf volume was lower in breads containing a whole wheat flour substitution compared to bread containing only white wheat flour. No significant difference in bread loaf volume was observed between normal and waxy whole flour, but the bread crumb firmness was significantly lower in breads containing waxy flour. The results of these studies indicate that up to 40% whole wheat flour substitution could be considered a practical option with respect to functional qualities. Also, replacing waxy whole flour has a positive effect on bread formulation over normal whole wheat flour in terms of improving softness and glutinous texture. PMID:24471084

  13. Radiolysis of starch

    International Nuclear Information System (INIS)

    Raffi, J.; Saint-Lebe, L.; Berger, G.

    1978-01-01

    In the first part of the paper the results of work on the identification and determination of the gamma ( 60 Co) radiolysis products of maize starch are brought together and, wherever possible, a balance drawn up by chemical class. The second part of the paper deals with the main parameters governing radiolysis: dose, irradiation temperature and atmosphere, water content and the conditions under which the irradiated starch is stored. The third part, devoted to the mechanisms believed to be involved, contains the following conclusions: (a) the formation of radiation-induced products with a carbon skeleton probably results from a breaking of the -C-O-C- chains with rearrangement of the radicals and/or a reaction involving the water and the oxygen - the oxygen has an activating effect which does not fundamentally modify the mechanism, whereas the effect of the water is more complex and varies according to the product; (b) the formation of hydrogen peroxide probably implies the addition of atmospheric oxygen to the radiation-induced hydrogen atoms in the water or to the organic radicals obtained by abstraction of a hydrogen from the starch. Lastly, the different methods envisaged for confirming or improving the mechanistic hypotheses are discussed. (author)

  14. Lytic polysaccharide monooxygenases and other oxidative enzymes are abundantly secreted by Aspergillus nidulans grown on different starches

    DEFF Research Database (Denmark)

    Nekiunaite, Laura; Arntzen, Magnus Ø.; Svensson, Birte

    2016-01-01

    of Aspergillus nidulans grown on cereal starches from wheat and high-amylose (HA) maize, as well as legume starch from pea for 5 days. Aspergillus nidulans grew efficiently on cereal starches, whereas growth on pea starch was poor. The secretomes at days 3-5 were starch-type dependent as also reflected...... by amylolytic activity measurements. Nearly half of the 312 proteins in the secretomes were carbohydrate-active enzymes (CAZymes), mostly glycoside hydrolases (GHs) and oxidative auxiliary activities (AAs). The abundance of the GH13 α-amylase (AmyB) decreased with time, as opposed to other starch...

  15. Contribution of granule bound starch synthase in kernel modification ...

    African Journals Online (AJOL)

    The role of gbssI and gbssII genes, encoding granule bound starch synthase enzyme I and II, respectively, in quality protein maize (QPM) were studied at different days after pollination (DAP). Total RNA was used for first strand cDNA synthesis using the ImpromIISriptTM reverse transcriptase. No detectable levels of gbssI ...

  16. Extrusion of polysaccharide nanocrystal reinforced polymer nanocomposites through compatibilization with poly(ethylene oxide).

    Science.gov (United States)

    Pereda, Mariana; El Kissi, Nadia; Dufresne, Alain

    2014-06-25

    Polysaccharide nanocrystals with a rodlike shape but with different dimensions and specific surface area were prepared from cotton and capim dourado cellulose, and with a plateletlike morphology from waxy maize starch granules. The rheological behavior of aqueous solutions of poly(ethylene oxide) (PEO) with different molecular weights when adding these nanoparticles was investigated evidencing specific interactions between PEO chains and nanocrystals. Because PEO also bears hydrophobic moieties, it was employed as a compatibilizing agent for the melt processing of polymer nanocomposites. The freeze-dried mixtures were used to prepare nanocomposite materials with a low density polyethylene matrix by extrusion. The thermal and mechanical behavior of ensuing nanocomposites was studied.

  17. Genetic, Genomic, and Breeding Approaches to Further Explore Kernel Composition Traits and Grain Yield in Maize

    Science.gov (United States)

    Da Silva, Helena Sofia Pereira

    2009-01-01

    Maize ("Zea mays L.") is a model species well suited for the dissection of complex traits which are often of commercial value. The purpose of this research was to gain a deeper understanding of the genetic control of maize kernel composition traits starch, protein, and oil concentration, and also kernel weight and grain yield. Germplasm with…

  18. Mammalian mucosal α-glucosidases coordinate with α-amylase in the initial starch hydrolysis stage to have a role in starch digestion beyond glucogenesis.

    Science.gov (United States)

    Dhital, Sushil; Lin, Amy Hui-Mei; Hamaker, Bruce R; Gidley, Michael J; Muniandy, Anbuhkani

    2013-01-01

    Starch digestion in the human body is typically viewed in a sequential manner beginning with α-amylase and followed by α-glucosidase to produce glucose. This report indicates that the two enzyme types can act synergistically to digest granular starch structure. The aim of this study was to investigate how the mucosal α-glucosidases act with α-amylase to digest granular starch. Two types of enzyme extracts, pancreatic and intestinal extracts, were applied. The pancreatic extract containing predominantly α-amylase, and intestinal extract containing a combination of α-amylase and mucosal α-glucosidase activities, were applied to three granular maize starches with different amylose contents in an in vitro system. Relative glucogenesis, released maltooligosaccharide amounts, and structural changes of degraded residues were examined. Pancreatic extract-treated starches showed a hydrolysis limit over the 12 h incubation period with residues having a higher gelatinization temperature than the native starch. α-Amylase combined with the mucosal α-glucosidases in the intestinal extract showed higher glucogenesis as expected, but also higher maltooligosaccharide amounts indicating an overall greater degree of granular starch breakdown. Starch residues after intestinal extract digestion showed more starch fragmentation, higher gelatinization temperature, higher crystallinity (without any change in polymorph), and an increase of intermediate-sized or small-sized fractions of starch molecules, but did not show preferential hydrolysis of either amylose or amylopectin. Direct digestion of granular starch by mammalian recombinant mucosal α-glucosidases was observed which shows that these enzymes may work either independently or together with α-amylase to digest starch. Thus, mucosal α-glucosidases can have a synergistic effect with α-amylase on granular starch digestion, consistent with a role in overall starch digestion beyond their primary glucogenesis function.

  19. Mammalian mucosal α-glucosidases coordinate with α-amylase in the initial starch hydrolysis stage to have a role in starch digestion beyond glucogenesis.

    Directory of Open Access Journals (Sweden)

    Sushil Dhital

    Full Text Available Starch digestion in the human body is typically viewed in a sequential manner beginning with α-amylase and followed by α-glucosidase to produce glucose. This report indicates that the two enzyme types can act synergistically to digest granular starch structure. The aim of this study was to investigate how the mucosal α-glucosidases act with α-amylase to digest granular starch. Two types of enzyme extracts, pancreatic and intestinal extracts, were applied. The pancreatic extract containing predominantly α-amylase, and intestinal extract containing a combination of α-amylase and mucosal α-glucosidase activities, were applied to three granular maize starches with different amylose contents in an in vitro system. Relative glucogenesis, released maltooligosaccharide amounts, and structural changes of degraded residues were examined. Pancreatic extract-treated starches showed a hydrolysis limit over the 12 h incubation period with residues having a higher gelatinization temperature than the native starch. α-Amylase combined with the mucosal α-glucosidases in the intestinal extract showed higher glucogenesis as expected, but also higher maltooligosaccharide amounts indicating an overall greater degree of granular starch breakdown. Starch residues after intestinal extract digestion showed more starch fragmentation, higher gelatinization temperature, higher crystallinity (without any change in polymorph, and an increase of intermediate-sized or small-sized fractions of starch molecules, but did not show preferential hydrolysis of either amylose or amylopectin. Direct digestion of granular starch by mammalian recombinant mucosal α-glucosidases was observed which shows that these enzymes may work either independently or together with α-amylase to digest starch. Thus, mucosal α-glucosidases can have a synergistic effect with α-amylase on granular starch digestion, consistent with a role in overall starch digestion beyond their primary

  20. Mammalian Mucosal α-Glucosidases Coordinate with α-Amylase in the Initial Starch Hydrolysis Stage to Have a Role in Starch Digestion beyond Glucogenesis

    Science.gov (United States)

    Dhital, Sushil; Lin, Amy Hui-Mei; Hamaker, Bruce R.; Gidley, Michael J.; Muniandy, Anbuhkani

    2013-01-01

    Starch digestion in the human body is typically viewed in a sequential manner beginning with α-amylase and followed by α-glucosidase to produce glucose. This report indicates that the two enzyme types can act synergistically to digest granular starch structure. The aim of this study was to investigate how the mucosal α-glucosidases act with α-amylase to digest granular starch. Two types of enzyme extracts, pancreatic and intestinal extracts, were applied. The pancreatic extract containing predominantly α-amylase, and intestinal extract containing a combination of α-amylase and mucosal α-glucosidase activities, were applied to three granular maize starches with different amylose contents in an in vitro system. Relative glucogenesis, released maltooligosaccharide amounts, and structural changes of degraded residues were examined. Pancreatic extract-treated starches showed a hydrolysis limit over the 12 h incubation period with residues having a higher gelatinization temperature than the native starch. α-Amylase combined with the mucosal α-glucosidases in the intestinal extract showed higher glucogenesis as expected, but also higher maltooligosaccharide amounts indicating an overall greater degree of granular starch breakdown. Starch residues after intestinal extract digestion showed more starch fragmentation, higher gelatinization temperature, higher crystallinity (without any change in polymorph), and an increase of intermediate-sized or small-sized fractions of starch molecules, but did not show preferential hydrolysis of either amylose or amylopectin. Direct digestion of granular starch by mammalian recombinant mucosal α-glucosidases was observed which shows that these enzymes may work either independently or together with α-amylase to digest starch. Thus, mucosal α-glucosidases can have a synergistic effect with α-amylase on granular starch digestion, consistent with a role in overall starch digestion beyond their primary glucogenesis function. PMID

  1. Mice fed a high-fat diet supplemented with resistant starch display marked shifts in the liver metabolome concurrent with altered gut bacteria

    Science.gov (United States)

    High-amylose maize resistant starch type 2 (HAMRS2) is a fermentable dietary fiber known to alter the gut milieu, including the gut microbiota, which may explain reported effects of resistant starch to ameliorate obesity-associated metabolic dysfunction. Our working hypothesis is that HAMRS2-induced...

  2. Isosorbide, a green plasticizer for thermoplastic starch that does not retrogradate.

    Science.gov (United States)

    Battegazzore, Daniele; Bocchini, Sergio; Nicola, Gabriele; Martini, Eligio; Frache, Alberto

    2015-03-30

    Isosorbide is a non-toxic biodegradable diol derived from bio-based feedstock. It can be used for preparing thermoplastic starch through a semi-industrial process of extrusion. Isosorbide allows some technological advantages with respect to classical plasticizers: namely, direct mixing with starch, energy savings for the low processing temperature required and lower water uptake. Indeed, maize starch was directly mixed with the solid plasticizer and direct fed in the main hopper of a co-rotating twin screw extruder. Starch plasticization was assessed by X-ray diffraction (XRD) and dynamic-mechanical analysis (DMTA). Oxygen permeability, water uptake and mechanical properties were measured at different relative humidity (R.H.) values. These three properties turned out to be highly depending on the R.H. No retrogradation and changing of the material properties were occurred from XRD and DMTA after 9 months. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Sensory and rheological properties of transgenically and chemically modified starch ingredients as evaluated in a food product model

    DEFF Research Database (Denmark)

    Ahmt, T.; Wischmann, Bente; Blennow, A.

    2004-01-01

    gels with a higher tendency to retrograde and a low freeze/thaw stability as compared to starches with shorter amylopectin chains and lower phosphorous content. The textural properties of the food product model prepared from genetically and chemically modified starches were characterised by sensory......Starches derived from five genetically modified potato lines, two chemically modified potato starches and two native starches from potato and maize were subjected to physical and chemical analyses and their functionality evaluated in a milk-based food product model. The transgenic starches were...... and rheological analyses. To clearly visualise the effects of the modifications, data was evaluated by radar plots and multiple regression analysis (chemometrics). Genetically modified potato starches with longer amylopectin chains and increased phosphorous content gave a more gelled and a shorter texture...

  4. Preventive Effect of Zea mays L. (Purple Waxy Corn) on Experimental Diabetic Cataract

    OpenAIRE

    Thiraphatthanavong, Paphaphat; Wattanathorn, Jintanaporn; Muchimapura, Supaporn; Thukham-mee, Wipawee; Wannanon, Panakaporn; Tong-un, Terdthai; Suriharn, Bhalang; Lertrat, Kamol

    2014-01-01

    Recently, substances possessing antioxidant can prevent cataractogenesis of diabetic cataract. Therefore, this study was carried out to determine the anticataract effect of Zea mays L. (purple waxy corn), a flavonoids rich plant, in experimental diabetic cataract. Enucleated rat lenses were incubated in artificial aqueous humor containing 55 mM glucose with various concentrations of Zea mays L. (purple waxy corn) ranging between 2, 10, and 50 mg/mL at room temperature for 72 h. At the end of ...

  5. ISOLATION AND IDENTIFICATION OF MICROORGANISMS DURING SPONTANEOUS FERMENTATION OF MAIZE [Isolasi dan Identifikasi Mikroorganisme pada Fermentasi Spontan Jagung

    Directory of Open Access Journals (Sweden)

    Rahmawati1,2

    2013-06-01

    Full Text Available Maize was traditionally the second most common staple food in Indonesia. Conversion to maize flour has been accomplished to improve its convenience. Traditionally, maize flour is produced by soaking the kernels in water followed by grinding. It was reported that final physicochemical characteristics of the maize flour were influenced by spontaneous fermentation which occurred during soaking. This research aimed to isolate and identify important microorganisms that grew during fermentation thus a standardized starter culture can be developed for a more controlled fermentation process. Soaking of maize grits was conducted in sterile water (grits:water=1:2, w/v in a closed container at room temperature (±28ºC for 72 hours. After 0, 4, 12, 24, 36, 48, 72 hours, water and maize grits were sampled and tested for the presence of mold, yeast, and lactic acid bacteria (LAB. Isolates obtained from the spontaneous fermentation were reinoculated into the appropriate media containing starch to observe their amylolytic activity. Individual isolate was then identified; mold by slide culture method, while yeast and LAB by biochemical rapid kits, i.e. API 20C AUX and API CH50, respectively. The number of each microorganism was plotted against time to obtain the growth curve of the microorganisms during spontaneous fermentation. The microorganisms were identified as Penicillium chrysogenum, P. citrinum, A. flavus, A. niger, Rhizopus stolonifer, R.oryzae, Fusarium oxysporum, Acremonium strictum, Candida famata, Kodamaea ohmeri, Candida krusei/incospicua, Lactobacillus plantarum 1a, Pediococcus pentosaceus, L. brevis 1, L. plantarum 1b, and L. paracasei ssp paracasei 3. Four molds and one yeast were amylolytic while none of the LAB was capable of starch hydrolysis. The growth curve suggested that the amylolitic mold and yeast grew to hydrolyze starch during the course of fermentation, while the LABs benefited from the hydrolyzed products and dominated the later

  6. Importance of NDF digestibility of whole crop maize silage for dry matter intake and milk production in dairy cows

    DEFF Research Database (Denmark)

    Krämer, Monika; Lund, Peter; Weisbjerg, Martin Riis

    2016-01-01

    The importance of maize silage as a feed component in cattle rations and for biogas production has substantially increased. Whole crop maize silage is a forage with a high starch concentration, but also the cell wall fraction, commonly analysed as neutral detergent fibre (aNDFom) is a major energ...... silage aNDFom digestibility improved daily milk yield with 82 g (P = 0.04) and daily weight gain with 12 g (P = 0.03). Therefore, aNDFom digestibility is an important trait in maize used as whole crop silage for dairy cows.......The importance of maize silage as a feed component in cattle rations and for biogas production has substantially increased. Whole crop maize silage is a forage with a high starch concentration, but also the cell wall fraction, commonly analysed as neutral detergent fibre (aNDFom) is a major energy...... source for use in ruminant nutrition. Even though ruminants require forage fibre to maintain rumen function and maximize productivity, excess fibre limits feed intake due to its contribution to physical fill in the rumen. As feed intake is the most important factor for milk production, both a...

  7. Comparison of ambient solvent extraction methods for the analysis of fatty acids in non-starch lipids of flour and starch

    Science.gov (United States)

    Bahrami, Niloufar; Yonekura, Lina; Linforth, Robert; Carvalho da Silva, Margarida; Hill, Sandra; Penson, Simon; Chope, Gemma; Fisk, Ian Denis

    2014-01-01

    BACKGROUND Lipids are minor components of flours, but are major determinants of baking properties and end-product quality. To the best of our knowledge, there is no single solvent system currently known that efficiently extracts all non-starch lipids from all flours without the risk of chemical, mechanical or thermal damage. This paper compares nine ambient solvent systems (monophasic and biphasic) with varying polarities: Bligh and Dyer (BD); modified Bligh and Dyer using HCl (BDHCL); modified BD using NaCl (BDNaCl); methanol–chloroform–hexane (3:2:1, v/v); Hara and Radin (hexane–isopropanol, 3:2, v/v); water-saturated n-butanol; chloroform; methanol and hexane for their ability to extract total non-starch lipids (separated by lipid classes) from wheat flour (Triticum aestivum L.). Seven ambient extraction protocols were further compared for their ability to extract total non-starch lipids from three alternative samples: barley flour (Hordeum vulgare L.), maize starch (Zea mays L.) and tapioca starch (Manihot esculenta Crantz). RESULTS For wheat flour the original BD method and those containing HCl or NaCl tended to extract the maximum lipid and a significant correlation between lipid extraction yield (especially the glycolipids and phospholipids) and the polarity of the solvent was observed. For the wider range of samples BD and BD HCl repeatedly offered the maximum extraction yield and using pooled standardized (by sample) data from all flours, total non-starch lipid extraction yield was positively correlated with solvent polarity (r = 0.5682, P starches when compared to the flour samples, which is due to the differences in lipid profiles between the two sample types (flours and starches). PMID:24132804

  8. Effect of particle size distribution of maize and soybean meal on the precaecal amino acid digestibility in broiler chickens.

    Science.gov (United States)

    Siegert, W; Ganzer, C; Kluth, H; Rodehutscord, M

    2018-02-01

    1. Herein, it was investigated whether different particle size distributions of feed ingredients achieved by grinding through a 2- or 3-mm grid would have an effect on precaecal (pc) amino acid (AA) digestibility. Maize and soybean meal were used as the test ingredients. 2. Maize and soybean meal was ground with grid sizes of 2 or 3 mm. Nine diets were prepared. The basal diet contained 500 g/kg of maize starch. The other experimental diets contained maize or soybean meal samples at concentrations of 250 and 500, and 150 and 300 g/kg, respectively, instead of maize starch. Each diet was tested using 6 replicate groups of 10 birds each. The regression approach was applied to calculate the pc AA digestibility of the test ingredients. 3. The reduction of the grid size from 3 to 2 mm reduced the average particle size of both maize and soybean meal, mainly by reducing the proportion of coarse particles. Reducing the grid size significantly (P digestibility of all AA in the soybean meal. In maize, reducing the grid size decreased the pc digestibility of all AA numerically, but not significantly (P > 0.050). The mean numerical differences in pc AA digestibility between the grid sizes were 0.045 and 0.055 in maize and soybean meal, respectively. 4. Future studies investigating the pc AA digestibility should specify the particle size distribution and should investigate the test ingredients ground similarly for practical applications.

  9. Some physicochemical and rheological properties of starch isolated from avocado seeds.

    Science.gov (United States)

    Chel-Guerrero, Luis; Barbosa-Martín, Enrique; Martínez-Antonio, Agustino; González-Mondragón, Edith; Betancur-Ancona, David

    2016-05-01

    Seeds from avocado (Persea americana Miller) fruit are a waste byproduct of fruit processing. Starch from avocado seed is a potential alternative starch source. Two different extraction solvents were used to isolate starch from avocado seeds, functional and rheological characteristics measured for these starches, and comparisons made to maize starch. Avocado seed powder was suspended in a solution containing 2 mM Tris, 7.5 mM NaCl and 80 mM NaHSO3 (solvent A) or sodium bisulphite solution (1500 ppm SO2, solvent B). Solvent type had no influence (p>0.05) on starch properties. Amylose content was 15-16%. Gelatinization temperature range was 56-74 °C, peak temperature was 65.7 °C, and transition enthalpy was 11.4-11.6J/g. At 90 °C, solubility was 19-20%, swelling power 28-30 g water/g starch, and water absorption capacity was 22-24 g water/g starch. Pasting properties were initial temperature 72 °C; maximum viscosity 380-390 BU; breakdown -2 BU; consistency 200 BU; and setback 198 BU. Avocado seed starch dispersions (5% w/v) were characterized as viscoelastic systems, with G'>G″. Avocado seed starch has potential applications as a thickening and gelling agent in food systems, as a vehicle in pharmaceutical systems and an ingredient in biodegradable polymers for food packaging. Copyright © 2016. Published by Elsevier B.V.

  10. A comparison of controlled self-pollination and open pollination results based on maize grain quality

    Directory of Open Access Journals (Sweden)

    Hanna Sulewska

    2014-05-01

    Full Text Available Maize (Zea mays L. grain endosperm is triploid (3n, of which 2n come from the male (transferred by pollen and only 1n from the female plant, thus a major impact of the male form can be expected on grain quality parameters. A good example of this relationship is the phenomenon of xenia. The aim of this study was to determine the effect of pollen on grain quality. The field experiment was conducted in 2011; seeds were harvested from eight cultivars: Bosman, Blask, Tur, Kozak, Bielik, Smok, SMH 220 and Kresowiak, derived from free pollination and controlled self-pollination of maize. Analyses of nutrient contents and starch content in the grain were conducted in the laboratory. In addition, 1000 grain weight and the hectoliter weight of all grain samples were recorded. The results confirmed differences in grain quality of maize hybrids obtained by self-pollination and by open pollination. Grain of maize plants obtained by open-pollination was characterised by higher contents of N-free extract and starch, and lower protein content. Undertaking further studies on this subject may indicate specific recommendations for agricultural practice, such as mixtures of hybrids with good combining abilities, which will contribute to improved grain quality without additional costs.

  11. All-natural bio-plastics using starch-betaglucan composites.

    Science.gov (United States)

    Sagnelli, Domenico; Kirkensgaard, Jacob J K; Giosafatto, Concetta Valeria L; Ogrodowicz, Natalia; Kruczała, Krzysztof; Mikkelsen, Mette S; Maigret, Jean-Eudes; Lourdin, Denis; Mortensen, Kell; Blennow, Andreas

    2017-09-15

    Grain polysaccharides represent potential valuable raw materials for next-generation advanced and environmentally friendly plastics. Thermoplastic starch (TPS) is processed using conventional plastic technology, such as casting, extrusion, and molding. However, to adapt the starch to specific functionalities chemical modifications or blending with synthetic polymers, such as polycaprolactone are required (e.g. Mater-Bi). As an alternative, all-natural and compostable bio-plastics can be produced by blending starch with other polysaccharides. In this study, we used a maize starch (ST) and an oat β-glucan (BG) composite system to produce bio-plastic prototype films. To optimize performing conditions, we investigated the full range of ST:BG ratios for the casting (100:0, 75:25, 50:50, 25:75 and 0:100 BG). The plasticizer used was glycerol. Electron Paramagnetic Resonance (EPR), using TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) as a spin probe, showed that the composite films with high BG content had a flexible chemical environment. They showed decreased brittleness and improved cohesiveness with high stress and strain values at the break. Wide-angle X-ray diffraction displayed a decrease in crystallinity at high BG content. Our data show that the blending of starch with other natural polysaccharides is a noteworthy path to improve the functionality of all-natural polysaccharide bio-plastics systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Measurement and Prediction of Time-independent and Time-dependent Rheological Behavior of Waxy Crude Oil

    Directory of Open Access Journals (Sweden)

    Yavar Karimi

    2017-01-01

    Full Text Available Wax deposition phenomenon changes the rheological behavior of waxy crude oil completely. In the current work, the rheological time-dependent and time-independent behaviors of waxy crude oil samples are studied and flow curve and compliance function are measured for the oil samples with various wax contents at different temperatures. A decrease in temperature and an increase in wax content lead to an increase in the viscosity and yield stress but a significant drop in compliance function. A modified Burger model is developed to predict the behavior of the compliance function and a modified Casson model is used to predict the flow curve of the waxy crude oil samples within a vast range of wax contents and temperatures. The proposed Burger and Casson models match with experimental results with R2 of 99.7% and 97.33% respectively.

  13. Impact of full range of amylose contents on the architecture of starch granules.

    Science.gov (United States)

    Goldstein, Avi; Annor, George; Putaux, Jean-Luc; Hebelstrup, Kim H; Blennow, Andreas; Bertoft, Eric

    2016-08-01

    The effects of amylose deposition on crystalline regions of barley starch granules were studied in granules containing zero to 99.1% amylose using "waxy" (WBS, 0% amylose), normal (NBS, 18% amylose) and amylose-only barley lines (AOS, 99.1% amylose). The effects were probed after hydrolysis of amorphous regions of starch granules in dilute HCl generating lintners, which typically represent the crystalline lamella of starch granules. Compared to NBS and WBS, AOS granules exhibited an irregular, multilobular morphology with a rough surface texture. AOS displayed lower rates of acid hydrolysis than WBS, and AOS reached a plateau at ∼45wt% acid hydrolysis. High-performance anion-exchange chromatography of lintners at equivalent levels of hydrolysis (45wt%) revealed the average degree of polymerization (DP) of AOS lintners was 21, substantially smaller than that of NBS and WBS (DP 42). AOS lintners contained the lowest number of chains (NC) per molecule (1.1) compared to NBS (2.8) and WBS (3.3) and the average chain length of AOS, NBS and WBS lintners was 19, 15 and 13, respectively. Hence, both NC and the average chain length correlated with amylose content. The size distribution profile of AOS lintners revealed a repeat motif in the molecules corresponding to 5-6 glucose residues. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Improvement in maize (zea mays l) growth and quality through integrated use of biochar

    International Nuclear Information System (INIS)

    Ali, K.; Shah, F.; Shehzad, A.; Munsif, F.; Mian, A.A.

    2017-01-01

    To evaluate the potential use of biochar in crop production, two years experiments were conducted in 2013 and 2014. The experiment consisted of three factors namely: (1) Biochar (0, 25 and 50 ton ha-1), (2) FYM (5 and 10 ton ha-1) and (3) nitrogen (75 and 150 kg ha-1). A control treatment (no application of either treatment) was included in the experiment for comparison. All the treatments were replicated three time in RCB design at New Developmental Farm of the University of Agriculture Peshawar Pakistan. Experimental evidence indicated that BC, FYM and N significantly delayed all growth stages of maize such as days to taseling, silking and maturity. Biochar application significantly improved maize oil content by 12 and 29% over no BC plots (plots receiving other treatments) and control plots respectively. An increase of 27% and decrease of 11% was observed in maize protein and starch content in BC treated plots over control. FYM application of 10 ton ha-1 improved maize protein content by 12% but reduced oil content by 15% over 5 ton FYM ha-1. Likewise, N application resulted in higher protein content and starch content but reduced oil content significantly. Overall, application of BC showed convincing results as sole application of N and FYM, however, problems associated with BC production in Pakistan are needed to be addressed in future research. (author)

  15. Production and properties of micro-cellulose reinforced thermoplastic starch

    Science.gov (United States)

    Kmetty, Á.; Karger-Kocsis, J.; Czigány, T.

    2015-02-01

    Thermoplastic starch (TPS)/micro-fibrillated cellulose (MFC) composites were prepared from maize starch with different amount of distilled water, glycerol and cellulose reinforcement. The components were homogenized by kneader and twin roll technique. The produced TPS and TPS-based polymer composites were qualified by static and dynamic mechanical tests and their morphology was analysed by microscopic techniques. The results showed that the amount of water and the order of the production steps control the properties of both the TPS and its MFC reinforced version. With increasing content of MFC the stiffness and strength of the TPS matrix increased, as expected. Microscopic inspection revealed that the TPS has a homogenous structure and the MFC is well dispersed therein when suitable preparation conditions were selected.

  16. Physical Stability of Octenyl Succinate-Modified Polysaccharides and Whey Proteins for Potential Use as Bioactive Carriers in Food Systems.

    Science.gov (United States)

    Puerta-Gomez, Alex F; Castell-Perez, M Elena

    2015-06-01

    The high cost and potential toxicity of biodegradable polymers like poly(lactic-co-glycolic)acid (PLGA) has increased the interest in natural and modified biopolymers as bioactive carriers. This study characterized the physical stability (water sorption and state transition behavior) of selected starch and proteins: octenyl succinate-modified depolymerized waxy corn starch (DWxCn), waxy rice starch (DWxRc), phytoglycogen, whey protein concentrate (80%, WPC), whey protein isolate (WPI), and α-lactalbumin (α-L) to determine their potential as carriers of bioactive compounds under different environmental conditions. After enzyme modification and particle size characterization, glass transition temperature and moisture isotherms were used to characterize the systems. DWxCn and DWxRc had increased water sorption compared to native starch. The level of octenyl succinate anhydrate (OSA) modification (3% and 7%) did not reduce the water sorption of the DWxCn and phytoglycogen samples. The Guggenheim-Andersen-de Boer model indicated that native waxy corn had significantly (P whey proteins had higher glass transition temperature (Tg) values. On the other hand, depolymerized waxy starches at 7%-OSA modification had a "melted" appearance when exposed to environments with high relative humidity (above 70%) after 10 days at 23 °C. The use of depolymerized and OSA-modified polysaccharides blended with proteins created more stable blends of biopolymers. Hence, this biopolymer would be suitable for materials exposed to high humidity environments in food applications. © 2015 Institute of Food Technologists®

  17. Measurement and Prediction of Time-independent and Time-dependent Rheological Behavior of Waxy Crude Oil

    OpenAIRE

    Yavar Karimi; Ali Reza Solaimany Nazar

    2017-01-01

    Wax deposition phenomenon changes the rheological behavior of waxy crude oil completely. In the current work, the rheological time-dependent and time-independent behaviors of waxy crude oil samples are studied and flow curve and compliance function are measured for the oil samples with various wax contents at different temperatures. A decrease in temperature and an increase in wax content lead to an increase in the viscosity and yield stress but a significant drop in compliance function. A mo...

  18. Measurement of Thermal Properties of Triticale Starch Films Using Photothermal Techniques

    Science.gov (United States)

    Correa-Pacheco, Z. N.; Cruz-Orea, A.; Jiménez-Pérez, J. L.; Solorzano-Ojeda, S. C.; Tramón-Pregnan, C. L.

    2015-06-01

    Nowadays, several commercially biodegradable materials have been developed with mechanical properties similar to those of conventional petrochemical-based polymers. These materials are made from renewable sources such as starch, cellulose, corn, and molasses, being very attractive for numerous applications in the plastics, food, and paper industries, among others. Starches from maize, rice, wheat, and potato are used in the food industry. However, other types of starches are not used due to their low protein content, such as triticale. In this study, starch films, processed using a single screw extruder with different compositions, were thermally and structurally characterized. The thermal diffusivity, thermal effusivity, and thermal conductivity of the biodegradable films were determined using photothermal techniques. The thermal diffusivity was measured using the open photoacoustic cell technique, and the thermal effusivity was obtained by the photopyroelectric technique in an inverse configuration. The results showed differences in thermal properties for the films. Also, the films microstructures were observed by scanning electron microscopy, transmission electron microscopy, and the crystalline structure determined by X-ray diffraction.

  19. Unexpected High Digestion Rate of Cooked Starch by the Ct-Maltase-Glucoamylase Small Intestine Mucosal α-Glucosidase Subunit

    Science.gov (United States)

    Lin, Amy Hui-Mei; Nichols, Buford L.; Quezada-Calvillo, Roberto; Avery, Stephen E.; Sim, Lyann; Rose, David R.; Naim, Hassan Y.; Hamaker, Bruce R.

    2012-01-01

    For starch digestion to glucose, two luminal α-amylases and four gut mucosal α-glucosidase subunits are employed. The aim of this research was to investigate, for the first time, direct digestion capability of individual mucosal α-glucosidases on cooked (gelatinized) starch. Gelatinized normal maize starch was digested with N- and C-terminal subunits of recombinant mammalian maltase-glucoamylase (MGAM) and sucrase-isomaltase (SI) of varying amounts and digestion periods. Without the aid of α-amylase, Ct-MGAM demonstrated an unexpected rapid and high digestion degree near 80%, while other subunits showed 20 to 30% digestion. These findings suggest that Ct-MGAM assists α-amylase in digesting starch molecules and potentially may compensate for developmental or pathological amylase deficiencies. PMID:22563462

  20. Starch Biosynthesis during Pollen Maturation Is Associated with Altered Patterns of Gene Expression in Maize1

    Science.gov (United States)

    Datta, Rupali; Chamusco, Karen C.; Chourey, Prem S.

    2002-01-01

    Starch biosynthesis during pollen maturation is not well understood in terms of genes/proteins and intracellular controls that regulate it in developing pollen. We have studied two specific developmental stages: “early,” characterized by the lack of starch, before or during pollen mitosis I; and “late,” an actively starch-filling post-pollen mitosis I phase in S-type cytoplasmic male-sterile (S-CMS) and two related male-fertile genotypes. The male-fertile starch-positive, but not the CMS starch-deficient, genotypes showed changes in the expression patterns of a large number of genes during this metabolic transition. In addition to a battery of housekeeping genes of carbohydrate metabolism, we observed changes in hexose transporter, plasma membrane H+-ATPase, ZmMADS1, and 14-3-3 proteins. Reduction or deficiency in 14-3-3 protein levels in all three major cellular sites (amyloplasts [starch], mitochondria, and cytosol) in male-sterile relative to male-fertile genotypes are of potential interest because of interorganellar communication in this CMS system. Further, the levels of hexose sugars were significantly reduced in male-sterile as compared with male-fertile tissues, not only at “early” and “late” stages but also at an earlier point during meiosis. Collectively, these data suggest that combined effects of both reduced sugars and their reduced flux in starch biosynthesis along with a strong possibility for altered redox passage may lead to the observed temporal changes in gene expressions, and ultimately pollen sterility. PMID:12481048

  1. Response of maize hybrids to varying potassium application in pakistan

    International Nuclear Information System (INIS)

    Haji, M.A.A.; Malik, A.U.; Ahmad, R.

    2009-01-01

    A field experiment was conducted in 2005 and 2006 to evaluate the growth, grain yield, N, P, K concentration in stalk, and quality parameters of three maize hybrids (Pioneer-30D55, Pioneer-3062 and Pioneer-3012) at different levels of potassium (0, 100, 150, 200, and 250 kg ha/sup -1/). Pioneer-30D55 surpassed other two hybrids in growth rate, grain yield (6.01 t ha /sup -1/), N (0.728%), P (0.078%), K (1.79%) concentration in stalk, crude starch (72.97%), protein (8.15%) and oil (4.46%) contents in grains. K application in all treatments significantly increased growth rate, grain yield, N, P, K concentration in stalk, and improved crude starch, protein and oil contents in grains over control. Maximum growth rate, grain yield (6.05 t ha-1), N (0.751% ), P (0.082%), K (1.86%) concentration in stalk, were recorded, when 200 kg K ha/sup -1/ was applied, and beyond this limit, tended to decline its growth rate, grain yield (6.02 t ha/sup -1/), N (0.743%), P (0.071%) and K (1.76%) concentration in stalk when 250 kg K ha-1 was applied, but continued to increase crude starch (72.65%), protein (8.31%) and oil (4.53%) contents in grains. Interactive effects of maize hybrids and potash application levels on growth, yield and N, P, K concentration in stalk, crude starch, oil, and protein contents in grains were, however, non significant. It was concluded that Pioneer-30D55 performed best with 200 kg K ha/sup -1/ when previous soil K status was 124.5 ppm. However, grain quality parameters were the best at 250 kg K ha/sup -1/ application. (author)

  2. Starch nanoparticles resulting from combination of dry heating under mildly acidic conditions and homogenization.

    Science.gov (United States)

    Kim, Jong Hun; Kim, Jiyeon; Park, Eun Young; Kim, Jong-Yea

    2017-07-15

    To modify starch granular structure, normal maize starch was subjected to dry heating with various amounts of 1.0M HCl (1.2, 1.4 or 1.6mL) and different treatment times (2, 4 or 8h). For all reaction conditions, at least 80% of the starch substance was recovered, and amylose and amylopectin B1 chains were preferentially cleaved. As acidic condition and/or treatment time increased, the treated granules were readily fragmented by homogenization. The treatment appeared to alter short-range crystalline structure (FT-IR), but long-range crystalline structure (XRD) remained intact. Homogenization for 60min fragmented the treated starch granules (subjected to reaction condition of 1.4mL/4h, 1.6mL/2h, and 1.6mL/4h) into nanoparticles consisting of individual platelet-like and spherical particles with diameters less than 100nm. However, the fragmentation caused obvious damage in the long-range crystalline structure of starch nanoparticles, while the short-range chain associations remained relatively intact. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Physical stability and moisture sorption of aqueous chitosan-amylose starch films plasticized with polyols

    DEFF Research Database (Denmark)

    Cervera, Mirna Fernández; Karjalainen, Milja; Airaksinen, Sari

    2004-01-01

    The short-term stability and the water sorption of films prepared from binary mixtures of chitosan and native amylose maize starch (Hylon VII) were evaluated using free films. The aqueous polymer solutions of the free films contained 2% (w/w) film formers, glycerol, or erythritol as a plasticizer...... in the crystallinity of the films are evident within a 3-month period of storage, and the changes in the solid state are dependent on the plasticizer and storage conditions. When stored at ambient conditions for 3 months, the aqueous chitosan-amylose starch films plasticized with erythritol exhibited a partly...

  4. Replacement of soybean meal with maize steep liquor in the diets of ...

    African Journals Online (AJOL)

    Ferreira

    2015-12-14

    Dec 14, 2015 ... meal with maize steep liquor at 0%, 33%, 66% and 100% on a dry matter ... daily gain, hot carcass weight, cold carcass weight, hot carcass yield and ... remove impurities and separate the germ, gluten, starch and peel (USDA, 2010). ... are transferred to macerator tanks, which receive water with SO2 for ...

  5. Safe storage of premature maize ears through gamma radiation and irradiation effect on chemical composition

    International Nuclear Information System (INIS)

    Gupta, H.O.; Singh, N.N.; Roy, M.K.

    2003-01-01

    Marked differences were observed between unirradiated and irradiated premature ears (early dough stage) of maize during storage. Some molds were developed on the grains and deterioration set in at the peduncle and stone of maize in the unirradiated ears, whereas no such symptoms were observed in the 3 kGy irradiated ears even after 45 days of storage. Changes in chemical constituents viz. starch, protein, total sugars were observed in the ears without adversely affecting the quality traits through radiation although 100 grains weight reduced slightly. (author)

  6. Investigating the phase transformations in starch during gelatinisation

    International Nuclear Information System (INIS)

    Tan, I.; Sopade, P.A.; Halley, P.J.

    2003-01-01

    Full text: Starch, a natural polymer of amylose and amylopectin, continues to be a prime material for biodegradable plastic applications as well as many food and non-food uses. Raw starch exists as semicrystalline granules with complex internal supramolecular packing and can be hierarchically organised on four length scales: molecular scale (∼ Angstroms), lamellar structure (∼90 Angstroms); growth rings (∼ 0.1 μm) and the whole granule morphology (∼μm). Starch can be converted into thermoplastic material (TPS) through destructurisation in the presence of plasticisers under specific extrusion conditions. During the transformation of granular starch into TPS, the complex granular supramolecular structure gives rise to the characteristic endothermic first order transition known as gelatinization. Despite advances in research on starch gelatinisation, the precise structural change and transitions involved are still a matter of debate. Moreover, structural variables such as botanical origins, amylose/amylopectin ratio, macromolecular sizes, etc, have been known to influence the physicochemical properties of starch and the transitions it undergoes.While understanding the linkage between structural characteristics and gelatinisation behaviour will provide fundamental knowledge that is critical for the development of next-generation starch biodegradable plastics, this has proved difficult mainly due to poor knowledge of the exact mechanism involved in gelatinisation. This is further complicated by the sketchy idea on the role of structure and organisation of the starch granule. Studies in our laboratory on four types of maize starches with different amylose/amylopectin ratio revealed that although there is a general trend on the variation of gelatinisation parameters with plasticisers concentration, the extent of the variation are different for different types of starch. It was also found that these differences are not a directly related to the variation in

  7. Effects of different starch sources on metabolic profile, production and fertility parameters in dairy cows.

    Science.gov (United States)

    Mikuła, R; Nowak, W; Jaśkowski, J M; Maćkowiak, P; Oszmałek, E Pruszyńska

    2011-01-01

    The objective of the study was to determine the effect of replacing triticale (high rumen degradable starch) with maize grain (low rumen degradable starch) during the transition period and the first 120 days of lactation on metabolic and hormonal profile indices, milk production and fertility performance in cows. Forty-eight Holstein-Friesian dairy cows were divided into 4 groups: TT (2.5 kg triticale grain/cow per day supplemented from 14 days prepartum to day 120 postpartum), TM (2.5 kg triticale grain/cow per day supplemented from day 14 before parturition to calving, and then 2.5 kg maize grain to 120 days of lactation), MT (2.5 kg maize grain/cow per day supplemented from day 14 before parturition to calving, and then 2.5 kg triticale grain to 120 days of lactation), MM (2.5 kg maize grain/cow per day supplemented from 14 days prepartum to day 120 postpartum). Blood samples were collected 3 weeks and 1 week before calving and on days 14, 56 and 70 of lactation, and they were analyzed in terms of concentrations of glucose, insulin, leptin, insulin-like growth factor I, nonesterified fatty acids, triglycerides, cholesterol, blood urea nitrogen and activities of aspartate aminotransferase and gamma glutamyl transpeptidase. Milk samples were collected twice a day at weekly intervals and analyzed for fat, protein and lactose. Milk yield and individual dry mater intake were recorded at weekly intervals. Body condition was estimated 3 weeks before calving, on parturition day and on days 14, 56 and 120 of lactation. Replacing triticale grain with maize grain in the transition period and during lactation positively affected fertility of lactating cows. An increased first service conception rate and shortening of the days open period was observed in MM and TM groups in comparison to those found in group MT (P cows than triticale grain.

  8. Gluten-free snacks using plantain-chickpea and maize blend: chemical composition, starch digestibility, and predicted glycemic index.

    Science.gov (United States)

    Flores-Silva, Pamela C; Rodriguez-Ambriz, Sandra L; Bello-Pérez, Luis A

    2015-05-01

    An increase in celiac consumers has caused an increasing interest to develop good quality gluten-free food products with high nutritional value. Snack foods are consumed worldwide and have become a normal part of the eating habits of the celiac population making them a target to improve their nutritive value. Extrusion and deep-frying of unripe plantain, chickpea, and maize flours blends produced gluten-free snacks with high dietary fiber contents (13.7-18.2 g/100 g) and low predicted glycemic index (28 to 35). The gluten-free snacks presented lower fat content (12.7 to 13.6 g/100 g) than those reported in similar commercial snacks. The snack with the highest unripe plantain flour showed higher slowly digestible starch (11.6 and 13.4 g/100 g) than its counterpart with the highest chickpea flour level (6 g/100 g). The overall acceptability of the gluten-free snacks was similar to that chili-flavored commercial snack. It was possible to develop gluten-free snacks with high dietary fiber content and low predicted glycemic index with the blend of the 3 flours, and these gluten-free snacks may also be useful as an alternative to reduce excess weight and obesity problems in the general population and celiac community. © 2015 Institute of Food Technologists®

  9. Functional properties of edible agar-based and starch-based films for food quality preservation.

    Science.gov (United States)

    Phan, The D; Debeaufort, F; Luu, D; Voilley, A

    2005-02-23

    Edible films made of agar (AG), cassava starch (CAS), normal rice starch (NRS), and waxy (glutinous) rice starch (WRS) were elaborated and tested for a potential use as edible packaging or coating. Their water vapor permeabilities (WVP) were comparable with those of most of the polysaccharide-based films and with some protein-based films. Depending on the environmental moisture pressure, the WVP of the films varies and remains constant when the relative humidity (RH) is >84%. Equilibrium sorption isotherms of these films have been measured; the Guggenheim-Anderson-de Boer (GAB) model was used to describe the sorption isotherm and contributed to a better knowledge of hydration properties. Surface hydrophobicity and wettability of these films were also investigated using the sessile drop contact angle method. The results obtained suggested the migration of the lipid fraction toward evaporation surface during film drying. Among these polysaccharide-based films, AG-based film and CAS-based film displayed more interesting mechanical properties: they are transparent, clear, homogeneous, flexible, and easily handled. NRS- and WRS-based films were relatively brittle and have a low tension resistance. Microstructure of film cross section was observed by environmental scanning electron microscopy to better understand the effect of the structure on the functional properties. The results suggest that AG-based film and CAS-based films, which show better functional properties, are promising systems to be used as food packaging or coating instead of NRS- and WRS-based films.

  10. Tank testing of skimmers with waxy and viscous oils

    International Nuclear Information System (INIS)

    1989-10-01

    A series of tests of four offshore skimmers (Framo ACW-400, GT-185, Walosep W2, Heavy Oil Skimmer) was conducted in a 120-by-60-meter wave basin. Each skimmer was tested with each of 3 oils: a conventional crude, a waxy crude, and a bunker oil. Each test involved 4-6 h of skimming, partly conducted in waves having a period of 4 s and heights of 0.4-0.8 m. Near the end of selected tests, the additive Elastol was applied to the oil and its effect on recovery parameters evaluated. All the optimum results were obtained in calm conditions. In general, waves had no effect on the performance of the Walosep W2, had little effect on the performance of the GT-185, and greatly reduced the performance of the Framo. The experimental Heavy Oil Skimmer failed to recover oil at significant rates without addition of Elastol to the oils. The fluid recovery rate less the water entrainment rate generally declined as oil viscosity increased. For a waxy oil, recovery rates under conditions typical of the Grand Banks in summer would be 30-40% less than for a conventional crude with the Framo skimmer and about the same as the recovery rates for conventional crude with the Walosep and GT-185 skimmers. The Walosep, unlike the other skimmers, did not entrain more water when skimming waxy oil compared to conventional oil. Adding Elastol to the oils improved the corrected recovery rates of the Walosep by ca 15% and had no effect on its water entrainment rate. For the Framo, Elastol addition had no effect on the recovery rate but increased its water entrainment rate. Elastol reduced the GT-185's recovery rate by 25-35% and increased its water entrainment rate. Adding Elastol had several negative effects on subsequent downstream operations. 11 refs., 55 figs., 14 tabs

  11. The influence of grass silage-to-maize silage ratio and concentrate composition on methane emissions, performance and milk composition of dairy cows.

    Science.gov (United States)

    Hart, K J; Huntington, J A; Wilkinson, R G; Bartram, C G; Sinclair, L A

    2015-06-01

    It is well-established that altering the proportion of starch and fibre in ruminant diets can alter ruminal and post-ruminal digestion, although quantitative evidence that this reduces enteric methane (CH4) production in dairy cattle is lacking. The objective of this study was to examine the effect of varying grass-to-maize silage ratio (70 : 30 and 30 : 70 DM basis), offered ad libitum, with either a concentrate that was high in starch or fibre, on CH4 production, intake, performance and milk composition of dairy cows. A total of 20 cows were allocated to one of the four experimental diets in a two-by-two factorial design run as a Latin square with each period lasting 28 days. Measurements were conducted during the final 7 days of each period. Cows offered the high maize silage ration had a higher dry matter intake (DMI), milk yield, milk energy output and lower CH4 emissions when expressed per kg DMI and per unit of ingested gross energy, but there was no difference in total CH4 production. Several of the milk long-chain fatty acids (FA) were affected by forage treatment with the most notable being an increase in 18:0, 18:1 c9, 18:2 c9 c12 and total mono unsaturated FA, observed in cows offered the higher inclusion of maize silage, and an increase in 18:3 c9 c12 c15 when offered the higher grass silage ration. Varying the composition of the concentrate had no effect on DMI or milk production; however, when the high-starch concentrate was fed, milk protein concentration and milk FAs, 10:0, 14:1, 15:0, 16:1, increased and 18:0 decreased. Interactions were observed for milk fat concentration, being lower in cows offered high-grass silage and high-fibre concentrates compared with the high-starch concentrate, and FA 17:0, which was the highest in milk from cows fed the high-grass silage diet supplemented with the high-starch concentrate. In conclusion, increasing the proportion of maize silage in the diets of dairy cows increased intake and performance, and reduced CH

  12. Starch grains reveal early root crop horticulture in the Panamanian tropical forest.

    Science.gov (United States)

    Piperno, D R; Ranere, A J; Holst, I; Hansell, P

    2000-10-19

    Native American populations are known to have cultivated a large number of plants and domesticated them for their starch-rich underground organs. Suggestions that the likely source of many of these crops, the tropical forest, was an early and influential centre of plant husbandry have long been controversial because the organic remains of roots and tubers are poorly preserved in archaeological sediments from the humid tropics. Here we report the occurrence of starch grains identifiable as manioc (Manihot esculenta Crantz), yams (Dioscorea sp.) and arrowroot (Maranta arundinacea L.) on assemblages of plant milling stones from preceramic horizons at the Aguadulce Shelter, Panama, dated between 7,000 and 5,000 years before present (BP). The artefacts also contain maize starch (Zea mays L.), indicating that early horticultural systems in this region were mixtures of root and seed crops. The data provide the earliest direct evidence for root crop cultivation in the Americas, and support an ancient and independent emergence of plant domestication in the lowland Neotropical forest.

  13. Genotyping-by-sequencing of waxy and glossy near-isogenic broccoli lines

    Science.gov (United States)

    Wild-type Brassica oleracea L. have matte blue-green leaves caused by an interaction between leaf pigmentation and a waxy bloom coating the surface. Glossy mutants have reduced and/or altered epicuticular wax giving the leaves a shiny green appearance and have been identified in most B. oleracea cro...

  14. Using manure as fertilizer for maize could improve sustainability of milk production

    Directory of Open Access Journals (Sweden)

    José D. Jiménez-Calderón

    2018-04-01

    Full Text Available This study evaluated the effect of organic or chemical fertilization of maize on cow performance, economic outcomes, and greenhouse gas emission. Each type of maize silage according its different fertilization was used in two rations offered to two different groups of nine Friesian-Holstein cows throughout 4 months. The production cost of the maize silage was 8.8% lower for organic than for chemical fertilization. Both silages had similar nutritive value, except a higher concentration of starch in maize with organic fertilization, which allowed a reduction in the proportion of concentrate in the ration, saving 25.3 eurocents per cow in the daily ration, generating a positive balance of 21.8 eurocents per cow and day. The milk yield and composition were unaffected depending on the type of fertilization, whereas the estimation of CH4 and N2O emissions with chemical fertilization was higher than emissions with organic fertilization. As a result, it is possible to increase the sustainability and profitability of dairy production with reuse and recycling of manure.

  15. Using manure as fertilizer for maize could improve sustainability of milk production

    International Nuclear Information System (INIS)

    Jiménez-Calderón, J.M.; Martínez-Fernández, A.; Prospero-Bernal, F.; Velarde-Guillén, J.; Arriaga-Jordán, C.M.; Vicente, F.

    2018-01-01

    This study evaluated the effect of organic or chemical fertilization of maize on cow performance, economic outcomes, and greenhouse gas emission. Each type of maize silage according its different fertilization was used in two rations offered to two different groups of nine Friesian-Holstein cows throughout 4 months. The production cost of the maize silage was 8.8% lower for organic than for chemical fertilization. Both silages had similar nutritive value, except a higher concentration of starch in maize with organic fertilization, which allowed a reduction in the proportion of concentrate in the ration, saving 25.3 eurocents per cow in the daily ration, generating a positive balance of 21.8 eurocents per cow and day. The milk yield and composition were unaffected depending on the type of fertilization, whereas the estimation of CH4 and N2O emissions with chemical fertilization was higher than emissions with organic fertilization. As a result, it is possible to increase the sustainability and profitability of dairy production with reuse and recycling of manure.

  16. Study on influence of flow rates on voids in waxy crude oil subjected to dynamic and static cooling

    Directory of Open Access Journals (Sweden)

    Girma T. Chala

    2015-12-01

    Full Text Available The assumption of constant yield stress in the conventional restart pressure equation neglects the effects of thermal shrinkage and gas voids formation, which in turn resulted in an over-designed production piping systems. This paper presents a study on the effects of flow rates on the formation of voids in gelled waxy crude oil. A flow loop rig simulating offshore waxy crude oil transportation was used to produce a gel. A Magnetic Resonance Imaging (MRI was used to scan the gelled crude oil over the three planes. Waxy crude oil underwent both dynamic and static cooling to observe the effects of volume flow rates on the voids formed in wax-oil gel. Volume flow rate was found to have different influences on the intra-gel voids in the pipeline. A volume flow rate of 5 L/min resulted in a maximum total voids volume of 6.98% while 20 L/min produced a minimum total voids volume of 5.67% in the entire pipe. Slow flow rates resulted in a larger voids volume near the pipe wall. In contrast, faster flow rates produced insignificantly higher voids volume around pipe core. Generally, slower flow rates favoured the formation of higher total voids volume following sufficient steady time of wax crystal formation, producing larger voids areas in gelled waxy crude oil.

  17. Cornmeal and starch influence the dynamic of fumonisin B, A and C production and masking in Fusarium verticillioides and F. proliferatum.

    Science.gov (United States)

    Lazzaro, Irene; Falavigna, Claudia; Galaverna, Gianni; Dall'Asta, Chiara; Battilani, Paola

    2013-08-16

    Fusarium verticillioides and F. proliferatum can infect maize ears and produce fumonisins. The fumonisin B (FB) series is the most prolifically produced, followed by fumonisin C (FC), A (FA) and P (FP); moreover hidden forms of fumonisins have been detected in maize and derivatives. There is a lack of information about which maize component may affect fumonisin pattern production. Therefore, in this work we studied the role of cornmeal and corn starch, as the sole source of nutrition, in the production dynamic of all fumonisin series, hidden forms included, in different strains of F. verticillioides and F. proliferatum incubated at 25°C for 7-45days. Both Fusarium species produced high amounts of FB, following the chemotype FB1>FB2>FB3; FC and FA were produced in lesser amounts, showing the chemotypes: FA2+FA3>FA1 and FC1>FC2+FC3>FC4, respectively; while no FP were detected. F. verticillioides was more prolific than F. proliferatum in fumonisin production (ten times more on average) in all the tested conditions. Fumonisin production was higher in cornmeal than in starch based medium in both Fusarium species; FA and FC were detected only in the former medium. An important role of amylopectin as an inducing factor for fumonisin biosynthesis was suggested, as were acid pH conditions. Fumonisin hidden forms may occur in cornmeal medium, whereas they were never found at significant levels in corn starch medium. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Molecular basis of structural makeup of hulless barley in relation to rumen degradation kinetics and intestinal availability in dairy cattle: A novel approach.

    Science.gov (United States)

    Damiran, D; Yu, P

    2011-10-01

    To date, no study has been done of molecular structures in relation to nutrient degradation kinetics and intestinal availability in dairy cattle. The objectives of this study were to (1) reveal molecular structures of hulless barley affected by structural alteration using molecular spectroscopy (diffuse reflectance infrared Fourier transform) as a novel approach, and (2) quantify structure features on a molecular basis in relation to digestive kinetics and nutritive value in the rumen and intestine in cattle. The modeled feeds in this study were 4 types of hulless barley (HB) cultivars modified in starch traits: (a) normal starch cultivar, (b) zero-amylose waxy, (c) waxy, and (d) high-amylose. The molecular structural features were determined using diffuse reflectance infrared Fourier transform spectroscopy in the mid-infrared region (ca. 4,000-800 cm(-1)) of the electromagnetic spectrum. The items assessed included infrared intensity attributed to protein amide I (ca. 1,715-1,575 cm(-1)), amide II (ca. 1,575-1,490 cm(-1)), α-helix (ca. 1,648-1,660 cm(-1)), β-sheet (ca. 1,625-1,640 cm(-1)), and their ratio, β-glucan (ca. 1,445-1,400 cm(-1)), total carbohydrates (CHO; ca. 1,188-820 cm(-1)) and their 3 major peaks, structural carbohydrates (ca. 1,277-1,190 cm(-1)), and ratios of amide I to II and amide I to CHO. The results show that (1) the zero-amylose waxy was the greatest in amide I and II peak areas, as well as in the ratio of protein amide I to CHO among HB; (2) α-helix-to-β-sheet ratio differed among HB: the high-amylose was the greatest, the zero-amylose waxy and waxy were the intermediate, and the normal starch was the lowest; (3) HB were similar in β-glucan and CHO molecular structural makeup; (4) altered starch HB cultivars were similar to each other, but were different from the normal starch cultivar in protein molecular makeup; and (5) the rate and extent of rumen degradation of starch and protein were highly related to the molecular structural

  19. Characteristics of starch breads enriched with red potatoes

    Directory of Open Access Journals (Sweden)

    Dorota Gumul

    2017-01-01

    Full Text Available Starch breads may often be low in nutritional value, in comparison to traditional products, as they contain less dietary fibre, protein and micro and macro elements. As an effect a risk of mineral deficiencies and digestive problems caused by lack of dietary fibre could be expected in persons adhering to gluten free diet. To eliminate such problems, a continuous research on gluten-free bread nutritional enrichment, has been done in recent years. Raw material used to enrich gluten free products should include: inulin, lupine, radish, soy, lucerne sprouts, oilseeds, different type of dried fruits. Among the most commonly used raw materials, there are flours from gluten free cereals and pseudocereals such as buckwheat, amaranth and maize are very popular. It seem that valuable alternative could be considered a red, purple or pink potatoes as starch breads additives. The aim of this work was to investigate the effect addition of freeze-dried color potatoes on crude fiber, polyphenols, anthocyanins and flavonoids and nutritional value of gluten free breads. It could be concluded, that freeze-dried color (red, purple, pink potatoes enriched the gluten free breads (starch breads with health promoting bioactive components, like polyphenols, and highly valuable protein. The most promising additive was Magenta Love red potato variety lyophilisates, because gluten free breads enriched with this component were characterized by high protein content and the highest content of free and bound polyphenols, flavonoids, anthocyanins. The presence of all these components increased the nutritional and pro-health value of gluten free product as starch bread.

  20. Evaluation of Blue Value in different plant materials as a tool for rapid starch determination

    Directory of Open Access Journals (Sweden)

    Bogusław Samotus

    2014-01-01

    Full Text Available In order to determine the concentration of starch in plant materials from the intensity of the blue iodine complex, it is necessary to know the Blue Value (B.V., which is defined in this paper as the absorbancy of 100 mg of a starch-iodine complex in 100 ml of aqueous solution. An adequate amount of plant material is treated with a hot CaCl2 solution for 1/2 hour and the solute is diluted to 25 ml with CaCl2. This basic solution serves to measure absorbancy, as well as for starch determination. The first measurement is done by the dilution of a proper amount of basic solution with water and after adding a diluted iodine-iodide solution the reading of B.V. is taken off. The second measurement is done by the precipitation of a starch iodine complex from a proper amount of the basic solution, which is then purified, destroyed by Na2SO3 solution, and starch is determined by the anthrone method. These two readings serve for the establishing of B.V. for the starch. Once established, B.V. can be used for starch determination in the proper plant material. A high degree of variation of the B.V. was found. The highest B.V. was obtained for wrinkled pea seeds (17.4; walnut, potato, smooth pea and pear gave values from 12.6 to 11.0, common bean and broad bean - 10.3 and 9.7, Triticale, carrot, rye, wheat and garden parsley from 8.7 to 8.0 and maize, oat, normal rice from 7.6 to 6.2. The B.V. for amylose was 25.3, for potato starch 12.4, soluble starch 11.9, wheat starch 8.8 and for Triticale and rye starches, 8.7.

  1. Reliability-based assessment of flow assurance of hot waxy crude pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Jinjun, Zhang; Wenke, Zhang; Jianlin, Ding; Bo, Yu [China University of Petroleum - Beijing (CUPB), Beijing (China)

    2009-07-01

    Waxy crude is characterized by its high pour point. Pipeline blockage may occur after prolonged shutdown of a pipeline due to crude oil gelation. Another flow assurance problem is the instable operation at a flow rate below the lowest allowable operation flow rate which is dependent on heat transfer of the pipeline and the viscosity vs. temperature relation of the crude pumped. Besides, for pipelines with thick wax deposition layer, massive depletion of wax deposit in some cases such as pipeline restart at high expelling pressure may also result in blockage of the pipeline, and the pig may be jammed during pigging as a result of thick wax deposition. Conventionally, assessment of these risks has been made by using the deterministic approach. However, many related physical quantities are subject to uncertainty and contribute to reliability of flow assurance. Therefore, the probabilistic approach is suggested and a framework of reliability based assessment of flow assurance of waxy crude pipelines is proposed in this paper. Discussions are also made on the limit state functions and target safety level. In the future study, development of an efficient and robust stochastic-numerical method is crucial. (author)

  2. Improvement of physical properties of gluten-free steamed cake based on black waxy rice flour using different hydrocolloids.

    Science.gov (United States)

    Itthivadhanapong, Pimchada; Jantathai, Srinual; Schleining, Gerhard

    2016-06-01

    This study aimed to compare the effects of 1 % addition of four selected hydrocolloids (xanthan, guar, hypdroxypropylmethylcellulose and carrageenan) on quality characteristics of batter and of black waxy rice steamed cake compared to a control without hydrocolloids. Dynamic frequency sweeps of the batters at 25 °C indicated that all formulations exhibited gel-like behaviour with storage moduli (G') higher than loss moduli (G″). Hydrocolloids increased the apparent viscosity and the thixotropic behaviour, depending on the type of hydrocolloids. Xanthan had the greatest effects on both moduli, whereas carrageenan had the smallest effects. During a storage period of 4 days the cakes with xanthan remained softer than control samples. The overall acceptability of cake with xanthan and guar were higher than control. This study is the first report on using black waxy rice flour as a main raw material in gluten free cake. The results of this study provided useful information for selection hydrocolloids as ingredients that can help to improve the physical properties of waxy rice steamed cake.

  3. Integral use of amaranth starch to obtain cyclodextrin glycosyltransferase, by Bacillus megaterium, to produce β-cyclodextrin.

    Directory of Open Access Journals (Sweden)

    María Belem Arce-Vázquez

    2016-09-01

    Full Text Available Cyclodextrin glycosyltransferase (CGTase is an enzyme that produces cyclodextrins (CDs from starch and related carbohydrates, producing a mixture of α-, β-, and γ-CDs in different amounts. CGTase production, mainly by Bacillus sp., depends on fermentation conditions such as pH, temperature, concentration of nutrients, carbon and nitrogen sources, among others. Bacillus megaterium CGTase produces those three types of CDs, however, β-CD should prevail. Although waxy corn starch (CS is used industrially to obtain CGTase and CDs because of its high amylopectin content, alternative sources such as amaranth starch (AS could be used to accomplish those purposes. AS has high susceptibility to the amylolytic activity of CGTase because of its 80% amylopectin content. Therefore, the aim of this work was evaluate the AS as carbon source for CGTase production by B. megaterium in a submerged fermentation. Afterwards, the CGTase was purified partially and its activity to synthesize α-, β- and γ-CDs was evaluated using 1% AS as substrate. B. megaterium produced a 66 kDa CGTase (Topt=50°C; pHopt=8.0, from the early exponential growth phase which lasted 36 h. The maximum CGTase specific activity (106.62±8.33 U/mg protein was obtained after 36 h of culture. CGTase obtained with a Km=0.152 mM and a Vmax=13.4 µM/min yielded 40.47% total CDs using AS which was roughly twice as much as that of corn starch (CS; 24.48%. High costs to produce CDs in the pharmaceutical and food industries might be reduced by using AS because of its higher α-, β- and γ-CDs production (12.81%, 17.94% and 9.92%, respectively in a shorter time than that needed for CS.

  4. Site and extent of starch degradation in the dairy cow - a comparison between in vivo, in situ and in vitro measurements.

    NARCIS (Netherlands)

    Hindle, V.A.; Vuuren, van A.M.; Klop, A.; Mathijssen-Kamman, A.A.; Gelder, van A.H.; Cone, J.W.

    2005-01-01

    Prediction of the supply of glycogenic precursors to dairy cows and the site of degradation of wheat, maize and potato starch (PS) were determined in an in vivo experiment and the results were compared with data obtained from experiments involving in situ nylon bag and in vitro gas production

  5. An Environmental Impact Analysis of Semi-Mechanical Extraction Process of Sago Starch: Life Cycle Assessment (LCA) Perspective

    Science.gov (United States)

    Yusuf, M. A.; Romli, M.; Suprihatin; Wiloso, E. I.

    2018-05-01

    Industrial activities use material, energy and water resources and generate greenhouse gas (GHG). Currently, various regulations require industry to measure and quantify the emissions generated from its process activity. LCA is a method that can be used to analyze and report the environmental impact of an activity that uses resources and generates waste by an industrial activity. In this work, LCA is used to determine the environmental impact of a semi-mechanical extraction process of sago industry. The data was collected through the sago industry in Cimahpar, Bogor. The extraction of sago starch consists of stem cutting, rasping, mixing, filtration, starch sedimentation, washing, and drying. The scope of LCA study covers the harvesting of sago stem, transportation to extraction site, and the starch extraction process. With the assumption that the average transportation distance of sago stem to extraction site is 200 km, the GHG emission is estimated to be 325 kg CO2 eq / ton of sundried sago starch. This figure is lower than that reported for maize starch (1120 kg CO2 eq), potato starch (2232 kg CO2 eq) and cassava starch (4310 kg CO2 eq). This is most likely due to the uncounted impact from the use of electrical energy on the extraction process, which is currently being conducted. A follow-up study is also underway to formulate several process improvement scenarios to derive the design of sago starch processing that generates the minimum emissions.

  6. Identification by microscopy and MS-based electronic nose of a fraudulent addition to maize gluten

    Directory of Open Access Journals (Sweden)

    Frick G.

    2009-01-01

    Full Text Available Classical and chemometric methods have been used to detect falsified maize gluten products. Microscopic observations (numerous starch grains, seed envelopes and wheat bran fragments clearly showed the presence of atypical maize gluten particles in samples with otherwise normal crude protein levels (≥ 60% and the usual gold-yellow color. Chemical analyses in a few samples confirmed the presence of urea (19 to 174 g.kg-1, melamine (0 to 20 g.kg-1, and cyanuric acid (0 to 10 g.kg-1 coping for the low levels of methionine (0 to 13 g.kg-1 in incriminated products (genuine maize gluten methionine level ≥ 16 g.kg-1. Furthermore, a fast technique (an electronic nose based on mass spectrometry detection also proved to be reliable for the identification of falsified maize gluten products: 100% correct classification of model and unknown samples was achieved with principal component analysis. As a consequence of these results, the Swiss feed-inspection authority blocked the import, or restricted the use, of 2,500 tons of the falsified products.

  7. Synthesis, characterization, release kinetics and toxicity profile of drug-loaded starch nanoparticles.

    Science.gov (United States)

    El-Naggar, Mehrez E; El-Rafie, M H; El-sheikh, M A; El-Feky, Gina S; Hebeish, A

    2015-11-01

    The current research work focuses on the medical application of the cost-effective cross-linked starch nanoparticles, for the transdermal delivery using Diclofenac sodium (DS) as a model drug. The prepared DS-cross-linked starch nanoparticles were synthesized using nanoprecipitation technique at different concentrations of sodium tripolyphosphate (STPP) in the presence of Tween 80 as a surfactant. The resultant cross-linked starch nanoparticles loaded with DS were characterized using world-class facilities such as TEM, DLS, FT-IR, XRD, and DSc. The efficiency of DS loading was also evaluated via entrapment efficiency as well as in vitro release and histopathological study on rat skin. The optimum nanoparticles formulation selected by the JMP(®) software was the formula that composed of 5% maize starch, 57.7mg DS and 0.5% STPP and 0.4% Tween 80, with particle diameter of about 21.04nm, polydispersity index of 0.2 and zeta potential of -35.3mV. It is also worth noting that this selected formula shows an average entrapment efficiency of 95.01 and sustained DS release up to 6h. The histophathological studies using the best formula on rat skin advocate the use of designed transdermal DS loaded cross-linked starch nanoparticles as it is safe and non-irritant to rat skin. The overall results indicate that, the starch nanoparticles could be considered as a good carrier for DS drug regarding the enhancement in its controlled release and successful permeation, thus, offering a promising nanoparticulate system for the transdermal delivery non-steroidal anti-inflammatory drug (NSAID). Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Long branch-chains of amylopectin with B-type crystallinity in rice seed with inhibition of starch branching enzyme I and IIb resist in situ degradation and inhibit plant growth during seedling development : Degradation of rice starch with inhibition of SBEI/IIb during seedling development.

    Science.gov (United States)

    Pan, Ting; Lin, Lingshang; Wang, Juan; Liu, Qiaoquan; Wei, Cunxu

    2018-01-08

    Endosperm starch provides prime energy for cereal seedling growth. Cereal endosperm with repression of starch branching enzyme (SBE) has been widely studied for its high resistant starch content and health benefit. However, in barley and maize, the repression of SBE changes starch component and amylopectin structure which affects grain germination and seedling establishment. A high resistant starch rice line (TRS) has been developed through inhibiting SBEI/IIb, and its starch has very high resistance to in vitro hydrolysis and digestion. However, it is unclear whether the starch resists in situ degradation in seed and influences seedling growth after grain germination. In this study, TRS and its wild-type rice cultivar Te-qing (TQ) were used to investigate the seedling growth, starch property changes, and in situ starch degradation during seedling growth. The slow degradation of starch in TRS seed restrained the seedling growth. The starch components including amylose and amylopectin were simultaneously degraded in TQ seeds during seedling growth, but in TRS seeds, the amylose was degraded faster than amylopectin and the amylopectin long branch-chains with B-type crystallinity had high resistance to in situ degradation. TQ starch was gradually degraded from the proximal to distal region of embryo and from the outer to inner in endosperm. However, TRS endosperm contained polygonal, aggregate, elongated and hollow starch from inner to outer. The polygonal starch similar to TQ starch was completely degraded, and the other starches with long branch-chains of amylopectin and B-type crystallinity were degraded faster at the early stage of seedling growth but had high resistance to in situ degradation during TRS seedling growth. The B-type crystallinity and long branch-chains of amylopectin in TRS seed had high resistance to in situ degradation, which inhibited TRS seedling growth.

  9. Genetic Engineering of Maize (Zea mays L.) with Improved Grain Nutrients.

    Science.gov (United States)

    Guo, Xiaotong; Duan, Xiaoguang; Wu, Yongzhen; Cheng, Jieshan; Zhang, Juan; Zhang, Hongxia; Li, Bei

    2018-02-21

    Cell-wall invertase plays important roles in the grain filling of crop plants. However, its functions in the improvement of grain nutrients have not been investigated. In this work, the stable expression of cell-wall-invertase-encoding genes from different plant species and the contents of total starch, protein, amino acid, nitrogen, lipid, and phosphorus were examined in transgenic maize plants. High expressions of the cell-wall-invertase gene conferred enhanced invertase activity and sugar content in transgenic plants, leading to increased grain yield and improved grain nutrients. Transgenic plants with high expressions of the transgene produced more total starch, protein, nitrogen, and essential amino acids in the seeds. Overall, the results indicate that the cell-wall-invertase gene can be used as a potential candidate for the genetic breeding of grain crops with both improved grain yield and quality.

  10. Efecto de la Adición de dos Tipos de Almidones en las Propiedades Texturales de Queso Análogo / Effect of the Addition of Two Types of Starch in the Textural Properties of Analogue Cheese

    Directory of Open Access Journals (Sweden)

    Jacqueline Agudelo Chaparro

    2014-12-01

    Full Text Available Resumen. Se estudió el efecto que tienen dos tipos de almidónmodificado, maíz ceroso y papa, en las propiedades texturalesde un queso análogo con fibra prebiótica soluble. Se elaboraronquesos semiblandos, con humedad de 48%, reemplazando el10% de proteína por los almidones modificados, dando lugar atres tratamientos: Formulación control (FC, formulación maízceroso (FMC y formulación papa (FP. Se observó que la adiciónde los almidones afecta significativamente (P<0,05 la dureza, laadhesividad, la gomosidad, la elasticidad y la masticabilidad delproducto. /  Abstract. The effect they have two types of modified starch (waxycorn and potato in the textural properties of an analogue cheesewas studied. Semi-soft cheeses were made with 48% moisture,replacing the 10% protein by modified starches, resulting in threetreatments: Control formulation (CF, waxy corn formulation(WCF and potato formulation (PF. The study allowed note thatthe addition of starches significantly affect (P<0.05 the hardness,adhesiveness, gumminess, elasticity and chewiness of the product

  11. Starch bioengineering

    DEFF Research Database (Denmark)

    Blennow, Andreas

    2018-01-01

    Application of starch in industry frequently requires extensive modification. This is usually achieved by chemical and/or physical modification that is time-consuming and often expensive and polluting. To impart functionality as early as possible in the starch production chain, modification can...... be achieved directly as part of the developing starch storage roots, tubers, and seeds and grains of the crop. Starch has been a strong driver for human development and is now the most important energy provider in the diet forcing the development of novel and valuable starch qualities for specific...... applications. Among the most important structures that can be targeted include starch phosphorylation chain transfer/branching generating chemically substituted and chain length-modified starches such as resistant and health-promoting high-amylose starch. Starch bioengineering has been employed for more than...

  12. Effects of process parameters on the properties of barley containing snacks enriched with brewer's spent grain.

    Science.gov (United States)

    Kirjoranta, Satu; Tenkanen, Maija; Jouppila, Kirsi

    2016-01-01

    Brewer's spent grain (BSG), a by-product of malting of barley in the production of malt extract, was used as an ingredient in extruded barley-based snacks in order to improve the nutritional value of the snacks and widen the applications of this by-product in food sector. The effects of the extrusion parameters on the selected properties of the snacks were studied. Snacks with different ingredients including whole grain barley flour, BSG, whey protein isolate (WPI), barley starch and waxy corn starch were produced in 5 separate trials using a co-rotating twin-screw extruder. Extrusion parameters were water content of the mass (17-23 %), screw speed (200-500 rpm) and temperature of the last section and die (110-150 °C). Expansion, hardness and water content of the snacks were determined. Snacks containing barley flour and BSG (10 % of solids) had small expansion and high hardness. Addition of WPI (20 % of solids) increased expansion only slightly. Snacks with high expansion and small hardness were obtained when part of the barley flour was replaced with starch (barley or waxy corn). Yet, the highest expansion and the smallest hardness were achieved when barley flour was used with barley starch and WPI without BSG. Furthermore, expansion increased by increasing screw speed and decreasing water content of the mass in most of the trials. This study showed that BSG is a suitable material for extruded snacks rich in dietary fiber. Physical properties of the snacks could be improved by using barley or waxy corn starch and WPI.

  13. Droplet evaporation and spread on waxy and hairy leaves associated with type and concentration of adjuvants.

    Science.gov (United States)

    Xu, Linyun; Zhu, Heping; Ozkan, H Erdal; Bagley, William E; Krause, Charles R

    2011-07-01

    Adjuvants can improve pesticide application efficiency and effectiveness. However, quantifications of the adjuvant-amended pesticide droplet actions on foliage, which could affect application efficiencies, are largely unknown. Droplet evaporation rates and spread on waxy or hairy leaves varied greatly with the adjuvant types tested. On waxy leaves, the wetted areas of droplets containing crop oil concentrate (COC) were significantly smaller than those containing modified seed oil (MSO), non-ionic surfactant (NIS) or oil surfactant blend (OSB), whereas the evaporation rates of COC-amended droplets were significantly higher. On hairy leaves, COC-amended droplets remained on top of the hairs without wetting the epidermis. When the relative concentration was 1.50, the wetted area of droplets with NIS was 9.2 times lower than that with MSO and 6.1 times lower than that with OSB. The wetted area increased as the adjuvant concentration increased. MSO- or OSB-amended droplets spread extensively on the hairy leaf surface until they were completely dried. These results demonstrated that the proper concentration of MSO, NIS or OSB in spray mixtures improved the homogeneity of spray coverage on both waxy and hairy leaf surfaces and could reduce pesticide use. This article is a US Government work and is in the public domain in the USA. Published 2011 by John Wiley & Sons, Ltd.

  14. Flow behavior of Daqing waxy crude oil under simulated pipelining conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Jianlin [China University of Petroleum, Beijing (China); PetroChina Company Ltd. (China); Zhang, Jinjun; Li, Hongying; Zhang, Fan; Yang, Xiaojing [China University of Petroleum, Beijing (China)

    2005-07-01

    Daqing oil field is the largest oil field in China. This crude oil is a typical waxy crude oil, with a wax content of 26% and a gel point of 32 deg C. Flow behaviors of waxy crude oils at temperatures near the gel point/pour point are vital for both pipeline hydraulic calculation and evaluation on restartability of a shutdown pipeline. In this study, experimental simulation was conducted by using a stirred vessel with the energy dissipation of viscous flow as the shear simulation parameter. The viscosity, gel point, yield stress and thixotropy were measured by sampling from the simulation vessel. The viscosity under simulated pipelining condition was found less than that measured under quiescent cooling condition. The gel point decreased with decreasing temperature of sampling, i.e. the end temperature of the dynamic cooling process. At sampling temperatures above 35 deg C, that is 3 deg C above the gel point measured under quiescent cooling condition, both the yield stresses and the thixotropic parameters showed little dependence on the shear history. However, at lower sampling temperatures, remarkable shear history dependence was found. Empirical correlations were developed between the yield stress and the sampling temperature as well as the measurement temperature, and between the thixotropic parameters and the sampling temperature. (author)

  15. Influence of deposition and spray pattern of nasal powders on insulin bioavailability.

    Science.gov (United States)

    Pringels, E; Callens, C; Vervaet, C; Dumont, F; Slegers, G; Foreman, P; Remon, J P

    2006-03-09

    The influence of the deposition pattern and spray characteristics of nasal powder formulations on the insulin bioavailability was investigated in rabbits. The formulations were prepared by freeze drying a dispersion containing a physical mixture of drum dried waxy maize starch (DDWM)/Carbopol 974P (90/10, w/w) or a spray-dried mixture of Amioca starch/Carbopol 974P (25/75, w/w). The deposition in the nasal cavity of rabbits and in a silicone human nose model after actuation of three nasal delivery devices (Monopowder, Pfeiffer and experimental system) was compared and related to the insulin bioavailability. Posterior deposition of the powder formulation in the nasal cavity lowered the insulin bioavailability. To study the spray pattern, the shape and cross-section of the emitted powder cloud were analysed. It was concluded that the powder bulk density of the formulation influenced the spray pattern. Consequently, powders of different bulk density were prepared by changing the solid fraction of the freeze dried dispersion and by changing the freezing rate during freeze drying. After nasal delivery of these powder formulations no influence of the powder bulk density and of the spray pattern on the insulin bioavailability was observed.

  16. Effect of conventional and extrusion pelleting on in situ ruminal degradability of starch, protein, and fibre in cattle

    DEFF Research Database (Denmark)

    Razzaghi, Ali; Larsen, Mogens; Lund, Peter

    2016-01-01

    +50% sugar beet pulp (SBP), or 50% maize+50% SBP. Meals were pelleted by either conventional pelleting, or by cooking extrusion using two distinct settings giving pellets with either high density (HD) or low density (LD). Ruminal degradation of starch, crude protein (CP) and NDF, and intestinal...... affected ruminal degradability of starch, protein, and NDF differently depending on both type of cereal and composition of the concentrate mixture.......>Pelleting>Meal). In contradiction, ESD for pure wheat and wheat mixtures was reduced, though differences were minor. Conventional pelleting reduced the effective protein degradability (EPD) for pure wheat, but extrusion did not further affect the EPD. In contrast, the most intense processing with extrusion LD increased EPD...

  17. Estimation of the in situ degradation of the washout fraction of starch by using a modified in situ protocol and in vitro measurements

    NARCIS (Netherlands)

    Jonge, de L.H.; Laar, van H.; Dijkstra, J.

    2015-01-01

    The in situ degradation of the washout fraction of starch in six feed ingredients (i.e. barley, faba beans, maize, oats, peas and wheat) was studied by using a modified in situ protocol and in vitro measurements. In comparison with the washing machine method, the modified protocol comprises a milder

  18. Zinc solubilizing Bacillus spp. potential candidates for biofortification in maize.

    Science.gov (United States)

    Mumtaz, Muhammad Zahid; Ahmad, Maqshoof; Jamil, Moazzam; Hussain, Tanveer

    2017-09-01

    Bioaugmentation of Zn solubilizing rhizobacteria could be a sustainable intervention to increase bioavailability of Zn in soil which can be helpful in mitigation of yield loss and malnutrition of zinc. In present study, a number of pure rhizobacterial colonies were isolated from maize rhizosphere and screened for their ability to solubilize zinc oxide. These isolates were screened on the basis of zinc and phosphate solubilization, IAA production, protease production, catalase activity and starch hydrolysis. All the selected isolates were also positive for oxidase activity (except ZM22), HCN production (except ZM27) and utilization of citrate. More than 70% of isolates produces ammonia, hydrogen cyanide, siderophores, exopolysaccharides and cellulase. More than half of isolates also showed potential for urease activity and production of lipase. The ZM31 and S10 were the only isolates which showed the chitinase activity. All these isolates were evaluated in a jar trial for their ability to promote growth of maize under axenic conditions. Results revealed that inoculation of selected zinc solubilizing rhizobacterial isolates improved the growth of maize. In comparison, isolates ZM20, ZM31, ZM63 and S10 were best compared to other tested isolates in stimulating the growth attributes of maize like shoot length, root length, plant fresh and dry biomass. These strains were identified as Bacillus sp. (ZM20), Bacillus aryabhattai (ZM31 and S10) and Bacillus subtilis (ZM63) through 16S rRNA sequencing. This study indicated that inoculation of Zn solubilizing strains have potential to promote growth and can be the potential bio-inoculants for biofortification of maize to overcome the problems of malnutrition. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. Supramolecular structure of jackfruit seed starch and its relationship with digestibility and physicochemical properties.

    Science.gov (United States)

    Chen, Jin; Liang, Yi; Li, Xiaoxi; Chen, Ling; Xie, Fengwei

    2016-10-05

    The influence of supramolecular structure on the physicochemical properties and digestibility of jackfruit seed starch (JSS) were investigated. Compared with maize and cassava starches (MS and CS), JSS had smaller granules and higher amylose content (JSS: 24.90%; CS: 16.68%; and MS: 22.42%), which contributed to higher gelatinization temperature (To: 81.11°C) and setback viscosity (548.9mPas). From scanning electron microscopy, the digestion of JSS was observed mainly at the granule surface. Due to its higher crystallinity (JSS: 30.6%; CS: 30.3%; and MS: 27.4%) and more ordered semi-crystalline lamellae, JSS had a high RS content (74.26%) and melting enthalpy (19.61J/g). In other words, the supramolecular structure of JSS extensively determined its digestibility and resistance to heat and mechanical shear treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Effect of barley and its amylopectin content on ruminal fermentation and nitrogen utilization in lactating dairy cows.

    Science.gov (United States)

    Foley, A E; Hristov, A N; Melgar, A; Ropp, J K; Etter, R P; Zaman, S; Hunt, C W; Huber, K; Price, W J

    2006-11-01

    The effect of type of grain (corn vs. barley) and amylopectin content of barley grain (normal vs. waxy) on ruminal fermentation, digestibility, and utilization of ruminal ammonia nitrogen for milk protein synthesis was studied in a replicated 3 x 3 Latin square design trial with 6 lactating dairy cows. The experimental treatments were (proportion of dietary dry matter): CORN, 40% corn grain, NBAR, 30% normal Baronesse barley:10% corn grain, and WBAR, 30% high-amylopectin (waxy) Baronesse barley:10% corn grain. All grains were steam-rolled and fed as part of a total mixed ration. The NBAR and WBAR diets resulted in increased ruminal ammonia concentrations compared with CORN (8.2, 7.4, and 5.6 mM, respectively), but other ruminal fermentation parameters were not affected. Ruminal digestibility of dietary nutrients and microbial protein synthesis in the rumen were also not affected by diet. Corn grain had greater in situ effective ruminal dry matter degradability (62.8%) than the barley grains (58.2 and 50.7%, respectively), and degradability of the normal barley starch was greater than that of the waxy barley (69.3 and 58.9%, respectively). A greater percentage of relative starch crystallinity was observed for the waxy compared with the normal barley grain. Total tract apparent digestibility of dry matter and organic matter were decreased by WBAR compared with CORN and NBAR. Total tract starch digestibility was greater and milk urea nitrogen content was lower for CORN compared with the 2 barley diets. In this study, the extent of processing of the grain component of the diet was most likely the factor that determined the diet responses. Minimal processing of barley grain (processing indexes of 79.2 to 87.9%) reduced its total tract digestibility of starch compared with steam-rolled corn (processing index of 58.8%). As a result of the increased ammonia concentration and reduced degradability of barley dry matter in the rumen, the utilization of ruminal ammonia

  1. Pollen source effects on growth of kernel structures and embryo chemical compounds in maize.

    Science.gov (United States)

    Tanaka, W; Mantese, A I; Maddonni, G A

    2009-08-01

    Previous studies have reported effects of pollen source on the oil concentration of maize (Zea mays) kernels through modifications to both the embryo/kernel ratio and embryo oil concentration. The present study expands upon previous analyses by addressing pollen source effects on the growth of kernel structures (i.e. pericarp, endosperm and embryo), allocation of embryo chemical constituents (i.e. oil, protein, starch and soluble sugars), and the anatomy and histology of the embryos. Maize kernels with different oil concentration were obtained from pollinations with two parental genotypes of contrasting oil concentration. The dynamics of the growth of kernel structures and allocation of embryo chemical constituents were analysed during the post-flowering period. Mature kernels were dissected to study the anatomy (embryonic axis and scutellum) and histology [cell number and cell size of the scutellums, presence of sub-cellular structures in scutellum tissue (starch granules, oil and protein bodies)] of the embryos. Plants of all crosses exhibited a similar kernel number and kernel weight. Pollen source modified neither the growth period of kernel structures, nor pericarp growth rate. By contrast, pollen source determined a trade-off between embryo and endosperm growth rates, which impacted on the embryo/kernel ratio of mature kernels. Modifications to the embryo size were mediated by scutellum cell number. Pollen source also affected (P embryo chemical compounds. Negative correlations among embryo oil concentration and those of starch (r = 0.98, P embryos with low oil concentration had an increased (P embryo/kernel ratio and allocation of embryo chemicals seems to be related to the early established sink strength (i.e. sink size and sink activity) of the embryos.

  2. Impact of postharvest drying conditions on in vitro starch digestibility and estimated glycemic index of cooked non-waxy long-grain rice (Oryza sativa L.).

    Science.gov (United States)

    Donlao, Natthawuddhi; Ogawa, Yukiharu

    2017-02-01

    Wet paddy needs to be dried to reduce its moisture content after harvesting. In this study, effects of postharvest drying condition on in vitro starch digestibility and estimated glycemic index of cooked rice (Oryza sativa L.) were investigated. Varying drying conditions, i.e. hot-air drying at 40, 65, 90 and 115 °C, and sun drying were applied to raw paddy. After husking and polishing, polished grains were cooked using an electric rice cooker. Cooked samples were analyzed for their moisture content and amount of resistant and total starch. Five samples in both intact grain and slurry were digested under simulated in vitro gastrointestinal digestion process. The in vitro starch digestion rate was measured and the hydrolysis index (HI) and estimated glycemic index (eGI) were calculated. Cooked rice obtained from hot-air drying showed relatively lower HI and eGI than that obtained from sun-drying. Among samples from hot-air drying treatment, eGI of cooked rice decreased with increasing drying temperature, except for the drying temperature of 115 °C. As a result, cooked rice from the hot-air drying at 90 °C showed lowest eGI. The results indicated that cooked rice digestibility was affected by postharvest drying conditions. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  3. Effect of starch isolation method on properties of sweet potato starch

    Directory of Open Access Journals (Sweden)

    A. SURENDRA BABU

    2014-08-01

    Full Text Available Isolation method of starch with different agents influences starch properties, which provide attention for studying the most appropriate method for isolation of starch. In the present study sweet potato starch was isolated by Sodium metabisulphate (M1, Sodium chloride (M2, and Distilled water (M3 methods and these were assessed for functional, chemical, pasting and structural properties. M3 yielded the greatest recovery of starch (10.20%. Isolation methods significantly changed swelling power and pasting properties but starches exhibited similar chemical properties. Sweet potato starches possessed C-type diffraction pattern. Small size granules of 2.90 μm were noticed in SEM of M3 starch. A high degree positive correlation was found between ash, amylose, and total starch content. The study concluded that isolation methods brought changes in yield, pasting and structural properties of sweet potato starch.

  4. Transglycosylated Starch Improves Insulin Response and Alters Lipid and Amino Acid Metabolome in a Growing Pig Model

    Directory of Open Access Journals (Sweden)

    Monica A. Newman

    2017-03-01

    Full Text Available Due to the functional properties and physiological effects often associated with chemically modified starches, significant interest lies in their development for incorporation in processed foods. This study investigated the effect of transglycosylated cornstarch (TGS on blood glucose, insulin, and serum metabolome in the pre- and postprandial phase in growing pigs. Eight jugular vein-catheterized barrows were fed two diets containing 72% purified starch (waxy cornstarch (CON or TGS. A meal tolerance test (MTT was performed with serial blood sampling for glucose, insulin, lipids, and metabolome profiling. TGS-fed pigs had reduced postprandial insulin (p < 0.05 and glucose (p < 0.10 peaks compared to CON-fed pigs. The MTT showed increased (p < 0.05 serum urea with TGS-fed pigs compared to CON, indicative of increased protein catabolism. Metabolome profiling showed reduced (p < 0.05 amino acids such as alanine and glutamine with TGS, suggesting increased gluconeogenesis compared to CON, probably due to a reduction in available glucose. Of all metabolites affected by dietary treatment, alkyl-acyl-phosphatidylcholines and sphingomyelins were generally increased (p < 0.05 preprandially, whereas diacyl-phosphatidylcholines and lysophosphatidylcholines were decreased (p < 0.05 postprandially in TGS-fed pigs compared to CON. In conclusion, TGS led to changes in postprandial insulin and glucose metabolism, which may have caused the alterations in serum amino acid and phospholipid metabolome profiles.

  5. Characterisation of spray dried soy sauce powders made by adding crystalline carbohydrates to drying carrier.

    Science.gov (United States)

    Wang, Wei; Zhou, Weibiao

    2015-02-01

    This study aimed to reduce stickiness and caking of spray dried soy sauce powders by introducing a new crystalline structure into powder particles. To perform this task, soy sauce powders were formulated by using mixtures of cellulose and maltodextrin or mixtures of waxy starch and maltodextrin as drying carriers, with a fixed carrier addition rate of 30% (w/v) in the feed solution. The microstructure, crystallinity, solubility as well as stickiness and caking strength of all the different powders were analysed and compared. Incorporating crystalline carbohydrates in the drying carrier could significantly reduce the stickiness and caking strength of the powders when the ratio of crystalline carbohydrates to maltodextrin was above 1:5 and 1:2, respectively. X-ray Diffraction (XRD) results showed that adding cellulose or waxy starch could induce the crystallinity of powders. Differential Scanning Calorimetry (DSC) results demonstrated that the native starch added to the soy sauce powders did not fully gelatinize during spray drying. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. The effect of rolled barley, sodium hydroxide-treated wheat or maize cob silage on digestive enzymes activity in the alimentary tract of dairy cows

    DEFF Research Database (Denmark)

    Moharrey, A.; Hymøller, Lone; Weisbjerg, Martin Riis

    2017-01-01

    In the present study digestive enzyme activities were studied in the rumen, intestine and faeces of dairy cows fed rations differing in starch source. Three total mixed rations were prepared for dairy cows with maize cob silage (MCS), sodium hydroxide-treated wheat (SHW) or rolled barley as starch...... DM (2.61 vs 2.91 and 3.15%) and a higher ash content (30.99 vs 29.24 and 24.31%) in the ruminal fluid without affecting enzyme activities. Positive correlation between lipolytic and amylolitic activities in ruminal fluid was stated, which supported the hypothesis that amylolytic bacteria provide...... energy for lipolytic bacteria. So, the enzymes activities in the different parts of the digestive tract were not affected by the different starch sources....

  7. Preliminary investigation into the use of Pleurotus tuber-regium ...

    African Journals Online (AJOL)

    The swelling capacity was three times that of maize starch BP Tablets prepared with P. tuber-regium powder disintegrated faster than those prepared with maize starch BP at concentrations below 10% w/w. At the disintegrant concentration of 10% w/w paracetamol tablets made from both Pleurotus powder and maize starch ...

  8. Supercritical CO2 Foaming of Thermoplastic Materials Derived from Maize: Proof-of-Concept Use in Mammalian Cell Culture Applications

    Science.gov (United States)

    Trujillo-de Santiago, Grissel; Portales-Cabrera, Cynthia Guadalupe; Portillo-Lara, Roberto; Araiz-Hernández, Diana; Del Barone, Maria Cristina; García-López, Erika; Rojas-de Gante, Cecilia; de los Angeles De Santiago-Miramontes, María; Segoviano-Ramírez, Juan Carlos; García-Lara, Silverio; Rodríguez-González, Ciro Ángel; Alvarez, Mario Moisés; Di Maio, Ernesto; Iannace, Salvatore

    2015-01-01

    Background Foams are high porosity and low density materials. In nature, they are a common architecture. Some of their relevant technological applications include heat and sound insulation, lightweight materials, and tissue engineering scaffolds. Foams derived from natural polymers are particularly attractive for tissue culture due to their biodegradability and bio-compatibility. Here, the foaming potential of an extensive list of materials was assayed, including slabs elaborated from whole flour, the starch component only, or the protein fraction only of maize seeds. Methodology/Principal Findings We used supercritical CO2 to produce foams from thermoplasticized maize derived materials. Polyethylene-glycol, sorbitol/glycerol, or urea/formamide were used as plasticizers. We report expansion ratios, porosities, average pore sizes, pore morphologies, and pore size distributions for these materials. High porosity foams were obtained from zein thermoplasticized with polyethylene glycol, and from starch thermoplasticized with urea/formamide. Zein foams had a higher porosity than starch foams (88% and 85%, respectively) and a narrower and more evenly distributed pore size. Starch foams exhibited a wider span of pore sizes and a larger average pore size than zein (208.84 vs. 55.43 μm2, respectively). Proof-of-concept cell culture experiments confirmed that mouse fibroblasts (NIH 3T3) and two different prostate cancer cell lines (22RV1, DU145) attached to and proliferated on zein foams. Conclusions/Significance We conducted screening and proof-of-concept experiments on the fabrication of foams from cereal-based bioplastics. We propose that a key indicator of foamability is the strain at break of the materials to be foamed (as calculated from stress vs. strain rate curves). Zein foams exhibit attractive properties (average pore size, pore size distribution, and porosity) for cell culture applications; we were able to establish and sustain mammalian cell cultures on zein

  9. Supercritical CO2 foaming of thermoplastic materials derived from maize: proof-of-concept use in mammalian cell culture applications.

    Science.gov (United States)

    Trujillo-de Santiago, Grissel; Portales-Cabrera, Cynthia Guadalupe; Portillo-Lara, Roberto; Araiz-Hernández, Diana; Del Barone, Maria Cristina; García-López, Erika; Rojas-de Gante, Cecilia; de Los Angeles De Santiago-Miramontes, María; Segoviano-Ramírez, Juan Carlos; García-Lara, Silverio; Rodríguez-González, Ciro Ángel; Alvarez, Mario Moisés; Di Maio, Ernesto; Iannace, Salvatore

    2015-01-01

    Foams are high porosity and low density materials. In nature, they are a common architecture. Some of their relevant technological applications include heat and sound insulation, lightweight materials, and tissue engineering scaffolds. Foams derived from natural polymers are particularly attractive for tissue culture due to their biodegradability and bio-compatibility. Here, the foaming potential of an extensive list of materials was assayed, including slabs elaborated from whole flour, the starch component only, or the protein fraction only of maize seeds. We used supercritical CO2 to produce foams from thermoplasticized maize derived materials. Polyethylene-glycol, sorbitol/glycerol, or urea/formamide were used as plasticizers. We report expansion ratios, porosities, average pore sizes, pore morphologies, and pore size distributions for these materials. High porosity foams were obtained from zein thermoplasticized with polyethylene glycol, and from starch thermoplasticized with urea/formamide. Zein foams had a higher porosity than starch foams (88% and 85%, respectively) and a narrower and more evenly distributed pore size. Starch foams exhibited a wider span of pore sizes and a larger average pore size than zein (208.84 vs. 55.43 μm2, respectively). Proof-of-concept cell culture experiments confirmed that mouse fibroblasts (NIH 3T3) and two different prostate cancer cell lines (22RV1, DU145) attached to and proliferated on zein foams. We conducted screening and proof-of-concept experiments on the fabrication of foams from cereal-based bioplastics. We propose that a key indicator of foamability is the strain at break of the materials to be foamed (as calculated from stress vs. strain rate curves). Zein foams exhibit attractive properties (average pore size, pore size distribution, and porosity) for cell culture applications; we were able to establish and sustain mammalian cell cultures on zein foams for extended time periods.

  10. Supercritical CO2 foaming of thermoplastic materials derived from maize: proof-of-concept use in mammalian cell culture applications.

    Directory of Open Access Journals (Sweden)

    Grissel Trujillo-de Santiago

    Full Text Available Foams are high porosity and low density materials. In nature, they are a common architecture. Some of their relevant technological applications include heat and sound insulation, lightweight materials, and tissue engineering scaffolds. Foams derived from natural polymers are particularly attractive for tissue culture due to their biodegradability and bio-compatibility. Here, the foaming potential of an extensive list of materials was assayed, including slabs elaborated from whole flour, the starch component only, or the protein fraction only of maize seeds.We used supercritical CO2 to produce foams from thermoplasticized maize derived materials. Polyethylene-glycol, sorbitol/glycerol, or urea/formamide were used as plasticizers. We report expansion ratios, porosities, average pore sizes, pore morphologies, and pore size distributions for these materials. High porosity foams were obtained from zein thermoplasticized with polyethylene glycol, and from starch thermoplasticized with urea/formamide. Zein foams had a higher porosity than starch foams (88% and 85%, respectively and a narrower and more evenly distributed pore size. Starch foams exhibited a wider span of pore sizes and a larger average pore size than zein (208.84 vs. 55.43 μm2, respectively. Proof-of-concept cell culture experiments confirmed that mouse fibroblasts (NIH 3T3 and two different prostate cancer cell lines (22RV1, DU145 attached to and proliferated on zein foams.We conducted screening and proof-of-concept experiments on the fabrication of foams from cereal-based bioplastics. We propose that a key indicator of foamability is the strain at break of the materials to be foamed (as calculated from stress vs. strain rate curves. Zein foams exhibit attractive properties (average pore size, pore size distribution, and porosity for cell culture applications; we were able to establish and sustain mammalian cell cultures on zein foams for extended time periods.

  11. Importance of NDF digestibility of whole crop maize silage for dry matter intake and milk production in dairy cows

    DEFF Research Database (Denmark)

    Krämer, Monika; Lund, Peter; Weisbjerg, Martin Riis

    2016-01-01

    The importance of maize silage as a feed component in cattle rations and for biogas production has substantially increased. Whole crop maize silage is a forage with a high starch concentration, but also the cell wall fraction, commonly analysed as neutral detergent fibre (aNDFom) is a major energy...... source for use in ruminant nutrition. Even though ruminants require forage fibre to maintain rumen function and maximize productivity, excess fibre limits feed intake due to its contribution to physical fill in the rumen. As feed intake is the most important factor for milk production, both a......NDFom concentration and aNDFom digestibility are key determinants of the nutritive value of a diet. Therefore, the importance of maize silage aNDFom digestibility on nutritive value, dry matter (DM) intake (DMI) and milk production was investigated in a literature review across a wide range of studies varying...

  12. Enzymatic hydrolysis of starch in the presence of cereal soluble fibre polysaccharides.

    Science.gov (United States)

    Dhital, Sushil; Dolan, Grace; Stokes, Jason R; Gidley, Michael J

    2014-03-01

    The in vitro amylolysis of both granular and cooked maize starch and the diffusion of glucose in the presence of 1% and 2% cereal soluble fibre polysaccharides (arabinoxylan and mixed linkage beta-glucan) were studied at various levels of shear mixing in order to identify potential molecular mechanisms underlying observed glycemia-reducing effects of soluble fibres in vivo. The presence of soluble fibres increased viscosity by ca. 10× and 100× for 1% and 2% concentrations respectively. Despite this large difference in viscosity, measured digestion and mass transfer coefficients were only reduced by a factor of 1.5 to 2.5 at the same mixing speed. In contrast, introduction of mixing in the digesting and diffusing medium significantly increased the rate of amylolytic starch digestion and mass transfer of glucose. This effect is such that mixing at high speeds negates the hindering effect of the 100× increased viscosity imparted by the presence of 2% soluble fibre; this is essentially captured by the Reynolds number (the ratio of inertial and viscous forces) that defines the flow kinematics. The modest reduction of in vitro starch hydrolysis and glucose diffusion at increased viscosity suggests that the established benefits of soluble fibres on post-prandial glycaemia, in terms of attenuation of the overall rate and extent of dietary starch conversion to blood glucose, are not primarily due to a direct effect of viscosity. Alternative hypotheses are proposed based on gastric emptying, restriction of turbulent flow, and/or stimulation of mucus turnover.

  13. Hyperphosphorylation of cereal starch

    DEFF Research Database (Denmark)

    Carciofi, Massimiliano; Shaik, Shahnoor Sultana; Jensen, Susanne Langgård

    2011-01-01

    Plant starch is naturally phosphorylated at a fraction of the C6 and the C3 hydroxyl groups during its biosynthesis in plastids. Starch phosphate esters are important in starch metabolism and they also generate specific industrial functionality. Cereal grains starch contains little starch bound...... phosphate compared with potato tuber starch and in order to investigate the effect of increased endosperm starch phosphate, the potato starch phosphorylating enzyme glucan water dikinase (StGWD) was overexpressed specifically in the developing barley endosperm. StGWD overexpressors showed wild......-type phenotype. Transgenic cereal grains synthesized starch with higher starch bound phosphate content (7.5 (±0.67) nmol/mg) compared to control lines (0.8 (±0.05) nmol/mg) with starch granules showing altered morphology and lower melting enthalpy. Our data indicate specific action of GWD during starch...

  14. Physicochemical properties of starches isolated from pumpkin compared with potato and corn starches.

    Science.gov (United States)

    Przetaczek-Rożnowska, Izabela

    2017-08-01

    The aim of the study was to characterize the selected physicochemical, thermal and rheological properties of pumpkin starches and compared with the properties of potato and corn starches used as control samples. Pumpkin starches could be used in the food industry as a free gluten starch. Better thermal and rheological properties could contribute to reduce the costs of food production. The syneresis of pumpkin starches was similar to that of potato starch but much lower than that for corn starch. Pasting temperatures of pumpkin starches were lower by 17-21.7°C and their final viscosities were over 1000cP higher than corn paste, but were close to the values obtained for potato starch. The thermodynamic characteristic showed that the transformation temperatures of pumpkin starches were lower than those measured for control starches. A level of retrogradation was much lower in pumpkin starch pastes (32-48%) than was in the case of corn (59%) or potato (77%) starches. The pumpkin starches gels were characterized by a much greater hardness, cohesiveness and chewiness, than potato or corn starches gels. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The effects of cytoplasmic male sterility and xenia on the chemical composition of maize grain

    Directory of Open Access Journals (Sweden)

    Vančetović Jelena

    2009-01-01

    Full Text Available Sterile hybrids often outyield their fertile counterparts, especially if pollinated by a genetically unrelated pollinator. The combined effect of cms and xenia is referred to as the Plus-hybrid effect. The objective of this study was to determine the individual, as well as, combining effect of cms and xenia on the maize grain chemical composition. The percent of oil, protein and starch in the grain was also observed. Two sterile hybrids, their fertile counterparts and five fertile pollinator-hybrids were selected for the studies. The three-replicate trial set up according to the split-plot experimental design was performed at Zemun Polje in 2008. The obtained results show that the effects of cms on the oil percent was not significant in the studied hybrid ZP 341, while it increased at the significance level of P = 0.1 in the second observed hybrid ZP 360. The effect of this factor on the protein and starch percent was also significant (P = 0.01 in some hybrid combinations. Xenia effects on all three chemical parameters were significant (P = 0.01 in some hybrid combinations. The gained results indicate that the identification of a good combination of two hybrids, in which one would be a sterile female component, and the other a pollinator, would end up not only in the increased yield, but also in the improved maize grain quality.

  16. Rheology and FTIR studies of model waxy crude oils with relevance to gelled pipeline restart

    Energy Technology Data Exchange (ETDEWEB)

    Magda, J.J.; Guimeraes, K.; Deo, M.D. [Utah Univ., Salt Lake City, UT (United States). Dept. of Chemical Engineering; Venkatesan, R.; Montesi, A. [Chevron Energy Technology Co., Houston, TX (United States)

    2008-07-01

    Gels composed of wax crystals may sometimes form when crude oils are transported in pipelines when ambient temperatures are low. The gels may stop the pipe flow, making it difficult or even impossible to restart the flow without breaking the pipe. Rheology and FTIR techniques were used to study the problem and to characterize transparent model waxy crude oils in pipeline flow experiments. These model oils were formulated without any highly volatile components to enhance the reproducibility of the rheology tests. Results were presented for the time- and temperature-dependent rheology of the model waxy crude oils as obtained in linear oscillatory shear and in creep-recovery experiments. The model oils were shown to exhibit many of the rheological features reported for real crude oils, such as 3 distinct apparent yield stresses, notably static yield stress, dynamic yield stress, and elastic-limit yield stress. It was concluded that of the 3, the static yield stress value, particularly its time dependence, can best be used to predict the restart behaviour observed for the same gel in model pipelines.

  17. Starch phosphorylation plays an important role in starch biosynthesis

    NARCIS (Netherlands)

    Xu, Xuan; Dees, Dianka; Dechesne, Annemarie; Huang, Xing Feng; Visser, Richard G.F.; Trindade, Luisa M.

    2017-01-01

    Starch phosphate esters are crucial in starch metabolism and render valuable functionality to starches for various industrial applications. A potato glucan, water dikinase (GWD1) was introduced in tubers of two different potato genetic backgrounds: an amylose-containing line Kardal and the

  18. Control of Fusarium verticillioides, cause of ear rot of maize, by Pseudomonas fluorescens.

    Science.gov (United States)

    Nayaka, Siddaiah Chandra; Shankar, Arakere C Udaya; Reddy, Munagala S; Niranjana, Siddapura R; Prakash, Harishchandra S; Shetty, Hunthrike S; Mortensen, Carmen N

    2009-07-01

    Maize is one of the staple food crops grown in India. Fusarium verticillioides (Sacc.) Nirenberg is the most important fungal pathogen of maize, associated with diseases such as ear rot and kernel rot. Apart from the disease, it is capable of producing fumonisins, which have elicited considerable attention over the past decade owing to their association with animal disease syndromes. Hence, the present study was conducted to evaluate ecofriendly approaches by using a maize rhizosphere isolate of Pseudomonas fluorescens (Trev.) Mig. and its formulation to control ear rot disease and fumonisin accumulation, and also to study the capacity to promote growth and yield of maize. In vitro assays were conducted to test the efficacy of P. fluorescens as a seed treatment on seed germination, seedling vigour and also the incidence of F. verticillioides in different maize cultivars. The field trials included both seed treatment and foliar spray. For all the experiments, P. fluorescens was formulated using corn starch, wheat bran and talc powder. In each case there were three different treatments of P. fluorescens, a non-treated control and chemical control. Pure culture and the formulations, in comparison with the control, increased plant growth and vigour as measured by seed germination, seedling vigour, plant height, 1000 seed weight and yield. P. fluorescens pure culture used as seed treatment and as spray treatment enhanced the growth parameters and reduced the incidence of F. verticillioides and the level of fumonisins to a maximum extent compared with the other treatments. The study demonstrates the potential role of P. fluorescens and its formulations in ear rot disease management. The biocontrol potential of this isolate is more suited for fumonisin reduction in maize kernels intended for human and animal feed. (c) 2009 Society of Chemical Industry.

  19. Aroma interactions with starch

    DEFF Research Database (Denmark)

    Jørgensen, Anders Dysted

    Starches are used to enhance aroma perception in low-fat foods. Aroma compounds can bind physically to the starch in grooves on the surface or they can form complexes inside amylose helices. This study has been divided into two parts: one part regarding binding of aromas to starches and their aroma......-release, and another part regarding stimulation of a fungal secretome using different carbohydrates. In the first part, nine aromas and one aroma-mixture were mixed with nine different starches, including genetically modified starches. The objective of this sub-project was to bind aromas to the starches to 15 weight......-percent. Aroma binding was tested on both amorphous starches and on native starch granules. A series of aldehydes and alcohols were also tested for binding to the starches. The aromas with the highest volatility were positively retained by starch, whereas for aromas with a lower volatility the starch had...

  20. Production of synthetic hydrocarbon lube oil from highly waxy feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Q; Ding, Z; Zheng, Sh; Wu, W

    1980-01-01

    A feasible way to utilize the low value soft wax is to convert it into synthetic hydrocarbon lube oil by thermal cracking/polymerization route. The first commercial plant for this purpose has been in normal operation since 1970. It has been proved to be economically sound. The antioxidant response of the product polymer oil can be distinctly improved by hydro-refining. It has been found that the vacuum gas oil from highly waxy crude with or without furfural refining can be used as cracking stock. If high viscosity index polymer oil is desired, it is better to use slack wax as the cracking stock.

  1. Aflatoxins and fumonisin contamination of marketed maize, maize ...

    African Journals Online (AJOL)

    Aflatoxins and fumonisin contamination of marketed maize, maize bran and maize used as animal feed in northern ... PROMOTING ACCESS TO AFRICAN RESEARCH ... African Journal of Food, Agriculture, Nutrition and Development.

  2. RNA-Seq Analysis Reveals MAPKKK Family Members Related to Drought Tolerance in Maize

    Science.gov (United States)

    Ren, Wen; Yang, Fengling; He, Hang; Zhao, Jiuran

    2015-01-01

    The mitogen-activated protein kinase (MAPK) cascade is an evolutionarily conserved signal transduction pathway that is involved in plant development and stress responses. As the first component of this phosphorelay cascade, mitogen-activated protein kinase kinase kinases (MAPKKKs) act as adaptors linking upstream signaling steps to the core MAPK cascade to promote the appropriate cellular responses; however, the functions of MAPKKKs in maize are unclear. Here, we identified 71 MAPKKK genes, of which 14 were novel, based on a computational analysis of the maize (Zea mays L.) genome. Using an RNA-seq analysis in the leaf, stem and root of maize under well-watered and drought-stress conditions, we identified 5,866 differentially expressed genes (DEGs), including 8 MAPKKK genes responsive to drought stress. Many of the DEGs were enriched in processes such as drought stress, abiotic stimulus, oxidation-reduction, and metabolic processes. The other way round, DEGs involved in processes such as oxidation, photosynthesis, and starch, proline, ethylene, and salicylic acid metabolism were clearly co-expressed with the MAPKKK genes. Furthermore, a quantitative real-time PCR (qRT-PCR) analysis was performed to assess the relative expression levels of MAPKKKs. Correlation analysis revealed that there was a significant correlation between expression levels of two MAPKKKs and relative biomass responsive to drought in 8 inbred lines. Our results indicate that MAPKKKs may have important regulatory functions in drought tolerance in maize. PMID:26599013

  3. Chemical and nutritional values of maize and maize products ...

    African Journals Online (AJOL)

    Maize and maize products in selected grain markets within Kaduna, Nigeria, were obtained and investigated for proximate and mineral composition analysis using Atomic Absorption Spectrophotometer (AAS) and flame photometer. Proximate composition of maize and maize products were in the range of 11.6- 20 .0% ...

  4. Substituent distribution within cross-linked and hydroxypropylated sweet potato starch and potato starch

    NARCIS (Netherlands)

    Zhao, J.; Schols, H.A.; Chen Zenghong,; Jin Zhengyu,; Buwalda, P.L.; Gruppen, H.

    2012-01-01

    Revealing the substituents distribution within starch can help to understand the changes of starch properties after modification. The distribution of substituents over cross-linked and hydroxypropylated sweet potato starch was investigated and compared with modified potato starch. The starches were

  5. Efeito da concentração do amido de milho na liberação de paracetamol de comprimidos Effect of maize starch concentration on in vitro acetaminophen release from tablets

    Directory of Open Access Journals (Sweden)

    Ana Dóris de Castro

    2003-09-01

    Full Text Available Este trabalho avaliou a influência da concentração de amido de milho nas características físicas e na liberação in vitro de paracetamol a partir de comprimidos. Os granulados foram analisados quanto à granulometria e densidades aparentes bruta e compactada e os comprimidos quanto ao peso médio, espessura, dureza, friabilidade, tempo de desintegração. Os comprimidos foram preparados a partir de granulados obtidos por granulação a úmido, utilizando cozimento de amido a 10% como agente granulante, segundo três formulações. Embora os comprimidos obtidos tenham apresentado características dentro dos limites farmacopéicos, os resultados indicam que variações da concentração de amido provocam diferenças nos diversos parâmetros físicos estudados. Concentração mais alta de amido em pó dá origem, provavelmente, à interação entre os componentes da fórmula, interferindo na liberação in vitro do fármaco. Isto demonstra a importância de se otimizar a concentração dos adjuvantes numa formulação de comprimidos, pois, embora uma pequena variação nesta concentração não exerça efeito significativo no tempo de desintegração, a quantidade de fármaco liberado pode ser substancialmente alterada.This paper describes the influence of maize starch concentration on the physical characteristics and on in vitro release of acetaminophen from compressed tablets. The granulates were analyzed in relation to size distribution and bulk and compacted densities, and the tablets in relation to mean weight, thickness, hardness, friability and disintegration time. The tablets were prepared from granulates made by wet granulation with 10% starch paste in three formulations. Although the tablets obtained have presented characteristics in accordance with pharmacopeial limits, the results indicate that variations on starch concentration cause differences on the several physical parameters studied. Higher starch concentration probably

  6. Nanoscale Zinc Oxide Particles for Improving the Physiological and Sanitary Quality of a Mexican Landrace of Red Maize

    Directory of Open Access Journals (Sweden)

    Juan Estrada-Urbina

    2018-04-01

    Full Text Available In this research, quasi-spherical-shaped zinc oxide nanoparticles (ZnO NPs were synthesized by a simple cost-competitive aqueous precipitation method. The engineered NPs were characterized using several validation methodologies: UV–Vis spectroscopy, diffuse reflection UV–Vis, spectrofluorometry, transmission electron microscopy (TEM, nanoparticle tracking analysis (NTA, and Fourier transform infrared (FTIR spectroscopy with attenuated total reflection (ATR. A procedure was established to coat a landrace of red maize using gelatinized maize starch. Each maize seed was treated with 0.16 mg ZnO NPs (~7.7 × 109 particles. The standard germination (SG and accelerated aging (AA tests indicated that ZnO NP-treated maize seeds presented better physiological quality (higher percentage of normal seedlings and sanitary quality (lower percentage of seeds contaminated by microorganisms as compared to controls. The application of ZnO NPs also improved seedling vigor, correlated to shoot length, shoot diameter, root length, and number of secondary roots. Furthermore, shoots and roots of the ZnO NP-treated maize seeds showed a marked increment in the main active FTIR band areas, most notably for the vibrations associated with peptide-protein, lipid, lignin, polysaccharide, hemicellulose, cellulose, and carbohydrate. From these results, it is concluded that ZnO NPs have potential for applications in peasant agriculture to improve the quality of small-scale farmers’ seeds and, as a result, preserve germplasm resources.

  7. Formation of inclusion complexes between high amylose starch and octadecyl ferulate via steam jet cooking.

    Science.gov (United States)

    Kenar, James A; Compton, David L; Little, Jeanette A; Peterson, Steve C

    2016-04-20

    Amylose-ligand inclusion complexes represent an interesting approach to deliver bioactive molecules. However, ferulic acid has been shown not to form single helical inclusion complexes with amylose from high amylose maize starch. To overcome this problem a lipophilic ferulic acid ester, octadecyl ferulate, was prepared and complexed with amylose via excess steam jet cooking. Jet-cooking octadecyl ferulate and high amylose starch gave an amylose-octadecyl ferulate inclusion complex in 51.0% isolated yield. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) confirmed that a 61 V-type inclusion complex was formed. Amylose and extraction assays showed the complex to be enriched in amylose (91.9±4.3%) and contain 70.6±5.6mgg(-1) octadecyl ferulate, although, minor hydrolysis (∼4%) of the octadecyl ferulate was observed under the excess steam jet-cooking conditions utilized. This study demonstrates that steam jet cooking is a rapid and scalable process in which to prepare amylose-octadecyl ferulate inclusion complexes. Published by Elsevier Ltd.

  8. High amylose resistant starch diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease.

    Directory of Open Access Journals (Sweden)

    Nosratola D Vaziri

    Full Text Available Inflammation is a major mediator of CKD progression and is partly driven by altered gut microbiome and intestinal barrier disruption, events which are caused by: urea influx in the intestine resulting in dominance of urease-possessing bacteria; disruption of epithelial barrier by urea-derived ammonia leading to endotoxemia and bacterial translocation; and restriction of potassium-rich fruits and vegetables which are common sources of fermentable fiber. Restriction of these foods leads to depletion of bacteria that convert indigestible carbohydrates to short chain fatty acids which are important nutrients for colonocytes and regulatory T lymphocytes. We hypothesized that a high resistant starch diet attenuates CKD progression. Male Sprague Dawley rats were fed a chow containing 0.7% adenine for 2 weeks to induce CKD. Rats were then fed diets supplemented with amylopectin (low-fiber control or high fermentable fiber (amylose maize resistant starch, HAM-RS2 for 3 weeks. CKD rats consuming low fiber diet exhibited reduced creatinine clearance, interstitial fibrosis, inflammation, tubular damage, activation of NFkB, upregulation of pro-inflammatory, pro-oxidant, and pro-fibrotic molecules; impaired Nrf2 activity, down-regulation of antioxidant enzymes, and disruption of colonic epithelial tight junction. The high resistant starch diet significantly attenuated these abnormalities. Thus high resistant starch diet retards CKD progression and attenuates oxidative stress and inflammation in rats. Future studies are needed to explore the impact of HAM-RS2 in CKD patients.

  9. Thermoplastic starch materials prepared from rice starch

    International Nuclear Information System (INIS)

    Pontes, Barbara R.B.; Curvelo, Antonio A.S.

    2009-01-01

    Rice starch is a source still little studied for the preparation of thermoplastic materials. However, its characteristics, such as the presence of proteins, fats and fibers may turn into thermoplastics with a better performance. The present study intends the evaluation of the viability of making starch thermoplastic from rice starch and glycerol as plasticizer. The results of X-ray diffraction and scanning electronic microscopy demonstrate the thermoplastic acquisition. The increase of plasticizer content brings on more hydrophilic thermoplastics with less resistance to tension and elongation at break. (author)

  10. The Reaction of some Maize Hybrids, Created at ARDS TURDA, to Fusarium spp. Infection

    Directory of Open Access Journals (Sweden)

    Laura ȘOPTEREAN

    2017-05-01

    Full Text Available The most important disease of maize in Romania are stalk and ear rot, which caused yield losses in average of 20%. The resistant hibrids represent one of the most efficient solution for reducing the field loses caused by Fusarium spp. on the maize (Nagy et al., 2006. Diseases caused by Fusarium spp. can affect the yield and grain quality of maize because of contamination with numerous mycotoxins produced by these fungi (Czembor et al., 2015. The purpose of this paper was to know more about the reaction of different maize hybrids to Fusarium and the evaluating the effect of ear rot on the yield ability and mycotoxins accumulation. The experiments carried out at ARDS Turda, during four years (2012-2015. The biological material was represented by 8 hybrids, from different maturity groups, tested in two infection conditions with Fusarium spp. (natural and artificial infections. The temperature and rainfalls of the four years of experiments corresponding to the vegetation of maize (april-september are influenced favourably the pathogenesis of stalk and ear rot caused by Fusarium spp. and a good discrimination of the resistance reaction of genotypes. Fusarium ear rot has significantly affected production capacity and chemical composition of corn hybrids tested. In conditions of artificial infection with Fusarium spp. was a decrease in the content of starch, fat and increased protein content compared with artificially inoculated variants. The quantity of fumonizin B1+B2 has reached to 5630 μg/kg in conditions of artificial infection. There are negative correlations between production capacity and degree of attack of fusarium ear rot; depending on the reacting genotypes tested increasing disease causes production decrease. The response of maize hybrids to Fusarium infection is influenced by infection and climatic conditions. These factors affect production both in terms of quantity and quality and accumulation of mycotoxins.

  11. Design starch: stochastic modeling of starch granule biogenesis.

    Science.gov (United States)

    Raguin, Adélaïde; Ebenhöh, Oliver

    2017-08-15

    Starch is the most widespread and abundant storage carbohydrate in plants and the main source of carbohydrate in the human diet. Owing to its remarkable properties and commercial applications, starch is still of growing interest. Its unique granular structure made of intercalated layers of amylopectin and amylose has been unraveled thanks to recent progress in microscopic imaging, but the origin of such periodicity is still under debate. Both amylose and amylopectin are made of linear chains of α-1,4-bound glucose residues, with branch points formed by α-1,6 linkages. The net difference in the distribution of chain lengths and the branching pattern of amylose (mainly linear), compared with amylopectin (racemose structure), leads to different physico-chemical properties. Amylose is an amorphous and soluble polysaccharide, whereas amylopectin is insoluble and exhibits a highly organized structure of densely packed double helices formed between neighboring linear chains. Contrarily to starch degradation that has been investigated since the early 20th century, starch production is still poorly understood. Most enzymes involved in starch growth (elongation, branching, debranching, and partial hydrolysis) are now identified. However, their specific action, their interplay (cooperative or competitive), and their kinetic properties are still largely unknown. After reviewing recent results on starch structure and starch growth and degradation enzymatic activity, we discuss recent results and current challenges for growing polysaccharides on granular surface. Finally, we highlight the importance of novel stochastic models to support the analysis of recent and complex experimental results, and to address how macroscopic properties emerge from enzymatic activity and structural rearrangements. © 2017 The Author(s).

  12. Design starch: stochastic modeling of starch granule biogenesis

    Science.gov (United States)

    Ebenhöh, Oliver

    2017-01-01

    Starch is the most widespread and abundant storage carbohydrate in plants and the main source of carbohydrate in the human diet. Owing to its remarkable properties and commercial applications, starch is still of growing interest. Its unique granular structure made of intercalated layers of amylopectin and amylose has been unraveled thanks to recent progress in microscopic imaging, but the origin of such periodicity is still under debate. Both amylose and amylopectin are made of linear chains of α-1,4-bound glucose residues, with branch points formed by α-1,6 linkages. The net difference in the distribution of chain lengths and the branching pattern of amylose (mainly linear), compared with amylopectin (racemose structure), leads to different physico-chemical properties. Amylose is an amorphous and soluble polysaccharide, whereas amylopectin is insoluble and exhibits a highly organized structure of densely packed double helices formed between neighboring linear chains. Contrarily to starch degradation that has been investigated since the early 20th century, starch production is still poorly understood. Most enzymes involved in starch growth (elongation, branching, debranching, and partial hydrolysis) are now identified. However, their specific action, their interplay (cooperative or competitive), and their kinetic properties are still largely unknown. After reviewing recent results on starch structure and starch growth and degradation enzymatic activity, we discuss recent results and current challenges for growing polysaccharides on granular surface. Finally, we highlight the importance of novel stochastic models to support the analysis of recent and complex experimental results, and to address how macroscopic properties emerge from enzymatic activity and structural rearrangements. PMID:28673938

  13. Environmental impact assessment of six starch plastics focusing on wastewater-derived starch and additives

    NARCIS (Netherlands)

    Broeren, Martijn L.M.; Kuling, Lody; Worrell, Ernst; Shen, Li

    2017-01-01

    Starch plastics are developed for their biobased origin and potential biodegradability. To assist the development of sustainable starch plastics, this paper quantifies the environmental impacts of starch plastics produced from either virgin starch or starch reclaimed from wastewater. A

  14. Resistance of maize varieties to the maize weevil Sitophilus zeamais

    African Journals Online (AJOL)

    This study aimed at evaluating commonly used maize varieties, collected from Melkasa and Bako Agricultural Research Centers and Haramaya University, Ethiopia, against the maize weevil Sitophilus zeamais Motsch., one of the most important cosmopolitan stored product pests in maize. A total of 13 improved maize ...

  15. Intercropping Maize With Legumes for Sustainable Highland Maize Production

    Directory of Open Access Journals (Sweden)

    Adirek Punyalue

    2018-02-01

    Full Text Available Residue burning to prepare soil for maize growing deprives the soil of both protective cover and organic matter, and it exacerbates environmental issues such as Southeast Asia's haze problem. This paper reports on a study that evaluated the effectiveness of maize/legume intercropping as an alternative to maize cultivation with residue burning. Cowpea (Vigna unguiculata, mung bean (V. radiata, rice bean (V. umbellata, and lablab (Lablab purpureus were sown into a standing maize crop 30 days before harvest, and the results were compared with a maize crop grown using residue burning as the method for land preparation at Pang Da Agricultural Station in Chiang Mai, Thailand, in a replicated trial conducted over 3 growing seasons from 2012 to 2014. Intercropping increased maize grain yield by 31–53% and left 70–170% more residue containing 113–230% more nitrogen than the maize sown after residue burning, depending on the legume, and decreased weed dry weight by two-thirds after 2 seasons. Soil biodiversity was enriched by the intercrops, with a doubling in the spore density of arbuscular mycorrhizal fungi in the root-zone soil and increased abundance, diversity (Shannon index, and richness of the soil macrofauna. The abundance of soil animals increased with crop residue dry weight (r = 0.90, P < 0.05 and nitrogen content (r = 0.98, P < 0.01. The effect of intercropping on maize grain yield and accumulation of residue and nitrogen were then confirmed in a participatory experiment involving farmers in 2 highland villages in the Phrao and Chiang Dao districts of Chiang Mai Province with maize and rice bean in 2015. The effects of maize/legume intercropping—increased nitrogen accumulation and crop residue, enhanced soil biodiversity, suppression of weeds, and protection of the soil surface, which enabled the maize to be sown without land clearing with fire—should all contribute to sustainable highland maize production.

  16. The enzymatic determination of starch in food, feed and raw materials of the starch industry

    NARCIS (Netherlands)

    Brunt, K.; Sanders, P.; Rozema, T.

    1998-01-01

    An enzymatic starch determination which can be used for the analysis of starch in a very broad range of different samples is evaluated, ranging from starch in plants, feed and food to industrial applications as starch in starch. The method is based on a complete enzymatic conversion of the starch

  17. Starch behaviors and mechanical properties of starch blend films with different plasticizers.

    Science.gov (United States)

    Nguyen Vu, Hoang Phuong; Lumdubwong, Namfone

    2016-12-10

    The main objective of the study was to gain insight into structural and mechanical starch behaviors of the plasticized starch blend films. Mechanical properties and starch behaviors of cassava (CS)/and mungbean (MB) (50/50, w/w) starch blend films containing glycerol (Gly) or sorbitol (Sor) at 33% weight content were investigated. It was found that tensile strength TS and %E of the Gly-CSMB films were similar to those of MB films; but%E of all Sor-films was identical. TS of plasticized films increased when AM content and crystallinity increased. When Sor was substituted for Gly, crystallinity of starch films and their TS increased. The CSMB and MB films had somewhat a similar molecular profile and comparable mechanical properties. Therefore, it was proposed the starch molecular profile containing amylopectin with high M¯w, low M¯w of amylose, and the small size of intermediates may impart the high TS and%E of starch films. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Characterization of starch films containing starch nanoparticles: part 1: physical and mechanical properties.

    Science.gov (United States)

    Shi, Ai-Min; Wang, Li-Jun; Li, Dong; Adhikari, Benu

    2013-07-25

    We report, for the first time, the preparation method and characteristics of starch films incorporating spray dried and vacuum freeze dried starch nanoparticles. Physical properties of these films such as morphology, crystallinity, water vapor permeability (WVP), opacity, and glass transition temperature (Tg) and mechanical properties (strain versus temperature, strain versus stress, Young's modulus and toughness) were measured. Addition of both starch nanoparticles in starch films increased roughness of surface, lowered degree of crystallinity by 23.5%, WVP by 44% and Tg by 4.3°C, respectively compared to those of starch-only films. Drying method used in preparation of starch nanoparticles only affected opacity of films. The incorporation of nanoparticles in starch films resulted into denser films due to which the extent of variation of strain with temperature was much lower. The toughness and Young's modulus of films containing both types of starch nanoparticles were lower than those of control films especially at <100°C. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Dispersion of Waxy Gas Oil by Some Nonionic Surfactants

    International Nuclear Information System (INIS)

    Khidr, T.T.; Mahmoud, S.A.

    2004-01-01

    Straight chain fatty alcohols having the following number of carbon atoms C 12 , C 14 , C 18 and C 21 each alcohol was ethoxylated to the same of ethylene oxide content, characterized through average molecular weight and elemental analysis. The surface properties of these compounds were studied through surface tension measurements. The synthesized additives were tested as flow improvers for improving the cold flow properties of two waxy gas oils through pour point test. The results show the right efficiency of these compounds in improving the flow ability. Comparative evaluation of the synthesized products with available commercial additive (com) showed their efficiency and suitability to use in gas oils. Wax modification was assisted through photo analysis. Correlation between wax modification and flow improvement in term of pour point depression appeared to be merely qualitative in such heterogeneous gas oil systems

  20. Modeling of the re-starting of waxy crude oil flows in pipelines; Modelisation du redemarrage des ecoulements de bruts paraffiniques dans les conduites petrolieres

    Energy Technology Data Exchange (ETDEWEB)

    Vinay, G.

    2005-11-15

    Pipelining crude oils that contain large proportions of paraffins can cause many specific difficulties. These oils, known as waxy crude oils, usually exhibit high 'pour point', where this temperature is higher than the external temperature conditions surrounding the pipeline. During the shutdown, since the temperature decreases in the pipeline, the gel-like structure builds up and the main difficulty concerns the issue of restarting. This PhD attempts to improve waxy crude oil behaviour understanding thanks to experiment, modelling and numerical simulation in order to predict more accurately time and pressure required to restart the flow. Using various contributions to the literature, waxy crude oils are described as viscoplastic, thixotropic and compressible fluid. Strong temperature history dependence plays a prevailing role in the whole shutdown and restart process. Thus, waxy crude oils under flowing conditions correspond to the non-isothermal flow of a viscoplastic material with temperature-dependent rheological properties. Besides, the restart of a waxy crude oil is simulated by the isothermal transient flow of a weakly compressible thixotropic fluid in axisymmetric pipe geometry. We retain the Houska model to describe the thixotropic/viscoplastic feature of the fluid and compressibility is introduced in the continuity equation. The viscoplastic constitutive equation is involved using an augmented Lagrangian method and the resulting equivalent saddle-point problem is solved thanks to an Uzawa-like algorithm. Governing equations are discretized using a Finite Volume method and the convection terms are treated thanks to a TVD (Total Variation Diminishing) scheme. The Lagrangian functional technique usually used for incompressible viscoplastic flows, is adapted to compressible situations. Several numerical results attest the good convergence properties of the proposed transient algorithm. The non-isothermal results highlight the strong sensitivity of

  1. Starch Digestibility and Functional Properties of Rice Starch Subjected to Gamma Radiation

    Directory of Open Access Journals (Sweden)

    Luís Fernando Polesi

    2018-01-01

    Full Text Available This study investigated the effect of gamma radiation on the digestibility and functional properties of rice starch. Rice cultivars IRGA417 and IAC202 were used for isolation of starch by the alkaline method. Starch samples were irradiated with 1, 2 and 5 kGy doses of 60Co at a rate of 0.4 kGy/h. A control sample, which was not irradiated, was used for comparison. Irradiated and control starches were characterized by in vitro starch digestibility, total dietary fiber, color, water absorption index, water solubility index, syneresis, swelling factor, amylose leaching, pasting properties and gel firmness. Irradiations changed starch digestibility differently in either cultivar. Increasing radiation doses promoted increase in the color parameter b* (yellow, elevation in the capacity to absorb water, and solubility in water as well as the amylose leached from granules for both cultivars. Pasting properties showed a decrease that was proportional to the dose applied, caused by the depolymerization of starch molecules. Gel firmness of the starch from IAC202 was inversely proportional to the radiation dose applied, whereas for IRGA417, there was a reduction at 5 kGy dose. Rice starches can be modified by irradiation to exhibit different functional characteristics and they can be used by the food industries in products such as soups, desserts, flans, puddings and others.

  2. Physicochemical properties of starches and proteins in alkali-treated mungbean and cassava starch granules.

    Science.gov (United States)

    Israkarn, Kamolwan; Na Nakornpanom, Nantarat; Hongsprabhas, Parichat

    2014-05-25

    This study explored the influences of envelope integrity of cooked starch granules on physicochemical and thermophysical properties of mungbean and cassava starches. Alkali treatment was used to selectively leach amylose from the amorphous region of both starches and partially fragmented starch molecules into lower-molecular-weight polymers. It was found that despite the loss of 40% of the original content of amylose, both mungbean and cassava starches retained similar crystallinities, gelatinization temperature ranges, and pasting profiles compared to the native starches. However, the loss of granule-bound starch synthases during alkali treatment and subsequent alkali cooking in excess water played significant roles in determining granular disintegration. The alterations in envelope integrity due to the negative charge repulsion among polymers within the envelope of swollen granules, and the fragmentation of starch molecules, were responsible for the alterations in thermophysical properties of mungbean and cassava starches cooked under alkaline conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Starch meets biotechnology : in planta modification of starch composition and functionalities

    NARCIS (Netherlands)

    Xu, Xuan

    2016-01-01

    Storage starch is an energy reservoir for plants and the major source of calories in the human diet. Starch is used in a broad range of industrial applications, as a cheap, abundant, renewable and biodegradable biopolymer. However, starch needs to be modified before it can fulfill the required

  4. Starch as a source, starch as a sink: the bifunctional role of starch in carbon allocation.

    Science.gov (United States)

    MacNeill, Gregory J; Mehrpouyan, Sahar; Minow, Mark A A; Patterson, Jenelle A; Tetlow, Ian J; Emes, Michael J

    2017-07-20

    Starch commands a central role in the carbon budget of the majority of plants on earth, and its biological role changes during development and in response to the environment. Throughout the life of a plant, starch plays a dual role in carbon allocation, acting as both a source, releasing carbon reserves in leaves for growth and development, and as a sink, either as a dedicated starch store in its own right (in seeds and tubers), or as a temporary reserve of carbon contributing to sink strength, in organs such as flowers, fruits, and developing non-starchy seeds. The presence of starch in tissues and organs thus has a profound impact on the physiology of the growing plant as its synthesis and degradation governs the availability of free sugars, which in turn control various growth and developmental processes. This review attempts to summarize the large body of information currently available on starch metabolism and its relationship to wider aspects of carbon metabolism and plant nutrition. It highlights gaps in our knowledge and points to research areas that show promise for bioengineering and manipulation of starch metabolism in order to achieve more desirable phenotypes such as increased yield or plant biomass. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. Resistant starch in cassava products

    Directory of Open Access Journals (Sweden)

    Bruna Letícia Buzati Pereira

    2014-06-01

    Full Text Available Found in different foods, starch is the most important source of carbohydrates in the diet. Some factors present in starchy foods influence the rate at which the starch is hydrolyzed and absorbed in vivo. Due the importance of cassava products in Brazilian diet, the objective of this study was to analyze total starch, resistant starch, and digestible starch contents in commercial cassava products. Thirty three commercial cassava products from different brands, classifications, and origin were analyzed. The method used for determination of resistant starch consisted of an enzymatic process to calculate the final content of resistant starch considering the concentration of glucose released and analyzed. The results showed significant differences between the products. Among the flours and seasoned flours analyzed, the highest levels of resistant starch were observed in the flour from Bahia state (2.21% and the seasoned flour from Paraná state (1.93%. Starch, tapioca, and sago showed levels of resistant starch ranging from 0.56 to 1.1%. The cassava products analyzed can be considered good sources of resistant starch; which make them beneficial products to the gastrointestinal tract.

  6. PROTEIN TARGETING TO STARCH is required for localising GRANULE-BOUND STARCH SYNTHASE to starch granules and for normal amylose synthesis in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    David Seung

    2015-02-01

    Full Text Available The domestication of starch crops underpinned the development of human civilisation, yet we still do not fully understand how plants make starch. Starch is composed of glucose polymers that are branched (amylopectin or linear (amylose. The amount of amylose strongly influences the physico-chemical behaviour of starchy foods during cooking and of starch mixtures in non-food manufacturing processes. The GRANULE-BOUND STARCH SYNTHASE (GBSS is the glucosyltransferase specifically responsible for elongating amylose polymers and was the only protein known to be required for its biosynthesis. Here, we demonstrate that PROTEIN TARGETING TO STARCH (PTST is also specifically required for amylose synthesis in Arabidopsis. PTST is a plastidial protein possessing an N-terminal coiled coil domain and a C-terminal carbohydrate binding module (CBM. We discovered that Arabidopsis ptst mutants synthesise amylose-free starch and are phenotypically similar to mutants lacking GBSS. Analysis of granule-bound proteins showed a dramatic reduction of GBSS protein in ptst mutant starch granules. Pull-down assays with recombinant proteins in vitro, as well as immunoprecipitation assays in planta, revealed that GBSS physically interacts with PTST via a coiled coil. Furthermore, we show that the CBM domain of PTST, which mediates its interaction with starch granules, is also required for correct GBSS localisation. Fluorescently tagged Arabidopsis GBSS, expressed either in tobacco or Arabidopsis leaves, required the presence of Arabidopsis PTST to localise to starch granules. Mutation of the CBM of PTST caused GBSS to remain in the plastid stroma. PTST fulfils a previously unknown function in targeting GBSS to starch. This sheds new light on the importance of targeting biosynthetic enzymes to sub-cellular sites where their action is required. Importantly, PTST represents a promising new gene target for the biotechnological modification of starch composition, as it is

  7. Multicollinearity in canonical correlation analysis in maize.

    Science.gov (United States)

    Alves, B M; Cargnelutti Filho, A; Burin, C

    2017-03-30

    The objective of this study was to evaluate the effects of multicollinearity under two methods of canonical correlation analysis (with and without elimination of variables) in maize (Zea mays L.) crop. Seventy-six maize genotypes were evaluated in three experiments, conducted in a randomized block design with three replications, during the 2009/2010 crop season. Eleven agronomic variables (number of days from sowing until female flowering, number of days from sowing until male flowering, plant height, ear insertion height, ear placement, number of plants, number of ears, ear index, ear weight, grain yield, and one thousand grain weight), 12 protein-nutritional variables (crude protein, lysine, methionine, cysteine, threonine, tryptophan, valine, isoleucine, leucine, phenylalanine, histidine, and arginine), and 6 energetic-nutritional variables (apparent metabolizable energy, apparent metabolizable energy corrected for nitrogen, ether extract, crude fiber, starch, and amylose) were measured. A phenotypic correlation matrix was first generated among the 29 variables for each of the experiments. A multicollinearity diagnosis was later performed within each group of variables using methodologies such as variance inflation factor and condition number. Canonical correlation analysis was then performed, with and without the elimination of variables, among groups of agronomic and protein-nutritional, and agronomic and energetic-nutritional variables. The canonical correlation analysis in the presence of multicollinearity (without elimination of variables) overestimates the variability of canonical coefficients. The elimination of variables is an efficient method to circumvent multicollinearity in canonical correlation analysis.

  8. Chemically Modified Starch; Allyl- and Epoxy-Starch Derivatives: Their Synthesis and Characterization

    NARCIS (Netherlands)

    Franssen, M.C.R.; Boeriu, C.

    2014-01-01

    Both native and modified starches, such as starch that is pregelatinized, extruded, acid-converted, cross-linked, and substituted, are widely used in industry. This chapter describes a mild two-step process for the synthesis of novel, highly reactive granular epoxy-starch derivatives. Via this

  9. In vitro digestibility of banana starch cookies.

    Science.gov (United States)

    Bello-Pérez, Luis A; Sáyago-Ayerdi, Sonia G; Méndez-Montealvo, Guadalupe; Tovar, Juscelino

    2004-01-01

    Banana starch was isolated and used for preparation of two types of cookies. Chemical composition and digestibility tests were carried out on banana starch and the food products, and these results were compared with corn starch. Ash, protein, and fat levels in banana starch were higher than in corn starch. The high ash amount in banana starch could be due to the potassium content present in this fruit. Proximal analysis was similar between products prepared with banana starch and those based on corn starch. The available starch content of the banana starch preparation was 60% (dmb). The cookies had lower available starch than the starches while banana starch had lower susceptibility to the in vitro alpha-amylolysis reaction. Banana starch and its products had higher resistant starch levels than those made with corn starch.

  10. NIRS determination of non-structural carbohydrates, water soluble carbohydrates and other nutritive quality traits in whole plant maize with wide range variability

    OpenAIRE

    L. Campo; A. B. Monteagudo; B. Salleres; P. Castro; J. Moreno-Gonzalez

    2013-01-01

    The aim of this work was to study the potential of near-infrared reflectance spectroscopy (NIRS) to predict non-structural carbohydrates (NSC), water soluble carbohydrates (WSC), in vitro organic dry matter digestibility (IVOMD), organic matter (OM), crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF) and starch in samples of whole plant maize with a wide range of variability. The samples were analyzed in reflectance mode by a spectrophotometer FOSS NIRSystems 6500. ...

  11. Hydrolysis of native and heat-treated starches at sub-gelatinization temperature using granular starch hydrolyzing enzyme.

    Science.gov (United States)

    Uthumporn, U; Shariffa, Y N; Karim, A A

    2012-03-01

    The effect of heat treatment below the gelatinization temperature on the susceptibility of corn, mung bean, sago, and potato starches towards granular starch hydrolysis (35°C) was investigated. Starches were hydrolyzed in granular state and after heat treatment (50°C for 30 min) by using granular starch hydrolyzing enzyme for 24 h. Hydrolyzed heat-treated starches showed a significant increase in the percentage of dextrose equivalent compared to native starches, respectively, with corn 53% to 56%, mung bean 36% to 47%, sago 15% to 26%, and potato 12% to 15%. Scanning electron microscopy micrographs showed the presence of more porous granules and surface erosion in heat-treated starch compared to native starch. X-ray analysis showed no changes but with sharper peaks for all the starches, suggested that hydrolysis occurred on the amorphous region. The amylose content and swelling power of heat-treated starches was markedly altered after hydrolysis. Evidently, this enzyme was able to hydrolyze granular starches and heat treatment before hydrolysis significantly increased the degree of hydrolysis.

  12. A resistant-starch enriched yogurt: fermentability, sensory characteristics, and a pilot study in children

    Science.gov (United States)

    Aryana, Kayanush; Greenway, Frank; Dhurandhar, Nikhil; Tulley, Richard; Finley, John; Keenan, Michael; Martin, Roy; Pelkman, Christine; Olson, Douglas; Zheng, Jolene

    2015-01-01

    The rising prevalence of obesity and the vulnerability of the pediatric age group have highlighted the critical need for a careful consideration of effective, safe, remedial and preventive dietary interventions.  Amylose starch (RS2) from high-amylose maize (HAM) ferments in the gut and affects body weight.   One hundred and ten children, of 7-8 (n=91) or 13-14 (n=19) years of age scored the sensory qualities of a yogurt supplemented with either HAM-RS2 or an amylopectin starch.  The amylopectin starch yogurt was preferred to the HAM-RS2-enriched yogurt by 7-8 year old panelists ( Pyogurt than for HAM-RS2-enriched yogurt ( Pyogurt in 74% of subjects.  Four children consumed a HAM-RS2-enriched yogurt for four weeks to test its fermentability in a clinical trial.  Three adolescents, but not the single pre-pubertal child, had reduced stool pH ( P=0.1) and increased stool short-chain fatty acids (SCFAs) ( Pfermentation and isobutyrate ( P=0.01) from protein fermentation post-treatment suggesting a favorable change to the gut microbiota.  HAM-RS2 was not modified by pasteurization of the yogurt, and may be a palatable way to increase fiber intake and stimulate colonic fermentation in adolescents.  Future studies are planned to determine the concentration of HAM-RS2 that offers the optimal safe and effective strategy to prevent excessive fat gain in children. PMID:26925221

  13. Decomposition and fertilizing effects of maize stover and chromolaena odorata on maize yield

    International Nuclear Information System (INIS)

    Tetteh, F.M.; Safo, E.Y.; Quansah, C.

    2008-01-01

    The quality, rates of decomposition and the fertilizing effect of chromolaena odorata, and maize stover were determined in field experiments as surface application or buried in litter bags. Studies on the effect of plant materials of contrasting qualities (maize stover and C. odorata) applied sole (10 Mg ha -1 ) and mixed, on maize grain and biomass yield were also conducted on the Asuansi (Ferric Acrisol) soil series. Total nitrogen content of the residues ranged from 0.85% in maize stover to 3.50% in C. odorata. Organic carbon ranged from 34.90% in C. odorata to 48.50% in maize stover. Phosphorus ranged from 0.10% in maize stover to 0.76% in C. odorata. In the wet season, the decomposition rate constants (k) were 0.0319 day -1 for C. odorata, and 0.0081 for maize stover. In the dry season, the k values were 0.0083 for C. odorata, and 0.0072 day -1 for maize stover. Burying of the plant materials reduced the half-life (t 50 ) periods from 18 to 10 days for C. odorata, and 45 to 20 days for maize stover. Maize grain yield of 2556 kg ha -1 was obtained in sole C. odorata (10 Mg ha -1 ) compared with 2167 kg ha -1 for maize stover. Mixing of maize stover and C. odorata residues improved the nutrient content as well as nutrient release by the mixtures resulting in greater maize grain yields in the mixtures than the sole maize stover treatment. It is recommended that C. odorata be used as green manure, mulching or composting material to improve fertility. (au)

  14. Properties of retrograded and acetylated starch produced via starch extrusion or starch hydrolysis with pullulanase.

    Science.gov (United States)

    Kapelko, M; Zięba, T; Gryszkin, A; Styczyńska, M; Wilczak, A

    2013-09-12

    The aim of the present study was to determine the impact of serial modifications of starch, including firstly starch extrusion or hydrolysis with pullulanase, followed by retrogradation (through freezing and defrosting of pastes) and acetylation (under industrial conditions), on its susceptibility to amylolysis. The method of production had a significant effect on properties of the resultant preparations, whilst the direction and extent of changes depended on the type of modification applied. In the produced starch esters, the degree of substitution, expressed by the per cent of acetylation, ranged from 3.1 to 4.4 g/100 g. The acetylation had a significant impact on contents of elements determined with the atomic emission spectrometry, as it contributed to an increased Na content and decreased contents of Ca and K. The DSC thermal characteristics enabled concluding that the modifications caused an increase in temperatures and a decrease in heat of transition (or its lack). The acetylation of retrograded starch preparations increased their solubility in water and water absorbability. The modifications were found to exert various effects on the rheological properties of pastes determined based on the Brabender's pasting characteristics and flow curves determined with the use of an oscillatory-rotating viscosimeter. All starch acetates produced were characterized by ca. 40% resistance to amylolysis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Analysis of nutritional quality of low phytic acid mutants in maize

    International Nuclear Information System (INIS)

    Yuan Ming'an; Luo Hongbing; Wang Zhonghua; Chen Jinhong; Mei Shufang; Shu Xiaoli; Wu Dianxing

    2008-01-01

    Major nutritional quality and components of eight low phytic acid (lpa) mutants and their corresponding wild types were studied. Compared to their corresponding wild types, the content of inorganic P (Pi) was all increased several times, while the content of total P (TP) in mutants was almost the same as their wild types. The contents of crude lipid and amylose were similar, but total starch was significantly different. Crude protein in some of mutants was increased significantly. Most of amino acids were increased, and essential amino acid-Lysine was increased except mutants derived from Q319 and X178. Mineral macronutrients and micronutrients were similar. All results showed that the lpa mutation in maize could enhance the nutritional quality and bioactivities. (authors)

  16. Comparison of gamma radiation effects on natural corn and potato starches and modified cassava starch

    Science.gov (United States)

    Teixeira, Bruna S.; Garcia, Rafael H. L.; Takinami, Patricia Y. I.; del Mastro, Nelida L.

    2018-01-01

    The objective of this work was to evaluate the effect of irradiation treatment on physicochemical properties of three natural polymers, i.e. native potato and corn starches and a typical Brazilian product, cassava starch modified through fermentation -sour cassava- and also to prepare composite hydrocolloid films based on them. Starches were irradiated in a 60Co irradiation chamber in doses up to 15 kGy, dose rate about 1 kGy/h. Differences were found in granule size distribution upon irradiation, mainly for corn and cassava starch but radiation did not cause significant changes in granule morphology. The viscosity of the potato, corn and cassava starches hydrogels decreased as a function of absorbed dose. Comparing non-irradiated and irradiated starches, changes in the Fourier transform infrared (FTIR) spectra in the 2000-1500 cm-1 region for potato and corn starches were observed but not for the cassava starch. Maximum rupture force of the starch-based films was affected differently for each starch type; color analysis showed that doses of 15 kGy promoted a slight rise in the parameter b* (yellow color) while the parameter L* (lightness) was not significantly affected; X-ray diffraction patterns remained almost unchanged by irradiation.

  17. Starch Spherulites Prepared by a Combination of Enzymatic and Acid Hydrolysis of Normal Corn Starch.

    Science.gov (United States)

    Shang, Yaqian; Chao, Chen; Yu, Jinglin; Copeland, Les; Wang, Shuo; Wang, Shujun

    2018-06-13

    This paper describes a new method to prepare spherulites from normal corn starch by a combination of enzymatic (mixtures of α-amylase and amyloglucosidase) and acid hydrolysis followed by recrystallization of the hydrolyzed products. The resulting spherulites contained a higher proportion of chains with a degree of polymerization (DP) of 6-12 and a lower proportion of chains with DP of 25-36, compared to those of native starch. The spherulites had an even particle size of about 2 μm and a typical B-type crystallinity. The amounts of long- and short-range molecular order of double helices in starch spherulites were larger, but the quality of starch crystallites was poorer, compared to that of native starch. This study showed an efficient method for preparing starch spherulites with uniform granule morphology and small particle size from normal corn starch. The ratios of α-amylase and amyloglucosidase in enzymatic hydrolysis had little effect on the structure of the starch spherulites.

  18. Advances in Maize Transformation Technologies and Development of Transgenic Maize.

    Science.gov (United States)

    Yadava, Pranjal; Abhishek, Alok; Singh, Reeva; Singh, Ishwar; Kaul, Tanushri; Pattanayak, Arunava; Agrawal, Pawan K

    2016-01-01

    Maize is the principal grain crop of the world. It is also the crop where genetic engineering has been employed to a great extent to improve its various traits. The ability to transform maize is a crucial step for application of gene technology in maize improvement. There have been constant improvements in the maize transformation technologies over past several years. The choice of genotype and the explant material to initiate transformation and the different types of media to be used in various stages of tissue culture can have significant impact on the outcomes of the transformation efforts. Various methods of gene transfer, like the particle bombardment, protoplast transformation, Agrobacterium -mediated, in planta transformation, etc., have been tried and improved over years. Similarly, various selection systems for retrieval of the transformants have been attempted. The commercial success of maize transformation and transgenic development is unmatched by any other crop so far. Maize transformation with newer gene editing technologies is opening up a fresh dimension in transformation protocols and work-flows. This review captures the various past and recent facets in improvement in maize transformation technologies and attempts to present a comprehensive updated picture of the current state of the art in this area.

  19. Dilute solution properties of canary seed (Phalaris canariensis) starch in comparison to wheat starch.

    Science.gov (United States)

    Irani, Mahdi; Razavi, Seyed M A; Abdel-Aal, El-Sayed M; Hucl, Pierre; Patterson, Carol Ann

    2016-06-01

    Dilute solution properties of an unknown starch are important to understand its performance and applications in food and non-food industries. In this paper, rheological and molecular properties (intrinsic viscosity, molecular weight, shape factor, voluminosity, conformation and coil overlap parameters) of the starches from two hairless canary seed varieties (CO5041 & CDC Maria) developed for food use were evaluated in the dilute regime (Starch dispersions in DMSO (0.5g/dl)) and compared with wheat starch (WS). The results showed that Higiro model is the best among five applied models for intrinsic viscosity determination of canary seed starch (CSS) and WS on the basis of coefficient of determination (R(2)) and root mean square error (RMSE). WS sample showed higher intrinsic viscosity value (1.670dl/g) in comparison to CSS samples (1.325-1.397dl/g). Berry number and the slope of master curve demonstrated that CSS and WS samples were in dilute domain without entanglement occurrence. The shape factor suggested spherical and ellipsoidal structure for CO5041 starch and ellipsoidal for CDC Maria starch and WS. The molecular weight, coil radius and coil volume of CSSs were smaller than WS. The behavior and molecular characterization of canary seed starch showed its unique properties compared with wheat starch. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Thermomechanical treatment of starch

    NARCIS (Netherlands)

    Goot, van der A.J.; Einde, van den R.M.

    2006-01-01

    Starch is used as a major component in many food and nonfood applications and determines the overall product properties to a large extent. It is therefore important to understand the effect of processing on starch. Many starch-based products are produced using a thermal as well as a mechanical

  1. Assessment of stability and plasticity of new hybrids of maize (Zea mays L. under the conditions of Polissia and Steppe zones of Ukraine

    Directory of Open Access Journals (Sweden)

    Л. М. Присяжнюк

    2016-05-01

    Full Text Available Purpose. To select promising high productive maize hyb­rids of middle-early maturity group in terms of stability and plasticity of main economic characters. Methods. Field study, laboratory test, analytical procedure and statistical evaluation. Results. 14 maize hybrids recorded in the State Register of Plant Varieties Suitable for Dissemination in Ukraine in 2015 were studied for plasticity and stability of such traits as productivity, protein and starch content. Intensive highly-plastic hybrid ‘SI Tiptop’ was selected among the studied ones for productivity trait that can respond properly to changes of growing conditions. It was defined that for the starch content such hybrids as ‘SI Tiptop’, ‘SI Enigma’, ‘SI Arioso’, ‘Svich 38’, ‘Svich 35’, ‘HU 8653’, ‘Zdobutok’ and ‘SI Contrakt’ belonged to the intensive type and combined rather high values and the stability of the studied trait under variable conditions. The following hybrids as ‘NS 2642’, ‘DK S3016’, ‘Svich 38’, ‘NS 2632’ were qualified as intensive for protein content and appeared to be highly-plastic but stability values of this trait were low. ‘Svich 38’ hybrid was intensive simultaneously for two traits such as protein and starch content and showed rather high values of plasticity. ‘SI Tiptop’, ‘SI Enigma’ and ‘Svich 35’ were defined as hybrids of extensive type that provided stable protein content in adverse cultivation conditions. Conclusions. On the condition that intensive crop growing technologies should be used, for obtaining stable yields it is advisable to sow only highly-plastic hybrids that can adapt to unfavorable environmental factors, including ‘SI Tiptop’ – for productivity trait, ‘Zdobutok’ and ‘SI Kontrakt’ – for starch content, ‘MAC 24N‘, ‘NA 2642‘ and ‘Danubio’ – for protein content.

  2. Functional properties of irradiated starch

    International Nuclear Information System (INIS)

    Laouini, Wissal

    2011-01-01

    Irradiation is an effective method capable of modifying the functional properties of starches. Its effect depends on the specific structural and molecular organization of starch granules from different botanical sources. In this study, we have studied the effect of gamma irradiation (3, 5, 10, 20, 35, 50 kGy) on the rheological properties of some varieties of starch (potato, cassava and wheat). First, we were interested in determining dry matter content; the results showed that the variation in dry matter compared to the control (native starch) is almost zero. So it does not depend on the dose of irradiation. Contrariwise, it differs from a botanical species to another. The viscometer has shown that these starches develop different behaviors during shearing. The native potato starch gave the highest viscosity followed by wheat and cassava which have almost similar viscosities. For all varieties, the viscosity of starch decreases dramatically with an increasing dose of irradiation. At high doses (35 and 50 kGy) the behavior of different starch is similar to that of a viscous pure liquid. The textural analysis via the back-extrusion test showed that increasing the dose of radiation causes a decrease in extrusion force and the energy spent of the different starch throughout the test. Indeed, the extrusion resistance decreases with increasing dose.

  3. Characterization of starch nanoparticles

    Science.gov (United States)

    Szymońska, J.; Targosz-Korecka, M.; Krok, F.

    2009-01-01

    Nanomaterials already attract great interest because of their potential applications in technology, food science and medicine. Biomaterials are biodegradable and quite abundant in nature, so they are favoured over synthetic polymer based materials. Starch as a nontoxic, cheap and renewable raw material is particularly suitable for preparation of nanoparticles. In the paper, the structure and some physicochemical properties of potato and cassava starch particles of the size between 50 to 100 nm, obtained by mechanical treatment of native starch, were presented. We demonstrated, with the aim of the Scanning Electron Microscopy (SEM) and the non-contact Atomic Force Microscopy (nc-AFM), that the shape and dimensions of the obtained nanoparticles both potato and cassava starch fit the blocklets - previously proposed as basic structural features of native starch granules. This observation was supported by aqueous solubility and swelling power of the particles as well as their iodine binding capacity similar to those for amylopectin-type short branched polysaccharide species. Obtained results indicated that glycosidic bonds of the branch linkage points in the granule amorphous lamellae might be broken during the applied mechanical treatment. Thus the released amylopectin clusters could escape out of the granules. The starch nanoparticles, for their properties qualitatively different from those of native starch granules, could be utilized in new applications.

  4. MaizeGDB: The Maize Genetics and Genomics Database.

    Science.gov (United States)

    Harper, Lisa; Gardiner, Jack; Andorf, Carson; Lawrence, Carolyn J

    2016-01-01

    MaizeGDB is the community database for biological information about the crop plant Zea mays. Genomic, genetic, sequence, gene product, functional characterization, literature reference, and person/organization contact information are among the datatypes stored at MaizeGDB. At the project's website ( http://www.maizegdb.org ) are custom interfaces enabling researchers to browse data and to seek out specific information matching explicit search criteria. In addition, pre-compiled reports are made available for particular types of data and bulletin boards are provided to facilitate communication and coordination among members of the community of maize geneticists.

  5. Starch Bioengineering in Barley

    DEFF Research Database (Denmark)

    Shaik, Shahnoor Sultana

    , the effects of engineering high levels of phosphate and amylose content on starch physico-chemical properties were evaluated by various biochemical and morphological studies. As a result, a substantial increase of 10-fold phosphate content and ~99% amylose content with high-resistant starch was observed...... in storage reserve accumulation, metabolite accumulation in AO but no significant differences were observed in HP compared to WT. Scanning electron microscopy and confocal microscopy revealed the details in topography and internal structures of the starch granules in these lines. The results demonstrated......Starch represents the most important carbohydrate used for food and feed purposes. Increasingly, it is also used as a renewable raw material, as a source of biofuel, and for many different industrial applications. Progress in understanding starch biosynthesis, and investigations of the genes...

  6. Future cereal starch bioengineering

    DEFF Research Database (Denmark)

    Blennow, Andreas; Jensen, Susanne Langgård; Shaik, Shahnoor Sultana

    2013-01-01

    The importance of cereal starch production worldwide cannot be overrated. However, the qualities and resulting values of existing raw and processed starch do not fully meet future demands for environmentally friendly production of renewable, advanced biomaterials, functional foods, and biomedical...... additives. New approaches for starch bioengineering are needed. In this review, we discuss cereal starch from a combined universal bioresource point of view. The combination of new biotechniques and clean technology methods can be implemented to replace, for example, chemical modification. The recently...... released cereal genomes and the exploding advancement in whole genome sequencing now pave the road for identifying new genes to be exploited to generate a multitude of completely new starch functionalities directly in the cereal grain, converting cereal crops to production plants. Newly released genome...

  7. The influence of starch molecular mass on the properties of extruded thermoplastic starch

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Soest, J.J.G. van; Benes, K.; Wit, D. de

    1996-01-01

    The mechanical properties of a low and a high molecular mass thermoplastic starch (TPS) were monitored at water contents in the range of 5–30% (w/w). The granular starches were plasticized by extrusion processing with glycerol and water. The low molecular mass starch was prepared by partial acid

  8. Proteomic analysis of maize grain development using iTRAQ reveals temporal programs of diverse metabolic processes.

    Science.gov (United States)

    Yu, Tao; Li, Geng; Dong, Shuting; Liu, Peng; Zhang, Jiwang; Zhao, Bin

    2016-11-04

    Grain development in maize is an essential process in the plant's life cycle and is vital for use of the plant as a crop for animals and humans. However, little is known regarding the protein regulatory networks that control grain development. Here, isobaric tag for relative and absolute quantification (iTRAQ) technology was used to analyze temporal changes in protein expression during maize grain development. Maize grain proteins and changes in protein expression at eight developmental stages from 3 to 50 d after pollination (DAP) were performed using iTRAQ-based proteomics. Overall, 4751 proteins were identified; 2639 of these were quantified and 1235 showed at least 1.5-fold changes in expression levels at different developmental stages and were identified as differentially expressed proteins (DEPs). The DEPs were involved in different cellular and metabolic processes with a preferential distribution to protein synthesis/destination and metabolism categories. A K-means clustering analysis revealed coordinated protein expression associated with different functional categories/subcategories at different development stages. Our results revealed developing maize grain display different proteomic characteristics at distinct stages, such as numerous DEPs for cell growth/division were highly expressed during early stages, whereas those for starch biosynthesis and defense/stress accumulated in middle and late stages, respectively. We also observed coordinated expression of multiple proteins of the antioxidant system, which are essential for the maintenance of reactive oxygen species (ROS) homeostasis during grain development. Particularly, some DEPs, such as zinc metallothionein class II, pyruvate orthophosphate dikinase (PPDK) and 14-3-3 proteins, undergo major changes in expression at specific developmental stages, suggesting their roles in maize grain development. These results provide a valuable resource for analyzing protein function on a global scale and also

  9. Starch degradation by irradiation

    International Nuclear Information System (INIS)

    Pruzinec, J.; Hola, O.

    1987-01-01

    The effect of high energy irradiation on various starch samples was studied. The radiation dose varied between 43 and 200.9 kGy. The viscosity of starch samples were determined by Hoeppler's method. The percentual solubility of the matter in dry starch was evaluated. The viscosity and solubility values are presented. (author) 14 refs

  10. Starch Biosynthesis in Crop Plants

    Directory of Open Access Journals (Sweden)

    Ian J. Tetlow

    2018-05-01

    Full Text Available Starch is a water-insoluble polyglucan synthesized inside the plastids of plant tissues to provide a store of carbohydrate. Starch harvested from plant storage organs has probably represented the major source of calories for the human diet since before the dawn of civilization. Following the advent of agriculture and the building of complex societies, humans have maintained their dependence on high-yielding domesticated starch-forming crops such as cereals to meet food demands, livestock production, and many non-food applications. The top three crops in terms of acreage are cereals, grown primarily for the harvestable storage starch in the endosperm, although many starchy tuberous crops also provide an important source of calories for various communities around the world. Despite conservation in the core structure of the starch granule, starches from different botanical sources show a high degree of variability, which is exploited in many food and non-food applications. Understanding the factors underpinning starch production and its final structure are of critical importance in guiding future crop improvement endeavours. This special issue contains reviews on these topics and is intended to be a useful resource for researchers involved in improvement of starch-storing crops.

  11. Starch Origin and Thermal Processing Affect Starch Digestion in a Minipig Model of Pancreatic Exocrine Insufficiency.

    Science.gov (United States)

    Mößeler, Anne; Vagt, Sandra; Beyerbach, Martin; Kamphues, Josef

    2015-01-01

    Although steatorrhea is the most obvious symptom of pancreatic exocrine insufficiency (PEI), enzymatic digestion of protein and starch is also impaired. Low praecaecal digestibility of starch causes a forced microbial fermentation accounting for energy losses and meteorism. To optimise dietetic measures, knowledge of praecaecal digestibility of starch is needed but such information from PEI patients is rare. Minipigs fitted with an ileocaecal fistula with (n = 3) or without (n = 3) pancreatic duct ligation (PL) were used to estimate the rate of praecaecal disappearance (pcD) of starch. Different botanical sources of starch (rice, amaranth, potato, and pea) were fed either raw or cooked. In the controls (C), there was an almost complete pcD (>92%) except for potato starch (61.5%) which was significantly lower. In PL pcD of raw starch was significantly lower for all sources of starch except for amaranth (87.9%). Thermal processing increased pcD in PL, reaching values of C for starch from rice, potato, and pea. This study clearly underlines the need for precise specification of starch used for patients with specific dietetic needs like PEI. Data should be generated in suitable animal models or patients as tests in healthy individuals would not have given similar conclusions.

  12. Starch Origin and Thermal Processing Affect Starch Digestion in a Minipig Model of Pancreatic Exocrine Insufficiency

    Directory of Open Access Journals (Sweden)

    Anne Mößeler

    2015-01-01

    Full Text Available Although steatorrhea is the most obvious symptom of pancreatic exocrine insufficiency (PEI, enzymatic digestion of protein and starch is also impaired. Low praecaecal digestibility of starch causes a forced microbial fermentation accounting for energy losses and meteorism. To optimise dietetic measures, knowledge of praecaecal digestibility of starch is needed but such information from PEI patients is rare. Minipigs fitted with an ileocaecal fistula with (n=3 or without (n=3 pancreatic duct ligation (PL were used to estimate the rate of praecaecal disappearance (pcD of starch. Different botanical sources of starch (rice, amaranth, potato, and pea were fed either raw or cooked. In the controls (C, there was an almost complete pcD (>92% except for potato starch (61.5% which was significantly lower. In PL pcD of raw starch was significantly lower for all sources of starch except for amaranth (87.9%. Thermal processing increased pcD in PL, reaching values of C for starch from rice, potato, and pea. This study clearly underlines the need for precise specification of starch used for patients with specific dietetic needs like PEI. Data should be generated in suitable animal models or patients as tests in healthy individuals would not have given similar conclusions.

  13. Kernel abortion in maize. II. Distribution of 14C among kernel carboydrates

    International Nuclear Information System (INIS)

    Hanft, J.M.; Jones, R.J.

    1986-01-01

    This study was designed to compare the uptake and distribution of 14 C among fructose, glucose, sucrose, and starch in the cob, pedicel, and endosperm tissues of maize (Zea mays L.) kernels induced to abort by high temperature with those that develop normally. Kernels cultured in vitro at 309 and 35 0 C were transferred to [ 14 C]sucrose media 10 days after pollination. Kernels cultured at 35 0 C aborted prior to the onset of linear dry matter accumulation. Significant uptake into the cob, pedicel, and endosperm of radioactivity associated with the soluble and starch fractions of the tissues was detected after 24 hours in culture on atlageled media. After 8 days in culture on [ 14 C]sucrose media, 48 and 40% of the radioactivity associated with the cob carbohydrates was found in the reducing sugars at 30 and 35 0 C, respectively. Of the total carbohydrates, a higher percentage of label was associated with sucrose and lower percentage with fructose and glucose in pedicel tissue of kernels cultured at 35 0 C compared to kernels cultured at 30 0 C. These results indicate that sucrose was not cleaved to fructose and glucose as rapidly during the unloading process in the pedicel of kernels induced to abort by high temperature. Kernels cultured at 35 0 C had a much lower proportion of label associated with endosperm starch (29%) than did kernels cultured at 30 0 C (89%). Kernels cultured at 35 0 C had a correspondingly higher proportion of 14 C in endosperm fructose, glucose, and sucrose

  14. Effect of starch types on properties of biodegradable polymer based on thermoplastic starch process by injection molding technique

    Directory of Open Access Journals (Sweden)

    Yossathorn Tanetrungroj

    2015-04-01

    Full Text Available In this study effects of different starch types on the properties of biodegradable polymer based on thermoplastic starch (TPS were investigated. Different types of starch containing different contents of amylose and amylopectin were used, i.e. cassava starch, mungbean starch, and arrowroot starch. The TPS polymers were compounded and shaped using an internal mixer and an injection molding machine, respectively. It was found that the amount of amylose and amylopectin contents on native starch influence the properties of the TPS polymer. A high amylose starch of TPMS led to higher strength, hardness, degree of crystallization than the high amylopectin starch of TPCS. In addition, function group analysis by Fourier transforms infrared spectrophotometer, water absorption, and biodegradation by soil burial test were also examined.

  15. Maize kernel evolution:From teosinte to maize

    Science.gov (United States)

    Maize is the most productive and highest value commodity in the US and around the world: over 1 billion tons were produced each year in 2013 and 2014. Together, maize, rice and wheat comprise over 60% of the world’s caloric intake, with wide regional variability in the importance of each crop. The i...

  16. Harnessing maize biodiversity

    Science.gov (United States)

    Maize is a remarkably diverse species, adapted to a wide range of climatic conditions and farming practices. The latitudinal range of maize is immense, ranging from 54°N in Alberta, Canada, to 45°S in the province of Chubut, Argentina. In terms of altitude, maize is cultivated from sea level to 4000...

  17. Original Paper Physicochemical and pasting properties of some ...

    African Journals Online (AJOL)

    Physicochemical and pasting properties of eighteen varieties of maize cultivated in ... Among cereals, maize, rice and wheat ... climate variability. ... varieties are grown by farmers. ... Normal starch consists of about 75% branched ... which have significant impacts on the pasting ..... behaviour of the starches during the heat.

  18. Potato starch synthases

    NARCIS (Netherlands)

    Nazarian-Firouzabadi, Farhad; Visser, Richard G.F.

    2017-01-01

    Starch, a very compact form of glucose units, is the most abundant form of storage polyglucan in nature. The starch synthesis pathway is among the central biochemical pathways, however, our understanding of this important pathway regarding genetic elements controlling this pathway, is still

  19. The influence of extruded starch molecular mass on the properties of extruded thermoplastic starch

    NARCIS (Netherlands)

    Soest, van J.J.G.; Benes, K.; Wit, de D.; Vliegenthart, J.F.G.

    1996-01-01

    The mechanical properties of a low and a high molecular mass thermoplastic starch (TPS) were monitored at water contents in the range of 5-30% (w/w). The granular starches were plasticized by extrusion processing with glycerol and water. The low molecular mass starch was prepared by partial acid

  20. Chemical Modifications of Starch: Microwave Effect

    Directory of Open Access Journals (Sweden)

    Kamila Lewicka

    2015-01-01

    Full Text Available This paper presents basic methods of starch chemical modification, the effect of microwave radiation on the modification process, and the physicochemical properties of starch. It has been shown that the modifications contribute to improvement of the material performance and likewise to significant improvement of its mechanical properties. As a result, more and more extensive use of starch is possible in various industries. In addition, methods of oxidized starch and starch esters preparation are discussed. Properties of microwave radiation and its impact on starch (with particular regard to modifications described in literature are characterized.

  1. Chemical Modifications of Starch: Microwave Effect

    OpenAIRE

    Lewicka, Kamila; Siemion, Przemysław; Kurcok, Piotr

    2015-01-01

    This paper presents basic methods of starch chemical modification, the effect of microwave radiation on the modification process, and the physicochemical properties of starch. It has been shown that the modifications contribute to improvement of the material performance and likewise to significant improvement of its mechanical properties. As a result, more and more extensive use of starch is possible in various industries. In addition, methods of oxidized starch and starch esters preparation ...

  2. Characteristics of heat transfer fouling of thin stillage using model thin stillage and evaporator concentrates

    Science.gov (United States)

    Challa, Ravi Kumar

    , fiber and minerals, simulated thin stillage was prepared with carbohydrate mixtures and tested for fouling rates. Induction period, maximum fouling resistance and mean fouling rates were determined. Two experiments were performed with two varieties of starch, waxy and high amylose and short chain carbohydrates, corn syrup solids and glucose. Interaction effects of glucose with starch varieties were studied. In the first experiment, short chain carbohydrates individual and interaction effects with starch were studied. For mixtures prepared from glucose and corn syrup solids, no fouling was observed. Mixtures prepared from starch, a long glucose polymer, showed marked fouling. Corn syrup solids and glucose addition to pure starch decreased the mean fouling rates and maximum fouling resistances. Between corn syrup solids and glucose, starch fouling rates were reduced with addition of glucose. Induction periods of pure mixtures of either glucose or corn syrup solids were longer than the test period (5 h). Pure starch mixture had no induction period. Maximum fouling resistance was higher for mixtures with higher concentration of longer polymers. Waxy starch had a longer induction period than high amylose starch. Maximum fouling resistance was higher for waxy than high amylose starch. Addition of glucose to waxy or high amylose starch increased induction period of mixtures longer than 5 h test period. It appears that the bulk fluid temperature plays an important role on carbohydrate mixture fouling rates. Higher bulk fluid temperatures increased the initial fouling rates of the carbohydrate mixtures. Carbohydrate type, depending on the polymer length, influenced the deposit formation. Longer chain carbohydrate, starch, had higher fouling rates compared to shorter carbohydrates such as glucose and corn syrup solids. For insoluble carbohydrate mixtures, fouling was severe. As carbohydrate solubility increased with bulk fluid temperature, surface reaction increased at probe

  3. A comparative investigation of the disintegrant efficiency of Musa ...

    African Journals Online (AJOL)

    Musa sapientum) starches in comparison with maize starch BP in paracetamol tablet formulation was investigated. Starch from the unripe fruits was extracted with distilled water. The starch powder properties were evaluated. Paracetamol ...

  4. Starch Granule Re-Structuring by Starch Branching Enzyme and Glucan Water Dikinase Modulation Affects Caryopsis Physiology and Metabolism

    DEFF Research Database (Denmark)

    Shaik, Shahnoor S.; Obata, Toshihiro; Hebelstrup, Kim H

    2016-01-01

    in starch granule morphology at maturity. The results demonstrate that decreasing the storage starch branching resulted in metabolic adjustments and re-directions, tuning to evade deleterious effects on caryopsis physiology and plant performance while only little effect was evident by increasing starch......Starch is of fundamental importance for plant development and reproduction and its optimized molecular assembly is potentially necessary for correct starch metabolism. Re-structuring of starch granules in-planta can therefore potentially affect plant metabolism. Modulation of granule micro...

  5. Starch Granule Re-Structuring by Starch Branching Enzyme and Glucan Water Dikinase Modulation Affects Caryopsis Physiology and Metabolism

    DEFF Research Database (Denmark)

    Shaik, Shahnoor S.; Obata, Toshihiro; Hebelstrup, Kim H

    2016-01-01

    Starch is of fundamental importance for plant development and reproduction and its optimized molecular assembly is potentially necessary for correct starch metabolism. Re-structuring of starch granules in-planta can therefore potentially affect plant metabolism. Modulation of granule micro...... in starch granule morphology at maturity. The results demonstrate that decreasing the storage starch branching resulted in metabolic adjustments and re-directions, tuning to evade deleterious effects on caryopsis physiology and plant performance while only little effect was evident by increasing starch...

  6. Powder and compaction characteristics of pregelatinized starches.

    Science.gov (United States)

    Rojas, J; Uribe, Y; Zuluaga, A

    2012-06-01

    Pregelatinized starch is widely used as a pharmaceutical aid, especially as a filler-binder. It is known that the tableting performance of excipients could be affected by their source. The aim of this study was to evaluate the powder and tableting properties of pregelatinized starches obtained from yucca, corn and rice and compare those properties with those of Starch 1500. This material had the lowest particle size, and porosity and largest density and best flow. However, yucca starch and corn starch showed an irregular granule morphology, better compactibility and compressibility than Starch 1500. Their onset of plastic deformation and their strain rate sensitivity was comparable to that of Starch 1500. These two materials showed compact disintegration slower that Starch 1500. Conversely, rice starch showed a high elasticity, and friability, low compactibility, which are undesirable for direct compression. This study demonstrated the potential use of pregelatinized starches, especially those obtained from yucca and corn as direct compression filler-binders.

  7. Characteristics of cassava starch fermentation wastewater based on structural degradation of starch granules

    Directory of Open Access Journals (Sweden)

    Juliane Mascarenhas Pereira

    2016-01-01

    Full Text Available ABSTRACT: Sour cassava starch is a naturally modified starch produced by fermentation and sun drying, achieving the property of expansion upon baking. Sour cassava starch' bakery products can be prepared without the addition of yeast and it is gluten free. The fermentation process associated with this product has been well studied, but the wastewater, with high acidity and richness in other organic compounds derived from starch degradation, requires further investigation. In this study, the structure of solids present in this residue was studied, seeking to future applications for new materials. The solids of the wastewater were spray dried with maltodextrin (MD with dextrose equivalent (DE of 5 and 15 and the structure of the powder was evaluated by scanning electron microscopy. A regular structure with a network arrangement was observed for the dried material with MD of 5 DE, in contrast to the original and fermented starches structure, which suggests a regular organization of this new material, to be studied in future applications.

  8. Cassava starch films containing acetylated starch nanoparticles as reinforcement: Physical and mechanical characterization.

    Science.gov (United States)

    Teodoro, Ana Paula; Mali, Suzana; Romero, Natália; de Carvalho, Gizilene Maria

    2015-08-01

    This paper reports the use of acetylated starch nanoparticles (NPAac) as reinforcement in thermoplastic starch films. NPAac with an average size of approximately 500 nm were obtained by nanoprecipitation. Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA) indicated that NPAac are more thermally stable and essentially amorphous when compared with acetylated starch. Thermoplastic starch films with different proportions of NPAac (0.5, 1.0, 1.5, 10.0%, w/w) were obtained and characterized by scanning electron microscopy (SEM), water vapor permeability (WVP), adsorption isotherms, TGA and mechanical tests. The inclusion of reinforcement caused changes in film properties: WVP was lowered by 41% for film with 1.5% (w/w) of NPAac and moisture adsorption by 33% for film with 10% (w/w) of NPAac; and the Young's modulus and thermal stability were increased by 162% and 15%, respectively, for film with 0.5% (w/w) of NPAac compared to the starch film without the addition of NPAac. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Heterologous expression of two Arabidopsis starch dikinases in potato

    NARCIS (Netherlands)

    Xu, Xuan; Dees, Dianka; Huang, Xing Feng; Visser, Richard G.F.; Trindade, Luisa M.

    2018-01-01

    Starch phosphate esters influence physiochemical properties of starch granules that are essential both for starch metabolism and industrial use of starches. To modify properties of potato starch and understand the effect of starch phosphorylation on starch metabolism in storage starch, the starch

  10. Reduced starch granule number per chloroplast in the dpe2/phs1 mutant is dependent on initiation of starch degradation.

    Science.gov (United States)

    Malinova, Irina; Fettke, Joerg

    2017-01-01

    An Arabidopsis double knock-out mutant lacking cytosolic disproportionating enzyme 2 (DPE2) and the plastidial phosphorylase (PHS1) revealed a dwarf-growth phenotype, reduced starch content, an uneven distribution of starch within the plant rosette, and a reduced number of starch granules per chloroplast under standard growth conditions. In contrast, the wild type contained 5-7 starch granules per chloroplast. Mature and old leaves of the double mutant were essentially starch free and showed plastidial disintegration. Several analyses revealed that the number of starch granules per chloroplast was affected by the dark phase. So far, it was unclear if it was the dark phase per se or starch degradation in the dark that was connected to the observed decrease in the number of starch granules per chloroplast. Therefore, in the background of the double mutant dpe2/phs1, a triple mutant was generated lacking the initial starch degrading enzyme glucan, water dikinase (GWD). The triple mutant showed improved plant growth, a starch-excess phenotype, and a homogeneous starch distribution. Furthermore, the number of starch granules per chloroplast was increased and was similar to wild type. However, starch granule morphology was only slightly affected by the lack of GWD as in the triple mutant and, like in dpe2/phs1, more spherical starch granules were observed. The characterized triple mutant was discussed in the context of the generation of starch granules and the formation of starch granule morphology.

  11. Resistant starch: promise for improving human health.

    Science.gov (United States)

    Birt, Diane F; Boylston, Terri; Hendrich, Suzanne; Jane, Jay-Lin; Hollis, James; Li, Li; McClelland, John; Moore, Samuel; Phillips, Gregory J; Rowling, Matthew; Schalinske, Kevin; Scott, M Paul; Whitley, Elizabeth M

    2013-11-01

    Ongoing research to develop digestion-resistant starch for human health promotion integrates the disciplines of starch chemistry, agronomy, analytical chemistry, food science, nutrition, pathology, and microbiology. The objectives of this research include identifying components of starch structure that confer digestion resistance, developing novel plants and starches, and modifying foods to incorporate these starches. Furthermore, recent and ongoing studies address the impact of digestion-resistant starches on the prevention and control of chronic human diseases, including diabetes, colon cancer, and obesity. This review provides a transdisciplinary overview of this field, including a description of types of resistant starches; factors in plants that affect digestion resistance; methods for starch analysis; challenges in developing food products with resistant starches; mammalian intestinal and gut bacterial metabolism; potential effects on gut microbiota; and impacts and mechanisms for the prevention and control of colon cancer, diabetes, and obesity. Although this has been an active area of research and considerable progress has been made, many questions regarding how to best use digestion-resistant starches in human diets for disease prevention must be answered before the full potential of resistant starches can be realized.

  12. Plant-crafted starches for bioplastics production

    DEFF Research Database (Denmark)

    Sagnelli, Domenico; Hebelstrup, Kim H.; Leroy, Eric

    2016-01-01

    Transgenically-produced amylose-only (AO) starch was used to manufacture bioplastic prototypes. Extruded starch samples were tested for crystal residues, elasticity, glass transition temperature, mechanical properties, molecular mass and microstructure. The AO starch granule crystallinity was both...... in the storage modulus (E') for AO samples compared to the control. The data support the use of pure starch-based bioplastics devoid of non-polysaccharide fillers....... of the B- and Vh-type, while the isogenic control starch was mainly A-type. The first of three endothermic transitions was attributed to gelatinization at about 60°C. The second and third peaks were identified as melting of the starch and amylose-lipid complexes, respectively. After extrusion, the AO...

  13. Milk production is unaffected by replacing barley or sodium hydroxide wheat with maize cob silage in rations for dairy cows

    DEFF Research Database (Denmark)

    Hymøller, Lone; Hellwing, Anne Louise Frydendahl; Lund, Peter

    2014-01-01

    . The energy-corrected milk yield was unaffected by treatment. The fat content of the milk on the MCS ration was not different from the SHW ration, whereas it was higher on the barley ration. The protein content of the milk decreased when MCS was used in the ration compared with barley and SHW. From ruminal......Starch is an important energy-providing nutrient for dairy cows that is most commonly provided from cereal grains. However, ruminal fermentation of large amounts of easily degradable starch leads to excessive production and accumulation of volatile fatty acids (VFA). VFA not only play a vital role...... in the energy metabolism of dairy cows but are also the main cause of ruminal acidosis and depressed feed intake. The aim of the present study was to compare maize cob silage (MCS) as an energy supplement in rations for dairy cows with highly rumen-digestible rolled barley and with sodium hydroxide wheat (SHW...

  14. Effects of Two Different Pozole Preparation Processes on Quality Variables and Pasting Properties of Processed Maize Grain

    Directory of Open Access Journals (Sweden)

    María Gricelda Vázquez-Carrillo

    2017-01-01

    Full Text Available The effects of two different pozole preparation processes, traditional (TP and industrial (IP, on quality variables, chemical composition, and pasting properties of processed grain of nine maize landraces were evaluated. Nixtamalization and steeping time in TP (~15 h allowed more water absorption resulting in higher moisture content as well as softer debranned nixtamal relative to the debranned nixtamal produced by IP (52 min. Steeping in TP and bleaching in IP increased the pasting temperature, peak viscosity, and time to peak viscosity of maize starch. Flowering time was shorter in IP (120 min and was significantly affected by the hardness of debranned nixtamal and bleached precooked grains. Total dry matter loss was higher in IP (>10.5% than in TP (<5.0%, mainly due to the complete elimination of pedicel and pericarp by the Ca(OH2 + NaOH solution during cooking. Soft grains, with low test weight, a high proportion of floury endosperm, and high peak viscosity, are required to obtain higher yield of bleached precooked grains and soft flowered grains in both processes.

  15. Characterisation of hydroxypropylated crosslinked sago starch as compared to commercial modified starches

    Directory of Open Access Journals (Sweden)

    Saowakon Wattanachant

    2002-07-01

    Full Text Available The characteristics of hydroxypropylated crosslinked sago starch (HPST were determined and compared with five types of commercial modified starches (CMST in order to evaluate its quality for further applications. The HPST was prepared on a large scale having molar substitution (MS and degree substitution (DS values in the range of 0.038 to 0.045 and 0.004 to 0.005, respectively. The properties of HPST in terms of sediment volume, swelling power, solubility and paste clarity were 15.75%, 16.7, 8.62% and 5.18%T650 , respectively. The MS value, phosphorus content, paste clarity, swelling power and syneresis after six freeze-thaw cycles of HPST when compared to that of commercially available modified starches which are normally used or incorporated in acidic, frozen and canned foods did not differ significantly. The pasting characteristic of HPST exhibited thin to thick viscosity which was similar (P>0.05 to that of commercial hydroxypropylated crosslinked tapioca starch (NAT 8. The acid stability, solubility and freeze-thaw stability of both starches were also similar (P>0.05 but the swelling power of HPST was slightly lower (P<0.05 than that of NAT 8 .

  16. Características físico-químicas de amidos modificados de grau alimentício comercializados no Brasil Physicochemical characteristics of modified food starches commercialized in Brazil

    Directory of Open Access Journals (Sweden)

    Graziela de Oliveira da Silva

    2006-03-01

    technological properties. Also a very simple evaluation of food starch market was done and allowed to conclude that Brazilian food industry is deeply interested on modified starches. It was possible to note that some foods like mayonnaise have on its composition modified starch whereas others like mustard sauce are produced only with native starch. The physicochemical analyses showed that some of the studied samples had high acidity levels, related with the presence of excess reagents employed on the starch modification processes; the results of carboxyl groups content allowed this conclusion. Almost all results were in agreement with the producers' specifications, for example for the freeze-thaw stability, apparent viscosity and the expansion power. The most frequent botanical sources among the studied samples were cassava, waxy corn and regular corn.

  17. Effects of starch synthase IIa gene dosage on grain, protein and starch in endosperm of wheat.

    Science.gov (United States)

    Konik-Rose, Christine; Thistleton, Jenny; Chanvrier, Helene; Tan, Ihwa; Halley, Peter; Gidley, Michael; Kosar-Hashemi, Behjat; Wang, Hong; Larroque, Oscar; Ikea, Joseph; McMaugh, Steve; Regina, Ahmed; Rahman, Sadequr; Morell, Matthew; Li, Zhongyi

    2007-11-01

    Starch synthases (SS) are responsible for elongating the alpha-1,4 glucan chains of starch. A doubled haploid population was generated by crossing a line of wheat, which lacks functional ssIIa genes on each genome (abd), and an Australian wheat cultivar, Sunco, with wild type ssIIa alleles on each genome (ABD). Evidence has been presented previously indicating that the SGP-1 (starch granule protein-1) proteins present in the starch granule in wheat are products of the ssIIa genes. Analysis of 100 progeny lines demonstrated co-segregation of the ssIIa alleles from the three genomes with the SGP-1 proteins, providing further evidence that the SGP-1 proteins are the products of the ssIIa genes. From the progeny lines, 40 doubled haploid lines representing the eight possible genotypes for SSIIa (ABD, aBD, AbD, ABd, abD, aBd, Abd, abd) were characterized for their grain weight, protein content, total starch content and starch properties. For some properties (chain length distribution, pasting properties, swelling power, and gelatinization properties), a progressive change was observed across the four classes of genotypes (wild type, single nulls, double nulls and triple nulls). However, for other grain properties (seed weight and protein content) and starch properties (total starch content, granule morphology and crystallinity, granule size distribution, amylose content, amylose-lipid dissociation properties), a statistically significant change only occurred for the triple nulls, indicating that all three genes had to be missing or inactive for a change to occur. These results illustrate the importance of SSIIa in controlling grain and starch properties and the importance of amylopectin fine structure in controlling starch granule properties in wheat.

  18. Acetylation and characterization of banana (Musa paradisiaca) starch.

    Science.gov (United States)

    Bello-Pérez, L A; Contreras-Ramos, S M; Jìmenez-Aparicio, A; Paredes-López, O

    2000-01-01

    Banana native starch was acetylated and some of its functional properties were evaluated and compared to corn starch. In general, acetylated banana starch presented higher values in ash, protein and fat than corn acetylated starch. The modified starches had minor tendency to retrogradation assessed as % transmittance of starch pastes. At high temperature acetylated starches presented a water retention capacity similar to their native counterpart. The acetylation considerably increased the solubility of starches, and a similar behavior was found for swelling power. When freeze-thaw stability was studied, acetyl banana starch drained approximately 60% of water in the first and second cycles, but in the third and fourth cycles the percentage of separated water was low. However, acetyl corn starch showed lower freeze-thaw stability than the untreated sample. The modification increased the viscosity of banana starch pastes.

  19. Papel del agua en la gelatinización delalmidón de maíz: estudio por calorimetríadiferencial de barrido Role of water in maize starch gelatinization: an study by Differential Scanning Calorimetry

    Directory of Open Access Journals (Sweden)

    P. Pineda–Gómez

    2010-06-01

    which it occurs is governed mainly by starch concentration in the solution, and the botanical source. This study demonstrates that the parameters associated to the observation method, in the DSC analysis, are influential in the determination of the maize starch gelatinization. In this way, the transition peak temperature, gelatinization enthalpy, and range of temperature are parameters that have to be considered when the moisture of sample and heating rate are changed with a homogenous grain size. For the DSC analysis, samples were prepared whit moisture values of 60, 65, 70, 75 and 80% (w/w, and heated at r = 2, 5, and 10◦C/min. Similarly, for fixed values of moisture (80%, the values of the heating rate were 2, 5, 7, 10 y 15◦C/min. Results indicate that the amount of water has influence over the enthalpy transition; however the peak temperature Tp remains invariable. The variation also depends of rate which transformation is made. Analysis allowed corroborating, that starch transition depends on extrinsic factors during the process. This knowledege about starch gelatinization is very useful for optimizing industrial process derivate of it.

  20. Sixth taste – starch taste?

    Directory of Open Access Journals (Sweden)

    Zygmunt Zdrojewicz

    2017-06-01

    Full Text Available Scientists from Oregon State University, USA, came up with the newest theory of the sixth taste – starch taste that might soon join the basic five tastes. This argument is supported by studies done on both animals and humans, the results of which seem to indicate the existence of separate receptors for starch taste, others than for sweet taste. Starch is a glucose homopolymer that forms an α-glucoside chain called glucosan or glucan. This polysaccharide constitutes the most important source of carbohydrates in food. It can be found in groats, potatoes, legumes, grains, manioc and corn. Apart from its presence in food, starch is also used in textile, pharmaceutical, cosmetic and stationery industries as well as in glue production. This polysaccharide is made of an unbranched helical structure – amylose (15–20%, and a structure that forms branched chains – amylopectin (80–85%. The starch structure, degree of its crystallisation or hydration as well as its availability determine the speed of food-contained starch hydrolysis by amylase. So far, starch has been considered tasteless, but the newest report shows that for people of different origins it is associated with various aliments specific for each culture. Apart from a number of scientific experiments using sweet taste inhibitors, the existence of the sixth taste is also confirmed by molecular studies. However, in order to officially include starch taste to the basic human tastes, it must fulfil certain criteria. The aim of the study is to present contemporary views on starch.

  1. Preparation and characterization of dialdehyde starch urea (DASU ...

    African Journals Online (AJOL)

    Dialdehyde starch urea (DASU) was prepared by the reaction of dialdehyde starch (DAS) from periodate oxidized cassava starch with urea, which was then used to adsorb Co(II), Pb(II) and Zn(II) ions from aqueous solution. Starch modified starches and starch complexes were characterized by Fourier transform infrared ...

  2. Assessment of maize stem borer damage on hybrid maize varieties in Chitwan, Nepal

    OpenAIRE

    Buddhi Bahadur Achhami; Santa Bahadur BK; Ghana Shyam Bhandari

    2015-01-01

    Maize is the second most important cereal crop in Nepal. However, national figure of grain production still remains below than the world's average grain production per unit area. Thus, this experiment was designed to determine the suitable time of maize planting, and to assess the peak period of one of the major insects, maize stem borer, in Chitwan condition. The results showed that plant damage percentage as per the maize planting month varies significantly, and the average plant damage per...

  3. Risk Adjusted Production Efficiency of Maize Farmers in Ethiopia: Implication for Improved Maize Varieties Adoption

    Directory of Open Access Journals (Sweden)

    Sisay Diriba Lemessa

    2017-09-01

    Full Text Available This study analyzes the technical efficiency and production risk of 862 maize farmers in major maize producing regions of Ethiopia. It employs the stochastic frontier approach (SFA to estimate the level of technical efficiencies of stallholder farmers. The stochastic frontier approach (SFA uses flexible risk properties to account for production risk. Thus, maize production variability is assessed from two perspectives, the production risk and the technical efficiency. The study also attempts to determine the socio-economic and farm characteristics that influence technical efficiency of maize production in the study area. The findings of the study showed the existence of both production risk and technical inefficiency in maize production process. Input variables (amounts per hectare such as fertilizer and labor positively influence maize output. The findings also show that farms in the study area exhibit decreasing returns to scale. Fertilizer and ox plough days reduce output risk while labor and improved seed increase output risk. The mean technical efficiency for maize farms is 48 percent. This study concludes that production risk and technical inefficiency prevents the maize farmers from realizing their frontier output. The best factors that improve the efficiency of the maize farmers in the study area include: frequency of extension contact, access to credit and use of intercropping. It was also realized that altitude and terracing in maize farms had influence on farmer efficiency.

  4. Enzymatic modification of starch

    DEFF Research Database (Denmark)

    Jensen, Susanne Langgård

    In the food industry approaches for using bioengineering are investigated as alternatives to conventional chemical and physical starch modification techniques in development of starches with specific properties. Enzyme-assisted post-harvest modification is an interesting approach to this, since...... it is considered a clean and energy saving technology. This thesis aimed to investigate the effect of using reaction conditions, simulating an industrial process, for enzymatic treatment of starch with branching enzyme (BE) from Rhodothermus obamensis. Thus treatements were conducted at 70°C using very high...... substrate concentration (30-40% dry matter (DM)) and high enzyme activity (750-2250 BE units (BEU)/g sample). Starches from various botanical sources, representing a broad range of properties, were used as substrates. The effects of the used conditions on the BE-reaction were evaluated by characterization...

  5. Starch and starch hydrolysates are favorable carbon sources for bifidobacteria in the human gut.

    Science.gov (United States)

    Liu, Songling; Ren, Fazheng; Zhao, Liang; Jiang, Lu; Hao, Yanling; Jin, Junhua; Zhang, Ming; Guo, Huiyuan; Lei, Xingen; Sun, Erna; Liu, Hongna

    2015-03-01

    Bifidobacteria are key commensals in human gut, and their abundance is associated with the health of their hosts. Although they are dominant in infant gut, their number becomes lower in adult gut. The changes of the diet are considered to be main reason for this difference. Large amounts of whole-genomic sequence data of bifidobacteria make it possible to elucidate the genetic interpretation of their adaptation to the nutrient environment. Among the nutrients in human gut, starch is a highly fermentable substrate and can exert beneficial effects by increasing bifidobacteria and/or being fermented to short chain fatty acids. In order to determine the potential substrate preference of bifidobacteria, we compared the glycoside hydrolase (GH) profiles of a pooled-bifidobacterial genome (PBG) with a representative microbiome (RM) of the human gut. In bifidobacterial genomes, only 15% of GHs contained signal peptides, suggesting their weakness in utilization of complex carbohydrate, such as plant cell wall polysaccharides. However, compared with other intestinal bacteria, bifidobacteiral genomes encoded more GH genes for degrading starch and starch hydrolysates, indicating that they have genetic advantages in utilizing these substrates. Bifidobacterium longum subsp. longum BBMN68 isolated from centenarian's faeces was used as a model strain to further investigate the carbohydrate utilization. The pathway for degrading starch and starch hydrolysates was the only complete pathway for complex carbohydrates in human gut. It is noteworthy that all of the GH genes for degrading starch and starch hydrolysates in the BBMN68 genome were conserved in all studied bifidobacterial strains. The in silico analyses of BBMN68 were further confirmed by growth experiments, proteomic and real-time quantitative PCR (RT-PCR) analyses. Our results demonstrated that starch and starch hydrolysates were the most universal and favorable carbon sources for bifidobacteria. The low amount of these

  6. Effects of water on starch-g-polystyrene and starch-g-poly(methyl acrylate) extrudates

    International Nuclear Information System (INIS)

    Henderson, A.M.; Rudin, A.

    1982-01-01

    Polystyrene and poly(methyl acrylate) were grafted onto wheat starch by gamma radiation and chemical initiation, respectively. The respective percent add-on values were 46 and 45; 68% of the polystyrene formed was grafted to starch, and corresponding proportion of poly(methyl acrylate) was 41%. The molecular weight distributions of the homopolymer and graft portions were characterized, and extrusion conditions were established for production of ribbon samples of starch-g-PS and starch-g-PMA. Both copolymer types were considerably weakened by soaking in water, and this effect was more immediate and drastic for starch-g-poly(methyl acrylate). Both graft copolymers regained their original tensile strengths on drying, but the poly(methyl acrylate) specimens did not recover their original unswollen dimensions and retained high breaking elongations characteristic of soaked specimens. Tensile and dynamic mechanical properties of extruded and molded samples of both graft polymers are reported, and plasticizing effects of water are summarized

  7. Modification of rice starch by gamma irradiation to produce soluble starch of low viscosity for industrial purposes

    International Nuclear Information System (INIS)

    El Saadany, R.M.A.; El Saadany, F.M.; Foda, Y.H.

    1974-01-01

    Because starch of low viscosity is important for industrial purposes this research was carried out to study the possibility of producing this sort of starch by treating rice starch with γ-irradiation. Results indicated than when rice starch was modified by γ-irradiation, the reducing power increased and degradation as well as molecular breakdown occured followed by sharp decrease of its viscosity, specific viscosity and intrisinc viscosity. Results showed that starch became more soluble by treating with γ-irradiation and lost its resistance to water as its swelling capacity decreased. All these changes were proportional to the doses of γ-irradiation. (orig.) [de

  8. Preparation, characterization and utilization of starch nanoparticles.

    Science.gov (United States)

    Kim, Hee-Young; Park, Sung Soo; Lim, Seung-Taik

    2015-02-01

    Starch is one of the most abundant biopolymers in nature and is typically isolated from plants in the form of micro-scale granules. Recent studies reported that nano-scale starch particles could be readily prepared from starch granules, which have unique physical properties. Because starch is environmentally friendly, starch nanoparticles are suggested as one of the promising biomaterials for novel utilization in foods, cosmetics, medicines as well as various composites. An overview of the most up-to-date information regarding the starch nanoparticles including the preparation processes and physicochemical characterization will be presented in this review. Additionally, the prospects and outlooks for the industrial utilization of starch nanoparticles will be discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Cassava starch in the Brazilian food industry

    Directory of Open Access Journals (Sweden)

    Ivo Mottin Demiate

    2011-06-01

    Full Text Available Cassava starch is a valued raw material for producing many kinds of modified starches for food applications. Its physicochemical properties, as well as its availability, have made it an interesting and challenging ingredient for the food industry. In the present work, food grade modified cassava starches were purchased from producers and analyzed for selected physicochemical characteristics. Samples of sour cassava starch were included, as well as one sample of native cassava starch. Results showed that almost all modified starches were resistant to syneresis, produced pastes more stable to stirred cooking, and some of them were difficult to cook. The sour cassava starches presented high acidity and resulted in clear and unstable pastes during stirred cooking, susceptible to syneresis.

  10. Physicochemical Properties of Gamma-Irradiated Corn Starch

    International Nuclear Information System (INIS)

    Lee, Y.J.; Lim, S.T.; Kim, S.Y.; Han, S.M.; Kim, H.M.; Kang, I.J.

    2006-01-01

    Structural modification of corn starch by gamma irradiation was evaluated for under dry conditions at varied intensities from 0 to 40 kGy. Under scanning electron microscopy, the granule shape of corn starch was not significantly affected by the irradiation up to 40 kGy. In addition, X-ray diffraction and melting patterns of the irradiated starches were similar to those of the native starch, indicating that crystalline regions in the starch granules were not changed by irradiation. However, the pattern of gel permeation column chromatography showed a significant increase in partial hydrolysis of gamma irradiated starch samples

  11. Plant-crafted starches for bioplastics production.

    Science.gov (United States)

    Sagnelli, Domenico; Hebelstrup, Kim H; Leroy, Eric; Rolland-Sabaté, Agnès; Guilois, Sophie; Kirkensgaard, Jacob J K; Mortensen, Kell; Lourdin, Denis; Blennow, Andreas

    2016-11-05

    Transgenically-produced amylose-only (AO) starch was used to manufacture bioplastic prototypes. Extruded starch samples were tested for crystal residues, elasticity, glass transition temperature, mechanical properties, molecular mass and microstructure. The AO starch granule crystallinity was both of the B- and Vh-type, while the isogenic control starch was mainly A-type. The first of three endothermic transitions was attributed to gelatinization at about 60°C. The second and third peaks were identified as melting of the starch and amylose-lipid complexes, respectively. After extrusion, the AO samples displayed Vh- and B-type crystalline structures, the B-type polymorph being the dominant one. The AO prototypes demonstrated a 6-fold higher mechanical stress at break and 2.5-fold higher strain at break compared to control starch. Dynamic mechanical analysis showed a significant increase in the storage modulus (E') for AO samples compared to the control. The data support the use of pure starch-based bioplastics devoid of non-polysaccharide fillers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Green starch conversions : Studies on starch acetylation in densified CO2

    NARCIS (Netherlands)

    Muljana, Henky; Picchioni, Francesco; Heeres, Hero J.; Janssen, Leon P. B. M.

    2010-01-01

    The acetylation of potato starch with acetic anhydride (AAH) and sodium acetate (NaOAc) as catalyst in densified CO2 was explored in a batch reactor setup. The effects of process variables such as pressure (6-9.8 MPa), temperature (40-90 degrees C), AAH to starch ratio (2-5 mol/mol AGU), NaOAc to

  13. Starch Characteristics Linked to Gluten-Free Products

    Directory of Open Access Journals (Sweden)

    Stefan W. Horstmann

    2017-04-01

    Full Text Available The increasing prevalence of coeliac disease (CD and gluten-related disorders has led to increasing consumer demand for gluten-free products with quality characteristics similar to wheat bread. The replacement of gluten in cereal-based products remains a challenge for scientists, due to its unique role in network formation, which entraps air bubbles. When gluten is removed from a flour, starch is the main component left. Starch is used as gelling, thickening, adhesion, moisture-retention, stabilizing, film forming, texturizing and anti-staling ingredient. The extent of these properties varies depending on the starch source. The starches can additionally be modified increasing or decreasing certain properties of the starch, depending on the application. Starch plays an important role in the formulation of bakery products and has an even more important role in gluten-free products. In gluten-free products, starch is incorporated into the food formulation to improve baking characteristics such as the specific volume, colour and crumb structure and texture. This review covers a number of topics relating to starch; including; an overview of common and lesser researched starches; chemical composition; morphology; digestibility; functionality and methods of modification. The emphasis of this review is on starch and its properties with respect to the quality of gluten-free products.

  14. Starch Characteristics Linked to Gluten-Free Products.

    Science.gov (United States)

    Horstmann, Stefan W; Lynch, Kieran M; Arendt, Elke K

    2017-04-06

    The increasing prevalence of coeliac disease (CD) and gluten-related disorders has led to increasing consumer demand for gluten-free products with quality characteristics similar to wheat bread. The replacement of gluten in cereal-based products remains a challenge for scientists, due to its unique role in network formation, which entraps air bubbles. When gluten is removed from a flour, starch is the main component left. Starch is used as gelling, thickening, adhesion, moisture-retention, stabilizing, film forming, texturizing and anti-staling ingredient. The extent of these properties varies depending on the starch source. The starches can additionally be modified increasing or decreasing certain properties of the starch, depending on the application. Starch plays an important role in the formulation of bakery products and has an even more important role in gluten-free products. In gluten-free products, starch is incorporated into the food formulation to improve baking characteristics such as the specific volume, colour and crumb structure and texture. This review covers a number of topics relating to starch; including; an overview of common and lesser researched starches; chemical composition; morphology; digestibility; functionality and methods of modification. The emphasis of this review is on starch and its properties with respect to the quality of gluten-free products.

  15. Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules

    DEFF Research Database (Denmark)

    Carciofi, Massimiliano; Blennow, Per Gunnar Andreas; Jensen, Susanne Langgård

    2012-01-01

    is preferentially derived from amylose, which can be increased by suppressing amylopectin synthesis by silencing of starch branching enzymes (SBEs). However all the previous works attempting the production of high RS crops resulted in only partly increased amylose-content and/or significant yield loss. Results...... In this study we invented a new method for silencing of multiple genes. Using a chimeric RNAi hairpin we simultaneously suppressed all genes coding for starch branching enzymes (SBE I, SBE IIa, SBE IIb) in barley (Hordeum vulgare L.), resulting in production of amylose-only starch granules in the endosperm...... yield in a living organism. This was achieved by a new method of simultaneous suppression of the entire complement of genes encoding starch branching enzymes. We demonstrate that amylopectin is not essential for starch granule crystallinity and integrity. However the slower initial growth of shoots from...

  16. Rheological and microstructural properties of Irradiated starch

    International Nuclear Information System (INIS)

    Atrous Turki, Hager

    2011-01-01

    Gamma irradiation ia s fast and efficient method to improve the functional properties of straches. Wheat and potato starches were submitted, in the present study, at 3,5,10 and 20 kGy radiation dose. The changes induced by irradiation on the rheological properties of these starches showed a decrease in the viscosity with increasing radiation dose. Chemicals bond's hydrolysis has been induced by free radicals that have been identified by EPR. Wheat starch presents five EPR signals after irradiation, whiles potato starch has a weak EPR signal. On the other hand, irradiation caused decrease in amylose content. This decrease is more pronounced in potato starch. Dry irradiated starch's MEB revealed no change in the shape, size and distribution of the granules. While, the observation of wheat starch allowed the complete disappearance of the granular structure and the dissolution of its macromolecules after irradiation which justifies the significant decrease in wheat starch's viscosity irradiated at 20 kGy.

  17. Screening of promising maize genotypes against maize weevil (Sitophilus zeamais Motschulky) in storage condition

    OpenAIRE

    Ram B Paneru; Resham B Thapa

    2017-01-01

    The maize weevil (Sitophilus zeamais Motschulsky) is a serious pest of economic importance in stored grains. It causes major damage to stored maize grain thereby reducing its weight, quality and germination. An experiment was conducted in randomized complete block design (RCBD) with 3 replications to screen 32 maize genotypes against maize weevil in no-choice and free-choice conditions at Entomology Division, Khumaltar, Lalitpur (Room temperature: Maximum 24-32°C and Minimum 18-27°C). The fin...

  18. Engineering Potato Starch with a Higher Phosphate Content.

    Directory of Open Access Journals (Sweden)

    Xuan Xu

    Full Text Available Phosphate esters are responsible for valuable and unique functionalities of starch for industrial applications. Also in the cell phosphate esters play a role in starch metabolism, which so far has not been well characterized in storage starch. Laforin, a human enzyme composed of a carbohydrate-binding module and a dual-specificity phosphatase domain, is involved in the dephosphorylation of glycogen. To modify phosphate content and better understand starch (dephosphorylation in storage starch, laforin was engineered and introduced into potato (cultivar Kardal. Interestingly, expression of an (engineered laforin in potato resulted in significantly higher phosphate content of starch, and this result was confirmed in amylose-free potato genetic background (amf. Modified starches exhibited altered granule morphology and size compared to the control. About 20-30% of the transgenic lines of each series showed red-staining granules upon incubation with iodine, and contained higher phosphate content than the blue-stained starch granules. Moreover, low amylose content and altered gelatinization properties were observed in these red-stained starches. Principle component and correlation analysis disclosed a complex correlation between starch composition and starch physico-chemical properties. Ultimately, the expression level of endogenous genes involved in starch metabolism was analysed, revealing a compensatory response to the decrease of phosphate content in potato starch. This study provides a new perspective for engineering starch phosphate content in planta by making use of the compensatory mechanism in the plant itself.

  19. Exploring karyotype diversity of Argentinian Guaraní maize landraces: Relationship among South American maize.

    Directory of Open Access Journals (Sweden)

    María Florencia Realini

    Full Text Available In Argentina there are two different centers of maize diversity, the Northeastern (NEA and the Northwestern (NWA regions of the country. In NEA, morphological studies identified 15 landraces cultivated by the Guaraní communities in Misiones Province. In the present study we analyzed the karyotype diversity of 20 populations of Guaraní maize landraces through classical and molecular cytogenetic analyses. Our results demonstrate significant intra and inter-populational variation in the percentage, number, size, chromosome position and frequencies of the heterochromatic blocks, which are called knobs. Knob sequence analysis (180-bp and TR-1 did not show significant differences among Guaraní populations. B chromosomes were not detected, and abnormal 10 (AB10 chromosomes were found with low frequency (0.1≥f ≤0.40 in six populations. Our results allowed karyotypic characterization of each analyzed population, defining for the first time the chromosomal constitution of maize germplasm from NEA. The multivariate analysis (PCoA and UPGMA of karyotype parameters allowed the distinction between two populations groups: the Popcorn and the Floury maize populations. These results are in agreement with previously published microsatellite and morphological/phenological studies. Finally, we compared our karyotype results with those previously reported for NWA and Central Region of South America maize. Our data suggest that there are important differences between maize from NEA and NWA at the karyotype level, supporting the hypothesis that there are two pathways of input of South America maize. Our results also confirm the existence of two centers of diversification of Argentinian native maize, NWA and NEA. This work contributes new knowledge about maize diversity, which is relevant for future plans to improve commercial maize, and for conservation of agrobiodiversity.

  20. Occurrence of toxigenic fungi in maize and maize-gluten meal from Pakistan

    Directory of Open Access Journals (Sweden)

    Muhammad Kashif SALEEMI

    2012-05-01

    Full Text Available The present study was designed to isolate and identify toxigenic mycoflora of maize and maize-gluten meal. A total of 82 samples of maize and 8 samples of maize-gluten meal were collected from Faisalabad district of Pakistan over a period of two years. These samples were inoculated on different culture media. Fungal contamination of maize and maize-gluten was 56% and 75% of samples, respectively. Isolation frequencies of different genera isolated from maize were Aspergillus 33%; Penicillium 28%; Fusarium 10%; and Alternaria 1%. Isolation frequency among species was maximum for P. verrucosum, followed by A. niger aggregates, A. ochraceous, A. flavus, P. chrysogenum, A. parasiticus, A. carbonarius, Fusarium spp. and Alternaria spp. Relative density of Aspergillus isolates was maximum for A. niger aggregates and A. ochraceous (30% each followed by A. flavus (26%, A. parasiticus (11% and A. carbonarius (3%. Percentage of toxigenic fungi among Aspergillus isolates was 52%. Aflatoxigenic isolates of A. flavus and A. parasiticus were 43 and 67% and ochratoxigenic isolates of A. carbonarius, A. ochraceous and A. niger aggregates were 100, 63 and 38%, respectively. Aspergillus parasiticus produced higher concentrations of AFB1 (maximum 1374.23 ng g-1 than A. flavus (maximum 635.50 ng g-1. Ochratoxin A production potential of A. ochraceous ranged from 1.81 to 9523.1 ng g-1, while in A. niger aggregates it was 1.30 to 1758.6 ng g-1. Isolation frequencies of fungal genera from maize-gluten meal were Aspergillus (63% and Penicillium (50%. A. flavus was the most frequently isolated species. Percentage of toxigenic fungi among Aspergillus isolates was 40%. Aflatoxigenic isolates of A. flavus were 33% and ochratoxigenic isolates of A. ochraceous were 100%.

  1. Kinetic modelling of enzymatic starch hydrolysis

    NARCIS (Netherlands)

    Bednarska, K.A.

    2015-01-01

    Kinetic modelling of enzymatic starch hydrolysis – a summary

    K.A. Bednarska

    The dissertation entitled ‘Kinetic modelling of enzymatic starch hydrolysis’ describes the enzymatic hydrolysis and kinetic modelling of liquefaction and saccharification of wheat starch.

  2. Breeding of speciality maize for industrial purposes

    OpenAIRE

    Pajić Zorica; Radosavljević Milica; Filipović Milomir; Todorović Goran; Srdić Jelena; Pavlov Milovan

    2010-01-01

    The breeding programme on speciality maize with specific traits was established at the Maize Research Institute, Zemun Polje, several decades ago. The initial material was collected, new methods applying to breeding of speciality maize, i.e. popping maize, sweet maize and white-seeded maize, were introduced. The aim was to enhance and improve variability of the initial material for breeding these three types of maize. Then, inbred lines of good combining abilities were developed and used as c...

  3. A REVIEW ON BIODEGRADABLE STARCH BASED FILM

    Directory of Open Access Journals (Sweden)

    Hooman Molavi

    2015-04-01

    Full Text Available In recent years, biodegradable edible films have become very important in research related to food, due to their compatibility with the environment and their use in the food packaging industry. Various sources can be used in the production of biopolymers as biodegradable films that include polysaccharides, proteins and lipids. Among the various polysaccharides, starch due to its low price and its abundance in nature is of significant importance. Several factors affect the properties of starch films; such as the source which starch is obtained from, as well as the ratio of constituents of the starch. Starch films have advantages such as low thickness, flexibility and transparency though; there are some downsides to mention, such as the poor mechanical properties and water vapor permeability. Thus, using starch alone to produce the film will led to restrictions on its use. To improve the mechanical properties of starch films and also increases resistance against humidity, several methods can be used; including the starch modifying techniques such as cross linking of starch and combining starch with other natural polymers. Other methods such as the use of lipid in formulations of films to increase the resistance to moisture are possible, but lipids are susceptible to oxidation. Therefore, new approaches are based on the integration of different biopolymers in food packaging.

  4. Aflatoxin levels in maize and maize products during the 2004 food ...

    African Journals Online (AJOL)

    Aflatoxin levels in maize and maize products during the 2004 food poisoning ... district were received at the National Public Health Laboratory Services (NPHLS). On analysis, they were found to be highly contaminated with aflatoxin B1.

  5. EMF radiations (1800 MHz)-inhibited early seedling growth of maize (Zea mays) involves alterations in starch and sucrose metabolism.

    Science.gov (United States)

    Kumar, Arvind; Singh, Harminder Pal; Batish, Daizy R; Kaur, Shalinder; Kohli, Ravinder Kumar

    2016-07-01

    The present study investigated the impact of 1800-MHz electromagnetic field radiations (EMF-r), widely used in mobile communication, on the growth and activity of starch-, sucrose-, and phosphate-hydrolyzing enzymes in Zea mays seedlings. We exposed Z. mays to modulated continuous wave homogenous EMF-r at specific absorption rate (SAR) of 1.69±0.0 × 10(-1) W kg(-1) for ½, 1, 2, and 4 h. The analysis of seedlings after 7 days revealed that short-term exposure did not induce any significant change, while longer exposure of 4 h caused significant growth and biochemical alterations. There was a reduction in the root and coleoptile length with more pronounced effect on coleoptile growth (23 % reduction on 4-h exposure). The contents of photosynthetic pigments and total carbohydrates declined by 13 and 18 %, respectively, in 4-h exposure treatments compared to unexposed control. The activity of starch-hydrolyzing enzymes-α- and β-amylases-increased by ∼92 and 94 %, respectively, at an exposure duration of 4 h, over that in the control. In response to 4-h exposure treatment, the activity of sucrolytic enzymes-acid invertases and alkaline invertases-was increased by 88 and 266 %, whereas the specific activities of phosphohydrolytic enzymes (acid phosphatases and alkaline phosphatases) showed initial increase up to ≤2 h duration and then declined at >2 h exposure duration. The study concludes that EMF-r-inhibited seedling growth of Z. mays involves interference with starch and sucrose metabolism.

  6. Nuclear magnetic resonance relaxation characterisation of water status of developing grains of maize (Zea mays L.) grown at different nitrogen levels.

    Science.gov (United States)

    Krishnan, Prameela; Chopra, Usha Kiran; Verma, Ajay Pal Singh; Joshi, Devendra Kumar; Chand, Ishwar

    2014-04-01

    Changes in water status of developing grains of maize (Zea mays L.) grown under different nitrogen levels were characterized by nuclear magnetic resonance (NMR) spectroscopy. There were distinct changes in water status of grains due to the application of different levels of nitrogen (0, 120 and 180 kg N ha(-1)). A comparison of the grain developmental characteristics, composition and physical properties indicated that, not only the developmental characteristics like grain weight, grain number/ear, and rate of grain filling increased, but also bound water characterized by the T2 component of NMR relaxation increased with nitrogen application (50-70%) and developmental stages leading to maturation (10-60%). The consistency in the patterns of responses to free water and intermediate water to increasing levels of nitrogen application and grain maturity suggested that nitrogen application resulted in more proportion of water to both bound- and intermediate states and less in free state. These changes are further corroborated by the concomitant increases in protein and starch contents in grains from higher nitrogen treatments as macromolecules like protein and starch retain more amount of water in the bound state. The results of the changes in T2 showed that water status during grain development was not only affected by developmental processes but also by nitrogen supply to plants. This study strongly indicated a clear nutrient and developmental stage dependence of grain tissue water status in maize. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Comparison of starch granule development and physicochemical properties of starches in wheat pericarp and endosperm.

    Science.gov (United States)

    Yu, Xurun; Zhou, Liang; Zhang, Jing; Yu, Heng; Xiong, Fei; Wang, Zhong

    2015-01-01

    The objectives of this study were: (i) to characterize structural development of starch granule in pericarp and endosperm during wheat caryopsis growth; (ii) to compare physicochemical properties of starches in pericarp and endosperm; (iii) to further discover the relationships between pericarp starches and endosperm starches. Wheat pericarp and endosperm at different development stages were observed by light microscopy and scanning electron microscopy, respectively. Structural properties of starches were determined using X-ray power diffraction and (13) C solid nuclear magnetic resonance. Pericarp starch granules (PSG) accumulated in amyloplasts and chloroplasts, and showed a typical accumulation peak at 5 days after fertilization (DAF), and then gradually decomposed during 5-22 DAF. PSG in the abdominal region showed a higher rate of decomposition compared to the dorsal region of pericarp. Endosperm starch granules (ESG) accumulated in amyloplasts, and occurred in endosperm cells at 5 DAF, then rapidly enriched the endosperm cells until 22 DAF. Compared with ESG, PSG were compound granules of irregular shape and small size distribution. The results also suggested lower amylose content and V-type single-helix content and higher proportions of double helices for PSG compared to ESG. Based on the structural development of PSG and ESG, we speculated that the saccharides resulting from decomposition of PSG, on one hand, enabled the pericarp to survive before maturity of wheat caryopsis and, on the other hand, provided extra nutrition for the growth of ESG. © 2014 Society of Chemical Industry.

  8. Development of a CO2 -releasing coformulation based on starch, Saccharomyces cerevisiae and Beauveria bassiana attractive towards western corn rootworm larvae.

    Science.gov (United States)

    Vemmer, Marina; Schumann, Mario; Beitzen-Heineke, Wilhelm; French, Bryan W; Vidal, Stefan; Patel, Anant V

    2016-11-01

    CO 2 is known as an attractant for many soil-dwelling pests. To implement an attract-and-kill strategy for soil pest control, CO 2 -emitting formulations need to be developed. The aim of the present work was to develop a slow-release bead system in order to bridge the gap between application and hatching of western corn rootworm larvae. We compared different Ca-alginate beads containing Saccharomyces cerevisiae for their potential to release CO 2 over a period of several weeks. The addition of starch improved CO 2 release, resulting in significantly higher CO 2 concentrations in soil for at least 4 weeks. The missing amylase activity was compensated for either by microorganisms present in the soil or by coencapsulation of Beauveria bassiana. Formulations containing S. cerevisiae, starch and B. bassiana were attractive for western corn rootworm larvae within the first 4 h following exposure; however, when considering the whole testing period, the maize root systems remained more attractive for the larvae. Coencapsulation of S. cerevisiae, starch and B. bassiana is a promising approach for the development of attractive formulations for soil applications. For biological control strategies, the attractiveness needs to be increased by phagostimuli to extend contact between larvae and the entomopathogenic fungus growing out of these formulations. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  9. Two-stage in vitro digestibility assay, a tool for formulating non-starch polysaccharide degrading enzyme combinations for commonly used feed ingredients of poultry rations

    Directory of Open Access Journals (Sweden)

    Y. Ramana Reddy

    2013-05-01

    Full Text Available Aim: An attempt was made to assess the effect of pure enzyme combinations with the objective of formulating customized enzyme mixtures based on sugar release when subjected to two-stage in vitro digestion assay. Materials and Methods: A two-stage in vitro digestibility assay was carried out for commonly used feed ingredients for poultry viz., maize, soy bean meal, sunflower cake, and de-oiled rice bran supplemented with three concentrations of xylanase (5000; 7500 and 10000 IU/kg, cellulase (50; 100 and 400 IU/kg and â-D-glucanase (100; 200 and 400 IU/kg were used to formulate various NSP enzymes combinations. In total 27 NSP enzyme combinations (3x3x3 were formulated and the sugar released due to NSP digestion was quantified by phenol sulphuric acid method. Results: The total sugar release was significantly (P<0.05 higher with supplementation of various enzymes combinations for maize, sunflower cake and de-oiled rice bran where as no significant (P<0.05 interaction of various NSP enzymes combinations was observed for soy bean meal. The NSP digestibility was highest in combination (xylanase-5000, cellulase-50 and â-D-glucanase-400 IU/kg, (xylanase-10000, cellulase-50 and â-D-glucanase-200 IU/kg and (xylanase-7500, cellulase- 100 and â-D-glucanase-100 IU/kg for maize, sunflower cake and de-oiled rice bran respectively. In case of sunflower cake, significant (P<0.01 three way interaction was observed among the xylanase, cellulose, and â-D-glucanase enzymes and the two-way interactions between the enzymes were also significant (P<0.01. Conclusion: It is concluded that 'n' number of non-starch Polysaccharide enzymes combinations can be screened for their efficiency to digest non-starch Polysaccharides present in various feed ingredients commonly used in poultry rations by employing two-stage in vitro digestibility assay as a tool. [Vet World 2013; 6(8.000: 525-529

  10. Independent introductions and admixtures have contributed to adaptation of European maize and its American counterparts.

    Directory of Open Access Journals (Sweden)

    Jean-Tristan Brandenburg

    2017-03-01

    Full Text Available Through the local selection of landraces, humans have guided the adaptation of crops to a vast range of climatic and ecological conditions. This is particularly true of maize, which was domesticated in a restricted area of Mexico but now displays one of the broadest cultivated ranges worldwide. Here, we sequenced 67 genomes with an average sequencing depth of 18x to document routes of introduction, admixture and selective history of European maize and its American counterparts. To avoid the confounding effects of recent breeding, we targeted germplasm (lines directly derived from landraces. Among our lines, we discovered 22,294,769 SNPs and between 0.9% to 4.1% residual heterozygosity. Using a segmentation method, we identified 6,978 segments of unexpectedly high rate of heterozygosity. These segments point to genes potentially involved in inbreeding depression, and to a lesser extent to the presence of structural variants. Genetic structuring and inferences of historical splits revealed 5 genetic groups and two independent European introductions, with modest bottleneck signatures. Our results further revealed admixtures between distinct sources that have contributed to the establishment of 3 groups at intermediate latitudes in North America and Europe. We combined differentiation- and diversity-based statistics to identify both genes and gene networks displaying strong signals of selection. These include genes/gene networks involved in flowering time, drought and cold tolerance, plant defense and starch properties. Overall, our results provide novel insights into the evolutionary history of European maize and highlight a major role of admixture in environmental adaptation, paralleling recent findings in humans.

  11. Application of radiation technology in starch modification

    International Nuclear Information System (INIS)

    Chen Huiyuan; Peng Zhigang; Ding Zhongmin; Lu Jiajiu

    2007-01-01

    In order to commercialize the radiation modification of starch, corn starch was irradiated with different dose of 60 Co gamma radiations. Some basic physical and chemical properties of the resulted modified starch paste were measured with emphasis on the viscosity stability and tensile strength. The results indicate that irradiation of corn starch with a dose of 4-10 kGy can decrease its viscosity to 5-14 mPa·s, and the tensile strength can meet the standard set up for textile paste. In comparison with chemical modification for starch, radiation modification is simpler in technology, more convenient in operation, more stable in modification quality, and easier to control. The mechanism of radiation modification of starch was also discussed. (authors)

  12. Defining Starch Binding by Glucan Phosphatases

    DEFF Research Database (Denmark)

    Auger, Kyle; Raththagala, Madushi; Wilkens, Casper

    2015-01-01

    Starch is a vital energy molecule in plants that has a wide variety of uses in industry, such as feedstock for biomaterial processing and biofuel production. Plants employ a three enzyme cyclic process utilizing kinases, amylases, and phosphatases to degrade starch in a diurnal manner. Starch...... is comprised of the branched glucan amylopectin and the more linear glucan amylose. Our lab has determined the first structures of these glucan phosphatases and we have defined their enzymatic action. Despite this progress, we lacked a means to quickly and efficiently quantify starch binding to glucan...

  13. Behaviour of bound residues of carbon-14 labelled organic environmental chemicals in vegetable materials

    International Nuclear Information System (INIS)

    Wallnoefer, P.; Koeniger, M.; Ziegler, W.

    1991-01-01

    Growing cultures of cell suspensions of tomato and maize were capable of partly integrating (radioactively labelled) chemicals like 4-nitrophenol or 2-nitroaniline into the cell wall structure. The rates of integration found range from 1.1 per cent (4-NP in tomato) to 7.7 per cent (2-NA in maize). Maize is more prone to form bound residues than tomato; moreover, the results point to a dependence on the chemical structure of the xenobiotic substance. Enzymatic-chemical disaggregation of the cell wall material revealed an uneven distribution of radioactivity in the individual fractions: Tomato cells stored 4-NP above all in the starch fraction and to a smaller extent in the protein fraction, while storage of 2-NA in starch, protein and hemicellulose was about equal. Maize cells integrated both substances preferably into lignin and to a distinctly smaller extent also into starch and protein. (orig.) [de

  14. Screening of promising maize genotypes against maize weevil (Sitophilus zeamais Motschulky in storage condition

    Directory of Open Access Journals (Sweden)

    Ram B Paneru

    2017-12-01

    Full Text Available The maize weevil (Sitophilus zeamais Motschulsky is a serious pest of economic importance in stored grains. It causes major damage to stored maize grain thereby reducing its weight, quality and germination. An experiment was conducted in randomized complete block design (RCBD with 3 replications to screen 32 maize genotypes against maize weevil in no-choice and free-choice conditions at Entomology Division, Khumaltar, Lalitpur (Room temperature: Maximum 24-32°C and Minimum 18-27°C. The findings showed that the maize genotypes had different response to maize weevil damage ranging from susceptible to tolerance. The genotypes Manakamana-3, Lumle White POP Corn and Ganesh-2 showed their tolerance to S. zeamais as evidenced by lower number of weevil emerged/attracted, lower amount of grain debris release and lower proportion of bored grains, while the genotype ZM-627 was the most susceptible to weevil damage in both tests. The other remaining genotypes were intermediate types. This information is useful to improve grain protection in storage and varietal improvement/release program.

  15. Graft polymerization of vinyl acetate onto starch. Saponification to starch-g-poly(vinyl alcohol)

    International Nuclear Information System (INIS)

    Fanta, G.F.; Burr, R.C.; Doane, W.M.; Russell, C.R.

    1979-01-01

    Graft polymerizations of vinyl acetate onto granular cornstarch were initiated by cobalt-60 irradiation of starch-monomer-water mixtures, and ungrafted poly(vinyl acetate) was separated from the graft copolymer by benzene extraction. Conversions of monomer to polymer were quantitative at a radiation dose of 1.0 Mrad. Over half of the polymer was present as ungrafted poly(vinyl acetate) (grafting efficiency less than 50%), and the graft copolymer contained only 34% grafted synthetic polymer (34% add-on). Lower irradiation doses produced lower conversions of monomer to polymer and gave graft copolymers with lower % add-on. Addition of minor amounts of acrylamide, methyl acrylate, and methacrylic acid as comonomers produced only small increases in % add-on and grafting efficency. Grafting efficiency was increased to 70% when a monomer mixture containing about 10% methyl methacrylate was used. Grafting efficiency could be increased to over 90% if the graft polymerization of vinyl acetate--methyl methacrylate was carried out near 0 0 C; although conversion of monomers to polymer was low and grafted polymer contained 40 to 50% poly(methyl methacrylate). Selected graft copolymers were treated with methanolic sodium hydroxide to convert starch-g-poly(vinyl acetate) to starch-g-poly(vinyl alcohol). The molecular weight of the poly(vinyl alcohol) moiety was about 30,000. The solubility of starch-g-poly(vinyl alcohol) in hot water was less than 50; however, solubility could be increased by substituting either acid-modified or hypochlorite-oxidized for unmodified starch in the graft polymerization reaction. Vinyl acetate was also graft polymerized onto acid-modified starch which had been dispersed and partially solubilized by heating in water. A total irradiation dose of either 1.0 or 0.5 Mrad gave starch-g-poly

  16. The Research on Thermal Properties and Hydrophobility of the Native Starch/hydrolysis Starch Blends with Treated CaCO3 Powder

    Science.gov (United States)

    Liu, Chia-I.; Huang, Chi-Yuan

    2008-08-01

    In this research, hydrolysis starch was added into the starch blends to study the thermal properties. The enthalpy of blends had a significant decrease to 109J/g as content of treated CaCO3 increased to 5wt%. The modified starch was degraded slightly to produce glucose in the hydrolysis treatment. The amount of glucose in native starch and hydrolysis starch was 0.09 μmol and 0.14 μmol by the DNS measurement. Moreover, CaCO3 treated with titanium coupling agent was also added to improve miscibility and hydrophobility in the starch blends. The contact angle of the blends increased from 60° to 95° when 15wt% treated CaCO3 was added. Treated CaCO3 was confirmed to improve the hydrophobility of starch blends effectively.

  17. THE RESEARCH ON THERMAL PROPERTIES AND HYDROPHOBILITY OF THE NATIVE STARCH/HYDROLYSIS STARCH BLENDS WITH TREATED CaCO3 POWDER

    International Nuclear Information System (INIS)

    Liu, C.-I; Huang, C.-Y.

    2008-01-01

    In this research, hydrolysis starch was added into the starch blends to study the thermal properties. The enthalpy of blends had a significant decrease to 109J/g as content of treated CaCO 3 increased to 5wt%. The modified starch was degraded slightly to produce glucose in the hydrolysis treatment. The amount of glucose in native starch and hydrolysis starch was 0.09 μmol and 0.14 μmol by the DNS measurement. Moreover, CaCO 3 treated with titanium coupling agent was also added to improve miscibility and hydrophobility in the starch blends. The contact angle of the blends increased from 60 deg. to 95 deg. when 15wt% treated CaCO 3 was added. Treated CaCO 3 was confirmed to improve the hydrophobility of starch blends effectively

  18. Modification of potato starch granule structure and morphology in planta by expression of starch binding domain fusion proteins

    NARCIS (Netherlands)

    Huang, X.

    2010-01-01

    Producing starches with altered composition, structure and novel physico-chemical properties in planta by manipulating the enzymes which are involved in starch metabolism or (over)expressing heterologous enzymes has huge advantages such as broadening the range of starch applications and reducing the

  19. Some rheological properties of sodium caseinate-starch gels.

    Science.gov (United States)

    Bertolini, Andrea C; Creamer, Lawrence K; Eppink, Mieke; Boland, Mike

    2005-03-23

    The influence of sodium caseinate on the thermal and rheological properties of starch gels at different concentrations and from different botanical sources was evaluated. In sodium caseinate-starch gels, for all starches with the exception of potato starch, the sodium caseinate promoted an increase in the storage modulus and in the viscosity of the composite gel when compared with starch gels. The addition of sodium caseinate resulted in an increase in the onset temperature, the gelatinization temperature, and the end temperature, and there was a significant interaction between starch and sodium caseinate for the onset temperature, the peak temperature, and the end temperature. Microscopy results suggested that sodium caseinate promoted an increase in the homogeneity in the matrix of cereal starch gels.

  20. Computational modeling of biodegradable starch based polymer composites

    Science.gov (United States)

    Joshi, Sachin Sudhakar

    2007-12-01

    Purpose. The goal of this study is to improve the favorable molecular interactions between starch and PPC by addition of grafting monomers MA and ROM as compatibilizers, which would advance the mechanical properties of starch/PPC composites. Methodology. DFT and semi-empirical methods based calculations were performed on three systems: (a) starch/PPC, (b) starch/PPC-MA, and (c) starch-ROM/PPC. Theoretical computations involved the determination of optimal geometries, binding-energies and vibrational frequencies of the blended polymers. Findings. Calculations performed on five starch/PPC composites revealed hydrogen bond formation as the driving force behind stable composite formation, also confirmed by the negative relative energies of the composites indicating the existence of binding forces between the constituent co-polymers. The interaction between starch and PPC is also confirmed by the computed decrease in stretching CO and OH group frequencies participating in hydrogen bond formation, which agree qualitatively with the experimental values. A three-step mechanism of grafting MA on PPC was proposed to improve the compatibility of PPC with starch. Nine types of 'blends' produced by covalent bond formation between starch and MA-grafted PPC were found to be energetically stable, with blends involving MA grafted at the 'B' and 'C' positions of PPC indicating a binding-energy increase of 6.8 and 6.2 kcal/mol, respectively, as compared to the non-grafted starch/PPC composites. A similar increase in binding-energies was also observed for three types of 'composites' formed by hydrogen bond formation between starch and MA-grafted PPC. Next, grafting of ROM on starch and subsequent blend formation with PPC was studied. All four types of blends formed by the reaction of ROM-grafted starch with PPC were found to be more energetically stable as compared to the starch/PPC composite and starch/PPC-MA composites and blends. A blend of PPC and ROM grafted at the '

  1. Consumer preferences for maize products in urban Kenya.

    Science.gov (United States)

    De Groote, Hugo; Kimenju, Simon Chege

    2012-06-01

    New maize varieties have been biofortified with provitamin A, mainly a-carotene, which renders the grain yellow or orange. Unfortunately, many African consumers prefer white maize. The maize consumption patterns in Africa are, however, not known. To determine which maize products African consumers prefer to purchase and which maize preparations they prefer to eat. A survey of 600 consumers was conducted in Nairobi, Kenya, at three types of maize outlets: posho mills (small hammer mills), kiosks, and supermarkets. Clients of posho mills had lower incomes and less education than those of kiosks and supermarkets. The preferred maize product of the posho-mill clients was artisanal maize meal; the preferred product of the others was industrial maize meal. Maize is the preferred staple for lunch and dinner, eaten as a stiff porridge (ugali), followed by boiled maize and beans (githeri), regardless of socioeconomic background. For breakfast, only half the consumers prefer maize, mostly as a soft porridge (uji). This proportion is higher in low-income groups. Consumers show a strong preference for white maize over yellow, mostly for its organoleptic characteristics, and show less interest in biofortified maize. Maize is the major food staple in Nairobi, mostly eaten in a few distinct preparations. For biofortified yellow maize to be accepted, a strong public awareness campaign to inform consumers is needed, based on a sensory evaluation and the mass media, in particular on radio in the local language.

  2. Maize variety and method of production

    Science.gov (United States)

    Pauly, Markus; Hake, Sarah; Kraemer, Florian J

    2014-05-27

    The disclosure relates to a maize plant, seed, variety, and hybrid. More specifically, the disclosure relates to a maize plant containing a Cal-1 allele, whose expression results in increased cell wall-derived glucan content in the maize plant. The disclosure also relates to crossing inbreds, varieties, and hybrids containing the Cal-1 allele to produce novel types and varieties of maize plants.

  3. Influência do tratamento térmico e da acidez no comportamento reológico de amidos nativos funcionais de milho cerosos orgânicos comerciais Heat treatment and acidity influence on the rheological behavior of commercial organic waxy corn starch

    Directory of Open Access Journals (Sweden)

    Lizielle Maria Ricardo Guerreiro

    2009-06-01

    Full Text Available Os amidos são amplamente utilizados em alimentos como molhos para salada, molhos e pratos prontos. Entretanto, as propriedades funcionais de amidos nativos não resistem aos processos estressantes tais como tratamento térmico, acidez e alto cisalhamento. Os amidos podem ser modificados quimicamente neste sentido, mas não atribuem ao alimento o rótulo de "natural". Uma outra opção é obter amidos naturais resistentes às condições de estresse. O objetivo do presente trabalho foi a avaliação de dois amidos que se comercializam rotulados como nativos e orgânicos frente ao tratamento térmico e à acidez. Suspensões dos amidos nativos funcionais orgânicos (9460 e 9560, National Starch and Chemical Industrial preparadas numa concentração de 5% (peso/volume, foram acidificadas com ácido cítrico 1M ou autoclavadas a 121 °C por 30 minutos. O resultado dos tratamentos foi avaliado por microscopia óptica, pelas curvas de escoamento e pelos espectros mecânicos, obtidos por reologia estacionária e dinâmica. A acidez e o tratamento térmico aumentaram a estruturação dos géis dos amidos, que resistiram aos processos estressantes. Os géis apresentaram comportamento não newtoniano, (pseudoplástico e tixotrópico. O comportamento pode ser modelado pela equação Lei da Potência ou Herschel-Bukley. Todos os géis apresentaram comportamento viscoelástico de gel fraco que foi preservado nos diversos tratamentos.Starches are widely utilized in foodstuffs as salad dressing, sauce, and processed foods. However, the functional properties of native starches are affected by processes such as heat treatment, acidity, and high shear stress. Starches can be modified chemically in order to have characteristics required by industries, but not to attribute the food a "natural and safe" label. Another option is to obtain native starches resistant to food processing stress conditions. The objective of this paper is the evaluation of commercial

  4. Enzyme-Catalyzed Regioselective Modification of Starch Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Soma [Polytechnic Univ., Brooklyn, NY (United States). National Science Foundation (NSF) Center for Biocatalysis and Bioprocessing of Macromolecules, Othmer Dept. of Chemical and Biological Science and Engineering; Sahoo, Bishwabhusan [Polytechnic Univ., Brooklyn, NY (United States). National Science Foundation (NSF) Center for Biocatalysis and Bioprocessing of Macromolecules, Othmer Dept. of Chemical and Biological Science and Engineering; Teraoka, Iwao [Polytechnic Univ., Brooklyn, NY (United States). National Science Foundation (NSF) Center for Biocatalysis and Bioprocessing of Macromolecules, Othmer Dept. of Chemical and Biological Science and Engineering; Miller, Lisa M. [Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source (NSLS); Gross, Richard A. [Polytechnic Univ., Brooklyn, NY (United States). National Science Foundation (NSF) Center for Biocatalysis and Bioprocessing of Macromolecules, Othmer Dept. of Chemical and Biological Science and Engineering

    2004-12-13

    The selective esterification of starch nanoparticles was performed using as catalyst Candida antartica Lipase B (CAL-B) in its immobilized (Novozym 435) and free (SP-525) forms. The starch nanoparticles were made accessible for acylation reactions by formation of Aerosol-OT (AOT, bis(2-ethylhexyl)sodium sulfosuccinate) stabilized microemulsions. Starch nanoparticles in microemulsions were reacted with vinyl stearate, ε-caprolactone, and maleic anhydride at 40 °C for 48 h to give starch esters with degrees of substitution (DS) of 0.8, 0.6, and 0.4, respectively. Substitution occurred regioselectively at the C-6 position of the glucose repeat units. Infrared microspectroscopy (IRMS) revealed that AOT-coated starch nanoparticles diffuse into the outer 50 μm shell of catalyst beads. Thus, even though CAL-B is immobilized within a macroporous resin, CAL-B is sufficiently accessible to the starch nanoparticles. When free CAL-B was incorporated along with starch within AOT-coated reversed micelles, CAL-B was also active and catalyzed the acylation with vinyl stearate (24 h, 40 °C) to give DS = 0.5. After removal of surfactant from the modified starch nanoparticles, they were dispersed in DMSO or water and were shown to retain their nanodimensions.

  5. Potential of Starch Nanocomposites for Biomedical Applications

    Science.gov (United States)

    Zakaria, N. H.; Muhammad, N.; Abdullah, M. M. A. B.

    2017-06-01

    In recent years, the development of biodegradable materials from renewable sources based on polymeric biomaterials have grown rapidly due to increase environmental concerns and the shortage of petroleum sources. In this regard, naturally renewable polymers such as starch has shown great potential as environmental friendly materials. Besides, the unique properties of starch such as biodegradable and non-toxic, biocompatible and solubility make them useful for a various biomedical applications. Regardless of their unique properties, starch materials are known to have limitations in term of poor processability, low mechanical properties, poor long term stability and high water sensitivity. In order to overcome these limitations, the incorporation of nano size fillers into starch materials (nanocomposites) has been introduced. This review aims to give an overview about structure and characteristics of starch, modification of starch by nanocomposites and their potential for biomedical applications.

  6. Structural and molecular basis of starch viscosity in hexaploid wheat.

    Science.gov (United States)

    Ral, J-P; Cavanagh, C R; Larroque, O; Regina, A; Morell, M K

    2008-06-11

    Wheat starch is considered to have a low paste viscosity relative to other starches. Consequently, wheat starch is not preferred for many applications as compared to other high paste viscosity starches. Increasing the viscosity of wheat starch is expected to increase the functionality of a range of wheat flour-based products in which the texture is an important aspect of consumer acceptance (e.g., pasta, and instant and yellow alkaline noodles). To understand the molecular basis of starch viscosity, we have undertaken a comprehensive structural and rheological analysis of starches from a genetically diverse set of wheat genotypes, which revealed significant variation in starch traits including starch granule protein content, starch-associated lipid content and composition, phosphate content, and the structures of the amylose and amylopectin fractions. Statistical analysis highlighted the association between amylopectin chains of 18-25 glucose residues and starch pasting properties. Principal component analysis also identified an association between monoesterified phosphate and starch pasting properties in wheat despite the low starch-phosphate level in wheat as compared to tuber starches. We also found a strong negative correlation between the phosphate ester content and the starch content in flour. Previously observed associations between internal starch granule fatty acids and the swelling peak time and pasting temperature have been confirmed. This study has highlighted a range of parameters associated with increased starch viscosity that could be used in prebreeding/breeding programs to modify wheat starch pasting properties.

  7. Development of oxidised and heat-moisture treated potato starch film.

    Science.gov (United States)

    Zavareze, Elessandra da Rosa; Pinto, Vânia Zanella; Klein, Bruna; El Halal, Shanise Lisie Mello; Elias, Moacir Cardoso; Prentice-Hernández, Carlos; Dias, Alvaro Renato Guerra

    2012-05-01

    This study investigated the effects of sodium hypochlorite oxidation and a heat-moisture treatment of potato starch on the physicochemical, pasting and textural properties of potato starches in addition to the water vapour permeability (WVP) and mechanical properties of potato starch films produced from these starches. The carbonyl contents, carboxyl contents, swelling power, solubility, pasting properties and gel texture of the native, oxidised and heat-moisture treated (HMT) starches were evaluated. The films made of native, oxidised and HMT starches were characterised by thickness, water solubility, colour, opacity, mechanical properties and WVP. The oxidised and HMT starches had lower viscosity and swelling power compared to the native starch. The films produced from oxidised potato starch had decreased solubility, elongation and WVP values in addition to increased tensile strength compared to the native starch films. The HMT starch increased the tensile strength and WVP of the starch films compared to the native starch. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Microstructure, thermal properties and crystallinity of amadumbe starch nanocrystals.

    Science.gov (United States)

    Mukurumbira, Agnes; Mariano, Marcos; Dufresne, Alain; Mellem, John J; Amonsou, Eric O

    2017-09-01

    Amadumbe (Colocasia esculenta), commonly known as taro is a tropical tuber that produces starch-rich underground corms. In this study, the physicochemical properties of starch nanocrystals (SNC) prepared by acid hydrolysis of amadumbe starches were investigated. Two varieties of amadumbe corms were used for starch extraction. Amadumbe starches produced substantially high yield (25%) of SNC's. These nanocrystals appeared as aggregated and individual particles and possessed square-like platelet morphology with size: 50-100nm. FTIR revealed high peak intensities corresponding to OH stretch, CH stretch and H 2 O bending vibrations for SNCs compared to their native starch counterparts. Both the native starch and SNC exhibited the A-type crystalline pattern. However, amadumbe SNCs showed higher degree of crystallinity and slightly reduced melting temperatures than their native starches. Amadumbe SNCs presented similar thermal decomposition property as their native starches. Amadumbe starch nanocrystals may have potential application in biocomposite films due to their square-like platelet morphology. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The Starch Granule-Associated Protein EARLY STARVATION1 Is Required for the Control of Starch Degradation in Arabidopsis thaliana Leaves[OPEN

    Science.gov (United States)

    Feike, Doreen; Seung, David; Graf, Alexander; Bischof, Sylvain; Ellick, Tamaryn; Coiro, Mario; Soyk, Sebastian; Eicke, Simona; Mettler-Altmann, Tabea; Lu, Kuan Jen; Trick, Martin; Zeeman, Samuel C.

    2016-01-01

    To uncover components of the mechanism that adjusts the rate of leaf starch degradation to the length of the night, we devised a screen for mutant Arabidopsis thaliana plants in which starch reserves are prematurely exhausted. The mutation in one such mutant, named early starvation1 (esv1), eliminates a previously uncharacterized protein. Starch in mutant leaves is degraded rapidly and in a nonlinear fashion, so that reserves are exhausted 2 h prior to dawn. The ESV1 protein and a similar uncharacterized Arabidopsis protein (named Like ESV1 [LESV]) are located in the chloroplast stroma and are also bound into starch granules. The region of highest similarity between the two proteins contains a series of near-repeated motifs rich in tryptophan. Both proteins are conserved throughout starch-synthesizing organisms, from angiosperms and monocots to green algae. Analysis of transgenic plants lacking or overexpressing ESV1 or LESV, and of double mutants lacking ESV1 and another protein necessary for starch degradation, leads us to propose that these proteins function in the organization of the starch granule matrix. We argue that their misexpression affects starch degradation indirectly, by altering matrix organization and, thus, accessibility of starch polymers to starch-degrading enzymes. PMID:27207856

  10. Use of enzymes to minimize the rheological dough problems caused by high levels of damaged starch in starch-gluten systems.

    Science.gov (United States)

    Barrera, Gabriela N; León, Alberto E; Ribotta, Pablo D

    2016-05-01

    During wheat milling, starch granules can experience mechanical damage, producing damaged starch. High levels of damaged starch modify the physicochemical properties of wheat flour, negatively affecting the dough behavior as well as the flour quality and cookie and bread making quality. The aim of this work was to evaluate the effect of α-amylase, maltogenic amylase and amyloglucosidase on dough rheology in order to propose alternatives to reduce the issues related to high levels of damaged starch. The dough with a high level of damaged starch became more viscous and resistant to deformations as well as less elastic and extensible. The soluble fraction of the doughs influenced the rheological behavior of the systems. The α-amylase and amyloglucosidase reduced the negative effects of high damaged starch contents, improving the dough rheological properties modified by damaged starch. The rheological behavior of dough with the higher damaged-starch content was related to a more open gluten network arrangement as a result of the large size of the swollen damaged starch granules. We can conclude that the dough rheological properties of systems with high damaged starch content changed positively as a result of enzyme action, particularly α-amylase and amyloglucosidase additions, allowing the use of these amylases and mixtures of them as corrective additives. Little information was reported about amyloglucosidase activity alone or combined with α-amylase. The combinations of these two enzymes are promising to minimize the negative effects caused by high levels of damaged starch on product quality. More research needs to be done on bread quality combining these two enzymes. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  11. The effect of starch-garlic powder ratio on degradation rate of Gadung starch bioplastic

    Science.gov (United States)

    Mairiza, L.; Mariana; Ramadhany, M.; Feviyussa, C. A.

    2018-03-01

    Bioplastic is one of the solutions for environmental problems caused by plastics waste. Utilization of toxic gadung starch in the manufacturing of bioplastic would be as an alternative, due to gadung bulb has high starch content, and it is still not used optimally. This research aimed to learn about the using of gadung starch-mixed with garlic powder of making biodegradable plastic packaging. Also, to observe the duration of degradation, as a level of biodegradability of plastic film produced. The method used making this bioplastic was casting method. The variables used in this study were the ratios of starch and powdered garlic, were 10:0; 8:2; 6:4, and the concentration of garlic powder were 2%; 4%; 6%; and 8 %. The degradation test was done by soil burial test. The results of the soil burial test shown that the film was more rapidly degraded at ratio of 6: 4 compared to the ratio of 8: 2 and 10: 0. The results shown that bioplastic at the starch-garlic powder ratio of 10: 0 was decomposed in 21 days, at the the ratio of 8:2 was 15 days, while at the ratio of 6:4, the plastic film was degraded in the 11 days.

  12. Characterization of Native and Modified Starches by Potentiometric Titration

    OpenAIRE

    Soto, Diana; Urdaneta, Jose; Pernia, Kelly

    2014-01-01

    The use of potentiometric titration for the analysis and characterization of native and modified starches is highlighted. The polyelectrolytic behavior of oxidized starches (thermal and thermal-chemical oxidation), a graft copolymer of itaconic acid (IA) onto starch, and starch esters (mono- and diester itaconate) was compared with the behavior of native starch, the homopolymer, and the acid employed as a graft monomer and substituent. Starch esters showed higher percentages of acidity, follo...

  13. Characterization of starch films containing starch nanoparticles. Part 2: viscoelasticity and creep properties.

    Science.gov (United States)

    Shi, Ai-Min; Wang, Li-Jun; Li, Dong; Adhikari, Benu

    2013-07-25

    Starch films were successfully produced by incorporating spray dried and vacuum-freeze dried starch nanoparticles. The frequency sweep, creep-recovery behavior and time-temperature superposition (TTS) on these films were studied. All these films exhibited dominant elastic behavior (than viscous behavior) over the entire frequency range (0.1-100 rad/s). The incorporation of both types of starch nanoparticles increased the storage and loss modulus, tanδ, creep strain, creep compliance and creep rate at long time frame and reduced the recovery rate of films while the effect of different kinds of starch nanoparticles on these parameters was similar both in magnitude and trend. TTS method was successfully used to predict long time (over 20 days) creep behavior through the master curves. The addition of these nanoparticles could increase the activation energy parameter used in TTS master curves. Power law and Burger's models were capable of fitting storage and loss modulus (R(2)>0.79) and creep data (R(2)>0.96), respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Assessment of maize stem borer damage on hybrid maize varieties in Chitwan, Nepal

    Directory of Open Access Journals (Sweden)

    Buddhi Bahadur Achhami

    2015-12-01

    Full Text Available Maize is the second most important cereal crop in Nepal. However, national figure of grain production still remains below than the world's average grain production per unit area. Thus, this experiment was designed to determine the suitable time of maize planting, and to assess the peak period of one of the major insects, maize stem borer, in Chitwan condition. The results showed that plant damage percentage as per the maize planting month varies significantly, and the average plant damage percentage by stem borer was up to 18.11%. Length of the feeding tunnel in maize stem was significantly higher in January than July. In case of exit holes made by borer counted more than four holes per plant that were planted in the month of January. All in all, except the tunnel length measurement per plant, we observed similar pattern in other borer damage parameters such as exit whole counts and plant damage percentage within the tested varieties. Stem borer damage was not significantly affect on grain yield.

  15. Atomic force microscopy of starch systems.

    Science.gov (United States)

    Zhu, Fan

    2017-09-22

    Atomic force microscopy (AFM) generates information on topography, adhesion, and elasticity of sample surface by touching with a tip. Under suitable experimental settings, AFM can image biopolymers of few nanometers. Starch is a major food and industrial component. AFM has been used to probe the morphology, properties, modifications, and interactions of starches from diverse botanical origins at both micro- and nano-structural levels. The structural information obtained by AFM supports the blocklet structure of the granules, and provides qualitative and quantitative basis for some physicochemical properties of diverse starch systems. It becomes evident that AFM can complement other microscopic techniques to provide novel structural insights for starch systems.

  16. Studies on rye starch properties and modification. Pt. 1. Composition and properties of rye starch granules

    Energy Technology Data Exchange (ETDEWEB)

    Schierbaum, F; Radosta, S; Richter, M; Kettlitz, B [Zentralinstitut fuer Ernaehrung, Potsdam (Germany); Gernat, C [Zentralinstitut fuer Molekularbiologie, Berlin (Germany)

    1991-09-01

    Rye is considered as a potential raw material for starch industry. Starting from a survey of technical procedures of isolating starches from rye-flour and -grits investigations will be reported, which were performed on pilot plant- and laboratory-isolated rye starches. The present paper deals with its granule appearance and composition. A distribution of granule size between small granules ({<=} 10 {mu}m - 15%) and large granules ({>=} 11 ... {<=} 40 {mu}m = 85%) is typical for the totality of the starches. Differing distributions depend on the conditions of isolation: The entity of starch containing samples resulted from the latoratory procedures under investigation. Large-granule starch preparations were isolated in the pilot plant: The centrifuge-overflow contains the small-granule fraction which is high in impurities. Granule crystallinity amounts to 16%. The crystalline component - like in wheat and triticale starches - consists predominantly of A-polymorph - with up to 9% of the B-type. The isotherms of water exchange are of the cereal type. The contents of minor constituents largely relate to the small granule fraction which assembles the majority of crude protein, pentosans and lipids, which are difficult to remove. Lipid components in all fractions influence the results of linear chain-iodine interactions and they must be removed to proceed from apparent to absolute polysaccharide indices. The absolute amylose contents amount to {approx equal} 25% for large granule samples and to 20-21% for small granule samples. The average chain-length of iodine binding helical regions was determined with 220-240 AGU. (orig.).

  17. Microbial production of raw starch digesting enzymes | Sun | African ...

    African Journals Online (AJOL)

    Raw starch digesting enzymes refer to enzymes that can act directly on raw starch granules below the gelatinization temperature of starch. With the view of energy-saving, a worldwide interest has been focused on raw starch digesting enzymes in recent years, especially since the oil crisis of 1973. Raw starch digesting ...

  18. Maize cob losses and their effects on the poverty status of maize

    African Journals Online (AJOL)

    This study analysed fresh maize cob losses and its effect on the poverty status of maize farmers in Edo State,. Nigeria. The specific .... is the poverty gap for ... Total cost. 162,367.48. 100.00. Returns. Total expected yield (N). 327,966.63. _.

  19. Antimicrobial nanostructured starch based films for packaging.

    Science.gov (United States)

    Abreu, Ana S; Oliveira, M; de Sá, Arsénio; Rodrigues, Rui M; Cerqueira, Miguel A; Vicente, António A; Machado, A V

    2015-09-20

    Montmorillonite modified with a quaternary ammonium salt C30B/starch nanocomposite (C30B/ST-NC), silver nanoparticles/starch nanocomposite (Ag-NPs/ST-NC) and both silver nanoparticles/C30B/starch nanocomposites (Ag-NPs/C30B/ST-NC) films were produced. The nanoclay (C30B) was dispersed in a starch solution using an ultrasonic probe. Different concentrations of Ag-NPs (0.3, 0.5, 0.8 and 1.0mM) were synthesized directly in starch and in clay/starch solutions via chemical reduction method. Dispersion of C30B silicate layers and Ag-NPs in ST films characterized by X-ray and scanning electron microscopy showed that the presence of Ag-NPs enhanced clay dispersion. Color and opacity measurements, barrier properties (water vapor and oxygen permeabilities), dynamic mechanical analysis and contact angle were evaluated and related with the incorporation of C30B and Ag-NPs. Films presented antimicrobial activity against Staphylococcus aureus, Escherichia coli and Candida albicans without significant differences between Ag-NPs concentrations. The migration of components from the nanostructured starch films, assessed by food contact tests, was minor and under the legal limits. These results indicated that the starch films incorporated with C30B and Ag-NPs have potential to be used as packaging nanostructured material. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. MaizeGDB: The Maize Model Organism Database for Basic, Translational, and Applied Research

    OpenAIRE

    Lawrence, Carolyn J.; Harper, Lisa C.; Schaeffer, Mary L.; Sen, Taner Z.; Seigfried, Trent E.; Campbell, Darwin A.

    2008-01-01

    In 2001 maize became the number one production crop in the world with the Food and Agriculture Organization of the United Nations reporting over 614 million tonnes produced. Its success is due to the high productivity per acre in tandem with a wide variety of commercial uses. Not only is maize an excellent source of food, feed, and fuel, but also its by-products are used in the production of various commercial products. Maize's unparalleled success in agriculture stems from basic research, th...

  1. Genetic resources in maize breeding

    Directory of Open Access Journals (Sweden)

    Anđelković Violeta

    2017-01-01

    Full Text Available Maize, wheat and rice are the most important cereals grown in the world. It is predicted that by 2025 maize is likely to become the crop with the greatest production globally. Conservation of maize germplasm provides the main resources for increased food and feed production. Conservation in gene banks (ex-situ is dominant strategy for maize conservation. More than 130 000 maize accessions, e.g. about 40% of total number, are stored in ten largest gene banks worldwide and Maize Research Institute Zemun Polje (MRIZP gene bank, with about 6000 accessions, is among them. Organized collecting missions started in 1961. in the former Yugoslavian territory, and up today, more than 2000 local maize landraces were stored. Pre-breeding activities that refer to identification of desirable traits from unadapted germplasm within genebank, result in materials expected to be included in breeding programs. Successful examples are LAMP, GEM and GENRES projects. At the end of XX century, at MRIZP genebank two pre-breeding activities were undertaken: eco-core and elite-core collections were created and landraces fulfilled particular criteria were chosen. In the last decade, MRIZP genebank collection was used for identification of sources for drought tolerance and improved grain quality. According to agronomic traits and general combining ability, two mini-core collections were created and included in commercial breeding programs.

  2. EVALUATION OF DISINTEGRANT PROPERTIES OF Neorautanenia ...

    African Journals Online (AJOL)

    Mrs. Olayemi

    of Neorautanenia mitis starch (NMS) as a disintegrant in tablet formulation. Its physicochemical ... starch had lower swelling power than maize or potato starch and when .... ejection of the tablets, they were stored over silica gel for 24 h to allow ...

  3. Maize lethal necrosis (MLN), an emerging threat to maize-based food security in sub-Saharan Africa

    Science.gov (United States)

    In sub-Saharan Africa, maize is a staple food and key determinant of food security for smallholder farming communities. Pest and disease outbreaks are key constraints to maize productivity. In September 2011, a serious disease outbreak, later diagnosed as maize lethal necrosis (MLN), was reported on...

  4. Radiation processing of starch

    International Nuclear Information System (INIS)

    Kamaruddin Hashim

    2008-01-01

    Starch is a polysaccharide material and generally, it is non-toxic, biocompatible and biodegradable. It mainly use as foodstuff, food additives, production of sugar and flavouring. Sago palm with scientific name Genus Metroxylon belonging to family Palmae is an important resource in the production of sago starch in Malaysia. Nearly 90% of sago planting areas is found in Sarawak State of Malaysia. It can easily grow under the harsh swampy environment. The sago starch content 4% polyphenol, which is an active compound with antioxidant property that has potential benefit in health and skin care applications. Renewal resources and environmental friendly of natural polymer reason for the researcher to explore the potential of this material in order to improve our quality of live. (author)

  5. Putting the Function in Maize Genomics

    Directory of Open Access Journals (Sweden)

    Stephen P. Moose

    2009-07-01

    Full Text Available The 51st Maize Genetics Conference was held March 12–15, 2009 at Pheasant Run Resort in St. Charles, Illinois. Nearly 500 attendees participated in a scientific program (available at covering a wide range of topics which integrate the rich biology of maize with recent discoveries in our understanding of the highly dynamic maize genome. Among the many research themes highlighted at the conference, the historical emphasis on studying the tremendous phenotypic diversity of maize now serves as the foundation for maize as a leading experimental system to characterize the mechanisms that generate variation in complex plant genomes and associate evolutionary change with phenotypes of interest.

  6. Development of starch-based materials

    NARCIS (Netherlands)

    Habeych Narvaez, E.A.

    2009-01-01

    Starch-based materials show potential as fully degradable plastics. However, the current
    applicability of these materials is limited due to their poor moisture tolerance and
    mechanical properties. Starch is therefore frequently blended with other polymers to make
    the material more

  7. Starch bioengineering affects cereal grain germination and seedling establishment

    DEFF Research Database (Denmark)

    Shaik, Shahnoor Sultana; Carciofi, Massimiliano; Martens, Helle Juel

    2014-01-01

    Cereal grain germination is central for plant early development, and efficient germination has a major role in crop propagation and malting. Endosperm starch is the prime energy reserve in germination and seedling establishment. In this study, it was hypothesized that optimized starch granule...... structure, and not only the endosperm starch content per se, is important for germination and seedling establishment. For that purpose, wild-type (WT), and specifically engineered degradable hyperphosphorylated (HP) starch and more resistant amylose-only (AO) starch barley lines were used. The transgenics...... showed no severe phenotypes and the WT and HP lines degraded the starch similarly, having 30% residual starch after 12 d of germination. However, the AO line showed significant resistance to degradation, having 57% residual starch. Interestingly, protein and β-glucan (BG) degradation was stimulated...

  8. Effect of genotype and environment on the concentrations of starch and protein in, and the physicochemical properties of starch from, field pea and fababean.

    Science.gov (United States)

    Hood-Niefer, Shannon D; Warkentin, Thomas D; Chibbar, Ravindra N; Vandenberg, Albert; Tyler, Robert T

    2012-01-15

    The effects of genotype and environment and their interaction on the concentrations of starch and protein in, and the amylose content and thermal and pasting properties of starch from, pea and fababean are not well known. Differences due to genotype were observed in the concentrations of starch and protein in pea and fababean, in the onset temperature (To) and peak temperature (Tp) of gelatinization of fababean starch, and in the pasting, trough, cooling and final viscosities of pea starch and fababean starch. Significant two-way interactions (location × genotype) were observed for the concentration of starch in fababean and the amylose content, To, endothermic enthalpy of gelatinization (ΔH) and trough viscosity of fababean starch. Significant three-way interactions (location × year × genotype) were observed for the concentration of starch in pea and the pasting, trough, cooling and final viscosities of pea starch. Differences observed in the concentrations of starch and protein in pea and fababean were sufficient to be of practical significance to end-users, but the relatively small differences in amylose content and physicochemical properties of starch from pea and fababean were not. Copyright © 2011 Society of Chemical Industry.

  9. Dynamic development of starch granules and the regulation of starch biosynthesis in Brachypodium distachyon: comparison with common wheat and Aegilops peregrina.

    Science.gov (United States)

    Chen, Guanxing; Zhu, Jiantang; Zhou, Jianwen; Subburaj, Saminathan; Zhang, Ming; Han, Caixia; Hao, Pengchao; Li, Xiaohui; Yan, Yueming

    2014-08-06

    Thorough understanding of seed starch biosynthesis and accumulation mechanisms is of great importance for agriculture and crop improvement strategies. We conducted the first comprehensive study of the dynamic development of starch granules and the regulation of starch biosynthesis in Brachypodium distachyon and compared the findings with those reported for common wheat (Chinese Spring, CS) and Aegilops peregrina. Only B-granules were identified in Brachypodium Bd21, and the shape variation and development of starch granules were similar in the B-granules of CS and Bd21. Phylogenetic analysis showed that most of the Bd21 starch synthesis-related genes were more similar to those in wheat than in rice. Early expression of key genes in Bd21 starch biosynthesis mediate starch synthesis in the pericarp; intermediate-stage expression increases the number and size of starch granules. In contrast, these enzymes in CS and Ae. peregrina were mostly expressed at intermediate stages, driving production of new B-granules and increasing the granule size, respectively. Immunogold labeling showed that granule-bound starch synthase (GBSSI; related to amylose synthesis) was mainly present in starch granules: at lower levels in the B-granules of Bd21 than in CS. Furthermore, GBSSI was phosphorylated at threonine 183 and tyrosine 185 in the starch synthase catalytic domain in CS and Ae. peregrina, but neither site was phosphorylated in Bd21, suggesting GBSSI phosphorylation could improve amylose biosynthesis. Bd21 contains only B-granules, and the expression of key genes in the three studied genera is consistent with the dynamic development of starch granules. GBSSI is present in greater amounts in the B-granules of CS than in Bd21; two phosphorylation sites (Thr183 and Tyr185) were found in Triticum and Aegilops; these sites were not phosphorylated in Bd21. GBSSI phosphorylation may reflect its importance in amylose synthesis.

  10. Barley starch bioengineering for high phosphate and amylose

    DEFF Research Database (Denmark)

    Blennow, Per Gunnar Andreas; Carciofi, Massimiliano; Shaik, Shahnoor Sultana

    2011-01-01

    Starch is a biological polymer that can be industrially produced in massive amounts in a very pure form. Cereals is the main source for starch production and any improvement of the starch fraction can have a tremendous impact in food and feed applications. Barley ranks number four among cereal...... crops and barley is a genetically very well characterized. Aiming at producing new starch qualities in the cereal system, we used RNAi and overexpression strategies to produce pure amylose and high-phosphate starch, respectively, using the barley kernel as a polymer factory. By simultaneous silencing...... of the three genes encoding the starch-branching enzymes SBEI, SBEIIa, and SBEIIb using a triple RNAi chimeric hairpin construct we generated a virtually amylopectin-free barley. The grains of the transgenic lines were shrunken and had a yield of around 80% of the control line. The starch granules were...

  11. Up-Scaling Production of Carboxymethyl Starch

    International Nuclear Information System (INIS)

    Mohd Hafiz Abdul Nasir; Zainon Othman; Kamaruddin Hashim; Siti Khadijah Abu Hadin; Nurul Nadia Shaaban

    2015-01-01

    Carboxymethyl starch (CMS) is a starch derivative formed by its reaction with sodium monochloroacetate which consist of OH-groups that are partially or completely replaced by ether substitution. Characteristic of CMSS defined by the degree of substitution (DS). DS is defined as the average number of substituents per anhydro glucose unit (AGU), the monomer unit of starch. The upgrading of CMSS production from 10L to 30L requires several experiments with different variable such as amount NaOH, amount of Sago Starch and reaction time. Each will give different DS. Quality control for the product cover moisture, viscosity and paste clarity. Therefore, SOP has been established to control the quality final product. (author)

  12. Effect of gamma irradiation on thermophysical properties of plasticized starch and starch surfactant films

    Science.gov (United States)

    Cieśla, Krystyna; Watzeels, Nick; Rahier, Hubert

    2014-06-01

    In this work the influence of gamma irradiation on the thermomechanical properties of the films formed in potato starch-glycerol and potato starch-glycerol-surfactant systems were examined by Dynamic Mechanical Analysis, DMA, and Differential Scanning Calorimetry, DSC, and the results were correlated to the amount of the volatile fraction in the films.

  13. VAPOR MIXER FOR GELATINIZATION OF STARCH IN LIQUEFYING STATION

    Directory of Open Access Journals (Sweden)

    V. V. Ananskikh

    2015-01-01

    Full Text Available Starch hydrolysis is main technological process in production of starch sweeteners. Acid hydrolysis of starch using hydrochloric acid is carried out very fast but it does not allow to carry out full hydrolysis and to produce products with given carbohydrate composition. Bioconversion of starch allows to eliminate these limitations. At production of starch sweeteners from starch using enzymes starch hydrolysis is carried out in two stages At first starchstarch liquefaction the rapid increase of viscosity takes place which requires intensive mixing. Liquefying station consists of jet-cooker, holder, pressure regulator and evaporator. Jet-cooker of starch is its main part, starch is quickly turns into soluble (gelatinized state and it is partially liquefied by injection of starch suspension by flow of water vapor under pressure not less than 0,8 MPa. Heat and hydraulic calculation were carried out in order to determine constructive sizes of mixer for cooking of starch. The main hydraulic definable parameters are pressure drop in mixer, vapor pressure at mixer inlet, daily capacity of station by glucose syrup M, product consumption (starch suspension, diameter of inlet section of vapor nozzle. The goal of calculation was to determine vapor consumption M1, diameter d2 of outlet section of confuser injector, length l2 of gelatinization section. For heat calculation there was used Shukhov’s formula along with heat balance equation for gelatinization process. The numerical solution obtained with adopted assumptions given in applied mathematical package MATHCAD, for M = 50 t/day gives required daily vapor consumption M1 = 14,446 т. At hydraulic calculation of pressure drop in mixer there was used Bernoulli’s theorem. Solving obtained equations using MATHCAD found diameter of outlet section of consufer d2 = 0,023 м, vapor pressure inside of mixer p2 = 3,966·105 Па, l2 = 0,128 м. Developed method of calculation is used to determine

  14. Starch bioengineering in Brachypodium distachyon

    DEFF Research Database (Denmark)

    Tanackovic, Vanja; Svensson, Jan Tommy; Buleon, A

    2011-01-01

    Brachypodium distachyon was recently introduced as a model plant for temperate cereals (Opanowicz et al., 2008). We aim to establish Brachypodium as a model for cereal starch metabolism. Grain starch from two lines: Bd21 and Bd21-3 are being characterized. Microscopic, chemical and structural data...... including amylopectin chain length distribution, phosphate content and amylose content provided further evidence for the close relationship to temperate cereals even though starch content and starch granule size were considerably lower than that for barley (Hordeum vulgare). Bioinformatics analyses...... in temperate cereals....

  15. Identification of resistance to Maize rayado fino virus in maize inbred lines

    Science.gov (United States)

    Maize rayado fino virus (MRFV) is one of the most important virus diseases of maize in America. Severe yield losses, ranging from 10 to 50% in landraces to nearly 100% in contemporary cultivars, have been reported. Resistance has been reported in populations, but few inbred lines have been identifie...

  16. Rheological properties of concentrated solutions of carboxymethyl starch

    Directory of Open Access Journals (Sweden)

    Stojanović Željko

    2003-01-01

    Full Text Available Carboxymethyl starch was synthesized by the esterification of starch with monochloroacetic acid in ethanol as a reaction medium. Three samples of carboxymethyl starch having different degrees of substitution were prepared. The influence of temperature on the viscosity of concentrated carboxymethyl starch solutions, as well as the dynamic-mechanical properties of the concentrated solutions were investigated. The activation energy of viscous flow was determined and it was found that it decreased with increasing degree of substitution. The results of the dynamic-mechanical measurements showed that solutions of starch and carboxymethyl starches with higher degrees of substitution behave as gels. Values of the storage modulus in the rubbery plateau were used to calculate the molar masses between two points of physical crosslinking, the density of crosslinking and the distance between two points of crosslinking.

  17. Mechanochemical degradation of potato starch paste under ultrasonic irradiation

    Institute of Scientific and Technical Information of China (English)

    LI Jian-bin; LI Lin; LI Bing; CHEN Ling; GUI Lin

    2006-01-01

    In the paper, changes in the molecular weight, the intrinsic viscosity and the polydispersity (molecular mass distribution) of treated potato starch paste were studied under different ultrasonic conditions which include irradiation time, ultrasonic intensity, potato starch paste concentration, and distance from probe tip on the degradation of potato starch paste. Intrinsic viscosity of potato starch paste was determined following the ASTM (American Society for Testing and Materials) standard practice for dilute solution viscosity of polymers. Molecular mass and polydispersity of potato starch paste were measured on GPC (Gel Permeation Chromatography). The results showed that the average molecular mass and the intrinsic viscosity of starch strongly depended on irradiation time. Degradation increased with prolonged ultrasonic irradiation time, and the increase of ultrasonic intensity could accelerate the degradation, resulting in a faster degradation rate, a lower limiting value and a higher degradation extent. Starch samples were degraded faster in dilute solutions than in concentrated solutions. The molecular mass and the intrinsic viscosity of starch increased with the increase of distance from probe tip. Our results also showed that the polydispersity decreased with ultrasonic irradiation under all ultrasonic conditions. Ultrasonic degradation of potato starch paste occured based on the mechanism of molecular relaxation of starch paste. In the initial stage, ultrasonic degradation of potato starch paste was a random process, and the molecular mass distribution was broad. After that, ultrasonic degradation of potato starch paste changed to a nonrandom process, and the molecular mass distribution became narrower. Finally, molecular mass distribution tended toward a saturation value.

  18. Synthesis and characterization of polystyrene-starch polyblend

    International Nuclear Information System (INIS)

    Tetty Kemala; M Syaeful Fahmi; Suminar S Achmadi

    2010-01-01

    Polystyrene foam (PS) is a polymer that is widely used but not biodegradable. Therefore, PS-starch polyblend was developed. In this research the effect of glycerol as plasticizer was evaluated based on mechanical and thermal analyses. PS-starch polyblends were produced by mixing PS and starch solution with composition ratios of 60:40, 65:35, 70:30, 75:25, and 80:20 percent by weight. Polylactic acid (20 %) was added as compatibilizer. The polyblends were analyzed its tensile strength, thermal properties, and density. The PS-starch polyblends were white opaque in color and fragile. The properties of tensile strength and density of the polyblends were in the range of that of pure PS. The tensile strength and density increases as PS constituents increasing with the best composition ratio of 80 PS to 20 of starch. Peak of glass transition and melting point seen a single on composition ration 80 PS to 20 of starch. Additional amount of glycerol did not affect the thermal property, but has caused a slight decrease in tensile strength and density. (author)

  19. Comparative diversity of arthropods on Bt maize and non-Bt maize in two different cropping systems in South Africa.

    Science.gov (United States)

    Truter, J; Van Hamburg, H; Van Den Berg, J

    2014-02-01

    The biodiversity of an agroecosystem is not only important for its intrinsic value but also because it influences ecological functions that are vital for crop production in sustainable agricultural systems and the surrounding environment. A concern about genetically modified (GM) crops is the potential negative impact that such crops could have on diversity and abundance of nontarget organisms, and subsequently on ecosystem functions. Therefore, it is essential to assess the potential environmental risk of the release of a GM crop and to study its effect on species assemblages within that ecosystem. Assessment of the impact of Bt maize on the environment is hampered by the lack of basic checklists of species present in maize agroecosystems. The aims of the study were to compile a checklist of arthropods that occur on maize in South Africa and to compare the diversity and abundance of arthropods and functional groups on Bt maize and non-Bt maize. Collections of arthropods were carried out during two growing seasons on Bt maize and non-Bt maize plants at two localities. Three maize fields were sampled per locality during each season. Twenty plants, each of Bt maize and non-Bt maize, were randomly selected from the fields at each site. The arthropods collected during this study were classified to morphospecies level and grouped into the following functional groups: detritivores, herbivores, predators, and parasitoids. Based on feeding strategy, herbivores and predators were further divided into sucking herbivores or predators (piercing-sucking mouthparts) and chewing herbivores or predators (chewing mouthparts). A total of 8,771 arthropod individuals, comprising 288 morphospecies and presenting 20 orders, were collected. Results from this short-term study indicated that abundance and diversity of arthropods in maize and the different functional guilds were not significantly affected by Bt maize, either in terms of diversity or abundance.

  20. Effects of maize maturity at harvest and dietary proportion of maize silage on intake and performance of growing/finishing bulls

    DEFF Research Database (Denmark)

    Zaralis, K.; Nørgaard, P.; Helander, C.

    2014-01-01

    Whole-crop maize silage as forage in diets of finishing cattle can promote high intakes and thus, enhances animal performance. In the present study we evaluated the effect of whole-crop maize maturity at harvest and the proportion of maize-silage in diets of finishing bulls, on feed intake...... of treatments, involving two maturity stages of maize at harvest (i.e. dough stage or dent stage) and two maize silage proportions (i.e. 100% maize silage or 50% maize and 50% grass silage). The diets were offered ad libitum as total mixed rations (TMRs) with inclusion of concentrates (i.e. rolled barley; dried...... distillers’ grain plus soluble; cold-pressed rapeseed cake) in a 40% proportion on DM basis. All animals were slaughtered at a target body weight of 630 kg. Bulls fed on diets containing maize silage as sole forage achieved higher live-weight gain (P

  1. Impact of pressure on physicochemical properties of starch dispersions

    KAUST Repository

    Yang, Zhi; Chaib, Sahraoui; Gu, Qinfen; Hemar, Yacine

    2016-01-01

    High hydrostatic pressure (HHP) can be employed as a non-thermal sterilization technique in the food industry while inducing structure and physicochemical changes of the food macromolecules like starch. The effect of HHP on starch depends on various factors including starch type and concentration, pressurization temperature, time, and suspending media. In this review, we summarize the influence of HHP on the structure, gelatinization, retrogradation, and modification of starches from different botanical origins. Suggestions for future research are provided to better understand the mechanism of HHP on starch, and on how HHP can be used in the starch industry. © 2016 Elsevier Ltd.

  2. Impact of pressure on physicochemical properties of starch dispersions

    KAUST Repository

    Yang, Zhi

    2016-09-02

    High hydrostatic pressure (HHP) can be employed as a non-thermal sterilization technique in the food industry while inducing structure and physicochemical changes of the food macromolecules like starch. The effect of HHP on starch depends on various factors including starch type and concentration, pressurization temperature, time, and suspending media. In this review, we summarize the influence of HHP on the structure, gelatinization, retrogradation, and modification of starches from different botanical origins. Suggestions for future research are provided to better understand the mechanism of HHP on starch, and on how HHP can be used in the starch industry. © 2016 Elsevier Ltd.

  3. Enzymic conversion of starch to glucose

    Energy Technology Data Exchange (ETDEWEB)

    1964-08-19

    Corn is steeped in a SO/sub 2/ solution for 30 to 40 hours, coarsely ground, separated from the germ, and filtered. A 35% suspension of the germ-free corn, still containing fibers, hull, and gluten, is treated with Ca(OH)/sub 2/ to raise the pH to 6.5 to 7.0. A starch-liquifying enzyme is added and after a 2 hours treatment at 85/sup 0/ the liquefied starch is cooled to 60/sup 0/ and the pH is adjusted to 4.5 to 5.0 with H/sub 2/SO/sub 4/. A saccharifying enzyme is now added. After 40 to 81 hours, a raw glucose solution is obtained and is freed from fibers and gluten by filtration. The commercial starch-liquifying enzymes are designated HT-1000 and Neozyme 3 LC (liquid). The saccharifying enzymes are Diazyme or Diazyme L 30 (liquid). The solid enzymes are used at a level up to 0.1% by weight of the starch. Up to 100% conversion of starch into glucose is achieved.

  4. A resistant-starch enriched yogurt: fermentability, sensory characteristics, and a pilot study in children [v1; ref status: indexed, http://f1000r.es/5cb

    Directory of Open Access Journals (Sweden)

    Kayanush Aryana

    2015-06-01

    Full Text Available The rising prevalence of obesity and the vulnerability of the pediatric age group have highlighted the critical need for a careful consideration of effective, safe, remedial and preventive dietary interventions.  Amylose starch (RS2 from high-amylose maize (HAM ferments in the gut and affects body weight.   One hundred and ten children, of 7-8 (n=91 or 13-14 (n=19 years of age scored the sensory qualities of a yogurt supplemented with either HAM-RS2 or an amylopectin starch.  The amylopectin starch yogurt was preferred to the HAM-RS2-enriched yogurt by 7-8 year old panelists (P<0.0001.  Appearance, taste, and sandiness scores given by 13- to 14-year-old panelists were more favorable for the amylopectin starch yogurt than for HAM-RS2-enriched yogurt (P<0.05.  HAM-RS2 supplementation resulted in acceptable (≥6 on a 1-9 scale sensory and hedonic ratings of the yogurt in 74% of subjects.  Four children consumed a HAM-RS2-enriched yogurt for four weeks to test its fermentability in a clinical trial.  Three adolescents, but not the single pre-pubertal child, had reduced stool pH (P=0.1 and increased stool short-chain fatty acids (SCFAs (P<0.05 including increased fecal acetate (P=0.02, and butyrate (P=0.089 from resistant starch (RS fermentation and isobutyrate (P=0.01 from protein fermentation post-treatment suggesting a favorable change to the gut microbiota.  HAM-RS2 was not modified by pasteurization of the yogurt, and may be a palatable way to increase fiber intake and stimulate colonic fermentation in adolescents.  Future studies are planned to determine the concentration of HAM-RS2 that offers the optimal safe and effective strategy to prevent excessive fat gain in children.

  5. Bacterial endophytes from wild maize suppress Fusarium graminearum in modern maize and inhibit mycotoxin accumulation

    Directory of Open Access Journals (Sweden)

    Walaa Kamel Mousa

    2015-10-01

    Full Text Available Wild maize (teosinte has been reported to be less susceptible to pests than their modern maize (corn relatives. Endophytes, defined as microbes that inhabit plants without causing disease, are known for their ability to antagonize plant pests and pathogens. We hypothesized that the wild relatives of modern maize may host endophytes that combat pathogens. Fusarium graminearum is the fungus that causes Gibberella Ear Rot (GER in modern maize and produces the mycotoxin, deoxynivalenol (DON. In this study, 215 bacterial endophytes, previously isolated from diverse maize genotypes including wild teosintes, traditional landraces and modern varieties, were tested for their ability to antagonize F. graminearum in vitro. Candidate endophytes were then tested for their ability to suppress GER in modern maize in independent greenhouse trials. The results revealed that three candidate endophytes derived from wild teosintes were most potent in suppressing F. graminearum in vitro and GER in a modern maize hybrid. These wild teosinte endophytes could suppress a broad spectrum of fungal pathogens of modern crops in vitro. The teosinte endophytes also suppressed DON mycotoxin during storage to below acceptable safety threshold levels. A fourth, less robust anti-fungal strain was isolated from a modern maize hybrid. Three of the anti-fungal endophytes were predicted to be Paenibacillus polymyxa, along with one strain of Citrobacter. Microscopy studies suggested a fungicidal mode of action by all four strains. Molecular and biochemical studies showed that the P. polymyxa strains produced the previously characterized anti-Fusarium compound, fusaricidin. Our results suggest that the wild relatives of modern crops may serve as a valuable reservoir for endophytes in the ongoing fight against serious threats to modern agriculture. We discuss the possible impact of crop evolution and domestication on endophytes in the context of plant defense.

  6. COORDINATION OF CASSAVA STARCH TO METAL IONS AND ...

    African Journals Online (AJOL)

    a

    starch. On the other hand, the decomposition proceeded at a lower rate than the decomposition of ... Metal salts influenced the thermal decomposition of starches [4, 5]. Thus, properly ..... reactions of starch resulting in dextrins. After the ...

  7. Biosysthesis of Corn Starch Palmitate by Lipase Novozym 435

    Directory of Open Access Journals (Sweden)

    Kai Lin

    2012-06-01

    Full Text Available Esterification of starch was carried out to expand the usefulness of starch for a myriad of industrial applications. Lipase B from Candida antarctica, immobilized on macroporous acrylic resin (Novozym 435, was used for starch esterification in two reaction systems: micro-solvent system and solvent-free system. The esterification of corn starch with palmitic acid in the solvent-free system and micro-solvent system gave a degree of substitution (DS of 1.04 and 0.0072 respectively. Esterification of corn starch with palmitic acid was confirmed by UV spectroscopy and IR spectroscopy. The results of emulsifying property analysis showed that the starch palmitate with higher DS contributes to the higher emulsifying property (67.6% and emulsion stability (79.6% than the native starch (5.3% and 3.9%. Modified starch obtained by esterification that possesses emulsifying properties and has long chain fatty acids, like palmitic acid, has been widely used in the food, pharmaceutical and biomedical applications industries.

  8. Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules

    DEFF Research Database (Denmark)

    Carciofi, Massimiliano; Blennow, Andreas; Jensen, Susanne L

    2012-01-01

    to glucose and rapidly absorbed in the small intestine. But a portion of dietary starch, termed "resistant starch" (RS) escapes digestion and reaches the large intestine, where it is fermented by colonic bacteria producing short chain fatty acids (SCFA) which are linked to several health benefits. The RS...

  9. Development of highly-transparent protein/starch-based bioplastics.

    Science.gov (United States)

    Gonzalez-Gutierrez, J; Partal, P; Garcia-Morales, M; Gallegos, C

    2010-03-01

    Striving to achieve cost-competitive biomass-derived materials for the plastics industry, the incorporation of starch (corn and potato) to a base formulation of albumen and glycerol was considered. To study the effects of formulation and processing, albumen/starch-based bioplastics containing 0-30 wt.% starch were prepared by thermo-plastic and thermo-mechanical processing. Transmittance measurements, DSC, DMTA and tensile tests were performed on the resulting bioplastics. Optical and tensile properties were strongly affected by starch concentration. However, DMTA at low deformation proved to be insensitive to starch addition. Thermo-mechanical processing led to transparent albumen/starch materials with values of strength at low deformation comparable to commodity plastics. Consequently, albumen biopolymers may become a biodegradable alternative to oil-derived plastics for manufacturing transparent packaging and other plastic stuffs. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  10. Characterization of chestnut (Castanea sativa, mill starch for industrial utilization

    Directory of Open Access Journals (Sweden)

    Demiate Ivo Mottin

    2001-01-01

    Full Text Available Studies were conducted to characterize the chestnut and its starch. Chemical composition of the chestnuts showed high level of starch. Moisture level in the raw nuts was around 50g/100g in wet basis and starch content, around 80g/100g in dry basis; other nut flour components were protein (5.58 g/100g, lipid (5.39 g/100g, crude fiber (2.34 g/100g and ash (2.14 g/100g. Starch fraction was chemically characterized in order to identify the granule quality as compared with those of cassava and corn. This fraction showed more lipids and proteins than the other starches. Chestnut starch granules showed peculiar shape, smaller than the control starches and low amount of damaged units. Chemical composition concerning amylose : amylopectin ratio was intermediate to that presented by cassava and corn starch granules. Water absorption at different temperatures as well as solubility were also intermediate but closer to that presented by cassava granules. The same behavior was observed in the interaction with dimethyl-sulfoxide. Native starch granules and those submitted to enzymatic treatment with commercial alpha-amylase and also with enzymes from germinated wheat were observed by scanning electronic microscopy. Water suspensions of chestnut starch granules were heated to form pastes that were studied comparatively to those obtained with cassava and corn starches. Viscographic pattern of chestnut starch pastes showed a characteristic profile with high initial viscosity but peak absence, high resistance to mechanical stirring under hot conditions and high final viscosity. There was no way to compare it with the paste viscographic profiles obtained with the control starches. Chestnut starch pastes were stable down to pH 4 but unstable at pH 3. The water losses observed in the chestnut starch pastes after freeze-thaw cycles showed more similarity to the pattern observed in corn starch pastes as well as clarity and strength of the gel. In general the results

  11. Crystallinity changes in wheat starch during the bread-making process: Starch crystallinity in the bread crust

    NARCIS (Netherlands)

    Primo-Martín, C.; Nieuwenhuijzen, N.H. van; Hamer, R.J.; Vliet, T. van

    2007-01-01

    The crystallinity of starch in crispy bread crust was quantified using several different techniques. Confocal scanning laser microscopy (CSLM) demonstrated the presence of granular starch in the crust and remnants of granules when moving towards the crumb. Differential scanning calorimetry (DSC)

  12. Crystallinity changes in wheat starch during the bread-making process: starch crystallinity in the bread crust

    NARCIS (Netherlands)

    Primo-Martin, C.; Nieuwenhuijzen, van N.H.; Hamer, R.J.; Vliet, van T.

    2007-01-01

    The crystallinity of starch in crispy bread crust was quantified using several different techniques. Confocal scanning laser microscopy (CSLM) demonstrated the presence of granular starch in the crust and remnants of granules when moving towards the crumb. Differential scanning calorimetry (DSC)

  13. Structure of potato starch

    DEFF Research Database (Denmark)

    Bertoft, Eric; Blennow, Andreas

    2016-01-01

    Potato starch granules consist primarily of two tightly packed polysaccharides, amylose and amylopectin. Amylose, which amount for 20-30%, is the principal linear component, but a fraction is in fact slightly branched. Amylopectin is typically the major component and is extensively branched...... chains extending from the clusters. A range of enzymes is involved in the biosynthesis of the cluster structures and linear segments. These are required for sugar activation, chain elongation, branching, and trimming of the final branching pattern. As an interesting feature, potato amylopectin...... is substituted with low amounts of phosphate groups monoesterified to the C-3 and the C-6 carbons of the glucose units. They seem to align well in the granular structure and have tremendous effects on starch degradation in the potato and functionality of the refined starch. A specific dikinase catalyzes...

  14. The effect of starch amylose content on the morphology andproperties of melt-processed butyl-etherified starch/poly[(butylenesuccinate)-co-adipate] blends

    CSIR Research Space (South Africa)

    Maubane, Lesego T

    2017-01-01

    Full Text Available structures. Thermogravimetric analysis revealed that the thermal stability of the blends decreased with increasing starch loading for all starch types with varying amylose content; however, the nature of the starch controlled the mechanical properties...

  15. Effect of cellulose reinforcement on the properties of organic acid modified starch microparticles/plasticized starch bio-composite films.

    Science.gov (United States)

    Teacă, Carmen-Alice; Bodîrlău, Ruxanda; Spiridon, Iuliana

    2013-03-01

    The present paper describes the preparation and characterization of polysaccharides-based bio-composite films obtained by the incorporation of 10, 20 and 30 wt% birch cellulose (BC) within a glycerol plasticized matrix constituted by the corn starch (S) and chemical modified starch microparticles (MS). The obtained materials (coded as MS/S, respectively MS/S/BC) were further characterized. FTIR spectroscopy and X-ray diffraction were used to evidence structural and crystallinity changes in starch based films. Morphological, thermal, mechanical, and water resistance properties were also investigated. Addition of cellulose alongside modified starch microparticles determined a slightly improvement of the starch-based films water resistance. Some reduction of water uptake for any given time was observed mainly for samples containing 30% BC. Some compatibility occurred between MS and BC fillers, as evidenced by mechanical properties. Tensile strength increased from 5.9 to 15.1 MPa when BC content varied from 0 to 30%, while elongation at break decreased significantly. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. "Achieving Mexico’s Maize Potential"

    OpenAIRE

    Antonio Turrent Fernández; Timothy A. Wise; Elise Garvey

    2012-01-01

    Rising agricultural prices, combined with growing import dependence, have driven Mexico’s food import bill over $20 billion per year and increased its agricultural trade deficit. Mexico imports one-third of its maize, overwhelmingly from the United States, but three million producers grow most of the country’s white maize, which is used primarily for tortillas and many other pluricultural products for human consumption. Yield gaps are large among the country’s small to medium-scale maize farm...

  17. The future of starch bioengineering: GM microorganisms or GM plants?

    Directory of Open Access Journals (Sweden)

    Kim Henrik eHebelstrup

    2015-04-01

    Full Text Available Plant starches regularly require extensive modification to permit subsequent applications. Such processing is usually done by the use of chemical and/or physical treatments. The use of recombinant enzymes produced by large-scale fermentation of GM microorganisms is increasingly used in starch processing and modification, sometimes as an alternative to chemical or physical treatments. However, as a means to impart the modifications as early as possible in the starch production chain, similar recombinant enzymes may also be expressed in planta in the developing starch storage organ such as in roots, tubers and cereal grains to provide a GM crop as an alternative to the use of enzymes from GM microorganisms. We here discuss these techniques in relation to important structural features and modifications of starches such as: starch phosphorylation, starch hydrolysis, chain transfer/branching and novel concepts of hybrid starch-based polysaccharides. In planta starch bioengineering is generally challenged by yield penalties and inefficient production of the desired product. However in some situations, GM crops for starch bioengineering without deleterious effects have been achieved.

  18. Exploring maize-legume intercropping systems in Southwest Mexico

    NARCIS (Netherlands)

    Flores-Sanchez, D.; Pastor, A.V.; Lantinga, E.A.; Rossing, W.A.H.; Kropff, M.J.

    2013-01-01

    Maize yields in continuous maize production systems of smallholders in the Costa Chica, a region in Southwest Mexico, are low despite consistent inputs of fertilizers and herbicides. This study was aimed at investigating the prospects of intercropping maize (Zea mays L.) and maize-roselle (Hibiscus

  19. Starch accumulation in hulless barley during grain filling.

    Science.gov (United States)

    Zheng, Xu-Guang; Qi, Jun-Cang; Hui, Hong-Shan; Lin, Li-Hao; Wang, Feng

    2017-12-01

    Starch consists of two types of molecules: amylose and amylopectin. The objective of this study was increase understanding about mechanisms related to starch accumulation in hulless barley (Hordeum vulgare L.) grain by measuring temporal changes in (i) grain amylose and amylopectin content, (ii) starch synthase activity, and (iii) the relative expressions of key starch-related genes. The amylopectin/amylose ratio gradually declined in both Beiqing 6 and Kunlun 12. In both cultivars, the activities of adenosine diphosphate glucose pyrophosphorylase, soluble starch synthase (SSS), granule bound starch synthase (GBSS), and starch branching enzyme (SBE) increased steadily during grain filling, reaching their maximums 20-25 days after anthesis. The activities of SSS and SBE were greater in Ganken 5 than in either Beiqing 6 or Kunlun 12. The expression of GBSS I was greater in Beiqing 6 and Kunlun 12 than in Ganken 5. In contrast, the expression of SSS I, SSS II and SBE I was greater in Ganken 5 than in Beiqing 6 and Kunlun 12. The peak in GBSS I expression was later than that of SSS I, SSS II, SBE IIa and SBE IIb. The GBSS I transcript in Kunlun 12 was expressed on average 90 times more than the GBSS II transcript. The results suggest that SBE and SSS may control starch synthesis at the transcriptional level, whereas GBSS I may control starch synthesis at the post transcriptional level. GBSS I is mainly responsible for amylose synthesis whereas SSS I and SBE II are mainly responsible for amylopectin synthesis in amyloplasts.

  20. Climatic and non-climatic drivers of spatiotemporal maize-area dynamics across the northern limit for maize production

    DEFF Research Database (Denmark)

    Odgaard, Mette Vestergaard; Bøcher, Peder Klith; Dalgaard, Tommy

    2011-01-01

    It is expected that the ongoing anthropogenic climate change will drive changes in agricultural production and its geographic distribution. Here, we assess the extent to which climate change is already driving spatiotemporal dynamics in maize production in Denmark. We use advanced spatial...... regression modeling with multi-model averaging to assess the extent to which the recent spatiotemporal dynamics of the maize area in Denmark are driven by climate (temperature as represented by maize heating units [MHU] and growing-season precipitation), climate change and non-climatic factors (cattle...... cultivation and cattle farming, probably reflecting a change to a more favorable climate for maize cultivation: in the beginning of the study period, northern areas were mostly too cold for maize cultivation, irrespective of cattle density, but this limitation has been diminishing as climate has warmed...

  1. 1H-13C NMR-based profiling of biotechnological starch utilization

    DEFF Research Database (Denmark)

    Sundekilde, Ulrik K.; Meier, Sebastian

    2016-01-01

    Starch is used in food-and non-food applications as a renewable and degradable source of carbon and energy. Insight into the chemical detail of starch degradation remains challenging as the starch constituents amylose and amylopectin are homopolymers. We show that considerable molecular detail...... of starch fragmentation can be obtained from multivariate analysis of spectral features in optimized 1H-13C NMR spectroscopy of starch fragments to identify relevant features that distinguish processes in starch utilization. As a case study, we compare the profiles of starch fragments in commercial beer...... samples. Spectroscopic profiles of homooligomeric starch fragments can be excellent indicators of process conditions. In addition, differences in the structure and composition of starch fragments have predictive value for down-stream process output such as ethanol production from starch. Thus, high...

  2. Application of oxidized starch in bake-only chicken nuggets.

    Science.gov (United States)

    Purcell, Sarah; Wang, Ya-Jane; Seo, Han-Seok

    2014-05-01

    There is a need to reduce the fat content in fried foods because of increasing health concerns from consumers. Oxidized starches have been utilized in many coating applications for their adhesion ability. However, it is not known if they perform similarly in bake-only products. This study investigated the application of oxidized starch in bake-only chicken nuggets. Oxidized starches were prepared from 7 starches and analyzed for gelatinization and pasting properties. Chicken nuggets were prepared using batter containing wheat flour, oxidized starch, salt, and leavening agents prior to steaming, oven baking, freezing, and final oven baking for sensory evaluation. All nuggets were analyzed for hardness by a textural analyzer, crispness by an acoustic sound, and sensory characteristics by a trained panel. The oxidation level used in the study did not alter the gelatinization temperature of most starches, but increased the peak pasting viscosity of both types of corn and rice starches and decreased that of tapioca and potato starches. There were slight differences in peak force and acoustic reading between some treatments; however, the differences were not consistent with starch type or amylose content. There was no difference among the treatments as well as between the control with wheat flour and the treatments partially replaced with oxidized starches in all sensory attributes of bake-only nuggets evaluated by the trained panel. There is a need to reduce the fat content in fried food, such as chicken nuggets, because of increasing childhood obesity. Oxidized starches are widely used in coating applications for their adhesion ability. This study investigated the source of oxidized starches in steam-baked coated nuggets for their textural and sensorial properties. The findings from this research will provide an understanding of the contributions of starch source and oxidation to the texture and sensory attributes of bake-only nuggets, and future directions to improve

  3. Engineering potato starch with a higher phosphate content

    NARCIS (Netherlands)

    Xu, Xuan; Huang, Xing Feng; Visser, Richard G.F.; Trindade, Luisa M.

    2017-01-01

    Phosphate esters are responsible for valuable and unique functionalities of starch for industrial applications. Also in the cell phosphate esters play a role in starch metabolism, which so far has not been well characterized in storage starch. Laforin, a human enzyme composed of a

  4. Starch-based Foam Composite Materials: processing and bioproducts

    Science.gov (United States)

    Starch is an abundant, biodegradable, renewable and low-cost commodity that has been explored as a replacement for petroleum-based plastics. By itself, starch is a poor replacement for plastics because of its moisture sensitivity and brittle properties. Efforts to improve starch properties and funct...

  5. Molecular structure, functionality and applications of oxidized starches: A review.

    Science.gov (United States)

    Vanier, Nathan Levien; El Halal, Shanise Lisie Mello; Dias, Alvaro Renato Guerra; da Rosa Zavareze, Elessandra

    2017-04-15

    During oxidation, the hydroxyl groups of starch molecules are first oxidized to carbonyl groups, then to carboxyl groups. The contents of the carbonyl and carboxyl groups in a starch molecule therefore indicate the extent of starch oxidation. The mechanisms of starch oxidation with different oxidizing agents, including sodium hypochlorite, hydrogen peroxide, ozone and sodium periodate, are described in this review. The effects of these oxidizing agents on the molecular, physicochemical, thermal, pasting and morphological properties of starch are described as well. In addition, the main industrial applications of oxidized starches are presented. The present review is important for understanding the effects of oxidation on starch properties, and this information may facilitate the development of novel oxidized starches for both food and non-food applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Digestion and Interaction of Starches with α-Amylases: I. Mutational analysis of Carbohydrate Binding Sites in barley. II. In Vitro Starch Digestion of Legumes

    DEFF Research Database (Denmark)

    Nielsen, Morten Munch

    2006-01-01

    the hydrolysis of internal 1,4-α-D-glucosidic bonds in starch and related polysaccharides. The present thesis concerns studies of two α-amylases: 1) secondary substrate binding sites in barley α-amylase 1 (AMY1), and 2) the involvement of anti-nutrients in in vitro digestion of starch in legumes by porcine...... in morphology between high amylose starch granules and normal starch granules. Legumes (beans, peas, and lentils) are characterised by low blood glucose raising potential, which is proportional to the in vitro starch digestion rates. The high amount of anti-nutritional factors (phytate, proteinaceous inhibitors......, tannins, and lectins) in legumes has been associated with the slow starch digestion. However, it is still debated in literature to which extent the legume starch digestibility is affected by anti-nutritional factors. The in vitro starch digestion (hydrolytic index, HI) of pea (Pisum sativum) and mixtures...

  7. The future of starch bioengineering: GM microorganisms or GM plants?

    DEFF Research Database (Denmark)

    Hebelstrup, Kim; Sagnelli, Domenico; Blennow, Andreas

    2015-01-01

    , tubers and cereal grains to provide a GM crop as an alternative to the use of enzymes from GM microorganisms. We here discuss these techniques in relation to important structural features and modifications of starches such as: starch phosphorylation, starch hydrolysis, chain transfer/branching and novel...... concepts of hybrid starch-based polysaccharides. In planta starch bioengineering is generally challenged by yield penalties and inefficient production of the desired product. However, in some situations, GM crops for starch bioengineering without deleterious effects have been achieved....

  8. Comparing ignitability for in situ burning of oil spills for an asphaltenic, a waxy and a light crude oil as a function of weathering conditions under arctic conditions

    DEFF Research Database (Denmark)

    Fritt-Rasmussen, Janne; Brandvik, Per Johan; Villumsen, Arne

    2012-01-01

    (asphalthenic), Kobbe (light oil) and Norne (waxy), for ignitability as a function of ice conditions and weathering degree. The crude oils (9 L) were weathered in a laboratory basin (4.8 m3) under simulated arctic conditions (0, 50 and 90% ice cover). The laboratory burning tests show that the ignitability...... is dependent on oil composition, ice conditions and weathering degree. In open water, oil spills rapidly become “not ignitable” due to the weathering e.g. high water content and low content of residual volatile components. The slower weathering of oil spills in ice (50 and 90% ice cover) results in longer time......-windows for the oil to be ignitable. The composition of the oils is important for the window of opportunity. The asphalthenic Grane crude oil had a limited timewindow for in situ burning (9 h or less), while the light Kobbe crude oil and the waxy Norne crude oil had the longest time-windows for in situ burning (from...

  9. In vitro starch digestion correlates well with rate and extent of starch digestion in broiler chickens

    NARCIS (Netherlands)

    Weurding, R.E.; Veldman, R.; Veen, W.A.G.; Aar, van der P.J.; Verstegen, M.W.A.

    2001-01-01

    Current feed evaluation systems for poultry are based on digested components (fat, protein and nitrogen-free extracts). Digestible starch is the most important energy source in broiler chicken feeds and is part of the nitrogen-free extract fraction. Digestible starch may be predicted using an in

  10. Anthocyanin, phenolics and antioxidant activity changes in purple waxy corn as affected by traditional cooking.

    Science.gov (United States)

    Harakotr, Bhornchai; Suriharn, Bhalang; Tangwongchai, Ratchada; Scott, Marvin Paul; Lertrat, Kamol

    2014-12-01

    Antioxidant components, including anthocyanins and phenolic compounds, antioxidant activity, and their changes during traditional cooking of fresh purple waxy corn were investigated. As compared to the raw corn, thermal treatment caused significant (p⩽0.05) decreases in each antioxidant compound and antioxidant activity. Steam cooking preserved more antioxidant compounds than boiling. Boiling caused a significant loss of anthocyanin and phenolic compounds into the cooking water. This cooking water is a valuable co-product because it is a good source of purple pigment. By comparing levels of antioxidant compounds in raw and cooked corn, we determined that degradation results in greater loss than leaching or diffusion into cooking water. Additionally, separation of kernels from the cob prior to cooking caused increased loss of antioxidant compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Investigation and management of the hepatic glycogen storage diseases.

    Science.gov (United States)

    Bhattacharya, Kaustuv

    2015-07-01

    The glycogen storage diseases (GSD) comprise a group of disorders that involve the disruption of metabolism of glycogen. Glycogen is stored in various organs including skeletal muscle, the kidneys and liver. The liver stores glycogen to supply the rest of the body with glucose when required. Therefore, disruption of this process can lead to hypoglycaemia. If glycogen is not broken down effectively, this can lead to hepatomegaly. Glycogen synthase deficiency leads to impaired glycogen synthesis and consequently the liver is small. Glycogen brancher deficiency can lead to abnormal glycogen being stored in the liver leading to a quite different disorder of progressive liver dysfunction. Understanding the physiology of GSD I, III, VI and IX guides dietary treatments and the provision of appropriate amounts and types of carbohydrates. There has been recent re-emergence in the literature of the use of ketones in therapy, either in the form of the salt D,L-3-hydroxybutyrate or medium chain triglyceride (MCT). High protein diets have also been advocated. Alternative waxy maize based starches seem to show promising early data of efficacy. There are many complications of each of these disorders and they need to be prospectively surveyed and managed. Liver and kidney transplantation is still indicated in severe refractory disease.

  12. Mechanical Properties of Potato- Starch Linear Low Density ...

    African Journals Online (AJOL)

    The mechanical properties of potato-starch filled LLDPE such as Young's Modulus, tensile strength and elongation at break were studied. Apart from the Young's Modulus, the tensile strength and elongation at break reduced with increased starch content. This is attributed to poor adhesion between starch and the polymer ...

  13. Composition and Physicochemical Properties of Starch from Christ ...

    African Journals Online (AJOL)

    Starch was extracted from seeds of Christ Thorn by hot water extraction method. The composition and physicochemical properties of the extracted starch were determined using standard methods. The results obtained from the analyses revealed that the % yield of starch was 43.2%, while moisture content, ash content, ...

  14. Isolation and Characterization of Starches from eight Dioscorea ...

    African Journals Online (AJOL)

    AJB SERVER

    2006-09-04

    Sep 4, 2006 ... temperature, with Moonshine (895.551 ± 1.051%) having the highest swelling power ... The properties of the different Dioscorea alata starches may prove useful in nutritional applications. ..... coating. Starch/Starke 44: 393-398. Ayensu ES, Coursey DG (1972). ... World production and marketing of starch. In:.

  15. Resistant starch: an indigestible fraction of foods

    Directory of Open Access Journals (Sweden)

    Saura Calixto, F.

    1991-06-01

    Full Text Available Resistant starch (RS, the dietary starch that scape digestion in the small intestine, can yields up to 20% of the starch in cereal and legume products. Several fractions contribute to the total RS of foods: retrograded amylose, starch inaccessible to digestive enzymes because of mechanical barriers, chemically modified starch fragments, undigested starch due to α-amylase inhibitors and starch complexed with other food components. RS is formed in products processed following heat treatments (baking, extrusion, autoclaving, etc.. RS produces significant fecal bulking and is partially fermentable by anaerobic bacteria of the colon. On the other hand, the relation of resistant starch with the glucose and insulin response in human subjects is an important nutritional effect. RS analytical methods are reported.

    El almidón resistente (RS, fracción de almidón de la dieta que no es digerido en el intestino delgado, puede alcanzar hasta un 20% del almidón en productos derivados de cereales y legumbres. Varias fracciones contribuyen al contenido total de almidón resistente: amilosa retrogradada, almidón inaccesible físicamente a los enzimas digestivos, almidón indigestible debido a inhibición de α-amilasas y almidón complejado con otros constituyentes de los alimentos. El almidón resistente se forma en productos que han sufrido tratamientos térmicos (panificación, extrusión, autoclave, etc. El RS aumenta el volumen de heces y es fermentado parcialmente en el colon por bacterias anaeróbicas. Igualmente, está relacionado con los niveles de glucosa en sangre y la respuesta de insulina en humanos. Se describen los métodos analíticos para su determinación.

  16. Synthesis and Characterization of Starch-based Aqueous Polymer Isocyanate Wood Adhesive

    Directory of Open Access Journals (Sweden)

    Shu-min Wang

    2015-09-01

    Full Text Available Modified starch was prepared in this work by acid-thinning and oxidizing corn starch with ammonium persulfate. Also, starch-based aqueous polymer isocyanate (API wood adhesive was prepared. The effect of the added amount of modified starch, styrene butadiene rubber (SBR, polymeric diphenylmethane diisocyanate (P-MDI, and the mass concentration of polyvinyl alcohol (PVOH on the bonding strength of starch-based API adhesives were determined by orthogonal testing. The starch-based API adhesive performance was found to be the best when the addition of modified starch (mass concentration 35% was 45 g, the amount of SBR was 3%, the PVOH mass concentration was 10%, and the amount of P-MDI was 18%. The compression shearing of glulam produced by starch-based API adhesive reached bonding performance indicators of I type adhesive. A scanning electron microscope (SEM was used to analyze the changes in micro-morphology of the starch surface during each stage. Fourier transform infrared spectroscopy (FT-IR was used to study the changes in absorption peaks and functional groups from starch to starch-based API adhesives. The results showed that during starch-based API adhesive synthesis, corn starch surface was differently changed and it gradually reacted with other materials.

  17. Influence of starch origin on rheological properties of concentrated aqueous solutions

    Directory of Open Access Journals (Sweden)

    Stojanović Željko P.

    2011-01-01

    Full Text Available The rheological properties of corn and potato starch concentrated aqueous solutions were investigated at 25ºC. The starches were previously dispersed in water and the solutions were obtained by heating of dispersions at 115-120ºC for 20 minutes. The solutions of potato starch were transparent, while the corn starch solutions were opalescent. The results of dynamic mechanical measurements showed that the values of viscosity, h, storage modulus, G′, and loss modulus, G″, of the corn starch solutions increased with the storage time. This phenomenon was not observed for the potato starch solutions. It was assumed that the increase of h, G′ and G″ is the result of starch solutions retrogradation. The potato starch solutions retrogradation did not occur probably because of the phosphates presence. The viscosity of 2 mass % corn starch solution is less than the viscosity of 2 mass % potato starch solution. By increasing the concentration of corn starch solution the gel with elastic behavior was formed. The corn starch solutions formed gel as early as at 4 mass % concentration, while potato starch solutions achieved the gel state at the concentration of 5 mass %. The value of exponent m (G′ and G″ µ wm during the transition of potato starch solutions to gel is 0.414, which gives the fractal dimensions for corn starch of 2.10. The obtained value of fractal dimension corresponds to slow aggregation. The corn starch solutions with the starch concentrations higher than 4 mass % form weak gels. For these solutions the values of modulus in rubber plateau were determined. It was found that the modulus in rubber plateau increased with the concentration by the exponent of 4.36. Such high exponent value was obtained in the case when the tridimensional network is formed, i.e. when supermolecular structures like associates or crystal domains are formed.

  18. Morphological and mechanical properties of thermoplastic starch (TPS) and its blend with poly(lactic acid)(PLA) using cassava bagasse and starch

    International Nuclear Information System (INIS)

    Teixeira, Eliangela de M.; Correa, Ana C.; Campos, Adriana de; Marconcini, Jose M.; Mattoso, Luiz H.C.; Curvelo, Antonio A.S.

    2011-01-01

    This study aims the use of an agro waste coming from the industrialization of cassava starch, known as cassava bagasse (BG). This material contains residual starch and cellulose fibers which can be used to obtain thermoplastic starch (TPS) and /or blends reinforced with fibers. In this context, it was prepared a thermoplastic starch with BG (TPSBG) and evaluated the incorporation of 20wt% of it into the biodegradable polymer poly (lactic acid) (PLA), resulting in a blend PLA/TPSBG20. The materials were investigated through morphology (scanning electron microscopy with field emission gun (FEG), x-ray diffraction (XRD), and mechanical behavior (tensile test). Their properties were compared to the blend PLA/TPSI20 in which TPSI is obtained from commercial cassava starch. The results showed that the use of bagasse generates homogenous materials with higher mechanical strength if compared to TPS obtained from commercial cassava starch. The fiber in this residue acted as reinforcement for TPS and PLA/TPS systems. (author)

  19. Partial characterization of chayotextle starch-based films added with ascorbic acid encapsulated in resistant starch.

    Science.gov (United States)

    Martínez-Ortiz, Miguel A; Vargas-Torres, Apolonio; Román-Gutiérrez, Alma D; Chavarría-Hernández, Norberto; Zamudio-Flores, Paul B; Meza-Nieto, Martín; Palma-Rodríguez, Heidi M

    2017-05-01

    Chayotextle starch was modified by subjecting it to a dual treatment with acid and heating-cooling cycles. This caused a decrease in the content of amylose, which showed values of 30.22%, 4.80%, 3.27% and 3.57% for native chayotextle starch (NCS), starch modified by acid hydrolysis (CMS), and CMS with one (CMS1AC) and three autoclave cycles (CMS3AC), respectively. The percentage of crystallinity showed an increase of 36.9%-62% for NCS and CMS3AC. The highest content of resistant starch (RS) was observed in CMS3AC (37.05%). The microcapsules were made with CMS3AC due to its higher RS content; the total content of ascorbic acid of the microcapsules was 82.3%. The addition of different concentrations of CMS3AC microcapsules (0%, 2.5%, 6.255% and 12.5%) to chayotextle starch-based films (CSF) increased their tensile strength and elastic modulus. The content of ascorbic acid and RS in CSF was ranged from 0% to 59.4% and from 4.84% to 37.05% in the control film and in the film mixed with CMS3AC microcapsules, respectively. Water vapor permeability (WVP) values decreased with increasing concentrations of microcapsules in the films. Microscopy observations showed that higher concentrations of microcapsules caused agglomerations due their poor distribution in the matrix of the films. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Films based on oxidized starch and cellulose from barley.

    Science.gov (United States)

    El Halal, Shanise Lisie Mello; Colussi, Rosana; Deon, Vinícius Gonçalves; Pinto, Vânia Zanella; Villanova, Franciene Almeida; Carreño, Neftali Lenin Villarreal; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2015-11-20

    Starch and cellulose fibers were isolated from grains and the husk from barley, respectively. Biodegradable films of native starch or oxidized starches and glycerol with different concentrations of cellulose fibers (0%, 10% and 20%) were prepared. The films were characterized by morphological, mechanical, barrier, and thermal properties. Cellulose fibers isolated from the barley husk were obtained with 75% purity and high crystallinity. The morphology of the films of the oxidized starches, regardless of the fiber addition, was more homogeneous as compared to the film of the native starch. The addition of cellulose fibers in the films increased the tensile strength and decreased elongation. The water vapor permeability of the film of oxidized starch with 20% of cellulose fibers was lower than the without fibers. However the films with cellulose fibers had the highest decomposition with the initial temperature and thermal stability. The oxidized starch and cellulose fibers from barley have a good potential for use in packaging. The addition of cellulose fibers in starch films can contribute to the development of films more resistant that can be applied in food systems to maintain its integrity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. F--POTENT~2-PAGEMA~1-FHmdi

    African Journals Online (AJOL)

    USER

    FUNCTIONAL PROPERTIES OF STARCHES OF SIX CASSAVA VARIETIES. Industries are constantly searching for local starch that is resistant to certain industrial processes, which are known to ..... milled maize flours; incidence of storage. J.

  2. Preparation and Properties of Cassava Starch-based Wood Adhesives

    Directory of Open Access Journals (Sweden)

    Qing Xu

    2016-06-01

    Full Text Available A biodegradable, environmentally friendly starch-based wood adhesive with cassava starch as a raw material and butyl acrylate (BA as a co-monomer was synthesized. Results revealed that this cassava starch-based wood adhesive (SWA was more stable than corn starch-based wood adhesive, and its bonding performance was close to that of commercial PVAc emulsion, even after 90 days of storage. Further analysis found that the improved stability of the adhesive could be attributed to its low minimum film forming temperature (MFFT and glass transition temperature (Tg of cassava starch. Moreover, the amount of total volatile organic compounds (TVOCs emitted by the cassava starch-based wood adhesive were much lower than the Chinese national standard control criteria. Therefore, cassava SWA might be a potential alternative to traditional petrochemical-based wood adhesives.

  3. Pollen-Mediated Gene Flow in Maize: Implications for Isolation Requirements and Coexistence in Mexico, the Center of Origin of Maize.

    Science.gov (United States)

    Baltazar, Baltazar M; Castro Espinoza, Luciano; Espinoza Banda, Armando; de la Fuente Martínez, Juan Manuel; Garzón Tiznado, José Antonio; González García, Juvencio; Gutiérrez, Marco Antonio; Guzmán Rodríguez, José Luis; Heredia Díaz, Oscar; Horak, Michael J; Madueño Martínez, Jesús Ignacio; Schapaugh, Adam W; Stojšin, Duška; Uribe Montes, Hugo Raúl; Zavala García, Francisco

    2015-01-01

    Mexico, the center of origin of maize (Zea mays L.), has taken actions to preserve the identity and diversity of maize landraces and wild relatives. Historically, spatial isolation has been used in seed production to maintain seed purity. Spatial isolation can also be a key component for a strategy to minimize pollen-mediated gene flow in Mexico between transgenic maize and sexually compatible plants of maize conventional hybrids, landraces, and wild relatives. The objective of this research was to generate field maize-to-maize outcrossing data to help guide coexistence discussions in Mexico. In this study, outcrossing rates were determined and modeled from eight locations in six northern states, which represent the most economically important areas for the cultivation of hybrid maize in Mexico. At each site, pollen source plots were planted with a yellow-kernel maize hybrid and surrounded by plots with a white-kernel conventional maize hybrid (pollen recipient) of the same maturity. Outcrossing rates were then quantified by assessing the number of yellow kernels harvested from white-kernel hybrid plots. The highest outcrossing values were observed near the pollen source (12.9% at 1 m distance). The outcrossing levels declined sharply to 4.6, 2.7, 1.4, 1.0, 0.9, 0.5, and 0.5% as the distance from the pollen source increased to 2, 4, 8, 12, 16, 20, and 25 m, respectively. At distances beyond 20 m outcrossing values at all locations were below 1%. These trends are consistent with studies conducted in other world regions. The results suggest that coexistence measures that have been implemented in other geographies, such as spatial isolation, would be successful in Mexico to minimize transgenic maize pollen flow to conventional maize hybrids, landraces and wild relatives.

  4. Regulation of maize kernel weight and carbohydrate metabolism by abscisic acid applied at the early and middle post-pollination stages in vitro.

    Science.gov (United States)

    Zhang, Li; Li, Xu-Hui; Gao, Zhen; Shen, Si; Liang, Xiao-Gui; Zhao, Xue; Lin, Shan; Zhou, Shun-Li

    2017-09-01

    Abscisic acid (ABA) accumulates in plants under drought stress, but views on the role of ABA in kernel formation and abortion are not unified. The response of the developing maize kernel to exogenous ABA was investigated by excising kernels from cob sections at four days after pollination and culturing in vitro with different concentrations of ABA (0, 5, 10, 100μM). When ABA was applied at the early post-pollination stage (EPPS), significant weight loss was observed at high ABA concentration (100μM), which could be attributed to jointly affected sink capacity and activity. Endosperm cells and starch granules were decreased significantly with high concentration, and ABA inhibited the activities of soluble acid invertase and acid cell wall invertase, together with earlier attainment of peak values. When ABA was applied at the middle post-pollination stage (MPPS), kernel weight was observably reduced with high concentration and mildly increased with low concentration, which was regulated due to sink activity. The inhibitory effect of high concentration and the mild stimulatory effect of low concentration on sucrose synthase and starch synthase activities were noted, but a peak level of ADP-glucose pyrophosphorylase (AGPase) was stimulated in all ABA treatments. Interestingly, AGPase peak values were advanced by low concentration and postponed by high concentration. In addition, compared with the control, the weight of low ABA concentration treatments were not statistically significant at the two stages, whereas weight loss from high concentration applied at EPPS was considerably obvious compared with that of the MPPS, but neither led to kernel abortion. The temporal- and dose-dependent impacts of ABA reveal a complex process of maize kernel growth and development. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. Preparation and Characterization of Some Polyethylene Modified- Starch Biodegradable Films

    International Nuclear Information System (INIS)

    Badrana, A.S.; Ramadanb, A.M.; Ibrahim, N.A.; Kahild, T.; Hussienc, H.A.

    2005-01-01

    Blends of LDPE with soluble starch, wheat flour and commercial starch were prepared by mixing starch (or flour) with styrene then blending the mixture with LDPE, The starch percents vary between 5 and 50% of the total weight. Their physical and mechanical properties were recorded and compared with pure LDPE. It was observed that the increase in starch or wheat flour contents of the mixture was reversibly proportional to the tensile strength and % elongation. Samples were tested for water absorption. All of the samples were insoluble in cold and boiling water. Moisture uptake increased with immersion time and increasing starch content. The changes in the tensile strength of LDPE/starch (or wheat flour) after the course of thermal oxidation was measured. These results show negligible changes in the tensile strength of the control sample as compared to that of the samples containing the additives. Oxidation processes take advantage of the high temperatures (40-50 degree C) and the time. It was also observed that after 10 weeks of soil burial, the mechanical properties of the films decrease, mainly, due to starch removal from the films. Also, for the weight loss a drastic decrease was observed after 10 weeks of soil burial thereafter it preceded slowly. The LDPE/ starch strips showed weight loss after treating with a-amylase this due to hydrolysis and leaching of the starch. The rate of starch hydrolysis increases with the increase in starch content of the sample. The influence of addition of starch on the overall migration of these films, with different food simulant, was studied, at different temperatures (-4 degree. 25 degree and 40 degree C). All values were significantly lower than the upper limit for overall migration set by the EU (10 mg/dirf) for food grade plastics packaging materials

  6. SNPs in genes functional in starch-sugar interconversion associate with natural variation of tuber starch and sugar content of potato (Solanum tuberosum L.).

    Science.gov (United States)

    Schreiber, Lena; Nader-Nieto, Anna Camila; Schönhals, Elske Maria; Walkemeier, Birgit; Gebhardt, Christiane

    2014-07-31

    Starch accumulation and breakdown are vital processes in plant storage organs such as seeds, roots, and tubers. In tubers of potato (Solanum tuberosum L.) a small fraction of starch is converted into the reducing sugars glucose and fructose. Reducing sugars accumulate in response to cold temperatures. Even small quantities of reducing sugars affect negatively the quality of processed products such as chips and French fries. Tuber starch and sugar content are inversely correlated complex traits that are controlled by multiple genetic and environmental factors. Based on in silico annotation of the potato genome sequence, 123 loci are involved in starch-sugar interconversion, approximately half of which have been previously cloned and characterized. By means of candidate gene association mapping, we identified single-nucleotide polymorphisms (SNPs) in eight genes known to have key functions in starch-sugar interconversion, which were diagnostic for increased tuber starch and/or decreased sugar content and vice versa. Most positive or negative effects of SNPs on tuber-reducing sugar content were reproducible in two different collections of potato cultivars. The diagnostic SNP markers are useful for breeding applications. An allele of the plastidic starch phosphorylase PHO1a associated with increased tuber starch content was cloned as full-length cDNA and characterized. The PHO1a-HA allele has several amino acid changes, one of which is unique among all known starch/glycogen phosphorylases. This mutation might cause reduced enzyme activity due to impaired formation of the active dimers, thereby limiting starch breakdown. Copyright © 2014 Schreiber et al.

  7. Proteomic Comparison of Basal Endosperm in Maize miniature1 Mutant and its Wild-type Mn1

    Directory of Open Access Journals (Sweden)

    Cecilia eSilva-Sanchez

    2013-06-01

    Full Text Available Developing endosperm in maize seed is a major site for biosynthesis and storage of starch and proteins, and of immense economic importance for its role in food, feed and biofuel production. The basal part of endosperm performs a major role in solute, water and nutrition acquisition from mother plant to sustain these functions. The miniature1 (mn1 mutation is a loss-of-function mutation of the Mn1-encoded cell wall invertase that is entirely expressed in the basal endosperm and is essential for many of the metabolic and signaling functions associated with metabolically released hexose sugars in developing endosperm. Here we report a comparative proteomic study between Mn1 and mn1 basal endosperm to better understand basis of pleiotropic effects on many diverse traits in the mutant. Specifically, we used iTRAQ based quantitative proteomics combined with Gene Ontology and bioinformatics to understand functional basis of the proteomic information. A total of 2518 proteins were identified from soluble and cell wall associated protein fractions; of these 131 proteins were observed to be differentially expressed in the two genotypes. The main functional groups of proteins that were significantly different were those involved in the carbohydrate metabolic and catabolic process, and cell homeostasis. The study constitutes the first proteomic analysis of basal endosperm cell layers in relation to endosperm growth and development in maize.

  8. 7171 EFFECT OF CO-FERMENTATION ON NUTRITIVE QUALITY ...

    African Journals Online (AJOL)

    user

    2013-01-01

    Jan 1, 2013 ... PASTING PROPERTIES OF MAIZE/COWPEA/SWEET POTATO AS .... samples were stored at -4oC before proximate, carotenoid and pasting properties ..... starch component and hot paste viscosity of the fermented maize.

  9. Recreating the synthesis of starch granules in yeast

    Science.gov (United States)

    Pfister, Barbara; Sánchez-Ferrer, Antoni; Diaz, Ana; Lu, Kuanjen; Otto, Caroline; Holler, Mirko; Shaik, Farooque Razvi; Meier, Florence; Mezzenga, Raffaele; Zeeman, Samuel C

    2016-01-01

    Starch, as the major nutritional component of our staple crops and a feedstock for industry, is a vital plant product. It is composed of glucose polymers that form massive semi-crystalline granules. Its precise structure and composition determine its functionality and thus applications; however, there is no versatile model system allowing the relationships between the biosynthetic apparatus, glucan structure and properties to be explored. Here, we expressed the core Arabidopsis starch-biosynthesis pathway in Saccharomyces cerevisiae purged of its endogenous glycogen-metabolic enzymes. Systematic variation of the set of biosynthetic enzymes illustrated how each affects glucan structure and solubility. Expression of the complete set resulted in dense, insoluble granules with a starch-like semi-crystalline organization, demonstrating that this system indeed simulates starch biosynthesis. Thus, the yeast system has the potential to accelerate starch research and help create a holistic understanding of starch granule biosynthesis, providing a basis for the targeted biotechnological improvement of crops. DOI: http://dx.doi.org/10.7554/eLife.15552.001 PMID:27871361

  10. Adaptation to the digestion of nutrients of a starch diet or a non-starch polysaccharide diet in group-housed pregnant sows

    NARCIS (Netherlands)

    Peet-Schwering, van der C.M.C.; Kemp, B.; Hartog, den L.A.; Schrama, J.W.; Verstegen, M.W.A.

    2002-01-01

    A trial was conducted with twenty group-housed pregnant sows to study the adaptation in nutrient digestibility to a starch-rich diet or a diet with a high level of fermentable non-starch polysaccharides (NSP) during a time period of 6 weeks. The starch-rich diet was primarily composed of wheat, peas

  11. Dielectric spectroscopy of Ag-starch nanocomposite films

    Science.gov (United States)

    Meena; Sharma, Annu

    2018-04-01

    In the present work Ag-starch nanocomposite films were fabricated via chemical reduction route. The formation of Ag nanoparticles was confirmed using transmission electron microscopy (TEM). Further the effect of varying concentration of Ag nanoparticles on the dielectric properties of starch has been studied. The frequency response of dielectric constant (ε‧), dielectric loss (ε″) and dissipation factor tan(δ) has been studied in the frequency range of 100 Hz to 1 MHz. Dielectric data was further analysed using Cole-Cole plots. The dielectric constant of starch was found to be 4.4 which decreased to 2.35 in Ag-starch nanocomposite film containing 0.50 wt% of Ag nanoparticles. Such nanocomposites with low dielectric constant have potential applications in microelectronic technologies.

  12. Effect of Ultrasound on Physicochemical Properties of Wheat Starch

    Directory of Open Access Journals (Sweden)

    Mahsa Majzoobi

    2014-04-01

    Full Text Available Application of ultrasound process is growing in food industry for different purposes including homogenization, extraction, blanching and removal of microorganisms, etc. On the other hand, starch is a natural polymer which exists in many foods or added into the food as an additive. Therefore, determination of the effects of ultrasound on starch characteristics can be useful in interpretation of the properties of starch-containing products. The main aim of this study was to determine the physicochemical changes of wheat starch treated by ultrasound waves. Therefore, an ultrasound probe device was used which ran at 20 kHz, 100 W and 22°C. Starch suspension in distilled water (30% w/w was prepared and treated with ultrasound for 5, 10, 15 and 20 min. The results showed that increases in processing duration led to increases in water solubility of starch, water absorption and gel clarity (as determined by spectrophotometry. Starch intrinsic viscosity as measured using an Ostwald U-tube showed lower intrinsic viscosity with increases in ultrasound time. Gel strength of the samples as determined using a texture analyzer was reduced by longer processing time. The scanning electron microscopy revealed that increasing the duration time of the ultrasound treatment could produce some cracks and spots on the surface of the granules. In total, it was concluded that the ultrasound treatment resulted in some changes from the starch granular scale to molecular levels. Some of the starch molecules were degraded upon ultrasound processing. Such changes may be observed for the starch-containing foods treated with ultrasound and they are enhanced with increases in ultrasound time intervals.

  13. Supply of avocado starch (Persea americana mill) as bioplastic material

    Science.gov (United States)

    Ginting, M. H. S.; Hasibuan, R.; Lubis, M.; Alanjani, F.; Winoto, F. A.; Siregar, R. C.

    2018-02-01

    The purpose of this study was to determine the effect of time precipitation of avocado slurry seed to yield of starch. Starch analysis included starch content, moisture content, amylose content, amylopectin content, ash content, protein content, fat content, Fourier transform infra red analysis and rapid visco analyzer. Supply of starch from avocado seeds was used by extraction method. Every one hundred grams of avocado slurry was precipitated by gravity with variations for 4 hours, 8 hours, 12 hours, 16 hours, 20 hours and 24 hours. The Starch yield was washed, and dried using oven at 70°C for 30 minutes. Starch yield was the highest as 24.20 gram at 24 hours. The result of starch characterization was 73.62%, water content 16.6%, amylose 0.07%, amylopectin 73.55%, ash content 0.23%, protein content 2.16%, fat content 1.09%. Rapid visco analyzer obtained at 91.33°C of gelatinization temperature. Scanning electron microscopy analyzes obtained 20 μm oval-shaped starch granules. Fourier Transform Infra Red analysis of starch obtained the peak spectrum of O-H group of alcohols, C-H alkanes and C-O ether.

  14. Thermal treatment of starch slurry in Couette-Taylor flow apparatus

    Directory of Open Access Journals (Sweden)

    Hubacz Robert

    2017-09-01

    Full Text Available In this paper, thermal processing of starch slurry in a Couette-Taylor flow (CTF apparatus was investigated. Gelatinized starch dispersion, after treatment in the CTF apparatus, was characterized using such parameters like starch granule diameters (or average diameter, starch granule swelling degree (quantifying the amount of water absorbed by starch granules and concentration of dissolved starch. These parameters were affected mostly by the process temperature, although the impact of the axial flow or rotor rotation on them was also observed. Moreover, the analysis of results showed a relatively good correlation between these parameters, as well as, between those parameter and apparent viscosity of gelatinized starch dispersion. Meanwhile, the increase in the value of the apparent viscosity and in shear-tinning behaviour of dispersion was associated with the progress of starch processing in the CTF apparatus. Finally, the CTF apparatuses of different geometries were compared using numerical simulation of the process. The results of the simulation indicated that the apparatus scaling-up without increasing the width of the gap between cylinders results in higher mechanical energy consumption per unit of processed starch slurry.

  15. Determinação da cor, imagem superficial topográfica e ângulo de contato de biofilmes de diferentes fontes de amido Determination of color, topographic superficial image and contact angle of the biofilms of different starch sources

    Directory of Open Access Journals (Sweden)

    Washington Azevêdo da Silva

    2007-02-01

    starch in biofilms. The aim of this work was to study the color variation, the topographic superficial surface by scanning electron microscopy and the water absorption by contact angle of biofilms produced with three different starch sources: potato starch film (PSF, cassava starch film (CSF and maize starch film (MSF with varied concentration: 1, 2 and 3% to prepare biofilms using a complete randomize design with three repetitions. The interaction between starch source and concentration was statistically significant for contact angle whereas it was not significant for color. The color difference was affected by starch source being higher for CSF. As concentration increased in biofilms of potato and cassava, the contact angle decreased in contrast to maize biofilms which remained constant.

  16. Characterization and fine mapping of qkc7.03: a major locus for kernel cracking in maize.

    Science.gov (United States)

    Yang, Mingtao; Chen, Lin; Wu, Xun; Gao, Xing; Li, Chunhui; Song, Yanchun; Zhang, Dengfeng; Shi, Yunsu; Li, Yu; Li, Yong-Xiang; Wang, Tianyu

    2018-02-01

    A major locus conferring kernel cracking in maize was characterized and fine mapped to an interval of 416.27 kb. Meanwhile, combining the results of transcriptomic analysis, the candidate gene was inferred. Seed development requires a proper structural and physiological balance between the maternal tissues and the internal structures of the seeds. In maize, kernel cracking is a disorder in this balance that seriously limits quality and yield and is characterized by a cracked pericarp at the kernel top and endosperm everting. This study elucidated the genetic basis and characterization of kernel cracking. Primarily, a near isogenic line (NIL) with a B73 background exhibited steady kernel cracking across environments. Therefore, deprived mapping populations were developed from this NIL and its recurrent parent B73. A major locus on chromosome 7, qkc7.03, was identified to be associated with the cracking performance. According to a progeny test of recombination events, qkc7.03 was fine mapped to a physical interval of 416.27 kb. In addition, obvious differences were observed in embryo development and starch granule arrangement within the endosperm between the NIL and its recurrent parent upon the occurrence of kernel cracking. Moreover, compared to its recurrent parent, the transcriptome of the NIL showed a significantly down-regulated expression of genes related to zeins, carbohydrate synthesis and MADS-domain transcription factors. The transcriptomic analysis revealed ten annotated genes within the target region of qkc7.03, and only GRMZM5G899476 was differently expressed between the NIL and its recurrent parent, indicating that this gene might be a candidate gene for kernel cracking. The results of this study facilitate the understanding of the potential mechanism underlying kernel cracking in maize.

  17. Starch digestibility and predicted glycemic index of fried sweet potato cultivars

    Directory of Open Access Journals (Sweden)

    Amaka Odenigbo

    2012-07-01

    Full Text Available Background: Sweet potato (Ipomoea batatas L. is a very rich source of starch. There is increased interest in starch digestibility and the prevention and management of metabolic diseases.Objective: The aim of this study was to evaluate the levels of starch fractions and predicted glycemic index of different cultivars of sweet potato. Material and Method: French fries produced from five cultivars of sweet potato (‘Ginseng Red’, ‘Beauregard’, ‘White Travis’, ‘Georgia Jet clone #2010’ and ‘Georgia Jet’ were used. The level of total starch (TS, resistant starch (RS, digestible starch (DS, and starch digestion index starch digestion index in the samples were evaluated. In vitro starch hydrolysis at 30, 90, and 120 min were determined enzymatically for calculation of rapidly digestible starch (RDS, predicted glycemic index (pGI and slowly digestible starch (SDS respectively. Results: The RS content in all samples had an inversely significant correlation with pGI (-0.52; P<0.05 while RDS had positive and significant influence on both pGI (r=0.55; P<0.05 and SDI (r= 0.94; P<0.01. ‘White Travis’ and ‘Ginseng Red’ had higher levels of beneficial starch fractions (RS and SDS with low pGI and starch digestion Index (SDI, despite their higher TS content. Generally, all the cultivars had products with low to moderate GI values. Conclusion: The glycemic index of these food products highlights the health promoting characteristics of sweet potato cultivars.

  18. Improved amylose content of rice (IR72) induced through gamma radiation

    International Nuclear Information System (INIS)

    Barrida, Adelaida C.; Rivera, Faye G.; Manrique, Mary Jayne C.; Dimaano, Arvin O.; Costimiano, Eduardo C.

    2015-01-01

    In general grain quality and quality preferences vary across rice growing countries and regions. Filipinos preferres translucent, well milled, long grain rice with aroma and minimal broken grains which is soft after cooling. The amylose content of rice starch is a major eating quality factor. The aim of this study is to develop rice mutants with good eating quality and low to intermediate amylose content through induced mutation using gamma radiation. Low to intermediate amylose content in rice were identified and selected among the advance generation lines irradiated with 200 and 300Gy dose of gamma radiation. Screening was done using qualitative method (Iodine staining method). Selected lines were analyzed quantitatively, to determine the percent amylose content. Percent amylose were group to several categories where; 0-6% is waxy, 6-12% is very low, 12-18% is low, 18-24% is intermediate and >25% is high. Results were further confirmed using molecular marker technique by looking at the waxy gene which code for granule bound starch synthase I (GBSSI) and controls amylose content in rice. Among the 30 lines selcted and anaylzes, 2 lines were confirmed to have a gene base mutation with a low to intermediate amylose content. Thus, induced mutation using gamma radiation has successfully improved amylose content in rice (IR72). (author)

  19. Effect of ionizing radiation on starch and cellulose

    International Nuclear Information System (INIS)

    Klenha, J.; Bockova, J.

    1973-09-01

    The investigation is reported of the effects of ionizing radiation both on macromolecular systems generally and on polysaccharides, starch and cellulose. Attention is focused on changes in the physical and physico-chemical properties of starch and cellulose, such as starch swelling, gelation, viscosity, solubility, reaction with iodine, UV, IR and ESR spectra, chemical changes resulting from radiolysis and from the effect of amylases on irradiated starch, changes in cellulose fibre strength, water absorption, stain affinity, and also the degradation of cellulose by radiation and the effect of cellulases on irradiated cellulose. Practical applications of the findings concerning cellulose degradation are discussed. (author)

  20. Characterization of Lentinus edodes β-glucan influencing the in vitro starch digestibility of wheat starch gel.

    Science.gov (United States)

    Zhuang, Haining; Chen, Zhongqiu; Feng, Tao; Yang, Yan; Zhang, Jingsong; Liu, Guodong; Li, Zhaofeng; Ye, Ran

    2017-06-01

    Lentinus edodes β-glucan (abbreviated LEBG) was prepared from fruiting bodies of Lentinus edodes. The average molecular weight (Mw) and polydispersity index (Mw/Mn) of LEBG were measured to be 1.868×10 6 g/mol and 1.007, respectively. In addition, the monosaccharide composition of LEBG was composed of arabinose, galactose, glucose, xylose, mannose with a molar ratio of 5:11:18:644:16. After adding LEBG, both G' and G″ of starch gel increased. This is mainly because the connecting points between the molecular chains of LEBG and starch formed so that gel network structures were enhanced. The peak temperature in the heat flow diagram shifted to a higher temperature and the peak area of the endothermic enthalpy increased. Furthermore, LEBG can significantly inhibit starch hydrolysis. The predicted glycemic index (pGI) values were reduced when starch was replaced with LEBG at 20% (w/w). It might indicate that LEBG was suitable to develop low GI noodle or bread. Copyright © 2016 Elsevier Ltd. All rights reserved.