WorldWideScience

Sample records for wax-decyl oleate nanoparticles

  1. In vitro erythemal UV-A protection factors of inorganic sunscreens distributed in aqueous media using carnauba wax-decyl oleate nanoparticles.

    Science.gov (United States)

    Villalobos-Hernández, J R; Müller-Goymann, C C

    2007-01-01

    This paper describes the in vitro photoprotection in the UV-A range, i.e. 320-400 nm obtained by the use of carnauba wax-decyl oleate nanoparticles either as encapsulation systems or as accompanying vehicles for inorganic sunscreens such as barium sulfate, strontium carbonate and titanium dioxide. Lipid-free inorganic sunscreen nanosuspensions, inorganic sunscreen-free wax-oil nanoparticle suspensions and wax-oil nanoparticle suspensions containing inorganic sunscreens dispersed either in their oil phase or their aqueous phase were prepared by high pressure homogenization. The in vitro erythemal UV-A protection factors (EUV-A PFs) of the nanosuspensions were calculated by means of a sun protection analyzer. EUV-A PFs being no higher than 4 were obtained by the encapsulation of barium sulfate and strontium carbonate, meanwhile by the distribution of titanium dioxide in presence of wax-oil nanoparticles, the EUV-A PFs varied between 2 and 19. The increase in the EUV-A PFs of the titanium dioxide obtained by the use of wax-oil nanoparticles demonstrated a better performance of the sun protection properties of this pigment in the UV-A region.

  2. Physical stability, centrifugation tests, and entrapment efficiency studies of carnauba wax-decyl oleate nanoparticles used for the dispersion of inorganic sunscreens in aqueous media.

    Science.gov (United States)

    Villalobos-Hernández, J R; Müller-Goymann, C C

    2006-06-01

    Aqueous nanoscale lipid dispersions consisting of carnauba wax-decyl oleate mixtures acting as carriers or accompanying vehicles for inorganic sunscreens such as barium sulfate, strontium carbonate, and titanium dioxide were prepared by high pressure homogenization. For the manufacture of these nanosuspensions, three pigment concentrations (%wt), namely 2, 4, and 6, and two carnauba wax-decyl oleate ratios, 1:1 and 2:1, were used, being some of these combinations chosen for stability studies. Six-month physical stability tests at 4, 20, and 40 degrees C selecting the mean particle size and the polydispersity index of the nanosuspensions as reference parameters were performed. Centrifugation tests of the nanosuspensions assessed by transmission electron microscopy and by the determination of the content of pigments and carnauba wax in the separated fractions were done. The mean particle sizes and the polydispersity indices of the nanosuspensions were not altered after six-month storages at 20 and at 40 degrees C. However, the storage of those at 4 degrees C considerably increased the particle size and polydispersity of the systems, particularly when wax-oil ratios (2:1) were used for the entrapment of the pigments. Transmission electron micrographs of centrifuged samples denoted the presence of three major fractions showing the different types of particles integrated into the nanosuspensions. Furthermore, it was observed that not all the carnauba wax participated in the entrapment of the pigment. Regarding the amount of pigment being encapsulated or bonded by the wax-oil matrices, entrapment efficiencies higher than 85.52% were reported.

  3. Oleate coating of iron oxide nanoparticles in aqueous systems: the role of temperature and surfactant concentration

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Hans-Christian; Schwaminger, Sebastian; Fraga García, Paula; Ritscher, Jonathan; Berensmeier, Sonja, E-mail: s.berensmeier@tum.de [Technische Universität München, Bioseparation Engineering Group (Germany)

    2016-04-15

    Coating magnetic nanoparticles (MNPs) with sodium oleate (SO) is known to be an excellent method to create biocompatible, stable colloids with a narrow size distribution. However, the mechanism of oleate adsorption on the MNP surface in aqueous systems, as well as its influence on colloidal stability, is not yet fully understood. In this context, we present here a physico-chemical study to provide a deeper understanding of surfactant interaction mechanisms with nanoparticles. We examined the effect of temperature and the SO/MNP ratio (w/w) on the adsorption process in water and observed the existence of a maximum for the adsorbed oleate amount at lower temperatures, whereas at higher temperatures, the isotherm can be adapted to the Langmuir model with constant capacity after saturation. The oleate load on the MNP surface was quantified using reversed-phase high-performance liquid chromatography measurements of samples in solution. The thermogravimetric analyses of the solid residues together with infrared spectroscopy analyses indicate a bilayer-similar structure at the MNP/water interface even for low oleate loads. The oleate interacts with the iron oxide surface through a bidentate coordination of the carboxyl group. Zeta potential measurements demonstrate the high stability of the coated system. The maximal oleate load per unit mass of MNPs reaches approximately 0.35 g{sub oleate} g{sub MNP}{sup −1}.Graphical abstract.

  4. Oleate functionalized magnetic nanoparticles as sorbent for the analysis of polychlorinated biphenyls in juices

    International Nuclear Information System (INIS)

    Pérez, Rosa Ana; Albero, Beatriz; Tadeo, José Luis; Sánchez -Brunete, Consuelo

    2016-01-01

    Magnetic oleate-coated Fe 3 O 4 nanoparticles were applied to the extraction of PCBs from fruit juices that were quantified by gas chromatography coupled to triple quadrupole mass spectrometry. Two methods were evaluated: The first method involves a two-step procedure that combines dispersive liquid-liquid microextraction with dispersive micro-solid phase extraction, and the second one involves magnetic solid-phase extraction (mSPE) carried out in a single step. The mSPE procedure is shown to be more sensitive, and therefore, it was optimized and applied to the analysis of PCBs in juices. The detection limits for all target PCBs are below 6 ng∙L −1 for apple juice, and 3 ng∙L −1 for grape juice. The enrichment factor is 125. Analysis of spiked fruit juice samples gave relative recoveries higher than 70 % for all PCBs except for PCB28 and PCB52. (author)

  5. Facile synthesis of upconversion nanoparticles with high purity using lanthanide oleate compounds

    Science.gov (United States)

    Kang, Ning; Ai, Chao-Chao; Zhou, Ya-Ming; Wang, Zuo; Ren, Lei

    2018-02-01

    A novel strategy for preparing highly pure NaYF4-based upconversion nanoparticles (UCNPs) was developed using lanthanide oleate compounds [Ln(OA)3] as the precursor, denoted as the Ln-OA preparation method. Compared to the conventional solvothermal method for synthesizing UCNPs using lanthanide chloride compounds (LnCl3) as the precursor (denoted as the Ln-Cl method), the Ln-OA strategy exhibited the merits of high purity, reduced purification process and a uniform size in preparing core and core-shell UCNPs excited by a 980 or 808 nm near infrared (NIR) laser. This work sheds new insight on the preparation of UCNPs and promotes their application in biomedical fields.

  6. Influence of aging time of oleate precursor on the magnetic relaxation of cobalt ferrite nanoparticles synthesized by the thermal decomposition method

    International Nuclear Information System (INIS)

    Herrera, Adriana P.; Polo-Corrales, Liliana; Chavez, Ermides; Cabarcas-Bolivar, Jari; Uwakweh, Oswald N.C.; Rinaldi, Carlos

    2013-01-01

    Cobalt ferrite nanoparticles are of interest because of their room temperature coercivity and high magnetic anisotropy constant, which make them attractive in applications such as sensors based on the Brownian relaxation mechanism and probes to determine the mechanical properties of complex fluids at the nanoscale. These nanoparticles can be synthesized with a narrow size distribution by the thermal decomposition of an iron–cobalt oleate precursor in a high boiling point solvent. We studied the influence of aging time of the iron–cobalt oleate precursor on the structure, chemical composition, size, and magnetic relaxation of cobalt ferrite nanoparticles synthesized by the thermal decomposition method. The structure and thermal behavior of the iron–cobalt oleate was studied during the aging process. Infrared spectra indicated a shift in the coordination state of the oleate and iron/cobalt ions from bidentate to bridging coordination. Aging seemed to influence the thermal decomposition of the iron–cobalt oleate as determined from thermogravimmetric analysis and differential scanning calorimetry, where shifts in the temperatures corresponding to decomposition events and a narrowing of the endotherms associated with these events were observed. Aging promoted formation of the spinel crystal structure, as determined from X-ray diffraction, and influenced the nanoparticle magnetic properties, resulting in an increase in blocking temperature and magnetocrystalline anisotropy. Mossbauer spectra also indicated changes in the magnetic properties resulting from aging of the precursor oleate. Although all samples exhibited some degree of Brownian relaxation, as determined from complex susceptibility measurements in a liquid medium, aging of the iron–cobalt oleate precursor resulted in crossing of the in-phase χ′and out-of-phase χ″ components of the complex susceptibility at the frequency of the Brownian magnetic relaxation peak, as expected for nanoparticles

  7. Oleate-based hydrothermal preparation of CoFe{sub 2}O{sub 4} nanoparticles, and their magnetic properties with respect to particle size and surface coating

    Energy Technology Data Exchange (ETDEWEB)

    Repko, Anton, E-mail: anton@a-repko.sk [Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 128 43 Prague 2 (Czech Republic); Vejpravová, Jana, E-mail: vejpravo@fzu.cz [Department of Magnetic Nanosystems, Institute of Physics AS CR, v.v.i., Na Slovance 2, 182 21 Prague 8 (Czech Republic); Vacková, Taťana [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6 (Czech Republic); Zákutná, Dominika [Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 128 43 Prague 2 (Czech Republic); Nižňanský, Daniel, E-mail: daniel.niznansky@natur.cuni.cz [Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 128 43 Prague 2 (Czech Republic)

    2015-09-15

    We present a facile and high-yield synthesis of cobalt ferrite nanoparticles by hydrothermal hydrolysis of Co–Fe oleate in the presence of pentanol/octanol/toluene and water at 180 or 220 °C. The particle size (6–10 nm) was controlled by the composition of the organic solvent and temperature. Magnetic properties were then investigated with respect to the particle size and surface modification with citric acid or titanium dioxide (leading to hydrophilic particles). The as-prepared hydrophobic nanoparticles (coated by oleic acid) had a minimum inter-particle distance of 2.5 nm. Their apparent blocking temperature (estimated as a maximum of the zero-field-cooled magnetization) was 180 K, 280 K and 330 K for the particles with size of 6, 9 and 10.5 nm, respectively. Replacement of oleic acid on the surface by citric acid decreased inter-particle distance to less than 1 nm, and increased blocking temperature by ca. 10 K. On the other hand, coating with titanium dioxide, supported by nitrilotri(methylphosphonic acid), caused increase of the particle spacing, and lowering of the blocking temperature by ca. 20 K. The CoFe{sub 2}O{sub 4}@TiO{sub 2} nanoparticles were sufficiently stable in water, methanol and ethanol. The particles were also investigated by Mössbauer spectroscopy and alternating-current (AC) susceptibility measurements, and their analysis with Vögel–Fulcher and power law. Effect of different particle coating and dipolar interactions on the magnetic properties is discussed. - Highlights: • CoFe{sub 2}O{sub 4} nanoparticles were prepared by facile hydrothermal method from Co–Fe oleate. • Blocking temperature (T{sub B}) is 180–330 K for 6–10.5 nm oleate-coated particles. • The apparent T{sub B} changes with oleic acid, citrate or TiO{sub 2} coating.

  8. Monodisperse superparamagnetic nanoparticles by thermolysis of Fe(III) oleate and mandelate complexes

    Czech Academy of Sciences Publication Activity Database

    Patsula, Vitalii; Petrovský, Eduard; Kovářová, Jana; Konefal, Rafal; Horák, Daniel

    2014-01-01

    Roč. 292, č. 9 (2014), s. 2097-2110 ISSN 0303-402X R&D Projects: GA ČR GAP206/12/0381; GA MŠk 7E12053 EU Projects: European Commission(XE) 246513 - NADINE Institutional support: RVO:61389013 ; RVO:67985530 Keywords : superparamagnetic * nanoparticles * iron oxide Subject RIV: CD - Macromolecular Chemistry; DE - Earth Magnetism, Geodesy, Geography (GFU-E) Impact factor: 1.865, year: 2014

  9. Radioluminescence studies of colloidal oleate-capped β-Na(Gd,Lu)F4:Ln3+ nanoparticles (Ln = Ce, Eu, Tb).

    Science.gov (United States)

    Cooper, Daniel R; Capobianco, John A; Seuntjens, Jan

    2018-04-26

    We report on the synthesis, characterization, and radioluminescence quantification of several new varieties of nanoparticles with the general composition β-NaLnF4, incorporating known luminescent activator/sensitizer pairs. Using Monte Carlo modeling to complement luminescence measurements, we have calculated the radioluminescence yields and intrinsic conversion efficiencies of colloidally-dispersed nanoparticles by comparison to an organic liquid scintillator. While five of the compositions had low to modest radioluminescence yields relative to bulk materials, colloidal β-Na(Lu0.65Gd0.2Tb0.15)F4 displayed a strong output of 39 460 photons per MeV absorbed, comparable to some of the best non-hygroscopic bulk crystal scintillators and X-ray phosphors such as Gd2O2S:Tb. Measurements of β-Na(Lu0.65Gd0.2Tb0.15)F4 powder samples revealed persistent luminescence as well as stable charge trapping, warranting further investigation.

  10. Pengaruh Waktu Reaksi dan Rasio Molar terhadap Asam Oleat dengan Butanol pada Sintesa Plastisizer Butil Oleat

    OpenAIRE

    Selly, Mers; Nirwana, Nirwana; HS, Irdoni

    2015-01-01

    The amount of palm oil feedstock in Indonesia, encourages the development of palm oil industry product diversification. One alternative for providing value-added palm oil by esterification of oleic acid is contained in palm oil became known as butyl oleate plasticizers. Plasticizer is an additive compound added to polymer to improve flexibility and workabilitas. Step of this research is the preparation of H-zeolite catalysts and synthesis of the plasticizer butyl oleate esterification using n...

  11. Molecular modeling studies of oleate adsorption on iron oxides

    Energy Technology Data Exchange (ETDEWEB)

    Rath, Swagat S. [CSIR-Institute of Minerals and Materials Technology, Bhubaneswar (India); Sinha, Nishant [Accelrys K.K, Bengaluru (India); Sahoo, Hrushikesh [CSIR-Institute of Minerals and Materials Technology, Bhubaneswar (India); Das, Bisweswar, E-mail: bdas@immt.res.in [CSIR-Institute of Minerals and Materials Technology, Bhubaneswar (India); Mishra, Barada Kanta [CSIR-Institute of Minerals and Materials Technology, Bhubaneswar (India)

    2014-03-01

    Graphical abstract: - Highlights: • Plane wave periodic DFT study of oleate-iron oxide interaction. • Magnetite-oleate complex is more stable than hematite and goethite. • Flotation recovery of magnetite is more compared to the other two oxides. - Abstract: Comparative studies of oleate interaction with hematite, magnetite and goethite using density functional calculations are presented. The approach is illustrated by carrying out geometric optimization of oleate on the stable and most exposed planes of hematite, magnetite, and goethite. Interaction energies for oleate-mineral surface have been determined, based on which, magnetite is found to be forming the most stable complex with oleate. Trend as obtained from the quantum chemical calculations has been validated by contact angle measurements and flotation studies on hematite, magnetite and goethite with sodium oleate at different pH and collector concentrations.

  12. Molecular modeling studies of oleate adsorption on iron oxides

    International Nuclear Information System (INIS)

    Rath, Swagat S.; Sinha, Nishant; Sahoo, Hrushikesh; Das, Bisweswar; Mishra, Barada Kanta

    2014-01-01

    Graphical abstract: - Highlights: • Plane wave periodic DFT study of oleate-iron oxide interaction. • Magnetite-oleate complex is more stable than hematite and goethite. • Flotation recovery of magnetite is more compared to the other two oxides. - Abstract: Comparative studies of oleate interaction with hematite, magnetite and goethite using density functional calculations are presented. The approach is illustrated by carrying out geometric optimization of oleate on the stable and most exposed planes of hematite, magnetite, and goethite. Interaction energies for oleate-mineral surface have been determined, based on which, magnetite is found to be forming the most stable complex with oleate. Trend as obtained from the quantum chemical calculations has been validated by contact angle measurements and flotation studies on hematite, magnetite and goethite with sodium oleate at different pH and collector concentrations

  13. Diminazene aceturate-sodium oleate complex for the treatment of ...

    African Journals Online (AJOL)

    The aim of this study is to improve the efficacy of diminazene aceturate via complex formation with sodium oleate. The complex was subjected to various in vitro and in vivo tests to assess its properties, toxicity and efficacy against Trypanosoma brucei brucei infections in comparison to pure drug. Results revealed that the ...

  14. Hydroformylation of methyl oleate catalyzed by rhodium complexes

    International Nuclear Information System (INIS)

    Mendes, Ana Nery Furlan; Rosa, Ricardo Gomes da; Gregorio, Jose Ribeiro

    2012-01-01

    In this work, we describe the hydroformylation of methyl oleate catalyzed by several rhodium complexes. Parameters including total pressure, phosphorous/rhodium and CO/H 2 ratio, temperature and phosphorous ligands were scanned. Total conversion of the starting double bonds was achieved while maintaining excellent selectivity in aldehydes. (author)

  15. 75 FR 40751 - Castor Oil, Ethoxylated, Oleate; Tolerance Exemption

    Science.gov (United States)

    2010-07-14

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 180 [EPA-HQ-OPP-2010-0231; FRL-8834-4] Castor Oil... castor oil, ethoxylated, oleate (CAS Reg. No. 220037-02-5) with a minimum number average molecular weight... regulation eliminates the need to establish a maximum permissible level for residues of castor oil...

  16. Lactose oleate as new biocompatible surfactant for pharmaceutical applications.

    Science.gov (United States)

    Perinelli, D R; Lucarini, S; Fagioli, L; Campana, R; Vllasaliu, D; Duranti, A; Casettari, L

    2018-03-01

    Sugar fatty acid esters are an interesting class of non-ionic, biocompatible and biodegradable sugar-based surfactants, recently emerged as a valid alternative to the traditional commonly employed (e.g. polysorbates and polyethylene glycol derivatives). By varying the polar head (carbohydrate moiety) and the hydrophobic tail (fatty acid), surfactants with different physico-chemical characteristics can be easily prepared. While many research papers have focused on sucrose derivatives, relatively few studies have been carried out on lactose-based surfactants. In this work, we present the synthesis and the physico-chemical characterization of lactose oleate. The new derivative was obtained by enzymatic mono-esterification of lactose with oleic acid. Thermal, surface, and aggregation properties of the surfactant were studied in detail and the cytotoxicity profile was investigated by MTS and LDH assays on intestinal Caco-2 monolayers. Transepithelial electrical resistance (TEER) measurements on Caco-2 cells showed a transient and reversible effect on the tight junctions opening, which correlates with the increased permeability of 4 kDa fluorescein-labelled dextran (as model for macromolecular drugs) in a concentration dependent manner. Moreover, lactose oleate displayed a satisfactory antimicrobial activity over a range of Gram-positive and Gram-negative bacteria. Overall, the obtained results are promising for a further development of lactose oleate as an intestinal absorption enhancer and/or an alternative biodegradable preservative for pharmaceutical and food applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Sensory reception of the primer pheromone ethyl oleate

    Science.gov (United States)

    Muenz, Thomas S.; Maisonnasse, Alban; Plettner, Erika; Le Conte, Yves; Rössler, Wolfgang

    2012-05-01

    Social work force distribution in honeybee colonies critically depends on subtle adjustments of an age-related polyethism. Pheromones play a crucial role in adjusting physiological and behavioral maturation of nurse bees to foragers. In addition to primer effects of brood pheromone and queen mandibular pheromone—both were shown to influence onset of foraging—direct worker-worker interactions influence adult behavioral maturation. These interactions were narrowed down to the primer pheromone ethyl oleate, which is present at high concentrations in foragers, almost absent in young bees and was shown to delay the onset of foraging. Based on chemical analyses, physiological recordings from the antenna (electroantennograms) and the antennal lobe (calcium imaging), and behavioral assays (associative conditioning of the proboscis extension response), we present evidence that ethyl oleate is most abundant on the cuticle, received by olfactory receptors on the antenna, processed in glomeruli of the antennal lobe, and learned in olfactory centers of the brain. The results are highly suggestive that the primer pheromone ethyl oleate is transmitted and perceived between individuals via olfaction at close range.

  18. The adsorption of oleate and its effect on the flotation of monazite

    International Nuclear Information System (INIS)

    Tran, Tam; Cheng, Tawui; Patridge, A.C.; Wong, P.L.M.

    1993-01-01

    The absorption of sodium oleate during the flotation of monazite has been investigated. Thermodynamic modelling was employed to study the surface chemistry of monazite. The experimental results show that the ionic distribution of the first hydroxyl rare earth species, RE(OH) 2+ , correlates well with the adsorption and flotation results. It is suggested that hydroxylation of rare earth cations at mineral surfaces could provide active sites for the chemisorption of oleate ions (sodium oleate) which enhances flotation. 13 refs., 11 figs

  19. Density Functional Theory and Atomic Force Microscopy Study of Oleate Functioned on Siderite Surface

    Directory of Open Access Journals (Sweden)

    Lixia Li

    2018-01-01

    Full Text Available Efficiently discovering the interaction of the collector oleate and siderite is of great significance for understanding the inherent function of siderite weakening hematite reverse flotation. For this purpose, investigation of the adsorption behavior of oleate on siderite surface was performed by density functional theory (DFT calculations associating with atomic force microscopy (AFM imaging. The siderite crystal geometry was computationally optimized via convergence tests. Calculated results of the interaction energy and the Mulliken population verified that the collector oleate adsorbed on siderite surface and the covalent bond was established as a result of electrons transferring from O1 atoms (in oleate molecule to Fe1 atoms (in siderite lattice. Therefore, valence-electrons’ configurations of Fe1 and O1 changed into 3d6.514s0.37 and 2s1.832p4.73 from 3d6.214s0.31 and 2s1.83p4.88 correspondingly. Siderite surfaces with or without oleate functioned were examined with the aid of AFM imaging in PeakForce Tapping mode, and the functioned siderite surface was found to be covered by vesicular membrane matters with the average roughness of 16.4 nm assuring the oleate adsorption. These results contributed to comprehending the interaction of oleate and siderite.

  20. Molecular dynamics simulation of siderite-hematite-quartz flotation with sodium oleate

    Science.gov (United States)

    Li, Lixia; Hao, Haiqing; Yuan, Zhitao; Liu, Jiongtian

    2017-10-01

    Models of sodium oleate adsorption on siderite, hematite and quartz were investigated by molecular dynamic simulation, respectively. Surface energy was calculated to confirm the cleavage plan of hematite and quartz. Both natural cleavage plane of siderite and calculated plane were used to investigate the flotation of the three minerals. Based on the molecular simulation in solution with water as medium, adsorption quantity and interaction capability of oleate ions on the three minerals indicated that siderite could be collected efficiently by sodium oleate at neutral pH. Results of flotation experiments were further demonstrated by analysis of relative concentration of carbon atoms and oxygen atoms.

  1. BIOMASS, OLEATE, AND OTHER POSSIBLE SUBSTRATES FOR CHLOROETHENE REDUCTIVE DEHALOGENATION. (R825689C084)

    Science.gov (United States)

    AbstractComparative studies were conducted with benzoate, propionate, oleate, tetrabutyl orthosilicate (TBOS), and biomass as substrates for dehalogenation of cis-1,2-dichloroethene (cDCE). All five substrates supported dehalogenation. Sufficient calcium was re...

  2. Hydrophobic agglomeration of apatite fines induced by sodium oleate in aqueous solutions

    Directory of Open Access Journals (Sweden)

    Bingqiao Yang

    2018-06-01

    Full Text Available In this work, the hydrophobic agglomeration of apatite fines induced by sodium oleate in aqueous solutions has been investigated through the measurement of agglomeration degree and fractal dimension. The results showed that the agglomeration degree of apatite fines and agglomerates morphology was strongly depended on sodium oleate concentration, pH, stirring speed and time. Better agglomeration degree and more regular agglomerates were achieved at sodium oleate concentration of 5 × 10−5 mol/L under neutral condition. The critical stirring speed for agglomerates rupture was 1000 rev/min, above which, prolonged stirring time would cause breakage and restructure of the agglomerates after a certain stirring time, resulting in lower agglomeration degree and more regular agglomerates. The agglomeration degree of apatite fines could be greatly enhanced with the addition of emulsified kerosene, but only if the apatite surface was hydrophobic enough. Keywords: Hydrophobic agglomeration, Apatite fines, Agglomeration degree, Fractal dimension, Sodium oleate

  3. Preparation and properties of Mg/Al layered double hydroxide-oleate and -stearate intercalation compounds

    International Nuclear Information System (INIS)

    Inomata, Kazuya; Ogawa, Makoto

    2006-01-01

    Mg/Al layered double hydroxide-oleate and -stearate intercalation compounds were successfully synthesized by the reconstruction method under hydrothermal conditions from calcined hydrotalcite. The intercalation compounds were characterized by the high structural regularity as evidenced by the sharp and intense X-ray diffraction peaks. The oleate intercalated layered double hydroxide exhibits unique physicochemical properties such as a reversible thermoresponsive change in the basal spacing and swelling in organic solvents such as n-alkanes. (author)

  4. Effect of continuous oleate addition on microbial communities involved in anaerobic digestion process

    DEFF Research Database (Denmark)

    Baserba, Manel Garrido; Angelidaki, Irini; Karakashev, Dimitar Borisov

    2012-01-01

    bacterial consortium related to functional specialization of the species towards oleate degradation. For the archaeal domain, the sequences were affiliated within Euryarchaeota phylum with three major groups (Methanosarcina, Methanosaeta and Methanobacterium genera). Results obtained in this study deliver...... a comprehensive picture on oleate degrading microbial communities in high organic strength wastewater. The findings might be utilized for development of strategies for biogas production from lipid-riched wastes....

  5. Mechanistic features of isomerizing alkoxycarbonylation of methyl oleate

    KAUST Repository

    Roesle, Philipp

    2012-10-24

    The weakly coordinated triflate complex [(P̂P)Pd(OTf)] +(OTf)- (1) (P̂P = 1,3-bis(di-tert- butylphosphino)propane) is a suitable reactive precursor for mechanistic studies of the isomerizing alkoxcarbonylation of methyl oleate. Addition of CH 3OH or CD3OD to 1 forms the hydride species [(P ̂P)PdH(CH3OH)]+(OTf)- (2-CH3OH) or the deuteride [(P̂P)PdD(CD 3OD)]+(OTf)- (2D-CD3OD), respectively. Further reaction with pyridine cleanly affords the stable and isolable hydride [(P̂P)PdH(pyridine)]+(OTf) - (2-pyr). This complex yields the hydride fragment free of methanol by abstraction of pyridine with BF3OEt2, and thus provides an entry to mechanistic observations including intermediates reactive toward methanol. Exposure of methyl oleate (100 equiv) to 2D-CD 3OD resulted in rapid isomerization to the thermodynamic isomer distribution, 94.3% of internal olefins, 5.5% of α,β-unsaturated ester and <0.2% of terminal olefin. Reaction of 2-pyr/BF3OEt 2 with a stoichiometric amount of 1-13C-labeled 1-octene at -80 °C yields a 50:50 mixture of the linear alkyls [(P ̂P)Pd13CH2(CH2) 6CH3]+ and [(P̂P)PdCH 2(CH2)6 13CH3] + (4a and 4b). Further reaction with 13CO yields the linear acyls [(P̂P)Pd13C(=O)12/13CH 2(CH2)6 12/13CH3(L)] + (5-L; L = solvent or 13CO). Reaction of 2-pyr/BF 3·OEt2 with a stoichiometric amount of methyl oleate at -80 °C also resulted in fast isomerization to form a linear alkyl species [(P̂P)PdCH2(CH2) 16C(=O)OCH3]+ (6) and a branched alkyl stabilized by coordination of the ester carbonyl group as a four membered chelate [(P̂P)PdCH{(CH2)15CH 3}C(=O)OCH3]+ (7). Addition of carbon monoxide (2.5 equiv) at -80 °C resulted in insertion to form the linear acyl carbonyl [(P̂P)PdC(=O)(CH2)17C(=O)OCH 3(CO)]+ (8-CO) and the five-membered chelate [(P ̂P)PdC(=O)CH{(CH2)15CH3}C(=O) OCH3]+ (9). Exposure of 8-CO and 9 to 13CO at -50 °C results in gradual incorporation of the 13C label. Reversibility of 7 + CO ⇄ 9 is also evidenced by ΔG = -2.9 kcal mol-1 and

  6. Oleate induces KATP channel-dependent hyperpolarization in mouse hypothalamic glucose-excited neurons without altering cellular energy charge.

    Science.gov (United States)

    Dadak, Selma; Beall, Craig; Vlachaki Walker, Julia M; Soutar, Marc P M; McCrimmon, Rory J; Ashford, Michael L J

    2017-03-27

    The unsaturated fatty acid, oleate exhibits anorexigenic properties reducing food intake and hepatic glucose output. However, its mechanism of action in the hypothalamus has not been fully determined. This study investigated the effects of oleate and glucose on GT1-7 mouse hypothalamic cells (a model of glucose-excited (GE) neurons) and mouse arcuate nucleus (ARC) neurons. Whole-cell and perforated patch-clamp recordings, immunoblotting and cell energy status measures were used to investigate oleate- and glucose-sensing properties of mouse hypothalamic neurons. Oleate or lowered glucose concentration caused hyperpolarization and inhibition of firing of GT1-7 cells by the activation of ATP-sensitive K + channels (K ATP ). This effect of oleate was not dependent on fatty acid oxidation or raised AMP-activated protein kinase activity or prevented by the presence of the UCP2 inhibitor genipin. Oleate did not alter intracellular calcium, indicating that CD36/fatty acid translocase may not play a role. However, oleate activation of K ATP may require ATP metabolism. The short-chain fatty acid octanoate was unable to replicate the actions of oleate on GT1-7 cells. Although oleate decreased GT1-7 cell mitochondrial membrane potential there was no change in total cellular ATP or ATP/ADP ratios. Perforated patch and whole-cell recordings from mouse hypothalamic slices demonstrated that oleate hyperpolarized a subpopulation of ARC GE neurons by K ATP activation. Additionally, in a separate small population of ARC neurons, oleate application or lowered glucose concentration caused membrane depolarization. In conclusion, oleate induces K ATP- dependent hyperpolarization and inhibition of firing of a subgroup of GE hypothalamic neurons without altering cellular energy charge. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. ENZYMATIC PRODUCTION OF ETHYL OLEATE ESTER USING A LIPASE FROM CANDIDA ANTARCTICA B

    Directory of Open Access Journals (Sweden)

    N. Sampaio Neta

    2012-05-01

    Full Text Available Lipases are biocatalysts of great importance in different areas, being able to catalyze reactions in aqueous or organic media. Furthermore, these enzymes are capable of using several substrates being stable in a wide range of pH and temperatures. Lipases promote the esterification between fatty acids and ethanol producing oleate esters. The aim of this work is to produce ethyl oleate ester by enzymatic esterification of oleic acid with ethanol. A lipase from Candida antarctica type B was used at a temperature of 55 °C. The reaction was conducted using oleic acid, sodium sulfate anhydrous, lipase and ethanol, with a ratio of oleic acid (0.03 mol or 10 ml, lipase (0.1 mol or 0.01 g, sodium sulfate anhydrous (5 g and ethanol 99 % (100 ml. Several reaction times were studied, namely 48, 72, 96 and 120 hours. Nuclear Magnetic Resonance (1H and 13C and Infrared spectra confirmed the production of ethyl oleate ester for the studied conditions. The highest ethyl oleate production yield was obtained for 96 hours reaction time. Ethyl oleate esters have been reported to possess interesting applications in several industrial fields, such as food, aromatics, cosmetics, detergents, flavors and pharmaceuticals.

  8. Recovery and Purification of Spanish High Oleate Peanut ‘AT-9899’

    Science.gov (United States)

    “AT-9899” developed in Golden Peanut Company in 2002 is a Spanish market type peanut. It has spreading growth habit and mid maturity. Due to high level of oleate and small seed size, it is grown specifically for confectionery market in the USA and Mexico. However, from the time of development and ...

  9. A real support effect on the hydrodeoxygenation of methyl oleate by sulfided NiMo catalysts

    NARCIS (Netherlands)

    Coumans, A.E.; Hensen, E.J.M.

    2017-01-01

    The effect of the support on the catalytic performance of sulfided NiMo in the hydrodeoxygenation of methyl oleate as a model compound for triglyceride upgrading to green diesel was investigated. NiMo sulfides were prepared by impregnation and sulfidation on activated carbon, silica, γ-alumina and

  10. Novel nanoparticulate carrier system based on carnauba wax and decyl oleate for the dispersion of inorganic sunscreens in aqueous media.

    Science.gov (United States)

    Villalobos-Hernández, J R; Müller-Goymann, C C

    2005-05-01

    The purpose of this study was to characterize carrier systems for inorganic sunscreens based on a matrix composed of carnauba wax and decyl oleate. Ultraviolet radiation attenuators like barium sulfate, strontium carbonate and titanium dioxide were tested. The lipid matrices were used either as capsules or as accompanying vehicles for the pigments in aqueous dispersions. Manufacturing was performed using high pressure homogenization at 300bar and a temperature of 75 degrees C. To evaluate the effect of the pigments on the crystalline structure of the wax-oil mixture, X-ray diffraction and differential scanning calorimetry were used. Further parameters determined were particle size, polydispersity index, z-potential, viscosity and sun protection factor (SPF). Transmission electron microscopy was also applied for visualization of nanoparticles. The X-ray diffraction patterns and the melting points of the lipid mixtures remained unchanged after the pigments were added. The particle sizes of the encapsulated species ranged from 239 to 749.9nm showing polydispersity values between 0.100 and 0.425. Surface charge measurements comprising values up to -40.8mV denoted the presence of stable dispersions. The formulations could be described as ideal viscous presenting viscosities in a range of 1.40-20.5mPas. Significant increases in SPF up to about 50 were reported after the encapsulation of titanium dioxide. Freeze fracture micrographs confirmed the presence of encapsulated inorganic crystals.

  11. The adsorption of oleate on powellite and fluorapatite: A joint experimental and theoretical simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Zhen, Wang, E-mail: 544590553@qq.com

    2017-07-01

    Highlights: • Flotation of powellite from fluorapatite at pH 2–7 using 50–80 mg/L sodium oleate can be achieved. • Oleate chemisorbs on powellite by interaction of carboxylate group with lattice Ca atoms. • Calcium dioleate precipitates can also adsorb on powellite surface. - Abstract: Flotation and adsorption performance of sodium oleate(NaOl)on powellite and fluorapatite were investigated in this work through micro-flotation tests, work of adhesion calculations, molecular dynamics simulation, micro-topography studies and FTIR measurements. The micro-flotation results show a similar flotation behaviors of powellite and fluorapatite under alkaline conditions, but a considerable difference in mineral recoveries in the pH range 2–7, which demonstrates the possibilities for separating powillite from fluorapatite under acidic conditions. The great difference in mineral recovery displays a good accordance with the obvious difference in the work of adhesion of powellite and fluorapatite at NaOl dosage range of 40–80 mg/L, obtained from flotation and contact angle measurements, respectively. The more negative interaction energy (ΔE) between NaOl and powellite/water interface from molecular dynamics simulation reveals a more easily adsorption of NaOl onto powellite than onto fluorapatite, which excellently matches with the results of flotation and work of adhesion. The results of micro-topography study shows that the adsorption of NaOl on powellite is mainly ascribed to the chemisorption of oleate ions with Ca{sup 2+} on powellite lattice or the precipitation of calcium dioleate agglomerates on powellite surface when it was in the solution without or with Ca{sup 2+}, respectively. The FTIR measurements further confirm the chemisorption of oleate ions with Ca{sup 2+} active sites on powellite surface.

  12. The adsorption of oleate on powellite and fluorapatite: A joint experimental and theoretical simulation study

    International Nuclear Information System (INIS)

    Zhen, Wang

    2017-01-01

    Highlights: • Flotation of powellite from fluorapatite at pH 2–7 using 50–80 mg/L sodium oleate can be achieved. • Oleate chemisorbs on powellite by interaction of carboxylate group with lattice Ca atoms. • Calcium dioleate precipitates can also adsorb on powellite surface. - Abstract: Flotation and adsorption performance of sodium oleate(NaOl)on powellite and fluorapatite were investigated in this work through micro-flotation tests, work of adhesion calculations, molecular dynamics simulation, micro-topography studies and FTIR measurements. The micro-flotation results show a similar flotation behaviors of powellite and fluorapatite under alkaline conditions, but a considerable difference in mineral recoveries in the pH range 2–7, which demonstrates the possibilities for separating powillite from fluorapatite under acidic conditions. The great difference in mineral recovery displays a good accordance with the obvious difference in the work of adhesion of powellite and fluorapatite at NaOl dosage range of 40–80 mg/L, obtained from flotation and contact angle measurements, respectively. The more negative interaction energy (ΔE) between NaOl and powellite/water interface from molecular dynamics simulation reveals a more easily adsorption of NaOl onto powellite than onto fluorapatite, which excellently matches with the results of flotation and work of adhesion. The results of micro-topography study shows that the adsorption of NaOl on powellite is mainly ascribed to the chemisorption of oleate ions with Ca"2"+ on powellite lattice or the precipitation of calcium dioleate agglomerates on powellite surface when it was in the solution without or with Ca"2"+, respectively. The FTIR measurements further confirm the chemisorption of oleate ions with Ca"2"+ active sites on powellite surface.

  13. Supercooled smectic nanoparticles

    DEFF Research Database (Denmark)

    Kuntsche, Judith; Koch, Michel H J; Fahr, Alfred

    2009-01-01

    Cholesteryl nonanoate (CN), myristate (CM), palmitate (CP) and oleate (CO) alone or in combination were evaluated as matrix lipids for the preparation of supercooled smectic nanoparticles with a high stability against recrystallization during storage. The phase behavior of the cholesterol esters......, laser diffraction combined with polarizing intensity differential scattering, DSC and SAXS. The morphology of selected formulations was studied by freeze-fracture electron microscopy. All smectic nanoparticles with a mixed cholesterol ester matrix were stable against recrystallization when stored...... at room temperature. Nanoparticles with a pure CN and mixed CM/CN matrix with a high fraction of CN (60% of the whole lipid matrix) could even be stored at 4 degrees C for at least 18 months without any recrystallization. As smectic nanoparticles are studied especially with regard to parenteral...

  14. Effectiveness of Sclerotherapy with Ethanol Amine Oleate in Benign Oral and Perioral Vascular Lesions

    Directory of Open Access Journals (Sweden)

    Leeza Pradhan

    2011-09-01

    Full Text Available Background: Vascular lesions presentation very with age & anatomical location. There are no parameters to assess its therapeutic efficacy. Objective: This prospective experimental study was designed to find out the effectiveness of Sclerotherapy with Ethanol Amine Oleate in the treatment of Benign Oral and Perioral Vascular Lesions. Methods: In this study, 32 patients, aged 1½ to 40 years with oral and perioral vascular lesions were included. Diagnosis was made by accurate history, clinical examination and in some cases Color Doppler examination, MRI and/or Angiogram were done for confirmation. Intralesional injection of Ethanol Amine Oleate was given at an interval of 2weeks between each session. Photographs were also taken during subsequent session to document the effect of injection. Results: At 8weeks after the final Sclerotherapeutic session, the results were graded as: Excellent: for extinguished and symmetrical appearance obtained; Good: for definitive reduction obtained; Fair: for slight reduction obtained and Poor: for lesion unchanged or worsened. Results with grades, excellent and good are considered effective. The efficacy of the treatment was evaluated 8 weeks after the final Sclerotherapeutic session. Out of 32 patients, 34.4% had excellent result, 53.1% had good result, 6.3% had fair result and 6.3% had poor result. Conclusion: Sclerotherapy with Ethanol Amine Oleate is a safe and less invasive method with minimal risk to the patient. It can be the treatment of choice for symptomatic Vascular lesions. Key words: Vascular Lesions (VLs; Sclerotherapy; Ethanol Amine Oleate (EAO. DOI: http://dx.doi.org/10.3329/bsmmuj.v4i2.8641 BSMMU J 2011; 4(2:110-115

  15. The adsorption of oleate on powellite and fluorapatite: A joint experimental and theoretical simulation study

    Science.gov (United States)

    Zhen, Wang

    2017-07-01

    Flotation and adsorption performance of sodium oleate(NaOl)on powellite and fluorapatite were investigated in this work through micro-flotation tests, work of adhesion calculations, molecular dynamics simulation, micro-topography studies and FTIR measurements. The micro-flotation results show a similar flotation behaviors of powellite and fluorapatite under alkaline conditions, but a considerable difference in mineral recoveries in the pH range 2-7, which demonstrates the possibilities for separating powillite from fluorapatite under acidic conditions. The great difference in mineral recovery displays a good accordance with the obvious difference in the work of adhesion of powellite and fluorapatite at NaOl dosage range of 40-80 mg/L, obtained from flotation and contact angle measurements, respectively. The more negative interaction energy (ΔE) between NaOl and powellite/water interface from molecular dynamics simulation reveals a more easily adsorption of NaOl onto powellite than onto fluorapatite, which excellently matches with the results of flotation and work of adhesion. The results of micro-topography study shows that the adsorption of NaOl on powellite is mainly ascribed to the chemisorption of oleate ions with Ca2+ on powellite lattice or the precipitation of calcium dioleate agglomerates on powellite surface when it was in the solution without or with Ca2+, respectively. The FTIR measurements further confirm the chemisorption of oleate ions with Ca2+ active sites on powellite surface.

  16. New Insights into the Adsorption of Oleate on Cassiterite: A DFT Study

    Directory of Open Access Journals (Sweden)

    Jie Liu

    2017-11-01

    Full Text Available A new understanding of the adsorption mechanism of oleate on cassiterite surfaces is presented by density functional theory (DFT calculations. Various convergence tests were conducted to optimize the parameter settings for the rational simulation of cassiterite bulk unit cell and surface slabs. The calculated surface energies of four low-index cassiterite cleavage planes form an increasing sequence of (110 < (100 < (101 < (001, demonstrating (110 is the most thermodynamically stable surface of cassiterite. The interaction strengths of the oleate ion (OL−, OH−, and H2O on the SnO2 (110 face are in the order of H2O < OH− < OL−, which reveals that the OL− is able to replace the adsorbed H2O and OH− on the mineral surfaces. Mulliken population calculations and electron density difference analysis show that electrons transfer from the Sn atoms on the cassiterite (110 surface to the O atoms offered by carboxyl groups of oleate during the interaction. The populations of newly formed O1–Sn1 and O2–Sn2 bonds are 0.30 and 0.29, respectively, indicating that these two bonds are of a very low covalency. Density of states analysis reveals that the formation of an O1–Sn1 bond mainly results from the 5s and 5p orbitals of the Sn1 atom and the 2p orbital of the O1 atom.

  17. The novel zinc cluster regulator Tog1 plays important roles in oleate utilization and oxidative stress response in Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Thepnok, Piyasuda; Ratanakhanokchai, Khanok; Soontorngun, Nitnipa, E-mail: nitnipa.soo@kmutt.ac.th

    2014-08-08

    Highlights: • TOG1 deletion results in defective growth on non-fermentable carbon sources. • Removal of TOG1 sensitizes cells to oxidative stress. • Tog1 directly binds and activates expression of oleate utilizing genes. • The Δtog1 cells display reduced peroxisomal content in oleate culture. • S. cerevisiae zinc cluster Tog1 is a novel activator of oleate utilization. - Abstract: Many zinc cluster proteins have been shown to play a role in the transcriptional regulation of glucose-repressible genes during glucose exhaustion and diauxic shift. Here, we studied an additional member of this family called Yer184c (herein called Tog1) for transcriptional regulator of oleate. Our results showed that a Δtog1 strain displays impaired growth with several non-fermentable carbons. Tog1 is also implicated in oxidative stress tolerance. Importantly, during the glucose–oleate shift, combined results from quantitative real time-PCR and chromatin immunoprecipitation (ChIP) experiments showed that Tog1 acts as a direct activator of oleate utilizing genes, encoded key enzymes in β-Oxidation and NADPH regeneration (POX1, FOX2, POT1 and IDP2), the glyoxylate shunt (MLS1 and ICL1), and gluconeogenesis (PCK1 and FBP1). A transmission electron microscopy (TEM) analysis of the Δtog1 strain assayed with oleate also revealed a substantial decrease in peroxisome abundance that is vital for fatty acid oxidation. Overall, our results clearly demonstrated that Tog1 is a newly characterized zinc cluster regulator that functions in the complex network of non-fermentable carbon metabolism in Saccharomycescerevisiae.

  18. nanoparticles

    Science.gov (United States)

    Andreu-Cabedo, Patricia; Mondragon, Rosa; Hernandez, Leonor; Martinez-Cuenca, Raul; Cabedo, Luis; Julia, J. Enrique

    2014-10-01

    Thermal energy storage (TES) is extremely important in concentrated solar power (CSP) plants since it represents the main difference and advantage of CSP plants with respect to other renewable energy sources such as wind, photovoltaic, etc. CSP represents a low-carbon emission renewable source of energy, and TES allows CSP plants to have energy availability and dispatchability using available industrial technologies. Molten salts are used in CSP plants as a TES material because of their high operational temperature and stability of up to 500°C. Their main drawbacks are their relative poor thermal properties and energy storage density. A simple cost-effective way to improve thermal properties of fluids is to dope them with nanoparticles, thus obtaining the so-called salt-based nanofluids. In this work, solar salt used in CSP plants (60% NaNO3 + 40% KNO3) was doped with silica nanoparticles at different solid mass concentrations (from 0.5% to 2%). Specific heat was measured by means of differential scanning calorimetry (DSC). A maximum increase of 25.03% was found at an optimal concentration of 1 wt.% of nanoparticles. The size distribution of nanoparticle clusters present in the salt at each concentration was evaluated by means of scanning electron microscopy (SEM) and image processing, as well as by means of dynamic light scattering (DLS). The cluster size and the specific surface available depended on the solid content, and a relationship between the specific heat increment and the available particle surface area was obtained. It was proved that the mechanism involved in the specific heat increment is based on a surface phenomenon. Stability of samples was tested for several thermal cycles and thermogravimetric analysis at high temperature was carried out, the samples being stable.

  19. Synthesis and magnetic characterizations of uniform iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Jiang, FuYi; Li, XiaoYi; Zhu, Yuan; Tang, ZiKang

    2014-01-01

    Uniform iron oxide nanoparticles with a cubic shape were prepared by the decomposition of homemade iron oleate in 1-octadecene with the presence of oleic acid. The particle shape and size uniformity are sensitive to the quantity of oleic acid. XRD, HRTEM and SAED results indicated that the main phase content of as-prepared iron oxide nanoparticles is Fe 3 O 4 with an inverse spinel structure. Magnetic measurements revealed that the as-prepared iron oxide nanoparticles display a ferromagnetic behavior with a blocking temperature of 295 K. At low temperatures the magnetic anisotropy of the aligned nanoparticles caused the appearance of a hysteresis loop.

  20. A rapid phospholipase A2 bioassay using 14C-oleate-labelled E. coli bacterias.

    Science.gov (United States)

    Meyer, T; von Wichert, P; Weins, D

    1989-02-01

    Two methods of phospholipase A2 determination using 14C-labelled E. coli bacterias as substrate were compared. One method works with a filter membrane for separation of cleaved 14C-oleate from remaining phospholipids, the other uses the well-known thin-layer chromatography for lipid analysis. Some features of human serum phospholipase A2 regarding pH and Ca2+ dependency were investigated. Possible sources of errors were discussed. It was shown that either method can differentiate between normal and pathologically elevated phospholipase A2 levels, but that the filter method is superior in terms of sensitivity and workload.

  1. Identification and characterization of an oleate hydratase-encoding gene from Bifidobacterium breve.

    Science.gov (United States)

    O'Connell, Kerry Joan; Motherway, Mary O'Connell; Hennessey, Alan A; Brodhun, Florian; Ross, R Paul; Feussner, Ivo; Stanton, Catherine; Fitzgerald, Gerald F; van Sinderen, Douwe

    2013-01-01

    Bifidobacteria are common commensals of the mammalian gastrointestinal tract. Previous studies have suggested that a bifidobacterial myosin cross reactive antigen (MCRA) protein plays a role in bacterial stress tolerance, while this protein has also been linked to the biosynthesis of conjugated linoleic acid (CLA) in bifidobacteria. In order to increase our understanding on the role of MCRA in bifidobacteria we created and analyzed an insertion mutant of the MCRA-encoding gene of B. breve NCFB 2258. Our results demonstrate that the MCRA protein of B. breve NCFB 2258 does not appear to play a role in CLA production, yet is an oleate hydratase, which contributes to bifidobacterial solvent stress protection.

  2. REAKSI KATALITIS ESTERIFIKASI ASAM OLEAT DAN METANOL MENJADI BIODIESEL DENGAN METODE DISTILASI REAKTIF

    Directory of Open Access Journals (Sweden)

    Kusmiyati Kusmiyati

    2012-01-01

    Full Text Available Biodiesel is an alternative diesel fuel that is produced from vegetable oils and animal fats. Generally, it is formed by trans etherification reaction of triglycerides in the vegetable oil or animal fat with an alcohol. In this work, etherification reaction was carried out using oleic acid, methanol and sulphuric acid as a catalyst by reactive distillation method. In order to determine the best conditions for biodiesel production by reactive distillation, the experiments were carried out at different temperature (1000C, 1200C, 1500C and 1800C using methanol/oleic acid molar ratios (1:1, 5:1, 6:1, 7:1, 8:1, catalyst/ oleic acid molar ratios (0.5%wt, 1%wt, 1.5%wt and 2%wt and reaction times (15, 30, 45, 60, 75 and 90 minutes. Result show that at temperature 1800C, methanol/oleic acid molar ratio of 8:1, amount of catalyst 1% for 90 minute reaction time gives the highest conversion of oleic acid above 0.9581. Biodiesel product from oleic acid was analyzed by ASTM (American Standard for Testing Material. The results show that the biodiesel produced has the quality required to be a diesel substitute. Biodiesel merupakan salah satu bahan bakar alternatif pengganti bahan bakar fosil yang diproduksi dari bahan baku minyak nabati dan lemak hewan. Secara umum biodiesel diproduksi melalui reaksi transesterifikasi minyak nabati atau lemak hewan dan alkohol. Pada penelitian ini proses esterifikasi pada pembuatan biodiesel menggunakan bahan baku asam oleat murni (99%, metanol dan katalis asam sulfat dengan metode distilasi reaktif. Distilasi reaktif merupakan penggabungan antara proses reaksi dan proses pemisahan dalam satu unit proses sehingga memungkinkan diperoleh biodiesel dengan kemurnian yang tinggi. Variabel yang dipelajari pada penelitian ini adalah temperatur (1000C, 1200C, 1500C, 1800C, jumlah katalis H2SO4 (0,5% berat, 1% berat, 1,5% berat, 2% berat, rasio metanol : asam oleat dinyatakan 1:1, 5:1, 6:1, 7:1, 8:1 (dalam % berat terhadap konversi

  3. Experimental Study of Combustion and Emissions Characteristics of Methyl Oleate, as a Surrogate for Biodiesel, in a Direct injection Diesel Engine

    Science.gov (United States)

    This study evaluates the combustion and emissions characteristics of methyl oleate (C19H36O2 CAS# 112-62) produced by transesterification from oleic acid, one of the main fatty acid components of biodiesel. The ignition delay of ultra-low sulfur diesel#2 (ULSD) and its blends with methyl oleate (O20...

  4. Solution chemistry of carbonate minerals and its effects on the flotation of hematite with sodium oleate

    Science.gov (United States)

    Li, Dong; Yin, Wan-zhong; Xue, Ji-wei; Yao, Jin; Fu, Ya-feng; Liu, Qi

    2017-07-01

    The effects of carbonate minerals (dolomite and siderite) on the flotation of hematite using sodium oleate as a collector were investigated through flotation tests, supplemented by dissolution measurements, solution chemistry calculations, zeta-potential measurements, Fourier transform infrared (FTIR) spectroscopic studies, and X-ray photoelectron spectroscopy (XPS) analyses. The results of flotation tests show that the presence of siderite or dolomite reduced the recovery of hematite and that the inhibiting effects of dolomite were stronger. Dissolution measurements, solution chemistry calculations, and flotation tests confirmed that both the cations (Ca2+ and Mg2+) and CO3 2- ions dissolved from dolomite depressed hematite flotation, whereas only the CO3 2- ions dissolved from siderite were responsible for hematite depression. The zeta-potential, FTIR spectroscopic, and XPS analyses indicated that Ca2+, Mg2+, and CO3 2- (HCO3 -) could adsorb onto the hematite surface, thereby hindering the adsorption of sodium oleate, which was the main reason for the inhibiting effects of carbonate minerals on hematite flotation.

  5. Elevation of oleate-activated phospholipase D activity during thymic atrophy

    Science.gov (United States)

    Lee, Youngkyun; Song, Soo-Mee; Park, Heung Soon; Kim, Sungyeol; Koh, Eun-Hee; Choi, Myung Sun; Choi, Myung-Un

    2002-01-01

    Various phospholipases are thought to be associated with the in vitro apoptosis of thymocytes. In the present study, the in vivo phospholipase D (PLD) activity of rat thymus was studied after whole-body X-irradiation or injection of dexamethasone (DEX). Using exogenous [14C]dipalmitoyl phosphatidylcholine (PC) as the substrate, an elevation of oleate-activated PLD activity was observed during thymic atrophy. The activity increases were sevenfold at 48 hr after 5-Gy irradiation and fourfold at 72 hr after injection of 5 mg/kg DEX. The elevation of PLD activity appeared to parallel extensive thymus shrinkage. An increased level of thymic phosphatidic acid (PA), the presumed physiological product of PLD action on PC, was also detected. By comparing the acyl chains of PA with those of other phospholipids, PA appeared to originate from PC. To assess the role of PLD during thymic atrophy, thymocytes and stromal cells were isolated. Although thymocytes themselves exhibited significant PLD activation, the major elevation in PLD activity (greater than fourfold) was found in isolated stromal cells. PLD was also activated during in vitro phagocytosis of apoptotic thymocytes by the macrophage-like cell line P388D1. This in vitro phagocytosis was significantly inhibited by PLD action blockers, such as 2,3-diphosphoglycerate and 1-butanol. These observations strongly suggest that the alteration of oleate-activated PLD activity is part of an in vivo event in the progression of thymic atrophy, including phagocytic clearance of apoptotic thymocytes. PMID:12460188

  6. Study of Synthesis Polyethylene glycol oleate Sulfonated as an Anionic Surfactant for Enhanced Oil Recovery (EOR)

    Science.gov (United States)

    Sampora, Yulianti; Juwono, Ariadne L.; Haryono, Agus; Irawan, Yan

    2017-11-01

    Mechanical Enhanced Oil Recovery (EOR) through chemical injection is using an anionic surfactant to improve the recovery of oil residues, particularly in a reservoir area that has certain characteristics. This case led the authors to conduct research on the synthesis of an anionic surfactant based on oleic acid and polyethylene glycol 400 that could be applied as a chemical injection. In this work, we investigate the sulfonation of Polyethylene glycol oleate (PDO) in a sulfuric acid agent. PDO in this experiment was derived from Indonesian palm oil. Variation of mole reactant and reaction time have been studied. The surfactant has been characterized by measuring the interfacial tension, acid value, ester value, saponification value, iodine value, Fourier Transform Infrared (FTIR), and particle size analyzer. There is a new peak at 1170-1178 cm-1 indicating that S=O bond has formed. PDO sulfonate exhibits good surface activity due to interfacial tension of 0,003 mN/m. Thus, polyethylene glycol oleate sulfonate was successfully synthesized and it could be useful as a novel an anionic surfactant.

  7. Age-related changes in the percentage of oleate in adipose tissue of male and female Fischer rats

    DEFF Research Database (Denmark)

    Thorling, E.B.; Hansen, Harald S.

    1995-01-01

    . Oestrogen injections twice a week to the castrated rats increased their oleate percentage within the same period to 23.4 ± 0.3%, partly reflecting the increase observed in the female rats. Stearic acid showed similar but less pronounced changes. The ratio oleic acid/stearic acid was constantly higher...

  8. A biobased nitrogen-containing lubricant additive synthesized from expoxidized methyl oleate using an ionic liquid catalyst

    Science.gov (United States)

    Utilizing an epoxidation route, an aniline adduct was synthesized from methyl oleate. An ionic liquid, 1-methylimidazolium tetrafluoroborate, was found to be the key for this catalytic system. The reaction produces a product with the aniline incorporated into the fatty chain, at the 9(10) position, ...

  9. Responses of the biogas process to pulses of oleate in reactors treating mixtures of cattle and pig manure

    DEFF Research Database (Denmark)

    Nielsen, Henrik Bjørn; Ahring, Birgitte Kiær

    2006-01-01

    The effect of oleate on the anaerobic digestion process was investigated. Two thermophilic continuously stirred tank reactors (CSTR) were fed with mixtures of cattle and pig manure with different total solid (TS) and volatile solid (VS) content. The reactors were subjected to increasing pulses...

  10. A model compound (methyl oleate, oleic acid, triolein) study of triglycerides hydrodeoxygenation over alumina-supported NiMo sulfide

    NARCIS (Netherlands)

    Coumans, A.E.; Hensen, E.J.M.

    We studied hydrodeoxygenation of model compounds for vegetable oil into diesel-range hydrocarbons on a sulfided NiMo/γ-Al2O3 catalyst under trickle-flow conditions. Methyl oleate (methyl ester of oleic acid, a C18 fatty acid with one unsaturated bond in the chain) represented the C18 alkyl esters in

  11. Hydroformylation of methyl oleate catalyzed by rhodium complexes; Hidroformilacao do oleato de metila catalisada por complexos de rodio

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Ana Nery Furlan [Universidade Federal do Espirito Santo (UFES), Sao Mateus, ES (Brazil). Centro Universitario Norte do Espirito Santo. Dept. de Ciencias Naturais; Rosa, Ricardo Gomes da; Gregorio, Jose Ribeiro, E-mail: jrg@iq.ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Inst. de Quimica

    2012-07-01

    In this work, we describe the hydroformylation of methyl oleate catalyzed by several rhodium complexes. Parameters including total pressure, phosphorous/rhodium and CO/H{sub 2} ratio, temperature and phosphorous ligands were scanned. Total conversion of the starting double bonds was achieved while maintaining excellent selectivity in aldehydes. (author)

  12. Dietary Oleate Has Beneficial Effects on Every Step of Non-Alcoholic Fatty Liver Disease Progression in a Methionine- and Choline-Deficient Diet-Fed Animal Model

    Directory of Open Access Journals (Sweden)

    Ji Young Lee

    2011-10-01

    Full Text Available BackgroundNon-alcoholic fatty liver disease (NAFLD is increasingly recognized as a major cause of liver-related morbidity and mortality. The underlying mechanisms of disease progression remain poorly understood, and primary therapy of NAFLD is not yet established. We investigated the effects of dietary oleate on the development and progression of NAFLD in a methionine- and choline-deficient (MCD diet-fed animal model.MethodsA total of 30 C57BL/6J mice were randomly divided into three groups (n=10 in each group and fed various experimental diets for four weeks: chow, MCD diet, or OMCD (MCD diet with oleate, 0.5 mg/g/day. Liver samples were examined for steatohepatitis and fibrosis parameters and associated genes.ResultsAdditional dietary oleate dramatically reduced MCD diet-induced hepatic steatosis. Hepatic carbohydrate responsive element-binding protein was overexpressed in MCD diet-fed mice, and dietary oleate prevented this overexpression (P<0.001. Dietary oleate partially prevented MCD diet-induced serum level increases in aspartate aminotransferase and alanine aminotransferase (P<0.001, respectively. The mRNA expressions of hepatic monocyte chemoattractant protein 1, tumor necrosis factor-α and matrix metalloproteinase-9 were increased in MCD diet-fed mice, and this overexpression of inflammatory molecules was prevented by dietary oleate (P<0.001. Hepatic pericellular fibrosis was observed in MCD diet-fed mice, and dietary oleate prevented this fibrosis. Altogether, dietary oleate prevented MCD diet-induced hepatic steatosis, inflammation and fibrosis.ConclusionDietary oleate has beneficial effects in every step of NAFLD development and progression and could be a nutritional option for NAFLD prevention and treatment.

  13. Effect of dissolution kinetics on flotation response of calcite with oleate

    Directory of Open Access Journals (Sweden)

    D. G. Horta

    Full Text Available Abstract Phosphate flotation performance can be influenced by the dissolution kinetics of the minerals that compose the ore. The purpose of this work was to investigate the effect of dissolution kinetics on flotation response with oleate (collector of calcites from different origins and genesis. The calcite samples were first purified and characterized by x-ray Fluorescence (XRF and the Rietveld method applied to x-ray Diffractometry data (RXD. Experiments of calcite dissolution and microflotationwere performed at pH 8 and pH 10.The pH effect on the calcite dissolution and flotation indicates the possible influence of the carbonate/bicarbonate ions provided by the CO2 present in the air. In addition, the flotation response is greater as the dissolution increases, making more Ca2+ ions available to interact with collector molecules. This result corroborates the surface precipitation mechanism proposed foroleate adsorption on the calcite surface.

  14. Continuous synthesis of Oleyl Oleate in supercritical carbon oxide using solid p-Toluenesulfonic Acid as catalyst

    International Nuclear Information System (INIS)

    Ghaziaskar, H.; Ikushima, Y.

    2000-01-01

    Supercritical carbon dioxide (Sc-CO 2 ) was used as solvent to synthesize oleyl oleate as an analog of Jojoba oil from oleic acid and oleyl alcohol with high conversion (100%) of the acid into ester in a short time of 100 min. Utilizing a low cost solid catalyst, p-toluenesulfonic acid monohydrate , the esterification reaction was performed, without any prior preparation step, in a flow mode, at a pressure of 147 bar and a temperature of 60 d eg C. This method seems industrially suitable for the production of oleyl oleate. The solubility of a mixture of oleyl alcohol and oleic acid in Sc-CO 2 were also measured to calculate the alcohol to acid ratio and the esterification yield

  15. The Stingless Bee Melipona solani Deposits a Signature Mixture and Methyl Oleate to Mark Valuable Food Sources.

    Science.gov (United States)

    Alavez-Rosas, David; Malo, Edi A; Guzmán, Miguel A; Sánchez-Guillén, Daniel; Villanueva-Gutiérrez, Rogel; Cruz-López, Leopoldo

    2017-10-01

    Stingless bees foraging for food improve recruitment by depositing chemical cues on valuable food sites or pheromone marks on vegetation. Using gas chromatography/mass spectrometry and bioassays, we showed that Melipona solani foragers leave a mixture composed mostly of long chain hydrocarbons from their abdominal cuticle plus methyl oleate from the labial gland as a scent mark on rich food sites. The composition of hydrocarbons was highly variable among individuals and varied in proportions, depending on the body part. A wide ratio of compounds present in different body parts of the bees elicited electroantennogram responses from foragers and these responses were dose dependent. Generally, in bioassays, these bees prefer to visit previously visited feeders and feeders marked with extracts from any body part of conspecifics. The mean number of visits to a feeder was enhanced when synthetic methyl oleate was added. We propose that this could be a case of multi-source odor marking, in which hydrocarbons, found in large abundance, act as a signature mixture with attraction enhanced through deposition of methyl oleate, which may indicate a rich food source.

  16. Amylose-potassium oleate inclusion complex in plain set-style yogurt.

    Science.gov (United States)

    Singh, Mukti; Byars, Jeffrey A; Kenar, James A

    2014-05-01

    Health and wellness aspirations of U.S. consumers continue to drive the demand for lower fat from inherently beneficial foods such as yogurt. Removing fat from yogurt negatively affects the gel strength, texture, syneresis, and storage of yogurt. Amylose-potassium oleate inclusion complexes (AIC) were used to replace skim milk solids to improve the quality of nonfat yogurt. The effect of AIC on fermentation of yogurt mix and strength of yogurt gel was studied and compared to full-fat samples. Texture, storage modulus, and syneresis of yogurt were observed over 4 weeks of storage at 4 °C. Yogurt mixes having the skim milk solids partially replaced by AIC fermented at a similar rate as yogurt samples with no milk solids replaced and full-fat milk. Initial viscosity was higher for yogurt mixes with AIC. The presence of 3% AIC strengthened the yogurt gel as indicated by texture and rheology measurements. Yogurt samples with 3% AIC maintained the gel strength during storage and resulted in low syneresis after storage for 4 wk. © 2014 Institute of Food Technologists®

  17. Oleate ameliorates palmitate-induced reduction of NAMPT activity and NAD levels in primary human hepatocytes and hepatocarcinoma cells.

    Science.gov (United States)

    Penke, Melanie; Schuster, Susanne; Gorski, Theresa; Gebhardt, Rolf; Kiess, Wieland; Garten, Antje

    2017-10-03

    Nicotinamide phosphoribosyltransferase (NAMPT) and nicotinamide adenine dinucleotide (NAD) levels are crucial for liver function. The saturated fatty acid palmitate and the unsaturated fatty acid oleate are the main free fatty acids in adipose tissue and human diet. We asked how these fatty acids affect cell survival, NAMPT and NAD levels in HepG2 cells and primary human hepatocytes. HepG2 cells were stimulated with palmitate (0.5mM), oleate (1mM) or a combination of both (0.5mM/1mM) as well as nicotinamide mononucleotide (NMN) (0.5 mM) or the specific NAMPT inhibitor FK866 (10nM). Cell survival was measured by WST-1 assay and Annexin V/propidium iodide staining. NAD levels were determined by NAD/NADH Assay or HPLC. Protein and mRNA levels were analysed by Western blot analyses and qPCR, respectively. NAMPT enzyme activity was measured using radiolabelled 14 C-nicotinamide. Lipids were stained by Oil red O staining. Palmitate significantly reduced cell survival and induced apoptosis at physiological doses. NAMPT activity and NAD levels significantly declined after 48h of palmitate. In addition, NAMPT mRNA expression was enhanced which was associated with increased NAMPT release into the supernatant, while intracellular NAMPT protein levels remained stable. Oleate alone did not influence cell viability and NAMPT activity but ameliorated the negative impact of palmitate on cell survival, NAMPT activity and NAD levels, as well as the increased NAMPT mRNA expression and secretion. NMN was able to normalize intracellular NAD levels but did not ameliorate cell viability after co-stimulation with palmitate. FK866, a specific NAMPT inhibitor did not influence lipid accumulation after oleate-treatment. Palmitate targets NAMPT activity with a consequent cellular depletion of NAD. Oleate protects from palmitate-induced apoptosis and variation of NAMPT and NAD levels. Palmitate-induced cell stress leads to an increase of NAMPT mRNA and accumulation in the supernatant. However

  18. New insights into the oleate flotation response of feldspar particles of different sizes: Anisotropic adsorption model.

    Science.gov (United States)

    Xu, Longhua; Tian, Jia; Wu, Houqin; Deng, Wei; Yang, Yaohui; Sun, Wei; Gao, Zhiyong; Hu, Yuehua

    2017-11-01

    The anisotropic adsorption of sodium oleate (NaOL) on feldspar surfaces was investigated to elucidate the different flotation properties of feldspar particles of four different size ranges. Microflotation experiments showed that the feldspar flotation recovery of particles with sizes spanning different ranges decreased in the order 0-19>19-38>45-75>38-45μm. Zeta potential and FTIR measurements showed that NaOL was chemically adsorbed on the Al sites of the feldspar surface. The anisotropic surface energies and broken bond densities estimated by density functional theory calculations showed that, although feldspar mostly exposed (010) and (001) surfaces, only the (001) surfaces contained the Al sites needed for NaOL adsorption. The interaction energies calculated by molecular dynamics simulations confirmed the more favorable NaOL adsorption on (001) than (010) surfaces, which may represent the main cause for the anisotropic NaOL adsorption on feldspar particles of different sizes. SEM measurements showed that the main exposed surfaces on coarse and fine feldspar particles were the side (010) and basal (001) ones, respectively. A higher fraction of Al-rich (001) surfaces is exposed on fine feldspar particles, resulting in better floatability compared with coarse particles. XPS and adsorption measurements confirmed that the Al content on the feldspar surface varied with the particle size, explaining the different NaOL flotation of feldspar particles of different sizes. Therefore, the present results suggest that coarsely ground ore should be used for the separation of feldspar gangue minerals. Further improvements in the flotation separation of feldspar from associated valuable minerals can be achieved through selective comminution or grinding processes favoring the exposure of (010) surfaces. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Synthesis of oleyl oleate wax esters in Arabidopsis thaliana and Camelina sativa seed oil.

    Science.gov (United States)

    Iven, Tim; Hornung, Ellen; Heilmann, Mareike; Feussner, Ivo

    2016-01-01

    Seed oil composed of wax esters with long-chain monoenoic acyl moieties represents a high-value commodity for industry. Such plant-derived sperm oil-like liquid wax esters are biodegradable and can have excellent properties for lubrication. In addition, wax ester oil may represent a superior substrate for biodiesel production. In this study, we demonstrate that the low-input oil seed crop Camelina sativa can serve as a biotechnological platform for environmentally benign wax ester production. Two biosynthetic steps catalysed by a fatty alcohol-forming acyl-CoA reductase (FAR) and a wax ester synthase (WS) are sufficient to achieve wax ester accumulation from acyl-CoA substrates. To produce plant-derived sperm oil-like liquid wax esters, the WS from Mus musculus (MmWS) or Simmondsia chinensis (ScWS) were expressed in combination with the FAR from Mus musculus (MmFAR1) or Marinobacter aquaeolei (MaFAR) in seeds of Arabidopsis thaliana and Camelina sativa. The three analysed enzyme combinations Oleo3:mCherry:MmFAR1∆c/Oleo3:EYFP:MmWS, Oleo3:mCherry:MmFAR1∆c/ScWS and MaFAR/ScWS showed differences in the wax ester molecular species profiles and overall biosynthetic performance. By expressing MaFAR/ScWS in Arabidopsis or Camelina up to 59% or 21% of the seed oil TAGs were replaced by wax esters, respectively. This combination also yielded wax ester molecular species with highest content of monounsaturated acyl moieties. Expression of the enzyme combinations in the Arabidopsis fae1 fad2 mutant background high in oleic acid resulted in wax ester accumulation enriched in oleyl oleate (18:1/18:1 > 60%), suggesting that similar values may be obtained with a Camelina high oleic acid line. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  20. Androgenic effect of honeybee drone milk in castrated rats: roles of methyl palmitate and methyl oleate.

    Science.gov (United States)

    Seres, A B; Ducza, E; Báthori, M; Hunyadi, A; Béni, Z; Dékány, M; Hajagos-Tóth, J; Verli, J; Gáspár, Róbert

    2014-04-28

    Numerous honeybee (Apis mellifera) products have been used in traditional medicine to treat infertility and to increase vitality in both men and women. Drone milk (DM) is a relatively little-known honeybee product with a putative sexual hormone effect. The oestrogenic effect of a fraction of DM has recently been reported in rats. However, no information is available on the androgenic effects of DM. The purpose of the present study was to determine the androgen-like effect of DM in male rats and to identify effective compounds. A modified Hershberger assay was used to investigate the androgenic effect of crude DM, and the plasma level of testosterone was measured. The prostatic mRNA and protein expression of Spot14-like androgen-inducible protein (SLAP) were also examined with real-time PCR and Western blot techniques. GC-MS and NMR spectroscopic investigations were performed to identify the active components gained by bioactivity-guided fractionation. The crude DM increased the relative weights of the androgen-dependent organs and the plasma testosterone level in castrated rats and these actions were flutamide-sensitive. DM increased the tissue mRNA and protein level of SLAP, providing further evidence of its androgen-like character. After bioactivity-guided fractionation, two fatty acid esters, methyl palmitate (MP) and methyl oleate (MO), were identified as active compounds. MP alone showed an androgenic effect, whereas MO increased the weight of androgen-sensitive tissues and the plasma testosterone level only in combination. The experimental data of DM and its active compounds (MO and MP) show androgenic activity confirming the traditional usage of DM. DM or MP or/and MO treatments may project a natural mode for the therapy of male infertility. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Experimental Investigation of the Self-Propelled Motion of a Sodium Oleate Tablet and Boat at an Oil-Water Interface.

    Science.gov (United States)

    Watahiki, Yasuhito; Nomoto, Tomonori; Chiari, Luca; Toyota, Taro; Fujinami, Masanori

    2018-05-15

    The self-propelled behaviors of macroscopic inanimate objects at surfaces and interfaces are ubiquitous phenomena of fundamental interest in interface science. However, given the existence of a large variety of systems with their own inherent chemical properties, the kinematics of the self-propelled motion and the dynamics of the forces driving these systems often remain largely unknown. Here, we experimentally investigate the spontaneous motion of a sodium oleate tablet at a water-nitrobenzene interface, under nonequilibrium and global isothermal conditions, through measurements of the interfacial tension with the noninvasive, quasi-elastic laser scattering method. The sodium oleate tablet was self-propelled due to an imbalance in the interfacial tension induced by the inhomogeneous adsorption of oleate/oleic acid molecules. The kinetics of the self-propelled motion of a boat-shaped plastic sheet bearing sodium oleate tablets at a sodium oleate aqueous solution-nitrobenzene interface was also studied. The interfacial tension difference between the front and rear of the boat was quantitatively identified as the force pushing the boat forward, although the Marangoni flow due to the uneven distribution of the interfacial tension behind the boat tended to decelerate the motion.

  2. Differences in partitioning of meal fatty acids into blood lipid fractions: a comparison of linoleate, oleate, and palmitate

    OpenAIRE

    Hodson, Leanne; McQuaid, Siobh?n E.; Karpe, Fredrik; Frayn, Keith N.; Fielding, Barbara A.

    2008-01-01

    There has been much interest in the health effects of dietary fat, but few studies have comprehensively compared the acute metabolic fate of specific fatty acids in vivo. We hypothesized that different classes of fatty acids would be variably partitioned in metabolic pathways and that this would become evident over 24 h. We traced the fate of fatty acids using equal amounts of [U-13C]linoleate, [U-13C]oleate, and [U-13C]palmitate given in a test breakfast meal in 12 healthy subjects. There wa...

  3. Peroxisome proliferator-activated receptor alpha (PPARalpha) protects against oleate-induced INS-1E beta cell dysfunction by preserving carbohydrate metabolism

    DEFF Research Database (Denmark)

    Frigerio, F; Brun, T; Bartley, C

    2009-01-01

    and investigated key metabolic pathways and genes responsible for metabolism-secretion coupling during a culture period of 3 days in the presence of 0.4 mmol/l oleate. RESULTS: In INS-1E cells, the secretory dysfunction primarily induced by oleate was aggravated by silencing of PPARalpha. Conversely, PPARalpha...... enzyme pyruvate carboxylase. PPARalpha overproduction increased both beta-oxidation and fatty acid storage in the form of neutral triacylglycerol, revealing overall induction of lipid metabolism. These observations were substantiated by expression levels of associated genes. CONCLUSIONS....../INTERPRETATION: PPARalpha protected INS-1E beta cells from oleate-induced dysfunction, promoting both preservation of glucose metabolic pathways and fatty acid turnover....

  4. Dietary supplementation with omega-3 fatty acids and oleate enhances exercise training effects in patients with metabolic syndrome.

    Science.gov (United States)

    Ortega, Juan F; Morales-Palomo, Felix; Fernandez-Elias, Valentin; Hamouti, Nassim; Bernardo, Francisco J; Martin-Doimeadios, Rosa C; Nelson, Rachael K; Horowitz, Jeffrey F; Mora-Rodriguez, Ricardo

    2016-08-01

    We studied the effects of exercise training alone or combined with dietary supplementation of omega-3 polyunsaturated fatty acids (Ω-3PUFA) and oleate on metabolic syndrome (MSyn) components and other markers of cardiometabolic health. Thirty-six patients with MSyn underwent 24 weeks of high-intensity interval training. In a double-blind randomized design, half of the group ingested 500 mL/day of semi-skim milk (8 g of fat; placebo milk) whereas the other half ingested 500 mL/day of skim milk enriched with 275 mg of Ω-3PUFA and 7.5 g of oleate (Ω-3 + OLE). Ω-3 + OLE treatment elevated 30% plasma Ω-3PUFA but not significantly (P = 0.286). Improvements in VO2peak (12.8%), mean blood pressure (-7.1%), waist circumference (-1.8%), body fat mass (-2.9%), and trunk fat mass (-3.3%) were similar between groups. However, insulin sensitivity (measured by intravenous glucose tolerance test), serum concentration of C-reactive protein, and high-density lipoprotein improved only in the Ω-3 + OLE group by 31.5%, 32.1%, and 10.3%, respectively (all P exercise training in patients with MSyn. © 2016 The Obesity Society.

  5. Association of Alpha Tocopherol and Ag Sulfadiazine Chitosan Oleate Nanocarriers in Bioactive Dressings Supporting Platelet Lysate Application to Skin Wounds.

    Science.gov (United States)

    Bonferoni, Maria Cristina; Sandri, Giuseppina; Rossi, Silvia; Dellera, Eleonora; Invernizzi, Alessandro; Boselli, Cinzia; Cornaglia, Antonia Icaro; Del Fante, Claudia; Perotti, Cesare; Vigani, Barbara; Riva, Federica; Caramella, Carla; Ferrari, Franca

    2018-02-09

    Chitosan oleate was previously proposed to encapsulate in nanocarriers some poorly soluble molecules aimed to wound therapy, such as the anti-infective silver sulfadiazine, and the antioxidant α tocopherol. Because nanocarriers need a suitable formulation to be administered to wounds, in the present paper, these previously developed nanocarriers were loaded into freeze dried dressings based on chitosan glutamate. These were proposed as bioactive dressings aimed to support the application to wounds of platelet lysate, a hemoderivative rich in growth factors. The dressings were characterized for hydration capacity, morphological aspect, and rheological and mechanical behavior. Although chitosan oleate nanocarriers clearly decreased the mechanical properties of dressings, these remained compatible with handling and application to wounds. Preliminary studies in vitro on fibroblast cell cultures demonstrated good compatibility of platelet lysate with nanocarriers and bioactive dressings. An in vivo study on a murine wound model showed an accelerating wound healing effect for the bioactive dressing and its suitability as support of the platelet lysate application to wounds.

  6. Association of Alpha Tocopherol and Ag Sulfadiazine Chitosan Oleate Nanocarriers in Bioactive Dressings Supporting Platelet Lysate Application to Skin Wounds

    Directory of Open Access Journals (Sweden)

    Maria Cristina Bonferoni

    2018-02-01

    Full Text Available Chitosan oleate was previously proposed to encapsulate in nanocarriers some poorly soluble molecules aimed to wound therapy, such as the anti-infective silver sulfadiazine, and the antioxidant α tocopherol. Because nanocarriers need a suitable formulation to be administered to wounds, in the present paper, these previously developed nanocarriers were loaded into freeze dried dressings based on chitosan glutamate. These were proposed as bioactive dressings aimed to support the application to wounds of platelet lysate, a hemoderivative rich in growth factors. The dressings were characterized for hydration capacity, morphological aspect, and rheological and mechanical behavior. Although chitosan oleate nanocarriers clearly decreased the mechanical properties of dressings, these remained compatible with handling and application to wounds. Preliminary studies in vitro on fibroblast cell cultures demonstrated good compatibility of platelet lysate with nanocarriers and bioactive dressings. An in vivo study on a murine wound model showed an accelerating wound healing effect for the bioactive dressing and its suitability as support of the platelet lysate application to wounds.

  7. Lipase immobilized on the hydrophobic polytetrafluoroethene membrane with nonwoven fabric and its application in intensifying synthesis of butyl oleate.

    Science.gov (United States)

    Wang, Shu-Guang; Zhang, Wei-Dong; Li, Zheng; Ren, Zhong-Qi; Liu, Hong-Xia

    2010-11-01

    The synthesis of butyl oleate was studied in this paper with immobilized lipase. Five types of membrane were used as support to immobilize Rhizopus arrhizus lipase by following a procedure combining filtration and protein cross-linking. Results showed that hydrophobic polytetrafluoroethene membrane with nonwoven fabric (HO-PTFE-NF) was the favorite choice in terms of higher protein loading, activity, and specific activity of immobilized lipase. The factors including solvent polarity, lipase dosage, concentration, and molar ratio of substrate and temperature were found to have significant influence on conversion. Results showed that hexane (logP = 3.53) was a favorable solvent for the biosynthesis of butyl oleate in our studies. The optimal conditions were experimentally determined of 50 U immobilized lipase, molar ratio of oleic acid to butanol of 1.0, substrate concentration of 0.12 mol/L, temperature of 37 °C, and reaction time of 2 h. The conversion was beyond 91% and decreased slightly after 18 cycles. Lipase immobilization can improve the conversion and the repeated use of immobilized lipase relative to free lipase.

  8. Lipogenesis from U14C lactate in obese Zucker rat hepatocytes. Effect of albumin-bound oleate

    International Nuclear Information System (INIS)

    Porquet, D.; Serbource-Goguel, N.; Durand, G.; Maccario, J.; Feger, J.; Agneray, J.

    1984-01-01

    Lipogenesis from U( 14 C) lactate was studied in hepatocytes isolated from obese Zucker rats (fa/fa) their lean littermates (Fa/.) and Sprague Dawley rats. The distribution of radioactive carbon between the glycerol and the fatty acid moieties of the acylglycerols were studied. Radioactive lactate was better utilized for glycerol formation than it was for fatty acid formation in the obese rats. However, when oleate was added to the hepatocytic incubation medium, radioactive lactate was preferentially incorporated into the fatty acid moiety of the acyglycerols. Among the nutrients, lactate seems to be a better source of carbon than glucose for lipid synthesis. It has been shown that there is increased hepatic portal blood concentration of lactate several hours after eating: about 4 mM in Wistar rats and 10-15 mM in obese Zucher rats. We are interested in determin the incorporation of carbon from lactate either into glycerol or into fatty acid moieties of hepatic acylgylcerols, and in determining the influence of exogenous fatty acids on acylgylcerol synthesis, since a high level of circulating fatty acids in Zucher obese rats has been reported. The purpose was to determine the incorporaton of lactate into glycerol and fatty moieties of acylglycerols, under the influence of oleate

  9. Solid lipid nanoparticles suspension versus commercial solutions for dermal delivery of minoxidil.

    Science.gov (United States)

    Padois, Karine; Cantiéni, Céline; Bertholle, Valérie; Bardel, Claire; Pirot, Fabrice; Falson, Françoise

    2011-09-15

    Solid lipid nanoparticles have been reported as possible carrier for skin drug delivery. Solid lipid nanoparticles are produced from biocompatible and biodegradable lipids. Solid lipid nanoparticles made of semi-synthetic triglycerides stabilized with a mixture of polysorbate and sorbitan oleate were loaded with 5% of minoxidil. The prepared systems were characterized for particle size, pH and drug content. Ex vivo skin penetration studies were performed using Franz-type glass diffusion cells and pig ear skin. Ex vivo skin corrosion studies were realized with a method derived from the Corrositex(®) test. Solid lipid nanoparticles suspensions were compared to commercial solutions in terms of skin penetration and skin corrosion. Solid lipid nanoparticles suspensions have been shown as efficient as commercial solutions for skin penetration; and were non-corrosive while commercial solutions presented a corrosive potential. Solid lipid nanoparticles suspensions would constitute a promising formulation for hair loss treatment. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Microemulsions containing long-chain oil ethyl oleate improve the oral bioavailability of piroxicam by increasing drug solubility and lymphatic transportation simultaneously.

    Science.gov (United States)

    Xing, Qiao; Song, Jia; You, Xiuhua; Xu, Dongling; Wang, Kexin; Song, Jiaqi; Guo, Qin; Li, Pengyu; Wu, Chuanbin; Hu, Haiyan

    2016-09-25

    Drug solubility and lymphatic transport enhancements are two main pathways to improve drug oral bioavailability for microemulsions. However, it is not easy to have both achieved simultaneously because excipients used for improving lymphatic transport were usually insufficient in forming microemulsions and solubilizing drugs. Our research is to explore whether ethyl oleate, an oil effective in developing microemulsions with desired solubilizing capability, could increase bioavailability to a higher extent by enhancing lymphatic transport. As a long-chain oil, ethyl oleate won larger microemulsion area than short-chain tributyrin and medium-chain GTCC. In contrast, long-chain soybean oil failed to prepare microemulsions. The solubility of piroxicam in ethyl oleate microemulsions (ME-C) increased by about 30 times than in water. ME-C also won significantly higher AUC0-t compared with tributyrin microemulsions (ME-A) and GTCC microemulsions (ME-B). Oral bioavailability in ME-C decreased by 38% after lymphatic transport was blocked by cycloheximide, severer than those in ME-A and ME-B (8% and 34%). These results suggest that improving lymphatic transport and solubility simultaneously might be a novel strategy to increase drug oral bioavailability to a higher extent than increasing solubility only. Ethyl oleate is a preferred oil candidate due to its integrated advantages of high solubilizing capability, large microemulsion area and effective lymphatic transport. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Electrooxidation as the anaerobic pre-treatment of fats: oleate conversion using RuO2 and IrO2 based anodes.

    Science.gov (United States)

    Gonçalves, M; Alves, M M; Correia, J P; Marques, I P

    2008-11-01

    Electrochemical treatment of oleate using RuO2 and IrO2 type dimensionally stable anodes in alkaline medium was performed to develop a feasible anaerobic pre-treatment of fatty effluents. The results showed that the pre-treated solutions over RuO2 were faster degraded by anaerobic consortium than the raw oleate solutions or the electrolysed solutions using IrO2. In batch experiments carried out with pre-treated solutions over RuO2 (100-500mg/L), no lag phases were observed before the methane production onset. On the other hand, raw oleate and pre-treated oleate over IrO2 had originated lag phases of 0-140 and 0-210h, respectively. This study demonstrated that it is advantageous to apply the electrochemical treatment carried out on the RuO2 type DSA in order to achieve a faster biodegradation of lipid-containing effluent and consequently to obtain a faster methane production.

  12. Kinetic analysis and modeling of oleate and ethanol stimulated uranium (VI) bio-reduction in contaminated sediments under sulfate reduction conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Fan, E-mail: zhangfan@itpcas.ac.cn [Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Wu Weimin [Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305 (United States); Parker, Jack C. [Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Mehlhorn, Tonia [Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Kelly, Shelly D.; Kemner, Kenneth M. [Biosciences Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Zhang, Gengxin [Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Schadt, Christopher; Brooks, Scott C. [Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Criddle, Craig S. [Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305 (United States); Watson, David B. [Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Jardine, Philip M. [Biosystems Engineering and Soil Science Department, University of Tennessee, Knoxville, TN 37996 (United States)

    2010-11-15

    Microcosm tests with uranium contaminated sediments were performed to explore the feasibility of using oleate as a slow-release electron donor for U(VI) reduction in comparison to ethanol. Oleate degradation proceeded more slowly than ethanol with acetate produced as an intermediate for both electron donors under a range of initial sulfate concentrations. A kinetic microbial reduction model was developed and implemented to describe and compare the reduction of sulfate and U(VI) with oleate or ethanol. The reaction path model considers detailed oleate/ethanol degradation and the production and consumption of intermediates, acetate and hydrogen. Although significant assumptions are made, the model tracked the major trend of sulfate and U(VI) reduction and describes the successive production and consumption of acetate, concurrent with microbial reduction of aqueous sulfate and U(VI) species. The model results imply that the overall rate of U(VI) bioreduction is influenced by both the degradation rate of organic substrates and consumption rate of intermediate products.

  13. Kinetic analysis and modeling of oleate and ethanol stimulated uranium (VI) bio-reduction in contaminated sediments under sulfate reduction conditions

    International Nuclear Information System (INIS)

    Zhang Fan; Wu Weimin; Parker, Jack C.; Mehlhorn, Tonia; Kelly, Shelly D.; Kemner, Kenneth M.; Zhang, Gengxin; Schadt, Christopher; Brooks, Scott C.; Criddle, Craig S.; Watson, David B.; Jardine, Philip M.

    2010-01-01

    Microcosm tests with uranium contaminated sediments were performed to explore the feasibility of using oleate as a slow-release electron donor for U(VI) reduction in comparison to ethanol. Oleate degradation proceeded more slowly than ethanol with acetate produced as an intermediate for both electron donors under a range of initial sulfate concentrations. A kinetic microbial reduction model was developed and implemented to describe and compare the reduction of sulfate and U(VI) with oleate or ethanol. The reaction path model considers detailed oleate/ethanol degradation and the production and consumption of intermediates, acetate and hydrogen. Although significant assumptions are made, the model tracked the major trend of sulfate and U(VI) reduction and describes the successive production and consumption of acetate, concurrent with microbial reduction of aqueous sulfate and U(VI) species. The model results imply that the overall rate of U(VI) bioreduction is influenced by both the degradation rate of organic substrates and consumption rate of intermediate products.

  14. Synthesis, characterization, and cytotoxicity of the plasmid EGFP-p53 loaded on pullulan–spermine magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Eslaminejad, Touba, E-mail: tslaminejad@yahoo.com [Pharmaceutics Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman (Iran, Islamic Republic of); Nematollahi-Mahani, Seyed Noureddin, E-mail: nnematollahi@kmu.ac.ir [Department of Anatomy, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman (Iran, Islamic Republic of); Neuroscience Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman (Iran, Islamic Republic of); Afzal Research Institute, Kerman (Iran, Islamic Republic of); Ansari, Mehdi, E-mail: mansari@kmu.ac.ir [Pharmaceutics Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman (Iran, Islamic Republic of); Pharmaceutics Research Centre, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman (Iran, Islamic Republic of)

    2016-03-15

    Magnetic nanoparticles have been used as effective vehicles for the targeted delivery of therapeutic agents that can be controlled in their concentration and distribution to a desired part of the body by using externally driven magnets. This study focuses on the synthesis, characterization, and functionalization of pullulan–spermine (PS) magnetic nanoparticles for medical applications. Magnetite nanopowder was produced by thermal decomposition of goethite (FeOOH) in oleic acid and 1-octadecene; pullulan–spermine was deposited on the magnetite nanoparticles in the form of pullulan–spermine clusters. EGFP-p53 plasmid was loaded on functionalized iron oleate to transfer into cells. Synthesized nanoparticles were characterized by Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), vibrating sample magnetometry (VSM), and transmission electron microscopy (TEM). The encapsulation efficiency and drug loading efficiency of the nanocomplexes were tested. FTIR studies showed the presence of oleic acid and 1-octadecene in the iron oleate nanopowder and verified the interaction between spermine and pullulan. The characteristic bands of PS in the spectrum of the pullulan–spermine-coated iron oleate (PSCFO) confirmed that PS covered the surface of the iron oleate particles. TEM studies showed the average size of the iron oleate nanopowder, the PSCFO, and the plasmid-carrying PSCFO (PSCFO/pEGFP-p53) to be 34±12 nm, 100±50 nm and 172±3 nm, respectively. Magnetic measurements revealed that magnetic saturation of the PSCFO was lower in comparison with the iron oleate nanopowder due to the presence of organic compounds in the former. In cytotoxicity tests performed using U87 cells as glioblastoma cells, a 92% survival rate was observed at 50 µg/µl of the plasmid-carrying PSCFO, with an IC{sub 50} value of 189 µg/µl. - Highlights: • Magnetite nanopowder was produced by thermal decomposition method. • TEM studies showed the average size of

  15. Synthesis, characterization, and cytotoxicity of the plasmid EGFP-p53 loaded on pullulan–spermine magnetic nanoparticles

    International Nuclear Information System (INIS)

    Eslaminejad, Touba; Nematollahi-Mahani, Seyed Noureddin; Ansari, Mehdi

    2016-01-01

    Magnetic nanoparticles have been used as effective vehicles for the targeted delivery of therapeutic agents that can be controlled in their concentration and distribution to a desired part of the body by using externally driven magnets. This study focuses on the synthesis, characterization, and functionalization of pullulan–spermine (PS) magnetic nanoparticles for medical applications. Magnetite nanopowder was produced by thermal decomposition of goethite (FeOOH) in oleic acid and 1-octadecene; pullulan–spermine was deposited on the magnetite nanoparticles in the form of pullulan–spermine clusters. EGFP-p53 plasmid was loaded on functionalized iron oleate to transfer into cells. Synthesized nanoparticles were characterized by Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), vibrating sample magnetometry (VSM), and transmission electron microscopy (TEM). The encapsulation efficiency and drug loading efficiency of the nanocomplexes were tested. FTIR studies showed the presence of oleic acid and 1-octadecene in the iron oleate nanopowder and verified the interaction between spermine and pullulan. The characteristic bands of PS in the spectrum of the pullulan–spermine-coated iron oleate (PSCFO) confirmed that PS covered the surface of the iron oleate particles. TEM studies showed the average size of the iron oleate nanopowder, the PSCFO, and the plasmid-carrying PSCFO (PSCFO/pEGFP-p53) to be 34±12 nm, 100±50 nm and 172±3 nm, respectively. Magnetic measurements revealed that magnetic saturation of the PSCFO was lower in comparison with the iron oleate nanopowder due to the presence of organic compounds in the former. In cytotoxicity tests performed using U87 cells as glioblastoma cells, a 92% survival rate was observed at 50 µg/µl of the plasmid-carrying PSCFO, with an IC 50 value of 189 µg/µl. - Highlights: • Magnetite nanopowder was produced by thermal decomposition method. • TEM studies showed the average size of the

  16. Gas chromatography-mass spectrometry of ethyl palmitate calibration and resolution with ethyl oleate as biomarker ethanol sub acute in urine application study

    Science.gov (United States)

    Suaniti, Ni Made; Manurung, Manuntun

    2016-03-01

    Gas Chromatography-Mass Spectrometry is used to separate two and more compounds and identify fragment ion specific of biomarker ethanol such as palmitic acid ethyl ester (PAEE), as one of the fatty acid ethyl esters as early detection through conyugated reaction. This study aims to calibrate ethyl palmitate and develop analysis with oleate acid. This methode can be used analysis ethanol and its chemistry biomarker in ethanol sub-acute consumption as analytical forensic toxicology. The result show that ethanol level in urine rats Wistar were 9.21 and decreased 6.59 ppm after 48 hours consumption. Calibration curve of ethyl palmitate was y = 0.2035 x + 1.0465 and R2 = 0.9886. Resolution between ethyl palmitate and oleate were >1.5 as good separation with fragment ion specific was 88 and the retention time was 18 minutes.

  17. Measurement of Antioxidant Effects on the Auto-oxidation Kinetics of Methyl Oleate – Methyl Laurate Blend as a Surrogate Biodiesel System

    Directory of Open Access Journals (Sweden)

    Tjokorde Walmiki Samadhi

    2017-05-01

    Full Text Available This research investigates the feasibility of methyl oleate-methyl laurate blend as a surrogate biodiesel system which represents jatropha-coconut oil biodiesel, a potentially suitable formulation for tropical climate, to quantify the efficacy of antioxidant additives in terms of their kinetic parameters. This blend was tested by the Rancimat EN14112 standard method. The Rancimat tests results were used to determine the primary oxidation induction period (OIP and first-order rate constants and activation energies. Addition of BHT and EcotiveTM antioxidants reduces the rate constants (k, h-1 between 15 to 90% in the 50-200 ppm dose range, with EcotiveTM producing significantly lower k values. Higher dose reduces the rate constant, while oleate/laurate ratio produces no significant impact. Antioxidants increase the oxidation activation energy (Ea, kJ/mol by 180 to almost 400% relative to the non-antioxidant value of 27.0 kJ/mol. EcotiveTM exhibits lower Ea, implying that its higher efficacy stems from a better steric hindrance as apparent from its higher pre-exponential factors. The ability to quantify oxidation kinetic parameters is indicative of the usefulness of methyl oleate-laurate pure FAME blend as a biodiesel surrogate offering better measurement accuracy due to the absence of pre-existing antioxidants in the test samples. Copyright © 2017 BCREC GROUP. All rights reserved Received: 6th July 2016; Revised: 7th December 2016; Accepted: 30th January 2017 How to Cite: Samadhi, T.W., Hirotsu, T., Goto, S. (2017. Measurement of Antioxidant Effects on the Auto-oxidation Kinetics of Methyl Oleate-Methyl Laurate Blend as a Surrogate Biodiesel System. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (2: 157-166 (doi:10.9767/bcrec.12.2.861.157-166 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.2.861.157-166

  18. High-oleic canola oil consumption enriches LDL particle cholesteryl oleate content and reduces LDL proteoglycan binding in humans.

    Science.gov (United States)

    Jones, Peter J H; MacKay, Dylan S; Senanayake, Vijitha K; Pu, Shuaihua; Jenkins, David J A; Connelly, Philip W; Lamarche, Benoît; Couture, Patrick; Kris-Etherton, Penny M; West, Sheila G; Liu, Xiaoran; Fleming, Jennifer A; Hantgan, Roy R; Rudel, Lawrence L

    2015-02-01

    Oleic acid consumption is considered cardio-protective according to studies conducted examining effects of the Mediterranean diet. However, animal models have shown that oleic acid consumption increases LDL particle cholesteryl oleate content which is associated with increased LDL-proteoglycan binding and atherosclerosis. The objective was to examine effects of varying oleic, linoleic and docosahexaenoic acid consumption on human LDL-proteoglycan binding in a non-random subset of the Canola Oil Multi-center Intervention Trial (COMIT) participants. COMIT employed a randomized, double-blind, five-period, cross-over trial design. Three of the treatment oil diets: 1) a blend of corn/safflower oil (25:75); 2) high oleic canola oil; and 3) DHA-enriched high oleic canola oil were selected for analysis of LDL-proteoglycan binding in 50 participants exhibiting good compliance. LDL particles were isolated from frozen plasma by gel filtration chromatography and LDL cholesteryl esters quantified by mass-spectrometry. LDL-proteoglycan binding was assessed using surface plasmon resonance. LDL particle cholesterol ester fatty acid composition was sensitive to the treatment fatty acid compositions, with the main fatty acids in the treatments increasing in the LDL cholesterol esters. The corn/safflower oil and high-oleic canola oil diets lowered LDL-proteoglycan binding relative to their baseline values (p = 0.0005 and p = 0.0012, respectively). At endpoint, high-oleic canola oil feeding resulted in lower LDL-proteoglycan binding than corn/safflower oil (p = 0.0243) and DHA-enriched high oleic canola oil (p = 0.0249), although high-oleic canola oil had the lowest binding at baseline (p = 0.0344). Our findings suggest that high-oleic canola oil consumption in humans increases cholesteryl oleate percentage in LDL, but in a manner not associated with a rise in LDL-proteoglycan binding. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Serotonin- and Dopamine-Related Gene Expression in db/db Mice Islets and in MIN6 β-Cells Treated with Palmitate and Oleate

    Directory of Open Access Journals (Sweden)

    L. R. Cataldo

    2016-01-01

    Full Text Available High circulating nonesterified fatty acids (NEFAs concentration, often reported in diabetes, leads to impaired glucose-stimulated insulin secretion (GSIS through not yet well-defined mechanisms. Serotonin and dopamine might contribute to NEFA-dependent β-cell dysfunction, since extracellular signal of these monoamines decreases GSIS. Moreover, palmitate-treated β-cells may enhance the expression of the serotonin receptor Htr2c, affecting insulin secretion. Additionally, the expression of monoamine-oxidase type B (Maob seems to be lower in islets from humans and mice with diabetes compared to nondiabetic islets, which may lead to increased monoamine concentrations. We assessed the expression of serotonin- and dopamine-related genes in islets from db/db and wild-type (WT mice. In addition, the effect of palmitate and oleate on the expression of such genes, 5HT content, and GSIS in MIN6 β-cell was determined. Lower Maob expression was found in islets from db/db versus WT mice and in MIN6 β-cells in response to palmitate and oleate treatment compared to vehicle. Reduced 5HT content and impaired GSIS in response to palmitate (−25%; p<0.0001 and oleate (−43%; p<0.0001 were detected in MIN6 β-cells. In conclusion, known defects of GSIS in islets from db/db mice and MIN6 β-cells treated with NEFAs are accompanied by reduced Maob expression and reduced 5HT content.

  20. Synthesis of Non-Toxic Silica Particles Stabilized by Molecular Complex Oleic-Acid/Sodium Oleate

    Science.gov (United States)

    Spataru, Catalin Ilie; Ianchis, Raluca; Petcu, Cristian; Nistor, Cristina Lavinia; Purcar, Violeta; Trica, Bogdan; Nitu, Sabina Georgiana; Somoghi, Raluca; Alexandrescu, Elvira; Oancea, Florin; Donescu, Dan

    2016-01-01

    The present work is focused on the preparation of biocompatible silica particles from sodium silicate, stabilized by a vesicular system containing oleic acid (OLA) and its alkaline salt (OLANa). Silica nanoparticles were generated by the partial neutralization of oleic acid (OLA), with the sodium cation present in the aqueous solutions of sodium silicate. At the molar ratio OLA/Na+ = 2:1, the molar ratio (OLA/OLANa = 1:1) required to form vesicles, in which the carboxyl and carboxylate groups have equal concentrations, was achieved. In order to obtain hydrophobically modified silica particles, octadecyltriethoxysilane (ODTES) was added in a sodium silicate sol–gel mixture at different molar ratios. The interactions between the octadecyl groups from the modified silica and the oleyl chains from the OLA/OLANa stabilizing system were investigated via simultaneous thermogravimetry (TG) and differential scanning calorimetry (DSC) (TG-DSC) analyses.A significant decrease in vaporization enthalpy and an increase in amount of ODTES were observed. Additionally, that the hydrophobic interaction between OLA and ODTES has a strong impact on the hybrids’ final morphology and on their textural characteristics was revealed. The highest hydrodynamic average diameter and the most negative ζ potential were recorded for the hybrid in which the ODTES/sodium silicate molar ratio was 1:5. The obtained mesoporous silica particles, stabilized by the OLA/OLANa vesicular system, may find application as carriers for hydrophobic bioactive molecules. PMID:27869768

  1. Synthesis of Non-Toxic Silica Particles Stabilized by Molecular Complex Oleic-Acid/Sodium Oleate.

    Science.gov (United States)

    Spataru, Catalin Ilie; Ianchis, Raluca; Petcu, Cristian; Nistor, Cristina Lavinia; Purcar, Violeta; Trica, Bogdan; Nitu, Sabina Georgiana; Somoghi, Raluca; Alexandrescu, Elvira; Oancea, Florin; Donescu, Dan

    2016-11-19

    The present work is focused on the preparation of biocompatible silica particles from sodium silicate, stabilized by a vesicular system containing oleic acid (OLA) and its alkaline salt (OLANa). Silica nanoparticles were generated by the partial neutralization of oleic acid (OLA), with the sodium cation present in the aqueous solutions of sodium silicate. At the molar ratio OLA/Na⁺ = 2:1, the molar ratio (OLA/OLANa = 1:1) required to form vesicles, in which the carboxyl and carboxylate groups have equal concentrations, was achieved. In order to obtain hydrophobically modified silica particles, octadecyltriethoxysilane (ODTES) was added in a sodium silicate sol-gel mixture at different molar ratios. The interactions between the octadecyl groups from the modified silica and the oleyl chains from the OLA/OLANa stabilizing system were investigated via simultaneous thermogravimetry (TG) and differential scanning calorimetry (DSC) (TG-DSC) analyses.A significant decrease in vaporization enthalpy and an increase in amount of ODTES were observed. Additionally, that the hydrophobic interaction between OLA and ODTES has a strong impact on the hybrids' final morphology and on their textural characteristics was revealed. The highest hydrodynamic average diameter and the most negative ζ potential were recorded for the hybrid in which the ODTES/sodium silicate molar ratio was 1:5. The obtained mesoporous silica particles, stabilized by the OLA/OLANa vesicular system, may find application as carriers for hydrophobic bioactive molecules.

  2. Synthesis of Non-Toxic Silica Particles Stabilized by Molecular Complex Oleic-Acid/Sodium Oleate

    Directory of Open Access Journals (Sweden)

    Catalin Ilie Spataru

    2016-11-01

    Full Text Available The present work is focused on the preparation of biocompatible silica particles from sodium silicate, stabilized by a vesicular system containing oleic acid (OLA and its alkaline salt (OLANa. Silica nanoparticles were generated by the partial neutralization of oleic acid (OLA, with the sodium cation present in the aqueous solutions of sodium silicate. At the molar ratio OLA/Na+ = 2:1, the molar ratio (OLA/OLANa = 1:1 required to form vesicles, in which the carboxyl and carboxylate groups have equal concentrations, was achieved. In order to obtain hydrophobically modified silica particles, octadecyltriethoxysilane (ODTES was added in a sodium silicate sol–gel mixture at different molar ratios. The interactions between the octadecyl groups from the modified silica and the oleyl chains from the OLA/OLANa stabilizing system were investigated via simultaneous thermogravimetry (TG and differential scanning calorimetry (DSC (TG-DSC analyses.A significant decrease in vaporization enthalpy and an increase in amount of ODTES were observed. Additionally, that the hydrophobic interaction between OLA and ODTES has a strong impact on the hybrids’ final morphology and on their textural characteristics was revealed. The highest hydrodynamic average diameter and the most negative ζ potential were recorded for the hybrid in which the ODTES/sodium silicate molar ratio was 1:5. The obtained mesoporous silica particles, stabilized by the OLA/OLANa vesicular system, may find application as carriers for hydrophobic bioactive molecules.

  3. Hydrothermal preparation of hydrophobic and hydrophilic nanoparticles of iron oxide and a modification with CM-dextran

    Energy Technology Data Exchange (ETDEWEB)

    Repko, Anton, E-mail: repko@natur.cuni.cz; Niznansky, Daniel; Matulkova, Irena [Charles University in Prague, Department of Inorganic Chemistry, Faculty of Science (Czech Republic); Kalbac, Martin [J. Heyrovsky Institute of Physical Chemistry of the AS CR, v.v.i. (Czech Republic); Vejpravova, Jana [Institute of Physics AS CR, v.v.i., Department of Magnetic Nanosystems (Czech Republic)

    2013-07-15

    Hydrophobic and hydrophilic particles of iron oxide (magnetite/maghemite) with diameter of 6-10 nm were prepared by hydrothermal hydrolysis of iron oleate in water/pentanol/oleic acid system at 180 Degree-Sign C. The hydrophobic/hydrophilic nature of resulting particles was controlled by the presence of sodium oleate and by manipulating the ionic strength (with NaCl). The final particle size was controlled by additional organic solvent (octanol or toluene) and by seed growth. Hydrophilic particles (6 nm) were further modified by carboxymethyl-dextran in water to obtain stable and well-dispersed superparamagnetic nanoparticles suitable for biomedical application. The prepared particles were characterized by transmission electron microscopy, thermogravimetry, Fourier-transform infrared spectroscopy, magnetic measurements, Moessbauer spectroscopy, dynamic light scattering, and zeta-potential measurement.

  4. Transgenic soya bean seeds accumulating β-carotene exhibit the collateral enhancements of oleate and protein content traits.

    Science.gov (United States)

    Schmidt, Monica A; Parrott, Wayne A; Hildebrand, David F; Berg, R Howard; Cooksey, Amanda; Pendarvis, Ken; He, Yonghua; McCarthy, Fiona; Herman, Eliot M

    2015-05-01

    Transgenic soya bean (Glycine max) plants overexpressing a seed-specific bacterial phytoene synthase gene from Pantoea ananatis modified to target to plastids accumulated 845 μg β carotene g(-1) dry seed weight with a desirable 12:1 ratio of β to α. The β carotene accumulating seeds exhibited a shift in oil composition increasing oleic acid with a concomitant decrease in linoleic acid and an increase in seed protein content by at least 4% (w/w). Elevated β-carotene accumulating soya bean cotyledons contain 40% the amount of abscisic acid compared to nontransgenic cotyledons. Proteomic and nontargeted metabolomic analysis of the mid-maturation β-carotene cotyledons compared to the nontransgenic did not reveal any significant differences that would account for the altered phenotypes of both elevated oleate and protein content. Transcriptomic analysis, confirmed by RT-PCR, revealed a number of significant differences in ABA-responsive transcripton factor gene expression in the crtB transgenics compared to nontransgenic cotyledons of the same maturation stage. The altered seed composition traits seem to be attributed to altered ABA hormone levels varying transcription factor expression. The elevated β-carotene, oleic acid and protein traits in the β-carotene soya beans confer a substantial additive nutritional quality to soya beans. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  5. Effect of external mass transfer on activation energy of butyl oleate ester synthesis using a whole cell bio catalyst

    International Nuclear Information System (INIS)

    Shahhoseini, Sh.; Nasernejad, B.; Vahabzadeh, F.

    2016-01-01

    In the present research, synthesis of butyl oleate ester from oleic acid and butanol using loofa-immobilized Rhizopus oryzae as a whole cell biocatalyst (LIC) was studied in which hexane was used as the hydrophobic solvent. Decrease of mass transfer limitations as result of the interface formation between the two immiscible substrates, positively affected on the reaction progress (87% as the ester product yielded within 10 h). By applying Arrhenius equation, the activation energy of the ester synthesis was determined as Ea=18.2 kJ/mol within temperature range of 15-45°C. It was notable to test appearance of the nonlinearity in Arrhenius plot which was indicative of presence of two sections. The reaction limited region was 15-35°C; Ea=27 kJ/mol and diffusion limited region was >35°C; Ea=6.8 kJ/mol. Eventually, in this research, influence of external mass transfer on activation energy with reference to the catalytic role of the LIC in the ester synthesis was discussed.

  6. High-level accumulation of oleyl oleate in plant seed oil by abundant supply of oleic acid substrates to efficient wax ester synthesis enzymes.

    Science.gov (United States)

    Yu, Dan; Hornung, Ellen; Iven, Tim; Feussner, Ivo

    2018-01-01

    Biotechnology enables the production of high-valued industrial feedstocks from plant seed oil. The plant-derived wax esters with long-chain monounsaturated acyl moieties, like oleyl oleate, have favorite properties for lubrication. For biosynthesis of wax esters using acyl-CoA substrates, expressions of a fatty acyl reductase (FAR) and a wax synthase (WS) in seeds are sufficient. For optimization of the enzymatic activity and subcellular localization of wax ester synthesis enzymes, two fusion proteins were created, which showed wax ester-forming activities in Saccharomyces cerevisiae . To promote the formation of oleyl oleate in seed oil, WSs from Acinetobactor baylyi ( Ab WSD1) and Marinobacter aquaeolei ( Ma WS2), as well as the two created fusion proteins were tested in Arabidopsis to evaluate their abilities and substrate preference for wax ester production. The tested seven enzyme combinations resulted in different yields and compositions of wax esters. Expression of a FAR of Marinobacter aquaeolei ( Ma FAR) with Ab WSD1 or Ma WS2 led to a high incorporation of C 18 substrates in wax esters. The Ma FAR/TM Mm AWAT2- Ab WSD1 combination resulted in the incorporation of more C 18:1 alcohol and C 18:0 acyl moieties into wax esters compared with Ma FAR/ Ab WSD1. The fusion protein of a WS from Simmondsia chinensis ( Sc WS) with MaFAR exhibited higher specificity toward C 20:1 substrates in preference to C 18:1 substrates. Expression of Ma FAR/ Ab WSD1 in the Arabidopsis fad2 fae1 double mutant resulted in the accumulation of oleyl oleate (18:1/18:1) in up to 62 mol% of total wax esters in seed oil, which was much higher than the 15 mol% reached by Ma FAR/ Ab WSD1 in Arabidopsis Col-0 background. In order to increase the level of oleyl oleate in seed oil of Camelina , lines expressing Ma FAR/ Sc WS were crossed with a transgenic high oleate line. The resulting plants accumulated up to >40 mg g seed -1 of wax esters, containing 27-34 mol% oleyl oleate. The

  7. Magnetically triggered clustering of biotinylated iron oxide nanoparticles in the presence of streptavidinylated enzymes

    International Nuclear Information System (INIS)

    Hodenius, Michael; De Cuyper, Marcel; Hieronymus, Thomas; Zenke, Martin; Becker, Christiane; Elling, Lothar; Bornemann, Jörg; Wong, John E; Richtering, Walter; Himmelreich, Uwe

    2012-01-01

    This work deals with the production and characterization of water-compatible, iron oxide based nanoparticles covered with functional poly(ethylene glycol) (PEG)–biotin surface groups (SPIO–PEG–biotin). Synthesis of the functionalized colloids occurred by incubating the oleate coated particles used as precursor magnetic fluid with anionic liposomes containing 14 mol% of a phospholipid–PEG–biotin conjugate. The latter was prepared by coupling dimyristoylphosphatidylethanolamine (DC 14:0 PE) to activated α-biotinylamido-ω –N-hydroxy-succinimidcarbonyl–PEG (NHS–PEG–biotin). Physical characterization of the oleate and PEG–biotin iron oxide nanocolloids revealed that they appear as colloidal stable clusters with a hydrodynamic diameter of 160 nm and zeta potentials of − 39 mV (oleate coated particles) and − 14 mV (PEG–biotin covered particles), respectively, as measured by light scattering techniques. Superconducting quantum interference device (SQUID) measurements revealed specific saturation magnetizations of 62–73 emu g −1 Fe 3 O 4 and no hysteresis was observed at 300 K. MR relaxometry at 3 T revealed very high r 2 relaxivities and moderately high r 1 values. Thus, both nanocolloids can be classified as small, superparamagnetic, negative MR contrast agents. The capacity to functionalize the particles was illustrated by binding streptavidin alkaline phosphatase (SAP). It was found, however, that these complexes become highly aggregated after capturing them on the magnetic filter device during high-gradient magnetophoresis, thereby reducing the accessibility of the SAP. (paper)

  8. Enhancing effect of negative polypropylene electret on in vitro transdermal delivery of cyclosporine A solution and its synergistic effect with ethyl oleate

    International Nuclear Information System (INIS)

    Cui, L L; Liu, H Y; Ma, L; Liang, Y Y; Guo, X; Jiang, J

    2013-01-01

    In this study, the corona charged electrets at voltages of −500 V, −1000 V and −2000 V were made from polypropylene (PP) film. The cyclosporine A (CsA) and 10% ethyl oleate were chosen as the model drug and chemical enhancer, respectively. The charge storage stability of the electrets and the in vitro transdermal behaviour of the model drug in solution under different conditions were studied. The results indicate that the external electrostatic field of the negative PP electrets could penetrate through the rat skin and enhance the transdermal delivery of cyclosporine A. A synergistic effect on enhancing the transdermal delivery of cyclosporine A was observed by combining different surface potential negative PP electrets with 10% ethyl oleate, and the amount of transdermal delivery of CsA was greatly increased comparing with only application of electrets. Therefore, the combination application of electret and chemical enhancer could be a feasible strategy in enhancing transdermal delivery of small peptide drugs or some large molecular drugs.

  9. Synthesis of N-oleyl O-sulfate chitosan from methyl oleate with O-sulfate chitosan as edible film material

    Science.gov (United States)

    Daniel; Sihaloho, O.; Saleh, C.; Magdaleni, A. R.

    2018-04-01

    The research on the synthesis of N-oleyl O-sulfate chitosan through sulfonation reaction on chitosan with ammonium sulfate and followed by amidation reaction using methyl oleate has been done. In this study, chitosan was chemically modified into N-oleyl O-sulfatechitosan as an edible film making material. N-oleyl O-sulfate chitosan was synthesized by reaction between methyl oleate and O-sulfate chitosan. Wherein the depleted chitosan of O-sulfate chitosan into O-sulfate chitosan was obtained by reaction of sulfonation between ammonium sulfate and chitosan aldimine. While chitosan aldimine was obtained through reaction between chitosan with acetaldehyde. The structure of N-oleyl O-sulfate chitosan was characterized by FT-IR analysis which showed vibration uptake of C-H sp3 group, S=O group, and carbonyl group C=O of the ester. The resulting of N-oleyl O-sulfate chitosan yielded a percentage of 93.52%. Hydrophilic-Lipophilic Balance (HLB) test results gave a value of 6.68. In the toxicity test results of N-oleyl O-sulfate chitosan obtained LC50 value of 3738.4732 ppm. In WVTR (Water Vapor Transmission Rate) test results for chitosan film was 407.625 gram/m2/24 hours and N-oleylO-sulfate chitosan film was 201.125 gram/m2/24 hours.

  10. Trials to improve the colour of colour fixed cottonseed oil using sodium oleate and sodium stearate in the absence and presence of azeotropic extract of cottonseed meal

    Directory of Open Access Journals (Sweden)

    Yousef, Elham A. A.

    1998-04-01

    Full Text Available The effectiveness of two additives, namely, laboratory prepared sodium oleate and sodium stearate to improve the colour of colour fixed cottonseed oil was studied. Also the presence of the azeotropic extract of cottonseed meal together with 5% Na oleate or 10%Na stearate was taken In consideration. Improvement in the colour index of most treated refined and bleached oil samples is observed. This is confirmed with the reduction of gossypol contents of the refined and bleached treated oil samples compared with the untreated oil sample.

    Se estudió la eficacia de dos aditivos, a saber, oleato sódico y estearato sódico preparados en laboratorio para mejorar el color del aceite de semilla de algodón con color fijado. También se tuvo en consideración la presencia de extracto azeotrópico de harina de semilla de algodón junto con oleato sódico al 50% o estearato sódico al 10%. Se observó la mejora en el índice de color de la mayoría de las muestras de aceite decolorado y refinado tratado. Esto está confirmado con la reducción de los contenidos en gosipol de las muestras de aceites refinados y decolorados tratados comparado con la muestra de aceite no tratado.

  11. (BDMCA) Nanoparticles

    African Journals Online (AJOL)

    Erah

    Available online at http://www.tjpr.org. Research Article ... Methods: Nanoparticle formulations were fabricated by a double emulsion solvent evaporation technique using .... Characterization of BDMCA nanoparticles. The nanoparticle ...

  12. Prolonged Treatment with Free Fatty Acids has Post Receptor Effect in Hepatic Insulin Resistance: Evidence that Fatty Acids, Oleate and Palmitate have Insignificant Effect on the Insulin Receptor Beta In Vivo and Ex Vivo Primary Hepatocytes

    Directory of Open Access Journals (Sweden)

    Rafik Ragheb

    2009-01-01

    Full Text Available In the current study, we used immunoprecipitation and immunoblotting to examine the levels and phosphorylation status of the insulin receptor-beta subunit (IR-β, as well as the down stream target in PI3K pathway, total PKB/Akt as well as their phosphorylated forms. The assessment of FFAs treatment showed no direct and significant effect on the PI3K stimulation, specifically the IR-β in primary hepatic control cells treated with insulin. Cells treated with either oleate or palmitate (360 µM showed no statistically significant values following insulin stimulation (P > 0.05. To further investigate the effect of both FFAs and high insulin (1 µg, we examined the effects of oleate and palmitate at 360 µM concentration on IR-β as well as PKB. There was no significant difference in the total protein levels and their phosphorylated forms in cells treated with or without oleate or plamitate. Interestingly, IR-β tyrosine phosphorylation showed a similar insignificant effect in vivo and ex vivo hepatic cells treated with oleate or palmitate in comparison to their controls in the fructose fed hamsters.

  13. Formulation design for target delivery of iron nanoparticles to TCE zones.

    Science.gov (United States)

    Wang, Ziheng; Acosta, Edgar

    2013-12-01

    Nanoparticles of zero-valent iron (NZVI) are effective reducing agents for some dense non-aqueous phase liquid (DNAPL) contaminants such as trichloroethylene (TCE). However, target delivery of iron nanoparticles to DNAPL zones in the aquifer remains an elusive feature for NZVI technologies. This work discusses three strategies to deliver iron nanoparticles to DNAPL zones. To this end, iron oxide nanoparticles coated with oleate (OL) ions were used as stable analogs for NZVI. The OL-coated iron oxide nanoparticles are rendered lipophilic via (a) the addition of CaCl2, (b) acidification, or (c) the addition of a cationic surfactant, benzethonium chloride (BC). Mixtures of OL and BC show promise as a target delivery strategy due to the high stability of the nanoparticles in water, and their preferential partition into TCE in batch experiments. Column tests show that while the OL-BC coated iron oxide nanoparticles remain largely mobile in TCE-free columns, a large fraction of these particles are retained in TCE-contaminated columns, confirming the effectiveness of this target delivery strategy. © 2013.

  14. Utilization of D-beta-hydroxybutyrate and oleate as alternate energy fuels in brain cell cultures of newborn mice after hypoxia at different glucose concentrations.

    Science.gov (United States)

    Bossi, E; Kohler, E; Herschkowitz, N

    1989-11-01

    In dissociated whole brain cell cultures from newborn mice, we have previously shown that during glucose deprivation under normoxia, D-beta-hydroxybutyrate and oleic acid are increasingly used for energy production. We now asked whether this glucose dependency of the utilization of D-beta-hydroxybutyrate and oleic acid as alternate energy fuels is also present after a hypoxic phase. 3-Hydroxy[3-14C]butyrate or [U-14C]oleic acid were added to 7- and 14-d-old cultures and 14CO2-production compared after hypoxia in normal and glucose-deprived conditions. After hypoxia, the ability of the cells 7 d in culture to increase D-beta-hydroxybutyrate consumption in response to glucose deprivation is diminished, 14-d-old cells lose this ability. In contrast, after hypoxia, both 7- and 14-d-old cultures maintain or even improve the ability to increase oleate consumption, when glucose is lacking.

  15. On the role of Pb0 atoms on the nucleation and growth of PbSe and PbTe nanoparticles

    International Nuclear Information System (INIS)

    Garcia-Gutierrez, Domingo I.; Leon-Covian, Lina M. De; Garcia-Gutierrez, Diana F.; Treviño-Gonzalez, M.; Garza-Navarro, M. A.; Sepulveda-Guzman, S.

    2013-01-01

    In this contribution, a nucleation and growth mechanism of PbSe and PbTe nanoparticles are proposed. The formation and growth of PbSe and PbTe nanoparticles during their reaction synthesis were studied and followed using transmission electron microscopy, and their related techniques. In the synthesis method, trioctylphosphine-selenide and telluride were used as the chalcogen precursors, while lead oleate was employed as the lead precursor. Different synthesis conditions were tested to assess the effect of varying the reaction time, lead to chalcogen ratio, reaction temperature, and lead oleate concentration. The synthesized nanoparticles were characterized by means of electron diffraction, energy dispersive X-ray spectroscopy, scanning transmission electron microscopy, and electron energy loss spectroscopy, to obtain information related to their morphology, crystal structure, and composition. The experimental results suggest that the growth of the lead chalcogenide nanoparticles greatly relies on the reduction of Pb 2+ ions to Pb 0 atoms at early reaction times; this reduction of the lead precursor is evidenced by the formation of Pb nanoparticles with sizes between 1 and 3 nm under certain synthesis conditions. These Pb nanoparticles gradually disappear as the reaction progresses, suggesting that the reduced Pb 0 atoms are able to contribute to the growth of the PbSe and PbTe nanoparticles, reaching sizes between 8 and 18 nm. The current results contribute to a better understanding of the nucleation and growth mechanisms of lead chalcogenide nanoparticles, which will enable the definition of more efficient synthesis routes of these types of nanostructures.

  16. On the role of Pb{sup 0} atoms on the nucleation and growth of PbSe and PbTe nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Gutierrez, Domingo I., E-mail: domingo.garciagt@uanl.edu.mx; Leon-Covian, Lina M. De; Garcia-Gutierrez, Diana F. [Universidad Autonoma de Nuevo Leon, UANL, Facultad de Ingenieria Mecanica y Electrica, FIME (Mexico); Trevino-Gonzalez, M. [Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia, CIIDIT, Universidad Autonoma de Nuevo Leon, UANL (Mexico); Garza-Navarro, M. A.; Sepulveda-Guzman, S. [Universidad Autonoma de Nuevo Leon, UANL, Facultad de Ingenieria Mecanica y Electrica, FIME (Mexico)

    2013-05-15

    In this contribution, a nucleation and growth mechanism of PbSe and PbTe nanoparticles are proposed. The formation and growth of PbSe and PbTe nanoparticles during their reaction synthesis were studied and followed using transmission electron microscopy, and their related techniques. In the synthesis method, trioctylphosphine-selenide and telluride were used as the chalcogen precursors, while lead oleate was employed as the lead precursor. Different synthesis conditions were tested to assess the effect of varying the reaction time, lead to chalcogen ratio, reaction temperature, and lead oleate concentration. The synthesized nanoparticles were characterized by means of electron diffraction, energy dispersive X-ray spectroscopy, scanning transmission electron microscopy, and electron energy loss spectroscopy, to obtain information related to their morphology, crystal structure, and composition. The experimental results suggest that the growth of the lead chalcogenide nanoparticles greatly relies on the reduction of Pb{sup 2+} ions to Pb{sup 0} atoms at early reaction times; this reduction of the lead precursor is evidenced by the formation of Pb nanoparticles with sizes between 1 and 3 nm under certain synthesis conditions. These Pb nanoparticles gradually disappear as the reaction progresses, suggesting that the reduced Pb{sup 0} atoms are able to contribute to the growth of the PbSe and PbTe nanoparticles, reaching sizes between 8 and 18 nm. The current results contribute to a better understanding of the nucleation and growth mechanisms of lead chalcogenide nanoparticles, which will enable the definition of more efficient synthesis routes of these types of nanostructures.

  17. Multinuclear NMR characterization of CTAB-hexanol-water, sodium oleate-butanol-water and triton X-100-decanol-water microemulsions

    International Nuclear Information System (INIS)

    Nagy, J.B.; Bodart-Ravet, I.; Derouane, E.G.; Gourgue, A.; Verfaillie, J.P.

    1989-01-01

    Multinuclear NMR is a very valuable tool to characterize micellar systems or microemulsions. It allows one to determine c.m.c. values, to study the dissolution of organic molecules, the solvation of cations and anions, the structural changes occurring in a ternary diagram, the mobility of the molecules, etc. This review paper essentially deals with the characterization of cationic (CTAB-hexanol-water), anionic (sodium oleate-butanol-water) and neutral (Triton X-100-decanol-water) reversed micelles. The use of paramagnetic ions [Ni(II), CO(II), Fe(III), etc.] is particularly emphasized to characterize the site of solubilization and their interaction with surfactant and cosurfactant molecules 13 C-NMR). It is concluded, that the metallic ions are basically solvated in the inner water cores and one or more hexanol molecules are included in their first coordination shells in the CTAB-hexanol-water microemulsions. In the Triton X-100-decanol-water microemulsions, both decanol and Triton X-100 molecules enter the first coordination shell of Co(II) ions which are dissolved in both aqeous water cores and the organic medium. 19 F-NMR of a fluorinated probe molecule is particularly useful to study the size of the inner water cores. The method is based on the partition of the molecules between the interface and the organic medium. However, this method has to be applied with great care, and the computed data have to be compared to other physico-chemical results. Both 19 F- and 23 Na-NMR results show a great variation of the behaviour of the sodium oleate-butanol-water system in the so-called bicontinuous region. The Na + ions are oriented independently on a hypothetical inverse micellar droplet. (author). 43 refs.; 18 figs.; 7 tabs

  18. Comparative Cytogenetic Study on the Toxicity of Magnetite and Zinc Ferrite Nanoparticles in Sunflower Root Cells

    Science.gov (United States)

    Foca-nici, Ecaterina; Capraru, Gabriela; Creanga, Dorina

    2010-12-01

    In this experimental study the authors present their results regarding the cellular division rate and the percentage of chromosomal aberrations in the root meristematic cells of Helianthus annuus cultivated in the presence of different volume fractions of magnetic nanoparticle suspensions, ranging between 20 and 100 microl/l. The aqueous magnetic colloids were prepared from chemically co-precipitated ferrites coated in sodium oleate. Tissue samples from the root meristeme of 2-3 day old germinated seeds were taken to prepare microscope slides following Squash method combined with Fuelgen techniques. Microscope investigation (cytogenetic tests) has resulted in the evaluation of mitotic index and chromosomal aberration index that appeared diminished and respectively increased following the addition of magnetic nanoparticles in the culture medium of the young seedlings. Zinc ferrite toxic influence appeared to be higher than that of magnetite, according to both cytogenetic parameters.

  19. Uptake of oleate by isolated rat adipocytes is mediated by a 40-kDa plasma membrane fatty acid binding protein closely related to that in liver and gut

    International Nuclear Information System (INIS)

    Schwieterman, W.; Sorrentino, D.; Potter, B.J.; Rand, J.; Kiang, C.L.; Stump, D.; Berk, P.D.

    1988-01-01

    A portion of the hepatocellular uptake of nonesterified long-chain fatty acids is mediated by a specific 40-kDa plasma membrane fatty acid binding protein, which has also been isolated from the gut. To investigate whether a similar transport process exists in other tissues with high transmembrane fatty acid fluxes, initial rates (V/sub O/) of [ 3 H]-oleate uptake into isolated rat adipocytes were studied as a function of the concentration of unbound [ 3 H]oleate in the medium. V/sub O/ reached a maximum as the concentration of unbound oleate was increased and was significantly inhibited both by phloretin and by prior incubation of the cells with Pronase. A rabbit antibody to the rat liver plasma membrane fatty acid binding protein inhibited adipocyte fatty acid uptake by up to 63% in dose-dependent fashion. Inhibition was noncompetitive; at an immunoglobulin concentration of 250 μg/ml V/sub max/ was reduced from 2480 /plus minus/ 160 to 1870 /plus minus/ 80 pmol/min per 5 /times/ 10 4 adipocytes, with no change in K/sub m/. A basic kDa adipocyte plasma membrane fatty acid binding protein, isolated from crude adipocyte plasma membrane fractions, reacted strongly in both agar gel diffusion and electrophoretic blots with the antibody raised against the corresponding hepatic plasma membrane protein. These data indicate that the uptake of oleate by rat adipocytes is mediated by a 40-kDa plasma membrane fatty acid binding protein closely related to that in liver and gut

  20. Physical-Chemical Characterization and Formulation Considerations for Solid Lipid Nanoparticles.

    Science.gov (United States)

    Chauhan, Harsh; Mohapatra, Sarat; Munt, Daniel J; Chandratre, Shantanu; Dash, Alekha

    2016-06-01

    Pure glyceryl mono-oleate (GMO) (lipid) and different batches of GMO commonly used for the preparation of GMO-chitosan nanoparticles were characterized by modulated differential scanning calorimetry (MDSC), cryo-microscopy, and cryo-X-ray powder diffraction techniques. GMO-chitosan nanoparticles containing poloxamer 407 as a stabilizer in the absence and presence of polymers as crystallization inhibitors were prepared by ultrasonication. The effect of polymers (polyvinyl pyrrolidone (PVP), Eudragits, hydroxyl propyl methyl cellulose (HPMC), polyethylene glycol (PEG)), surfactants (poloxamer), and oils (mineral oil and olive oil) on the crystallization of GMO was investigated. GMO showed an exothermic peak at around -10°C while cooling and another exothermic peak at around -12°C while heating. It was followed by two endothermic peaks between 15 and 30 C, indicative of GMO melting. The results are corroborated by cryo-microscopy and cryo-X-ray. Significant differences in exothermic and endothermic transition were observed between different grades of GMO and pure GMO. GMO-chitosan nanoparticles resulted in a significant increase in particle size after lyophilization. MDSC confirmed that nanoparticles showed similar exothermic crystallization behavior of lipid GMO. MDSC experiments showed that PVP inhibits GMO crystallization and addition of PVP showed no significant increase in particle size of solid lipid nanoparticle (SLN) during lyophilization. The research highlights the importance of extensive physical-chemical characterization for successful formulation of SLN.

  1. Synthetic lipid nanoparticles targeting steroid organs

    International Nuclear Information System (INIS)

    Merian, Juliette; Boisgard, Raphael; Theze, Benoit; Decleves, Xavier; Texier, Isabelle; Tavitian, Bertrand

    2013-01-01

    Lipidots are original nano-particulate lipid delivery vectors for drugs and contrast agents made from materials generally regarded as safe. Here, we characterized the in vivo stability, biodistribution, and pharmacokinetics of lipidots. Lipidots 55 nm in diameter and coated with a phospholipid/poly(ethyleneglycol) surfactant shell were triply labeled with 3 H-cholesteryl-hexadecyl-ether, cholesteryl- 14 C-oleate, and the 1,19-dioctadecyl-3,3,39,39-tetramethyl-indo-tri-carbocyanine infrared fluorescent dye and injected intravenously into immunocompetent Friend virus B-type mice. The pharmacokinetics and biodistribution of lipidots were analyzed quantitatively in serial samples of blood and tissue and with in vivo optical imaging and were refined by microscopic examination of selected target tissues. The plasmatic half-life of lipidots was approximately 30 min. Radioactive and fluorescent tracers displayed a similar nanoparticle-driven biodistribution, indicative of the lipidots' integrity during the first hours after injection. Lipidots distributed in the liver and, surprisingly, in the steroid-rich organs adrenals and ovaries, but not in the spleen. This tropism was confirmed at the microscopic level by histologic detection of 1,19-dioctadecyl- 3,3,39,39-tetramethyl-indo-tri-carbocyanine. Nanoparticle loading with cholesterol derivatives increased accumulation in ovaries in a dose dependent manner. This previously unreported distribution pattern is specific to lipidots and attributed to their nano-metric size and composition, conferring on them a lipoprotein-like behavior. The affinity of lipidots for steroid hormone-rich areas is of interest to address drugs and contrast agents to lipoprotein-receptor-over-expressing cancer cells found in hormone-dependent tumors. (authors)

  2. (BDMCA) Nanoparticles

    African Journals Online (AJOL)

    Methods: Nanoparticle formulations were fabricated by a double emulsion solvent evaporation technique using polycaprolactone as the polymer. The nanoparticles were characterised for drug content, particles size, in vitro drug release and the drug-polymer interaction. The in vivo properties of the formulations in male ...

  3. Intermetallic nanoparticles

    Science.gov (United States)

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules

    2015-07-14

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  4. (shell) nanoparticles

    Indian Academy of Sciences (India)

    the quasistatic approximation shows good agreement with the Mie theory results. .... medium, respectively, and f = (rcore/rshell)1/3 is the fraction of the total particle ..... [27] Michael Quinten, Optical properties of nanoparticle systems: Mie and ...

  5. Biopolymeric nanoparticles

    International Nuclear Information System (INIS)

    Sundar, Sushmitha; Kundu, Joydip; Kundu, Subhas C

    2010-01-01

    This review on nanoparticles highlights the various biopolymers (proteins and polysaccharides) which have recently revolutionized the world of biocompatible and degradable natural biological materials. The methods of their fabrication, including emulsification, desolvation, coacervation and electrospray drying are described. The characterization of different parameters for a given nanoparticle, such as particle size, surface charge, morphology, stability, structure, cellular uptake, cytotoxicity, drug loading and drug release, is outlined together with the relevant measurement techniques. Applications in the fields of medicine and biotechnology are discussed along with a promising future scope. (topical review)

  6. A novel diblock copolymer of (monomethoxy poly [ethylene glycol]-oleate with a small hydrophobic fraction to make stable micelles/polymersomes for curcumin delivery to cancer cells

    Directory of Open Access Journals (Sweden)

    Erfani-Moghadam V

    2014-11-01

    Full Text Available Vahid Erfani-Moghadam,1,6 Alireza Nomani,2 Mina Zamani,3 Yaghoub Yazdani,4 Farhood Najafi,5 Majid Sadeghizadeh1,3 1Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran; 2Department of Pharmaceutics, Faculty of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; 3Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran; 4Infectious Diseases Research Center and Laboratory Science Research Center, Golestan University of Medical Sciences, Gorgan, Golestan, Iran; 5Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran; 6Department of Biotechnology, Faculty of Advanced Medical Technology, Golestan University of Medical Sciences, Gorgan, Iran Abstract: Curcumin is a potent natural anticancer agent, but its effectiveness is limited by properties such as very low solubility, high rate of degradation, and low rate of absorption of its hydrophobic molecules in vivo. To date, various nanocarriers have been used to improve the bioavailability of this hydrophobic biomaterial. This study investigates the encapsulation of curcumin in a novel nanostructure of monomethoxy poly(ethylene glycol-oleate (mPEG-OA and its anticancer effect. Tests were done to determine the critical micelle concentration (CMC, encapsulation efficiency, drug-loading efficiency, and cytotoxicity (against U87MG brain carcinoma cells and HFSF-PI3 cells as normal human fibroblasts of some nanodevice preparations. The results of fluorescence microscopy and cell-cycle analyses indicated that the in vitro bioavailability of the encapsulated curcumin was significantly greater than that of free curcumin. Cytotoxicity evaluations showed that half maximal inhibitory concentrations of free curcumin and curcumin-loaded mPEG-OA for the U87MG cancer cell line were 48 µM and 24 µM, respectively. The Annexin-V-FLUOS assay was used to quantify the apoptotic

  7. Robust Nanoparticles

    Science.gov (United States)

    2015-01-21

    avenues for creating flexible conducting and semiconducting materials in a variety of simple or complex geometries. B. Conducting nanoparticle...coated with poly(MPC-co-DHLA) proved stable against challenging conditions, and resisted cyanide ion digestion. Au NRs coated with poly(MPC-co-DHLA

  8. The influence of oxidation process on exchange bias in egg-shaped FeO/Fe{sub 3}O{sub 4} core/shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Leszczyński, Błażej, E-mail: b.leszczynski@amu.edu.pl [NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Hadjipanayis, George C.; El-Gendy, Ahmed A. [Department of Physics and Astronomy, University of Delaware, 217 Sharp Lab, Newark, DE 19716 (United States); Załęski, Karol [NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Śniadecki, Zbigniew [Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań (Poland); Musiał, Andrzej [NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań (Poland); Jarek, Marcin [NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Jurga, Stefan [NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Skumiel, Andrzej [Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland)

    2016-10-15

    Egg-shaped nanoparticles with a core–shell morphology were synthesized by thermal decomposition of an iron oleate complex. XRD and M(T) magnetic measurements confirmed the presence of FeO (wustite) and Fe{sub 3}O{sub 4} (magnetite) phases in the nanoparticles. Oxidation of FeO to Fe{sub 3}O{sub 4} was found to be the mechanism for the shell formation. As-made nanoparticles exhibited high values of exchange bias at 2 K. Oxidation led to decrease of exchange field from 2880 Oe (in as-made sample) to 330 Oe (in oxidized sample). At temperatures higher than the Néel temperature of FeO (200 K) there was no exchange bias. An interesting observation was made showing the exchange field to be higher than the coercive field at temperatures close to magnetite's Verwey transition. - Highlights: • Synthesis of monodispersed FeO nanoparticles is shown. • As-made FeO nanoparticle is antiferromagnetically ordered, when it is oxidized to Fe{sub 3}O{sub 4}, the FeO core becomes small and disordered. • Exchange bias in well-ordered and disordered core is different.

  9. Essential function of linoleic acid esterified in acylglucosylceramide and acylceramide in maintaining the epidermal water permeability barrier. Evidence from feeding studies with oleate, linoleate, arachidonate, columbinate and a-linolenate

    DEFF Research Database (Denmark)

    Hansen, Harald S.; Jensen, B.

    1985-01-01

    sphingolipids. These rats showed increased evaporation which was comparable to that of essential fatty acid-deficient rats. We interpret these results as strong evidence for a very specific and essential function of linoleic acid in maintaining the integrity of the epidermal water permeability barrier......Essential fatty acid-deficient rats were supplemented with 300 mg per day of pure fatty acid esters: oleate (O), linoleate (L), arachidonate (A), and columbinate (C) for 10 days. During this period, the rats in groups L, A, and C all showed a decrease in their initially high trans-epidermal water...... loss, a classical essential fatty acid-deficiency symptom, to a level seen in non-deficient rats (group N). The trans-epidermal water loss in rats of group O was unaffected by the supplementation. Fatty acid composition of two epidermal sphingolipids, acylglucosylceramide and acylceramide, from...

  10. Carboxylated magnetic nanoparticles as MRI contrast agents: Relaxation measurements at different field strengths

    Energy Technology Data Exchange (ETDEWEB)

    Jedlovszky-Hajdu, Angela, E-mail: angela.hajdu@net.sote.hu [Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Nagyvarad Sq 4, H-1089 Budapest (Hungary); Tombacz, Etelka, E-mail: tombacz@chem.u-szeged.hu [Department of Physical Chemistry and Material Science, University of Szeged, Aradi Vt. Sq 1, Szeged 6720 (Hungary); Banyai, Istvan, E-mail: banyai.istvan@science.unideb.hu [Department of Colloid and Environmental Chemistry, University of Debrecen (Hungary); Babos, Magor, E-mail: babosmagor@yahoo.com [Euromedic Diagnostics Szeged Ltd., Semmelweis St 6, Szeged 6720 (Hungary); Palko, Andras, E-mail: palko@radio.szote.u-szeged.hu [Faculty of Medicine, Department of Radiology, University of Szeged (Hungary)

    2012-09-15

    At the moment the biomedical applications of magnetic fluids are the subject of intensive scientific interest. In the present work, magnetite nanoparticles (MNPs) were synthesized and stabilized in aqueous medium with different carboxylic compounds (citric acid (CA), polyacrylic acid (PAA), and sodium oleate (NaOA)), in order to prepare well stabilized magnetic fluids (MFs). The magnetic nanoparticles can be used in the magnetic resonance imaging (MRI) as contrast agents. Magnetic resonance relaxation measurements of the above MFs were performed at different field strengths (i.e., 0.47, 1.5 and 9.4 T) to reveal the field strength dependence of their magnetic responses, and to compare them with that of ferucarbotran, a well-known superparamagnetic contrast agent. The measurements showed characteristic differences between the tested magnetic fluids stabilized by carboxylic compounds and ferucarbotran. It is worthy of note that our magnetic fluids have the highest r2 relaxivities at the field strength of 1.5 T, where the most of the MRI works in worldwide. - Highlights: Black-Right-Pointing-Pointer Magnetic resonance relaxation measurements were done at different field strengths. Black-Right-Pointing-Pointer Results show characteristic differences between the tested carboxylated MFs. Black-Right-Pointing-Pointer r1 and r2 relaxivities depend on the thickness of the protecting layer. Black-Right-Pointing-Pointer MFs have high r2/r1 ratios at each magnetic field.

  11. Particulate Respirators Functionalized with Silver Nanoparticles Showed Excellent Real-Time Antimicrobial Effects against Pathogens.

    Science.gov (United States)

    Zheng, Clark Renjun; Li, Shuai; Ye, Chengsong; Li, Xinyang; Zhang, Chiqian; Yu, Xin

    2016-07-05

    Particulate respirators designed to filtrate fine particulate matters usually do not possess antimicrobial functions. The current study aimed to functionalize particulate respirators with silver nanoparticles (nanosilver or AgNPs), which have excellent antimicrobial activities, utilizing a straightforward and effective method. We first enhanced the nanosilver-coating ability of nonwoven fabrics from a particulate respirator through surface modification by sodium oleate. The surfactant treatment significantly improved the fabrics' water wet preference where the static water contact angles reduced from 122° to 56°. Both macroscopic agar-plate tests and microscopic scanning electron microscope (SEM) characterization revealed that nanosilver functionalized fabrics could effectively inhibit the growth of two model bacterial strains (i.e., Staphylococcus aureus and Pseudomonas aeruginosa). The coating of silver nanoparticles would not affect the main function of particulate respirators (i.e., filtration of fine air-borne particles). Nanosilver coated particulate respirators with excellent antimicrobial activities can provide real-time protection to people in regions with severe air pollution against air-borne pathogens.

  12. Oleyl-hyaluronan micelles loaded with upconverting nanoparticles for bio-imaging

    Energy Technology Data Exchange (ETDEWEB)

    Pospisilova, Martina, E-mail: martina.pospisilova@contipro.com; Mrazek, Jiri; Matuska, Vit; Kettou, Sofiane; Dusikova, Monika; Svozil, Vit; Nesporova, Kristina; Huerta-Angeles, Gloria; Vagnerova, Hana; Velebny, Vladimir [Contipro Biotech (Czech Republic)

    2015-09-15

    Hyaluronan (HA) represents an interesting polymer for nanoparticle coating due to its biocompatibility and enhanced cell interaction via CD44 receptor. Here, we describe incorporation of oleate-capped β–NaYF{sub 4}:Yb{sup 3+}, Er{sup 3+} nanoparticles (UCNP-OA) into amphiphilic HA by microemulsion method. Resulting structures have a spherical, micelle-like appearance with a hydrodynamic diameter of 180 nm. UCNP-OA-loaded HA micelles show a good stability in PBS buffer and cell culture media. The intensity of green emission of UCNP-OA-loaded HA micelles in water is about five times higher than that of ligand-free UCNP, indicating that amphiphilic HA effectively protects UCNP luminescence from quenching by water molecules. We found that UCNP-OA-loaded HA micelles in concentrations up to 50 μg mL{sup −1} increase cell viability of normal human dermal fibroblasts (NHDF), while viability of human breast adenocarcinoma cells MDA–MB–231 is reduced at these concentrations. The utility of UCNP-OA-loaded HA micelles as a bio-imaging probe was demonstrated in vitro by successful labelling of NHDF and MDA–MB–231 cells overexpressing the CD44 receptor.

  13. Immobilized Lipases on Functionalized Silica Particles as Potential Biocatalysts for the Synthesis of  Fructose Oleate in an Organic Solvent/Water System

    OpenAIRE

    Vinicius Vescovi; Raquel L. C. Giordano; Adriano A. Mendes; Paulo W. Tardioli

    2017-01-01

    Lipases from Thermomyces lanuginosus (TLL) and Pseudomonas fluorescens (PFL) wereimmobilized on functionalized silica particles aiming their use in the synthesis of fructose oleate in a tert‐butyl alcohol/water system. Silica particles were chemically modified with octyl (OS), octyl plus glutaraldehyde (OSGlu), octyl plus glyoxyl(OSGlx), and octyl plus epoxy groups(OSEpx). PFL was hyperactivated on all functionalized supports (more than 100% recovered activity) using low protein loading (1 mg...

  14. Development of chitosan oleate ionic micelles loaded with silver sulfadiazine to be associated with platelet lysate for application in wound healing.

    Science.gov (United States)

    Dellera, Eleonora; Bonferoni, Maria Cristina; Sandri, Giuseppina; Rossi, Silvia; Ferrari, Franca; Del Fante, Claudia; Perotti, Cesare; Grisoli, Pietro; Caramella, Carla

    2014-11-01

    In the treatment of chronic wounds, topical application of anti-infective drugs such as silver sulfadiazine (AgSD) is of primary importance to avoid infections and accelerate wound repair. AgSD is used in burns and chronic wounds for its wide antibacterial spectrum, but presents limitations due to poor solubility and cytotoxicity. In the present work polymeric micelles obtained by self-assembling of chitosan ionically modified by interaction with oleic acid were developed as carriers for AgSD to overcome the drawbacks of the drug. The AgSD loaded micelles were intended to be associated in wound healing with platelet lysate (PL), a hemoderivative rich in growth factors. Unloaded micelles demonstrated good compatibility with both fibroblasts and PL. The relevance of chitosan concentration and of the ratio between chitosan and oleic acid to the drug loading and the particle size of nanoparticles was studied. A marked increase (up to 100 times with respect to saturated solution) of AgSD concentration in micelle dispersion was obtained. Moreover, the encapsulation reduced the cytotoxic effect of the drug towards fibroblasts and the drug incompatibility with PDGF-AB (platelet derived growth factor), chosen as representative of platelet growth factors. Copyright © 2014. Published by Elsevier B.V.

  15. Oleate-based hydrothermal preparation of CoFe.sub.2./sub.O.sub.4./sub. nanoparticles, and their magnetic properties with respect to particle size and surface coating

    Czech Academy of Sciences Publication Activity Database

    Repko, A.; Vejpravová, Jana; Vacková, Taťana; Zákutná, D.; Nižňanský, D.

    2015-01-01

    Roč. 390, Sep (2015), s. 142-151 ISSN 0304-8853 R&D Projects: GA TA ČR(CZ) TE01020118 Institutional support: RVO:68378271 ; RVO:61389013 Keywords : superparamagnetism * size effect * monodisperse nanocrystals * hydrothermal synthesis * cobalt iron oxide * titania Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.357, year: 2015

  16. O3 Nanoparticles

    KAUST Repository

    Wang, Juan; Li, Yangyang; Deng, Lin; Wei, Nini; Weng, Yakui; Dong, Shuai; Qi, Dianpeng; Qiu, Jun; Chen, Xiaodong; Wu, Tao

    2016-01-01

    Ti2O3 nanoparticles with high performance of photothermal conversion are demonstrated for the first time. Benefiting from the nanosize and narrow-bandgap features, the Ti2O3 nanoparticles possess strong light absorption and nearly 100% internal

  17. O3 Nanoparticles

    KAUST Repository

    Wang, Juan

    2016-11-16

    Ti2O3 nanoparticles with high performance of photothermal conversion are demonstrated for the first time. Benefiting from the nanosize and narrow-bandgap features, the Ti2O3 nanoparticles possess strong light absorption and nearly 100% internal solar–thermal conversion efficiency. Furthermore, Ti2O3 nanoparticle-based thin film shows potential use in seawater desalination and purification.

  18. De-alloyed platinum nanoparticles

    Science.gov (United States)

    Strasser, Peter [Houston, TX; Koh, Shirlaine [Houston, TX; Mani, Prasanna [Houston, TX; Ratndeep, Srivastava [Houston, TX

    2011-08-09

    A method of producing de-alloyed nanoparticles. In an embodiment, the method comprises admixing metal precursors, freeze-drying, annealing, and de-alloying the nanoparticles in situ. Further, in an embodiment de-alloyed nanoparticle formed by the method, wherein the nanoparticle further comprises a core-shell arrangement. The nanoparticle is suitable for electrocatalytic processes and devices.

  19. Nanoparticle mediated micromotor motion

    Science.gov (United States)

    Liu, Mei; Liu, Limei; Gao, Wenlong; Su, Miaoda; Ge, Ya; Shi, Lili; Zhang, Hui; Dong, Bin; Li, Christopher Y.

    2015-03-01

    In this paper, we report the utilization of nanoparticles to mediate the motion of a polymer single crystal catalytic micromotor. Micromotors have been fabricated by directly self-assembling functional nanoparticles (platinum and iron oxide nanoparticles) onto one or both sides of two-dimensional polymer single crystals. We show that the moving velocity of these micromotors in fluids can be readily tuned by controlling the nanoparticles' surface wettability and catalytic activity. A 3 times velocity increase has been achieved for a hydrophobic micromotor as opposed to the hydrophilic ones. Furthermore, we demonstrate that the catalytic activity of platinum nanoparticles inside the micromotor can be enhanced by their synergetic interactions with iron oxide nanoparticles and an electric field. Both strategies lead to dramatically increased moving velocities, with the highest value reaching ~200 μm s-1. By decreasing the nanoparticles' surface wettability and increasing their catalytic activity, a maximum of a ~10-fold increase in the moving speed of the nanoparticle based micromotor can be achieved. Our results demonstrate the advantages of using nanoparticles in micromotor systems.In this paper, we report the utilization of nanoparticles to mediate the motion of a polymer single crystal catalytic micromotor. Micromotors have been fabricated by directly self-assembling functional nanoparticles (platinum and iron oxide nanoparticles) onto one or both sides of two-dimensional polymer single crystals. We show that the moving velocity of these micromotors in fluids can be readily tuned by controlling the nanoparticles' surface wettability and catalytic activity. A 3 times velocity increase has been achieved for a hydrophobic micromotor as opposed to the hydrophilic ones. Furthermore, we demonstrate that the catalytic activity of platinum nanoparticles inside the micromotor can be enhanced by their synergetic interactions with iron oxide nanoparticles and an electric

  20. Comparison of Balloon-Occluded Retrograde Transvenous Obliteration (BRTO) Using Ethanolamine Oleate (EO), BRTO Using Sodium Tetradecyl Sulfate (STS) Foam and Vascular Plug-Assisted Retrograde Transvenous Obliteration (PARTO)

    International Nuclear Information System (INIS)

    Kim, Young Hwan; Kim, Young Hwan; Kim, Chan Sun; Kang, Ung Rae; Kim, See Hyung; Kim, Joo Hwan

    2016-01-01

    PurposeTo compare the clinical outcomes of balloon-occluded retrograde transvenous obliteration (BRTO) using ethanolamine oleate (EO), BRTO using sodium tetradecyl sulfate (STS) foam, and vascular plug-assisted retrograde transvenous obliteration (PARTO).Materials and MethodsFrom April 2004 to February 2015, ninety-five patients underwent retrograde transvenous obliteration for gastric varices were analyzed retrospectively. BRTO with EO was performed in 49 patients, BRTO with STS foam in 25, and PARTO in 21. Among them, we obtained follow-up data in 70 patients. Recurrence of gastric varices was evaluated by follow-up endoscopy or CT. Medical records were reviewed for the clinical efficacy. Statistical analyses were performed by Kaplan–Meier method, Chi-square, Fisher’s, and Kruskal–Wallis tests.ResultsTechnical and clinical success was 94.7 %. As major complications, a hemoglobinuria and a death due to disseminated intravascular coagulation (DIC) were occurred in two patients with BRTO using EO. Recurrence occurred more frequently in PARTO group (P < 0.05). Recurrence occurred in three patients in BRTO using EO group and four patients in PARTO group with 3.2 and 32.8 % of each expected 1-year recurrence rates. There was no recurrence in BRTO using STS group. Abdominal pain occurred more frequently in BRTO using EO than BRTO using STS foam and PARTO (P < 0.05). Procedure time of PARTO was shorter than two conventional BRTOs (P < 0.05).ConclusionsBRTO using STS foam or PARTO is better than BRTO using EO for treatment of gastric varices in terms of complication or procedure time. However, PARTO showed frequent recurrence of gastric varices during the long-term follow-up rather than BRTO.

  1. Comparison of Balloon-Occluded Retrograde Transvenous Obliteration (BRTO) Using Ethanolamine Oleate (EO), BRTO Using Sodium Tetradecyl Sulfate (STS) Foam and Vascular Plug-Assisted Retrograde Transvenous Obliteration (PARTO)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Hwan; Kim, Young Hwan, E-mail: yhkim68@dsmc.or.kr; Kim, Chan Sun [Keimyung University College of Medicine, Department of Radiology, Dongsan Medical Center (Korea, Republic of); Kang, Ung Rae [Daegu Catholic University Medical Center, Department of Radiology (Korea, Republic of); Kim, See Hyung; Kim, Joo Hwan [Keimyung University College of Medicine, Department of Radiology, Dongsan Medical Center (Korea, Republic of)

    2016-06-15

    PurposeTo compare the clinical outcomes of balloon-occluded retrograde transvenous obliteration (BRTO) using ethanolamine oleate (EO), BRTO using sodium tetradecyl sulfate (STS) foam, and vascular plug-assisted retrograde transvenous obliteration (PARTO).Materials and MethodsFrom April 2004 to February 2015, ninety-five patients underwent retrograde transvenous obliteration for gastric varices were analyzed retrospectively. BRTO with EO was performed in 49 patients, BRTO with STS foam in 25, and PARTO in 21. Among them, we obtained follow-up data in 70 patients. Recurrence of gastric varices was evaluated by follow-up endoscopy or CT. Medical records were reviewed for the clinical efficacy. Statistical analyses were performed by Kaplan–Meier method, Chi-square, Fisher’s, and Kruskal–Wallis tests.ResultsTechnical and clinical success was 94.7 %. As major complications, a hemoglobinuria and a death due to disseminated intravascular coagulation (DIC) were occurred in two patients with BRTO using EO. Recurrence occurred more frequently in PARTO group (P < 0.05). Recurrence occurred in three patients in BRTO using EO group and four patients in PARTO group with 3.2 and 32.8 % of each expected 1-year recurrence rates. There was no recurrence in BRTO using STS group. Abdominal pain occurred more frequently in BRTO using EO than BRTO using STS foam and PARTO (P < 0.05). Procedure time of PARTO was shorter than two conventional BRTOs (P < 0.05).ConclusionsBRTO using STS foam or PARTO is better than BRTO using EO for treatment of gastric varices in terms of complication or procedure time. However, PARTO showed frequent recurrence of gastric varices during the long-term follow-up rather than BRTO.

  2. A nanoparticle in plasma

    International Nuclear Information System (INIS)

    Martynenko, Yu. V.; Nagel', M. Yu.; Orlov, M. A.

    2009-01-01

    Charge and energy fluxes onto a nanoparticle under conditions typical of laboratory plasmas are investigated theoretically. Here, by a nanoparticle is meant a grain the size of which is much smaller than both the electron Larmor radius and Debye length and the thermionic emission from which is not limited by the space charge. Under conditions at which thermionic emission plays an important role, the electric potential and temperature T p of a nanoparticle are determined by solving a self-consistent set of equations describing the balance of energy and charge fluxes onto the nanoparticle. It is shown that, when the degree of plasma ionization exceeds a critical level, the potential of the nanoparticle and the energy flux onto it increase with increasing nanoparticle temperature, so that, starting from a certain temperature, the nanoparticle potential becomes positive. The critical degree of ionization starting from which the potential of a nanoparticle is always positive is determined as a function of the plasma density and electron temperature. The nanoparticle temperature T p corresponding to the equilibrium state of a positively charged nanoparticle is found as a function of the electron density for different electron temperatures.

  3. Polymer Assembly Encapsulation of Lanthanide Nanoparticles as Contrast Agents for In Vivo Micro-CT.

    Science.gov (United States)

    Cruje, Charmainne; Dunmore-Buyze, Joy; MacDonald, Jarret P; Holdsworth, David W; Drangova, Maria; Gillies, Elizabeth R

    2018-03-12

    Despite recent technological advancements in microcomputed tomography (micro-CT) and contrast agent development, preclinical contrast agents are still predominantly iodine-based. Higher contrast can be achieved when using elements with higher atomic numbers, such as lanthanides; lanthanides also have X-ray attenuation properties that are ideal for spectral CT. However, the formulation of lanthanide-based contrast agents at the high concentrations required for vascular imaging presents a significant challenge. In this work, we developed an erbium-based contrast agent that meets micro-CT imaging requirements, which include colloidal stability upon redispersion at high concentrations, evasion of rapid renal clearance, and circulation times of tens of minutes in small animals. Through systematic studies with poly(ethylene glycol) (PEG)-poly(propylene glycol), PEG-polycaprolactone, and PEG-poly(l-lactide) (PLA) block copolymers, the amphiphilic block copolymer PEG 114 -PLA 53 was identified to be ideal for encapsulating oleate-coated lanthanide-based nanoparticles for in vivo intravenous administration. We were able to synthesize a contrast agent containing 100 mg/mL of erbium that could be redispersed into colloidally stable particles in saline after lyophilization. Contrast enhancement of over 250 HU was achieved in the blood pool for up to an hour, thereby meeting the requirements of live animal micro-CT.

  4. Multifunctional nanoparticles: Analytical prospects

    International Nuclear Information System (INIS)

    Dios, Alejandro Simon de; Diaz-Garcia, Marta Elena

    2010-01-01

    Multifunctional nanoparticles are among the most exciting nanomaterials with promising applications in analytical chemistry. These applications include (bio)sensing, (bio)assays, catalysis and separations. Although most of these applications are based on the magnetic, optical and electrochemical properties of multifunctional nanoparticles, other aspects such as the synergistic effect of the functional groups and the amplification effect associated with the nanoscale dimension have also been observed. Considering not only the nature of the raw material but also the shape, there is a huge variety of nanoparticles. In this review only magnetic, quantum dots, gold nanoparticles, carbon and inorganic nanotubes as well as silica, titania and gadolinium oxide nanoparticles are addressed. This review presents a narrative summary on the use of multifuncional nanoparticles for analytical applications, along with a discussion on some critical challenges existing in the field and possible solutions that have been or are being developed to overcome these challenges.

  5. Nanoparticles and direct immunosuppression

    Science.gov (United States)

    Ngobili, Terrika A

    2016-01-01

    Targeting the immune system with nanomaterials is an intensely active area of research. Specifically, the capability to induce immunosuppression is a promising complement for drug delivery and regenerative medicine therapies. Many novel strategies for immunosuppression rely on nanoparticles as delivery vehicles for small-molecule immunosuppressive compounds. As a consequence, efforts in understanding the mechanisms in which nanoparticles directly interact with the immune system have been overshadowed. The immunological activity of nanoparticles is dependent on the physiochemical properties of the nanoparticles and its subsequent cellular internalization. As the underlying factors for these reactions are elucidated, more nanoparticles may be engineered and evaluated for inducing immunosuppression and complementing immunosuppressive drugs. This review will briefly summarize the state-of-the-art and developments in understanding how nanoparticles induce immunosuppressive responses, compare the inherent properties of nanomaterials which induce these immunological reactions, and comment on the potential for using nanomaterials to modulate and control the immune system. PMID:27229901

  6. [How safe are nanoparticles?].

    Science.gov (United States)

    Lademann, J; Meinke, M; Sterry, W; Patzelt, A

    2009-04-01

    Nanoparticles are experiencing an increasing application in dermatology and cosmetics. In both application areas, the requirements of nanoparticles are in most cases widely different. As a component of sunscreens, the nanoparticles are supposed to remain on the skin surface or in the upper most layers of the stratum corneum to protect the skin against UV-radiation of the sun. Whereas, on the other hand, when particulate substances are used as carrier systems for drugs, they have to cross the skin barrier to reach the target sites within the living tissue. We discuss the perspectives and risks of the topical application of nanoparticles.

  7. Encapsulation of gold nanoparticles into self-assembling protein nanoparticles

    OpenAIRE

    Yang Yongkun; Burkhard Peter

    2012-01-01

    Abstract Background Gold nanoparticles are useful tools for biological applications due to their attractive physical and chemical properties. Their applications can be further expanded when they are functionalized with biological molecules. The biological molecules not only provide the interfaces for interactions between nanoparticles and biological environment, but also contribute their biological functions to the nanoparticles. Therefore, we used self-assembling protein nanoparticles (SAPNs...

  8. Biosynthesis of silver nanoparticles

    African Journals Online (AJOL)

    SIMBU

    2013-05-22

    May 22, 2013 ... accomplish a better control over the size and shape distributions of the nanoparticles, product harvesting, and recovery are ... stabilization of various nanoparticles by physical and che- .... colonies on Luria Bertani (LB) medium at 37°C up to 108- ..... Crude latex was obtained by cutting the green stems of J.

  9. Optical properties of nanoparticles

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At the NBI I am involved in projects relating to optical properties of metallic nanoparticles in particular with respect to plasmonic heating with direct applications to photothermal cancer therapy. For this purpose we have developed heating assays that can be used to measure the heating of any...... nanoscopic heat source like an irradiated nanoparticle...

  10. Single Nanoparticle Plasmonic Sensors

    Directory of Open Access Journals (Sweden)

    Manish Sriram

    2015-10-01

    Full Text Available The adoption of plasmonic nanomaterials in optical sensors, coupled with the advances in detection techniques, has opened the way for biosensing with single plasmonic particles. Single nanoparticle sensors offer the potential to analyse biochemical interactions at a single-molecule level, thereby allowing us to capture even more information than ensemble measurements. We introduce the concepts behind single nanoparticle sensing and how the localised surface plasmon resonances of these nanoparticles are dependent upon their materials, shape and size. Then we outline the different synthetic approaches, like citrate reduction, seed-mediated and seedless growth, that enable the synthesis of gold and silver nanospheres, nanorods, nanostars, nanoprisms and other nanostructures with tunable sizes. Further, we go into the aspects related to purification and functionalisation of nanoparticles, prior to the fabrication of sensing surfaces. Finally, the recent developments in single nanoparticle detection, spectroscopy and sensing applications are discussed.

  11. Energy breathing of nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Dynich, Raman A., E-mail: dynich@solo.by [Institute of Social Educational Technologies (Belarus)

    2015-06-15

    The paper considers the energy exchange process of the electromagnetic wave with a spherical metal nanoparticle. Based on the account of the temporal dependencies of electric and magnetic fields, the author presents an analytical dependence of the energy flow passing through the spherical surface. It is shown that the electromagnetic energy, localized in metal nanoparticles, is not a stationary value and periodically varies with time. A consequence of the energy nonstationarity is a nonradiating exit of the electromagnetic energy out of the nanoparticle. During the time equal to the period of wave oscillations, the electromagnetic energy is penetrating twice into the particle and quits it twice. The particle warms up because of the difference in the incoming and outgoing energies. Such “energy breathing” is presented for spherical Ag and Au nanoparticles with radii of 10 and 33 nm, respectively. Calculations were conducted for these nanoparticles embedded into the cell cytoplasm near the frequencies of their surface plasmon resonances.

  12. Magnetic interactions between nanoparticles

    DEFF Research Database (Denmark)

    Mørup, Steen; Hansen, Mikkel Fougt; Frandsen, Cathrine

    2010-01-01

    We present a short overview of the influence of inter-particle interactions on the properties of magnetic nanoparticles. Strong magnetic dipole interactions between ferromagnetic or ferrimagnetic particles, that would be superparamagnetic if isolated, can result in a collective state...... of nanoparticles. This collective state has many similarities to spin-glasses. In samples of aggregated magnetic nanoparticles, exchange interactions are often important and this can also lead to a strong suppression of superparamagnetic relaxation. The temperature dependence of the order parameter in samples...... of strongly interacting hematite nanoparticles or goethite grains is well described by a simple mean field model. Exchange interactions between nanoparticles with different orientations of the easy axes can also result in a rotation of the sub-lattice magnetization directions....

  13. Synthesis and controllable oxidation of monodisperse cobalt-doped wüstite nanoparticles and their core-shell stability and exchange-bias stabilization.

    Science.gov (United States)

    Chen, Chih-Jung; Chiang, Ray-Kuang; Kamali, Saeed; Wang, Sue-Lein

    2015-09-14

    Cobalt-doped wüstite (CWT), Co0.33Fe0.67O, nanoparticles were prepared via the thermal decomposition of CoFe2-oleate complexes in organic solvents. A controllable oxidation process was then performed to obtain Co0.33Fe0.67O/CoFe2O4 core-shell structures with different core-to-shell volume ratios and exchange bias properties. The oxidized core-shell samples with a ∼4 nm CoFe2O4 shell showed good resistance to oxygen transmission. Thus, it is inferred that the cobalt ferrite shell provides a better oxidation barrier performance than magnetite in the un-doped case. The hysteresis loops of the oxidized 19 nm samples exhibited a high exchange bias field (H(E)), an enhanced coercivity field (H(C)), and a pronounced vertical shift, thus indicating the presence of a strong exchange bias coupling effect. More importantly, the onset temperature of H(E) was found to be higher than 200 K, which suggests that cobalt doping increases the Néel temperature (T(N)) of the CWT core. In general, the results show that the homogeneous dispersion of Co in iron precursors improves the stability of the final CWT nanoparticles. Moreover, the CoFe2O4 shells formed following oxidation increase the oxidation resistance of the CWT cores and enhance their anisotropy energy.

  14. Functional Magnetic Nanoparticles

    Science.gov (United States)

    Gass, James

    Nanoparticle system research and characterization is the focal point of this research and dissertation. In the research presented here, magnetite, cobalt, and ferrite nanoparticle systems have been explored in regard to their magnetocaloric effect (MCE) properties, as well as for use in polymer composites. Both areas of study have potential applications across a wide variety of interdisciplinary fields. Magnetite nanoparticles have been successfully dispersed in a polymer. The surface chemistry of the magnetic nanoparticle proves critical to obtaining a homogenous and well separated high density dispersion in PMMA. Theoretical studies found in the literature have indicated that surface interface energy is a critical component in dispersion. Oleic acid is used to alter the surface of magnetite nanoparticles and successfully achieve good dispersion in a PMMA thin film. Polypyrrole is then coated onto the PMMA composite layer. The bilayer is characterized using cross-sectional TEM, cross-sectional SEM, magnetic characterization, and low frequency conductivity. The results show that the superparmagnetic properties of the as synthesized particles are maintained in the composite. With further study of the properties of these nanoparticles for real and functional uses, MCE is studied on a variety of magnetic nanoparticle systems. Magnetite, manganese zinc ferrite, and cobalt ferrite systems show significant broadening of the MCE and the ability to tune the peak temperature of MCE by varying the size of the nanoparticles. Four distinct systems are studied including cobalt, cobalt core silver shell nanoparticles, nickel ferrite, and ball milled zinc ferrite. The results demonstrate the importance of surface characteristics on MCE. Surface spin disorder appears to have a large influence on the low temperature magnetic and magnetocalorie characteristics of these nanoparticle systems.

  15. Microemulsion Synthesis of Nanoparticles

    Directory of Open Access Journals (Sweden)

    Gotić, M.

    2013-11-01

    Full Text Available Nanoparticles and nanomaterials have wide applications in electronics, physics, material design, being also utilized as sensors, catalysts, and more and more in biomedicine. Microemulsions are an exceptionally suitable medium for the synthesis of nanoparticles due to their thermodynamical stability, great solubility of both polar and nonpolar components, as well as their ability to control the size, dispersity and shape of the particles. This review presents microemulsion techniques for the synthesis of inorganic nanoparticles. It takes place in water-in-oil microemulsions by mixing one microemulsion with a cationic precursor, and the other with a precipitating or reducing agent, or by direct addition of reducing agents or gas (O2, NH3 ili CO2 into microemul sion (Fig. 1. Metal nanoparticles are used as catalysts, sensors, ferrofluids etc. They are produced by reducing the metal cation with a suitable reducing agent. In a similar way, one can prepare nanoparticles of alloys from the metal salts, provided that the metals are mutually soluble. The microemulsion technique is also suitable for depositing nanoparticles onto various surfaces. Highly active catalysts made from nanoparticles of Pt, Pd, Rh and other noble metals may be obtained in this way. Metal oxides and hydroxides may be prepared by hydrolysis or precipitation in the water core of microemulsion. Precipitation can be initiated by adding the base or precipitating agent into the microemulsion with water solution of metal ions. Similarly, nanoparticles may be prepared of sulphides, halogenides, cyanides, carbonates, sulphates and other insoluble metal salts. To prevent oxidation of nanoparticles, especially Fe, the particles are coated with inert metals, oxides, various polymers etc. Coating may provide additional functionality; e.g. coating with gold allows subsequent functionalization with organic compounds containing sulphur, due to the strong Au–S bond. Polymer coatings decrease

  16. Encapsulation of gold nanoparticles into self-assembling protein nanoparticles

    Directory of Open Access Journals (Sweden)

    Yang Yongkun

    2012-10-01

    Full Text Available Abstract Background Gold nanoparticles are useful tools for biological applications due to their attractive physical and chemical properties. Their applications can be further expanded when they are functionalized with biological molecules. The biological molecules not only provide the interfaces for interactions between nanoparticles and biological environment, but also contribute their biological functions to the nanoparticles. Therefore, we used self-assembling protein nanoparticles (SAPNs to encapsulate gold nanoparticles. The protein nanoparticles are formed upon self-assembly of a protein chain that is composed of a pentameric coiled-coil domain at the N-terminus and trimeric coiled-coil domain at the C-terminus. The self-assembling protein nanoparticles form a central cavity of about 10 nm in size, which is ideal for the encapsulation of gold nanoparticles with similar sizes. Results We have used SAPNs to encapsulate several commercially available gold nanoparticles. The hydrodynamic size and the surface coating of gold nanoparticles are two important factors influencing successful encapsulation by the SAPNs. Gold nanoparticles with a hydrodynamic size of less than 15 nm can successfully be encapsulated. Gold nanoparticles with citrate coating appear to have stronger interactions with the proteins, which can interfere with the formation of regular protein nanoparticles. Upon encapsulation gold nanoparticles with polymer coating interfere less strongly with the ability of the SAPNs to assemble into nanoparticles. Although the central cavity of the SAPNs carries an overall charge, the electrostatic interaction appears to be less critical for the efficient encapsulation of gold nanoparticles into the protein nanoparticles. Conclusions The SAPNs can be used to encapsulate gold nanoparticles. The SAPNs can be further functionalized by engineering functional peptides or proteins to either their N- or C-termini. Therefore encapsulation of gold

  17. Electronically cloaked nanoparticles

    Science.gov (United States)

    Shen, Wenqing

    The concept of electronic cloaking is to design objects invisible to conduction electrons. The approach of electronic cloaking has been recently suggested to design invisible nanoparticle dopants with electronic scattering cross section smaller than 1% of the physical cross section (pi a2), and therefore to enhance the carrier mobility of bulk materials. The proposed nanoparticles have core-shell structures. The dopants are incorporated inside the core, while the shell layer serves both as a spacer to separate the charge carriers from their parent atoms and as a cloaking shell to minimize the scattering cross section of the electrons from the ionized nanoparticles. Thermoelectric materials are usually highly doped to have enough carrier density. Using invisible dopants could achieve larger thermoelectric power factors by enhancing the electronic mobility. Core-shell nanoparticles show an advantage over one-layer nanoparticles, which are proposed in three-dimensional modulation doping. However designing such nanoparticles is not easy as there are too many parameters to be considered. This thesis first shows an approach to design hollow nanoparticles by applying constrains on variables. In the second part, a simple mapping approach is introduced where one can identify possible core-shell particles by comparing the dimensionless parameters of chosen materials with provided maps. In both parts of this work, several designs with realistic materials were made and proven to achieve electronic cloaking. Improvement in the thermoelectric power factor compared to the traditional impurity doping method was demonstrated in several cases.

  18. Liposome encapsulation of fluorescent nanoparticles: Quantum dots and silica nanoparticles

    International Nuclear Information System (INIS)

    Chen, C.-S.; Yao Jie; Durst, Richard A.

    2006-01-01

    Quantum dots (QDs) and silica nanoparticles (SNs) are relatively new classes of fluorescent probes that overcome the limitations encountered by organic fluorophores in bioassay and biological imaging applications. We encapsulated QDs and SNs in liposomes and separated nanoparticle-loaded liposomes from unencapsulated nanoparticles by size exclusion chromatography. Fluorescence correlation spectroscopy was used to measure the average number of nanoparticles inside each liposome. Results indicated that nanoparticle-loaded liposomes were formed and separated from unencapsulated nanoparticles by using a Sepharose gel. As expected, fluorescence self-quenching of nanoparticles inside liposomes was not observed. Each liposome encapsulated an average of three QDs. These studies demonstrated that nanoparticles could be successfully encapsulated into liposomes and provided a methodology to quantify the number of nanoparticles inside each liposome by fluorescence correlation spectroscopy

  19. Gas Phase Nanoparticle Synthesis

    Science.gov (United States)

    Granqvist, Claes; Kish, Laszlo; Marlow, William

    This book deals with gas-phase nanoparticle synthesis and is intended for researchers and research students in nanomaterials science and engineering, condensed matter physics and chemistry, and aerosol science. Gas-phase nanoparticle synthesis is instrumental to nanotechnology - a field in current focus that raises hopes for environmentally benign, resource-lean manufacturing. Nanoparticles can be produced by many physical, chemical, and even biological routes. Gas-phase synthesis is particularly interesting since one can achieve accurate manufacturing control and hence industrial viability.

  20. Resonant halide perovskite nanoparticles

    Science.gov (United States)

    Tiguntseva, Ekaterina Y.; Ishteev, Arthur R.; Komissarenko, Filipp E.; Zuev, Dmitry A.; Ushakova, Elena V.; Milichko, Valentin A.; Nesterov-Mueller, Alexander; Makarov, Sergey V.; Zakhidov, Anvar A.

    2017-09-01

    The hybrid halide perovskites is a prospective material for fabrication of cost-effective optical devices. Unique perovskites properties are used for solar cells and different photonic applications. Recently, perovskite-based nanophotonics has emerged. Here, we consider perovskite like a high-refractive index dielectric material, which can be considered to be a basis for nanoparticles fabrication with Mie resonances. As a result, we fabricate and study resonant perovskite nanoparticles with different sizes. We reveal, that spherical nanoparticles show enhanced photoluminescence signal. The achieved results lay a cornerstone in the field of novel types of organic-inorganic nanophotonics devices with optical properties improved by Mie resonances.

  1. Assembling RNA Nanoparticles.

    Science.gov (United States)

    Xiao, Shou-Jun

    2017-01-01

    RNA nanoparticles are designed and self-assembled according to noncanonical interactions of naturally conserved RNA motifs and/or canonical Watson-Crick base-pairing interactions, which have potential applications in gene therapy and nanomedicine. These artificially engineered nanoparticles are mainly synthesized from in vitro transcribed RNAs, purified by denaturing and native polyacrylamide gel electrophoresis (PAGE), and characterized with native PAGE, AFM, and TEM technologies. The protocols of in vitro transcription, denaturing and native PAGE, and RNA nanoparticle self-assembly are described in detail.

  2. Nanoparticles of poly(hydroxybutyrate-co-hydroxyvalerate) as support for the immobilization of Candida antarctica lipase (fraction B)

    International Nuclear Information System (INIS)

    Fernandes, Ilizandra A.; Nyari, Nadia L.D.; Oliveira, Jose Vladimir de; Oliveira, Debora de; Rigo, Elisandra; Souza, Maria Cristiane M. de; Goncalves, Luciana R.B.; Pergher, Sibele Berenice C.

    2014-01-01

    This work evaluates the immobilization of Candida antarctica lipase (Fraction B) using poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) nanoparticles as support. The effects of immobilization time (30-150 min) and pH (5-10) on lipase loading were evaluated. The stability of the immobilized enzyme towards temperature (40, 60, and 80 deg C), reuse and storage (at 4 deg C) were also determined. Furthermore, to assess its potential application in a system of interest, the immobilized lipase was used as a catalyst in the esterification of geraniol with oleic acid. The results indicated a time of 120 minutes and pH of 7 as optimal for immobilization. A 21 hour exposure of the PHBV-lipase derivative to 60 deg C showed a 33% reduction of the initial activity while storage at 4 deg C led to a residual activity (5% of the original activity). The derivative was used without significant loss of activity for 4 successive cycles. The use of the immobilized lipase as a catalyst in the production of geranyl oleate led to about 88% conversion of the initial reactants to products. (author)

  3. Screening evaluation of the ecotoxicity and genotoxicity of soils contaminated with organic and inorganic nanoparticles: The role of ageing

    International Nuclear Information System (INIS)

    Pereira, R.; Rocha-Santos, T.A.P.; Antunes, F.E.; Rasteiro, M.G.; Ribeiro, R.; Goncalves, F.; Soares, A.M.V.M.; Lopes, I.

    2011-01-01

    Highlights: → In general ageing decreases toxicity/genotoxicity of soil spiked with aqueous suspensions of NMs. → Ageing may promote degradation of organic shells of metallic NPs increasing toxicity. → Toxicity was recorded despite aggregation of NPs in the aqueous suspensions. → Soils spiked with Au nanorods, quantum dots, TiSiO 4 induced mutations in Salmonella typhimurium. - Abstract: This study aimed to evaluate the toxicity and genotoxicity of soils, and corresponding elutriates, contaminated with aqueous suspensions of two organic (vesicles of sodium dodecyl sulphate/didodecyl dimethylammonium bromide and of monoolein and sodium oleate) and five inorganic nanoparticles (NPs) (TiO 2 , TiSiO 4 , CdSe/ZnS quantum dots, Fe/Co magnetic fluid and gold nanorods) to Vibrio fischeri and Salmonella typhimurium (TA98 and TA100 strains). Soil samples were tested 2 h and 30 days after contamination. Suspensions of NPs were characterized by Dynamic Light Scattering. Soils were highly toxic to V. fischeri, especially after 2 h. After 30 days toxicity was maintained only for soils spiked with suspensions of more stable NPs (zeta potential > 30 mV or 4 induced mutations in both strains of S. typhimurium, suggesting more diversified mechanisms of genotoxicity.

  4. Functionalized diamond nanoparticles

    KAUST Repository

    Beaujuge, Pierre M.; El Tall, Omar; Raja, Inam U.

    2014-01-01

    A diamond nanoparticle can be functionalized with a substituted dienophile under ambient conditions, and in the absence of catalysts or additional reagents. The functionalization is thought to proceed through an addition reaction.

  5. Functionalized diamond nanoparticles

    KAUST Repository

    Beaujuge, Pierre M.

    2014-10-21

    A diamond nanoparticle can be functionalized with a substituted dienophile under ambient conditions, and in the absence of catalysts or additional reagents. The functionalization is thought to proceed through an addition reaction.

  6. Repairing Nanoparticle Surface Defects

    NARCIS (Netherlands)

    Marino, Emanuele; Kodger, Thomas E.; Crisp, R.W.; Timmerman, Dolf; MacArthur, Katherine E.; Heggen, Marc; Schall, Peter

    2017-01-01

    Solar devices based on semiconductor nanoparticles require the use of conductive ligands; however, replacing the native, insulating ligands with conductive metal chalcogenide complexes introduces structural defects within the crystalline nanostructure that act as traps for charge carriers. We

  7. Metallic Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    A. Hernando

    2005-01-01

    Full Text Available In this paper, we reviewed some relevant aspects of the magnetic properties of metallic nanoparticles with small size (below 4 nm, covering the size effects in nanoparticles of magnetic materials, as well as the appearance of magnetism at the nanoscale in materials that are nonferromagnetic in bulk. These results are distributed along the text that has been organized around three important items: fundamental magnetic properties, different fabrication procedures, and characterization techniques. A general introduction and some experimental results recently obtained in Pd and Au nanoparticles have also been included. Finally, the more promising applications of magnetic nanoparticles in biomedicine are indicated. Special care was taken to complete the literature available on the subject.

  8. Multifunctional Roles of TiO 2 Nanoparticles for Architecture of Complex Core−Shells and Hollow Spheres of SiO 2 −TiO 2 −Polyaniline System

    KAUST Repository

    Wang, Dan Ping

    2009-10-27

    Nanoparticles are often used as seeds to grow one-dimensional nanomaterials or as core materials to prepare core-shell nanostructures. On the other hand, the presynthesized inorganic nanoparticles can also be used as starting building blocks to prepare inorganic-polymer nanocomposites. In this work, we explore the roles of metal-oxide nanoparticles (anatase TiO2) in the area of constructional synthesis of highly complex core-shell and hollow sphere nanostructures comprising SiO2, TiO2, and polyaniline (PAN). In particular, multifunctional roles of oleate-surfactant-protected TiO2 nanoparticles have been revealed in this study: they provide starting sites for polymerization of aniline on the surface of SiO2 mesospheres; they land on the inner surface of polyaniline shell to form a secondary material phase; they work as initial crystalline seeds for homogeneous growth of interior TiO2 shell; and they serve as primary nanobuilding blocks to form exterior TiO2 shell on the polyaniline via self-assembly. With the assistance of the TiO2 nanoparticles, a total of six complex core-shell and hollow sphere nanocomposites (SiO 2/TiO2, SiO2/TiO2/PAN, SiO 2/TiO2/PAN/TiO2, TiO2/PAN, TiO 2/PAN/TiO2, and TiO2/TiO2) have been made in this work through controlled self-assembly, templating growth, polymerization, and homogeneous seeded growth. Applicability of these nanostructures in photocatalytic applications has also been demonstrated by our preliminary investigations. The easy separation of used catalysts after reaction seems to be advantageous because of relatively large external diameters of the lightweight nanocomposites. © 2009 American Chemical Society.

  9. Cryochemistry of Metal Nanoparticles

    International Nuclear Information System (INIS)

    Sergeev, Gleb B.

    2003-01-01

    The interaction of metal atoms, clusters and nanoparticles with different organic and inorganic substances were studied at low temperature (10-40K). Combination of matrix isolation technique and preparative cryochemistry was applied for the investigation of activity and selectivity of metal particles of different size. Encapsulation of metal nanoparticles in polymers was studied. The metal-polymer films thus obtained exhibited satisfactory sensitivity to ammonia

  10. Cryochemistry of Metal Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sergeev, Gleb B. [Moscow State University, Laboratory of Low Temperature Chemistry, Chemistry Department (Russian Federation)], E-mail: gbs@kinet.chem.msu.ru

    2003-12-15

    The interaction of metal atoms, clusters and nanoparticles with different organic and inorganic substances were studied at low temperature (10-40K). Combination of matrix isolation technique and preparative cryochemistry was applied for the investigation of activity and selectivity of metal particles of different size. Encapsulation of metal nanoparticles in polymers was studied. The metal-polymer films thus obtained exhibited satisfactory sensitivity to ammonia.

  11. Cryochemistry of Metal Nanoparticles

    Science.gov (United States)

    Sergeev, Gleb B.

    2003-12-01

    The interaction of metal atoms, clusters and nanoparticles with different organic and inorganic substances were studied at low temperature (10-40K). Combination of matrix isolation technique and preparative cryochemistry was applied for the investigation of activity and selectivity of metal particles of different size. Encapsulation of metal nanoparticles in polymers was studied. The metal-polymer films thus obtained exhibited satisfactory sensitivity to ammonia.

  12. Biomimetic magnetic nanoparticles

    OpenAIRE

    Klem, Michael T.; Young, Mark; Douglas, Trevor

    2005-01-01

    Magnetic nanoparticles are of considerable interest because of their potential use in high-density memory devices, spintronics, and applications in diagnostic medicine. The conditions for synthesis of these materials are often complicated by their high reaction temperatures, costly reagents, and post-processing requirements. Practical applications of magnetic nanoparticles will require the development of alternate synthetic strategies that can overcome these impediments. Biomimetic approaches...

  13. Nanolubricant: magnetic nanoparticle based

    Science.gov (United States)

    Trivedi, Kinjal; Parekh, Kinnari; Upadhyay, Ramesh V.

    2017-11-01

    In the present study magnetic nanoparticles of Fe3O4 having average particle diameter, 11.7 nm were synthesized using chemical coprecipitation technique and dispersed in alpha olefin hydrocarbon synthetic lubricating oil. The solid weight fraction of magnetic nanoparticles in the lubricating oil was varied from 0 wt% to 10 wt%. The tribological properties were studied using four-ball tester. The results demonstrate that the coefficient of friction and wear scar diameter reduces by 45% and 30%, respectively at an optimal value, i.e. 4 wt% of magnetic nanoparticles concentration. The surface characterization of worn surface was carried out using a scanning electron microscope, and energy dispersive spectroscopy. These results implied that rolling mechanism is responsible to reduce coefficient of friction while magnetic nanoparticles act as the spacer between the asperities and reduces the wear scar diameter. The surface roughness of the worn surface studied using an atomic force microscope shows a reduction in surface roughness by a factor of four when magnetic nanoparticles are used as an additive. The positive response of magnetic nanoparticles in a lubricating oil, shows the potential replacement of conventional lubricating oil.

  14. Protein trapping of nanoparticles

    International Nuclear Information System (INIS)

    Ang, Joo C.; Lin, Jack M.; Yaron, Peter N.; White, John W.

    2009-01-01

    Full text: We have observed the formation of protein-nanoparticle complexes at the air-water interfaces from three different methods of presenting the nanoparticles to proteins. The structures formed resemble the 'protein-nanoparticle corona' proposed by Lynch et al. [1-3) in relation to a possible route for nanoparticle entry into living cells. To do this, the methods of x-ray and neutron reflectivity (with isotopic contrast variation between the protein and nanoparticles) have been used to study the structures formed at the air-water interface of l 3 - casein presented to silica nanoparticle dispersions. Whilst the silica dispersions showed no observable reflectivity, strong signals appear in the reflectivity when protein is present. Drop-wise spreading of a small amount of protein at the air-silica sol interface and presentation of the silica sol to an isolated monomolecular protein film (made by the 'flow-trough' method [4]) gave an immediate signal. Mixing the components in solution only produces a slow response but in all cases a similar structure is formed. The different responses are interpreted in structural and stoichiometric ways.

  15. Direct hierarchical assembly of nanoparticles

    Science.gov (United States)

    Xu, Ting; Zhao, Yue; Thorkelsson, Kari

    2014-07-22

    The present invention provides hierarchical assemblies of a block copolymer, a bifunctional linking compound and a nanoparticle. The block copolymers form one micro-domain and the nanoparticles another micro-domain.

  16. Functional PEG–PAMAM-Tetraphosphonate Capped NaLnF4 Nanoparticles and their Colloidal Stability in Phosphate Buffer

    Science.gov (United States)

    2015-01-01

    Developing surface coatings for NaLnF4 nanoparticles (NPs) that provide long-term stability in solutions containing competitive ions such as phosphate remains challenging. An amine-functional polyamidoamine tetraphosphonate (NH2-PAMAM-4P) as a multidentate ligand for these NPs has been synthesized and characterized as a ligand for the surface of NaGdF4 and NaTbF4 nanoparticles. A two-step ligand exchange protocol was developed for introduction of the NH2-PAMAM-4P ligand on oleate-capped NaLnF4 NPs. The NPs were first treated with methoxy-poly(ethylene glycol)-monophosphoric acid (Mn = 750) in tetrahydrofuran. The mPEG750-OPO3-capped NPs were stable colloidal solutions in water, where they could be ligand-exchanged with NH2-PAMAM-4P. The surface amine groups on the NPs were available for derivatization to attach methoxy-PEG (Mn = 2000) and biotin-terminated PEG (Mn = 2000) chains. The surface coverage of ligands on the NPs was examined by thermal gravimetric analysis, and by a HABA analysis for biotin-containing NPs. Colloidal stability of the NPs was examined by dynamic light scattering. NaGdF4 and NaTbF4 NPs capped with mPEG2000–PAMAM-4P showed colloidal stability in DI water and in phosphate buffer (10 mM, pH 7.4). A direct comparison with NaTbF4 NPs capped with a mPEG2000-lysine-based tetradentate ligand that we reported previously (Langmuir2012, 28, 12861−1287022906305) showed that both ligands provided long-term stability in phosphate buffer, but that the lysine-based ligand provided better stability in phosphate-buffered saline. PMID:24898128

  17. Functional PEG-PAMAM-tetraphosphonate capped NaLnF₄ nanoparticles and their colloidal stability in phosphate buffer.

    Science.gov (United States)

    Zhao, Guangyao; Tong, Lemuel; Cao, Pengpeng; Nitz, Mark; Winnik, Mitchell A

    2014-06-17

    Developing surface coatings for NaLnF4 nanoparticles (NPs) that provide long-term stability in solutions containing competitive ions such as phosphate remains challenging. An amine-functional polyamidoamine tetraphosphonate (NH2-PAMAM-4P) as a multidentate ligand for these NPs has been synthesized and characterized as a ligand for the surface of NaGdF4 and NaTbF4 nanoparticles. A two-step ligand exchange protocol was developed for introduction of the NH2-PAMAM-4P ligand on oleate-capped NaLnF4 NPs. The NPs were first treated with methoxy-poly(ethylene glycol)-monophosphoric acid (M(n) = 750) in tetrahydrofuran. The mPEG750-OPO3-capped NPs were stable colloidal solutions in water, where they could be ligand-exchanged with NH2-PAMAM-4P. The surface amine groups on the NPs were available for derivatization to attach methoxy-PEG (M(n) = 2000) and biotin-terminated PEG (M(n) = 2000) chains. The surface coverage of ligands on the NPs was examined by thermal gravimetric analysis, and by a HABA analysis for biotin-containing NPs. Colloidal stability of the NPs was examined by dynamic light scattering. NaGdF4 and NaTbF4 NPs capped with mPEG2000-PAMAM-4P showed colloidal stability in DI water and in phosphate buffer (10 mM, pH 7.4). A direct comparison with NaTbF4 NPs capped with a mPEG2000-lysine-based tetradentate ligand that we reported previously (Langmuir 2012, 28, 12861-12870) showed that both ligands provided long-term stability in phosphate buffer, but that the lysine-based ligand provided better stability in phosphate-buffered saline.

  18. Lactobacillusassisted synthesis of titanium nanoparticles

    Directory of Open Access Journals (Sweden)

    Jha Anal

    2007-01-01

    Full Text Available AbstractAn eco-friendlylactobacillussp. (microbe assisted synthesis of titanium nanoparticles is reported. The synthesis is performed at room temperature. X-ray and transmission electron microscopy analyses are performed to ascertain the formation of Ti nanoparticles. Individual nanoparticles as well as a number of aggregates almost spherical in shape having a size of 40–60 nm are found.

  19. Gold Nanoparticle Microwave Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, Kelsie E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Christian, Jonathan H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coopersmith, Kaitlin [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Washington, II, Aaron L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murph, Simona H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-07-27

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  20. Gold Nanoparticle Microwave Synthesis

    International Nuclear Information System (INIS)

    Krantz, Kelsie E.; Christian, Jonathan H.; Coopersmith, Kaitlin; Washington II, Aaron L.; Murph, Simona H.

    2016-01-01

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  1. Understanding nanoparticle-mediated nucleation pathways of anisotropic nanoparticles

    Science.gov (United States)

    Laramy, Christine R.; Fong, Lam-Kiu; Jones, Matthew R.; O'Brien, Matthew N.; Schatz, George C.; Mirkin, Chad A.

    2017-09-01

    Several seed-mediated syntheses of low symmetry anisotropic nanoparticles yield broad product distributions with multiple defect structures. This observation challenges the role of the nanoparticle precursor as a seed for certain syntheses and suggests the possibility of alternate nucleation pathways. Herein, we report a method to probe the role of the nanoparticle precursor in anisotropic nanoparticle nucleation with compositional and structural 'labels' to track their fate. We use the synthesis of gold triangular nanoprisms (Au TPs) as a model system. We propose a mechanism in which, rather than acting as a template, the nanoparticle precursor catalyzes homogenous nucleation of Au TPs.

  2. Magnetic nanoparticle assemblies

    CERN Document Server

    Trohidou, Kalliopi N

    2014-01-01

    Magnetic nanoparticles with diameters in the range of a few nanometers are today at the cutting edge of modern technology and innovation because of their use in numerous applications ranging from engineering to biomedicine. A great deal of scientific interest has been focused on the functionalization of magnetic nanoparticle assemblies. The understanding of interparticle interactions is necessary to clarify the physics of these assemblies and their use in the development of high-performance magnetic materials. This book reviews prominent research studies on the static and dynamic magnetic properties of nanoparticle assemblies, gathering together experimental and computational techniques in an effort to reveal their optimized magnetic properties for biomedical use and as ultra-high magnetic recording media.

  3. Nanostructures from nanoparticles

    International Nuclear Information System (INIS)

    Mendes, Paula M; Chen Yu; Palmer, Richard E; Nikitin, Kirill; Fitzmaurice, Donald; Preece, Jon A

    2003-01-01

    This paper reviews recent experimental approaches to the development of surface nanostructures from nanoparticles. The formation of nanowires by electron beam writing in films of gold nanoparticles passivated with a specially designed class of ligand molecules (dialkyl sulfides) is presented, together with illustrations of practical nanostructures. Potential applications of this methodology are discussed. Another alternative to the controlled fabrication of arrays of nanoparticles, based on nanocrystals which contain molecular recognition elements in the ligand shell, is also surveyed. These particles aggregate in the presence of specifically designed molecular dications which act as a molecular binder. Finally, recent work on the formation of nanoscale surface architectures using x-ray patterning of self-assembled monolayers is introduced. Current and potential future applications of these surface nanostructures are discussed

  4. Potencial risks of nanoparticles

    Directory of Open Access Journals (Sweden)

    Tamara Forbe

    2011-12-01

    Full Text Available Nanotoxicology is an emergent important subdiscipline of Nanosciences, which refers to the study of the interactions of nanostructures with biological systems giving emphasis to the elucidation of the relationship between the physical and chemical properties of nanostructures with induction of toxic biological responses. Although potential beneficial effects of nanotechnologies are generally well described, the potential (eco toxicological effects and impacts of nanoparticles have so far received little attention. This is the reason why some routes of expousure, distribution, metabolism, and excretion, as well as toxicological effects of nanoparticles are discussed in this review.

  5. Nanoparticle shuttle memory

    Science.gov (United States)

    Zettl, Alex Karlwalter [Kensington, CA

    2012-03-06

    A device for storing data using nanoparticle shuttle memory having a nanotube. The nanotube has a first end and a second end. A first electrode is electrically connected to the first end of the nanotube. A second electrode is electrically connected to the second end of the nanotube. The nanotube has an enclosed nanoparticle shuttle. A switched voltage source is electrically connected to the first electrode and the second electrode, whereby a voltage may be controllably applied across the nanotube. A resistance meter is also connected to the first electrode and the second electrode, whereby the electrical resistance across the nanotube can be determined.

  6. NANOPARTICLES IN NUCLEAR IMAGING

    Directory of Open Access Journals (Sweden)

    Dr. Vicky V Mody PhD

    2011-01-01

    Full Text Available The present review article summarizes the current state radiolabeled nanoparticles for molecular imaging applications mainly targeting cancer. Due to their enormous flexibility, and versatility the radiolabeled nanoparticles have shown their potential in the diagnosis and therapy. As the matter of fact, these radiolabeled imaging agents enable the visualization of the cellular function and the follow-up of the molecular process in living organisms. Moreover, the rapidly advancing field of nanotechnology has provided various innovative radionuclides and delivery systems, such as liposomes, magnetic agents, polymers, dendrimers, quantum dots, and carbon nanotubes to cope up with the hurdles which have been posed by various disease states.

  7. Dynamics of Catalyst Nanoparticles

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; Cavalca, Filippo; Wagner, Jakob Birkedal

    and pharmaceuticals, and the cleanup of exhaust from automobiles and stationary power plants. Sintering, or thermal deactivation, is an important mechanism for the loss of catalyst activity. In order to initiate a systematic study of the dynamics and sintering of nanoparticles, various catalytic systems have been...... under gas exposure, dynamic phenomena such as sintering and growth can be observed with sub-Ångstrøm resolution. Metal nanoparticles contain the active sites in heterogeneous catalysts, which are important for many industrial applications including the production of clean fuels, chemicals...

  8. Nanoparticles of nickel hexacyanoferrate

    International Nuclear Information System (INIS)

    Bicalho, U.O.; Santos, D.C.; Silvestrini, D.R.; Trama, B.; Carmo, D.R. do

    2014-01-01

    Nanoparticles of nickel hexacyanoferrate (NHNi) were prepared in three medium (aqueous, formamide and aqueous/formamide). The materials were characterized by infrared spectroscopy (FT-IR), X-ray diffraction (XRD), electronica spectroscopy in the ultraviolet-visible (UV-Vis) region and also by cyclic voltammetry (CV). By spectroscopic analysis of X-ray diffraction was possible to estimate the size of the particles obtained by the Scherrer equation. The graphite paste electrodes containing nanoparticles of nickel hexacyanoferrate means formamide was sensitive to different concentrations of Dipyrone. (author)

  9. Nanoparticles from Renewable Polymers

    Directory of Open Access Journals (Sweden)

    Frederik Roman Wurm

    2014-07-01

    Full Text Available The use of polymers from natural resources can bring many benefits for novel polymeric nanoparticle systems. Such polymers have a variety of beneficial properties such as biodegradability and biocompatibility, they are readily available on large scale and at low cost. As the amount of fossil fuels decrease, their application becomes more interesting even if characterization is in many cases more challenging due to structural complexity, either by broad distribution of their molecular weights polysaccharides, polyesters, lignin or by complex structure (proteins, lignin. This review summarizes different sources and methods for the preparation of biopolymer-based nanoparticle systems for various applications.

  10. Actinide nanoparticle research

    International Nuclear Information System (INIS)

    Kalmykov, Stepan N.; Denecke, Melissa A.

    2011-01-01

    This is the first book to cover actinide nano research. It is of interest both for fundamental research into the chemistry and physics of f-block elements as well as for applied researchers such as those studying the long-term safety of nuclear waste disposal and developing remediation strategies. The authors cover important issues of the formation of actinide nano-particles, their properties and structure, environmental behavior of colloids and nanoparticles related to the safe disposal of nuclear wastes, modeling and advanced methods of characterization at the nano-scale. (orig.)

  11. Thermally stable nanoparticles on supports

    Science.gov (United States)

    Roldan Cuenya, Beatriz; Naitabdi, Ahmed R.; Behafarid, Farzad

    2012-11-13

    An inverse micelle-based method for forming nanoparticles on supports includes dissolving a polymeric material in a solvent to provide a micelle solution. A nanoparticle source is dissolved in the micelle solution. A plurality of micelles having a nanoparticle in their core and an outer polymeric coating layer are formed in the micelle solution. The micelles are applied to a support. The polymeric coating layer is then removed from the micelles to expose the nanoparticles. A supported catalyst includes a nanocrystalline powder, thin film, or single crystal support. Metal nanoparticles having a median size from 0.5 nm to 25 nm, a size distribution having a standard deviation .ltoreq.0.1 of their median size are on or embedded in the support. The plurality of metal nanoparticles are dispersed and in a periodic arrangement. The metal nanoparticles maintain their periodic arrangement and size distribution following heat treatments of at least 1,000.degree. C.

  12. Stresses in hollow nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Fischer, F. D.; Svoboda, Jiří

    2010-01-01

    Roč. 47, č. 20 (2010), s. 2799-2805 ISSN 0020-7683 R&D Projects: GA ČR GAP108/10/1781 Institutional research plan: CEZ:AV0Z20410507 Keywords : Spherical nanoparticles * Micromechanics * Interface Subject RIV: BJ - Thermodynamics Impact factor: 1.677, year: 2010

  13. Supercooled smectic nanoparticles

    DEFF Research Database (Denmark)

    Kuntsche, Judith; Westesen, K; Drechsler, M

    2004-01-01

    The possibility of preparing nanoparticles in the supercooled thermotropic liquid crystalline state from cholesterol esters with saturated acyl chains as well as the incorporation of model drugs into the dispersions was investigated using cholesteryl myristate (CM) as a model cholesterol ester....

  14. Nanoparticles in forensic science

    Science.gov (United States)

    Cantu, Antonio A.

    2008-10-01

    Nanoparticles appear in several areas of forensic science including security documents, paints, inks, and reagents that develop latent prints. One reagent (known as the silver physical developer) that visualizes the water insoluble components of latent print residue is based on the formation of highly charged silver nanoparticles. These attach to and grow on the residue and generate a silver image. Another such reagent involves highly charged gold nanoparticles. These attach to the residue forming a weak gold image which can be amplified with a silver physical developer. Nanoparaticles are also used in items such as paints, printing inks, and writing inks. Paints and most printing inks consist of nano-sized pigments in a vehicle. However, certain modern ink jet printing inks now contain nano-sized pigments to improve their light fastness and most gel inks are also based on nano scale pigments. These nanoparticlecontaining materials often appear as evidence and are thus subject to forensic characterization. Both luminescent (quantum dots), up-converting nano scale phosphors, and non luminescent nanoparticles are used as security tags to label product, add security to documents, and as anti counterfeiting measures. These assist in determining if an item is fraudulently made.

  15. Nanoparticle-Assisted Metabolomics

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2018-03-01

    Full Text Available Understanding and harnessing the interactions between nanoparticles and biological molecules is at the forefront of applications of nanotechnology to modern biology. Metabolomics has emerged as a prominent player in systems biology as a complement to genomics, transcriptomics and proteomics. Its focus is the systematic study of metabolite identities and concentration changes in living systems. Despite significant progress over the recent past, important challenges in metabolomics remain, such as the deconvolution of the spectra of complex mixtures with strong overlaps, the sensitive detection of metabolites at low abundance, unambiguous identification of known metabolites, structure determination of unknown metabolites and standardized sample preparation for quantitative comparisons. Recent research has demonstrated that some of these challenges can be substantially alleviated with the help of nanoscience. Nanoparticles in particular have found applications in various areas of bioanalytical chemistry and metabolomics. Their chemical surface properties and increased surface-to-volume ratio endows them with a broad range of binding affinities to biomacromolecules and metabolites. The specific interactions of nanoparticles with metabolites or biomacromolecules help, for example, simplify metabolomics spectra, improve the ionization efficiency for mass spectrometry or reveal relationships between spectral signals that belong to the same molecule. Lessons learned from nanoparticle-assisted metabolomics may also benefit other emerging areas, such as nanotoxicity and nanopharmaceutics.

  16. Asymmetric Hybrid Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chumanov, George [Clemson Univ., SC (United States)

    2015-11-05

    Hybrid Nanoparticles (AHNs) are rationally-designed multifunctional nanostructures and novel building blocks for the next generation of advanced materials and devices. Nanoscale materials attract considerable interest because of their unusual properties and potential for practical applications. Most of the activity in this field is focused on the synthesis of homogeneous nanoparticles from metals, metal oxides, semiconductors, and polymers. It is well recognized that properties of nanoparticles can be further enhanced if they are made as hybrid structures. This program is concerned with the synthesis, characterization, and application of such hybrid structures termed AHNs. AHNs are composed of a homogeneous core and several caps of different materials deposited on its surface (Fig. 1). Combined properties of the core and the caps as well as new properties that arise from core-cap and cap-cap interactions render AHNs multifunctional. In addition, specific chemical reactivity of the caps enables directional self-assembly of AHNs into complex architectures that are not possible with only spherical nanoparticles.

  17. Progress toward clonable inorganic nanoparticles

    Science.gov (United States)

    Ni, Thomas W.; Staicu, Lucian C.; Nemeth, Richard S.; Schwartz, Cindi L.; Crawford, David; Seligman, Jeffrey D.; Hunter, William J.; Pilon-Smits, Elizabeth A. H.; Ackerson, Christopher J.

    2015-10-01

    Pseudomonas moraviensis stanleyae was recently isolated from the roots of the selenium (Se) hyperaccumulator plant Stanleya pinnata. This bacterium tolerates normally lethal concentrations of SeO32- in liquid culture, where it also produces Se nanoparticles. Structure and cellular ultrastructure of the Se nanoparticles as determined by cellular electron tomography shows the nanoparticles as intracellular, of narrow dispersity, symmetrically irregular and without any observable membrane or structured protein shell. Protein mass spectrometry of a fractionated soluble cytosolic material with selenite reducing capability identified nitrite reductase and glutathione reductase homologues as NADPH dependent candidate enzymes for the reduction of selenite to zerovalent Se nanoparticles. In vitro experiments with commercially sourced glutathione reductase revealed that the enzyme can reduce SeO32- (selenite) to Se nanoparticles in an NADPH-dependent process. The disappearance of the enzyme as determined by protein assay during nanoparticle formation suggests that glutathione reductase is associated with or possibly entombed in the nanoparticles whose formation it catalyzes. Chemically dissolving the nanoparticles releases the enzyme. The size of the nanoparticles varies with SeO32- concentration, varying in size form 5 nm diameter when formed at 1.0 μM [SeO32-] to 50 nm maximum diameter when formed at 100 μM [SeO32-]. In aggregate, we suggest that glutathione reductase possesses the key attributes of a clonable nanoparticle system: ion reduction, nanoparticle retention and size control of the nanoparticle at the enzyme site.Pseudomonas moraviensis stanleyae was recently isolated from the roots of the selenium (Se) hyperaccumulator plant Stanleya pinnata. This bacterium tolerates normally lethal concentrations of SeO32- in liquid culture, where it also produces Se nanoparticles. Structure and cellular ultrastructure of the Se nanoparticles as determined by cellular

  18. Immunological properties of gold nanoparticles.

    Science.gov (United States)

    Dykman, Lev A; Khlebtsov, Nikolai G

    2017-03-01

    In the past decade, gold nanoparticles have attracted strong interest from the nanobiotechnological community owing to the significant progress made in robust and easy-to-make synthesis technologies, in surface functionalization, and in promising biomedical applications. These include bioimaging, gene diagnostics, analytical sensing, photothermal treatment of tumors, and targeted delivery of various biomolecular and chemical cargos. For the last-named application, gold nanoparticles should be properly fabricated to deliver the cargo into the targeted cells through effective endocytosis. In this review, we discuss recent progress in understanding the selective penetration of gold nanoparticles into immune cells. The interaction of gold nanoparticles with immune cell receptors is discussed. As distinct from other published reviews, we present a summary of the immunological properties of gold nanoparticles. This review also summarizes what is known about the application of gold nanoparticles as an antigen carrier and adjuvant in immunization for the preparation of antibodies in vivo . For each of the above topics, the basic principles, recent advances, and current challenges are discussed. Thus, this review presents a detailed analysis of data on interaction of gold nanoparticles with immune cells. Emphasis is placed on the systematization of data over production of antibodies by using gold nanoparticles and adjuvant properties of gold nanoparticles. Specifically, we start our discussion with current data on interaction of various gold nanoparticles with immune cells. The next section describes existing technologies to improve production of antibodies in vivo by using gold nanoparticles conjugated with specific ligands. Finally, we describe what is known about adjuvant properties of bare gold or functionalized nanoparticles. In the Conclusion section, we present a short summary of reported data and some challenges and perspectives.

  19. Nanobiotechnology today: focus on nanoparticles

    Directory of Open Access Journals (Sweden)

    Soloviev Mikhail

    2007-12-01

    Full Text Available Abstract In the recent years the nanobiotechnology field and the Journal of Nanobiotechnology readership have witnessed an increase in interest towards the nanoparticles and their biological effects and applications. These include bottom-up and molecular self-assembly, biological effects of naked nanoparticles and nano-safety, drug encapsulation and nanotherapeutics, and novel nanoparticles for use in microscopy, imaging and diagnostics. This review highlights recent Journal of Nanobiotechnology publications in some of these areas http://www.jnanobiotechnology.com.

  20. Vacancy clusters at nanoparticle surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.; Moxom, J.; Somieski, B.; White, C.W. [Oak Ridge National Lab., TN (United States); Mills, A.P. Jr. [Bell Labs., Lucent Technologies, Murray Hill, NJ (United States); Suzuki, R.; Ishibashi, S. [Electrotechnical Lab., Tsukuba, Ibaraki (Japan); Ueda, A.; Henderson, D. [Physics Dept., Fisk Univ., Nashville, TN (United States)

    2001-07-01

    We detect vacancy clusters at Au nanoparticle surfaces using a combination of positron lifetime spectroscopy, 1- detector, and 2-detector measurements of Doppler broadening of annihilation radiation. Gold nanoparticles are formed by MeV implantation of gold ions into MgO (100) followed by annealing. Clusters of two Mg and two O vacancies (v{sub 4}) are attached to the gold nanoparticle surfaces within the projected range (R{sub p}). (orig.)

  1. Vacancy clusters at nanoparticle surfaces

    International Nuclear Information System (INIS)

    Xu, J.; Moxom, J.; Somieski, B.; White, C.W.; Mills, A.P. Jr.; Suzuki, R.; Ishibashi, S.; Ueda, A.; Henderson, D.

    2001-01-01

    We detect vacancy clusters at Au nanoparticle surfaces using a combination of positron lifetime spectroscopy, 1- detector, and 2-detector measurements of Doppler broadening of annihilation radiation. Gold nanoparticles are formed by MeV implantation of gold ions into MgO (100) followed by annealing. Clusters of two Mg and two O vacancies (v 4 ) are attached to the gold nanoparticle surfaces within the projected range (R p ). (orig.)

  2. Magnetic nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Krustev, P.; Ruskov, T.

    2007-01-01

    In this paper we describe different biomedical application using magnetic nanoparticles. Over the past decade, a number of biomedical applications have begun to emerge for magnetic nanoparticles of differing sizes, shapes, and compositions. Areas under investigation include targeted drug delivery, ultra-sensitive disease detection, gene therapy, high throughput genetic screening, biochemical sensing, and rapid toxicity cleansing. Magnetic nanoparticles exhibit ferromagnetic or superparamagnetic behavior, magnetizing strongly under an applied field. In the second case (superparamagnetic nanoparticles) there is no permanent magnetism once the field is removed. The superparamagnetic nanoparticles are highly attractive as in vivo probes or in vitro tools to extract information on biochemical systems. The optical properties of magnetic metal nanoparticles are spectacular and, therefore, have promoted a great deal of excitement during the last few decades. Many applications as MRI imaging and hyperthermia rely on the use of iron oxide particles. Moreover magnetic nanoparticles conjugated with antibodies are also applied to hyperthermia and have enabled tumor specific contrast enhancement in MRI. Other promising biomedical applications are connected with tumor cells treated with magnetic nanoparticles with X-ray ionizing radiation, which employs magnetic nanoparticles as a complementary radiate source inside the tumor. (authors)

  3. Surface chemistry of "unprotected" nanoparticles

    DEFF Research Database (Denmark)

    Schrader, Imke; Warneke, Jonas; Neumann, Sarah

    2015-01-01

    The preparation of colloidal nanoparticles in alkaline ethylene glycol is a powerful approach for the preparation of model catalysts and ligand-functionalized nanoparticles. For these systems the term "unprotected" nanoparticles has been established because no strongly binding stabilizers...... study. "Unprotected" Pt and Ru nanoparticles were characterized by NMR spectroscopy, which does not evidence the presence of any C-H containing species bound to the particle surface. Instead, the colloids were found to be covered by CO, as demonstrated by IR spectroscopy. However, analysis...

  4. Biomimetic nanoparticles for inflammation targeting

    Directory of Open Access Journals (Sweden)

    Kai Jin

    2018-01-01

    Full Text Available There have been many recent exciting developments in biomimetic nanoparticles for biomedical applications. Inflammation, a protective response involving immune cells, blood vessels, and molecular mediators directed against harmful stimuli, is closely associated with many human diseases. As a result, biomimetic nanoparticles mimicking immune cells can help achieve molecular imaging and precise drug delivery to these inflammatory sites. This review is focused on inflammation-targeting biomimetic nanoparticles and will provide an in-depth look at the design of these nanoparticles to maximize their benefits for disease diagnosis and treatment.

  5. Hydrogel nanoparticle based immunoassay

    Science.gov (United States)

    Liotta, Lance A; Luchini, Alessandra; Petricoin, Emanuel F; Espina, Virginia

    2015-04-21

    An immunoassay device incorporating porous polymeric capture nanoparticles within either the sample collection vessel or pre-impregnated into a porous substratum within fluid flow path of the analytical device is presented. This incorporation of capture particles within the immunoassay device improves sensitivity while removing the requirement for pre-processing of samples prior to loading the immunoassay device. A preferred embodiment is coreshell bait containing capture nanoparticles which perform three functions in one step, in solution: a) molecular size sieving, b) target analyte sequestration and concentration, and c) protection from degradation. The polymeric matrix of the capture particles may be made of co-polymeric materials having a structural monomer and an affinity monomer, the affinity monomer having properties that attract the analyte to the capture particle. This device is useful for point of care diagnostic assays for biomedical applications and as field deployable assays for environmental, pathogen and chemical or biological threat identification.

  6. Genotoxicity of metal nanoparticles.

    Science.gov (United States)

    Xie, Hong; Mason, Michael M; Wise, John Pierce

    2011-01-01

    Nanotechnology is currently used in industry, medicine, and military applications, as well as in more than 300 commercial products. Yet, the same properties that make these particles exciting for technology also make them daunting public health concerns because their toxicity is unknown and relatively unexplored. Increased attention is being placed on the study of metal particle genotoxicity; however, a lot of unknowns remain about their effects and the mechanisms. In this article, we highlight some metal and metal oxide nanoparticles of interest and discuss the current in vivo and in vitro studies of genotoxic effects. Many metal nanoparticles were found to cause chromosomal aberrations, DNA strand breaks, oxidative DNA damage, and mutations. Inconsistencies are found in the literature, however, thus drawing conclusions is difficult due to a variety of factors. Therefore, the areas requiring further attention are highlighted and recommendations to improve our understanding of the genotoxic potential are addressed.

  7. Evaluation of nanoparticle immunotoxicity

    Science.gov (United States)

    Dobrovolskaia, Marina A.; Germolec, Dori R.; Weaver, James L.

    2009-07-01

    The pharmaceutical industry is developing increasing numbers of drugs and diagnostics based on nanoparticles, and evaluating the immune response to these diverse formulations has become a challenge for scientists and regulatory agencies alike. An international panel of scientists and representatives from various agencies and companies reviewed the imitations of current tests at a workshop held at the National Cancer Institute in Frederick, Maryland. This article outlines practical strategies for identifying and controlling interferences in common evaluation methods and the implications for regulation.

  8. Chiromagnetic nanoparticles and gels

    Science.gov (United States)

    Yeom, Jihyeon; Santos, Uallisson S.; Chekini, Mahshid; Cha, Minjeong; de Moura, André F.; Kotov, Nicholas A.

    2018-01-01

    Chiral inorganic nanostructures have high circular dichroism, but real-time control of their optical activity has so far been achieved only by irreversible chemical changes. Field modulation is a far more desirable path to chiroptical devices. We hypothesized that magnetic field modulation can be attained for chiral nanostructures with large contributions of the magnetic transition dipole moments to polarization rotation. We found that dispersions and gels of paramagnetic Co3O4 nanoparticles with chiral distortions of the crystal lattices exhibited chiroptical activity in the visible range that was 10 times as strong as that of nonparamagnetic nanoparticles of comparable size. Transparency of the nanoparticle gels to circularly polarized light beams in the ultraviolet range was reversibly modulated by magnetic fields. These phenomena were also observed for other nanoscale metal oxides with lattice distortions from imprinted amino acids and other chiral ligands. The large family of chiral ceramic nanostructures and gels can be pivotal for new technologies and knowledge at the nexus of chirality and magnetism.

  9. Characterization of starch nanoparticles

    Science.gov (United States)

    Szymońska, J.; Targosz-Korecka, M.; Krok, F.

    2009-01-01

    Nanomaterials already attract great interest because of their potential applications in technology, food science and medicine. Biomaterials are biodegradable and quite abundant in nature, so they are favoured over synthetic polymer based materials. Starch as a nontoxic, cheap and renewable raw material is particularly suitable for preparation of nanoparticles. In the paper, the structure and some physicochemical properties of potato and cassava starch particles of the size between 50 to 100 nm, obtained by mechanical treatment of native starch, were presented. We demonstrated, with the aim of the Scanning Electron Microscopy (SEM) and the non-contact Atomic Force Microscopy (nc-AFM), that the shape and dimensions of the obtained nanoparticles both potato and cassava starch fit the blocklets - previously proposed as basic structural features of native starch granules. This observation was supported by aqueous solubility and swelling power of the particles as well as their iodine binding capacity similar to those for amylopectin-type short branched polysaccharide species. Obtained results indicated that glycosidic bonds of the branch linkage points in the granule amorphous lamellae might be broken during the applied mechanical treatment. Thus the released amylopectin clusters could escape out of the granules. The starch nanoparticles, for their properties qualitatively different from those of native starch granules, could be utilized in new applications.

  10. Targeted nanoparticles for colorectal cancer

    DEFF Research Database (Denmark)

    Cisterna, Bruno A.; Kamaly, Nazila; Choi, Won Il

    2016-01-01

    Colorectal cancer (CRC) is highly prevalent worldwide, and despite notable progress in treatment still leads to significant morbidity and mortality. The use of nanoparticles as a drug delivery system has become one of the most promising strategies for cancer therapy. Targeted nanoparticles could...

  11. Engineered Nanoparticles and Their Applications

    International Nuclear Information System (INIS)

    Matsoukas, T.; Desai, T.; Lee, K.

    2015-01-01

    Nanoparticles engineered for shape, size, and surface properties impart special functionalities including catalytic behavior, improved strength, enhanced thermal and electrical conductivity, and controlled release of host molecules. These advances have opened up applications in biomedicine, nano energetic materials, and functional nano composites. This special issue highlights successes in developing nanoparticles for a number of diverse applications.

  12. Synthesizing nanoparticles by mimicking nature

    Science.gov (United States)

    As particulate matter with at least one dimension that is less than 100 nm, nanoparticles are the minuscule building blocks of new commercial products and consumer materials in the emerging field of nanotechnology. Nanoparticles are being discovered and introduced in the marketpl...

  13. Surface Effects in Magnetic Nanoparticles

    CERN Document Server

    Fiorani, Dino

    2005-01-01

    This volume is a collection of articles on different approaches to the investigation of surface effects on nanosized magnetic materials, with special emphasis on magnetic nanoparticles. The book aims to provide an overview of progress in the understanding of surface properties and surface driven effects in magnetic nanoparticles through recent results of different modeling, simulation, and experimental investigations.

  14. Uniform magnetic excitations in nanoparticles

    DEFF Research Database (Denmark)

    Mørup, Steen; Hansen, Britt Rosendahl

    2005-01-01

    We have used a spin-wave model to calculate the temperature dependence of the (sublattice) magnetization of magnetic nanoparticles. The uniform precession mode, corresponding to a spin wave with wave vector q=0, is predominant in nanoparticles and gives rise to an approximately linear temperature...... dependence of the (sublattice) magnetization well below the superparamagnetic blocking temperature for both ferro-, ferri-, and antiferromagnetic particles. This is in accordance with the results of a classical model for collective magnetic excitations in nanoparticles. In nanoparticles of antiferromagnetic...... materials, quantum effects give rise to a small deviation from the linear temperature dependence of the (sublattice) magnetization at very low temperatures. The complex nature of the excited precession states of nanoparticles of antiferromagnetic materials, with deviations from antiparallel orientation...

  15. Topotactic interconversion of nanoparticle superlattices.

    Science.gov (United States)

    Macfarlane, Robert J; Jones, Matthew R; Lee, Byeongdu; Auyeung, Evelyn; Mirkin, Chad A

    2013-09-13

    The directed assembly of nanoparticle building blocks is a promising method for generating sophisticated three-dimensional materials by design. In this work, we have used DNA linkers to synthesize nanoparticle superlattices that have greater complexity than simple binary systems using the process of topotactic intercalation-the insertion of a third nanoparticle component at predetermined sites within a preformed binary lattice. Five distinct crystals were synthesized with this methodology, three of which have no equivalent in atomic or molecular crystals, demonstrating a general approach for assembling highly ordered ternary nanoparticle superlattices whose structures can be predicted before their synthesis. Additionally, the intercalation process was demonstrated to be completely reversible; the inserted nanoparticles could be expelled into solution by raising the temperature, and the ternary superlattice could be recovered by cooling.

  16. Nanotoxicology of Metal Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Amedea B. Seabra

    2015-06-01

    Full Text Available This review discusses recent advances in the synthesis, characterization and toxicity of metal oxide nanoparticles obtained mainly through biogenic (green processes. The in vitro and in vivo toxicities of these oxides are discussed including a consideration of the factors important for safe use of these nanomaterials. The toxicities of different metal oxide nanoparticles are compared. The importance of biogenic synthesized metal oxide nanoparticles has been increasing in recent years; however, more studies aimed at better characterizing the potent toxicity of these nanoparticles are still necessary for nanosafely considerations and environmental perspectives. In this context, this review aims to inspire new research in the design of green approaches to obtain metal oxide nanoparticles for biomedical and technological applications and to highlight the critical need to fully investigate the nanotoxicity of these particles.

  17. PREPARATIONS AND APPLICATION OF METAL NANOPARTICLES

    OpenAIRE

    Adlim, Adlim

    2010-01-01

    Terminology of metal nanoparticles, the uniqueness properties in terms of the surface atom, the quantum dot, and the magnetism are described. The further elaboration was on the synthesis of nanoparticles. Applications of metal nanoparticles in electronic, ceramic medical and catalysis were overviewed. The bibliography includes 81 references with 99% are journal articles.   Keywords: metal nanoparticles

  18. PREPARATIONS AND APPLICATION OF METAL NANOPARTICLES

    Directory of Open Access Journals (Sweden)

    Adlim Adlim

    2010-06-01

    Full Text Available Terminology of metal nanoparticles, the uniqueness properties in terms of the surface atom, the quantum dot, and the magnetism are described. The further elaboration was on the synthesis of nanoparticles. Applications of metal nanoparticles in electronic, ceramic medical and catalysis were overviewed. The bibliography includes 81 references with 99% are journal articles.   Keywords: metal nanoparticles

  19. Conjugated polymer nanoparticles, methods of using, and methods of making

    KAUST Repository

    Habuchi, Satoshi

    2017-03-16

    Embodiments of the present disclosure provide for conjugated polymer nanoparticle, method of making conjugated polymer nanoparticles, method of using conjugated polymer nanoparticle, polymers, and the like.

  20. Conjugated polymer nanoparticles, methods of using, and methods of making

    KAUST Repository

    Habuchi, Satoshi; Piwonski, Hubert Marek; Michinobu, Tsuyoshi

    2017-01-01

    Embodiments of the present disclosure provide for conjugated polymer nanoparticle, method of making conjugated polymer nanoparticles, method of using conjugated polymer nanoparticle, polymers, and the like.

  1. Host thin films incorporating nanoparticles

    Science.gov (United States)

    Qureshi, Uzma

    The focus of this research project was the investigation of the functional properties of thin films that incorporate a secondary nanoparticulate phase. In particular to assess if the secondary nanoparticulate material enhanced a functional property of the coating on glass. In order to achieve this, new thin film deposition methods were developed, namely use of nanopowder precursors, an aerosol assisted transport technique and an aerosol into atmospheric pressure chemical vapour deposition system. Aerosol assisted chemical vapour deposition (AACVD) was used to deposit 8 series of thin films on glass. Five different nanoparticles silver, gold, ceria, tungsten oxide and zinc oxide were tested and shown to successfully deposit thin films incorporating nanoparticles within a host matrix. Silver nanoparticles were synthesised and doped within a titania film by AACVD. This improved solar control properties. A unique aerosol assisted chemical vapour deposition (AACVD) into atmospheric pressure chemical vapour deposition (APCVD) system was used to deposit films of Au nanoparticles and thin films of gold nanoparticles incorporated within a host titania matrix. Incorporation of high refractive index contrast metal oxide particles within a host film altered the film colour. The key goal was to test the potential of nanopowder forms and transfer the suspended nanopowder via an aerosol to a substrate in order to deposit a thin film. Discrete tungsten oxide nanoparticles or ceria nanoparticles within a titanium dioxide thin film enhanced the self-cleaning and photo-induced super-hydrophilicity. The nanopowder precursor study was extended by deposition of zinc oxide thin films incorporating Au nanoparticles and also ZnO films deposited from a ZnO nanopowder precursor. Incorporation of Au nanoparticles within a VO: host matrix improved the thermochromic response, optical and colour properties. Composite VC/TiC and Au nanoparticle/V02/Ti02 thin films displayed three useful

  2. Vitamin E TPGS emulsified vinorelbine bitartrate loaded solid lipid nanoparticles (SLN): Formulation development, optimization and in vitro characterization.

    Science.gov (United States)

    Maurya, Lakshmi; Rajamanickam, Vijayakumar Mahalingam; Narayan, Gopeshwar; Singh, Sanjay

    2018-04-08

    Vinorelbine bitartrate (VRL), a semi synthetic vinca alkaloid approved for breast cancer, has been proved to beneficial as first line and subsequent therapies. However, it's hydrophilic and thermo labile nature provides hindrance to oral clinical translation. The current work focused on the application of DOE a modern statistical optimization tool for the development and optimization of a solid lipid nanoparticle (SLN) formulation that can encapsulate hydrophilic and thermolabile Vinorelbine bitartrate (VRL) to a maximum extent without compromising integrity and anticancer activity of the drug. SLNs were prepared by solvent diffusion technique employing Taguchi orthogonal array design with optimized formulation and process variables. The emulsifying nature and low melting point of glyceryl mono-oleate (GMO) were exploited to enhance entrapment and minimizing temperature associated degradation, respectively. Moreover, two types of surfactants, Vitamin E TPGS (TPGS) and Poloxamer-188 were utilized to obtain TPGS-VRL-SLNs and PL-VRL-SLNs, respectively. The SLNs were characterized for various physicochemical properties, in-vitro drug release kinetics and anticancer activity by MTT assay on MCF-7 cancer cell lines. The SLNs were found to be spherical in shape with entrapment efficiency (EE) up to 58 %. In-vitro release studies showed biphasic release pattern following Korsemeyer peppas model with fickian release kinetics. Results of MTT assay revealed that TPGS-VRL-SLNs and PL-VRL-SLNs were 39.5 and 18.5 fold more effective, respectively, compared to the pristine VRL. DOE approach was successfully applied for the development of VRL-SLNs. Enhanced entrapment and anticancer efficacy of TPGS-VRL-SLN can be attributed to emulsifying nature of GMO and inherent cytotoxic nature of TPGS, respectively, which synergizes with VRL. Therefore, TPGS associated SLNs may be potential carrier in cancer chemotherapeutics. Copyright© Bentham Science Publishers; For any queries, please

  3. Screening evaluation of the ecotoxicity and genotoxicity of soils contaminated with organic and inorganic nanoparticles: The role of ageing

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, R., E-mail: ruthp@ua.pt [Departamento de Biologia and CESAM, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Rocha-Santos, T.A.P. [ISEIT/Viseu, Instituto Piaget, Estrada do Alto do Gaio, Galifonge, 3515-776 Lordosa, Viseu (Portugal); Antunes, F.E.; Rasteiro, M.G. [CIEPQPF - Departamento de Engenharia Quimica, Faculdade de Ciencias e Tecnologia, Polo II, Universidade de, 3030-290 Coimbra (Portugal); Ribeiro, R. [IMAR - CMA, Departamento de Ciencias da Vida da Universidade de Coimbra, Largo Marques de Pombal, P-3004 517 Coimbra (Portugal); Goncalves, F.; Soares, A.M.V.M.; Lopes, I. [Departamento de Biologia and CESAM, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal)

    2011-10-30

    Highlights: {yields} In general ageing decreases toxicity/genotoxicity of soil spiked with aqueous suspensions of NMs. {yields} Ageing may promote degradation of organic shells of metallic NPs increasing toxicity. {yields} Toxicity was recorded despite aggregation of NPs in the aqueous suspensions. {yields} Soils spiked with Au nanorods, quantum dots, TiSiO{sub 4} induced mutations in Salmonella typhimurium. - Abstract: This study aimed to evaluate the toxicity and genotoxicity of soils, and corresponding elutriates, contaminated with aqueous suspensions of two organic (vesicles of sodium dodecyl sulphate/didodecyl dimethylammonium bromide and of monoolein and sodium oleate) and five inorganic nanoparticles (NPs) (TiO{sub 2}, TiSiO{sub 4}, CdSe/ZnS quantum dots, Fe/Co magnetic fluid and gold nanorods) to Vibrio fischeri and Salmonella typhimurium (TA98 and TA100 strains). Soil samples were tested 2 h and 30 days after contamination. Suspensions of NPs were characterized by Dynamic Light Scattering. Soils were highly toxic to V. fischeri, especially after 2 h. After 30 days toxicity was maintained only for soils spiked with suspensions of more stable NPs (zeta potential > 30 mV or <-30 mV). Elutriates were particularly toxic after 2 h, except for soil spiked with Fe/Co magnetic fluid, suggesting that ageing may have contributed for degrading the organic shell of these NPs, increasing the mobility of core elements and the toxicity of elutriates. TA98 was the most sensitive strain to the mutagenic potential of soil elutriates. Only elutriates from soils spiked with gold nanorods, quantum dots (QDs) and TiSiO{sub 4} induced mutations in both strains of S. typhimurium, suggesting more diversified mechanisms of genotoxicity.

  4. ATMP-stabilized iron nanoparticles: chelator-controlled nanoparticle synthesis

    Science.gov (United States)

    Greenlee, Lauren F.; Rentz, Nikki S.

    2014-11-01

    In this study, we characterize iron nanoparticles synthesized in water in the presence of a phosphonate chelator, amino tris(methylene phosphonic acid) (ATMP) for a range of molar ratios of ATMP to iron. An increase in the molar ratio from 0.05 to 0.8 decreases nanoparticle size from approximately 150 nm to less than 10 nm. Zeta potential measurements were used to evaluate colloidal stability. Zeta potential values varied as a function of pH, and zeta potential values decreased with increasing pH. At lower molar ratios of ATMP to iron, the zeta potential varied between 15 and -40 mV, passing through an isoelectric point at pH 7.5. At higher ratios, the zeta potential was negative across the measured pH range of 2-12 and varied from -2 to -55 mV. Diffraction analysis indicates that ATMP-stabilized iron nanoparticles may have a nano-crystalline structure, potentially with regions of amorphous iron. Characterization results of ATMP-stabilized iron nanoparticles are compared to results obtained for carboxymethyl cellulose (CMC)-stabilized iron nanoparticles. CMC stabilization caused similar peak broadening in diffraction spectra as for ATMP, suggesting similar nano-crystalline/amorphous structure; however, an increase in the molar ratio of CMC to iron did not cause the same reduction in nanoparticle size as was observed for ATMP-stabilized iron nanoparticles.

  5. Palladium Nanoparticle Hydrogen Sensor

    Directory of Open Access Journals (Sweden)

    I. Pavlovsky

    2006-12-01

    Full Text Available An innovative hydrogen sensor based on palladium (Pd nanoparticle networks is described in the article. Made by Applied Nanotech Inc. sensor has a fast response time, in the range of seconds, which is increased at 80 °C due to higher hydrogen diffusion rates into the palladium lattice. The low detection limit of the sensor is 10 ppm of H2, and the high limit is 40,000 ppm. This is 100% of a lowest flammability level of hydrogen. This range of sensitivities complies with the requirements that one would expect for a reliable hydrogen sensor.

  6. Nanoparticle enhanced ionic liquid heat transfer fluids

    Science.gov (United States)

    Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.

    2014-08-12

    A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.

  7. Solventless synthesis of ruthenium nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    García-Peña, Nidia G. [Departmento de Tecnociencias, Universidad Nacional Autónoma de México, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Cd. Universitaria A.P. 70-186, C.P. 04510 Coyoacán, México D.F. (Mexico); Redón, Rocío, E-mail: rredon@unam.mx [Departmento de Tecnociencias, Universidad Nacional Autónoma de México, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Cd. Universitaria A.P. 70-186, C.P. 04510 Coyoacán, México D.F. (Mexico); Herrera-Gomez, Alberto [Estudios Avanzados del Instituto Politécnico Nacional, Campus Juriquilla, Querétaro (Mexico); Fernández-Osorio, Ana Leticia [FES-Cuautitlán, Universidad Nacional Autónoma de México, Edo. de Mexico (Mexico); Bravo-Sanchez, Mariela; Gomez-Sosa, Gustavo [Estudios Avanzados del Instituto Politécnico Nacional, Campus Juriquilla, Querétaro (Mexico)

    2015-06-15

    Graphical abstract: - Highlights: • Successful synthesis of Ru nanoparticles by a cheap, fast and solventless approach was achieved. • The zero-valent state as well as the by-product/impurity free of the mechanochemical obtained Ru nanoparticles was proven by XPS, TEM and XRD. • Compared to two other synthesis strategies, the above-mentioned synthesis was more suitable to obtain smaller particles with fewer impurities in shorter time. - Abstract: This paper presents a novel solventless method for the synthesis of zero-valent ruthenium nanoparticles Ru(0). The proposed method, although not entirely new in the nanomaterials world, was used for the first time to synthesize zero-valent ruthenium nanoparticles. This new approach has proved to be an environmentally friendly, clean, cheap, fast, and reproducible technique which employs low amounts of solvent. It was optimized through varying amounts of reducing salt on a determined quantity of precursor and measuring the effect of this variation on the average particle size obtained. The resulting products were fully characterized by powder XRD, TEM, HR-TEM, and XPS studies, all of which corroborated the purity of the nanoparticles achieved. In order to verify the advantages of our method over other techniques, we compared our nanoparticles with two common colloidal-synthesized ruthenium nanoparticles.

  8. Interaction of neutrons with nanoparticles

    International Nuclear Information System (INIS)

    Nesvizhevsky, V.V.

    2002-01-01

    Two hypotheses concerning the interaction of neutrons with nanoparticles and having applications in the physics of ultracold neutrons (UCN) are considered. In 1997, it was found that, upon reflection from the sample surface or spectrometer walls, UCN change their energy by about 10 -7 eV with a probability of 10 -7 -10 -5 per collision. The nature of this phenomenon is not clear at present. Probably, it is due to the inelastic coherent scattering of UCN on nanoparticles or nanostructures weakly attached at the surface, in a state of Brownian thermal motion. An analysis of experimental data on the basis of this model allows one to estimate the mass of such nanoparticles and nanostructures at 10 7 a.u. The proposed hypothesis indicates a method for studying the dynamics of nanoparticles and nanostructures and, accordingly, their interactions with the surface or with one another, this method being selective in their sizes. In all experiments with UCN, the trap-wall temperature was much higher than a temperature of about 1 mK, which corresponds to the UCN energy. Therefore, UCN increased their energy. The surface density of weakly attached nanoparticles was low. If, however, the nanoparticle temperature is lower than the neutron temperature and if the nanoparticle density is high, the problem of interaction of neutrons with nanoparticles is inverted. In this case, the neutrons of initial velocity below 10 2 m/s can cool down, under certain conditions, owing to their scattering on ultracold heavy-water, deuterium, and oxygen nanoparticles to their temperature of about 1 mK, with the result that the UCN density increases by many orders of magnitude

  9. Amphiphilic cyclodextrin nanoparticles.

    Science.gov (United States)

    Varan, Gamze; Varan, Cem; Erdoğar, Nazlı; Hıncal, A Atilla; Bilensoy, Erem

    2017-10-15

    Cyclodextrins are cyclic oligosaccharides obtained by enzymatic digestion of starch. The α-, β- and γ- cyclodextrins contain respectively 6, 7 and 8 glucopyranose units, with primary and secondary hydroxyl groups located on the narrow and wider rims of a truncated cone shape structure. Such structure is that of a hydrophobic inner cavity with a hydrophilic outer surface allowing to interact with a wide range of molecules like ions, protein and oligonucleotides to form inclusion complexes. Many cyclodextrin applications in the pharmaceutical area have been widely described in the literature due to their low toxicity and low immunogenicity. The most important is to increase the solubility of hydrophobic drugs in water. Chemically modified cyclodextrin derivatives have been synthesized to enhance their properties and more specifically their pharmacological activity. Among these, amphiphilic derivatives were designed to build organized molecular structures, through selfassembling systems or by incorporation in lipid membranes, expected to improve the vectorization in the organism of the drug-containing cyclodextrin cavities. These derivatives can form a variety of supramolecular structures such as micelles, vesicles and nanoparticles. The purpose of this review is to summarize applications of amphiphilic cyclodextrins in different areas of drug delivery, particularly in protein and peptide drug delivery and gene delivery. The article highlights important amphiphilic cyclodextrin applications in the design of novel delivery systems like nanoparticles. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Magnetic nanoparticles for theragnostics

    Science.gov (United States)

    Shubayev, Veronica I.; Pisanic, Thomas R.; Jin, Sungho

    2009-01-01

    Engineered magnetic nanoparticles (MNPs) represent a cutting-edge tool in medicine because they can be simultaneously functionalized and guided by a magnetic field. Use of MNPs has advanced magnetic resonance imaging (MRI), guided drug and gene delivery, magnetic hyperthermia cancer therapy, tissue engineering, cell tracking and bioseparation. Integrative therapeutic and diagnostic (i.e., theragnostic) applications have emerged with MNP use, such as MRI-guided cell replacement therapy or MRI-based imaging of cancer-specific gene delivery. However, mounting evidence suggests that certain properties of nanoparticles (e.g., enhanced reactive area, ability to cross cell and tissue barriers, resistance to biodegradation) amplify their cytotoxic potential relative to molecular or bulk counterparts. Oxidative stress, a 3-tier paradigm of nanotoxicity, manifests in activation of reactive oxygen species (ROS) (tier I), followed by a pro-inflammatory response (tier II) and DNA damage leading to cellular apoptosis and mutagenesis (tier III). In vivo administered MNPs are quickly challenged by macrophages of the reticuloendothelial system (RES), resulting in not only neutralization of potential MNP toxicity but also reduced circulation time necessary for MNP efficacy. We discuss the role of MNP size, composition and surface chemistry in their intracellular uptake, biodistribution, macrophage recognition and cytotoxicity, and review current studies on MNP toxicity, caveats of nanotoxicity assessments and engineering strategies to optimize MNPs for biomedical use. PMID:19389434

  11. Taylor dispersion of nanoparticles

    Science.gov (United States)

    Balog, Sandor; Urban, Dominic A.; Milosevic, Ana M.; Crippa, Federica; Rothen-Rutishauser, Barbara; Petri-Fink, Alke

    2017-08-01

    The ability to detect and accurately characterize particles is required by many fields of nanotechnology, including materials science, nanotoxicology, and nanomedicine. Among the most relevant physicochemical properties of nanoparticles, size and the related surface-to-volume ratio are fundamental ones. Taylor dispersion combines three independent phenomena to determine particle size: optical extinction, translational diffusion, and sheer-enhanced dispersion of nanoparticles subjected to a steady laminar flow. The interplay of these defines the apparent size. Considering that particles in fact are never truly uniform nor monodisperse, we rigorously address particle polydispersity and calculate the apparent particle size measured by Taylor dispersion analysis. We conducted case studies addressing aqueous suspensions of model particles and large-scale-produced "industrial" particles of both academic and commercial interest of various core materials and sizes, ranging from 15 to 100 nm. A comparison with particle sizes determined by transmission electron microscopy confirms that our approach is model-independent, non-parametric, and of general validity that provides an accurate account of size polydispersity—independently on the shape of the size distribution and without any assumption required a priori.

  12. Biological synthesis of silver nanoparticles

    International Nuclear Information System (INIS)

    Maliszewska, I; Szewczyk, K; Waszak, K

    2009-01-01

    Fungus-mediated synthesis of silver nanoparticles is reported. The nanosilver was formed in contact with the cell-free filtrate of Penicillium strain studied. The nanoparticles were characterized by means of the UV-Vis spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The synthesized nanosilver showed a absorbed maximum at 425 nm in the visible region. The SEM characterization of the fungus cells treated with silver nitrite indicated that the protein might be responsible for the reduction of silver ions. Transmission electron microscopy (TEM) micrograph showed formation of silver nanoparticles in the range of 10-100 nm.

  13. Uniform excitations in magnetic nanoparticles

    DEFF Research Database (Denmark)

    Mørup, Steen; Frandsen, Cathrine; Hansen, Mikkel Fougt

    2010-01-01

    We present a short review of the magnetic excitations in nanoparticles below the superparamagnetic blocking temperature. In this temperature regime, the magnetic dynamics in nanoparticles is dominated by uniform excitations, and this leads to a linear temperature dependence of the magnetization...... and the magnetic hyperfine field, in contrast to the Bloch T3/2 law in bulk materials. The temperature dependence of the average magnetization is conveniently studied by Mössbauer spectroscopy. The energy of the uniform excitations of magnetic nanoparticles can be studied by inelastic neutron scattering....

  14. Uniform excitations in magnetic nanoparticles

    Directory of Open Access Journals (Sweden)

    Steen Mørup

    2010-11-01

    Full Text Available We present a short review of the magnetic excitations in nanoparticles below the superparamagnetic blocking temperature. In this temperature regime, the magnetic dynamics in nanoparticles is dominated by uniform excitations, and this leads to a linear temperature dependence of the magnetization and the magnetic hyperfine field, in contrast to the Bloch T3/2 law in bulk materials. The temperature dependence of the average magnetization is conveniently studied by Mössbauer spectroscopy. The energy of the uniform excitations of magnetic nanoparticles can be studied by inelastic neutron scattering.

  15. Directed Assembly of Gold Nanoparticles

    DEFF Research Database (Denmark)

    Westerlund, Axel Rune Fredrik; Bjørnholm, Thomas

    2009-01-01

    As a complement to common "top-down" lithography techniques, "bottom-up" assembly techniques are emerging as promising tools to build nanoscale structures in a predictable way. Gold nanoparticles that are stable and relatively easy to synthesize are important building blocks in many such structures...... due to their useful optical and electronic properties. Programmed assembly of gold nanoparticles in one, two, and three dimensions is therefore of large interest. This review focuses on the progress from the last three years in the field of directed gold nanoparticle and nanorod assembly using...

  16. Spin Structures in Magnetic Nanoparticles

    DEFF Research Database (Denmark)

    Mørup, Steen; Brok, Erik; Frandsen, Cathrine

    2013-01-01

    Spin structures in nanoparticles of ferrimagnetic materials may deviate locally in a nontrivial way from ideal collinear spin structures. For instance, magnetic frustration due to the reduced numbers of magnetic neighbors at the particle surface or around defects in the interior can lead to spin...... canting and hence a reduced magnetization. Moreover, relaxation between almost degenerate canted spin states can lead to anomalous temperature dependences of the magnetization at low temperatures. In ensembles of nanoparticles, interparticle exchange interactions can also result in spin reorientation....... Here, we give a short review of anomalous spin structures in nanoparticles....

  17. Method of synthesizing tungsten nanoparticles

    Science.gov (United States)

    Thoma, Steven G; Anderson, Travis M

    2013-02-12

    A method to synthesize tungsten nanoparticles has been developed that enables synthesis of nanometer-scale, monodisperse particles that can be stabilized only by tetrahydrofuran. The method can be used at room temperature, is scalable, and the product concentrated by standard means. Since no additives or stabilizing surfactants are required, this method is particularly well suited for producing tungsten nanoparticles for dispersion in polymers. If complete dispersion is achieved due to the size of the nanoparticles, then the optical properties of the polymer can be largely maintained.

  18. Nanoparticles for cells proliferation enhancement

    International Nuclear Information System (INIS)

    Popa, V.; Braniste, F.; Tiginyanu, I.M.; Lisii, C.; Nacu, V.

    2013-01-01

    The potential of semiconductor nanoparticles as stimulator for avian mesenchyme stem cells proliferation enhancement is demonstrated. The effect is related to nanoparticles polarization due to external ultrasound field resulting in local electrical stimulation. Our preliminary results demonstrates that the number of cells have been increased by 23 % ±2%) in cell cultures under the action of external ultrasound stimulation. Morphological analysis and viability shows no differences between the control group and the group studied. These results suggest the possibility for tissue regeneration enhancement by remote stimulation of implanted semiconductor nanoparticles. (authors)

  19. Nanoparticles of poly(hydroxybutyrate-co-hydroxyvalerate) as support for the immobilization of Candida antarctica lipase (fraction B); Nanoparticulas de poli-hidroxibutirato-co-valerato como suporte para a imobilizacao da lipase de Candida antarctica fracao B

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Ilizandra A.; Nyari, Nadia L.D. [Universidade Regional Integrada, Erechim, RS (Brazil). Departamento de Ciencias Agrarias; Oliveira, Jose Vladimir de; Oliveira, Debora de, E-mail: debora@enq.ufsc.br [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Departamento de Engenharia Quimica e Engenharia de Alimentos; Rigo, Elisandra [Universidade do Estado de Santa Catarina (UDESC), Pinhalzinho, SC (Brazil). Departamento de Engenharia de Alimentos; Souza, Maria Cristiane M. de; Goncalves, Luciana R.B. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Departamento de Engenharia Quimica; Pergher, Sibele Berenice C. [Universidade Federal do Rio Grande do Norte (UFRN), RN (Brazil). Instituto de Quimica

    2014-04-15

    This work evaluates the immobilization of Candida antarctica lipase (Fraction B) using poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) nanoparticles as support. The effects of immobilization time (30-150 min) and pH (5-10) on lipase loading were evaluated. The stability of the immobilized enzyme towards temperature (40, 60, and 80 deg C), reuse and storage (at 4 deg C) were also determined. Furthermore, to assess its potential application in a system of interest, the immobilized lipase was used as a catalyst in the esterification of geraniol with oleic acid. The results indicated a time of 120 minutes and pH of 7 as optimal for immobilization. A 21 hour exposure of the PHBV-lipase derivative to 60 deg C showed a 33% reduction of the initial activity while storage at 4 deg C led to a residual activity (5% of the original activity). The derivative was used without significant loss of activity for 4 successive cycles. The use of the immobilized lipase as a catalyst in the production of geranyl oleate led to about 88% conversion of the initial reactants to products. (author)

  20. Nanoparticles Doped, Photorefractive Liquid Crystals

    National Research Council Canada - National Science Library

    Kaczmarek, Malgosia

    2005-01-01

    ...: The main objectives of this exploratory, short project will concern the study of the quality of liquid crystal cells with diluted suspensions of ferroelectric nanoparticles and their photorefractive properties...

  1. Lipid nanoparticle interactions and assemblies

    Science.gov (United States)

    Preiss, Matthew Ryan

    Novel liposome-nanoparticle assemblies (LNAs) provide a biologically inspired route for designing multifunctional bionanotheranostics. LNAs combine the benefits of lipids and liposomes to encapsulate, transport, and protect hydrophilic and hydrophobic therapeutics with functional nanoparticles. Functional nanoparticles endow LNAs with additional capabilities, including the ability to target diseases, triggered drug release, controlled therapeutic output, and diagnostic capabilities to produce a drug delivery system that can effectively and efficiently deliver therapeutics while reducing side effects. Not only could LNAs make existing drugs better, they could also provide an avenue to allow once promising non-approved drugs (rejected due to harmful side effects, inadequate pharmacokinetics, and poor efficacy) to be safely used through targeted and controlled delivery directly to the diseased site. LNAs have the potential to be stimuli responsive, delivering drugs on command by external (ultrasound, RF heating, etc.) or internal (pH, blood sugar, heart rate, etc.) stimuli. Individually, lipids and nanoparticles have been clinically approved for therapy, such as Doxil (a liposomal doxorubicin for cancer treatment), and diagnosis, such as Feridex (an iron oxide nanoparticle an MRI contrast enhancement agent for liver tumors). In order to engineer these multifunctional LNAs for theranostic applications, the interactions between nanoparticles and lipids must be better understood. This research sought to explore the formation, design, structures, characteristics, and functions of LNAs. To achieve this goal, different types of LNAs were formed, specifically magnetoliposomes, bilayer decorated LNAs (DLNAs), and lipid-coated magnetic nanoparticles (LMNPs). A fluorescent probe was embedded in the lipid bilayer of magnetoliposomes allowing the local temperature and membrane fluidity to be observed. When subjected to an electromagnetic field that heated the encapsulated iron

  2. Immunological properties of gold nanoparticles

    OpenAIRE

    Dykman, Lev A.; Khlebtsov, Nikolai G.

    2016-01-01

    In the past decade, gold nanoparticles have attracted strong interest from the nanobiotechnological community owing to the significant progress made in robust and easy-to-make synthesis technologies, in surface functionalization, and in promising biomedical applications. These include bioimaging, gene diagnostics, analytical sensing, photothermal treatment of tumors, and targeted delivery of various biomolecular and chemical cargos. For the last-named application, gold nanoparticles should be...

  3. Polymeric nanoparticles for optical sensing.

    Science.gov (United States)

    Canfarotta, Francesco; Whitcombe, Michael J; Piletsky, Sergey A

    2013-12-01

    Nanotechnology is a powerful tool for use in diagnostic applications. For these purposes a variety of functional nanoparticles containing fluorescent labels, gold and quantum dots at their cores have been produced, with the aim of enhanced sensitivity and multiplexing capabilities. This work will review progress in the application of polymeric nanoparticles in optical diagnostics, both for in vitro and in vivo detection, together with a discussion of their biodistribution and biocompatibility. © 2013.

  4. Diamond Synthesis Employing Nanoparticle Seeds

    Science.gov (United States)

    Uppireddi, Kishore (Inventor); Morell, Gerardo (Inventor); Weiner, Brad R. (Inventor)

    2014-01-01

    Iron nanoparticles were employed to induce the synthesis of diamond on molybdenum, silicon, and quartz substrates. Diamond films were grown using conventional conditions for diamond synthesis by hot filament chemical vapor deposition, except that dispersed iron oxide nanoparticles replaced the seeding. This approach to diamond induction can be combined with dip pen nanolithography for the selective deposition of diamond and diamond patterning while avoiding surface damage associated to diamond-seeding methods.

  5. Method for producing metallic nanoparticles

    Science.gov (United States)

    Phillips, Jonathan; Perry, William L.; Kroenke, William J.

    2004-02-10

    Method for producing metallic nanoparticles. The method includes generating an aerosol of solid metallic microparticles, generating non-oxidizing plasma with a plasma hot zone at a temperature sufficiently high to vaporize the microparticles into metal vapor, and directing the aerosol into the hot zone of the plasma. The microparticles vaporize in the hot zone to metal vapor. The metal vapor is directed away from the hot zone and to the plasma afterglow where it cools and condenses to form solid metallic nanoparticles.

  6. Conducting metal oxide and metal nitride nanoparticles

    Science.gov (United States)

    DiSalvo, Jr., Francis J.; Subban, Chinmayee V.

    2017-12-26

    Conducting metal oxide and nitride nanoparticles that can be used in fuel cell applications. The metal oxide nanoparticles are comprised of for example, titanium, niobium, tantalum, tungsten and combinations thereof. The metal nitride nanoparticles are comprised of, for example, titanium, niobium, tantalum, tungsten, zirconium, and combinations thereof. The nanoparticles can be sintered to provide conducting porous agglomerates of the nanoparticles which can be used as a catalyst support in fuel cell applications. Further, platinum nanoparticles, for example, can be deposited on the agglomerates to provide a material that can be used as both an anode and a cathode catalyst support in a fuel cell.

  7. Surface vertical deposition for gold nanoparticle film

    International Nuclear Information System (INIS)

    Diao, J J; Qiu, F S; Chen, G D; Reeves, M E

    2003-01-01

    In this rapid communication, we present the surface vertical deposition (SVD) method to synthesize the gold nanoparticle films. Under conditions where the surface of the gold nanoparticle suspension descends slowly by evaporation, the gold nanoparticles in the solid-liquid-gas junction of the suspension aggregate together on the substrate by the force of solid and liquid interface. When the surface properties of the substrate and colloidal nanoparticle suspension define for the SVD, the density of gold nanoparticles in the thin film made by SVD only depends on the descending velocity of the suspension surface and on the concentration of the gold nanoparticle suspension. (rapid communication)

  8. Repairing Nanoparticle Surface Defects.

    Science.gov (United States)

    Marino, Emanuele; Kodger, Thomas E; Crisp, Ryan W; Timmerman, Dolf; MacArthur, Katherine E; Heggen, Marc; Schall, Peter

    2017-10-23

    Solar devices based on semiconductor nanoparticles require the use of conductive ligands; however, replacing the native, insulating ligands with conductive metal chalcogenide complexes introduces structural defects within the crystalline nanostructure that act as traps for charge carriers. We utilized atomically thin semiconductor nanoplatelets as a convenient platform for studying, both microscopically and spectroscopically, the development of defects during ligand exchange with the conductive ligands Na 4 SnS 4 and (NH 4 ) 4 Sn 2 S 6 . These defects can be repaired via mild chemical or thermal routes, through the addition of L-type ligands or wet annealing, respectively. This results in a higher-quality, conductive, colloidally stable nanomaterial that may be used as the active film in optoelectronic devices. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  9. Study of ferritin nanoparticles

    International Nuclear Information System (INIS)

    Lancok, A.; Kohout, J.; Volfova, L.; Miglierini, M.

    2015-01-01

    Moessbauer spectrometry confirms the presence of hematite, ferrihydrite and maghemite/magnetite in ferritin derived from human spleen tissues. The minerals are present in a form of small (about 4-5 nm in size) grains with highly disordered structure. Consequently, at room temperature all agglomerates of ferritin nanoparticles show non-magnetic behaviour. Magnetic states are revealed at low enough temperatures below the so-called blocking temperature. Employing Moessbauer effect measurements, the latter was determined to be of 16 K for the human spleen. Structural features of these tissues were studied by TEM technique. Employing 57 Fe nuclei as local probes both structural and magnetic features of the biological materials were investigated by Moessbauer spectrometry. It was possible to identify iron atoms and their neighbours. (authors)

  10. Magentite nanoparticle for arsenic remotion

    International Nuclear Information System (INIS)

    Viltres, H; Reguera, E; Odio, O F; Borja, R; Aguilera, Y

    2017-01-01

    Inorganic As (V) and As (III) species are commonly found in groundwater in many countries around the world. It is known that arsenic is highly toxic and carcinogenic, at present exist reports of diverse countries with arsenic concentrations in drinking water higher than those proposed by the World Health Organization (10 μg/L). It has been reported that adsorption strategies using magnetic nanoparticles as magnetite (<20 nm) proved to be very efficient for the removal of arsenic in drinking water. Magnetic nanoparticles (magnetite) were prepared using a co-precipitation method with FeCl 3 and FeCl 2 as metal source and NaOH aqueous solution as precipitating agent. Magnetite nanoparticles synthesized were put in contact with As 2 O 3 and As 2 O 5 solutions at room temperature to pH 4 and 7. The nanoparticles were characterized by FT-IR, DRX, UV-vis, and XRF. The results showed that synthesized magnetite had an average diameter of 11 nm and a narrow size distribution. The presence of arsenic on magnetite nanoparticles surface was confirmed, which is more remarkable when As (V) is employed. Besides, it is possible to observe that no significant changes in the band gap values after adsorption of arsenic in the nanoparticles. (paper)

  11. [Nanoparticles: properties and application prospects].

    Science.gov (United States)

    Chekman, I S

    2009-01-01

    A new trend of scientific-technical and medical researches has been formed which unites nanoscience, nanotechnology, nanomedicine, nanopharmacology. Nanoparticles are the main product of nanotechnologies. Nanoparticles are organic and inorganic structures, their size being less than one hundred nanometers (nano from Greece nanos--a dwarf; particle is a separate unit which is separated from the whole). Prefix nano means 10(-9) m. Nanosizes are values from 1 to 100 nanometers, micro-sizes--from 100 to 1000 nanometers, and above 1000 nanometers--are macrosizes. By the data of Internet for 1.08.20.2008 there are 18512 papers in the world scientific literature (8663 of them were published during the last 2.5 years), where properties of nanoparticles which are obtained by different nanotechnological methods are described. Actually, quantity of works concerning nanoparticles is much more because not all publications are cited in Internet. The first publication concerning a characteristic of nanoparticles was published in 1978. The survey generalized the data of scientific literature and author's investigations which concern sizes of nanoparticles of biologic molecules and their properties.

  12. Stimuli-Responsive Polymeric Nanoparticles.

    Science.gov (United States)

    Liu, Xiaolin; Yang, Ying; Urban, Marek W

    2017-07-01

    There is increasing evidence that stimuli-responsive nanomaterials have become significantly critical components of modern materials design and technological developments. Recent advances in synthesis and fabrication of stimuli-responsive polymeric nanoparticles with built-in stimuli-responsive components (Part A) and surface modifications of functional nanoparticles that facilitate responsiveness (Part B) are outlined here. The synthesis and construction of stimuli-responsive spherical, core-shell, concentric, hollow, Janus, gibbous/inverse gibbous, and cocklebur morphologies are discussed in Part A, with the focus on shape, color, or size changes resulting from external stimuli. Although inorganic/metallic nanoparticles exhibit many useful properties, including thermal or electrical conductivity, catalytic activity, or magnetic properties, their assemblies and formation of higher order constructs are often enhanced by surface modifications. Section B focuses on selected surface reactions that lead to responsiveness achieved by decorating nanoparticles with stimuli-responsive polymers. Although grafting-to and grafting-from dominate these synthetic efforts, there are opportunities for developing novel synthetic approaches facilitating controllable recognition, signaling, or sequential responses. Many nanotechnologies utilize a combination of organic and inorganic phases to produce ceramic or metallic nanoparticles. One can envision the development of new properties by combining inorganic (metals, metal oxides) and organic (polymer) phases into one nanoparticle designated as "ceramers" (inorganics) and "metamers" (metallic). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Ultrasound mediated nanoparticle drug delivery

    Science.gov (United States)

    Mullin, Lee B.

    Ultrasound is not only a powerful diagnostic tool, but also a promising therapeutic technology that can be used to improve localized drug delivery. Microbubble contrast agents are micron sized encapsulated gas filled bubbles that are administered intravenously. Originally developed to enhance ultrasound images, microbubbles are highly echogenic due to the gas core that provides a detectable impedance difference from the surrounding medium. The core also allows for controlled response of the microbubbles to ultrasound pulses. Microbubbles can be pushed using acoustic radiation force and ruptured using high pressures. Destruction of microbubbles can increase permeability at the cellular and vascular level, which can be advantageous for drug delivery. Advances in drug delivery methods have been seen with the introduction of nanoparticles, nanometer sized objects often carrying a drug payload. In chemotherapy, nanoparticles can deliver drugs to tumors while limiting systemic exposure due to abnormalities in tumor vasculature such large gaps between endothelial cells that allow nanoparticles to enter into the interstitial space; this is referred to as the enhanced permeability and retention (EPR) effect. However, this effect may be overestimated in many tumors. Additionally, only a small percentage of the injected dose accumulates in the tumor, which most the nanoparticles accumulating in the liver and spleen. It is hypothesized that combining the acoustic activity of an ultrasound contrast agent with the high payload and extravasation ability of a nanoparticle, localized delivery to the tumor with reduced systemic toxicity can be achieved. This method can be accomplished by either loading nanoparticles onto the shell of the microbubble or through a coadministration method of both nanoparticles and microbubbles. The work presented in this dissertation utilizes novel and commercial nanoparticle formulations, combined with microbubbles and a variety of ultrasound systems

  14. Photoactivation of Diiodido-Pt(IV) Complexes Coupled to Upconverting Nanoparticles.

    Science.gov (United States)

    Perfahl, Stefanie; Natile, Marta M; Mohamad, Heba S; Helm, Christiane A; Schulzke, Carola; Natile, Giovanni; Bednarski, Patrick J

    2016-07-05

    The preparation, characterization, and surface modification of upconverting lanthanide-doped hexagonal NaGdF4 nanocrystals attached to light sensitive diiodido-Pt(IV) complexes is presented. The evaluation for photoactivation and cytotoxicity of the novel carboxylated diiodido-Pt(IV) cytotoxic prodrugs by near-infrared (NIR) light (λ = 980 nm) is also reported. We attempted two different strategies for attachment of light-sensitive diiodido-Pt(IV) complexes to Yb,Er- and Yb,Tm-doped β-NaGdF4 upconverting nanoparticles (UCNPs) in order to provide nanohybrids, which offer unique opportunities for selective drug activation within the tumor cells and subsequent spatiotemporal controlled drug release by NIR-to-visible light-upconversion: (A) covalent attachment of the Pt(IV) complex via amide bond formation and (B) carboxylate exchange of oleate on the surface of the UCNPs with diiodido-Pt(IV) carboxylato complexes. Initial feasibility studies showed that NIR applied by a 980 nm laser had only a slight effect on the stability of the various diiodido-Pt(IV) complexes, but when UCNPs were present more rapid loss of the ligand-metal-charge transfer (LMCT) bands of the diiodido-Pt(IV) complexes was observed. Furthermore, Pt released from the Pt(IV) complexes platinated calf-thymus DNA (ct-DNA) more rapidly when NIR was applied compared to dark controls. Of the two attachment strategies, method A with the covalently attached diiodido-Pt(IV) carboxylates via amide bond formation proved to be the most effective method for generating UCNPs that release Pt when irradiated with NIR; the released Pt was also able to bind irreversibly to calf thymus DNA. Nonetheless, only ca. 20% of the Pt on the surface of the UCNPs was in the Pt(IV) oxidation state, the rest was Pt(II), indicating chemical reduction of the diiodido-Pt(IV) prodrug by the UCNPs. Cytotoxicity studies with the various UCNP-Pt conjugates and constructs, tested on human leukemia HL60 cells in culture, indicated a

  15. Green synthesis of silver nanoparticles and biopolymer ...

    Indian Academy of Sciences (India)

    2018-03-29

    Mar 29, 2018 ... Keywords. Biogenic silver nanoparticles; biopolymer nanocomposites; nanoparticles stability; ... Production of nanomaterials by using living organisms of plant-based ... 2.1b Microorganisms and cell culture: The evaluation of.

  16. Amorphous nanoparticles — Experiments and computer simulations

    International Nuclear Information System (INIS)

    Hoang, Vo Van; Ganguli, Dibyendu

    2012-01-01

    The data obtained by both experiments and computer simulations concerning the amorphous nanoparticles for decades including methods of synthesis, characterization, structural properties, atomic mechanism of a glass formation in nanoparticles, crystallization of the amorphous nanoparticles, physico-chemical properties (i.e. catalytic, optical, thermodynamic, magnetic, bioactivity and other properties) and various applications in science and technology have been reviewed. Amorphous nanoparticles coated with different surfactants are also reviewed as an extension in this direction. Much attention is paid to the pressure-induced polyamorphism of the amorphous nanoparticles or amorphization of the nanocrystalline counterparts. We also introduce here nanocomposites and nanofluids containing amorphous nanoparticles. Overall, amorphous nanoparticles exhibit a disordered structure different from that of corresponding bulks or from that of the nanocrystalline counterparts. Therefore, amorphous nanoparticles can have unique physico-chemical properties differed from those of the crystalline counterparts leading to their potential applications in science and technology.

  17. Glycine functionalized alumina nanoparticles stabilize collagen in ...

    Indian Academy of Sciences (India)

    Al2O3 nanoparticles thereby suggesting ... 1. Introduction. Collagen is a naturally occurring skin protein in animal tis- ... easily adsorb on the surface of the nanoparticles and amino .... [19,23], agglomeration is prevented by the electrostatic.

  18. Radiation Synthesis of Nanoparticles

    International Nuclear Information System (INIS)

    Khairul Zaman Mohd Dahlan; Jamaliah Sharif; Nik Ghazali Nik Salleh; Dahlan Mohd; Kamaruddin Hashim

    2011-01-01

    Radiation processing of nano materials is one of the many applications of ionising radiation. It has the advantages of cold process, fast, homogeneous and clean processing without using chemicals, heat and no release of any volatile organic compounds. Hence, radiation processing can be categorised as a green process. The applications of ionising radiation for materials processing are well established and commercialized by way of crosslinking, grafting, curing and degradation. However, the materials use, condition of processing and the end products varies and radiation processing is continue to be developed for various applications in industry, agriculture, health care and environment. The new and emerging development of nano materials has also being incorporated in radiation processing whereby we can see the convergence of radiation and nano technology, to take advantages of the inherent properties of nano size particles. Nowadays many works are being carried out on radiation processing of nano materials. The incorporation of such nanoparticles in polymeric materials will render specific properties that find several advantages compare to conventional composites such as increase heat resistant, improve abrasion and scratch resistant and enhance mechanical properties. In recent years, polymer/clay nano composites has attracted the interest of industry because of its major improvements in physical and mechanical properties, heat stability, reduce flammability and provide enhanced barrier properties at low clay contents. In many applications, crosslinking of polymer matrix is necessary that can further improved the mechanical and physical properties of the composites. Similar research has been extended to electron beam crosslinking of electromagnetic nano composites which comprise of high volume fraction of inorganic fillers in elastomeric matrix. The effect of radiation on inorganic fillers is believed to has influence on the overall radiation crosslinking of the

  19. High surface area fibrous silica nanoparticles

    KAUST Repository

    Polshettiwar, Vivek; Basset, Jean-Marie

    2014-01-01

    Disclosed are high surface area nanoparticles that have a fibrous morphology. The nanoparticles have a plurality of fibers, wherein each fiber is in contact with one other fiber and each fiber has a length of between about 1 nm and about 5000 nm. Also disclosed are applications of the nanoparticles of the present invention, and methods of fabrication of the nanoparticles of the present invention.

  20. Nanotoxicity of gold and iron nanoparticles.

    Science.gov (United States)

    Maiti, Souvik

    2011-02-01

    The extensive use of potentially hazardous nanoparticles in industrial applications suggest that their biological effects need to be evaluated following clinical testing practices as applicable for any new pharmaceutical. It was rationalized that a non hypothesis-driven approach is best suited for discovering the biological effects of nanoparticles. Gold nanoparticles (approximately 18 nm), showed no drastic effect on gene expression in cells but iron nanoparticles showed perturbations in the expression of a set of functional genes.

  1. Photoacoustic signal amplification through plasmonic nanoparticle aggregation

    OpenAIRE

    Bayer, Carolyn L.; Nam, Seung Yun; Chen, Yun-Sheng; Emelianov, Stanislav Y.

    2013-01-01

    Photoacoustic imaging, using targeted plasmonic metallic nanoparticles, is a promising noninvasive molecular imaging method. Analysis of the photoacoustic signal generated by plasmonic metallic nanoparticles is complex because of the dependence upon physical properties of both the nanoparticle and the surrounding environment. We studied the effect of the aggregation of gold nanoparticles on the photoacoustic signal amplitude. We found that the photoacoustic signal from aggregated silica-coate...

  2. Bi-metallic nanoparticles as cathode electrocatalysts

    Science.gov (United States)

    Lu, Jun; Amine, Khalil; Wang, Xiaoping; Luo, Xiangyi; Myers, Deborah J.

    2018-03-27

    A lithium-air battery cathode catalyst includes core-shell nanoparticles on a carbon support, wherein: a core of the core-shell nanoparticles is platinum metal; and a shell of the core-shell nanoparticles is copper metal; wherein: the core-shell nanoparticles have a weight ratio of the copper metal to the platinum metal from about 4% to about 6% copper to from about 2% to about 12% platinum, with a remaining percentage being the carbon support.

  3. High surface area fibrous silica nanoparticles

    KAUST Repository

    Polshettiwar, Vivek

    2014-11-11

    Disclosed are high surface area nanoparticles that have a fibrous morphology. The nanoparticles have a plurality of fibers, wherein each fiber is in contact with one other fiber and each fiber has a length of between about 1 nm and about 5000 nm. Also disclosed are applications of the nanoparticles of the present invention, and methods of fabrication of the nanoparticles of the present invention.

  4. Biosynthesis of silver nanoparticles using Stevia extracts

    International Nuclear Information System (INIS)

    Laguta, I.V.; Fesenko, T.V.; Stavinskaya, O.N.; Shpak, L.M.; Dzyuba, O.I.

    2015-01-01

    Silver nanoparticles are synthesized using Stevia rebaudiana extracts. It is shown that the rate of nanoparticles formation is affected by plant cultivation conditions. It is found that, in the presence of the extract from callus, the formation of nanoparticles occurs faster than in the presence of extracts from plants grown under conditions of ex situ and in vitro. The synthesized silver nanoparticles were studied by UV and IR spectroscopies

  5. Gold Nanoparticle Mediated Phototherapy for Cancer

    International Nuclear Information System (INIS)

    Yao, C.; Zhang, L.; Wang, J.; He, Y.; Xin, J.; Wang, S.; Xu, H.; Zhang, Z.

    2016-01-01

    Gold nanoparticles exhibit very unique physiochemical and optical properties, which now are extensively studied in range of medical diagnostic and therapeutic applications. In particular, gold nanoparticles show promise in the advancement of cancer treatments. This review will provide insights into the four different cancer treatments such as photothermal therapy, gold nanoparticle-aided photodynamic therapy, gold nanoparticle-aided radiation therapy, and their use as drug carrier. We also discuss the mechanism of every method and the adverse effects and its limitations

  6. Alloy nanoparticle synthesis using ionizing radiation

    Science.gov (United States)

    Nenoff, Tina M [Sandia Park, NM; Powers, Dana A [Albuquerque, NM; Zhang, Zhenyuan [Durham, NC

    2011-08-16

    A method of forming stable nanoparticles comprising substantially uniform alloys of metals. A high dose of ionizing radiation is used to generate high concentrations of solvated electrons and optionally radical reducing species that rapidly reduce a mixture of metal ion source species to form alloy nanoparticles. The method can make uniform alloy nanoparticles from normally immiscible metals by overcoming the thermodynamic limitations that would preferentially produce core-shell nanoparticles.

  7. Glyco-gold nanoparticles: synthesis and applications

    Directory of Open Access Journals (Sweden)

    Federica Compostella

    2017-05-01

    Full Text Available Glyco-gold nanoparticles combine in a single entity the peculiar properties of gold nanoparticles with the biological activity of carbohydrates. The result is an exciting nanosystem, able to mimic the natural multivalent presentation of saccharide moieties and to exploit the peculiar optical properties of the metallic core. In this review, we present recent advances on glyco-gold nanoparticle applications in different biological fields, highlighting the key parameters which inspire the glyco nanoparticle design.

  8. Matrix-assisted peptide synthesis on nanoparticles.

    Science.gov (United States)

    Khandadash, Raz; Machtey, Victoria; Weiss, Aryeh; Byk, Gerardo

    2014-09-01

    We report a new method for multistep peptide synthesis on polymeric nanoparticles of differing sizes. Polymeric nanoparticles were functionalized via their temporary embedment into a magnetic inorganic matrix that allows multistep peptide synthesis. The matrix is removed at the end of the process for obtaining nanoparticles functionalized with peptides. The matrix-assisted synthesis on nanoparticles was proved by generating various biologically relevant peptides. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.

  9. Nanoparticle-mediated treatment for inflammatory

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention provides nanoparticles for treatment of inflammatory diseases. The nanoparticles preferably comprise chitosan and a siRNA targeting a mRNA encoding a pro-inflammatory cytokine, such as e.g. tnf-alfa. A preferred route of administration of the nanoparticles is by injection...

  10. Cytotoxicity and ion release of alloy nanoparticles

    International Nuclear Information System (INIS)

    Hahn, Anne; Fuhlrott, Jutta; Loos, Anneke; Barcikowski, Stephan

    2012-01-01

    It is well-known that nanoparticles could cause toxic effects in cells. Alloy nanoparticles with yet unknown health risk may be released from cardiovascular implants made of Nickel–Titanium or Cobalt–Chromium due to abrasion or production failure. We show the bio-response of human primary endothelial and smooth muscle cells exposed to different concentrations of metal and alloy nanoparticles. Nanoparticles having primary particle sizes in the range of 5–250 nm were generated using laser ablation in three different solutions avoiding artificial chemical additives, and giving access to formulations containing nanoparticles only stabilized by biological ligands. Endothelial cells are found to be more sensitive to nanoparticle exposure than smooth muscle cells. Cobalt and Nickel nanoparticles caused the highest cytotoxicity. In contrast, Titanium, Nickel–Iron, and Nickel–Titanium nanoparticles had almost no influence on cells below a nanoparticle concentration of 10 μM. Nanoparticles in cysteine dissolved almost completely, whereas less ions are released when nanoparticles were stabilized in water or citrate solution. Nanoparticles stabilized by cysteine caused less inhibitory effects on cells suggesting cysteine to form metal complexes with bioactive ions in media.

  11. Refracting surface plasmon polaritons with nanoparticle arrays

    DEFF Research Database (Denmark)

    Radko, I.P.; Evlyukhin, A.B.; Boltasseva, Alexandra

    2008-01-01

    Refraction of surface plasmon polaritons (SPPs) by various structures formed by a 100-nm-period square lattice of gold nanoparticles on top of a gold film is studied by leakage radiation microscopy. SPP refraction by a triangular-shaped nanoparticle array indicates that the SPP effective refractive...... to design nanoparticle arrays for specific applications requiring in-plane SPP manipulation....

  12. Gold nanoparticles for tumour detection and treatment

    NARCIS (Netherlands)

    Hartsuiker, Liesbeth; Petersen, W.; Petersen, Wilhelmina; Jose, J.; Jose, J.; van Es, P.; van Es, Peter; Lenferink, Aufrid T.M.; Poot, Andreas A.; Terstappen, Leonardus Wendelinus Mathias Marie; van Leeuwen, Ton; Manohar, Srirang; Otto, Cornelis

    2011-01-01

    The use of nanoparticles in biomedical applications is emerging rapidly. Recent developments have led to numerous studies of noble metal nanoparticles, down to the level of single molecule detection in living cells. The application of noble metal nanoparticles in diagnostics and treatment of early

  13. Solid lipid nanoparticles for parenteral drug delivery

    NARCIS (Netherlands)

    Wissing, S.A.; Kayser, Oliver; Muller, R.H.

    2004-01-01

    This review describes the use of nanoparticles based on solid lipids for the parenteral application of drugs. Firstly, different types of nanoparticles based on solid lipids such as "solid lipid nanoparticles" (SLN), "nanostructured lipid carriers" (NLC) and "lipid drug conjugate" (LDC)

  14. Biosynthesis of silver nanoparticles synthesized by Aspergillus

    Indian Academy of Sciences (India)

    In the present study, biosynthesis of silver nanoparticles and its antioxidant, antimicrobial and cytotoxic activities were investigated. Silver nanoparticles were extracellularly synthesized using Aspergillus flavus and the formation of nanoparticles was observed after 72 h of incubation. The results recorded from colour ...

  15. Analysis of nanoparticle biomolecule complexes.

    Science.gov (United States)

    Gunnarsson, Stefán B; Bernfur, Katja; Mikkelsen, Anders; Cedervall, Tommy

    2018-03-01

    Nanoparticles exposed to biological fluids adsorb biomolecules on their surface forming a biomolecular corona. This corona determines, on a molecular level, the interactions and impact the newly formed complex has on cells and organisms. The corona formation as well as the physiological and toxicological relevance are commonly investigated. However, an acknowledged but rarely addressed problem in many fields of nanobiotechnology is aggregation and broadened size distribution of nanoparticles following their interactions with the molecules of biological fluids. In blood serum, TiO 2 nanoparticles form complexes with a size distribution from 30 nm to more than 500 nm. In this study we have separated these complexes, with good resolution, using preparative centrifugation in a sucrose gradient. Two main apparent size populations were obtained, a fast sedimenting population of complexes that formed a pellet in the preparative centrifugation tube, and a slow sedimenting complex population still suspended in the gradient after centrifugation. Concentration and surface area dependent differences are found in the biomolecular corona between the slow and fast sedimenting fractions. There are more immunoglobulins, lipid binding proteins, and lipid-rich complexes at higher serum concentrations. Sedimentation rate and the biomolecular corona are important factors for evaluating any experiment including nanoparticle exposure. Our results show that traditional description of nanoparticles in biological fluids is an oversimplification and that more thorough characterisations are needed.

  16. APPLICATION OF NANOPARTICLES IN BIOMEDICINE

    Directory of Open Access Journals (Sweden)

    P. G. Telegeeva

    2013-04-01

    Full Text Available The advances in nanotechnology, particularly, application in biomedicine are described in the review. The characteristic of the new drug delivery systems is given including lipid, protein and polymer nanoparticles which provide stable delivery of drugs to the target of distribution in the body and prevent their rapid degradation. The advantages of nanometer scale vectors were analyzed. Due to their small size, structure and large surface area, nanoscale materials acquire necessary physico-chemical properties. These properties allow the nanoparticles, containing specific agents, to overcome the limitations existing for the forms of large sizes. This significantly facilitates the intracellular transport to specific cellular targets. Controlled deli very to the place of action and reduction of exposure time on non-target tissues increases efficacy and reduces toxicity and other side effects, which improves the patient's overall health. Use of different ways to deliver nanoparticles allows to deliver low-molecular drugs, proteins, peptides or nucleic acids to specific tissues. Various ways of nanodrugs delivery to a cell and the possibility of modifying their surface by target ligands are discussed in the review. Types of drug delivery systems: microsponges, viruses, imunoconjugates, liposomes, metal nanoparticles and quantum dots, dendrimers, natural and synthetic polymeric nanoparticles, etc are discussed. A large variety of nanovectors, as well as their modification, and loading of various drugs (the methods of inclusion and adsorption are examined, control of their release into the cell, opens prospects for their wide application for visualization of biological processes, diagnosis and therapy of wide range of diseases.

  17. Hydrogel nanoparticles in drug delivery.

    Science.gov (United States)

    Hamidi, Mehrdad; Azadi, Amir; Rafiei, Pedram

    2008-12-14

    Hydrogel nanoparticles have gained considerable attention in recent years as one of the most promising nanoparticulate drug delivery systems owing to their unique potentials via combining the characteristics of a hydrogel system (e.g., hydrophilicity and extremely high water content) with a nanoparticle (e.g., very small size). Several polymeric hydrogel nanoparticulate systems have been prepared and characterized in recent years, based on both natural and synthetic polymers, each with its own advantages and drawbacks. Among the natural polymers, chitosan and alginate have been studied extensively for preparation of hydrogel nanoparticles and from synthetic group, hydrogel nanoparticles based on poly (vinyl alcohol), poly (ethylene oxide), poly (ethyleneimine), poly (vinyl pyrrolidone), and poly-N-isopropylacrylamide have been reported with different characteristics and features with respect to drug delivery. Regardless of the type of polymer used, the release mechanism of the loaded agent from hydrogel nanoparticles is complex, while resulting from three main vectors, i.e., drug diffusion, hydrogel matrix swelling, and chemical reactivity of the drug/matrix. Several crosslinking methods have been used in the way to form the hydrogel matix structures, which can be classified in two major groups of chemically- and physically-induced crosslinking.

  18. Nanoparticles: nanotoxicity aspects

    Science.gov (United States)

    Vlastou, Elena; Gazouli, Maria; Ploussi, Agapi; Platoni, Kalliopi; Efstathopoulos, Efstathios P.

    2017-11-01

    The giant steps towards Nanosciences dictate the need to gain a broad knowledge about not only beneficial but also noxious properties of Nanomaterials. Apart from the remarkable advantages of Nanoparticles (NPs) in medicine and industry, there have been raised plenty of concerns about their potential adverse effects in living organisms and ecosystems as well. Without a doubt, it is of critical importance to ensure that NPs medical and industrial applications are accompanied by the essential safety so that the balance will be tilted in favor of the profits that society will earn. However, the evaluation of NPs toxic effects remains a great challenge for the scientific community due to the wealth of factors that Nanotoxicity depends on. Size, surface area, dosing, shape, surface coating and charge and bulk material are the basic parameters under investigation to assess the risk involved in NPs usage. Our purpose is to highlight NPs physical and chemical properties responsible for induced toxicity, describe the mechanisms that take place in their interaction with cells and organs and finally report the potential harmful consequences that may result from the innovative applications of Nanomaterials.

  19. Laser assisted embedding of nanoparticles into metallic materials

    International Nuclear Information System (INIS)

    Lin Dong; Suslov, Sergey; Ye Chang; Liao Yiliang; Liu, C. Richard; Cheng, Gary J.

    2012-01-01

    This paper reports a methodology of half-embedding nanoparticles into metallic materials. Transparent and opaque nanoparticles are chosen to demonstrate the process of laser assisted nanoparticle embedding. Dip coating method is used to coat transparent or opaque nanoparticle on the surface of metallic material. Nanoparticles are embedded into substrate by laser irradiation. In this study, the mechanism and process of nanoparticle embedding are investigated. It is found both transparent and opaque nanoparticles embedding are with high densities and good uniformities.

  20. Nanoparticle composites for printed electronics

    International Nuclear Information System (INIS)

    Männl, U; Van den Berg, C; Magunje, B; Härting, M; Britton, D T; Jones, S; Van Staden, M J; Scriba, M R

    2014-01-01

    Printed Electronics is a rapidly developing sector in the electronics industry, in which nanostructured materials are playing an increasingly important role. In particular, inks containing dispersions of semiconducting nanoparticles, can form nanocomposite materials with unique electronic properties when cured. In this study we have extended on our previous studies of functional nanoparticle electronic inks, with the development of a solvent-based silicon ink for printed electronics which is compatible with existing silver inks, and with the investigation of other metal nanoparticle based inks. It is shown that both solvent-based and water-based inks can be used for both silver conductors and semiconducting silicon, and that qualitatively there is no difference in the electronic properties of the materials printed with a soluble polymer binder to when an acrylic binder is used. (paper)

  1. Gold nanoparticles: generation and characterization

    International Nuclear Information System (INIS)

    Dey, G.R.

    2013-07-01

    In this presentation we report the reduction of Au 3+ through chemical and free radical (e solv - ) reactions both in non-aqueous and aqueous media. In chemical reduction, the spectral nature in ascorbic acid (AA) and citric acid (CA) systems was different. The band intensity of gold nanoparticles was lower in AA system. While in free radical reaction, the yield of nanoparticles was pure i.e. free from excess reactants. Under the study 60-200 nm size nanoparticles were generated, which are inert to oxygen. Using pulse radiolysis technique, the initial rate for e solv - reaction with Au 3+ was determined to be 7.6 x 10 9 M -1 s -1 . (author)

  2. Magnetite nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Sora, Sergiu; Ion, Rodica Mariana

    2010-01-01

    This work aims to establish and to optimize the conditions for chemical synthesis of nanosized magnetic core-shell iron oxide. The core is magnetite and for the shell we used gold in order to obtain different nanoparticles. Iron oxides was synthesized by sonochemical process using ferrous salts, favoring the synthesis at low-temperature, low costs, high material purity and nanostructure control. After synthesis, some investigation techniques as: X-ray diffraction (XRD), atomic force microscopy (AFM), Thermogravimetric analysis (TGA), Fourier-Transform Infrared Spectroscopy (FTIR) and UVVis absorbance spectroscopy, have been used to see the characteristics of the nanoparticles. For in vitro applications, it is important to prevent any aggregation of the nanoparticles, and may also enable efficient excretion and protection of the cells from toxicity. For biomedical applications like magnetic biofunctional material vectors to target tissues, the particles obtained have to be spherical with 10 nm average diameter. Key words: magnetite, nanocomposite, core-shell, sonochemical method

  3. Catalytic activity of Au nanoparticles

    DEFF Research Database (Denmark)

    Larsen, Britt Hvolbæk; Janssens, Ton V.W.; Clausen, Bjerne

    2007-01-01

    Au is usually viewed as an inert metal, but surprisingly it has been found that Au nanoparticles less than 3–5 nm in diameter are catalytically active for several chemical reactions. We discuss the origin of this effect, focusing on the way in which the chemical activity of Au may change with par......Au is usually viewed as an inert metal, but surprisingly it has been found that Au nanoparticles less than 3–5 nm in diameter are catalytically active for several chemical reactions. We discuss the origin of this effect, focusing on the way in which the chemical activity of Au may change...... with particle size. We find that the fraction of low-coordinated Au atoms scales approximately with the catalytic activity, suggesting that atoms on the corners and edges of Au nanoparticles are the active sites. This effect is explained using density functional calculations....

  4. Fabrication of Metallic Hollow Nanoparticles

    Science.gov (United States)

    Kim, Jae-Woo (Inventor); Choi, Sr., Sang H. (Inventor); Lillehei, Peter T. (Inventor); Chu, Sang-Hyon (Inventor); Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2016-01-01

    Metal and semiconductor nanoshells, particularly transition metal nanoshells, are fabricated using dendrimer molecules. Metallic colloids, metallic ions or semiconductors are attached to amine groups on the dendrimer surface in stabilized solution for the surface seeding method and the surface seedless method, respectively. Subsequently, the process is repeated with additional metallic ions or semiconductor, a stabilizer, and NaBH.sub.4 to increase the wall thickness of the metallic or semiconductor lining on the dendrimer surface. Metallic or semiconductor ions are automatically reduced on the metallic or semiconductor nanoparticles causing the formation of hollow metallic or semiconductor nanoparticles. The void size of the formed hollow nanoparticles depends on the dendrimer generation. The thickness of the metallic or semiconductor thin film around the dendrimer depends on the repetition times and the size of initial metallic or semiconductor seeds.

  5. Magnetic nanoparticles in medical nanorobotics

    Energy Technology Data Exchange (ETDEWEB)

    Martel, Sylvain, E-mail: sylvain.martel@polymtl.ca [Polytechnique Montréal, NanoRobotics Laboratory, Department of Computer and Software Engineering, Institute of Biomedical Engineering (Canada)

    2015-02-15

    Medical nanorobotics is a field of robotics that exploits the physics at the nanoscale to implement new functionalities in untethered robotic agents aimed for ultimate operations in constrained physiological environments of the human body. The implementation of such new functionalities is achieved by embedding specific nano-components in such robotic agents. Because magnetism has been and still widely used in medical nanorobotics, magnetic nanoparticles (MNP) in particular have shown to be well suited for this purpose. To date, although such magnetic nanoparticles play a critical role in medical nanorobotics, no literature has addressed specifically the use of MNP in medical nanorobotic agents. As such, this paper presents a short introductory tutorial and review of the use of magnetic nanoparticles in the field of medical nanorobotics with some of the related main functionalities that can be embedded in nanorobotic agents.

  6. Percolation Magnetism in Ferroelectric Nanoparticles

    Science.gov (United States)

    Golovina, Iryna S.; Lemishko, Serhii V.; Morozovska, Anna N.

    2017-06-01

    Nanoparticles of potassium tantalate (KTaO3) and potassium niobate (KNbO3) were synthesized by oxidation of metallic tantalum in molten potassium nitrate with the addition of potassium hydroxide. Magnetization curves obtained on these ferroelectric nanoparticles exhibit a weak ferromagnetism, while these compounds are nonmagnetic in a bulk. The experimental data are used as a start point for theoretical calculations. We consider a microscopic mechanism that leads to the emerging of a ferromagnetic ordering in ferroelectric nanoparticles. Our approach is based on the percolation of magnetic polarons assuming the dominant role of the oxygen vacancies. It describes the formation of surface magnetic polarons, in which an exchange interaction between electrons trapped in oxygen vacancies is mediated by magnetic impurity Fe3+ ions. The dependences of percolation radius on concentration of the oxygen vacancies and magnetic defects are determined in the framework of percolation theory.

  7. Magnetic properties of iron nanoparticle

    International Nuclear Information System (INIS)

    Carvell, J.; Ayieta, E.; Gavrin, A.; Cheng, Ruihua; Shah, V. R.; Sokol, P.

    2010-01-01

    Magnetic properties of Fe nanoparticles with different sizes synthesized by a physical deposition technique have been investigated experimentally. We have used a high pressure sputtering technique to deposit iron nanoparticles on a silicon substrate. The nanoparticles are then analyzed using atomic force microscopy (AFM), transmission electron microscopy (TEM), and superconducting quantum interference device techniques. TEM and AFM data show that the particle size could be tuned by adjusting the deposition conditions. The magnetic properties have been investigated from temperature dependent magnetization M(T) and field dependent magnetization M(H) measurements. The results show that two phases including both ferromagnetic and superparamagnetic particles are present in our system. From these data we extracted the superparamagnetic critical size to be 9 nm for our samples. Ferromagnetic particles are single magnetic domain particles and the magnetic properties can be explained by the Stoner and Wohlfarth model. For the superparamagnetic phase, the effective anisotropy constant, K eff , decreases as the particle size increases.

  8. Green chemistry for nanoparticle synthesis.

    Science.gov (United States)

    Duan, Haohong; Wang, Dingsheng; Li, Yadong

    2015-08-21

    The application of the twelve principles of green chemistry in nanoparticle synthesis is a relatively new emerging issue concerning the sustainability. This field has received great attention in recent years due to its capability to design alternative, safer, energy efficient, and less toxic routes towards synthesis. These routes have been associated with the rational utilization of various substances in the nanoparticle preparations and synthetic methods, which have been broadly discussed in this tutorial review. This article is not meant to provide an exhaustive overview of green synthesis of nanoparticles, but to present several pivotal aspects of synthesis with environmental concerns, involving the selection and evaluation of nontoxic capping and reducing agents, the choice of innocuous solvents and the development of energy-efficient synthetic methods.

  9. Percolation Magnetism in Ferroelectric Nanoparticles.

    Science.gov (United States)

    Golovina, Iryna S; Lemishko, Serhii V; Morozovska, Anna N

    2017-12-01

    Nanoparticles of potassium tantalate (KTaO 3 ) and potassium niobate (KNbO 3 ) were synthesized by oxidation of metallic tantalum in molten potassium nitrate with the addition of potassium hydroxide. Magnetization curves obtained on these ferroelectric nanoparticles exhibit a weak ferromagnetism, while these compounds are nonmagnetic in a bulk. The experimental data are used as a start point for theoretical calculations. We consider a microscopic mechanism that leads to the emerging of a ferromagnetic ordering in ferroelectric nanoparticles. Our approach is based on the percolation of magnetic polarons assuming the dominant role of the oxygen vacancies. It describes the formation of surface magnetic polarons, in which an exchange interaction between electrons trapped in oxygen vacancies is mediated by magnetic impurity Fe 3+ ions. The dependences of percolation radius on concentration of the oxygen vacancies and magnetic defects are determined in the framework of percolation theory.

  10. Gold nanoparticles stabilized by chitosan

    International Nuclear Information System (INIS)

    Geraldes, Adriana N.; Oliveira, Maria Jose A.; Silva, Andressa A. da; Leal, Jessica; Batista, Jorge G.S.; Lugao, Ademar B.

    2015-01-01

    In our laboratory has been growing the interest in studying gold nanoparticles and for this reason, the aim of this work is report the first results of the effect of chitosan as stabilizer in gold nanoparticle formulation. AuNPs were synthesized by reducing hydrogen tetrachloroaurate (HAuCl 4 ) using NaBH 4 or gamma irradiation (25kGy) as reduction agent. The chitosan (3 mol L -1 ) was added at 0.5; 1.0 and 1.5 mL. The gold nanoparticles were characterized by UV-Vis absorption spectroscopy, X-ray diffraction (XRD) and Transmission electron microscopy (TEM). Their physical stability was determined using a UV-Vis spectrophotometer over one week during storage at room temperature. Absorption measurements indicated that the plasmon resonance wavelength appears at a wavelength around 530 nm. Has been observed that Chitosan in such quantities were not effective in stabilizing the AuNPs. (author)

  11. From silicon to organic nanoparticle memory devices.

    Science.gov (United States)

    Tsoukalas, D

    2009-10-28

    After introducing the operational principle of nanoparticle memory devices, their current status in silicon technology is briefly presented in this work. The discussion then focuses on hybrid technologies, where silicon and organic materials have been combined together in a nanoparticle memory device, and finally concludes with the recent development of organic nanoparticle memories. The review is focused on the nanoparticle memory concept as an extension of the current flash memory device. Organic nanoparticle memories are at a very early stage of research and have not yet found applications. When this happens, it is expected that they will not directly compete with mature silicon technology but will find their own areas of application.

  12. Fabrication of transparent ceramics using nanoparticles

    Science.gov (United States)

    Cherepy, Nerine J; Tillotson, Thomas M; Kuntz, Joshua D; Payne, Stephen A

    2012-09-18

    A method of fabrication of a transparent ceramic using nanoparticles synthesized via organic acid complexation-combustion includes providing metal salts, dissolving said metal salts to produce an aqueous salt solution, adding an organic chelating agent to produce a complexed-metal sol, heating said complexed-metal sol to produce a gel, drying said gel to produce a powder, combusting said powder to produce nano-particles, calcining said nano-particles to produce oxide nano-particles, forming said oxide nano-particles into a green body, and sintering said green body to produce the transparent ceramic.

  13. Synthesis of amorphous acid iron phosphate nanoparticles

    International Nuclear Information System (INIS)

    Palacios, E.; Leret, P.; Fernández, J. F.; Aza, A. H. De; Rodríguez, M. A.

    2012-01-01

    A simple method to precipitate nanoparticles of iron phosphate with acid character has been developed in which the control of pH allows to obtain amorphous nanoparticles. The acid aging of the precipitated amorphous nanoparticles favored the P–O bond strength that contributes to the surface reordering, the surface roughness and the increase of the phosphate acid character. The thermal behavior of the acid iron phosphate nanoparticles has been also studied and the phosphate polymerization at 400 °C produces strong compacts of amorphous nanoparticles with interconnected porosity.

  14. Few-layer black phosphorus nanoparticles.

    Science.gov (United States)

    Sofer, Zdenek; Bouša, Daniel; Luxa, Jan; Mazanek, Vlastimil; Pumera, Martin

    2016-01-28

    Herein, black phosphorus quantum dots and nanoparticles of a few layer thickness were prepared and characterized using STEM, AFM, dynamic light scattering, X-ray photoelectron spectroscopy, X-ray diffraction, Raman spectroscopy and photoluminescence. Impact electrochemistry of the induvidual black phosphorus nanoparticles allows their size determination. The centrifugation of colloidal black phosphorus nanoparticles allowed separation of quantum dots with sizes up to 15 nm. These black phosphorus nanoparticles exhibit a large band gap and are expected to find a wide range of applications from semiconductors to biomolecule tags. The use of black phosphorus nanoparticles for vapour sensing was successfully demonstrated.

  15. DNA-guided nanoparticle assemblies

    Science.gov (United States)

    Gang, Oleg; Nykypanchuk, Dmytro; Maye, Mathew; van der Lelie, Daniel

    2013-07-16

    In some embodiments, DNA-capped nanoparticles are used to define a degree of crystalline order in assemblies thereof. In some embodiments, thermodynamically reversible and stable body-centered cubic (bcc) structures, with particles occupying <.about.10% of the unit cell, are formed. Designs and pathways amenable to the crystallization of particle assemblies are identified. In some embodiments, a plasmonic crystal is provided. In some aspects, a method for controlling the properties of particle assemblages is provided. In some embodiments a catalyst is formed from nanoparticles linked by nucleic acid sequences and forming an open crystal structure with catalytically active agents attached to the crystal on its surface or in interstices.

  16. Antituberculous effect of silver nanoparticles

    International Nuclear Information System (INIS)

    Kreytsberg, G N; Gracheva, I E; Kibrik, B S; Golikov, I V

    2011-01-01

    The in vitro experiment, involving 1164 strains of the tuberculosis mycobacteria, exhibited a potentiating effect of silver nanoparticles on known antituberculous preparations in respect of overcoming drug-resistance of the causative agent. The in vitro experiment, based on the model of resistant tuberculosis, was performed on 65 white mice. An evident antituberculous effect of the nanocomposite on the basis of silver nanoparticles and isoniazid was proved. Toxicological assessment of the of nanopreparations was carried out. The performed research scientifically establishes efficacy and safety of the nanocomposite application in combination therapy of patients suffering from drug-resistant tuberculosis.

  17. Antituberculous effect of silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kreytsberg, G N; Gracheva, I E [Limited Liability Company ' Scientific and Production Association (NPO)' Likom' , 150049, Yaroslavl, Magistralnaya str., 32 (Russian Federation); Kibrik, B S [Yaroslavl State Medical Academy Russia, 150000, Yaroslavl, Revolutsionnaya str., 5 (Russian Federation); Golikov, I V, E-mail: likomm@yaroslavl.ru [Yaroslavl State Technical University Russia, 150023, Yaroslavl, Moskovskiy avenue, 88 (Russian Federation)

    2011-04-01

    The in vitro experiment, involving 1164 strains of the tuberculosis mycobacteria, exhibited a potentiating effect of silver nanoparticles on known antituberculous preparations in respect of overcoming drug-resistance of the causative agent. The in vitro experiment, based on the model of resistant tuberculosis, was performed on 65 white mice. An evident antituberculous effect of the nanocomposite on the basis of silver nanoparticles and isoniazid was proved. Toxicological assessment of the of nanopreparations was carried out. The performed research scientifically establishes efficacy and safety of the nanocomposite application in combination therapy of patients suffering from drug-resistant tuberculosis.

  18. Heat transfer fluids containing nanoparticles

    Science.gov (United States)

    Singh, Dileep; Routbort, Jules; Routbort, A.J.; Yu, Wenhua; Timofeeva, Elena; Smith, David S.; France, David M.

    2016-05-17

    A nanofluid of a base heat transfer fluid and a plurality of ceramic nanoparticles suspended throughout the base heat transfer fluid applicable to commercial and industrial heat transfer applications. The nanofluid is stable, non-reactive and exhibits enhanced heat transfer properties relative to the base heat transfer fluid, with only minimal increases in pumping power required relative to the base heat transfer fluid. In a particular embodiment, the plurality of ceramic nanoparticles comprise silicon carbide and the base heat transfer fluid comprises water and water and ethylene glycol mixtures.

  19. Spin structures in antiferromagnetic nanoparticles

    DEFF Research Database (Denmark)

    Brok, Erik

    dependence of the magnetisation in certain nanoparticle systems, as welll bulk systems with spin canting due to defects. In accordance with this model magnetisation measurements on goethtie (a-FeOOH) nanoparticles are presented, showing a low temperature increase in the magnetisation. The spin orientation...... experimental data from unpolarised neutron diffraction. The spin orientation is found to be close to the particle plane, which is the (111) plane of the FCC structure of NiO for particles with thickness ranging from 2.2 nm to bulk (= 200 nm) particles. In the smallest particles, with a thickness of 2.0 nm, we...

  20. Multiscale study of metal nanoparticles

    Science.gov (United States)

    Lee, Byeongchan

    Extremely small structures with reduced dimensionality have emerged as a scientific motif for their interesting properties. In particular, metal nanoparticles have been identified as a fundamental material in many catalytic activities; as a consequence, a better understanding of structure-function relationship of nanoparticles has become crucial. The functional analysis of nanoparticles, reactivity for example, requires an accurate method at the electronic structure level, whereas the structural analysis to find energetically stable local minima is beyond the scope of quantum mechanical methods as the computational cost becomes prohibitingly high. The challenge is that the inherent length scale and accuracy associated with any single method hardly covers the broad scale range spanned by both structural and functional analyses. In order to address this, and effectively explore the energetics and reactivity of metal nanoparticles, a hierarchical multiscale modeling is developed, where methodologies of different length scales, i.e. first principles density functional theory, atomistic calculations, and continuum modeling, are utilized in a sequential fashion. This work has focused on identifying the essential information that bridges two different methods so that a successive use of different methods is seamless. The bond characteristics of low coordination systems have been obtained with first principles calculations, and incorporated into the atomistic simulation. This also rectifies the deficiency of conventional interatomic potentials fitted to bulk properties, and improves the accuracy of atomistic calculations for nanoparticles. For the systematic shape selection of nanoparticles, we have improved the Wulff-type construction using a semi-continuum approach, in which atomistic surface energetics and crystallinity of materials are added on to the continuum framework. The developed multiscale modeling scheme is applied to the rational design of platinum

  1. Advances in developing TiNi nanoparticles

    International Nuclear Information System (INIS)

    Castro, A. Torres; Cuellar, E. Lopez; Mendez, U. Ortiz; Yacaman, M. Jose

    2006-01-01

    The elaboration of nanoparticles has become a field of great interest for many scientists. Nanoparticles possess different properties than those ones shown in bulk materials. Shape memory alloys have the exceptional ability to recuperate its original shape by simple heating after being 'plastically' deformed. When this process is originated, important changes in properties, as mechanical and electrical, are developed in bulk material. If there is possible to obtain nanoparticles with shape memory effects, these nanoparticles could be used in the elaboration of nanofluids with the ability to change their electrical and thermal conductivity with temperature changes, i.e., smart nanofluids. In this work, some recent results and discussion of TiNi nanoparticles obtained by ion beam milling directly from a TiNi wire with shape memory are presented. The nanoparticles obtained by this process are about 2 nm of diameter with a composition of Ti-41.0 at.% Ni. Synthesized nanoparticles elaborated by this method have an ordered structure

  2. Biosynthesis of Metal Nanoparticles: A Review

    International Nuclear Information System (INIS)

    Kulkarni, N.; Muddapur, U.

    2014-01-01

    The synthesis of nano structured materials, especially metallic nanoparticles, has accrued utmost interest over the past decade owing to their unique properties that make them applicable in different fields of science and technology. The limitation to the use of these nanoparticles is the paucity of an effective method of synthesis that will produce homogeneous size and shape nanoparticles as well as particles with limited or no toxicity to the human health and the environment. The biological method of nanoparticle synthesis is a relatively simple, cheap, and environmentally friendly method than the conventional chemical method of synthesis and thus gains an upper hand. The bio mineralization of nanoparticles in protein cages is one of such biological approaches used in the generation of nanoparticles. This method of synthesis apart from being a safer method in the production of nanoparticles is also able to control particle morphology.

  3. Size-controlled synthesis of nickel nanoparticles

    International Nuclear Information System (INIS)

    Hou, Y.; Kondoh, H.; Ohta, T.; Gao, S.

    2005-01-01

    A facile reduction approach with nickel acetylacetonate, Ni(acac) 2 , and sodium borohydride or superhydride leads to monodisperse nickel nanoparticles in the presence of hexadecylamine (HDA) and trioctylphosphine oxide (TOPO). The combination of HDA and TOPO used in the conventional synthesis of semiconductor nanocrystals also provides better control over particle growth in the metal nanoparticle synthesis. The size of Ni nanoparticles can be readily tuned from 3 to 11 nm, depending on the ratio of HDA to TOPO in the reaction system. As-synthesized Ni nanoparticles have a cubic structure as characterized by power X-ray diffraction (XRD), selected-area electron diffraction (SAED). Transmission electron microscopy (TEM) images show that Ni nanoparticles have narrow size distribution. SQUID magnetometry was also used in the characterization of Ni nanoparticles. The synthetic procedure can be extended to the preparation of high quality metal or alloy nanoparticles

  4. Biosynthesis of Metal Nanoparticles: A Review

    Directory of Open Access Journals (Sweden)

    Narendra Kulkarni

    2014-01-01

    Full Text Available The synthesis of nanostructured materials, especially metallic nanoparticles, has accrued utmost interest over the past decade owing to their unique properties that make them applicable in different fields of science and technology. The limitation to the use of these nanoparticles is the paucity of an effective method of synthesis that will produce homogeneous size and shape nanoparticles as well as particles with limited or no toxicity to the human health and the environment. The biological method of nanoparticle synthesis is a relatively simple, cheap, and environmentally friendly method than the conventional chemical method of synthesis and thus gains an upper hand. The biomineralization of nanoparticles in protein cages is one of such biological approaches used in the generation of nanoparticles. This method of synthesis apart from being a safer method in the production of nanoparticles is also able to control particle morphology.

  5. Interaction of gold nanoparticles with nanosecond laser pulses: Nanoparticle heating

    International Nuclear Information System (INIS)

    Nedyalkov, N.N.; Imamova, S.E.; Atanasov, P.A.; Toshkova, R.A.; Gardeva, E.G.; Yossifova, L.S.; Alexandrov, M.T.; Obara, M.

    2011-01-01

    Theoretical and experimental results on the heating process of gold nanoparticles irradiated by nanosecond laser pulses are presented. The efficiency of particle heating is demonstrated by in-vitro photothermal therapy of human tumor cells. Gold nanoparticles with diameters of 40 and 100 nm are added as colloid in the cell culture and the samples are irradiated by nanosecond pulses at wavelength of 532 nm delivered by Nd:YAG laser system. The results indicate clear cytotoxic effect of application of nanoparticle as more efficient is the case of using particles with diameter of 100 nm. The theoretical analysis of the heating process of nanoparticle interacting with laser radiation is based on the Mie scattering theory, which is used for calculation of the particle absorption coefficient, and two-dimensional heat diffusion model, which describes the particle and the surrounding medium temperature evolution. Using this model the dependence of the achieved maximal temperature in the particles on the applied laser fluence and time evolution of the particle temperature is obtained.

  6. Interaction of gold nanoparticles with nanosecond laser pulses: Nanoparticle heating

    Science.gov (United States)

    Nedyalkov, N. N.; Imamova, S. E.; Atanasov, P. A.; Toshkova, R. A.; Gardeva, E. G.; Yossifova, L. S.; Alexandrov, M. T.; Obara, M.

    2011-04-01

    Theoretical and experimental results on the heating process of gold nanoparticles irradiated by nanosecond laser pulses are presented. The efficiency of particle heating is demonstrated by in-vitro photothermal therapy of human tumor cells. Gold nanoparticles with diameters of 40 and 100 nm are added as colloid in the cell culture and the samples are irradiated by nanosecond pulses at wavelength of 532 nm delivered by Nd:YAG laser system. The results indicate clear cytotoxic effect of application of nanoparticle as more efficient is the case of using particles with diameter of 100 nm. The theoretical analysis of the heating process of nanoparticle interacting with laser radiation is based on the Mie scattering theory, which is used for calculation of the particle absorption coefficient, and two-dimensional heat diffusion model, which describes the particle and the surrounding medium temperature evolution. Using this model the dependence of the achieved maximal temperature in the particles on the applied laser fluence and time evolution of the particle temperature is obtained.

  7. Synthesis metal nanoparticle

    Science.gov (United States)

    Bunge, Scott D.; Boyle, Timothy J.

    2005-08-16

    A method for providing an anhydrous route for the synthesis of amine capped coinage-metal (copper, silver, and gold) nanoparticles (NPs) using the coinage-metal mesityl (mesityl=C.sub.6 H.sub.2 (CH.sub.3).sub.3 -2,4,6) derivatives. In this method, a solution of (Cu(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.5, (Ag(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.4, or (Au(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.5 is dissolved in a coordinating solvent, such as a primary, secondary, or tertiary amine; primary, secondary, or tertiary phosphine, or alkyl thiol, to produce a mesityl precursor solution. This solution is subsequently injected into an organic solvent that is heated to a temperature greater than approximately 100.degree. C. After washing with an organic solvent, such as an alcohol (including methanol, ethanol, propanol, and higher molecular-weight alcohols), oxide free coinage NP are prepared that could be extracted with a solvent, such as an aromatic solvent (including, for example, toluene, benzene, and pyridine) or an alkane (including, for example, pentane, hexane, and heptane). Characterization by UV-Vis spectroscopy and transmission electron microscopy showed that the NPs were approximately 9.2.+-.2.3 nm in size for Cu.degree., (no surface oxide present), approximately 8.5.+-.1.1 nm Ag.degree. spheres, and approximately 8-80 nm for Au.degree..

  8. Preparation methods of alginate nanoparticles

    NARCIS (Netherlands)

    Paques, J.P.; Linden, van der E.; Rijn, van C.J.M.; Sagis, L.M.C.

    2014-01-01

    This article reviews available methods for the formation of alginate nano-aggregates, nanocapsules and nanospheres. Primarily, alginate nanoparticles are being prepared by two methods. In the “complexation method”, complex formation on the interface of an oil droplet is used to form alginate

  9. Green Nanoparticles for Mosquito Control

    Directory of Open Access Journals (Sweden)

    Namita Soni

    2014-01-01

    Full Text Available Here, we have used the green method for synthesis of silver and gold nanoparticles. In the present study the silver (Ag and gold (Au nanoparticles (NPs were synthesized by using the aqueous bark extract of Indian spice dalchini (Cinnamomum zeylanicum (C. zyelanicum or C. verum J. Presl. Additionally, we have used these synthesized nanoparticles for mosquito control. The larvicidal activity has been tested against the malaria vector Anopheles stephensi and filariasis vector Culex quinquefasciatus. The results were obtained using UV-visible spectrophotometer and the images were recorded with a transmission electron microscope (TEM. The efficacy tests were then performed at different concentrations and varying numbers of hours by probit analysis. The synthesized AgNPs were in spherical shape and average sizes (11.77 nm AgNPs and 46.48 nm AuNPs. The larvae of An. stephensi were found highly susceptible to the synthesized AgNPs and AuNPs than the Cx. quinquefasciatus. These results suggest that the C. zeylanicum synthesized silver and gold nanoparticles have the potential to be used as an ideal ecofriendly approach for the control of mosquito.

  10. Method of tracing engineered nanoparticles

    DEFF Research Database (Denmark)

    2015-01-01

    The present application discloses a population of non-aggregated polymer-coated nanoparticles having a mean particle size (diameter) in the range of 1-100 nm, said population comprising (i) a first subpopulation of (re)active particles coated with a first polymer, and (ii) a second subpopulation ...

  11. Biocompatibility of crystalline opal nanoparticles.

    Science.gov (United States)

    Hernández-Ortiz, Marlen; Acosta-Torres, Laura S; Hernández-Padrón, Genoveva; Mendieta, Alicia I; Bernal, Rodolfo; Cruz-Vázquez, Catalina; Castaño, Victor M

    2012-10-22

    Silica nanoparticles are being developed as a host of biomedical and biotechnological applications. For this reason, there are more studies about biocompatibility of silica with amorphous and crystalline structure. Except hydrated silica (opal), despite is presents directly and indirectly in humans. Two sizes of crystalline opal nanoparticles were investigated in this work under criteria of toxicology. In particular, cytotoxic and genotoxic effects caused by opal nanoparticles (80 and 120 nm) were evaluated in cultured mouse cells via a set of bioassays, methylthiazolyldiphenyl-tetrazolium-bromide (MTT) and 5-bromo-2'-deoxyuridine (BrdU). 3T3-NIH cells were incubated for 24 and 72 h in contact with nanocrystalline opal particles, not presented significant statistically difference in the results of cytotoxicity. Genotoxicity tests of crystalline opal nanoparticles were performed by the BrdU assay on the same cultured cells for 24 h incubation. The reduction of BrdU-incorporated cells indicates that nanocrystalline opal exposure did not caused unrepairable damage DNA. There is no relationship between that particles size and MTT reduction, as well as BrdU incorporation, such that the opal particles did not induce cytotoxic effect and genotoxicity in cultured mouse cells.

  12. DNA-scaffolded nanoparticle structures

    Energy Technology Data Exchange (ETDEWEB)

    Hoegberg, Bjoern; Olin, Haakan [Department of Engineering Physics and Mathematics, Mid Sweden University, SE-851 70 Sundsvall, Sweden (Sweden)

    2007-03-15

    DNA self-assembly is a powerful route to the production of very small, complex structures. When used in combination with nanoparticles it is likely to become a key technology in the production of nanoelectronics in the future. Previously, demonstrated nanoparticle assemblies have mainly been periodic and highly symmetric arrays, unsuited as building blocks for any complex circuits. With the invention of DNA-scaffolded origami reported earlier this year (Rothemund P W K 2006 Nature 440 (7082) 297-302), a new route to complex nanostructures using DNA has been opened. Here, we give a short review of the field and present the current status of our experiments were DNA origami is used in conjunction with nanoparticles. Gold nanoparticles are functionalized with thiolated single stranded DNA. Strands that are complementary to the gold particle strands can be positioned on the self-assembled DNA-structure in arbitrary patterns. This property should allow an accurate positioning of the particles by letting them hybridize on the lattice. We report on our recent experiments on this system and discuss open problems and future applications.

  13. DNA-scaffolded nanoparticle structures

    International Nuclear Information System (INIS)

    Hoegberg, Bjoern; Olin, Haakan

    2007-01-01

    DNA self-assembly is a powerful route to the production of very small, complex structures. When used in combination with nanoparticles it is likely to become a key technology in the production of nanoelectronics in the future. Previously, demonstrated nanoparticle assemblies have mainly been periodic and highly symmetric arrays, unsuited as building blocks for any complex circuits. With the invention of DNA-scaffolded origami reported earlier this year (Rothemund P W K 2006 Nature 440 (7082) 297-302), a new route to complex nanostructures using DNA has been opened. Here, we give a short review of the field and present the current status of our experiments were DNA origami is used in conjunction with nanoparticles. Gold nanoparticles are functionalized with thiolated single stranded DNA. Strands that are complementary to the gold particle strands can be positioned on the self-assembled DNA-structure in arbitrary patterns. This property should allow an accurate positioning of the particles by letting them hybridize on the lattice. We report on our recent experiments on this system and discuss open problems and future applications

  14. doped ZnS nanoparticles

    Indian Academy of Sciences (India)

    Mn2+-doped ZnS nanoparticles were prepared by chemical arrested precipitation method. The samples were heated at 300, 500, 700 and 900°C. The average particle size was determined from the X-ray line broadening. Samples were characterized by XRD, FTIR and UV. The composition was verified by EDAX spectrum.

  15. Interaction of Nanoparticles with Biofilms

    Science.gov (United States)

    In this work we have studied the interaction and adsorption of engineered nanoparticles such as TiO2, ZnO, CeO2 , and carbon nanotubes with biofilms. Biofilm is an extracellular polymeric substance coating comprised of living material and it is an aggregation of bacteria, algae, ...

  16. Bioinspired synthesis of magnetite nanoparticles

    NARCIS (Netherlands)

    Mirabello, G.; Lenders, J.J.M.; Sommerdijk, N.A.J.M.

    2016-01-01

    Magnetite (Fe3O4) is a widespread magnetic iron oxide encountered in many biological and geological systems, and also in many technological applications. The magnetic properties of magnetite crystals depend strongly on the size and shape of its crystals. Hence, engineering magnetite nanoparticles

  17. Computer Simulations of Lipid Nanoparticles

    Directory of Open Access Journals (Sweden)

    Xavier F. Fernandez-Luengo

    2017-12-01

    Full Text Available Lipid nanoparticles (LNP are promising soft matter nanomaterials for drug delivery applications. In spite of their interest, little is known about the supramolecular organization of the components of these self-assembled nanoparticles. Here, we present a molecular dynamics simulation study, employing the Martini coarse-grain forcefield, of self-assembled LNPs made by tripalmitin lipid in water. We also study the adsorption of Tween 20 surfactant as a protective layer on top of the LNP. We show that, at 310 K (the temperature of interest in biological applications, the structure of the lipid nanoparticles is similar to that of a liquid droplet, in which the lipids show no nanostructuration and have high mobility. We show that, for large enough nanoparticles, the hydrophilic headgroups develop an interior surface in the NP core that stores liquid water. The surfactant is shown to organize in an inhomogeneous way at the LNP surface, with patches with high surfactant concentrations and surface patches not covered by surfactant.

  18. Characterization of nanoparticles released during construction of photocatalytic pavements using engineered nanoparticles

    International Nuclear Information System (INIS)

    Dylla, Heather; Hassan, Marwa M.

    2012-01-01

    With the increasing use of titanium dioxide (TiO 2 ) nanoparticles in self-cleaning materials such as photocatalytic concrete pavements, the release of nanoparticles into the environment is inevitable. Nanoparticle concentration, particle size, surface area, elemental composition, and surface morphology are pertinent to determine the associated risks. In this study, the potential of exposure to synthetic nanoparticles released during construction activities for application of photocatalytic pavements was measured during laboratory-simulated construction activities of photocatalytic mortar overlays and in an actual field application of photocatalytic spray coat. A scanning mobility particle sizer system measured the size distribution of nanoparticles released during laboratory and field activities. Since incidental nanoparticles are released during construction activities, nanoparticle emissions were compared to those from similar activities without nano-TiO 2 . Nanoparticle counts and size distribution suggest that synthetic nanoparticles are released during application of photocatalytic pavements. In order to identify the nanoparticle source, nanoparticles were also collected for offline characterization using transmission electron microscopy. However, positive identification of synthetic nanoparticles was not possible due to difficulties in obtaining high-resolution images. As a result, further research is recommended to identify nanoparticle composition and sources.

  19. Nanoparticle shape, thermodynamics and kinetics

    International Nuclear Information System (INIS)

    Marks, L D; Peng, L

    2016-01-01

    Nanoparticles can be beautiful, as in stained glass windows, or they can be ugly as in wear and corrosion debris from implants. We estimate that there will be about 70 000 papers in 2015 with nanoparticles as a keyword, but only one in thirteen uses the nanoparticle shape as an additional keyword and research focus, and only one in two hundred has thermodynamics. Methods for synthesizing nanoparticles have exploded over the last decade, but our understanding of how and why they take their forms has not progressed as fast. This topical review attempts to take a critical snapshot of the current understanding, focusing more on methods to predict than a purely synthetic or descriptive approach. We look at models and themes which are largely independent of the exact synthetic method whether it is deposition, gas-phase condensation, solution based or hydrothermal synthesis. Elements are old dating back to the beginning of the 20th century—some of the pioneering models developed then are still relevant today. Others are newer, a merging of older concepts such as kinetic-Wulff constructions with methods to understand minimum energy shapes for particles with twins. Overall we find that while there are still many unknowns, the broad framework of understanding and predicting the structure of nanoparticles via diverse Wulff constructions, either thermodynamic, local minima or kinetic has been exceedingly successful. However, the field is still developing and there remain many unknowns and new avenues for research, a few of these being suggested towards the end of the review. (topical review)

  20. Effective pair potentials for spherical nanoparticles

    International Nuclear Information System (INIS)

    Van Zon, Ramses

    2009-01-01

    An effective description for rigid spherical nanoparticles in a fluid of point particles is presented. The points inside the nanoparticles and the point particles are assumed to interact via spherically symmetric additive pair potentials, while the distribution of points inside the nanoparticles is taken to be spherically symmetric and smooth. The resulting effective pair interactions between a nanoparticle and a point particle, as well as between two nanoparticles, are then given by spherically symmetric potentials. If overlap between particles is allowed, as can occur for some forms of the pair potentials, the effective potential generally has non-analytic points. It is shown that for each effective potential the expressions for different overlapping cases can be written in terms of one analytic auxiliary potential. Even when only non-overlapping situations are possible, the auxiliary potentials facilitate the formulation of the effective potentials. Effective potentials for hollow nanoparticles (appropriate e.g. for buckyballs) are also considered and shown to be related to those for solid nanoparticles. For hollow nanoparticles overlap is more physical, since this covers the case of a smaller particle embedded in a larger, hollow nanoparticle. Finally, explicit expressions are given for the effective potentials derived from basic pair potentials of power law and exponential form, as well as from the commonly used London–van der Waals, Morse, Buckingham, and Lennard-Jones potentials. The applicability of the latter is demonstrated by comparison with an atomic description of nanoparticles with an internal face centered cubic structure

  1. Gyrospun antimicrobial nanoparticle loaded fibrous polymeric filters

    Energy Technology Data Exchange (ETDEWEB)

    Eranka Illangakoon, U.; Mahalingam, S.; Wang, K. [Department of Mechanical Engineering, University College London, London WC1E 7JE (United Kingdom); Cheong, Y.-K. [School of Engineering and Technology, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Canales, E. [Department of Civil, Environmental and Geomatic Engineering, University College London, London WC1E 7JE (United Kingdom); Ren, G.G. [School of Engineering and Technology, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Cloutman-Green, E. [Department of Microbiology, Virology, and Infection Prevention Control, Great Ormond Street Hospital NHS Foundation Trust, London WCIN 3JH (United Kingdom); Edirisinghe, M., E-mail: m.edirisinghe@ucl.ac.uk [Department of Mechanical Engineering, University College London, London WC1E 7JE (United Kingdom); Ciric, L. [Department of Civil, Environmental and Geomatic Engineering, University College London, London WC1E 7JE (United Kingdom)

    2017-05-01

    A one step approach to prepare hybrid nanoparticle embedded polymer fibres using pressurised gyration is presented. Two types of novel antimicrobial nanoparticles and poly(methylmethacrylate) polymer were used in this work. X-ray diffraction analysis of the nanoparticles revealed Ag, Cu and W are the main elements present in them. The concentration of the polymer solution and the nanoparticle concentration had a significant influence on the fibre diameter, pore size and morphology. Fibres with a diameter in the range of 6–20 μm were spun using 20 wt% polymer solutions containing 0.1, 0.25 and 0.5 wt% nanoparticles under 0.3 MPa working pressure and a rotational speed of 36,000 rpm. Continuous, bead-free fibre morphologies were obtained for each case. The pore size in the fibres varied between 36 and 300 nm. Successful incorporation of the nanoparticles in polymer fibres was confirmed by energy dispersive x-ray analysis. The fibres were also gyrospun on to metallic discs to prepare filters which were tested for their antibacterial activity on a suspension of Pseudomonas aeruginosa. Nanoparticle loaded fibres showed higher antibacterial efficacy than pure poly(methylmethacrylate) fibres. - Highlights: • Nanoparticles containing Ag, Cu and W were studied for antimicrobial activity. • Hybrid nanoparticle-polymeric fibres were prepared using pressurised gyration. • Fibre characteristics were tailored using material and forming process variables. • Nanoparticle loaded fibre mats show higher antibacterial efficacy.

  2. Targeting therapeutics to the glomerulus with nanoparticles.

    Science.gov (United States)

    Zuckerman, Jonathan E; Davis, Mark E

    2013-11-01

    Nanoparticles are an enabling technology for the creation of tissue-/cell-specific therapeutics that have been investigated extensively as targeted therapeutics for cancer. The kidney, specifically the glomerulus, is another accessible site for nanoparticle delivery that has been relatively overlooked as a target organ. Given the medical need for the development of more potent, kidney-targeted therapies, the use of nanoparticle-based therapeutics may be one such solution to this problem. Here, we review the literature on nanoparticle targeting of the glomerulus. Specifically, we provide a broad overview of nanoparticle-based therapeutics and how the unique structural characteristics of the glomerulus allow for selective, nanoparticle targeting of this area of the kidney. We then summarize literature examples of nanoparticle delivery to the glomerulus and elaborate on the appropriate nanoparticle design criteria for glomerular targeting. Finally, we discuss the behavior of nanoparticles in animal models of diseased glomeruli and review examples of nanoparticle therapeutic approaches that have shown promise in animal models of glomerulonephritic disease. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  3. Silicalite nanoparticles that promote transgene expression

    International Nuclear Information System (INIS)

    Pearce, Megan E; Mai, Hoang Q; Salem, Aliasger K; Lee, Namhoon; Larsen, Sarah C

    2008-01-01

    Here, we report on a new zeolite-based silicalite nanoparticle that can enhance the transfection efficiencies generated by poly ethylene imine-plasmid DNA (PEI-pDNA) complexes via a sedimentation mechanism and can enhance the transfection efficiencies of pDNA alone when surface functionalized with amine groups. The silicalite nanoparticles have a mean size of 55 nm. Functionalizing the silicalite nanoparticles with amine groups results in a clear transition in zeta potential from -25.9 ± 2.3 mV (pH 7.4) for unfunctionalized silicalite nanoparticles to 4.9 ± 0.7 mV (pH 7.4) for amine functionalized silicalite nanoparticles. We identify that silicalite nanoparticles used to promote non-viral vector acceleration to the cell surface are found in acidic vesicles or the cytoplasm but not the nucleus. An MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay showed that the silicalite nanoparticles were non-toxic at the concentrations tested for transfection. We show that surface functionalization of silicalite nanoparticles with amine groups results in a significant (230%) increase in transfection efficiency of pDNA when compared to unfunctionalized silicalite nanoparticles. Silicalite nanoparticles enhanced pDNA-PEI induced transfection of human embryonic kidney (HEK-293) cells by over 150%

  4. Polymer coated gold nanoparticles for tracing the mobility of engineered nanoparticles in the subsurface

    DEFF Research Database (Denmark)

    Uthuppu, Basil; Fjordbøge, Annika Sidelmann; Caspersen, Eva

    2014-01-01

    Nanoparticles (NPs) are manufactured for their specific properties providing possibilities for new and improved products and applications. The use of engineered nanoparticles (ENPs) has therefore brought significant innovation and advances to society, including benefits for human health and the e...

  5. Biosynthesis of silver nanoparticles by Aspergillus niger , Fusarium ...

    African Journals Online (AJOL)

    ... scanning electron microscope (SEM). Results indicate the synthesis of silver nanoparticles in the reaction mixture. The synthesis of nanoparticles would be suitable for developing a microbial nanotechnology biosynthesis process for mass scale production. Keywords: Silver nanoparticles, biosynthesis, fungi, Aspergillus.

  6. Simulation of atomic layer deposition on nanoparticle agglomerates

    NARCIS (Netherlands)

    Jin, W.; van Ommen, J.R.; Kleijn, C.R.

    2016-01-01

    Coated nanoparticles have many potential applications; production of large quantities is feasible by atomic layer deposition (ALD) on nanoparticles in a fluidized bed reactor. However, due to the cohesive interparticle forces, nanoparticles form large agglomerates, which influences the coating

  7. Self-assembling nanoparticles at surfaces and interfaces

    NARCIS (Netherlands)

    Kinge, S.S.; Crego Calama, Mercedes; Reinhoudt, David

    2008-01-01

    Nanoparticles are the focus of much attention due to their astonishing properties and numerous possibilities for applications in nanotechnology. For realising versatile functions, assembly of nanoparticles in regular patterns on surfaces and at interfaces is required. Assembling nanoparticles

  8. A Novel Strategy for Synthesis of Gold Nanoparticle Self Assemblies

    NARCIS (Netherlands)

    Verma, Jyoti; Lal, Sumit; van Veen, Henk A.; van Noorden, Cornelis J. F.

    2014-01-01

    Gold nanoparticle self assemblies are one-dimensional structures of gold nanoparticles. Gold nanoparticle self assemblies exhibit unique physical properties and find applications in the development of biosensors. Methodologies currently available for lab-scale and commercial synthesis of gold

  9. Biogenic ZnO nanoparticles synthesized using L. aculeata leaf ...

    Indian Academy of Sciences (India)

    The antifungal activity of ZnO nanoparticles were determined using the well diffusion method. All the ... 1. Introduction. Nanoparticles have gained increasing importance because ... The synthesis of nanoparticles by conventional physical.

  10. Titanium dioxide nanoparticles cause genotoxicity in human lung epithelial cells

    Science.gov (United States)

    The use of engineered nanoparticles in consumer products is steadily increasing. However, the health effects of exposure to these nanoparticles are not thoroughly understood. This study investigated the genotoxicity of six titanium dioxide and two cerium oxide nanoparticles of va...

  11. Methods for producing nanoparticles using palladium salt and uses thereof

    Science.gov (United States)

    Chan, Siu-Wai; Liang, Hongying

    2015-12-01

    The disclosed subject matter is directed to a method for producing nanoparticles, as well as the nanoparticles produced by this method. In one embodiment, the nanoparticles produced by the disclosed method have a high defect density.

  12. Rare Earth Oxide Fluoride Nanoparticles And Hydrothermal Method For Forming Nanoparticles

    Science.gov (United States)

    Fulton, John L.; Hoffmann, Markus M.

    2003-12-23

    A hydrothermal method for forming nanoparticles of a rare earth element, oxygen and fluorine has been discovered. Nanoparticles comprising a rare earth element, oxygen and fluorine are also described. These nanoparticles can exhibit excellent refractory properties as well as remarkable stability in hydrothermal conditions. The nanoparticles can exhibit excellent properties for numerous applications including fiber reinforcement of ceramic composites, catalyst supports, and corrosion resistant coatings for high-temperature aqueous solutions.

  13. Interfacial functionalization and engineering of nanoparticles

    Science.gov (United States)

    Song, Yang

    The intense research interest in nanoscience and nanotechnology is largely fueled by the unique properties of nanoscale materials. In this dissertation, the research efforts are focused on surface functionalization and interfacial engineering of functional nanoparticles in the preparation of patchy nanoparticles (e.g., Janus nanoparticles and Neapolitan nanoparticles) such that the nanoparticle structures and properties may be manipulated to an unprecedented level of sophistication. Experimentally, Janus nanoparticles were prepared by an interfacial engineering method where one hemisphere of the originally hydrophobic nanoparticles was replaced with hydrophilic ligands at the air|liquid or solid|liquid interface. The amphiphilic surface characters of the Janus nanoparticles were verified by contact angle measurements, as compared to those of the bulk-exchange counterparts where the two types of ligands were distributed rather homogeneously on the nanoparticle surface. In a further study, a mercapto derivative of diacetylene was used as the hydrophilic ligands to prepare Janus nanoparticles by using hydrophobic hexanethiolate-protected gold nanoparticles as the starting materials. Exposure to UV irradiation led to effective covalent cross-linking between the diacetylene moieties of neighboring ligands and hence marked enhancement of the structural integrity of the Janus nanoparticles, which was attributable to the impeded surface diffusion of the thiol ligands on the nanoparticle surface, as manifested in fluorescence measurements of aged nanoparticles. More complicated bimetallic AgAu Janus nanoparticles were prepared by interfacial galvanic exchange reactions of a Langmuir-Blodgett monolayer of 1-hexanethiolate-passivated silver nanoparticles on a glass slide with gold(I)-mercaptopropanediol complex in a water/ethanol solution. The resulting nanoparticles exhibited an asymmetrical distribution not only of the organic capping ligands on the nanoparticle surface but

  14. Preparation and application of various nanoparticles in biology and medicine

    OpenAIRE

    Vardan Gasparyan

    2013-01-01

    The present paper considers prospects for application of various nanoparticles in biology and medicine. Here are presented data on preparation of gold and silver nanoparticles, and effects of shape of these nanoparticles on their optical properties. Application of these nanoparticles in diagnostics, for drug delivery and therapy, and preparation of magnetic nanoparticles from iron and cobalt salts are also discussed. Application of these nanoparticles as magnetic resonance imaging (MRI) contr...

  15. Approaches to single-nanoparticle catalysis.

    Science.gov (United States)

    Sambur, Justin B; Chen, Peng

    2014-01-01

    Nanoparticles are among the most important industrial catalysts, with applications ranging from chemical manufacturing to energy conversion and storage. Heterogeneity is a general feature among these nanoparticles, with their individual differences in size, shape, and surface sites leading to variable, particle-specific catalytic activity. Assessing the activity of individual nanoparticles, preferably with subparticle resolution, is thus desired and vital to the development of efficient catalysts. It is challenging to measure the activity of single-nanoparticle catalysts, however. Several experimental approaches have been developed to monitor catalysis on single nanoparticles, including electrochemical methods, single-molecule fluorescence microscopy, surface plasmon resonance spectroscopy, X-ray microscopy, and surface-enhanced Raman spectroscopy. This review focuses on these experimental approaches, the associated methods and strategies, and selected applications in studying single-nanoparticle catalysis with chemical selectivity, sensitivity, or subparticle spatial resolution.

  16. Characterization of nanoparticles using Atomic Force Microscopy

    International Nuclear Information System (INIS)

    Rao, A; Schoenenberger, M; Gnecco, E; Glatzel, Th; Meyer, E; Braendlin, D; Scandella, L

    2007-01-01

    Nanoparticles are becoming increasingly important in many areas, including catalysis, biomedical applications, and information storage. Their unique size-dependent properties make these materials superior. Using the Atomic Force Microscope (AFM), individual particles and groups of particles can be resolved and unlike other microscopy techniques, the AFM offers visualization and analysis in three dimensions. We prepared titanium oxide, zirconium oxide and alumina nanoparticles and/or agglomerates on different surfaces and characterized them by AFM in the dynamic mode. The goal was to determine the shape, size and/or size distribution of nanoparticles. Different dilutions of nanoparticles were applied on various substrates e.g. clean silicon, mica and chemically treated silicon and imaged at ambient conditions. Nanoparticles deposited on mica appeared to be coagulated as compared to those on silicon. Whereas, on a chemically treated surface the density of the nanoparticles was very low because of the increased hydrophobicity of the surface

  17. Studies on the biodistribution of dextrin nanoparticles

    International Nuclear Information System (INIS)

    Goncalves, C; Gama, F M; Ferreira, M F M; Martins, J A; Santos, A C; Prata, M I M; Geraldes, C F G C

    2010-01-01

    The characterization of biodistribution is a central requirement in the development of biomedical applications based on the use of nanoparticles, in particular for controlled drug delivery. The blood circulation time, organ biodistribution and rate of excretion must be well characterized in the process of product development. In this work, the biodistribution of recently developed self-assembled dextrin nanoparticles is addressed. Functionalization of the dextrin nanoparticles with a DOTA-monoamide-type metal chelator, via click chemistry, is described. The metal chelator functionalized nanoparticles were labelled with a γ-emitting 153 Sm 3+ radioisotope and the blood clearance rate and organ biodistribution of the nanoparticles were obtained. The effect of PEG surface coating on the blood clearance rate and organ biodistribution of the nanoparticles was also studied.

  18. Liquid-liquid interfacial nanoparticle assemblies

    Science.gov (United States)

    Emrick, Todd S [South Deerfield, MA; Russell, Thomas P [Amherst, MA; Dinsmore, Anthony [Amherst, MA; Skaff, Habib [Amherst, MA; Lin, Yao [Amherst, MA

    2008-12-30

    Self-assembly of nanoparticles at the interface between two fluids, and methods to control such self-assembly process, e.g., the surface density of particles assembling at the interface; to utilize the assembled nanoparticles and their ligands in fabrication of capsules, where the elastic properties of the capsules can be varied from soft to tough; to develop capsules with well-defined porosities for ultimate use as delivery systems; and to develop chemistries whereby multiple ligands or ligands with multiple functionalities can be attached to the nanoparticles to promote the interfacial segregation and assembly of the nanoparticles. Certain embodiments use cadmium selenide (CdSe) nanoparticles, since the photoluminescence of the particles provides a convenient means by which the spatial location and organization of the particles can be probed. However, the systems and methodologies presented here are general and can, with suitable modification of the chemistries, be adapted to any type of nanoparticle.

  19. Deterministic nanoparticle assemblies: from substrate to solution

    International Nuclear Information System (INIS)

    Barcelo, Steven J; Gibson, Gary A; Yamakawa, Mineo; Li, Zhiyong; Kim, Ansoon; Norris, Kate J

    2014-01-01

    The deterministic assembly of metallic nanoparticles is an exciting field with many potential benefits. Many promising techniques have been developed, but challenges remain, particularly for the assembly of larger nanoparticles which often have more interesting plasmonic properties. Here we present a scalable process combining the strengths of top down and bottom up fabrication to generate deterministic 2D assemblies of metallic nanoparticles and demonstrate their stable transfer to solution. Scanning electron and high-resolution transmission electron microscopy studies of these assemblies suggested the formation of nanobridges between touching nanoparticles that hold them together so as to maintain the integrity of the assembly throughout the transfer process. The application of these nanoparticle assemblies as solution-based surface-enhanced Raman scattering (SERS) materials is demonstrated by trapping analyte molecules in the nanoparticle gaps during assembly, yielding uniformly high enhancement factors at all stages of the fabrication process. (paper)

  20. Fabricating solar cells with silicon nanoparticles

    Science.gov (United States)

    Loscutoff, Paul; Molesa, Steve; Kim, Taeseok

    2014-09-02

    A laser contact process is employed to form contact holes to emitters of a solar cell. Doped silicon nanoparticles are formed over a substrate of the solar cell. The surface of individual or clusters of silicon nanoparticles is coated with a nanoparticle passivation film. Contact holes to emitters of the solar cell are formed by impinging a laser beam on the passivated silicon nanoparticles. For example, the laser contact process may be a laser ablation process. In that case, the emitters may be formed by diffusing dopants from the silicon nanoparticles prior to forming the contact holes to the emitters. As another example, the laser contact process may be a laser melting process whereby portions of the silicon nanoparticles are melted to form the emitters and contact holes to the emitters.

  1. Studies on the biodistribution of dextrin nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, C; Gama, F M [IBB-Institute for Biotechnology and Bioengineering, Centre for Biological Engineering, Minho University, Campus de Gualtar, 4710-057 Braga (Portugal); Ferreira, M F M; Martins, J A [Departamento de Quimica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Santos, A C; Prata, M I M [IBILI, Faculty of Medicine of the University of Coimbra, Coimbra (Portugal); Geraldes, C F G C, E-mail: fmgama@deb.uminho.pt [Departamento de Ciencias da Vida, Faculdade de Ciencia e Tecnologia e Centro de Neurociencias e Biologia Celular, Universidade de Coimbra (Portugal)

    2010-07-23

    The characterization of biodistribution is a central requirement in the development of biomedical applications based on the use of nanoparticles, in particular for controlled drug delivery. The blood circulation time, organ biodistribution and rate of excretion must be well characterized in the process of product development. In this work, the biodistribution of recently developed self-assembled dextrin nanoparticles is addressed. Functionalization of the dextrin nanoparticles with a DOTA-monoamide-type metal chelator, via click chemistry, is described. The metal chelator functionalized nanoparticles were labelled with a {gamma}-emitting {sup 153}Sm{sup 3+} radioisotope and the blood clearance rate and organ biodistribution of the nanoparticles were obtained. The effect of PEG surface coating on the blood clearance rate and organ biodistribution of the nanoparticles was also studied.

  2. Green synthesis of silver nanoparticles using tannins

    Science.gov (United States)

    Raja, Pandian Bothi; Rahim, Afidah Abdul; Qureshi, Ahmad Kaleem; Awang, Khalijah

    2014-09-01

    Colloidal silver nanoparticles were prepared by rapid green synthesis using different tannin sources as reducing agent viz. chestnut (CN), mangrove (MG) and quebracho (QB). The aqueous silver ions when exposed to CN, MG and QB tannins were reduced which resulted in formation of silver nanoparticles. The resultant silver nanoparticles were characterized using UV-Visible, X-ray diffraction (XRD), scanning electron microscopy (SEM/EDX), and transmission electron microscopy (TEM) techniques. Furthermore, the possible mechanism of nanoparticles synthesis was also derived using FT-IR analysis. Spectroscopy analysis revealed that the synthesized nanoparticles were within 30 to 75 nm in size, while XRD results showed that nanoparticles formed were crystalline with face centered cubic geometry.

  3. Transport in nanoparticle chains influenced by reordering

    International Nuclear Information System (INIS)

    Luedtke, T.; Mirovsky, P.; Huether, R.; Govor, L.; Bauer, G.H.; Parisi, J.; Haug, R.J.

    2011-01-01

    Nanoparticles are deposited onto a mica substrate in a dewetting process of hexane solution containing the nanoparticles. The array of nanoparticles was measured inside an electron beam microscope containing a self-developed probing-tip setup. Transport measurements performed under vacuum conditions at room temperature show a power law behavior as expected for low-dimensional cluster systems. During the measurement a variation of the threshold voltage in the nonlinear current-voltage (I-V) characteristic was observed which we attribute to a reordering of the system by an applied electric field. - Highlights: → Fabrication of chains of ordered Au-nanoparticles. → Contact these nanoparticles without further chemical treatment with probing tips inside an electron microscope. → Observation of low-dimensional transport and Coulomb blockade. → Reordering of nanoparticles due to the applied electric field between the tips.

  4. Magnetic nanoparticles: synthesis, ordering and properties

    International Nuclear Information System (INIS)

    Vazquez, M.; Luna, C.; Morales, M.P.; Sanz, R.; Serna, C.J.; Mijangos, C.

    2004-01-01

    Polyol methods to synthesize nanoparticles and their arrays are firstly described. Magnetic nanoparticles self-assemble under particular conditions into spherical superstructures, like CoNi nanoparticles, or planar structures with hexagonal ordering, like FePt nanoparticles. Particles and their arrays are structurally analysed by techniques like TEM, X-ray, etc. Magnetic characterization is firstly performed by VSM magnetomer as a function of the nanoparticles size paying particular attention to the transition from multidomain to single-domain structures. Later on, magnetic exchange coupling effects are discussed including the temperature dependence of magnetic parameters as coercive and exchange bias fields, as well as the influence of field or zero-field cooling processes. Finally, magnetic polymers consisting of magnetic nanoparticles embedded into PVC polymeric matrix are prepared and magnetically analysed

  5. How Do Enzymes 'Meet' Nanoparticles and Nanomaterials?

    Science.gov (United States)

    Chen, Ming; Zeng, Guangming; Xu, Piao; Lai, Cui; Tang, Lin

    2017-11-01

    Enzymes are fundamental biological catalysts responsible for biological regulation and metabolism. The opportunity for enzymes to 'meet' nanoparticles and nanomaterials is rapidly increasing due to growing demands for applications in nanomaterial design, environmental monitoring, biochemical engineering, and biomedicine. Therefore, understanding the nature of nanomaterial-enzyme interactions is becoming important. Since 2014, enzymes have been used to modify, degrade, or make nanoparticles/nanomaterials, while numerous nanoparticles/nanomaterials have been used as materials for enzymatic immobilization and biosensors and as enzyme mimicry. Among the various nanoparticles and nanomaterials, metal nanoparticles and carbon nanomaterials have received extensive attention due to their fascinating properties. This review provides an overview about how enzymes meet nanoparticles and nanomaterials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Polymer foam comprising a polymer and nanoparticles, and nanoparticles for the manufacture of such foam.

    NARCIS (Netherlands)

    Vancso, Gyula J.; Duvigneau, Joost; Nederkoorn, P.H.J.; Wassing, T.

    2014-01-01

    A polymer foam is produced comprising a polymer and nanoparticles having a maximum dimensionof 750 nm, which foam has cells with an average cell size of at most 1 µm and a cell density of at least 1012 cells/ml, wherein polymeric grafts have been attached to the nanoparticles. The nanoparticles may

  7. Applications of nanoparticles in ophthalmology.

    Science.gov (United States)

    Diebold, Yolanda; Calonge, Margarita

    2010-11-01

    Nanocarriers, such as nanoparticles, have the capacity to deliver ocular drugs to specific target sites and hold promise to revolutionize the therapy of many eye diseases. Results to date strongly suggest that ocular medicine will benefit enormously from the use of this nanometric scale technology. One of the most important handicaps of the eye as a target organ for drugs is the presence of several barriers that impede direct and systemic drug access to the specific site of action. Superficial barriers include the ocular surface epithelium and the tear film, and internal barriers include the blood-aqueous and blood-retina barriers. Topical application is the preferred route for most drugs, even when the target tissues are at the back part of the eye where intraocular injections are currently the most common route of administration. Direct administration using any of these two routes faces many problems related to drug bioavailability, including side effects and repeated uncomfortable treatments to achieve therapeutic drug levels. In this regard, the advantages of using nanoparticles include improved topical passage of large, poorly water-soluble molecules such as glucocorticoid drugs or cyclosporine for immune-related, vision-threatening diseases. Other large and unstable molecules, such as nucleic acids, delivered using nanoparticles offer promising results for gene transfer therapy in severe retinal diseases. Also, nanoparticle-mediated drug delivery increases the contact time of the administered drug with its target tissue, such as in the case of brimonidine, one of the standard treatments for glaucoma, or corticosteroids used to treat autoimmune uveitis, a severe intraocular inflammatory process. In addition, nanocarriers permit the non-steroidal anti-inflammatory drug indomethacin to reach inner eye structures using the transmucosal route. Finally, nanoparticles allow the possibility of targeted delivery to reach specific types of cancer, such as melanoma

  8. Antibiotic polymeric nanoparticles for biofilm-associated infection therapy.

    Science.gov (United States)

    Cheow, Wean Sin; Hadinoto, Kunn

    2014-01-01

    Polymeric nanoparticles are highly attractive as drug delivery vehicles due to their high structural integrity, stability during storage, ease of preparation and functionalization, and controlled release capability. Similarly, lipid-polymer hybrid nanoparticles, which retain the benefits of polymeric nanoparticles plus the enhanced biocompatibility and prolonged circulation time owed to the lipids, have recently emerged as a superior alternative to polymeric nanoparticles. Drug nanoparticle complex prepared by electrostatic interaction of oppositely charged drug and polyelectrolytes represents another type of polymeric nanoparticle. This chapter details the preparation, characterization, and antibiofilm efficacy testing of antibiotic-loaded polymeric and hybrid nanoparticles and antibiotic nanoparticle complex.

  9. Magnetic Nanoparticles From Fabrication to Clinical Applications

    CERN Document Server

    Thanh, Nguyen TK

    2012-01-01

    Offering the latest information in magnetic nanoparticle (MNP) research, Magnetic Nanoparticles: From Fabrication to Clinical Applications provides a comprehensive review, from synthesis, characterization, and biofunctionalization to clinical applications of MNPs, including the diagnosis and treatment of cancers. This book, written by some of the most qualified experts in the field, not only fills a hole in the literature, but also bridges the gaps between all the different areas in this field. Translational research on tailored magnetic nanoparticles for biomedical applications spans a variet

  10. Nanoparticles and nanotechnologies today and beyond

    OpenAIRE

    Abaeva, L.; Shumsky, V.; Petritskaya, E.; Rogatkin, D.; Lubchenko, P.

    2010-01-01

    Investigation of nanoparticles is a priority direction of the modern science. Application of nanoparticles is widely incorporated into many spheres of human activity. The ability of nanoparticles to penetrate deeply into tissues, cells and nuclei can be used in medicine. The possibilities of molecular diagnosis and identification of biomarkers, unique for every patient, create preconditions for improving therapy by addressed delivery of medicines. However, the benefits of nanotechnology may h...

  11. Aerosol fabrication methods for monodisperse nanoparticles

    Science.gov (United States)

    Jiang, Xingmao; Brinker, C Jeffrey

    2014-10-21

    Exemplary embodiments provide materials and methods for forming monodisperse particles. In one embodiment, the monodisperse particles can be formed by first spraying a nanoparticle-containing dispersion into aerosol droplets and then heating the aerosol droplets in the presence of a shell precursor to form core-shell particles. By removing either the shell layer or the nanoparticle core of the core-shell particles, monodisperse nanoparticles can be formed.

  12. Imaging carbon nanoparticles and related cytotoxicity

    International Nuclear Information System (INIS)

    Cheng, C; Porter, A E; Welland, M; Muller, K; Skepper, J N; Koziol, K; Midgley, P

    2009-01-01

    Carbon-based nanoparticles have attracted significant attention due to their unique physical, chemical, and electrical properties. Numerous studies have been published on carbon nanoparticle toxicity; however, the results remain contradictory. An ideal approach is to combine a cell viability assay with nanometer scale imaging to elucidate the detailed physiological and structural effects of cellular exposure to nanoparticles. We have developed and applied a combination of advanced microscopy techniques to image carbon nanoparticles within cells. Specifically, we have used EFTEM, HAADF-STEM, and tomography and confocal microscopy to generate 3-D images enabling determination of nanoparticle spatial distribution in a cell. With these techniques, we can differentiate between the carbon nanoparticles and the cell in both stained and unstained sections. We found carbon nanoparticles (C 60 , single-walled carbon nanotubes (SWNT), and multi-walled carbon nanotubes (MWNT)) within the cytoplasm, lysosomes, and nucleus of human monocyte-derived macrophage cells (HMM). C 60 aggregated along the plasma and nuclear membrane while MWNTs and SWNTs were seen penetrating the plasma and nuclear membranes. Both the Neutral Red (NR) assay and ultra-structural analysis showed an increase in cell death after exposure to MWNTs and SWNTs. SWNTs were more toxic than MWNTs. For both MWNTs and SWNTs, we correlated uptake of the nanoparticles with a significant increase in necrosis. In conclusion, high resolution imaging studies provide us with significant insight into the localised interactions between carbon nanoparticles and cells. Viability assays alone only provide a broad toxicological picture of nanoparticle effects on cells whereas the high resolution images associate the spatial distributions of the nanoparticles within the cell with increased incidence of necrosis. This combined approach will enable us to probe the mechanisms of particle uptake and subsequent chemical changes within

  13. Biosynthesis of Silver Nanoparticles and Its Applications

    International Nuclear Information System (INIS)

    Firdhouse, M. J.; Lalitha, P.

    2015-01-01

    Silver nanoparticles possess unique properties which find myriad applications such as antimicrobial, anticancer, larvicidal, catalytic, and wound healing activities. Biogenic syntheses of silver nanoparticles using plants and their pharmacological and other potential applications are gaining momentum owing to its assured rewards. This critical review is aimed at providing an insight into the phyto mediated synthesis of silver nanoparticles, its significant applications in various fields, and characterization techniques involved.

  14. Glyco-gold nanoparticles: synthesis and applications

    OpenAIRE

    Compostella, Federica; Pitirollo, Olimpia; Silvestri, Alessandro; Polito, Laura

    2017-01-01

    Glyco-gold nanoparticles combine in a single entity the peculiar properties of gold nanoparticles with the biological activity of carbohydrates. The result is an exciting nanosystem, able to mimic the natural multivalent presentation of saccharide moieties and to exploit the peculiar optical properties of the metallic core. In this review, we present recent advances on glyco-gold nanoparticle applications in different biological fields, highlighting the key parameters which inspire the glyco ...

  15. Biogenic synthesized nanoparticles and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Abhijeet, E-mail: abhijeet.singh@jaipur.manipal.edu; Sharma, Madan Mohan [Manipal University Jaipur (India)

    2016-05-06

    In the present scenario, there are growing concerns over the potential impacts of bioengineered nanoparticles in the health sector. However, our understanding of how bioengineered nanoparticles may affect organisms within natural ecosystems, lags far behind our rapidly increasing ability to engineer novel nanoparticles. To date, research on the biological impacts of bioengineered nanoparticles has primarily consisted of controlled lab studies of model organisms with single species in culture media. Here, we described a cost effective and environment friendly technique for green synthesis of silver nanoparticles. Silver nanoparticles were successfully synthesized from 1 mM AgNO{sub 3} via a green synthesis process using leaf extract as reducing as well as capping agent. Nanoparticles were characterized with the help of UV–vis absorption spectroscopy, X-ray diffraction and TEM analysis which revealed the size of nanoparticles of 30-40 nm size. Further the nanoparticles synthesized by green route are found highly toxic against pathogenic bacteria and plant pathogenic fungi viz. Escherichia coli, Pseudomonas syringae and Sclerotiniasclerotiorum. The most important outcome of this work will be the development of value-added products and protection of human health from pathogens viz., bacteria, virus, fungi etc.

  16. Electroluminescence Efficiency Enhancement using Metal Nanoparticles

    National Research Council Canada - National Science Library

    Soref, Richard A; Khurgin, J. B; Sun, G

    2008-01-01

    We apply the "effective mode volume" theory to evaluate enhancement of the electroluminescence efficiency of semiconductor emitters placed in the vicinity of isolated metal nanoparticles and their arrays...

  17. Biogenic synthesized nanoparticles and their applications

    International Nuclear Information System (INIS)

    Singh, Abhijeet; Sharma, Madan Mohan

    2016-01-01

    In the present scenario, there are growing concerns over the potential impacts of bioengineered nanoparticles in the health sector. However, our understanding of how bioengineered nanoparticles may affect organisms within natural ecosystems, lags far behind our rapidly increasing ability to engineer novel nanoparticles. To date, research on the biological impacts of bioengineered nanoparticles has primarily consisted of controlled lab studies of model organisms with single species in culture media. Here, we described a cost effective and environment friendly technique for green synthesis of silver nanoparticles. Silver nanoparticles were successfully synthesized from 1 mM AgNO_3 via a green synthesis process using leaf extract as reducing as well as capping agent. Nanoparticles were characterized with the help of UV–vis absorption spectroscopy, X-ray diffraction and TEM analysis which revealed the size of nanoparticles of 30-40 nm size. Further the nanoparticles synthesized by green route are found highly toxic against pathogenic bacteria and plant pathogenic fungi viz. Escherichia coli, Pseudomonas syringae and Sclerotiniasclerotiorum. The most important outcome of this work will be the development of value-added products and protection of human health from pathogens viz., bacteria, virus, fungi etc.

  18. Toxicity of Engineered Nanoparticles to Aquatic Invertebrates

    DEFF Research Database (Denmark)

    Cupi, Denisa; Sørensen, Sara Nørgaard; Skjolding, Lars Michael

    2016-01-01

    This chapter provides a targeted description of some of the most important processes that influence toxicity and uptake of nanoparticles in aquatic invertebrates. It discusses silver nanoparticles (Ag NPs), on how aspects of dissolution and chemical species obtained from this process can influence...... ecotoxicity of aquatic invertebrates. The chapter focuses on how fullerenes affect the toxicity of other pollutants, but also reflect on the fate and behavior of C60 in the aquatic environment, as well as ecotoxicity to aquatic invertebrates. It presents the case of titanium dioxide nanoparticles (TiO2 NPs...... on bioaccumulation focusing on the effect of nanoparticle coating, uptake, and depuration in aquatic invertebrates....

  19. Protein nanoparticles for therapeutic protein delivery.

    Science.gov (United States)

    Herrera Estrada, L P; Champion, J A

    2015-06-01

    Therapeutic proteins can face substantial challenges to their activity, requiring protein modification or use of a delivery vehicle. Nanoparticles can significantly enhance delivery of encapsulated cargo, but traditional small molecule carriers have some limitations in their use for protein delivery. Nanoparticles made from protein have been proposed as alternative carriers and have benefits specific to therapeutic protein delivery. This review describes protein nanoparticles made by self-assembly, including protein cages, protein polymers, and charged or amphipathic peptides, and by desolvation. It presents particle fabrication and delivery characterization for a variety of therapeutic and model proteins, as well as comparison of the features of different protein nanoparticles.

  20. Cerium and yttrium oxide nanoparticles are neuroprotective

    International Nuclear Information System (INIS)

    Schubert, David; Dargusch, Richard; Raitano, Joan; Chan, S.-W.

    2006-01-01

    The responses of cells exposed to nanoparticles have been studied with regard to toxicity, but very little attention has been paid to the possibility that some types of particles can protect cells from various forms of lethal stress. It is shown here that nanoparticles composed of cerium oxide or yttrium oxide protect nerve cells from oxidative stress and that the neuroprotection is independent of particle size. The ceria and yttria nanoparticles act as direct antioxidants to limit the amount of reactive oxygen species required to kill the cells. It follows that this group of nanoparticles could be used to modulate oxidative stress in biological systems

  1. Interaction of Inorganic Nanoparticles With Cell Membranes

    National Research Council Canada - National Science Library

    Hofmann, Heinrich

    2008-01-01

    The discussion regarding toxic effects of nanoparticles, especially for people exposed to the particles during manufacturing, use of nanomaterials or because the particles have entered the biosphere...

  2. An environmentally benign antimicrobial nanoparticle based ...

    Science.gov (United States)

    Silver nanoparticles have antibacterial properties but their use has been a cause for concern because they persist in the environment. Here we show that lignin nanoparticles infused with silver ions and coated with a cationic polyelectrolyte layer form a biodegradable and green alternative to silver nanoparticles. The polyelectrolyte layer promotes the adhesion of the particles to bacterial cell membranes and together with silver ions can kill a broad spectrum of bacteria, including Escherichia coli, Pseudomonas aeruginosa and quaternary-amine-resistant Ralstonia sp. Ion depletion studies showed that the bioactivity of these nanoparticles is time-limited because of the desorption of silver ions. High-throughput bioactivity screening did not reveal increased toxicity of the particles when compared to an equivalent mass of metallic silver nanoparticles or silver nitrate solution. Our results demonstrate that the application of green chemistry principles may allow the synthesis of nanoparticles with biodegradable cores that have higher antimicrobial activity and smaller environmental impact than metallic silver nanoparticles. Our results demonstrate that the application of green chemistry principles may allow the synthesis of nanoparticles with biodegradable cores that have higher antimicrobial activity and smaller environmental impact than metallic silver nanoparticles

  3. Challenges and perspectives of nanoparticle exposure assessment.

    Science.gov (United States)

    Lee, Ji Hyun; Moon, Min Chaul; Lee, Joon Yeob; Yu, Il Je

    2010-06-01

    Nanoparticle exposure assessment presents a unique challenge in the field of occupational and environmental health. With the commercialization of nanotechnology, exposure usually starts from the workplace and then spreads to environment and consumer exposure. This report discusses the current trends of nanoparticle exposure assessment, including the definition of nanotechnology relevant terms, essential physicochemical properties for nanomaterial characterization, current international activities related nanomaterial safety, and exposure assessment standard development for nanotechnology. Further this report describes challenges of nanoparticle exposure assessment such as background measurement, metrics of nanoparticle exposure assessment and personal sampling.

  4. Nanoparticles and their tailoring with laser light

    International Nuclear Information System (INIS)

    Hubenthal, Frank

    2009-01-01

    Monodisperse noble metal nanoparticles are of tremendous interest for numerous applications, such as surface-enhanced Raman spectroscopy, catalysis or biosensing. However, preparation of monodisperse metal nanoparticles is still a challenging task, because typical preparation methods yield nanoparticle ensembles with broad shape and/or size distributions. To overcome this drawback, tailoring of metal nanoparticles with laser light has been developed, which is based on the pronounced shape- and size-dependent optical properties of metal nanoparticles. I will demonstrate that nanoparticle tailoring with ns-pulsed laser light is a suitable method to prepare nanoparticle ensembles with a narrow shape and/or size distribution. While irradiation with ns-pulsed laser light during nanoparticle growth permits a precise shape tailoring, post-grown irradiation allows a size tailoring. For example, the initial broad Gaussian size distribution of silver nanoparticles on quartz substrates with a standard deviation of σ= 30% is significantly reduced to as little as σ= 10% after tailoring. This paper addresses teachers of undergraduate and advanced school level as well as students. It assumes some fundamental knowledge in solid-state physics, thermodynamics and resonance vibration.

  5. Cellular membrane trafficking of mesoporous silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Fang, I-Ju [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    This dissertation mainly focuses on the investigation of the cellular membrane trafficking of mesoporous silica nanoparticles. We are interested in the study of endocytosis and exocytosis behaviors of mesoporous silica nanoparticles with desired surface functionality. The relationship between mesoporous silica nanoparticles and membrane trafficking of cells, either cancerous cells or normal cells was examined. Since mesoporous silica nanoparticles were applied in many drug delivery cases, the endocytotic efficiency of mesoporous silica nanoparticles needs to be investigated in more details in order to design the cellular drug delivery system in the controlled way. It is well known that cells can engulf some molecules outside of the cells through a receptor-ligand associated endocytosis. We are interested to determine if those biomolecules binding to cell surface receptors can be utilized on mesoporous silica nanoparticle materials to improve the uptake efficiency or govern the mechanism of endocytosis of mesoporous silica nanoparticles. Arginine-glycine-aspartate (RGD) is a small peptide recognized by cell integrin receptors and it was reported that avidin internalization was highly promoted by tumor lectin. Both RGD and avidin were linked to the surface of mesoporous silica nanoparticle materials to investigate the effect of receptor-associated biomolecule on cellular endocytosis efficiency. The effect of ligand types, ligand conformation and ligand density were discussed in Chapter 2 and 3. Furthermore, the exocytosis of mesoporous silica nanoparticles is very attractive for biological applications. The cellular protein sequestration study of mesoporous silica nanoparticles was examined for further information of the intracellular pathway of endocytosed mesoporous silica nanoparticle materials. The surface functionality of mesoporous silica nanoparticle materials demonstrated selectivity among the materials and cancer and normal cell lines. We aimed to determine

  6. Theranostic nanoparticles for the treatment of cancer

    Science.gov (United States)

    Moore, Thomas Lee

    The main focus of this research was to evaluate the ability of a novel multifunctional nanoparticle to mediate drug delivery and enable a non-invasive approach to measure drug release kinetics in situ for the treatment of cancer. These goals were approached by developing a nanoparticle consisting of an inorganic core (i.e. gadolinium sulfoxide doped with europium ions or carbon nanotubes). This was coated with an external amphiphilic polymer shell comprised of a biodegradable polyester (i.e. poly(lactide) or poly(glycolide)), and poly(ethylene glycol) block copolymer. In this system, the inorganic core mediates the imaging aspect, the relatively hydrophobic polyester encapsulates hydrophobic anti-cancer drugs, and poly(ethylene glycol) stabilizes the nanoparticle in an aqueous environment. The synthesis of this nanoparticle drug delivery system utilized a simple one-pot room temperature ring-opening polymerization that neglected the use of potentially toxic catalysts and reduced the number of washing steps. This functionalization approach could be applied across a number of inorganic nanoparticle platforms. Coating inorganic nanoparticles with biodegradable polymer was shown to decrease in vitro and in vivo toxicity. Nanoparticles could be further coated with multiple polymer layers to better control drug release characteristics. Finally, loading polymer coated radioluminescent nanoparticles with photoactive drugs enabled a mechanism for measuring drug concentration in situ. The work presented here represents a step forward to developing theranostic nanoparticles that can improve the treatment of cancer.

  7. Preparation of gold nanoparticles for plasmonic applications

    Energy Technology Data Exchange (ETDEWEB)

    Benkovicova, Monika, E-mail: monika.benkovicova@savba.sk [Institute of Physics SAS, Dubravska cesta 9, 845 11 Bratislava (Slovakia); Polymer Institute SAS, Dubravska cesta 9, 845 41 Bratislava (Slovakia); Vegso, Karol; Siffalovic, Peter; Jergel, Matej; Luby, Stefan; Majkova, Eva [Institute of Physics SAS, Dubravska cesta 9, 845 11 Bratislava (Slovakia)

    2013-09-30

    We present a simple hot injection method for the preparation of colloidal solutions of hydrophobic spherical gold nanoparticles with the diameter around 20 nm and size dispersion below 20%. Various surfactants with different lengths of hydrocarbon chains, such as oleylamine, 1-octadecanethiol, poly (N-vinylpyrrolidone), and AgNO{sub 3} in 1,5-pentanediol, were used for sterical stabilization in the colloidal solution. The hydrodynamic nanoparticle size and size dispersion were determined by the dynamic light scattering (DLS) while the small-angle X-ray scattering (SAXS) from the colloidal solution provided information on the size of the metallic nanoparticle core (without surfactant). Plasmon enhanced resonant absorption peaks between 500 nm and 600 nm were detected by the UV–VIS spectrophotometry. The nanoparticle arrays on silicon prepared by solvent evaporation or Langmuir-Schaefer method were inspected by high-resolution scanning electron microscopy and grazing-incidence SAXS (GISAXS). The presence of side maxima in the GISAXS pattern gives evidence of the nanoparticle ordering by self-assembly while very close values of the interparticle distance derived from GISAXS and the nanoparticle size derived from DLS indicate a close-packed order. - Highlights: ► Preparation of gold nanoparticles by use a various of surfactants ► Preparation of monodisperse nanoparticles ► Characterization of nanoparticles on a solid substrate.

  8. Electrosprayed nanoparticle delivery system for controlled release

    Energy Technology Data Exchange (ETDEWEB)

    Eltayeb, Megdi, E-mail: megdi.eltayeb@sustech.edu [Department of Biomedical Engineering, Sudan University of Science and Technology, PO Box 407, Khartoum (Sudan); Stride, Eleanor, E-mail: eleanor.stride@eng.ox.ac.uk [Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Old Road Campus Research Building, Headington OX3 7DQ (United Kingdom); Edirisinghe, Mohan, E-mail: m.edirisinghe@ucl.ac.uk [Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Harker, Anthony, E-mail: a.harker@ucl.ac.uk [London Centre for Nanotechnology, Gordon Street, London WC1H 0AH (United Kingdom); Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2016-09-01

    This study utilises an electrohydrodynamic technique to prepare core-shell lipid nanoparticles with a tunable size and high active ingredient loading capacity, encapsulation efficiency and controlled release. Using stearic acid and ethylvanillin as model shell and active ingredients respectively, we identify the processing conditions and ratios of lipid:ethylvanillin required to form nanoparticles. Nanoparticles with a mean size ranging from 60 to 70 nm at the rate of 1.37 × 10{sup 9} nanoparticles per minute were prepared with different lipid:ethylvanillin ratios. The polydispersity index was ≈ 21% and the encapsulation efficiency ≈ 70%. It was found that the rate of ethylvanillin release was a function of the nanoparticle size, and lipid:ethylvanillin ratio. The internal structure of the lipid nanoparticles was studied by transmission electron microscopy which confirmed that the ethylvanillin was encapsulated within a stearic acid shell. Fourier transform infrared spectroscopy analysis indicated that the ethylvanillin had not been affected. Extensive analysis of the release of ethylvanillin was performed using several existing models and a new diffusive release model incorporating a tanh function. The results were consistent with a core-shell structure. - Highlights: • Electrohydrodynamic spraying is used to produce lipid-coated nanoparticles. • A new model is proposed for the release rates of active components from nanoparticles. • The technique has potential applications in food science and medicine. • Electrohydrodynamic processing controlled release lipid nanoparticles.

  9. Introduction to metal-nanoparticle plasmonics

    CERN Document Server

    Pelton, Matthew

    2013-01-01

    Based on a popular article in Laser and Photonics Reviews, this book provides an explanation and overview of the techniques used to model, make, and measure metal nanoparticles, detailing results obtained and what they mean. It covers the properties of coupled metal nanoparticles, the nonlinear optical response of metal nanoparticles, and the phenomena that arise when light-emitting materials are coupled to metal nanoparticles. It also provides an overview of key potential applications and offers explanations of computational and experimental techniques giving readers a solid grounding

  10. Structural characterization of silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Paulo Ricardo; Sousa, Edi Carlos Pereira de; Pontuschka, Walter Maigon; Oliveira, Cristiano Luis Pinto de, E-mail: pauloricardoafg@yahoo.com.br [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Instituto de Fisica

    2016-07-01

    Full text: Due to magnetic, optical and electrical properties metallic nanoparticles have been extensively studied to potential applications in biosensor production, separation of biological molecules, image techniques, drug delivery among several others. For such applications, it is crucial to have crystals with morphology and well defined structure. In this work we presented a detailed structured characterization of silver nanoparticles using small angle x-rays and light scattering methods. The comparison and correlation of these results with electron microscopy images permitted the determination of interesting structural parameters for the studied systems. The oscillations of the intensity curve of SAXS data reveal that this sample has particles with reasonable stability and well defined sizes. The mean radius obtained from the size distribution curve is in good agreement with the ones obtained by TEM images. As will be shown, the combination of several techniques and the correct analysis for the obtained experimental data provides unique information on the structure of the studied systems. (author)

  11. Surface energy of explosive nanoparticles

    Science.gov (United States)

    Pineau, Nicolas; Bidault, Xavier; Soulard, Laurent

    2017-06-01

    Recent experimental studies show that nanostructuration has a substantial impact on the detonation of high explosives: a nanostructured one leads to smaller nanodiamonds than a microstructured one. Whether it comes from a higher surface energy or from porosity, the origin of these different behaviors must be investigated. The surface energy of TATB nanoparticles with a radius from 2 nm upto 60 nm has been determined by means of ReaxFF-based simulations. Then, using the Rankine-Hugoniot relations and the equation of states of the bulk material, the contribution of this excess energy to the heating of a shock-compressed nanostructured (and porous) material is evaluated and compared to the thermal effect due to its porosity collapse. A maximum temperature increase of 50 K is found for 4-nm nanoparticles, which remains negligible when compared to the few hundred degrees induced by the compaction work.

  12. Mechanistic features of isomerizing alkoxycarbonylation of methyl oleate

    KAUST Repository

    Roesle, Philipp; Dü rr, Christoph J.; Mö ller, Heiko Maa; Cavallo, Luigi; Caporaso, Lucia; Mecking, Stefan

    2012-01-01

    -octene at -80 °C yields a 50:50 mixture of the linear alkyls [(P ̂P)Pd13CH2(CH2) 6CH3]+ and [(P̂P)PdCH 2(CH2)6 13CH3] + (4a and 4b). Further reaction with 13CO yields the linear acyls [(P̂P)Pd13C(=O)12/13CH 2(CH2)6 12/13CH3(L)] + (5-L; L = solvent or 13CO

  13. 21 CFR 172.270 - Sulfated butyl oleate.

    Science.gov (United States)

    2010-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION... edible vegetable oil using 1-butanol. Following sulfation, the reaction mixture is washed with water and...

  14. Transition Metal Phosphide Nanoparticles Supported on SBA-15 as Highly Selective Hydrodeoxygenation Catalysts for the Production of Advanced Biofuels.

    Science.gov (United States)

    Yang, Yongxing; Ochoa-Hernández, Cristina; de la Peña O'Shea, Víctor A; Pizarro, Patricia; Coronado, Juan M; Serrano, David P

    2015-09-01

    A series of catalysts constituted by nanoparticles of transition metal (M = Fe, Co, Ni and Mo) phosphides (TMP) dispersed on SBA-15 were synthesized by reduction of the corresponding metal phosphate precursors previously impregnated on the mesostructured support. All the samples contained a metal-loading of 20 wt% and with an initial M/P mole ratio of 1, and they were characterized by X-ray diffraction (XRD), N2 sorption, H2-TPR and transmission electron microscopy (TEM). Metal phosphide nanocatalysts were tested in a high pressure continuous flow reactor for the hydrodeoxygenation (HDO) of a methyl ester blend containing methyl oleate (C17H33-COO-CH3) as main component (70%). This mixture constitutes a convenient surrogate of triglycerides present in vegetable oils, and following catalytic hydrotreating yields mainly n-alkanes. The results of the catalytic assays indicate that Ni2P/SBA-15 catalyst presents the highest ester conversion, whereas the transformation rate is about 20% lower for MoP/SBA-15. In contrast, catalysts based on Fe and Co phosphides show a rather limited activity. Hydrocarbon distribution in the liquid product suggests that both hydrodeoxygenation and decarboxylation/decarbonylation reactions occur simultaneously over the different catalysts, although MoP/SBA-15 possess a selectivity towards hydrodeoxygenation exceeding 90%. Accordingly, the catalyst based on MoP affords the highest yield of n-octadecane, which is the preferred product in terms of carbon atom economy. Subsequently, in order to conjugate the advantages of both Ni and Mo phosphides, a series of catalysts containing variable proportions of both metals were prepared. The obtained results reveal that the mixed phosphides catalysts present a catalytic behavior intermediate between those of the monometallic phosphides. Accordingly, only marginal enhancement of the yield of n-octadecane is obtained for the catalysts with a Mo/Ni ratio of 3. Nevertheless, owing to this high selectivity

  15. Single nanoparticle tracking spectroscopic microscope

    Science.gov (United States)

    Yang, Haw [Moraga, CA; Cang, Hu [Berkeley, CA; Xu, Cangshan [Berkeley, CA; Wong, Chung M [San Gabriel, CA

    2011-07-19

    A system that can maintain and track the position of a single nanoparticle in three dimensions for a prolonged period has been disclosed. The system allows for continuously imaging the particle to observe any interactions it may have. The system also enables the acquisition of real-time sequential spectroscopic information from the particle. The apparatus holds great promise in performing single molecule spectroscopy and imaging on a non-stationary target.

  16. Nanoparticles in discotic liquid crystals

    Science.gov (United States)

    Kumar, Sandeep

    The self-assembly of disc-shaped molecules creates discotic liquid crystals (DLCs). These nanomaterials of the sizes ranging from 2-6 nm are emerging as a new class of organic semiconducting materials. The unique geometry of columnar mesophases formed by discotic molecules is of great importance to study the one-dimensional charge and energy migration in organized systems. A number of applications of DLCs, such as, one-dimensional conductor, photoconductor, photovoltaic solar cells, light emitting diodes and gas sensors have been reported. The conductivity along the columns in columnar mesophases has been observed to be several orders of magnitude greater than in perpendicular direction and, therefore, DLCs are described as molecular wires. On the other hand, the fields of nanostructured materials, such as gold nanoparticles, quantum dots, carbon nanotubes and graphene, have received tremendous development in the past decade due to their technological and fundamental interest. Recently the hybridization of DLCs with various metallic and semiconducting nanoparticles has been realized to alter and improve their properties. These nanocomposites are not only of basic science interest but also lead to novel materials for many device applications. This article provides an overview on the development in the field of newly immersed discotic nanoscience. After a brief introduction of DLCs, the article will cover the inclusion of various zero-, one- and two-dimensional nanoparticles in DLCs. Finally, an outlook into the future of this newly emerging intriguing field of discotic nanoscience research will be provided.

  17. Magnetic nanoparticles for cancer therapy

    International Nuclear Information System (INIS)

    Bakuzis, Andris F.

    2014-01-01

    Full text: Magnetic nanoparticles have been used in several biomedical applications, spanning from cell separation, early diagnosis of metastasis to even the treatment of cancer via magnetic hyperthermia (MH). This last technique consists in the increase of temperature of nanoparticles when their magnetic moments interact with a magnetic alternating field. This effect has been suggested as an innovative therapy to cancer treatment, due to the delivery of heat or therapeutic agents, such as drugs, genes, and others. In addition, several clinical studies has demonstrated synergetic effects between hyperthermia and radiotherapy [1]. This indicates a great therapeutic potential for this noninvasive and targeted technique. In this talk we will discuss results from the literature and from our own group in the treatment of cancer via magnetic hyperthermia. Several types of magnetic nanoparticles suggested for this application will be discussed, as well as the historical evolution of this procedure, which although suggested in the late 50' only recently was approved in Europe for treatment of humans with brain tumors. (author) [pt

  18. Antimicrobial Polymers with Metal Nanoparticles

    Science.gov (United States)

    Palza, Humberto

    2015-01-01

    Metals, such as copper and silver, can be extremely toxic to bacteria at exceptionally low concentrations. Because of this biocidal activity, metals have been widely used as antimicrobial agents in a multitude of applications related with agriculture, healthcare, and the industry in general. Unlike other antimicrobial agents, metals are stable under conditions currently found in the industry allowing their use as additives. Today these metal based additives are found as: particles, ions absorbed/exchanged in different carriers, salts, hybrid structures, etc. One recent route to further extend the antimicrobial applications of these metals is by their incorporation as nanoparticles into polymer matrices. These polymer/metal nanocomposites can be prepared by several routes such as in situ synthesis of the nanoparticle within a hydrogel or direct addition of the metal nanofiller into a thermoplastic matrix. The objective of the present review is to show examples of polymer/metal composites designed to have antimicrobial activities, with a special focus on copper and silver metal nanoparticles and their mechanisms. PMID:25607734

  19. Developing nano-particles as radiopharmaceuticals

    International Nuclear Information System (INIS)

    Gambhir, S.

    2013-01-01

    The wide variety of core materials available, coupled with tunable surface properties, make nanoparticles an excellent platform for a broad range of biological and biomedical applications. The unique properties and utility of nanoparticles arise from a variety of attributes, including the similar size of nanoparticles and biomolecules such as proteins and polynucleic acids. Additionally, nanoparticles can be fashioned with a wide range of metal and semiconductor core materials that impart useful properties such as fluorescence and magnetic behavior. Bio-macromolecule surface recognition by nanoparticles as artificial receptors provides a potential tool for controlling cellular and extracellular processes for numerous biological applications such as transcription regulation, enzymatic inhibition, delivery and sensing. The size of nanoparticle cores can be tuned from 1.5 nm to more than 10 nm depending on the core material, providing a suitable platform for the interaction of nanoparticles with proteins and other biomolecules. The conjugation of nanoparticles with biomolecules such as proteins and DNA can be done by using two different approaches, direct covalent linkage and non-covalent interactions between the particle and bio-molecules.The most direct approach to the creation of integrated biomolecule-nanoparticle conjugates is through covalent attachment.This conjugation can be achieved either through chemisorptions of the biomolecule to the particle surface or through the use of hetero-bi-functional linkers. Chemisorption of proteins onto the surface of nanoparticles (usually containing a core of Au, ZnS, CdS, and CdSe/ZnS) can be done through cysteine residues that are present in the protein surface (e.g., oligo-peptide, serum albumin), or chemically using 2-iminothiolane (Traut's reagent). Bifunctional linkers provide a versatile means of bio-conjugation. Biomolecules are often covalently linked to ligands on the nanoparticle surface via traditional

  20. Chemoelectronic circuits based on metal nanoparticles

    Science.gov (United States)

    Yan, Yong; Warren, Scott C.; Fuller, Patrick; Grzybowski, Bartosz A.

    2016-07-01

    To develop electronic devices with novel functionalities and applications, various non-silicon-based materials are currently being explored. Nanoparticles have unique characteristics due to their small size, which can impart functions that are distinct from those of their bulk counterparts. The use of semiconductor nanoparticles has already led to improvements in the efficiency of solar cells, the processability of transistors and the sensitivity of photodetectors, and the optical and catalytic properties of metal nanoparticles have led to similar advances in plasmonics and energy conversion. However, metals screen electric fields and this has, so far, prevented their use in the design of all-metal nanoparticle circuitry. Here, we show that simple electronic circuits can be made exclusively from metal nanoparticles functionalized with charged organic ligands. In these materials, electronic currents are controlled by the ionic gradients of mobile counterions surrounding the ‘jammed’ nanoparticles. The nanoparticle-based electronic elements of the circuitry can be interfaced with metal nanoparticles capable of sensing various environmental changes (humidity, gas, the presence of various cations), creating electronic devices in which metal nanoparticles sense, process and ultimately report chemical signals. Because the constituent nanoparticles combine electronic and chemical sensing functions, we term these systems ‘chemoelectronic’. The circuits have switching times comparable to those of polymer electronics, selectively transduce parts-per-trillion chemical changes into electrical signals, perform logic operations, consume little power (on the scale of microwatts), and are mechanically flexible. They are also ‘green’, in the sense that they comprise non-toxic nanoparticles cast at room temperature from alcohol solutions.

  1. Co-precipitation of oppositely charged nanoparticles: the case of mixed ligand nanoparticles

    International Nuclear Information System (INIS)

    Moglianetti, Mauro; Ponomarev, Evgeniy; Szybowski, Maxime; Stellacci, Francesco; Reguera, Javier

    2015-01-01

    Colloid stability is of high importance in a multitude of fields ranging from food science to biotechnology. There is strong interest in studying the stability of small particles (of a size of a few nanometres) with complex surface structures, that make them resemble the complexity of proteins and other natural biomolecules, in the presence of oppositely charged nanoparticles. While for nanoparticles with homogeneously charged surfaces an abrupt precipitation has been observed at the neutrality of charges, data are missing about the stability of nanoparticles when they have more complex surface structures, like the presence of hydrophobic patches. To study the role of these hydrophobic patches in the stability of nanoparticles a series of negatively charged nanoparticles has been synthesized with different ratios of hydrophobic content and with control on the structural distribution of the hydrophobic moiety, and then titrated with positively charged nanoparticles. For nanoparticles with patchy nanodomains, the influence of hydrophobic content was observed together with the influence of the size of the nanoparticles. By contrast, for nanoparticles with a uniform distribution of hydrophobic ligands, size changes and hydrophobic content did not play any role in co-precipitation behaviour. A comparison of these two sets of nanoparticles suggests that nanodomains present at the surfaces of nanoparticles are playing an important role in stability against co-precipitation. (paper)

  2. PEGylated Silk Nanoparticles for Anticancer Drug Delivery.

    Science.gov (United States)

    Wongpinyochit, Thidarat; Uhlmann, Petra; Urquhart, Andrew J; Seib, F Philipp

    2015-11-09

    Silk has a robust clinical track record and is emerging as a promising biopolymer for drug delivery, including its use as nanomedicine. However, silk-based nanomedicines still require further refinements for full exploitation of their potential; the application of "stealth" design principals is especially necessary to support their evolution. The aim of this study was to develop and examine the potential of PEGylated silk nanoparticles as an anticancer drug delivery system. We first generated B. mori derived silk nanoparticles by driving β-sheet assembly (size 104 ± 1.7 nm, zeta potential -56 ± 5.6 mV) using nanoprecipitation. We then surface grafted polyethylene glycol (PEG) to the fabricated silk nanoparticles and verified the aqueous stability and morphology of the resulting PEGylated silk nanoparticles. We assessed the drug loading and release behavior of these nanoparticles using clinically established and emerging anticancer drugs. Overall, PEGylated silk nanoparticles showed high encapsulation efficiency (>93%) and a pH-dependent release over 14 days. Finally, we demonstrated significant cytotoxicity of drug loaded silk nanoparticles applied as single and combination nanomedicines to human breast cancer cells. In conclusion, these results, taken together with prior silk nanoparticle data, support a viable future for silk-based nanomedicines.

  3. Zero-valent iron nanoparticles preparation

    International Nuclear Information System (INIS)

    Oropeza, S.; Corea, M.; Gómez-Yáñez, C.; Cruz-Rivera, J.J.; Navarro-Clemente, M.E.

    2012-01-01

    Graphical abstract: Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH 3 ) 3 ) 2 ] 2 ] at room temperature and a pressure of 3 atm. The synthesized nanoparticles were spherical and had diameters less than 5 nm. Highlights: ► Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH 3 ) 3 ) 2 ] 2 ]. ► The conditions of reaction were at room temperature and a pressure of 3 atm. ► The synthesized nanoparticles were spherical and had diameters less than 5 nm. -- Abstract: Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH 3 ) 3 ) 2 ] 2 ] at room temperature and a pressure of 3 atm. To monitor the reaction, a stainless steel pressure reactor lined with PTFE and mechanically stirred was designed. This design allowed the extraction of samples at different times, minimizing the perturbation in the system. In this way, the shape and the diameter of the nanoparticles produced during the reaction were also monitored. The results showed the production of zero-valent iron nanoparticles that were approximately 5 nm in diameter arranged in agglomerates. The agglomerates grew to 900 nm when the reaction time increased up to 12 h; however, the diameter of the individual nanoparticles remained almost the same. During the reaction, some byproducts constituted by amino species acted as surfactants; therefore, no other surfactants were necessary.

  4. Zero-valent iron nanoparticles preparation

    Energy Technology Data Exchange (ETDEWEB)

    Oropeza, S. [Instituto Politécnico Nacional, ESIQIE, UPALM, Edificio Z-6, Primer Piso, C.P. 07738, Col. San Pedro Zacatenco, México D.F. (Mexico); Corea, M., E-mail: mcoreat@yahoo.com.mx [Instituto Politécnico Nacional, ESIQIE, UPALM, Edificio Z-6, Primer Piso, C.P. 07738, Col. San Pedro Zacatenco, México D.F. (Mexico); Gómez-Yáñez, C. [Instituto Politécnico Nacional, ESIQIE, UPALM, Edificio Z-6, Primer Piso, C.P. 07738, Col. San Pedro Zacatenco, México D.F. (Mexico); Cruz-Rivera, J.J. [Universidad Autónoma de San Luis Potosí, Instituto de Metalurgia, Sierra Leona 550, San Luis Potosí, C.P. 78210 (Mexico); Navarro-Clemente, M.E., E-mail: mnavarroc@ipn.mx [Instituto Politécnico Nacional, ESIQIE, UPALM, Edificio Z-6, Primer Piso, C.P. 07738, Col. San Pedro Zacatenco, México D.F. (Mexico)

    2012-06-15

    Graphical abstract: Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH{sub 3}){sub 3}){sub 2}]{sub 2}] at room temperature and a pressure of 3 atm. The synthesized nanoparticles were spherical and had diameters less than 5 nm. Highlights: ► Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH{sub 3}){sub 3}){sub 2}]{sub 2}]. ► The conditions of reaction were at room temperature and a pressure of 3 atm. ► The synthesized nanoparticles were spherical and had diameters less than 5 nm. -- Abstract: Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH{sub 3}){sub 3}){sub 2}]{sub 2}] at room temperature and a pressure of 3 atm. To monitor the reaction, a stainless steel pressure reactor lined with PTFE and mechanically stirred was designed. This design allowed the extraction of samples at different times, minimizing the perturbation in the system. In this way, the shape and the diameter of the nanoparticles produced during the reaction were also monitored. The results showed the production of zero-valent iron nanoparticles that were approximately 5 nm in diameter arranged in agglomerates. The agglomerates grew to 900 nm when the reaction time increased up to 12 h; however, the diameter of the individual nanoparticles remained almost the same. During the reaction, some byproducts constituted by amino species acted as surfactants; therefore, no other surfactants were necessary.

  5. Nanoparticle Netpoints for Shape-Memory Polymers

    KAUST Repository

    Agarwal, Praveen

    2011-08-02

    Forget-me-not: Nanoparticle fillers in shape-memory polymers usually improve mechanical properties at the expense of shape-memory performance. A new approach overcomes these drawbacks by cross-linking the functionalized poly(ethylene glycol) tethers on silica nanoparticles (see picture). Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Nanoparticles in ionic liquids: interactions and organization.

    Science.gov (United States)

    He, Zhiqi; Alexandridis, Paschalis

    2015-07-28

    Ionic liquids (ILs), defined as low-melting organic salts, are a novel class of compounds with unique properties and a combinatorially great chemical diversity. Ionic liquids are utilized as synthesis and dispersion media for nanoparticles as well as for surface functionalization. Ionic liquid and nanoparticle hybrid systems are governed by a combined effect of several intermolecular interactions between their constituents. For each interaction, including van der Waals, electrostatic, structural, solvophobic, steric, and hydrogen bonding, the characterization and quantitative calculation methods together with factors affecting these interactions are reviewed here. Various self-organized structures based on nanoparticles in ionic liquids are generated as a result of a balance of these intermolecular interactions. These structures, including colloidal glasses and gels, lyotropic liquid crystals, nanoparticle-stabilized ionic liquid-containing emulsions, ionic liquid surface-functionalized nanoparticles, and nanoscale ionic materials, possess properties of both ionic liquids and nanoparticles, which render them useful as novel materials especially in electrochemical and catalysis applications. This review of the interactions within nanoparticle dispersions in ionic liquids and of the structure of nanoparticle and ionic liquid hybrids provides guidance on the rational design of novel ionic liquid-based materials, enabling applications in broad areas.

  7. Gold Nanoparticle Labels Amplify Ellipsometric Signals

    Science.gov (United States)

    Venkatasubbarao, Srivatsa

    2008-01-01

    The ellipsometric method reported in the immediately preceding article was developed in conjunction with a method of using gold nanoparticles as labels on biomolecules that one seeks to detect. The purpose of the labeling is to exploit the optical properties of the gold nanoparticles in order to amplify the measurable ellipsometric effects and thereby to enable ultrasensitive detection of the labeled biomolecules without need to develop more-complex ellipsometric instrumentation. The colorimetric, polarization, light-scattering, and other optical properties of nanoparticles depend on their sizes and shapes. In the present method, these size-and-shape-dependent properties are used to magnify the polarization of scattered light and the diattenuation and retardance of signals derived from ellipsometry. The size-and-shape-dependent optical properties of the nanoparticles make it possible to interrogate the nanoparticles by use of light of various wavelengths, as appropriate, to optimally detect particles of a specific type at high sensitivity. Hence, by incorporating gold nanoparticles bound to biomolecules as primary or secondary labels, the performance of ellipsometry as a means of detecting the biomolecules can be improved. The use of gold nanoparticles as labels in ellipsometry has been found to afford sensitivity that equals or exceeds the sensitivity achieved by use of fluorescence-based methods. Potential applications for ellipsometric detection of gold nanoparticle-labeled biomolecules include monitoring molecules of interest in biological samples, in-vitro diagnostics, process monitoring, general environmental monitoring, and detection of biohazards.

  8. Filtration of engineered nanoparticles using porous membranes

    NARCIS (Netherlands)

    Trzaskus, Krzystof

    2016-01-01

    The research presented in this thesis aims at providing a better understanding of the fundamental aspects responsible for nanoparticle removal and fouling development during filtration of engineered nanoparticles. The emphasis is put on the role of interparticle interactions in the feed solution,

  9. Microwave assisted template synthesis of silver nanoparticles

    Indian Academy of Sciences (India)

    Administrator

    employed on the size and shape of the nanoparticles has been compared. 2. ... nanoparticles prepared by direct heating at 80°C for various durations. Figure 2 .... References. Aoki K, Chen J, Yang N and Nagasava H 2003 Langmuir 19. 9904.

  10. Phytosynthesized iron nanoparticles: effects on fermentative ...

    Indian Academy of Sciences (India)

    In recent years the application of metal nanoparticles is gaining attention in various fields. The present study focuses on the additive effect of `green' synthesized iron nanoparticles (FeNPs) on dark fermentative hydrogen (H2) production by a mesophilic soil bacterium Enterobacter cloacae. The FeNPs were synthesized by ...

  11. Generation of Nanoparticles by Spark Discharge

    NARCIS (Netherlands)

    Salman Tabrizi, N.

    2009-01-01

    Spark discharge is a method for producing nanoparticles from conductive materials. Besides the general advantages of nanoparticle synthesis in the gas phase, the method offers additional advantages like simplicity, compactness and versatility. The synthesis process is continuous and is performed at

  12. Extracellular Palladium Nanoparticle Production using Geobacter sulfurreducens

    KAUST Repository

    Yates, Matthew D.

    2013-09-03

    Sustainable methods are needed to recycle precious metals and synthesize catalytic nanoparticles. Palladium nanoparticles can be produced via microbial reduction of soluble Pd(II) to Pd(0), but in previous tests using dissimilatory metal reducing bacteria (DMRB), the nanoparticles were closely associated with the cells, occupying potential reductive sites and eliminating the potential for cell reuse. The DMRB Geobacter sulfurreducens was shown here to reduce soluble Pd(II) to Pd(0) nanoparticles primarily outside the cell, reducing the toxicity of metal ions, and allowing nanoparticle recovery without cell destruction that has previously been observed using other microorganisms. Cultures reduced 50 ± 3 mg/L Pd(II) with 1% hydrogen gas (v/v headspace) in 6 h incubation tests [100 mg/L Pd(II) initially], compared to 8 ± 3 mg/L (10 mM acetate) without H2. Acetate was ineffective as an electron donor for palladium removal in the presence or absence of fumarate as an electron acceptor. TEM imaging verified that Pd(0) nanoparticles were predominantly in the EPS surrounding cells in H2-fed cultures, with only a small number of particles visible inside the cell. Separation of the cells and EPS by centrifugation allowed reuse of the cell suspensions and effective nanoparticle recovery. These results demonstrate effective palladium recovery and nanoparticle production using G. sulfurreducens cell suspensions and renewable substrates such as H2 gas. © 2013 American Chemical Society.

  13. Monofunctional gold nanoparticles: synthesis and applications

    International Nuclear Information System (INIS)

    Huo Qun; Worden, James G.

    2007-01-01

    The ability to control the assembly of nanoparticle building blocks is critically important for the development of new materials and devices. The properties and functions of nanomaterials are not only dependent on the size and properties of individual particles, but also the interparticle distance and interactions. In order to control the structures of nanoassemblies, it is important to first achieve a precise control on the chemical functionality of nanoparticle building blocks. This review discusses three methods that have been reported recently for the preparation of monofunctional gold nanoparticles, i.e., nanoparticles with a single chemical functional group attached to each particle. The advantages and disadvantages of the three methods are discussed and compared. With a single functional group attached to the surface, one can treat such nanoparticles as molecular building blocks to react with other molecules or nanoparticles. In other words, by using appropriate chemical reactions, nanoparticles can be linked together into nanoassemblies and materials by covalent bonds, similar to the total chemical synthesis of complicated organic compounds from smaller molecular units. An example of using this approach for the synthesis of nanoparticle/polymer hybrid materials with optical limiting properties is presented. Other potential applications and advantages of covalent bond-based nanoarchitectures vs. non-covalent interaction-based supramolecular self-assemblies are also discussed briefly in this review

  14. Challenges and Perspectives of Nanoparticle Exposure Assessment

    OpenAIRE

    Lee, Ji Hyun; Moon, Min Chaul; Lee, Joon Yeob; Yu, Il Je

    2010-01-01

    Nanoparticle exposure assessment presents a unique challenge in the field of occupational and environmental health. With the commercialization of nanotechnology, exposure usually starts from the workplace and then spreads to environment and consumer exposure. This report discusses the current trends of nanoparticle exposure assessment, including the definition of nanotechnology relevant terms, essential physicochemical properties for nanomaterial characterization, current international activi...

  15. Laser induced synthesis of nanoparticles in liquids

    Energy Technology Data Exchange (ETDEWEB)

    Kazakevich, P.V. [Wave Research Center, General Physics Institute of the Russian Academy of Sciences, 38 Vavilov street, 117942 Moscow (Russian Federation); Simakin, A.V. [Wave Research Center, General Physics Institute of the Russian Academy of Sciences, 38 Vavilov street, 117942 Moscow (Russian Federation); Voronov, V.V. [Wave Research Center, General Physics Institute of the Russian Academy of Sciences, 38 Vavilov street, 117942 Moscow (Russian Federation); Shafeev, G.A. [Wave Research Center, General Physics Institute of the Russian Academy of Sciences, 38 Vavilov street, 117942 Moscow (Russian Federation)]. E-mail: shafeev@kapella.gpi.ru

    2006-04-30

    The review of results on nanoparticles formation is presented under laser ablation of Ag, Au, and Cu-containing solid targets in liquid environments (H{sub 2}O, C{sub 2}H{sub 5}OH, C{sub 2}H{sub 4}Cl{sub 2}, etc.). X-ray diffractometry (XRD), UV-vis optical transmission spectrometry, and high resolution transmission electron microscopy (HRTEM) characterize the nanoparticles. The morphology of nanoparticles is studied as the function of both laser fluence and nature of the liquid. The possibility to control the shape of nanoparticles by ablation of an Au target by an interference pattern of two laser beams is demonstrated. Formation of alloyed Au-Ag and Ag-Cu nanoparticles is reported under laser exposure of a mixture of individual nanoparticles. The effect of internal segregation of brass nanoparticles is discussed due to their small lateral dimensions. The factors are discussed that determine the distribution function of particles size under laser ablation. The influence of laser parameters as well as the nature on the liquid on the properties of nanoparticles is elucidated.

  16. Preparation of amine coated silver nanoparticles using ...

    Indian Academy of Sciences (India)

    Administrator

    concentrations without the precipitation of particles. In this work, an analysis of the temperature influ- ence on the precipitation of silver nanoparticles was carried out. Also, the nanoparticles were func- tionalized using triethylenetetramine in order to im- prove the adhesion between the epoxy resin and the filler.

  17. Are Nanoparticles Spherical or Quasi-Spherical?

    Science.gov (United States)

    Sokolov, Stanislav V; Batchelor-McAuley, Christopher; Tschulik, Kristina; Fletcher, Stephen; Compton, Richard G

    2015-07-20

    The geometry of quasi-spherical nanoparticles is investigated. The combination of SEM imaging and electrochemical nano-impact experiments is demonstrated to allow sizing and characterization of the geometry of single silver nanoparticles. © 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Non-rare earth magnetic nanoparticles

    Science.gov (United States)

    Carpenter, Everett E.; Huba, Zachary J.; Carroll, Kyler J.; Farghaly, Ahmed; Khanna, Shiv N.; Qian, Meichun; Bertino, Massimo

    2017-09-26

    Continuous flow synthetic methods are used to make single phase magnetic metal alloy nanoparticles that do not contain rare earth metals. Soft and hard magnets made from the magnetic nanoparticles are used for a variety of purposes, e.g. in electric motors, communication devices, etc.

  19. Photochemical synthesis of UO2 nanoparticles

    International Nuclear Information System (INIS)

    Rath, M.C.; Keny, Sangeeta; Naik, D.B.

    2014-01-01

    UO 2 nanoparticles have been recently synthesized by us from aqueous solutions of uranyl nitrate through radiolytic method on high-energy electron beam irradiation. In this study, the synthesis of UO 2 nanoparticles through photochemical method is reported which is a complementary route to radiation chemical method

  20. Nanoparticles in liquid crystals, and liquid crystals in nanoparticles

    Science.gov (United States)

    de Pablo, Juan

    2015-03-01

    Liquid crystals are remarkably sensitive to interfacial interactions. Small perturbations at a liquid crystal interface, for example, can be propagated over relatively long length scales, thereby providing the basis for a wide range of applications that rely on amplification of molecular events into macroscopic observables. Our recent research efforts have focused on the reverse phenomenon; that is, we have sought to manipulate the interfacial assembly of nanoparticles or the organization of surface active molecules by controlling the structure of a liquid crystal. This presentation will consist of a review of the basic principles that are responsible for liquid crystal-mediated interactions, followed by demonstrations of those principles in the context of two types of systems. In the first, a liquid crystal is used to direct the assembly of nanoparticles; through a combination of molecular and continuum models, it is found that minute changes in interfacial energy and particle size lead to liquid-crystal induced attractions that can span multiple orders of magnitude. Theoretical predictions are confirmed by experimental observations, which also suggest that LC-mediated assembly provides an effective means for fabrication of plasmonic devices. In the second type of system, the structure of a liquid crystal is controlled by confinement in submicron droplets. The morphology of the liquid crystal in a drop depends on a delicate balance between bulk and interfacial contributions to the free energy; that balance can be easily perturbed by adsorption of analytes or nanoparticles at the interface, thereby providing the basis for development of hierarchical assembly of responsive, anisotropic materials. Theoretical predictions also indicate that the three-dimensional order of a liquid crystal can be projected onto a two-dimensional interface, and give rise to novel nanostructures that are not found in simple isotropic fluids.

  1. PEGylated Silk Nanoparticles for Anticancer Drug Delivery

    DEFF Research Database (Denmark)

    Wongpinyochit, Thidarat; Uhlmann, Petra; Urquhart, Andrew

    2015-01-01

    Silk has a robust clinical track record and is emerging as a promising biopolymer for drug delivery, including its use as nanomedicine. However, silk-based nanomedicines still require further refinements for full exploitation of their potential; the application of “stealth” design principals...... is especially necessary to support their evolution. The aim of this study was to develop and examine the potential of PEGylated silk nanoparticles as an anticancer drug delivery system. We first generated B. mori derived silk nanoparticles by driving β-sheet assembly (size 104 ± 1.7 nm, zeta potential −56 ± 5.......6 mV) using nanoprecipitation. We then surface grafted polyethylene glycol (PEG) to the fabricated silk nanoparticles and verified the aqueous stability and morphology of the resulting PEGylated silk nanoparticles. We assessed the drug loading and release behavior of these nanoparticles using...

  2. Cytotoxicity of Poly(Alkyl Cyanoacrylate Nanoparticles

    Directory of Open Access Journals (Sweden)

    Einar Sulheim

    2017-11-01

    Full Text Available Although nanotoxicology has become a large research field, assessment of cytotoxicity is often reduced to analysis of one cell line only. Cytotoxicity of nanoparticles is complex and should, preferentially, be evaluated in several cell lines with different methods and on multiple nanoparticle batches. Here we report the toxicity of poly(alkyl cyanoacrylate nanoparticles in 12 different cell lines after synthesizing and analyzing 19 different nanoparticle batches and report that large variations were obtained when using different cell lines or various toxicity assays. Surprisingly, we found that nanoparticles with intermediate degradation rates were less toxic than particles that were degraded faster or more slowly in a cell-free system. The toxicity did not vary significantly with either the three different combinations of polyethylene glycol surfactants or with particle size (range 100–200 nm. No acute pro- or anti-inflammatory activity on cells in whole blood was observed.

  3. Detection of magnetic nanoparticles with magnetoencephalography

    Energy Technology Data Exchange (ETDEWEB)

    Jia Wenyan [Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Xu, Guizhi [Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Department of Biomedical Engineering, Hebei University of Technology, Tianjin, 300130 (China); Sclabassi, Robert J. [Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Zhu Jiangang [Department of Electrical and Computer Engineering, Carnegie Melon University, Pittsburgh, PA 15213 (United States); Bagic, Anto [Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Sun Mingui [Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15260 (United States)], E-mail: mrsun@neuronet.pitt.edu

    2008-04-15

    Superconducting quantum interference devices (SQUIDs) have been widely utilized in biomedical applications due to their extremely high sensitivity to magnetic signals. The present study explores the feasibility of a new type of nanotechnology-based imaging method using standard clinical magnetoencephalographic (MEG) systems equipped with SQUID sensors. Previous studies have shown that biological targets labeled with non-toxic, magnetized nanoparticles can be imaged by measuring the magnetic field generated by these particles. In this work, we demonstrate that (1) the magnetic signals from certain nanoparticles can be detected without magnetization using standard clinical MEG, (2) for some types of nanoparticles, only bound particles produce detectable signals, and (3) the magnetic field of particles several hours after magnetization is significantly stronger than that of un-magnetized particles. These findings hold promise in facilitating the potential application of magnetic nanoparticles to in vivo tumor imaging. The minimum amount of nanoparticles that produce detectable signals is predicted by theoretical modeling and computer simulation.

  4. Nanoparticles displacement analysis using optical coherence tomography

    Science.gov (United States)

    StrÄ kowski, Marcin R.; Kraszewski, Maciej; StrÄ kowska, Paulina

    2016-03-01

    Optical coherence tomography (OCT) is a versatile optical method for cross-sectional and 3D imaging of biological and non-biological objects. Here we are going to present the application of polarization sensitive spectroscopic OCT system (PS-SOCT) for quantitative measurements of materials containing nanoparticles. The PS-SOCT combines the polarization sensitive analysis with time-frequency analysis. In this contribution the benefits of using the combination of timefrequency and polarization sensitive analysis are being expressed. The usefulness of PS-SOCT for nanoparticles evaluation is going to be tested on nanocomposite materials with TiO2 nanoparticles. The OCT measurements results have been compared with SEM examination of the PMMA matrix with nanoparticles. The experiment has proven that by the use of polarization sensitive and spectroscopic OCT the nanoparticles dispersion and size can be evaluated.

  5. Parylene nanocomposites using modified magnetic nanoparticles

    International Nuclear Information System (INIS)

    Garcia, Ignacio; Luzuriaga, A. Ruiz de; Grande, H.; Jeandupeux, L.; Charmet, J.; Laux, E.; Keppner, H.; Mecerreyes, D.; Cabanero, German

    2010-01-01

    Parylene/Fe 3 O 4 nanocomposites were synthesized and characterized. The nanocomposites were obtained by chemical vapour deposition polymerization of Parylene onto functionalized Fe 3 O 4 nanoparticles. For this purpose, allyltrichlorosilane was used to modify the surface of 7 nm size Fe 3 O 4 nanoparticles obtained by the coprecipitation method. The magnetic nanoparticles and obtained nanocomposite were characterized with X-ray diffraction (XRD), infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA) and magnetic measurements (SQUID). The successful incorporation of different amounts of nanoparticles into Parylene was confirmed by FTIR and TGA. Interestingly, increments in saturation magnetization of the nanocomposites were observed ranging from 0 emu/g of neat Parylene to 16.94 emu/g in the case of nanocomposite films that contained 27.5 wt% of nanoparticles.

  6. Solid lipid nanoparticles: A drug carrier system

    Directory of Open Access Journals (Sweden)

    Rashmi R Kokardekar

    2011-01-01

    Full Text Available Solid lipid nanoparticles (SLN are a type of nanoparticles. They are submicron colloidal carriers which are composed of physiological lipids, dispersed in water or in aqueous surfactant solutions. SLN have wide range of advantages over other types of nanoparticles. These include availability of large-scale production methods and no signs of cytotoxicity, which are main hindrances in the application of other types of nanoparticles. Hot and cold homogenization techniques are mainly employed for its production. They are mainly evaluated on the basis of their drug release profile and particle internal structure. The products based on SLN are under development. They have a very wide range of applications in cosmetics and pharmaceuticals. They can be applied for any purpose, for which nanoparticles have a distinct advantage. Thus, SLN can be used extensively as an alternative to the existing drug carrier systems, providing more flexibility with respect to the area of applications and also aspects for commercialization.

  7. Decontaminating soil organic pollutants with manufactured nanoparticles.

    Science.gov (United States)

    Li, Qi; Chen, Xijuan; Zhuang, Jie; Chen, Xin

    2016-06-01

    Organic pollutants in soils might threaten the environmental and human health. Manufactured nanoparticles are capable to reduce this risk efficiently due to their relatively large capacity of sorption and degradation of organic pollutants. Stability, mobility, and reactivity of nanoparticles are prerequisites for their efficacy in soil remediation. On the basis of a brief introduction of these issues, this review provides a comprehensive summary of the application and effectiveness of various types of manufactured nanoparticles for removing organic pollutants from soil. The main categories of nanoparticles include iron (oxides), titanium dioxide, carbonaceous, palladium, and amphiphilic polymeric nanoparticles. Their advantages (e.g., unique properties and high sorption capacity) and disadvantages (e.g., high cost and low recovery) for soil remediation are discussed with respect to the characteristics of organic pollutants. The factors that influence the decontamination effects, such as properties, surfactants, solution chemistry, and soil organic matter, are addressed.

  8. Synthesis of Metal Nanoparticles by Bacteria

    Directory of Open Access Journals (Sweden)

    Fikriye Alev Akçay

    2018-04-01

    Full Text Available Metal particles reduced to nano size by nanotechnological methods are confronted in many different fields such as biomedical and physicochemical, pharmaceutical, electric-electronic, automotive and food industries. Nanoparticles can be produced using chemical, physical and biological methods, of which chemical processes are in common use. However, physical and chemical methods are not environmentally friendly and economical because they require the use of high temperature, high pressure and toxic chemicals. For this reason, interest in the production of metal nanoparticles by biological methods, also called green technology, an environmentally friendly and sustainable approach, has increased in recent years. With some plant extracts and intracellular and extracellular secretions of microorganisms, some reduction reactions take place and metal nanoparticles are produced. Bacteria have been actively involved in nanotechnology in recent years due to their diversity in nature, their ease of isolation, and ease of nanoparticle synthesis. In this article, production and application of metal nanoparticles by using bacterial methods have been reviewed.

  9. Plasmonic nanoparticle scattering for color holograms.

    Science.gov (United States)

    Montelongo, Yunuen; Tenorio-Pearl, Jaime Oscar; Williams, Calum; Zhang, Shuang; Milne, William Ireland; Wilkinson, Timothy David

    2014-09-02

    This work presents an original approach to create holograms based on the optical scattering of plasmonic nanoparticles. By analogy to the diffraction produced by the scattering of atoms in X-ray crystallography, we show that plasmonic nanoparticles can produce a wave-front reconstruction when they are sampled on a diffractive plane. By applying this method, all of the scattering characteristics of the nanoparticles are transferred to the reconstructed field. Hence, we demonstrate that a narrow-band reconstruction can be achieved for direct white light illumination on an array of plasmonic nanoparticles. Furthermore, multicolor capabilities are shown with minimal cross-talk by multiplexing different plasmonic nanoparticles at subwavelength distances. The holograms were fabricated from a single subwavelength thin film of silver and demonstrate that the total amount of binary information stored in the plane can exceed the limits of diffraction and that this wavelength modulation can be detected optically in the far field.

  10. Inorganic Nanoparticles for Multimodal Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Magdalena Swierczewska

    2011-01-01

    Full Text Available Multimodal molecular imaging can offer a synergistic improvement of diagnostic ability over a single imaging modality. Recent development of hybrid imaging systems has profoundly impacted the pool of available multimodal imaging probes. In particular, much interest has been focused on biocompatible, inorganic nanoparticle-based multimodal probes. Inorganic nanoparticles offer exceptional advantages to the field of multimodal imaging owing to their unique characteristics, such as nanometer dimensions, tunable imaging properties, and multifunctionality. Nanoparticles mainly based on iron oxide, quantum dots, gold, and silica have been applied to various imaging modalities to characterize and image specific biologic processes on a molecular level. A combination of nanoparticles and other materials such as biomolecules, polymers, and radiometals continue to increase functionality for in vivo multimodal imaging and therapeutic agents. In this review, we discuss the unique concepts, characteristics, and applications of the various multimodal imaging probes based on inorganic nanoparticles.

  11. Species Differences Take Shape at Nanoparticles

    DEFF Research Database (Denmark)

    Hayashi, Yuya; Miclaus, Teodora; Scavenius, Carsten

    2013-01-01

    Cells recognize the biomolecular corona around a nanoparticle, but the biological identity of the complex may be considerably different among various species. This study explores the importance of protein corona composition for nanoparticle recognition by coelomocytes of the earthworm Eisenia...... fetida using E. fetida coelomic proteins (EfCP) as a native repertoire and fetal bovine serum (FBS) as a non-native reference. We have profiled proteins forming the long-lived corona around silver nanoparticles (75 nm OECD reference materials) and compared the responses of coelomocytes to protein coronas...... pre-formed of EfCP or FBS. We find that over time silver nanoparticles can competitively acquire a biological identity native to the cells in situ even in non-native media, and significantly greater cellular accumulation of the nanoparticles was observed with corona complexes pre-formed of EfCP (p

  12. Interactions of Model Cell Membranes with Nanoparticles

    Science.gov (United States)

    D'Angelo, S. M.; Camesano, T. A.; Nagarajan, R.

    2011-12-01

    The same properties that give nanoparticles their enhanced function, such as high surface area, small size, and better conductivity, can also alter the cytotoxicity of nanomaterials. Ultimately, many of these nanomaterials will be released into the environment, and can cause cytotoxic effects to environmental bacteria, aquatic organisms, and humans. Previous results from our laboratory suggest that nanoparticles can have a detrimental effect on cells, depending on nanoparticle size. It is our goal to characterize the properties of nanomaterials that can result in membrane destabilization. We tested the effects of nanoparticle size and chemical functionalization on nanoparticle-membrane interactions. Gold nanoparticles at 2, 5,10, and 80 nm were investigated, with a concentration of 1.1x1010 particles/mL. Model cell membranes were constructed of of L-α-phosphatidylcholine (egg PC), which has negatively charged lipid headgroups. A quartz crystal microbalance with dissipation (QCM-D) was used to measure frequency changes at different overtones, which were related to mass changes corresponding to nanoparticle interaction with the model membrane. In QCM-D, a lipid bilayer is constructed on a silicon dioxide crystal. The crystals, oscillate at different harmonic frequencies depending upon changes in mass or energy dissipation. When mass is added to the crystal surface, such as through addition of a lipid vesicle solution, the frequency change decreases. By monitoring the frequency and dissipation, we could verify that a supported lipid bilayer (SLB) formed on the silica surface. After formation of the SLB, the nanoparticles can be added to the system, and the changes in frequency and dissipation are monitored in order to build a mechanistic understanding of nanoparticle-cell membrane interactions. For all of the smaller nanoparticles (2, 5, and 10 nm), nanoparticle addition caused a loss of mass from the lipid bilayer, which appears to be due to the formation of holes

  13. Diatomite silica nanoparticles for drug delivery

    Science.gov (United States)

    Ruggiero, Immacolata; Terracciano, Monica; Martucci, Nicola M.; De Stefano, Luca; Migliaccio, Nunzia; Tatè, Rosarita; Rendina, Ivo; Arcari, Paolo; Lamberti, Annalisa; Rea, Ilaria

    2014-07-01

    Diatomite is a natural fossil material of sedimentary origin, constituted by fragments of diatom siliceous skeletons. In this preliminary work, the properties of diatomite nanoparticles as potential system for the delivery of drugs in cancer cells were exploited. A purification procedure, based on thermal treatments in strong acid solutions, was used to remove inorganic and organic impurities from diatomite and to make them a safe material for medical applications. The micrometric diatomite powder was reduced in nanoparticles by mechanical crushing, sonication, and filtering. Morphological analysis performed by dynamic light scattering and transmission electron microscopy reveals a particles size included between 100 and 300 nm. Diatomite nanoparticles were functionalized by 3-aminopropyltriethoxysilane and labeled by tetramethylrhodamine isothiocyanate. Different concentrations of chemically modified nanoparticles were incubated with cancer cells and confocal microscopy was performed. Imaging analysis showed an efficient cellular uptake and homogeneous distribution of nanoparticles in cytoplasm and nucleus, thus suggesting their potentiality as nanocarriers for drug delivery.

  14. Controlled functionalization of nanoparticles & practical applications

    Science.gov (United States)

    Rashwan, Khaled

    With the increasing use of nanoparticles in both science and industry, their chemical modification became a significant part of nanotechnology. Unfortunately, most commonly used procedures provide just randomly functionalized materials. The long-term objective of our work is site- and stoichiometrically-controlled functionalization of nanoparticles with the utilization of solid supports and other nanostructures. On the examples of silica nanoparticles and titanium dioxide nanorods, we have obtained results on the solid-phase chemistry, method development, and modeling, which advanced us toward this goal. At the same time, we explored several applications of nanoparticles that will benefit from the controlled functionalization: imaging of titanium-dioxide-based photocatalysts, bioimaging by fluorescent nanoparticles, drug delivery, assembling of bone implants, and dental compositions. Titanium dioxide-based catalysts are known for their catalytic activity and their application in solar energy utilization such as photosplitting of water. Functionalization of titanium dioxide is essential for enhancing bone-titanium dioxide nanotube adhesion, and, therefore, for its application as an interface between titanium implants and bones. Controlled functionalization of nanoparticles should enhance sensitivity and selectivity of nanoassemblies for imaging and drug delivery applications. Along those lines, we studied the relationship between morphology and surface chemistry of nanoparticles, and their affinity to organic molecules (salicylic and caffeic acid) using Langmuir adsorption isotherms, and toward material surfaces using SEM- and TEM-imaging. We focused on commercial samples of titanium dioxide, titanium dioxide nanorods with and without oleic acid ligands, and differently functionalized silica nanoparticles. My work included synthesis, functionalization, and characterization of several types of nanoparticles, exploring their application in imaging, dentistry, and bone

  15. Synthesis and characterization of cobalt/gold bimetallic nanoparticles

    International Nuclear Information System (INIS)

    Cheng, Guangjun; Hight Walker, Angela R.

    2007-01-01

    Cobalt/gold (Co/Au) bimetallic nanoparticles are prepared by chemically reducing gold (III) chloride to gold in the presence of pre-synthesized Co nanoparticles. Transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) absorption spectrometry, and a superconducting quantum interference device (SQUID) magnetometer have been used to characterize as-prepared bimetallic nanoparticles. Our findings demonstrate Au not only grows onto Co nanoparticles, forming a surface coating, but also diffuses into Co nanoparticles. The introduction of Au alters the crystalline structure of Co nanoparticles and changes their magnetic properties. Dodecanethiols induce a reorganization of as-prepared Co/Au bimetallic nanoparticles

  16. Water-soluble PEGylated silicon nanoparticles and their assembly into swellable nanoparticle aggregates

    International Nuclear Information System (INIS)

    Xu, Zejing; Li, Yejia; Zhang, Boyu; Purkait, Tapas; Alb, Alina; Mitchell, Brian S.; Grayson, Scott M.; Fink, Mark J.

    2015-01-01

    Water-soluble silicon nanoparticles were synthesized by grafting PEG polymers onto functionalized silicon nanoparticles with distal alkyne or azide moieties. The surface-functionalized silicon nanoparticles were produced in one step from the reactive high-energy ball milling (RHEBM) of silicon wafers with a mixture of either 5-chloro-1-pentyne in 1-pentyne or 1,7 octadiyne in 1-hexyne to afford air and water-stable chloroalkyl or alkynyl-terminated nanoparticles, respectively. Nanoparticles with the ω-chloroalkyl substituents were easily converted to ω-azidoalkyl groups through the reaction of the Si nanoparticles with sodium azide in DMF. The azido-terminated nanoparticles were then grafted with mono-alkynyl-PEG polymers using a copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction to afford core–shell silicon nanoparticles with a covalently attached PEG shell. Covalently linked Si nanoparticle clusters were synthesized via the CuAAC “click” reaction of functional Si NPs with α,ω-functional PEG polymers of various lengths. Dynamic light scattering studies show that the flexible globular nanoparticle aggregates undergo a solvent-dependent change in volume (ethanol > dichloromethane > toluene) similar in behavior to hydrogel nanocomposites

  17. Classification of Magnetic Nanoparticle Systems

    DEFF Research Database (Denmark)

    Bogren, Sara; Fornara, Andrea; Ludwig, Frank

    2015-01-01

    and the size parameters are determined from electron microscopy and dynamic light scattering. Using these methods, we also show that the nanocrystal size and particle morphology determines the dynamic magnetic properties for both single- and multi-core particles. The presented results are obtained from...... the four year EU NMP FP7 project, NanoMag, which is focused on standardization of analysis methods for magnetic nanoparticles.......This study presents classification of different magnetic single- and multi-core particle systems using their measured dynamic magnetic properties together with their nanocrystal and particle sizes. The dynamic magnetic properties are measured with AC (dynamical) susceptometry and magnetorelaxometry...

  18. Adsorbent catalytic nanoparticles and methods of using the same

    Energy Technology Data Exchange (ETDEWEB)

    Slowing, Igor Ivan; Kandel, Kapil

    2017-01-31

    The present invention provides an adsorbent catalytic nanoparticle including a mesoporous silica nanoparticle having at least one adsorbent functional group bound thereto. The adsorbent catalytic nanoparticle also includes at least one catalytic material. In various embodiments, the present invention provides methods of using and making the adsorbent catalytic nanoparticles. In some examples, the adsorbent catalytic nanoparticles can be used to selectively remove fatty acids from feedstocks for biodiesel, and to hydrotreat the separated fatty acids.

  19. Antimicrobial activity of silver nanoparticles encapsulated in poly-N-isopropylacrylamide-based polymeric nanoparticles.

    Science.gov (United States)

    Qasim, Muhammad; Udomluck, Nopphadol; Chang, Jihyun; Park, Hansoo; Kim, Kyobum

    2018-01-01

    In this study, we analyzed the antimicrobial activities of poly- N -isopropylacrylamide (pNIPAM)-based polymeric nanoparticles encapsulating silver nanoparticles (AgNPs). Three sizes of AgNP-encapsulating pNIPAM- and pNIPAM-NH 2 -based polymeric nanoparticles were fabricated. Highly stable and uniformly distributed AgNPs were encapsulated within polymeric nanoparticles via in situ reduction of AgNO 3 using NaBH 4 as the reducing agent. The formation and distribution of AgNPs was confirmed by UV-visible spectroscopy, transmission electron microscopy, and inductively coupled plasma optical emission spectrometry, respectively. Both polymeric nanoparticles showed significant bacteriostatic activities against Gram-negative ( Escherichia coli ) and Gram-positive ( Staphylococcus aureus ) bacteria depending on the nanoparticle size and amount of AgNO 3 used during fabrication.

  20. Standardization of Nanoparticle Characterization: Methods for Testing Properties, Stability, and Functionality of Edible Nanoparticles.

    Science.gov (United States)

    McClements, Jake; McClements, David Julian

    2016-06-10

    There has been a rapid increase in the fabrication of various kinds of edible nanoparticles for oral delivery of bioactive agents, such as those constructed from proteins, carbohydrates, lipids, and/or minerals. It is currently difficult to compare the relative advantages and disadvantages of different kinds of nanoparticle-based delivery systems because researchers use different analytical instruments and protocols to characterize them. In this paper, we briefly review the various analytical methods available for characterizing the properties of edible nanoparticles, such as composition, morphology, size, charge, physical state, and stability. This information is then used to propose a number of standardized protocols for characterizing nanoparticle properties, for evaluating their stability to environmental stresses, and for predicting their biological fate. Implementation of these protocols would facilitate comparison of the performance of nanoparticles under standardized conditions, which would facilitate the rational selection of nanoparticle-based delivery systems for different applications in the food, health care, and pharmaceutical industries.

  1. Kinetics of laser irradiated nanoparticles cloud

    Science.gov (United States)

    Mishra, S. K.; Upadhyay Kahaly, M.; Misra, Shikha

    2018-02-01

    A comprehensive kinetic model describing the complex kinetics of a laser irradiated nanoparticle ensemble has been developed. The absorbed laser radiation here serves dual purpose, viz., photoenhanced thermionic emission via rise in its temperature and direct photoemission of electrons. On the basis of mean charge theory along with the equations for particle (electron) and energy flux balance over the nanoparticles, the transient processes of charge/temperature evolution over its surface and mass diminution on account of the sublimation (phase change) process have been elucidated. Using this formulation phenomenon of nanoparticle charging, its temperature rise to the sublimation point, mass ablation, and cloud disintegration have been investigated; afterwards, typical timescales of disintegration, sublimation and complete evaporation in reference to a graphite nanoparticle cloud (as an illustrative case) have been parametrically investigated. Based on a numerical analysis, an adequate parameter space describing the nanoparticle operation below the sublimation temperature, in terms of laser intensity, wavelength and nanoparticle material work function, has been identified. The cloud disintegration is found to be sensitive to the nanoparticle charging through photoemission; as a consequence, it illustrates that radiation operating below the photoemission threshold causes disintegration in the phase change state, while above the threshold, it occurs with the onset of surface heating.

  2. Nanoparticles modified with multiple organic acids

    Science.gov (United States)

    Cook, Ronald Lee (Inventor); Luebben, Silvia DeVito (Inventor); Myers, Andrew William (Inventor); Smith, Bryan Matthew (Inventor); Elliott, Brian John (Inventor); Kreutzer, Cory (Inventor); Wilson, Carolina (Inventor); Meiser, Manfred (Inventor)

    2007-01-01

    Surface-modified nanoparticles of boehmite, and methods for preparing the same. Aluminum oxyhydroxide nanoparticles are surface modified by reaction with selected amounts of organic acids. In particular, the nanoparticle surface is modified by reactions with two or more different carboxylic acids, at least one of which is an organic carboxylic acid. The product is a surface modified boehmite nanoparticle that has an inorganic aluminum oxyhydroxide core, or part aluminum oxyhydroxide core and a surface-bonded organic shell. Organic carboxylic acids of this invention contain at least one carboxylic acid group and one carbon-hydrogen bond. One embodiment of this invention provides boehmite nanoparticles that have been surface modified with two or more acids one of which additional carries at least one reactive functional group. Another embodiment of this invention provides boehmite nanoparticles that have been surface modified with multiple acids one of which has molecular weight or average molecular weight greater than or equal to 500 Daltons. Yet, another embodiment of this invention provides boehmite nanoparticles that are surface modified with two or more acids one of which is hydrophobic in nature and has solubility in water of less than 15 by weight. The products of the methods of this invention have specific useful properties when used in mixture with liquids, as filler in solids, or as stand-alone entities.

  3. Dynamics of solvent-free grafted nanoparticles

    KAUST Repository

    Chremos, Alexandros

    2012-01-01

    The diffusivity and structural relaxation characteristics of oligomer-grafted nanoparticles have been investigated with simulations of a previously proposed coarse-grained model at atmospheric pressure. Solvent-free, polymer-grafted nanoparticles as well as grafted nanoparticles in a melt were compared to a reference system of bare (ungrafted) particles in a melt. Whereas longer chains lead to a larger hydrodynamic radius and lower relative diffusivity for grafted particles in a melt, bulk solvent-free nanoparticles with longer chains have higher relative diffusivities than their short chain counterparts. Solvent-free nanoparticles with short chains undergo a glass transition as indicated by a vanishing diffusivity, diverging structural relaxation time and the formation of body-centered-cubic-like order. Nanoparticles with longer chains exhibit a more gradual increase in the structural relaxation time with decreasing temperature and concomitantly increasing particle volume fraction. The diffusivity of the long chain nanoparticles exhibits a minimum at an intermediate temperature and volume fraction where the polymer brushes of neighboring particles overlap, but must stretch to fill the interparticle space. © 2012 American Institute of Physics.

  4. Assessing NLRP3 Inflammasome Activation by Nanoparticles.

    Science.gov (United States)

    Sharma, Bhawna; McLeland, Christopher B; Potter, Timothy M; Stern, Stephan T; Adiseshaiah, Pavan P

    2018-01-01

    NLRP3 inflammasome activation is one of the initial steps in an inflammatory cascade against pathogen/danger-associated molecular patterns (PAMPs/DAMPs), such as those arising from environmental toxins or nanoparticles, and is essential for innate immune response. NLRP3 inflammasome activation in cells can lead to the release of IL-1β cytokine via caspase-1, which is required for inflammatory-induced programmed cell death (pyroptosis). Nanoparticles are commonly used as vaccine adjuvants and drug delivery vehicles to improve the efficacy and reduce the toxicity of chemotherapeutic agents. Several studies indicate that different nanoparticles (e.g., liposomes, polymer-based nanoparticles) can induce NLRP3 inflammasome activation. Generation of a pro-inflammatory response is beneficial for vaccine delivery to provide adaptive immunity, a necessary step for successful vaccination. However, similar immune responses for intravenously injected, drug-containing nanoparticles can result in immunotoxicity (e.g., silica nanoparticles). Evaluation of NLRP3-mediated inflammasome activation by nanoparticles may predict pro-inflammatory responses in order to determine if these effects may be mitigated for drug delivery or optimized for vaccine development. In this protocol, we outline steps to monitor the release of IL-1β using PMA-primed THP-1 cells, a human monocytic leukemia cell line, as a model system. IL-1β release is used as a marker of NLRP3 inflammasome activation.

  5. Gold nanoparticles produced in a microalga

    International Nuclear Information System (INIS)

    Luangpipat, Tiyaporn; Beattie, Isabel R.; Chisti, Yusuf; Haverkamp, Richard G.

    2011-01-01

    An efficient biological route to production of gold nanoparticles which allows the nanoparticles to be easily recovered remains elusive. Live cells of the green microalga Chlorella vulgaris were incubated with a solution of gold chloride and harvested by centrifugation. Nanoparticles inside intact cells were identified by transmission electron microscopy and confirmed to be metallic gold by synchrotron based X-ray powder diffraction and X-ray absorption spectroscopy. These intracellular gold nanoparticles were 40–60 nm in diameter. At a concentration of 1.4% Au in the alga, a better than 97% recovery of the gold from solution was achieved. A maximum of 4.2% Au in the alga was obtained. Exposure of C. vulgaris to solutions containing dissolved salts of palladium, ruthenium, and rhodium also resulted in the production of the corresponding nanoparticles within the cells. These were surmised to be also metallic, but were produced at a much lower intracellular concentration than achieved with gold. Iridium was apparently toxic to the alga. No nanoparticles were observed using platinum solutions. C. vulgaris provides a possible route to large scale production of gold nanoparticles.

  6. Silica nanoparticles with a substrate switchable luminescence

    International Nuclear Information System (INIS)

    Bochkova, O D; Mustafina, A R; Fedorenko, S V; Konovalov, A I

    2011-01-01

    Silica nanoparticles with visible (Tb and Ru doped), near IR (Yb doped) and dual visible-near IR luminescence (Ru-Yb doped) were obtained by reverse w/o microemulsion procedure. Plenty of luminescent complexes (from 4900 to 10000) encapsulated into each nanoparticle ensures the intensive luminescence of nanoparticles and their applicability as biomarkers. The silica surface decoration by definite anchor groups is the required step for the gaining to these nanoparticles marking and sensing functions. Thus covalent and non-covalent surface modification of these nanoparticles was developed to provide the binding with biotargets and sensing of anions. The dicationic surfactant coating of negatively charged Tb(III)-TCAS doped silica nanoparticles was chosen as the basis for the anion responsible system. The reversible insertion of the quenching anions (namely phenol red) into the surfactant based layer at the surface of luminescent nanoparticles switches off the Tb-centered luminescence. In turn the reversible reestablishment of the luminescence results from the competitive insertion of the non-quenching anions into the surfactant layer at the silica/water interface. The hydrophobic anions exemplified by dodecylsulfates versus hydrophilic ones (hydrophosphates) are preferable in the competition with phenol red anions.

  7. Chemical synthesis and characterization of palladium nanoparticles

    International Nuclear Information System (INIS)

    Nguyen, Viet Long; Hayakawa, Tomokatsu; Nogami, Masayuki; Nguyen, Duc Chien; Hirata, Hirohito; Ohtaki, Michitaka

    2010-01-01

    This work presents the results of the successful preparation of Pd nanoparticles by the polyol method and the proposed techniques of controlling their size and shape. Polyvinylpyrrolidone (PVP) stabilized Pd nanoparticles of various shapes with the largest sizes in the forms of octahedrons (24 nm), tetrahedrons (22 nm) and cubes (20 nm) have been obtained by alcohol reduction in ethanol with the addition of a hydrochloric acid catalyst. Moreover, PVP–Pd nanoparticles of well-controlled spherical shapes have also been prepared by a modified polyol method. PVP–Pd nanoparticles of cubic, octahedral, tetrahedral and spherical shapes with well-controlled size achieved by using ethylene glycol (EG) as reductant and various inorganic species were also fabricated. In particular, Pd nanorods with sizes of 47 nm and 16 nm formed due to the anisotropic growth mechanism of Pd nanoparticles were found. At the same time, tetrahedral particles of sharp shapes of 120 nm and 70 nm sizes have been observed. A high concentration of inorganic species was used to control the size and shape of the Pd nanoparticles, leading to the appearance of various irregular sizes and shapes. There was evidence of the very sharp corners and edges of tetrahedral and octahedral Pd nanoparticles or others that were formed in the clustering and combination of the seeds of smaller particles

  8. Radiofrequency Heating Pathways for Gold Nanoparticles

    Science.gov (United States)

    Collins, C. B.; McCoy, R. S.; Ackerson, B. J.; Collins, G. J.

    2015-01-01

    This feature article reviews the thermal dissipation of nanoscopic gold under radiofrequency (RF) irradiation. It also presents previously unpublished data addressing obscure aspects of this phenomenon. While applications in biology motivated initial investigation of RF heating of gold nanoparticles, recent controversy concerning whether thermal effects can be attributed to nanoscopic gold highlight the need to understand the involved mechanism or mechanisms of heating. Both the nature of the particle and the nature of the RF field influence heating. Aspects of nanoparticle chemistry and physics, including the hydrodynamic diameter of the particle, the oxidation state and related magnetism of the core, and the chemical nature of the ligand shell may all strongly influence to what extent a nanoparticle heats in an RF field. Aspects of RF include: power, frequency and antenna designs that emphasize relative strength of magnetic or electric fields, and also influence the extent to which a gold nanoparticle heats in RF. These nanoparticle and RF properties are analysed in the context of three heating mechanisms proposed to explain gold nanoparticle heating in an RF field. This article also makes a critical analysis of the existing literature in the context of the nanoparticle preparations, RF structure, and suggested mechanisms in previously reported experiments. PMID:24962620

  9. DNA nanoparticles with core-shell morphology.

    Science.gov (United States)

    Chandran, Preethi L; Dimitriadis, Emilios K; Lisziewicz, Julianna; Speransky, Vlad; Horkay, Ferenc

    2014-10-14

    Mannobiose-modified polyethylenimines (PEI) are used in gene therapy to generate nanoparticles of DNA that can be targeted to the antigen-presenting cells of the immune system. We report that the sugar modification alters the DNA organization within the nanoparticles from homogenous to shell-like packing. The depth-dependent packing of DNA within the nanoparticles was probed using AFM nano-indentation. Unmodified PEI-DNA nanoparticles display linear elastic properties and depth-independent mechanics, characteristic of homogenous materials. Mannobiose-modified nanoparticles, however, showed distinct force regimes that were dependent on indentation depth, with 'buckling'-like response that is reproducible and not due to particle failure. By comparison with theoretical studies of spherical shell mechanics, the structure of mannobiosylated particles was deduced to be a thin shell with wall thickness in the order of few nanometers, and a fluid-filled core. The shell-core structure is also consistent with observations of nanoparticle denting in altered solution conditions, with measurements of nanoparticle water content from AFM images, and with images of DNA distribution in Transmission Electron Microscopy.

  10. Biosynthesis of nanoparticles using microbes- a review.

    Science.gov (United States)

    Hulkoti, Nasreen I; Taranath, T C

    2014-09-01

    The biosynthesis of nanoparticles by microorganism is a green and eco-friendly technology. This review focuses on the use of consortium of diverse microorganisms belonging to both prokaryotes and eukaryotes for the synthesis of metallic nanoparticles viz. silver, gold, platinum, zirconium, palladium, iron, cadmium and metal oxides such as titanium oxide, zinc oxide, etc. These microorganisms include bacteria, actinomycetes, fungi and algae. The synthesis of nanoparticles may be intracellular or extracellular. The several workers have reported that NADH dependent nitrate reductase enzyme plays a vital role in the conversion of metallic ions to nanoparticles. The FTIR study reveals that diverse biomolecules viz. carboxyl group, primary and secondary amines, amide I, II, and III bands etc serve as a tool for bioreduction and capping agents there by offering stability to particles by preventing agglomeration and growth. The size and shape of the nanoparticles vary with the organism employed and conditions employed during the synthesis which included pH, temperature and substrate concentration. The microorganisms provide diverse environment for biosynthesis of nanoparticles. These particles are safe and eco-friendly with a lot of applications in medicine, agriculture, cosmetic industry, drug delivery and biochemical sensors. The challenges for redressal include optimal production and minimal time to obtain desired size and shape, to enhance the stability of nanoparticles and optimization of specific microorganisms for specific application. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Nanoparticles modified with multiple organic acids

    Science.gov (United States)

    Cook, Ronald Lee; Luebben, Silvia DeVito; Myers, Andrew William; Smith, Bryan Matthew; Elliott, Brian John; Kreutzer, Cory; Wilson, Carolina; Meiser, Manfred

    2007-07-17

    Surface-modified nanoparticles of boehmite, and methods for preparing the same. Aluminum oxyhydroxide nanoparticles are surface modified by reaction with selected amounts of organic acids. In particular, the nanoparticle surface is modified by reactions with two or more different carboxylic acids, at least one of which is an organic carboxylic acid. The product is a surface modified boehmite nanoparticle that has an inorganic aluminum oxyhydroxide core, or part aluminum oxyhydroxide core and a surface-bonded organic shell. Organic carboxylic acids of this invention contain at least one carboxylic acid group and one carbon-hydrogen bond. One embodiment of this invention provides boehmite nanoparticles that have been surface modified with two or more acids one of which additional carries at least one reactive functional group. Another embodiment of this invention provides boehmite nanoparticles that have been surface modified with multiple acids one of which has molecular weight or average molecular weight greater than or equal to 500 Daltons. Yet, another embodiment of this invention provides boehmite nanoparticles that are surface modified with two or more acids one of which is hydrophobic in nature and has solubility in water of less than 15 by weight. The products of the methods of this invention have specific useful properties when used in mixture with liquids, as filler in solids, or as stand-alone entities.

  12. Complex conductivity response to silver nanoparticles in ...

    Science.gov (United States)

    The increase in the use of nanoscale materials in consumer products has resulted in a growing concern of their potential hazard to ecosystems and public health from their accidental or intentional introduction to the environment. Key environmental, health, and safety research needs include knowledge and methods for their detection, characterization, fate, and transport. Specifically, techniques available for the direct detection and quantification of their fate and transport in the environment are limited. Their small size, high surface area to volume ratio, interfacial, and electrical properties make metallic nanoparticles, such as silver nanoparticles, good targets for detection using electrical geophysical techniques. Here we measured the complex conductivity response to silver nanoparticles in sand columns under varying moisture conditions (0–30%), nanoparticle concentrations (0–10 mg/g), lithology (presence of clay), pore water salinity (0.0275 and 0.1000 S/m), and particle size (35, 90–210 and 1500–2500 nm). Based on the Cole-Cole relaxation models we obtained the chargeability and the time constant. We demonstrate that complex conductivity can detect silver nanoparticles in porous media with the response enhanced by higher concentrations of silver nanoparticles, moisture content, ionic strength, clay content and particle diameter. Quantification of the volumetric silver nanoparticles content in the porous media can also be obtained from complex co

  13. Silver Nanoparticles and Mitochondrial Interaction

    Directory of Open Access Journals (Sweden)

    Eriberto Bressan

    2013-01-01

    Full Text Available Nanotechnology has gone through a period of rapid growth, thus leading to the constant increase in the application of engineered nanomaterials in daily life. Several different types of nanoparticles have been engineered to be employed in a wide array of applications due to their high surface to volume ratio that leads to unique physical and chemical properties. So far, silver nanoparticles (AgNps have been used in many more different medical devices than any other nanomaterial, mainly due to their antimicrobial properties. Despite the promising advantages posed by using AgNps in medical applications, the possible health effects associated with the inevitable human exposure to AgNps have raised concerns as to their use since a clear understanding of their specific interaction with biological systems has not been attained yet. In light of such consideration, aim of the present work is the morphological analysis of the intracellular behavior of AgNps with a diameter of 10 nm, with a special attention to their interaction with mitochondria.

  14. Dextran Nanoparticle Synthesis and Properties.

    Science.gov (United States)

    Wasiak, Iga; Kulikowska, Aleksandra; Janczewska, Magdalena; Michalak, Magdalena; Cymerman, Iwona A; Nagalski, Andrzej; Kallinger, Peter; Szymanski, Wladyslaw W; Ciach, Tomasz

    2016-01-01

    Dextran is widely exploited in medical products and as a component of drug-delivering nanoparticles (NPs). Here, we tested whether dextran can serve as the main substrate of NPs and form a stable backbone. We tested dextrans with several molecular masses under several synthesis conditions to optimize NP stability. The analysis of the obtained nanoparticles showed that dextran NPs that were synthesized from 70 kDa dextran with a 5% degree of oxidation of the polysaccharide chain and 50% substitution with dodecylamine formed a NP backbone composed of modified dextran subunits, the mean diameter of which in an aqueous environment was around 100 nm. Dextran NPs could be stored in a dry state and reassembled in water. Moreover, we found that different chemical moieties (e.g., drugs such as doxorubicin) can be attached to the dextran NPs via a pH-dependent bond that allows release of the drug with lowering pH. We conclude that dextran NPs are a promising nano drug carrier.

  15. Hydrothermal synthesis of hydroxyapatite nanoparticles decorated with silver nanoparticles for application in biomaterials

    International Nuclear Information System (INIS)

    Assis, Jordanna Fernandes; Arantes, Tatiane Moraes; Cristovan, F.H.; Tada, Dayane Batista

    2016-01-01

    Full text: The hydroxyapatite nanoparticles (HA) have research attention because are material that exhibit biocompatibility with bone mineral phase of human body is great interest in the scientific community. Synthetic hydroxyapatite nanoparticles have excellent biocompatibility and bioactivity, due biocompatibility and osteo inducibility [1-3]. The hydroxyapatite nanoparticles were synthesized by hydrothermal processing and were characterized by X-ray diffraction (XRD), Raman spectroscopy and transmission electron microscopy (TEM). The XRD and Raman spectra showed crystalline hydroxyapatite colloidal nanoparticles were obtained in the hexagonal phase. XRD measure showed silver diffraction peaks cubic phase confirmed the presence of the silver nanoparticles decorated hydroxyapatite surface. TEM images showed HA nanoparticles presented a well defined nanorod shapes and narrow size distributions with dimensions (width and length) around of 5 nm and 50 nm decorated with silver nanoparticles of spherical shape about 20 nm in diameter The results showed that crystalline hydroxyapatite colloidal nanoparticles with rod-like morphology and uniform decorated with silver spherical nanoparticles size were obtained by hydrothermal synthesis. These nanoparticles The cell viability of the HA and HA/Ag was analyzed by reduction of the tetrazolium salt (MTT test). Embryonic mouse fibroblast cells were grown in the presence of nanoparticles for a total period of 96 hours. Analyses were made in 24h, 48h, 72h and 96h. The suspensions at the end of each period were analyzed in spectrophotometer. The 24h experiments were the most conclusive, with the silver presence in the HA, there is an increased in cellular proliferation. The results demonstrated that the HA/Ag nanoparticles have potential use as biomaterials in medical/odontological applications. (author)

  16. Hydrothermal synthesis of hydroxyapatite nanoparticles decorated with silver nanoparticles for application in biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Assis, Jordanna Fernandes; Arantes, Tatiane Moraes, E-mail: fernandes.jordanna9@gmail.com [Universidade Federal de Goias (UFG), Goiania (Brazil); Cristovan, F.H.; Tada, Dayane Batista [Universidade Federal de Sao Paulo (UNIFESP), Sao Jose dos Campos, SP (Brazil)

    2016-07-01

    Full text: The hydroxyapatite nanoparticles (HA) have research attention because are material that exhibit biocompatibility with bone mineral phase of human body is great interest in the scientific community. Synthetic hydroxyapatite nanoparticles have excellent biocompatibility and bioactivity, due biocompatibility and osteo inducibility [1-3]. The hydroxyapatite nanoparticles were synthesized by hydrothermal processing and were characterized by X-ray diffraction (XRD), Raman spectroscopy and transmission electron microscopy (TEM). The XRD and Raman spectra showed crystalline hydroxyapatite colloidal nanoparticles were obtained in the hexagonal phase. XRD measure showed silver diffraction peaks cubic phase confirmed the presence of the silver nanoparticles decorated hydroxyapatite surface. TEM images showed HA nanoparticles presented a well defined nanorod shapes and narrow size distributions with dimensions (width and length) around of 5 nm and 50 nm decorated with silver nanoparticles of spherical shape about 20 nm in diameter The results showed that crystalline hydroxyapatite colloidal nanoparticles with rod-like morphology and uniform decorated with silver spherical nanoparticles size were obtained by hydrothermal synthesis. These nanoparticles The cell viability of the HA and HA/Ag was analyzed by reduction of the tetrazolium salt (MTT test). Embryonic mouse fibroblast cells were grown in the presence of nanoparticles for a total period of 96 hours. Analyses were made in 24h, 48h, 72h and 96h. The suspensions at the end of each period were analyzed in spectrophotometer. The 24h experiments were the most conclusive, with the silver presence in the HA, there is an increased in cellular proliferation. The results demonstrated that the HA/Ag nanoparticles have potential use as biomaterials in medical/odontological applications. (author)

  17. Sustainable steric stabilization of colloidal titania nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Elbasuney, Sherif, E-mail: sherif_basuney2000@yahoo.com

    2017-07-01

    Graphical abstract: Controlled surface properties of titania nanoparticles via surface modification, flocculation from aqueous phase (a), stabilization in aqueous phase (b), extraction to organic phase (c). - Highlights: • Complete change in surface properties of titania nanoparticles from hydrophilic to hydrophobic. • Harvesting the formulated nanoparticles from the aqueous phase to the organic phase. • Exclusive surface modification in the reactor during nanoparticle synthesis. • Sustainable stabilization of titania nanoparticles in aqueous media with polar polymeric dispersant. - Abstract: A route to produce a stable colloidal suspension is essential if mono-dispersed particles are to be successfully synthesized, isolated, and used in subsequent nanocomposite manufacture. Dispersing nanoparticles in fluids was found to be an important approach for avoiding poor dispersion characteristics. However, there is still a great tendency for colloidal nanoparticles to flocculate over time. Steric stabilization can prevent coagulation by introducing a thick adsorbed organic layer which constitutes a significant steric barrier that can prevent the particle surfaces from coming into direct contact. One of the main features of hydrothermal synthesis technique is that it offers novel approaches for sustainable nanoparticle surface modification. This manuscript reports on the sustainable steric stabilization of titanium dioxide nanoparticles. Nanoparticle surface modification was performed via two main approaches including post-synthesis and in situ surface modification. The tuneable hydrothermal conditions (i.e. temperature, pressure, flow rates, and surfactant addition) were optimized to enable controlled steric stabilization in a continuous fashion. Effective post synthesis surface modification with organic ligand (dodecenyl succinic anhydride (DDSA)) was achieved; the optimum surface coating temperature was reported to be 180–240 °C to ensure DDSA ring opening

  18. Nitride stabilized core/shell nanoparticles

    Science.gov (United States)

    Kuttiyiel, Kurian Abraham; Sasaki, Kotaro; Adzic, Radoslav R.

    2018-01-30

    Nitride stabilized metal nanoparticles and methods for their manufacture are disclosed. In one embodiment the metal nanoparticles have a continuous and nonporous noble metal shell with a nitride-stabilized non-noble metal core. The nitride-stabilized core provides a stabilizing effect under high oxidizing conditions suppressing the noble metal dissolution during potential cycling. The nitride stabilized nanoparticles may be fabricated by a process in which a core is coated with a shell layer that encapsulates the entire core. Introduction of nitrogen into the core by annealing produces metal nitride(s) that are less susceptible to dissolution during potential cycling under high oxidizing conditions.

  19. Magnetic irone oxide nanoparticles in photosynthetic systems

    International Nuclear Information System (INIS)

    Khalilov, R.I.; Nasibova, A.N.; Khomutov, G.B.

    2014-01-01

    Full text : It was found and studied the effect of biogenic formation of magnetic inclusions in photosynthetic systems - in various higher plants under the influence of some external stress factors (radiation impact, moisture deficit) and in a model system - a suspension of chloroplasts. For registration and characterization of magnetic nanoparticles in the samples used EPR spectrometer because superparamagnetic and ferromagnetic nanoparticles have a chcracteristic signals of electron magnetic resonance. For direct visualization of magnetic nanoparticles it was used the method of transmission electron microscopy

  20. Analyzing Engineered Nanoparticles using Photothermal Infrared Spectroscopy

    DEFF Research Database (Denmark)

    Yamada, Shoko

    . To facilitate occupational safety and health there is a need to develop instruments to monitor and analyze nanoparticles in the industry, research and urban environments. The aim of this Ph.D. project was to develop new sensors that can analyze engineered nanoparticles. Two sensors were studied: (i......) a miniaturized toxicity sensor based on electrochemistry and (ii) a photothermal spectrometer based on tensile-stressed mechanical resonators (string resonators). Miniaturization of toxicity sensor targeting engineered nanoparticles was explored. This concept was based on the results of the biodurability test...

  1. Magnetic nanoparticles for tunable microwave metamaterials

    KAUST Repository

    Noginova, Natalia; Williams, Quincy Leon; Dallas, Panagiotis; Giannelis, Emmanuel P.

    2012-01-01

    Commonly, metamaterials are electrically engineered systems with optimized spatial arrangement of subwavelength sized metal and dielectric components. We explore alternative methods based on use of magnetic inclusions, such as magnetic nanoparticles, which can allow permeability of a composite to be tuned from negative to positive at the range of magnetic resonance. To better understand effects of particle size and magnetization dynamics, we performed electron magnetic resonance study on several varieties of magnetic nanoparticles and determined potential of nanoparticle use as building blocks for tunable microwave metamaterials. © (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  2. Obtention of Ti nanoparticles by laser ablation

    International Nuclear Information System (INIS)

    Diaz E, J.R.; Escobar A, L.; Camps, E.; Santiago, P.; Ascencio, J.

    2002-01-01

    The obtention of Ti nanoparticles around 5-30 nm diameter through the laser ablation technique is reported. The formation of nanoparticles is carried out in He atmosphere to different pressures, placing directly in Si substrates (100) and in Cu grids. The results show that the work pressure is an important parameter that allows to control the nanoparticles size. Also the plasma characterization results are presented where the Ti II is the predominant specie with an average kinetic energy of 1824 eV. (Author)

  3. Magnetic nanoparticles for tunable microwave metamaterials

    KAUST Repository

    Noginova, Natalia

    2012-09-24

    Commonly, metamaterials are electrically engineered systems with optimized spatial arrangement of subwavelength sized metal and dielectric components. We explore alternative methods based on use of magnetic inclusions, such as magnetic nanoparticles, which can allow permeability of a composite to be tuned from negative to positive at the range of magnetic resonance. To better understand effects of particle size and magnetization dynamics, we performed electron magnetic resonance study on several varieties of magnetic nanoparticles and determined potential of nanoparticle use as building blocks for tunable microwave metamaterials. © (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  4. GISAXS analysis of 3D nanoparticle assemblies—effect of vertical nanoparticle ordering

    International Nuclear Information System (INIS)

    Vegso, K; Siffalovic, P; Benkovicova, M; Jergel, M; Luby, S; Majkova, E; Capek, I; Kocsis, T; Perlich, J; Roth, S V

    2012-01-01

    We report on grazing-incidence small-angle x-ray scattering (GISAXS) study of 3D nanoparticle arrays prepared by two different methods from colloidal solutions—layer-by-layer Langmuir–Schaefer deposition and spontaneous self-assembling during the solvent evaporation. GISAXS results are evaluated within the distorted wave Born approximation (DWBA) considering the multiple scattering effects and employing a simplified multilayer model to reduce the computing time. In the model, particular layers are represented by nanoparticle chains where the positions of individual nanoparticles are generated following a model of cumulative disorder. The nanoparticle size dispersion is considered as well. Three model cases are distinguished—no shift between the neighboring chains (AA stacking), a shift equal to half of the mean interparticle distance (AB stacking) and random shift between the chains. The first two cases correspond to vertically correlated nanoparticle positions across different chains. A comparison of the experimental GISAXS patterns with the model cases enabled us to distinguish important differences between the 3D arrays prepared by the two methods. In particular, laterally ordered layers without vertical correlation of the nanoparticle positions were found in the nanoparticle multilayers prepared by the Langmuir–Schaefer method. On the other hand, the solvent evaporation under particular conditions produced highly ordered 3D nanoparticle assemblies where both laterally and vertically correlated nanoparticle positions were found. (paper)

  5. Determination of nanoparticle surface coatings and nanoparticle purity using microscale thermogravimetric analysis.

    Science.gov (United States)

    Mansfield, Elisabeth; Tyner, Katherine M; Poling, Christopher M; Blacklock, Jenifer L

    2014-02-04

    The use of nanoparticles in some applications (i.e., nanomedical, nanofiltration, or nanoelectronic) requires small samples with well-known purities and composition. In addition, when nanoparticles are introduced into complex environments (e.g., biological fluids), the particles may become coated with matter, such as proteins or lipid layers. Many of today's analytical techniques are not able to address small-scale samples of nanoparticles to determine purity and the presence of surface coatings. Through the use of an elevated-temperature quartz crystal microbalance (QCM) method we call microscale thermogravimetric analysis, or μ-TGA, the nanoparticle purity, as well as the presence of any surface coatings of nanomaterials, can be measured. Microscale thermogravimetric analysis is used to determine the presence and amount of surface-bound ligand coverage on gold nanoparticles and confirm the presence of a poly(ethylene glycol) coating on SiO2 nanoparticles. Results are compared to traditional analytical techniques to demonstrate reproducibility and validity of μ-TGA for determining the presence of nanoparticle surface coatings. Carbon nanotube samples are also analyzed and compared to conventional TGA. The results demonstrate μ-TGA is a valid method for quantitative determination of the coatings on nanoparticles, and in some cases, can provide purity and compositional data of the nanoparticles themselves.

  6. Magnetic behavior of iron oxide nanoparticle-biomolecule assembly

    International Nuclear Information System (INIS)

    Kim, Taegyun; Reis, Lynn; Rajan, Krishna; Shima, Mutsuhiro

    2005-01-01

    Iron oxide nanoparticles of 8-20 nm in size were investigated as an assembly with biomolecules synthesized in an aqueous solution. The magnetic behavior of the biomolecule-nanoparticles assembly depends sensitively on the morphology and hence the distribution of the nanoparticles, where the dipole coupling between the nanoparticles governs the overall magnetic behavior. In assemblies of iron oxide nanoparticles with trypsin, we observe a formation of unusual self-alignment of nanoparticles within trypsin molecules. In such an assembly structure, the magnetic particles tend to exhibit a lower spin-glass transition temperature than as-synthesized bare iron oxide nanoparticles probably due to reduced interparticle couplings within the molecular matrix. The observed self-alignment of nanoparticles in biomolecules may be a useful approach for directed nanoparticles assembly

  7. Sorting process of nanoparticles and applications of same

    Science.gov (United States)

    Tyler, Timothy P.; Henry, Anne-Isabelle; Van Duyne, Richard P.

    2017-10-31

    In one aspect of the present invention, a method for sorting nanoparticles includes preparing a high-viscosity density gradient medium filled in a container, dispersing nanoparticles into an aqueous solution to form a suspension of the nanoparticles, each nanoparticle having one or more cores and a shell encapsulating the one or more cores, layering the suspension of the nanoparticles on the top of the high-viscosity density gradient medium in the container, and centrifugating the layered suspension of the nanoparticles on the top of the high-viscosity density gradient medium in the container at a predetermined speed for a predetermined period of time to form a gradient of fractions of the nanoparticles along the container, where each fraction comprises nanoparticles in a respective one of aggregation states of the nanoparticles.

  8. Biosynthesis of Nanoparticles by Microorganisms and Their Applications

    Directory of Open Access Journals (Sweden)

    Xiangqian Li

    2011-01-01

    Full Text Available The development of eco-friendly technologies in material synthesis is of considerable importance to expand their biological applications. Nowadays, a variety of inorganic nanoparticles with well-defined chemical composition, size, and morphology have been synthesized by using different microorganisms, and their applications in many cutting-edge technological areas have been explored. This paper highlights the recent developments of the biosynthesis of inorganic nanoparticles including metallic nanoparticles, oxide nanoparticles, sulfide nanoparticles, and other typical nanoparticles. Different formation mechanisms of these nanoparticles will be discussed as well. The conditions to control the size/shape and stability of particles are summarized. The applications of these biosynthesized nanoparticles in a wide spectrum of potential areas are presented including targeted drug delivery, cancer treatment, gene therapy and DNA analysis, antibacterial agents, biosensors, enhancing reaction rates, separation science, and magnetic resonance imaging (MRI. The current limitations and future prospects for the synthesis of inorganic nanoparticles by microorganisms are discussed.

  9. Quantifying Nanoparticle Internalization Using a High Throughput Internalization Assay.

    Science.gov (United States)

    Mann, Sarah K; Czuba, Ewa; Selby, Laura I; Such, Georgina K; Johnston, Angus P R

    2016-10-01

    The internalization of nanoparticles into cells is critical for effective nanoparticle mediated drug delivery. To investigate the kinetics and mechanism of internalization of nanoparticles into cells we have developed a DNA molecular sensor, termed the Specific Hybridization Internalization Probe - SHIP. Self-assembling polymeric 'pHlexi' nanoparticles were functionalized with a Fluorescent Internalization Probe (FIP) and the interactions with two different cell lines (3T3 and CEM cells) were studied. The kinetics of internalization were quantified and chemical inhibitors that inhibited energy dependent endocytosis (sodium azide), dynamin dependent endocytosis (Dyngo-4a) and macropinocytosis (5-(N-ethyl-N-isopropyl) amiloride (EIPA)) were used to study the mechanism of internalization. Nanoparticle internalization kinetics were significantly faster in 3T3 cells than CEM cells. We have shown that ~90% of the nanoparticles associated with 3T3 cells were internalized, compared to only 20% of the nanoparticles associated with CEM cells. Nanoparticle uptake was via a dynamin-dependent pathway, and the nanoparticles were trafficked to lysosomal compartments once internalized. SHIP is able to distinguish between nanoparticles that are associated on the outer cell membrane from nanoparticles that are internalized. This study demonstrates the assay can be used to probe the kinetics of nanoparticle internalization and the mechanisms by which the nanoparticles are taken up by cells. This information is fundamental for engineering more effective nanoparticle delivery systems. The SHIP assay is a simple and a high-throughput technique that could have wide application in therapeutic delivery research.

  10. Bioavailability of magnetic nanoparticles to the brain

    International Nuclear Information System (INIS)

    Huang, B.-R.; Chen, P.-Y.; Huang, C.-Y.; Jung, S.-M.; Ma, Y.-H.; Wu, Tony; Chen, J.-P.; Wei, K.-C.

    2009-01-01

    This study investigates the bioavailability of carboxymethyl dextran-coated magnetic nanoparticles (CMD-MNP) to the brain. The cytotoxicity of CMD-MNP was assessed by co-culture with C6, a rat glioma cell line. To investigate the effects of an external magnetic field on the biodistribution of nanoparticles in a rat model, a magnet of 0.3 Tesla was applied externally over the cranium and the particles injected via the external jugular vein. Nanoparticles were also injected into rats implanted with C6 tumor cells. Staining of histological samples with Prussian blue to detect iron particles revealed that the external magnetic field enhanced the aggregation of nanoparticles in the rat brain; this enhancement was even more pronounced in the tumor region.

  11. ECO-FRIENDLY SYNTHESIS OF SILVER NANOPARTICLES ...

    African Journals Online (AJOL)

    userpc

    Keywords: Silver nanoparticles; UV-Visible Spectrophotometry; Dynamic Light Scattering;. Transmission ... The eco- friendly protocol developed led to the synthesis ... lamp for. 5 minutes. (Omidiet al.,. 2014).Authentication of the formation of.

  12. Sustainable green catalysis by supported metal nanoparticles.

    Science.gov (United States)

    Fukuoka, Atsushi; Dhepe, Paresh L

    2009-01-01

    The recent progress of sustainable green catalysis by supported metal nanoparticles is described. The template synthesis of metal nanoparticles in ordered porous materials is studied for the rational design of heterogeneous catalysts capable of high activity and selectivity. The application of these materials in green catalytic processes results in a unique activity and selectivity arising from the concerted effect of metal nanoparticles and supports. The high catalytic performances of Pt nanoparticles in mesoporous silica is reported. Supported metal catalysts have also been applied to biomass conversion by heterogeneous catalysis. Additionally, the degradation of cellulose by supported metal catalysts, in which bifunctional catalysis of acid and metal plays the key role for the hydrolysis and reduction of cellulose, is also reported. Copyright 2009 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.

  13. Functionalization of biosynthesized gold nanoparticle from aqueous ...

    African Journals Online (AJOL)

    The biosynthesized nanoparticles and formulated nanodrug were characterized using UV-Vis spectrophotometry, Zetasizer, Scanning and transmission Electron Microscopy (SEM; TEM), Energy Dispersive spectrophotometry (EDAX) and Fourier Transform Infra-red Spectroscopy. Polyethylene glycol and Lincomycin were ...

  14. Ordered arrays of nanoporous gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2012-09-01

    Full Text Available A combination of a “top-down” approach (substrate-conformal imprint lithography and two “bottom-up” approaches (dewetting and dealloying enables fabrication of perfectly ordered 2-dimensional arrays of nanoporous gold nanoparticles. The dewetting of Au/Ag bilayers on the periodically prepatterned substrates leads to the interdiffusion of Au and Ag and the formation of an array of Au–Ag alloy nanoparticles. The array of alloy nanoparticles is transformed into an array of nanoporous gold nanoparticles by a following dealloying step. Large areas of this new type of material arrangement can be realized with this technique. In addition, this technique allows for the control of particle size, particle spacing, and ligament size (or pore size by varying the period of the structure, total metal layer thickness, and the thickness ratio of the as-deposited bilayers.

  15. Ultrasensitive, Ultradense Nanoelectronic Biosensing with Nanoparticle Probes

    National Research Council Canada - National Science Library

    Mirkin, Chad A; Ratner, Mark

    2006-01-01

    A robust and effective model for determining the presence or absence of an analyte in a DPN-assembled gold nanoparticle/DNA conjugate structure in the limit of single molecule binding was developed...

  16. Iron oxide nanoparticles stabilized inside highly ordered ...

    Indian Academy of Sciences (India)

    CdS nanoparticles prepared in reverse micellar system was incorporated into ... The molar ratio of various constituents of the hydrothermal gel was ... other synthesis techniques for the preparation of iron oxide nanocomposites using.

  17. Preparation of copper nanoparticles by radiation

    International Nuclear Information System (INIS)

    Liu Yajian; Guo Xiongbin; Li Zhaolong; Fu Junjie; Tan Yuanyuan; Zhou Xinyao; Xu Furong

    2013-01-01

    Copper nanoparticles were successfully synthesized by 60 Co-γ radiation with aqueous solution of cupric sulfate under inert nitrogen-purged conditions. Cu nanoparticles were characterized by using X-ray diffraction (XRD), transmission electron microscopy (TEM), laser particle size distribution analyzer (LSPSDA) and differential scanning calorimeter (DSC) techniques, respectively. The effects of solution system, pH, additive of surfactant and absorbed doses on the particle size and its distribution as well as stored stability of Cu naoparticles were investigated. High resolution TEM pictures showed the formation of homogeneous cubic-structured copper nanoparticles with different sizes depends on the synthetic conditions. This new kind of synthesis method shows the excellent stability, which may provide an efficient way to improve the fine tuning of the structure and size of copper nanoparticles. (authors)

  18. Biological activities of synthesized silver nanoparticles from ...

    Indian Academy of Sciences (India)

    during the processing or storage of food and in that way help. ∗. Author for ... scale which have been applied in the field of drug delivery, catalysis, optical devices ..... nanoparticles will undergo electrostatic interaction with negatively charged ...

  19. Environmentally friendly preparation of metal nanoparticles

    Science.gov (United States)

    The book chapter summarizes the “state of the art” in the exploitation of various environmentally-friendly synthesis approaches, reaction precursors and conditions to manufacture metal and metal oxide nanoparticles for a vast variety of purposes.

  20. Engineering tailored nanoparticles with microbes: quo vadis?

    Science.gov (United States)

    Prasad, Ram; Pandey, Rishikesh; Barman, Ishan

    2016-01-01

    In the quest for less toxic and cleaner methods of nanomaterials production, recent developments in the biosynthesis of nanoparticles have underscored the important role of microorganisms. Their intrinsic ability to withstand variable extremes of temperature, pressure, and pH coupled with the minimal downstream processing requirements provide an attractive route for diverse applications. Yet, controlling the dispersity and facile tuning of the morphology of the nanoparticles of desired chemical compositions remains an ongoing challenge. In this Focus Review, we critically review the advances in nanoparticle synthesis using microbes, ranging from bacteria and fungi to viruses, and discuss new insights into the cellular mechanisms of such formation that may, in the near future, allow complete control over particle morphology and functionalization. In addition to serving as paradigms for cost-effective, biocompatible, and eco-friendly synthesis, microbes hold the promise for a unique template for synthesis of tailored nanoparticles targeted at therapeutic and diagnostic platform technologies. © 2015 Wiley Periodicals, Inc.

  1. Designing synthetic RNA for delivery by nanoparticles

    International Nuclear Information System (INIS)

    Jedrzejczyk, Dominika; Pawlowska, Roza; Chworos, Arkadiusz; Gendaszewska-Darmach, Edyta

    2017-01-01

    The rapid development of synthetic biology and nanobiotechnology has led to the construction of various synthetic RNA nanoparticles of different functionalities and potential applications. As they occur naturally, nucleic acids are an attractive construction material for biocompatible nanoscaffold and nanomachine design. In this review, we provide an overview of the types of RNA and nucleic acid’s nanoparticle design, with the focus on relevant nanostructures utilized for gene-expression regulation in cellular models. Structural analysis and modeling is addressed along with the tools available for RNA structural prediction. The functionalization of RNA-based nanoparticles leading to prospective applications of such constructs in potential therapies is shown. The route from the nanoparticle design and modeling through synthesis and functionalization to cellular application is also described. For a better understanding of the fate of targeted RNA after delivery, an overview of RNA processing inside the cell is also provided. (topical review)

  2. Preparation of silver nanoparticles at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Mini, E-mail: mishramini5@gmail.com [Centre of Environmental Science, Department of Botany, University of Allahabad, Allahabad, U.P. (India); Chauhan, Pratima, E-mail: mangu167@yahoo.co.in [Department of Physics, University of Allahabad, Allahabad U.P. (India)

    2016-04-13

    Silver from ancient time is used as antimicrobial agent in the bulk form but now with the advancement in nanotechnology silver in the form of nanoparticles shown potential effect against microbes which make us easy to fight with many diseases plants and animals. In this work silver nanoparticles were synthesized by chemical routes using sodium borohydride as reducing agent at low temperature. The particles were characterized through UV-Visible spectroscopy as well as X-Ray Diffraction. The UV-visible spectra of silver nanoparticles exhibited absorption at 425 cm; the crystallite size of the particles is between 19nm to 39nm. EDAX graph shows two peaks of silver and oxygen. Water absorbed by silver nanoparticles was removed by the calcinations.

  3. Adsorption of amphipathic dendrons on polystyrene nanoparticles.

    Science.gov (United States)

    Sakthivel, T; Florence, A T

    2003-03-18

    Adsorption of dendrons onto nanoparticles may provide new model structures which may be useful in drug and gene delivery. Tritiated amphipathic dendrons having three lipidic (C(14)) chains coupled to branched (dendritic) lysine head groups with 8, 16 or 32 free terminal amino groups have been synthesised by solid phase peptide techniques. The interaction between these tritiated dendrons and 200 nm polystyrene latex nanoparticles was investigated in phosphate buffered saline. The amount of dendron adsorbed increased with increasing concentration of dendrons and then decreased. Maximum adsorption of dendrons per gram of nanoparticles was found to be between 8.2 and 84 x 10(-6)M, the amounts adsorbed being inversely proportional to the number of amino groups present in the molecule. The number of dendron molecules adsorbed per nanoparticle was found to be between 430 and 4421. The degree of adsorption was found to be slightly altered by the temperature. Copyright 2002 Elsevier Science B.V.

  4. Gas Vesicle Nanoparticles for Antigen Display

    Directory of Open Access Journals (Sweden)

    Shiladitya DasSarma

    2015-09-01

    Full Text Available Microorganisms like the halophilic archaeon Halobacterium sp. NRC-1 produce gas-filled buoyant organelles, which are easily purified as protein nanoparticles (called gas vesicles or GVNPs. GVNPs are non-toxic, exceptionally stable, bioengineerable, and self-adjuvanting. A large gene cluster encoding more than a dozen proteins has been implicated in their biogenesis. One protein, GvpC, found on the exterior surface of the nanoparticles, can accommodate insertions near the C-terminal region and results in GVNPs displaying the inserted sequences on the surface of the nanoparticles. Here, we review the current state of knowledge on GVNP structure and biogenesis as well as available studies on immunogenicity of pathogenic viral, bacterial, and eukaryotic proteins and peptides displayed on the nanoparticles. Recent improvements in genetic tools for bioengineering of GVNPs are discussed, along with future opportunities and challenges for development of vaccines and other applications.

  5. Dynamic rotor mode in antiferromagnetic nanoparticles

    DEFF Research Database (Denmark)

    Lefmann, Kim; Jacobsen, H.; Garde, J.

    2015-01-01

    We present experimental, numerical, and theoretical evidence for an unusual mode of antiferromagnetic dynamics in nanoparticles. Elastic neutron scattering experiments on 8-nm particles of hematite display a loss of diffraction intensity with temperature, the intensity vanishing around 150 K...

  6. Preparation of silver nanoparticles at low temperature

    International Nuclear Information System (INIS)

    Mishra, Mini; Chauhan, Pratima

    2016-01-01

    Silver from ancient time is used as antimicrobial agent in the bulk form but now with the advancement in nanotechnology silver in the form of nanoparticles shown potential effect against microbes which make us easy to fight with many diseases plants and animals. In this work silver nanoparticles were synthesized by chemical routes using sodium borohydride as reducing agent at low temperature. The particles were characterized through UV-Visible spectroscopy as well as X-Ray Diffraction. The UV-visible spectra of silver nanoparticles exhibited absorption at 425 cm; the crystallite size of the particles is between 19nm to 39nm. EDAX graph shows two peaks of silver and oxygen. Water absorbed by silver nanoparticles was removed by the calcinations.

  7. Development and antibacterial performance of silver nanoparticles ...

    Indian Academy of Sciences (India)

    Antibacterial activity; in situ fabrication; polyester fabric; silver nanoparticle. 1. Introduction ... transmitter found in central nervous system which has a vital role in human health. .... finished fabric were higher due to the presence of higher.

  8. Biosynthesis of silver nanoparticles | Silambarasan | African Journal ...

    African Journals Online (AJOL)

    friendly and exciting approach. Several microorganisms have been known to produce silver nanoparticles (Ag NPs), when silver molecules are exposed either intracellularly or extracellularly. Intracellular synthesis may accomplish a better ...

  9. Lamellar multilayer hexadecylaniline-modified gold nanoparticle ...

    Indian Academy of Sciences (India)

    standard Wilhelmy plate was used for surface pressure sensing. Multilayer ... carried out on a JEOL model 1200EX instrument operated at an accelerating voltage of ... the gold nanoparticles within domains (and reorganization of the domains ...

  10. Pattern transfer with stabilized nanoparticle etch masks

    International Nuclear Information System (INIS)

    Hogg, Charles R; Majetich, Sara A; Picard, Yoosuf N; Narasimhan, Amrit; Bain, James A

    2013-01-01

    Self-assembled nanoparticle monolayer arrays are used as an etch mask for pattern transfer into Si and SiO x substrates. Crack formation within the array is prevented by electron beam curing to fix the nanoparticles to the substrate, followed by a brief oxygen plasma to remove excess carbon. This leaves a dot array of nanoparticle cores with a minimum gap of 2 nm. Deposition and liftoff can transform the dot array mask into an antidot mask, where the gap is determined by the nanoparticle core diameter. Reactive ion etching is used to transfer the dot and antidot patterns into the substrate. The effect of the gap size on the etching rate is modeled and compared with the experimental results. (paper)

  11. Tailoring magnetic nanoparticle for transformers application.

    Science.gov (United States)

    Morais, P C; Silva, A S; Leite, E S; Garg, V K; Oliveira, A C; Viali, W R; Sartoratto, P P C

    2010-02-01

    In this study photoacoustic spectroscopy was used to investigate the effect of dilution of an oil-based magnetic fluid sample on the magnetic nanoparticle surface-coating. Changes of the photoacoustic signal intensity on the band-L region (640 to 830 nm) upon dilution of the stock magnetic fluid sample were discussed in terms of molecular surface desorption. The model proposed here assumes that the driving force taking the molecules out from the nanoparticle surface into the bulk solvent is the gradient of osmotic pressure. This gradient of osmotic pressure is established between the nanoparticle surface and the bulk suspension. It is further assumed that the photoacoustic signal intensity (area under the photoacoustic spectra) scales linearly with the number of coating molecules (surface grafting) at the nanoparticle surface. This model picture provides a non-linear analytical description for the reduction of the surface grafting coefficient upon dilution, which was successfully-used to curve-fit the photoacoustic experimental data.

  12. Degradation of magnetite nanoparticles in biomimetic media

    Energy Technology Data Exchange (ETDEWEB)

    Briceño, Sarah; Hernandez, Ana C.; Sojo, Juan [Instituto Venezolano de Investigaciones Científicas (IVIC), Laboratorio de Materiales, Centro de Ingeniería de Materiales y Nanotecnología (Venezuela, Bolivarian Republic of); Lascano, Luis [Dpto. Física, Escuela Politécnica Nacional (Ecuador); Gonzalez, Gema, E-mail: gemagonz@ivic.gob.ve, E-mail: gema.gonzalez@epn.edu.ec [Escuela Nacional Politécnica (Ecuador)

    2017-04-15

    Magnetic nanoparticles (NPs) of magnetite Fe{sub 3}O{sub 4} obtained by coprecipitation (COP), thermal decomposition (DT), and commercial sample (CM) have been degraded in similar conditions to physiological medium at pH 4.7 and in simulated body fluid (SBF) at pH 7.4. The formation of the nanoparticles was confirmed by FTIR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). In view of medical and environmental applications, the stability of the particles was measured with dynamic light scattering. The degradation processes were followed with atomic absorption spectroscopy (EAA) and TEM. Magnetic measurements were carried out using vibrating sample magnetometry (VSM). Our results revealed that the structural and magnetic properties of the remaining nanoparticles after the degradation process were significantly different to those of the initial suspension. The degradation kinetics is affected by the pH, the coating, and the average particle size of the nanoparticles.

  13. Characterization of nanoparticles as candidate reference materials

    International Nuclear Information System (INIS)

    Martins Ferreira, E.H.; Robertis, E. de; Landi, S.M.; Gouvea, C.P.; Archanjo, B.S.; Almeida, C.A.; Araujo, J.R. de; Kuznetsov, O.; Achete, C.A.

    2013-01-01

    We report the characterization of three different nanoparticles (silica, silver and multi-walled carbon nanotubes) as candidate reference material. We focus our analysis on the size distribution of those particles as measured by different microscopy techniques. (author)

  14. Opportunities from the nanoworld : Gas phase nanoparticles

    NARCIS (Netherlands)

    Palasantzas, G.; Koch, S. A.; Vystavel, T.; De Hosson, J. Th. M.

    2008-01-01

    In this paper we present studies related to coalescence and oxidation of transition metal nanoparticles with sizes ranging between 2 and 10 nm. For cobalt and iron exposure to air leads to thin oxide shell formation (thickness

  15. Magnetic behaviour of interacting antiferromagnetic nanoparticles

    International Nuclear Information System (INIS)

    Markovich, V; Jung, G; Gorodetsky, G; Puzniak, R; Wisniewski, A; Skourski, Y; Mogilyanski, D

    2012-01-01

    Magnetic properties of interacting La 0.2 Ca 0.8 MnO 3 nanoparticles have been investigated. The field-induced transition from antiferromagnetic (AFM) to ferromagnetic (FM) state in the La 0.2 Ca 0.8 MnO 3 bulk has been observed at exceptionally high magnetic fields. For large particles, the field-induced transition widens while magnetization progressively decreases. In small particles the transition is almost fully suppressed. The thermoremanence and isothermoremanence curves constitute fingerprints of irreversible magnetization originating from nanoparticle shells. We have ascribed the magnetic behaviour of nanoparticles to a core-shell scenario with two main magnetic contributions; one attributed to the formation of a collective state formed by FM clusters in frustrated coordination at the surfaces of interacting AFM nanoparticles and the other associated with inner core behaviour as a two-dimensional diluted antiferromagnet. (paper)

  16. Biosynthesis of silver nanoparticles synthesized by Aspergillus ...

    Indian Academy of Sciences (India)

    Biotechnology Division, Applied Science Department, University of ... Abstract. In the present study, biosynthesis of silver nanoparticles and its antioxidant, antimicrobial and cytotoxic ... example of the biosynthesis using fungi was that the cell-.

  17. Bioavailability of magnetic nanoparticles to the brain

    Energy Technology Data Exchange (ETDEWEB)

    Huang, B.-R. [Department of Neurosurgery, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 5 Fushing Street, Kweishan, Taoyuan 333, Taiwan (China); Chen, P.-Y. [Department of Neurosurgery, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 5 Fushing Street, Kweishan, Taoyuan 333, Taiwan (China); Graduate Institute of Biomedical Sciences, Chang-Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Taoyuan 333, Taiwan (China); Huang, C.-Y. [Department of Neurosurgery, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 5 Fushing Street, Kweishan, Taoyuan 333, Taiwan (China); Jung, S.-M. [Department of Pathology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 5 Fushing Street, Kweishan, Taoyuan 333, Taiwan (China); Ma, Y.-H. [Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan (China); Wu, Tony [Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, 5 Fushing Street, Kweishan, Taoyuan 333, Taiwan (China); Chen, J.-P. [Department of Chemical and Material Engineering, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan (China)], E-mail: jpchen@mail.cgu.edu.tw; Wei, K.-C. [Department of Neurosurgery, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 5 Fushing Street, Kweishan, Taoyuan 333, Taiwan (China)], E-mail: kuochenwei@adm.cgmh.org.tw

    2009-05-15

    This study investigates the bioavailability of carboxymethyl dextran-coated magnetic nanoparticles (CMD-MNP) to the brain. The cytotoxicity of CMD-MNP was assessed by co-culture with C6, a rat glioma cell line. To investigate the effects of an external magnetic field on the biodistribution of nanoparticles in a rat model, a magnet of 0.3 Tesla was applied externally over the cranium and the particles injected via the external jugular vein. Nanoparticles were also injected into rats implanted with C6 tumor cells. Staining of histological samples with Prussian blue to detect iron particles revealed that the external magnetic field enhanced the aggregation of nanoparticles in the rat brain; this enhancement was even more pronounced in the tumor region.

  18. Mechanical behaviour of nanoparticles: Elasticity and plastic ...

    Indian Academy of Sciences (India)

    2015-06-03

    Jun 3, 2015 ... Mechanical behaviour of nanoparticles: Elasticity and plastic deformation mechanisms ... The main results in terms of elasticity and plastic deformation mechanisms are then reported ... Pramana – Journal of Physics | News.

  19. and Au nanoparticles for SERS applications

    Directory of Open Access Journals (Sweden)

    Fazio Enza

    2018-01-01

    Full Text Available The morphological and optical properties of noble metal nanoparticles prepared by picosecond laser generated plasmas in water were investigated. First, the ablation efficiency was maximized searching the optimal focusing conditions. The nanoparticle size, measured by Scanning Transmission Electron Microscopy, strongly depends on the laser fluence, keeping fixed the other deposition parameters such as the target to scanner objective distance and laser repetition frequency. STEM images indicate narrow gradients of NP sizes. Hence the optimization of ablation parameters favours a fine tuning of nanoparticles. UV-Visible spectroscopy helped to determine the appropriate laser wavelength to resonantly excite the localized surface plasmon to carry out Surface Enhanced Raman Scattering (SERS measurements. The SERS activity of Ag and Au substrates, obtained spraying the colloids synthesized in water, was tested using crystal violet as a probe molecule. The good SERS performance, observed at excitation wavelength 785 nm, is attributed to aggregation phenomena of nanoparticles sprayed on the support.

  20. Paclitaxel Albumin-stabilized Nanoparticle Formulation

    Science.gov (United States)

    This page contains brief information about paclitaxel albumin-stabilized nanoparticle formulation and a collection of links to more information about the use of this drug, research results, and ongoing clinical trials.

  1. Methotrexate nanoparticle delivery system for treatment of ...

    African Journals Online (AJOL)

    Results: Nanoparticle size, zeta potential and encapsulation efficacy were 164.4 ± 6.9 nm, .... blood count, hemoglobin, C-reactive protein ... was attributable to a decrease in electrostatic ... interactions between the polymer and drug in this.

  2. Nanoparticles in Polymers: Assembly, Rheology and Properties

    Science.gov (United States)

    Rao, Yuanqiao

    Inorganic nanoparticles have the potential of providing functionalities that are difficult to realize using organic materials; and nanocomposites is an effective mean to impart processibility and construct bulk materials with breakthrough properties. The dispersion and assembly of nanoparticles are critical to both processibility and properties of the resulting product. In this talk, we will discuss several methods to control the hierarchical structure of nanoparticles in polymers and resulting rheological, mechanical and optical properties. In one example, polymer-particle interaction and secondary microstructure were designed to provide a low viscosity composition comprising exfoliated high aspect ratio clay nanoparticles; in another example, the microstructure control through templates was shown to enable unique thermal mechanical and optical properties. Jeff Munro, Stephanie Potisek, Phillip Hustad; all of the Dow Chemical Company are co-authors.

  3. nanoparticles synthesized by citrate precursor m

    African Journals Online (AJOL)

    user

    (M=Co, Cu) nanoparticles synthesized by citrate precursor method ... The structural characterization was carried out using an X-ray Diffractometer (Rikagu Miniflex, Japan) ..... His current area of interest includes magnetic nanomaterials.

  4. Nanoparticle Netpoints for Shape-Memory Polymers

    KAUST Repository

    Agarwal, Praveen; Chopra, Madhur; Archer, Lynden A.

    2011-01-01

    Forget-me-not: Nanoparticle fillers in shape-memory polymers usually improve mechanical properties at the expense of shape-memory performance. A new approach overcomes these drawbacks by cross-linking the functionalized poly(ethylene glycol) tethers

  5. Ionic liquid-nanoparticle hybrid electrolytes

    KAUST Repository

    Lu, Yingying; Moganty, Surya S.; Schaefer, Jennifer L.; Archer, Lynden A.

    2012-01-01

    We investigate physical and electrochemical properties of a family of organic-inorganic hybrid electrolytes based on the ionic liquid 1-methyl-3-propylimidazolium bis(trifluoromethanesulfone) imide covalently tethered to silica nanoparticles (SiO 2

  6. Novel manufacturing process of nanoparticle/Al composite filler metals of tungsten inert gas welding by accumulative roll bonding

    Energy Technology Data Exchange (ETDEWEB)

    Fattahi, M., E-mail: fattahi.put@gmail.com [Technical Inspection Engineering Department, Petroleum University of Technology, Abadan (Iran, Islamic Republic of); Noei Aghaei, V. [Aerospace Engineering Department, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Dabiri, A.R. [Technical Inspection Engineering Department, Petroleum University of Technology, Abadan (Iran, Islamic Republic of); Amirkhanlou, S. [Young Researchers and Elite Club, Najafabad Branch, Islamic Azad University, Najafabad (Iran, Islamic Republic of); Akhavan, S.; Fattahi, Y. [Materials Engineering Department, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of)

    2015-11-11

    In the present work, accumulative roll bonding (ARB) was used as an effective method for manufacturing nanoparticle/Al composite filler metals of tungsten inert gas (TIG) welding. After welding, the distribution of ceramic nanoparticles and mechanical properties of welds were investigated. By applying ARB, ceramic nanoparticles were uniformly dispersed in the composite filler metals. Consequently, the welds produced by these filler metals had a uniform dispersion of ceramic nanoparticles in their compositions. The test results showed that the yield strength of welds was greatly increased when using the nanoparticle/Al composite filler metals. The improvement in the yield strength was attributed to the coefficient of thermal expansion mismatch and Orowan strengthening mechanisms. Therefore, according to the results presented in this paper, it can be concluded that the nanoparticle/Al composite filler metals can serve as a novel filler metal for TIG welding of aluminum and its alloys.

  7. Silicon nanoparticles: Preparation, properties, and applications

    International Nuclear Information System (INIS)

    Chang Huan; Sun Shu-Qing

    2014-01-01

    Silicon nanoparticles have attracted great attention in the past decades because of their intriguing physical properties, active surface state, distinctive photoluminescence and biocompatibility. In this review, we present some of the recent progress in preparation methodologies and surface functionalization approaches of silicon nanoparticles. Further, their promising applications in the fields of energy and electronic engineering are introduced. (invited review — international conference on nanoscience and technology, china 2013)

  8. Curcumin Nanoparticle Therapy for Gulf War Illness

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-16-1-0480 TITLE: Curcumin Nanoparticle Therapy for Gulf War Illness PRINCIPAL INVESTIGATOR: Ashok K. Shetty, Ph.D...Nanoparticle Therapy for Gulf War Illness 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-16-1-0480 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Ashok K...biodegradable polymer nanosystems (nCUR) for alleviating cognitive, memory and mood impairments in a rat model of gulf war illness (GWI). Specific

  9. Pulmonary applications and toxicity of engineered nanoparticles

    OpenAIRE

    Card, Jeffrey W.; Zeldin, Darryl C.; Bonner, James C.; Nestmann, Earle R.

    2008-01-01

    Because of their unique physicochemical properties, engineered nanoparticles have the potential to significantly impact respiratory research and medicine by means of improving imaging capability and drug delivery, among other applications. These same properties, however, present potential safety concerns, and there is accumulating evidence to suggest that nanoparticles may exert adverse effects on pulmonary structure and function. The respiratory system is susceptible to injury resulting from...

  10. Delivery of Fluorescent Nanoparticles to the Brain.

    Science.gov (United States)

    Shimoni, Olga; Shi, Bingyang; Adlard, Paul A; Bush, Ashley I

    2016-11-01

    Nanotechnology applications in neuroscience promises to deliver significant scientific and technological breakthroughs, providing answers to unresolved questions regarding the processes occurring in the brain. In this perspective, we provide a short background on two distinct fluorescent nanoparticles and summarize several studies focussed on achieving delivery of these into the brain and their interaction with brain tissue. Furthermore, we discuss challenges and opportunities for further development of nanoparticle-based therapies for targeting delivery of drugs across the blood-brain barrier.

  11. Synthesis and optical properties of silver nanoparticles

    Science.gov (United States)

    Singh, Jaiveer; Kaurav, Netram; Choudhary, K. K.; Okram, Gunadhor S.

    2015-07-01

    The preparation of stable, uniform silver nanoparticles by reduction of silver acetate by ethylene glycol (EG) is reported in the present paper. It is a simple process of recent interest for obtaining silver nanoparticles. The samples were characterized by X-Ray diffraction (XRD), which reveals an average particle size (D) of 38 nm. The UV/Vis spectra show that an absorption peak, occurring due to surface plasmon resonance (SPR), exists at 319 nm.

  12. Selection of imprinted nanoparticles by affinity chromatography.

    Science.gov (United States)

    Guerreiro, António R; Chianella, Iva; Piletska, Elena; Whitcombe, Michael J; Piletsky, Sergey A

    2009-04-15

    Soluble molecularly imprinted nanoparticles were synthesised via iniferter initiated polymerisation and separated by size via gel permeation chromatography. Subsequent fractionation of these particles by affinity chromatography allowed the separation of high affinity fractions from the mixture of nanoparticles. Fractions selected this way possess affinity similar to that of natural antibodies (K(d) 6.6x10(-8)) M and were also able to discriminate between related functional analogues of the template.

  13. Potential of metal nanoparticles in organic reactions

    International Nuclear Information System (INIS)

    Ranu, B C; Chattopadhyay, K; Saha, A; Adak, L; Jana, R; Bhadra, S; Dey, R; Saha, D

    2008-01-01

    Palladium(0) nanoparticle has been used as efficient catalyst for (a) the stereoselective synthesis of (E)- and (Z)-2-alkene-4-ynoates and -nitriles by a simple reaction of vic-diiodo-(E)-alkenes with acrylic esters and nitriles and (b) for the allylation of active methylene compounds by allylacetate and its derivatives. Copper(0) nanoparticle catalyzes aryl-sulfur bond formation very efficiently. All these reactions are ligand-free

  14. Magnetic induced heating of nanoparticle solutions

    Energy Technology Data Exchange (ETDEWEB)

    Murph, S. Hunyadi [Savannah River Site (SRS), Aiken, SC (United States); Univ. of Georgia, Athens, GA (United States); Brown, M. [Savannah River Site (SRS), Aiken, SC (United States); Coopersmith, K. [Savannah River Site (SRS), Aiken, SC (United States); Fulmer, S. [Savannah River Site (SRS), Aiken, SC (United States); Sessions, H. [Savannah River Site (SRS), Aiken, SC (United States); Ali, M. [Univ. of South Carolina, Columbia, SC (United States)

    2016-12-02

    Magnetic induced heating of nanoparticles (NP) provides a useful advantage for many energy transfer applications. This study aims to gain an understanding of the key parameters responsible for maximizing the energy transfer leading to nanoparticle heating through the use of simulations and experimental results. It was found that magnetic field strength, NP concentration, NP composition, and coil size can be controlled to generate accurate temperature profiles in NP aqueous solutions.

  15. Structural characterization of copolymer embedded magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nedelcu, G.G., E-mail: ggnedelcu@yahoo.com [Faculty of Physics, University “Alexandru Ioan Cuza”, Carol I Bulevard, Nr.11, 700506 Iasi (Romania); Nastro, A.; Filippelli, L. [Department of Chemistry and Chemical Technology, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Cosenza (Italy); Cazacu, M.; Iacob, M. [Institute of Macromolecular Chemistry “Petru Poni”, Aleea Grigore Ghica Voda, nr. 41A, 700487 Iasi (Romania); Rossi, C. Oliviero [Department of Chemistry and Chemical Technology, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Cosenza (Italy); Popa, A.; Toloman, D. [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Str., 400293 Cluj-Napoca 5 (Romania); Dobromir, M.; Iacomi, F. [Faculty of Physics, University “Alexandru Ioan Cuza”, Carol I Bulevard, Nr.11, 700506 Iasi (Romania)

    2015-10-15

    Highlights: • The emulsion polymerization method was used to synthesize three samples of poly(methyl methacrylate-co-acrylic acid) coated magnetite obtained before through co-precipitation technique. • Poly(methyl methacrylate-co-acrylic acid) coated magnetite nanoparticles were prepared having spherical shape and dimensions between 13 and 16 nm without agglomerations. • Fourier transform infrared spectra have found that the magnetite was pure and spectral characteristics of PMMA-co-AAc were present. • The electron spin resonance spectra revealed that interactions between nanoparticles are very weak due to the fact that the nanoparticles have been individually embedded in polymer. • The resonance field values as function of temperature demonstrate that the presence of polymer has not modified essentially its magnetic properties, except that at temperatures below 140 K there was a change due to decreasing of the magnetic anisotropy. - Abstract: Small magnetic nanoparticles (Fe{sub 3}O{sub 4}) were synthesized by co-precipitation and coated by emulsion polymerization with poly(methyl methacrylate-co-acrylic acid) (PMMA-co-AAc) to create surface functional groups that can attach drug molecules and other biomolecules. The coated and uncoated magnetite nanoparticles were stored for two years in normal closed ships and than characterized by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, vibrating sample magnetometry, and electron paramagnetic resonance spectroscopy. The solid phase transformation of magnetite to maghemite, as well as an increase in particle size were evidenced for the uncoated nanoparticles. The coated nanoparticles preserved their magnetite structure and magnetic properties. The influences of monomers and surfactant layers on interactions between the magnetic nanoparticles evidenced that the thickness of the polymer has a significant effect on magnetic properties.

  16. Silver nanoparticles - Wolves in sheep's clothing?

    DEFF Research Database (Denmark)

    Foldbjerg, Rasmus Bruno; Jiang, Xiumei; Micləuş, Teodora

    2015-01-01

    Silver nanoparticles (Ag NPs) are one of the most widely utilized engineered nanomaterials (ENMs) in commercial products due to their effective antibacterial activity, high electrical conductivity, and optical properties. Therefore, they have been one of the most intensively investigated nanomate......Silver nanoparticles (Ag NPs) are one of the most widely utilized engineered nanomaterials (ENMs) in commercial products due to their effective antibacterial activity, high electrical conductivity, and optical properties. Therefore, they have been one of the most intensively investigated...

  17. Structure, entanglements and dynamics of polymer nanocomposites containing spherical nanoparticles

    International Nuclear Information System (INIS)

    Karatrantos, A; Clarke, N; Composto, R J; Winey, K I

    2014-01-01

    We investigate the effect of nanoparticles on polymer structure, nanoparticle dynamics and topological constraints (entanglements) in polymer melts for nanoparticle loading above percolation threshold as high as 40.9% using stochastic molecular dynamics (MD) simulations. An increase in the number of entanglements (decrease of N e with 40.9% volume fraction of nanoparticles dispersed in the polymer matrix) in the nanocomposites is observed as evidenced by larger contour lengths of the primitive paths. Attraction between polymers and nanoparticles affects the entanglements in the nanocomposites and alters the primitive path. The diffusivity of small sized nanoparticles deviates significantly from the Stokes- Einstein relation

  18. Reflectivity and transmissivity of a cavity coupled to a nanoparticle

    Science.gov (United States)

    Khan, M. A.; Farooq, K.; Hou, S. C.; Niaz, Shanawer; Yi, X. X.

    2014-07-01

    Any dielectric nanoparticle moving inside an optical cavity generates an optomechanical interaction. In this paper, we theoretically analyze the light scattering of an optomechanical cavity which strongly interacts with a dielectric nanoparticle. The cavity is driven by an external laser field. This interaction gives rise to different dynamics that can be used to cool, trap and levitate nanoparticle. We analytically calculate reflection and transmission rate of the cavity field, and study the time evolution of the intracavity field, momentum and position of the nanoparticle. We find the nanoparticle occupies a discrete position inside the cavity. This effect can be exploited to separate nanoparticle and couplings between classical particles and quantized fields.

  19. Study on magnetite nanoparticles synthesized by chemical method

    International Nuclear Information System (INIS)

    Pei Wenli; Kumada, H.; Natusme, T.; Saito, H.; Ishio, S.

    2007-01-01

    Magnetite nanoparticles with controlled size were synthesized by chemical method. Higher deposition temperature and a rapid-raising temperature procedure are favorable to particle size distribution and fabrication of monodisperse nanoparticles. The larger nanoparticles can be synthesized by the two-step method. The large nanoparticle (up to 25 nm) without agglomeration was successfully produced. The saturation magnetization of 11 nm magnetite particles was 45 emu/g at room temperature, which is smaller than that of bulk magnetite due to surface effect. Hysteresis of the magnetite nanoparticle was very small, indicating superparamagnetic behavior. The magnetic domains of the 11 nm magnetite nanoparticles were successfully observed by MFM

  20. Control of carbon nanotube growth using cobalt nanoparticles as catalyst

    International Nuclear Information System (INIS)

    Huh, Yoon; Green, Malcolm L.H.; Kim, Young Heon; Lee, Jeong Yong; Lee, Cheol Jin

    2005-01-01

    We have controllably grown carbon nanotubes using uniformly distributed cobalt nanoparticles as catalyst. Cobalt nanoparticles with a uniform size were synthesized by chemical reaction and colloidal solutions including the cobalt nanoparticles were prepared. The cobalt nanoparticles were uniformly distributed on silicon substrates by a spin-coating method. Carbon nanotubes with a uniform diameter were synthesized on the cobalt nanoparticles by thermal chemical vapor deposition of acetylene gas. The density and vertical alignment of carbon nanotubes could be controlled by adjusting the density of cobalt (Co) nanoparticles

  1. Engineering Ni-Mo-S Nanoparticles for Hydrodesulfurization

    DEFF Research Database (Denmark)

    Bodin, Anders; Christoffersen, Ann-Louise N.; Elkjær, Christian F.

    2018-01-01

    Nanoparticle engineering for catalytic applications requires both a synthesis technique for the production of well-defined nanoparticles and measurements of their catalytic performance. In this paper, we present a new approach to rationally engineering highly active Ni-Mo-S nanoparticle catalysts...... for hydrodesulfurization (HDS), i.e., the removal of sulfur from fossil fuels. Nanoparticle catalysts are synthesized by the sputtering of a Mo75Ni25 metal target in a reactive atmosphere of Ar and H2S followed by the gas aggregation of the sputtered material into nanoparticles. The nanoparticles are filtered...

  2. Nanoparticles for magnetic biosensing systems

    International Nuclear Information System (INIS)

    Kurlyandskaya, G.V.; Novoselova, Iu.P.; Schupletsova, V.V.; Andrade, R.; Dunec, N.A.; Litvinova, L.S.; Safronov, A.P.; Yurova, K.A.; Kulesh, N.A.; Dzyuman, A.N.; Khlusov, I.A.

    2017-01-01

    The further development of magnetic biosensors requires a better understanding of the interaction between living systems and magnetic nanoparticles (MNPs). We describe our experience of fabrication of stable ferrofluids (FF) using electrostatic or steric stabilization of iron oxide MNPs obtained by laser target evaporation. Controlled amounts of FF were used for in vitro experiments with human mesenchymal stem cells. Their morphofunctional responses in the Fe concentration range 2–1000 maximum tolerated dose revealed no cytotoxicity. - Highlights: • Stable ferrofluids (FF) were obtained using electrostatic or steric stabilization of iron oxide MNPs obtained by laser target evaporation. • Controlled amounts of FF were used for in vitro experiments with human mesenchymal stem cells. • Cells morphofunctional response in the Fe concentration range 2–1000 maximum tolerated dose revealed no cytotoxicity. • The results can be used for magnetic biosensoring, as well as for an addressed design of cell delivery systems.

  3. Nanoparticles for magnetic biosensing systems

    Energy Technology Data Exchange (ETDEWEB)

    Kurlyandskaya, G.V., E-mail: galina@we.lc.ehu.es [Universidad del País Vasco BCMaterials UPV-EHU, Leioa, 48940 Spain (Spain); Ural Federal University, Ekaterinburg, 620000 (Russian Federation); Novoselova, Iu.P. [Ural Federal University, Ekaterinburg, 620000 (Russian Federation); Schupletsova, V.V. [I.Kant Baltic Federal University, Kaliningrad, 23601 (Russian Federation); Andrade, R. [SGIker, ServiciosGenerales de Investigación, Universidad del País Vasco (UPV/EHU), Bilbao, 48080 Spain (Spain); Dunec, N.A.; Litvinova, L.S. [I.Kant Baltic Federal University, Kaliningrad, 23601 (Russian Federation); Safronov, A.P. [Ural Federal University, Ekaterinburg, 620000 (Russian Federation); Institute of Electrophysics, Ural Division, RAS, Ekaterinburg, 620016 (Russian Federation); Yurova, K.A. [I.Kant Baltic Federal University, Kaliningrad, 23601 (Russian Federation); Kulesh, N.A. [Ural Federal University, Ekaterinburg, 620000 (Russian Federation); Dzyuman, A.N. [Siberian State Medical University, Tomsk, 634050 (Russian Federation); Khlusov, I.A. [Siberian State Medical University, Tomsk, 634050 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)

    2017-06-01

    The further development of magnetic biosensors requires a better understanding of the interaction between living systems and magnetic nanoparticles (MNPs). We describe our experience of fabrication of stable ferrofluids (FF) using electrostatic or steric stabilization of iron oxide MNPs obtained by laser target evaporation. Controlled amounts of FF were used for in vitro experiments with human mesenchymal stem cells. Their morphofunctional responses in the Fe concentration range 2–1000 maximum tolerated dose revealed no cytotoxicity. - Highlights: • Stable ferrofluids (FF) were obtained using electrostatic or steric stabilization of iron oxide MNPs obtained by laser target evaporation. • Controlled amounts of FF were used for in vitro experiments with human mesenchymal stem cells. • Cells morphofunctional response in the Fe concentration range 2–1000 maximum tolerated dose revealed no cytotoxicity. • The results can be used for magnetic biosensoring, as well as for an addressed design of cell delivery systems.

  4. Nanoparticles, nanotechnology and pulmonary nanotoxicology

    Directory of Open Access Journals (Sweden)

    A.J. Ferreira

    2013-01-01

    Full Text Available The recently emergent field of Nanotechnology involves the production and use of structures at the nanoscale. Research at atomic, molecular or macromolecular levels, has led to new materials, systems and structures on a scale consisting of particles less than 100 nm and showing unique and unusual physical, chemical and biological properties, which has enabled new applications in diverse fields, creating a multimillion-dollar high-tech industry. Nanotechnologies have a wide variety of uses from nanomedicine, consumer goods, electronics, communications and computing to environmental applications, efficient energy sources, agriculture, water purification, textiles, and aerospace industry, among many others.The different characteristics of nanoparticles such as size, shape, surface charge, chemical properties, solubility and degree of agglomeration will determine their effects on biological systems and human health, and the likelihood of respiratory hazards. There are a number of new studies about the potential occupational and environmental effects of nanoparticles and general precautionary measures are now fully justified.Adverse respiratory effects include multifocal granulomas, peribronchial inflammation, progressive interstitial fibrosis, chronic inflammatory responses, collagen deposition and oxidative stress.The authors present an overview of the most important studies about respiratory nanotoxicology and the effects of nanoparticles and engineered nanomaterials on the respiratory system. Resumo: O campo recentemente emergente da nanotecnologia envolve a produção e o uso de estruturas em nanoescala. A pesquisa a níveis atómicos, moleculares e macro moleculares conduziu a novos materiais, sistemas e estruturas numa escala constituída por partículas menores que 100 nm, apresentando propriedades físicas, químicas e biológicas únicas e incomuns, o que tem permitido novas aplicações em diversos campos, criando uma indústria de alta

  5. Engineered Nanoparticle (Eco)Toxicity

    DEFF Research Database (Denmark)

    Cupi, Denisa

    In the past decade, the use of nanotechnology has led to a large variety of products in the market, and is projected to markedly increase in value in the years to come. The use of manufactured nanomaterials comprises various technological and economic benefits due to their novel physico-chemical ......In the past decade, the use of nanotechnology has led to a large variety of products in the market, and is projected to markedly increase in value in the years to come. The use of manufactured nanomaterials comprises various technological and economic benefits due to their novel physico...... for the purpose of testing engineered nanoparticles (ENPs) in aquatic system are a central theme in this thesis. The research presented herein has included acute tests with freshwater cladoceran Daphnia magna, genotoxicity tests with bacteria Salmonella typhimurium, as well as acellular and in vitro assays...

  6. Plant Responses to Nanoparticle Stress

    Directory of Open Access Journals (Sweden)

    Zahed Hossain

    2015-11-01

    Full Text Available With the rapid advancement in nanotechnology, release of nanoscale materials into the environment is inevitable. Such contamination may negatively influence the functioning of the ecosystems. Many manufactured nanoparticles (NPs contain heavy metals, which can cause soil and water contamination. Proteomic techniques have contributed substantially in understanding the molecular mechanisms of plant responses against various stresses by providing a link between gene expression and cell metabolism. As the coding regions of genome are responsible for plant adaptation to adverse conditions, protein signatures provide insights into the phytotoxicity of NPs at proteome level. This review summarizes the recent contributions of plant proteomic research to elaborate the complex molecular pathways of plant response to NPs stress.

  7. Reverse Transfection Using Gold Nanoparticles

    Science.gov (United States)

    Yamada, Shigeru; Fujita, Satoshi; Uchimura, Eiichiro; Miyake, Masato; Miyake, Jun

    Reverse transfection from a solid surface has the potential to deliver genes into various types of cell and tissue more effectively than conventional methods of transfection. We present a method for reverse transfection using a gold colloid (GC) as a nanoscaffold by generating nanoclusters of the DNA/reagentcomplex on a glass surface, which could then be used for the regulation of the particle size of the complex and delivery of DNA into nuclei. With this method, we have found that the conjugation of gold nanoparticles (20 nm in particle size) to the pEGFP-N1/Jet-PEI complex resulted in an increase in the intensity of fluorescence of enhanced green fluorescent protein (EGFP) (based on the efficiency of transfection) from human mesenchymal stem cells (hMSCs), as compared with the control without GC. In this manner, we constructed a method for reverse transfection using GC to deliver genes into the cells effectively.

  8. Thermoplasmonic Ignition of Metal Nanoparticles.

    Science.gov (United States)

    Mutlu, Mehmet; Kang, Ju-Hyung; Raza, Søren; Schoen, David; Zheng, Xiaolin; Kik, Pieter G; Brongersma, Mark L

    2018-03-14

    Explosives, propellants, and pyrotechnics are energetic materials that can store and quickly release tremendous amounts of chemical energy. Aluminum (Al) is a particularly important fuel in many applications because of its high energy density, which can be released in a highly exothermic oxidation process. The diffusive oxidation mechanism (DOM) and melt-dispersion mechanism (MDM) explain the ways powders of Al nanoparticles (NPs) can burn, but little is known about the possible use of plasmonic resonances in NPs to manipulate photoignition. This is complicated by the inhomogeneous nature of powders and very fast heating and burning rates. Here, we generate Al NPs with well-defined sizes, shapes, and spacings by electron beam lithography and demonstrate that their plasmonic resonances can be exploited to heat and ignite them with a laser. By combining simulations with thermal-emission, electron-, and optical-microscopy studies, we reveal how an improved control over NP ignition can be attained.

  9. Laser sintering of copper nanoparticles

    International Nuclear Information System (INIS)

    Zenou, Michael; Saar, Amir; Ermak, Oleg; Kotler, Zvi

    2014-01-01

    Copper nanoparticle (NP) inks serve as an attractive potential replacement to silver NP inks in functional printing applications. However their tendency to rapidly oxidize has so far limited their wider use. In this work we have studied the conditions for laser sintering of Cu-NP inks in ambient conditions while avoiding oxidation. We have determined the regime for stable, low-resistivity copper (< ×3 bulk resistivity value) generation in terms of laser irradiance and exposure duration and have indicated the limits on fast processing. The role of pre-drying conditions on sintering outcome has also been studied. A method, based on spectral reflectivity measurements, was used for non-contact monitoring of the sintering process evolution. It also indicates preferred spectral regions for sintering. Finally, we illustrated how selective laser sintering can generate high-quality, fine line (<5 µm wide) and dense copper circuits. (paper)

  10. Fundamental investigations of catalyst nanoparticles

    DEFF Research Database (Denmark)

    Elkjær, Christian Fink

    and economic development in the 20th century. There is however a downside to this development and we are seeing significant pollution and pressure on resources. Catalysis therefore has an increasingly important role in limiting pollution and optimizing the use of resources. This development will depend on our...... fundamental understanding of catalytic processes and our ability to make use of that understanding. This thesis presents fundamental studies of catalyst nanoparticles with particular focus on dynamic processes. Such studies often require atomic-scale characterization, because the catalytic conversion takes...... important that we only study intrinsic structures and phenomena and not those that may be induced by the high energy electrons used to image the specimen. This requires careful consideration of the influence of the electron beam in order to understand, control and minimize that influence. I present four...

  11. Magnetic properties of hematite nanoparticles

    DEFF Research Database (Denmark)

    Bødker, Franz; Hansen, Mikkel Fougt; Bender Koch, Christian

    2000-01-01

    The magnetic properties of hematite (alpha-Fe2O3) particles with sizes of about 16 nm have been studied by use of Mossbauer spectroscopy, magnetization measurements, and neutron diffraction. The nanoparticles are weakly ferromagnetic at temperatures at least down to 5 K with a spontaneous...... magnetization that is only slightly higher than that of weakly ferromagnetic bulk hematite. At T greater than or similar to 100 K the Mossbauer spectra contain a doublet, which is asymmetric due to magnetic relaxation in the presence of an electric field gradient in accordance with the Blume-Tjon model......, Simultaneous fitting of series of Mossbauer spectra obtained at temperatures from 5 K to well above the superparamagnetic blocking temperature allowed the estimation of the pre-exponential factor in Neel's expression for the superparamagnetic relaxation time, tau(0) = (6 +/- 4) X 10(-11) s and the magnetic...

  12. Tunable-Porosity Membranes From Discrete Nanoparticles

    Science.gov (United States)

    Marchetti, Patrizia; Mechelhoff, Martin; Livingston, Andrew G.

    2015-01-01

    Thin film composite membranes were prepared through a facile single-step wire-wound rod coating procedure in which internally crosslinked poly(styrene-co-butadiene) polymer nanoparticles self-assembled to form a thin film on a hydrophilic ultrafiltration support. This nanoparticle film provided a defect-free separation layer 130–150 nm thick, which was highly permeable and able to withstand aggressive pH conditions beyond the range of available commercial membranes. The nanoparticles were found to coalesce to form a rubbery film when heated above their glass transition temperature (Tg). The retention properties of the novel membrane were strongly affected by charge repulsion, due to the negative charge of the hydroxyl functionalized nanoparticles. Porosity was tuned by annealing the membranes at different temperatures, below and above the nanoparticle Tg. This enabled fabrication of membranes with varying performance. Nanofiltration properties were achieved with a molecular weight cut-off below 500 g mol−1 and a low fouling tendency. Interestingly, after annealing above Tg, memory of the interstitial spaces between the nanoparticles persisted. This memory led to significant water permeance, in marked contrast to the almost impermeable films cast from a solution of the same polymer. PMID:26626565

  13. Phytosynthesis of nanoparticles: concept, controversy and application

    Science.gov (United States)

    2014-01-01

    Nanotechnology is an exciting and powerful discipline of science; the altered properties of which have offered many new and profitable products and applications. Agriculture, food and medicine sector industries have been investing more in nanotechnology research. Plants or their extracts provide a biological synthesis route of several metallic nanoparticles which is more eco-friendly and allows a controlled synthesis with well-defined size and shape. The rapid drug delivery in the presence of a carrier is a recent development to treat patients with nanoparticles of certain metals. The engineered nanoparticles are more useful in increasing the crop production, although this issue is still in infancy. This is simply due to the unprecedented and unforeseen health hazard and environmental concern. The well-known metal ions such as zinc, iron and copper are essential constituents of several enzymes found in the human system even though the indiscriminate use of similar other metal nanoparticle in food and medicine without clinical trial is not advisable. This review is intended to describe the novel phytosynthesis of metal and metal oxide nanoparticles with regard to their shape, size, structure and diverse application in almost all fields of medicine, agriculture and technology. We have also emphasized the concept and controversial mechanism of green synthesis of nanoparticles. PMID:24910577

  14. Spherical aggregates composed of gold nanoparticles

    International Nuclear Information System (INIS)

    Chen, C-C; Kuo, P-L; Cheng, Y-C

    2009-01-01

    Alkylated triethylenetetramine (C12E3) was synthesized and used as both a reductant in the preparation of gold nanoparticles by the reduction of HAuCl 4 and a stabilizer in the subsequent self-assembly of the gold nanoparticles. In acidic aqueous solution, spherical aggregates (with a diameter of about 202 ± 22 nm) of gold nanoparticles (with the mean diameter of ∼18.7 nm) were formed. The anion-induced ammonium adsorption of the alkylated amines on the gold nanoparticles was considered to provide the electrostatic repulsion and steric hindrance between the gold nanoparticles, which constituted the barrier that prevented the individual particles from coagulating. However, as the amino groups became deprotonated with increasing pH, the ammonium adsorption was weakened, and the amino groups were desorbed from the gold surface, resulting in discrete gold particles. The results indicate that the morphology of the reduced gold nanoparticles is controllable through pH-'tunable' aggregation under the mediation of the amino groups of alkylated amine to create spherical microstructures.

  15. Phytosynthesis of nanoparticles: concept, controversy and application

    Science.gov (United States)

    Husen, Azamal; Siddiqi, Khwaja Salahuddin

    2014-05-01

    Nanotechnology is an exciting and powerful discipline of science; the altered properties of which have offered many new and profitable products and applications. Agriculture, food and medicine sector industries have been investing more in nanotechnology research. Plants or their extracts provide a biological synthesis route of several metallic nanoparticles which is more eco-friendly and allows a controlled synthesis with well-defined size and shape. The rapid drug delivery in the presence of a carrier is a recent development to treat patients with nanoparticles of certain metals. The engineered nanoparticles are more useful in increasing the crop production, although this issue is still in infancy. This is simply due to the unprecedented and unforeseen health hazard and environmental concern. The well-known metal ions such as zinc, iron and copper are essential constituents of several enzymes found in the human system even though the indiscriminate use of similar other metal nanoparticle in food and medicine without clinical trial is not advisable. This review is intended to describe the novel phytosynthesis of metal and metal oxide nanoparticles with regard to their shape, size, structure and diverse application in almost all fields of medicine, agriculture and technology. We have also emphasized the concept and controversial mechanism of green synthesis of nanoparticles.

  16. Synthesizing nanoparticles by mimicking nature | Science ...

    Science.gov (United States)

    As particulate matter with at least one dimension that is less than 100 nm, nanoparticles are the minuscule building blocks of new commercial products and consumer materials in the emerging field of nanotechnology. Nanoparticles are being discovered and introduced in the marketplace at a very fast pace. Also, commercial interest in nanotechnology has significantly increased, translating into more than a multibillion-dollar investment from public and private sources. Among several unique properties, nanoparticles have an exceptionally large surface area–to-volume ratio, which is the most important of the characteristics that are responsible for their widespread use in an array of industries. Unfortunately, their small size and corresponding high surface area often create a number of problems. For instance, the outer layer of atoms may have a different composition, and therefore a different chemistry, from the rest of the particle. Furthermore, nanoparticle surfaces are sensitive to changes in redox conditions, pH, ionic strength, and the types of microorganisms present. The synthesis of metal nanoparticles has been the subject of intense research, primarily because of their unique properties and their potential applications from a technological point of view. The optical, magnetic, electronic, and catalytic properties of these materials depend on their morphology and size distribution. Noble-metal nanoparticles are of particular interest because of their close-

  17. Fluoride loaded polymeric nanoparticles for dental delivery.

    Science.gov (United States)

    Nguyen, Sanko; Escudero, Carlos; Sediqi, Nadia; Smistad, Gro; Hiorth, Marianne

    2017-06-15

    The overall aim of the present paper was to develop fluoride loaded nanoparticles based on the biopolymers chitosan, pectin, and alginate, for use in dental delivery. First, the preparation of nanoparticles in the presence of sodium fluoride (NaF) as the active ingredient by ionic gelation was investigated followed by an evaluation of their drug entrapment and release properties. Chitosan formed stable, spherical, and monodisperse nanoparticles in the presence of NaF and tripolyphoshate as the crosslinker, whereas alginate and pectin were not able to form any definite nanostructures in similar conditions. The fluoride loading capacity was found to be 33-113ppm, and the entrapment efficiency 3.6-6.2% for chitosan nanoparticles prepared in 0.2-0.4% (w/w) NaF, respectively. A steady increase in the fluoride release was observed for chitosan nanoparticles prepared in 0.2% NaF both in pH5 and 7 until it reached a maximum at time point 4h and maintained at this level for at least 24h. Similar profiles were observed for formulations prepared in 0.4% NaF; however the fluoride was released at a higher level at pH5. The low concentration, but continuous delivery of fluoride from the chitosan nanoparticles, with possible expedited release in acidic environment, makes these formulations highly promising as dental delivery systems in the protection against caries development. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Toxicity of iron oxide nanoparticles against osteoblasts

    International Nuclear Information System (INIS)

    Shi Sifeng; Jia Jingfu; Guo Xiaokui; Zhao Yaping; Liu Boyu; Chen Desheng; Guo Yongyuan; Zhang Xianlong

    2012-01-01

    Magnetic nanoparticles have been widely used for tissue repair, magnetic resonance imaging, immunoassays and drug delivery. They are very promising in orthopaedic applications and several magnetic nanoparticles have been exploited for the treatment of orthopaedic disease. Here, we conducted an in vitro study to examine the interaction of magnetic iron oxide nanoparticles with human osteoblasts to evaluate the dose-related toxicity of the nanoparticles on osteoblasts. A transmission electron microscope was used to visualise the internalised magnetic nanoparticles in osteoblasts. The CCK-8 results revealed increased cell viability (107.5 % vitality compared with the control group) when co-cultured at a low concentration (20 μg/mL) and decreased cell viability (59.5 % vitality in a concentration of 300 μg/mL and 25.9 % in 500 μg/mL) when co-cultured in high concentrations. The flow cytometric detection revealed similar results with 5.48 % of apoptosis in a concentration of 20 μg/mL, 23.40 % of apoptosis in a concentration of 300 μg/mL and 28.49 % in a concentration of 500 μg/mL. The disrupted cytoskeleton of osteoblasts was also revealed using a laser scanning confocal microscope. We concluded that use of a low concentration of magnetic iron oxide nanoparticles is important to avoid damage to osteoblasts.

  19. Antibody-Conjugated Nanoparticles for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Manuel Arruebo

    2009-01-01

    Full Text Available Nanoscience and Nanotechnology have found their way into the fields of Biotechnology and Medicine. Nanoparticles by themselves offer specific physicochemical properties that they do not exhibit in bulk form, where materials show constant physical properties regardless of size. Antibodies are nanosize biological products that are part of the specific immune system. In addition to their own properties as pathogens or toxin neutralizers, as well as in the recruitment of immune elements (complement, improving phagocytosis, cytotoxicity antibody dependent by natural killer cells, etc., they could carry several elements (toxins, drugs, fluorochroms, or even nanoparticles, etc. and be used in several diagnostic procedures, or even in therapy to destroy a specific target. The conjugation of antibodies to nanoparticles can generate a product that combines the properties of both. For example, they can combine the small size of nanoparticles and their special thermal, imaging, drug carrier, or magnetic characteristics with the abilities of antibodies, such as specific and selective recognition. The hybrid product will show versatility and specificity. In this review, we analyse both antibodies and nanoparticles, focusing especially on the recent developments for antibody-conjugated nanoparticles, offering the researcher an overview of the different applications and possibilities of these hybrid carriers.

  20. Shape-induced anisotropy in antiferromagnetic nanoparticles

    International Nuclear Information System (INIS)

    Gomonay, O.; Kondovych, S.; Loktev, V.

    2014-01-01

    High fraction of the surface atoms considerably enhances the influence of size and shape on the magnetic and electronic properties of nanoparticles. Shape effects in ferromagnetic nanoparticles are well understood and allow us to set and control the parameters of a sample that affect its magnetic anisotropy during production. In the present paper we study the shape effects in the other widely used magnetic materials – antiferromagnets, – which possess vanishingly small or zero macroscopic magnetization. We take into account the difference between the surface and bulk magnetic anisotropy of a nanoparticle and show that the effective magnetic anisotropy depends on the particle shape and crystallographic orientation of its faces. The corresponding shape-induced contribution to the magnetic anisotropy energy is proportional to the particle volume, depends on magnetostriction, and can cause formation of equilibrium domain structure. Crystallographic orientation of the nanoparticle surface determines the type of domain structure. The proposed model allows us to predict the magnetic properties of antiferromagnetic nanoparticles depending on their shape and treatment. - Highlights: • We demonstrate that the shape effects in antiferromagnetic nanoparticles stem from the difference of surface and bulk magnetic properties combined with strong magnetoelastic coupling. • We predict shape-induced anisotropy in antiferromagnetic particles with large aspect ratio. • We predict different types of domain structures depending on the orientation of the particle faces