WorldWideScience

Sample records for wax molecular composition

  1. Effects of air pollutants on epicuticular wax chemical composition

    International Nuclear Information System (INIS)

    Percy, K.E.; McQuattie, C.J.; Rebbeck, J.A.

    1994-01-01

    There are numerous reports in the literature of modifications to epicuticular wax structure as a consequence of exposure to air pollutants. Most authors have used scanning electron microscopy (SEM) to describe changes in wax crystallite morphology or distribution. ''Erosion'' or ''weathering'' of crystalline structure into an amorphous state is the most common observation, particularly in the case of conifer needles having the characteristic tube crystallites comprised of nonacosan-10-ol. Wax structure is largely determined by its chemical composition. Therefore, many of the reported changes in wax structure due to air pollutants probably arise from direct interactions between pollutants such as ozone and wax biosynthesis. The literature describing changes in wax composition due to pollutants is briefly reviewed. New evidence is introduced in support of the hypothesis for a direct interaction between air pollutants and epicuticular wax Biosynthesis. (orig.)

  2. Chemical composition of raw and deresinated peat waxes

    Energy Technology Data Exchange (ETDEWEB)

    Bel' kevich, P I; Ivanova, L A; Piskunova, T A; Tserlyukevich, Ya V; Yurkevich, E A

    1980-01-01

    Research was conducted using absorption chromatography and spectroscopy to study the changes in the chemical composition of raw peat wax taking place in the deresination process. Characteristics of the raw, deresinated waxes and resins removed are given. The fractions obtained showed that both raw and deresinated wax contain the same basic compound classes: hydrocarbons, alcohols, complex ether and acids; but their proportions in the waxes are different. After deresination most of the dark-colored polyfunctional compounds, a portion of the soluble unsaturated hydrocarbons and alcohols, and all the sterenes transfer into the resin. This causes the light color and specific physical properties of deresinated wax. (13 refs.) (In Russian)

  3. Effect of solvent extraction on Tunisian esparto wax composition

    Directory of Open Access Journals (Sweden)

    Saâd Inès

    2016-08-01

    Full Text Available The increase of needs for renewable and vegetable based materials will help to drive the market growth of vegetable waxes. Because of their highly variable composition and physicochemical properties, plant waxes have found numerous applications in the: food, cosmetic, candle, coating, polish etc... The aim of this project is to determine the effect of solvent extraction (petroleum ether and ethanol on Tunisian esparto wax composition. The GC-MS was applied in order to determine the waxes compositions. Then, physicochemical parameters of these two samples of waxes: acid value, saponification value, iodine value and melting point were measured in order to deduct their properties and possible fields of uses. Results showed that esparto wax composition depended on the solvent extraction and that major components of the two samples of waxes were: alkanes, esters of fatty acids and phenols. Furthermore, esparto waxes were characterized by an antioxidant and antibacterial activities but the potential of these activities depended on the solvent of wax extraction.

  4. Elucidation of molecular and elementary composition of organic and inorganic substances involved in 19th century wax sculptures using an integrated analytical approach

    International Nuclear Information System (INIS)

    Regert, M.; Langlois, J.; Laval, E.; Le Ho, A.-S.; Pages-Camagna, S.

    2006-01-01

    Wax sculptures contain several materials from both organic and inorganic nature. These works of art are particularly fragile. Determining their chemical composition is thus of prime importance for their preservation. The identification of the recipes of waxy pastes used through time also provides valuable information in the field of art history. The aim of the present research was to develop a convenient analytical strategy, as non-invasive as possible, that allows to identify the wide range of materials involved in wax sculptures. A multi-step analytical methodology, based on the use of complementary techniques, either non- or micro-destructive, was elaborated. X-ray fluorescence and micro-Raman spectroscopy were used in a non-invasive way to identify inorganic pigments, opacifiers and extenders. The combination of structural and separative techniques, namely infrared spectroscopy, direct inlet electron ionisation mass spectrometry and high temperature gas chromatography, was shown to be appropriate for unravelling the precise composition of the organic substances. A micro-chemical test was also performed for the detection of starch. From this study it has been possible to elucidate the composition of the waxy pastes used by three different sculptors at the end of the 19th century. Complex and elaborated recipes, in which a large range of natural substances were combined, were highlighted

  5. Molecular and Evolutionary Mechanisms of Cuticular Wax for Plant Drought Tolerance

    Directory of Open Access Journals (Sweden)

    Dawei Xue

    2017-04-01

    Full Text Available Cuticular wax, the first protective layer of above ground tissues of many plant species, is a key evolutionary innovation in plants. Cuticular wax safeguards the evolution from certain green algae to flowering plants and the diversification of plant taxa during the eras of dry and adverse terrestrial living conditions and global climate changes. Cuticular wax plays significant roles in plant abiotic and biotic stress tolerance and has been implicated in defense mechanisms against excessive ultraviolet radiation, high temperature, bacterial and fungal pathogens, insects, high salinity, and low temperature. Drought, a major type of abiotic stress, poses huge threats to global food security and health of terrestrial ecosystem by limiting plant growth and crop productivity. The composition, biochemistry, structure, biosynthesis, and transport of plant cuticular wax have been reviewed extensively. However, the molecular and evolutionary mechanisms of cuticular wax in plants in response to drought stress are still lacking. In this review, we focus on potential mechanisms, from evolutionary, molecular, and physiological aspects, that control cuticular wax and its roles in plant drought tolerance. We also raise key research questions and propose important directions to be resolved in the future, leading to potential applications of cuticular wax for water use efficiency in agricultural and environmental sustainability.

  6. Oils; lubricants; paraffin-wax compositions; hydrocarbon condensation products

    Energy Technology Data Exchange (ETDEWEB)

    1934-04-04

    Petroleum hydrocarbons such as gasoline, kerosene, Diesel fuel oil, lubricating-oil, and paraffin wax, and like hydrocarbons such as are obtainable from shale oil and by the hydrogenation of carbonaceous materials, are improved by addition of products obtained by condensing a cyclic hydrocarbon with a saturated dihalogen derivative of an aliphatic hydrocarbon containing less than five carbon atoms. The addition of the condensation products increases the viscosity of the hydrocarbon oils specified, and is particularly useful in the case of lubricating-oils; addition of the condensation products to paraffin wax increases the transparency and adherent properties of the wax, and is useful in the manufacture of moulded articles such as candles; the products may also be used in solid lubricating-compositions.

  7. Characterization and chemical composition of epicuticular wax from banana leaves grown in Northern Thailand

    Directory of Open Access Journals (Sweden)

    Suporn Charumanee

    2017-08-01

    Full Text Available This study aimed to investigate the physicochemical properties and chemical composition of epicuticular wax extracted from leaves of Kluai Namwa, a banana cultivar which is widely grown in Northern Thailand. Its genotype was identified by a botanist. The wax was extracted using solvent extraction. The fatty acid profiles and physicochemical properties of the wax namely melting point, congealing point, crystal structures and polymorphism, hardness, color, and solubility were examined and compared to those of beeswax, carnauba wax and paraffin wax. The results showed that the genotype of Kluai Namwa was Musa acuminata X M. balbisiana (ABB group cv. Pisang Awak. The highest amount of wax extracted was 274 μg/cm2 surface area. The fatty acid composition and the physicochemical properties of the wax were similar to those of carnauba wax. It could be suggested that the banana wax could be used as a replacement for carnauba wax in various utilizing areas.

  8. EFFECT OF OIL TEMPERATURE ON THE WAX DEPOSITION OF CRUDE OIL WITH COMPOSITION ANALYSIS

    Directory of Open Access Journals (Sweden)

    Qing Quan

    Full Text Available Abstract Wax deposition behavior was investigated in a set of one-inch experiment flow loops, using a local crude oil with high wax content. The temperature of the oil phase is chosen as a variable parameter while the temperature of the coolant media is maintained constant. Detailed composition of the deposit is characterized using High Temperature Gas Chromatography. It was found that the magnitude of the diffusion of the heavier waxy components (C35-C50 decreases when the oil temperature decreases, but the magnitude of the diffusion of the lighter waxy components increases. This result means that the diffusion of wax molecules shifts towards lower carbon number, which further proves the concept of molecular diffusion. Meanwhile, a meaningful phenomenon is that the mass of the deposit increases with the oil temperature decrease, which definitely proves the influence of wax solubility on deposition, while the formation of an incipient gel layer reflects the fact that an increase in the mass of the deposit does not mean a larger wax percentage fraction at lower oil temperature.

  9. Properties of An Oral Nanoformulation of A Molecularly Dispersed Amphotericin B Comprising A Composite Matrix of Theobroma Oil and Bee’S Wax

    Directory of Open Access Journals (Sweden)

    Chloe See Wei Tan

    2014-12-01

    Full Text Available An amphotericin B-containing (AmB solid lipid nanoparticulate drug delivery system intended for oral administration, comprised of bee’s wax and theobroma oil as lipid components was formulated with the aim to ascertain the location of AmB within the lipid matrix: (a a homogenous matrix; (b a drug-enriched shell; or (c a drug enriched core. Both the drug-loaded and drug-free nanoparticles were spherical with AmB contributing to an increase in both the z-average diameter (169 ± 1 to 222 ± 2 nm and zeta potential (40.8 ± 0.9 to 50.3 ± 1.0 mV of the nanoparticles. A maximum encapsulation efficiency of 21.4% ± 3.0%, corresponding to 10.7 ± 0.4 mg encapsulated AmB within the lipid matrix was observed. Surface analysis and electron microscopic imaging indicated that AmB was dispersed uniformly within the lipid matrix (option (a above and, therefore, this is the most suitable of the three models with regard to modeling the propensity for uptake by epithelia and release of AmB in lymph.

  10. Mechanical properties of carving wax with various Ca-bentolite filter composition

    Directory of Open Access Journals (Sweden)

    Widjijono Widjijono

    2009-09-01

    Full Text Available Background: The carving wax is used as a medium in dental anatomy study. This wax composes of many waxes and sometimes a filler is added. Carving wax is not sold in Indonesian market. Whereas the gradients of carving wax such as beeswax, paraffin and bentonite are abundant in Indonesia. Based on that fact, to make high quality and standard,the exact composition if this carving wax should be known. Purpose: The aim of this study was to investigate the effect of carving wax composition with Ca-bentonite filler on the melting point, hardness, and thermal expansion. Methods: Five carving wax compositions were made with paraffin, Ca-bentonite, carnauba wax, and beeswax in ratio (% weight: 50:20:25:5 (KI, 55:15:25:5 (KII, 60:10:25:5 (KIII, 65:5:25:5 (KIV, 70:0:25:5(KV. All components were melted, then poured into the melting point, hardness, and thermal expansion moulds (n = 5. Three carving wax properties were tested: melting point by melting point apparatus; hardness by penetrometer; thermal expansion by digital sliding caliper. The data were analyzed statistically using One-Way ANOVA and LSD0.05. Result: The Ca-bentonite addition influenced the melting point and thermal expansion of carving wax with significant differences between KI and other groups (p < 0.05. Ca-bentonite addition influenced the carving wax hardness and the mean differences among the groups were significant (p < 0.05. Conclusion: Ca-bentonite filler addition on the composition of carving wax influenced the physical and mechanical properties. The carving wax with high Ca-bentonite concentration had high melting point and hardness, but low thermal expansion.

  11. Characterization and chemical composition of epicuticular wax from banana leaves grown in Northern Thailand

    OpenAIRE

    Suporn Charumanee; Songwut Yotsawimonwat; Panee Sirisa-ard; Kiatisak Pholsongkram

    2017-01-01

    This study aimed to investigate the physicochemical properties and chemical composition of epicuticular wax extracted from leaves of Kluai Namwa, a banana cultivar which is widely grown in Northern Thailand. Its genotype was identified by a botanist. The wax was extracted using solvent extraction. The fatty acid profiles and physicochemical properties of the wax namely melting point, congealing point, crystal structures and polymorphism, hardness, color, and solubility were examin...

  12. Phase Change Insulation for Energy Efficiency Based on Wax-Halloysite Composites

    International Nuclear Information System (INIS)

    Zhao, Yafei; Thapa, Suvhashis; Weiss, Leland; Lvov, Yuri

    2014-01-01

    Phase change materials (PCMs) have gained extensive attention in thermal energy storage. Wax can be used as a PCM in solar storage but it has low thermal conductivity. Introducing 10% halloysite admixed into wax yields a novel composite (wax-halloysite) which has a thermal conductivity of 0.5 W/mK. To increase the base conductivity, graphite and carbon nanotubes were added into the PCM composite improving its thermal energy storage. Thermal conductivity of wax-halloysite-graphite (45/45/10%) composite showed increased conductivity of 1.4 W/mK (3 times higher than the base wax-halloysite composite). Wax- halloysite-graphite-carbon nanotubes (45/45/5/5%) composite showed conductivity of 0.85 W/mK while maintaining the original shape perfectly until 91 °C (above the original wax melting point). Thermal conductivity can be further increased with higher doping of carbon nanotubes. This new composites are promising heat storage material due to good thermal stability, high thermal/electricity conductivity and ability to preserve its shape during phase transitions

  13. Electrically conductive carbon nanofiber/paraffin wax composites for electric thermal storage

    International Nuclear Information System (INIS)

    Zhang Kun; Han Baoguo; Yu Xun

    2012-01-01

    Highlights: ► Carbon nanofiber (CNF)/paraffin wax composite is found to be a promising electric thermal storage material. ► The thermal storage capacity of CNF/paraffin wax composite is five times of traditional electric thermal storage material. ► CNF is shown to be an effective conductive filler for the composite. - Abstract: The research of electric thermal storage (ETS) has attracted a lot of attention recently, which converts off-peak electrical energy into thermal energy and release it later at peak hours. In this study, new electric thermal storage composites are developed by employing paraffin wax as thermal storage media and carbon nanofiber (CNF) as conductive fillers. Electric heating and thermal energy release performances of the CNF/paraffin wax composites are experimentally investigated. Experimental results show that, when the composites are heated to about 70 °C, the developed electrically conductive CNF/paraffin wax composites present a thermal storage capacity of about 280 kJ/kg, which is five times of that of traditional thermal storage medium such as ceramic bricks (54 kJ/kg). The CNF/paraffin wax composites can also effectively store the thermal energy and release the thermal energy in later hours.

  14. Changes in Cuticular Wax Composition of Two Blueberry Cultivars during Fruit Ripening and Postharvest Cold Storage.

    Science.gov (United States)

    Chu, Wenjing; Gao, Haiyan; Chen, Hangjun; Wu, Weijie; Fang, Xiangjun

    2018-03-21

    Cuticular wax plays an important role for the quality of blueberry fruits. In this study, the cuticular wax composition of two blueberry cultivars, 'Legacy' ( Vaccinium corymbosum) and 'Brightwell' ( Vaccinium ashei), was examined during fruit ripening and postharvest cold storage. The results showed that wax was gradually deposited on the epidermis of blueberry fruits and the content of major wax compounds, except that for diketones, increased significantly during fruit ripening. The total wax content was 2-fold greater in 'Brightwell' blueberries than that in 'Legacy' blueberries during fruit ripening. The total wax content of both cultivars decreased during 30 days of storage at 4 °C, and the variation of cuticular wax composition was cultivar-dependent. The content of diketones decreased significantly in 'Legacy' blueberries, while the content of triterpenoids and aliphatic compounds showed different fold changes in 'Brightwell' blueberries after 30 days of storage at 4 °C. Overall, our study provided a quantitative and qualitative overview of cuticular wax compounds of blueberry fruits during ripening and postharvest cold storage.

  15. Composition and morphology of cuticular wax in blueberry (Vaccinium spp.) fruits.

    Science.gov (United States)

    Chu, Wenjing; Gao, Haiyan; Cao, Shifeng; Fang, Xiangjun; Chen, Hangjun; Xiao, Shangyue

    2017-03-15

    The chemical composition and morphology of cuticular wax in mature fruit of nine blueberry cultivars were investigated using gas chromatography-mass spectrometry (GC-MS) and scanning electron microscope (SEM). Triterpenoids and β-diketones were the most prominent compounds, accounting for on average 64.2% and 16.4% of the total wax, respectively. Ursolic or oleanolic acid was identified as the most abundant triterpenoids differing in cultivars. Two β-diketones, hentriacontan-10,12-dione and tritriacontan-12,14-dione, were detected in cuticular wax of blueberry fruits for the first time. Notably, hentriacontan-10,12-dione and tritriacontan-12,14-dione were only detected in highbush (V. corymbosum) and rabbiteye (V. ashei) blueberries, respectively. The results of SEM showed that a large amount of tubular wax deposited on the surface of blueberry fruits. There was no apparent difference in wax morphology among the nine cultivars. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The effect of the environment on the structure, quantity and composition of spruce needle wax

    International Nuclear Information System (INIS)

    Guenthardt-Goerg, M.S.

    1994-01-01

    The tubular structure (10-nonacosanol), as formed in spring on the wax surface of new spruce needles (Picea abies (L.)Karst.), or as regenerated on previous-year needles, becomes gradually fused and flattened in relation to needle exposure, particularly wind and rain. Structural flattening does not necessarily imply changes in wax quantity, composition or lead to changes in needle transpiration or photosynthesis, and was approximately reproduced by bathing excised twigs in water (with pH having little effect). In 4-year-old plants of one clone planted out at a Swiss plateau and alpine sites, changes in wax structure were similar to those found in mature trees. No such changes were found in plants with O 3 , SO 2 , ambient air, charcoal-filtered air, or in plants grown outside the chambers but shielded from rain. Area-related needle wax quantity in mature trees differed between the two sites, but did not differ in young plants under different treatments (fumigation or planted out at the sites). Minor differences in wax composition, however, were found to be related to the ozone dose of the fumigation or the ambient ozone dose at the sites. In each needle wax sample, 68 compounds grouped into 12 constituent classes were quantified. The quantity of the individual substituent classes varied among wax samples from genetically different mature trees at the two sites in a tree-specific way. Variation of these quantities was not larger than among young cloned plants after different treatments. (orig.)

  17. EPICUTICULAR WAX COMPOSITION OF SOME EUROPEAN SEDUM SPECIES

    NARCIS (Netherlands)

    STEVENS, JF; THART, H; BOLCK, A; ZWAVING, JH; MALINGRE, TM

    Epicuticular waxes from 30 species of Sedum and 2 species of Sempervivoideae, i.e. Aeonium spathulatum and Sempervivum nevadense, have been analysed by GC and GC-MS. The Sedum taxa examined were S. acre, S. album, S. series Alpestria (13 species), S. anglicum, S. brevifolium, S. litoreum, S. lydium,

  18. Composition of epicuticular wax on Prosopis glandulosa leaves

    International Nuclear Information System (INIS)

    Mayeux, H.S. Jr.; Wilkinson, R.E.

    1990-01-01

    Epicuticular wax on leaves of field-grown honey mesquite (Prosopis glandulosa Torr.) trees consisted of 35% esters, 32% alkanes, 25% free fatty alcohols, and 7% free fatty acids. Aldehydes were present in very low concentrations. The number of carbon atoms (C n ) of alkanes ranged from 25 to 31, with a maximum (57%) at 29. Esters consisted of fatty acids with C n of 16, 18, and 20, with most (70%) at 18 and fatty alcohols with C n of 24-32. The C n of free fatty alcohols and free fatty acids also ranged from 24 to 32. Only primary alcohols were present. Immediately after exposure of glasshouse-grown seedlings to 14 CO 2 for 4 h, 60% of the recovered 14 C was incorporated into free fatty acids; the percentage decreased progressively to 18% 8 h after exposure and remained stable thereafter. The proportion of 14 C in free fatty alcohols increased from ca. 12% immediately after exposure to 14 CO 2 to 55% at 8 h. Little 14 C was associated with other wax components over the 24-h period; 3% or less was incorporated into alkanes

  19. Effect of Zeolite Treatment on the Blooming Behavior of Paraffin Wax in Natural Rubber Composites

    Directory of Open Access Journals (Sweden)

    Bryan B. Pajarito

    2016-06-01

    Full Text Available The blooming behavior of paraffin wax in natural rubber (NR composites was studied as function of zeolite treatment. Three types of zeolite treatment were treated as factors: acid activation using hydrochloric acid (HCl solution, ion exchange using tetradecyldimethyl amine (TDA chloride salt, and organic modification using glycerol monostearate (GMS. The zeolite was treated according to a 23 full factorial design of experiment. Attenuated total reflectance – Fourier transform infrared (ATR-FTIR spectroscopy was used to characterize the chemical structure of treated zeolite. Treated zeolite was applied as filler to NR composites deliberately compounded with high amount of paraff in wax. The amount of bloomed wax in surface of NR composite sheets was monitored with time at 50oC. Results show the bloom amount to be linear with the square root of time. NR composites reinforced with untreated, acid-activated, and ion-exchanged zeolite fillers indicate reduction in wax blooming as compared to unfilled NR. The bloom rate (slope and initial bloom (y-intercept were determined from the experimental plots. Analysis of variance (ANOVA shows the bloom rate to be signif icantly increased when zeolite fillers are treated with GMS. Meanwhile, initial bloom was significantly enhanced when zeolite fillers are treated with TDA chloride salt and GMS. The significant increase in bloom rate and initial bloom can be attributed to the softening of the NR matrix at high amounts of TDA chloride salt and GMS.

  20. Plumage reflectance is not affected by preen wax composition in red knots Calidris canutus

    NARCIS (Netherlands)

    Reneerkens, J; Korsten, P

    It has recently been shown that sandpipers (Scolopacidae) abruptly switch the chemical composition of their preen gland secretions from mono- to diester waxes just before the period of courtship. The timing and context of the shift suggested that diesters could provide a visible quality signal

  1. Molecular analysis of intact preen waxes of Calidris Canutus (Aves: Scolopacidae) by GC/MS and GC/MS/MS

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Dekker, M.H.A.; Piersma, T.

    2000-01-01

    The intact preen wax esters of the red knot Calidris canutus were studied with gas chromatography/mass spectrometry (GC/MS) and GC/MS/MS. In this latter technique, transitions from the molecular ion to fragment ions representing the fatty acid moiety of the wax esters were measured, providing

  2. Molecular analysis of intact preen waxes of Calidris canutus (Aves : Scolopacidae) by gas chromatography/mass spectrometry

    NARCIS (Netherlands)

    Dekker, MHA; Piersma, T; Damste, JSS; Dekker, Marlèn H.A.; Sinninghe Damsté, Jaap S.

    The intact preen wax esters of the red knot Calidris canutus were studied with gas chromatography/mass spectrometry (GC/MS) and GC/MS/MS. In this latter technique, transitions from the molecular ion to fragment ions representing the fatty acid moiety of the wax esters were measured, providing

  3. Molecular and Biochemical Characterization of Cotton Epicuticular Wax in Defense Against Cotton Leaf Curl Disease.

    Science.gov (United States)

    Khan, Muhammad Azmat Ullah; Shahid, Ahmad Ali; Rao, Abdul Qayyum; Bajwa, Kamran Shehzad; Samiullah, Tahir Rehman; Muzaffar, Adnan; Nasir, Idrees Ahmad; Husnain, Tayyab

    2015-12-01

    Gossypium arboreumis resistant to Cotton leaf curl Burewala virus and its cognate Cotton leaf curl Multan beta satellite ( CLCuBuV and CLCuMB ). However, the G. arboreum wax deficient mutant (GaWM3) is susceptible to CLCuV . Therefore, epicuticular wax was characterized both quantitatively and qualitatively for its role as physical barrier against whitefly mediated viral transmission and co-related with the titer of each viral component (DNA-A, alphasatellite and betasatellite) in plants. The hypothesis was the CLCuV titer in cotton is dependent on the amount of wax laid down on plant surface and the wax composition. Analysis of the presence of viral genes, namely alphasatellite, betasatellite and DNA-A, via real-time PCR in cotton species indicated that these genes are detectable in G. hirsutum , G. harknessii and GaWM3, whereas no particle was detected in G. arboreum . Quantitative wax analysis revealed that G. arboreum contained 183 μg.cm -2 as compared to GaWM3 with only 95 μg.cm -2 . G. hirsutum and G. harknessii had 130 μg.cm -2 and 146 μg.cm -2 , respectively. The GCMS results depicted that Lanceol, cis was 45% in G. harknessii . Heptadecanoic acid was dominant in G. arboreum with 25.6%. GaWM3 had 18% 1,2,-Benenedicarboxylic acid. G. hirsutum contained 25% diisooctyl ester. The whitefly feeding assay with Nile Blue dye showed no color in whiteflies gut fed on G. arboreum . In contrast, color was observed in the rest of whiteflies. From results, it was concluded that reduced quantity as well as absence of (1) 3-trifluoroacetoxytetradecane, (2) 2-piperidinone,n-|4-bromo-n-butyl|, (3) 4-heptafluorobutyroxypentadecane, (4) Silane, trichlorodocosyl-, (5) 6- Octadecenoic acid, methyl ester, and (6) Heptadecanoicacid,16-methyl-,methyl ester in wax could make plants susceptible to CLCuV , infested by whiteflies.

  4. GC-MS Metabolomics to Evaluate the Composition of Plant Cuticular Waxes for Four Triticum aestivum Cultivars

    Directory of Open Access Journals (Sweden)

    Florent D. Lavergne

    2018-01-01

    Full Text Available Wheat (Triticum aestivum L. is an important food crop, and biotic and abiotic stresses significantly impact grain yield. Wheat leaf and stem surface waxes are associated with traits of biological importance, including stress resistance. Past studies have characterized the composition of wheat cuticular waxes, however protocols can be relatively low-throughput and narrow in the range of metabolites detected. Here, gas chromatography-mass spectrometry (GC-MS metabolomics methods were utilized to provide a comprehensive characterization of the chemical composition of cuticular waxes in wheat leaves and stems. Further, waxes from four wheat cultivars were assayed to evaluate the potential for GC-MS metabolomics to describe wax composition attributed to differences in wheat genotype. A total of 263 putative compounds were detected and included 58 wax compounds that can be classified (e.g., alkanes and fatty acids. Many of the detected wax metabolites have known associations to important biological functions. Principal component analysis and ANOVA were used to evaluate metabolite distribution, which was attributed to both tissue type (leaf, stem and cultivar differences. Leaves contained more primary alcohols than stems such as 6-methylheptacosan-1-ol and octacosan-1-ol. The metabolite data were validated using scanning electron microscopy of epicuticular wax crystals which detected wax tubules and platelets. Conan was the only cultivar to display alcohol-associated platelet-shaped crystals on its abaxial leaf surface. Taken together, application of GC-MS metabolomics enabled the characterization of cuticular wax content in wheat tissues and provided relative quantitative comparisons among sample types, thus contributing to the understanding of wax composition associated with important phenotypic traits in a major crop.

  5. Stable hydrogen isotopic composition of n-alkanes in atmospheric aerosols as a tracer for the source region of terrestrial plant waxes

    Science.gov (United States)

    Yamamoto, S.; Kawamura, K.

    2009-12-01

    Studies on molecular composition and compound-specific carbon isotopic ratio (δ13C) of leaf wax n-alkanes in atmospheric aerosols have revealed a long-range atmospheric transport of terrestrial higher plant materials over the south Atlantic and western Pacific oceans. However, molecular and δ13C compositions of terrestrial plant waxes in the eastern part of the Asian continent are relatively constant reflecting C3-dominated vegetation, which makes it difficult to specify the source regions of plant materials in the atmospheric aerosols over the East Asia and northwest Pacific regions. Recent observation displays a large (>100‰) spatial variation in hydrogen isotopic composition (δD) of rainwater in East Asia. Because δD values of terrestrial higher plants sensitively reflect those of precipitation waters, δD of leaf waxes are expected to provide information on their source region. In this study, we measured the δD of n-alkanes in atmospheric aerosols from Tokyo to better understand the origin of leaf wax n-alkanes in atmospheric aerosols. The δD values of fossil fuel n-alkanes (C21 to C24) in Tokyo aerosols range from -65 to -94‰, which are in a range of those reported in marine crude oils. In contrast, the δD of higher molecular weight (C29 and C31) n-alkanes (δDHMW) show much larger values by ~70‰ than those of fossil fuel n-alkanes. Their values were found to exhibit concomitant variations with carbon preference index (CPI), suggesting that the δDHMW reflect the δD of leaf wax n-alkanes with a variable contribution from fossil fuel n-alkanes. Nevertheless, good positive correlation (r = 0.89, p < 0.01) between the δDHMW and CPI values enable us to remove the contribution of fossil fuels using a mass balance approach by assuming that CPI of fossil fuel is 1 and CPI of plant waxes is 5-15. Calculated n-alkane δD values averaged from -170 to -185‰ for C29 and from -155 to -168‰ for C31. These values are consistent with those reported from

  6. Enhanced Thermo-Optical Switching of Paraffin-Wax Composite Spots under Laser Heating.

    Science.gov (United States)

    Said, Asmaa; Salah, Abeer; Fattah, Gamal Abdel

    2017-05-12

    Thermo-optical switches are of particular significance in communications networks where increasingly high switching speeds are required. Phase change materials (PCMs), in particular those based on paraffin wax, provide wealth of exciting applications with unusual thermally-induced switching properties, only limited by paraffin's rather low thermal conductivity. In this paper, the use of different carbon fillers as thermal conductivity enhancers for paraffin has been investigated, and a novel structure based on spot of paraffin wax as a thermo-optic switch is presented. Thermo-optical switching parameters are enhanced with the addition of graphite and graphene, due to the extreme thermal conductivity of the carbon fillers. Differential Scanning Calorimetry (DSC) and Scanning electron microscope (SEM) are performed on paraffin wax composites, and specific heat capacities are calculated based on DSC measurements. Thermo-optical switching based on transmission is measured as a function of the host concentration under conventional electric heating and laser heating of paraffin-carbon fillers composites. Further enhancements in thermo-optical switching parameters are studied under Nd:YAG laser heating. This novel structure can be used in future networks with huge bandwidth requirements and electric noise free remote aerial laser switching applications.

  7. Understanding nucleic acid structural changes by comparing wide-angle x-ray scattering (WAXS) experiments to molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Pabit, Suzette A.; Katz, Andrea M.; Pollack, Lois [School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853 (United States); Tolokh, Igor S. [Department of Computer Science, Virginia Tech, Blacksburg, Virginia 24061 (United States); Drozdetski, Aleksander [Department of Physics, Virginia Tech, Blacksburg, Virginia 24061 (United States); Baker, Nathan [Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Onufriev, Alexey V. [Department of Computer Science, Virginia Tech, Blacksburg, Virginia 24061 (United States); Department of Physics, Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2016-05-28

    Wide-angle x-ray scattering (WAXS) is emerging as a powerful tool for increasing the resolution of solution structure measurements of biomolecules. Compared to its better known complement, small angle x-ray scattering (SAXS), WAXS targets higher scattering angles and can enhance structural studies of molecules by accessing finer details of solution structures. Although the extension from SAXS to WAXS is easy to implement experimentally, the computational tools required to fully harness the power of WAXS are still under development. Currently, WAXS is employed to study structural changes and ligand binding in proteins; however, the methods are not as fully developed for nucleic acids. Here, we show how WAXS can qualitatively characterize nucleic acid structures as well as the small but significant structural changes driven by the addition of multivalent ions. We show the potential of WAXS to test all-atom molecular dynamics (MD) simulations and to provide insight into understanding how the trivalent ion cobalt(III) hexammine (CoHex) affects the structure of RNA and DNA helices. We find that MD simulations capture the RNA structural change that occurs due to addition of CoHex.

  8. Composition of secondary alcohols, ketones, alkanediols, and ketols in Arabidopsis thaliana cuticular waxes

    Science.gov (United States)

    Wen, Miao; Jetter, Reinhard

    2009-01-01

    Arabidopsis wax components containing secondary functional groups were examined (i) to test the biosynthetic relationship between secondary alcohols and ketols and (ii) to determine the regiospecificity and substrate preference of the enzyme involved in ketol biosynthesis. The stem wax of Arabidopsis wild type contained homologous series of C27 to C31 secondary alcohols (2.4 μg cm−2) and C28 to C30 ketones (6.0 μg cm−2) dominated by C29 homologues. In addition, compound classes containing two secondary functional groups were identified as C29 diols (∼0.05 μg cm−2) and ketols (∼0.16 μg cm−2). All four compound classes showed characteristic isomer distributions, with functional groups located between C-14 and C-16. In the mah1 mutant stem wax, diols and ketols could not be detected, while the amounts of secondary alcohols and ketones were drastically reduced. In two MAH1-overexpressing lines, equal amounts of C29 and C31 secondary alcohols were detected. Based on the comparison of homologue and isomer compositions between the different genotypes, it can be concluded that biosynthetic pathways lead from alkanes to secondary alcohols, and via ketones or diols to ketols. It seems plausible that MAH1 is the hydroxylase enzyme involved in all these conversions in Arabidopsis thaliana. PMID:19346242

  9. Fluorescent Molecular Rotor-in-Paraffin Waxes for Thermometry and Biometric Identification.

    Science.gov (United States)

    Jin, Young-Jae; Dogra, Rubal; Cheong, In Woo; Kwak, Giseop

    2015-07-08

    Novel thermoresponsive sensor systems consisting of a molecular rotor (MR) and paraffin wax (PW) were developed for various thermometric and biometric identification applications. Polydiphenylacetylenes (PDPAs) coupled with long alkyl chains were used as MRs, and PWs of hydrocarbons having 16-20 carbons were utilized as phase-change materials. The PDPAs were successfully dissolved in the molten PWs and did not act as an impurity that prevents phase transition of the PWs. These PDPA-in-PW hybrids had almost the same enthalpies and phase-transition temperatures as the corresponding pure PWs. The hybrids exhibited highly reversible fluorescence (FL) changes at the critical temperatures during phase transition of the PWs. These hybrids were impregnated into common filter paper in the molten state by absorption or were encapsulated into urea resin to enhance their mechanical integrity and cyclic stability during repeated use. The wax papers could be utilized in highly advanced applications including FL image writing/erasing, an array-type thermo-indicator, and fingerprint/palmprint identification. The present findings should facilitate the development of novel fluorescent sensor systems for biometric identification and are potentially applicable for biological and biomedical thermometry.

  10. Ear wax

    Science.gov (United States)

    See your provider if your ears are blocked with wax and you are unable to remove the wax. Also call if you have an ear wax blockage and you develop new symptoms, such as: Drainage from the ear Ear pain Fever Hearing loss that continues after you clean the wax

  11. Wax ester profiling of seed oil by nano-electrospray ionization tandem mass spectrometry

    Science.gov (United States)

    2013-01-01

    Background Wax esters are highly hydrophobic neutral lipids that are major constituents of the cutin and suberin layer. Moreover they have favorable properties as a commodity for industrial applications. Through transgenic expression of wax ester biosynthetic genes in oilseed crops, it is possible to achieve high level accumulation of defined wax ester compositions within the seed oil to provide a sustainable source for such high value lipids. The fatty alcohol moiety of the wax esters is formed from plant-endogenous acyl-CoAs by the action of fatty acyl reductases (FAR). In a second step the fatty alcohol is condensed with acyl-CoA by a wax synthase (WS) to form a wax ester. In order to evaluate the specificity of wax ester biosynthesis, analytical methods are needed that provide detailed wax ester profiles from complex lipid extracts. Results We present a direct infusion ESI-tandem MS method that allows the semi-quantitative determination of wax ester compositions from complex lipid mixtures covering 784 even chain molecular species. The definition of calibration prototype groups that combine wax esters according to their fragmentation behavior enables fast quantitative analysis by applying multiple reaction monitoring. This provides a tool to analyze wax layer composition or determine whether seeds accumulate a desired wax ester profile. Besides the profiling method, we provide general information on wax ester analysis by the systematic definition of wax ester prototypes according to their collision-induced dissociation spectra. We applied the developed method for wax ester profiling of the well characterized jojoba seed oil and compared the profile with wax ester-accumulating Arabidopsis thaliana expressing the wax ester biosynthetic genes MaFAR and ScWS. Conclusions We developed a fast profiling method for wax ester analysis on the molecular species level. This method is suitable to screen large numbers of transgenic plants as well as other wax ester samples

  12. Friction and wear of Synfluo 180XF wax and nano-Al2O3 filled Nomex fabric composites

    International Nuclear Information System (INIS)

    Su Fenghua; Zhang Zhaozhu; Wang Kun; Liu Weimin

    2006-01-01

    Nomex fabric composites filled with the particulates of Synfluo 180XF wax (SFW) and nano-Al 2 O 3 was prepared by dip-coating of Nomex fabric in a phenolic resin containing particulates to be incorporated and the successive curing. The friction and wear performance of the pure and filled Nomex fabric composites sliding against AISI-1045 steel in a pin-on-disk configuration were evaluated on a Xuanwu-III high temperature friction and wear tester. The microstructure of the composites, and the morphologies of the worn surfaces and the morphologies of counterpart steel pins were analyzed by means of scanning electron microscopy. And the elemental plane distribution of Al on the cross-section of the Nomex fabric composites filled with nano-Al 2 O 3 was analyzed with an energy dispersive X-ray analyzer (EDAX). The results showed that the addition of Synfluo 180XF wax in composites have the potential to increase wear resistance and friction reduction of Nomex fabric composites, and the addition of the nano-Al 2 O 3 with the optimum mass fraction in composites can improve the anti-wear ability of the composites. Besides the self-properties of the filler, the character of the microstructure of the Nomex fabric composites filled with different particles, coupled with the character of the transfer film, largely accounts for the improved anti-wear and friction-reducing abilities of the filled Nomex fabric composites as compared with the unfilled one

  13. The moss Funaria hygrometrica has cuticular wax similar to vascular plants, with distinct composition on leafy gametophyte, calyptra and sporophyte capsule surfaces.

    Science.gov (United States)

    Busta, Lucas; Budke, Jessica M; Jetter, Reinhard

    2016-09-01

    Aerial surfaces of land plants are covered with a waxy cuticle to protect against water loss. The amount and composition of cuticular waxes on moss surfaces had rarely been investigated. Accordingly, the degree of similarity between moss and vascular plant waxes, and between maternal and offspring moss structure waxes is unknown. To resolve these issues, this study aimed at providing a comprehensive analysis of the waxes on the leafy gametophyte, gametophyte calyptra and sporophyte capsule of the moss Funaria hygrometrica Waxes were extracted from the surfaces of leafy gametophytes, gametophyte calyptrae and sporophyte capsules, separated by gas chromatography, identified qualitatively with mass spectrometry, and quantified with flame ionization detection. Diagnostic mass spectral peaks were used to determine the isomer composition of wax esters. The surfaces of the leafy gametophyte, calyptra and sporophyte capsule of F. hygrometrica were covered with 0·94, 2·0 and 0·44 μg cm(-2) wax, respectively. While each wax mixture was composed of mainly fatty acid alkyl esters, the waxes from maternal and offspring structures had unique compositional markers. β-Hydroxy fatty acid alkyl esters were limited to the leafy gametophyte and calyptra, while alkanes, aldehydes and diol esters were restricted to the sporophyte capsule. Ubiquitous fatty acids, alcohols, fatty acid alkyl esters, aldehydes and alkanes were all found on at least one surface. This is the first study to determine wax coverage (μg cm(-2)) on a moss surface, enabling direct comparisons with vascular plants, which were shown to have an equal amount or more wax than F. hygrometrica Wax ester biosynthesis is of particular importance in this species, and the ester-forming enzyme(s) in different parts of the moss may have different substrate preferences. Furthermore, the alkane-forming wax biosynthesis pathway, found widely in vascular plants, is active in the sporophyte capsule, but not in the leafy

  14. Preparation, Characterization and Thermal Properties of Paraffin Wax – Expanded Perlite Form-Stable Composites for Latent Heat Storage

    Directory of Open Access Journals (Sweden)

    Tugba GURMEN OZCELIK

    2017-02-01

    Full Text Available In this study, form-stable composite phase change materials (PCM for latent heat storage were prepared by impregnating paraffin wax into the pores of the expanded perlite (EP. The characterization of the composite PCMs was performed by FTIR, TGA, SEM and DSC analysis. The melting point and heat of fusion were determined for 25 % paraffin included composite, as 54.3 °C and 94.71 J/g and for 45 % paraffin included composite as 53.6 °C and 106.69 J/g, respectively. The FTIR results showed that there were no chemical reaction between the perlite and paraffin. TGA analysis indicated that both composite PCMs had good thermal stability. SEM images showed that the paraffin was dispersed uniformly into the pores and on the EP surface. There was no leakage and degradation at the composite PCMs after heating and cooling cycles. According to the results, both prepared composites showed good thermal energy storage properties, reliability and stability. All results suggested that the presented form- stable composite PCMs has great potential for thermal energy storage applications.DOI: http://dx.doi.org/10.5755/j01.ms.23.1.13661

  15. Composition of the epicuticular and intracuticular wax layers on Kalanchoe daigremontiana (Hamet et Perr. de la Bathie) leaves.

    Science.gov (United States)

    van Maarseveen, Clare; Jetter, Reinhard

    2009-05-01

    Epicuticular and intracuticular waxes from both adaxial and abaxial surfaces of the leaves of Kalanchoe daigremontiana were analyzed. All wax mixtures were found to contain approximately equal amounts of triterpenoids and very long chain fatty acid (VLCFA) derivatives. The triterpenoid fraction consisted of glutinol (8-19% of the total wax) and friedelin (4-9%), together with smaller amounts of glutanol, glutinol acetate, epifriedelanol, germanicol and beta-amyrin. The VLCFA derivatives comprised C27-C35 alkanes (19-37% of the total wax), C32-C34 aldehydes (3-7%), C32 and C34 fatty acids (0.2-3%), C26-C36 primary alcohols (4-8%), and C42-C52 alkyl esters (2-9%). The wax layers were found to differ in triterpenoid amounts, with the intracuticular wax containing higher percentages of most triterpenoids than the epicuticular wax. Friedelin, the only triterpenoid ketone present, showed the opposite distribution with higher proportions in the epicuticular wax. VLCFA derivatives also accumulated to higher percentages in the epicuticular than in the intracuticular wax layer. Epicuticular wax crystals were observed on both the adaxial and abaxial leaf surfaces.

  16. Molecular characterization of composite interfaces

    International Nuclear Information System (INIS)

    Ishida, H.

    1982-01-01

    The Fourier Transform Infrared Spectroscopy was applied to elucidate the molecular structures of the glass/matrix interface. The various interfaces and interphases were studied. It is found that the structure of the silane in a treating solution is important in determining the structure of the silane on glass fibers, influences the macroscopic properties of composites. The amount of silane on glass fibers, the state of hydrogen bonding, orientation, copolymerization of the organicfunctionality with the matrix, curing of the silane, and effect of water on the interface were investigated. It is shown that the molecular approach is useful to interpret and predict physicomechanical properties of composites

  17. Thermal conductivity and latent heat thermal energy storage properties of LDPE/wax as a shape-stabilized composite phase change material

    International Nuclear Information System (INIS)

    Trigui, Abdelwaheb; Karkri, Mustapha; Krupa, Igor

    2014-01-01

    Highlights: • This study deals with the comparison of experimental results for different PCM composite to be used in passive solar walls. • This paper reports on the successful use of a specific experimental method in order to characterize the phase change effects. • The results have shown that most important thermal properties of these composites at the solid and liquid states. • Results indicate the thermal effectiveness of phase change material and significant amount of energy saving can be achieved. • Heat flux measurements are a very interesting experimental source of data which comes to complete the calorimetric device (DSC). - Abstract: Phase change material (PCM) composites based on low-density polyethylene (LDPE) with paraffin waxes were investigated in this study. The composites were prepared using a meltmixing method with a Brabender-Plastograph. The LDPE as the supporting matrix kept the molten waxes in compact shape during its phase transition from solid to liquid. Immiscibility of the PCMs (waxes) and the supporting matrix (LDPE) is a necessary property for effective energy storage. Therefore, this type paraffin can be used in a latent heat storage system without encapsulation. The objective of this research is to use PCM composite as integrated components in a passive solar wall. The proposed composite TROMBE wall allows daily storage of the solar energy in a building envelope and restitution in the evening, with a possible control of the air flux in a ventilated air layer. An experimental set-up was built to determine the thermal response of these composites to thermal solicitations. In addition, a DSC analysis was carried out. The results have shown that most important thermal properties of these composites at the solid and liquid states, like the “apparent” thermal conductivity, the heat storage capacity and the latent heat of fusion. Results indicate the performance of the proposed system is affected by the thermal effectiveness of

  18. Evaluation of Wax Deposition and Its Control During Production of Alaska North Slope Oils

    Energy Technology Data Exchange (ETDEWEB)

    Tao Zhu; Jack A. Walker; J. Liang

    2008-12-31

    Due to increasing oil demand, oil companies are moving into arctic environments and deep-water areas for oil production. In these regions of lower temperatures, wax deposits begin to form when the temperature in the wellbore falls below wax appearance temperature (WAT). This condition leads to reduced production rates and larger pressure drops. Wax problems in production wells are very costly due to production down time for removal of wax. Therefore, it is necessary to develop a solution to wax deposition. In order to develop a solution to wax deposition, it is essential to characterize the crude oil and study phase behavior properties. The main objective of this project was to characterize Alaskan North Slope crude oil and study the phase behavior, which was further used to develop a dynamic wax deposition model. This report summarizes the results of the various experimental studies. The subtasks completed during this study include measurement of density, molecular weight, viscosity, pour point, wax appearance temperature, wax content, rate of wax deposition using cold finger, compositional characterization of crude oil and wax obtained from wax content, gas-oil ratio, and phase behavior experiments including constant composition expansion and differential liberation. Also, included in this report is the development of a thermodynamic model to predict wax precipitation. From the experimental study of wax appearance temperature, it was found that wax can start to precipitate at temperatures as high as 40.6 C. The WAT obtained from cross-polar microscopy and viscometry was compared, and it was discovered that WAT from viscometry is overestimated. From the pour point experiment it was found that crude oil can cease to flow at a temperature of 12 C. From the experimental results of wax content, it is evident that the wax content in Alaskan North Slope crude oil can be as high as 28.57%. The highest gas-oil ratio for a live oil sample was observed to be 619.26 SCF

  19. The Molecular Level Characterization of Biodegradable Polymers Originated from Polyethylene Using Non-Oxygenated Polyethylene Wax as a Carbon Source for Polyhydroxyalkanoate Production.

    Science.gov (United States)

    Johnston, Brian; Jiang, Guozhan; Hill, David; Adamus, Grazyna; Kwiecień, Iwona; Zięba, Magdalena; Sikorska, Wanda; Green, Matthew; Kowalczuk, Marek; Radecka, Iza

    2017-08-28

    There is an increasing demand for bio-based polymers that are developed from recycled materials. The production of biodegradable polymers can include bio-technological (utilizing microorganisms or enzymes) or chemical synthesis procedures. This report demonstrates the corroboration of the molecular structure of polyhydroxyalkanoates (PHAs) obtained by the conversion of waste polyethylene (PE) via non-oxygenated PE wax (N-PEW) as an additional carbon source for a bacterial species. The N-PEW, obtained from a PE pyrolysis reaction, has been found to be a beneficial carbon source for PHA production with Cupriavidus necator H16. The production of the N-PEW is an alternative to oxidized polyethylene wax (O-PEW) (that has been used as a carbon source previously) as it is less time consuming to manufacture and offers fewer industrial applications. A range of molecular structural analytical techniques were performed on the PHAs obtained; which included nuclear magnetic resonance (NMR) and electrospray ionisation tandem mass spectrometry (ESI-MS/MS). Our study showed that the PHA formed from N-PEW contained 3-hydroxybutyrate (HB) with 11 mol% of 3-hydroxyvalerate (HV) units.

  20. Molecular Characterization of the Fatty Alcohol Oxidation Pathway for Wax-Ester Mobilization in Germinated Jojoba Seeds1[W

    Science.gov (United States)

    Rajangam, Alex S.; Gidda, Satinder K.; Craddock, Christian; Mullen, Robert T.; Dyer, John M.; Eastmond, Peter J.

    2013-01-01

    Jojoba (Simmondsia chinensis) is the only plant species known to use liquid wax esters (WEs) as a primary seed storage reserve. Upon germination, WE hydrolysis releases very-long-chain fatty alcohols, which must be oxidized to fatty acids by the sequential action of a fatty alcohol oxidase (FAO) and a fatty aldehyde dehydrogenase (FADH) before they can be β-oxidized. Here, we describe the cloning and characterization of genes for each of these two activities. Jojoba FAO and FADH are 52% and 68% identical to Arabidopsis (Arabidopsis thaliana) FAO3 and ALDH3H1, respectively. The genes are expressed most strongly in the cotyledons of jojoba seedlings following germination, but transcripts can also be detected in vegetative tissues. Proteomic analysis indicated that the FAO and FADH proteins can be detected on wax bodies, but they localized to the endoplasmic reticulum when they were expressed as amino-terminal green fluorescent protein fusions in tobacco (Nicotiana tabacum) leaves. Recombinant jojoba FAO and FADH proteins are active on very-long-chain fatty alcohol and fatty aldehyde substrates, respectively, and have biochemical properties consistent with those previously reported in jojoba cotyledons. Coexpression of jojoba FAO and FADH in Arabidopsis enhanced the in vivo rate of fatty alcohol oxidation more than 4-fold. Taken together, our data suggest that jojoba FAO and FADH constitute the very-long-chain fatty alcohol oxidation pathway that is likely to be necessary for efficient WE mobilization following seed germination. PMID:23166353

  1. Molecular characterization of the fatty alcohol oxidation pathway for wax-ester mobilization in germinated jojoba seeds.

    Science.gov (United States)

    Rajangam, Alex S; Gidda, Satinder K; Craddock, Christian; Mullen, Robert T; Dyer, John M; Eastmond, Peter J

    2013-01-01

    Jojoba (Simmondsia chinensis) is the only plant species known to use liquid wax esters (WEs) as a primary seed storage reserve. Upon germination, WE hydrolysis releases very-long-chain fatty alcohols, which must be oxidized to fatty acids by the sequential action of a fatty alcohol oxidase (FAO) and a fatty aldehyde dehydrogenase (FADH) before they can be β-oxidized. Here, we describe the cloning and characterization of genes for each of these two activities. Jojoba FAO and FADH are 52% and 68% identical to Arabidopsis (Arabidopsis thaliana) FAO3 and ALDH3H1, respectively. The genes are expressed most strongly in the cotyledons of jojoba seedlings following germination, but transcripts can also be detected in vegetative tissues. Proteomic analysis indicated that the FAO and FADH proteins can be detected on wax bodies, but they localized to the endoplasmic reticulum when they were expressed as amino-terminal green fluorescent protein fusions in tobacco (Nicotiana tabacum) leaves. Recombinant jojoba FAO and FADH proteins are active on very-long-chain fatty alcohol and fatty aldehyde substrates, respectively, and have biochemical properties consistent with those previously reported in jojoba cotyledons. Coexpression of jojoba FAO and FADH in Arabidopsis enhanced the in vivo rate of fatty alcohol oxidation more than 4-fold. Taken together, our data suggest that jojoba FAO and FADH constitute the very-long-chain fatty alcohol oxidation pathway that is likely to be necessary for efficient WE mobilization following seed germination.

  2. Wax deposition in crude oil pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Assuncao, Pablo Morelato; Rodrigues, Lorennzo Marrochi Nolding [Universidade Federal do Espirito Santo, Sao Mateus, ES (Brazil). Centro Universitario Norte do Espirito Santo. Engenharia de Petroleo; Romero, Mao Ilich [University of Wyoming, Laramie, WY (United States). Enhanced Oil Recovery Institute], e-mail: mromerov@uwyo.edu

    2010-07-01

    Crude oil is a complex mixture of hydrocarbons which consists of aromatics, paraffins, naphthenics, resins asphaltenes, etc. When the temperature of crude oil is reduced, the heavy components, like paraffin, will precipitate and deposit on the pipe internal wall in the form of a wax-oil gel. The gel deposit consists of wax crystals that trap some amount of oil. As the temperature gets cooler, more wax will precipitate and the thickness of the wax gel will increase, causing gradual solidification of the crude and eventually the oil stop moving inside the offshore pipeline. Crude oil may not be able to be re-mobilized during re-startup. The effective diameter will be reduced with wax deposition, resulting in several problems, for example, higher pressure drop which means additional pumping energy costs, poor oil quality, use of chemical components like precipitation inhibitors or flowing facilitators, equipment failure, risk of leakage, clogging of the ducts and process equipment. Wax deposition problems can become so sever that the whole pipeline can be completely blocked. It would cost millions of dollars to remediate an offshore pipeline that is blocked by wax. Wax solubility decreases drastically with decreasing temperature. At low temperatures, as encountered in deep water production, is easy to wax precipitate. The highest temperature below which the paraffins begins to precipitate as wax crystals is defined as wax appearance temperature (WAT). Deposition process is a complex free surface problem involving thermodynamics, fluid dynamics, mass and heat transfer. In this work, a numerical analysis of wax deposition by molecular diffusion and shear dispersion mechanisms in crude oil pipeline is studied. Diffusion flux of wax toward the wall is estimated by Fick's law of diffusion, in similar way the shear dispersion; wax concentration gradient at the solid-liquid interface is obtained by the volume fraction conservation equation; and since the wax deposition

  3. Molecular Composition Analysis of Distant Targets

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a system capable of probing the molecular composition of cold solar system targets such as asteroids, comets, planets and moons from a distant vantage....

  4. Molecular composition of IMP1 ribonucleoprotein granules

    DEFF Research Database (Denmark)

    Jønson, Lars; Vikesaa, Jonas; Krogh, Anders

    2007-01-01

    Localized mRNAs are transported to sites of local protein synthesis in large ribonucleoprotein (RNP) granules, but their molecular composition is incompletely understood. Insulin-like growth factor II mRNA-binding protein (IMP) zip code-binding proteins participate in mRNA localization, and in mo......Localized mRNAs are transported to sites of local protein synthesis in large ribonucleoprotein (RNP) granules, but their molecular composition is incompletely understood. Insulin-like growth factor II mRNA-binding protein (IMP) zip code-binding proteins participate in mRNA localization...

  5. A 60,000-year record of hydrologic variability in the Central Andes from the hydrogen isotopic composition of leaf waxes in Lake Titicaca sediments

    Science.gov (United States)

    Fornace, Kyrstin L.; Hughen, Konrad A.; Shanahan, Timothy M.; Fritz, Sherilyn C.; Baker, Paul A.; Sylva, Sean P.

    2014-12-01

    A record of the hydrogen isotopic composition of terrestrial leaf waxes (δDwax) in sediment cores from Lake Titicaca provides new insight into the precipitation history of the Central Andes and controls of South American Summer Monsoon (SASM) variability since the last glacial period. Comparison of the δDwax record with a 19-kyr δD record from the nearby Illimani ice core supports the interpretation that precipitation δD is the primary control on δDwax with a lesser but significant role for local evapotranspiration and other secondary influences on δDwax. The Titicaca δDwax record confirms overall wetter conditions in the Central Andes during the last glacial period relative to a drier Holocene. During the last deglaciation, abrupt δDwax shifts correspond to millennial-scale events observed in the high-latitude North Atlantic, with dry conditions corresponding to the Bølling-Allerød and early Holocene periods and wetter conditions during late glacial and Younger Dryas intervals. We observe a trend of increasing monsoonal precipitation from the early to the late Holocene, consistent with summer insolation forcing of the SASM, but similar hydrologic variability on precessional timescales is not apparent during the last glacial period. Overall, this study demonstrates the relative importance of high-latitude versus tropical forcing as a dominant control on glacial SASM precipitation variability.

  6. ASPHALT-RESIN-WAX DEPOSITS ANALYSIS WITH PETROLEUM REFINERY EQUIPMENT USAGE

    Directory of Open Access Journals (Sweden)

    Nadejda Bondar

    2013-12-01

    Full Text Available The methodology and analysis of wax deposits formed in-water-cooling tower, cistern and tank from wax petroleum were developed. It was shown, that deposits consist of organic (>90% and inorganic components – the first one was enriched by high molecular wax hydrocarbons, the second one – by mechanical impurities. The methods of deposits utilization were proposed

  7. Composition of the epicuticular waxes coating the adaxial side of Phyllostachys aurea leaves: Identification of very-long-chain primary amides.

    Science.gov (United States)

    Racovita, Radu C; Jetter, Reinhard

    2016-10-01

    The present study presents comprehensive chemical analyses of cuticular wax mixtures of the bamboo Phyllostachys aurea. The epicuticular and intracuticular waxes were sampled selectively from the adaxial side of leaves on young and old plants and investigated by gas chromatography-mass spectrometry and flame ionization detection. The epi- and intracuticular layers on young and old leaves had wax loads ranging from 1.7 μg/cm(2) to 1.9 μg/cm(2). Typical very-long-chain aliphatic wax constituents were found with characteristic chain length patterns, including alkyl esters (primarily C48), alkanes (primarily C29), fatty acids (primarily C28 and C16), primary alcohols (primarily C28) and aldehydes (primarily C30). Alicyclic wax components were identified as tocopherols and triterpenoids, including substantial amounts of triterpenoid esters. Alkyl esters, alkanes, fatty acids and aldehydes were found in greater amounts in the epicuticular layer, while primary alcohols and most terpenoids accumulated more in the intracuticular wax. Alkyl esters occurred as mixtures of metamers, combining C20 alcohol with various acids into shorter ester homologs (C36C40), and a wide range of alcohols with C22 and C24 acids into longer esters (C42C52). Primary amides were identified, with a characteristic chain length profile peaking at C30. The amides were present exclusively in the epicuticular layer and thus at or near the surface, where they may affect plant-herbivore or plant-pathogen interactions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Carbon and Hydrogen Isotopic Composition of Plant Wax n-Alkanes: A Tool for Characterizing Soil Provenance in Forensic Science

    Science.gov (United States)

    Pedentchouk, N.; Wagner, T.; Jones, M.

    2009-04-01

    Forensic science is an integrative discipline that requires material evidence from diverse sources. Geochemical evidence derived from inorganic and organic substances is becoming increasingly popular among law enforcement agencies in industrialized countries. Previous investigations indicate that the relative distributions of individual plant-derived biomarkers found in soils are linked to the biomarker patterns found in the overlying vegetation. However, identification of soil provenance based on the distribution of plant-derived biomarkers for forensic purposes is inhibited by the fact that a significant number of terrestrial plant species have overlapping biomarker distributions. In order to enhance the resolving power of plant-derived biomarker signal, we propose to enhance the molecular approach by adding a stable isotope component, i.e. the delta13C/deltaD values of individual biomarkers. The first objective of this project is to determine the delta13C/deltaD signatures of n-alkanes derived from various higher plant types commonly growing in the UK. The second objective is to investigate whether the same species/plant types differ isotopically between two locations affected by different weather patterns in the UK: a relatively warmer and drier Norwich, Norfolk and a cooler and wetter Newcastle-upon-Tyne in NE England. The n-C29 alkane data from 14 tree species sampled during July 2007 and August 2008 in Newcastle show a clear negative trend between delta13C and deltaD values. When these data are plotted against each other, the six deciduous angiosperms (delta13C: c. -39 to -35 per mil; deltaD: c. -155 to -130 per mil) are completely separated from four evergreen angiosperms (delta13C: c. -33 to -28 per mil; deltaD: c. -195 to -165 per mil). The four gymnosperm species data plot between those of the deciduous and evergreen angiosperms. Because all 14 species in Newcastle experience the same environmental conditions, we suggest that the observed isotopic

  9. Molecular Composition Analysis of Distant Targets

    Science.gov (United States)

    Hughes, Gary B.; Lubin, Philip

    2017-01-01

    This document is the Final Report for NASA Innovative Advanced Concepts (NIAC) Phase I Grant 15-NIAC16A-0145, titled Molecular Composition Analysis of Distant Targets. The research was focused on developing a system concept for probing the molecular composition of cold solar system targets, such as Asteroids, Comets, Planets and Moons from a distant vantage, for example from a spacecraft that is orbiting the target (Hughes et al., 2015). The orbiting spacecraft is equipped with a high-power laser, which is run by electricity from photovoltaic panels. The laser is directed at a spot on the target. Materials on the surface of the target are heated by the laser beam, and begin to melt and then evaporate, forming a plume of asteroid molecules in front of the heated spot. The heated spot glows, producing blackbody illumination that is visible from the spacecraft, via a path through the evaporated plume. As the blackbody radiation from the heated spot passes through the plume of evaporated material, molecules in the plume absorb radiation in a manner that is specific to the rotational and vibrational characteristics of the specific molecules. A spectrometer aboard the spacecraft is used to observe absorption lines in the blackbody signal. The pattern of absorption can be used to estimate the molecular composition of materials in the plume, which originated on the target. Focusing on a single spot produces a borehole, and shallow subsurface profiling of the targets bulk composition is possible. At the beginning of the Phase I research, the estimated Technology Readiness Level (TRL) of the system was TRL-1. During the Phase I research, an end-to-end theoretical model of the sensor system was developed from first principles. The model includes laser energy and optical propagation, target heating, melting and evaporation of target material, plume density, thermal radiation from the heated spot, molecular cross section of likely asteroid materials, and estimation of the

  10. Characterization of rice bran wax policosanol and its nanoemulsion formulation

    Directory of Open Access Journals (Sweden)

    Ishaka A

    2014-05-01

    Full Text Available Aminu Ishaka,1,2 Mustapha Umar Imam,1 Rozi Mahamud,3 Abu Bakar Zakaria Zuki,4 Ismail Maznah1 1Laboratory of Molecular Biomedicine, Institute of Bioscience, University Putra Malaysia, Serdang, Selangor, Malaysia; 2Department of Medical Biochemistry, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria; 3Faculty of Medicine and Health Sciences, 4Faculty of Veterinary Medicine, University Putra Malaysia, Serdang, Selangor, Malaysia Abstract: Policosanol, a mixture of long-chain alcohols found in animal and plant waxes, has several biological effects; however, it has a bioavailability of less than 10%. Therefore, there is a need to improve its bioavailability, and one of the ways of doing this is by nanoemulsion formulation. Different droplet size distributions are usually achieved when emulsions are formed, which solely depends on the preparation method used. Mostly, emulsions are intended for better delivery with maintenance of the characteristics and properties of the leading components. In this study, policosanol was extracted from rice bran wax, its composition was determined by gas chromatography mass spectrophotometry, nanoemulsion was made, and the physical stability characteristics were determined. The results showed that policosanol nanoemulsion has a nanosize particle distribution below 100 nm (92.56–94.52 nm, with optimum charge distribution (-55.8 to -45.12 mV, pH (6.79–6.92 and refractive index (1.50; these were monitored and found to be stable for 8 weeks. The stability of policosanol nanoemulsion confers the potential to withstand long storage times. Keywords: rice bran wax, policosanol, nanoemulsion, characterization

  11. 21 CFR 184.1978 - Carnauba wax.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Carnauba wax. 184.1978 Section 184.1978 Food and... Substances Affirmed as GRAS § 184.1978 Carnauba wax. (a) Carnauba wax (CAS Reg. No. 008-015-869) is obtained from the leaves and buds of the Brazilian wax palm Copernicia cerifera Martius. The wax is hard...

  12. Plant surface wax affects parasitoid's response to host footprints

    Science.gov (United States)

    Rostás, Michael; Ruf, Daniel; Zabka, Vanessa; Hildebrandt, Ulrich

    2008-10-01

    The plant surface is the substrate upon which herbivorous insects and natural enemies meet and thus represents the stage for interactions between the three trophic levels. Plant surfaces are covered by an epicuticular wax layer which is highly variable depending on species, cultivar or plant part. Differences in wax chemistry may modulate ecological interactions. We explored whether caterpillars of Spodoptera frugiperda, when walking over a plant surface, leave a chemical trail (kairomones) that can be detected by the parasitoid Cotesia marginiventris. Chemistry and micromorphology of cuticular waxes of two barley eceriferum wax mutants ( cer-za.126, cer-yp.949) and wild-type cv. Bonus (wt) were assessed. The plants were then used to investigate potential surface effects on the detectability of caterpillar kairomones. Here we provide evidence that C. marginiventris responds to chemical footprints of its host. Parasitoids were able to detect the kairomone on wild-type plants and on both cer mutants but the response to cer-yp.949 (reduced wax, high aldehyde fraction) was less pronounced. Experiments with caterpillar-treated wt and mutant leaves offered simultaneously, confirmed this observation: no difference in wasp response was found when wt was tested against cer-za.126 (reduced wax, wt-like chemical composition) but wt was significantly more attractive than cer-yp.949. This demonstrates for the first time that the wax layer can modulate the detectability of host kairomones.

  13. Effects of UV-B radiation on wax biosynthesis

    International Nuclear Information System (INIS)

    Barnes, J.; Paul, N.; Percy, K.; Broadbent, P.; McLaughlin, C.; Mullineaux, P.; Creissen, G.; Wellburn, A.

    1994-01-01

    Two genotypes of tobacco (Nicotiana tabacum L.) were exposed in controlled environment chambers to three levels of biologically effective ultraviolet-B radiation (UV-B BE ; 280-320nm): 0, 4.54 (ambient) and 5.66 (∼ 25% enhancement) kJ m -2 d -1 . After 28 days, the quantity of wax deposited on leaf surfaces was determined gravimetrically; epicuticular wax chemical composition was determined by capillary gas chromatography with homologue assignments confirmed by gas chromatography-mass spectrometry. Leaf wettability was assessed by measuring the contact angle of water droplets placed on leaf surfaces. Tobacco wax consisted of three major hydrocarbon classes: Straight-chain alkanes (C 27 -C 33 ) which comprised ∼ 59% of the hydrocarbon fraction, containing a predominance of odd-chain alkanes with C 31 as the most abundant homologue; branched-chain alkanes (C 25 -C 32 ) which comprised ∼38% of the hydrocarbon fraction with anteiso 3-methyltriacontane (C 30 ) as the predominant homologue; and fatty acids (C 14 -C 18 ) which comprised ∼ 3% of the wax. Exposure to enhanced UV-B radiation reduced the quantity of wax on the adaxial surface of the transgenic mutant, and resulted in marked changes in the chemical composition of the wax on the exposed leaf surface. Enhanced UV-B decreased the quantity of straight-chain alkanes, increased the quantity of branched-chain alkanes and fatty acids, and resulted in shifts toward shorter straight-chain lengths. Furthermore, UV-B-induced changes in wax composition were associated with increased wettability of tobacco leaf surfaces. Overall, the data are consistent with the view that UV-B radiation has a direct and fundamental effect on wax biosynthesis. Relationships between the physico-chemical nature of the leaf surface and sensitivity to UV-B radiation are discussed. (orig.)

  14. Structure and Biosynthesis of Branched Wax Compounds on Wild Type and Wax Biosynthesis Mutants of Arabidopsis thaliana.

    Science.gov (United States)

    Busta, Lucas; Jetter, Reinhard

    2017-06-01

    The cuticle is a waxy composite that protects the aerial organs of land plans from non-stomatal water loss. The chemical make-up of the cuticular wax mixture plays a central role in defining the water barrier, but structure-function relationships have not been established so far, in part due to gaps in our understanding of wax structures and biosynthesis. While wax compounds with saturated, linear hydrocarbon tails have been investigated in detail, very little is known about compounds with modified aliphatic tails, which comprise substantial portions of some plant wax mixtures. This study aimed to investigate the structures, abundances and biosynthesis of branched compounds on the species for which wax biosynthesis is best understood: Arabidopsis thaliana. Microscale derivatization, mass spectral interpretation and organic synthesis identified homologous series of iso-alkanes and iso-alcohols on flowers and leaves, respectively. These comprised approximately 10-15% of wild type wax mixtures. The abundances of both branched wax constituents and accompanying unbranched compounds were reduced on the cer6, cer3 and cer1 mutants but not cer4, indicating that branched compounds are in part synthesized by the same machinery as unbranched compounds. In contrast, the abundances of unbranched, but not branched, wax constituents were reduced on the cer2 and cer26 mutants, suggesting that the pathways to both types of compounds deviate in later steps of chain elongation. Finally, the abundances of branched, but not unbranched, wax compounds were reduced on the cer16 mutant, and the (uncharacterized) CER16 protein may therefore be controlling the relative abundances of iso-alkanes and iso-alcohols on Arabidopsis surfaces. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Preparing paraffin wax, etc

    Energy Technology Data Exchange (ETDEWEB)

    1935-12-27

    A process is described for preparing paraffin wax by separation from substances containing bitumen, consisting of treating the raw material at an elevated temperature under such moderate conditions and by means of such organic solvents that the bitumen present in the raw material or formed in the process dissolves as well as the asphaltic and phenolic substances and the humic acids which may be said to be neither extracts nor decomposed materials, and then submitting the products and extracts to a treatment with hydrogen gas, which is effected below 300/sup 0/C, and passing the material over fixed hydrogenation catalysts above 300/sup 0/C by means of hydrogenation catalysts finely dispersed in carbonaceous materials all avoiding decomposition with the formation of volatile products.

  16. Organic molecular compositions and temporal variations of summertime mountain aerosols over Mt. Tai, North China Plain

    Science.gov (United States)

    Fu, Pingqing; Kawamura, Kimitaka; Okuzawa, Kazuhiro; Aggarwal, Shankar Gopala; Wang, Gehui; Kanaya, Yugo; Wang, Zifa

    2008-10-01

    Total suspended particles (TSP) were collected at the summit of Mt. Tai (1534 m above sea level) on a daytime and nighttime basis during a summertime campaign (May-June 2006) and were characterized for organic molecular compositions using solvent extraction/derivatization and gas chromatography/mass spectrometry technique. The n-Alkanes, fatty acids, fatty alcohols, sugars, glycerol and polyacids, and phthalate esters were found as major organic compound classes, whereas lignin and resin products, sterols, aromatic acids, hopanes, and polycyclic aromatic hydrocarbons (PAHs) were detected as minor classes. Sugars (49.8-2115 ng m-3, average 640 ng m-3 in daytime; 18.1-4348 ng m-3, 799 ng m-3 in nighttime) were found to be the dominant compound class. Levoglucosan, a specific cellulose pyrolysis product, was detected as the most abundant single compound, followed by C28 fatty alcohol, diisobutyl and di-n-butyl phthalates, C29n-alkane, C16 and C28 fatty acids, and malic acid. By grouping organic compounds based on their sources, we found that emission of terrestrial plant waxes was the most significant source (30-34%) of the TSP, followed by biomass burning products (25-27%) (e.g., levoglucosan and lignin and resin products), soil resuspension (15-18%) due to agricultural activities, secondary oxidation products (8-10%), plastic emission (3-10%), marine/microbial sources (6%), and urban/industrial emissions from fossil fuel use (4%). However, low molecular weight dicarboxylic acids (such as oxalic acid) of photochemical origin were not included in this study. Malic acid was found to be much higher than those reported in the ground level, suggesting an enhanced photochemical production in the free troposphere over mountain areas. Temporal variations of biomass burning tracers (e.g., levoglucosan, galactosan, mannosan) and some higher plant wax derived compound classes suggested that there were two major (E1 and E2) and one minor (E3) biomass-burning events during this

  17. 21 CFR 178.3710 - Petroleum wax.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Petroleum wax. 178.3710 Section 178.3710 Food and... and Production Aids § 178.3710 Petroleum wax. Petroleum wax may be safely used as a component of nonfood articles in contact with food, in accordance with the following conditions: (a) Petroleum wax is a...

  18. Effect of waste wax and chain structure on the mechanical and physical properties of polyethylene

    Directory of Open Access Journals (Sweden)

    M.A. AlMaadeed

    2015-05-01

    The wax dispersion in the matrix strongly depends on the percentage of wax added to the polymer and the molecular structure of the polymer. It was found that increasing the wax content enhances the phase separation. LDPE undergoes less phase separation due to its highly branched structure composed of a network of short and long chain branches. The wax has no pronounced plasticising effect on the polymer. This is clearly manifested in LDPE as no change in the melting temperature occurred. LLDPE and HDPE were slightly affected by a high concentration of wax (30% and 40%. This is due to the non-uniform distribution of short chain branching along the LLDPE and HDPE main chains, which can interact with the wax structure.

  19. Modeling of asphaltene and wax precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, F.; Sarathi, P.; Jones, R.

    1991-01-01

    This research project was designed to focus on the development of a predictive technique for organic deposition during gas injection for petroleum EOR. A thermodynamic model has been developed to describe the effects of temperature, pressure, and composition on asphaltene precipitation. The proposed model combines regular solution theory with Flory-Huggins polymer solutions theory to predict maximum volume fractions of asphaltene dissolved in oil. The model requires evaluation of vapor-liquid equilibria, first using an equation of state followed by calculations of asphaltene solubility in the liquid-phase. A state-of-the-art technique for C{sub 7+} fraction characterization was employed in developing this model. The preliminary model developed in this work was able to predict qualitatively the trends of the effects of temperature, pressure, and composition. Since the mechanism of paraffinic wax deposition is different from that of asphaltene deposition, another thermodynamic model based on the solid-liquid solution theory was developed to predict the wax formation. This model is simple and can predict the wax appearance temperature with reasonable accuracy. Accompanying the modeling work, experimental studies were conducted to investigate the solubility of asphaltene in oil land solvents and to examine the effects of oil composition, CO{sub 2}, and solvent on asphaltene precipitation and its properties. This research focused on the solubility reversibility of asphaltene in oil and the precipitation caused by CO{sub 2} injection at simulated reservoir temperature and pressure conditions. These experiments have provided many observations about the properties of asphaltenes for further improvement of the model, but more detailed information about the properties of asphaltenes in solution is needed for the development of more reliable asphaltene characterization techniques. 50 refs., 8 figs., 7 tabs.

  20. Presence of carotinoids in peat wax

    Energy Technology Data Exchange (ETDEWEB)

    Yurkevich, E.A.; Dolidovich, E.F.; Bel' kevich, P.I.; Sheremet, L.S.; Drozdovskaya, S.V.

    1986-05-01

    Discusses biologically active substances present in peat which have various pharmacological properties. Describes separation of fractions rich in carotinoids from extracts of wax tar obtained by benzine treatment of highly decomposed pine-cotton grass peat. Extraction was carried out using hot ethanol. States that although identification of individual carotinoid in the fractions separated is very difficult due to complicity of composition, the tests carried out made it possible to infer that fractions studied contain not only xanthophylls but also fucoxanthains (formed in small amounts in nature) with fairly stable structure. Ultraviolet and infrared spectra of the carotinoid containing fraction in ethanol extracts are given. 6 refs.

  1. Investigation of liquid wax components of Egyptian jojoba seeds.

    Science.gov (United States)

    El-Mallah, Mohammed Hassan; El-Shami, Safinaz Mohammed

    2009-01-01

    Egyptian jojoba seeds newly cultivated in Ismailia desert in Egypt promoted us to determine its lipid components. Fatty alcohols, fatty acids, wax esters and sterols patterns were determined by capillary GLC whereas, tocopherols profile, isopropenoid alcohols and sterylglycosides were determined by HPLC. The Egyptian seeds are rich in wax esters (55 %) with fatty alcohols C20:1 and C22:1 as major components and amounted to 43.0 % and 45.6 % respectively followed by C24:1 and C18:1(9.6 % and 1.3 % respectively). The fatty acids profile showed that C20:1 is the major constituent (60 %) followed by C18:1 and C22:1 (14.5 and 11.8 % respectively) whereas C24:1 was present at low concentration amounted to 1.6 %. In addition, the Egyptian jojoba wax contained C18:2 fatty acid at a level of 8.7 %. Wax esters composition showed that the local wax had C42 and C40 esters as major components amounted to 51.1 and 30.1 % respectively. Also, it had C44 and C38 at reasonable amounts (10.0 and 6.3 % respectively). Whereas C36 and C46 were present at lower concentrations amounted to 1.4 and 1.1 respectively. The sterols analysis showed the presence of campe-, stigma-, beta-sito-, and isofuco- sterol amounting to 18.4 %, 6.9 %, 68.7 %, and 6.0 % respectively. The tocopherols pattern revealed that the local seed wax contained gamma-tocopherol as major constituent (79.2 %) followed by alpha-tocopherol (20.3 %). beta-tocopherol as well as delta-tocopherol were found as minor constituents. The isopropenoid alcohols and the sterylglycosides (free and acylated) were not detected. The wax is proposed to be used in oleo chemistry and cosmetics.

  2. Synthesis of oleyl oleate wax esters in Arabidopsis thaliana and Camelina sativa seed oil.

    Science.gov (United States)

    Iven, Tim; Hornung, Ellen; Heilmann, Mareike; Feussner, Ivo

    2016-01-01

    Seed oil composed of wax esters with long-chain monoenoic acyl moieties represents a high-value commodity for industry. Such plant-derived sperm oil-like liquid wax esters are biodegradable and can have excellent properties for lubrication. In addition, wax ester oil may represent a superior substrate for biodiesel production. In this study, we demonstrate that the low-input oil seed crop Camelina sativa can serve as a biotechnological platform for environmentally benign wax ester production. Two biosynthetic steps catalysed by a fatty alcohol-forming acyl-CoA reductase (FAR) and a wax ester synthase (WS) are sufficient to achieve wax ester accumulation from acyl-CoA substrates. To produce plant-derived sperm oil-like liquid wax esters, the WS from Mus musculus (MmWS) or Simmondsia chinensis (ScWS) were expressed in combination with the FAR from Mus musculus (MmFAR1) or Marinobacter aquaeolei (MaFAR) in seeds of Arabidopsis thaliana and Camelina sativa. The three analysed enzyme combinations Oleo3:mCherry:MmFAR1∆c/Oleo3:EYFP:MmWS, Oleo3:mCherry:MmFAR1∆c/ScWS and MaFAR/ScWS showed differences in the wax ester molecular species profiles and overall biosynthetic performance. By expressing MaFAR/ScWS in Arabidopsis or Camelina up to 59% or 21% of the seed oil TAGs were replaced by wax esters, respectively. This combination also yielded wax ester molecular species with highest content of monounsaturated acyl moieties. Expression of the enzyme combinations in the Arabidopsis fae1 fad2 mutant background high in oleic acid resulted in wax ester accumulation enriched in oleyl oleate (18:1/18:1 > 60%), suggesting that similar values may be obtained with a Camelina high oleic acid line. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  3. Content of Wax during Dewaxing Process: Adopting a DOE Method

    Directory of Open Access Journals (Sweden)

    Mohammad Hosein Eghbali

    2013-01-01

    Full Text Available The oil content of the wax produced in a dewaxing process is the key economic parameter that should be reduced as much as possible. Some factors such as the type of solvents, cooling rate, temperature, and solvent to oil ratio influence the dewaxing process. Due to the fact that crude oil differs from place to place and since the operational conditions for wax extraction vary for different types of crude oil, the objective of this work is to study the operational conditions for wax production from an Iranian raffinate sample used in Sepahan Oil Company. All the experiments are conducted based on a design of experiment (DOE technique for minimizing the oil content of the wax produced. The effects of five factors have been determined quantitatively and appropriate levels are suggested for reducing the oil content. The results show that the solvent ratio, solvent composition, and cooling rate play the most important role in minimizing the oil content of the produced wax.

  4. Quantificação e composição química de cera epicuticular de folhas de eucalipto Quantification and chemical composition of epicuticular wax of eucalyptus leaves

    Directory of Open Access Journals (Sweden)

    R.G Viana

    2010-12-01

    Full Text Available Objetivou-se neste trabalho quantificar e relatar a composição química da cera epicuticular da folha de seis clones de eucalipto (UFV01, UFV02, UFV03, UFV04, UFV05 e UFV06. A cera epicuticular foi extraída e quantificada, e os seus constituintes, analisados por cromatografia a gás acoplada a espectrômetro de massas. Maior quantidade de cera por área foliar foi encontrada nos clones UFV01, UFV02 e UFV05, enquanto o clone UFV03 apresentou o menor teor de cera. Nas amostras submetidas à espectrometria de massas, foram identificados 31 constituintes nos seis clones de eucalipto avaliados. A análise das amostras revelou maior presença de hidrocarbonetos entre os compostos identificados na folha. O componente encontrado em maior proporção nos clones UFV02 (36,07%, UFV03 (33,00% e UFV06 (40,98% foi o 3β-acetoxi-urs-12-en-28-al, ao passo que nos clones UFV01 (17,80%, UFV04 (11,38% e UFV05 (17,62% a maior proporção foi do hexacosano. Os clones UFV02 e UFV04 apresentaram, em sua cera, maior variedade de componentes químicos (19 componentes do que os demais genótipos avaliados, havendo variação quanto ao tipo e à quantidade de compostos entre os genótipos, mesmo em clones pertencentes à mesma espécie.This work aimed to quantify and evaluate the chemical composition of the epicuticular wax from leaves of six Eucalyptus clones (UFV01, UFV02, UFV03, UFV04, UFV05 and UFV06. The epicuticular wax was extracted and quantified and their constituents analyzed by gas chromatography coupled with a mass spectrometer, with 31 constituents being identified in the six Eucalyptus clones appraised. The analysis of the samples revealed mostly the presence of hydrocarbons. The component found in larger proportion in the clones UFV02 (36.07%, UFV03 (33.00% and UFV06 (40.98% was 3β-acetoxy-urs-12-en-28-al, while in the clones UFV01 (17.80%, UFV04 (11.38% and UFV05 (17.62% the component found in larger proportion was hexacosane. The clones UFV02 and UFV

  5. Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco.

    Science.gov (United States)

    Cameron, Kimberly D; Teece, Mark A; Smart, Lawrence B

    2006-01-01

    Cuticular wax deposition and composition affects drought tolerance and yield in plants. We examined the relationship between wax and dehydration stress by characterizing the leaf cuticular wax of tree tobacco (Nicotiana glauca L. Graham) grown under periodic dehydration stress. Total leaf cuticular wax load increased after each of three periods of dehydration stress using a CH2Cl2 extraction process. Overall, total wax load increased 1.5- to 2.5-fold, but composition of the wax was not altered. Homologous series of wax components were classified into organic groups; n-hentriacontane was the largest component (>75%) with alcohols and fatty acids representing drying event. Leaves excised from plants subjected to multiple drying events were more resistant to water loss compared to leaves excised from well-watered plants, indicating that there is a negative relationship between total wax load and epidermal conductance. Lipid transfer proteins (LTPs) are thought to be involved in the transfer of lipids through the extracellular matrix for the formation of cuticular wax. Using northern analysis, a 6-fold increase of tree tobacco LTP gene transcripts was observed after three drying events, providing further evidence that LTP is involved in cuticle deposition. The simplicity of wax composition and the dramatic wax bloom displayed by tree tobacco make this an excellent species in which to study the relationship between leaf wax deposition and drought tolerance.

  6. 21 CFR 582.1978 - Carnauba wax.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Carnauba wax. 582.1978 Section 582.1978 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1978 Carnauba wax. (a) Product. Carnauba wax. (b) Conditions of use. This substance is generally...

  7. Fracture of Carbon Nanotube - Amorphous Carbon Composites: Molecular Modeling

    Science.gov (United States)

    Jensen, Benjamin D.; Wise, Kristopher E.; Odegard, Gregory M.

    2015-01-01

    Carbon nanotubes (CNTs) are promising candidates for use as reinforcements in next generation structural composite materials because of their extremely high specific stiffness and strength. They cannot, however, be viewed as simple replacements for carbon fibers because there are key differences between these materials in areas such as handling, processing, and matrix design. It is impossible to know for certain that CNT composites will represent a significant advance over carbon fiber composites before these various factors have been optimized, which is an extremely costly and time intensive process. This work attempts to place an upper bound on CNT composite mechanical properties by performing molecular dynamics simulations on idealized model systems with a reactive forcefield that permits modeling of both elastic deformations and fracture. Amorphous carbon (AC) was chosen for the matrix material in this work because of its structural simplicity and physical compatibility with the CNT fillers. It is also much stiffer and stronger than typical engineering polymer matrices. Three different arrangements of CNTs in the simulation cell have been investigated: a single-wall nanotube (SWNT) array, a multi-wall nanotube (MWNT) array, and a SWNT bundle system. The SWNT and MWNT array systems are clearly idealizations, but the SWNT bundle system is a step closer to real systems in which individual tubes aggregate into large assemblies. The effect of chemical crosslinking on composite properties is modeled by adding bonds between the CNTs and AC. The balance between weakening the CNTs and improving fiber-matrix load transfer is explored by systematically varying the extent of crosslinking. It is, of course, impossible to capture the full range of deformation and fracture processes that occur in real materials with even the largest atomistic molecular dynamics simulations. With this limitation in mind, the simulation results reported here provide a plausible upper limit on

  8. Method for the determination of natural ester-type gum bases used as food additives via direct analysis of their constituent wax esters using high-temperature GC/MS

    Science.gov (United States)

    Tada, Atsuko; Ishizuki, Kyoko; Yamazaki, Takeshi; Sugimoto, Naoki; Akiyama, Hiroshi

    2014-01-01

    Natural ester-type gum bases, which are used worldwide as food additives, mainly consist of wax esters composed of long-chain fatty acids and long-chain fatty alcohols. There are many varieties of ester-type gum bases, and thus a useful method for their discrimination is needed in order to establish official specifications and manage their quality control. Herein is reported a rapid and simple method for the analysis of different ester-type gum bases used as food additives by high-temperature gas chromatography/mass spectrometry (GC/MS). With this method, the constituent wax esters in ester-type gum bases can be detected without hydrolysis and derivatization. The method was applied to the determination of 10 types of gum bases, including beeswax, carnauba wax, lanolin, and jojoba wax, and it was demonstrated that the gum bases derived from identical origins have specific and characteristic total ion chromatogram (TIC) patterns and ester compositions. Food additive gum bases were thus distinguished from one another based on their TIC patterns and then more clearly discriminated using simultaneous monitoring of the fragment ions corresponding to the fatty acid moieties of the individual molecular species of the wax esters. This direct high-temperature GC/MS method was shown to be very useful for the rapid and simple discrimination of varieties of ester-type gum bases used as food additives. PMID:25473499

  9. Method for the determination of natural ester-type gum bases used as food additives via direct analysis of their constituent wax esters using high-temperature GC/MS.

    Science.gov (United States)

    Tada, Atsuko; Ishizuki, Kyoko; Yamazaki, Takeshi; Sugimoto, Naoki; Akiyama, Hiroshi

    2014-07-01

    Natural ester-type gum bases, which are used worldwide as food additives, mainly consist of wax esters composed of long-chain fatty acids and long-chain fatty alcohols. There are many varieties of ester-type gum bases, and thus a useful method for their discrimination is needed in order to establish official specifications and manage their quality control. Herein is reported a rapid and simple method for the analysis of different ester-type gum bases used as food additives by high-temperature gas chromatography/mass spectrometry (GC/MS). With this method, the constituent wax esters in ester-type gum bases can be detected without hydrolysis and derivatization. The method was applied to the determination of 10 types of gum bases, including beeswax, carnauba wax, lanolin, and jojoba wax, and it was demonstrated that the gum bases derived from identical origins have specific and characteristic total ion chromatogram (TIC) patterns and ester compositions. Food additive gum bases were thus distinguished from one another based on their TIC patterns and then more clearly discriminated using simultaneous monitoring of the fragment ions corresponding to the fatty acid moieties of the individual molecular species of the wax esters. This direct high-temperature GC/MS method was shown to be very useful for the rapid and simple discrimination of varieties of ester-type gum bases used as food additives.

  10. Investigation of wax precipitation in crude oil: Experimental and modeling

    Directory of Open Access Journals (Sweden)

    Taraneh Jafari Behbahani

    2015-09-01

    Full Text Available In this work, a series of experiments were carried to investigation of rheological behavior of crude oil using waxy crude oil sample in the absence/presence of flow improver such as ethylene-vinyl acetate copolymer. The rheological data covered the temperature range of 5–30 °C. The results indicated that the performance of flow improver was dependent on its molecular weight. Addition of small quantities of flow improver, can improve viscosity and pour point of crude oil. Also, an Artificial Neural Network (ANN model using Multi-Layer Perceptron (MLP topology has been developed to account wax appearance temperature and the amount of precipitated wax and the model was verified using experimental data given in this work and reported in the literature. In order to compare the performance of the proposed model based on Artificial Neural Network, the wax precipitation experimental data at different temperatures were predicted using solid solution model and multi-solid phase model. The results showed that the developed model based on Artificial Neural Network can predict more accurately the wax precipitation experimental data in comparison to the previous models such as solid solution and multi-solid phase model with AADs less than 0.5%. Furthermore, the number of parameters required for the Artificial Neural Network (ANN model is less than the studied thermodynamic models.

  11. 21 CFR 186.1555 - Japan wax.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Japan wax. 186.1555 Section 186.1555 Food and Drugs... Substances Affirmed as GRAS § 186.1555 Japan wax. (a) Japan wax (CAS Reg. No. 8001-39-6), also known as Japan... fruits of the oriental sumac, Rhus succedanea (Japan, Taiwan, and Indo-China), R. vernicifera (Japan...

  12. Isolation and recrystallization of epicuticular waxes from Sorbus and Cotoneaster leaves

    OpenAIRE

    Ganeva Tsveta; Stefanova Miroslava; Koleva Dimitrina; Ruiz Segundo Ríos

    2015-01-01

    Wax morphology and chemical composition are widely accepted to be important for the protective properties of the leaf’s surface and also valuable characteristics in plant systematics. The leaves of Sorbus domestica L. and Cotoneaster granatensis Boiss., species of two large genera with intricate taxonomy referred to subtribe Pyrinae, Rosaceae (formerly subfamily Maloideae), were studied by scanning electron microscope (SEM) and performing different methods of wax isola...

  13. Physical properties of beeswax, sunflower wax, and candelilla wax mixtures and organogels

    Science.gov (United States)

    There is increased interest in natural waxes as alternatives to partially hydrogenated oils and saturated fats as oil structuring agents. Using relatively low concentrations (0.5-5%), natural waxes are able to form crystalline networks, or organogels, which bind liquid oil. Each natural wax is uniqu...

  14. Surfactants from petroleum paraffin wax

    Energy Technology Data Exchange (ETDEWEB)

    Kassem, T.M.; Hussein, M.H.; El Sayed, A.S.

    Paraffin wax from Egyptian petroleum was purified and then oxidized to fatty acids which were esterified to form their methyl esters, fractionated and then hydrolysed. The obtained fatty acids were converted into the corresponding primary amines which were converted with ethylene oxide to form nonionic surfactants. The prepared primary amines were also converted into tertiary amines and then converted into cationic surfactants through condensation with benzyl chloride or 1-chloromethylnaphthalene. Also, amine oxide surfactants were prepared by oxidation of the tertiary amines with hydrogen peroxide. The surface active properties of all the prepared surfactants were determined, and the effect of their chemical structure on the surfactant properties are discussed in this paper.

  15. Preparation and characterization of carnauba wax nanostructured lipid carriers containing benzophenone-3.

    Science.gov (United States)

    Lacerda, S P; Cerize, N N P; Ré, M I

    2011-08-01

    Nanostructured lipid carriers (NLCs) are potential active delivery systems based on mixtures of solid lipids and liquid oil. In this paper, aqueous dispersions of NLCs were prepared by a hot high-pressure homogenization technique using carnauba wax as the solid lipid and isodecyl oleate as the liquid oil. The preparation and stability parameters of benzophenone-3-loaded NLCs have been investigated concerning particle size, zeta potential and loading capacity to encapsulate benzophenone-3, a molecular sunscreen. The current investigation illustrates the effect of the composition of the lipid mixture on the entrapment efficiency, in vitro release and stability of benzophenone-3-loaded in these NLCs. A loading capacity of approximately 5% of benzophenone-3 (m(BZ-3) /m(lipids) ) was characteristic of these systems. © 2011 The Authors. ICS © 2011 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  16. Molecular interactions in gelatin/chitosan composite films.

    Science.gov (United States)

    Qiao, Congde; Ma, Xianguang; Zhang, Jianlong; Yao, Jinshui

    2017-11-15

    Gelatin and chitosan were mixed at different mass ratios in solution forms, and the rheological properties of these film-forming solutions, upon cooling, were studied. The results indicate that the significant interactions between gelatin and chitosan promote the formation of multiple complexes, reflected by an increase in the storage modulus of gelatin solution. Furthermore, these molecular interactions hinder the formation of gelatin networks, consequently decreasing the storage modulus of polymer gels. Both hydrogen bonds and electrostatic interactions are formed between gelatin and chitosan, as evidenced by the shift of the amide-II bands of polymers. X-ray patterns of composite films indicate that the contents of triple helices decrease with increasing chitosan content. Only one glass transition temperature (T g ) was observed in composite films with different composition ratios, and it decreases gradually with an increase in chitosan proportion, indicating that gelatin and chitosan have good miscibility and form a wide range of blends. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Cuticular waxes in alpine meadow plants: climate effect inferred from latitude gradient in Qinghai-Tibetan Plateau.

    Science.gov (United States)

    Guo, Yanjun; Guo, Na; He, Yuji; Gao, Jianhua

    2015-09-01

    Alpine meadow ecosystems are susceptible to climate changes. Still, climate impact on cuticular wax in alpine meadow plants is poorly understood. Assessing the variations of cuticular wax in alpine meadow plants across different latitudes might be useful for predicting how they may respond to climate change. We studied nine alpine meadows in a climate gradient in the east side of Qinghai-Tibetan Plateau, with mean annual temperature ranging from -7.7 to 3.2°C. In total, 42 plant species were analyzed for cuticular wax, averaged 16 plant species in each meadow. Only four plant species could be observed in all sampling meadows, including Kobresia humilis,Potentilla nivea,Anaphalis lacteal, and Leontopodium nanum. The amounts of wax compositions and total cuticular wax in the four plant species varied among sampling meadows, but no significant correlation could be observed between them and temperature, precipitation, and aridity index based on plant species level. To analyze the variations of cuticular wax on community level, we averaged the amounts of n-alkanes, aliphatic acids, primary alcohols, and total cuticular wax across all investigated plant species in each sampling site. The mean annual temperature, mean temperature in July, and aridity index were significantly correlated with the averaged amounts of wax compositions and total cuticular wax. The average chain length of n-alkanes in both plant and soil linearly increased with increased temperature, whereas reduced with increased aridity index. No significant correlation could be observed between mean annual precipitation and mean precipitation from June to August and the cuticular wax amounts and average chain length. Our results suggest that the survival of some alpine plants in specific environments might be depended on their abilities in adjusting wax deposition on plant leaves, and the alpine meadow plants as a whole respond to climate change, benefiting the stability of alpine meadow ecosystem.

  18. Aplikasi Wax Sebagai Salah Satu Material Di Bidang Kedokteran Gigi

    OpenAIRE

    Rika Jamilah Israwati Lubis

    2008-01-01

    Wax merupakan salah satu bahan termoplastik yang terdiri dari berbagai bahan organis dan bahan alami sehingga membuatnya sebagai bahan dengan sifat-sifat yang sangat berguna. Unsur-unsur pokok dental wax terdiri dari 3 suraber utama, yaitu : mineral, serangga (hewani), dan sayur-sayuran (tumbuh-tumbuhan). Wax yang berasal dari bahan mineral diantaranya adalah paraffin wax dan microcrystallin wax yang diperoleh dari hasil residu petroleum melalui proses destilasi. Wax yang berasal dari serangg...

  19. Analysis of the constituents in jojoba wax used as a food additive by LC/MS/MS.

    Science.gov (United States)

    Tada, Atsuko; Jin, Zhe-Long; Sugimoto, Naoki; Sato, Kyoko; Yamazaki, Takeshi; Tanamoto, Kenichi

    2005-10-01

    Jojoba wax is a natural gum base used as a food additive in Japan, and is obtained from jojoba oil with a characteristically high melting point. Although the constituents of jojoba oil have been reported, the quality of jojoba wax used as a food additive has not yet been clarified. In order to evaluate its quality as a food additive and to obtain basic information useful for setting official standards, we investigated the constituents and their concentrations in jojoba wax. LC/MS analysis of the jojoba wax showed six peaks with [M+H]+ ions in the range from m/z 533.6 to 673.7 at intervals of m/z 28. After isolation of the components of the four main peaks by preparative LC/MS, the fatty acid and long chain alcohol moieties of the wax esters were analyzed by methanolysis and hydrolysis, followed by GC/MS. The results indicated that the main constituents in jojoba wax were various kinds of wax esters, namely eicosenyl octadecenoate (C20:1-C18:1) (1), eicosenyl eicosenoate (C20:1-C20:1) (II), docosenyl eicosenoate (C22:1-C20:1) (III), eicosenyl docosenoate (C20:1-C22:1) (IV) and tetracosenyl eiosenoate (C24:1-C20:1) (V). To confirm and quantify the wax esters in jojoba wax directly, LC/MS/MS analysis was performed. The product ions corresponding to the fatty acid moieties of the wax esters were observed, and by using the product ions derived from the protonated molecular ions of wax esters the fatty acid moieties were identified by MRM analysis. The concentrations of the wax esters I, II and III, in jojoba wax were 5.5, 21.4 and 37.8%, respectively. In summary, we clarified the main constituents of jojoba wax and quantified the molecular species of the wax esters without hydrolysis by monitoring their product ions, using a LC/MS/MS system.

  20. Bee waxes: a model of characterization for using as base simulator tissue in teletherapy with photons

    International Nuclear Information System (INIS)

    Silva, Rogerio Matias Vidal da; Souza, Divanizia do Nascimento

    2011-01-01

    This paper presents a model of characterization and selection of bee waxes which makes possible to certify the usage viability of that base simulator tissue in the manufacture of appropriated objects for external radiotherapy with mega volt photon beams. The work was divide into three stages, where was evaluated physical and chemical properties besides the aspects related to the capacity of beam attenuation. All the process was carefully accompanied related to the wax origin such as the bee specimen and the flora surrounding the beehives. The chemical composition of the waxes is similar to others simulators usually used in radiotherapy. The behavior of mass attenuation coefficient in the radiotherapeutic energy range is comparable to other simulators, and consequently to the soft tissue. The proposed model is efficient and allows the affirmative that the usage of determined bee wax as base simulator tissue is convenient

  1. Epicuticular waxes from caatinga and cerrado species and their efficiency against water loss

    Directory of Open Access Journals (Sweden)

    Oliveira Antonio F. M.

    2003-01-01

    Full Text Available The effects of the contents and chemical composition of the foliar epicuticular waxes of species from the caatinga (Aspidosperma pyrifolium, Capparis yco, Maytenus rigida and Ziziphus joazeiro and cerrado (Aristolochia esperanzae, Didymopanax vinosum, Strychnos pseudoquina and Tocoyena formosa were evaluated as to the resistance to water loss by means of an experimental device constructed for this purpose. In general, the waxes of the caatinga species investigated were more efficient against water loss than cerrado species. Increase of the thickness of the waxy deposits from 40 to 90m g.cm-2 had no significant effect on the resistance to water loss. The chemistry of the wax constituents was shown to be an important factor to determine the degree of resistance to evaporation. n-Alkanes and alcoholic triterpenes were the most efficient barriers, while hentriacontan-16-one (a ketone and ursolic acid (an acid triterpene revealed lowefficiency. The higher efficiency of the waxes of the leaves from caatinga species (mainly those of C. yco and Z. joazeiro is probably accounted for the predominance of n-alkanes in their composition. The lower efficiency of the waxes of A. pyrifolium (caatinga, T. formosa and A. esperanzae (both species from the cerrado is probably a consequence of the predominance of triterpenoids in the waxes of the two former species and hentriacontan-16-one in the latter.

  2. Process for separating liquid hydrocarbons from waxes

    Energy Technology Data Exchange (ETDEWEB)

    Sowa, F J

    1948-03-08

    A process is described for the separation of liquid hydrocarbons from waxes comprising adding to a mixture of liquid hydrocarbons and waxes a sufficient quantity of an organo-silicon compound to cause the separation of the hydrocarbon and wax. The organo-silicon compounds are selected from the class of organic silicanes and their hydrolysis products and polymers. The silicanes have the formula R/sub y/SiX/sub z/, in which R is a saturated or unsaturated hydrocarbon radical, X is a halogen or another hydrocarbon radical or an -OR group, y has a value 1, 2, or 3 and z has a value 1, 2, or 3.

  3. Wax solidification of drying agents containing tritiated water

    International Nuclear Information System (INIS)

    Mishikawa, M.; Kido, H.

    1984-01-01

    It is necessary to immobilize the tritium not to give any impact on the environmental biosphere because tritium may give profound effects in the metabolic pathway. One of the most probable methods of immobilizing tritium would be incorporation of tritiated water in solid forms. Any drying or dehydration technique would be effective in a tritium cleanup system for off-gas streams containing tritium or tritiated water. Commonly used drying agents such as activated alumina, silica gel, molecular sieves and calcium sulfate are of value for removal of water vapour from air or other gases. For long term tritium storage, however, these adsorptive materials should be enveloped to prevent contact with water or water vapour because the rate of leaching, evaporation or diffusion of tritium from these porous materials is so large. The beeswax solidification method of the packed bed of drying agents adsorbing tritiated water is developed in this study, where the wax solidification procedure is performed by pouring the melt of wax into the void space of the packed bed of the drying agents and successive gradual cooling. The observed values of diffusivity or permeability of tritium in the wax solidified materials are about one-thousandth of those obtained for the cement block. Effect of coating on the rate of leaching is also discussed

  4. Modified paraffin wax for improvement of histological analysis efficiency.

    Science.gov (United States)

    Lim, Jin Ik; Lim, Kook-Jin; Choi, Jin-Young; Lee, Yong-Keun

    2010-08-01

    Paraffin wax is usually used as an embedding medium for histological analysis of natural tissue. However, it is not easy to obtain enough numbers of satisfactory sectioned slices because of the difference in mechanical properties between the paraffin and embedded tissue. We describe a modified paraffin wax that can improve the histological analysis efficiency of natural tissue, composed of paraffin and ethylene vinyl acetate (EVA) resin (0, 3, 5, and 10 wt %). Softening temperature of the paraffin/EVA media was similar to that of paraffin (50-60 degrees C). The paraffin/EVA media dissolved completely in xylene after 30 min at 50 degrees C. Physical properties such as the amount of load under the same compressive displacement, elastic recovery, and crystal intensity increased with increased EVA content. EVA medium (5 wt %) was regarded as an optimal composition, based on the sectioning efficiency measured by the numbers of unimpaired sectioned slices, amount of load under the same compressive displacement, and elastic recovery test. Based on the staining test of sectioned slices embedded in a 5 wt % EVA medium by hematoxylin and eosin (H&E), Masson trichrome (MT), and other staining tests, it was concluded that the modified paraffin wax can improve the histological analysis efficiency with various natural tissues. (c) 2010 Wiley-Liss, Inc.

  5. 21 CFR 872.6890 - Intraoral dental wax.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Intraoral dental wax. 872.6890 Section 872.6890...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6890 Intraoral dental wax. (a) Identification. Intraoral dental wax is a device made of wax intended to construct patterns from which custom made metal...

  6. 21 CFR 172.888 - Synthetic petroleum wax.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Synthetic petroleum wax. 172.888 Section 172.888... CONSUMPTION Multipurpose Additives § 172.888 Synthetic petroleum wax. Synthetic petroleum wax may be safely used in or on foods in accordance with the following conditions: (a) Synthetic petroleum wax is a...

  7. Microencapsulation of Flavors in Carnauba Wax

    OpenAIRE

    Milanovic, Jelena; Manojlovic, Verica; Levic, Steva; Rajic, Nevenka; Nedovic, Viktor; Bugarski, Branko

    2010-01-01

    The subject of this study is the development of flavor wax formulations aimed for food and feed products. The melt dispersion technique was applied for the encapsulation of ethyl vanillin in wax microcapsules. The surface morphology of microparticles was investigated using scanning electron microscope (SEM), while the loading content was determined by HPLC measurements. This study shows that the decomposition process under heating proceeds in several steps: vanilla evaporation occurs at aroun...

  8. Extracting paraffin and mineral waxes

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, I C

    1930-01-17

    In a process for freezing liquids, particularly for precipitating wax from oils such as petroleum or shale oils, the liquid to be treated is cooled first in vessels 10, 11, and 12 by chilled liquid from the final separating tanks 22, then in vessels 13, 14 and 15 by brine cooled by an evaporator 38 and finally in vessels 16,17, 18 directly by the evaporator of a refrigerating plant. The cooling in vessels 10, 11, 12 is regulated by recirculating some of the chilled liquid through the valved pipe 30 while that in tanks 13, 14, 15 is regulated by short-circuiting the brine circulation through a tank 35. Refrigerant vapour from the evaporators in vessels 16, 17, 18 may return through pipe 61 to the compressor or absorber of the plant 45 or it may be withdrawn by pump 58. By the operation of valves A, B, 47, and a valve in pipe 61, the pressures in the evaporators may be varied individually to regulate the cooling in each vessel. Mechanical stirrers are provided in tanks 16, 17, 18.

  9. Refining of wax-containing oil by distillation

    Energy Technology Data Exchange (ETDEWEB)

    1930-04-28

    A continuous method is disclosed for producing low cold test oil from wax-containing mineral oil, which comprises continuously heating the oil in a tubular heater with avoidance of cracking, and fractionating the resulting liquid and vapor in a fractionating tower with reflux to produce a wax-containing fraction having therein substantially all of the amorphous wax and being sufficiently free of crystalline wax so as to be waxable by a method suitable for the removal of amorphous wax.

  10. Dissecting plasmodesmata molecular composition by mass spectrometry-based proteomics.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Maria Françoise Bayer

    2013-01-01

    Full Text Available In plants, the intercellular communication through the membranous channels called plasmodesmata (PD; singular plasmodesma plays pivotal roles in the orchestration of development, defence responses and viral propagation. PD are dynamic structures embedded in the plant cell wall that are defined by specialised domains of the endoplasmic reticulum and the plasma membrane. PD structure and unique functions are guaranteed by their particular molecular composition. Yet, up to recent years and despite numerous approaches such as mutant screens, immunolocalisation or screening of random cDNAs, only few PD proteins had been conclusively identified and characterised. A clear breakthrough in the search of PD constituents came from mass-spectrometry-based proteomic approaches coupled with subcellular fractionation strategies. Due to their position, firmly anchored in the extracellular matrix, PD are notoriously difficult to isolate for biochemical analysis. Proteomic-based approaches have therefore first relied on the use of cell wall fractions containing embedded PD then on free PD fractions whereby PD membranes were released from the walls by enzymatic degradation. To discriminate between likely contaminants and PD protein candidates, bioinformatics tools have often been used in combination with proteomic approaches. GFP fusion proteins of selected candidates have confirmed the PD association of several protein families. Here we review the accomplishments and limitations of the proteomic based strategies to unravel the functional and structural complexity of PD. We also discuss the role of the identified PD associated proteins.

  11. Dissecting plasmodesmata molecular composition by mass spectrometry-based proteomics.

    Science.gov (United States)

    Salmon, Magali S; Bayer, Emmanuelle M F

    2012-01-01

    In plants, the intercellular communication through the membranous channels called plasmodesmata (PD; singular plasmodesma) plays pivotal roles in the orchestration of development, defence responses, and viral propagation. PD are dynamic structures embedded in the plant cell wall that are defined by specialized domains of the endoplasmic reticulum (ER) and the plasma membrane (PM). PD structure and unique functions are guaranteed by their particular molecular composition. Yet, up to recent years and despite numerous approaches such as mutant screens, immunolocalization, or screening of random cDNAs, only few PD proteins had been conclusively identified and characterized. A clear breakthrough in the search of PD constituents came from mass-spectrometry-based proteomic approaches coupled with subcellular fractionation strategies. Due to their position, firmly anchored in the extracellular matrix, PD are notoriously difficult to isolate for biochemical analysis. Proteomic-based approaches have therefore first relied on the use of cell wall fractions containing embedded PD then on "free" PD fractions whereby PD membranes were released from the walls by enzymatic degradation. To discriminate between likely contaminants and PD protein candidates, bioinformatics tools have often been used in combination with proteomic approaches. GFP fusion proteins of selected candidates have confirmed the PD association of several protein families. Here we review the accomplishments and limitations of the proteomic-based strategies to unravel the functional and structural complexity of PD. We also discuss the role of the identified PD-associated proteins.

  12. Wax-bonding 3D microfluidic chips

    KAUST Repository

    Gong, Xiuqing; Yi, Xin; Xiao, Kang; Li, Shunbo; Kodzius, Rimantas; Qin, Jianhua; Wen, Weijia

    2013-01-01

    We report a simple, low-cost and detachable microfluidic chip incorporating easily accessible paper, glass slides or other polymer films as the chip materials along with adhesive wax as the recycling bonding material. We use a laser to cut through the paper or film to form patterns and then sandwich the paper and film between glass sheets or polymer membranes . The hot-melt adhesive wax can realize bridge bonding between various materials, for example, paper, polymethylmethacrylate (PMMA) film, glass sheets, or metal plate. The bonding process is reversible and the wax is reusable through a melting and cooling process. With this process, a three-dimensional (3D) microfluidic chip is achievable by vacuating and venting the chip in a hot-water bath. To study the biocompatibility and applicability of the wax-based microfluidic chip, we tested the PCR compatibility with the chip materials first. Then we applied the wax-paper based microfluidic chip to HeLa cell electroporation (EP ). Subsequently, a prototype of a 5-layer 3D chip was fabricated by multilayer wax bonding. To check the sealing ability and the durability of the chip, green fluorescence protein (GFP) recombinant Escherichia coli (E. coli) bacteria were cultured, with which the chemotaxis of E. coli was studied in order to determine the influence of antibiotic ciprofloxacin concentration on the E. coli migration.

  13. Wax-bonding 3D microfluidic chips

    KAUST Repository

    Gong, Xiuqing

    2013-10-10

    We report a simple, low-cost and detachable microfluidic chip incorporating easily accessible paper, glass slides or other polymer films as the chip materials along with adhesive wax as the recycling bonding material. We use a laser to cut through the paper or film to form patterns and then sandwich the paper and film between glass sheets or polymer membranes . The hot-melt adhesive wax can realize bridge bonding between various materials, for example, paper, polymethylmethacrylate (PMMA) film, glass sheets, or metal plate. The bonding process is reversible and the wax is reusable through a melting and cooling process. With this process, a three-dimensional (3D) microfluidic chip is achievable by vacuating and venting the chip in a hot-water bath. To study the biocompatibility and applicability of the wax-based microfluidic chip, we tested the PCR compatibility with the chip materials first. Then we applied the wax-paper based microfluidic chip to HeLa cell electroporation (EP ). Subsequently, a prototype of a 5-layer 3D chip was fabricated by multilayer wax bonding. To check the sealing ability and the durability of the chip, green fluorescence protein (GFP) recombinant Escherichia coli (E. coli) bacteria were cultured, with which the chemotaxis of E. coli was studied in order to determine the influence of antibiotic ciprofloxacin concentration on the E. coli migration.

  14. Composição química da cera epicuticular e caracterização da superfície foliar em genótipos de cana-de-açúcar Chemical composition of epicuticular wax and characterization of leaf surface in sugarcane genotypes

    Directory of Open Access Journals (Sweden)

    E.A. Ferreira

    2005-12-01

    Full Text Available Objetivou-se neste trabalho avaliar a composição química da cera epicuticular e caracterizar a superfície foliar dos cultivares de cana-de-açúcar RB855113 (sensível à mistura de herbicidas trifloxysulfuron-sodium + ametryn, SP80-1842 e SP80-1816, do clone RB957689 (com média sensibilidade à mistura de herbicidas e do cultivar RB867515 (tolerante. A cera epicuticular foi extraída e quantificada e os seus constituintes analisados por cromatografia a gás, acoplada a espectrômetro de massa (CG-EM. Para determinação da composição química, assim como a caracterização da superfície foliar dos cultivares avaliados, amostras de lâmina foliar foram coletadas e submetidas à microscopia eletrônica de varredura, para caracterização das faces adaxial e abaxial. A análise das amostras revelou a presença de hidrocarbonetos, esteróides, ésteres graxos, álcoois e aldeídos. A cera do cultivar sensível à mistura (RB855113 apresentou menor número de componentes químicos e predominância de ésteres graxos de cadeia mais curta que os encontrados nos demais cultivares, bem como pequena proporção de esteróides e hidrocarbonetos. Nos cultivares com média sensibilidade (SP80-1842 e RB867515, a cera apresentou maior proporção de hidrocarbonetos e esteróides. A cera do cultivar RB855113 apresentou polaridade intermediária, porém menos polar que a cera do cultivar RB867515 (tolerante à mistura. Não foram observadas diferenças marcantes entre os cultivares no que se refere à micromorfologia foliar.This study aimed to evaluate the chemical composition of epicuticular wax and to characterize leaf surface in the sugarcane cultivars RB85113 (sensitive to trifloxysulfuron-sodium + ametryn, SP80 1842, SP80 1816, clone RB957689 (with medium sensitivity to trifloxysulfuron-sodium + ametryn and the cultivar RB867515 (tolerant. Epicuticular wax was extracted and quantified, and its contents submitted to gas chromatography coupled to a

  15. Development of lamellar structures in natural waxes - an electron diffraction investigation

    Energy Technology Data Exchange (ETDEWEB)

    Dorset, Douglas L. [Electron Diffraction Department, Hauptman-Woodward Medical Research Institute, Inc., Buffalo, NY (United States)

    1999-06-07

    When they are recrystallized from the melt, natural plant or insect waxes tend to form solid phases with a nematic-like structure (i.e. a parallel array of polymethylene chains with little or no aggregation of the molecules into distinct layers). An electron diffraction study of carnauba wax and two types of beeswax has shown that the degree of molecular organization into lamellar structures can be enhanced by annealing in the presence of benzoic acid, which also acts as an epitaxial substrate. Nevertheless, the resultant layer structure in the annealed solid is not the same as that found for paraffin wax fractions refined from petroleum. Probably because of a small but significant fraction of a very long chain ingredient, the lamellar separation is incomplete, incorporating a number of 'bridging molecules' that span the nascent lamellar interface.The same phenomenon has been described recently for a low molecular weight polyethylene. (author)

  16. Development of lamellar structures in natural waxes - an electron diffraction investigation

    Science.gov (United States)

    Dorset, Douglas L.

    1999-06-01

    When they are recrystallized from the melt, natural plant or insect waxes tend to form solid phases with a nematic-like structure (i.e. a parallel array of polymethylene chains with little or no aggregation of the molecules into distinct layers). An electron diffraction study of carnauba wax and two types of beeswax has shown that the degree of molecular organization into lamellar structures can be enhanced by annealing in the presence of benzoic acid, which also acts as an epitaxial substrate. Nevertheless, the resultant layer structure in the annealed solid is not the same as that found for paraffin wax fractions refined from petroleum. Probably because of a small but significant fraction of a very long chain ingredient, the lamellar separation is incomplete, incorporating a number of `bridging molecules' that span the nascent lamellar interface.The same phenomenon has been described recently for a low molecular weight polyethylene.

  17. Particle size dependence of biogenic secondary organic aerosol molecular composition

    Science.gov (United States)

    Tu, Peijun; Johnston, Murray V.

    2017-06-01

    Formation of secondary organic aerosol (SOA) is initiated by the oxidation of volatile organic compounds (VOCs) in the gas phase whose products subsequently partition to the particle phase. Non-volatile molecules have a negligible evaporation rate and grow particles at their condensation rate. Semi-volatile molecules have a significant evaporation rate and grow particles at a much slower rate than their condensation rate. Particle phase chemistry may enhance particle growth if it transforms partitioned semi-volatile molecules into non-volatile products. In principle, changes in molecular composition as a function of particle size allow non-volatile molecules that have condensed from the gas phase (a surface-limited process) to be distinguished from those produced by particle phase reaction (a volume-limited process). In this work, SOA was produced by β-pinene ozonolysis in a flow tube reactor. Aerosol exiting the reactor was size-selected with a differential mobility analyzer, and individual particle sizes between 35 and 110 nm in diameter were characterized by on- and offline mass spectrometry. Both the average oxygen-to-carbon (O / C) ratio and carbon oxidation state (OSc) were found to decrease with increasing particle size, while the relative signal intensity of oligomers increased with increasing particle size. These results are consistent with oligomer formation primarily in the particle phase (accretion reactions, which become more favored as the volume-to-surface-area ratio of the particle increases). Analysis of a series of polydisperse SOA samples showed similar dependencies: as the mass loading increased (and average volume-to-surface-area ratio increased), the average O / C ratio and OSc decreased, while the relative intensity of oligomer ions increased. The results illustrate the potential impact that particle phase chemistry can have on biogenic SOA formation and the particle size range where this chemistry becomes important.

  18. Particle size dependence of biogenic secondary organic aerosol molecular composition

    Directory of Open Access Journals (Sweden)

    P. Tu

    2017-06-01

    Full Text Available Formation of secondary organic aerosol (SOA is initiated by the oxidation of volatile organic compounds (VOCs in the gas phase whose products subsequently partition to the particle phase. Non-volatile molecules have a negligible evaporation rate and grow particles at their condensation rate. Semi-volatile molecules have a significant evaporation rate and grow particles at a much slower rate than their condensation rate. Particle phase chemistry may enhance particle growth if it transforms partitioned semi-volatile molecules into non-volatile products. In principle, changes in molecular composition as a function of particle size allow non-volatile molecules that have condensed from the gas phase (a surface-limited process to be distinguished from those produced by particle phase reaction (a volume-limited process. In this work, SOA was produced by β-pinene ozonolysis in a flow tube reactor. Aerosol exiting the reactor was size-selected with a differential mobility analyzer, and individual particle sizes between 35 and 110 nm in diameter were characterized by on- and offline mass spectrometry. Both the average oxygen-to-carbon (O ∕ C ratio and carbon oxidation state (OSc were found to decrease with increasing particle size, while the relative signal intensity of oligomers increased with increasing particle size. These results are consistent with oligomer formation primarily in the particle phase (accretion reactions, which become more favored as the volume-to-surface-area ratio of the particle increases. Analysis of a series of polydisperse SOA samples showed similar dependencies: as the mass loading increased (and average volume-to-surface-area ratio increased, the average O ∕ C ratio and OSc decreased, while the relative intensity of oligomer ions increased. The results illustrate the potential impact that particle phase chemistry can have on biogenic SOA formation and the particle size range where this chemistry becomes

  19. Understanding the distribution of natural wax in starch-wax films using synchrotron-based FTIR (S-FTIR).

    Science.gov (United States)

    Muscat, Delina; Tobin, Mark J; Guo, Qipeng; Adhikari, Benu

    2014-02-15

    High amylose starch-glycerol (HAG) films were produced incorporating beeswax, candelilla wax and carnauba wax in the presence and absence of Tween-80 in order to determine the distribution of wax in the films during the film formation process. The distribution of these waxes within the film was studied using Synchrotron based Fourier Transform Infrared Spectroscopy (S-FTIR) which provided 2D mapping along the thickness of the film. The incorporation of 5% and 10% wax in HAG films produced randomly distributed wax or wax-rich domains, respectively, within these films. Consequently, the addition of these waxes to HAG increased the surface roughness and hydrophobicity of these films. The addition of Tween-80 caused variations in wax-rich bands within the films. The HAG+carnauba wax+Tween-80 films exhibited domed wax-rich domains displayed with high integrated CH2 absorption value at the interior of the films, rougher surface and higher contact angle values than the other films. The S-FTIR 2D images indicated that the distribution of wax in starch-wax films correlated with the roughness and hydrophobicity of the starch-wax films. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Tribological behavior of in situ Ag nanoparticles/polyelectrolyte composite molecular deposition films

    International Nuclear Information System (INIS)

    Guo Yanbao; Wang Deguo; Liu Shuhai

    2010-01-01

    Multilayer polyelectrolyte films containing silver ions were obtained by molecular deposition method on a glass plate or a quartz substrate. The in situ Ag nanoparticles were synthesized in the multilayer polyelectrolyte films which were put into fresh NaBH 4 aqueous solution. The structure and surface morphology of composite molecular deposition films were observed by UV-vis spectrophotometer, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Tribological characteristic was investigated by AFM and micro-tribometer. It was found that the in situ Ag nanoparticles/polyelectrolyte composite molecular deposition films have lower coefficient of friction and higher anti-wear life than pure polyelectrolyte molecular deposition films.

  1. Compound-Specific Radiocarbon Dating Reveals the Age Distribution of Plant-Wax Biomarkers Exported to the Bengal Fan

    Science.gov (United States)

    Galy, V.; French, K. L.; Hein, C. J.; Haghipour, N.; Wacker, L.; Kudrass, H.; Eglinton, T. I.

    2017-12-01

    The stable isotope composition of leaf-wax compounds preserved in lacustrine and marine sediments has been widely used to reconstruct terrestrial paleo-environments. However, the timescales of plant-wax storage in continental reservoirs before riverine export are not well known, representing a key uncertainty in paleo-environment studies. We couple numerical models with bulk and leaf-wax fatty acid organic 13C and 14C signatures hosted in a high-deposition-rate sediment core from the Bengal shelf canyon in order to estimate storage timescales within the Ganges-Brahmaputra catchment area. The fatty acid 14C record reveals a muted nuclear weapons bomb spike, requiring that the Ganges-Brahmaputra river system exports a mixture of young and old (pre-aged) leaf-wax compounds. According to numerical simulations, 79-83% of the leaf-wax fatty acids in this core are sourced from continental reservoirs that store organic carbon on an average of 1000-1200 calendar years, while the remainder has an average age of 15 years. These results demonstrate that a majority of the leaf-wax compounds produced in the Ganges-Brahmaputra river basin was stored in soils, floodplains, and wetlands prior to its export to the Bengal Fan. We will discuss the implications of these findings for plant-wax based paleoenvironmental records.

  2. De novo assembly and characterization of the transcriptome, and development of SSR markers in wax gourd (Benicasa hispida.

    Directory of Open Access Journals (Sweden)

    Biao Jiang

    Full Text Available BACKGROUND: Wax gourd is a widely used vegetable of Cucuribtaceae, and also has important medicinal and health values. However, the genomic resources of wax gourd were scarcity, and only a few nucleotide sequences could be obtained in public databases. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we examined transcriptome in wax gourd. More than 44 million of high quality reads were generated from five different tissues of wax gourd using Illumina paired-end sequencing technology. Approximately 4 Gbp data were generated, and de novo assembled into 65,059 unigenes, with an N50 of 1,132 bp. Based on sequence similarity search with known protein database, 36,070 (55.4% showed significant similarity to known proteins in Nr database, and 24,969 (38.4% had BLAST hits in Swiss-Prot database. Among the annotated unigenes, 14,994 of wax gourd unigenes were assigned to GO term annotation, and 23,977 were found to have COG classifications. In addition, a total of 18,713 unigenes were assigned to 281 KEGG pathways. Furthermore, 6,242 microsatellites (simple sequence repeats were detected as potential molecular markers in wax gourd. Two hundred primer pairs for SSRs were designed for validation of the amplification and polymorphism. The result showed that 170 of the 200 primer pairs were successfully amplified and 49 (28.8% of them exhibited polymorphisms. CONCLUSION/SIGNIFICANCE: Our study enriches the genomic resources of wax gourd and provides powerful information for future studies. The availability of this ample amount of information about the transcriptome and SSRs in wax gourd could serve as valuable basis for studies on the physiology, biochemistry, molecular genetics and molecular breeding of this important vegetable crop.

  3. Microencapsulation of Flavors in Carnauba Wax

    Directory of Open Access Journals (Sweden)

    Branko Bugarski

    2010-01-01

    Full Text Available The subject of this study is the development of flavor wax formulations aimed for food and feed products. The melt dispersion technique was applied for the encapsulation of ethyl vanillin in wax microcapsules. The surface morphology of microparticles was investigated using scanning electron microscope (SEM, while the loading content was determined by HPLC measurements. This study shows that the decomposition process under heating proceeds in several steps: vanilla evaporation occurs at around 200 °C, while matrix degradation starts at 250 °C and progresses with maxima at around 360, 440 and 520 °C. The results indicate that carnauba wax is an attractive material for use as a matrix for encapsulation of flavours in order to improve their functionality and stability in products.

  4. Microencapsulation of flavors in carnauba wax.

    Science.gov (United States)

    Milanovic, Jelena; Manojlovic, Verica; Levic, Steva; Rajic, Nevenka; Nedovic, Viktor; Bugarski, Branko

    2010-01-01

    The subject of this study is the development of flavor wax formulations aimed for food and feed products. The melt dispersion technique was applied for the encapsulation of ethyl vanillin in wax microcapsules. The surface morphology of microparticles was investigated using scanning electron microscope (SEM), while the loading content was determined by HPLC measurements. This study shows that the decomposition process under heating proceeds in several steps: vanilla evaporation occurs at around 200 °C, while matrix degradation starts at 250 °C and progresses with maxima at around 360, 440 and 520 °C. The results indicate that carnauba wax is an attractive material for use as a matrix for encapsulation of flavours in order to improve their functionality and stability in products.

  5. Wax Point Determinations Using Acoustic Resonance Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bostick, D.T.; Jubin, R.T.; Schmidt, T.W.

    2001-06-01

    The thermodynamic characterization of the wax point of a given crude is essential in order to maintain flow conditions that prevent plugging of undersea pipelines. This report summarizes the efforts made towards applying an Acoustic Cavity Resonance Spectrometer (ACRS) to the determination of pressures and temperatures at which wax precipitates from crude. Phillips Petroleum Company, Inc., the CRADA participant, supplied the ACRS. The instrumentation was shipped to Dr. Thomas Schmidt of ORNL, the CRADA contractor, in May 2000 after preliminary software development performed under the guidance of Dr. Samuel Colgate and Dr. Evan House of the University of Florida, Gainesville, Fl. Upon receipt it became apparent that a number of modifications still needed to be made before the ACRS could be precisely and safely used for wax point measurements. This report reviews the sequence of alterations made to the ACRS, as well as defines the possible applications of the instrumentation once the modifications have been completed. The purpose of this Cooperative Research and Development Agreement (CRADA) between Phillips Petroleum Company, Inc. (Participant) and Lockheed Martin Energy Research Corporation (Contractor) was the measurement of the formation of solids in crude oils and petroleum products that are commonly transported through pipelines. This information is essential in the proper design, operation and maintenance of the petroleum pipeline system in the United States. Recently, new petroleum discoveries in the Gulf of Mexico have shown that there is a potential for plugging of undersea pipeline because of the precipitation of wax. It is important that the wax points of the expected crude oils be well characterized so that the production facilities for these new wells are capable of properly transporting the expected production. The goal of this work is to perform measurements of solids formation in crude oils and petroleum products supplied by the Participant. It is

  6. The importance of the biomimetic composites components for recreating the optical properties and molecular composition of intact dental tissues.

    Science.gov (United States)

    Seredin, P. V.; Goloshchapov, D. L.; Gushchin, M. S.; Ippolitov, Y. A.; Prutskij, T.

    2017-11-01

    The objective of this paper was to investigate whether it is possible to obtain biomimetic materials recreating the luminescent properties and molecular composition of intact dental tissues. Biomimetic materials were produced and their properties compared with native dental tissues. In addition, the overall contribution of the organic and non-organic components in the photoluminescence band was investigated. The results showed that it is possible to develop biomimetic materials with similar molecular composition and optical properties to native dental tissues for the early identification of dental caries.

  7. Low-pressure injection molding of alumina ceramics using a carnauba wax binder: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Quevedo Nogueira, R.E.F.; Bezerra, A.C.; Santos, F.C. dos [Dept. de Engenharia Mecanica, Centro de Tecnologia-UFC, Fortaleza, CE (Brazil); Sousa, M.R. de; Acchar, W. [Dept. de Engenharia Mecanica, Univ. Federal do Rio Grande do Norte, UFRN-Campus Univ., Natal, RN (Brazil)

    2001-07-01

    Carnauba wax, a natural product from Northeastern Brazil, has found application in the processing of ceramics. However, the use of pure carnauba wax is not recommended due to its narrow melting range and poor mechanical properties. In the present work carnauba wax based organic vehicles with the addition of low-density polyethylene and stearic acid were developed for use in the low-pressure injection molding of alumina ceramics. Viscosimetric testing was employed for the determination of optimal composition of the organic vehicle. The optimal content of ceramic powder in the mixture was also determined. All the materials used are easily available in the Brazilian market. A simple ceramic part was injected at low pressures (0.6 MPa) using a semi-automatic injection molding machine. For this purpose a double cavity mold was designed and built. Preliminary results demonstrate the technical viability of the process using the organic vehicle developed. (orig.)

  8. Effect of expanded graphite on the phase change materials of high density polyethylene/wax blends

    Energy Technology Data Exchange (ETDEWEB)

    AlMaadeed, M.A., E-mail: m.alali@qu.edu.qa [Center for Advanced Materials, Qatar University, 2713 Doha (Qatar); Labidi, Sami [Center for Advanced Materials, Qatar University, 2713 Doha (Qatar); Krupa, Igor [QAPCO Polymer Chair, Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha (Qatar); Karkri, Mustapha [Université Paris-Est CERTES, 61 avenue du Général de Gaulle, 94010 Créteil (France)

    2015-01-20

    Highlights: • Expanded graphite (EG) and low melting point (42.3 °C) wax were added to HDPE to form phase change material. • EG was well dispersed in the composites and did not affect the melting or crystallization of the HDPE matrix. • EG increased the thermal stability of the composites by reducing chain mobility and inhibiting degradation. • The addition of a relatively small quantity of EG enhances the heat conduction in the composite. • HDPE/40% RT42 that contained up to 15% EG demonstrated excellent mechanical and thermal properties and can be used as PCM. - Abstract: Phase change materials fabricated from high density polyethylene (HDPE) blended with 40 or 50 wt% commercial wax (melting point of 43.08 °C) and up to 15 wt% expanded graphite (EG) were studied. Techniques including scanning electron microscope (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and an experimental device to measure diffusivity and conductivity (DICO) were used to determine the microstructural, mechanical and thermal properties of the composites. The composites possessed good mechanical properties. Additionally, no leaching was observed during material processing or characterization. Although the Young’s modulus increased with the addition of EG, no significant changes in tensile strength were detected. The maximum Young’s modulus achieved was 650 MPa for the HDPE/40% wax composite with 15 wt% EG. The EG was well dispersed within the composites and did not affect the melting or crystallization of the HDPE matrix. The incorporation of EG increased the thermal stability of the composites by reducing chain mobility and inhibiting degradation. The intensification of thermal conductivity occurred with increasing fractions of EG, which was attributed to the high thermal conductivity of graphite. The maximum quantity of heat stored by latent heat was found for the HDPE/40% wax composite with EG. The addition of a relatively small quantity

  9. Effect of expanded graphite on the phase change materials of high density polyethylene/wax blends

    International Nuclear Information System (INIS)

    AlMaadeed, M.A.; Labidi, Sami; Krupa, Igor; Karkri, Mustapha

    2015-01-01

    Highlights: • Expanded graphite (EG) and low melting point (42.3 °C) wax were added to HDPE to form phase change material. • EG was well dispersed in the composites and did not affect the melting or crystallization of the HDPE matrix. • EG increased the thermal stability of the composites by reducing chain mobility and inhibiting degradation. • The addition of a relatively small quantity of EG enhances the heat conduction in the composite. • HDPE/40% RT42 that contained up to 15% EG demonstrated excellent mechanical and thermal properties and can be used as PCM. - Abstract: Phase change materials fabricated from high density polyethylene (HDPE) blended with 40 or 50 wt% commercial wax (melting point of 43.08 °C) and up to 15 wt% expanded graphite (EG) were studied. Techniques including scanning electron microscope (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and an experimental device to measure diffusivity and conductivity (DICO) were used to determine the microstructural, mechanical and thermal properties of the composites. The composites possessed good mechanical properties. Additionally, no leaching was observed during material processing or characterization. Although the Young’s modulus increased with the addition of EG, no significant changes in tensile strength were detected. The maximum Young’s modulus achieved was 650 MPa for the HDPE/40% wax composite with 15 wt% EG. The EG was well dispersed within the composites and did not affect the melting or crystallization of the HDPE matrix. The incorporation of EG increased the thermal stability of the composites by reducing chain mobility and inhibiting degradation. The intensification of thermal conductivity occurred with increasing fractions of EG, which was attributed to the high thermal conductivity of graphite. The maximum quantity of heat stored by latent heat was found for the HDPE/40% wax composite with EG. The addition of a relatively small quantity

  10. wax matrix tablets and its implication on dissolution prof

    African Journals Online (AJOL)

    acetaminophen-wax matrix tablet and hence its implication on dissolution profile. Acetaminophen-wax ... inertness, cost effectiveness, non- toxicity and more importantly their ... Liver Poole, England) at constant load (30 arbitrary units on the ...

  11. Correlates of the molecular vaginal microbiota composition of African women

    NARCIS (Netherlands)

    Gautam, Raju; Borgdorff, Hanneke; Jespers, Vicky; Francis, Suzanna C.; Verhelst, Rita; Mwaura, Mary; Delany-Moretlwe, Sinead; Ndayisaba, Gilles; Kyongo, Jordan K.; Hardy, Liselotte; Menten, Joris; Crucitti, Tania; Tsivtsivadze, Evgeni; Schuren, Frank; van de Wijgert, Janneke H. H. M.; Mandaliya, Kishor; Dierick, Lou; Jaoko, Walter; Irungu, Eunice; Katingima, Christine; Maina, Mercy; Mazera, Jane Wanjiru; Gichuru, Josephine; Onuki, Grace Aketch; Kiambi, Mary; Thiong, Mary; Wanjiku, Salome; Nduku, Patricia; Njeru, Carol; Mbogho, Bernard; Wambua, Sammy; Baya, Rachel Sidi; Onduko, Emmanuel Moffat; Kombo, Patrick Katana; Masha, Simon Chengo; John, Mary Ndinda; Odeyo, Kevin; Ngala, Dora; Odero, Collins; Edward, Vinodh Aroon; Reddy, Krishnaveni; Von Knorring, Nina; Mahabeer, Ishania; Mashilo, Johannah Nkoleleng; Mnyandu, Ntombifuthi; Mokoatle, Keneuoe; Nani, Siyabulela; Tshabalala, Gugu; Mngwevu, Thembisile Hope; Mtabane, Noxolo

    2015-01-01

    Sociodemographic, behavioral and clinical correlates of the vaginal microbiome (VMB) as characterized by molecular methods have not been adequately studied. VMB dominated by bacteria other than lactobacilli may cause inflammation, which may facilitate HIV acquisition and other adverse reproductive

  12. Effects of air pollutants on epicuticular wax structure

    International Nuclear Information System (INIS)

    Huttunen, S.

    1994-01-01

    In xerophytes, like conifers, the epicuticular wax is well developed. Especially in and around stomatal entrances, a thick wax coating is present. Epicuticular waxes are modified by changes in plant growth conditions such as temperature, relative humidity, irradiance, and wind, or acid rain. The fine structure of epicuticular waxes, their chemistry, and ecophysiological function are modified, especially in evergreen, long-lived conifer needles with characteristic crystalline wax structures. During needle flushing and development, wax structure is easily modified. Acid rain-treated Scots pine needles had 50% less epicuticular waxes in early August. Pollution-induced delayed development, destruction, and disturbances have been identified in many plant species. The structural changes in wax crystals are known. Acid rain or polluted air can destroy the crystalloid epicuticular waxes in a few weeks. In Pinus sylvestris, the first sign of pollution effect is the fusion of wax tubes. In Picea abies and P. sitchensis, modifications of crystalloid wax structure are known. In Californian pine trees phenomena of recrystallization of wax tubes on second-year needles were observed after delayed epicuticular wax development in Pinus ponderosa and P. coulteri. Thus, the effects of air pollutants are modified by climate. Accelerated senescence of leaves and needles have been associated with natural and anthropogenic stresses. The accelerated erosion rate of epicuticular waxes has been measured under air pollution conditions. Many short-term air pollution experiments have failed to show any structural changes in epicuticular wax structures. The quantity and quality of needle waxes grown in open-top chambers, glass houses, or polluted air before treatment, differ from field conditions and make it difficult to detect effects of any treatment. (orig.)

  13. Simulation of temperature-pressure profiles and wax deposition in gas-lift wells

    Directory of Open Access Journals (Sweden)

    Sevic Snezana

    2017-01-01

    Full Text Available Gas-lift is an artificial lift method in which gas is injected down the tubing- -casing annulus and enters the production tubing through the gas-lift valves to reduce the hydrostatic pressure of the formation fluid column. The gas changes pressure, temperature and fluid composition profiles throughout the production tubing string. Temperature and pressure drop along with the fluid composition changes throughout the tubing string can lead to wax, asphaltenes and inorganic salts deposition, increased emulsion stability and hydrate formation. This paper presents a new model that can sucesfully simulate temperature and pressure profiles and fluid composition changes in oil well that operates by means of gas-lift. This new model includes a pipe-in-pipe segment (production tubing inside production casing, countercurrent flow of gas-lift gas and producing fluid, heat exchange between gas-lift gas and the surrounding ambient – ground; and gas-lift gas with the fluid in the tubing. The model enables a better understanding of the multiphase fluid flow up the production tubing. Model was used to get insight into severity and locations of wax deposition. The obtained information on wax deposition can be used to plan the frequency and depth of wax removing operations. Model was developed using Aspen HYSYS software.

  14. Carbon-fiber composite molecular sieves for gas separation

    Energy Technology Data Exchange (ETDEWEB)

    Jagtoyen, M.; Derbyshire, F. [Univ. of Kentucky, Lexington, KY (United States)

    1996-08-01

    This report describes continuing work on the activation and characterization of formed carbon fiber composites. The composites are produced at the Oak Ridge National Laboratory (ORNL) and activated at the Center for Applied Energy Research (CAER) using steam, CO{sub 2}, or O{sub 2} at different conditions of temperature and time, and with different furnace configurations. The general aims of the project are to produce uniformly activated samples with controlled pore structures for specialist applications such as gas separation and water treatment. In previous work the authors reported that composites produced from isotropic pitch fibers weighing up to 25g can be uniformly activated through the appropriate choice of reaction conditions and furnace configurations. They have now succeeded in uniformly activating composites of dimensions up to 12 x 7 x 6 cm, or up to about 166 gram - a scale-up factor of about six. Part of the work has involved the installation of a new furnace that can accommodate larger composites. Efforts were made to achieve uniform activation in both steam and CO{sub 2}. The authors have also succeeded in producing materials with very uniform and narrow pore size distributions by using a novel method involving low temperature oxygen chemisorption in combination with heat treatment in N{sub 2} at high temperatures. Work has also started on the activation of PAN based carbon fibers and fiber composites with the aim of producing composites with wide pore structures for use as catalyst supports. So far activation of the PAN fiber composites supplied by ORNL has been difficult which is attributed to the low reactivity of the PAN fibers. As a result, studies are now being made of the activation of the PAN fibers to investigate the optimum carbonization and activation conditions for PAN based fibers.

  15. 75 FR 63200 - Petroleum Wax Candles From China

    Science.gov (United States)

    2010-10-14

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-282 (Third Review)] Petroleum Wax Candles... five-year review concerning the antidumping duty order on petroleum wax candles from China. SUMMARY... antidumping duty order on petroleum wax candles from China would be likely to lead to continuation or...

  16. 75 FR 80843 - Petroleum Wax Candles From China

    Science.gov (United States)

    2010-12-23

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-282 (Third Review)] Petroleum Wax Candles... Tariff Act of 1930 (19 U.S.C. 1675(c)), that revocation of the antidumping duty order on petroleum wax... contained in USITC Publication 4207 (December 2010), entitled Petroleum Wax Candles from China...

  17. 21 CFR 172.886 - Petroleum wax.

    Science.gov (United States)

    2010-04-01

    ... availability of this material at NARA, call 202-741-6030, or go to: http://www.archives.gov/federal_register... it is very hygroscopic and will react with some metal containers in the presence of air. Phosphoric... high enough to keep the wax melted. (Note: In preheating the sulfoxide-acid mixture, remove the stopper...

  18. Characterisation of wax works of art by gas chromatographic procedures.

    Science.gov (United States)

    Regert, M; Langlois, J; Colinart, S

    2005-10-14

    To identify the various natural and synthetic substances used by sculptors at the end of the 19th century, several contemporary reference samples were investigated by high temperature gas chromatography (HT GC) and HT GC-MS. Using specific chromatographic conditions and minimising sample preparation, we could separate, detect and identify a wide range of biomolecular markers covering a great variety of molecular weights and volatilities, with a minimum amount of sample, in a single run. Beeswax, spermaceti, carnauba, candellila and Japan waxes as well as pine resin derivatives, animal fats, paraffin, ozokerite and stearin, used as additives in wax works of art, were chemically investigated. In the case of low volatile compounds, transbutylation was performed. The structure of long-chain esters of spermaceti was elucidated for the first time by HT GC-MS analysis. Such a method was then carried out on 10 samples collected on a statuette of Junon by Antoine-Louis Barye (Louvre Museum, Paris, France) and on a sculpture by Aimé-Jules Dalou (Musée de la Révolution Française, Vizille, France). The analytical results obtained provide new data on the complex recipes elaborated by sculptors at the end of the 19th century.

  19. Adsorptive molecularly imprinted composite membranes for chiral separation of phenylalanine

    Directory of Open Access Journals (Sweden)

    Shah Nasrullah

    2016-09-01

    Full Text Available Two types of composite imprinted membranes, i.e., composite membrane comprised of D-Phe imprinted beads and D-Phe imprinted membrane or DCM and composite membrane comprised of L-Phe imprinted beads and L-Phe imprinted membranes or LCM, were synthesized by phase inversion technique after a uniform dispersion of beads within the polymeric solutions using simple physico-mechanical process. The assemblies of the prepared DCM, LCM and control membranes were employed in ultrafiltration for chiral separation of D, L-Phenylalanine racemate solution. DCM and LCM showed an improved adsorption capacity (0.334 mg g-1 and 0.365 mg g-1 respectively, and adsorption selectivity (2.72 and 2.98 respectively. However, the percent rejection of the template and counter enantiomer were lower than that of control membranes. Compared to control membrane, the DCM and LCM showed inverse permselectivity. These composite membranes having better adsorption and separation ability for Phenylalanine racemate solution will be suitable in the future for various other applications.

  20. Development of the cuticular wax during growth of Kalanchoe daigremontiana (Hamet et Perr. de la Bathie) leaves.

    Science.gov (United States)

    Van Maarseveen, Clare; Han, Hong; Jetter, Reinhard

    2009-01-01

    The goal of the present study was to monitor cuticular wax accumulation during leaf development of Kalanchoe daigremontiana. Leaves expanded linearly until they were 40-60 d old. Wax coverages of leaves on the third node increased steadily during initial leaf development, from 6.5 microg x cm(-2) on day 22 to 15.3 microg x cm(-2) on day 53, and then levelled off. Triterpenoids dominated the wax mixture throughout leaf development, but decreased from 74 to 40-45% in mature leaves, while very long-chain fatty acid (VLCFA) derivatives increased from 19 to 39-44%. The major VLCFA derivatives were alkanes, accompanied by fatty acids, primary alcohols, aldehydes and alkyl esters. In all compound classes, either C(34) or C(33) homologs predominated during leaf development. Eight different triterpenoids were identified, with glutinol constituting 70% of the fraction, and friedelin (20%) and germanicol (10%) as further major components of the young leaf wax. The glutinol percentage decreased, while the relative amounts of epifriedelanol and glutanol increased during development. Various leaf pairs upwards from the third node showed similar growth patterns and developmental time courses of cuticular wax amounts and composition. Based on these surface chemical analyses, the relative activities of biosynthetic pathways leading to various wax components can be assessed.

  1. Sintering of wax for controlling release from pellets.

    Science.gov (United States)

    Singh, Reena; Poddar, S S; Chivate, Amit

    2007-09-14

    The purpose of the present study was to investigate incorporation of hydrophobic (ie, waxy) material into pellets using a thermal sintering technique and to evaluate the pellets in vitro for controlled release. Pellets prepared by extrusion-spheronization technology were formulated with a water-soluble drug, microcrystalline cellulose, and carnauba wax. Powdered carnauba wax (4%-20%) prepared by grinding or by emulsification was studied with an attempt to retard the drug release. The inclusion of ground or emulsified carnauba wax did not sustain the release of theophylline for more than 3 hours. Matrix pellets of theophylline prepared with various concentrations of carnauba wax were sintered thermally at various times and temperatures. In vitro drug release profiles indicated an increase in drug release retardation with increasing carnauba wax concentration. Pellets prepared with ground wax showed a higher standard deviation than did those prepared with emulsified wax. There was incomplete release at the end of 12 hours for pellets prepared with 20% ground or emulsified wax. The sintering temperature and duration were optimized to allow for a sustained release lasting at least 12 hours. The optimized temperature and duration were found to be 100 degrees C and 140 seconds, respectively. The sintered pellets had a higher hydrophobicity than did the unsintered pellets. Scanning electron micrographs indicated that the carnauba wax moved internally, thereby increasing the surface area of wax within the pellets.

  2. Thermodynamics Prediction of Wax Precipitation in Black Oil Using Regular Solution Model and Plus Fraction Characterization

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2013-01-01

    Full Text Available The precipitation of wax/solid paraffin during production, transportation, and processing of crude oil is a serious problem. It is essential to have a reliable model to predict the wax appearance temperature and the amount of solid precipitated at different conditions. This paper presents a work to predict the solid precipitation based on solid-liquid equilibrium with regular solution-molecular thermodynamic theory and characterization of the crude oil plus fraction. Due to the differences of solubility characteristics between solid and liquid phase, the solubility parameters of liquid and solid phase are calculated by a modified model. The heat capacity change between solid and liquid phase is considered and estimated in the thermodynamic model. An activity coefficient based thermodynamic method combined with two characteristic methods to calculate wax precipitation in crude oil, especially heavy oil, has been tested with experimental data. The results show that the wax appearance temperature and the amount of weight precipitated can be predicted well with the experimental data.

  3. Clustering of comb and propolis waxes based on the distribution of aliphatic constituents

    Directory of Open Access Journals (Sweden)

    Custodio Angela R.

    2003-01-01

    Full Text Available Chemical composition data for 41 samples of propolis waxes and 9 samples of comb waxes of Apis mellifera collected mainly in Brazil were treated using Principal Component Analysis (PCA and Hierarchical Cluster Analysis (HCA. For chemometrical analysis, the distribution of hydrocarbons and residues of alcohols and carboxylic acids of monoesters were considered. The clustering obtained revealed chemical affinities and differences not previously grasped by simple eye-inspection of the data. No consistent differences were detected between comb and propolis waxes. These and previous results suggest that hydrocarbons, carboxylic acids, aliphatic alcohols and esters from both comb and propolis waxes are bee-produced compounds and, hence, the differences detected between one and another region are dependent on genetic factors related to the insects rather than the local flora. The samples analyzed were split into two main clusters, one of them comprising exclusively material collected in the State of São Paulo. The results are discussed with respect to the africanization of honeybees that first took place in that State and therefrom irradiated to other parts of Brazil.

  4. Wax co-cracking synergism of high density polyethylene to alternative fuels

    Directory of Open Access Journals (Sweden)

    Magdy Motawie

    2015-09-01

    Full Text Available Attempts have been made to understand the thermal degradation of high density polyethylene (HDPE and their combined co-cracking using different ratios of HDPE and petroleum wax under nitrogen atmosphere. We have conducted the experiments using HDPE as the raw material and petroleum wax as co-feed by at 400 and 450 °C reaction temperatures. The product distribution was noted along with reaction time of 0.5–3 h for the degradation. Thermal gravimetric analysis (TGA technique was used to measure the weight change of the feedstock as a function of temperature and time. Differential scanning calorimetry (DSC was used to determine the degradation temperature. Products were characterized using gas chromatography (GC and infrared spectroscopy (FTIR, some other standard physical methods were used to determine the main properties of the liquid products. Results show that the mixed plastic-wax samples could be converted into gases, gasoline, and middle distillate depending upon the composition of feed polymer/wax ratio. It was found that the products mostly consisted of paraffin and olefin compounds, with carbon numbers of C1–C4, C5–C9 and C10–C19 in the case of gases, gasoline and middle distillate respectively.

  5. Correlates of the molecular vaginal microbiota composition of African women.

    Science.gov (United States)

    Gautam, Raju; Borgdorff, Hanneke; Jespers, Vicky; Francis, Suzanna C; Verhelst, Rita; Mwaura, Mary; Delany-Moretlwe, Sinead; Ndayisaba, Gilles; Kyongo, Jordan K; Hardy, Liselotte; Menten, Joris; Crucitti, Tania; Tsivtsivadze, Evgeni; Schuren, Frank; van de Wijgert, Janneke H H M

    2015-02-21

    Sociodemographic, behavioral and clinical correlates of the vaginal microbiome (VMB) as characterized by molecular methods have not been adequately studied. VMB dominated by bacteria other than lactobacilli may cause inflammation, which may facilitate HIV acquisition and other adverse reproductive health outcomes. We characterized the VMB of women in Kenya, Rwanda, South Africa and Tanzania (KRST) using a 16S rDNA phylogenetic microarray. Cytokines were quantified in cervicovaginal lavages. Potential sociodemographic, behavioral, and clinical correlates were also evaluated. Three hundred thirteen samples from 230 women were available for analysis. Five VMB clusters were identified: one cluster each dominated by Lactobacillus crispatus (KRST-I) and L. iners (KRST-II), and three clusters not dominated by a single species but containing multiple (facultative) anaerobes (KRST-III/IV/V). Women in clusters KRST-I and II had lower mean concentrations of interleukin (IL)-1α (p vaginal candidiasis (ptrend = 0.09), but these associations did not reach statistical significance. Women who reported unusual vaginal discharge were more likely to belong to clusters KRST-III/IV/V (p = 0.05). Vaginal dysbiosis in African women was significantly associated with vaginal inflammation; the associations with increased prevalence of STIs and UTI, and decreased prevalence of vaginal candidiasis, should be confirmed in larger studies.

  6. Extra virgin olive oil: from composition to "molecular gastronomy".

    Science.gov (United States)

    Sacchi, Raffaele; Paduano, Antonello; Savarese, Maria; Vitaglione, Paola; Fogliano, Vincenzo

    2014-01-01

    The aim of this chapter is to provide a brief overview of the recent results of studies on extra virgin olive oil (EVOO) and its interactions with other food ingredients during cooking, to highlight basic molecular aspects of the "magic" of EVOO and its role in Mediterranean gastronomy. The use of raw EVOO added to foods after cooking (or as a salad oil) is the best way to express the original flavour and to maximize the intake of natural antioxidants and compounds related to positive effects on human health (hypotensive, anti-inflammatory, and anti-cancerogenic, among others). EVOO, however, also exhibits its protective properties during/after cooking. Different chemical interactions between biophenolic compounds and other food ingredients (water, milk proteins, carotenoids of tomato, omega-3 polyunsaturated fatty acids in canned-in-oil fish and meat or fish proteins) occur. Even during cooking, EVOO exhibits strong antioxidant properties and influences the overall flavour of cooked foods. The physical (partitioning, emulsion) and chemical (hydrolysis, covalent binding, antioxidant properties) phenomena occurring during cooking of EVOO are discussed with emphasis on the changes in the sensory (bitterness and fruity flavour) and nutritional qualities of some traditional Mediterranean foods. In particular, tomato-oil interactions during cooking, fish canning in EVOO, meat marinated in EVOO before cooking and roasting and frying in EVOO are examined. The interactions between EVOO antioxidants and flavours with milk proteins are also briefly discussed.

  7. Dental wax decreases calculus accumulation in small dogs.

    Science.gov (United States)

    Smith, Mark M; Smithson, Christopher W

    2014-01-01

    A dental wax was evaluated after unilateral application in 20 client-owned, mixed and purebred small dogs using a clean, split-mouth study model. All dogs had clinical signs of periodontal disease including plaque, calculus, and/or gingivitis. The wax was randomly applied to the teeth of one side of the mouth daily for 30-days while the contralateral side received no treatment. Owner parameters evaluated included compliance and a subjective assessment of ease of wax application. Gingivitis, plaque and calculus accumulation were scored at the end of the study period. Owners considered the wax easy to apply in all dogs. Compliance with no missed application days was achieved in 8 dogs. The number of missed application days had no effect on wax efficacy. There was no significant difference in gingivitis or plaque accumulation scores when comparing treated and untreated sides. Calculus accumulation scores were significantly less (22.1 %) for teeth receiving the dental wax.

  8. Natural oils and waxes: studies on stick bases.

    Science.gov (United States)

    Budai, Lívia; Antal, István; Klebovich, Imre; Budai, Marianna

    2012-01-01

    The objective of the present article was to examine the role of origin and quantity of selected natural oils and waxes in the determination of the thermal properties and hardness of stick bases. The natural oils and waxes selected for the study were sunflower, castor, jojoba, and coconut oils. The selected waxes were yellow beeswax, candelilla wax, and carnauba wax. The hardness of the formulations is a critical parameter from the aspect of their application. Hardness was characterized by the measurement of compression strength along with the softening point, the drop point, and differential scanning calorimetry (DSC). It can be concluded that coconut oil, jojoba oil, and carnauba wax have the greatest influence on the thermal parameters of stick bases.

  9. The impact of molecular emission in compositional depth profiling using Glow Discharge-Optical Emission Spectroscopy

    International Nuclear Information System (INIS)

    Bengtson, Arne

    2008-01-01

    The scope of this paper is to investigate and discuss how molecular emission can affect elemental analysis in glow discharge optical emission (GD-OES), particularly in compositional depth profiling (CDP) applications. Older work on molecular emission in glow discharges is briefly reviewed, and the nature of molecular emission spectra described. Work on the influence of hydrogen in the plasma, in particular elevated background due to a continuum spectrum, is discussed. More recent work from sputtering of polymers and other materials with a large content of light elements in a Grimm type source is reviewed, where substantial emission has been observed from several light diatomic molecules (CO, CH, OH, NH, C 2 ). It is discussed how the elevated backgrounds from such molecular emission can lead to significant analytical errors in the form of 'false' depth profile signals of several atomic analytical lines. Results from a recent investigation of molecular emission spectra from mixed gases in a Grimm type glow discharge are presented. An important observation is that dissociation and subsequent recombination processes occur, leading to formation of molecular species not present in the original plasma gas. Experimental work on depth profiling of a polymer coating and a thin silicate film, using a spectrometer equipped with channels for molecular emission lines, is presented. The results confirm that molecular emission gives rise to apparent depth profiles of elements not present in the sample. The possibilities to make adequate corrections for such molecular emission in CDP of organic coatings and very thin films are discussed

  10. In vivo evaluation of insect wax for hair growth potential

    Science.gov (United States)

    Ma, Jinju

    2018-01-01

    Insect wax is secreted by Ericerus pela Chavanness. It has been traditionally used to treat hair loss in China, but few reports have been published on the hair growth-promoting effect of insect wax. In this work, we examined the hair growth-promoting effects of insect wax on model animals. Different concentrations of insect wax were topically applied to the denuded backs of mice, and 5% minoxidil was applied topically as a positive control. We found that insect wax significantly promoted hair growth in a dose-dependent manner, 45% and 30% insect wax both induced hair to regrow, while less visible hair growth was observed in blank controls on the 16th day. The experimental areas treated with 45% and 30% insect wax exhibited significant differences in hair scores compared to blank controls, and hair lengths in the 45% and 30% insect wax group was significantly longer than in blank controls on the 16th and 20th days. There were no new hair follicles forming in the treated areas, and the hair follicles were prematurely converted to the anagen phase from the telogen phase in experimental areas treated with 45% and 30% insect wax. Both 45% and 30% insect wax upregulated vascular endothelial growth factor expression. The results indicated that 45% and 30% insect wax showed hair growth-promoting potential approximately as potent as 5% minoxidil by inducing the premature conversion of telogen-to-anagen and by prolonging the mature anagen phase rather than increasing the number of hair follicles, which was likely related to the upregulation of VEGF expression. The dissociative policosanol in insect wax was considered the key ingredient most likely responsible for the hair growth promoting potential. PMID:29438422

  11. Surfactants and Desensitizing Wax Substitutes for TNT-Based Systems.

    Science.gov (United States)

    1994-10-01

    greatly with the source of crude oil. Some crudes contain little wax. The U.S. crudes from Pennsylvania and the midcontinent areas contain high...years ago in Egypt for many different purposes. The term wax comes to us from the Anglo-Saxon "weax," the name given to material from the bee ...usually produced in the wild and not by large scale cultivation. Although plants produce small amounts of waxes in their tissues, seeds and pollen

  12. In vivo evaluation of insect wax for hair growth potential.

    Directory of Open Access Journals (Sweden)

    Jinju Ma

    Full Text Available Insect wax is secreted by Ericerus pela Chavanness. It has been traditionally used to treat hair loss in China, but few reports have been published on the hair growth-promoting effect of insect wax. In this work, we examined the hair growth-promoting effects of insect wax on model animals. Different concentrations of insect wax were topically applied to the denuded backs of mice, and 5% minoxidil was applied topically as a positive control. We found that insect wax significantly promoted hair growth in a dose-dependent manner, 45% and 30% insect wax both induced hair to regrow, while less visible hair growth was observed in blank controls on the 16th day. The experimental areas treated with 45% and 30% insect wax exhibited significant differences in hair scores compared to blank controls, and hair lengths in the 45% and 30% insect wax group was significantly longer than in blank controls on the 16th and 20th days. There were no new hair follicles forming in the treated areas, and the hair follicles were prematurely converted to the anagen phase from the telogen phase in experimental areas treated with 45% and 30% insect wax. Both 45% and 30% insect wax upregulated vascular endothelial growth factor expression. The results indicated that 45% and 30% insect wax showed hair growth-promoting potential approximately as potent as 5% minoxidil by inducing the premature conversion of telogen-to-anagen and by prolonging the mature anagen phase rather than increasing the number of hair follicles, which was likely related to the upregulation of VEGF expression. The dissociative policosanol in insect wax was considered the key ingredient most likely responsible for the hair growth promoting potential.

  13. Molecular and structural properties of polymer composites filled with activated charcoal particles

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, Dahlang, E-mail: dtahir@fmipa.unhas.ac.id; Bakri, Fahrul [Department of Physics, Hasanuddin University, Makassar 90245 Indonesia (Indonesia); Liong, Syarifuddin [Department of Chemistry, Hasanuddin University, Makassar 90245 Indonesia (Indonesia)

    2016-03-11

    We have studied the molecular properties, structural properties, and chemical composition of composites by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) spectroscopy, and X-ray fluorescence (XRF) spectroscopy, respectively. FTIR spectra shows absorption band of hydroxyl group (-OH), methyl group (-CH{sub 3}) and aromatic group (C-C). The absorption band for aromatic group (C-C) shows the formation of carbonaceous in composites. XRF shows chemical composition of composites, which the main chemicals are SO{sub 3}, Cl, and ZnO. The loss on ignition value (LOI) of activated charcoal indicates high carbonaceous matter. The crystallite size for diffraction pattern from hydrogel polymer is about 17 nm and for activated charcoal are about 19 nm. The crystallite size of the polymer is lower than that of activated charcoal, which make possible of the particle from filler in contact with each other to form continuous conducting polymer through polymer matrix.

  14. Neuroendocrine and squamous colonic composite carcinoma: Case report with molecular analysis

    Institute of Scientific and Technical Information of China (English)

    Sabrina C Wentz; Cindy Vnencak-Jones; William V Chopp

    2011-01-01

    Composite colorectal carcinomas are rare. There are a modest number of cases in the medical literature, with even fewer cases describing composite carcinoma with neuroendocrine and squamous components. There are to our knowledge no reports of composite carcinoma molecular alterations. We present a case of composite carcinoma of the splenic flexure in a 33 year-old Cau casian male to investigate the presence and prognos tic significance of molecular alterations in rare colonic carcinoma subtypes. Formalin-fixed paraffin-embedded (FFPE) tissue was hematoxylin and eosin- and mucicar-mine-stained according to protocol, and immuno-stained with cytokeratin (CK)7, CK20, CDX2, AE1/AE3, chromo-granin-A and synaptophysin. DNA was extracted from FFPE tissues and molecular analyses were performedaccording to lab-developed methods, followed by capil lary electrophoresis. Hematoxylin and eosin staining showed admixed neuroendocrine and keratinized squa mous cells. Positive nuclear CDX2 expression confirmed intestinal derivation. CK7 and CK20 were negative. Neuroendocrine cells stained positively for synaptophy sin and AE1/AE3 and negatively for chromogranin and mucicarmine. Hepatic metastases showed a similar im munohistochemical profile. Molecular analysis revealed a G13D KRAS mutation. BRAF mutational testing was negative and microsatellite instability was not detected. The patient had rapid disease progression on chemo therapy and died 60 d after presentation. Although the G13D KRAS mutation normally predicts an intermediate outcome, the aggressive tumor behavior suggests other modifying factors in rare types of colonic carcinomas.

  15. Functional porous composites by blending with solution-processable molecular pores.

    Science.gov (United States)

    Jiang, S; Chen, L; Briggs, M E; Hasell, T; Cooper, A I

    2016-05-25

    We present a simple method for rendering non-porous materials porous by solution co-processing with organic cage molecules. This method can be used both for small functional molecules and for polymers, thus creating porous composites by molecular blending, rather than the more traditional approach of supporting functional molecules on pre-frabricated porous supports.

  16. Absorption and distribution of orally administered jojoba wax in mice.

    Science.gov (United States)

    Yaron, A; Samoiloff, V; Benzioni, A

    1982-03-01

    The liquid wax obtained from the seeds of the arid-land shrub jojoba (Simmondsia chinensis) is finding increasing use in skin treatment preparations. The fate of this wax upon reaching the digestive tract was studied. 14C-Labeled wax was administered intragastrically to mice, and the distribution of the label in the body was determined as a function of time. Most of the wax was excreted, but a small amount was absorbed, as was indicated by the distribution of label in the internal organs and the epididymal fat. The label was incorporated into the body lipids and was found to diminish with time.

  17. Molecular modeling of polymer composite-analyte interactions in electronic nose sensors

    Science.gov (United States)

    Shevade, A. V.; Ryan, M. A.; Homer, M. L.; Manfreda, A. M.; Zhou, H.; Manatt, K. S.

    2003-01-01

    We report a molecular modeling study to investigate the polymer-carbon black (CB) composite-analyte interactions in resistive sensors. These sensors comprise the JPL electronic nose (ENose) sensing array developed for monitoring breathing air in human habitats. The polymer in the composite is modeled based on its stereoisomerism and sequence isomerism, while the CB is modeled as uncharged naphthalene rings with no hydrogens. The Dreiding 2.21 force field is used for the polymer, solvent molecules and graphite parameters are assigned to the carbon black atoms. A combination of molecular mechanics (MM) and molecular dynamics (NPT-MD and NVT-MD) techniques are used to obtain the equilibrium composite structure by inserting naphthalene rings in the polymer matrix. Polymers considered for this work include poly(4-vinylphenol), polyethylene oxide, and ethyl cellulose. Analytes studied are representative of both inorganic and organic compounds. The results are analyzed for the composite microstructure by calculating the radial distribution profiles as well as for the sensor response by predicting the interaction energies of the analytes with the composites. c2003 Elsevier Science B.V. All rights reserved.

  18. A systematic investigation of the preparation and properties of composite carbon molecular sieves containing inorganic oxides

    Science.gov (United States)

    Foley, Henry C.

    1990-01-01

    The objective of this research is to define the methodology for the preparation and characterization of new carbon-based molecular sieves with composite structures. Carbon molecular sieves have found increasing application in the field of separation and purification of gases. These materials are relatively easy to prepare and their surfaces can be modified to some extent. It is expected that by combining inorganic oxides with the carbonaceous structure one can begin to design composite materials with a wider range of possible chemical and physical properties. In this way, the IOM-CMS materials may confer distinct advantages over pure carbon molecular sieves, not just for separation, but also for catalysis. The most recent results in the design and characterization of these IOM-CMS materials are reviewed and summarized. Directions for further research are also presented.

  19. Study of phase transition in hard microcrystalline waxes and wax blends by differential scanning calorimetry

    Czech Academy of Sciences Publication Activity Database

    Kumar, S.; Agrawal, K. M.; Khan, H. U.; Sikora, Antonín

    2004-01-01

    Roč. 22, 3 & 4 (2004), s. 337-345 ISSN 1091-6466 R&D Projects: GA AV ČR KSK4050111 Institutional research plan: CEZ:AV0Z4050913 Keywords : phase transition * hard microscrystalline waxes * differential scanning calorimetry Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.312, year: 2004

  20. Dependence of mechanical characteristics from composition and structure and optimization of mechanical fracture energy of polymer composite material based on high-molecular rubbers

    Directory of Open Access Journals (Sweden)

    E. Nurullaev

    2017-07-01

    Full Text Available By means of numerical experiment the authors investigate dependence of conventional rupturing stress and mechanical fracture energy at uniaxial tension from fractional composition of dispersed filler, plasticizer volume fraction in polymer binder, effective density of transverse bonds, applied to development of covering for different purposes and with advanced service life in temperature range from 223 to 323 K. They compare mechanical characteristics of polymer composite materials (PCMs based on high- and low-molecular rubbers. It was shown that rupturing stress of high-molecular rubber-based PCM is of a higher magnitude than the stress of low-molecular rubber-based one at almost invariable rupturing deformation. Numerical simulation by variation of composition parameters and molecular structure enables evaluation of its maximum fracture energy which is 1000 times higher than mechanical fracture energy of similar composites based on low-molecular rubbers.

  1. Hydrogen apparent fractionation between source water and epicuticular waxes of Pinus sylvestris in North East Finland

    Science.gov (United States)

    Newberry, S. L.; Grace, J.; Pedentchouk, N.

    2010-12-01

    Hydrogen isotopic composition of plant biomass provides crucial information about plant ecophysiology and local hydrology. Little is known about the apparent fractionation between hydrogen in source water and epicuticular leaf waxes of coniferous tree species that dominate the boreal forest ecosystem exposed to prolonged periods of sunlight during the growing season. In this study, single rope canopy access techniques were used to harvest needle and twig material from the upper, middle and lower crown of north and south facing branches of Pinus sylvestris within the subarctic forest of North East Finland. Samples were collected towards the beginning of the growing season in July and repeated in late September 2010. Leaf and twig waters were extracted cryogenically and analysed for D-enrichment. Individual n-alkanes are currently being quantified and analyzed for 13C/12C and D/H compositions. The molecular and isotopic data are supplemented by long-term in-situ cuvette photosynthetic assimilation measurements as well as relative humidity (RH), air temperature, precipitation and wind speed data collected by Helsinki University (SMEAR I). In addition RH, air temperature, wind speed and incoming solar radiation measurements were made at each individual sample point at the time of harvesting to quantify meteorological and microclimatological variation within individual trees. The outcome of this investigation will provide important insights into plant biochemistry and physiology of a crucial climate sensitive higher plant species subjected to continuous low light throughout the season. Furthermore, this work will expand our understanding of modern and palaeo-hydrology not only in northern Finland but also in other boreal forests around the world.

  2. Rapid atmospheric transport and large-scale deposition of recently synthesized plant waxes

    Science.gov (United States)

    Nelson, Daniel B.; Ladd, S. Nemiah; Schubert, Carsten J.; Kahmen, Ansgar

    2018-02-01

    Sedimentary plant wax 2H/1H ratios are important tools for understanding hydroclimate and environmental changes, but large spatial and temporal uncertainties exist about transport mechanisms from ecosystem to sediments. To assess atmospheric pathways, we collected aerosol samples for two years at four locations within a ∼60 km radius in northern Switzerland. We measured n-alkane distributions and 2H/1H ratios in these samples, and from local plants, leaf litter, and soil, as well as surface sediment from six nearby lakes. Increased concentrations and 2H depletion of long odd chain n-alkanes in early summer aerosols indicate that most wax aerosol production occurred shortly after leaf unfolding, when plants synthesize waxes in large quantities. During autumn and winter, aerosols were characterized by degraded n-alkanes lacking chain length preferences diagnostic of recent biosynthesis, and 2H/1H values that were in some cases more than 100‰ higher than growing season values. Despite these seasonal shifts, modeled deposition-weighted average 2H/1H values of long odd chain n-alkanes primarily reflected summer values. This was corroborated by n-alkane 2H/1H values in lake sediments, which were similar to deposition-weighted aerosol values at five of six sites. Atmospheric deposition rates for plant n-alkanes on land were ∼20% of accumulation rates in lakes, suggesting a role for direct deposition to lakes or coastal oceans near similar production sources, and likely a larger role for deposition on land and transport in river systems. This mechanism allows mobilization and transport of large quantities of recently produced waxes as fine-grained material to low energy sedimentation sites over short timescales, even in areas with limited topography. Widespread atmospheric transfer well before leaf senescence also highlights the importance of the isotopic composition of early season source water used to synthesize waxes for the geologic record.

  3. Development and molecular composition of the hepatic progenitor cell niche.

    Science.gov (United States)

    Vestentoft, Peter Siig

    2013-05-01

    , we examined several genes upregulated in a global gene expression array conducted on one of these models, in which progenitor cells are activated. The protein expression patterns were evaluated in our collections of human embryonic and fetal livers, human liver diseases, and rodent hepatic injury models. When analyzing standard histological liver sections underlying connections and tissue architecture are not immediately evident. We therefore developed models for digitally reconstructing not only protein expression in serially cut tissue sections, but also vessels of the portal area. Article I constituted our earliest attempts to create 3D reconstructions of biological material. Human embryonic stem cell cultures were previously thought to consist of homogenously undifferentiated cells. The protocols for 3D reconstructions developed in this study demonstrated micro heterogeneity in expression of differentiation markers and provided the basis for later reconstructions of hepatic tissues. In article II we examined the expression patterns of chosen proteins seen upregulated in the gene array as well as classical hepatocytic and cholangiocytic markers in human liver disease and during prenatal development. Previous studies had indicated direct connections between activated progenitor cells apparently isolated in the parenchyma and the intrahepatic biliary tree. Our developed protocols for 3D reconstructions visually demonstrated direct connections between these entities. Analysis of protein expression in prenatal liver revealed the formation of the intrahepatic tree to occur through a special form of asymmetric tubulogenesis, only recently described in mice. In order to describe the composition of the hepatic progenitor cell niche and the localization of cell surface proteins in article III, the expression patterns of certain genes upregulated in the gene array analysis were analyzed in different models of rodent liver regeneration. We observed that the extracellular

  4. Catalytic cracking of slack wax with molten mixtures containing aluminum chloride and bromide. [Wax obtained in the process of dewaxing lubricating oils

    Energy Technology Data Exchange (ETDEWEB)

    Ohtsuka, Y; Oizumi, K; Tamai, Y

    1983-09-01

    The catalytic cracking of slack wax with molten mixtures of AlCl/sub 3/ (aluminum chloride) and AlBr/sub 3/ (aluminum bromide) was investigated in an atmospheric semi-batch reactor at low temperatures of 100 to 160/sup 0/C. The cracking rate was proportional to the amount of unreacted wax. The conversion at 135/sup 0/C reached 25 wt % under typical reaction conditions. About 95 wt % of the cracking products consisted of isobutane, 2-methylbutane, and methylpentanes, ca. 50% of these isoparaffins being isobutane. The difference in cracking activity between this catalyst and a solid acid catalyst is discussed based on the product distribution. Hardly any reaction took place without HCl, which shows that the presence of HCl is essential for this cracking. The cracking rate increased sharply with an increase in the amount of the catalyst. The rate did not depend on the composition of the AlCl/sub 3//sup -/ AlBr/sub 3/ catalyst, but the product distribution did depend on it and the content of the gasoline fraction in the products increased with an increase in the concentration of AlBr/sub 3/. The cracking residue was characterized by IR and NMR spectroscopy. The results show that the cracking reaction probably occurs heterogeneously at the interface between the liquid wax and the molten catalyst. 3 figures, 4 tables.

  5. Ballistic behavior of ultra-high molecular weight polyethylene composite: effect of gamma radiation

    International Nuclear Information System (INIS)

    Alves, Andreia L. dos Santos; Nascimento, Lucio F.C.; Suarez, Joao C. Miguez; lucio2002bol.com.br

    2003-01-01

    Since World War II, textile composites have been used as ballistic armor. Ultra-high molecular weight polyethylene (UHMWPE) fibers are used in the production of armor materials. As they have been developed and commercialized only recently, there is not enough information about the effect of environmental agents in the ballistic performance of UHMWPE composites. In the present work, was evaluated the ballistic behavior of composite plates manufactured with UHMWPE fibers after exposure to gamma radiation. The ballistic tests results were related to the macromolecular alterations induced by the radiation through mechanical (hardness, impact and flexure) and physicochemical (Ftir/Mir. DSC and TGA) testing. It was observed that irradiation induces changes in the UHMWPE, degrading the ballistic performance of the composite. These results are presented and discussed. (author)

  6. Biogenic, urban, and wildfire influences on the molecular composition of dissolved organic compounds in cloud water

    Science.gov (United States)

    Cook, Ryan D.; Lin, Ying-Hsuan; Peng, Zhuoyu; Boone, Eric; Chu, Rosalie K.; Dukett, James E.; Gunsch, Matthew J.; Zhang, Wuliang; Tolic, Nikola; Laskin, Alexander; Pratt, Kerri A.

    2017-12-01

    Organic aerosol formation and transformation occurs within aqueous aerosol and cloud droplets, yet little is known about the composition of high molecular weight organic compounds in cloud water. Cloud water samples collected at Whiteface Mountain, New York, during August-September 2014 were analyzed by ultra-high-resolution mass spectrometry to investigate the molecular composition of dissolved organic carbon, with a focus on sulfur- and nitrogen-containing compounds. Organic molecular composition was evaluated in the context of cloud water inorganic ion concentrations, pH, and total organic carbon concentrations to gain insights into the sources and aqueous-phase processes of the observed high molecular weight organic compounds. Cloud water acidity was positively correlated with the average oxygen : carbon ratio of the organic constituents, suggesting the possibility for aqueous acid-catalyzed (prior to cloud droplet activation or during/after cloud droplet evaporation) and/or radical (within cloud droplets) oxidation processes. Many tracer compounds recently identified in laboratory studies of bulk aqueous-phase reactions were identified in the cloud water. Organosulfate compounds, with both biogenic and anthropogenic volatile organic compound precursors, were detected for cloud water samples influenced by air masses that had traveled over forested and populated areas. Oxidation products of long-chain (C10-12) alkane precursors were detected during urban influence. Influence of Canadian wildfires resulted in increased numbers of identified sulfur-containing compounds and oligomeric species, including those formed through aqueous-phase reactions involving methylglyoxal. Light-absorbing aqueous-phase products of syringol and guaiacol oxidation were observed in the wildfire-influenced samples, and dinitroaromatic compounds were observed in all cloud water samples (wildfire, biogenic, and urban-influenced). Overall, the cloud water molecular composition depended on

  7. Wax Impaction in Nigerian School Children. | Eziyi | East and ...

    African Journals Online (AJOL)

    Background: Impacted wax has been classified as an ear disease. It can cause pain, itching, tinnitus hearing loss or otitis externa. The prevalence of cerumen impaction varies. The aim of this study was to determine the prevalence of impacted ear wax in primary school children and to determine, if there is any association ...

  8. Wax combs mediate nestmate recognition by guard honeybees

    DEFF Research Database (Denmark)

    D'Ettorre, Patrizia; Wenseleers, Tom; Dawson, Jenny

    2006-01-01

    Research has shown that the wax combs are important in the acquisition of colony odour in the honeybee, Apis mellifera. However, many of these studies were conducted in the laboratory or under artificial conditions. We investigated the role of the wax combs in nestmate recognition in the natural...

  9. Gluconeogenesis from storage wax in the cotyledons of jojoba seedlings.

    Science.gov (United States)

    Moreau, R A; Huang, A H

    1977-08-01

    The cotyledons of jojoba (Simmondsia chinensis) seeds contained 50 to 60% of their weight as intracellular wax esters. During germination there was a gradual decrease in the wax content with a concomitant rise in soluble carbohydrates, suggesting that the wax played the role of a food reserve. Thin layer chromatography revealed that both the fatty alcohol and fatty acid were metabolized. The disappearance of wax was matched with an increase of catalase, a marker enzyme of the gluconeogenic process in other fatty seedlings. Subcellular organelles were isolated by sucrose gradient centrifugation from the cotyledons at the peak stage of germination. The enzymes of the beta oxidation of fatty acid and of the glyoxylate cycle were localized in the glyoxysomes but not in the mitochondria. The glyoxysomes had specific activities of individual enzymes similar to those of the castor bean glyoxysomes. An active alkaline lipase was detected in the wax bodies at the peak stage of germination but not in the ungerminated seeds. No lipase was detected in glyoxysomes or mitochondria. After the wax in the wax bodies had been extracted with diethyl ether, the organelle membrane was isolated and it still retained the alkaline lipase. The gluconeogenesis from wax in the jojoba seedling appears to be similar, but with modification, to that from triglyceride in other fatty seedlings.

  10. Statistical Optimization of Sustained Release Venlafaxine HCI Wax Matrix Tablet.

    Science.gov (United States)

    Bhalekar, M R; Madgulkar, A R; Sheladiya, D D; Kshirsagar, S J; Wable, N D; Desale, S S

    2008-01-01

    The purpose of this research was to prepare a sustained release drug delivery system of venlafaxine hydrochloride by using a wax matrix system. The effects of bees wax and carnauba wax on drug release profile was investigated. A 3(2) full factorial design was applied to systemically optimize the drug release profile. Amounts of carnauba wax (X(1)) and bees wax (X(2)) were selected as independent variables and release after 12 h and time required for 50% (t(50)) drug release were selected as dependent variables. A mathematical model was generated for each response parameter. Both waxes retarded release after 12 h and increases the t(50) but bees wax showed significant influence. The drug release pattern for all the formulation combinations was found to be approaching Peppas kinetic model. Suitable combination of two waxes provided fairly good regulated release profile. The response surfaces and contour plots for each response parameter are presented for further interpretation of the results. The optimum formulations were chosen and their predicted results found to be in close agreement with experimental findings.

  11. Influence of Different Waxes on the Physical Properties of Linear ...

    African Journals Online (AJOL)

    NJD

    2005-12-22

    Dec 22, 2005 ... viscosity of a polymer melt. In many instances it ... amounts of different waxes on the viscosity (melt flow) of ..... Since the MFI is a direct measure of the viscosity .... melt flow index increasing with increasing wax content. There.

  12. Biochemical response of sweet potato to bemul-wax coating ...

    African Journals Online (AJOL)

    Sweet potato (Ipomoea batatas Linn) tuber is a very nutritious but highly perishable crop that is subject to high wastages due to non-availability of appropriate storage techniques. This work assessed the effectiveness of treating the tubers with calcium chloride dip (CCD), bemul-wax (B-wax) and their combinations ...

  13. Electrochemical sensor for dopamine based on a novel graphene-molecular imprinted polymers composite recognition element

    DEFF Research Database (Denmark)

    Mao, Yan; Bao, Yu; Gan, Shiyu

    2011-01-01

    A novel composite of graphene sheets/Congo red-molecular imprinted polymers (GSCR-MIPs) was synthesized through free radical polymerization (FRP) and applied as a molecular recognition element to construct dopamine (DA) electrochemical sensor. The template molecules (DA) were firstly absorbed...... at the GSCR surface due to their excellent affinity, and subsequently, selective copolymerization of methacrylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA) was further achieved at the GSCR surface. Potential scanning was presented to extract DA molecules from the imprinted polymers film...

  14. Geometric accuracy of wax bade models manufactured in silicon moulds

    Directory of Open Access Journals (Sweden)

    G. Budzik

    2010-01-01

    Full Text Available The article presents the test results of the geometric accuracy of wax blade models manufactured in silicon moulds in the Rapid Tooling process, with the application of the Vacuum Casting technology. In batch production casting waxes are designed for the manufacture of models and components of model sets through injection into a metal die. The objective of the tests was to determine the possibility of using traditional wax for the production of casting models in the rapid prototyping process. Blade models made of five types of casting wax were measured. The definition of the geometric accuracy of wax blade models makes it possible to introduce individual modifications aimed at improving their shape in order to increase the dimensional accuracy of blade models manufactured in the rapid prototyping process.

  15. Pickering emulsions stabilized by paraffin wax and Laponite clay particles.

    Science.gov (United States)

    Li, Caifu; Liu, Qian; Mei, Zhen; Wang, Jun; Xu, Jian; Sun, Dejun

    2009-08-01

    Emulsions containing wax in dispersed droplets stabilized by disc-like Laponite clay particles are prepared. Properties of the emulsions prepared at different temperatures are examined using stability, microscopy and droplet-size analysis. At low temperature, the wax crystals in the oil droplets can protrude through the interface, leading to droplet coalescence. But at higher temperatures, the droplet size decreases with wax concentration. Considering the viscosity of the oil phase and the interfacial tension, we conclude that the wax is liquid-like during the high temperature emulsification process, but during cooling wax crystals appear around the oil/water interface and stabilize the droplets. The oil/water ratio has minimal effect on the emulsions between ratios of 3:7 and 7:3. The Laponite is believed to stabilize the emulsions by increasing the viscosity of the continuous phase and also by adsorbing at the oil/water interface, thus providing a physical barrier to coalescence.

  16. Molecular Diversity of Sea Spray Aerosol Particles: Impact of Ocean Biology on Particle Composition and Hygroscopicity

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, Richard E.; Laskina, Olga; Trueblood, Jonathan; Estillore, Armando D.; Morris, Holly S.; Jayarathne, Thilina; Sultana, Camile M.; Lee, Christopher; Lin, Peng; Laskin, Julia; Laskin, Alexander; Dowling, Jackie; Qin, Zhen; Cappa, Christopher; Bertram, Timothy; Tivanski, Alexei V.; Stone, Elizabeth; Prather, Kimberly; Grassian, Vicki H.

    2017-05-01

    The impact of sea spray aerosol (SSA) on climate depends on the size and chemical composition of individual particles that make-up the total SSA ensemble. While the organic fraction of SSA has been characterized from a bulk perspective, there remains a lack of understanding as to the composition of individual particles within the SSA ensemble. To better understand the molecular components within SSA particles and how SSA composition changes with ocean biology, simultaneous measurements of seawater and SSA were made during a month-long mesocosm experiment performed in an ocean-atmosphere facility. Herein, we deconvolute the composition of freshly emitted SSA devoid of anthropogenic and terrestrial influences by characterizing classes of organic compounds as well as specific molecules within individual SSA particles. Analysis of SSA particles show that the diversity of molecules within the organic fraction varies between two size fractions (submicron and supermicron) with contributions from fatty acids, monosaccharides, polysaccharides and siliceous material. Significant changes in the distribution of these compounds within individual particles are observed to coincide with the rise and fall of phytoplankton and bacterial populations within the seawater. Furthermore, water uptake is impacted as shown by hygroscopicity measurements of model systems composed of representative organic compounds. Thus, the how changes in the hygroscopic growth of SSA evolves with composition can be elucidated. Overall, this study provides an important connection between biological processes that control the composition of seawater and changes in single particle composition which will enhances our ability to predict the impact of SSA on climate.

  17. The impact of molecular emission in compositional depth profiling using Glow Discharge-Optical Emission Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bengtson, Arne [Corrosion and Metals Research Institute, Dr. Kristinas vaeg 48, Stockholm (Sweden)], E-mail: arne.bengtson@kimab.com

    2008-09-15

    The scope of this paper is to investigate and discuss how molecular emission can affect elemental analysis in glow discharge optical emission (GD-OES), particularly in compositional depth profiling (CDP) applications. Older work on molecular emission in glow discharges is briefly reviewed, and the nature of molecular emission spectra described. Work on the influence of hydrogen in the plasma, in particular elevated background due to a continuum spectrum, is discussed. More recent work from sputtering of polymers and other materials with a large content of light elements in a Grimm type source is reviewed, where substantial emission has been observed from several light diatomic molecules (CO, CH, OH, NH, C{sub 2}). It is discussed how the elevated backgrounds from such molecular emission can lead to significant analytical errors in the form of 'false' depth profile signals of several atomic analytical lines. Results from a recent investigation of molecular emission spectra from mixed gases in a Grimm type glow discharge are presented. An important observation is that dissociation and subsequent recombination processes occur, leading to formation of molecular species not present in the original plasma gas. Experimental work on depth profiling of a polymer coating and a thin silicate film, using a spectrometer equipped with channels for molecular emission lines, is presented. The results confirm that molecular emission gives rise to apparent depth profiles of elements not present in the sample. The possibilities to make adequate corrections for such molecular emission in CDP of organic coatings and very thin films are discussed.

  18. A redox-assisted molecular assembly of molybdenum oxide amine composite nanobelts

    International Nuclear Information System (INIS)

    Luo Haiyan; Wei Mingdeng; Wei Kemei

    2011-01-01

    Research highlights: → Nanobelts of molybdenum oxide amine were first synthesized via a redox-assisted molecular assembly route. → These nanobelts are highly crystalline with a several tens of micrometers in length and 20-30 nm in thickness. - Abstract: In this paper, the nanobelts of molybdenum oxide amine composite were successfully synthesized via a redox-assisted molecular assembly route under the hydrothermal conditions. The synthesized nanobelts were characterized by XRD, SEM, TEM, TG and FT-IR measurements. The thickness of nanobelts is found to be ca. 20-30 nm and their lengths are up to several tens of micrometers. Based on a series of the experimental results, a possible model, redox-intercalation-exfoliation, was suggested for the formation of nanobelts of molybdenum oxide amine composite.

  19. Molecular composition of recycled organic wastes, as determined by solid-state {sup 13}C NMR and elemental analyses

    Energy Technology Data Exchange (ETDEWEB)

    Eldridge, S.M., E-mail: simon.eldridge@dpi.nsw.gov.au [Environmental Futures Centre, School of Environment, Griffith University, Nathan, QLD 4111 (Australia); NSW Department of Primary Industries, Bruxner Highway, Wollongbar, NSW 2477 (Australia); Chen, C.R. [Environmental Futures Centre, School of Environment, Griffith University, Nathan, QLD 4111 (Australia); Xu, Z.H. [Environmental Futures Centre, School of Biomolecular and Physical Sciences, Griffith University, Nathan, QLD 4111 (Australia); Nelson, P.N. [School of Earth and Environmental Sciences, James Cook University, Cairns, QLD 4870 (Australia); Boyd, S.E. [Environmental Futures Centre, School of Biomolecular and Physical Sciences, Griffith University, Nathan, QLD 4111 (Australia); Meszaros, I. [Formerly NSW Department of Primary Industries, Richmond, NSW 2753 (Australia); Chan, K.Y. [Graduate School of Environment, Macquarie University, North Ryde, NSW 2109 (Australia); Formerly NSW Department of Primary Industries, Richmond, NSW 2753 (Australia)

    2013-11-15

    Highlights: • Model estimated the molecular C components well for most RO wastes. • Molecular nature of organic matter in RO wastes varied widely. • Molecular composition by NMR modelling preferable to extraction techniques. • Some model shortcomings in estimating molecular composition of biochars. • Waste molecular composition important for carbon/nutrient outcomes in soil. - Abstract: Using solid state {sup 13}C NMR data and elemental composition in a molecular mixing model, we estimated the molecular components of the organic matter in 16 recycled organic (RO) wastes representative of the major materials generated in the Sydney basin area. Close correspondence was found between the measured NMR signal intensities and those predicted by the model for all RO wastes except for poultry manure char. Molecular nature of the organic matter differed widely between the RO wastes. As a proportion of organic C, carbohydrate C ranged from 0.07 to 0.63, protein C from <0.01 to 0.66, lignin C from <0.01 to 0.31, aliphatic C from 0.09 to 0.73, carbonyl C from 0.02 to 0.23, and char C from 0 to 0.45. This method is considered preferable to techniques involving imprecise extraction methods for RO wastes. Molecular composition data has great potential as a predictor of RO waste soil carbon and nutrient outcomes.

  20. Molecular composition of recycled organic wastes, as determined by solid-state 13C NMR and elemental analyses

    International Nuclear Information System (INIS)

    Eldridge, S.M.; Chen, C.R.; Xu, Z.H.; Nelson, P.N.; Boyd, S.E.; Meszaros, I.; Chan, K.Y.

    2013-01-01

    Highlights: • Model estimated the molecular C components well for most RO wastes. • Molecular nature of organic matter in RO wastes varied widely. • Molecular composition by NMR modelling preferable to extraction techniques. • Some model shortcomings in estimating molecular composition of biochars. • Waste molecular composition important for carbon/nutrient outcomes in soil. - Abstract: Using solid state 13 C NMR data and elemental composition in a molecular mixing model, we estimated the molecular components of the organic matter in 16 recycled organic (RO) wastes representative of the major materials generated in the Sydney basin area. Close correspondence was found between the measured NMR signal intensities and those predicted by the model for all RO wastes except for poultry manure char. Molecular nature of the organic matter differed widely between the RO wastes. As a proportion of organic C, carbohydrate C ranged from 0.07 to 0.63, protein C from <0.01 to 0.66, lignin C from <0.01 to 0.31, aliphatic C from 0.09 to 0.73, carbonyl C from 0.02 to 0.23, and char C from 0 to 0.45. This method is considered preferable to techniques involving imprecise extraction methods for RO wastes. Molecular composition data has great potential as a predictor of RO waste soil carbon and nutrient outcomes

  1. Purifying oils and waxes. [British patent

    Energy Technology Data Exchange (ETDEWEB)

    1926-01-27

    Fractions of petroleum, shale oil, coal oil, and paraffin wax are refined by passing the vapour under reduced pressure through fuller's earth, bauxite, silica gel, or other adsorbent at a temperature not substantially more than sufficient to maintain the vapour phase. The vapour may be passed in succession through adsorbent of increasing strength. Treatment with sulphuric acid, or with alkali, or with both may precede treatment with absorbent, and this successive treatment may be repeated any number of times. The action is accelerated by passing a current of inert gas insufficient to affect the vacuum materially along with the vapours. In an example a 160 to 225/sup 0/C kerosene fraction is treated with sulphuric acid of 10 percent strength, and passed into a fuller's earth chamber under a vacuum of 27 in. of mercury and heated by steam to about 140/sup 0/C. The apparatus is described.

  2. Molecular species composition of plant cardiolipin determined by liquid chromatography mass spectrometry

    Science.gov (United States)

    Zhou, Yonghong; Peisker, Helga

    2016-01-01

    Cardiolipin (CL), an anionic phospholipid of the inner mitochondrial membrane, provides essential functions for stabilizing respiratory complexes and is involved in mitochondrial morphogenesis and programmed cell death in animals. The role of CL and its metabolism in plants are less well understood. The measurement of CL in plants, including its molecular species composition, is hampered by the fact that CL is of extremely low abundance, and that plants contain large amounts of interfering compounds including galactolipids, neutral lipids, and pigments. We used solid phase extraction by anion exchange chromatography to purify CL from crude plant lipid extracts. LC/MS was used to determine the content and molecular species composition of CL. Thus, up to 23 different molecular species of CL were detected in different plant species, including Arabidopsis, mung bean, spinach, barley, and tobacco. Similar to animals, plant CL is dominated by highly unsaturated species, mostly containing linoleic and linolenic acid. During phosphate deprivation or exposure to an extended dark period, the amount of CL decreased in Arabidopsis, accompanied with an increased degree in unsaturation. The mechanism of CL remodeling during stress, and the function of highly unsaturated CL molecular species, remains to be defined. PMID:27179363

  3. Molecularly imprinted poly (methacrylamide-co-methacrylic acid) composite membranes for recognition of curcumin

    International Nuclear Information System (INIS)

    Wang Ping; Hu Wenming; Su Weike

    2008-01-01

    In this study, molecularly imprinted poly (methacrylamide-co-methacrylic acid) composite membranes with different ratio of methacrylamide (MAM) versus methacrylic acid (MAA) were prepared via UV initiated photo-copolymerization on the commercial filter paper. Curcumin was chosen as the template molecule. Infra-red (IR) spectroscopy was used to study the binding mechanism between the imprinted sites and the templates. The morphology of the resultant membranes was visualized by scanning electron microscopy (SEM). Static equilibrium binding and recognition properties of the imprinted composite membranes to curcumin (cur-I) and its analogues demethoxycurcumin (cur-II) or bisdemethoxycurcumin (cur-III) were tested. The results showed that curcumin-imprinted membranes had the best recognition ability to curcumin compared to its analogues. From the results, the biggest selectivity factor of α cur-I/cur-II and α cur-I/cur-III were 1.50 and 5.94, and they were obtained from the composite membranes in which MAM/MAA were 1:4 and 0:1, respectively. The results of this study implied that the molecularly imprinted composite membranes could be used as separation membranes for curcumin enrichment

  4. Thermal decomposition of poly(ethylene terephthalate)/mesoporous molecular sieve composites

    Institute of Scientific and Technical Information of China (English)

    RUN Mingtao; ZHANG Dayu; WU Sizhu; WU Gang

    2007-01-01

    The nonisothermal and isothermal degradation processesofpoly(ethyleneterephthalate)/mesoporous molecular sieve (PET/MMS) composites synthesized by insitu polymerization were studied by using thermogravimetric analysis in nitrogen.The nonisothermal degradation of the composite is found to be the first-order reaction.An isoconversional procedure developed by Ozawa is used to calculate the apparent activation energy (E),which is an average value of about 260 kJ/mol with the weight conversion from 0% to 30%,and is higher than that of neat PET.Isothermal degradation results are confirmed with the nonisothermal process,in which PET/MMS showed higher thermal stability than neat PET.The polymer in mesoporous channels has more stability due to the protection of the inorganic pore-wall.These results indicate that mesoporous MMS in PET/MMS composites improve the stability of the polymer.

  5. Synthesis and catalytic performance of ZSM-5/MCM-41 composite molecular sieve from palygorskite

    Science.gov (United States)

    Jiang, Jinlong; Wu, Mei; Yang, Yong; Duanmu, Chuansong; Chen, Jing; Gu, Xu

    2017-10-01

    ZSM-5/MCM-41 composite molecular sieve has been hydrothermally synthesized through a two-step crystallization process using palygorskite (PAL) as silicon and aluminum source. The products were characterized by various means and their catalytic properties for acetalization of cyclohexanone and esterification of acetic acid and n-butanol were also investigated. In the first step ZSM-5 zeolite could be formed from the acid-treated PAL after hydrothermal treatment using tetrapropylammonium bromide as template. XRD patterns, N2 adsorption and desorption data, and TEM images show that the composite obtained in the secondary step had a well-ordered mesoporous MCM-41 phase and a microporous ZSM-5 zeolite phase. Compared with ZSM-5, ZSM-5/MCM-41 composite possessed more total acid amount, weak acid sites and large pore structure due to the formation of MCM-41 and exhibited higher catalytic activity for the acetalization and esterification reaction.

  6. Variations of Leaf Cuticular Waxes Among C3 and C4 Gramineae Herbs.

    Science.gov (United States)

    He, Yuji; Gao, Jianhua; Guo, Na; Guo, Yanjun

    2016-11-01

    Modern C4 plants are commonly distributed in hot and dry environments whereas C3 plants predominate in cool and shade areas. At the outmost of plant surface, the deposition and chemical composition of cuticular waxes vary under different environmental conditions. However, whether such variation of cuticular wax is related to the distribution of C3 and C4 under different environmental conditions is still not clear. In this study, leaves of six C3 Gramineae herbs distributed in spring, Roegneria kamoji, Polypogon fugax, Poa annua, Avena fatua, Alopecurus aequalis, and Oplismenus undulatifolius, and four C4 and one C3 Gramineae herbs distributed in summer, Digitaria sanguinalis, Eleusine indica, Setaria viridis, S. plicata, and O. undulatifolius, were sampled and analyzed for cuticular wax. Plates were the main epicuticular wax morphology in both C3 and C4 plants except S. plicata. The plates melted in C4 plants but not in C3 plants. The total cuticular wax amounts in C4 plants were significantly lower than those in C3 plants, except for O. undulatifolius. Primary alcohols were the most abundant compounds in C3 plants, whereas n-alkanes were relatively the most abundant compounds in C4 plants. C 29 was the most abundant n-alkane in C3 plants except for O. undulatifolius, whereas the most abundant n-alkane was C 31 or C 33 in C4 plants. The average chain length (ACL) of n-alkanes was higher in C4 than in C3 plants, whereas the ACL of n-alkanoic acids was higher in C3 than C4 plants. The cluster analysis based on the distribution of n-alkanes clearly distinguished C3 and C4 plants into two groups, except for O. undulatifolius which was grouped with C4 plants. These results suggest that the variations of cuticular waxes among C3 and C4 Gramineae herbs are related to the distribution of C3 and C4 plants under different environmental conditions. © 2016 Wiley-VHCA AG, Zurich, Switzerland.

  7. WAX ActiveLibrary: a tool to manage information overload.

    Science.gov (United States)

    Hanka, R; O'Brien, C; Heathfield, H; Buchan, I E

    1999-11-01

    WAX Active-Library (Cambridge Centre for Clinical Informatics) is a knowledge management system that seeks to support doctors' decision making through the provision of electronic books containing a wide range of clinical knowledge and locally based information. WAX has been piloted in several regions in the United Kingdom and formally evaluated in 17 GP surgeries based in Cambridgeshire. The evaluation has provided evidence that WAX Active-Library significantly improves GPs' access to relevant information sources and by increasing appropriate patient management and referrals this might also lead to an improvement in clinical outcomes.

  8. Atomic spectral-product representations of molecular electronic structure: metric matrices and atomic-product composition of molecular eigenfunctions.

    Science.gov (United States)

    Ben-Nun, M; Mills, J D; Hinde, R J; Winstead, C L; Boatz, J A; Gallup, G A; Langhoff, P W

    2009-07-02

    Recent progress is reported in development of ab initio computational methods for the electronic structures of molecules employing the many-electron eigenstates of constituent atoms in spectral-product forms. The approach provides a universal atomic-product description of the electronic structure of matter as an alternative to more commonly employed valence-bond- or molecular-orbital-based representations. The Hamiltonian matrix in this representation is seen to comprise a sum over atomic energies and a pairwise sum over Coulombic interaction terms that depend only on the separations of the individual atomic pairs. Overall electron antisymmetry can be enforced by unitary transformation when appropriate, rather than as a possibly encumbering or unnecessary global constraint. The matrix representative of the antisymmetrizer in the spectral-product basis, which is equivalent to the metric matrix of the corresponding explicitly antisymmetric basis, provides the required transformation to antisymmetric or linearly independent states after Hamiltonian evaluation. Particular attention is focused in the present report on properties of the metric matrix and on the atomic-product compositions of molecular eigenstates as described in the spectral-product representations. Illustrative calculations are reported for simple but prototypically important diatomic (H(2), CH) and triatomic (H(3), CH(2)) molecules employing algorithms and computer codes devised recently for this purpose. This particular implementation of the approach combines Slater-orbital-based one- and two-electron integral evaluations, valence-bond constructions of standard tableau functions and matrices, and transformations to atomic eigenstate-product representations. The calculated metric matrices and corresponding potential energy surfaces obtained in this way elucidate a number of aspects of the spectral-product development, including the nature of closure in the representation, the general redundancy or

  9. Relationship between molecular weight, monosaccharide composition and immunobiologic activity of Astragalus polysaccharides.

    Science.gov (United States)

    Jiang, Yiping; Qi, Xiaohui; Gao, Kai; Liu, Wenjun; Li, Na; Cheng, Ningbo; Ding, Gang; Huang, Wenzhe; Wang, Zhenzhong; Xiao, Wei

    2016-10-01

    Four Astragalus polysaccharides (APS1-APS4) were isolated from the water extract of Radix Astragali and purified through ethanol precipitation with 20 %, 40 %, 60 % and 80 % ethanol, respectively. The total sugar content was measured by sulfuric acid-phenol method. Their molecular weight was determined using high performance gel permeation chromatography (HPGPC) and their monosaccharide composition was analyzed by reversed-phase high performance liquid chromatography (HPLC) after pre-column derivatization. Then the immunobiologic activity of APS was evaluated by the experiment of spleen lymphocytes proliferation in vitro. The data suggested that precipitation by different concentration of ethanol will obtain different molecular weight APS, the higher concentration of ethanol the smaller molecular weight for APS. The molecular weights of four APS were 257.7 kDa, 40.1 kDa, 15.3 kDa and 3.2 kDa. Monosaccharide composition analysis indicated that APS1 consisted of glucose only, and APS2 all consisted of arabinose. APS3 consisted of rhamnose, glucose, galactose and arabinose and APS4 consisted of galactose and arabinose, in a molar ratio of 1:10.76:6.55:12 and 3.02:1. The result of immunobiologic activity assay showed that both APS2 and APS3 can effectively stimulate normal spleen lymphocyte proliferation in vitro. Apart from this, the effect of APS2 also showed dose dependent tendency from 6.25 μg/mL to 800 μg/mL. The result of this research indicated that Astragalus polysaccharides, which consist of arabinose and their molecular weight between 15.2 kDa to 40.1 kDa, neither too high nor too low, had significant immune activity.

  10. A molecular investigation of soil organic carbon composition across a subalpine catchment

    Science.gov (United States)

    Hsu, Hsiao-Tieh; Lawrence, Corey R.; Winnick, Matthew J.; Bargar, John R.; Maher, Katharine

    2018-01-01

    The dynamics of soil organic carbon (SOC) storage and turnover are a critical component of the global carbon cycle. Mechanistic models seeking to represent these complex dynamics require detailed SOC compositions, which are currently difficult to characterize quantitatively. Here, we address this challenge by using a novel approach that combines Fourier transform infrared spectroscopy (FT-IR) and bulk carbon X-ray absorption spectroscopy (XAS) to determine the abundance of SOC functional groups, using elemental analysis (EA) to constrain the total amount of SOC. We used this SOC functional group abundance (SOC-fga) method to compare variability in SOC compositions as a function of depth across a subalpine watershed (East River, Colorado, USA) and found a large degree of variability in SOC functional group abundances between sites at different elevations. Soils at a lower elevation are predominantly composed of polysaccharides, while soils at a higher elevation have more substantial portions of carbonyl, phenolic, or aromatic carbon. We discuss the potential drivers of differences in SOC composition between these sites, including vegetation inputs, internal processing and losses, and elevation-driven environmental factors. Although numerical models would facilitate the understanding and evaluation of the observed SOC distributions, quantitative and meaningful measurements of SOC molecular compositions are required to guide such models. Comparison among commonly used characterization techniques on shared reference materials is a critical next step for advancing our understanding of the complex processes controlling SOC compositions.

  11. Trimethylamine (fishy odor) adsorption by biomaterials: effect of fatty acids, alkanes, and aromatic compounds in waxes.

    Science.gov (United States)

    Boraphech, Phattara; Thiravetyan, Paitip

    2015-03-02

    Thirteen plant leaf materials were selected to be applied as dried biomaterial adsorbents for polar gaseous trimethylamine (TMA) adsorption. Biomaterial adsorbents were efficient in adsorbing gaseous TMA up to 100% of total TMA (100 ppm) within 24 h. Sansevieria trifasciata is the most effective plant leaf material while Plerocarpus indicus was the least effective in TMA adsorption. Activated carbon (AC) was found to be lower potential adsorbent to adsorb TMA when compared to biomaterial adsorbents. As adsorption data, the Langmuir isotherm supported that the gaseous TMA adsorbed monolayer on the adsorbent surface and was followed pseudo-second order kinetic model. Wax extracted from plant leaf could also adsorb gaseous TMA up to 69% of total TMA within 24 h. Another 27-63% of TMA was adsorbed by cellulose and lignin that naturally occur in high amounts in plant leaf. Subsequently, the composition appearing in biomaterial wax showed a large quantity of short-chain fatty acids (≤C18) especially octadecanoic acid (C18), and short-chain alkanes (C12-C18) as well as total aromatic components dominated in the wax, which affected TMA adsorption. Hence, it has been demonstrated that plant biomaterial is a superior biosorbent for TMA removal.

  12. Application of carnauba-based wax maintains postharvest quality of 'Ortanique' tangor

    Directory of Open Access Journals (Sweden)

    Francisca Ligia de Castro Machado

    2012-06-01

    Full Text Available This study aimed at evaluating compositional changes in the quality of 'Ortanique' tangor after coating with the carnauba-based waxes Aruá Tropical® or Star Light®. The storage conditions studied simulated those of local marketing (22 ± 2 °C, 60 ± 5% RH. Non-destructive analysis, mass loss, peel color, and sensory evaluation, were performed upon coating and every three days up to the fifteenth day of storage. Destructive analysis, peel moisture content, chlorophyll of the peel, pulp color, juice content, soluble solids (SS, titratable acidity (TA, pH, and soluble solids to titratable acidity ratio, were performed upon coating and every four days up to the sixteenth day of storage. The assay was conducted using an entirely randomized design, with three replications (destructive analyses or ten replications (non-destructive analyses, in a split plot scheme. Wax-coating, especially Aruá Tropical®, maintained fruit freshness by reducing mass loss and peel dehydration and retaining green color. Peel moisture content, chlorophyll content, and juice content had lower rates in the wax coated fruits. Puncture force, soluble solids, titratable acidity, pH, and soluble solids to titratable acidity ratio varied vary little over the course of storage. Sensory evaluation showed that the application of Aruá Tropical keeps 'Ortanique' tangor fresher for 6 days longer for commercialization.

  13. 21 CFR 155.120 - Canned green beans and canned wax beans.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Canned green beans and canned wax beans. 155.120... Vegetables § 155.120 Canned green beans and canned wax beans. (a) Identity—(1) Definition. Canned green beans and canned wax beans are the foods prepared from succulent pods of fresh green bean or wax bean plants...

  14. Oil-structuring characterization of natural waxes in canola oil oleogels: Rheological, thermal, and oxidative properties

    Science.gov (United States)

    Natural waxes (candelilla wax, carnauba wax, and beeswax) were utilized as canola oil structurants to produce oleogels and their physicochemical properties were evaluated from rheological, thermal, and oxidative points of view. The oleogels with candelilla wax exhibited the highest hardness, followe...

  15. Reproduction and subchronic feeding study of carnauba wax in rats.

    Science.gov (United States)

    Parent, R A; Re, T A; Babish, J G; Cox, G E; Voss, K A; Becci, P J

    1983-02-01

    The reproductive performance of Wistar rats fed carnauba wax at levels of 0.1, 0.3 or 1% in the diet and the effects of subchronic administration of carnauba wax at these dose levels on the resultant progeny were studied. Reproductive indices, body-weight gain, food consumption, haematological and clinical chemical data, ophthalmic, gross and histopathological examinations were used to study the possible toxic or pathological effects. Serum free fatty acid levels were found to be decreased in male and female rats fed carnauba wax at dietary levels of 0.3 and 1.0%. No other effects of feeding carnauba wax at levels up to 1.0% of the diet were observed.

  16. The effects of magnetic fields on carnauba wax electret formation

    Science.gov (United States)

    Clator, Irvin G.

    1987-08-01

    The results of thermally stimulated depolarization current and effective surface charge-density measurements indicate that magnetic fields do not produce carnauba wax electrets and that previously reported data can be attributed to nonmagnetic effects.

  17. CARNAUBA WAX USED AS AN HYDROPHOBIC AGENT FOR EXPANDED VERMICULITE

    Directory of Open Access Journals (Sweden)

    M.A.F. Melo

    1998-03-01

    Full Text Available This work deals with the use of carnauba wax as an expansion and hydrophobicity agent for vermiculite, to be utilized in the sorption process of oil in water. Evaluation of the system (oil-water-hydrophobic vermiculite submersion percentage was considered in assessing the performance of vermiculite in comparison to a Mexican turf. Carnauba wax seems to be more efficient in both fresh and salt waters.

  18. Subchronic feeding study of carnauba wax in beagle dogs.

    Science.gov (United States)

    Parent, R A; Cox, G E; Babish, J G; Gallo, M A; Hess, F G; Becci, P J

    1983-02-01

    Carnauba wax fed at levels of 0.1, 0.3 and 1% in the diet to beagle dogs for 28 wk did not produce evidence of toxicity or pathological effects. Body weight gain, food consumption, clinical chemical, haematological, and urine analysis data, and organ weights of animals fed carnauba wax were comparable with those of control animals. Ophthalmic, gross and histopathological examinations revealed no significant treatment-related findings.

  19. Sintering of wax for controlling release from pellets

    OpenAIRE

    Singh, Reena; Poddar, S. S.; Chivate, Amit

    2007-01-01

    The purpose of the present study was to investigate incorporation of hydrophobic (ie, waxy) material into pellets using a thermal sintering technique and to evaluate the pellets in vitro for controlled release. Pellets prepared by extrusion-spheronization technology were formulated with a water-soluble drug, microcrystalline cellulose, and carnauba wax. Powdered carnauba wax (4%–20%) prepared by grinding or by emulsification was studied with an attempt to retard the drug release. The inclusio...

  20. Photoswitchable molecular dipole antennas with tailored coherent coupling in glassy composite

    DEFF Research Database (Denmark)

    Elbahri, Mady; Zillohu, Ahnaf Usman; Gothe, Bastian

    2015-01-01

    . We also introduce the concept of 'tailored molecular photonic coupling' while highlighting the role of interferences for the design of optically active media by adjusting the photonic response of the medium with the real and imaginary refractive index of photoswitchable molecules in the 'ON' state...... alteration of photochromic molecular dipole antennas. We successfully demonstrate the concept of Brewster wavelength, which is based on the dipolar interaction between radiating dipoles and the surrounding matrix possessing a net dipole moment, as a key tool for highly localized sensing of matrix polarity....... Our results enhance our fundamental understanding of coherent dipole radiation and open a new vein of research based on glassy disordered dipolar composites that act as macroscopic antenna with cooperative action; furthermore, these results have important implications for new design rules of tailored...

  1. COMPOSITE POLYMERICADDITIVESDESIGNATED FORCONCRETEMIXES BASED ONPOLYACRYLATES, PRODUCTS OF THERMAL DECOMPOSITION OF POLYAMIDE-6 AND LOW-MOLECULAR POLYETHYLENE

    Directory of Open Access Journals (Sweden)

    Polyakov Vyacheslav Sergeevich

    2012-07-01

    4 the optimal composite additive that increases the time period of stiffening of the cement grout , improves the water resistance and the compressive strength of concrete, represents the composition of polyacrylates and polymethacrylates, products of thermal decomposition of polyamide-6 and low-molecular polyethylene in the weight ratio of 1:1:0.5.

  2. Nest wax triggers worker reproduction in the bumblebee Bombus terrestris.

    Science.gov (United States)

    Rottler-Hoermann, Ann-Marie; Schulz, Stefan; Ayasse, Manfred

    2016-01-01

    Social insects are well known for their high level of cooperation. Workers of the primitively eusocial bumblebee Bombus terrestris are able to produce male offspring in the presence of a queen. Nonetheless, they only compete for reproduction, in the so-called competition phase, when the workforce is large enough to support the rearing of reproductives. So far, little is known about the proximate mechanisms underlying the shift between altruism and selfish behaviour in bumblebee workers. In this study, we have examined the influence of chemical cues from the nest wax on the onset of worker reproduction. Chemical analyses of wax extracts have revealed that the patterns and amounts of cuticular lipids change considerably during colony development. These changes in wax scent mirror worker abundance and the presence of fertile workers. In bioassays with queen-right worker groups, wax affects the dominance behaviour and ovarian development of workers. When exposed to wax from a colony in competition phase, workers start to compete for reproduction. We suggest that wax scent enables workers to time their reproduction by providing essential information concerning the social condition of the colony.

  3. Phototransformation of the herbicide sulcotrione on maize cuticular wax.

    Science.gov (United States)

    Ter Halle, Alexandra; Drncova, Daniela; Richard, Claire

    2006-05-01

    Vegetation plays a key role in environmental cycling and the fate of many organic pollutants. This is especially the case for pesticides because plant leaves are their first reaction environment after application. It is commonly accepted that photochemical reactions of pollutants on plants predominantly take place in the cuticular wax coating of the leaves. Thus, we used films made of either cuticular wax extracted from maize or carnauba gray wax as a model support. Under simulated sunlight irradiation, sulcotrione (a new class of triketone herbicides) sorbed on cuticular wax films was photolyzed and mainly underwent an intramolecular cyclization. The photoproduct is a chromone derivative which was isolated and fully characterized. It is reported for the first time as a sulcotrione degradation product. The photoreactivity of formulated sulcotrione at the surface of cuticular waxes was investigated too. It photodegraded more rapidly than nonformulated sulcotrione. This study also shows that the rate of sulcotrione photolysis was much faster than the rate of penetration into the wax; photolysis should be, thus, a relevant process in real conditions.

  4. Molecular Dynamics Modeling of Carbon Nanotube Composite Fracture Using ReaxFF

    Science.gov (United States)

    Jensen, Benjamin D.; Wise, Kristopher E.; Odegard, Gregory M.

    2016-01-01

    Carbon nanotube (CNT) fiber reinforced composites with specific tensile strengths and moduli approaching those of aerospace grade carbon fiber composites have recently been reported. This achievement was enabled by the emerging availability of high N/tex yarns in kilometer-scale quantities. While the production of this yarn is an impressive advance, its strength is still much lower than that of the individual CNTs comprising the yarn. Closing this gap requires understanding load transfer between CNTs at the nanometer dimensional scale. This work uses reactive molecular dynamics simulations to gain an understanding at the nanometer scale of the key factors that determine CNT nanocomposite mechanical performance, and to place more realistic upper bounds on the target properties. While molecular dynamics simulations using conventional force fields can predict elastic properties, the ReaxFF reactive forcefield can also model fracture behavior because of its ability to accurately describe bond breaking and formation during a simulation. The upper and lower bounds of CNT composite properties are investigated by comparing systems composed of CNTs continuously connected across the periodic boundary with systems composed of finite length CNTs. These lengths, effectively infinite for the continuous tubes and an aspect ratio of 13 for the finite length case, result from practical limitations on the number of atoms that can be included in a simulation. Experimentally measured aspect ratios are typically on the order of 100,000, so the calculated results should represent upper and lower limits on experimental mechanical properties. Finally, the effect of various degrees of covalent crosslinking between the CNTs and amorphous carbon matrix is considered to identify the amount of CNT-matrix covalent bonding that maximizes overall composite properties.

  5. SANS studies of solutions and molecular composites prepared from cellulose tricarbanilate

    CERN Document Server

    Alava, C; Cameron, J D; Cowie, J M G; Vaqueiro, P; Möller, A; Triolo, A

    2002-01-01

    We report on SANS measurements carried out on the instrument SANS1 (V4) at the BENSC facility on solutions and composites of cellulose tricarbanilate (CTC). This cellulose derivative exhibits lyotropic behaviour in methylacrylate (MA). The SANS data indicate that in the isotropic liquid state (up to 25% wt CTC in MA) the CTC chains behave like rods of mass per unit length (M/L). In the liquid crystalline (LC) phase (at and above 35% wt CTC in MA), the Q dependence varies from Q sup - sup 1 to Q sup - sup 4 , probably as a result of self-assembling of the CTC chains. The general aim of our work is to prepare molecular composites, i.e. miscible blends of rigid-rod and flexible-coil polymers, from CTC solutions in polymerizable media. To establish the degree of homogeneity of the composites, we performed SANS measurements on UV-cured CTC/MA solutions. Here, we compare the SANS data of CTC/monomer solutions with those of the corresponding composites. (orig.)

  6. SoftWAXS: a computational tool for modeling wide-angle X-ray solution scattering from biomolecules.

    Science.gov (United States)

    Bardhan, Jaydeep; Park, Sanghyun; Makowski, Lee

    2009-10-01

    This paper describes a computational approach to estimating wide-angle X-ray solution scattering (WAXS) from proteins, which has been implemented in a computer program called SoftWAXS. The accuracy and efficiency of SoftWAXS are analyzed for analytically solvable model problems as well as for proteins. Key features of the approach include a numerical procedure for performing the required spherical averaging and explicit representation of the solute-solvent boundary and the surface of the hydration layer. These features allow the Fourier transform of the excluded volume and hydration layer to be computed directly and with high accuracy. This approach will allow future investigation of different treatments of the electron density in the hydration shell. Numerical results illustrate the differences between this approach to modeling the excluded volume and a widely used model that treats the excluded-volume function as a sum of Gaussians representing the individual atomic excluded volumes. Comparison of the results obtained here with those from explicit-solvent molecular dynamics clarifies shortcomings inherent to the representation of solvent as a time-averaged electron-density profile. In addition, an assessment is made of how the calculated scattering patterns depend on input parameters such as the solute-atom radii, the width of the hydration shell and the hydration-layer contrast. These results suggest that obtaining predictive calculations of high-resolution WAXS patterns may require sophisticated treatments of solvent.

  7. Molecular Simulation of Ionic Polyimides and Composites with Ionic Liquids as Gas-Separation Membranes.

    Science.gov (United States)

    Abedini, Asghar; Crabtree, Ellis; Bara, Jason E; Turner, C Heath

    2017-10-24

    Polyimides are at the forefront of advanced membrane materials for CO 2 capture and gas-purification processes. Recently, ionic polyimides (i-PIs) have been reported as a new class of condensation polymers that combine structural components of both ionic liquids (ILs) and polyimides through covalent linkages. In this study, we report CO 2 and CH 4 adsorption and structural analyses of an i-PI and an i-PI + IL composite containing [C 4 mim][Tf 2 N]. The combination of molecular dynamics (MD) and grand canonical Monte Carlo (GCMC) simulations is used to compute the gas solubility and the adsorption performance with respect to the density, fractional free volume (FFV), and surface area of the materials. Our results highlight the polymer relaxation process and its correlation to the gas solubility. In particular, the surface area can provide meaningful guidance with respect to the gas solubility, and it tends to be a more sensitive indicator of the adsorption behavior versus only considering the system density and FFV. For instance, as the polymer continues to relax, the density, FFV, and pore-size distribution remain constant while the surface area can continue to increase, enabling more adsorption. Structural analyses are also conducted to identify the nature of the gas adsorption once the ionic liquid is added to the polymer. The presence of the IL significantly displaces the CO 2 molecules from the ligand nitrogen sites in the neat i-PI to the imidazolium rings in the i-PI + IL composite. However, the CH 4 molecules move from the imidazolium ring sites in the neat i-PI to the ligand nitrogen atoms in the i-PI + IL composite. These molecular details can provide critical information for the experimental design of highly selective i-PI materials as well as provide additional guidance for the interpretation of the simulated adsorption systems.

  8. Morphology and Molecular Composition of Purified Bovine Viral Diarrhea Virus Envelope.

    Directory of Open Access Journals (Sweden)

    Nathalie Callens

    2016-03-01

    Full Text Available The family Flaviviridae includes viruses that have different virion structures and morphogenesis mechanisms. Most cellular and molecular studies have been so far performed with viruses of the Hepacivirus and Flavivirus genera. Here, we studied bovine viral diarrhea virus (BVDV, a member of the Pestivirus genus. We set up a method to purify BVDV virions and analyzed their morphology by electron microscopy and their protein and lipid composition by mass spectrometry. Cryo-electron microscopy showed near spherical viral particles displaying an electron-dense capsid surrounded by a phospholipid bilayer with no visible spikes. Most particles had a diameter of 50 nm and about 2% were larger with a diameter of up to 65 nm, suggesting some size flexibility during BVDV morphogenesis. Morphological and biochemical data suggested a low envelope glycoprotein content of BVDV particles, E1 and E2 being apparently less abundant than Erns. Lipid content of BVDV particles displayed a ~2.3 to 3.5-fold enrichment in cholesterol, sphingomyelin and hexosyl-ceramide, concomitant with a 1.5 to 5-fold reduction of all glycerophospholipid classes, as compared to lipid content of MDBK cells. Although BVDV buds in the endoplasmic reticulum, its lipid content differs from a typical endoplasmic reticulum membrane composition. This suggests that BVDV morphogenesis includes a mechanism of lipid sorting. Functional analyses confirmed the importance of cholesterol and sphingomyelin for BVDV entry. Surprisingly, despite a high cholesterol and sphingolipid content of BVDV envelope, E2 was not found in detergent-resistant membranes. Our results indicate that there are differences between the structure and molecular composition of viral particles of Flaviviruses, Pestiviruses and Hepaciviruses within the Flaviviridae family.

  9. Calculation of the store house worker dose in a lost wax foundry using MCNP-4C

    International Nuclear Information System (INIS)

    Alegria, N.; Legarda, F.; Herranz, M.; Idoeta, R.

    2005-01-01

    Lost wax casting is an industrial process which permits the transmutation into metal of models made in wax. The wax model is covered with a siliceous shell of the required thickness and once this shell is built the set is heated and wax melted. Liquid metal is then cast into the shell replacing the wax. When the metal is cool, the shell is broken away in order to recover the metallic piece. In this process zircon sands are used for the preparation of the siliceous shell. These sands have varying concentrations of natural radionuclides: 238 U, 232 Th and 235 U together with their progenics. The zircon sand is distributed in bags of 50 kg, and 30 bags are on a pallet, weighing 1,500 kg. The pallets with the bags have dimensions 80 cm x 120 cm x 80 cm, and constitute the radiation source in this case. The only pathway of exposure to workers in the store house is external radiation. In this case there is no dust because the bags are closed and covered by plastic, the store house has a good ventilation rate and so radon accumulation is not possible. The workers do not touch with their hands the bags and consequently skin contamination will not take place. In this study all situations of external irradiation to the workers have been considered; transportation of the pallets from vehicle to store house, lifting the pallets to the shelf, resting of the stock on the shelf, getting down the pallets, and carrying the pallets to production area. Using MCNP-4C exposure situations have been simulated, considering that the source has a homogeneous composition, the minimum stock in the store house is constituted by 7 pallets, and the several distances between pallets and workers when they are at work. The photons flux obtained by MCNP-4C is multiplied by the conversion factor of Flux to Kerma for air by conversion factor to Effective Dose by Kerma unit, and by the number of emitted photons. Those conversion factors are obtained of ICRP 74 table 1 and table 17 respectively. This is

  10. Calculation of the store house worker dose in a lost wax foundry using MCNP-4C.

    Science.gov (United States)

    Alegría, Natalia; Legarda, Fernando; Herranz, Margarita; Idoeta, Raquel

    2005-01-01

    Lost wax casting is an industrial process which permits the transmutation into metal of models made in wax. The wax model is covered with a silicaceous shell of the required thickness and once this shell is built the set is heated and wax melted. Liquid metal is then cast into the shell replacing the wax. When the metal is cool, the shell is broken away in order to recover the metallic piece. In this process zircon sands are used for the preparation of the silicaceous shell. These sands have varying concentrations of natural radionuclides: 238U, 232Th and 235U together with their progenics. The zircon sand is distributed in bags of 50 kg, and 30 bags are on a pallet, weighing 1,500 kg. The pallets with the bags have dimensions 80 cm x 120 cm x 80 cm, and constitute the radiation source in this case. The only pathway of exposure to workers in the store house is external radiation. In this case there is no dust because the bags are closed and covered by plastic, the store house has a good ventilation rate and so radon accumulation is not possible. The workers do not touch with their hands the bags and consequently skin contamination will not take place. In this study all situations of external irradiation to the workers have been considered; transportation of the pallets from vehicle to store house, lifting the pallets to the shelf, resting of the stock on the shelf, getting down the pallets, and carrying the pallets to production area. Using MCNP-4C exposure situations have been simulated, considering that the source has a homogeneous composition, the minimum stock in the store house is constituted by 7 pallets, and the several distances between pallets and workers when they are at work. The photons flux obtained by MCNP-4C is multiplied by the conversion factor of Flux to Kerma for air by conversion factor to Effective Dose by Kerma unit, and by the number of emitted photons. Those conversion factors are obtained of ICRP 74 table 1 and table 17 respectively. This

  11. Colorimetric test-systems for creatinine detection based on composite molecularly imprinted polymer membranes.

    Science.gov (United States)

    Sergeyeva, T A; Gorbach, L A; Piletska, E V; Piletsky, S A; Brovko, O O; Honcharova, L A; Lutsyk, O D; Sergeeva, L M; Zinchenko, O A; El'skaya, A V

    2013-04-03

    An easy-to-use colorimetric test-system for the efficient detection of creatinine in aqueous samples was developed. The test-system is based on composite molecularly imprinted polymer (MIP) membranes with artificial receptor sites capable of creatinine recognition. A thin MIP layer was created on the surface of microfiltration polyvinylidene fluoride (PVDF) membranes using method of photo-initiated grafting polymerization. The MIP layer was obtained by co-polymerization of a functional monomer (e.g. 2-acrylamido-2-methyl-1-propanesulfonic acid, itaconic acid or methacrylic acid) with N, N'-methylenebisacrylamide as a cross-linker. The choice of the functional monomer was based on the results of computational modeling. The creatinine-selective composite MIP membranes were used for measuring creatinine in aqueous samples. Creatinine molecules were selectively adsorbed by the MIP membranes and quantified using color reaction with picrates. The intensity of MIP membranes staining was proportional to creatinine concentration in an analyzed sample. The colorimetric test-system based on the composite MIP membranes was characterized with 0.25 mM detection limit and 0.25-2.5mM linear dynamic range. Storage stability of the MIP membranes was estimated as at least 1 year at room temperature. As compared to the traditional methods of creatinine detection the developed test-system is characterized by simplicity of operation, small size and low cost. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Extrudable polymer-polymer composites based on ultra-high molecular weight polyethylene

    Science.gov (United States)

    Panin, S. V.; Kornienko, L. A.; Alexenko, V. O.; Buslovich, D. G.; Dontsov, Yu. V.

    2017-12-01

    Mechanical and tribotechnical characteristics of polymer-polymeric composites of UHMWPE are studied with the aim of developing extrudable, wear-resistant, self-lubricant polymer mixtures for Additive Manufacturing (AM). The motivation of the study is their further application as feedstocks for 3D printing. Blends of UHMWPE with graft- and block copolymers of low-density polyethylene (HDPE-g-VTMS, HDPE-g-SMA, HDPE-b-EVA), polypropylene (PP), block copolymers of polypropylene and polyamide with linear low density polyethylene (PP-b-LLDPE, PA-b-LLDPE), as well as cross-linked polyethylene (PEX-b), are examined. The choice of compatible polymer components for an ultra- high molecular weight matrix for increasing processability (extrudability) is motivated by the search for commercially available and efficient additives aimed at developing wear-resistant extrudable polymer composites for additive manufacturing. The extrudability, mechanical properties and wear resistance of UHMWPE-based polymer-polymeric composites under sliding friction with different velocities and loads are studied.

  13. High-level accumulation of oleyl oleate in plant seed oil by abundant supply of oleic acid substrates to efficient wax ester synthesis enzymes.

    Science.gov (United States)

    Yu, Dan; Hornung, Ellen; Iven, Tim; Feussner, Ivo

    2018-01-01

    Biotechnology enables the production of high-valued industrial feedstocks from plant seed oil. The plant-derived wax esters with long-chain monounsaturated acyl moieties, like oleyl oleate, have favorite properties for lubrication. For biosynthesis of wax esters using acyl-CoA substrates, expressions of a fatty acyl reductase (FAR) and a wax synthase (WS) in seeds are sufficient. For optimization of the enzymatic activity and subcellular localization of wax ester synthesis enzymes, two fusion proteins were created, which showed wax ester-forming activities in Saccharomyces cerevisiae . To promote the formation of oleyl oleate in seed oil, WSs from Acinetobactor baylyi ( Ab WSD1) and Marinobacter aquaeolei ( Ma WS2), as well as the two created fusion proteins were tested in Arabidopsis to evaluate their abilities and substrate preference for wax ester production. The tested seven enzyme combinations resulted in different yields and compositions of wax esters. Expression of a FAR of Marinobacter aquaeolei ( Ma FAR) with Ab WSD1 or Ma WS2 led to a high incorporation of C 18 substrates in wax esters. The Ma FAR/TM Mm AWAT2- Ab WSD1 combination resulted in the incorporation of more C 18:1 alcohol and C 18:0 acyl moieties into wax esters compared with Ma FAR/ Ab WSD1. The fusion protein of a WS from Simmondsia chinensis ( Sc WS) with MaFAR exhibited higher specificity toward C 20:1 substrates in preference to C 18:1 substrates. Expression of Ma FAR/ Ab WSD1 in the Arabidopsis fad2 fae1 double mutant resulted in the accumulation of oleyl oleate (18:1/18:1) in up to 62 mol% of total wax esters in seed oil, which was much higher than the 15 mol% reached by Ma FAR/ Ab WSD1 in Arabidopsis Col-0 background. In order to increase the level of oleyl oleate in seed oil of Camelina , lines expressing Ma FAR/ Sc WS were crossed with a transgenic high oleate line. The resulting plants accumulated up to >40 mg g seed -1 of wax esters, containing 27-34 mol% oleyl oleate. The

  14. Heritability of the Structures and 13C Fractionation in Tomato Leaf Wax Alkanes: A Genetic Model System to Inform Paleoenvironmental Reconstructions

    Directory of Open Access Journals (Sweden)

    Amanda L. D. Bender

    2017-06-01

    Full Text Available Leaf wax n-alkanes are broadly used to reconstruct paleoenvironmental information. However, the utility of n-alkanes as a paleoenvironmental proxy may be modulated by the extent to which biological as well as environmental factors influence the structural and isotopic variability of leaf waxes. In paleoclimate applications, there is usually an implicit assumption that most variation of leaf wax traits through a time series can be attributed to environmental change and that biological sources of variability within plant communities are small. For example, changes in hydrology affect the δ2H of waxes via rainwater and the δ13C of leaf waxes by changing plant communities. We measured the degree of genetic control over δ13C variation in leaf waxes within closely related species with an experimental greenhouse growth study. We measured the proportion of variability in structural and isotopic leaf wax traits that is attributable to genetic variation using a set of 76 introgression lines (ILs between two interfertile Solanum (tomato species: S. lycopersicum cv M82 (hereafter cv M82 and S. pennellii. Leaves of S. pennellii, a wild desert tomato relative, produced significantly more iso-alkanes than cv M82, a domesticated tomato cultivar adapted to water-replete conditions. We report a methylation index to summarize the ratio of branched (iso- and anteiso- to total alkanes. Between Solanum pennellii and cv M82, the iso-alkanes were found to be enriched in 13C by 1.2–1.4‰ over n-alkanes. The broad-sense heritability values (H2 of leaf wax traits describe the degree to which genetic variation contributes to variation of these traits. Variation of individual carbon isotopic compositions of alkanes were of low heritability (H2 = 0.13–0.19, suggesting that most variation in δ13C of leaf waxes in this study can be attributed to environmental variance. This supports the interpretation that variation in the δ13C of wax compounds recorded in sediments

  15. Heritability of the structures and 13C fractionation in tomato leaf wax alkanes: a genetic model system to inform paleoenvironmental reconstructions

    Science.gov (United States)

    Bender, Amanda L. D.; Chitwood, Daniel H.; Bradley, Alexander S.

    2017-06-01

    Leaf wax n-alkanes are broadly used to reconstruct paleoenvironmental information. However, the utility of n-alkanes as a paleoenvironmental proxy may be modulated by the extent to which biological as well as environmental factors influence the structural and isotopic variability of leaf waxes. In paleoclimate applications, there is usually an implicit assumption that most variation of leaf wax traits through a time series can be attributed to environmental change and that biological sources of variability within plant communities are small. For example, changes in hydrology affect the δ2H of waxes via rainwater and the δ13C of leaf waxes by changing plant communities. We measured the degree of genetic control over δ13C variation in leaf waxes within closely related species with an experimental greenhouse growth study. We measured the proportion of variability in structural and isotopic leaf wax traits that is attributable to genetic variation using a set of 76 introgression lines (ILs) between two interfertile Solanum (tomato) species: S. lycopersicum cv M82 (hereafter cv M82) and S. pennellii. Leaves of S. pennellii, a wild desert tomato relative, produced significantly more iso-alkanes than cv M82, a domesticated tomato cultivar adapted to water-replete conditions. We report a methylation index to summarize the ratio of branched (iso- and anteiso-) to total alkanes. Between S. pennellii and cv M82, the iso-alkanes were found to be enriched in 13C by 1.2-1.4‰ over n-alkanes. The broad-sense heritability values (H2) of leaf wax traits describe the degree to which genetic variation contributes to variation of these traits. Variation of individual carbon isotopic compositions of alkanes were of low heritability (H2 = 0.13-0.19), suggesting that most variation in δ13C of leaf waxes in this study can be attributed to environmental variance. This supports the interpretation that variation in the δ13C of wax compounds recorded in sediments reflects

  16. Effect of Molecular Weight on the Properties of Liquid Epoxidized Natural Rubber Acrylate (LENRA)/ Silica Hybrid Composites

    International Nuclear Information System (INIS)

    Eda Yuhana Ariffin; Azizan Ahmad; Dahlan Mohd; Mahathir Mohamed

    2011-01-01

    This paper reports on the effect of molecular weight on the morphological and mechanical properties of liquid epoxidized natural rubber acrylate (LENRA)/ silica hybrid composites prepared by sol-gel technique. The sol-gel reaction was conducted at different concentration of tetraethyl orthosilicate (TEOS), used as a precursor of silica. TEOS were introduced in 10, 20, 30, 40 and 50 parts per hundred rubber (phr) in the composites. Two different molecular weights of ENR were used to study the effect of molecular weight on the mechanical and morphological properties of the compounds. These compounds were cured by ultraviolet (UV) irradiation. The mechanical properties were studied through pendulum hardness and scratch tests. Higher molecular weight of ENR showed better mechanical properties than lower molecular weight. Transmission electron microscope was used to determine the silica size and to study the distribution and dispersion of the silica particles. High molecular weight showed greater distribution and dispersion of silica particles with diameter of 13 - 256 nm. Morphological and mechanical properties of LENRA/ silica hybrid composites were improved by using high molecular weight of ENR. (author)

  17. Laboratory Deposition Apparatus to Study the Effects of Wax Deposition on Pipe Magnetic Field Leakage Signals

    Directory of Open Access Journals (Sweden)

    Karim Mohd Fauzi Abd

    2014-07-01

    Full Text Available Accurate technique for wax deposition detection and severity measurement on cold pipe wall is important for pipeline cleaning program. Usually these techniques are validated by conventional techniques on laboratory scale wax deposition flow loop. However conventional techniques inherent limitations and it is difficult to reproduce a predetermine wax deposit profile and hardness at designated location in flow loop. An alternative wax deposition system which integrates modified pour casting method and cold finger method is presented. This system is suitable to reproduce high volume of medium hard wax deposit in pipe with better control of wax deposit profile and hardness.

  18. Investigation of the interfacial properties of polyurethane/carbon nanotube hybrid composites: A molecular dynamics study

    Science.gov (United States)

    Goclon, Jakub; Panczyk, Tomasz; Winkler, Krzysztof

    2018-03-01

    Considering the varied applications of hybrid polymer/carbon nanotube composites and the constant progress in the synthesis methods of such materials, we report a theoretical study of interfacial layer formation between pristine single-wall carbon nanotubes (SWCNTs) and polyurethane (PU) using molecular dynamic simulations. We vary the SWCNT diameter and the number of PU chains to examine various PU-SWCNT interaction patterns. Our simulations indicate the important role of intra-chain forces in PU. No regular polymeric structures could be identified on the carbon nanotube surface during the simulations. We find that increasing the SWCNT diameter results in stronger polymer binding. However, higher surface loadings of PU lead to stronger interpenetration by the polymeric segments; this effect is more apparent for SWCNTs with small diameters. Our core finding is that the attached PU binds most strongly to the carbon nanotubes with the largest diameters. Polymer dynamics reveal the loose distribution of PU chains in these systems.

  19. Unheimlich. From Wax Figures to the Uncanny Valley

    Directory of Open Access Journals (Sweden)

    Pietro Conte

    2012-01-01

    Full Text Available In his pioneering History of Portraiture in Wax, Julius von Schlosser traced back the age-old history of a material which at that time seemed to be already antiquated, if not obsolete. Wax sculptures were rejected and ousted from art history because of their excessive similarity and adherence to models. One hundred years later, however, hyperrealism got its revenge with Maurizio Cattelan’s celebrated hanging children. Moving from that controversial artwork and focusing on the heated polemics over it, my paper will address the question of the well-known Unheimlichkeit of wax figures, investigated by Ernst Jentsch and Sigmund Freud in the early Twentieth Century and nowadays becoming increasingly topical thanks to the recent debate about the existence and nature of the so called Uncanny Valley.

  20. Molecular imprinting of caffeine on cellulose/silica composite and its characterization

    Science.gov (United States)

    Gill, Rajinder Singh

    This dissertation presents a study to prepare molecularly imprinted inorganic/organic hybrid composite which not only confirm the higher binding capabilities for the target molecule (template) but also discriminate its structural analogs. Molecularly imprinted Cellulose/Silica composite (MIP) was prepared by using caffeine as the template. Silica derived from TEOS by using sol-gel techniques was deposited on cheap, abundant organic matrix such as cellulose, which can provide a filtering medium while coffee brewing. Removal of the template from the precursor was verified by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). Remarkably reduced intensity of -NH2 scissor like mode of caffeine and the presence of traces of "N" by elemental analysis, confirmed the complete removal of caffeine on washing with ethanol. Cellulose to TEOS mass ratio of 2:1 was found to be close to optimal during our analysis. Energy dispersive spectroscopy results leads to an important fact that the deposition of silica was stable even at 373 K. Focus was on the adsorption affinities of caffeine by MIP and was tested by performing relative adsorption of caffeine by MIP and blank (standard) using demountable path length cell in IR. It was observed that MIP showed almost 3-folds higher adsorption capabilities as compared to blank. The initial rate of adsorption of caffeine by MIP is much higher than blank which is one of the desirable feature according the its intended use. The higher adsorption of caffeine by MIP not only depends on the amount of silica deposited but also the available binding sites present on its surface. Selectivity of MIP was also verified by the competitive adsorption of caffeine and its structure analogs such as theophylline. Clearly, MIP showed greater and more rapid binding capabilities for caffeine than theophylline. At short contact times, the binding capability for caffeine is almost 1.8 times greater than the binding capabilities for theophylline.

  1. A method to estimate the fractional fat volume within a ROI of a breast biopsy for WAXS applications: Animal tissue evaluation

    International Nuclear Information System (INIS)

    Tang, Robert Y.; McDonald, Nancy; Laamanen, Curtis; LeClair, Robert J.

    2014-01-01

    Purpose: To develop a method to estimate the mean fractional volume of fat (ν ¯ fat ) within a region of interest (ROI) of a tissue sample for wide-angle x-ray scatter (WAXS) applications. A scatter signal from the ROI was obtained and use of ν ¯ fat in a WAXS fat subtraction model provided a way to estimate the differential linear scattering coefficient μ s of the remaining fatless tissue. Methods: The efficacy of the method was tested using animal tissue from a local butcher shop. Formalin fixed samples, 5 mm in diameter 4 mm thick, were prepared. The two main tissue types were fat and meat (fibrous). Pure as well as composite samples consisting of a mixture of the two tissue types were analyzed. For the latter samples, ν fat for the tissue columns of interest were extracted from corresponding pixels in CCD digital x-ray images using a calibration curve. The means ν ¯ fat were then calculated for use in a WAXS fat subtraction model. For the WAXS measurements, the samples were interrogated with a 2.7 mm diameter 50 kV beam and the 6° scattered photons were detected with a CdTe detector subtending a solid angle of 7.75 × 10 −5 sr. Using the scatter spectrum, an estimate of the incident spectrum, and a scatter model, μ s was determined for the tissue in the ROI. For the composite samples, a WAXS fat subtraction model was used to estimate the μ s of the fibrous tissue in the ROI. This signal was compared to μ s of fibrous tissue obtained using a pure fibrous sample. Results: For chicken and beef composites, ν ¯ fat =0.33±0.05 and 0.32 ± 0.05, respectively. The subtractions of these fat components from the WAXS composite signals provided estimates of μ s for chicken and beef fibrous tissue. The differences between the estimates and μ s of fibrous obtained with a pure sample were calculated as a function of the momentum transfer x. A t-test showed that the mean of the differences did not vary from zero in a statistically significant way thereby

  2. COBRA: A Computational Brewing Application for Predicting the Molecular Composition of Organic Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Fooshee, David R.; Nguyen, Tran B.; Nizkorodov, Sergey A.; Laskin, Julia; Laskin, Alexander; Baldi, Pierre

    2012-05-08

    Atmospheric organic aerosols (OA) represent a significant fraction of airborne particulate matter and can impact climate, visibility, and human health. These mixtures are difficult to characterize experimentally due to the enormous complexity and dynamic nature of their chemical composition. We introduce a novel Computational Brewing Application (COBRA) and apply it to modeling oligomerization chemistry stemming from condensation and addition reactions of monomers pertinent to secondary organic aerosol (SOA) formed by photooxidation of isoprene. COBRA uses two lists as input: a list of chemical structures comprising the molecular starting pool, and a list of rules defining potential reactions between molecules. Reactions are performed iteratively, with products of all previous iterations serving as reactants for the next one. The simulation generated thousands of molecular structures in the mass range of 120-500 Da, and correctly predicted ~70% of the individual SOA constituents observed by high-resolution mass spectrometry (HR-MS). Selected predicted structures were confirmed with tandem mass spectrometry. Esterification and hemiacetal formation reactions were shown to play the most significant role in oligomer formation, whereas aldol condensation was shown to be insignificant. COBRA is not limited to atmospheric aerosol chemistry, but is broadly applicable to the prediction of reaction products in other complex mixtures for which reasonable reaction mechanisms and seed molecules can be supplied by experimental or theoretical methods.

  3. Molecular composition of extracellular matrix in the vestibular nuclei of the rat.

    Science.gov (United States)

    Rácz, Eva; Gaál, Botond; Kecskes, Szilvia; Matesz, Clara

    2014-07-01

    Previous studies have demonstrated that the molecular and structural composition of the extracellular matrix (ECM) shows regional differences in the central nervous system. By using histochemical and immunohistochemical methods, we provide here a detailed map of the distribution of ECM molecules in the vestibular nuclear complex (VNC) of the rat. We have observed common characteristics of the ECM staining pattern in the VNC and a number of differences among the individual vestibular nuclei and their subdivisions. The perineuronal net (PNN), which is the pericellular condensation of ECM, showed the most intense staining for hyaluronan, aggrecan, brevican and tenascin-R in the superior, lateral and medial vestibular nuclei, whereas the HAPLN1 link protein and the neurocan exhibited moderate staining intensity. The rostral part of the descending vestibular nucleus (DVN) presented a similar staining pattern in the PNN, with the exception of brevican, which was negative. The caudal part of the DVN had the weakest staining for all ECM molecules in the PNN. Throughout the VNC, versican staining in the PNN, when present, was distinctive due to its punctuate appearance. The neuropil also exhibited heterogeneity among the individual vestibular nuclei in ECM staining pattern and intensity. We find that the heterogeneous distribution of ECM molecules is associated in many cases with the variable cytoarchitecture and hodological organization of the vestibular nuclei, and propose that differences in the ECM composition may be related to specific neuronal functions associated with gaze and posture control and vestibular compensation.

  4. Applications of micro-SAXS/WAXS to study polymer fibers

    International Nuclear Information System (INIS)

    Riekel, C.

    2003-01-01

    Instrumentation and selected applications for X-ray microdiffraction experiments on polymer and biopolymer fibers at the European Synchrotron Radiation Facility (ESRF) microfocus beamline are reviewed. Combined SAXS/WAXS experiments can be performed on single fibers with a beam size down to about 5 μm. WAXS experiments can be performed down to about 2 μm and in exceptional cases down to 0.1 μm beam size. The instrumental possibilities are demonstrated for the production line of spider silk

  5. Applications of micro-SAXS/WAXS to study polymer fibers

    Energy Technology Data Exchange (ETDEWEB)

    Riekel, C. E-mail: riekel@esrf.fr

    2003-01-01

    Instrumentation and selected applications for X-ray microdiffraction experiments on polymer and biopolymer fibers at the European Synchrotron Radiation Facility (ESRF) microfocus beamline are reviewed. Combined SAXS/WAXS experiments can be performed on single fibers with a beam size down to about 5 {mu}m. WAXS experiments can be performed down to about 2 {mu}m and in exceptional cases down to 0.1 {mu}m beam size. The instrumental possibilities are demonstrated for the production line of spider silk.

  6. Applications of micro-SAXS/WAXS to study polymer fibers

    Science.gov (United States)

    Riekel, C.

    2003-01-01

    Instrumentation and selected applications for X-ray microdiffraction experiments on polymer and biopolymer fibers at the European Synchrotron Radiation Facility (ESRF) microfocus beamline are reviewed. Combined SAXS/WAXS experiments can be performed on single fibers with a beam size down to about 5 μm. WAXS experiments can be performed down to about 2 μm and in exceptional cases down to 0.1 μm beam size. The instrumental possibilities are demonstrated for the production line of spider silk.

  7. Cannabis-induced psychosis associated with high potency "wax dabs".

    Science.gov (United States)

    Pierre, Joseph M; Gandal, Michael; Son, Maya

    2016-04-01

    With mounting evidence that the risk of cannabis-induced psychosis may be related to both dose and potency of tetrahydrocannbinol (THC), increasing reports of psychosis associated with cannabinoids containing greater amounts of THC are anticipated. We report two cases of emergent psychosis after using a concentrated THC extract known as cannabis "wax," "oil," or "dabs" raising serious concerns about its psychotic liability. Although "dabbing" with cannabis wax is becoming increasingly popular in the US for both recreational and "medicinal" intentions, our cases raise serious concerns about its psychotic liability and highlight the importance of understanding this risk by physicians recommending cannabinoids for purported medicinal purposes. Published by Elsevier B.V.

  8. Wax Precipitation Modeled with Many Mixed Solid Phases

    DEFF Research Database (Denmark)

    Heidemann, Robert A.; Madsen, Jesper; Stenby, Erling Halfdan

    2005-01-01

    The behavior of the Coutinho UNIQUAC model for solid wax phases has been examined. The model can produce as many mixed solid phases as the number of waxy components. In binary mixtures, the solid rich in the lighter component contains little of the heavier component but the second phase shows sub......-temperature and low-temperature forms, are pure. Model calculations compare well with the data of Pauly et al. for C18 to C30 waxes precipitating from n-decane solutions. (C) 2004 American Institute of Chemical Engineers....

  9. Three-dimensional wax patterning of paper fluidic devices.

    Science.gov (United States)

    Renault, Christophe; Koehne, Jessica; Ricco, Antonio J; Crooks, Richard M

    2014-06-17

    In this paper we describe a method for three-dimensional wax patterning of microfluidic paper-based analytical devices (μPADs). The method is rooted in the fundamental details of wax transport in paper and provides a simple way to fabricate complex channel architectures such as hemichannels and fully enclosed channels. We show that three-dimensional μPADs can be fabricated with half as much paper by using hemichannels rather than ordinary open channels. We also provide evidence that fully enclosed channels are efficiently isolated from the exterior environment, decreasing contamination risks, simplifying the handling of the device, and slowing evaporation of solvents.

  10. Photocatalytic water splitting: Materials design and high-throughput screening of molecular compositions

    Science.gov (United States)

    Khnayzer, Rony S.

    Due to the expected increases on energy demand in the near future, the development of new catalytic molecular compositions and materials capable of directly converting water, with the aid of solar photons, into hydrogen becomes obviated. Hydrogen is a combustible fuel and precious high-energy feedstock chemical. However, for the water-splitting reaction to proceed efficiently and economically enough for large-scale application, efficient light-absorbing sensitizers and water splitting catalysts are required. To study the kinetics of the water reduction reaction, we have used titania (TiO2) nanoparticles as a robust scaffold to photochemically grow platinum (Pt) nanoparticles from a unique surface-anchored molecular precursor Pt(dcbpy)Cl2 [dcbpy = 4,4'-dicarboxylic acid-2,2'-bipyridine]. The hybrid Pt/TiO 2 nanomaterials obtained were shown to be a superior water reduction catalyst (WRC) in aqueous suspensions when compared with the benchmark platinized TiO2. In addition, cobalt phosphate (CoPi) water oxidation catalyst (WOC) was photochemically assembled on the surface of TiO2, and its structure and mechanism of activity showed resemblance to the established electrochemically grown CoPi material. Both WRC and WOC described above possessed near unity Faradaic efficiency for hydrogen and oxygen production respectively, and were fully characterized by electron microscopy, x-ray absorption spectroscopy, electrochemistry and photochemistry. While there are established materials and molecules that are able to drive water splitting catalysis, some of these efficient semiconductors, including titanium dioxide (TiO2) and tungsten trioxide (WO3), are only able to absorb high-energy (ultraviolet or blue) photons. This high-energy light represents merely a fraction of the solar spectrum that strikes the earth and the energy content of those remaining photons is simply wasted. A strategy to mitigate this problem has been developed over the years in our laboratory. Briefly

  11. Non-Invasive Delivery of dsRNA into De-Waxed Tick Eggs by Electroporation

    Science.gov (United States)

    Ruiz, Newton; de Abreu, Leonardo Araujo; Parizi, Luís Fernando; Kim, Tae Kwon; Mulenga, Albert; Braz, Gloria Regina Cardoso; Vaz, Itabajara da Silva; Logullo, Carlos

    2015-01-01

    RNA interference-mediated gene silencing was shown to be an efficient tool for validation of targets that may become anti-tick vaccine components. Here, we demonstrate the application of this approach in the validation of components of molecular signaling cascades, such as the Protein Kinase B (AKT) / Glycogen Synthase Kinase (GSK) axis during tick embryogenesis. It was shown that heptane and hypochlorite treatment of tick eggs can remove wax, affecting corium integrity and but not embryo development. Evidence of AKT and GSK dsRNA delivery into de-waxed eggs of via electroporation is provided. Primers designed to amplify part of the dsRNA delivered into the electroporated eggs dsRNA confirmed its entry in eggs. In addition, it was shown that electroporation is able to deliver the fluorescent stain, 4',6-diamidino-2-phenylindole (DAPI). To confirm gene silencing, a second set of primers was designed outside the dsRNA sequence of target gene. In this assay, the suppression of AKT and GSK transcripts (approximately 50% reduction in both genes) was demonstrated in 7-day-old eggs. Interestingly, silencing of GSK in 7-day-old eggs caused 25% reduction in hatching. Additionally, the effect of silencing AKT and GSK on embryo energy metabolism was evaluated. As expected, knockdown of AKT, which down regulates GSK, the suppressor of glycogen synthesis, decreased glycogen content in electroporated eggs. These data demonstrate that electroporation of de-waxed R. microplus eggs could be used for gene silencing in tick embryos, and improve the knowledge about arthropod embryogenesis. PMID:26091260

  12. Bee waxes: a model of characterization for using as base simulator tissue in teletherapy with photons; Ceras de abelha: um modelo de caracterizacao para sua utilizacao como tecido simulador base em teleterapia com fotons

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Rogerio Matias Vidal da; Souza, Divanizia do Nascimento

    2011-10-26

    This paper presents a model of characterization and selection of bee waxes which makes possible to certify the usage viability of that base simulator tissue in the manufacture of appropriated objects for external radiotherapy with mega volt photon beams. The work was divide into three stages, where was evaluated physical and chemical properties besides the aspects related to the capacity of beam attenuation. All the process was carefully accompanied related to the wax origin such as the bee specimen and the flora surrounding the beehives. The chemical composition of the waxes is similar to others simulators usually used in radiotherapy. The behavior of mass attenuation coefficient in the radiotherapeutic energy range is comparable to other simulators, and consequently to the soft tissue. The proposed model is efficient and allows the affirmative that the usage of determined bee wax as base simulator tissue is convenient

  13. Modulation of drug release from nanocarriers loaded with a poorly water soluble drug (flurbiprofen) comprising natural waxes.

    Science.gov (United States)

    Baviskar, D T; Amritkar, A S; Chaudhari, H S; Jain, D K

    2012-08-01

    In this study, flurbiprofen (FLB) Solid Lipid Nanoparticles (SLN) composed from a mixture of beeswax and carnauba wax, Tween 80 and egg lecithin as emulsifiers have been prepared. FLB was incorporated as model lipophilic drug to assess the influence of matrix composition in the drug release profile. SLN were produced by microemulsion technique. In vitro studies were performed in Phosphate Buffered Saline (PBS). The FLB loaded SLN showed a mean particle size of 75 +/- 4 nm, a polydispersity index approximately 0.2 +/- 0.02 and an entrapment efficiency (EE) of more than 95%. Suspensions were stable, with zeta potential values in the range of -15 to -17 mV. DSC thermograms and UV analysis indicated the stability of nanoparticles with negligible drug leakage. Nanoparticles with higher beeswax content in their core exhibited faster drug release than those containing more carnauba wax.

  14. Leaf waxes of slow-growing alpine and fast-growing lowland Poa species: inherent differences and responses to UV-B radiation

    International Nuclear Information System (INIS)

    Pilon, J.J.; Lambers, H.; Baas, W.; Tosserams, M.; Rozema, J.; Atkin, O.K.

    1999-01-01

    We investigated whether alpine and lowland Poa species exhibit inherent differences in leaf cuticular waxes, leaf UV absorbing compounds and/or growth responses to UV-B treatment. All plants were grown hydroponically in a growth cabinet (constant 20°; 14 hr photoperiod; 520 μmol photons m −2 s −1 PAR). Two alpine (P. fawcettiae and P. costiniana), one sub-alpine (P. alpina) and three temperate lowland species (P. pratensis, P. compressa and P. trivialis) were grown under conditions without UV radiation for 36 days. In a subsequent experiment, four Poa species (P. costiniana, P. alpina, P. compressa and P. trivialis) were also exposed for 21 days to UV-B/(UV-A) radiation ('UV-B treatment') that resulted in daily UV-B radiation of 7.5 kJ m −2 day −1 , with control plants being grown without UV-B ('UV-A control treatment'). All treatments were carried out in the same growth cabinet. There was no altitudinal trend regarding wax concentrations per unit leaf area, when the six species grown under UV-less conditions, were compared at similar developmental stage (20–30 g shoot fresh mass). However, large differences in cuticular wax chemical composition were observed between the alpine and lowland species grown under UV-less conditions. For example, a single primary alcohol was present in the waxes of the lowland and sub-alpine species (C 26 H 53 OH), but was virtually absent in the alpine species. Although alkanes were present in all six species (primarily C 29 H 60 and C 31 H 64 ), the proportion of total wax present as alkanes was highest in the alpine species. Aldehydes were only present in the waxes of the alpine species. Conversely, substantial amounts of triterpenoids were mainly present in the three lowland species (squalene and lupeol were the dominant forms). The proportion of total wax present as long-chain esters (LCE-s) was similar in all six species grown in the absence of UV radiation. Acetates were observed only in the wax of

  15. Wax-incorporated emulsion gel beads of calcium pectinate for intragastric floating drug delivery.

    Science.gov (United States)

    Sriamornsak, Pornsak; Asavapichayont, Panida; Nunthanid, Jurairat; Luangtana-Anan, Manee; Limmatvapirat, Sontaya; Piriyaprasarth, Suchada

    2008-01-01

    The purpose of this study was to prepare wax-incorporated pectin-based emulsion gel beads using a modified emulsion-gelation method. The waxes in pectin-olive oil mixtures containing a model drug, metronidazole, were hot-melted, homogenized and then extruded into calcium chloride solution. The beads formed were separated, washed with distilled water and dried for 12 h. The influence of various types and amounts of wax on floating and drug release behavior of emulsion gel beads of calcium pectinate was investigated. The drug-loaded gel beads were found to float on simulated gastric fluid if the sufficient amount of oil was used. Incorporation of wax into the emulsion gel beads affected the drug release. Water-soluble wax (i.e. polyethylene glycol) increased the drug release while other water-insoluble waxes (i.e. glyceryl monostearate, stearyl alcohol, carnauba wax, spermaceti wax and white wax) significantly retarded the drug release. Different waxes had a slight effect on the drug release. However, the increased amount of incorporated wax in the formulations significantly sustained the drug release while the beads remained floating. The results suggest that wax-incorporated emulsion gel beads could be used as a carrier for intragastric floating drug delivery.

  16. Diversity of cuticular wax among Salix species and Populus species hybrids.

    Science.gov (United States)

    Cameron, Kimberly D; Teece, Mark A; Bevilacqua, Eddie; Smart, Lawrence B

    2002-08-01

    The leaf cuticular waxes of three Salix species and two Populus species hybrids, selected for their ability to produce high amounts of biomass, were characterized. Samples were extracted in CH(2)Cl(2) three times over the growing season. Low kV SEM was utilized to observe differences in the ultrastructure of leaf surfaces from each clone. Homologous series of wax components were classified into organic groups, and the variation in wax components due to clone, sample time, and their interaction was identified. All Salix species and Populus species hybrids showed differences in total wax load at each sampling period, whereas the pattern of wax deposition over time differed only between the Salix species. A strong positive relationship was identified between the entire homologous series of alcohols and total wax load in all clones. Similarly strong relationships were observed between fatty acids and total wax load as well as fatty acids and alcohols in two Salix species and one Populus species hybrid. One Salix species, S. dasyclados, also displayed a strong positive relationship between alcohols and alkanes. These data indicate that species grown under the same environmental conditions produce measurably different cuticular waxes and that regulation of wax production appears to be different in each species. The important roles cuticular waxes play in drought tolerance, pest, and pathogen resistance, as well as the ease of wax extraction and analysis, strongly suggest that the characteristics of the cuticular wax may prove to be useful selectable traits in a breeding program.

  17. Gourds: Bitter, Bottle, Wax, Snake, Sponge and Ridge

    Science.gov (United States)

    Minor cucurbits include bitter gourd, bottle gourd, wax gourd, snake gourd, and sponge and ridge gourd, which are significant dietary sources of nutrients such as vitamin A and C, iron and calcium. These cucurbits are cultivated and marketed by smallholder farmers and remain important components of ...

  18. Effects of wax treatment on quality and postharvest physiology of ...

    African Journals Online (AJOL)

    ... cell membrane permeability and malondialdehyde content when compared with those in control. This waxing also improved total sugars and the contents of ascorbic acid in pineapple fruits. These results suggested that this treatment might be a useful technique to alleviate chilling injury and maintain fruit quality during ...

  19. Structural characterization of wax esters by electron ionization mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Urbanová, Klára; Vrkoslav, Vladimír; Valterová, Irena; Háková, Martina; Cvačka, Josef

    2012-01-01

    Roč. 53, č. 1 (2012), s. 204-213 ISSN 0022-2275 R&D Projects: GA ČR GA203/09/0139 Institutional research plan: CEZ:AV0Z40550506 Keywords : interpretation * neutral lipids * spectral database * waxes Subject RIV: CC - Organic Chemistry Impact factor: 4.386, year: 2012

  20. Uncovered secret of a Vasseur-Tramond wax model.

    Science.gov (United States)

    Pastor, J F; Gutiérrez, B; Montes, J M; Ballestriero, R

    2016-01-01

    The technique of anatomical wax modelling reached its heyday in Italy during the 18th century, through a fruitful collaboration between sculptors and anatomists. It soon spread to other countries, and prestigious schools were created in England, France, Spain and Austria. Paris subsequently replaced Italy as the major centre of manufacture, and anatomical waxes were created there from the mid-19th century in workshops such as that of Vasseur-Tramond. This workshop began to sell waxes to European Faculties of Medicine and Schools of Surgery around 1880. Little is known of the technique employed in the creation of such artefacts as this was deemed a professional secret. To gain some insight into the methods of construction, we have studied a Vasseur-Tramond wax model in the Valladolid University Anatomy Museum, Spain, by means of multi-slice computerised tomography and X-ray analysis by means of environmental scanning electron microscopy. Scanning electron microscopy was used to examine the hair. These results have revealed some of the methods used to make these anatomical models and the materials employed. © 2015 Anatomical Society.

  1. Effect of asphaltenes on crude oil wax crystallization

    DEFF Research Database (Denmark)

    Kriz, Pavel; Andersen, Simon Ivar

    2005-01-01

    The paper summarizes the experimental work done on asphaltene influenced wax crystallization. Three different asphaltenes (from stable oil, instable oil, and deposit) were mixed at several concentrations or dispersions into the waxy crude oil. These blends were evaluated by viscometry and yield s...

  2. Leaf waxes in litter and topsoils along a European transect

    Czech Academy of Sciences Publication Activity Database

    Schäfer, I. K.; Lanny, V.; Franke, J.; Eglinton, T. I.; Zech, M.; Vysloužilová, Barbora; Zech, R.

    2016-01-01

    Roč. 2, č. 4 (2016), s. 551-564 ISSN 2199-3971 Institutional support: RVO:67985912 Keywords : leaf waxes * soil s Subject RIV: AC - Archeology, Anthropology, Ethnology http://www. soil -journal.net/2/551/2016/ soil -2-551-2016.pdf

  3. Preparation and Characterization of Sugar Cane Wax Microspheres ...

    African Journals Online (AJOL)

    ... and characterize indomethacin (IM) microspheres prepared with sugar cane wax microsperes. Methods: Microspheres were prepared by melt-emulsified dispersion and cooling-induced solidification method. The microspheres were characterized by scanning electron microscopy (SEM) and differntial scanning calorimetry ...

  4. Molecular- and nm-scale Investigation of the Structure and Compositional Heterogeneity of Naturally Occurring Ferrihydrite

    Science.gov (United States)

    Cismasu, C.; Michel, F. M.; Stebbins, J. F.; Tcaciuc, A. P.; Brown, G. E.

    2008-12-01

    Ferrihydrite is a hydrated Fe(III) nano-oxide that forms in vast quantities in contaminated acid mine drainage environments. As a result of its high surface area, ferrihydrite is an important environmental sorbent, and plays an essential role in the geochemical cycling of pollutant metal(loid)s in these settings. Despite its environmental relevance, this nanomineral remains one of the least understood environmental solids in terms of its structure (bulk and surface), compositional variations, and the factors affecting its reactivity. Under natural aqueous conditions, ferrihydrite often precipitates in the presence of several inorganic compounds such as aluminum, silica, arsenic, etc., or in the presence of organic matter. These impurities can affect the molecular-level structure of naturally occurring ferrihydrite, thus modifying fundamental properties that are directly correlated with solid-phase stability and surface reactivity. Currently there exists a significant gap in our understanding of the structure of synthetic vs. natural ferrihydrites, due to the inherent difficulties associated to the investigation of these poorly crystalline nanophases. In this study, we combined synchrotron- and laboratory-based techniques to characterize naturally occurring ferrihydrite from an acid mine drainage system situated at the New Idria mercury mine in California. We used high-energy X-ray total scattering and pair distribution function analysis to elucidate quantitative structural details of these samples. We have additionally used scanning transmission X-ray microscopy high resolution imaging (30 nm) to evaluate the spatial relationship of major elements Si, Al, and C within ferrihydrite. Al, Si and C K-edge near- edge X-ray absorption fine structure spectroscopy and 27Al nuclear magnetic resonance spectroscopy were used to obtain short-range structural information. By combining these techniques we attain the highest level of resolution permitted by current analytical

  5. Molecular composition of particulate matter emissions from dung and brushwood burning household cookstoves in Haryana, India

    Science.gov (United States)

    Fleming, Lauren T.; Lin, Peng; Laskin, Alexander; Laskin, Julia; Weltman, Robert; Edwards, Rufus D.; Arora, Narendra K.; Yadav, Ankit; Meinardi, Simone; Blake, Donald R.; Pillarisetti, Ajay; Smith, Kirk R.; Nizkorodov, Sergey A.

    2018-02-01

    Emissions of airborne particles from biomass burning are a significant source of black carbon (BC) and brown carbon (BrC) in rural areas of developing countries where biomass is the predominant energy source for cooking and heating. This study explores the molecular composition of organic aerosols from household cooking emissions with a focus on identifying fuel-specific compounds and BrC chromophores. Traditional meals were prepared by a local cook with dung and brushwood-fueled cookstoves in a village in Palwal district, Haryana, India. Cooking was done in a village kitchen while controlling for variables including stove type, fuel moisture, and meal. Fine particulate matter (PM2.5) emissions were collected on filters, and then analyzed via nanospray desorption electrospray ionization-high-resolution mass spectrometry (nano-DESI-HRMS) and high-performance liquid chromatography-photodiode array-high-resolution mass spectrometry (HPLC-PDA-HRMS) techniques. The nano-DESI-HRMS analysis provided an inventory of numerous compounds present in the particle phase. Although several compounds observed in this study have been previously characterized using gas chromatography methods a majority of the species in the nano-DESI spectra were newly observed biomass burning compounds. Both the stove (chulha or angithi) and the fuel (brushwood or dung) affected the composition of organic aerosols. The geometric mean of the PM2.5 emission factor and the observed molecular complexity increased in the following order: brushwood-chulha (7.3 ± 1.8 g kg-1 dry fuel, 93 compounds), dung-chulha (21.1 ± 4.2 g kg-1 dry fuel, 212 compounds), and dung-angithi (29.8 ± 11.5 g kg-1 dry fuel, 262 compounds). The mass-normalized absorption coefficient (MACbulk) for the organic-solvent extractable material for brushwood PM2.5 was 3.7 ± 1.5 and 1.9 ± 0.8 m2 g-1 at 360 and 405 nm, respectively, which was approximately a factor of two higher than that for dung PM2.5. The HPLC-PDA-HRMS analysis

  6. Relationships between Molecular Composition and Optical Properties of Dissolved Organic Matter

    Science.gov (United States)

    Cooper, W. T.; Tfaily, M.; Osborne, D.; Paul, A.; Podgorski, D. C.; Corbett, J.; Chanton, J.

    2009-12-01

    Our focus is on the relationships between the optical properties of dissolved organic matter (DOM) and its molecular composition. For example, we demonstrated that changes in the absorption and fluorescence characteristics of DOM in outwelling from Brazilian mangrove forests correlated with decreases in highly unsaturated organic compounds as DOM was transported from mangrove porewaters to the continental shelf. In that work we combined ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) that provided detailed compositional information with absorption and Excitation/Emission Matrix (EEM) spectroscopy This presentation will highlight new results utilizing the combination of optical spectroscopy and FT-ICR mass spectrometry to illuminate the processes which control DOM cycling. Our focus will be on the contributions of the heteroatom components of DOM (i.e. organic sulfur and organic nitrogen) to its optical properties and how changes in optical properties correlate with important environmental processes like humification and bioavailability. Figure 1 below includes a narrow 0.20 Dalton window from a mass spectrum which demonstrates the ability of ultrahigh resolution mass spectrometry to resolve and identify nitrogen heteroatom compounds in DOM. Our study sites include the Glacial Lake Agassiz Peatlands (GLAP) in northern Minnesota and wetlands in the Caloosahatchee River basin in South Florida. Figure 1. Isolated 0.20 Da window of an ESI-FT-ICR mass spectrum of DOM from a GLAP bog. Labels identify N1 (d,e,f) and N3 classes of nitrogen heteroatoms. The 0.0031 Da mass spacing is used to confirm the N3 class.

  7. Evaluating sourcing and fluvial integration of plant wax biomarkers from the Peruvian Andes to Amazonian lowlands

    Science.gov (United States)

    Wu, M. S.; Feakins, S. J.; Ponton, C.; West, A. J.; Galy, V.

    2017-12-01

    The carbon and hydrogen isotopic compositions (respectively δ13C and δD) of plant wax biomarkers have been widely used to reconstruct past climate and environment. To understand how leaf waxes are sourced within a river catchment, and how their isotopic signature is transferred from source to sink, we study δ13C and δD of C29 n-alkanes and C30 n-alkanoic acids in the Madre de Dios River catchment along the eastern flank of the Peruvian Andes. We sampled soils across a 3.5km elevation transect and find gradients in δ13Cwax (ca. +1.5‰/km) and δDwax (ca. -10 ‰/km) similar to gradients in tree canopy leaves (Feakins et al., 2016 GCA; Wu et al., 2017 GCA). We also collected river suspended sediment samples along the Madre de Dios River and its tributaries, which together drain an area of 75,400 km2 and 6 km of elevation. We utilize soil data and a digital elevation model to construct isoscapes, delineate catchments for each river sampling location, predict river values assuming spatial uniform integration, and compare our predictions with observed values. Although both compounds generally follow isotopic gradients defined by catchment elevations, the dual isotope and compound-class comparison reveals additional processes. For C30 n-alkanoic acid we find an up to 1km lower-than-expected catchment signal, indicating degradation of upland contributions in transit and replacement with lowland inputs. In contrast, mountain-front river locations are susceptible to upland-biases (up to 1km higher sourcing) in C29 n-alkane sourcing, likely due to enhanced erosion and higher leaf wax stock in Andean soil compared to the lowland, and greater persistence of n-alkanes than n-alkanoic acids. For both compounds, the bias is eliminated with several hundred km of river transit across the floodplain. In one location, we identify significant petrogenic contamination of n-alkanes but not n-alkanoic acids. These results indicate the power in combining dual compound classes and

  8. SEPARATION OF FISCHER-TROPSCH WAX FROM CATALYST BY SUPERCRITICAL EXTRACTION

    Energy Technology Data Exchange (ETDEWEB)

    Patrick C. Joyce; Mark C. Thies

    1999-03-31

    The objective of this research project was to evaluate the potential of supercritical fluid (SCF) extraction for the recovery and fractionation of the wax product from the slurry bubble column (SBC) reactor of the Fischer-Tropsch (F-T) process. The wax, comprised mostly of branched and linear alkanes with a broad molecular weight distribution up to C{sub 100}, is to be extracted with a hydrocarbon solvent that has a critical temperature near the operating temperature of the SBC reactor, i.e., 200-300 C. Aspen Plus{trademark} was used to perform process simulation studies on the proposed extraction process, with Redlich-Kwong-Soave (RKS) being used for the thermodynamic property model. In summary, we have made comprehensive VLE measurements for short alkane + long alkane systems over a wide range of pressures and temperatures, dramatically increasing the amount of high-quality data available for these simple, yet highly relevant systems. In addition, our work has demonstrated that, surprisingly, no current thermodynamic model can adequately predict VLE behavior for these systems. Thus, process simulations (such as those for our proposed SCF extraction process) that incorporate these systems can currently only give results that are qualitative at best. Although significant progress has been made in the past decade, more experimental and theoretical work remain to be done before the phase equilibria of asymmetric alkane mixtures can be predicted with confidence.

  9. Epicuticular wax on cherry laurel (Prunus laurocerasus) leaves does not constitute the cuticular transpiration barrier.

    Science.gov (United States)

    Zeisler, Viktoria; Schreiber, Lukas

    2016-01-01

    Epicuticular wax of cherry laurel does not contribute to the formation of the cuticular transpiration barrier, which must be established by intracuticular wax. Barrier properties of cuticles are established by cuticular wax deposited on the outer surface of the cuticle (epicuticular wax) and in the cutin polymer (intracuticular wax). It is still an open question to what extent epi- and/or intracuticular waxes contribute to the formation of the transpiration barrier. Epicuticular wax was mechanically removed from the surfaces of isolated cuticles and intact leaf disks of cherry laurel (Prunus laurocerasus L.) by stripping with different polymers (collodion, cellulose acetate and gum arabic). Scanning electron microscopy showed that two consecutive treatments with all three polymers were sufficient to completely remove epicuticular wax since wax platelets disappeared and cuticle surfaces appeared smooth. Waxes in consecutive polymer strips and wax remaining in the cuticle after treatment with the polymers were determined by gas chromatography. This confirmed that two treatments of the polymers were sufficient for selectively removing epicuticular wax. Water permeability of isolated cuticles and cuticles covering intact leaf disks was measured using (3)H-labelled water before and after selectively removing epicuticular wax. Cellulose acetate and its solvent acetone led to a significant increase of cuticular permeability, indicating that the organic solvent acetone affected the cuticular transpiration barrier. However, permeability did not change after two subsequent treatments with collodion and gum arabic or after treatment with the corresponding solvents (diethyl ether:ethanol or water). Thus, in the case of P. laurocerasus the epicuticular wax does not significantly contribute to the formation of the cuticular transpiration barrier, which evidently must be established by the intracuticular wax.

  10. Preparation and characterization of ketoprofen-loaded solid lipid nanoparticles made from beeswax and carnauba wax.

    Science.gov (United States)

    Kheradmandnia, Soheila; Vasheghani-Farahani, Ebrahim; Nosrati, Mohsen; Atyabi, Fatemeh

    2010-12-01

    Solid lipid nanoparticles (SLNs) have been proposed as suitable colloidal carriers for delivery of drugs with limited solubility. Ketoprofen as a model drug was incorporated into SLNs prepared from a mixture of beeswax and carnauba wax using Tween 80 and egg lecithin as emulsifiers. The characteristics of the SLNs with various lipid and surfactant composition were investigated. The mean particle size of drug-loaded SLNs decreased upon mixing with Tween 80 and egg lecithin as well as upon increasing total surfactant concentration. SLNs of 75 ± 4 nm with a polydispersity index of 0.2 ± 0.02 were obtained using 1% (vol/vol) mixed surfactant at a ratio of 60:40 Tween 80 to egg lecithin. The zeta potential of these SLNs varied in the range of -15 to -17 (mV), suggesting the presence of similar interface properties. High drug entrapment efficiency of 97% revealed the ability of SLNs to incorporate a poorly water-soluble drug such as ketoprofen. Differential scanning calorimetry thermograms and high-performance liquid chromatographic analysis indicated the stability of nanoparticles with negligible drug leakage after 45 days of storage. It was also found that nanoparticles with more beeswax content in their core exhibited faster drug release as compared with those containing more carnauba wax in their structure. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Epicuticular Wax in Developing Olives (Olea europaea) Is Highly Dependent upon Cultivar and Fruit Ripeness.

    Science.gov (United States)

    Vichi, Stefania; Cortés-Francisco, Nuria; Caixach, Josep; Barrios, Gonçal; Mateu, Jordi; Ninot, Antonia; Romero, Agustí

    2016-08-03

    The epicuticular wax (EW) layer is located on the surface of most plant organs. It provides the cuticle with most of its properties and is the primary barrier against biotic and abiotic stress. Despite the importance of Olea europaea cultivation, few studies have characterized the EW covering leaves and olives, which could be involved in resistance to both infection and environmental conditions. In the present study, wide-ranging screening was carried out using direct-injection electrospray ionization coupled to high-resolution mass spectrometry to analyze EW in developing olives of nine varieties. The proportions of EW fractions [wax esters (WEs), diacylglycerols, triacylglycerols (TAGs), triterpenic acids, and aldehydes] strongly depended upon the olive cultivar and, in only a few cases, were influenced by the sampling date. The specific compositions of the major fractions, WEs and TAGs, were strictly related to the cultivar, while the degree of unsaturation and chain length of the WEs evolved throughout the 4 weeks prior to the olive turning color.

  12. Molecular hydrogen affects body composition, metabolic profiles, and mitochondrial function in middle-aged overweight women.

    Science.gov (United States)

    Korovljev, D; Trivic, T; Drid, P; Ostojic, S M

    2018-02-01

    Molecular hydrogen (H 2 ) effectively treats obesity-related disorders in animal models, yet no studies have investigated the effectiveness and safety of H 2 for improving biomarkers of obesity in humans. In this double blind, placebo-controlled, crossover pilot trial, we evaluated the effects of H 2 intervention on body composition, hormonal status, and mitochondrial function in ten (n = 10) middle-aged overweight women. Volunteers received either hydrogen-generating minerals (supplying ~6 ppm of H 2 per day) or placebo by oral administration of caplets for 4 weeks. The primary end-point of treatment efficacy was the change in the body fat percentage from baseline to 4 weeks. In addition, assessment of other body composition indices, screening laboratory studies, and evaluation of side effects were performed before and at follow-up. Clinical trial registration www.clinicaltrials.gov , ID number NCT02832219. No significant differences were observed between treatment groups for changes in weight, body mass index, and body circumferences at 4-week follow-up (P > 0.05). H 2 treatment significantly reduced body fat percentage (3.2 vs. 0.9%, P = 0.05) and arm fat index (9.7 vs. 6.0%, P = 0.01) compared to placebo administration, respectively. This was accompanied by a significant drop in serum triglycerides after H 2 intervention comparing to placebo (21.3 vs. 6.5%; P = 0.04), while other blood lipids remained stable during the study (P > 0.05). Fasting serum insulin levels dropped by 5.4% after H 2 administration, while placebo intervention augmented insulin response by 29.3% (P = 0.01). It appears that orally administered H 2 as a blend of hydrogen-generating minerals might be a beneficial agent in the management of body composition and insulin resistance in obesity.

  13. Environmental controls on the 2H/1H values of terrestrial leaf waxes in the eastern Canadian Arctic

    Science.gov (United States)

    Shanahan, Timothy M.; Hughen, Konrad A.; Ampel, Linda; Sauer, Peter E.; Fornace, Kyrstin

    2013-10-01

    The hydrogen isotope composition of plant waxes preserved in lacustrine sediments is a potentially valuable tool for reconstructing paleoenvironmental changes in the Arctic. However, in contrast to the mid- and low-latitudes, significantly less effort has been directed towards understanding the factors controlling D/H fractionation in high latitude plant waxes and the impact of these processes on the interpretation of sedimentary leaf wax δD records. To better understand these processes, we examined the D/H ratios of long chain fatty acids in lake surface sediments spanning a temperature and precipitation gradient on Baffin Island in the eastern Canadian Arctic. D/H ratios of plant waxes increase with increasing temperature and aridity, with values ranging from -240‰ to -160‰ over the study area. Apparent fractionation factors between n-alkanoic acids in Arctic lake sediments and precipitation(εFA-ppt) are less negative than those of mid-latitude lakes and modern plants by 25‰ to 65‰, consistent with n-alkane data from modern Arctic plants (Yang et al., 2011). Furthermore, εFA-ppt values from Arctic lakes become systematically more positive with increasing evaporation, in contrast to mid-latitude sites, which show little to no change in fractionation with aridity. These data are consistent with enhanced water loss and isotope fractionation at higher latitude in the Arctic summer, when continuous sunlight supports increased daily photosynthesis. The dominant control on δDFA variations on Baffin Island is temperature. However, changing εFA-ppt result in steeper δDFA-temperature relationships than observed for modern precipitation. The application of this δDFA-based paleotemperature calibration to existing δDFA records from Baffin Island produces much more realistic changes in late Holocene temperature and highlights the importance of these effects in influencing the interpretation of Arctic δDFA records. A better understanding of the controls on

  14. Development of a Parafin Wax deposition Unit for Fused Deposition Modelling (FDM)

    DEFF Research Database (Denmark)

    D'Angelo, Greta; Hansen, Hans Nørgaard; Pedersen, David Bue

    2014-01-01

    . This project illustrates the redesign of an extrusion unit for the deposition of paraffin wax in Fused Deposition Modelling (FDM) instead of the conventional polymeric materials. Among the benefits and brought by the use of paraffin wax in such system are: the possibility to make highly complex and precise...... parts to subsequently use in a Lost Wax Casting process, multi-material Additive Manufacturing and the use of wax as support material during the production of complicated parts. Moreover it is believed that including waxes among the materials usable in FDM would promote new ways of using and exploring...

  15. Increased production of wax esters in transgenic tobacco plants by expression of a fatty acid reductase:wax synthase gene fusion.

    Science.gov (United States)

    Aslan, Selcuk; Hofvander, Per; Dutta, Paresh; Sun, Chuanxin; Sitbon, Folke

    2015-12-01

    Wax esters are hydrophobic lipids consisting of a fatty acid moiety linked to a fatty alcohol with an ester bond. Plant-derived wax esters are today of particular concern for their potential as cost-effective and sustainable sources of lubricants. However, this aspect is hampered by the fact that the level of wax esters in plants generally is too low to allow commercial exploitation. To investigate whether wax ester biosynthesis can be increased in plants using transgenic approaches, we have here exploited a fusion between two bacterial genes together encoding a single wax ester-forming enzyme, and targeted the resulting protein to chloroplasts in stably transformed tobacco (Nicotiana benthamiana) plants. Compared to wild-type controls, transgenic plants showed both in leaves and stems a significant increase in the total level of wax esters, being eight-fold at the whole plant level. The profiles of fatty acid methyl ester and fatty alcohol in wax esters were related, and C16 and C18 molecules constituted predominant forms. Strong transformants displayed certain developmental aberrations, such as stunted growth and chlorotic leaves and stems. These negative effects were associated with an accumulation of fatty alcohols, suggesting that an adequate balance between formation and esterification of fatty alcohols is crucial for a high wax ester production. The results show that wax ester engineering in transgenic plants is feasible, and suggest that higher yields may become achieved in the near future.

  16. [Preparation of molecularly imprinted polypyrrole/Fe3O4 composite material and its application in recognition of tryptophan enantiomers].

    Science.gov (United States)

    Chen, Zhidong; Shan, Xueling; Kong, Yong

    2012-04-01

    Ferrosoferric oxide (Fe(3)O(4)) magnetic material was first synthesized, and then the in-situ chemical polymerization of pyrrole was carried out on the surface of Fe(3)O(4) by using pyrole and L-tryptophan (L-Trp) as the functional monomer and templates, respectively. As a result, molecularly imprinted polypyrrole/Fe(3)O(4) composite material was obtained. This composite material was separated from the solution because of its magnetic property. Polypyrrole in the composite was overoxidized in 1 mol/L NaOH solution by applying a potential of 1.0 V, and thus L-Trp templates were de-deoped from the composite. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and electrochemical methods were employed to characterize the composite. The solution containing L- or D-Trp was pumped through a porous ceramic tube packed with the composite, separately. High performance liquid chromatography (HPLC) was adopted for the detection of L- or D-Trp in the eluate, and the results indicated that the enrichment ability of the composite for L-Trp was almost 2 times that of D-Trp. Therefore, the electro-magnetic composite material has potential applications as chromatographic stationary phase for chiral recognition.

  17. Abiotic condensation synthesis of glyceride lipids and wax esters under simulated hydrothermal conditions.

    Science.gov (United States)

    Rushdi, Ahmed I; Simoneit, Bernd R T

    2006-04-01

    Precursor compounds for abiotic proto cellular membranes are necessary for the origin of life. Amphipathic compounds such as fatty acids and acyl glycerols are important candidates for micelle/bilayer/vesicle formation. Two sets of experiments were conducted to study dehydration reactions of model lipid precursors in aqueous media to form acyl polyols and wax esters, and to evaluate the stability and reactions of the products at elevated temperatures. In the first set, mixtures of n-nonadecanoic acid and ethylene glycol in water, with and without oxalic acid, were heated at discrete temperatures from 150 ( composite function)C to 300 ( composite function)C for 72 h. The products were typically alkyl alkanoates, ethylene glycolyl alkanoates, ethylene glycolyl bis-alkanoates and alkanols. The condensation products had maximum yields between 150 ( composite function)C and 250 ( composite function)C, and were detectable and thus stable under hydrothermal conditions to temperatures acid and glycerol were heated using the same experimental conditions, with and without oxalic acid, between 100 ( composite function)C and 250 ( composite function)C. The main condensation products were two isomers each of monoacylglycerols and diacylglycerols at all temperatures, as well as minor amounts of the fatty acid anhydride and methyl ester. The yield of glyceryl monoheptanoates generally increased with increasing temperature and glyceryl diheptanoates decreased noticeably with increasing temperature. The results indicate that condensation reactions and abiotic synthesis of organic lipid compounds under hydrothermal conditions occur easily, provided precursor concentrations are sufficiently high.

  18. Development of hydrophilic dental wax without surfactant using a non-thermal air atmospheric pressure plasma jet

    International Nuclear Information System (INIS)

    Lee, Jung-Hwan; Kim, Kwang-Mahn; Kim, Kyoung-Nam; Kim, Yong-Hee; Choi, Eun-Ha

    2014-01-01

    Dental wax (DW), a low-melting and high-molecular-weight organic mixture, is widely used in dentistry for forming moulds of teeth. Hydrophilicity is an important property for DW, as a wet dental investment is used to surround the wax before wax burnout is performed. However, recent attempts to improve the hydrophilicity of DW using a surfactant have resulted in the reduced mechanical properties of the dental investment, leading to the failure of the dental restoration. This study applied a non-thermal air atmospheric pressure plasma jet (AAPPJ) for DW surface treatment and investigated its effect on both DW hydrophilicity and the dental investment's mechanical properties. The results showed that the application of the AAPPJ significantly improved the hydrophilicity of the DW, and that the results were similar to that of cleaner-treated DW using commercially available products with surfactant. A surface chemical analysis indicated that the improvement of hydrophilicity was related to an increase in the number of oxygen-related bonds on the DW surface following the removal of carbon hydrate in both AAPPJ and cleaner-treated DW. However, cleaner treatment compromised the mechanical property of the dental investment when the dental investment was in contact with the treated DW, while the AAPPJ treatment did not. Therefore, the use of AAPPJ to treat DW is a promising method for accurate dental restoration, as it induces an improvement in hydrophilicity without harming the dental investment. (paper)

  19. McWRI1, a transcription factor of the AP2/SHEN family, regulates the biosynthesis of the cuticular waxes on the apple fruit surface under low temperature

    Science.gov (United States)

    Ji, Qianlong; Zhang, Kezhong; Yang, Mingfeng

    2017-01-01

    Cuticular waxes of plant and organ surfaces play an important role in protecting plants from biotic and abiotic stress and extending the freshness, storage time and shelf life in the post-harvest agricultural products. WRI1, a transcription factor of AP2/SHEN families, had been found to trigger the related genes taking part in the biosynthesis of seed oil in many plants. But whether WRI1 is involved in the biosynthesis of the cuticular waxes on the Malus fruits surface has been unclear. We investigated the changes of wax composition and structure, the related genes and WRI1 expression on Malus asiatica Nakai and sieversii fruits with the low temperature treatments, found that low temperature induced the up-regulated expression of McWRI1, which promoted gene expression of McKCS, McLACs and McWAX in very-long-chain fatty acid biosynthesis pathway, resulting in the accumulation of alkanes component and alteration of wax structure on the fruit surface. Corresponding results were verified in McWRI1 silenced by VIGS, and WRI1 silenced down-regulated the related genes on two kinds of fruits, it caused the diversity alteration in content of some alkanes, fatty acid and ester component in two kinds of fruits. We further conducted Y1H assay to find that McWRI1 transcription factor activated the promoter of McKCS, McLAC and McWAX to regulate their expression. These results demonstrated that McWRI1 is involved in regulating the genes related synthesis of very long chain fatty acid on surface of apple fruits in storage process, providing a highlight for improvement of the modified atmosphere storage of apple fruits. PMID:29073205

  20. Studies on Hydrotreating Process of Microcrystalline Wax Produced from Marine Belayim Crude Oil

    International Nuclear Information System (INIS)

    EI Karashi, S.; Marawan, H.

    2004-01-01

    Abstract Microcrystalline wax was produced from solvent dewaxing process of vacuum residue raffinate produced from Marine Belayim origin. The untreated microcrystalline wax contains trace amounts of sulfur, oxygen, nitrogen and organometallic compounds as well as heavy aromatics which affect the properties of wax applications in pharmaceutical and technical fields . Microcrystalline wax hydrotreating process was studied using digital controlled unit and Ni O-MoO 3 / Al 2 O 3 catalyst, where operating parameters that controlled the efficiency of the hydrotreated wax were studied separately at different values including reactor temperature, reactor pressure, liquid hourly space velocity and hydrogen to hydrocarbon ratio . Hydrotreated microcrystalline wax at operating conditions (temperature 300 degree C, pressure 73 kg/cm 2 , LHS V 0.52 h-l and H 2 /HC ratio 266.6 Nm 3 /m 3 ) has the best quality to be used as food grade wax

  1. Radiotherapic Valuation of Paraffin Wax for Patients with Oral Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Na, Kyung Su; Seo, Seuk Jin; Lee, Je Hee; Yoo, Sook Heun [Dept. of Radiation Oncology, Seoul National University Hosdital, Seoul (Korea, Republic of)

    2011-03-15

    This study is designed to investigate radiotherapic valuation of Paraffin Wax, which is newly formed for this study and generally utilized in dentistry, and Mouth Piece and Putty impression, which are commonly used in radiotherapy, for oral cavity as a compensator. Each compensator was formed by 10 x 10 x 1 cm and measured radiation dose attenuation ratio with reference of water phantom which is made of tissue-equivalent materials. Two patients with oral cancer underwent DRR (Digitally Reconstructed Radiogrph) of Offline Review Program of Aria System and Portal vision for 5 times for each material to evaluate reproducibility by each filling materials. Moreover, MU (monitor unit) changes by dose absorption were considered in the case of inevitable implication of an filling materials in the range for radiotherapy. Radiation dose attenuation ratios were shown -0.7{approx}+3.7% for Mouth Piece, +0.21{approx}+0.39% for Paraffin Wax and -2.71{approx}-1.76% for Putty impression. Error ranges of reproducibility of positions were measured {+-}3 mm for Mouth Piece, {+-}2 mm for Paraffin Wax and {+-}2 mm for Putty impression. Difference of prescription MU from dose absorption with an filling material increased +7.8% (250 MU) in Putty impression and -0.9% (230 MU) in Paraffin Wax as converted into a percentage from the standard phantom, Water 232 MU. Dose reduction of boundary between cavity and tissue was observed for Mouth Piece. Mouth Piece also had low reproducibility of positions as it had no reflection of anatomy of oral cavity even though it was a proper material to separate Maxilla and Mandible during therapy. On the other hand, Putty impression was a suitable material to correctly re-position oral cavity as before. However, it risked normal tissues getting unnecessary over irradiation and it caused radiation dose decrease by -2.5% for 1cm volume in comparison of it of water phantom. Dose reduction in Paraffin Wax, Fat Tissue-Equivalent Material, was smaller than other

  2. Radiotherapic Valuation of Paraffin Wax for Patients with Oral Cancer

    International Nuclear Information System (INIS)

    Na, Kyung Su; Seo, Seuk Jin; Lee, Je Hee; Yoo, Sook Heun

    2011-01-01

    This study is designed to investigate radiotherapic valuation of Paraffin Wax, which is newly formed for this study and generally utilized in dentistry, and Mouth Piece and Putty impression, which are commonly used in radiotherapy, for oral cavity as a compensator. Each compensator was formed by 10 x 10 x 1 cm and measured radiation dose attenuation ratio with reference of water phantom which is made of tissue-equivalent materials. Two patients with oral cancer underwent DRR (Digitally Reconstructed Radiogrph) of Offline Review Program of Aria System and Portal vision for 5 times for each material to evaluate reproducibility by each filling materials. Moreover, MU (monitor unit) changes by dose absorption were considered in the case of inevitable implication of an filling materials in the range for radiotherapy. Radiation dose attenuation ratios were shown -0.7∼+3.7% for Mouth Piece, +0.21∼+0.39% for Paraffin Wax and -2.71∼-1.76% for Putty impression. Error ranges of reproducibility of positions were measured ±3 mm for Mouth Piece, ±2 mm for Paraffin Wax and ±2 mm for Putty impression. Difference of prescription MU from dose absorption with an filling material increased +7.8% (250 MU) in Putty impression and -0.9% (230 MU) in Paraffin Wax as converted into a percentage from the standard phantom, Water 232 MU. Dose reduction of boundary between cavity and tissue was observed for Mouth Piece. Mouth Piece also had low reproducibility of positions as it had no reflection of anatomy of oral cavity even though it was a proper material to separate Maxilla and Mandible during therapy. On the other hand, Putty impression was a suitable material to correctly re-position oral cavity as before. However, it risked normal tissues getting unnecessary over irradiation and it caused radiation dose decrease by -2.5% for 1cm volume in comparison of it of water phantom. Dose reduction in Paraffin Wax, Fat Tissue-Equivalent Material, was smaller than other impressions and

  3. Morphology, molecular structure, and stable carbon isotopic composition of black carbon (BC) in urban topsoils.

    Science.gov (United States)

    Zong, Yutong; Xiao, Qing; Lu, Shenggao

    2018-02-01

    Urban soils contain significant amounts of black carbon (BC) from biomass and fossil fuel combustion and regard to be a pool of BC. BC in urban soils has multiple effects on environmental processes in urban system, such as global climate change, air quality, and public health. Urban topsoil samples (0-10 cm) were collected from Anshan, Liaoning Province, northeast China, which is one of the most important old steel industrial bases in China. The BC in urban topsoils was extracted using the density method. Their chemical composition, morphology, molecular structure, and stable carbon isotopic composition were examined using elemental analysis, scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and stable carbon isotope (δ 13 C). Elemental analysis shows that carbon content in the BC of studied soils ranged from 64.5 to 78.4%, with the average more than 70%. The O/C atomic ratio of BC is on average 0.18. The BC particle displays different morphology, including porous spherical, irregular porous fragmentary, and blocky shapes. The porous spherical BC particles has atomic molar O/C ratio determined by SEM-EDS ranging from 0.04 to 0.37. XRD indicates that BC exists in mainly combining with mineral phases hematite (Fe 2 O 3 ), kaolinite (Al 2 Si 2 O 5 (OH) 4 ), quartz (SiO 2 ), and calcite (CaCO 3 ). The FTIR spectra of BC particles show major bands at approximately 3400 cm -1 (O-H), 2920 cm -1 (C = H), 1600 cm -1 (C = C), 1230 cm -1 (C = O), and 1070 cm -1 (C = O). The stable carbon isotope (δ 13 C) of BC ranges from -24.48 to -23.18‰ with the average of -23.79 ± 0.39‰. The concentration of BC in the industrial area is significantly (p fuel combustion. Results indicated that a combination of atomic O/C ratio, porous structure, and stable carbon isotopic (δ 13 C) of BC could reflect effectively the origin of BC

  4. A Molecular Investigation of Soil Organic Carbon Composition, Variability, and Spatial Distribution Across an Alpine Catchment

    Science.gov (United States)

    Hsu, H. T.; Lawrence, C. R.; Winnick, M.; Druhan, J. L.; Williams, K. H.; Maher, K.; Rainaldi, G. R.; McCormick, M. E.

    2016-12-01

    The cycling of carbon through soils is one of the least understood aspects of the global carbon cycle and represents a key uncertainty in the prediction of land-surface response to global warming. Thus, there is an urgent need for advanced characterization of soil organic carbon (SOC) to develop and evaluate a new generation of soil carbon models. We hypothesize that shifts in SOC composition and spatial distribution as a function of soil depth can be used to constrain rates of transformation between the litter layer and the deeper subsoil (extending to a depth of approximately 1 m). To evaluate the composition and distribution of SOC, we collected soil samples from East River, a shale-dominated watershed near Crested Butte, CO, and characterized relative changes in SOC species as a function of depth using elemental analysis (EA), Fourier transform infrared spectroscopy (FT-IR) and bulk C X-ray absorption spectroscopy (XAS). Our results show that total organic carbon (TOC) decreases with depth, and high total inorganic carbon (TIC) content was found in deeper soils (after 75 cm), a characteristic of the bedrock (shale). The distribution of aliphatic C relative to the parent material generally decreases with depth and that polysaccharide can be a substantial component of SOC at various depths. On the other hand, the relative distribution of aromatic C, traditionally viewed as recalcitrant, only makes up a very small part of SOC regardless of depth. These observations confirm that molecular structure is not the only determinant of SOC turnover rate. To study other contributors to SOC decomposition, we studied changes in the spatial correlation of SOC and minerals using X-ray fluorescence spectroscopy (XRF) and scanning transmission X-ray microscopy (STXM). We found that aromatics mostly locate on the surface of small soil aggregates (1-10 μm). Polysaccharides and proteins, both viewed as labile traditionally, are more evenly distributed over the interior of the

  5. Study of Plant Waxes Using Low Temperature Method for ESEM

    Czech Academy of Sciences Publication Activity Database

    Neděla, Vilém; Tihlaříková, Eva; Schiebertová, P.; Zajícová, I.; Schwarzerová, K.

    2016-01-01

    Roč. 22, S3 (2016), s. 1180-1181 ISSN 1431-9276 R&D Projects: GA ČR(CZ) GA14-22777S; GA MŠk ED0017/01/01 Grant - others:GA MŠk(CZ) LO1211 Institutional support: RVO:68081731 Keywords : ESEM * plant waxes * low temperature method Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.891, year: 2016

  6. Titan's organic aerosols: Molecular composition and structure of laboratory analogues inferred from pyrolysis gas chromatography mass spectrometry analysis

    Science.gov (United States)

    Morisson, Marietta; Szopa, Cyril; Carrasco, Nathalie; Buch, Arnaud; Gautier, Thomas

    2016-10-01

    Analogues of Titan's aerosols are of primary interest in the understanding of Titan's atmospheric chemistry and climate, and in the development of in situ instrumentation for future space missions. Numerous studies have been carried out to characterize laboratory analogues of Titan aerosols (tholins), but their molecular composition and structure are still poorly known. If pyrolysis gas chromatography mass spectrometry (pyr-GCMS) has been used for years to give clues about their chemical composition, highly disparate results were obtained with this technique. They can be attributed to the variety of analytical conditions used for pyr-GCMS analyses, and/or to differences in the nature of the analogues analyzed, that were produced with different laboratory set-ups under various operating conditions. In order to have a better description of Titan's tholin's molecular composition by pyr-GCMS, we carried out a systematic study with two major objectives: (i) exploring the pyr-GCMS analytical parameters to find the optimal ones for the detection of a wide range of chemical products allowing a characterization of the tholins composition as comprehensive as possible, and (ii) highlighting the role of the CH4 ratio in the gaseous reactive medium on the tholin's molecular structure. We used a radio-frequency plasma discharge to synthetize tholins with different concentrations of CH4 diluted in N2. The samples were pyrolyzed at temperatures covering the 200-700°C range. The extracted gases were then analyzed by GCMS for their molecular identification. The optimal pyrolysis temperature for characterizing the molecular composition of our tholins by GCMS analysis is found to be 600°C. This temperature choice results from the best compromise between the number of compounds released, the quality of the signal and the appearance of pyrolysis artifacts. About a hundred molecules are identified as pyrolysates. A common major chromatographic pattern appears clearly for all the

  7. Radiological properties of a wax-gypsum compensator material

    International Nuclear Information System (INIS)

    Plessis, F.C.P. du; Willemse, C.A.

    2005-01-01

    In this paper the radiological properties of a compensator material consisting of wax and gypsum is presented. Effective attenuation coefficients (EACs) have been determined from transmission measurements with an ion chamber in a Perspex phantom. Measurements were made at 80 and 100 cm source-to-skin distance (SSD) for beam energies of 6, 8, and 15 MV, for field sizes ranging from narrow beam geometries up to 40x40 cm 2 , and at measurement depths of maximum dose build-up, 5 and 10 cm. A parametrization equation could be constructed to predict the EAC values within 4% uncertainty as a function of field size and depth of measurement. The EAC dependence on off-axis position was also quantified at each beam energy and SSD. It was found that the compensator material reduced the required thickness for compensation by 26% at 8 MV when compared to pure paraffin wax for a 10x10 cm 2 field. Relative surface ionization (RSI) measurements have been made to quantify the effect of scattered electrons from the wax-gypsum compensator. Results indicated that for 80 cm SSD the RSI would exceed 50% for fields larger than 15x15 cm 2 . At 100 cm SSD the RSI values were below 50% for all field sizes used

  8. Organic molecular composition of marine aerosols over the Arctic Ocean in summer: contributions of primary emission and secondary aerosol formation

    OpenAIRE

    P. Q. Fu; K. Kawamura; J. Chen; B. Charrière; R. Sempéré

    2013-01-01

    Organic molecular composition of marine aerosol samples collected during the MALINA cruise in the Arctic Ocean was investigated by gas chromatography/mass spectrometry. More than 110 individual organic compounds were determined in the samples and were grouped into different compound classes based on the functionality and sources. The concentrations of total quantified organics ranged from 7.3 to 185 ng m−3 (mean 47.6 ng m−3), accounting ...

  9. Wax Ester Analysis of Bats Suffering from White Nose Syndrome in Europe.

    Science.gov (United States)

    Řezanka, Tomáš; Viden, Ivan; Nováková, Alena; Bandouchová, Hana; Sigler, Karel

    2015-07-01

    The composition of wax esters (WE) in the fur of adult greater mouse-eared bats (Myotis myotis), either healthy or suffering from white nose syndrome (WNS) caused by the psychrophilic fungus Pseudogymnoascus destructans, was investigated by high-resolution mass spectrometry analysis in the positive ion mode. Profiling of lipid classes showed that WE are the most abundant lipid class, followed by cholesterol esters, and other lipid classes, e.g., triacylglycerols and phospholipids. WE abundance in non-polar lipids was gender-related, being higher in males than in females; in individuals suffering from WNS, both male and female, it was higher than in healthy counterparts. WE were dominated by species containing 18:1 fatty acids. Fatty alcohols were fully saturated, dominated by species containing 24, 25, or 26 carbon atoms. Two WE species, 18:1/18:0 and 18:1/20:0, were more abundant in healthy bats than in infected ones.

  10. Characterization of a plant leaf cuticle model wax, phase behaviour of model wax–water systems

    International Nuclear Information System (INIS)

    Fagerström, Anton; Kocherbitov, Vitaly; Westbye, Peter; Bergström, Karin; Mamontova, Varvara; Engblom, Johan

    2013-01-01

    Highlights: • Four individual crystalline phases were discovered in the model wax–water system. • Eutectic melting occurred in both dry and hydrated model wax. • The total transition enthalpy is smaller for the cuticle wax than for the model wax. • Water has a large plasticizing effect on cuticle wax. • The thermotropic transitions of model wax fit in the window of extracted leaf waxes. - Abstract: We investigated the thermotropic phase behaviour of plant leaf intracuticular wax and two representatives of its main components, 1-docosanol (C 22 H 45 OH) and dotriacontane (C 32 H 66 ), in dry and hydrated state. One objective was to obtain a model wax, which can be used to estimate formulations effects on cuticle diffusivity in vitro. The two wax components were chosen based on results from Gas Chromatography coupled to Mass Spectrometry analysis of cuticular wax. The wax was extracted from Clivia Miniata Regel leaves and contained 68% primary alcohols (C 16 –C 32 ) and 16% n-alkanes (C 21 –C 33 ). Differential Scanning Calorimetry, Polarized Light Microscopy and Small- and Wide Angle X-ray Diffraction were used to characterize the cuticular extract and the phase behaviour of the C 22 H 45 OH/C 32 H 66 /H 2 O model system. Four individual crystalline phases were discovered in the model wax–water system and eutectic melting occurred in both dry and hydrated state. The thermotropic transitions of the model wax occur within the broader transition region of the extracted leaf wax

  11. Rheological profiling of organogels prepared at critical gelling concentrations of natural waxes in a triacylglycerol solvent.

    Science.gov (United States)

    Patel, Ashok R; Babaahmadi, Mehrnoosh; Lesaffer, Ans; Dewettinck, Koen

    2015-05-20

    The aim of this study was to use a detailed rheological characterization to gain new insights into the gelation behavior of natural waxes. To make a comprehensive case, six natural waxes (differing in the relative proportion of chemical components: hydrocarbons, fatty alcohols, fatty acids, and wax esters) were selected as organogelators to gel high-oleic sunflower oil. Flow and dynamic rheological properties of organogels prepared at critical gelling concentrations (Cg) of waxes were studied and compared using drag (stress ramp and steady flow) and oscillatory shear (stress and frequency sweeps) tests. Although, none of the organogels satisfied the rheological definition of a "strong gel" (G″/G' (ω) ≤ 0.1), on comparing the samples, the strongest gel (highest critical stress and dynamic, apparent, and static yield stresses) was obtained not with wax containing the highest proportion of wax esters alone (sunflower wax, SFW) but with wax containing wax esters along with a higher proportion of fatty alcohols (carnauba wax, CRW) although at a comparatively higher Cg (4%wt for latter compared to 0.5%wt for former). As expected, gel formation by waxes containing a high proportion of lower melting fatty acids (berry, BW, and fruit wax, FW) required a comparatively higher Cg (6 and 7%wt, respectively), and in addition, these gels showed the lowest values for plateau elastic modulus (G'LVR) and a prominent crossover point at higher frequency. The gelation temperatures (TG'=G″) for all the studied gels were lower than room temperature, except for SFW and CRW. The yielding-type behavior of gels was evident, with most gels showing strong shear sensitivity and a weak thixotropic recovery. The rheological behavior was combined with the results of thermal analysis and microstructure studies (optical, polarized, and cryo-scanning electron microscopy) to explain the gelation properties of these waxes.

  12. Characterization of a plant leaf cuticle model wax, phase behaviour of model wax–water systems

    Energy Technology Data Exchange (ETDEWEB)

    Fagerström, Anton, E-mail: anton.fagerstrom@mah.se [Biomedical Science, Faculty of Health and Society, Malmö University, Malmö (Sweden); Kocherbitov, Vitaly [Biomedical Science, Faculty of Health and Society, Malmö University, Malmö (Sweden); Westbye, Peter; Bergström, Karin [Agro Applications Europe, AkzoNobel Surface Chemistry AB, Stenungsund (Sweden); Mamontova, Varvara [Ecological and Chemical Research, St. Petersburg Scientific Research Center for Ecological Safety, Russian Academy of Sciences, St. Petersburg (Russian Federation); Engblom, Johan [Biomedical Science, Faculty of Health and Society, Malmö University, Malmö (Sweden)

    2013-11-10

    Highlights: • Four individual crystalline phases were discovered in the model wax–water system. • Eutectic melting occurred in both dry and hydrated model wax. • The total transition enthalpy is smaller for the cuticle wax than for the model wax. • Water has a large plasticizing effect on cuticle wax. • The thermotropic transitions of model wax fit in the window of extracted leaf waxes. - Abstract: We investigated the thermotropic phase behaviour of plant leaf intracuticular wax and two representatives of its main components, 1-docosanol (C{sub 22}H{sub 45}OH) and dotriacontane (C{sub 32}H{sub 66}), in dry and hydrated state. One objective was to obtain a model wax, which can be used to estimate formulations effects on cuticle diffusivity in vitro. The two wax components were chosen based on results from Gas Chromatography coupled to Mass Spectrometry analysis of cuticular wax. The wax was extracted from Clivia Miniata Regel leaves and contained 68% primary alcohols (C{sub 16}–C{sub 32}) and 16% n-alkanes (C{sub 21}–C{sub 33}). Differential Scanning Calorimetry, Polarized Light Microscopy and Small- and Wide Angle X-ray Diffraction were used to characterize the cuticular extract and the phase behaviour of the C{sub 22}H{sub 45}OH/C{sub 32}H{sub 66}/H{sub 2}O model system. Four individual crystalline phases were discovered in the model wax–water system and eutectic melting occurred in both dry and hydrated state. The thermotropic transitions of the model wax occur within the broader transition region of the extracted leaf wax.

  13. In vivo chemical and structural analysis of plant cuticular waxes using stimulated Raman scattering microscopy.

    Science.gov (United States)

    Littlejohn, George R; Mansfield, Jessica C; Parker, David; Lind, Rob; Perfect, Sarah; Seymour, Mark; Smirnoff, Nicholas; Love, John; Moger, Julian

    2015-05-01

    The cuticle is a ubiquitous, predominantly waxy layer on the aerial parts of higher plants that fulfils a number of essential physiological roles, including regulating evapotranspiration, light reflection, and heat tolerance, control of development, and providing an essential barrier between the organism and environmental agents such as chemicals or some pathogens. The structure and composition of the cuticle are closely associated but are typically investigated separately using a combination of structural imaging and biochemical analysis of extracted waxes. Recently, techniques that combine stain-free imaging and biochemical analysis, including Fourier transform infrared spectroscopy microscopy and coherent anti-Stokes Raman spectroscopy microscopy, have been used to investigate the cuticle, but the detection sensitivity is severely limited by the background signals from plant pigments. We present a new method for label-free, in vivo structural and biochemical analysis of plant cuticles based on stimulated Raman scattering (SRS) microscopy. As a proof of principle, we used SRS microscopy to analyze the cuticles from a variety of plants at different times in development. We demonstrate that the SRS virtually eliminates the background interference compared with coherent anti-Stokes Raman spectroscopy imaging and results in label-free, chemically specific confocal images of cuticle architecture with simultaneous characterization of cuticle composition. This innovative use of the SRS spectroscopy may find applications in agrochemical research and development or in studies of wax deposition during leaf development and, as such, represents an important step in the study of higher plant cuticles. © 2015 American Society of Plant Biologists. All Rights Reserved.

  14. Reinforcing copper matrix composites through molecular-level mixing of functionalized nanodiamond by co-deposition route

    International Nuclear Information System (INIS)

    He Jie; Zhao Naiqin; Shi Chunsheng; Du Xiwen; Li Jiajun; Nash, Philip

    2008-01-01

    This work reports a chemical method called 'co-deposition route' for fabricating ND (nanodiamond)/Cu composite at a molecular-level mixing. The main procedure of 'co-deposition route' includes four steps. ND particles have been functionalized by HF acid before co-deposition. SEM, HRTEM (high-resolution transmission electron spectroscopy), XRD (X-ray diffraction), EDS (energy-dispersive spectrum analysis) and optical microscope were carried out to characterize the as-prepared composite powders and bulk composites. Results indicated that copper matrix composite with a homogeneous dispersion of functionalized ND particles can be prepared. The modification of ND particles was performed by HF (30 vol%) acid at 70 deg. C, and C-F bond was successfully detected by XPS (X-ray photoelectron spectrum) and IR (Infrared spectroscopy). The properties of relative density, microhardness and electric conductivity of ND/Cu composites have been measured. With the comparison of conventional methods, it showed that the as-prepared ND/Cu composites with good combined performances have a promising future for industry application

  15. Reinforcing copper matrix composites through molecular-level mixing of functionalized nanodiamond by co-deposition route

    Energy Technology Data Exchange (ETDEWEB)

    He Jie [School of Materials Science and Engineering, Tianjin University, Tianjin 30072 (China); Zhao Naiqin [School of Materials Science and Engineering, Tianjin University, Tianjin 30072 (China); Tianjin Key Laboratory of Composite and Functional Materials (China)], E-mail: nqzhao@tju.edu.cn; Shi Chunsheng; Du Xiwen; Li Jiajun [School of Materials Science and Engineering, Tianjin University, Tianjin 30072 (China); Nash, Philip [Department of Mechanical, Materials and Aerospace Engineering, Illinois Institute of Technology, Chicago, IL 60616 (United States)

    2008-08-25

    This work reports a chemical method called 'co-deposition route' for fabricating ND (nanodiamond)/Cu composite at a molecular-level mixing. The main procedure of 'co-deposition route' includes four steps. ND particles have been functionalized by HF acid before co-deposition. SEM, HRTEM (high-resolution transmission electron spectroscopy), XRD (X-ray diffraction), EDS (energy-dispersive spectrum analysis) and optical microscope were carried out to characterize the as-prepared composite powders and bulk composites. Results indicated that copper matrix composite with a homogeneous dispersion of functionalized ND particles can be prepared. The modification of ND particles was performed by HF (30 vol%) acid at 70 deg. C, and C-F bond was successfully detected by XPS (X-ray photoelectron spectrum) and IR (Infrared spectroscopy). The properties of relative density, microhardness and electric conductivity of ND/Cu composites have been measured. With the comparison of conventional methods, it showed that the as-prepared ND/Cu composites with good combined performances have a promising future for industry application.

  16. The Importance of Interactions at the Molecular Level: A Spectroscopic Study of a New Composite Sorber Material.

    Science.gov (United States)

    Crocellà, Valentina; Groppo, Elena; Dani, Alessandro; Castellero, Alberto; Bordiga, Silvia; Zilio, Stefano; De Simone, Agnello; Vacca, Paolo

    2017-10-01

    The functional properties of a new composite material having water vapor getter properties have been investigated by a large arsenal of characterization techniques. The composite system is originated by combining two constituents having very different chemical natures, a magnesium perchlorate (Mg(ClO 4 ) 2 ) salt and a polymeric acrylic matrix. In particular, Fourier transform infrared (FT-IR) and Raman spectroscopy have been fundamental to understand the type of interactions between the salt and the matrix in different hydration conditions. It was found that in the anhydrous composite system the dispersed Mg(ClO 4 ) 2 salt retains its molecular structure, because Mg 2+ cations are still surrounded by their [ClO 4 ] - counter-anions; at the same time, the salt and the polymeric matrix chemically interact each other at the molecular level. These interactions gradually vanish in the presence of water, and disappear in the fully hydrated composite system, where the Mg 2+ cations are completely solvated by the water molecules.

  17. Microwave radiation hydrothermal synthesis and characterization of micro- and mesoporous composite molecular sieve Y/SBA-15

    Directory of Open Access Journals (Sweden)

    Wenyuan Wu

    2017-05-01

    Full Text Available A microwave radiation hydrothermal method to control synthesis of micro- and mesoporous Y/SBA-15 composite molecular sieves was reported. The synthesized SBA-15 and Y/SBA-15 were characterized by scanning electron microscopy (SEM and N2 adsorption–desorption. The three kinds of different concentrations of hydrochloric acid (0.75 M, 2 M and 3.25 M were used to investigate the effect on Y/SBA-15. The analysis results of the composite products indicated that the optimization synthesis condition employed zeolite type Y and TEOS as silicon sources under 0.75 M hydrochloric acid by the microwave radiation hydrothermal synthesis method. The N2 adsorption–desorption test results of micro–mesoporous composite molecular sieve type Y/SBA-15 in mesoporous extent indicated that SBET is 355.529 m2/g, D‾BET is 4.050 nm, and mesoporous aperture focuses on the distribution region of 5.3 nm. It was found that the received composite product has an appropriate proportion of smaller size, larger size pore structure and the thicker pore wall. In addition, its internal channels have a high degree of order and smooth flow in long-range channels.

  18. Molecular dynamics simulation of damage cascade creation in SiC composites containing SiC/graphite interface

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Joseph; Chen, Di; Wang, Jing; Shao, Lin, E-mail: lshao@tamu.edu

    2013-07-15

    Silicon carbide composites have been investigated for their use as structural materials for advanced nuclear reactor designs. Although the composites have significantly enhanced mechanical properties and structure integrity, there is little known about the behavior of defects in the presence of a graphite-silicon carbide interface. In this study, molecular dynamics simulations have been used to model defect creation and clustering in a composite containing a SiC/graphite interface. Evolution of displacements as a function of time were studied and compared to bulk SiC. The results show that the first a few SiC atomic layers closest to the interface are easily damaged. However, beyond these first few atomic layers the system appears to be unaffected by the SiC interface.

  19. Composites

    International Nuclear Information System (INIS)

    Kasen, M.B.

    1983-01-01

    This chapter discusses the roles of composite laminates and aggregates in cryogenic technology. Filamentary-reinforced composites are emphasized because they are the most widely used composite materials. Topics considered include composite systems and terminology, design and fabrication, composite failure, high-pressure reinforced plastic laminates, low-pressure reinforced plastics, reinforced metals, selectively reinforced structures, the effect of cryogenic temperatures, woven-fabric and random-mat composites, uniaxial fiber-reinforced composites, composite joints in cryogenic structures, joining techniques at room temperature, radiation effects, testing laminates at cryogenic temperatures, static and cyclic tensile testing, static and cyclic compression testing, interlaminar shear testing, secondary property tests, and concrete aggregates. It is suggested that cryogenic composite technology would benefit from the development of a fracture mechanics model for predicting the fitness-for-purpose of polymer-matrix composite structures

  20. Rapid, efficient and selective preconcentration of benzo[a]pyrene (BaP) by molecularly imprinted composite cartridge and HPLC

    Energy Technology Data Exchange (ETDEWEB)

    Çorman, Mehmet Emin, E-mail: mecorman@sinop.edu.tr [Hacettepe University, Department of Chemistry, Ankara (Turkey); Sinop University, Department of Bioengineering, Sinop (Turkey); Armutcu, Canan [Hacettepe University, Department of Chemistry, Ankara (Turkey); Uzun, Lokman, E-mail: lokman@hacettepe.edu.tr [Hacettepe University, Department of Chemistry, Ankara (Turkey); Denizli, Adil [Hacettepe University, Department of Chemistry, Ankara (Turkey)

    2017-01-01

    In this study, cryogel-based molecularly imprinted composite cartridges were designed for the rapid, efficient, and selective preconcentration of benzo[a]pyrene (BaP) from water samples. First, a BaP-imprinted poly(2-hydroxyethyl methacrylate-N-methacryloyl-(L)-phenylalanine) composite cartridge was synthesized under semi-frozen conditions and characterized by scanning electron microscopy, elemental analysis, Fourier transform infrared spectroscopy, and swelling tests. After the optimization of preconcentration parameters, i.e., pH and initial BaP concentration, the selectivity and preconcentration efficiency, and reusability of these cartridges were also evaluated. In selectivity experiments, BaP imprinted composite cartridge exhibited binding capacities 3.09, 9.52, 8.87, and 8.77-fold higher than that of the non-imprinted composite cartridge in the presence of competitors, such as benzo[b]fluoranthene (BbF), benzo[k]fluoranthene (BkF), indeno[1,2,3-cd]pyrene (IcdP), and 1-naphthol, respectively. The method detection limit (MDL), relative standard deviation (RSD) and preconcentration efficiency (PE) of the synthesized composite cartridge were calculated as 24.86 μg/L, 1.60%, and 349.6%, respectively. - Highlights: • Cryogel based molecularly imprinted composite cartridges as solid-phase extraction sorbents • Combination unique structural features of cryogels with MIP • An excellent ability to recognize the BaP molecule even if single-run contact • Rapid, efficient, selective and cost-friendly PAH preconcentration • Hydrophobic interactions via N-methacryloyl-(L)-phenylalanine.

  1. Comparing molecular composition of dissolved organic matter in soil and stream water: Influence of land use and chemical characteristics.

    Science.gov (United States)

    Seifert, Anne-Gret; Roth, Vanessa-Nina; Dittmar, Thorsten; Gleixner, Gerd; Breuer, Lutz; Houska, Tobias; Marxsen, Jürgen

    2016-11-15

    Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS) was used to examine the molecular composition of dissolved organic matter (DOM) from soils under different land use regimes and how the DOM composition in the catchment is reflected in adjacent streams. The study was carried out in a small area of the Schwingbach catchment, an anthropogenic-influenced landscape in central Germany. We investigated 30 different soil water samples from 4 sites and different depths (managed meadow (0-5cm, 40-50cm), deciduous forest (0-5cm), mixed-coniferous forest (0-5cm) and agricultural land (0-5cm, 40-50cm)) and 8 stream samples. 6194 molecular formulae and their magnitude-weighted parameters ((O/C)w, (H/C)w, (N/C)w, (AI-mod)w, (DBE/C)w, (DBE/O)w, (DBE-O)w, (C#)w, (MW)w) were used to describe the molecular composition of the samples. The samples can be roughly divided in three groups. Group 1 contains samples from managed meadow 40-50cm and stream water, which are characterized by high saturation compared to samples from group 2 including agricultural samples and samples from the surface meadow (0-5cm), which held more nitrogen containing and aromatic compounds. Samples from both forested sites (group 3) are characterized by higher molecular weight and O/C ratio. Environmental parameters vary between sites and among these parameters pH and nitrate significantly affect chemical composition of DOM. Results indicate that most DOM in streams is of terrestrial origin. However, 120 molecular formulae were detected only in streams and not in any of the soil samples. These compounds share molecular formulae with peptides, unsaturated aliphatics and saturated FA-CHO/FA-CHOX. Compounds only found in soil samples are much more aromatic, have more double bonds and a much lower H/C ratio but higher oxygen content, which indicates the availability of fresh plant material and less microbial processed material compared to stream samples. Copyright

  2. Soil water stress affects both cuticular wax content and cuticle-related gene expression in young saplings of maritime pine (Pinus pinaster Ait).

    Science.gov (United States)

    Le Provost, Grégoire; Domergue, Frédéric; Lalanne, Céline; Ramos Campos, Patricio; Grosbois, Antoine; Bert, Didier; Meredieu, Céline; Danjon, Frédéric; Plomion, Christophe; Gion, Jean-Marc

    2013-07-01

    The cuticle is a hydrophobic barrier located at the aerial surface of all terrestrial plants. Recent studies performed on model plants, such as Arabidopsis thaliana, have suggested that the cuticle may be involved in drought stress adaptation, preventing non-stomatal water loss. Although forest trees will face more intense drought stresses (in duration and intensity) with global warming, very few studies on the role of the cuticle in drought stress adaptation in these long-lived organisms have been so far reported. This aspect was investigated in a conifer, maritime pine (Pinus pinaster Ait.), in a factorial design with two genetic units (two half-sib families with different growth rates) and two treatments (irrigated vs non-irrigated), in field conditions. Saplings were grown in an open-sided greenhouse and half were irrigated three times per week for two growing seasons. Needles were sampled three times per year for cuticular wax (composition and content) and transcriptome (of 11 genes involved in cuticle biosynthesis) analysis. Non-irrigated saplings (i) had a higher cuticular wax content than irrigated saplings and (ii) overexpressed most of the genes studied. Both these trends were more marked in the faster growing family. The higher cuticular wax content observed in the non-irrigated treatment associated with strong modifications in products from the decarbonylation pathway suggest that cuticular wax may be involved in drought stress adaptation in maritime pine. This study provides also a set of promising candidate genes for future forward genetic studies in conifers.

  3. The Effect of Water or Wax-based Binders on the Chemical and Morphological Characteristics of the Margin Ceramic-Framework Interface.

    Science.gov (United States)

    Güler, Umut; de Queiroz, José Renato Cavalcanti; de Oliveira, Luiz Fernando Cappa; Canay, Senay; Ozcan, Mutlu

    2015-09-01

    This study evaluated the effect of binder choice in mixing ceramic powder on the chemical and morphological features between the margin ceramic-framework interfaces. Titanium and zirconia frameworks (15 x 5 x 0.5 mm3) were veneered with margin ceramics prepared with two different binders, namely a) water/conventional or b) wax-based. For each zirconia framework material, four different margin ceramics were used: a- Creation Zi (Creation Willi Geller International); b- GC Initial Zr (GC America); Triceram (Dentaurum); and d- IPS emax (voclar Vivadent). For the titanium framework, three different margin ceramics were used: a- Creation Ti (Creation Willi Geller International); b- Triceram (Dentaurum); and c- VITA Titaniumkeramik (Vita Zahnfabrik). The chemical composition of the framework-margin ceramic interface was analyzed using Energy Dispersive X-ray Spectroscopy (EDS) and porosity level was quantified within the margin ceramic using an image program (ImageJ) from four random areas (100 x 100 pixels) on each SEM image. EDS analysis showed the presence of Carbon at the margin ceramic-framework interface in the groups where wax-based binder technique was used with the concentration being the highest for the IPS emax ZirCAD group. While IPS system (IPS ZirCAD and IPS Emax) presented higher porosity concentration using wax binder, in the other groups wax-based binder reduced the porosity of margin ceramic, except for Titanium - Triceram combination.

  4. Effects of sunflower wax coating on physicochemical changes of mangifera indica L. in storage life

    International Nuclear Information System (INIS)

    Soomro, R.K.; Sherazi, S.T.H.

    2013-01-01

    Mango (Mangifera indica L.) fruit has a relatively short storage life due to perishable nature. In order to increases the storage life of langra mangoes, fruits were coated with sunflower wax. Mangoes were stored at room and refrigerated temperature. Sunflower wax coating protects the mangoes in greater proportion to change their color, weight loss, moisture loss, pH and total soluble solids content. The sensorial panel also favors the grander role of sunflower wax coating. Application of sunflower wax coatings had no effect on vitamin C content of mangoes variety and could increases mango storage time around 30 days under regular storage conditions. Sunflower wax coating also inhibited the growth of micro-organisms. The data reveal that by applying a sunflower wax coating effectively prolongs the quality which attributes and extends the shelf life of mango. (author)

  5. Effect of Solar Radiation on the Optical Properties and Molecular Composition of Laboratory Proxies of Atmospheric Brown Carbon

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun Ji; Aiona, Paige K.; Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey

    2014-09-02

    Sources, optical properties, and chemical composition of atmospheric brown carbon (BrC) aerosol are uncertain, making it challenging to estimate its contribution to radiative forcing. Furthermore, optical properties of BrC may change significantly during its atmospheric aging. We examined the effect of solar photolysis on the molecular composition, mass absorption coefficient, and fluorescence of secondary organic aerosol prepared by high-NOx photooxidation of naphthalene (NAP SOA). The aqueous solutions of NAP SOA was observed to photobleach with an effective half-time of ~15 hours (with sun in its zenith) for the loss of the near-UV (300 -400 nm) absorbance. The molecular composition of NAP SOA was significantly modified by photolysis, with the average SOA formula changing from C14.1H14.5O5.1N0.08 to C11.8H14.9O4.5N0.02 after 4 hours of irradiation. The average O/C ratio did not change significantly, however, suggesting that it is not a good metric for assessing the extent of photolysis-driven aging in NAP SOA (and in BrC in general). In contrast to NAP SOA, the photolysis of BrC material produced by aqueous reaction of limonene+O3 SOA (LIM/O3 SOA) with ammonium sulfate was much faster, but it did not result in a significant change in the molecular level composition. The characteristic absorbance of the aged LIM/O3 SOA in the 450-600 nm range decayed with an effective half-time of <0.5 hour. This result emphasizes the highly variable and dynamic nature of different types of atmospheric BrC.

  6. Methods for separating boron from borated paraffin wax and its determination by ion chromatography

    International Nuclear Information System (INIS)

    Jeyakumar, S.

    2015-01-01

    Boron compounds are found to be useful in shielding against high-energy neutrons. In radiotherapy treatments, in order to protect occupational workers and patients from the undesirable neutron and gamma doses, paraffin wax containing B 4 C/boric acid is used. Low-level borate wastes generated from the nuclear power plants have been immobilized with paraffin wax using a concentrate waste drying system (CWDS). Borated paraffin waxes are prepared by mixing calculated amounts of either boric acid or boron carbide with the molten wax. This necessitates the determination of boron at different locations in order to check the homogeneous distribution of B over the borated wax. The determination of boron in nuclear materials is inevitable due to its high neutron absorption cross section. For the determination of boron in borated waxes, not many methods have been reported. A method based on the pyrohydrolysis extraction of boron and its quantification with ion chromatography was proposed for paraffin waxes borated with H 3 BO 3 and B 4 C. The B 4 C optimum pyrohydrolysis conditions were identified. Wax samples were mixed with U 3 O 8 , which prevents the sample from flare up, and also accelerates the extraction of boron. Pyrohydrolysis was carried out with moist O 2 at 950℃ for 60 and 90 min for wax with H 3 BO 3 and wax with B 4 C, respectively. Two simple methods of separation based on alkali extraction and melting wax in alkali were also developed exclusively for wax with H 3 BO 3 . In all the separations, the recovery of B was above 98%. During IC separation, B was separated as boron-mannitol anion complex. Linear calibration was obtained between 0.1 and 50 ppm of B, and LOD was calculated as 5 ppb (S/N=3). The reproducibility was better than 5% (RSD)

  7. Chemical composition and molecular structure of polysaccharide-protein biopolymer from Durio zibethinus seed: extraction and purification process

    Directory of Open Access Journals (Sweden)

    Amid Bahareh

    2012-10-01

    Full Text Available Abstract Background The biological functions of natural biopolymers from plant sources depend on their chemical composition and molecular structure. In addition, the extraction and further processing conditions significantly influence the chemical and molecular structure of the plant biopolymer. The main objective of the present study was to characterize the chemical and molecular structure of a natural biopolymer from Durio zibethinus seed. A size-exclusion chromatography coupled to multi angle laser light-scattering (SEC-MALS was applied to analyze the molecular weight (Mw, number average molecular weight (Mn, and polydispersity index (Mw/Mn. Results The most abundant monosaccharide in the carbohydrate composition of durian seed gum were galactose (48.6-59.9%, glucose (37.1-45.1%, arabinose (0.58-3.41%, and xylose (0.3-3.21%. The predominant fatty acid of the lipid fraction from the durian seed gum were palmitic acid (C16:0, palmitoleic acid (C16:1, stearic acid (C18:0, oleic acid (C18:1, linoleic acid (C18:2, and linolenic acid (C18:2. The most abundant amino acids of durian seed gum were: leucine (30.9-37.3%, lysine (6.04-8.36%, aspartic acid (6.10-7.19%, glycine (6.07-7.42%, alanine (5.24-6.14%, glutamic acid (5.57-7.09%, valine (4.5-5.50%, proline (3.87-4.81%, serine (4.39-5.18%, threonine (3.44-6.50%, isoleucine (3.30-4.07%, and phenylalanine (3.11-9.04%. Conclusion The presence of essential amino acids in the chemical structure of durian seed gum reinforces its nutritional value.

  8. The MIEL1 E3 Ubiquitin Ligase Negatively Regulates Cuticular Wax Biosynthesis in Arabidopsis Stems.

    Science.gov (United States)

    Lee, Hong Gil; Kim, Juyoung; Suh, Mi Chung; Seo, Pil Joon

    2017-07-01

    Cuticular wax is an important hydrophobic layer that covers the plant aerial surface. Cuticular wax biosynthesis is shaped by multiple layers of regulation. In particular, a pair of R2R3-type MYB transcription factors, MYB96 and MYB30, are known to be the main participants in cuticular wax accumulation. Here, we report that the MYB30-INTERACTING E3 LIGASE 1 (MIEL1) E3 ubiquitin ligase controls the protein stability of the two MYB transcription factors and thereby wax biosynthesis in Arabidopsis. MIEL1-deficient miel1 mutants exhibit increased wax accumulation in stems, with up-regulation of wax biosynthetic genes targeted by MYB96 and MYB30. Genetic analysis reveals that wax accumulation of the miel1 mutant is compromised by myb96 or myb30 mutation, but MYB96 is mainly epistatic to MIEL1, playing a predominant role in cuticular wax deposition. These observations indicate that the MIEL1-MYB96 module is important for balanced cuticular wax biosynthesis in developing inflorescence stems. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Structural-mechanical model of wax crystal networks—a mesoscale cellular solid approach

    International Nuclear Information System (INIS)

    Miyazaki, Yukihiro; Marangoni, Alejandro G

    2014-01-01

    Mineral waxes are widely used materials in industrial applications; however, the relationship between structure and mechanical properties is poorly understood. In this work, mineral wax-oil networks were characterized as closed-cell cellular solids, and differences in their mechanical response predicted from structural data. The systems studied included straight-chain paraffin wax (SW)-oil mixtures and polyethylene wax (PW)-oil mixtures. Analysis of cryogenic-SEM images of wax-oil networks allowed for the determination of the length (l) and thickness (t) of the wax cell walls as a function of wax mass fraction (Φ). A linear relationship between t/l and Φ (t/l ∼ Φ 0.89 ) suggested that wax-oil networks were cellular solids of the closed-cell type. However, the scaling behavior of the elastic modulus with the volume fraction of solids did not agree with theoretical predictions, yielding the same scaling exponent, μ = 0.84, for both waxes. This scaling exponent obtained from mechanical measurements could be predicted from the scaling behavior of the effective wax cell size as a function of wax mass fraction in oil obtained by cryogenic scanning electron microscopy. Microscopy studies allowed us to propose that wax-oil networks are structured as an ensemble of close-packed spherical cells filled with oil, and that it is the links between cells that yield under simple uniaxial compression. Thus, the Young’s moduli for the links between cells in SW and PW wax systems could be estimated as E L (SW) = 2.76 × 10 9 Pa and E L (PW) = 1.64 × 10 9 Pa, respectively. The structural parameter responsible for the observed differences in the mechanical strength between the two wax-oil systems is the size of the cells. Polyethylene wax has much smaller cell sizes than the straight chain wax and thus displays a higher Young’s modulus and yield stress. (papers)

  10. Amino Acid Composition, Molecular Weight Distribution and Gel Electrophoresis of Walnut (Juglans regia L. Proteins and Protein Fractionations

    Directory of Open Access Journals (Sweden)

    Xiaoying Mao

    2014-01-01

    Full Text Available As a by-product of oil production, walnut proteins are considered as an additional source of plant protein for human food. To make full use of the protein resource, a comprehensive understanding of composition and characteristics of walnut proteins are required. Walnut proteins have been fractionated and characterized in this study. Amino acid composition, molecular weight distribution and gel electrophoresis of walnut proteins and protein fractionations were analyzed. The proteins were sequentially separated into four fractions according to their solubility. Glutelin was the main component of the protein extract. The content of glutelin, albumin, globulin and prolamin was about 72.06%, 7.54%, 15.67% and 4.73% respectively. Glutelin, albumin and globulin have a balanced content of essential amino acids, except for methionine, with respect to the FAO pattern recommended for adults. SDS-PAGE patterns of albumin, globulin and glutelin showed several polypeptides with molecular weights 14.4 to 66.2 kDa. The pattern of walnut proteins in two-dimension electrophoresis (2-DE showed that the isoelectric point was mainly in the range of 4.8–6.8. The results of size exclusion chromatogram indicated molecular weight of the major components of walnut proteins were between 3.54 and 81.76 kDa.

  11. Composition

    DEFF Research Database (Denmark)

    Bergstrøm-Nielsen, Carl

    2011-01-01

    Strategies are open compositions to be realised by improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound files will in some cases only provide a few minutes' sample. Please DOWNLOAD them to hear them in full...

  12. Composition

    DEFF Research Database (Denmark)

    2014-01-01

    Memory Pieces are open compositions to be realised solo by an improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound files will in some cases only provide a few minutes' sample. Please DOWNLOAD them to hear them...

  13. Model Amphiphilic Block Copolymers with Tailored Molecular Weight and Composition in PDMS-Based Films to Limit Soft Biofouling

    Energy Technology Data Exchange (ETDEWEB)

    Wenning, Brandon M. [Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa 56124, Italy; Martinelli, Elisa [Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa 56124, Italy; Mieszkin, Sophie [School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 5TT, U.K.; Finlay, John A. [School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 5TT, U.K.; Fischer, Daniel [National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States; Callow, James A. [School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 5TT, U.K.; Callow, Maureen E. [School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 5TT, U.K.; Leonardi, Amanda K.; Ober, Christopher K.; Galli, Giancarlo [Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa 56124, Italy

    2017-05-02

    A set of controlled surface composition films was produced utilizing amphiphilic block copolymers dispersed in a cross-linked poly(dimethylsiloxane) network. These block copolymers contained oligo(ethylene glycol) (PEGMA) and fluoroalkyl (AF6) side chains in selected ratios and molecular weights to control surface chemistry including antifouling and fouling-release performance. Such properties were assessed by carrying out assays using two algae, the green macroalga Ulva linza (favors attachment to polar surfaces) and the unicellular diatom Navicula incerta (favors attachment to nonpolar surfaces). All films performed well against U. linza and exhibited high removal of attached sporelings (young plants) under an applied shear stress, with the lower molecular weight block copolymers being the best performing in the set. The composition ratios from 50:50 to 60:40 of the AF6/PEGMA side groups were shown to be more effective, with several films exhibiting spontaneous removal of the sporelings. The cells of N. incerta were also removed from several coating compositions. All films were characterized by surface techniques including captive bubble contact angle, atomic force microscopy, and near edge X-ray absorption fine structure spectroscopy to correlate surface chemistry and morphology with biological performance.

  14. Catalytic Synthesis of n-Butyl Oleate by Cerium Complex Doped Y/SBA-15 Composite Molecular Sieve

    Science.gov (United States)

    Shi, Chunwei; Bian, Xue; Wu, Yongfu; Cong, Yufeng; Pei, Mingyuan

    2018-01-01

    Cerium ion was successfully incorporated into Y/SBA-15 micro-mesoporous molecular sieves via the hydrothermal synthesis method to give a series of composite materials. The prepared materials were thoroughly characterized using Fourier transform infrared spectroscopy (FT-IR), X-ray fluorescence spectroscopy (XRF), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and differential thermo gravimetric analysis (TG-DTG). The results showed that the prepared composite materials retained the highly ordered mesoporous two-dimensional hexagonal structure of SBA-15 and the octagonal structure of Y. The catalyst Ce-Y/SBA-15 was prepared and characterized, then the esterification of n-butanol and oleic acid was studied with bismuth phosphotungstate as a catalyst. Using this model reaction, the effects of Ce-HY/SBA-15, molar ratio of alcohol to oleic acid, amount of catalysts, reaction time and reaction temperature were investigated. The experimental results show that the optimal reaction conditions were: 1.8:1 molar ratio of alcohol to acid, 5 % catalyst amount (based on weight of oleic acid), 4 h reaction time and reflux conditions. Under these conditions, the yield of esterification was 90.6 %. The results suggest that the addition of Ce can effectively improve the catalytic properties of composite molecular sieves.

  15. Laser-assisted fabrication of batteries on wax paper

    International Nuclear Information System (INIS)

    Chitnis, G; Ziaie, B; Tan, T

    2013-01-01

    The functionality of paper-based diagnostic devices can be significantly enhanced by their integration with an on-board energy source. Here, we demonstrate the fabrication of paper-based electrochemical cells on wax paper using CO 2 laser surface treatment and micromachining. A four cell zinc–copper battery shows a steady open-circuit voltage of ∼3 V and can provide 0.25 mA for at least 30 min when connected to a 10 kΩ load. Higher voltages and current values can be obtained by adjusting the number and size of electrochemical cells in the battery without changing the fabrication process. (paper)

  16. Molecular composition of the W chromatin in some moth species studied by comparative genomic hybridization (CGH)

    Czech Academy of Sciences Publication Activity Database

    Sahara, K.; Marec, František; Eickhoff, U.; Traut, E.

    09, č. 1 (2001), s. 78 ISSN 0967-3849. [International Chromosome Conference /14./. 04.09.2001-08.09.2001, Wurzburg] Institutional research plan: CEZ:Av0Z5007907 Keywords : W chromatin Subject RIV: EB - Genetics ; Molecular Biology

  17. Molecular Diffusion of Toluene through CaCO3-Filled Natural Rubber Composites

    Directory of Open Access Journals (Sweden)

    Hedayatollah Sadeghi Ghari

    2012-12-01

    Full Text Available The transport properties of liquids and gases through polymeric materialsplay a very important role in some areas of industrial applications. In thisstudy, natural rubber (NR/CaCO3 composites were prepared by melt mixingmethod. By equilibrium swelling test, the transport process of toluene in the prepared natural rubber composites was investigated. The diffusion and transport of toluene through calcium carbonate-filled natural rubber composites have been studied in the temperature range 25–45°C. The diffusion of toluene through these composites was studied with special reference to the effect of filler concentration and temperature.The transport coefficients such as diffusion, permeation and sorption coefficients were estimated from the swelling data. To find out the mechanism of diffusion in prepared composites, the results of swelling studies were applied to an empirical equation. In these composites, diffusion is approximately based on Fickian diffusion mechanism and by increases in temperature; diffusion mechanism is more close to Fickian mechanism. Increase of filler content in composite would result in decreased ultimateswelling and slower diffusion rate of solvent. The diffusion rate, diffusion coefficient and the permeability increased by temperature. The study of the diffusion of toluene through filled natural rubber indicated that the concentration of filler plays an important role in the diffusion, sorption and permeation coefficients. Also interfacial interactions in NR composites were checked by dynamic-mechanical analysis. The microstructure and dispersion of calcium carbonate particles in natural rubber matrix were studiedby field emission scanning electron microscopy (FE-SEM. In general, the results of swelling tests, dynamic-mechanical analysis and FE-SEM images show that the optimized value of filler in NR composites is equal to 10 phr calcium carbonate.

  18. Phospholipids composition and molecular species of large yellow croaker ( Pseudosciaena crocea ) roe

    DEFF Research Database (Denmark)

    Liang, Peng; Li, Ruifen; Sun, He

    2018-01-01

    The research aims to study phospholipids (PL) classes and molecular species of large yellow croaker (Pseudosciaena crocea) roe. Both gas chromatographymass spectroscopy (GC-MS) and high-performance liquid chromatography with evaporative light-scattering detection (HPLC-ELSD) were utilized to anal......-Q-TOF-MS). A total of 92 PLs molecular species was identified, including 49 PCs, 13 PEs, 10 phosphatidic acids (PAs), 13 phosphatidylserines (PSs), 3 phosphatidylglycerols (PGs), 2 sphingomyelins (SMs), and 2 PIs of the P. crocea roe....

  19. The stable isotopic composition of molecular hydrogen in the tropopause region probed by the CARIBIC aircraft

    Directory of Open Access Journals (Sweden)

    A. M. Batenburg

    2012-05-01

    Full Text Available More than 450 air samples that were collected in the upper troposphere – lower stratosphere (UTLS region by the CARIBIC aircraft (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container have been analyzed for molecular hydrogen (H2 mixing ratios (χ(H2 and H2 isotopic composition (deuterium content, δD.

    More than 120 of the analyzed samples contained air from the lowermost stratosphere (LMS. These show that χ(H2 does not vary appreciably with O3-derived height above the thermal tropopause (TP, whereas δD does increase with height. The isotope enrichment is caused by H2 production and destruction processes that enrich the stratospheric H2 reservoir in deuterium (D; the exact shapes of the profiles are mainly determined by mixing of stratospheric with tropospheric air. Tight negative correlations are found between δD and the mixing ratios of methane (χ(CH4 and nitrous oxide (χ(N2O, as a result of the relatively long lifetimes of these three species. The correlations are described by δD[‰]=−0.35 · χ(CH4[ppb]+768 and δD[‰]=−1.90· χ(N2O[ppb]+745. These correlations are similar to previously published results and likely hold globally for the LMS.

    Samples that were collected from the Indian subcontinent up to 40° N before, during and after the summer monsoon season show no significant seasonal change in χ(H2, but δD is up to 12.3‰ lower in the July, August and September monsoon samples. This δD decrease is correlated with the χ(CH4 increase in these samples. The significant correlation with χ(CH4 and the absence of a perceptible χ(H2 increase that accompanies the δD decrease indicates that microbial production of

  20. Acid hydrolysis and molecular density of phytoglycogen and liver glycogen helps understand the bonding in glycogen α (composite particles.

    Directory of Open Access Journals (Sweden)

    Prudence O Powell

    Full Text Available Phytoglycogen (from certain mutant plants and animal glycogen are highly branched glucose polymers with similarities in structural features and molecular size range. Both appear to form composite α particles from smaller β particles. The molecular size distribution of liver glycogen is bimodal, with distinct α and β components, while that of phytoglycogen is monomodal. This study aims to enhance our understanding of the nature of the link between liver-glycogen β particles resulting in the formation of large α particles. It examines the time evolution of the size distribution of these molecules during acid hydrolysis, and the size dependence of the molecular density of both glucans. The monomodal distribution of phytoglycogen decreases uniformly in time with hydrolysis, while with glycogen, the large particles degrade significantly more quickly. The size dependence of the molecular density shows qualitatively different shapes for these two types of molecules. The data, combined with a quantitative model for the evolution of the distribution during degradation, suggest that the bonding between β into α particles is different between phytoglycogen and liver glycogen, with the formation of a glycosidic linkage for phytoglycogen and a covalent or strong non-covalent linkage, most probably involving a protein, for glycogen as most likely. This finding is of importance for diabetes, where α-particle structure is impaired.

  1. Acid Hydrolysis and Molecular Density of Phytoglycogen and Liver Glycogen Helps Understand the Bonding in Glycogen α (Composite) Particles

    Science.gov (United States)

    Powell, Prudence O.; Sullivan, Mitchell A.; Sheehy, Joshua J.; Schulz, Benjamin L.; Warren, Frederick J.; Gilbert, Robert G.

    2015-01-01

    Phytoglycogen (from certain mutant plants) and animal glycogen are highly branched glucose polymers with similarities in structural features and molecular size range. Both appear to form composite α particles from smaller β particles. The molecular size distribution of liver glycogen is bimodal, with distinct α and β components, while that of phytoglycogen is monomodal. This study aims to enhance our understanding of the nature of the link between liver-glycogen β particles resulting in the formation of large α particles. It examines the time evolution of the size distribution of these molecules during acid hydrolysis, and the size dependence of the molecular density of both glucans. The monomodal distribution of phytoglycogen decreases uniformly in time with hydrolysis, while with glycogen, the large particles degrade significantly more quickly. The size dependence of the molecular density shows qualitatively different shapes for these two types of molecules. The data, combined with a quantitative model for the evolution of the distribution during degradation, suggest that the bonding between β into α particles is different between phytoglycogen and liver glycogen, with the formation of a glycosidic linkage for phytoglycogen and a covalent or strong non-covalent linkage, most probably involving a protein, for glycogen as most likely. This finding is of importance for diabetes, where α-particle structure is impaired. PMID:25799321

  2. Probing the Composition, Assembly and Activity of Protein Molecular Machines using Native Mass Spectrometry

    NARCIS (Netherlands)

    van de Waterbeemd, M.J.

    2017-01-01

    Native mass spectrometry and mass spectrometry in general, are powerful analytical tools for studying proteins and protein complexes. Native mass spectrometry may provide accurate mass measurements of large macromolecular assemblies enabling the investigation of their composition and stoichiometry.

  3. Sea spray aerosol chemical composition: elemental and molecular mimics for laboratory studies of heterogeneous and multiphase reactions.

    Science.gov (United States)

    Bertram, Timothy H; Cochran, Richard E; Grassian, Vicki H; Stone, Elizabeth A

    2018-04-03

    Sea spray aerosol particles (SSA), formed through wave breaking at the ocean surface, contribute to natural aerosol particle concentrations in remote regions of Earth's atmosphere, and alter the direct and indirect effects of aerosol particles on Earth's radiation budget. In addition, sea spray aerosol serves as suspended surface area that can catalyze trace gas reactions. It has been shown repeatedly that sea spray aerosol is heavily enriched in organic material compared to the surface ocean. The selective enrichment of organic material complicates the selection of representative molecular mimics of SSA for laboratory or computational studies. In this review, we first provide a short introduction to SSA formation processes and discuss chemical transformations of SSA that occur in polluted coastal regions and remote pristine air. We then focus on existing literature of the chemical composition of nascent SSA generated in controlled laboratory experiments and field investigations. We combine the evidence on the chemical properties of nascent SSA with literature measurements of SSA water uptake to assess SSA molecular composition and liquid water content. Efforts to speciate SSA organic material into molecular classes and specific molecules have led to the identification of saccharides, alkanes, free fatty acids, anionic surfactants, dicarboxylic acids, amino acids, proteinaceous matter, and other large macromolecules. However to date, less than 25% of the organic mass of nascent SSA has been quantified at a molecular level. As discussed here, quantitative measurements of size resolved elemental ratios, combined with determinations of water uptake properties, provides unique insight on the concentration of ions within SSA as a function of particle size, pointing to a controlling role for relative humidity and the hygroscopicity of SSA organic material at small particle diameters.

  4. Design of supramolecular ordered systems for mesoscopic colloids and molecular composites. Progress report, November 10, 1993--June 10, 1994

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    During this reporting period, the authors group has been active in five areas of research: (1) improvements on their x-ray instrumentation at the SUNY Beamline, National Synchrotron Light Source (NSLS) so that they can perform new experiments which are not accessible otherwise; (2) characterization of functionalized hairy rod polymers designed for studying the macromolecular structures in molecular composites; (3) investigation of supramolecular ordered systems composed mainly of block copolymers from dilute to concentrated solutions, including the gel state; (4) evolution of crystalline structures in polymer blends and melts; and (5) multiphase structure of segment polyurethanes.

  5. Synthesis of Hβ (core)/SAPO-11 (shell) Composite Molecular Sieve and its Catalytic Performances in the Methylation of Naphthalene with Methanol

    International Nuclear Information System (INIS)

    Wang, Xiaoxiao; Zhao, Liangfu; Guo, Shaoqing

    2013-01-01

    Hβ (core)/SAPO-11 (shell) composite molecular sieve was synthesized by the hydrothermal method in order to combine the advantages of Hβ and SAPO-11 for the methylation of naphthalene with methanol. For comparison, the mechanical mixture was prepared through the blending of Hβ and SAPO-11. The physicochemical properties of Hβ, SAPO-11, the composite and the mechanical mixture were characterized by various characterization methods. The characterization results indicated that Hβ/SAPO-11 composite molecular sieve exhibited a core-shell structure, with the Hβ phase as the core and the SAPO-11 phase as the shell. The pore diameter of the composite was between that of Hβ and SAPO-11. The composite had fewer acid sites than Hβ and mechanical mixture while more acid sites than SAPO-11. The experimental results indicated that the composite exhibited high catalytic performances for the methylation of naphthalene with methanol

  6. Preliminary evaluation of an aqueous wax emulsion for controlled-release coating.

    Science.gov (United States)

    Walia, P S; Stout, P J; Turton, R

    1998-02-01

    The purpose of this work was to evaluate the use of an aqueous carnauba wax emulsion (Primafresh HS, Johnson Wax) in a spray-coating process. This involved assessing the effectiveness of the wax in sustaining the release of the drug, theophylline. Second, the process by which the drug was released from the wax-coated pellets was modeled. Finally, a method to determine the optimum blend of pellets with different wax thicknesses, in order to yield a zero-order release profile of the drug, was addressed. Nonpareil pellets were loaded with theophylline using a novel powder coating technique. These drug-loaded pellets were then coated with different levels of carnauba wax in a 6-in. diameter Plexiglas fluid bed with a 3.5-in. diameter Wurster partition. Drug release was measured using a spin-filter dissolution device. The study resulted in continuous carnauba wax coatings which showed sustained drug release profile characteristics typical of a barrier-type, diffusion-controlled system. The effect of varying wax thickness on the release profiles was investigated. It was observed that very high wax loadings would be required to achieve long sustained-release times. The diffusion model, developed to predict the release of the drug, showed good agreement with the experimental data. However, the data exhibited an initial lag-time for drug release which could not be predicted a priori based on the wax coating thickness. A method of mixing pellets with different wax thicknesses was proposed as a way to approximate zero-order release.

  7. Coupling effects of abiotic and biotic factors on molecular composition of dissolved organic matter in a freshwater wetland

    Energy Technology Data Exchange (ETDEWEB)

    He, Wei [Department of Environment and Energy, Sejong University, Seoul 143-747 (Korea, Republic of); Choi, Ilhwan [Water Analysis and Research Center, K-water, 560 Sintanjin-ro, Daedeok-gu, Daejeon 307-711 (Korea, Republic of); Lee, Jung-Joon [Department of Biological Education, Daegu University, Gyungbuk 712-714 (Korea, Republic of); Hur, Jin, E-mail: jinhur@sejong.ac.kr [Department of Environment and Energy, Sejong University, Seoul 143-747 (Korea, Republic of)

    2016-02-15

    In this study, temporal and spatial variations in five defined molecular size fractions of dissolved organic matter (DOM) were examined for a well preserved wetland (Upo Wetland) and its surrounding areas, and the influencing factors were explored with many biotic and abioic parameters. For each DOM sample, the five size fractions were determined by size-exclusion chromatography coupled with organic carbon detector (SEC-OCD). For 2-year long monthly monitoring, bio-polymers (BP), humic substances (HS), building blocks (BB), low molecular-weight (LMW) neutrals, and LMW acids displayed the median values of 264, 1884, 1070, 1090, and 11 μg-C L{sup −1}, respectively, accounting for 6.2%, 41.7%, 24.5%, 26.4%, and 0.4% of dissolved organic carbon (DOC). The dominant presence of HS indicated that terrestrial input played important roles in DOM composition of the freshwater ecosystem, which contrasted with coastal wetlands in other reports. Both seasonal and periodic patterns in the variations were found only for HS and BB among the size fractions. It was also notable that the sources of HS were seasonally shifted from aquagenic origin in winter to pedogenic origin in summer. The correlations among the size fractions revealed that BB and LMW neutrals might be degradation products from HS and humic-like substances (HS + BB), respectively, while LMW acids, from LMW neutrals. Principle component analysis revealed that the humic-like substances and the aromaticity of DOM were associated with temperature, chlorophyll a, phosphorous, and rainfall, whereas the other fractions and the molecular weight of HS were primarily affected by solar irradiation. Significant correlations between DOM composition and some biotic factors further suggested that DOM may even affect the biological communities, which provides an insight into the potential coupling effects of biotic and abiotic factors on DOM molecular composition in freshwater wetlands. - Highlights: • Humic fractions varied

  8. Coupling effects of abiotic and biotic factors on molecular composition of dissolved organic matter in a freshwater wetland

    International Nuclear Information System (INIS)

    He, Wei; Choi, Ilhwan; Lee, Jung-Joon; Hur, Jin

    2016-01-01

    In this study, temporal and spatial variations in five defined molecular size fractions of dissolved organic matter (DOM) were examined for a well preserved wetland (Upo Wetland) and its surrounding areas, and the influencing factors were explored with many biotic and abioic parameters. For each DOM sample, the five size fractions were determined by size-exclusion chromatography coupled with organic carbon detector (SEC-OCD). For 2-year long monthly monitoring, bio-polymers (BP), humic substances (HS), building blocks (BB), low molecular-weight (LMW) neutrals, and LMW acids displayed the median values of 264, 1884, 1070, 1090, and 11 μg-C L"−"1, respectively, accounting for 6.2%, 41.7%, 24.5%, 26.4%, and 0.4% of dissolved organic carbon (DOC). The dominant presence of HS indicated that terrestrial input played important roles in DOM composition of the freshwater ecosystem, which contrasted with coastal wetlands in other reports. Both seasonal and periodic patterns in the variations were found only for HS and BB among the size fractions. It was also notable that the sources of HS were seasonally shifted from aquagenic origin in winter to pedogenic origin in summer. The correlations among the size fractions revealed that BB and LMW neutrals might be degradation products from HS and humic-like substances (HS + BB), respectively, while LMW acids, from LMW neutrals. Principle component analysis revealed that the humic-like substances and the aromaticity of DOM were associated with temperature, chlorophyll a, phosphorous, and rainfall, whereas the other fractions and the molecular weight of HS were primarily affected by solar irradiation. Significant correlations between DOM composition and some biotic factors further suggested that DOM may even affect the biological communities, which provides an insight into the potential coupling effects of biotic and abiotic factors on DOM molecular composition in freshwater wetlands. - Highlights: • Humic fractions varied

  9. [Correlation of molecular weight and nanofiltration mass transfer coefficient of phenolic acid composition from Salvia miltiorrhiza].

    Science.gov (United States)

    Li, Cun-Yu; Wu, Xin; Gu, Jia-Mei; Li, Hong-Yang; Peng, Guo-Ping

    2018-04-01

    Based on the molecular sieving and solution-diffusion effect in nanofiltration separation, the correlation between initial concentration and mass transfer coefficient of three typical phenolic acids from Salvia miltiorrhiza was fitted to analyze the relationship among mass transfer coefficient, molecular weight and concentration. The experiment showed a linear relationship between operation pressure and membrane flux. Meanwhile, the membrane flux was gradually decayed with the increase of solute concentration. On the basis of the molecular sieving and solution-diffusion effect, the mass transfer coefficient and initial concentration of three phenolic acids showed a power function relationship, and the regression coefficients were all greater than 0.9. The mass transfer coefficient and molecular weight of three phenolic acids were negatively correlated with each other, and the order from high to low is protocatechualdehyde >rosmarinic acid> salvianolic acid B. The separation mechanism of nanofiltration for phenolic acids was further clarified through the analysis of the correlation of molecular weight and nanofiltration mass transfer coefficient. The findings provide references for nanofiltration separation, especially for traditional Chinese medicine with phenolic acids. Copyright© by the Chinese Pharmaceutical Association.

  10. Thermal Cracking to Improve the Qualification of the Waxes

    Science.gov (United States)

    He, B.; Agblevor, F. A.; Chen, C. G.; Feng, J.

    2018-05-01

    Thermal cracking of waxes at mild conditions (430-500°C) has been reconsidered as a possible refining technology for the production of fuels and chemicals. In this study, the more moderate thermal cracking was investigated to process Uinta Basin soft waxes to achieve the required pour point so that they can be pumped to the refineries. The best thermal cracking conditions were set 420°C and 20 minutes. The viscosity and density of the final liquid product were respectively achieved as 2.63 mP•s and 0.784 g/cm3 at 40°C. The result of FT-IR analysis of the liquid product indicated that the unsaturated hydrocarbons were produced after thermal cracking, which was corroborated by the 13C NMR spectrum. The GC analysis of the final gas product indicated that the hydrogen was produced; the dehydrogenation reaction was also proved by the elemental analysis and HHV results. The pour point of the final liquid product met the requirement.

  11. Inverse gradients in leaf wax δD and δ13C values along grass blades of Miscanthus sinensis: implications for leaf wax reproduction and plant physiology.

    Science.gov (United States)

    Gao, Li; Huang, Yongsong

    2013-06-01

    Compound specific hydrogen and carbon isotopic ratios of higher plant leaf waxes have been extensively used in paleoclimate and paleoenvironmental reconstructions. However, studies so far have focused on the comparison of leaf wax isotopic differences in bulk leaf samples between different plant species. We sampled three different varieties of tall grasses (Miscanthus sinensis) in six segments from base to tip and determined hydrogen and carbon isotopic ratios of leaf waxes, as well as hydrogen and oxygen isotopic ratios of leaf water samples. We found an increasing, base-to-tip hydrogen isotopic gradient along the grass blades that can probably be attributed to active leaf wax regeneration over the growth season. Carbon isotopic ratios, on the other hand, show opposite trends to hydrogen isotopic ratios along the grass blades, which may reflect different photosynthetic efficiencies at different blade locales.

  12. A news magnetic tools designed by ECOPETROL to inhibit wax in the petroleum production systems

    Energy Technology Data Exchange (ETDEWEB)

    Pelaez U, C.; Medina Z, C. [ECOPETROL, Instituto Colombiano del Petroleo (Colombia); Pena C, A. [INSERPET, Bucaramanga (Colombia)

    1996-12-31

    The deposition of wax and asphaltenes in production systems cause plugging in the flow lines reducing the oil production and increasing significantly the produced barrels prices. A wax magnetic inhibition technique has been tested with great success. The method has been improved with the use of magnetic tools. This work describes the experience and the results obtained with these tools. 6 figs., 1 tab.

  13. Development and Performance Evaluation of Image-Based Robotic Waxing System for Detailing Automobiles.

    Science.gov (United States)

    Lin, Chi-Ying; Hsu, Bing-Cheng

    2018-05-14

    Waxing is an important aspect of automobile detailing, aimed at protecting the finish of the car and preventing rust. At present, this delicate work is conducted manually due to the need for iterative adjustments to achieve acceptable quality. This paper presents a robotic waxing system in which surface images are used to evaluate the quality of the finish. An RGB-D camera is used to build a point cloud that details the sheet metal components to enable path planning for a robot manipulator. The robot is equipped with a multi-axis force sensor to measure and control the forces involved in the application and buffing of wax. Images of sheet metal components that were waxed by experienced car detailers were analyzed using image processing algorithms. A Gaussian distribution function and its parameterized values were obtained from the images for use as a performance criterion in evaluating the quality of surfaces prepared by the robotic waxing system. Waxing force and dwell time were optimized using a mathematical model based on the image-based criterion used to measure waxing performance. Experimental results demonstrate the feasibility of the proposed robotic waxing system and image-based performance evaluation scheme.

  14. Gluconeogenesis from Storage Wax in the Cotyledons of Jojoba Seedlings 1

    Science.gov (United States)

    Moreau, Robert A.; Huang, Anthony H. C.

    1977-01-01

    The cotyledons of jojoba (Simmondsia chinensis) seeds contained 50 to 60% of their weight as intracellular wax esters. During germination there was a gradual decrease in the wax content with a concomitant rise in soluble carbohydrates, suggesting that the wax played the role of a food reserve. Thin layer chromatography revealed that both the fatty alcohol and fatty acid were metabolized. The disappearance of wax was matched with an increase of catalase, a marker enzyme of the gluconeogenic process in other fatty seedlings. Subcellular organelles were isolated by sucrose gradient centrifugation from the cotyledons at the peak stage of germination. The enzymes of the β oxidation of fatty acid and of the glyoxylate cycle were localized in the glyoxysomes but not in the mitochondria. The glyoxysomes had specific activities of individual enzymes similar to those of the castor bean glyoxysomes. An active alkaline lipase was detected in the wax bodies at the peak stage of germination but not in the ungerminated seeds. No lipase was detected in glyoxysomes or mitochondria. After the wax in the wax bodies had been extracted with diethyl ether, the organelle membrane was isolated and it still retained the alkaline lipase. The gluconeogenesis from wax in the jojoba seedling appears to be similar, but with modification, to that from triglyceride in other fatty seedlings. Images PMID:16660087

  15. Simple Synthesis Hydrogenated Castor Oil Fatty Amide Wax and Its Coating Characterization.

    Science.gov (United States)

    Yu, Xiuzhu; Wang, Ning; Zhang, Rui; Zhao, Zhong

    2017-07-01

    A simple method for incorporating amine groups in hydrogenated castor oil (HCO) to produce wax for beeswax or carnauba wax substitution in packaging and coating was developed. From the conversion rate of the products, HCO was reacted with ethanolamine at 150°C for 5 h, and the molar ratio of HCO and ethanolamine was 1:4. The hardness of the final product was seven times higher than that of beeswax, the cohesiveness of the final product was 1.3 times higher than that of beeswax and approximately one half of that of carnauba wax, and the melting point of the final product is 98°C. The Fourier transform Infrared spectroscopy showed that the amide groups were incorporated to form the amide products. In coating application, the results showed that the force of the final product coating cardboard was higher than that of beeswax and paraffin wax and less than that of carnauba wax. After 24 h soaking, the compression forces were decreased. HCO fatty acid wax can be an alternative wax for carnauba wax and beeswax in coating applications.

  16. Epicuticular wax on stomata of damaged silver fir trees (Abies alba Mili.

    Directory of Open Access Journals (Sweden)

    Tomislav Bačić

    2011-01-01

    Full Text Available Condition of epistomatal wax on the abaxial surface of the current and previous-year needles of damaged silver fir trees (Abies alba Mill., both from the polluted Risnjak and "clean" Donja Dobra sites in Gorski Kotar region, both influenced by pollutants coming from Europe, during two years, three times a year, were examined with Scanning Electron Microscope. In the course of time the wax tubules on the epistomatal rims of stomata in polluted, but also in "clean" needles surface, become fused and agglomerated rapidly to various extents of morphologically different types of amorphous wax crusts, primarily compact and particulate ones. This process begins very early, especially in polluted Risnjak site, and may be interpreted as a possible result of air pollution. However, the recrystalization, or production of new tubules, also appears relatively quickly in mostly cases. Quantitative estimations indicate a very large total amount of amorphous wax crusts in the current-year needles, and a very high percentage of the same wax in previous-year needles. Amorphous wax crusts cover stomatal pores, as well as the rims, disturbing the normal gas exchange. Statistically there is a signicant tendency of increase in wax degradation in the needles of the polluted site in comparison with those of the unpolluted one, but there is an insignificant wax degradation among the needles of damaged trees within each site. These results confirmed most of the research done in our preliminary report.

  17. A news magnetic tools designed by ECOPETROL to inhibit wax in the petroleum production systems

    Energy Technology Data Exchange (ETDEWEB)

    Pelaez U, C; Medina Z, C [ECOPETROL, Instituto Colombiano del Petroleo (Colombia); Pena C, A [INSERPET, Bucaramanga (Colombia)

    1997-12-31

    The deposition of wax and asphaltenes in production systems cause plugging in the flow lines reducing the oil production and increasing significantly the produced barrels prices. A wax magnetic inhibition technique has been tested with great success. The method has been improved with the use of magnetic tools. This work describes the experience and the results obtained with these tools. 6 figs., 1 tab.

  18. Effect of soil moisture management on the quality of wax apple | Lin ...

    African Journals Online (AJOL)

    Wax apple (Syzygium samarngense Merr.et Perry) was one of the economically planted fruits in Taiwan. This research was conducted to evaluate the effects of different soil moisture management on increasing wax apple quality. It was preceded at two different soil properties (shallow soil and alluvial soil) in Pingtung, ...

  19. Morphology and accumulation of epicuticular wax on needles of Douglas-fir (Pseudotsuga menziesii var. menziesii)

    Science.gov (United States)

    Constance A. Harrington; William C. Carlson

    2015-01-01

    Past studies have documented differences in epicuticular wax among several tree species but little attention has been paid to changes in accumulation of foliar wax that can occur during the year. We sampled current-year needles from the terminal shoots of Douglas-fir (Pseudotsuga menziesii var. menziesii) in late June/early...

  20. Predicting the glass transition temperature of bioactive glasses from their molecular chemical composition.

    Science.gov (United States)

    Hill, Robert G; Brauer, Delia S

    2011-10-01

    A recently published paper (M.D. O'Donnell, Acta Biomaterialia 7 (2011) 2264-2269) suggests that it is possible to correlate the glass transition temperature (T(g)) of bioactive glasses with their molar composition, based on iterative least-squares fitting of published T(g) data. However, we show that the glass structure is an important parameter in determining T(g). Phase separation, local structural effects and components (intermediate oxides) which can switch their structural role in the glass network need to be taken into consideration, as they are likely to influence the glass transition temperature of bioactive glasses. Although the model suggested by O'Donnell works reasonably well for glasses within the composition range presented, it is oversimplified and fails for glasses outside certain compositional boundaries. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Study on performance of composite polymer films doped with modified molecular sieve for lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang Yuqing; Zhang Guodong; Du Tingdong; Zhang Lizao

    2010-01-01

    To improve the tensile strength and ionic conductivity of composite polymer films for lithium-ion batteries, molecular sieves of MCM-41 modified with sulfated zirconia (SO 4 2- /ZrO 2 , SZ), denoted as MCM-41/SZ, were doped into a poly(vinylidene fluoride) (PVdF) matrix to fabricate MCM-41/SZ composite polymer films, denoted as MCM-41/SZ films. Examination by transmission electron microscope (TEM) shows that modified molecular sieves have lower aggregation and a more porous structure. Tensile strength tests were carried out to investigate the mechanical performance of MCM-41/SZ films, and then the electrochemical performance of batteries with MCM-41/SZ films as separators was tested. The results show that the tensile strength (σ t ) of MCM-41/SZ film was up to 7.8 MPa; the ionic conductivity of MCM-41/SZ film was close to 10 -3 S cm -1 at room temperature; and the coulombic efficiency of the assembled lithium-ion battery was 92% at the first cycle and reached as high as 99.99% after the 20th cycle. Meanwhile, the charge-discharge voltage plateau of the lithium-ion battery presented a stable state. Therefore, MCM-41/SZ films are a good choice as separators for lithium-ion batteries due to their high tensile strength and ionic conductivity.

  2. Effects of molecular structure of the resins on the volumetric shrinkage and the mechanical strength of dental restorative composites.

    Science.gov (United States)

    Kim, L U; Kim, J W; Kim, C K

    2006-09-01

    To prepare a dental composite that has a low amount of curing shrinkage and excellent mechanical strength, various 2,2-bis[4-(2-hydroxy-3-methacryloyloxy propoxy) phenyl] propane (Bis-GMA) derivatives were synthesized via molecular structure design, and afterward, properties of their mixtures were explored. Bis-GMA derivatives, which were obtained by substituting methyl groups for hydrogen on the phenyl ring in the Bis-GMA, exhibited lower curing shrinkage than Bis-GMA, whereas their viscosities were higher than that of Bis-GMA. Other Bis-GMA derivatives, which contained a glycidyl methacrylate as a molecular end group exhibited reduced curing shrinkage and viscosity. Methoxy substitution for hydroxyl groups on the Bis-GMA derivatives was performed for the further reduction of the viscosity and curing shrinkage. Various resin mixtures, which had the same viscosity as the commercial one, were prepared, and their curing shrinkage was examined. A resin mixture containing 2,2-bis[3,5-dimethyl, 4-(2-methoxy-3-methacryloyloxy propoxy) phenyl] propane] (TMBis-M-GMA) as a base resin and 4-tert-butylphenoxy-2-methyoxypropyl methacrylate (t-BP-M-GMA) as a diluent exhibited the lowest curing shrinkage among them. The composite prepared from this resin mixture also exhibited the lowest curing shrinkage along with enhanced mechanical properties.

  3. Assessment of the Simulated Molecular Composition with the GECKO-A Modeling Tool Using Chamber Observations for α-Pinene.

    Science.gov (United States)

    Aumont, B.; Camredon, M.; Isaacman-VanWertz, G. A.; Karam, C.; Valorso, R.; Madronich, S.; Kroll, J. H.

    2016-12-01

    Gas phase oxidation of VOC is a gradual process leading to the formation of multifunctional organic compounds, i.e., typically species with higher oxidation state, high water solubility and low volatility. These species contribute to the formation of secondary organic aerosols (SOA) viamultiphase processes involving a myriad of organic species that evolve through thousands of reactions and gas/particle mass exchanges. Explicit chemical mechanisms reflect the understanding of these multigenerational oxidation steps. These mechanisms rely directly on elementary reactions to describe the chemical evolution and track the identity of organic carbon through various phases down to ultimate oxidation products. The development, assessment and improvement of such explicit schemes is a key issue, as major uncertainties remain on the chemical pathways involved during atmospheric oxidation of organic matter. An array of mass spectrometric techniques (CIMS, PTRMS, AMS) was recently used to track the composition of organic species during α-pinene oxidation in the MIT environmental chamber, providing an experimental database to evaluate and improve explicit mechanisms. In this study, the GECKO-A tool (Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere) is used to generate fully explicit oxidation schemes for α-pinene multiphase oxidation simulating the MIT experiment. The ability of the GECKO-A chemical scheme to explain the organic molecular composition in the gas and the condensed phases is explored. First results of this model/observation comparison at the molecular level will be presented.

  4. Effects of cuticular wax on the postharvest quality of blueberry fruit.

    Science.gov (United States)

    Chu, Wenjing; Gao, Haiyan; Chen, Hangjun; Fang, Xiangjun; Zheng, Yonghua

    2018-01-15

    The blueberry fruit has a light-blue appearance because its blue-black skin is covered with a waxy bloom. This layer is easily damaged or removed during fruit harvesting and postharvest handling. We investigated the effects of wax removal on the postharvest quality of blueberry fruit and their possible mechanisms. The removal of natural wax on the fruit was found to accelerate the postharvest water loss and decay, reduce the sensory and nutritional qualities, and shorten the shelf-life. Wax removal decreased the activities of antioxidant enzymes and contents of antioxidants, and accelerated accumulation of ROS and lipid peroxidation, especially at the later period of storage. Moreover, the organellar membrane structure was disrupted in fruit with wax removed. These results indicate that cuticular wax plays an important role in maintaining the postharvest quality and delaying fruit senescence. The results should improve our understanding for better preservation of postharvest quality of blueberry fruit. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Direct molecular mass determination of trehalose monomycolate from 11 species of mycobacteria by MALDI-TOF mass spectrometry.

    Science.gov (United States)

    Fujita, Yukiko; Naka, Takashi; Doi, Takeshi; Yano, Ikuya

    2005-05-01

    Direct estimation of the molecular mass of single molecular species of trehalose 6-monomycolate (TMM), a ubiquitous cell-wall component of mycobacteria, was performed by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. When less than 1 microg TMM was analysed by MALDI-TOF mass spectrometry, quasimolecular ions [M+Na]+ of each molecular species were demonstrated and the numbers of carbons and double bonds (or cyclopropane rings) were determined. Since the introduction of oxygen atoms such as carbonyl, methoxy and ester groups yielded the appropriate shift of mass ions, the major subclasses of mycolic acid (alpha, methoxy, keto and wax ester) were identified without resorting to hydrolytic procedures. The results showed a marked difference in the molecular species composition of TMM among mycobacterial species. Unexpectedly, differing from other mycoloyl glycolipids, TMM from Mycobacterium tuberculosis showed a distinctive mass pattern, with abundant odd-carbon-numbered monocyclopropanoic (or monoenoic) alpha-mycolates besides dicyclopropanoic mycolate, ranging from C75 to C85, odd- and even-carbon-numbered methoxymycolates ranging from C83 to C94 and even- and odd-carbon-numbered ketomycolates ranging from C83 to C90. In contrast, TMM from Mycobacterium bovis (wild strain and BCG substrains) possessed even-carbon-numbered dicyclopropanoic alpha-mycolates. BCG Connaught strain lacked methoxymycolates almost completely. These results were confirmed by MALDI-TOF mass analysis of mycolic acid methyl esters liberated by alkaline hydrolysis and methylation of the original TMM. Wax ester-mycoloyl TMM molecular species were demonstrated for the first time as an intact form in the Mycobacterium avium-intracellulare group, M. phlei and M. flavescens. The M. avium-intracellulare group possessed predominantly C85 and C87 wax ester-mycoloyl TMM, while M. phlei and the rapid growers tested contained C80, C81, C82 and C83 wax ester

  6. Predicting bioactive glass properties from the molecular chemical composition: glass transition temperature.

    Science.gov (United States)

    O'Donnell, Matthew D

    2011-05-01

    The glass transition temperature (T(g)) of inorganic glasses is an important parameter than can be used to correlate with other glass properties, such as dissolution rate, which governs in vitro and in vivo bioactivity. Seven bioactive glass compositional series reported in the literature (77 in total) were analysed here with T(g) values obtained by a number of different methods: differential thermal analysis, differential scanning calorimetry and dilatometry. An iterative least-squares fitting method was used to correlate T(g) from thermal analysis of these compositions with the levels of individual oxide and fluoride components in the glasses. When all seven series were fitted a reasonable correlation was found between calculated and experimental values (R(2)=0.89). When the two compositional series that were designed in weight percentages (the remaining five were designed in molar percentage) were removed from the model an improved fit was achieved (R(2)=0.97). This study shows that T(g) for a wide range in compositions (e.g. SiO(2) content of 37.3-68.4 mol.%) can be predicted to reasonable accuracy enabling processing parameters to be predicted such as annealing, fibre-drawing and sintering temperatures. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Fundamental and molecular composition characteristics of biochars produced from sugarcane and rice crop residues and by-products.

    Science.gov (United States)

    Jeong, Chang Yoon; Dodla, Syam K; Wang, Jim J

    2016-01-01

    Biochar conversion of sugarcane and rice harvest residues provides an alternative for managing these crop residues that are traditionally burned in open field. Sugarcane leaves, bagasse, rice straw and husk were converted to biochar at four pyrolysis temperatures (PTs) of 450 °C, 550 °C, 650 °C, and 750 °C and evaluated for various elemental, molecular and surface properties. The carbon content of biochars was highest for those produced at 650-750 °C. Biochars produced at 550 °C showed the characteristics of biochar that are commonly interpreted as being stable in soil, with low H/C and O/C ratios and pyrolysis fingerprints dominated by aromatic and polyaromatic hydrocarbons. At 550 °C, all biochars also exhibited maximum CEC values with sugarcane leaves biochar (SLB) > sugarcane bagasse biochar (SBB) > rice straw biochar (RSB) > rice husk biochar (RHB). The pore size distribution of biochars was dominated by pores of 20 nm and high PT increased both smaller and larger than 50 nm pores. Water holding capacity of biochars increased with PT but the magnitude of the increase was limited by feedstock types, likely related to the hydrophobicity of biochars as evident by molecular composition, besides pore volume properties of biochars. Py-GC/MS analysis revealed a clear destruction of lignin with decarboxylation and demethoxylation at 450 °C and dehydroxylation at above 550 °C. Overall, biochar molecular compositions became similar as PT increased, and the biochars produced at 550 °C demonstrated characteristics that have potential benefit as soil amendment for improving both C sequestration and nutrient dynamics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. A method to estimate the fractional fat volume within a ROI of a breast biopsy for WAXS applications: Animal tissue evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Robert Y., E-mail: rx-tang@laurentian.ca [Biomolecular Sciences Program, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6 (Canada); McDonald, Nancy, E-mail: mcdnancye@gmail.com; Laamanen, Curtis, E-mail: cx-laamanen@laurentian.ca [Department of Physics, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6 (Canada); LeClair, Robert J., E-mail: rleclair@laurentian.ca [Department of Physics, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada and Biomolecular Sciences Program, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6 (Canada)

    2014-11-01

    Purpose: To develop a method to estimate the mean fractional volume of fat (ν{sup ¯}{sub fat}) within a region of interest (ROI) of a tissue sample for wide-angle x-ray scatter (WAXS) applications. A scatter signal from the ROI was obtained and use of ν{sup ¯}{sub fat} in a WAXS fat subtraction model provided a way to estimate the differential linear scattering coefficient μ{sub s} of the remaining fatless tissue. Methods: The efficacy of the method was tested using animal tissue from a local butcher shop. Formalin fixed samples, 5 mm in diameter 4 mm thick, were prepared. The two main tissue types were fat and meat (fibrous). Pure as well as composite samples consisting of a mixture of the two tissue types were analyzed. For the latter samples, ν{sub fat} for the tissue columns of interest were extracted from corresponding pixels in CCD digital x-ray images using a calibration curve. The means ν{sup ¯}{sub fat} were then calculated for use in a WAXS fat subtraction model. For the WAXS measurements, the samples were interrogated with a 2.7 mm diameter 50 kV beam and the 6° scattered photons were detected with a CdTe detector subtending a solid angle of 7.75 × 10{sup −5} sr. Using the scatter spectrum, an estimate of the incident spectrum, and a scatter model, μ{sub s} was determined for the tissue in the ROI. For the composite samples, a WAXS fat subtraction model was used to estimate the μ{sub s} of the fibrous tissue in the ROI. This signal was compared to μ{sub s} of fibrous tissue obtained using a pure fibrous sample. Results: For chicken and beef composites, ν{sup ¯}{sub fat}=0.33±0.05 and 0.32 ± 0.05, respectively. The subtractions of these fat components from the WAXS composite signals provided estimates of μ{sub s} for chicken and beef fibrous tissue. The differences between the estimates and μ{sub s} of fibrous obtained with a pure sample were calculated as a function of the momentum transfer x. A t-test showed that the mean of the

  9. Composition

    DEFF Research Database (Denmark)

    Bergstrøm-Nielsen, Carl

    2014-01-01

    Cue Rondo is an open composition to be realised by improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound/video files will in some cases only provide a few minutes' sample, or the visuals will not appear at all....... Please DOWNLOAD them to see/hear them in full length! This work is licensed under a Creative Commons "by-nc" License. You may for non-commercial purposes use and distribute it, performance instructions as well as specially designated recordings, as long as the author is mentioned. Please see http...

  10. Mechanical, Rheological, and Bioactivity Properties of Ultra High-Molecular-Weight Polyethylene Bioactive Composites Containing Polyethylene Glycol and Hydroxyapatite

    Directory of Open Access Journals (Sweden)

    Mazatusziha Ahmad

    2012-01-01

    Full Text Available Ultrahigh-molecular-weight polyethylene/high-density polyethylene (UHMWPE/HDPE blends prepared using polyethylene glycol PEG as the processing aid and hydroxyapatite (HA as the reinforcing filler were found to be highly processable using conventional melt blending technique. It was demonstrated that PEG reduced the melt viscosity of UHMWPE/HDPE blend significantly, thus improving the extrudability. The mechanical and bioactive properties were improved with incorporation of HA. Inclusion of HA from 10 to 50 phr resulted in a progressive increase in flexural strength and modulus of the composites. The strength increment is due to the improvement on surface contact between the irregular shape of HA and polymer matrix by formation of mechanical interlock. The HA particles were homogenously distributed even at higher percentage showed improvement in wetting ability between the polymer matrix and HA. The inclusion of HA enhanced the bioactivity properties of the composite by the formation of calcium phosphate (Ca-P precipitates on the composite surface as proven from SEM and XRD analysis.

  11. Facile preparation of molecularly imprinted polypyrrole-graphene-multiwalled carbon nanotubes composite film modified electrode for rutin sensing.

    Science.gov (United States)

    Yang, Lite; Yang, Juan; Xu, Bingjie; Zhao, Faqiong; Zeng, Baizhao

    2016-12-01

    In this paper, a novel molecularly imprinted composite film modified electrode was presented for rutin (RT) detection. The modified electrode was fabricated by electropolymerization of pyrrole on a graphene-multiwalled carbon nanotubes composite (G-MWCNTs) coated glassy carbon electrode in the presence of RT. The netlike G-MWCNTs composite, prepared by in situ hydrothermal process, had high conductivity and electrocatalytic activity. At the resulting MIP/G-MWCNTs/GCE electrode RT could produce a sensitive anodic peak in pH 1.87 Britton-Robinson buffer solution. The factors affecting the electrochemical behavior and response of RT on the modified electrode were carefully investigated and optimized. Under the selected conditions, the linear response range of RT was 0.01-1.0μmolL -1 and the detection limit (S/N=3) was 5.0nmolL -1 . The electrode was successfully applied to the determination of RT in buckwheat tea and orange juice samples, and the recoveries for standards added were 93.4-105%. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. 76 FR 773 - Petroleum Wax Candles From the People's Republic of China: Continuation of Antidumping Duty Order

    Science.gov (United States)

    2011-01-06

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-504] Petroleum Wax Candles From... Trade Commission (``ITC'') that revocation of the antidumping duty order on petroleum wax candles from... order on petroleum wax candles from the PRC pursuant to section 751(c)(2) of the Tariff Act of 1930, as...

  13. The deflection of carbon composite carbon nanotube / graphene using molecular dynamics simulation

    Science.gov (United States)

    Kolesnikova, A. S.; Kirillova, I. V.; Kossovich, L. U.

    2018-02-01

    For the first time, the dependence of the bending force on the transverse displacement of atoms in the center of the composite material consisting of graphene and parallel oriented zigzag nanotubes was studied. Mathematical modeling of the action of the needle of the atomic force microscope was carried out using the single-layer armchair carbon nanotube. Armchair nanotubes are convenient for using them as a needle of an atomic force microscope, because their edges are not sharpened (unlike zigzag tubes). Consequently, armchair nanotubes will cause minimal damage upon contact with the investigation object. The geometric parameters of the composite was revealed under the action of the bending force of 6μN.

  14. Waxing and Waning of Forests: Late Quaternary Biogeography of Lake Malawi, Southeast Africa

    Science.gov (United States)

    Ivory, S.; Lézine, A. M.; Vincens, A.; Cohen, A. S.

    2014-12-01

    African ecosystems are at great risk due to climate and land-use change. Despite the status of several of these regions as biodiversity hotspots, long-standing ideas about African ecology and biogeography have been unable to be tested until now due to lack of sufficiently long records. Here, we present the first long, continuous terrestrial record of vegetation from Lake Malawi, East Africa which goes back to the early Late Quaternary, permitting us to investigate changes in physiognomy and forest composition over many transitions. In this record, we observe eight phases of forest expansion and collapse. Although diversity is much greater during forest phases, composition varies little from phase to phase. Very high abundances of afromontane taxa suggest frequent widespread colonization of the lowlands by modern high elevation trees. Although there are clear successional stages within each forest such that turnover is great within a single phase, among forest samples between phases, there is little dissimilarity. Each forest phase is interrupted by rapid decline of arboreal taxa and expansion of semi-arid grasslands or woodlands whose composition varies greatly from phase to phase. The variable composition of the more open phases, all occurring during arid periods, is likely dynamically linked to thresholds in regional hydrology associated with lake level and moisture recycling within the watershed. This vegetation is unlike any found at Malawi today, with assemblages suggesting strong Somali-Masai affinities. Furthermore, nearly all semi-arid assemblages contain small abundances of forest taxa typically growing in areas with wetter edaphic conditions, suggesting that moist lowland gallery forests were present but restricted to waterways during exceptionally arid times. The waxing and waning of forests throughout this interval has important implications for early human biogeography across Africa as well as disturbance regimes that are crucial for the maintenance of

  15. Marginal adaptation of four inlay casting waxes on stone, titanium, and zirconia dies.

    Science.gov (United States)

    Michalakis, Konstantinos X; Kapsampeli, Vassiliki; Kitsou, Aikaterini; Kirmanidou, Yvone; Fotiou, Anna; Pissiotis, Argirios L; Calvani, Pasquale Lino; Hirayama, Hiroshi; Kudara, Yukio

    2014-07-01

    Different inlay casting waxes do not produce copings with satisfactory marginal accuracy when used on different die materials. The purpose of this study was to evaluate the marginal accuracy of 4 inlay casting waxes on stone dies and titanium and zirconia abutments and to correlate the findings with the degree of wetting between the die specimens and the inlay casting waxes. The inlay casting waxes tested were Starwax (Dentaurum), Unterziehwachs (Bredent), SU Esthetic wax (Schuler), and Sculpturing wax (Renfert). The marginal opening of the waxes was measured with a stereomicroscope on high-strength stone dies and on titanium and zirconia abutments. Photographic images were obtained, and the mean marginal opening for each specimen was calculated. A total of 1440 measurements were made. Wetting between die materials and waxes was determined after fabricating stone, titanium, and zirconia rectangular specimens. A calibrated pipette was used to place a drop of molten wax onto each specimen. The contact angle was calculated with software after an image of each specimen had been made with a digital camera. Collected data were subjected to a 2-way analysis of variance (α=.05). Any association between marginal accuracy and wetting of different materials was found by using the Pearson correlation. The wax factor had a statistically significant effect both on the marginal discrepancy (F=158.31, P<.001) and contact angle values (F=68.09, P<.001). A statistically significant effect of the die material factor both on the marginal adaptation (F=503.47, P<.001) and contact angle values (F=585.02, P<.001) was detected. A significant correlation between the marginal accuracy and the contact angle values (Pearson=0.881, P=.01) was also found. Stone dies provided wax copings with the best marginal integrity, followed by titanium and zirconia abutments. Unterziehwachs (Bredent), wax produced the best marginal adaptation on different die materials. A significant correlation was found

  16. Wax inhibitor based on ethylene vinyl acetate with methyl methacrylate and diethanolamine for crude oil pipeline

    Science.gov (United States)

    Anisuzzaman, S. M.; Abang, S.; Bono, A.; Krishnaiah, D.; Karali, R.; Safuan, M. K.

    2017-06-01

    Wax precipitation and deposition is one of the most significant flow assurance challenges in the production system of the crude oil. Wax inhibitors are developed as a preventive strategy to avoid an absolute wax deposition. Wax inhibitors are polymers which can be known as pour point depressants as they impede the wax crystals formation, growth, and deposition. In this study three formulations of wax inhibitors were prepared, ethylene vinyl acetate, ethylene vinyl acetate co-methyl methacrylate (EVA co-MMA) and ethylene vinyl acetate co-diethanolamine (EVA co-DEA) and the comparison of their efficiencies in terms of cloud point¸ pour point, performance inhibition efficiency (%PIE) and viscosity were evaluated. The cloud point and pour point for both EVA and EVA co-MMA were similar, 15°C and 10-5°C, respectively. Whereas, the cloud point and pour point for EVA co-DEA were better, 10°C and 10-5°C respectively. In conclusion, EVA co-DEA had shown the best % PIE (28.42%) which indicates highest percentage reduction of wax deposit as compared to the other two inhibitors.

  17. Anatomical models and wax Venuses: art masterpieces or scientific craft works?

    Science.gov (United States)

    Ballestriero, R

    2010-02-01

    The art of wax modelling has an ancient origin but rose to prominence in 14th century Italy with the cult of votive artefacts. With the advent of Neoclassicism this art, now deemed repulsive, continued to survive in a scientific environment, where it flourished in the study of normal and pathological anatomy, obstetrics, zoology and botany. The achievement of having originated the creation of anatomical models in coloured wax must be ascribed to a joint effort undertaken by the Sicilian wax modeller Gaetano Giulio Zumbo and the French surgeon Guillaume Desnoues in the late 17th century. Interest in anatomical wax models spread throughout Europe during the 18th century, first in Bologna with Ercole Lelli, Giovanni Manzolini and Anna Morandi, and then in Florence with Felice Fontana and Clemente Susini. In England, the art of anatomical ceroplastics was brought to London from Florence by the sculptor Joseph Towne. Throughout the centuries many anatomical artists preferred this material due to the remarkable mimetic likeness obtained, far surpassing any other material. Independent of the material used, whether wood, wax or clay, anatomical models were always considered merely craft works confined to hospitals or faculties of medicine and have survived to this day only because of their scientific interest. Italian and English waxes are stylistically different but the remarkable results obtained by Susini and Towne, and the fact that some contemporary artists are again representing anatomical wax bodies in their works, makes the border that formerly separated art and craft indistinguishable.

  18. Development of formulations and processes to incorporate wax oleogels in ice cream.

    Science.gov (United States)

    Zulim Botega, Daniele C; Marangoni, Alejandro G; Smith, Alexandra K; Goff, H Douglas

    2013-12-01

    The objective of this study was to investigate the influence of emulsifiers, waxes, fat concentration, and processing conditions on the application of wax oleogel to replace solid fat content and create optimal fat structure in ice cream. Ice creams with 10% or 15% fat were formulated with rice bran wax (RBW), candelilla wax (CDW), or carnauba wax (CBW) oleogels, containing 10% wax and 90% high-oleic sunflower oil. The ice creams were produced using batch or continuous freezing processes. Transmission electron microscopy (TEM) and cryo-scanning electron microscopy were used to evaluate the microstructure of ice cream and the ultrastructure of oleogel droplets in ice cream mixes. Among the wax oleogels, RBW oleogel had the ability to form and sustain structure in 15% fat ice creams when glycerol monooleate (GMO) was used as the emulsifier. TEM images revealed that the high degree of fat structuring observed in GMO samples was associated with the RBW crystal morphology within the fat droplet, which was characterized by the growth of crystals at the outer edge of the droplet. Continuous freezing improved fat structuring compared to batch freezing. RBW oleogels established better structure compared to CDW or CBW oleogels. These results demonstrate that RBW oleogel has the potential to develop fat structure in ice cream in the presence of GMO and sufficiently high concentrations of oleogel. © 2013 Institute of Food Technologists®

  19. Modeling the Effects of Lipid Composition on Stratum Corneum Bilayers Using Molecular Dynamics Simulations

    Science.gov (United States)

    Huzil, J. Torin; Sivaloganathan, Siv; Kohandel, Mohammad; Foldvari, Marianna

    2011-11-01

    The advancement of dermal and transdermal drug delivery requires the development of delivery systems that are suitable for large protein and nucleic acid-based therapeutic agents. However, a complete mechanistic understanding of the physical barrier properties associated with the epidermis, specifically the membrane structures within the stratum corneum, has yet to be developed. Here, we describe the assembly and computational modeling of stratum corneum lipid bilayers constructed from varying ratios of their constituent lipids (ceramide, free fatty acids and cholesterol) to determine if there is a difference in the physical properties of stratum corneum compositions.

  20. Surface-enhanced Raman scattering on molecular self-assembly in nanoparticle-hydrogel composite.

    Science.gov (United States)

    Miljanić, Snezana; Frkanec, Leo; Biljan, Tomislav; Meić, Zlatko; Zinić, Mladen

    2006-10-24

    Surface-enhanced Raman scattering has been applied to study weak intermolecular interactions between small organic gelling molecules involved in the silver nanoparticle-hydrogel composite formation. Assembly and disassembly of the gelator molecules in close vicinity to embedded silver nanoparticles were followed by changes in Raman intensity of the amide II and carboxyl vibrational bands, whereas the strength of the bands related to benzene modes remained constant. This implied that the gelator molecules were strongly attached to the silver particles through the benzene units, while participating in gel structure organization by intermolecular hydrogen bonding between oxalyl amide and carboxyl groups.

  1. Predicting the glass transition temperature and viscosity of secondary organic material using molecular composition

    Directory of Open Access Journals (Sweden)

    W.-S. W. DeRieux

    2018-05-01

    Full Text Available Secondary organic aerosol (SOA accounts for a large fraction of submicron particles in the atmosphere. SOA can occur in amorphous solid or semi-solid phase states depending on chemical composition, relative humidity (RH, and temperature. The phase transition between amorphous solid and semi-solid states occurs at the glass transition temperature (Tg. We have recently developed a method to estimate Tg of pure compounds containing carbon, hydrogen, and oxygen atoms (CHO compounds with molar mass less than 450 g mol−1 based on their molar mass and atomic O : C ratio. In this study, we refine and extend this method for CH and CHO compounds with molar mass up to ∼ 1100 g mol−1 using the number of carbon, hydrogen, and oxygen atoms. We predict viscosity from the Tg-scaled Arrhenius plot of fragility (viscosity vs. Tg∕T as a function of the fragility parameter D. We compiled D values of organic compounds from the literature and found that D approaches a lower limit of ∼ 10 (±1.7 as the molar mass increases. We estimated the viscosity of α-pinene and isoprene SOA as a function of RH by accounting for the hygroscopic growth of SOA and applying the Gordon–Taylor mixing rule, reproducing previously published experimental measurements very well. Sensitivity studies were conducted to evaluate impacts of Tg, D, the hygroscopicity parameter (κ, and the Gordon–Taylor constant on viscosity predictions. The viscosity of toluene SOA was predicted using the elemental composition obtained by high-resolution mass spectrometry (HRMS, resulting in a good agreement with the measured viscosity. We also estimated the viscosity of biomass burning particles using the chemical composition measured by HRMS with two different ionization techniques: electrospray ionization (ESI and atmospheric pressure photoionization (APPI. Due to differences in detected organic compounds and signal intensity, predicted viscosities at low RH based on ESI and

  2. Molecular composition of vapor in the NaF-ZrF4 system

    International Nuclear Information System (INIS)

    Korenev, Yu.M.; Sidorov, L.N.; Rykov, A.N.; Novoselova, A.V.

    1980-01-01

    The NaF-ZrF 4 system is studied. It is established that Na 2 ZrF 6 , NaZrF 5 , (NaZrF 5 ) 2 , NaZr 2 F 9 complex molecules are present in the saturated vapor alongside with pure components. Partial pressures of all vapor components are determined. The values of partial pressure and evaporation heat have been used to calculate the vapor composition above the system; T-x and P-T projections of the phase diagram of the NaF-ZrF 4 system are plotted

  3. Predicting the glass transition temperature and viscosity of secondary organic material using molecular composition

    Science.gov (United States)

    Wong DeRieux, Wing-Sy; Li, Ying; Lin, Peng; Laskin, Julia; Laskin, Alexander; Bertram, Allan K.; Nizkorodov, Sergey A.; Shiraiwa, Manabu

    2018-05-01

    Secondary organic aerosol (SOA) accounts for a large fraction of submicron particles in the atmosphere. SOA can occur in amorphous solid or semi-solid phase states depending on chemical composition, relative humidity (RH), and temperature. The phase transition between amorphous solid and semi-solid states occurs at the glass transition temperature (Tg). We have recently developed a method to estimate Tg of pure compounds containing carbon, hydrogen, and oxygen atoms (CHO compounds) with molar mass less than 450 g mol-1 based on their molar mass and atomic O : C ratio. In this study, we refine and extend this method for CH and CHO compounds with molar mass up to ˜ 1100 g mol-1 using the number of carbon, hydrogen, and oxygen atoms. We predict viscosity from the Tg-scaled Arrhenius plot of fragility (viscosity vs. Tg/T) as a function of the fragility parameter D. We compiled D values of organic compounds from the literature and found that D approaches a lower limit of ˜ 10 (±1.7) as the molar mass increases. We estimated the viscosity of α-pinene and isoprene SOA as a function of RH by accounting for the hygroscopic growth of SOA and applying the Gordon-Taylor mixing rule, reproducing previously published experimental measurements very well. Sensitivity studies were conducted to evaluate impacts of Tg, D, the hygroscopicity parameter (κ), and the Gordon-Taylor constant on viscosity predictions. The viscosity of toluene SOA was predicted using the elemental composition obtained by high-resolution mass spectrometry (HRMS), resulting in a good agreement with the measured viscosity. We also estimated the viscosity of biomass burning particles using the chemical composition measured by HRMS with two different ionization techniques: electrospray ionization (ESI) and atmospheric pressure photoionization (APPI). Due to differences in detected organic compounds and signal intensity, predicted viscosities at low RH based on ESI and APPI measurements differ by 2-5 orders

  4. Structure property relationship of biological nano composites studies by combination of in-situ synchrotron scattering and mechanical tests

    International Nuclear Information System (INIS)

    Martinschitz, K.

    2005-06-01

    Biological materials represent hierarchical nano fibre composites with complicated morphology and architecture varying on the nm level. The mechanical response of those materials is influenced by many parameters like chemical composition and crystal structure of constituents, preferred orientation, internal morphology with specific sizes of features etc. In-situ wide-angle x-ray scattering (WAXS) combined with mechanical tests provide a unique means to evaluate structural changes in biological materials at specific stages of tensile experiments. In this way it is possible to identify distinct architectural/compositional elements responsible for specific mechanical characteristics of the biological materials. In this thesis, structure-property relationship is analyzed using in-situ WAXS in the tissues of Picea abies, coir fibre, bacterial cellulose and cellulose II based composites. The experiments were performed at the beamline ID01 of European synchrotron radiation facility in Grenoble, France. The tissues were strained in a tensile stage, while the structural changes were monitored using WAXS. Complex straining procedures were applied including cyclic straining. One of the main goals was to understand the stiffness recovery and strain hardening effects in the tissues. The results demonstrate that, in all cellulosics, the orientation of the cellulose crystallites is only the function of the external strain while the stiffness depends on the specific stage of the tensile experiment. Whenever the strain is increased, the tissues exhibit stiffness equal or larger than the initial one. The recovery of the mechanical function is attributed to the molecular mechanistic effects operating between the crystalline domains of the cellulose. (author)

  5. Interfacially enhancement of PBO/epoxy composites by grafting MWCNTs onto PBO surface through melamine as molecular bridge

    Science.gov (United States)

    Lv, Junwei; Wang, Bin; Ma, Qi; Wang, Wenjing; Xiang, Dong; Li, Mengyao; Zeng, Lan; Li, Hui; Li, Yuntao; Zhao, Chunxia

    2018-06-01

    Melamine and multi-walled carbon nanotubes (MWCNTs) were grafted onto Poly-p-phenylene benzobisoxazole (PBO) fiber surface effectively via layer-by-layer method. Both of them have been chemically bonded as fourier transform infrared spectroscopy (FTIR) confirmed. Grafting melamine overcame the inertness of PBO surface. Ammoniation was processed on PBO surface through grafting melamine so that the MWCNTs could be grafted onto PBO surface. Scanning electron microscopy (SEM) images indicated that melamine used as molecular bridge could increase MWCNTs’ quantity on PBO surface. X-ray photoelectron spectroscopy (XPS) results revealed the variation of chemical composition of PBO surface. Test of interfacial shear strength (IFSS) and tensile strength indicated the great mechanical properties of modified PBO fibers when combining with epoxy resin. Furthermore, whole reaction was processed under a simple condition. Results in this research also promised a potential method to modify PBO surface.

  6. A sensing approach for dopamine determination by boronic acid-functionalized molecularly imprinted graphene quantum dots composite

    Science.gov (United States)

    Zhou, Xi; Gao, Xuexia; Song, Fengyan; Wang, Chunpeng; Chu, Fuxiang; Wu, Shishan

    2017-11-01

    A novel fluorescence sensor was developed for dopamine (DA) determination based on molecularly imprinted graphene quantum dots and poly(indolylboronic acid) composite (MIPs@ PIn-BAc/GQDs). When the DA is added to the system, it leads to an aggregation and fluorescence quenching of the MIPs@ PIn-BAc/GQDs because of the covalent binding between the catechol group of DA and boronic acid. Such fluorescence behaviors are used for well testing DA in a range from 5 × 10-9 to 1.2 × 10-6 M with the detection limit of 2.5 × 10-9 M. Furthermore, the prepared sensors could well against the interferences from various biomolecules and be successfully used for the assay of DA in human biological samples, exhibiting excellent specificity. It is believed that the prepared MIPs@ PIn-BAc/GQDs hold great promise as a practical platform that can monitor DA level change.

  7. Accuracy of ringless casting and accelerated wax-elimination technique: a comparative in vitro study.

    Science.gov (United States)

    Prasad, Rahul; Al-Keraif, Abdulaziz Abdullah; Kathuria, Nidhi; Gandhi, P V; Bhide, S V

    2014-02-01

    The purpose of this study was to determine whether the ringless casting and accelerated wax-elimination techniques can be combined to offer a cost-effective, clinically acceptable, and time-saving alternative for fabricating single unit castings in fixed prosthodontics. Sixty standardized wax copings were fabricated on a type IV stone replica of a stainless steel die. The wax patterns were divided into four groups. The first group was cast using the ringless investment technique and conventional wax-elimination method; the second group was cast using the ringless investment technique and accelerated wax-elimination method; the third group was cast using the conventional metal ring investment technique and conventional wax-elimination method; the fourth group was cast using the metal ring investment technique and accelerated wax-elimination method. The vertical marginal gap was measured at four sites per specimen, using a digital optical microscope at 100× magnification. The results were analyzed using two-way ANOVA to determine statistical significance. The vertical marginal gaps of castings fabricated using the ringless technique (76.98 ± 7.59 μm) were significantly less (p castings fabricated using the conventional metal ring technique (138.44 ± 28.59 μm); however, the vertical marginal gaps of the conventional (102.63 ± 36.12 μm) and accelerated wax-elimination (112.79 ± 38.34 μm) castings were not statistically significant (p > 0.05). The ringless investment technique can produce castings with higher accuracy and can be favorably combined with the accelerated wax-elimination method as a vital alternative to the time-consuming conventional technique of casting restorations in fixed prosthodontics. © 2013 by the American College of Prosthodontists.

  8. Modelling the molecular composition and nuclear-spin chemistry of collapsing prestellar sources

    Science.gov (United States)

    Hily-Blant, P.; Faure, A.; Rist, C.; Pineau des Forêts, G.; Flower, D. R.

    2018-04-01

    We study the gravitational collapse of prestellar sources and the associated evolution of their chemical composition. We use the University of Grenoble Alpes Astrochemical Network (UGAN), which includes reactions involving the different nuclear-spin states of H2, H+3, and of the hydrides of carbon, nitrogen, oxygen, and sulfur, for reactions involving up to seven protons. In addition, species-to-species rate coefficients are provided for the ortho/para interconversion of the H_3^+ + H2 system and isotopic variants. The composition of the medium is followed from an initial steady state through the early phase of isothermal gravitational collapse. Both the freeze-out of the molecules on to grains and the coagulation of the grains were incorporated in the model. The predicted abundances and column densities of the spin isomers of ammonia and its deuterated forms are compared with those measured recently towards the prestellar cores H-MM1, L16293E, and Barnard B1. We find that gas-phase processes alone account satisfactorily for the observations, without recourse to grain-surface reactions. In particular, our model reproduces both the isotopologue abundance ratios and the ortho:para ratios of NH2D and NHD2 within observational uncertainties. More accurate observations are necessary to distinguish between full scrambling processes—as assumed in our gas-phase network—and direct nucleus- or atom-exchange reactions.

  9. Tectonic microplates in a wax model of sea-floor spreading

    International Nuclear Information System (INIS)

    Katz, Richard F; Ragnarsson, Rolf; Bodenschatz, Eberhard

    2005-01-01

    Rotating, growing microplates are observed in a wax analogue model of sea-floor spreading. Wax microplates are kinematically similar to sea-floor tectonic microplates in terms of spreading rate and growth rate. Furthermore, their spiral pseudofault geometry is quantitatively consistent with Schouten's oceanic microplate model. These results suggest that Schouten's edge-driven microplate model captures the kinematics of tectonic microplate evolution on Earth. Based on the wax observations, a theory for the nucleation of overlapping spreading centres, the precursors of tectonic microplates, is developed

  10. Caffeine and theobromine in epicuticular wax of Ilex paraguariensis A. St.-Hil.

    Science.gov (United States)

    Athayde, M L; Coelho, G C; Schenkel, E P

    2000-12-01

    Caffeine and theobromine were identified and quantified in leaf epicuticular waxes of Ilex paraguariensis A. St.-Hil. (Aquifoliaceae). The total epicuticular leaf wax content was ca. 0.5% on average of dry leaf weight. Epicuticular caffeine and theobromine contents varied from 0.16 to 127.6 microg/mg and from 0 to 9.5 microg/mg of wax, respectively. For some selected samples, the intracellular methylxanthine concentration was also determined. A positive correlation was found between inner and epicuticular caffeine contents.

  11. Changes in molecular structure and properties of irradiated polymers of different compositions - ESR and NMR study

    International Nuclear Information System (INIS)

    Carswell-Pomerantz, T.; Babanalbandi, A.; Dong, L.; Hill, D.J.T.; Perera, M.C.S.; Pomery, P.J.; Saadat, G.; Whittaker, A.K.

    1999-01-01

    Investigations of molecular structural changes in polymers during exposure to high energy radiation is the long term interest of the Polymer Materials and Radiation Group at the University of Queensland. Recently, the group had looked at a range of polymers including natural and synthetic rubbers, methacrylates and polyesters. The objective of the work has been to investigate the relationships between polymer structure and sensitivity towards high energy radiation, including gamma radiation. This report will focus on the Electron Spin Resonance (ESR) and Nuclear Magnetic Resonance (NMR) studies of the effects of gamma irradiation on these polymers. Other methods such as Gas Chromatography (GC), Gel Permeation Chromatography (GPC), Fourier Transformed Infra Red (FTIR), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA) and Dynamic Mechanical Analysis (DMA) have also been used as these methods combine with ESR and NMR, to provide a more complete picture of the mechanism of the structural changes. (author)

  12. Purification of a jojoba embryo wax synthase, cloning of its cDNA, and production of high levels of wax in seeds of transgenic arabidopsis.

    Science.gov (United States)

    Lardizabal, K D; Metz, J G; Sakamoto, T; Hutton, W C; Pollard, M R; Lassner, M W

    2000-03-01

    Wax synthase (WS, fatty acyl-coenzyme A [coA]: fatty alcohol acyltransferase) catalyzes the final step in the synthesis of linear esters (waxes) that accumulate in seeds of jojoba (Simmondsia chinensis). We have characterized and partially purified this enzyme from developing jojoba embryos. A protein whose presence correlated with WS activity during chromatographic fractionation was identified and a cDNA encoding that protein was cloned. Seed-specific expression of the cDNA in transgenic Arabidopsis conferred high levels of WS activity on developing embryos from those plants. The WS sequence has significant homology with several Arabidopsis open reading frames of unknown function. Wax production in jojoba requires, in addition to WS, a fatty acyl-CoA reductase (FAR) and an efficient fatty acid elongase system that forms the substrates preferred by the FAR. We have expressed the jojoba WS cDNA in Arabidopsis in combination with cDNAs encoding the jojoba FAR and a beta-ketoacyl-CoA synthase (a component of fatty acid elongase) from Lunaria annua. (13)C-Nuclear magnetic resonance analysis of pooled whole seeds from transgenic plants indicated that as many as 49% of the oil molecules in the seeds were waxes. Gas chromatography analysis of transmethylated oil from individual seeds suggested that wax levels may represent up to 70% (by weight) of the oil present in those seeds.

  13. Particulate pollutants are capable to 'degrade' epicuticular waxes and to decrease the drought tolerance of Scots pine (Pinus sylvestris L.).

    Science.gov (United States)

    Burkhardt, Juergen; Pariyar, Shyam

    2014-01-01

    Air pollution causes the amorphous appearance of epicuticular waxes in conifers, usually called wax 'degradation' or 'erosion', which is often correlated with tree damage symptoms, e.g., winter desiccation. Previous investigations concentrated on wax chemistry, with little success. Here, we address the hypothesis that both 'wax degradation' and decreasing drought tolerance of trees may result from physical factors following the deposition of salt particles onto the needles. Pine seedlings were sprayed with dry aerosols or 50 mM solutions of different salts. The needles underwent humidity changes within an environmental scanning electron microscope, causing salt expansion on the surface and into the epistomatal chambers. The development of amorphous wax appearance by deliquescent salts covering tubular wax fibrils was demonstrated. The minimum epidermal conductance of the sprayed pine seedlings increased. Aerosol deposition potentially 'degrades' waxes and decreases tree drought tolerance. These effects have not been adequately considered thus far in air pollution research. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Oxidized Polyethylene Wax as a Potential Carbon Source for PHA Production

    Directory of Open Access Journals (Sweden)

    Iza Radecka

    2016-05-01

    Full Text Available We report on the ability of bacteria to produce biodegradable polyhydroxyalkanoates (PHA using oxidized polyethylene wax (O-PEW as a novel carbon source. The O-PEW was obtained in a process that used air or oxygen as an oxidizing agent. R. eutropha H16 was grown for 48 h in either tryptone soya broth (TSB or basal salts medium (BSM supplemented with O-PEW and monitored by viable counting. Study revealed that biomass and PHA production was higher in TSB supplemented with O-PEW compared with TSB only. The biopolymers obtained were preliminary characterized by nuclear magnetic resonance (NMR, gel permeation chromatography (GPC, differential scanning calorimetry (DSC, and thermogravimetric analysis (TGA. The detailed structural evaluation at the molecular level was performed by electrospray ionization tandem mass spectrometry (ESI-MS/MS. The study revealed that, when TSB was supplemented with O-PEW, bacteria produced PHA which contained 3-hydroxybutyrate and up to 3 mol % of 3-hydroxyvalerate and 3-hydroxyhexanoate co-monomeric units. The ESI-MS/MS enabled the PHA characterization when the content of 3-hydroxybutyrate was high and the appearance of other PHA repeating units was very low.

  15. Molecular-cloud-scale Chemical Composition. II. Mapping Spectral Line Survey toward W3(OH) in the 3 mm Band

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Yuri [Institute of Astronomy, The University of Tokyo, 2-21-1, Osawa, Mitaka, Tokyo 181-0015 (Japan); Watanabe, Yoshimasa; Yamamoto, Satoshi [Department of Physics, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Harada, Nanase [Academia Sinica Institute of Astronomy and Astrophysics, No.1, Sec. 4, Roosevelt Road, 10617 Taipei, Taiwan, R.O.C. (China); Shimonishi, Takashi [Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramakiazaaoba 6-3, Aoba-ku, Sendai, Miyagi 980-8578 (Japan); Sakai, Nami [RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Aikawa, Yuri [Department of Astronomy, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Kawamura, Akiko [Chile Observatory, National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2017-10-10

    To study a molecular-cloud-scale chemical composition, we conducted a mapping spectral line survey toward the Galactic molecular cloud W3(OH), which is one of the most active star-forming regions in the Perseus arm. We conducted our survey through the use of the Nobeyama Radio Observatory 45 m telescope, and observed the area of 16′ × 16′, which corresponds to 9.0 pc × 9.0 pc. The observed frequency ranges are 87–91, 96–103, and 108–112 GHz. We prepared the spectrum averaged over the observed area, in which eight molecular species (CCH, HCN, HCO{sup +}, HNC, CS, SO, C{sup 18}O, and {sup 13}CO) are identified. On the other hand, the spectrum of the W3(OH) hot core observed at a 0.17 pc resolution shows the lines of various molecules such as OCS, H{sub 2}CS CH{sub 3}CCH, and CH{sub 3}CN in addition to the above species. In the spatially averaged spectrum, emission of the species concentrated just around the star-forming core, such as CH{sub 3}OH and HC{sub 3}N, is fainter than in the hot core spectrum, whereas emission of the species widely extended over the cloud such as CCH is relatively brighter. We classified the observed area into five subregions according to the integrated intensity of {sup 13}CO, and evaluated the contribution to the averaged spectrum from each subregion. The CCH, HCN, HCO{sup +}, and CS lines can be seen even in the spectrum of the subregion with the lowest {sup 13}CO integrated intensity range (<10 K km s{sup −1}). Thus, the contributions of the spatially extended emission is confirmed to be dominant in the spatially averaged spectrum.

  16. A molecular dynamic simulation study of mechanical properties of graphene–polythiophene composite with Reax force field

    International Nuclear Information System (INIS)

    Nayebi, Payman; Zaminpayma, Esmaeil

    2016-01-01

    In this paper, we performed molecular dynamic simulations by Reax force field to study the mechanical properties of graphene–polythiophene nanocomposite. By computing elastic constant, breaking stress, breaking strain and Young's modulus from the stress–strain curve for the nanocomposites, we investigated effects of tension orientation, graphene loading to the polymer, temperature of nanocomposite and defect of graphene on these mechanical characters. It is found that mechanical characters of tension along the zigzag orientation are higher than other directions. Also, by increasing the weight concentration of graphene in composite, the Young's modulus and breaking strain increase. Our results showed that the Young's modulus decreased with increasing temperature. Finally by applying defect on graphene structure, we found that one atom missing defect has lower Young's modulus. Also, by increasing the defects concentration, elastic modulus decreases gradually. - Highlights: • We studied mechanical properties of graphene–polythiophene nanocomposite. • Mechanical characters of tension along the zigzag are higher than other directions. • By increasing the weight concentration of graphene in composite, the Young's modulus increases. • Young's modulus decreased with increasing temperature. • By increasing the defects concentration, elastic modulus decreases gradually.

  17. Ultrasensitive molecularly imprinted electrochemical sensor based on magnetism graphene oxide/β-cyclodextrin/Au nanoparticles composites for chrysoidine analysis

    International Nuclear Information System (INIS)

    Wang, Xiaojiao; Li, Xiangjun; Luo, Chuannan; Sun, Min; Li, Leilei; Duan, Huimin

    2014-01-01

    Highlights: • Synthesis and application of MGO/β-CD@AuNPs as a sensor for chrysoidine analysis. • The synthesized polymer had a laminar structure with high surface. • The propose sensor showed high selectivity and good sensitivity. - Abstract: A imprinted electrochemical sensor based on glassy carbon electrode (GCE) for ultrasensitive detection of chrysoidine was fabricated. A GCE was modified by magnetic graphene oxide/β-cyclodextrin/gold nanoparticles composites (MGO/β-CD@AuNPs). The sensing surface area and electronic transmission rate were increased, which was benefited from the distribution property of MGO/β-CD@AuNPs. The MGO/β-CD@AuNPs composite improved electrochemical response and sensitivity of the sensor. The molecularly imprinted electrochemical sensor was prepared by electropolymerization on modified electrode. Chrysoidine and pyrrole were used as template molecule and functional monomer, respectively. Under the optimization experimental conditions, the electrochemical sensor exhibited excellent analytical performance: the detection of chrysoidine ranged from 5.0 × 10 −8 mol/L to 5.0 × 10 −6 mol/L with the detection limit of 1.7 × 10 −8 mol/L. The sensor was applied to determine chrysoidine in spiked water samples and showed high selectivity, good sensitivity and acceptable reproducibility. The proposed method provides a promising platform for trace amount detection of other food additives

  18. A leaf wax biomarker record of early Pleistocene hydroclimate from West Turkana, Kenya

    Science.gov (United States)

    Lupien, R. L.; Russell, J. M.; Feibel, C.; Beck, C.; Castañeda, I.; Deino, A.; Cohen, A. S.

    2018-04-01

    Climate is thought to play a critical role in human evolution; however, this hypothesis is difficult to test due to a lack of long, high-quality paleoclimate records from key hominin fossil locales. To address this issue, we analyzed organic geochemical indicators of climate in a drill core from West Turkana, Kenya that spans ∼1.9-1.4 Ma, an interval that includes several important hominin evolutionary transitions. We analyzed the hydrogen isotopic composition of terrestrial plant waxes (δDwax) to reconstruct orbital-timescale changes in regional hydrology and their relationship with global climate forcings and the hominin fossil record. Our data indicate little change in the long-term mean hydroclimate during this interval, in contrast to inferred changes in the level of Lake Turkana, suggesting that lake level may be responding dominantly to deltaic progradation or tectonically-driven changes in basin configuration as opposed to hydroclimate. Time-series spectral analyses of the isotopic data reveal strong precession-band (21 kyr) periodicity, indicating that regional hydroclimate was strongly affected by changes in insolation. We observe an interval of particularly high-amplitude hydrologic variation at ∼1.7 Ma, which occurs during a time of high orbital eccentricity hence large changes in processionally-driven insolation amplitude. This interval overlaps with multiple hominin species turnovers, the appearance of new stone tool technology, and hominin dispersal out of Africa, supporting the notion that climate variability played an important role in hominin evolution.

  19. Tracking changes in the optical properties and molecular composition of dissolved organic matter during drinking water production.

    Science.gov (United States)

    Lavonen, E E; Kothawala, D N; Tranvik, L J; Gonsior, M; Schmitt-Kopplin, P; Köhler, S J

    2015-11-15

    Absorbance, 3D fluorescence and ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS) were used to explain patterns in the removal of chromophoric and fluorescent dissolved organic matter (CDOM and FDOM) at the molecular level during drinking water production at four large drinking water treatment plants in Sweden. When dissolved organic carbon (DOC) removal was low, shifts in the dissolved organic matter (DOM) composition could not be detected with commonly used DOC-normalized parameters (e.g. specific UV254 absorbance - SUVA), but was clearly observed by using differential absorbance and fluorescence or ESI-FT-ICR-MS. In addition, we took a novel approach by identifying how optical parameters were correlated to the elemental composition of DOM by using rank correlation to connect optical properties to chemical formulas assigned to mass peaks from FT-ICR-MS analyses. Coagulation treatment selectively removed FDOM at longer emission wavelengths (450-600 nm), which significantly correlated with chemical formulas containing oxidized carbon (average carbon oxidation state ≥ 0), low hydrogen to carbon ratios (H/C: average ± SD = 0.83 ± 0.13), and abundant oxygen-containing functional groups (O/C = 0.62 ± 0.10). Slow sand filtration was less efficient in removing DOM, yet selectively targeted FDOM at shorter emission wavelengths (between 300 and 450 nm), which commonly represents algal rather than terrestrial sources. This shorter wavelength FDOM correlated with chemical formulas containing reduced carbon (average carbon oxidation state ≤ 0), with relatively few carbon-carbon double bonds (H/C = 1.32 ± 0.16) and less oxygen per carbon (O/C = 0.43 ± 0.10) than those removed during coagulation. By coupling optical approaches with FT-ICR-MS to characterize DOM, we were for the first time able to confirm the molecular composition of absorbing and fluorescing DOM selectively targeted during drinking

  20. Molecular composition and seasonal variation of amino acids in urban aerosols from Beijing, China

    Science.gov (United States)

    Ren, Lujie; Bai, Huahua; Yu, Xi; Wu, Fengchang; Yue, Siyao; Ren, Hong; Li, Linjie; Lai, Senchao; Sun, Yele; Wang, Zifa; Fu, Pingqing

    2018-05-01

    Fifteen hydrolyzed amino acids (THAA) were quantified in urban aerosols (TSP samples) collected during April 2012 to May 2013 in Beijing, China using high-performance liquid chromatography (HPLC) after their derivatization with o-phthalaldehyde (OPA), to investigate their molecular distributions and seasonal variation. Total concentrations of amino acids ranged from 1.73-25.7 nmol m- 3 with a peak in spring (13.7 nmol m- 3), followed by winter (11.5 nmol m- 3), fall (9.51 nmol m- 3) and summer (7.45 nmol m- 3). Glycine (Gly), alanine (Ala) and valine (Val) are found to be the most abundant species, which account for 46% of the total THAA. Compared with those recorded in previous studies, the atmospheric levels of amino acids in Beijing were higher than those from other regions. Enhanced amounts of methionine, tyrosine, histidine, aspartic acid and glutamic acid were found during the rainfall events. The factor analysis further suggests that amino acids in urban Beijing originated from multiple sources including biological emission, biomass burning, as well as anthropogenic activities.

  1. Mass spectrometry imaging: Towards mapping the elemental and molecular composition of the rhizosphere

    Energy Technology Data Exchange (ETDEWEB)

    Veličković, Dušan; Anderton, Christopher R.

    2017-06-01

    This short review will discuss and provide perspective into the utilization of mass spectrometry imaging (MSI) in studying the rhizosphere. It also serves to compliment the multi-omic focused review by White et al. in this journal issue, as MSI is capable of elucidating chemical distributions within samples of interest in an in situ fashions, and thus can provide spatial context to MS omics data in complementary experimental endeavors. The majority of reported MSI-based studies of plant-microbe interactions have focused on the phyllosphere and ‘associated rhizosphere’ (e.g., material that is not removed during harvesting), as sample preparation for these in situ analyses tends to be a limiting factor. These studies have provided valuable insight into the spatial arrangement of proteins, peptides, lipids, and other metabolites within these systems. We intend for this short review to be a primer about the history of MSI and its role in plant-microbe analysis. Along the way we reference many comprehensive reviews for the interested reader. Lastly, we offer a perspective on the future of MSI and its use in understanding the molecular transformations beyond what we coined as the ‘associated rhizosphere’ to the rest of rhizosphere zone and into the bulk soil.

  2. Development of a molecular approach to describe the composition of Trichoderma communities.

    Science.gov (United States)

    Meincke, Remo; Weinert, Nicole; Radl, Viviane; Schloter, Michael; Smalla, Kornelia; Berg, Gabriele

    2010-01-01

    Trichoderma and its teleomorphic stage Hypocrea play a key role for ecosystem functioning in terrestrial habitats. However, little is known about the ecology of the fungus. In this study we developed a novel Trichoderma-specific primer pair for diversity analysis. Based on a broad range master alignment, specific Trichoderma primers (ITSTrF/ITSTrR) were designed that comprise an approximate 650bp fragment of the internal transcribed spacer region from all taxonomic clades of the genus Trichoderma. This amplicon is suitable for identification with TrichoKey and TrichoBLAST. Moreover, this primer system was successfully applied to study the Trichoderma communities in the rhizosphere of different potato genotypes grown at two field sites in Germany. Cloning and sequencing confirmed the specificity of the primer and revealed a site-dependent Trichoderma composition. Based on the new primer system a semi-nested approach was used to generate amplicons suitable for denaturing gradient gel electrophoresis (DGGE) analysis and applied to analyse Trichoderma communities in the rhizosphere of potatoes. High field heterogeneity of Trichoderma communities was revealed by both DGGE. Furthermore, qPCR showed significantly different Trichoderma copy numbers between the sites. Copyright 2009 Elsevier B.V. All rights reserved.

  3. Bacterial community composition in Brazilian Anthrosols and adjacent soils characterized using culturing and molecular identification.

    Science.gov (United States)

    O'Neill, B; Grossman, J; Tsai, M T; Gomes, J E; Lehmann, J; Peterson, J; Neves, E; Thies, J E

    2009-07-01

    Microbial community composition was examined in two soil types, Anthrosols and adjacent soils, sampled from three locations in the Brazilian Amazon. The Anthrosols, also known as Amazonian dark earths, are highly fertile soils that are a legacy of pre-Columbian settlement. Both Anthrosols and adjacent soils are derived from the same parent material and subject to the same environmental conditions, including rainfall and temperature; however, the Anthrosols contain high levels of charcoal-like black carbon from which they derive their dark color. The Anthrosols typically have higher cation exchange capacity, higher pH, and higher phosphorus and calcium contents. We used culture media prepared from soil extracts to isolate bacteria unique to the two soil types and then sequenced their 16S rRNA genes to determine their phylogenetic placement. Higher numbers of culturable bacteria, by over two orders of magnitude at the deepest sampling depths, were counted in the Anthrosols. Sequences of bacteria isolated on soil extract media yielded five possible new bacterial families. Also, a higher number of families in the bacteria were represented by isolates from the deeper soil depths in the Anthrosols. Higher bacterial populations and a greater diversity of isolates were found in all of the Anthrosols, to a depth of up to 1 m, compared to adjacent soils located within 50-500 m of their associated Anthrosols. Compared to standard culture media, soil extract media revealed diverse soil microbial populations adapted to the unique biochemistry and physiological ecology of these Anthrosols.

  4. In search of low cost biological analysis: Wax or acrylic glue bonded paper microfluidic devices

    KAUST Repository

    Kodzius, Rimantas

    2011-11-04

    In this body of work we have been developing and characterizing paper based microfluidic fabrication technologies to produce low cost biological analysis. Specifically we investigated the performance of paper microfluidics that had been bonded using wax o

  5. Effect of matrix granulation and wax coating on the dissolution rates ...

    African Journals Online (AJOL)

    disintegrating) granules consisting of paracetamol (drug) and acrylatemethacrylate copolymer, a matrix forming material. The effect of coating the matrix granules with wax on the drug release profiles was also investigated. The objective was to ...

  6. In search of low cost biological analysis: Wax or acrylic glue bonded paper microfluidic devices

    KAUST Repository

    Kodzius, Rimantas

    2011-01-01

    In this body of work we have been developing and characterizing paper based microfluidic fabrication technologies to produce low cost biological analysis. Specifically we investigated the performance of paper microfluidics that had been bonded using wax o

  7. Development and Properties of a Wax Ester Hydrolase in the Cotyledons of Jojoba Seedlings 1

    Science.gov (United States)

    Huang, Anthony H. C.; Moreau, Robert A.; Liu, Kitty D. F.

    1978-01-01

    The activity of a wax ester hydrolase in the cotyledons of jojoba (Simmondsia chinensis) seedlings increased drastically during germination, parallel to the development of the gluconeogenic process. The enzyme at its peak of development was obtained in association with the wax body membrane, and its properties were studied. It had an optimal activity at alkaline pH (8.5-9). The apparent Km value for N-methylindoxylmyristate was 93 μM. It was stable at 40 C for 30 min but was inactivated at higher temperature. Various divalent cations and ethylenediaminetetraacetate had little effect on the activity. p-Chloromercuribenzoate was a strong inhibitor of the enzyme activity, and its effect was reversed by subsequent addition of dithiothreitol. It had a broad substrate specificity with highest activities on monoglycerides, wax esters, and the native substrate (jojoba wax). PMID:16660288

  8. Development and properties of a wax ester hydrolase in the cotyledons of jojoba seedlings.

    Science.gov (United States)

    Huang, A H; Moreau, R A; Liu, K D

    1978-03-01

    The activity of a wax ester hydrolase in the cotyledons of jojoba (Simmondsia chinensis) seedlings increased drastically during germination, parallel to the development of the gluconeogenic process. The enzyme at its peak of development was obtained in association with the wax body membrane, and its properties were studied. It had an optimal activity at alkaline pH (8.5-9). The apparent K(m) value for N-methylindoxylmyristate was 93 muM. It was stable at 40 C for 30 min but was inactivated at higher temperature. Various divalent cations and ethylenediaminetetraacetate had little effect on the activity. p-Chloromercuribenzoate was a strong inhibitor of the enzyme activity, and its effect was reversed by subsequent addition of dithiothreitol. It had a broad substrate specificity with highest activities on monoglycerides, wax esters, and the native substrate (jojoba wax).

  9. Printed wax masks for 254 nm deep-UV pattering of PMMA-based microfluidics

    KAUST Repository

    Fan, Yiqiang; Liu, Yang; Li, Huawei; Foulds, Ian G.

    2012-01-01

    This paper reports a new technique for masking deep-UV exposure of poly(methyl methacrylate) (PMMA) using a printed wax mask. This technique provides an inexpensive and bulk fabrication method for PMMA structures. The technique involves the direct

  10. "Wax bloom" on beeswax cultural heritage objects: exploring the causes of the phenomenon

    Czech Academy of Sciences Publication Activity Database

    Bartl, B.; Kobera, Libor; Drábková, K.; Ďurovič, M.; Brus, Jiří

    2015-01-01

    Roč. 53, č. 7 (2015), s. 509-513 ISSN 0749-1581 Institutional support: RVO:61389013 Keywords : 13-C NMR * wax bloom * efflorescence Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.226, year: 2015

  11. A comparative evaluation of the marginal adaptation of a thermoplastic resin, a light cured wax and an inlay casting wax on stone dies: An in vitro study.

    Science.gov (United States)

    Gopalan, Reji P; Nair, Vivek V; Harshakumar, K; Ravichandran, R; Lylajam, S; Viswambaran, Prasanth

    2018-01-01

    Different pattern materials do not produce copings with satisfactory, marginal accuracy when used on stone dies at varying time intervals. The purpose of this study was to evaluate and compare the vertical marginal accuracy of patterns formed from three materials, namely, thermoplastic resin, light cured wax and inlay casting wax at three-time intervals of 1, 12, and 24 h. A master die (zirconia abutment mimicking a prepared permanent maxillary central incisor) and metal sleeve (direct metal laser sintering crown #11) were fabricated. A total of 30 stone dies were obtained from the master die. Ten patterns were made each from the three materials and stored off the die at room temperature. The vertical marginal gaps were measured using digital microscope at 1, 12, and 24 h after reseating with gentle finger pressure. The results revealed a significant statistical difference in the marginal adaptation of three materials at all the three-time intervals. Light cured wax was found to be most accurate at all time intervals, followed by thermoplastic resin and inlay casting wax. Furthermore, there was a significant difference between all pairs of materials. The change in vertical marginal gap from 1 to 24 h between thermoplastic resin and light cured wax was not statistically significant. The marginal adaptation of all the three materials used, was well within the acceptable range of 25-70 μm. The resin pattern materials studied revealed significantly less dimensional change than inlay casting wax on storage at 1, 12, and 24 h time intervals. They may be employed in situations where high precision and delayed investing is expected.

  12. Accuracy of Digitally Fabricated Wax Denture Bases and Conventional Completed Complete Dentures

    Directory of Open Access Journals (Sweden)

    Bogna Stawarczyk

    2017-12-01

    Full Text Available The purpose of this investigation was to analyze the accuracy of digitally fabricated wax trial dentures and conventionally finalized complete dentures in comparison to a surface tessellation language (STL-dataset. A generated data set for the denture bases and the tooth sockets was used, converted into STL-format, and saved as reference. Five mandibular and 5 maxillary denture bases were milled from wax blanks and denture teeth were waxed into their tooth sockets. Each complete denture was checked on fit, waxed onto the dental cast, and digitized using an optical laboratory scanning device. The complete dentures were completed conventionally using the injection method, finished, and scanned. The resulting STL-datasets were exported into the three-dimensional (3D software GOM Inspect. Each of the 5 mandibular and 5 maxillary complete dentures was aligned with the STL- and the wax trial denture dataset. Alignment was performed based on a best-fit algorithm. A three-dimensional analysis of the spatial divergences in x-, y- and z-axes was performed by the 3D software and visualized in a color-coded illustration. The mean positive and negative deviations between the datasets were calculated automatically. In a direct comparison between maxillary wax trial dentures and complete dentures, complete dentures showed higher deviations from the STL-dataset than the wax trial dentures. The deviations occurred in the area of the teeth as well as in the distal area of the denture bases. In contrast, the highest deviations in both the mandibular wax trial dentures and the mandibular complete dentures were observed in the distal area. The complete dentures showed higher deviations on the occlusal surfaces of the teeth compared to the wax dentures. Computer-aided design/computer-aided manufacturing (CAD/CAM-fabricated wax dentures exhibited fewer deviations from the STL-reference than the complete dentures. The deviations were significantly greater in the

  13. ETHNOECOLOGY AND ETHNOBOTANY OF THE PALM CARNAUBA WAX IN BRAZILIAN SEMI-ARID

    OpenAIRE

    Rodrigo Ferreira de Sousa; Richeliel Albert Rodrigues Silva; Talita Geovanna Fernandes Rocha; José Augusto da Silva Santana; Fábio de Almeida Vieira

    2015-01-01

    The aim of this study was to investigate aspects of ethnoecological and ethnobotanical of carnauba wax (Copernicia prunifera (Miller) H. E. Moore, Arecaceae) in an extractive community of municipality of Ipanguaçu, Rio Grande do Norte state. We interviewed key informants, using the technique of inducing nonspecific, guided tour and direct observation to confirm the data. According to most residents of Pedro Ezequiel Araújo community, the area of carnauba wax in the region is natural. In the r...

  14. Policosanol fabrication from insect wax and optimization by response surface methodology.

    Science.gov (United States)

    Ma, Jinju; Ma, Liyi; Zhang, Hong; Zhang, Zhongquan; Wang, Youqiong; Li, Kai; Chen, Xiaoming

    2018-01-01

    Insect wax is a famous biological resource for the role in economic production in China. Insect wax is a good source of policosanol, which may is a candidate supplement in foodstuff and pharmaceuticals that has important physiological activities. Therefore, this work aims to investigate a high-yield and rapid method for policosanol fabrication from insect wax. The conditions for policosanol fabrication were optimized as follows: an oil bath temperature of 112.7°C and reductant dosage of 0.97 g (used for the reduction of 10.00 g of insect wax). The yield of policosanol reached 83.20%, which was 4 times greater than that of existing methods, such as saponification. The total content of policosanol obtained under the optimal conditions reached 87%. In other words, a high yield of policosanol was obtained from insect wax (723.84 mg/g), that was 55 times higher than that generated from beeswax-brown via saponification. The concentrations of metal residues in policosanol were within the limits of the European Union regulations and EFSA stipulation. The LD50 values for oral doses of insect wax and policosanol were both > 5 g/kg. Policosanol was fabricated via solvent-free reduction from insect wax using LiAlH4 at a high yield. The fabrication conditions were optimized. Policosanol and insect wax showed high security, which made them potential candidates as supplements in foods, pharmaceuticals and cosmetics. The rapid and high-yield method has great potential for commercial manufacturing of policosanol.

  15. Epicuticular wax on stomata of damaged silver fir trees (Abies alba Mili.)

    OpenAIRE

    Tomislav Bačić; Ljiljana Krstin; Jadranka Roša; Željko Popović

    2011-01-01

    Condition of epistomatal wax on the abaxial surface of the current and previous-year needles of damaged silver fir trees (Abies alba Mill.), both from the polluted Risnjak and "clean" Donja Dobra sites in Gorski Kotar region, both influenced by pollutants coming from Europe, during two years, three times a year, were examined with Scanning Electron Microscope. In the course of time the wax tubules on the epistomatal rims of stomata in polluted, but also in "clean" needles surface, become fuse...

  16. A review of the performance and structural considerations of paraffin wax hybrid rocket fuels with additives

    Science.gov (United States)

    Veale, Kirsty; Adali, Sarp; Pitot, Jean; Brooks, Michael

    2017-12-01

    Paraffin wax as a hybrid rocket fuel has not been comprehensively characterised, especially regarding the structural feasibility of the material in launch applications. Preliminary structural testing has shown paraffin wax to be a brittle, low strength material, and at risk of failure under launch loading conditions. Structural enhancing additives have been identified, but their effect on motor performance has not always been considered, nor has any standard method of testing been identified between research institutes. A review of existing regression rate measurement techniques on paraffin wax based fuels and the results obtained with various additives are collated and discussed in this paper. The review includes 2D slab motors that enable visualisation of liquefying fuel droplet entrainment and the effect of an increased viscosity on the droplet entrainment mechanism, which can occur with the addition of structural enhancing polymers. An increased viscosity has been shown to reduce the regression rate of liquefying fuels. Viscosity increasing additives that have been tested include EVA and LDPE. Both these additives increase the structural properties of paraffin wax, where the elongation and UTS are improved. Other additives, such as metal hydrides, aluminium and boron generally offer improvements on the regression rate. However, very little consideration has been given to the structural effects these additives have on the wax grain. A 40% aluminised grain, for example, offers a slight increase in the UTS but reduces the elongation of paraffin wax. Geometrically accurate lab-scale motors have also been used to determine the regression rate properties of various additives in paraffin wax. A concise review of all available regression rate testing techniques and results on paraffin wax based hybrid propellants, as well as existing structural testing data, is presented in this paper.

  17. Composition and molecular scale structure of nanophases formed by precipitation of biotite weathering products

    Science.gov (United States)

    Tamrat, Wuhib Zewde; Rose, Jérôme; Grauby, Olivier; Doelsch, Emmanuel; Levard, Clément; Chaurand, Perrine; Basile-Doelsch, Isabelle

    2018-05-01

    Because of their large surface area and reactivity, nanometric-size soil mineral phases have a high potential for soil organic matter stabilization, contaminant sorption or soil aggregation. In the literature, Fe and Al phases have been the main targets of batch-synthesized nanomineral studies while nano-aluminosilicates (Al and Si phases) have been mainly studied in Andic soils. In the present work, we synthesized secondary nanophases of Fe, Al and Si. To simulate a system as close as possible to soil conditions, we conducted laboratory simulations of the processes of (1) biotite alteration in acidic conditions producing a Al Si Fe Mg K leachate solution and (2) the following neoformation of secondary nanophases by titrating the leachate solution to pH 4.2, 5 and 7. The morphology of the nanophases, their size, crystallinity and chemistry were characterized by TEM-EDX on single particles and their local atomic structure by EXAFS (Extended X-ray Absorption Fine Structure) at the Fe absorption K-edge. The main nanophases formed were amorphous particles 10-60 nm in size whose composition (dominated by Fe and Si) was strongly controlled by the pH conditions at the end of the titration. At pH 4.2 and pH 7, the structure of the nanophases was dominated by the polymerization of Fe, which was hindered by Al, Si, Mg and K. Conversely, at pH 5, the polymerization of Fe was counteracted by precipitation of high amounts of Si. The synthetized nanophases were estimated to be rather analogous to nanophases formed in natural biotite-bearing soils. Because of their small size and potential high surface reactivity, the adsorption capacities of these nanophases with respect to the OM should be revisited in the framework of soil C storage.

  18. Composite Biofilms grown in Acidic Mining Lakes and assessed by Electron Microscopy and Molecular Techniques

    International Nuclear Information System (INIS)

    Luensdorf, Heinrich; Wenderoth, Dirk F.; Abraham, Wolf-Rainer

    2002-01-01

    Microbial consortia of composite biofilms, grown in surface water of acidicmining lakes near Lauchhammer, Germany, were investigated. The red-brown colored lake water was acidic (pH 2.5), had high concentrations of Fe(III), Al(III), and sulphate and low concentrations of dissolved organic matter. As a result the abundance of bacteria in the lake is with 10 4 cells mL -1 rather low. One input of organic material into the lake are autumnal leaves from trees, growing in the lakeside area. From aliquots of unfixed birch leave biofilms the 16S rRNA genes were amplified by PCR and community fingerprints were determined by single-strand conformation polymorphism (SSCP) analysis. Specific bands within the fingerprints were extracted from SSCP gels and sequenced for the taxonomical affiliation.These results were compared with those from the second type of biofilms which were grown on sterile substrata, floating submersed in surface waters of the lakes. By excising the bands from the gel and sequencing the individual bands bacterial taxa, common to both types of biofilms, were found but also some, which were only present in one type of biofilm. Ultrathin sectioned biofilms often showed bacteria associated with electron dense particles as main inorganic constituents. Elemental microanalysis by energy dispersive X-ray analysis (EDX) revealed them to contain iron, sulfur and oxygen as main elemental fractions and electron diffraction ring pattern analysis classified them to be schwertmannite. These bacteria and their interactions with each other as well as with the inorganic minerals formed in this lake generally is of great interest, in order to use these results for bioremediation applications

  19. Physical properties of a high molecular weight hydroxyl-terminated polydimethylsiloxane modified castor oil based polyurethane/epoxy interpenetrating polymer network composites

    Science.gov (United States)

    Chen, Shoubing; Wang, Qihua; Wang, Tingmei

    2011-06-01

    A series of polyurethane (PU)/epoxy resin (EP) graft interpenetrating polymer network (IPN) composites modified by a high molecular weight hydroxyl-terminated polydimethylsiloxane (HTPDMS) were prepared. The effects of HTPDMS content on the phase structure, damping properties and the glass transition temperature ( Tg) of the HTPDMS-modified PU/EP IPN composites were studied by scanning electron microscopy (SEM) and dynamic mechanical analysis (DMA). Thermogravimetric analysis (TGA) showed that the thermal decomposition temperature of the composites increased with the increase of HTPDMS content. The tensile strength and impact strength of the IPN composites were also significantly improved, especially when the HTPDMS content was 10%. The modified IPN composites were expected to be used as structural damping materials in the future.

  20. Monitoring agrochemical diffusion through cuticle wax with coherent Raman scattering

    Science.gov (United States)

    Gaunt, Nicholas P.; Thomson, Niall; Padia, Faheem; Moger, Julian

    2018-02-01

    The world's population is increasing rapidly and higher calorific diets are becoming more common; as a consequence the demand for grain is predicted to increase by more than 50% by 2050 without a significant increase in the available agricultural land. Maximising the productivity of the existing agricultural land is key to maintaining food security and agrochemicals continue to be a key enabler for the efficiency gains required. However, agrochemicals can be susceptible to significant losses and thus often require further chemical to be applied to compensate. Sources of such losses include spray drift, poor spray retention/capture by the target and poor penetration through the plant cuticle. Adjuvants can be used to help mitigate such losses but characterising how they alter the movement of the active ingredients (AIs) can be challenging. In this contribution we demonstrate the use of coherent Raman Scattering (CRS) as a tool to enable in-situ, real-time, label free characterisation of agrochemical AI as they move through wax.

  1. Mineral and tar oils and paraffin and mineral waxes, extracting

    Energy Technology Data Exchange (ETDEWEB)

    1927-09-01

    In the extraction of soluble bodies from coal and the like carbonaceous material, the coal is preheated in a closed vessel and then heated under pressure with the solvent. The pressure in either or both stages may be increased by gases or vapours more or less inert under the conditions, e.g. hydrogen, steam, carbon monoxide, and nitrogen. In an example, brown coal is maintained at 300/sup 0/C for 10 hours, thus producing a pressure of 100 atmospheres, and is then extracted for 10 hours at 300/sup 0/C and 100 atmospheres with benzene in a closed vessel. Over 60 per cent of the coal is dissolved. After separation of the undissolved coal and removal of the solvent the soluble products may be treated with either to extract resinous matter, and then with cyclohexane to extract wax-like matters. Alternatively the soluble products, alone or in solution or with the undissolved coal, may be destructively hydrogenated, or be cracked in presence of activated aluminium and hydrogen chloride.

  2. Testing of sawdust-wax firelogs in an open fireplace

    International Nuclear Information System (INIS)

    Shelton, J.

    1992-01-01

    A total of 14 emissions tests of sawdust-wax firelogs were conducted in an open fireplace. Twelve tests used a cold-to-cold test cycle (i.e., they included the initial light-up and final charcoal phases which are not included in certification tests for wood stoves). Of these 12 tests, half were with wood and half with firelogs. Firelogs were equivalent to or better than wood in all measured parameters except heat output rate, Specifically, the firelogs had lower PM and CO emission rates by about 66 and 78 percent, respectively, had lower creosote accumulation per hour by about 66 percent, had lower opacity, and had comparable efficiency despite a lower burn rate. The heat output rate from the wood fires rose faster and peaked earlier, but the average heat output for the main load (2 hours) phases was about the same (about 6000 to 7000 BTU/hr) for the large size firelogs. Opacity was measured continuously and never exceeded the limits of 20 and 40 percent in the Washington State 1988 woodburning emissions regulation. All these results are based on using the firelogs as their instructions specify - namely using one log at a time and starting it with a match in a room temperature fireplace

  3. Effects of mesquite gum-candelilla wax based edible coatings on the quality of guava fruit (Psidium guajava L.)

    Science.gov (United States)

    Tomás, S. A.; Bosquez-Molina, E.; Stolik, S.; Sánchez, F.

    2005-06-01

    The ability of composite edible coatings to preserve the quality of guava fruit (Psidium guajava L.) at 20ºC was studied for a period of 15 days. The edible coatings were formulated with candelilla wax blended with white mineral oil as the lipid phase and mesquite gum as the structural material. The use of edible coatings prolonged the shelf life of treated fruits by retarding ethylene emission and enhancing texture as compared to control samples. At the sixth day, the ethylene produced by the control samples was fivefold higher than the ethylene produced by the coated samples. In addition, the physiological weight loss of coated fruits was nearly 30% lower than the control samples.

  4. Physico-chemical properties and efficacy of silk fibroin fabric coated with different waxes as wound dressing.

    Science.gov (United States)

    Kanokpanont, Sorada; Damrongsakkul, Siriporn; Ratanavaraporn, Juthamas; Aramwit, Pornanong

    2013-04-01

    Silk fibroin (SF) has been widely used as a wound dressing material due to its suitable physical and biological characteristics. In this study, a non-adhesive wound dressing which applies to cover the wound surface as an absorbent pad that would absorb wound fluid while accelerate wound healing was developed. The modification of SF fabrics by wax coating was purposed to prepare the non-adhesive wound dressing that is required in order to minimize pain and risk of repeated injury. SF woven fabrics were coated with different types of waxes including shellac wax, beeswax, or carnauba wax. Physical and mechanical properties of the wax-coated SF fabrics were characterized. It was clearly observed that all waxes could be successfully coated on the SF fabrics, possibly due to the hydrophobic interactions between hydrophobic domains of SF and waxes. The wax coating improved tensile modulus and percentage of elongation of the SF fabrics due to the denser structure and the thicker fibers coated. The in vitro degradation study demonstrated that all wax-coated SF fabrics remained up to 90% of their original weights after 7 weeks of incubation in lysozyme solution under physiological conditions. The wax coating did not affect the degradation behavior of the SF fabrics. A peel test of the wax-coated SF fabrics was carried out in the partial- and full-thickness wounds of porcine skin in comparison to that of the commercial wound dressing. Any wax-coated SF fabrics were less adhesive than the control, as confirmed by less number of cells attached and less adhesive force. This might be that the wax-coated SF fabrics showed the hydrophobic property, allowing the loosely adherence to the hydrophilic wound surface. In addition, the in vivo biocompatibility test of the wax-coated SF fabrics was performed in Sprague-Dawley rats with subcutaneous model. The irritation scores indicated that the carnauba wax-coated SF fabric was not irritant while the shellac wax or beeswax-coated SF

  5. Prediction of wax buildup in 24 inch cold, deep sea oil loading line

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, R.G.; Sattler, R.E.; Tolonen, W.J.; Pitchford, A.C.

    1981-10-01

    When designing pipelines for cold environments, it is important to know how to predict potential problems due to wax deposition on the pipeline's inner surface. The goal of this work was to determine the rate of wax buildup and the maximum, equlibrium wax thickness for a North Sea field loading line. The experimental techniques and results used to evaluate the waxing potential of the crude oil (B) are described. Also, the theoretic model which was used for predicting the maximum wax deposit thickness in the crude oil (B) loading pipeline at controlled temperatures of 40 F (4.4 C) and 100 F (38 C), is illustrated. Included is a recommendation of a procedure for using hot oil at the end of a tanker loading period in order to dewax the crude oil (B) line. This technique would give maximum heating of the pipeline and should be followed by shutting the hot oil into the pipeline at the end of the loading cycle which will provide a hot oil soaking to help soften existing wax. 14 references.

  6. Problems in interpreting effects of air pollutants on spruce epicuticular waxes

    International Nuclear Information System (INIS)

    Bermadinger-Stabentheiner, E.

    1994-01-01

    Spruce needles are covered with rod-like crystals, which also fill the antechambers of the stomata with a dense meshwork. The scanning electron microscope (SEM) is very useful for studying epicuticular wax structure; with no intricate or laborious preparation, it is possible to obtain valuable information about the needle surface. Because the epicuticular wax layer forms a barrier between the plant and its environment, all influences that reach the surface from outside impact on this layer and, therefore, changes in epicuticular wax structure serve as diagnostic criteria for damage caused by air pollutants. This pollution influence begins as fusion of wax rods at the tips and results finally in total loss of the crystalline structure. Despite the simplicity of SEM investigations, alterations (artefacts) can occur to wax structures that may be confused with alterations caused by air pollutants (i.e., a too dense layer of twigs and needles, or careless handling with tweezers, results in mechanical damage that often influences the entire surface). Overheating occurring during transport or preparation and/or incorrect storage also produce artefacts. If the occurrence of such artefacts is taken into consideration, several contradictory interpretations of effects of air pollutants on epicuticular waxes can be explained. (orig.)

  7. QUALITATIVE ANALYSIS METHOD OF DETECTION OF WAX CONTENT IN GORENGAN USING SMARTPHONE

    Directory of Open Access Journals (Sweden)

    Yulia Yulia

    2018-05-01

    Full Text Available Wax is one of the compounds that can be misused to be added to Gorengan, Indonesian fritter, to keep them crispy. Gorengan containing wax is difficult to identify visually, so a quick and easy method of detecting wax content is required. The purpose of this research is to develop and evaluate the analytical performance of detecting wax content in gorengan using smartphone. Gorengan sample was dissolved with hexane and then added reagent that will give discoloration followed by analysis using smartphone. Some analysis performance parameters were evaluated in terms of linearity and detection limit, qualitative analysis capability, precision, and selectivity test. The developed method was also applied in some gorengan samples. The result shows that the detection of wax content in gorengan can be conducted by using reagent consisting of NaOH, Schift, and curcumin (1 : 2 : 2. Performance analysis shows that the linearity measurement at concentration between 10% and 25% has correlation coefficient (r of 0.9537 with detection limit at concentration of 2% and precision (%RSD less than 3%. The developed method can be applied for the detection of wax content in gorengan in the market.

  8. Electrochemical behaviors of wax-coated Li powder/Li 4Ti 5O 12 cells

    Science.gov (United States)

    Park, Han Eol; Seong, Il Won; Yoon, Woo Young

    The wax-coated Li powder specimen was effectively synthesized using the drop emulsion technique (DET). The wax layer on the powder was verified by SEM, Focused Ion Beam (FIB), EDX and XPS. The porosity of a sintered wax-coated Li electrode was measured by linear sweep voltammetry (LSV) and compared with that of a bare, i.e., un-coated Li electrode. The electrochemical behavior of the wax-coated Li powder anode cell was examined by the impedance analysis and cyclic testing methods. The cyclic behavior of the wax-coated Li powder anode with the Li 4Ti 5O 12 (LTO) cathode cell was examined at a constant current density of 0.35 mA cm -2 with the cut-off voltages of 1.2-2.0 V at 25 °C. Over 90% of the initial capacity of the cell remained even after the 300th cycle. The wax-coated Li powder was confirmed to be a stable anode material.

  9. The use of paraffin wax in a new solar cooker with inner and outer reflectors

    Directory of Open Access Journals (Sweden)

    Arabacigil Bihter

    2015-01-01

    Full Text Available In this paper, the potential use and effectiveness of paraffin wax in a new solar cooker was experimentally investigated during daylight and late evening hours. For these experiments, a cooker having an inner reflecting surface was designed, constructed by filling paraffin wax and metal shavings. The side- and sub-surface temperatures of the paraffin wax in the cooker are measured in the summer months of June and July. The thermal efficiency of the cooker was tested on different conditions. The results show that the optimum angle of the outer reflector is 30°. Here, the peak temperature of the paraffin wax in the solar cooker was 83.4 °C. The average solar radiation reflected makes a contribution of 9.26% to the temperature of paraffin wax with the outer reflector. The solar cooker with the outer reflector angle of 30° receives also reflected radiation from the inner reflectors. Besides, the heating time is decreased to approximately 1 hour. The designed solar cooker can be effectively used with 30.3% daily thermal efficiency and paraffin wax due to the amount of energy stored.

  10. Wax encapsulation of water-soluble compounds for application in foods.

    Science.gov (United States)

    Mellema, M; Van Benthum, W A J; Boer, B; Von Harras, J; Visser, A

    2006-11-01

    Water-soluble ingredients have been successfully encapsulated in wax using two preparation techniques. The first technique ('solid preparation') leads to relatively large wax particles. The second technique ('liquid preparation') leads to relatively small wax particles immersed in vegetable oil. On the first technique: stable encapsulation of water-soluble colourants (dissolved at low concentration in water) has been achieved making use of beeswax and PGPR. The leakage from the capsules, for instance of size 2 mm, is about 30% after 16 weeks storage in water at room temperature. To form such capsules a minimum wax mass of 40% relative to the total mass is needed. High amounts of salt or acids at the inside water phase causes more leaking, probably because of the osmotic pressure difference. Osmotic matching of inner and outer phase can lead to a dramatic reduction in leakage. Fat capsules are less suitable to incorporate water soluble colourants. The reason for this could be a difference in crystal structure (fat is less ductile and more brittle). On the second technique: stable encapsulation of water-soluble colourants (encapsulated in solid wax particles) has been achieved making use of carnauba wax. The leakage from the capsules, for instance of size 250 mm, is about 40% after 1 weeks storage in water at room temperature.

  11. Waxes and plastic film in relation to the shelf life of yellow passion fruit

    Directory of Open Access Journals (Sweden)

    Mota Wagner Ferreira da

    2003-01-01

    Full Text Available The high perishability of the yellow passion fruit (Passiflora edulis f. flavicarpa reduces its postharvest conservation and availability, mainly for in natura consumption. These losses of quality and commercial value occur due to the high respiration and loss of water. This work aimed to evaluate the influence of a modified atmosphere - wax emulsions and plastic film - on the shelf life of the yellow passion fruit. Plastic film (Cryovac D-955, 15 mum thickness reduced fresh weight loss and fruit wilting, kept higher fruit and rind weight and higher pulp osmotic potential over the storage period. However, it was not efficient in the control of rottenness. Sparcitrus wax (22-23% polyethylene/maleyc resin caused injury to the fruit, high fruit weight losses and wilting and resulted in lower pulp osmotic potential; this wax lead to a higher concentration of acid and a lower relation of soluble solids/acidity. Among the tested waxes, Fruit Wax (18-21% carnauba wax was the best, promoting reduced weight loss, wilting and rottenness.

  12. Effects of Wax Coating on the Moisture Loss of Cucumbers at Different Storage Temperatures

    Directory of Open Access Journals (Sweden)

    Jian Li

    2018-01-01

    Full Text Available The effects of wax coating on moisture loss of cucumbers (Cucumis sativus L., cv. Jinglv were investigated at different temperatures. Cucumbers were treated with 10% (volume : volume wax and then stored at 15, 20, 25, or 30°C and 55% relative humidity. The changes in the mass of samples were recorded every 6 h. Results showed that wax coating along with low temperature was very effective in preventing moisture loss of cucumbers during simulated distribution. After 48 h storage, moisture loss in wax treated cucumbers at 15°C was 45% lower than the control at 30°C. Furthermore, a kinetic model was developed to study the influence of temperature on moisture loss based on the Arrhenius law. The model successfully described changes in cucumber moisture loss at different temperatures during storage. The shelf life of cucumber was also predicted using the kinetic model. A synergistic effect was found between wax coating and storage temperature on cucumber shelf life. Wax coating combined with low storage temperature was an effective method to extend the shelf life of cucumber fruit.

  13. Molecular level computational studies of polyethylene and polyacrylonitrile composites containing single walled carbon nanotubes: effect of carboxylic acid functionalization on nanotube-polymer interfacial properties

    Directory of Open Access Journals (Sweden)

    Shayesteh eHaghighatpanah

    2014-09-01

    Full Text Available Molecular dynamics and molecular mechanics methods have been used to investigate additive-polymer interfacial properties in single walled carbon nanotube – polyethylene and single walled carbon nanotube – polyacrylonitrile composites. Properties such as the interfacial shear stress and bonding energy are similar for the two composites. In contrast, functionalizing the single walled carbon nanotubes with carboxylic acid groups leads to an increase in these properties, with a larger increase for the polar polyacrylonitrile composite. Increasing the percentage of carbon atoms that were functionalized from 1% to 5% also leads to an increase in the interfacial properties. In addition, the interfacial properties depend on the location of the functional groups on the single walled carbon nanotube wall.

  14. Wax on, wax off

    DEFF Research Database (Denmark)

    Bos, Nicky Peter Maria; Grinsted, Lena; Holman, Luke

    2011-01-01

    of a waxy layer of colony-specific hydrocarbons on the body surface. Genetic and environmental differences between colony members may confound recognition and social cohesion, so many species perform behaviors that homogenize the odor label, such as mouth-to-mouth feeding and allogrooming. Here, we test....... We also found evidence that olfactory cues on the nest soil influence nestmate recognition, but this effect was not observed in all colonies. These results demonstrate that cuticular hydrocarbons deposited on the nest soil are important in creating uniformity in the odor label and may also contribute...

  15. [The molecular composition and spectral properties of polysaccharide isolated from pu-erh tea and its material].

    Science.gov (United States)

    Gong, Jia-shun; Hu, Xiao-jing; Peng, Chun-xiu; Zhou, Hong-jie

    2010-07-01

    Pu-erh tea, a kind of well-known tea from the ancient time, is originally produced in the Yunnan Lanchan River basin through a special solid state fermentation by fungi. It uses sun-dried green tea as its starting materials. To investigate the variation of composition and spectral properties of polysaccharide during solid state fermentation of pu-erh tea by using Saccharomyces cerevisiae as preponderant starter and using sun-dried green tea as materials in the present study. The results showed that the content of water soluble polysaccharide was increased, and the activity of hydrolase such as cellulase, pectinase and glucomylase were also enhanced. The content of neutral sugar increased with the ferment time increasing and the M(w) of raw polysaccharide showed significant difference during fermentation. The main polysaccharide TPS2 and TPS1 were isolated and purified from pu-erh tea and its materials by DEAE-52 and Sephadex G-150 column chromatography. TPS2 contains the higher content of uronic acid, but TPS1 contains the higher contents of neutral sugar and protein. Monosaccharide analysis by GC-MS revealed that TPS1 and TPS2 were composed of arabinose, galactose, glucose, rhamnose, xylose and mannose with molar ratios of 24.2 : 23.6 : 5.9 : 3.2 : 1.8 : 1.1 and 19.3 : 26.9 : 3.2 : 2.7 : 1.3 : 5.5, respectively. The average molecular weight of TPS1 and TPS2 was 1.68 x 10(4) and 1.21 x 10(4) Daltons, respectively. UV scanning spectrum showed that TPS1 and TPS2 had no characteristic absorption between 200 and 400 nm wavelength, it suggested that they contain trace protein. IR spectrum of TPS1 and TPS2 demonstrated that pyranoid rings were contained in them. As shown in the image of atomic force microscope, the molecular appearance of TPS1 and TPS2 resembled islands and apparently consisted of conglomerations. The height of conglomerations of TPS2 was about 40 nm and the length or width was 0.5-0.8 microm, while the height of conglomerations of TPS1 was about 4nm and

  16. Ultra high molecular weight polyethylene (UHMWPE) fiber epoxy composite hybridized with Gadolinium and Boron nanoparticles for radiation shielding

    Science.gov (United States)

    Mani, Venkat; Prasad, Narasimha S.; Kelkar, Ajit

    2016-09-01

    Deep space radiations pose a major threat to the astronauts and their spacecraft during long duration space exploration missions. The two sources of radiation that are of concern are the galactic cosmic radiation (GCR) and the short lived secondary neutron radiations that are generated as a result of fragmentation that occurs when GCR strikes target nuclei in a spacecraft. Energy loss, during the interaction of GCR and the shielding material, increases with the charge to mass ratio of the shielding material. Hydrogen with no neutron in its nucleus has the highest charge to mass ratio and is the element which is the most effective shield against GCR. Some of the polymers because of their higher hydrogen content also serve as radiation shield materials. Ultra High Molecular Weight Polyethylene (UHMWPE) fibers, apart from possessing radiation shielding properties by the virtue of the high hydrogen content, are known for extraordinary properties. An effective radiation shielding material is the one that will offer protection from GCR and impede the secondary neutron radiations resulting from the fragmentation process. Neutrons, which result from fragmentation, do not respond to the Coulombic interaction that shield against GCR. To prevent the deleterious effects of secondary neutrons, targets such as Gadolinium are required. In this paper, the radiation shielding studies that were carried out on the fabricated sandwich panels by vacuum-assisted resin transfer molding (VARTM) process are presented. VARTM is a manufacturing process used for making large composite structures by infusing resin into base materials formed with woven fabric or fiber using vacuum pressure. Using the VARTM process, the hybridization of Epoxy/UHMWPE composites with Gadolinium nanoparticles, Boron, and Boron carbide nanoparticles in the form of sandwich panels were successfully carried out. The preliminary results from neutron radiation tests show that greater than 99% shielding performance was

  17. A comparative evaluation of the marginal adaptation of a thermoplastic resin, a light cured wax and an inlay casting wax on stone dies: An in vitro study

    Directory of Open Access Journals (Sweden)

    Reji P Gopalan

    2018-01-01

    Conclusion: The marginal adaptation of all the three materials used, was well within the acceptable range of 25–70 μm. The resin pattern materials studied revealed significantly less dimensional change than inlay casting wax on storage at 1, 12, and 24 h time intervals. They may be employed in situations where high precision and delayed investing is expected.

  18. Investigating the composition of organic aerosol resulting from cyclohexene ozonolysis: low molecular weight and heterogeneous reaction products

    Directory of Open Access Journals (Sweden)

    J. F. Hamilton

    2006-01-01

    Full Text Available The composition of organic aerosol formed from the gas phase ozonolysis of cyclohexene has been investigated in a smog chamber experiment. Comprehensive gas chromatography with time of flight mass spectrometric detection was used to determine that dicarboxylic acids and corresponding cyclic anhydrides dominated the small gas phase reaction products found in aerosol sampled during the first hour after initial aerosol formation. Structural analysis of larger more polar molecules was performed using liquid chromatography with ion trap tandem mass spectrometry. This indicated that the majority of identified organic mass was in dimer form, built up from combinations of the most abundant small acid molecules, with frequent indication of the inclusion of adipic acid. Trimers and tetramers potentially formed via similar acid combinations were also observed in lower abundances. Tandem mass spectral data indicated dimers with either acid anhydride or ester functionalities as the linkage between monomers. High-resolution mass spectrometry identified the molecular formulae of the most abundant dimer species to be C10H16O6, C11H18O6, C10H14O8 and C11H16O8 and could be used in some cases to reduce uncertainty in exact chemical structure determination by tandem MS.

  19. Differentiation of Three Centella Species in Australia as Inferred from Morphological Characteristics, ISSR Molecular Fingerprinting and Phytochemical Composition.

    Science.gov (United States)

    Alqahtani, Ali; Cho, Jun-Lae; Wong, Ka Ho; Li, Kong M; Razmovski-Naumovski, Valentina; Li, George Q

    2017-01-01

    Centella asiatica is one of the popular herbs used for inflammatory and neural conditions. Its differentiation from similar species is currently lacking. The aims of this study were to differentiate the three closely related Centella species using methods based on morphological characters, genetic biodiversity, phytochemical compositions and antioxidant activities. According to the morphological characteristics, the collected samples were identified as three species: C. asiatica, Centella cordifolia and Centella erecta and clustered into three groups based on their morphometric variability. Dendogram constructed on the basis of the intersimple sequence repeats (ISSR) analyses were consistent with the morphological grouping. Centella cordifolia had the highest triterpene glycosides, phenolics and antioxidant capacity, followed by C. asiatica , then C. erecta , therefore, was genetically and chemically closer to C. asiatica , while C. erecta was distinctively different from them. The results confirm the occurrence of the closely related three species of Centella in Australia, and the differentiation among them can be achieved via the combination of morphometric, molecular and phytochemical methods. This first comparative botanical study on Centella species provides a foundation for further systematic study and medicinal development of Centella .

  20. Differentiation of Three Centella Species in Australia as Inferred from Morphological Characteristics, ISSR Molecular Fingerprinting and Phytochemical Composition

    Directory of Open Access Journals (Sweden)

    Ali Alqahtani

    2017-11-01

    Full Text Available Centella asiatica is one of the popular herbs used for inflammatory and neural conditions. Its differentiation from similar species is currently lacking. The aims of this study were to differentiate the three closely related Centella species using methods based on morphological characters, genetic biodiversity, phytochemical compositions and antioxidant activities. According to the morphological characteristics, the collected samples were identified as three species: C. asiatica, Centella cordifolia and Centella erecta and clustered into three groups based on their morphometric variability. Dendogram constructed on the basis of the intersimple sequence repeats (ISSR analyses were consistent with the morphological grouping. Centella cordifolia had the highest triterpene glycosides, phenolics and antioxidant capacity, followed by C. asiatica, then C. erecta, therefore, was genetically and chemically closer to C. asiatica, while C. erecta was distinctively different from them. The results confirm the occurrence of the closely related three species of Centella in Australia, and the differentiation among them can be achieved via the combination of morphometric, molecular and phytochemical methods. This first comparative botanical study on Centella species provides a foundation for further systematic study and medicinal development of Centella.

  1. Alginate-caseinate composites: Molecular interactions and characterization of cross-linked beads for the delivery of anticandidals.

    Science.gov (United States)

    Khlibsuwan, Rapee; Khunkitti, Watcharee; Pongjanyakul, Thaned

    2018-04-19

    Polysaccharide-protein composites offer potential utility for the delivery of drugs. The objectives of this work were to investigate the molecular interactions between sodium alginate (SA) and sodium caseinate (SC) in dispersions and films and to characterize calcium alginate (CA) beads mixed with SC for the delivery of fluconazole (FZ) and clotrimazole (CZ). The results demonstrated that SA could interact with SC, which caused a viscosity synergism in the dispersions. Hydrogen bonding between the carboxyl or hydroxyl groups of SA and the amide groups of SC led to the formation of soluble complexes that could reinforce the CA beads prepared by calcium cross-linking. The SC-CA beads provided higher drug entrapment efficiency, lower water uptake and erosion, and slower drug release than for the CA beads. The loaded FZ was an amorphous form, but CZ crystals were embedded in the bead matrix due to the low water solubility of this drug. However, SC micellization could enhance the water solubility and efficacy of CZ against Candida albicans. This finding indicates that SA can interact with SC via hydrogen bonding to form complexes and that the anticandidal-loaded SC-CA beads can be used as drug delivery systems and drug reservoirs in tablets for oral candidiasis. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. An Observation of Diamond-Shaped Particle Structure in a Soya Phosphatidylcohline and Bacteriorhodopsin Composite Langmuir Blodgett Film Fabricated by Multilayer Molecular Thin Film Method

    Science.gov (United States)

    Tsujiuchi, Y.; Makino, Y.

    A composite film of soya phosphatidylcohline (soya PC) and bacteriorhodopsin (BR) was fabricated by the multilayer molecular thin film method using fatty acid and lipid on a quartz substrate. Direct Force Microscopy (DFM), UV absorption spectra and IR absorption spectra of the film were characterized on the detail of surface structure of the film. The DFM data revealed that many rhombus (diamond-shaped) particles were observed in the film. The spectroscopic data exhibited the yield of M-intermediate of BR in the film. On our modelling of molecular configuration indicate that the coexistence of the strong inter-molecular interaction and the strong inter-molecular interaction between BR trimmers attributed to form the particles.

  3. Comparison the Marginal and Internal Fit of Metal Copings Cast from Wax Patterns Fabricated by CAD/CAM and Conventional Wax up Techniques

    Science.gov (United States)

    Vojdani, M; Torabi, K; Farjood, E; Khaledi, AAR

    2013-01-01

    Statement of Problem: Metal-ceramic crowns are most commonly used as the complete coverage restorations in clinical daily use. Disadvantages of conventional hand-made wax-patterns introduce some alternative ways by means of CAD/CAM technologies. Purpose: This study compares the marginal and internal fit of copings cast from CAD/CAM and conventional fabricated wax-patterns. Materials and Method: Twenty-four standardized brass dies were prepared and randomly divided into 2 groups according to the wax-patterns fabrication method (CAD/CAM technique and conventional method) (n=12). All the wax-patterns were fabricated in a standard fashion by means of contour, thickness and internal relief (M1-M12: representative of CAD/CAM group, C1-C12: representative of conventional group). CAD/CAM milling machine (Cori TEC 340i; imes-icore GmbH, Eiterfeld, Germany) was used to fabricate the CAD/CAM group wax-patterns. The copings cast from 24 wax-patterns were cemented to the corresponding dies. For all the coping-die assemblies cross-sectional technique was used to evaluate the marginal and internal fit at 15 points. The Student’s t- test was used for statistical analysis (α=0.05). Results: The overall mean (SD) for absolute marginal discrepancy (AMD) was 254.46 (25.10) um for CAD/CAM group and 88.08(10.67) um for conventional group (control). The overall mean of internal gap total (IGT) was 110.77(5.92) um for CAD/CAM group and 76.90 (10.17) um for conventional group. The Student’s t-test revealed significant differences between 2 groups. Marginal and internal gaps were found to be significantly higher at all measured areas in CAD/CAM group than conventional group (pmarginal and internal fit than CAD/CAM (machine-milled) technique. All the factors for 2 groups were standardized except wax pattern fabrication technique, therefore, only the conventional group results in copings with clinically acceptable margins of less than 120um. PMID:24724133

  4. Numerical performance study of paraffin wax dispersed with alumina in a concentric pipe latent heat storage system

    Directory of Open Access Journals (Sweden)

    Valan Arasu Amirtham

    2013-01-01

    Full Text Available Latent heat energy storage systems using paraffin wax could have lower heat transfer rates during melting/freezing processes due to its inherent low thermal conductivity. The thermal conductivity of paraffin wax can be enhanced by employing high conductivity materials such as alumina (Al2O3. A numerical analysis has been carried out to study the performance enhancement of paraffin wax with nanoalumina (Al2O3 particles in comparison with simple paraffin wax in a concentric double pipe heat exchanger. Numerical analysis indicates that the charge-discharge rates of thermal energy can be greatly enhanced using paraffin wax with alumina as compared with a simple paraffin wax as PCM.

  5. Dental students' preferences and performance in crown design: conventional wax-added versus CAD.

    Science.gov (United States)

    Douglas, R Duane; Hopp, Christa D; Augustin, Marcus A

    2014-12-01

    The purpose of this study was to evaluate dental students' perceptions of traditional waxing vs. computer-aided crown design and to determine the effectiveness of either technique through comparative grading of the final products. On one of twoidentical tooth preparations, second-year students at one dental school fabricated a wax pattern for a full contour crown; on the second tooth preparation, the same students designed and fabricated an all-ceramic crown using computer-aided design (CAD) and computer-aided manufacturing (CAM) technology. Projects were graded for occlusion and anatomic form by three faculty members. On completion of the projects, 100 percent of the students (n=50) completed an eight-question, five-point Likert scalesurvey, designed to assess their perceptions of and learning associated with the two design techniques. The average grades for the crown design projects were 78.3 (CAD) and 79.1 (wax design). The mean numbers of occlusal contacts were 3.8 (CAD) and 2.9(wax design), which was significantly higher for CAD (p=0.02). The survey results indicated that students enjoyed designing afull contour crown using CAD as compared to using conventional wax techniques and spent less time designing the crown using CAD. From a learning perspective, students felt that they learned more about position and the size/strength of occlusal contacts using CAD. However, students recognized that CAD technology has limits in terms of representing anatomic contours and excursive occlusion compared to conventional wax techniques. The results suggest that crown design using CAD could be considered as an adjunct to conventional wax-added techniques in preclinical fixed prosthodontic curricula.

  6. Review of the Factors that Influence the Condition of Wax Deposition in Subsea Pipelines

    Directory of Open Access Journals (Sweden)

    Koh Junyi

    2018-03-01

    Full Text Available When crude oil is transported via sub-sea pipeline, the temperature of the pipeline decreases at a deep depth which causes a difference in temperature with the crude oil inside. This causes the crude oil to dissipate its heat to the surrounding until thermal equilibrium is achieved. This is also known as the cloud point where wax begins to precipitate and solidifies at the walls of the pipeline which obstruct the flow of fluid. The main objective of this review is to quantify the factors that influence wax deposition such as temperature difference between the wall of the pipeline and the fluid flowing within, the flow rate of the fluid in the pipeline and residence time of the fluid in the pipeline. It is found the main factor that causes wax deposition in the pipeline is the difference in temperature between the petroleum pipeline and the fluid flowing within. Most Literature deduces that decreasing temperature difference results in lower wax content deposited on the wall of the pipeline. The wax content increases with rising flow rate. As for the residence time, the amount of deposited wax initially increases when residence time increases until it reaches a peak value and gradually decreases. Flow-loop system and cold finger apparatus were used in literature investigations to determine the trends above. Three new models are generated through a regression analysis based on the results from other authors. These new models form a relationship between temperature difference, flow rate, residence time and Reynolds number with wax deposition. These models have high values of R-square and adjusted R-square which demonstrate the reliability of these models.

  7. Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds

    Science.gov (United States)

    Maneas, Efthymios; Xia, Wenfeng; Nikitichev, Daniil I.; Daher, Batol; Manimaran, Maniragav; Wong, Rui Yen J.; Chang, Chia-Wei; Rahmani, Benyamin; Capelli, Claudio; Schievano, Silvia; Burriesci, Gaetano; Ourselin, Sebastien; David, Anna L.; Finlay, Malcolm C.; West, Simeon J.; Vercauteren, Tom; Desjardins, Adrien E.

    2018-01-01

    Here we describe methods for creating tissue-mimicking ultrasound phantoms based on patient anatomy using a soft material called gel wax. To recreate acoustically realistic tissue properties, two additives to gel wax were considered: paraffin wax to increase acoustic attenuation, and solid glass spheres to increase backscattering. The frequency dependence of ultrasound attenuation was well described with a power law over the measured range of 3-10 MHz. With the addition of paraffin wax in concentrations of 0 to 8 w/w%, attenuation varied from 0.72 to 2.91 dB cm-1 at 3 MHz and from 6.84 to 26.63 dB cm-1 at 10 MHz. With solid glass sphere concentrations in the range of 0.025-0.9 w/w%, acoustic backscattering consistent with a wide range of ultrasonic appearances was achieved. Native gel wax maintained its integrity during compressive deformations up to 60%; its Young’s modulus was 17.4  ±  1.4 kPa. The gel wax with additives was shaped by melting and pouring it into 3D printed moulds. Three different phantoms were constructed: a nerve and vessel phantom for peripheral nerve blocks, a heart atrium phantom, and a placental phantom for minimally-invasive fetal interventions. In the first, nerves and vessels were represented as hyperechoic and hypoechoic tubular structures, respectively, in a homogeneous background. The second phantom comprised atria derived from an MRI scan of a patient with an intervening septum and adjoining vena cavae. The third comprised the chorionic surface of a placenta with superficial fetal vessels derived from an image of a post-partum human placenta. Gel wax is a material with widely tuneable ultrasound properties and mechanical characteristics that are well suited for creating patient-specific ultrasound phantoms in several clinical disciplines.

  8. Influence of putrescine and carnauba wax on functional and sensory quality of pomegranate (Punica granatum L.) fruits during storage

    OpenAIRE

    Barman, Kalyan; Asrey, Ram; Pal, R. K.; Kaur, Charanjit; Jha, S. K.

    2011-01-01

    Functional properties (anthocyanins, antioxidant, ascorbic acid and tannin) and sensory score were determined in pomegranate fruits at two storage temperatures (3 and 5 °C) after treatment with 2 mM putrescine and 1 : 10 carnauba wax (carnauba wax : water). The treatments (putrescine and carnauba wax) were given by immersion method followed by storage up to 60 days. Both treatments retained significantly higher anthocyanins, antioxidant, ascorbic acid, tannin and sensory qualities as compared...

  9. A Prediction of the Damping Properties of Hindered Phenol AO-60/polyacrylate Rubber (AO-60/ACM) Composites through Molecular Dynamics Simulation

    Science.gov (United States)

    Yang, Da-Wei; Zhao, Xiu-Ying; Zhang, Geng; Li, Qiang-Guo; Wu, Si-Zhu

    2016-05-01

    Molecule dynamics (MD) simulation, a molecular-level method, was applied to predict the damping properties of AO-60/polyacrylate rubber (AO-60/ACM) composites before experimental measures were performed. MD simulation results revealed that two types of hydrogen bond, namely, type A (AO-60) -OH•••O=C- (ACM), type B (AO-60) - OH•••O=C- (AO-60) were formed. Then, the AO-60/ACM composites were fabricated and tested to verify the accuracy of the MD simulation through dynamic mechanical thermal analysis (DMTA). DMTA results showed that the introduction of AO-60 could remarkably improve the damping properties of the composites, including the increase of glass transition temperature (Tg) alongside with the loss factor (tan δ), also indicating the AO-60/ACM(98/100) had the best damping performance amongst the composites which verified by the experimental.

  10. Effect of high dose SO2 and ethylene exposure on the structure of epicuticular wax of picea pungens

    International Nuclear Information System (INIS)

    Patrie, J.; Berg, V.

    1994-01-01

    Conifers in polluted air generally exhibit accelerated degradation of epicuticular wax, but it is not clear whether the change is due to direct exposure to the pollutant or some other mechanism. Needles from blue spruce (Picea pungens) were exposed to sulfur dioxide or ethylene gas at 0 to 10,000 microliters per liter for 2 to 196 h; samples were examined by scanning electron microscopy. Neither gas caused changes in the wax crystals, although late in the growing season a fungal infestation was associated with degradation of wax structures. This supports hypotheses explaining accelerated epicuticular wax degradation by indirect effects of exposure to air pollutants. (orig.)

  11. Composition and functional analysis of low-molecular-weight glutenin alleles with Aroona near-isogenic lines of bread wheat

    Directory of Open Access Journals (Sweden)

    Zhang Xiaofei

    2012-12-01

    Full Text Available Abstract Background Low-molecular-weight glutenin subunits (LMW-GS strongly influence the bread-making quality of bread wheat. These proteins are encoded by a multi-gene family located at the Glu-A3, Glu-B3 and Glu-D3 loci on the short arms of homoeologous group 1 chromosomes, and show high allelic variation. To characterize the genetic and protein compositions of LMW-GS alleles, we investigated 16 Aroona near-isogenic lines (NILs using SDS-PAGE, 2D-PAGE and the LMW-GS gene marker system. Moreover, the composition of glutenin macro-polymers, dough properties and pan bread quality parameters were determined for functional analysis of LMW-GS alleles in the NILs. Results Using the LMW-GS gene marker system, 14–20 LMW-GS genes were identified in individual NILs. At the Glu-A3 locus, two m-type and 2–4 i-type genes were identified and their allelic variants showed high polymorphisms in length and nucleotide sequences. The Glu-A3d allele possessed three active genes, the highest number among Glu-A3 alleles. At the Glu-B3 locus, 2–3 m-type and 1–3 s-type genes were identified from individual NILs. Based on the different compositions of s-type genes, Glu-B3 alleles were divided into two groups, one containing Glu-B3a, B3b, B3f and B3g, and the other comprising Glu-B3c, B3d, B3h and B3i. Eight conserved genes were identified among Glu-D3 alleles, except for Glu-D3f. The protein products of the unique active genes in each NIL were detected using protein electrophoresis. Among Glu-3 alleles, the Glu-A3e genotype without i-type LMW-GS performed worst in almost all quality properties. Glu-B3b, B3g and B3i showed better quality parameters than the other Glu-B3 alleles, whereas the Glu-B3c allele containing s-type genes with low expression levels had an inferior effect on bread-making quality. Due to the conserved genes at Glu-D3 locus, Glu-D3 alleles showed no significant differences in effects on all quality parameters. Conclusions This work

  12. Role of needle surface waxes in dynamic exchange of mono- and sesquiterpenes

    Directory of Open Access Journals (Sweden)

    J. Joensuu

    2016-06-01

    Full Text Available Biogenic volatile organic compounds (BVOCs produced by plants have a major role in atmospheric chemistry. The different physicochemical properties of BVOCs affect their transport within and out of the plant as well as their reactions along the way. Some of these compounds may accumulate in or on the waxy surface layer of conifer needles and participate in chemical reactions on or near the foliage surface. The aim of this work was to determine whether terpenes, a key category of BVOCs produced by trees, can be found on the epicuticles of Scots pine (Pinus sylvestris L. and, if so, how they compare with the terpenes found in shoot emissions of the same tree. We measured shoot-level emissions of pine seedlings at a remote outdoor location in central Finland and subsequently analysed the needle surface waxes for the same compounds. Both emissions and wax extracts were clearly dominated by monoterpenes, but the proportion of sesquiterpenes was higher in the wax extracts. There were also differences in the terpene spectra of the emissions and the wax extracts. The results, therefore, support the existence of BVOC associated to the epicuticular waxes. We briefly discuss the different pathways for terpenes to reach the needle surfaces and the implications for air chemistry.

  13. [Comparative adaptation of crowns of selective laser melting and wax-lost-casting method].

    Science.gov (United States)

    Li, Guo-qiang; Shen, Qing-yi; Gao, Jian-hua; Wu, Xue-ying; Chen, Li; Dai, Wen-an

    2012-07-01

    To investigate the marginal adaptation of crowns fabricated by selective laser melting (SLM) and wax-lost-casting method, so as to provide an experimental basis for clinic. Co-Cr alloy full crown were fabricated by SLM and wax-lost-casting for 24 samples in each group. All crowns were cemented with zinc phosphate cement and cut along longitudinal axis by line cutting machine. The gap between crown tissue surface and die was measured by 6-point measuring method with scanning electron microscope (SEM). The marginal adaptation of crowns fabricated by SLM and wax-lost-casting were compared statistically. The gap between SLM crowns were (36.51 ± 2.94), (49.36 ± 3.31), (56.48 ± 3.35), (42.20 ± 3.60) µm, and wax-lost-casting crowns were (68.86 ± 5.41), (58.86 ± 6.10), (70.62 ± 5.79), (69.90 ± 6.00) µm. There were significant difference between two groups (P casting method and SLM method provide acceptable marginal adaptation in clinic, and the marginal adaptation of SLM is better than that of wax-lost-casting method.

  14. Crystallography of waxes - an electron diffraction study of refined and natural products

    Science.gov (United States)

    Dorset, Douglas L.

    1997-02-01

    The crystal structure of four waxes has been investigated by electron crystallography. Two of these waxes, including a refined petroleum product (Gulfwax) and a material from lignite (montan wax), form well ordered crystals and their structure could be solved quantitatively from the observed 0022-3727/30/3/018/img1 diffraction patterns. As also found previously for simpler binary n-paraffin solid solutions, the average structure resembles that of a pure paraffin (e.g. n-0022-3727/30/3/018/img2) but with a Gaussian distribution of atomic occupancies near the chain ends to account for the statistical distribution of chain lengths within a lamella. Two other waxes from living organisms, South African bee honeycomb and the leaves of the Brazilian carnauba palm, are much less ordered, even though they share the same methylene subcell packing of the most crystalline parts of the previous materials. It appears that these waxes cannot fully separate into distinct lamellae, perhaps due to the presence of very long `tie' molecules, and are therefore `frustrated' crystal structures.

  15. ETHNOECOLOGY AND ETHNOBOTANY OF THE PALM CARNAUBA WAX IN BRAZILIAN SEMI-ARID

    Directory of Open Access Journals (Sweden)

    Rodrigo Ferreira de Sousa

    2015-12-01

    Full Text Available The aim of this study was to investigate aspects of ethnoecological and ethnobotanical of carnauba wax (Copernicia prunifera (Miller H. E. Moore, Arecaceae in an extractive community of municipality of Ipanguaçu, Rio Grande do Norte state. We interviewed key informants, using the technique of inducing nonspecific, guided tour and direct observation to confirm the data. According to most residents of Pedro Ezequiel Araújo community, the area of carnauba wax in the region is natural. In the research ethnoecological, 73% of informants reported the occurrence of “a different kind of carnauba”, known as “white carnauba” phenotypically distinct from the “common carnauba wax” by presenting clear stipe, smaller fruits and absence of spines on the petiole, and is rare at the study site. Much of the informants observed phenological phases of carnauba wax, being consistent in stating that the species has fruits dispersed by bats. In ethnobotany, powder wax was cited by all as the most important product extracted from leaves of carnauba and the most used, followed by fruit, stem and root. Were still reported the division of work in the extraction of powder wax from the carnauba. The results of this research will contribute to knowledge of ethnobotanical and ethnoecological carnauba, supporting strategies for management and conservation of natural populations.

  16. Modeling the hydration process of bean grains coated with carnauba wax

    Directory of Open Access Journals (Sweden)

    Aline Almeida da Paixão

    2017-08-01

    Full Text Available Edible waxes are widely used to maintain foodstuff until they are consumed. However, some products may be subjected to industrial procedures, such as hydration, prior to their consumption. Hydration of a material is a complex process, which aims to reconstitute the original characteristics of a product when in contact with a liquid phase. An important agricultural product that requires this procedure is beans. Thus, the purpose of this work is to study the hydration process of beans (cultivar BRSMG Majestoso in different temperatures and concentrations of carnauba wax, which is applied on the product surface. Beans with initial moisture content of 0.2015, 0.1972 and 0.1745 (d.b. corresponding to treatments 0 (witness, 1 (wax diluted in water in the ratio 1:1, and 2 (carnauba wax, without dilution were used. Later, these samples were imbibed in distilled water at temperatures of 20, 30 and 40 ºC, for 15 h. The temperature and the carnauba wax influenced the water absorption rate. The Peleg model described satisfactory experimental data and the Mitscherlich model presented biased residual distribution. The constants C1 and C2 of the Peleg model exhibited opposite behaviors with increasing temperatures in the hydration process.

  17. Heat transfer enhancement in energy storage in spherical capsules filled with paraffin wax and metal beads

    International Nuclear Information System (INIS)

    Ettouney, Hisham; Alatiqi, Imad; Al-Sahali, Mohammad; Al-Hajirie, Khalida

    2006-01-01

    Energy storage is an attractive option to conserve limited energy resources, where more than 50% of the generated industrial energy is discarded in cooling water and stack gases. This study focuses on the evaluation of heat transfer enhancement in phase change energy storage units. The experiments are performed using spherical capsules filled with paraffin wax and metal beads. The experiments are conducted by inserting a single spherical capsule filled with wax and metal beads in a stream of hot/cold air. Experimental measurements include the temperature field within the spherical capsule and in the air stream. To determine the enhancement effects of the metal beads, the measured data is correlated against those for a spherical capsule filled with pure wax. Data analysis shows a reduction of 15% in the melting and solidification times upon increasing the number and diameter of the metal beads. This reduction is caused by a similar decrease in the thermal load of the sphere due to replacement of the wax by metal beads. The small size of the spherical capsule limits the enhancement effects; this is evident upon comparison of the heat transfer in a larger size, double pipe energy storage unit, where 2% of the wax volume is replaced with metal inserts, result in a three fold reduction in the melting/solidification time and a similar enhancement in the heat transfer rate

  18. SEPARATION OF FISCHER-TROPSCH WAX PRODUCTS FROM ULTRAFINE IRON CATALYST PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    James K. Neathery; Gary Jacobs; Burtron H. Davis

    2004-03-31

    In this reporting period, a fundamental filtration study was started to investigate the separation of Fischer-Tropsch Synthesis (FTS) liquids from iron-based catalyst particles. Slurry-phase FTS in slurry bubble column reactor systems is the preferred mode of production since the reaction is highly exothermic. Consequently, heavy wax products must be separated from catalyst particles before being removed from the reactor system. Achieving an efficient wax product separation from iron-based catalysts is one of the most challenging technical problems associated with slurry-phase FTS. The separation problem is further compounded by catalyst particle attrition and the formation of ultra-fine iron carbide and/or carbon particles. Existing pilot-scale equipment was modified to include a filtration test apparatus. After undergoing an extensive plant shakedown period, filtration tests with cross-flow filter modules using simulant FTS wax slurry were conducted. The focus of these early tests was to find adequate mixtures of polyethylene wax to simulate FTS wax. Catalyst particle size analysis techniques were also developed. Initial analyses of the slurry and filter permeate particles will be used by the research team to design improved filter media and cleaning strategies.

  19. Biodegradation of paraffin wax by crude Aspergillus enzyme preparations for potential use in removing paraffin deposits.

    Science.gov (United States)

    Zhang, Junhui; Xue, Quanhong; Gao, Hui; Wang, Ping

    2015-11-01

    Paraffin deposition problems have plagued the oil industry. Whist mechanical and chemical methods are problematic, microbiological method of paraffin removal is considered an alternative. However, studies have mainly investigated the use of bacteria, with little attention to the potential of fungi. The performance of six Aspergillus isolates to degrade paraffin wax was evaluated under laboratory conditions using solid enzyme preparations. The results showed that all the six enzyme preparations efficiently improved the solubility of paraffin wax in n-hexane and degraded n-alkanes in paraffin wax. The degradation process was accompanied by dynamic production of gases (CO2 and H2 ) and organic acids (oxalate and propionate). The shape of wax crystals markedly changed after enzymatic degradation, with a rough surface and a loose structure. This study indicates that extracellular enzymes from Aspergillus spp. can efficiently degrade paraffin wax. These enzyme preparations have the potential for use in oil wells with paraffin deposition problems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Digging a Little Deeper: Microbial Communities, Molecular Composition and Soil Organic Matter Turnover along Tropical Forest Soil Depth Profiles

    Science.gov (United States)

    Pett-Ridge, J.; McFarlane, K. J.; Heckman, K. A.; Reed, S.; Green, E. A.; Nico, P. S.; Tfaily, M. M.; Wood, T. E.; Plante, A. F.

    2016-12-01

    Tropical forest soils store more carbon (C) than any other terrestrial ecosystem and exchange vast amounts of CO2, water, and energy with the atmosphere. Much of this C is leached and stored in deep soil layers where we know little about its fate or the microbial communities that drive deep soil biogeochemistry. Organic matter (OM) in tropical soils appears to be associated with mineral particles, suggesting deep soils may provide greater C stabilization. However, few studies have evaluated sub-surface soils in tropical ecosystems, including estimates of the turnover times of deep soil C, the sensitivity of this C to global environmental change, and the microorganisms involved. We quantified bulk C pools, microbial communities, molecular composition of soil organic matter, and soil radiocarbon turnover times from surface soils to 1.5m depths in multiple soil pits across the Luquillo Experimental Forest, Puerto Rico. Soil C, nitrogen, and root and microbial biomass all declined exponentially with depth; total C concentrations dropped from 5.5% at the surface to communities in surface soils (Acidobacteria and Proteobacteria) versus those below the active rooting zone (Verrucomicrobia and Thaumarchaea). High resolution mass spectrometry (FTICR-MS) analyses suggest a shift in the composition of OM with depth (especially in the water soluble fraction), an increase in oxidation, and decreasing H/C with depth (indicating higher aromaticity). Additionally, surface samples were rich in lignin-like compounds of plant origin that were absent with depth. Soil OM 14C and mean turnover times were variable across replicate horizons, ranging from 3-1500 years at the surface, to 5000-40,000 years at depth. In comparison to temperate deciduous forests, these 14C values reflect far older soil C. Particulate organic matter (free light fraction), with a relatively modern 14C was found in low but measureable concentration in even the deepest soil horizons. Our results indicate these

  1. Molecular characterization of organic matter mobilized from Bangladeshi aquifer sediment: tracking carbon compositional change during microbial utilization

    Directory of Open Access Journals (Sweden)

    L. E. Pracht

    2018-03-01

    Full Text Available Bioavailable organic carbon in aquifer recharge waters and sediments can fuel microbial reactions with implications for groundwater quality. A previous incubation experiment showed that sedimentary organic carbon (SOC mobilized off sandy sediment collected from an arsenic-contaminated and methanogenic aquifer in Bangladesh was bioavailable; it was transformed into methane. We used high-resolution mass spectrometry to molecularly characterize this mobilized SOC, reference its composition against dissolved organic carbon (DOC in surface recharge water, track compositional changes during incubation, and advance understanding of microbial processing of organic carbon in anaerobic environments. Organic carbon mobilized off aquifer sediment was more diverse, proportionately larger, more aromatic, and more oxidized than DOC in surface recharge. Mobilized SOC was predominately composed of terrestrially derived organic matter and had characteristics signifying that it evaded microbial processing within the aquifer. Approximately 50 % of identified compounds in mobilized SOC and in DOC from surface recharge water contained sulfur. During incubation, after mobilized SOC was converted into methane, new organosulfur compounds with high S-to-C ratios and a high nominal oxidation state of carbon (NOSC were detected. We reason that these detected compounds formed abiotically following microbial reduction of sulfate to sulfide, which could have occurred during incubation but was not directly measured or that they were microbially synthesized. Most notably, microbes transformed all carbon types during incubation, including those currently considered thermodynamically unviable for microbes to degrade in anaerobic conditions (i.e., those with a low NOSC. In anaerobic environments, energy yields from redox reactions are small and the amount of energy required to remove electrons from highly reduced carbon substrates during oxidation decreases the thermodynamic

  2. Organic molecular composition of marine aerosols over the Arctic Ocean in summer: contributions of primary emission and secondary aerosol formation

    Directory of Open Access Journals (Sweden)

    P. Q. Fu

    2013-02-01

    Full Text Available Organic molecular composition of marine aerosol samples collected during the MALINA cruise in the Arctic Ocean was investigated by gas chromatography/mass spectrometry. More than 110 individual organic compounds were determined in the samples and were grouped into different compound classes based on the functionality and sources. The concentrations of total quantified organics ranged from 7.3 to 185 ng m−3 (mean 47.6 ng m−3, accounting for 1.8–11.0% (4.8% of organic carbon in the marine aerosols. Primary saccharides were found to be dominant organic compound class, followed by secondary organic aerosol (SOA tracers formed from the oxidation of biogenic volatile organic compounds (VOCs such as isoprene, α-pinene and β-caryophyllene. Mannitol, the specific tracer for airborne fungal spores, was detected as the most abundant organic species in the samples with a concentration range of 0.052–53.3 ng m−3 (9.2 ng m−3, followed by glucose, arabitol, and the isoprene oxidation products of 2-methyltetrols. Biomass burning tracers such as levoglucosan are evident in all samples with trace levels. On the basis of the tracer-based method for the estimation of fungal-spore OC and biogenic secondary organic carbon (SOC, we estimate that an average of 10.7% (up to 26.2% of the OC in the marine aerosols was due to the contribution of fungal spores, followed by the contribution of isoprene SOC (mean 3.8% and α-pinene SOC (2.9%. In contrast, only 0.19% of the OC was due to the photooxidation of β-caryophyllene. This study indicates that primary organic aerosols from biogenic emissions, both from long-range transport of mid-latitude aerosols and from sea-to-air emission of marine organics, as well as secondary organic aerosols formed from the photooxidation of biogenic VOCs are important factors controlling the organic chemical composition of marine aerosols in the Arctic Ocean.

  3. Molecular characterization of organic matter mobilized from Bangladeshi aquifer sediment: tracking carbon compositional change during microbial utilization

    Science.gov (United States)

    Pracht, Lara E.; Tfaily, Malak M.; Ardissono, Robert J.; Neumann, Rebecca B.

    2018-03-01

    Bioavailable organic carbon in aquifer recharge waters and sediments can fuel microbial reactions with implications for groundwater quality. A previous incubation experiment showed that sedimentary organic carbon (SOC) mobilized off sandy sediment collected from an arsenic-contaminated and methanogenic aquifer in Bangladesh was bioavailable; it was transformed into methane. We used high-resolution mass spectrometry to molecularly characterize this mobilized SOC, reference its composition against dissolved organic carbon (DOC) in surface recharge water, track compositional changes during incubation, and advance understanding of microbial processing of organic carbon in anaerobic environments. Organic carbon mobilized off aquifer sediment was more diverse, proportionately larger, more aromatic, and more oxidized than DOC in surface recharge. Mobilized SOC was predominately composed of terrestrially derived organic matter and had characteristics signifying that it evaded microbial processing within the aquifer. Approximately 50 % of identified compounds in mobilized SOC and in DOC from surface recharge water contained sulfur. During incubation, after mobilized SOC was converted into methane, new organosulfur compounds with high S-to-C ratios and a high nominal oxidation state of carbon (NOSC) were detected. We reason that these detected compounds formed abiotically following microbial reduction of sulfate to sulfide, which could have occurred during incubation but was not directly measured or that they were microbially synthesized. Most notably, microbes transformed all carbon types during incubation, including those currently considered thermodynamically unviable for microbes to degrade in anaerobic conditions (i.e., those with a low NOSC). In anaerobic environments, energy yields from redox reactions are small and the amount of energy required to remove electrons from highly reduced carbon substrates during oxidation decreases the thermodynamic favorability of

  4. Hydroclimate variability of High Arctic Svalbard during the Holocene inferred from hydrogen isotopes of leaf waxes

    Science.gov (United States)

    Balascio, Nicholas L.; D'Andrea, William J.; Gjerde, Marthe; Bakke, Jostein

    2018-03-01

    The response of the Arctic hydrologic cycle to global warming includes changes in precipitation patterns and moisture availability associated with variable sea ice extent and modes of atmospheric circulation. Reconstructions of past hydroclimate changes help constrain the natural range of these systems, identify the manners in which they respond to different forcing mechanisms, and reveal their connections to other components of the climate system, all of which lead to a better understanding of present and future changes. Here we examine hydroclimate changes during the Holocene in the High Arctic archipelago of Svalbard by reconstructing the isotopic composition of precipitation. We measured the hydrogen isotopic composition (δD values) of leaf wax compounds (n-alkanes; C25-C31) in a sediment core from Lake Hakluytvatnet on the island of Amsterdamøya, northwest Spitsbergen. We interpret δD values of mid-chain (C25) and long-chain (C29, C31) length n-alkanes to represent changes in the isotopic composition of lake water and precipitation over the last 12.9 ka. After deglaciation of the catchment, water supply became restricted and the lake experienced significant evaporative isotopic enrichment indicating warmer conditions from 12.8 to 7.5 ka. The isotope values suggest an increase in the delivery of moisture from warmer sub-polar air masses between 12.8 and 9.5 ka, followed by generally warm, but unstable conditions between 9.5 and 7.5 ka, possibly indicating a response to meltwater forcing. Sedimentary evidence indicates a hiatus in deposition c. 7.5-5.0 ka, likely as a result of desiccation of the lake. At c. 5.0 ka lacustrine sedimentation resumed and over the last 5 ka there was a progressive increase in the influence of polar air masses and colder conditions, which culminated in an abrupt shift to colder conditions at c. 1.8 ka. This late Holocene cooling ended c. 0.18 ka, when isotopic data indicate warmer conditions and greater influence of moisture

  5. Characterization of glycosylphosphatidylinositol-anchored lipid transfer protein 2 (LTPG2) and overlapping function between LTPG/LTPG1 and LTPG2 in cuticular wax export or accumulation in Arabidopsis thaliana.

    Science.gov (United States)

    Kim, Hyojin; Lee, Saet Buyl; Kim, Hae Jin; Min, Myung Ki; Hwang, Inhwan; Suh, Mi Chung

    2012-08-01

    Cuticular waxes are synthesized by the extensive export of intracellular lipids from epidermal cells. However, it is still not known how hydrophobic cuticular lipids are exported to the plant surface through the hydrophilic cell wall. The LTPG2 gene was isolated based on Arabidopsis microarray analysis; this gene is predominantly expressed in stem epidermal peels as compared with in stems. The expression of LTPG2 transcripts was observed in various organs, including stem epidermis and silique walls. The composition of the cuticular wax was significantly altered in the stems and siliques of the ltpg2 mutant and ltpg1 ltpg2 double mutant. In particular, the reduced level of the C29 alkane, which is the major component of cuticular waxes in ltpg1 ltpg2 stems and siliques, was similar to the sum of reduced values of either parent. The total cuticular wax load was reduced by approximately 13% and 20% in both ltpg2 and ltpg1 ltpg2 siliques, respectively, and by approximately 14% in ltpg1 ltpg2 stems when compared with the wild-type. Similarly, severe alterations in the cuticular layer structure of epidermal cells of ltpg2 and ltpg1 ltpg2 stems and silique walls were observed. In tobacco epidermal cells, intracellular trafficking of the fluorescent LTPG/LTPG1 and LTPG2 to the plasma membrane was prevented by a dominant-negative mutant form of ADP-ribosylation factor 1, ARF1(T31N). Taken together, these results indicate that LTPG2 is functionally overlapped with LTPG/LTPG1 during cuticular wax export or accumulation and LTPG/LTPG1 and LTPG2 are targeted to the plasma membrane via the vesicular trafficking system.

  6. Screening of environmental contaminants in honey bee wax comb using gas chromatography-high-resolution time-of-flight mass spectrometry.

    Science.gov (United States)

    Gómez-Ramos, M M; García-Valcárcel, A I; Tadeo, J L; Fernández-Alba, A R; Hernando, M D

    2016-03-01

    This study reports an analytical approach intended to be used for investigation of non-targeted environmental contaminants and to characterize the organic pollution pattern of bee wax comb samples. The method comprises a generic extraction followed by detection with gas chromatography coupled to high-resolution time-of-flight mass spectrometry (GC-TOF-MS), operated in electron impact ionization (EI) mode. The screening approach for the investigation of non-targeted contaminants consisted of initial peak detection by deconvolution and matching the first-stage mass spectra EI-MS(1) with a nominal mass spectral library. To gain further confidence in the structural characterization of the contaminants under investigation, the molecular formula of representative ions (molecular ion when present in the EI spectrum) and, for at least other two fragment ions, was provided for those with an accurate mass scoring (mass error contaminants in 50 samples of bee wax comb. This approach has allowed the tentative identification of some GC-amenable contaminants belonging to different chemical groups, among them, phthalates and polycyclic aromatic hydrocarbons (PAHs), along with residues of veterinary treatments used in apiculture.

  7. Retained bone wax on CT at one year after dacryocystorhinostomy: A case report

    International Nuclear Information System (INIS)

    Kim, Seung Hyun; Park, Dong Woo; Jeong, Jin Yeok; Lee, Jong Ah; Lee, Young Jun

    2015-01-01

    A 71-year-old man with chronic rhinosinusitis presented with a purulent, foul-smelling nasal discharge and obstruction. One year earlier he had been treated with a dacryocystorhinostomy for nasolacrimal duct obstruction. During the procedure, bone wax had been used to control bleeding in the anterior upper nasal cavity. On computed tomographic imaging, a fat-density lesion was seen in the anterior upper sinonasal cavity and was found to be hypointense or signal-void on all magnetic resonance imaging sequences. The lesion, which proved to consist of bone wax, was surgically removed. Here, we present the imaging features of retained bone wax in a patient with clinically diagnosed chronic rhinosinusitis after dacryocystorhinostomy

  8. Retained bone wax on CT at one year after dacryocystorhinostomy: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Hyun; Park, Dong Woo; Jeong, Jin Yeok [Guri Hospital, Hanyang University College of Medicine, Guri (Korea, Republic of); Lee, Jong Ah; Lee, Young Jun [Dept. of Radiology, Seoul Hospital, Hanyang University College of Medicine, Seoul (Korea, Republic of)

    2015-09-15

    A 71-year-old man with chronic rhinosinusitis presented with a purulent, foul-smelling nasal discharge and obstruction. One year earlier he had been treated with a dacryocystorhinostomy for nasolacrimal duct obstruction. During the procedure, bone wax had been used to control bleeding in the anterior upper nasal cavity. On computed tomographic imaging, a fat-density lesion was seen in the anterior upper sinonasal cavity and was found to be hypointense or signal-void on all magnetic resonance imaging sequences. The lesion, which proved to consist of bone wax, was surgically removed. Here, we present the imaging features of retained bone wax in a patient with clinically diagnosed chronic rhinosinusitis after dacryocystorhinostomy.

  9. Printed wax masks for 254 nm deep-UV pattering of PMMA-based microfluidics

    KAUST Repository

    Fan, Yiqiang

    2012-01-13

    This paper reports a new technique for masking deep-UV exposure of poly(methyl methacrylate) (PMMA) using a printed wax mask. This technique provides an inexpensive and bulk fabrication method for PMMA structures. The technique involves the direct printing of the mask onto a polymer sheet using a commercial wax printer. The wax layer was then transferred to a PMMA substrate using a thermal laminator, exposed using deep-UV (with a wavelength of 254 nm), developed in an IPA:water solution, and completed by bonding on a PMMA cap layer. A sample microfluidic device fabricated with this method is also presented, with the microchannel as narrow as 50 μm. The whole process is easy to perform without the requirement for any microfabrication facilities. © 2012 IOP Publishing Ltd.

  10. The analysis of the wax foundry models fabrication process for the CPX3000 device

    Directory of Open Access Journals (Sweden)

    G. Budzik

    2011-04-01

    Full Text Available The paper presents possibilities of creating wax founding models by means of CPX3000 device. The device is used for Rapid Prototypingof models made of foundry wax in an incremental process. The paper also presents problems connected with choosing technologicalparameters for incremental shaping which influence the accuracy of created models. Issues connected with post-processing are alsodescribed. This process is of great importance for obtaining geometrically correct models. The analysis of parameters of cleaning models from supporting material is also presented. At present CPX3000 printer is the first used in Poland device by 3D Systems firm for creating wax models. The printer is at The Faculty of Mechanical Engineering at Rzeszów University of Technology.

  11. Printed wax masks for 254 nm deep-UV pattering of PMMA-based microfluidics

    International Nuclear Information System (INIS)

    Fan, Yiqiang; Liu, Yang; Li, Huawei; Foulds, Ian G

    2012-01-01

    This paper reports a new technique for masking deep-UV exposure of poly(methyl methacrylate) (PMMA) using a printed wax mask. This technique provides an inexpensive and bulk fabrication method for PMMA structures. The technique involves the direct printing of the mask onto a polymer sheet using a commercial wax printer. The wax layer was then transferred to a PMMA substrate using a thermal laminator, exposed using deep-UV (with a wavelength of 254 nm), developed in an IPA:water solution, and completed by bonding on a PMMA cap layer. A sample microfluidic device fabricated with this method is also presented, with the microchannel as narrow as 50 µm. The whole process is easy to perform without the requirement for any microfabrication facilities. (technical note)

  12. Procedures for extraction and purification of leaf wax biomarkers from peats

    Directory of Open Access Journals (Sweden)

    J.E. Nichols

    2011-12-01

    Full Text Available Palaeoecological and palaeoclimate reconstruction, using leaf wax biomarkers, is a relatively new sub-discipline of peatland science. The ability to process large numbers of samples rapidly for biomarkers makes this type of analysis particularly appealing. This review is a guide to the preparation of leaf waxes for analysis by gas chromatography. The main phases of preparation are extraction of soluble organic compounds from sediment, separation of the total extract into fractions of differing polarity, and the derivatisation of polar functional groups. The procedures described here are not meant be exhaustive of all organic geochemical possibilities in peatlands, but a distillation of methods for the preparation of leaf waxes that are commonly and increasingly being used in palaeoecological and palaeoclimatological studies.

  13. Effects of irradiation in combination with waxing on the essential oils in orange peel

    International Nuclear Information System (INIS)

    Moussaid, M.; Lacroix, M.; Nketsia-Tabiri, J.; Boubekri, C.

    2000-01-01

    The study evaluated the effects of waxing and irradiation dose on the essential oils in orange peel. Mature oranges (Maroc late) waxed or unwaxed were treated with 0-2 kGy radiation. Volatiles in the peel were extracted and analyzed by G.C. D-limonene was significantly lower (P≤0.05) in waxed oranges; levels in samples treated with 2 kGy were higher than those treated with 0 or 1 kGy. Linalool, methyl anthranilate and 3.7-dimethyl-2.6-octadienal decreased as the dose increased. The analysis of variance indicates that only linalool was influenced by post-irradiation storage time. The level of this compound increased with storage time. (author)

  14. Latitude and pH driven trends in the molecular composition of DOM across a north south transect along the Yenisei River

    Science.gov (United States)

    Roth, Vanessa-Nina; Dittmar, Thorsten; Gaupp, Reinhard; Gleixner, Gerd

    2013-12-01

    We used electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS) to identify the molecular composition of dissolved organic matter (DOM) collected from different ecosystems along a transect crossing Siberia’s northern and middle Taiga. This information is urgently needed to help elucidate global carbon cycling and export through Russian rivers. In total, we analyzed DOM samples from eleven Yenisei tributaries and seven bogs. Freeze-dried and re-dissolved DOM was desalted via solid phase extraction (SPE) and eluted in methanol for ESI-FT-ICR-MS measurements. We recorded 15209 different masses and identified 7382 molecular formulae in the mass range between m/z = 150 and 800. We utilized the relative FT-ICR-MS signal intensities of 3384 molecular formulae above a conservatively set limit of detection and summarized the molecular characteristics for each measurement using ten magnitude-weighted parameters ((O/C)w, (H/C)w, (N/C)w, (DBE)w, (DBE/C)w, (DBE/O)w, (DBE-O)w, (C#)w, (MW)w and (AI)w) for redundancy analysis. Consequently, we revealed that the molecular composition of DOM depends mainly on pH and geographical latitude. After applying variation partitioning to the peak data, we isolated molecular formulae that were strongly positive or negatively correlated with latitude and pH. We used the chemical information from 13 parameters (C#, H#, N#, O#, O/C, H/C, DBE, DBE/C, DBE/O, AI, N/C, DBE-O and MW) to characterize the extracted molecular formulae. Using latitude along the gradient representing climatic variation, we found a higher abundance of smaller molecules, nitrogen-containing compounds and unsaturated Cdbnd C functionalities at higher latitudes. As possible reasons for the different molecular characteristics occurring along this gradient, we suggested that the decomposition was temperature dependent resulting to a higher abundance of non-degraded lignin-derived phenolic substances. We demonstrated that bog samples

  15. Influence of galactic arm scale dynamics on the molecular composition of the cold and dense ISM. I. Observed abundance gradients in dense clouds

    Science.gov (United States)

    Ruaud, M.; Wakelam, V.; Gratier, P.; Bonnell, I. A.

    2018-04-01

    Aim. We study the effect of large scale dynamics on the molecular composition of the dense interstellar medium during the transition between diffuse to dense clouds. Methods: We followed the formation of dense clouds (on sub-parsec scales) through the dynamics of the interstellar medium at galactic scales. We used results from smoothed particle hydrodynamics (SPH) simulations from which we extracted physical parameters that are used as inputs for our full gas-grain chemical model. In these simulations, the evolution of the interstellar matter is followed for 50 Myr. The warm low-density interstellar medium gas flows into spiral arms where orbit crowding produces the shock formation of dense clouds, which are held together temporarily by the external pressure. Results: We show that depending on the physical history of each SPH particle, the molecular composition of the modeled dense clouds presents a high dispersion in the computed abundances even if the local physical properties are similar. We find that carbon chains are the most affected species and show that these differences are directly connected to differences in (1) the electronic fraction, (2) the C/O ratio, and (3) the local physical conditions. We argue that differences in the dynamical evolution of the gas that formed dense clouds could account for the molecular diversity observed between and within these clouds. Conclusions: This study shows the importance of past physical conditions in establishing the chemical composition of the dense medium.

  16. Multi-Scale Modelling of Deformation and Fracture in a Biomimetic Apatite-Protein Composite: Molecular-Scale Processes Lead to Resilience at the μm-Scale.

    Directory of Open Access Journals (Sweden)

    Dirk Zahn

    Full Text Available Fracture mechanisms of an enamel-like hydroxyapatite-collagen composite model are elaborated by means of molecular and coarse-grained dynamics simulation. Using fully atomistic models, we uncover molecular-scale plastic deformation and fracture processes initiated at the organic-inorganic interface. Furthermore, coarse-grained models are developed to investigate fracture patterns at the μm-scale. At the meso-scale, micro-fractures are shown to reduce local stress and thus prevent material failure after loading beyond the elastic limit. On the basis of our multi-scale simulation approach, we provide a molecular scale rationalization of this phenomenon, which seems key to the resilience of hierarchical biominerals, including teeth and bone.

  17. Thermal characterizations of the paraffin wax/low density polyethylene blends as a solid fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soojong; Moon, Heejang; Kim, Jinkon, E-mail: jkkim@kau.ac.kr

    2015-08-10

    Highlights: • Regression rate of blends fuel is higher than polymer fuel. • LDPE is an effective mixing ingredient for the combustion efficiency. • Blends fuel is a uniform mixture with two degradation steps. • LDPE plays a positive role for the low sensitivity to the thermal deformation • Blends with low LDPE content can be an effective fuel for hybrid rocket application. - Abstract: Thermal characterizations of a novel solid fuel for hybrid rocket application, based on the paraffin wax blends with low density polyethylene (LDPE) concentration of 5% (SF-5) and 10% (SF-10) were conducted. Both the increased regression rate in comparison with the polymeric fuel, and the improved combustion efficiency in comparison with the pure paraffin fuel reveal that the blend fuels achieve higher combustion performance. The morphology of the shape stabilized paraffin wax/LDPE blends was characterized by the scanning electron microscopy (SEM). Although the SEM observation indicated the blends have uniform mixtures, they showed two degradation steps confirming the immiscibility of components in the crystalline phase from thermogravimetric analysis (TGA). The differential scanning calorimeter (DSC) results showed that the melting temperature of LDPE in the blends decreased with an increase of paraffin wax content. The decreasing total specific melting enthalpy of blended fuels with decreasing paraffin wax content is in fairly good agreement with the additive rule. In thermomechanical analysis (TMA), the linear coefficient of thermal expansion (LCTE) seems to decrease with an increase of LDPE loading, however, the loaded LDPE do merely affect the LCTE in case of the blends with low LDPE concentration. It was found that a blend of low concentration of LDPE with a relatively high concentration of paraffin wax can lead to a potential novel fuel for rocket application, a contrary case with respect to the field of phase change materials (PCM) where a blend of high concentration

  18. Effect of gamma radiation and entomopathogenic nematodes on greater wax moth, Galleria mellonella (Linnaeus) [Lep., Pyralidae

    International Nuclear Information System (INIS)

    Ali, R.M.S.

    2008-01-01

    The greater wax moth, Galleria mellonella (L.), is a lepidoptera insect; its larval stage, feeds on wax and pollen stored in combs of active honey bee colonies (Milam, 1970). It does not attack adult bees but destructs combs of a weak colony by chewing the comb; spinning silk-lined tunnels through the cell wall and over the face of the comb, which prevent the bees to emerge by their abdomen from their cell, so they die by starvation as they unable to escape from their cell. They also eat out a place to spin their cocoons in the soft wood of the bee hive. Galleria mellonella can also destroy stored honey combs. Therefore, it is considered a major pest of the honeybee. Damage will vary with the level of infestation and the time that has elapsed since the infestation first began. In time, stored combs may be completely destroyed and the frames and combs become filled with a mass of tough, silky web. In ideal conditions for wax moth development, a box (super) of combs may be rendered useless in about a week. Damage occurs mainly in the warm and hot months of the year when wax moths are most active. However, considerable damage can still occur during the cool part of late autumn and early spring as greater wax moth can produce a large amount of metabolic heat which can raise the immediate temperature around them by up to 25 degree C above the normal environment temperature. At the time of storage, combs that are apparently free of wax moth may contain eggs that will hatch later. They should be monitored

  19. Review of data on the dermal penetration of mineral oils and waxes used in cosmetic applications.

    Science.gov (United States)

    Petry, T; Bury, D; Fautz, R; Hauser, M; Huber, B; Markowetz, A; Mishra, S; Rettinger, K; Schuh, W; Teichert, T

    2017-10-05

    Mineral oils and waxes used in cosmetic products, also referred to as "personal care products" outside the European Union, are mixtures of predominantly saturated hydrocarbons consisting of straight-chain, branched and ring structures with carbon chain lengths greater than C16. They are used in skin and lip care cosmetic products due to their excellent skin tolerance as well as their high protecting and cleansing performance and broad viscosity options. Recently, concerns have been raised regarding potential adverse health effects of mineral oils and waxes from dermal application of cosmetics. In order to be able to assess the risk for the consumer the dermal penetration potential of these ingredients has to be evaluated. The scope and objective of this review are to identify and summarize publicly available literature on the dermal penetration of mineral oils and waxes as used in cosmetic products. For this purpose, a comprehensive literature search was conducted. A total of 13 in vivo (human, animal) and in vitro studies investigating the dermal penetration of mineral oils and waxes has been identified and analysed. The majority of the substances were dermally adsorbed to the stratum corneum and only a minor fraction reached deeper skin layers. Overall, there is no evidence from the various studies that mineral oils and waxes are percutaneously absorbed and become systemically available. Thus, given the absence of dermal uptake, mineral oils and waxes as used in cosmetic products do not present a risk to the health of the consumer. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Co-metabolism of DDT by the newly isolated bacterium, Pseudoxanthomonas sp. wax

    Directory of Open Access Journals (Sweden)

    Guangli Wang

    2010-06-01

    Full Text Available Microbial degradation of 1,1,1-trichloro-2,2-bis(p-chlorophenylethane (DDT is the most promising way to clean up DDT residues found in the environment. In this paper, a bacterium designated as wax, which was capable of co-metabolizing DDT with other carbon sources, was isolated from a long-term DDT-contaminated soil sample by an enrichment culture technique. The new isolate was identified as a member of the Pseudoxanthomonas sp., based on its morphological, physiological and biochemical properties, as well as by 16S rRNA gene analysis. In the presence of 100 mg l-1 glucose, the wax strain could degrade over 95% of the total DDT, at a concentration of 20 mg l-1, in 72 hours, and could degrade over 60% of the total DDT, at a concentration of 100 mg l-1, in 144 hours. The wax strain had the highest degradation efficiency among all of the documented DDT-degrading bacteria. The wax strain could efficiently degrade DDT at temperatures ranging from 20 to 37ºC, and with initial pH values ranging from 7 to 9. The bacterium could also simultaneously co-metabolize 1,1-dichloro-2,2-bis(p-chlorophenylethane (DDD, 2,2-bis(p-chlorophenyl-1,1-dichlorethylene (DDE, and other organochlorine compounds. The wax strain could also completely remove 20 mg kg-1 of DDT from both sterile and non-sterile soils in 20 days. This study demonstrates the significant potential use of Pseudoxanthomonas sp. wax for the bioremediation of DDT in the environment.

  1. Thermal characterizations of the paraffin wax/low density polyethylene blends as a solid fuel

    International Nuclear Information System (INIS)

    Kim, Soojong; Moon, Heejang; Kim, Jinkon

    2015-01-01

    Highlights: • Regression rate of blends fuel is higher than polymer fuel. • LDPE is an effective mixing ingredient for the combustion efficiency. • Blends fuel is a uniform mixture with two degradation steps. • LDPE plays a positive role for the low sensitivity to the thermal deformation • Blends with low LDPE content can be an effective fuel for hybrid rocket application. - Abstract: Thermal characterizations of a novel solid fuel for hybrid rocket application, based on the paraffin wax blends with low density polyethylene (LDPE) concentration of 5% (SF-5) and 10% (SF-10) were conducted. Both the increased regression rate in comparison with the polymeric fuel, and the improved combustion efficiency in comparison with the pure paraffin fuel reveal that the blend fuels achieve higher combustion performance. The morphology of the shape stabilized paraffin wax/LDPE blends was characterized by the scanning electron microscopy (SEM). Although the SEM observation indicated the blends have uniform mixtures, they showed two degradation steps confirming the immiscibility of components in the crystalline phase from thermogravimetric analysis (TGA). The differential scanning calorimeter (DSC) results showed that the melting temperature of LDPE in the blends decreased with an increase of paraffin wax content. The decreasing total specific melting enthalpy of blended fuels with decreasing paraffin wax content is in fairly good agreement with the additive rule. In thermomechanical analysis (TMA), the linear coefficient of thermal expansion (LCTE) seems to decrease with an increase of LDPE loading, however, the loaded LDPE do merely affect the LCTE in case of the blends with low LDPE concentration. It was found that a blend of low concentration of LDPE with a relatively high concentration of paraffin wax can lead to a potential novel fuel for rocket application, a contrary case with respect to the field of phase change materials (PCM) where a blend of high concentration

  2. The effects of surgicel and bone wax hemostatic agents on bone healing: An experimental study

    Directory of Open Access Journals (Sweden)

    Nasser Nooh

    2014-01-01

    Full Text Available Background: The biological effects of hemostatic agends on the physiological healing process need to be tested. The aim of this study was to assess the effects of oxidized cellulose (surgicel and bone wax on bone healing in goats′ feet. Materials and Methods: Three congruent circular bone defects were created on the lateral aspects of the right and left metacarpal bones of ten goats. One defect was left unfilled and acted as a control; the remaining two defects were filled with bone wax and surgicel respectively. The 10 animals were divided into two groups of 5 animals each, to be sacrificed at the 3rd and 5th week postoperatively. Histological analysis assessing quality of bone formed and micro-computed tomography (MCT measuring the quantities of bone volume (BV and bone density (BD were performed. The results of MCT analysis pertaining to BV and BD were statistically analyzed using two-way analysis of variance (ANOVA and posthoc least significant difference tests. Results: Histological analysis at 3 weeks showed granulation tissue with new bone formation in the control defects, active bone formation only at the borders for surgicel filled defects and fibrous encapsulation with foreign body reaction in the bone wax filled defects. At 5 weeks, the control and surgicel filled defects showed greater bone formation; however the control defects had the greatest amount of new bone. Bone wax filled defects showed very little bone formation. The two-way ANOVA for MCT results showed significant differences for BV and BD between the different hemostatic agents during the two examination periods. Conclusion: Surgicel has superiority over bone wax in terms of osseous healing. Bone wax significantly hinders osteogenesis and induces inflammation.

  3. The deformation of wax patterns and castings in investment casting technology

    Directory of Open Access Journals (Sweden)

    A. Herman

    2012-01-01

    Full Text Available The dimensional accuracy of the final casting of Inconel alloy 738 LC is affected by many aspects. One of them is the choice of method and time of cooling wax model for precision investment casting. The main objective was to study the initial deformation of the complex shape of the casting of the rotor blades. Various approaches have been tested for cooling wax pattern. When wax models are cooling on the air, without clamping in jig for cooling, deviations from the ideal shape of the casting are very noticeable (up to 8 mm and most are in extreme positions of the model. When blade is cooled in fixing jig in water environment, the resulting deviations compared with cooling in air are significantly larger, sometimes up to 10 mm. This itself does not mean that the final shape of the casting is dimensionally more accurate with usage of wax models, which have deviations from the ideal position smaller. Another deformation occurs when shell mould is produced around wax pattern and furthermore deformations emerge while casting of blade is cooling. This paper demonstrates first steps in describing complex process of deformations of Inconel alloy blades produced with investment casting technology by comparing results from thermal imagery, simulations in foundry simulation software ProCAST 2010 and measurements from CNC scanning system Carl Zeiss MC 850. Conclusions are so far not groundbreaking, but it seems deformations of wax pattern and deformations of castings do in some cases cancel each other by having opposite directions. Describing entirely whole process of deformations will help increase precision of blade castings so that models at the beginning and blades in the end are the same.

  4. Thermally conductive, dielectric PCM-boron nitride nanosheet composites for efficient electronic system thermal management.

    Science.gov (United States)

    Yang, Zhi; Zhou, Lihui; Luo, Wei; Wan, Jiayu; Dai, Jiaqi; Han, Xiaogang; Fu, Kun; Henderson, Doug; Yang, Bao; Hu, Liangbing

    2016-11-24

    Phase change materials (PCMs) possessing ideal properties, such as superior mass specific heat of fusion, low cost, light weight, excellent thermal stability as well as isothermal phase change behavior, have drawn considerable attention for thermal management systems. Currently, the low thermal conductivity of PCMs (usually less than 1 W mK -1 ) greatly limits their heat dissipation performance in thermal management applications. Hexagonal boron nitride (h-BN) is a two-dimensional material known for its excellent thermally conductive and electrically insulating properties, which make it a promising candidate to be used in electronic systems for thermal management. In this work, a composite, consisting of h-BN nanosheets (BNNSs) and commercialized paraffin wax was developed, which inherits high thermally conductive and electrically insulating properties from BNNSs and substantial heat of fusion from paraffin wax. With the help of BNNSs, the thermal conductivity of wax-BNNS composites reaches 3.47 W mK -1 , which exhibits a 12-time enhancement compared to that of pristine wax (0.29 W mK -1 ). Moreover, an 11.3-13.3 MV m -1 breakdown voltage of wax-BNNS composites was achieved, which shows further improved electrical insulating properties. Simultaneously enhanced thermally conductive and electrically insulating properties of wax-BNNS composites demonstrate their promising application for thermal management in electronic systems.

  5. Strontium-doped calcium polyphosphate/ultrahigh molecular weight polyethylene composites: A new class of artificial joint components with enhanced biological efficacy to aseptic loosening

    International Nuclear Information System (INIS)

    Gu, Zhipeng; Huang, Bingxue; Li, Yiwen; Tian, Meng; Li, Li; Yu, Xixun

    2016-01-01

    To enhance implant stability and prolong the service life of artificial joint component, a new approach was proposed to improve the wear resistance of artificial joint component and endow artificial joint component with the biological efficacy of resistance to aseptic loosening. Strontium calcium polyphosphate (SCPP) were interfused in ultrahigh molecular weight polyethylene (UHMWPE) by a combination of liquid nitrogen ball-milling and flat-panel curing process to prepare the SCPP/UHMWPE composites. The micro-structure, mechanical characterization, tribological characterization and bioactivities of various SCPP/UHMWPE composites were investigated. The results suggested that this method could statistically improve the wear resistance of UHMWPE resulting from a good SCPP particle dispersion. Moreover, it is also observed that the SCPP/UHMWPE composites-wear particles could promote the production of OPG by osteoblasts and decrease the production of RANKL by osteoblasts, and then increase the OPG/RANKL ratio. This indicated that the SCPP/UHMWPE composites had potential efficacy to prevent and treat aseptic loosening. Above all, the SCPP/UHMWPE composites with a suitable SCPP content would be the promising materials for fabricating artificial joint component with ability to resist aseptic loosening. - Highlights: • SCPP/UHMWPE composites could enhance biological efficacy of resistance to aseptic loosening. • SCPP would improve biological efficacy with a few sacrifice of wear resistance. • The results might provide a promising wear-resistant material for fabricating acetabular cup.

  6. Strontium-doped calcium polyphosphate/ultrahigh molecular weight polyethylene composites: A new class of artificial joint components with enhanced biological efficacy to aseptic loosening

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Zhipeng [College of Polymer Science and Engineering, Sichuan University, Chengdu 610065 (China); Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041 (China); Huang, Bingxue; Li, Yiwen [College of Polymer Science and Engineering, Sichuan University, Chengdu 610065 (China); Tian, Meng [Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041 (China); Li, Li [Department of Oncology, the 452 Hospital of Chinese PLA, Chengdu 610021 (China); Yu, Xixun, E-mail: yuxixun@163.com [College of Polymer Science and Engineering, Sichuan University, Chengdu 610065 (China)

    2016-04-01

    To enhance implant stability and prolong the service life of artificial joint component, a new approach was proposed to improve the wear resistance of artificial joint component and endow artificial joint component with the biological efficacy of resistance to aseptic loosening. Strontium calcium polyphosphate (SCPP) were interfused in ultrahigh molecular weight polyethylene (UHMWPE) by a combination of liquid nitrogen ball-milling and flat-panel curing process to prepare the SCPP/UHMWPE composites. The micro-structure, mechanical characterization, tribological characterization and bioactivities of various SCPP/UHMWPE composites were investigated. The results suggested that this method could statistically improve the wear resistance of UHMWPE resulting from a good SCPP particle dispersion. Moreover, it is also observed that the SCPP/UHMWPE composites-wear particles could promote the production of OPG by osteoblasts and decrease the production of RANKL by osteoblasts, and then increase the OPG/RANKL ratio. This indicated that the SCPP/UHMWPE composites had potential efficacy to prevent and treat aseptic loosening. Above all, the SCPP/UHMWPE composites with a suitable SCPP content would be the promising materials for fabricating artificial joint component with ability to resist aseptic loosening. - Highlights: • SCPP/UHMWPE composites could enhance biological efficacy of resistance to aseptic loosening. • SCPP would improve biological efficacy with a few sacrifice of wear resistance. • The results might provide a promising wear-resistant material for fabricating acetabular cup.

  7. Application of graphene-ionic liquid-chitosan composite-modified carbon molecular wire electrode for the sensitive determination of adenosine-5′-monophosphate

    International Nuclear Information System (INIS)

    Shi, Fan; Gong, Shixing; Xu, Li; Zhu, Huanhuan; Sun, Zhenfan; Sun, Wei

    2013-01-01

    In this paper, a graphene (GR) ionic liquid (IL) 1-octyl-3-methylimidazolium hexafluorophosphate and chitosan composite-modified carbon molecular wire electrode (CMWE) was fabricated by a drop-casting method and further applied to the sensitive electrochemical detection of adenosine-5′-monophosphate (AMP). CMWE was prepared with diphenylacetylene (DPA) as the modifier and the binder. The properties of modified electrode were examined by scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. Electrochemical behaviors of AMP was carefully investigated with enhanced responses appeared, which was due to the presence of GR-IL composite on the electrode surface with excellent electrocatalytic ability. A well-defined oxidation peak of AMP appeared at 1.314 V and the electrochemical parameters were calculated by electrochemical methods. Under the selected conditions, the oxidation peak current of AMP was proportional to its concentration in the range from 0.01 μM to 80.0 μM with the detection limit as 3.42 nM (3σ) by differential pulse voltammetry. The proposed method exhibited good selectivity and was applied to the detection of vidarabine monophosphate injection samples with satisfactory results. - Highlights: • A graphene, ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate and chitosan composite were prepared. • Composite-modified carbon molecular wire electrode was fabricated and characterized. • A sensitive electrochemical method for the detection of adenosine-5′-monophosphate was established

  8. Application of graphene-ionic liquid-chitosan composite-modified carbon molecular wire electrode for the sensitive determination of adenosine-5′-monophosphate

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Fan [Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 (China); Gong, Shixing; Xu, Li; Zhu, Huanhuan [College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Sun, Zhenfan [Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 (China); Sun, Wei, E-mail: swyy26@hotmail.com [Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 (China)

    2013-12-01

    In this paper, a graphene (GR) ionic liquid (IL) 1-octyl-3-methylimidazolium hexafluorophosphate and chitosan composite-modified carbon molecular wire electrode (CMWE) was fabricated by a drop-casting method and further applied to the sensitive electrochemical detection of adenosine-5′-monophosphate (AMP). CMWE was prepared with diphenylacetylene (DPA) as the modifier and the binder. The properties of modified electrode were examined by scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. Electrochemical behaviors of AMP was carefully investigated with enhanced responses appeared, which was due to the presence of GR-IL composite on the electrode surface with excellent electrocatalytic ability. A well-defined oxidation peak of AMP appeared at 1.314 V and the electrochemical parameters were calculated by electrochemical methods. Under the selected conditions, the oxidation peak current of AMP was proportional to its concentration in the range from 0.01 μM to 80.0 μM with the detection limit as 3.42 nM (3σ) by differential pulse voltammetry. The proposed method exhibited good selectivity and was applied to the detection of vidarabine monophosphate injection samples with satisfactory results. - Highlights: • A graphene, ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate and chitosan composite were prepared. • Composite-modified carbon molecular wire electrode was fabricated and characterized. • A sensitive electrochemical method for the detection of adenosine-5′-monophosphate was established.

  9. The role of molecular architecture and layer composition on the properties and performance of CuPc-C6 photovoltaic devices

    International Nuclear Information System (INIS)

    Schultes, S.M.; Sullivan, P.; Heutz, S.; Sanderson, B.M.; Jones, T.S.

    2005-01-01

    We have studied the effects of molecular architecture, co-deposition and annealing on the properties and performance of photovoltaic cells based on copper phthalocyanine (CuPc)-fullerene (C 6 ) heterojunctions. Significant improvements in performance are achieved when mixed CuPc:C 6 layers are incorporated into the device structure due to the creation of an intermolecularly mixed donor (D)-acceptor (A) blend that favours efficient exciton dissociation. We utilise the control afforded by organic molecular beam deposition to show that the mixed-layer composition plays an important role in determining device performance and correlate device efficiency to the morphological and spectroscopic properties of the organic layers. A maximum power conversion efficiency of η p = 1.17% is achieved for devices containing a mixed layer of ratio 75:25 CuPc:C 6 surrounded by thin continuous layers of pure organic material at the electrode interfaces. A structure containing a compositional gradient where the CuPc:C 6 composition is varied from purely D to purely A via three mixed layers of increasing A composition leads to a further improvements in efficiency (η p = 1.36%). Finally, we use thermal annealing to show how structural defects and morphological templating of organic thin films reduces the interfacial area for exciton separation and yields poor device performance

  10. In search of low cost biological analysis: Wax or acrylic glue bonded paper microfluidic devices

    KAUST Repository

    Kodzius, Rimantas

    2011-01-22

    In this body of work we have been developing and characterizing paper based microfluidic fabrication technologies to produce low cost biological analysis. Specifically we investigated the performance of paper microfluidics that had been bonded using wax or acrylic glue, and characterized the affect of these and other microfluidic materials on the polymerase chain reaction (PCR). We report a simple, low-cost and detachable microfluidic chip incorporating easily accessible paper, glass slides or other polymer films as the chip materials along with adhesive wax or cyanoacrylate-based resin as the recycling bonding material. We use a laser to cut through the paper or film to form patterns and then sandwich the paper and film between glass sheets or polymer membranes. The hot-melt adhesive wax or simple cyanoacrylate-based resin can realize bridge bonding between various materials, for example, paper, polymethylmethacrylate film, glass sheets, or metal plate. The wax bonding process is reversible and the wax is reusable through a melting and cooling process. With this process, a three-dimensional (3D) microfluidic chip is achievable by evacuating the channels of adhesive material in a hot-water. We applied the wax-paper based microfluidic chip to HeLa cell electroporation. Subsequently, a prototype of a 5-layer 3D chip was fabricated by multilayer wax bonding. To check the sealing ability and the durability of the chip, green fluorescence protein recombinant E. coli bacteria were cultured, with which the chemotaxis of E. coli was studied in order to determine the influence of antibiotic ciprofloxacin concentration on the E. coli migration. The chip bonded with cyanoacrylate-based resin was tested by measuring protein concentration and carrying out DNA capillary electrophoresis. To study the biocompatibility and applicability of our microfluidic chip fabrication technology, we tested the PCR compatibility of our chip materials along with various other common materials

  11. Cuticular wax accumulation is associated with drought tolerance in wheat near-isogenic lines

    Directory of Open Access Journals (Sweden)

    Jianmin Song

    2016-11-01

    Full Text Available Previous studies have shown that wheat grain yield is seriously affected by drought stress, and leaf cuticular wax is reportedly associated with drought tolerance. However, most studies have focused on cuticular wax biosynthesis and model species. The effects of cuticular wax on wheat drought tolerance have rarely been studied. The aims of the current study were to study the effects of leaf cuticular wax on wheat grain yield under drought stress using the above-mentioned wheat NILs and to discuss the possible physiological mechanism of cuticular wax on high grain yield under drought stress. Compared to water-irrigated (WI conditions, the cuticular wax content (CWC in glaucous and non-glaucous NILs under drought-stress (DS conditions both increased; mean increase values were 151.1% and 114.4%, respectively, which was corroborated by scanning electronic microscopy images of large wax particles loaded on the surfaces of flag leaves. The average yield of glaucous NILs was higher than that of non-glaucous NILs under DS conditions in 2014 and 2015; mean values were 7368.37 kg·ha-1 and 7103.51 kg·ha-1. This suggested that glaucous NILs were more drought-tolerant than non-glaucous NILs (P = 0.05, which was supported by the findings of drought tolerance indices TOL and SSI in both years, the relatively high water potential and relative water content, and the low ELWL. Furthermore, the photosynthesis rate (Pn of glaucous and non-glaucous wheat NILs under DS conditions decreased by 7.5% and 9.8%, respectively; however, glaucous NILs still had higher mean values of Pn than those of non-glaucous NILs, which perhaps resulted in the higher yield of glaucous NILs. This could be explained by the fact that glaucous NILs had a smaller Fv/Fm reduction, a smaller PI reduction and a greater ABS/RC increase than non-glaucous NILs under DS conditions. This is the first report to show that wheat cuticular wax accumulation is associated with drought tolerance. Moreover

  12. Scientific Opinion on the re-evaluation of carnauba wax (E 903) as a food additive

    OpenAIRE

    EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS)

    2012-01-01

    The Panel on Food Additives and Nutrient Sources added to Food (ANS) delivers a scientific opinion re-evaluating the safety of carnauba wax (E 903). Carnauba wax (E 903) is authorised in the EU as food additive as glazing agent. It has been evaluated by the Scientific Committee on Food (SCF) and by the Joint FAO/WHO Expert Committee on Food Additives (JECFA) who allocated an Acceptable Daily Intake (ADI) of 7 mg/kg bw/day. The SCF did not establish an ADI but considered the use of ca...

  13. Evaluation of experimental data for wax and diamondoids solubility in gaseous systems

    DEFF Research Database (Denmark)

    Mohammadi, Amir H.; Gharagheizi, Farhad; Eslamimanesh, Ali

    2012-01-01

    The Leverage statistical approach is herein applied for evaluation of experimental data of the paraffin waxes/diamondoids solubility in gaseous systems. The calculation steps of this algorithm consist of determination of the statistical Hat matrix, sketching the Williams Plot, and calculation......-Santiago and Teja correlations are used to calculate/estimate the solubility of paraffin waxes (including n-C24H50 to n-C33H68) and diamondoids (adamantane and diamantane) in carbon dioxide/ethane gases, respectively. It can be interpreted from the obtained results that the applied equations for calculation...

  14. Anti-botrytis activity in epicuticular waxes of young grape berries of Vitis vinifera (Pinot noir

    Directory of Open Access Journals (Sweden)

    Pascal Comménil

    1996-03-01

    The evidence of a substance which exhibits a strong inhibition on the conidial germination of Botrytis cinerea was made after epicuticular waxes chromatographic analysis and biological tests. This compound, characterized by a Rf (0,2 closely related to the Rf of the primary alcohols, was present in the wax extracts originated from bloom and immature grape berries stages and it was absent in the extracts issued to the mature grape berries. The concentration of the conidial germination inhibitor was markedly different between the sensible (S792 and tolerant (T7613 cultivars of Pinot vineyards. Also this antifungal product would be considereted as an hypothetical resistance marked against Botrytis cinerea.

  15. Two emissive-magnetic composite platforms for Hg(II) sensing and removal: The combination of magnetic core, silica molecular sieve and rhodamine chemosensors

    Science.gov (United States)

    Mao, Hanping; Liu, Zhongshou

    2018-01-01

    In this paper, a composite sensing platform for Hg(II) optical sensing and removal was designed and reported. A core-shell structure was adopted, using magnetic Fe3O4 nanoparticles as the core, silica molecular sieve MCM-41 as the shell, respectively. Two rhodamine derivatives were synthesized as chemosensor and covalently immobilized into MCM-41 tunnels. Corresponding composite samples were characterized with SEM/TEM images, XRD analysis, IR spectra, thermogravimetry and N2 adsorption/desorption analysis, which confirmed their core-shell structure. Their emission was increased by Hg(II), showing emission turn on effect. High selectivity, linear working curves and recyclability were obtained from these composite samples.

  16. Preparation of Molecularly Imprinted Composite Membranes for Inducing Bergenin Crystallization in Supercritical CO2 and Adsorption Properties

    International Nuclear Information System (INIS)

    Zhang, Wencheng; Wang, Ruixia; Cui, Yanfang; Hong, Lile; Zhang, Qing; Zhang, Xingyuan

    2012-01-01

    The process of molecular imprinting is composed of three steps: covalent conjugate or noncovalent adduct between a functional monomer and a template molecule, which is the preorganization step; polymerization of this monomer-template conjugate (or adduct) and removal of the template from the polymer. In the above procedures, the molecular memory is strongly dependent on the formation and status of the template-monomer preorganization conjugate (or adduct). Therefore, to study these conjugates/adducts in detail is crucially important for understanding the imprinting mechanism and designing efficient molecular imprinting systems. On the other hand, one of the most important and facile ways to realize the molecular imprinting is using the molecularly imprinted membranes (MIMs), which were first introduced by Piletsky et al. In MIMs systems, the combination of the imprinting technique can provide membranes with specific selectivity for the separation of targeted organic compounds and thus make the MIMs possess the advantages of both molecular imprinting and membrane technology

  17. Preparation of Molecularly Imprinted Composite Membranes for Inducing Bergenin Crystallization in Supercritical CO{sub 2} and Adsorption Properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wencheng; Wang, Ruixia; Cui, Yanfang; Hong, Lile [Hefei University of Technology, Hefei (China); Zhang, Qing; Zhang, Xingyuan [University of Science and Technology of China, Hefei (China)

    2012-02-15

    The process of molecular imprinting is composed of three steps: covalent conjugate or noncovalent adduct between a functional monomer and a template molecule, which is the preorganization step; polymerization of this monomer-template conjugate (or adduct) and removal of the template from the polymer. In the above procedures, the molecular memory is strongly dependent on the formation and status of the template-monomer preorganization conjugate (or adduct). Therefore, to study these conjugates/adducts in detail is crucially important for understanding the imprinting mechanism and designing efficient molecular imprinting systems. On the other hand, one of the most important and facile ways to realize the molecular imprinting is using the molecularly imprinted membranes (MIMs), which were first introduced by Piletsky et al. In MIMs systems, the combination of the imprinting technique can provide membranes with specific selectivity for the separation of targeted organic compounds and thus make the MIMs possess the advantages of both molecular imprinting and membrane technology.

  18. Geometrical effects of conventional and digital prosthodontic planning wax-ups on lateral occlusal contact number, contact area, and steepness.

    Science.gov (United States)

    Abduo, Jaafar

    2017-01-01

    This study evaluated and compared the effect of conventional and digital wax-ups on three lateral occlusion variables: contact number, contact area, and steepness. Dental casts of 10 patients with Angle Class I relationship were included in the study. All patients required fixed prosthodontic treatment that would affect lateral occlusion. The casts of all patients received conventional and digital wax-ups. For pretreatment, conventional wax-up, and digital wax-up casts, contact number, contact area, and occlusion steepness were measured at four lateral positions, that is, at excursions of 0.5, 1.0, 2.0, and 3.0 mm from maximal intercuspation. Lateral occlusion scheme variables were affected by use of diagnostic wax-ups. For all types of casts, contact number decreased as excursion increased. The two types of wax-ups had similar contact number patterns, and contact number was significantly greater for these casts than for pretreatment casts in the earlier stages of excursion. Similarly, contact area gradually decreased with increasing excursion in the pretreatment and conventional and digital wax-up casts. There was only a minimal decrease in occlusion steepness as excursion increased. However, lateral occlusion was generally steeper for digital wax-up casts.

  19. Enhanced ethanol production by removal of cutin and epicuticular waxes of wheat straw by plasma assisted pretreatment

    DEFF Research Database (Denmark)

    Kádár, Zsófia; Schultz-Jensen, Nadja; Jensen, J. S.

    2015-01-01

    as with Scanning Electron Microscopy (SEM) imaging. Compounds resulting from wax degradation were analyzed in the washing water of PAP wheat straw. The wax removal enhanced enzymatic hydrolysis yield and, consequently, the efficiency of wheat straw conversion into ethanol. In total, PAP increased the conversion...

  20. Changes in the molecular composition of crude oils during their preparation for GC and GC-MS analyses

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, M.; George, S.C. [CSIRO Petroleum, North Ryde, NSW (Australia)

    2004-02-01

    Rotary evaporation and nitrogen blowing are the two frequently used procedures in organic geochemistry laboratories to prepare crude oils and extractable organic matter for gas chromatography (GC) and GC-mass spectrometry (GC-MS) analyses. In this work, the effects of these preparatory procedures on the molecular composition have been comprehensively assessed for the first time, by evaporating 34 aliquots of North Sea Oil-1 dissolved in dichloromethane under a variety of conditions: (a) rotary evaporation with a reduced pressure of 80 to 60 kpa, and water bath temperatures of 30-60 {sup o}C, (b) nitrogen blowing, with flow rates of 130 to >850 ml/min and heater block temperatures of 30-60 {sup o}C, and (c) open vial evaporation in a refrigerator at 3 {sup o}C and in a fume cupboard at 22 {sup o}C. Analyses of the unaltered original oil, solution and the evaporated oil aliquots for 215 target compounds, from benzene to n-C{sub 32}, indicate that (1)molecular weights. However, some compounds such as C{sub 0}-C{sub 2} alkylbenzenes do not follow this trend and are particularly resistant to laboratory evaporation processes. Nitrogen blowing evaporation to dryness can results in substantial losses of

  1. Observations of molecular hydrogen mixing ratio and stable isotopic composition at the Cabauw tall tower in the Netherlands

    Science.gov (United States)

    Batenburg, A. M.; Popa, M. E.; Vermeulen, A. T.; van den Bulk, W. C. M.; Jongejan, P. A. C.; Fisher, R. E.; Lowry, D.; Nisbet, E. G.; Röckmann, T.

    2016-12-01

    Measurements of the stable isotopic composition (δD(H2) or δD) of atmospheric molecular hydrogen (H2) are a useful addition to mixing ratio (χ(H2)) measurements for understanding the atmospheric H2 cycle. δD datasets published so far consist mostly of observations at background locations. We complement these with observations from the Cabauw tall tower at the CESAR site, situated in a densely populated region of the Netherlands. Our measurements show a large anthropogenic influence on the local H2 cycle, with frequently occurring pollution events that are characterized by χ(H2) values that reach up to ≈1 ppm and low δD values. An isotopic source signature analysis yields an apparent source signature below -400‰, which is much more D-depleted than the fossil fuel combustion source signature commonly used in H2 budget studies. Two diurnal cycles that were sampled at a suburban site near London also show a more D-depleted source signature (≈-340‰), though not as extremely depleted as at Cabauw. The source signature of the Northwest European vehicle fleet may have shifted to somewhat lower values due to changes in vehicle technology and driving conditions. Even so, the surprisingly depleted apparent source signature at Cabauw requires additional explanation; microbial H2 production seems the most likely cause. The Cabauw tower site also allowed us to sample vertical profiles. We found no decrease in χ(H2) at lower sampling levels (20 and 60 m) with respect to higher sampling levels (120 and 200 m). There was a significant shift to lower median δD values at the lower levels. This confirms the limited role of soil uptake around Cabauw, and again points to microbial H2 production during an extended growing season, as well as to possible differences in average fossil fuel combustion source signature between the different footprint areas of the sampling levels. So, although knowledge of the background cycle of H2 has improved over the last decade, surprising

  2. Online estimation of wax deposition thickness in single-phase sub-sea pipelines based on acoustic chemometrics: A feasibility study

    OpenAIRE

    Halstensen, Maths; Arvoh, Benjamin Kaku; Amundsen, Lene; Hoffmann, Rainer

    2012-01-01

    Wax deposition in sub-sea oil producing pipelines is a concern to the oil producing companies. The deposition of wax in pipelines can cause serious economic implications if not monitored and controlled. Several researchers have developed models and investigated the deposition of wax in crude oil pipelines. As of today, there is no off the shelf instrument available for reliable online estimation of the wax depo- sition thickness in sub-sea pipelines. Acoustic chemometrics was applied to inves...

  3. Organic composition in the dry season rainwater of Guangzhou, China.

    Science.gov (United States)

    Xu, Tao; Song, Zhiguang; Liu, Junfeng; Wang, Cuiping; Wei, Jianrong; Chen, Heng

    2008-02-01

    This paper reports the results from a study of the organic composition of rainwater collected at Tianhe district of Guangzhou city, P.R. China, during the dry season. Several special setups of a pyrex bottle with a glass funnel were used for the collection of the rainwater. Three fractions (aliphatics, PAHs and fatty acids) were separated from the total extracted organic compounds and identified with GC-MS. The molecular diagnostic ratios were utilized for the source reconciliation. The aliphatic hydrocarbon and the biomarkers (triterpanes and steranes) distribution show a characteristic of the petrochemical source in the rainwater samples. The PAHs diagnostic ratios [e.g. MP/P, MPI, Fl/ (Fl + Py)] indicated vehicular emissions. The fatty acids ratios (e.g. C(18:1)/C(18:0) and C(18:2)/C(18:0)) reflect the contribution of cooking emissions, while the higher plant waxes play little part. Moreover, the values of MP/P, MPI, BaA/(BaA + CT) and BeP/(BeP + BaP) reflected the origin of the long-distance transportation to some extent. On the whole, for the dry season rainwater, all molecular diagnostic ratios indicated the complexity of the organic composition of the rain, which have the characteristics of both a local emission contribution and a long-distance transportation contribution.

  4. Effect of the application of 1-methylcyclopropene and wax emulsions on proximate analysis and some antioxidants of soursop (Annona muricata L.).

    Science.gov (United States)

    Moreno-Hernández, Cristina L; Sáyago-Ayerdi, Sonia G; García-Galindo, Hugo S; Mata-Montes De Oca, Miguel; Montalvo-González, Efigenia

    2014-01-01

    The effect of the application of 1-methylcyclopropene (1-MCP) and wax emulsions, alone or combined, on composition analysis, vitamin C, polyphenols, and antioxidant capacity of soursop was evaluated. Fruits were stored as follows: at 25 °C (control), and at 16 °C: fruits sprayed with candelilla or flava emulsions, fruits treated with 1500 nL/L of 1-MCP (20 °C, 12 h), and fruits treated with 1-MCP and then sprayed with emulsions. Fruits were allowed to ripen and the edible part was used for analysis. Only fruits stored at 16 °C without 1-MCP showed visible symptoms of chilling injury. Fruits treated with 1-MCP combined with flava emulsion maintained in greater extent their vitamin C content, dietary fiber, total phenolics content, and antioxidant activity. The combination of 1-MCP and emulsions can be utilized in postharvest handling of soursop because this combination can preserve its nutritional composition and antioxidant activity.

  5. Morphology evaluation of biodegradable copolyesters based on dimerized fatty acid studied by DSC, SAXS and WAXS

    Czech Academy of Sciences Publication Activity Database

    Kozlowska, A.; Gromadzki, Daniel; El Fray, M.; Štěpánek, Petr

    2008-01-01

    Roč. 16, č. 6 (2008), s. 85-88 ISSN 1230-3666 Institutional research plan: CEZ:AV0Z40500505 Keywords : multiblock copolymers * DSC * WAXS Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.439, year: 2008

  6. Hearing and evasive behavior in the greater wax moth, Galleria mellonella (Pyralidae)

    DEFF Research Database (Denmark)

    Skals, Niels; Surlykke, Annemarie

    2000-01-01

    Greater wax moths (Galleria mellonella L., Pyraloidea) use ultrasound sensitive ears to detect clicking conspeci®cs and echolocating bats. Pyralid ears have four sensory cells, A1±4. The audiogram of G. mellonella has best frequency at 60 kHz with a threshold around 47 dB sound pressure level. A1...

  7. New MALDI matrices based on lithium salts for the analysis of hydrocarbons and wax esters

    Czech Academy of Sciences Publication Activity Database

    Horká, Petra; Vrkoslav, Vladimír; Hanus, Robert; Pecková, K.; Cvačka, Josef

    2014-01-01

    Roč. 49, č. 7 (2014), s. 628-638 ISSN 1076-5174 R&D Projects: GA ČR GA203/09/0139 Institutional support: RVO:61388963 Keywords : cuticular hydrocarbons * lipids * lithium attachment * MALDI matrix * waxes Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.379, year: 2014

  8. The casting of western sculpture during the XIXth century: sand casting versus lost wax casting

    NARCIS (Netherlands)

    Beentjes, T.P.C.

    2014-01-01

    This paper will discuss research into bronze casting techniques as practiced during the XIXth and early XXth century. Both natural sand casting (fonte au sable naturel) and lost wax casting (fonte à la cire perdue) were employed during this period and sometimes rivalled for commissions. Before the

  9. A prediction method for the wax deposition rate based on a radial basis function neural network

    Directory of Open Access Journals (Sweden)

    Ying Xie

    2017-06-01

    Full Text Available The radial basis function neural network is a popular supervised learning tool based on machinery learning technology. Its high precision having been proven, the radial basis function neural network has been applied in many areas. The accumulation of deposited materials in the pipeline may lead to the need for increased pumping power, a decreased flow rate or even to the total blockage of the line, with losses of production and capital investment, so research on predicting the wax deposition rate is significant for the safe and economical operation of an oil pipeline. This paper adopts the radial basis function neural network to predict the wax deposition rate by considering four main influencing factors, the pipe wall temperature gradient, pipe wall wax crystal solubility coefficient, pipe wall shear stress and crude oil viscosity, by the gray correlational analysis method. MATLAB software is employed to establish the RBF neural network. Compared with the previous literature, favorable consistency exists between the predicted outcomes and the experimental results, with a relative error of 1.5%. It can be concluded that the prediction method of wax deposition rate based on the RBF neural network is feasible.

  10. Physical characteristics of tetrahydroxy and acylated derivatives of jojoba liquid wax

    Science.gov (United States)

    Jojoba liquid wax is a mixture of esters of long chain fatty acids and fatty alcohols, mainly (C38:2-C46:2). The oil exhibits excellent emolliency on the skin and therefore is a component in many personal care cosmetic formulations. The virgin oil is a component of the seed of the Jojoba (Simmondsia...

  11. In vitro and In vivo Characterisation of Piroxicam-Loaded Dika Wax ...

    African Journals Online (AJOL)

    Purpose: To formulate piroxicam-loaded lipospheres and evaluate their in vitro and in vivo properties. Method: Piroxicam-loaded lipospheres were prepared by hot homogenization technique using dika wax and Phospholipon® 90G (1:1, 1:2 and 2:1) as the lipid matrix. Characterisation, based on particle size

  12. 1H and 13C NMR spectral assignments of four dammarane triterpenoids from carnauba wax.

    Science.gov (United States)

    Cysne, Juliana de Brito; Braz-Filho, Raimundo; Assunção, Marcus Vinícius; Uchoa, Daniel E de Andrade; Silveira, Edilberto R; Pessoa, Otília Deusdênia L

    2006-06-01

    The phytochemical investigation of carnauba wax led to the isolation of three new dammarane triterpenoids 1, 2 and 4, together with the known triterpene 3. The structures of the new compounds were determined by 1D and 2D NMR spectroscopy and by comparison with published data for closely related compounds. 2006 John Wiley & Sons, Ltd.

  13. Cross-linking of LDPE/wax blends by using dicumyl peroxide

    African Journals Online (AJOL)

    Igor Krupa

    They are not soluble in many solvents due to their high crystallinity, but they ... macroradical formation via thermal decomposition of organic peroxides.6,7,8 A ... as potential applications of LDPE/wax blends are concerned, lower viscosity of ...

  14. Investigation of Carnuba Wax as Matrix in the Formulation of Solid ...

    African Journals Online (AJOL)

    This study was carried out to investigate the drug entrapment efficiency, release potential and drug release mechanisms of solid lipid microparticles (SLMs) prepared with different concentrations of two non ionic surfactants using carnauba wax as the lipid matrix. SLMs were prepared by melt dispersion technique, whereby ...

  15. Spectroscopic characterization of D-003 obtained from the sugar cane (Saccharum officinarum L.) wax

    International Nuclear Information System (INIS)

    Marrero Delange, David; Cora Medina, Miriam; Laguna Granja, Abilio; Gonzalez Canavaciolo Victor L

    2013-01-01

    D-003, an active pharmaceutical ingredient (API) purified from sugar cane (Saccharum officinarum L.) wax with cholesterol-lowering and antioxidant effects, is composed of a mixture of free saturated very long chain fatty acids (VLCFAs), each within specific relative concentration ranges as determined by the gas chromatography (GC). However, the spectroscopic characterization of D-003 had not been previously reported

  16. Antibacterial and antifungal effect of high pH and paraffin wax ...

    African Journals Online (AJOL)

    The antibacterial and antifungal effects of high pH (9, 10) and paraffin wax were determined. Determination of antibacterial and antifungal activity of the combined treatments was achieved by aerobic mesophilic count of bacteria and fungi on the surface of the tomatoes, peppers and oranges using serial dilution and pour ...

  17. Spectroscopic characterization of Simultaneous determination of Albendazol from the sugar cane (Saccharum officinarum L.) wax

    International Nuclear Information System (INIS)

    Marrero Delange, David; Cora Medina, Miriam; Laguna Granja, Abilio; Gonzalez Canavaciolo, Victor L

    2013-01-01

    D-003, an active pharmaceutical ingredient (API) purified from sugar cane (Saccharum officinarum L.) wax with cholesterol-lowering and antioxidant effects, is composed of a mixture of free saturated very long chain fatty acids (VLCFAs), each within specific relative concentration ranges as determined by the gas chromatography (GC). However, the spectroscopic characterization of D-003 had not been previously reported

  18. In search of low cost biological analysis: Wax or acrylic glue bonded paper microfluidic devices

    KAUST Repository

    Kodzius, Rimantas; Gong, Xiuqing; Li, Shunbo; Qin, Jianhua; Wen, Weijia; Wu, Jinbo; Xiao, Kang; Yi, Xin

    2011-01-01

    We report a simple, low-cost and detachable microfluidic chip incorporating easily accessible paper, glass slides or other polymer films as the chip materials along with adhesive wax or cyanoacrylate-based resin as the recycling bonding material. We use a laser to cut through the paper or film to form patterns and then sandwich the paper and film between glass sheets or polymer membranes. The hot-melt adhesive wax or simple cyanoacrylate-based resin can realize bridge bonding between various materials, for example, paper, polymethylmethacrylate film, glass sheets, or metal plate. The wax bonding process is reversible and the wax is reusable through a melting and cooling process. With this process, a three-dimensional (3D) microfluidic chip is achievable by evacuating the channels of adhesive material in a hot-water. We applied the wax-paper based microfluidic chip to HeLa cell electroporation. Subsequently, a prototype of a 5-layer 3D chip was fabricated by multilayer wax bonding. To check the sealing ability and the durability of the chip, green fluorescence protein recombinant E. coli bacteria were cultured, with which the chemotaxis of E. coli was studied in order to determine the influence of antibiotic ciprofloxacin concentration on the E. coli migration. The chip bonded with cyanoacrylate-based resin was tested by measuring protein concentration and carrying out DNA capillary electrophoresis. To study the biocompatibility and applicability of our microfluidic chip fabrication technology, we tested the PCR compatibility of our chip materials along with various other common materials employed in the fabrication of microfluidic chips including: silicon, several kinds of silicon oxide, glasses, plastics, wax, and adhesives, etc. Two-temperature PCR was performed with these materials to determine their PCR-inhibitory effect. In most of the cases, addition of bovine serum albumin effectively improved the reaction yield. We also studied the individual PCR components

  19. Effects of High Hydrostatic Pressure on Escherichia coli Ultrastructure, Membrane Integrity and Molecular Composition as Assessed by FTIR Spectroscopy and Microscopic Imaging Techniques

    Directory of Open Access Journals (Sweden)

    María Prieto-Calvo

    2014-12-01

    Full Text Available High hydrostatic pressure (HHP is a novel food processing technology that is considered as an attractive alternative to conventional heat treatments for the preservation of foods, due to its lethal effects on pathogenic and spoilage microorganisms, while causing minor effects on food quality and sensorial attributes. This study is aimed at investigating how HHP treatments at varying intensities in the range 50–900 MPa affect the viability, membrane integrity, ultrastructure and molecular composition of Escherichia coli. Results of membrane integrity tests (measurement of cellular leakage and monitoring of propidium iodide uptake through fluorescence microscopy and ultrastructural observations by transmission electron microscopy demonstrated that HHP gave rise to cellular enlargement, membrane damage or detachment, DNA and protein denaturation and loss of intracellular contents. Fourier-transform infrared (FTIR spectroscopy analyses evidenced minor changes in molecular composition in response to high pressures, which were mostly observed on the spectral region w4 (1200–900 cm−1, mainly informative of carbohydrates and polysaccharides of the cell wall. These findings suggest that exposure of E. coli cells to HHP causes alterations in their physical integrity while producing minor modifications in biochemical cellular composition. The current study increases the knowledge on the mechanisms of E. coli inactivation by HHP and provides valuable information for the design of more effective food preservation regimes based on the integration of mild HHP in combination with other food preservation strategies into a multi-target hurdle technology approach.

  20. Effects of high hydrostatic pressure on Escherichia coli ultrastructure, membrane integrity and molecular composition as assessed by FTIR spectroscopy and microscopic imaging techniques.

    Science.gov (United States)

    Prieto-Calvo, María; Prieto, Miguel; López, Mercedes; Alvarez-Ordóñez, Avelino

    2014-12-18

    High hydrostatic pressure (HHP) is a novel food processing technology that is considered as an attractive alternative to conventional heat treatments for the preservation of foods, due to its lethal effects on pathogenic and spoilage microorganisms, while causing minor effects on food quality and sensorial attributes. This study is aimed at investigating how HHP treatments at varying intensities in the range 50-900 MPa affect the viability, membrane integrity, ultrastructure and molecular composition of Escherichia coli. Results of membrane integrity tests (measurement of cellular leakage and monitoring of propidium iodide uptake through fluorescence microscopy) and ultrastructural observations by transmission electron microscopy demonstrated that HHP gave rise to cellular enlargement, membrane damage or detachment, DNA and protein denaturation and loss of intracellular contents. Fourier-transform infrared (FTIR) spectroscopy analyses evidenced minor changes in molecular composition in response to high pressures, which were mostly observed on the spectral region w4 (1200-900 cm-1), mainly informative of carbohydrates and polysaccharides of the cell wall. These findings suggest that exposure of E. coli cells to HHP causes alterations in their physical integrity while producing minor modifications in biochemical cellular composition. The current study increases the knowledge on the mechanisms of E. coli inactivation by HHP and provides valuable information for the design of more effective food preservation regimes based on the integration of mild HHP in combination with other food preservation strategies into a multi-target hurdle technology approach.

  1. FAR5, a fatty acyl-coenzyme A reductase, is involved in primary alcohol biosynthesis of the leaf blade cuticular wax in wheat (Triticum aestivum L.).

    Science.gov (United States)

    Wang, Yong; Wang, Meiling; Sun, Yulin; Wang, Yanting; Li, Tingting; Chai, Guaiqiang; Jiang, Wenhui; Shan, Liwei; Li, Chunlian; Xiao, Enshi; Wang, Zhonghua

    2015-03-01

    A waxy cuticle that serves as a protective barrier against non-stomatal water loss and environmental damage coats the aerial surfaces of land plants. It comprises a cutin polymer matrix and waxes. Cuticular waxes are complex mixtures of very long chain fatty acids (VLCFAs) and their derivatives. Results show that primary alcohols are the major components of bread wheat (Triticum aestivum L.) leaf blade cuticular waxes. Here, the characterization of TaFAR5 from wheat cv Xinong 2718, which is allelic to TAA1b, an anther-specific gene, is reported. Evidence is presented for a new function for TaFAR5 in the biosynthesis of primary alcohols of leaf blade cuticular wax in wheat. Expression of TaFAR5 cDNA in yeast (Saccharomyces cerevisiae) led to production of C22:0 primary alcohol. The transgenic expression of TaFAR5 in tomato (Solanum lycopersicum) cv MicroTom leaves resulted in the accumulation of C26:0, C28:0, and C30:0 primary alcohols. TaFAR5 encodes an alcohol-forming fatty acyl-coenzyme A reductase (FAR). Expression analysis revealed that TaFAR5 was expressed at high levels in the leaf blades, anthers, pistils, and seeds. Fully functional green fluorescent protein-tagged TaFAR5 protein was localized to the endoplasmic reticulum (ER), the site of primary alcohol biosynthesis. SDS-PAGE analysis indicated that the TaFAR5 protein possessed a molecular mass of 58.4kDa, and it was also shown that TaFAR5 transcript levels were regulated in response to drought, cold, and abscisic acid (ABA). Overall, these data suggest that TaFAR5 plays an important role in the synthesis of primary alcohols in wheat leaf blade. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Plant response to drought stress simulated by ABA application: Changes in chemical composition of cuticular waxes

    Czech Academy of Sciences Publication Activity Database

    Macková, J.; Vašková, M.; Macek, Petr; Hronková, Marie; Schreiber, L.; Šantrůček, Jiří

    2013-01-01

    Roč. 86, SI (2013), s. 70-75 ISSN 0098-8472 R&D Projects: GA ČR GA206/08/0787; GA MŠk LC06073 Institutional research plan: CEZ:AV0Z50510513 Institutional support: RVO:60077344 ; RVO:67985939 Keywords : Abscisic acid * Carbon isotope * CER6 Subject RIV: ED - Physiology Impact factor: 3.003, year: 2013

  3. A review on wax printed microfluidic paper-based devices for international health.

    Science.gov (United States)

    Altundemir, S; Uguz, A K; Ulgen, K

    2017-07-01

    Paper-based microfluidics has attracted attention for the last ten years due to its advantages such as low sample volume requirement, ease of use, portability, high sensitivity, and no necessity to well-equipped laboratory equipment and well-trained manpower. These characteristics have made paper platforms a promising alternative for a variety of applications such as clinical diagnosis and quantitative analysis of chemical and biological substances. Among the wide range of fabrication methods for microfluidic paper-based analytical devices ( μ PADs), the wax printing method is suitable for high throughput production and requires only a commercial printer and a heating source to fabricate complex two or three-dimensional structures for multipurpose systems. μ PADs can be used by anyone for in situ diagnosis and analysis; therefore, wax printed μ PADs are promising especially in resource limited environments where people cannot get sensitive and fast diagnosis of their serious health problems and where food, water, and related products are not able to be screened for toxic elements. This review paper is focused on the applications of paper-based microfluidic devices fabricated by the wax printing technique and used for international health. Besides presenting the current limitations and advantages, the future directions of this technology including the commercial aspects are discussed. As a conclusion, the wax printing technology continues to overcome the current limitations and to be one of the promising fabrication techniques. In the near future, with the increase of the current interest of the industrial companies on the paper-based technology, the wax-printed paper-based platforms are expected to take place especially in the healthcare industry.

  4. Metabolism of dietary fatty alcohol, fatty acid, and wax ester in carp

    International Nuclear Information System (INIS)

    Mankura, Mitsumasa; Kayama, Mitsu; Iijima, Noriaki.

    1987-01-01

    Lipids in various tissues of the carp, Cyprinus carpio were analyzed. The fates of force-fed [1- 14 C]palmitic acids, [1- 14 C]cetyl alcohol, and oleyl[1- 14 C]linoleate, were compared with those given in vitro experiments. Major lipid classes in all except adipose tissue were found to be polar lipids (phospholipids) and triacylglycerols. The major fatty acids in nearly all the tissues were 16 : 0, 18 : 1, 18 : 2, and 22 : 6. Although the radioactivity incorporation into wax esters from [1- 14 C]palmitic acid and [1- 14 C]cetyl alcohol for various tissue homogenates was quite high, in vivo incorporation of these labelled compounds into wax esters was very low and radioactivity was distributed mainly in the lipids of muscle, skin, hepatopancreas, intestine, and gill. Almost all the radioactivity in various tissues was present in phospatidylcholine and triacylglycerols. Most of the oleyl[1- 14 C]linoleate was easily hydrolyzed by various tissue homogenates. Force-fed oleyl[1- 14 C]linoleate was hydrolyzed in the intestine and then transported to other tissues, such as muscle, kin, gill, and hepatopancreas. Moreover, released radioactivity from oleyl[1- 14 C]linoleate was present in mainly phosphatidylcholine and triacylglycerols. Radioactivity was also detected in wax esters in plasma. Certain amounts for fatty acids released from [1- 14 C]triolein in the hepatopancreas homogenates were incorporated into wax esters; this was stimulated by the addition of oleyl alcohol. The present results indicate extensive hydrolysis of wax ester to possibly occur in the intestine and certain portions of the fatty alcohol moiety to be resterfied. The portions may be oxidized to fatty acids and which subsequently behave as dietary fatty acids. (author) 50 ref

  5. Experimental analysis, modeling and simulation of a solar energy accumulator with paraffin wax as PCM

    International Nuclear Information System (INIS)

    Reyes, A.; Henríquez-Vargas, L.; Aravena, R.; Sepúlveda, F.

    2015-01-01

    Highlights: • Enhancement of paraffin wax thermal conductivity using soft drink can stripes. • Thermal analysis and simulations results agree well with experimental data. • Increase in accumulator thermal efficiencies through addition of external aluminum stripes. • Proposed accumulator allows up to 13,000 kJ of energy storage. - Abstract: Soft drink cans filled with paraffin wax mixed with 7.5% aluminum stripes, obtained from disposable cans, doubled the thermal conductivity of cans filled only with paraffin wax. Promising results obtained in a prototype heat exchanger encouraged the construction of this unit 6 times bigger. We experimentally evaluated and model a heat exchanger for solar energy accumulation, composed by 300 disposable soft drink cans filled with a total of 59.25 kg of paraffin wax mixed with 7.5% aluminum stripes. The effect of adding 2.75 kg of aluminum fins for enhancing heat transfer from the outer surface of the cans to the circulant air was experimentally analyzed. In sunny days, the wax melted completely in about 4 h. The accumulated energy in form of latent heat (about 13,000 kJ) allowed to increase the temperature of 0.040 kg/s of circulant air in at least 20 °C during a period of 2.5 h. For an air mass rate of 0.018 kg/s the period was extended practically to 5 h. The accumulator thermal analysis was presented and a subsequent numerical simulation with Matlab was performed to compare with the experimental results obtaining good agreement specially for higher air mass flow rates. The low cost accumulator presented is of simple construction and will allow extended use of solar energy for applications such as drying processes or household calefaction system.

  6. Combined hydrogen and carbon isotopes of plant waxes as an indicator of drought impacts on ancient Maya agriculture

    Science.gov (United States)

    Douglas, P. M.; Pagani, M.; Eglinton, T. I.; Brenner, M.; Hodell, D. A.; Curtis, J. H.

    2012-12-01

    There is increasing evidence suggesting that a series of droughts in the Yucatan Peninsula coincided with the Terminal Classic decline of the Classic Maya civilization (ca. 1250 to 1000 years BP). However, there is little evidence directly linking climatic change and changes in human activities in this region. In this study we combine plant-wax δD, δ13C, and Δ14C analyses in two lake sediment cores from southeastern Mexico and northern Guatemala to develop coupled records of hydroclimate variability and human-driven vegetation change. Plant-wax specific Δ14C ages indicate a large input of pre-aged plant waxes into lake sediment. Comparison of plant-wax δD records with other regional hydroclimate proxy records suggest that plant-wax ages are evenly distributed around plant-wax radiocarbon ages, and that applying an age model based on plant-wax radiocarbon ages is appropriate for these lake sediments. We evaluate how differences in plant-wax age distributions influence stable isotope records to assess the age uncertainty associated with records of climate and vegetation change derived from plant-wax stable isotopes. In this low-elevation tropical environment plant-wax δ13C is largely controlled by the relative abundance of C3 and C4 plants. The ancient Maya practiced widespread maize (C4) agriculture and strongly influenced regional C3-C4 vegetation dynamics. Under natural conditions C4 plant coverage and plant-wax δ13C would tend to co-vary positively since C4 plants are well adapted for dry conditions. Under ancient Maya land-use, however, this relationship is likely to be decoupled, since drought would have disrupted C4 agriculture. Combined analysis of plant-wax δD and δ13C from both lakes indicates increasingly divergent trends following ca. 3500 years BP, around the onset of widespread ancient Maya agriculture. After this time high plant-wax δD values tend to correspond with low plant-wax δ13C values and vice versa. This pattern is consistent with

  7. Identification of In-Chain-Functionalized Compounds and Methyl-Branched Alkanes in Cuticular Waxes of Triticum aestivum cv. Bethlehem.

    Directory of Open Access Journals (Sweden)

    Radu C Racovita

    Full Text Available In this work, cuticular waxes from flag leaf blades and peduncles of Triticum aestivum cv. Bethlehem were investigated in search for novel wax compounds. Seven wax compound classes were detected that had previously not been reported, and their structures were elucidated using gas chromatography-mass spectrometry of various derivatives. Six of the classes were identified as series of homologs differing by two methylene units, while the seventh was a homologous series with homologs with single methylene unit differences. In the waxes of flag leaf blades, secondary alcohols (predominantly C27 and C33, primary/secondary diols (predominantly C28 and esters of primary/secondary diols (predominantly C50, combining C28 diol with C22 acid were found, all sharing similar secondary hydroxyl group positions at and around C-12 or ω-12. 7- and 8-hydroxy-2-alkanol esters (predominantly C35, 7- and 8-oxo-2-alkanol esters (predominantly C35, and 4-alkylbutan-4-olides (predominantly C28 were found both in flag leaf and peduncle wax mixtures. Finally, a series of even- and odd-numbered alkane homologs was identified in both leaf and peduncle waxes, with an internal methyl branch preferentially on C-11 and C-13 of homologs with even total carbon number and on C-12 of odd-numbered homologs. Biosynthetic pathways are suggested for all compounds, based on common structural features and matching chain length profiles with other wheat wax compound classes.

  8. Effect of spatial distribution of wax and PEG-isocyanate on the morphology and hydrophobicity of starch films.

    Science.gov (United States)

    Muscat, Delina; Adhikari, Raju; Tobin, Mark J; McKnight, Stafford; Wakeling, Lara; Adhikari, Benu

    2014-10-13

    This study proposes a novel method for improving surface hydrophobicity of glycerol plasticized high amylose (HAG) films. We used polyethylene glycol isocyanate (PEG-iso) crosslinker to link HAG and three natural waxes (beeswax, candelilla wax and carnauba wax) to produce HAG+wax+PEG-iso films. The spatial distributions of wax and PEG-iso across the thickness of these films were determined using Synchrotron-based Fourier transform infrared spectroscopy. The hydrophobicity and surface morphology of the films were determined using contact angle (CA) and scanning electron microscopic measurements, respectively. The distribution patterns of wax and the PEG-iso across the thickness of the film, and the nature of crystalline patterns formed on the surface of these films were found to be the key factors affecting surface hydrophobicity. The highest hydrophobicity (CA >90°) was created when the PEG-iso was primarily distributed in the interior of the films and a hierarchical circular pinnacle structure of solidified wax was formed on the surface. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Effect of new type of synthetic waxes on reduced production and compaction temperature of asphalt mixture with reclaimed asphalt

    Science.gov (United States)

    Valentová, Tereza; Benešová, Lucie; Mastný, Jan; Valentin, Jan

    2017-09-01

    Lower mixing and paving temperatures of asphalt mixtures, which are an important issue in recent years, with respect to increased energy demand of civil engineering structures during their processing, allow reduction of this demand and result in minimized greenhouse gas production. In present time, there are many possibilities how to achieve reduction of production temperature during the mixing and paving of an asphalt mixture. The existing solutions distinguish in target operating temperature behaviour which has to be achieved in terms of good workability. This paper is focused on technical solutions based on use of new types of selected synthetic and bio-based waxes. In case of bio-based additive sugar cane wax was used, which is free of paraffins and is reclaimed as waste product during processing of sugar cane. The used waxes are added to bituminous binder in form of free-flowing granules or fine-grained powder. Synthetic waxes are represented by new series of Fischer-Tropsch wax in form of fine granules as well as by polyethylene waxes in form of fine-grained powder or granules. Those waxes were used to modify a standard paving grade bitumen dosed into asphalt mixture of ACsurf type containing up to 30 % of reclaimed asphalt (RA).

  10. Determination of the linear coefficient of thermal expansion in polymer films at the nanoscale: influence of the composition of EVA copolymers and the molecular weight of PMMA.

    Science.gov (United States)

    González-Benito, J; Castillo, E; Cruz-Caldito, J F

    2015-07-28

    Nanothermal-expansion of poly(ethylene-co-vinylacetate), EVA, and poly(methyl methacrylate), PMMA, in the form of films was measured to finally obtain linear coefficients of thermal expansion, CTEs. The simple deflection of a cantilever in an atomic force microscope, AFM, was used to monitor thermal expansions at the nanoscale. The influences of: (a) the structure of EVA in terms of its composition (vinylacetate content) and (b) the size of PMMA chains in terms of the molecular weight were studied. To carry out this, several polymer samples were used, EVA copolymers with different weight percents of the vinylacetate comonomer (12, 18, 25 and 40%) and PMMA polymers with different weight average molecular weights (33.9, 64.8, 75.600 and 360.0 kg mol(-1)). The dependencies of the vinyl acetate weight fraction of EVA and the molecular weight of PMMA on their corresponding CTEs were analyzed to finally explain them using new, intuitive and very simple models based on the rule of mixtures. In the case of EVA copolymers a simple equation considering the weighted contributions of each comonomer was enough to estimate the final CTE above the glass transition temperature. On the other hand, when the molecular weight dependence is considered the free volume concept was used as novelty. The expansion of PMMA, at least at the nanoscale, was well and easily described by the sum of the weighted contributions of the occupied and free volumes, respectively.

  11. Excellent Tribological Properties of Lower Reduced Graphene Oxide Content Copper Composite by Using a One-Step Reduction Molecular-Level Mixing Process

    Directory of Open Access Journals (Sweden)

    Haibin Nie

    2018-04-01

    Full Text Available Reduced graphene oxide (RGO composite copper matrix powders were fabricated successfully by using a modified molecular-level mixing (MLM method. Divalent copper ions (Cu2+ were adsorbed in oxygen functional groups of graphene oxide (GO as a precursor, then were reduced simultaneously by one step chemical reduction. RGO showed a distribution converting from a random to a three-dimensional network in the copper matrix when its content increased to above 1.0 wt.% The tribological tests indicated that the friction coefficient of the composite with 1.0 wt.% RGO decreased markedly from 0.6 to 0.07 at an applied load of 10 N, and the wear rate was about one-third of pure copper. The excellent tribological properties were attributed to a three-dimensional and uniform distribution, which contributes to improving toughness and adhesion strength.

  12. Schottky barrier height of Ni to β-(AlxGa1-x)2O3 with different compositions grown by plasma-assisted molecular beam epitaxy

    Science.gov (United States)

    Ahmadi, Elaheh; Oshima, Yuichi; Wu, Feng; Speck, James S.

    2017-03-01

    Coherent β-(AlxGa1-x)2O3 films (x = 0, 0.038, 0.084, 0.164) were grown successfully on a Sn-doped β-Ga2O3 (010) substrate using plasma-assisted molecular beam epitaxy. Atom probe tomography, transmission electron microscopy, and high resolution x-ray diffraction were used to verify the alloy composition and high quality of the films. Schottky diodes were then fabricated using Ni as the Schottky metal. Capacitance-voltage measurements revealed a very low (current-voltage (I-V) measurements performed at temperatures varying from 300 K to 500 K on the Schottky diodes. These measurements revealed that the apparent Schottky barrier height could have similar values for different compositions of β-(AlxGa1-x)2O3. We believe this is attributed to the lateral fluctuation in the alloy’s composition. This results in a lateral variation in the barrier height. Therefore, the average Schottky barrier height extracted from I-V measurements could be similar for β-(AlxGa1-x)2O3 films with different compositions.

  13. Development of a molecular dynamic based cohesive zone model for prediction of an equivalent material behavior for Al/Al2O3 composite

    Energy Technology Data Exchange (ETDEWEB)

    Sazgar, A. [Center of Excellence in Design, Robotics and Automation, Department of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Movahhedy, M.R., E-mail: movahhed@sharif.edu [Center of Excellence in Design, Robotics and Automation, Department of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Mahnama, M. [School of Mechanical Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Sohrabpour, S. [Center of Excellence in Design, Robotics and Automation, Department of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2017-01-02

    The interfacial behavior of composites is often simulated using a cohesive zone model (CZM). In this approach, a traction-separation (T-S) relation between the matrix and reinforcement particles, which is often obtained from experimental results, is employed. However, since the determination of this relation from experimental results is difficult, the molecular dynamics (MD) simulation may be used as a virtual environment to obtain this relation. In this study, MD simulations under the normal and shear loadings are used to obtain the interface behavior of Al/Al2O3 composite material and to derive the T-S relation. For better agreement with Al/Al2O3 interfacial behavior, the exponential form of the T-S relation suggested by Needleman [1] is modified to account for thermal effects. The MD results are employed to develop a parameterized cohesive zone model which is implemented in a finite element model of the matrix-particle interactions. Stress-strain curves obtained from simulations under different loading conditions and volume fractions show a close correlation with experimental results. Finally, by studying the effects of strain rate and volume fraction of particles in Al(6061-T6)/Al2O3 composite, an equivalent homogeneous model is introduced which can predict the overall behavior of the composite.

  14. Leaf surface wax is a source of plant methane formation under UV radiation and in the presence of oxygen

    DEFF Research Database (Denmark)

    Bruhn, Dan; Mikkelsen, Teis Nørgaard; Rolsted, M. M. M.

    2014-01-01

    to this, we demonstrated that the UV radiation-induced CH4 emission is independent of leaf area index above unity. Further, we observed that the presence of O2 in the atmosphere was necessary for achieving the highest rates of CH4 emission. Methane formation from leaf surface wax is supposedly a two...... investigated the potential of the leaf surface wax itself as a source of UV radiationinduced leaf aerobic CH4 formation. Isolated leaf surface wax emitted CH4 at substantial rates in response to UV radiation. This discovery has implications for how the phenomenon should be scaled to global levels. In relation...

  15. Neutral Lipid Biosynthesis in Engineered Escherichia coli: Jojoba Oil-Like Wax Esters and Fatty Acid Butyl Esters

    OpenAIRE

    Kalscheuer, Rainer; Stöveken, Tim; Luftmann, Heinrich; Malkus, Ursula; Reichelt, Rudolf; Steinbüchel, Alexander

    2006-01-01

    Wax esters are esters of long-chain fatty acids and long-chain fatty alcohols which are of considerable commercial importance and are produced on a scale of 3 million tons per year. The oil from the jojoba plant (Simmondsia chinensis) is the main biological source of wax esters. Although it has a multitude of potential applications, the use of jojoba oil is restricted, due to its high price. In this study, we describe the establishment of heterologous wax ester biosynthesis in a recombinant E...

  16. Detailed Source-Specific Molecular Composition of Ambient Aerosol Organic Matter Using Ultrahigh Resolution Mass Spectrometry and 1H NMR

    Directory of Open Access Journals (Sweden)

    Amanda S. Willoughby

    2016-06-01

    Full Text Available Organic aerosols (OA are universally regarded as an important component of the atmosphere that have far-ranging impacts on climate forcing and human health. Many of these impacts are related to OA molecular characteristics. Despite the acknowledged importance, current uncertainties related to the source apportionment of molecular properties and environmental impacts make it difficult to confidently predict the net impacts of OA. Here we evaluate the specific molecular compounds as well as bulk structural properties of total suspended particulates in ambient OA collected from key emission sources (marine, biomass burning, and urban using ultrahigh resolution mass spectrometry (UHR-MS and proton nuclear magnetic resonance spectroscopy (1H NMR. UHR-MS and 1H NMR show that OA within each source is structurally diverse, and the molecular characteristics are described in detail. Principal component analysis (PCA revealed that (1 aromatic nitrogen species are distinguishing components for these biomass burning aerosols; (2 these urban aerosols are distinguished by having formulas with high O/C ratios and lesser aromatic and condensed aromatic formulas; and (3 these marine aerosols are distinguished by lipid-like compounds of likely marine biological origin. This study provides a unique qualitative approach for enhancing the chemical characterization of OA necessary for molecular source apportionment.

  17. Analysis of wax esters by silver-ion high-performance liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Vrkoslav, Vladimír; Urbanová, Klára; Háková, Matina; Cvačka, Josef

    2013-08-09

    Wax esters (WEs), esters of long-chain fatty acids and long-chain alcohols, were analysed by Ag-HPLC/APCI-MS/MS. Two ChromSpher Lipids columns connected in series (a total length of 50cm) and hexane-2-propanol-acetonitrile mobile phases were used to achieve good separation of the molecular species. The chromatographic behaviour of WEs was studied under optimised conditions: retention increased with the number of double bonds and with the temperature (15-35°C); retention times were affected by the double-bond position, trans isomers eluted earlier than cis isomers, and the WEs were partially separated depending on the aliphatic-chain length. The WEs provided simple APCI spectra with [M+H](+) ions, the MS/MS spectra showed fragments, which allowed their identification. The method was applied for an analysis of the WE mixtures from jojoba oil and human hair and the results were compared with analogous data from an optimised RP-HPLC system. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Optimization of Factors Affecting Beauveria bassiana Fungus Ability in Control of Greater Wax Moth (Galleria mellonella L. by Response Surface Method

    Directory of Open Access Journals (Sweden)

    Ali Heidari

    2017-03-01

    bioassay was performed by determining the lethal concentrations of the B.bassiana that cause 20% to 80% casualties with a lot of concentration by immersion method for 10 seconds. Concentrations 1×106 and 1×108 conidia/ml were identified as high and low lethality ranges, respectively. In this study, the central composite design and response surface methodology with three independent variables including temperature (25-35°C, humidity (70-80 percent and concentration (1×106-1×108 conidia/ml and six replications in the central point of the design (to calculate the repeatability of the process were used to evaluate the increase in mortality. The number of experiments was twenty and the dependent variable (response was the mortality of the fifth instar larvae of greater wax moth. For each experiment, 10 last instar larvae were randomly selected and then 10 sterile petri dishes containing sterile wax to feed insect were prepared. Larvae were immersed for 10 seconds in a solution containing the fungus and then were placed in containers. Results and Discussion: Analysis of variance (ANOVA for the quadratic response surface model to factor mortality of the fifth instar larvae of greater wax moth showed that quadratic model is statistically significant (P≤0.001. Also high R2 (R2 = 0.9430 and coordination of adjusted R2 (Adj R2 = 0.9211 indicates the strength of the model to predict. According to tests, the optimal conditions for achieving maximum mortality of the fifth instar larvae of greater wax moth is 25 ° C temperature, 75% humidity and 1×108 conidia/ml concentration, respectively. Settings applied to the optimization process, was including maximum mortality. The effect of temperature on mortality of the fifth instar larvae of this insect showed that the mortality rate decreased with increasing temperature. Cause of mortality reduction as increasing the temperature is probably related to the characteristics of this fungus that could be affected by temperature, so that

  19. Geomorphic and geochemical controls on leaf wax biomarker transport and preservation in alluvial river systems: Rio Bermejo, Argentina

    Science.gov (United States)

    Repasch, M. N.; Sachse, D.; Hovius, N.; Scheingross, J. S.; Szupiany, R. N.

    2017-12-01

    Rivers are the primary conduits for organic carbon (OC) transfer from vegetation-rich uplands to long-term sinks, and thus are responsible for significant fluxes among different reservoirs of the carbon cycle. Fluxes of terrestrial OC out of river systems are generally less than fluxes into the systems, indicating loss of OC either during active fluvial transport, during residence in the active channel belt, or in older deposits outside of the active channel belt. Sedimentary biomarkers can be used to elucidate the mechanisms of transport, preservation, and/or transformation of OC during its passage from source to sink. In this study we evaluate the influence of fluvial sediment transport on preservation of terrestrial leaf wax n-alkanes. Our natural laboratory is the Rio Bermejo in northern Argentina, which transports sediment and organic matter from the central Andes over 700 km across the foreland basin without input of foreign material from tributaries. Rapid channel migration rates in a region of flexural foreland basin uplift (the forebulge) are responsible for remobilization of floodplain sediment and terrestrial OC. By sampling suspended sediment, river bank sediment, and soil from several locations along the length of the Rio Bermejo, and analyzing the dissolved chemistry, biomarker composition, and compound-specific stable isotopes, we can evaluate the geomorphic and geochemical processes that act to influence the preservation of terrestrial biomarkers through the river system. Data suggest that concentrations of long-chain terrestrial (C25-C33) alkanes decrease downstream, while concentrations of short-chain (C15-C19) alkanes increase. This trend is corroborated by a downstream increase in suspended sediment δ13C values, suggesting a replacement of terrestrial OC by microbial OC. It is likely that microbial degradation is responsible for loss of terrestrial biomarkers as their residence time in the river system increases. Controlled laboratory

  20. An eco-friendly molecularly imprinted fluorescence composite material based on carbon dots for fluorescent detection of 4-nitrophenol

    International Nuclear Information System (INIS)

    Hao, Tongfan; Wei, Xiao; Nie, Yijing; Zhou, Zhiping; Xu, Yeqing; Yan, Yongsheng

    2016-01-01

    We on report an eco-friendly molecularly imprinted material based on carbon dots (C-dots) via a facile and efficient sol–gel polymerization for selective fluorescence detection of 4-nitrophenol (4-NP). The amino-modified C-dots were firstly synthesized by a hydrothermal process using citric acid as the carbon source and poly(ethyleneimine) as the surface modifier, and then after a sol–gel molecular imprinting process, the molecularly imprinted fluorescence material was obtained. The material (MIP-C-dots) showed strong fluorescence from C-dots and high selectivity due to the presence of a molecular imprint. After the detection conditions were optimized, the relative fluorescence intensity (F_0/F) of MIP-C-dots presented a good linearity with 4-NP concentrations in the linear range of 0.2 − 50 μmol L"-"1 with a detection limit (3σ/k) of 0.06 μmol L"-"1. In addition, the correlation coefficient was 0.9978 and the imprinting factor was 2.76. The method was applicable to the determination of trace 4-NP in Yangtze River water samples and good recoveries from 92.6–107.3 % were obtained. The present study provides a general strategy to fabricate materials based on C-dots with good fluorescence property for selective fluorescence detection of organic pollutants. (author)

  1. Long-term evaluation of the needle surface wax condition of Pinus sylvestris around different industries in Lithuania

    International Nuclear Information System (INIS)

    Kupcinskiene, Eugenija; Huttunen, Satu

    2005-01-01

    The aim of our study was to evaluate the annual dynamics of needle surface wax erosion and wettability in Scots pines exposed to a gradient of industrial pollutants emitted from the main factories of Lithuania: a nitrogen fertilizer factory, an oil refinery and a cement factory. Decreased emissions (in the case of the oil refinery and the cement factory) were reflected in the increased structural surface area (SSA, i.e. area covered by tubular waxes) on the needles. The nearly constant amount of emissions from the nitrogen fertilizer factory within the 1994-2000 period corresponded to negligible annual differences in SSA. Annual changes in the hydrophobicity of needles on the investigated transects were small. Despite the decreased pollution within the 7-year period, industrial emissions are still causing significantly accelerated wax erosion and increased wettability in needles sampled from the stands most heavily affected by pollutants. - Tubular wax on the pine needle surface reflects changes/differences in industrial emissions

  2. Molecular composition and bioavailability of dissolved organic nitrogen in a lake flow-influenced river in south Florida, USA

    Science.gov (United States)

    Dissolved organic nitrogen (DON) represents a large percentage of the total nitrogen in rivers and estuaries, and can contribute to coastal eutrophication and hypoxia. This study reports on the composition and bioavailability of DON along the Caloosahatchee River (Florida), a heavily managed system ...

  3. Ultra-selective defect-free interfacially polymerized molecular sieve thin-film composite membranes for H2 purification

    KAUST Repository

    Ali, Zain; Pacheco Oreamuno, Federico; Litwiller, Eric; Wang, Yingge; Han, Yu; Pinnau, Ingo

    2017-01-01

    method for reverse osmosis membranes. Defect-free thin-film composite membranes were formed demonstrating unprecedented mixed-gas H2/CO2 selectivity of ≈ 50 at 140 °C with H2 permeance of 350 GPU, surpassing the permeance/selectivity upper bound of all

  4. Designing maleic anhydride-{alpha}-olifin copolymeric combs as wax crystal growth nucleators

    Energy Technology Data Exchange (ETDEWEB)

    Soni, Hemant P. [Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara-390 002 (India); Kiranbala; Bharambe, D.P. [Department of Applied Chemistry, Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda, Vadodara-390 001 (India); Agrawal, K.S. [Department of Petrochemical Technology, Polytechnic, The Maharaja Sayajirao University of Baroda, Vadodara-390 002 (India); Nagar, A. [MH ASSET, ONGC, Mumbai (India)

    2010-09-15

    Modification of the wax crystal habit is of great practical interest during transportation and processing of crude oil at low temperature. Various pour point depressant (PPD) additives can facilitate this modification by different mechanisms. Comb shaped polymer additives are known to depress the pour point of crude oil by providing different nucleation sites for the precipitation of wax. This paper describes performance based design, synthesis, characterization and evaluation of comb shaped polymeric diesters. Copolymers of maleic anhydride with different unsaturated C{sub 22} esters were synthesized and copolymers then reacted with two unsaturated fatty alcohols. All products were characterized by Fourier Transform Infra Red (FTIR) spectroscopy and Gel Permeation Chromatography (GPC). Rheological properties of crude (with and without additive) were studied by Advance Rheometer AR-500. In this study the additive based on oleic acid was evaluated as good PPD and rheology modifier. (author)

  5. MEDITERRANEAN FOREST TREE DECLINE IN ITALY: RELATIONSHIPS BETWEEN DROUGHT, POLLUTANTS AND THE WAX STRUCTURE OF LEAVES

    Directory of Open Access Journals (Sweden)

    E. PAOLETTI

    1996-04-01

    Full Text Available After presenting the situation of forest decline in Italy and analyzing the factors that play a contributing role, tbis paper studies the response of the epicuticular wax structures and the stomata in ten broadleaf species and one conifer to fog-like treatments with acids andlor surfactants and to severe water stress. The main results are that wax structure alterations vary in intensity in the different species studied and that the microstructural alterations observed in field conditions cannot be attributed only to severe drought. since sample trccs put through water stress simulations do nol differ significantly from controls. In the artificial surfactant treatment, a positive relationship between structural damage to tbe stomata and transpiration suggests possible synergies between the effects of drought and those of pollutants in inducing stress conditions in Mediterranean vegetation.

  6. Comparison of ossification of demineralized bone, hydroxyapatite, Gelfoam, and bone wax in cranial defect repair.

    Science.gov (United States)

    Papay, F A; Morales, L; Ahmed, O F; Neth, D; Reger, S; Zins, J

    1996-09-01

    Demineralized bone allografts in the repair of calvarial defects are compared with other common bone fillers. This study uses a video-digitizing radiographic analysis of calvarial defect ossification to determine calcification of bone defects and its relation to postoperative clinical examination and regional controls. The postoperative clinical results at 3 months demonstrated that bony healing was greatest in bur holes filled with demineralized bone and hydroxyapatite. Radiographic analysis demonstrated calcification of demineralized bone-filled defects compared to bone wax- and Gelfoam-filled regions. Hydroxyapatite granules are radiographically dense, thus not allowing accurate measurement of true bone healing. The results suggest that demineralized bone and hydroxyapatite provide better structural support via bone healing to defined calvarial defects than do Gelfoam and bone wax.

  7. The Effect of Paraffin Wax to Properties of Radiation Vulcanization Natural Rubber Latex (RVNRL)

    International Nuclear Information System (INIS)

    Mohd Noorwadi Mat Lazim; Sofian Ibrahim; Muhammad Saiful Omar

    2015-01-01

    Dipping factories often encounter a serious problem with high tackiness of the finish products during storage. The tackiness effect can be lead to rejection of products. This tackiness effect of natural (NR) rubber film originates in the free rubber chain ends at the surface of the film. The tackiness is not depends on the degree of crosslinking (vulcanization), since radiation itself unable to reduce the tackiness effect. The RVNRL requires addition of additive or anti-tack agent into formulation to reduce tackiness effect. In this experiment, paraffin wax manufactured by Emulco Sdn Bhd under the trade name Aquawax 48 was added into RVNRL formulation as anti-tack and the effect of paraffin wax to physical and mechanical properties of RVNRL was study. (author)

  8. A comparison of epicuticular wax of Pinus sylvestris needles from three sites in Ireland

    International Nuclear Information System (INIS)

    Donnelly, A.; Dowding, P.

    1994-01-01

    Three forest stands of Pinus sylvestris were chosen for comparison in Ireland. Needles from three year classes were collected. Cuticular transpiration curves showed that the rate of water loss from 1-year-old needles was faster than either 2-year-old or current-year needles at all sites. The amount of epicuticular wax extracted was similar to that reported in the literature. Needle wettability increased with needle age. Amorphous wax coverage was estimated using scanning electron microscopy (SEM) and was found to increase with needle age. Algal cells were noted on needles of all ages at one site and appeared to affect transpiration and microroughness. The presence of fungal hyphae was also noted. (orig.)

  9. Evaluation of Physical Properties of Wax Mixtures Obtained From Recycling of Patterns Used in Precision Casting

    Directory of Open Access Journals (Sweden)

    Biernacki R.

    2015-04-01

    Full Text Available The study investigated the properties of selected certified mixtures used to make wax patterns for the production of precision castings for the aerospace industry. In addition, an assessment of the recycled mixtures consisting of certified wax materials recovered during autoclaving was carried out. Hardness was tested via a proposed method based on penetration, creep related deformation, bending strength and linear contraction. The hardness was studied on laboratory specimens and patterns made with the use of injection molding equipment. For these patterns, linear contraction was estimated at variable pressure and for different temperature injection parameters. Deformations connected with creep and resistance were evaluated on cylindrical specimens. Differences in creep resistance in relation to the hardness were observed depending on the type of pattern mixtures. Recycled mixture has a greater resistance and smaller linear contraction than certified mixtures used for making sprue, raisers and other parts of filler system.

  10. Sugar Composition and Molecular Weight Distribution of Cell Wall Polysaccharides in Outer and Inner Tissues from Segments of Dark Grown Squash (Cucurbita maxima Duch.) Hypocotyls.

    Science.gov (United States)

    Wakabayashi, K; Sakurai, N; Kuraishi, S

    1990-07-01

    The elongation growth of stem segments is determined by the outer cell layers (epidermis and collenchyma). We measured the sugar composition and molecular weight distribution of pectin and hemicellulose fractions obtained from inner and outer tissues of squash (Cucurbita maxima Duch.) hypocotyls. In addition, we studied the changes in these parameters after a 9 hour period of incubation of the segments. The results show that outer tissues have higher molecular weight pectin and hemicellulose compared to inner tissues (2-3 times higher). Incubation results in a 13 to 25% decrease in the amount of pectin and hemicellulose in inner tissues and an increase of 11 to 32% in the outer tissues. This increase in the outer tissues is accompanied by a decrease in the molecular weight of some of the components. These results clearly show that cell wall metabolism during elongation growth differs markedly in inner and outer tissues, and that future studies on the effect of auxin need to take these differences into account.

  11. Sugar Composition and Molecular Weight Distribution of Cell Wall Polysaccharides in Outer and Inner Tissues from Segments of Dark Grown Squash (Cucurbita maxima Duch.) Hypocotyls 1

    Science.gov (United States)

    Wakabayashi, Kazuyuki; Sakurai, Naoki; Kuraishi, Susumu

    1990-01-01

    The elongation growth of stem segments is determined by the outer cell layers (epidermis and collenchyma). We measured the sugar composition and molecular weight distribution of pectin and hemicellulose fractio