Hietala, Vincent M.; Vawter, Gregory A.
1993-01-01
The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size.
Kory, Carol L.
1998-01-01
The traveling-wave tube (TWT) is a vacuum device invented in the early 1940's used for amplification at microwave frequencies. Amplification is attained by surrendering kinetic energy from an electron beam to a radio frequency (RF) electromagnetic wave. The demand for vacuum devices has been decreased largely by the advent of solid-state devices. However, although solid state devices have replaced vacuum devices in many areas, there are still many applications such as radar, electronic countermeasures and satellite communications, that require operating characteristics such as high power (Watts to Megawatts), high frequency (below 1 GHz to over 100 GHz) and large bandwidth that only vacuum devices can provide. Vacuum devices are also deemed irreplaceable in the music industry where musicians treasure their tube-based amplifiers claiming that the solid-state and digital counterparts could never provide the same "warmth" (3). The term traveling-wave tube includes both fast-wave and slow-wave devices. This article will concentrate on slow-wave devices as the vast majority of TWTs in operation fall into this category.
Webb, G M; Ao, X; Zank, G P
2013-01-01
Models for travelling waves in multi-fluid plasmas give essential insight into fully nonlinear wave structures in plasmas, not readily available from either numerical simulations or from weakly nonlinear wave theories. We illustrate these ideas using one of the simplest models of an electron-proton multi-fluid plasma for the case where there is no magnetic field or a constant normal magnetic field present. We show that the travelling waves can be reduced to a single first order differential equation governing the dynamics. We also show that the equations admit a multi-symplectic Hamiltonian formulation in which both the space and time variables can act as the evolution variable. An integral equation useful for calculating adiabatic, electrostatic solitary wave signatures for multi-fluid plasmas with arbitrary mass ratios is presented. The integral equation arises naturally from a fluid dynamics approach for a two fluid plasma, with a given mass ratio of the two species (e.g. the plasma could be an electron pr...
Sequentially pulsed traveling wave accelerator
Caporaso, George J.; Nelson, Scott D.; Poole, Brian R.
2009-08-18
A sequentially pulsed traveling wave compact accelerator having two or more pulse forming lines each with a switch for producing a short acceleration pulse along a short length of a beam tube, and a trigger mechanism for sequentially triggering the switches so that a traveling axial electric field is produced along the beam tube in synchronism with an axially traversing pulsed beam of charged particles to serially impart energy to the particle beam.
Traveling-Wave Membrane Photomixers
Wyss, R. A.; Martin, S. C.; Nakamura, B. J.; Neto, A.; Pasqualini, D.; Siegel, P. H.; Kadow, C.; Gossard, A. C.
2001-01-01
Traveling-wave photomixers have superior performance when compared with lumped area photomixers in the 1 to 3 THz frequency range. Their large active area and distributed gain mechanism assure high thermal damage threshold and elimination of the capacitive frequency roll-off. However, the losses experienced by the radio frequency wave traveling along the coplanar strips waveguide (due to underlying semi-infinite GaAs substrate) were a serious drawback. In this paper we present device designs and an experimental setup that make possible the realization of photomixers on membranes which eliminate the losses.
Traveling waves in rapid solidification
Directory of Open Access Journals (Sweden)
Karl Glasner
2000-02-01
Full Text Available We analyze rigorously the one-dimensional traveling wave problem for a thermodynamically consistent phase field model. Existence is proved for two new cases: one where the undercooling is large but not in the hypercooled regime, and the other for waves which leave behind an unstable state. The qualitative structure of the wave is studied, and under certain restrictions monotonicity of front profiles can be obtained. Further results, such as a bound on propagation velocity and non-existence are discussed. Finally, some numerical examples of monotone and non-monotone waves are provided.
Rousseau, Art; Tammaru, Ivo; Vaszari, John
1988-01-01
New space traveling-wave tube (TWT) provides coherent source of 75 watts of continuous-wave power output over bandwidth of 5 GHz at frequency of 65 GHz. Coupled-cavity TWT provides 50 dB of saturated gain. Includes thermionic emitter, M-type dispenser cathode providing high-power electron beam. Beam focused by permanent magnets through center of radio-frequency cavity structure. Designed for reliable operation for 10 years, and overall efficiency of 35 percent minimizes prime power input and dissipation of heat.
Traveling Lamb wave in elastic metamaterial layer
Shu, Haisheng; Xu, Lihuan; Shi, Xiaona; Zhao, Lei; Zhu, Jie
2016-10-01
The propagation of traveling Lamb wave in single layer of elastic metamaterial is investigated in this paper. We first categorized the traveling Lamb wave modes inside an elastic metamaterial layer according to different combinations (positive or negative) of effective medium parameters. Then the impacts of the frequency dependence of effective parameters on dispersion characteristics of traveling Lamb wave were studied. Distinct differences could be observed when comparing the traveling Lamb wave along an elastic metamaterial layer with one inside the traditional elastic layer. We further examined in detail the traveling Lamb wave mode supported in elastic metamaterial layer, when the effective P and S wave velocities were simultaneously imaginary. It was found that the effective modulus ratio is the key factor for the existence of special traveling wave mode, and the main results were verified by FEM simulations from two levels: the level of effective medium and the level of microstructure unit cell.
Parametric form of QCD travelling waves
Peschanski, R.
2005-01-01
We derive parametric travelling-wave solutions of non-linear QCD equations. They describe the evolution towards saturation in the geometric scaling region. The method, based on an expansion in the inverse of the wave velocity, leads to a solvable hierarchy of differential equations. A universal parametric form of travelling waves emerges from the first two orders of the expansion.
Parametric form of QCD travelling waves
Peschanski, R.
2005-01-01
We derive parametric travelling-wave solutions of non-linear QCD equations. They describe the evolution towards saturation in the geometric scaling region. The method, based on an expansion in the inverse of the wave velocity, leads to a solvable hierarchy of differential equations. A universal parametric form of travelling waves emerges from the first two orders of the expansion.
Regularity of rotational travelling water waves.
Escher, Joachim
2012-04-13
Several recent results on the regularity of streamlines beneath a rotational travelling wave, along with the wave profile itself, will be discussed. The survey includes the classical water wave problem in both finite and infinite depth, capillary waves and solitary waves as well. A common assumption in all models to be discussed is the absence of stagnation points.
Traveling waves of selective sweeps
Durrett, Rick
2009-01-01
The goal of cancer genome sequencing projects is to determine the genetic alterations that cause common cancers. Many malignancies arise during the clonal expansion of a benign tumor which motivates the study of recurrent selective sweeps in an exponentially growing population. To better understand this process, Beerenwinkel et al.(2007) consider a Wright-Fisher model in which cells from an exponentially growing population accumulate advantageous mutations. Simulations show a traveling wave in which the time of the first k-fold mutant, $\\tau_k$, is approximately linear in $k$ and heuristics are used to obtain formulas for $E\\tau_k$. Here, we consider the analogous problem for the Moran model and prove that as the mutation rate $\\mu\\to 0$, $\\tau_k \\sim c_k \\log(1/\\mu)$, where the $c_k$ can be computed explicitly.
From solitary wave to traveling surge
Institute of Scientific and Technical Information of China (English)
宋礼庭
1995-01-01
The solution of kinetic Alfven wave under action of anomalous resistance has two branches: the slow wave, VP
EXACT TRAVELLING WAVE SOLUTIONS TO BBM EQUATION
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Abundant new travelling wave solutions to the BBM (Benjamin-Bona-Mahoni) equation are obtained by the generalized Jacobian elliptic function method. This method can be applied to other nonlinear evolution equations.
Traveling Wave Solutions for Generalized Bretherton Equation
Institute of Scientific and Technical Information of China (English)
Amin Esfahani
2011-01-01
This paper studies the Generalized Bretherton equation using trigonometric function method including the sech-function method, the sine-cosine function method, and the tanh-function method, and He's semi-inverse method (He's variational method).Various traveling wave solutions are obtained, revealing an intrinsic relationship among the amplitude, frequency, and wave speed.
Guided Wave Travel Time Tomography for Bends
Volker, A.W.F.; Zon, A.T. van
2012-01-01
The concept of predictive maintenance using permanent sensors that monitor the integrity of an installation is an interesting addition to the current method of periodic inspections. Guided wave tomography has been developed to map the wall thickness using the travel times of guided waves. The method
Guided wave travel time tomography for bends
Volker, A.W.F.; Bloom, J.G.P.
2010-01-01
The concept of predictive maintenance using permanent sensors that monitor the integrity of an installation is an interesting addition to the current method of periodic inspections. Guided wave tomography has been developed to map the wall thickness using the travel times of guided waves. The method
Travelling waves in hybrid chemotaxis models
Franz, Benjamin; Painter, Kevin J; Erban, Radek
2013-01-01
Hybrid models of chemotaxis combine agent-based models of cells with partial differential equation models of extracellular chemical signals. In this paper, travelling wave properties of hybrid models of bacterial chemotaxis are investigated. Bacteria are modelled using an agent-based (individual-based) approach with internal dynamics describing signal transduction. In addition to the chemotactic behaviour of the bacteria, the individual-based model also includes cell proliferation and death. Cells consume the extracellular nutrient field (chemoattractant) which is modelled using a partial differential equation. Mesoscopic and macroscopic equations representing the behaviour of the hybrid model are derived and the existence of travelling wave solutions for these models is established. It is shown that cell proliferation is necessary for the existence of non-transient (stationary) travelling waves in hybrid models. Additionally, a numerical comparison between the wave speeds of the continuum models and the hybr...
Cutoff-Free Traveling Wave NMR
Tang, Joel A; Sodickson, Daniel K; Jerschow, Alexej
2011-01-01
Recently, the concept of traveling-wave NMR/MRI was introduced by Brunner et al. (Nature 457, 994-992 (2009)), who demonstrated MR images acquired using radio frequency (RF) waves propagating down the bore of an MR scanner. One of the significant limitations of this approach is that each bore has a specific cutoff frequency, which can be higher than most Larmor frequencies of at the magnetic field strengths commonly in use for MR imaging and spectroscopy today. We overcome this limitation by using a central conductor in the waveguide and thereby converting it to a transmission line (TL), which has no cutoff frequency. Broadband propagation of waves through the sample thus becomes possible. NMR spectra and images with such an arrangement are presented and genuine traveling wave behavior is demonstrated. In addition to facilitating NMR spectroscopy and imaging in smaller bores via traveling waves, this approach also allows one to perform multinuclear traveling wave experiments (an example of which is shown), an...
Traveling wave tube and method of manufacture
Vancil, Bernard K. (Inventor)
2004-01-01
A traveling wave tube includes a glass or other insulating envelope having a plurality of substantially parallel glass rods supported therewithin which in turn support an electron gun, a collector and an intermediate slow wave structure. The slow wave structure itself provides electrostatic focussing of a central electron beam thereby eliminating the need for focussing magnetics and materially decreasing the cost of construction as well as enabling miniaturization. The slow wave structure advantageously includes cavities along the electron beam through which the r.f. energy is propagated, or a double, interleaved ring loop structure supported by dielectric fins within a ground plane cylinder disposed coaxially within the glass envelope.
Elimination of Spiral Waves and Competition between Travelling Wave Impulses and Spiral Waves
Institute of Scientific and Technical Information of China (English)
YUAN Guo-Yong; ZHANG Guang-Cai; WANG Guang-Rui; CHEN Shi-Gang; SUN Peng
2005-01-01
@@ The interaction between travelling wave impulses and spiral waves is studied and the results of their competition are related to the exciting period. From the results, it is known that the formation and development of spiral waves in cardiac tissue depend on the period by which the travelling wave impulses are excited. A method is proposed to eliminate spiral waves, which is easily operated.
Travelling Waves in Hyperbolic Chemotaxis Equations
Xue, Chuan
2010-10-16
Mathematical models of bacterial populations are often written as systems of partial differential equations for the densities of bacteria and concentrations of extracellular (signal) chemicals. This approach has been employed since the seminal work of Keller and Segel in the 1970s (Keller and Segel, J. Theor. Biol. 30:235-248, 1971). The system has been shown to permit travelling wave solutions which correspond to travelling band formation in bacterial colonies, yet only under specific criteria, such as a singularity in the chemotactic sensitivity function as the signal approaches zero. Such a singularity generates infinite macroscopic velocities which are biologically unrealistic. In this paper, we formulate a model that takes into consideration relevant details of the intracellular processes while avoiding the singularity in the chemotactic sensitivity. We prove the global existence of solutions and then show the existence of travelling wave solutions both numerically and analytically. © 2010 Society for Mathematical Biology.
Coupled-cavity traveling-wave tubes
Connolly, D. J.; Omalley, T. A.
1980-01-01
Computer program is developed for analysis of coupled cavity traveling waves tubes (TWT's) which are used in variety of radar and communications applications. Programmers can simulate tubes of arbitrary complexity such as input and output couplers and other features peculiar to one or few cavities which may be modeled by correct choices of input data.
BROADBAND TRAVELLING WAVE SEMICONDUCTOR OPTICAL AMPLIFIER
DEFF Research Database (Denmark)
2010-01-01
Broadband travelling wave semiconductor optical amplifier (100, 200, 300, 400, 800) for amplification of light, wherein the amplifier (100, 200, 300, 400, 800) comprises a waveguide region (101, 201, 301, 401, 801) for providing confinement of the light in transverse directions and adapted...
Travelling Waves in Hybrid Chemotaxis Models
Franz, Benjamin
2013-12-18
Hybrid models of chemotaxis combine agent-based models of cells with partial differential equation models of extracellular chemical signals. In this paper, travelling wave properties of hybrid models of bacterial chemotaxis are investigated. Bacteria are modelled using an agent-based (individual-based) approach with internal dynamics describing signal transduction. In addition to the chemotactic behaviour of the bacteria, the individual-based model also includes cell proliferation and death. Cells consume the extracellular nutrient field (chemoattractant), which is modelled using a partial differential equation. Mesoscopic and macroscopic equations representing the behaviour of the hybrid model are derived and the existence of travelling wave solutions for these models is established. It is shown that cell proliferation is necessary for the existence of non-transient (stationary) travelling waves in hybrid models. Additionally, a numerical comparison between the wave speeds of the continuum models and the hybrid models shows good agreement in the case of weak chemotaxis and qualitative agreement for the strong chemotaxis case. In the case of slow cell adaptation, we detect oscillating behaviour of the wave, which cannot be explained by mean-field approximations. © 2013 Society for Mathematical Biology.
Tympanal travelling waves in migratory locusts.
Windmill, James F C; Göpfert, Martin C; Robert, Daniel
2005-01-01
Hearing animals, including many vertebrates and insects, have the capacity to analyse the frequency composition of sound. In mammals, frequency analysis relies on the mechanical response of the basilar membrane in the cochlear duct. These vibrations take the form of a slow vibrational wave propagating along the basilar membrane from base to apex. Known as von Békésy's travelling wave, this wave displays amplitude maxima at frequency-specific locations along the basilar membrane, providing a spatial map of the frequency of sound--a tonotopy. In their structure, insect auditory systems may not be as sophisticated at those of mammals, yet some are known to perform sound frequency analysis. In the desert locust, this analysis arises from the mechanical properties of the tympanal membrane. In effect, the spatial decomposition of incident sound into discrete frequency components involves a tympanal travelling wave that funnels mechanical energy to specific tympanal locations, where distinct groups of mechanoreceptor neurones project. Notably, observed tympanal deflections differ from those predicted by drum theory. Although phenomenologically equivalent, von Békésy's and the locust's waves differ in their physical implementation. von Békésy's wave is born from interactions between the anisotropic basilar membrane and the surrounding incompressible fluids, whereas the locust's wave rides on an anisotropic membrane suspended in air. The locust's ear thus combines in one structure the functions of sound reception and frequency decomposition.
Oscillatory traveling wave solutions to an attractive chemotaxis system
Li, Tong; Liu, Hailiang; Wang, Lihe
2016-12-01
This paper investigates oscillatory traveling wave solutions to an attractive chemotaxis system. The convective part of this system changes its type when crossing a parabola in the phase space. The oscillatory nature of the traveling wave comes from the fact that one far-field state is in the elliptic region and another in the hyperbolic region. Such traveling wave solutions are shown to be linearly unstable. Detailed construction of some traveling wave solutions is presented.
Geyer, Anna
2016-01-01
Following a general principle introduced by Ehrnstr\\"{o}m et.al. we prove that for an equation modeling the free surface evolution of moderate amplitude waves in shallow water, all symmetric waves are traveling waves.
Geyer, Anna
2016-01-01
Following a general principle introduced by Ehrnstr\\"{o}m et.al. we prove that for an equation modeling the free surface evolution of moderate amplitude waves in shallow water, all symmetric waves are traveling waves.
Traveling Wave Solutions for CH2 Equations
Institute of Scientific and Technical Information of China (English)
2015-01-01
In this paper, we use a method in order to find exact explicit traveling solutions in the subspace of the phase space for CH2equations. The key idea is removing a coupled relation for the given system so that the new systems can be solved. The existenceof solitary wave solutions is obtained. It is shown that bifurcation theory of dynamical systems provides a powerful mathematicaltool for solving a great many nonlinear partial differential equations in mathematical physics.
Traveling-Wave Maser for 32 GHz
Shell, James; Clauss, Robert
2009-01-01
The figure depicts a traveling-wave ruby maser that has been designed (though not yet implemented in hardware) to serve as a low-noise amplifier for reception of weak radio signals in the frequency band of 31.8 to 32.3 GHz. The design offers significant improvements over previous designs of 32-GHz traveling-wave masers. In addition, relative to prior designs of 32-GHz amplifiers based on high-electron-mobility transistors, this design affords higher immunity to radio-frequency interference and lower equivalent input noise temperature. In addition to the basic frequency-band and low-noise requirements, the initial design problem included a requirement for capability of operation in a closed-cycle helium refrigerator at a temperature .4 K and a requirement that the design be mechanically simplified, relative to prior designs, in order to minimize the cost of fabrication and assembly. Previous attempts to build 32- GHz traveling-wave masers involved the use of metallic slow-wave structures comprising coupled transverse electromagnetic (TEM)-mode resonators that were subject to very tight tolerances and, hence, were expensive to fabricate and assemble. Impedance matching for coupling signals into and out of these earlier masers was very difficult. A key feature of the design is a slow-wave structure, the metallic portions of which would be mechanically relatively simple in that, unlike in prior slow-wave structures, there would be no internal metal steps, irises, or posts. The metallic portions of the slow-wave structure would consist only of two rectangular metal waveguide arms. The arms would contain sections filled with the active material (ruby) alternating with evanescent-wave sections. This structure would be transparent in both the signal-frequency band (the aforementioned range of 31.8 to 32.3 GHz) and the pump-frequency band (65.75 to 66.75 GHz), and would impose large slowing factors in both frequency bands. Resonant ferrite isolators would be placed in the
New exact travelling wave solutions of bidirectional wave equations
Indian Academy of Sciences (India)
Jonu Lee; Rathinasamy Sakthivel
2011-06-01
The surface water waves in a water tunnel can be described by systems of the form [Bona and Chen, Physica D116, 191 (1998)] \\begin{equation*} \\begin{cases} v_t + u_x + (uv)_x + au_{x x x} − bv_{x x t} = 0,\\\\ u_t + v_x + u u_x + cv_{x x x} − d u_{x x t} = 0, \\end{cases} \\tag{1} \\end{equation*} where , , and d are real constants. In general, the exact travelling wave solutions will be helpful in the theoretical and numerical study of the nonlinear evolution systems. In this paper, we obtain exact travelling wave solutions of system (1) using the modiﬁed tanh–coth function method with computerized symbolic computation.
Space-Qualified Traveling-Wave Tube
Wilson, Jeffrey D.; Krawczyk, Richard; Simons, Rainee N.; Williams, Wallace D.; Robbins, Neal R.; Dibb, Daniel R.; Menninger, William L.; Zhai, Xiaoling; Benton, Robert T.
2010-01-01
The L-3 Communications Electron Technologies, Inc. Model 999HA traveling-wave tube (TWT), was developed for use as a high-power microwave amplifier for high-rate transmission of data and video signals from deep space to Earth (see figure). The 999HA is a successor to the 999H a non-space qualified TWT described in High-Power, High-Efficiency Ka-Band Traveling-Wave Tube (LEW-17900-1), NASA Tech Briefs, Vol. 31, No. 2 (February 2007), page 32. Operating in the 31.8-to-32.3 GHz frequency band, the 999HA has been shown to generate 252 W of continuous- wave output power at 62 percent overall power efficiency a 75-percent increase in output power over the 999H. The mass of the 999HA is 35 percent less than that of the 999H. Moreover, taking account of the elimination of a Faraday cage that is necessary for operation of the 999H but is obviated by a redesign of high-voltage feed-throughs for the 999HA, the overall reduction in mass becomes 57 percent with an 82 percent reduction in volume. Through a series of rigorous tests, the 999HA has been qualified for operation aboard spacecraft with a lifetime exceeding seven years. Offspring of the 999HA will fly on the Kepler and Lunar Reconnaissance Orbiter missions.
Superconducting travelling wave ring with high gradient accelerating section
Energy Technology Data Exchange (ETDEWEB)
Avrakhov, P.; Solyak, N.; /Fermilab
2007-06-01
Use of a superconducting traveling wave accelerating (STWA) structure instead of a standing wave cavity has major advantages in increasing the accelerating gradient in the ILC. In contrast with standing wave cavity STWA requires feedback loop, which sends wave from the structure output to input, making a superconducting traveling wave ring (STWR). One or few input couplers need to excite STWR and compensate power dissipations due to beam loading. To control traveling wave regime in the structure two independent knobs can be used for tuning both resonant ring frequency and backward wave. We discuss two variants of the STWR with one and two feed couplers.
Traveling Wave Solutions of a Generalized Zakharov-Kuznetsov Equation
Wenbin Zhang; Jiangbo Zhou
2012-01-01
We employ the bifurcation theory of planar dynamical system to investigate the traveling-wave solutions of the generalized Zakharov-Kuznetsov equation. Four important types of traveling wave solutions are obtained, which include the solitary wave solutions, periodic solutions, kink solutions, and antikink solutions.
TRAVELING WAVE SOLUTIONS FOR A CLASS OF NONLINEAR DISPERSIVE EQUATIONS
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
The method of the phase plane is emploied to investigate the solitary and periodic traveling waves for a class of nonlinear dispersive partial differential equations.By using the bifurcation theory of dynamical systems to do qualitative analysis,all possible phase portraits in the parametric space for the traveling wave systems are obtained.It can be shown that the existence of a singular straight line in the traveling wave system is the reason why smooth solitary wave solutions converge to solitary cusp wave solution when parameters are varied.The different parameter conditions for the existence of solitary and periodic wave solutions of different kinds are rigorously determined.
Fundamentals of traveling wave ion mobility spectrometry.
Shvartsburg, Alexandre A; Smith, Richard D
2008-12-15
Traveling wave ion mobility spectrometry (TW IMS) is a new IMS method implemented in the Synapt IMS/mass spectrometry system (Waters). Despite its wide adoption, the foundations of TW IMS were only qualitatively understood and factors governing the ion transit time (the separation parameter) and resolution remained murky. Here we develop the theory of TW IMS using derivations and ion dynamics simulations. The key parameter is the ratio (c) of ion drift velocity at the steepest wave slope to wave speed. At low c, the ion transit velocity is proportional to the squares of mobility (K) and electric field intensity (E), as opposed to linear scaling in drift tube (DT) IMS and differential mobility analyzers. At higher c, the scaling deviates from quadratic in a way controlled by the waveform profile, becoming more gradual with the ideal triangular profile but first steeper and then more gradual for realistic profiles with variable E. At highest c, the transit velocity asymptotically approaches the wave speed. Unlike with DT IMS, the resolving power of TW IMS depends on mobility, scaling as K(1/2) in the low-c limit and less at higher c. A nonlinear dependence of the transit time on mobility means that the true resolving power of TW IMS differs from that indicated by the spectrum. A near-optimum resolution is achievable over an approximately 300-400% range of mobilities. The major predicted trends are in agreement with TW IMS measurements for peptide ions as a function of mobility, wave amplitude, and gas pressure. The issues of proper TW IMS calibration and ion distortion by field heating are also discussed. The new quantitative understanding of TW IMS separations allows rational optimization of instrument design and operation and improved spectral calibration.
The Traveling Wave Reactor: Design and Development
Directory of Open Access Journals (Sweden)
John Gilleland
2016-03-01
Full Text Available The traveling wave reactor (TWR is a once-through reactor that uses in situ breeding to greatly reduce the need for enrichment and reprocessing. Breeding converts incoming subcritical reload fuel into new critical fuel, allowing a breed-burn wave to propagate. The concept works on the basis that breed-burn waves and the fuel move relative to one another. Thus either the fuel or the waves may move relative to the stationary observer. The most practical embodiments of the TWR involve moving the fuel while keeping the nuclear reactions in one place−sometimes referred to as the standing wave reactor (SWR. TWRs can operate with uranium reload fuels including totally depleted uranium, natural uranium, and low-enriched fuel (e.g., 5.5% 235U and below, which ordinarily would not be critical in a fast spectrum. Spent light water reactor (LWR fuel may also serve as TWR reload fuel. In each of these cases, very efficient fuel usage and significant reduction of waste volumes are achieved without the need for reprocessing. The ultimate advantages of the TWR are realized when the reload fuel is depleted uranium, where after the startup period, no enrichment facilities are needed to sustain the first reactor and a chain of successor reactors. TerraPower's conceptual and engineering design and associated technology development activities have been underway since late 2006, with over 50 institutions working in a highly coordinated effort to place the first unit in operation by 2026. This paper summarizes the TWR technology: its development program, its progress, and an analysis of its social and economic benefits.
Modeling Technology in Traveling-Wave Fault Location
Directory of Open Access Journals (Sweden)
Tang Jinrui
2013-06-01
Full Text Available Theoretical research and equipment development of traveling-wave fault location seriously depend on digital simulation. Meanwhile, the fault-generated transient traveling wave must be transferred through transmission line, mutual inductor and secondary circuit before it is used. So this paper would maily analyze and summarize the modeling technology of transmission line and mutual inductor on the basis of the research achievement. Firstly several models of transmission line (multiple Π or T line model, Bergeron line model and frequency-dependent line model are compared in this paper with analysis of wave-front characteristics and characteristic frequency of traveling wave. Then modeling methods of current transformer, potential transformer, capacitive voltage transformer, special traveling-wave sensor and secondary cable are given. Finally, based on the difficult and latest research achievements, the future trend of modeling technology in traveling-wave fault location is prospected.
Travelling Wave Solutions to Stretched Beam's Equation: Phase Portraits Survey
Institute of Scientific and Technical Information of China (English)
Gambo Betchewe; Kuetche Kamgang Victor; Bouetou Bouetou Thomas; Timoleon Crepin Kofane
2011-01-01
In this paper, following the phase portraits analysis, we investigate the integrability of a system which physically describes the transverse oscillation of an elastic beam under end-thrust. As a result, we find that this system actually comprises two families of travelling waves: the sub- and super-sonic periodic waves of positive- and negative-definite velocities, respectively, and the localized sub-sonic loop-shaped waves of positive-definite velocity. Expressing the energy-like of this system while depicting its phase portrait dynamics, we show that these multivalued localized travelling waves appear as the boundary solutions to which the periodic travelling waves tend asymptotically.
Travelling waves in nonlinear diffusion-convection-reaction
Gilding, B.H.; Kersner, R.
2001-01-01
The study of travelling waves or fronts has become an essential part of the mathematical analysis of nonlinear diffusion-convection-reaction processes. Whether or not a nonlinear second-order scalar reaction-convection-diffusion equation admits a travelling-wave solution can be determined by the stu
Static Trapping of Polar Molecules in a Traveling Wave Decelerator
Quintero-Perez, Marina; Jansen, Paul; Wall, Thomas E.; van den Berg, Joost E.; Hoekstra, Steven; Bethlem, Hendrick L.
2013-01-01
We present experiments on decelerating and trapping ammonia molecules using a combination of a Stark decelerator and a traveling wave decelerator. In the traveling wave decelerator, a moving potential is created by a series of ring-shaped electrodes to which oscillating high voltages (HV) are applie
Examining Traveling Waves in Mars Atmosphere Reanalyses
Greybush, Steven J.; Wilson, R. John
2015-11-01
Synoptic-scale eddies (traveling waves) are a key feature of the variability of Mars atmosphere weather in the extratropics, and are linked to the initiation of dust storms. Mars reanalyses, which combine satellite observations with simulations from a Mars Global Climate Model (MGCM), provide a four-dimensional picture of the evolution of these waves in terms of temperature, winds, pressure, and aerosol fields. The Ensemble Mars Atmosphere Reanalysis System (EMARS) has created multiple years of Mars weather maps through the assimilation of Thermal Emission Spectrometer (TES) and Mars Climate Sounder (MCS) temperature profiles using the ensemble Kalman filter and the GFDL MGCM. We investigate the robustness of the synoptic eddies to changes in the aerosol fields, model parameters, data assimilation system design, and observation dataset (TES vs. MCS). We examine the evolution of wavenumber regimes, their seasonal evolution, and interannual variability. Finally, reanalysis fields are combined with spacecraft visible imagery (e.g. MGS Mars Orbital Camera), demonstrating the link between meteorological fields (temperature, pressure, and wind) and dust fronts.
Millimeter-wave gyrotron traveling-wave tube amplifiers
Du, Chao-Hai
2014-01-01
A gyrotron traveling-wave amplifier (gyro-TWT) with the high-power and broad-band capabilities is considered as a turn-on key for next generation high-resolution radar. The book presents comprehensive theory, methods, and physics related to gyro-TWT. The most challenging problem of instability competition has been for the first time addressed in a focused and systematic way, and reported via concise states and vivid pictures. The book is likely to meet the interest of researchers and engineers in radar and microwave technology, who would like to study the gyro-TWTs and to promote its application in millimeter-wave radars. Chao-Hai Du is a research professor, and Pu-Kun Liu is a full professor, at Peking University, Beijing, P. R. China.
Longitudinally propagating traveling waves of the mammalian tectorial membrane.
Ghaffari, Roozbeh; Aranyosi, Alexander J; Freeman, Dennis M
2007-10-16
Sound-evoked vibrations transmitted into the mammalian cochlea produce traveling waves that provide the mechanical tuning necessary for spectral decomposition of sound. These traveling waves of motion that have been observed to propagate longitudinally along the basilar membrane (BM) ultimately stimulate the mechano-sensory receptors. The tectorial membrane (TM) plays a key role in this process, but its mechanical function remains unclear. Here we show that the TM supports traveling waves that are an intrinsic feature of its visco-elastic structure. Radial forces applied at audio frequencies (2-20 kHz) to isolated TM segments generate longitudinally propagating waves on the TM with velocities similar to those of the BM traveling wave near its best frequency place. We compute the dynamic shear storage modulus and shear viscosity of the TM from the propagation velocity of the waves and show that segments of the TM from the basal turn are stiffer than apical segments are. Analysis of loading effects of hair bundle stiffness, the limbal attachment of the TM, and viscous damping in the subtectorial space suggests that TM traveling waves can occur in vivo. Our results show the presence of a traveling wave mechanism through the TM that can functionally couple a significant longitudinal extent of the cochlea and may interact with the BM wave to greatly enhance cochlear sensitivity and tuning.
Stimulus motion propels traveling waves in binocular rivalry.
Directory of Open Access Journals (Sweden)
Tomas Knapen
Full Text Available State transitions in the nervous system often take shape as traveling waves, whereby one neural state is replaced by another across space in a wave-like manner. In visual perception, transitions between the two mutually exclusive percepts that alternate when the two eyes view conflicting stimuli (binocular rivalry may also take shape as traveling waves. The properties of these waves point to a neural substrate of binocular rivalry alternations that have the hallmark signs of lower cortical areas. In a series of experiments, we show a potent interaction between traveling waves in binocular rivalry and stimulus motion. The course of the traveling wave is biased in the motion direction of the suppressed stimulus that gains dominance by means of the wave-like transition. Thus, stimulus motion may propel the traveling wave across the stimulus to the extent that the stimulus motion dictates the traveling wave's direction completely. Using a computational model, we show that a speed-dependent asymmetry in lateral inhibitory connections between retinotopically organized and motion-sensitive neurons can explain our results. We argue that such a change in suppressive connections may play a vital role in the resolution of dynamic occlusion situations.
Traveling-Wave Tube Efficiency Enhancement
Dayton, James A., Jr.
2011-01-01
Traveling-wave tubes (TWT's) are used to amplify microwave communication signals on virtually all NASA and commercial spacecraft. Because TWT's are a primary power user, increasing their power efficiency is important for reducing spacecraft weight and cost. NASA Glenn Research Center has played a major role in increasing TWT efficiency over the last thirty years. In particular, two types of efficiency optimization algorithms have been developed for coupled-cavity TWT's. The first is the phase-adjusted taper which was used to increase the RF power from 420 to 1000 watts and the RF efficiency from 9.6% to 22.6% for a Ka-band (29.5 GHz) TWT. This was a record efficiency at this frequency level. The second is an optimization algorithm based on simulated annealing. This improved algorithm is more general and can be used to optimize efficiency over a frequency bandwidth and to provide a robust design for very high frequency TWT's in which dimensional tolerance variations are significant.
2-D traveling-wave patterns in binary fluid convection
Energy Technology Data Exchange (ETDEWEB)
Surko, C.M.; Porta, A.L. [Univ. of California, La Jolla, CA (United States)
1996-12-31
An overview is presented of recent experiments designed to study two-dimensional traveling-wave convection in binary fluid convection in a large aspect ratio container. Disordered patterns are observed when convection is initiated. As time proceeds, they evolve to more ordered patterns, consisting of several domains of traveling-waves separated by well-defined domain boundaries. The detailed character of the patterns depends sensitively on the Rayleigh number. Numerical techniques are described which were developed to provide a quantitative characterization of the traveling-wave patterns. Applications of complex demodulation techniques are also described, which make a detailed study of the structure and dynamics of the domain boundaries possible.
Asymptotic traveling wave solution for a credit rating migration problem
Liang, Jin; Wu, Yuan; Hu, Bei
2016-07-01
In this paper, an asymptotic traveling wave solution of a free boundary model for pricing a corporate bond with credit rating migration risk is studied. This is the first study to associate the asymptotic traveling wave solution to the credit rating migration problem. The pricing problem with credit rating migration risk is modeled by a free boundary problem. The existence, uniqueness and regularity of the solution are obtained. Under some condition, we proved that the solution of our credit rating problem is convergent to a traveling wave solution, which has an explicit form. Furthermore, numerical examples are presented.
Exact Travelling Wave Solutions to a Coupled Nonlinear Evolution Equation[
Institute of Scientific and Technical Information of China (English)
HUANGDing-Jiang; ZHANGHong-Qing
2004-01-01
By using an improved hyperbola function method, several types of exact travelling wave solutions to a coupled nonlinear evolution equation are obtained, which include kink-shaped soliton solutions, bell-shaped soliton solutions, envelop solitary wave solutions, and new solitary waves. The method can be applied to other nonlinear evolution equations in mathematical physics.
Exact Travelling Wave Solutions to a Coupled Nonlinear Evolution Equation
Institute of Scientific and Technical Information of China (English)
HUANG Ding-Jiang; ZHANG Hong-Qing
2004-01-01
By using an improved hyperbola function method, several types of exact travelling wave solutions to a coupled nonlinear evolution equation are obtained, which include kink-shaped soliton solutions, bell-shaped soliton solutions, envelop solitary wave solutions, and new solitary waves. The method can be applied to other nonlinear evolution equations in mathematical physics.
Traveling-wave ion mobility mass spectrometry of protein complexes
DEFF Research Database (Denmark)
Salbo, Rune; Bush, Matthew F; Naver, Helle
2012-01-01
The collision cross-section (Ω) of a protein or protein complex ion can be measured using traveling-wave (T-wave) ion mobility (IM) mass spectrometry (MS) via calibration with compounds of known Ω. The T-wave Ω-values depend strongly on instrument parameters and calibrant selection. Optimization...
Explicit Traveling Wave Solutions to Nonlinear Evolution Equations
Institute of Scientific and Technical Information of China (English)
Linghai ZHANG
2011-01-01
First of all,some technical tools are developed. Then the author studies explicit traveling wave solutions to nonlinear dispersive wave equations,nonlinear dissipative dispersive wave equations,nonlinear convection equations,nonlinear reaction diffusion equations and nonlinear hyperbolic equations,respectively.
Bifurcations and new exact travelling wave solutions for the bidirectional wave equations
Indian Academy of Sciences (India)
HENG WANG; SHUHUA ZHENG; LONGWEI CHEN; XIAOCHUN HONG
2016-11-01
By using the method of dynamical system, the bidirectional wave equations are considered. Based on this method, all kinds of phase portraits of the reduced travelling wave system in the parametric space are given. All possible bounded travelling wave solutions such as dark soliton solutions, bright soliton solutions and periodic travelling wave solutions are obtained. With the aid of {\\it Maple} software, numerical simulations are conducted for dark soliton solutions, bright soliton solutions and periodic travelling wave solutions to the bidirectional waveequations. The results presented in this paper improve the related previous studies.
Potential applications of microstrip devices with traveling wave resonators
Directory of Open Access Journals (Sweden)
Glushechenko E. N.
2013-05-01
Full Text Available The shortcomings of the known microwave filters in microstrip lines are considered, the advantages of the use of directional traveling-wave filters in microstrip performance and examples of their potential applications are shown.
Microfabricated, 94 GHz, 25 W, Helical Traveling Wave Tube Project
National Aeronautics and Space Administration — Teraphysics Corporation proposes to design and develop a microfabricated, 94 GHz, 25 W traveling wave tube (TWT) with 53% efficiency for NASA applications. In Phase...
Travelling wave solutions for ( + 1)-dimensional nonlinear evolution equations
Indian Academy of Sciences (India)
Jonu Lee; Rathinasamy Sakthivel
2010-10-01
In this paper, we implement the exp-function method to obtain the exact travelling wave solutions of ( + 1)-dimensional nonlinear evolution equations. Four models, the ( + 1)-dimensional generalized Boussinesq equation, ( + 1)-dimensional sine-cosine-Gordon equation, ( + 1)-double sinh-Gordon equation and ( + 1)-sinh-cosinh-Gordon equation, are used as vehicles to conduct the analysis. New travelling wave solutions are derived.
Emergence of traveling waves in the spreading of dengue fever
Bianco, Simone; Faatz, Andrea; Cummings, Derek; Shaw, Leah
2010-03-01
Dengue fever is a multistrain mosquito-borne subtropical disease that exhibits complex oscillatory outbreaks. Epidemiological data from Thailand displays traveling waves of infection originating in Bangkok, the largest population center (Cummings et al., Nature 427: 344, 2004). We present a multistrain metapopulation model in which traveling wave like behavior results from migration coupling between heterogeneous regions. The region with the highest effective person-to-person contact rate leads the dynamics. A stochastic version of the model will also be presented.
Dynamics and Bifurcations of Travelling Wave Solutions of (, ) Equations
Indian Academy of Sciences (India)
Dahe Feng; Jibin Li
2007-11-01
By using the bifurcation theory and methods of planar dynamical systems to (, ) equations, the dynamical behavior of different physical structures like smooth and non-smooth solitary wave, kink wave, smooth and non-smooth periodic wave, and breaking wave is obtained. The qualitative change in the physical structures of these waves is shown to depend on the systemic parameters. Under different regions of parametric spaces, various sufficient conditions to guarantee the existence of the above waves are given. Moreover, some explicit exact parametric representations of travelling wave solutions are listed.
Travelling waves in the expanding spatially homogeneous space-times
Alekseev, George
2014-01-01
Some classes of the so called "travelling wave" solutions of Einstein and Einstein - Maxwell equations in General Relativity and of dynamical equations for massless bosonic fields in string gravity in four and higher dimensions are presented. Similarly to the well known pp-waves, these travelling wave solutions may depend on arbitrary functions of a null coordinate which determine the arbitrary profiles and polarizations of the waves. However, in contrast with pp-waves, these waves do not admit the null Killing vector fields and can exist in some curved (expanding and spatially homogeneous) background space-times, where these waves propagate in certain directions without any scattering. Mathematically, some of these classes of solutions arise as the fixed points of Kramer-Neugebauer transformations for hyperbolic integrable reductions of the mentioned above field equations, or, in the other cases, -- after imposing of the ansatz that these waves do not change the part of spatial metric transversal to the dire...
Dendritic Actin Filament Nucleation Causes Traveling Waves and Patches
Carlsson, Anders E
2010-01-01
The polymerization of actin via branching at a cell membrane containing nucleation-promoting factors is simulated using a stochastic-growth methodology. The polymerized-actin distribution displays three types of behavior: a) traveling waves, b) moving patches, and c) random fluctuations. Increasing actin concentration causes a transition from patches to waves. The waves and patches move by a treadmilling mechanism which does not require myosin II. The effects of downregulation of key proteins on actin wave behavior are evaluated.
Study of Novel Slow Wave Circuit for Miniaturized Millimeter Wave Helical Traveling Wave Tube
Li, Bin; Zhu, Xiaofang; Liao, Li; Yang, Zhonghai; Zeng, Baoqing; Yao, Lieming
2006-07-01
Two kinds of novel helical slow wave circuit, supported by Chemical Vapor Deposition (CVD) diamond, are presented. They are applying in miniaturized millimeter wave helical traveling wave tube. Cold test characteristic of these circuits are simulated by MAFIA code. Higher performances are achieved with smaller size, compared with conventional circuit supported by BeO rods. The nonlinear analysis is implemented by Beam and Wave Interaction (BWI) module, which is a part of TWTCAD Integrated Framework. Results have been found to be consistent with the expectation. It should be wider apply in microwave and millimeter wave vacuum electronic devices.
AN INNER-FEEDBACK-STYLE TRAVELING-WAVE TUBE OSCILLATOR
Institute of Scientific and Technical Information of China (English)
Wang Zicheng; Li Haiqiang; Xu Anyu; Liu Qinglun; Liu Wei
2012-01-01
A new concept of inner-feedback-style traveling wave tube oscillator,which is based on a traveling-wave tube having a partial reflector located at near the junction between the slow-wave structure and the output coupler and a mechanical tuner connected to the input coupler,is proposed.Simulations by CHIPIC code show that the inner-feedback-style traveling wave tube oscillator having 100W of power,about 10％ of electron efficiency and a tunable band of 73.35-73.91 GHz may be achieved.Compared with Backward Wave Oscillators (BWOs),the new devices have similar ability for tuning,and have much higher electron efficiency,suggesting much more potential as a Terahertz source.
Dynamics Calculation of Travel Wave Tube
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
During the dynamics calculating of the travel tube, we must obtain the field map in the tube. The field map can be affected by not only the beam loading, but also the attenuation coefficient. The calculation of the attenuation coefficient
Turbulent boundary-layer control with spanwise travelling waves
Energy Technology Data Exchange (ETDEWEB)
Whalley, Richard D; Choi, Kwing-So, E-mail: Richard.Whalley@nottingham.ac.uk, E-mail: Kwing-So.Choi@nottingham.ac.uk [Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD (United Kingdom)
2011-12-22
It has been demonstrated through numerical simulations using Lorentz forcing that spanwise travelling waves on turbulent wall flows can lead to a skin-friction drag reduction on the order of 30%. As an aeronautical application of this innovative flow control technique, we have investigated into the use of Dielectric-Barrier-Discharge (DBD) plasma actuators to generate spanwise travelling waves in air. The near-wall structures modified by the spanwise travelling waves were studied using the PIV technique in a wind tunnel, while the associated turbulence statistics were carefully documented using hot-wire anemometry. We observed the spreading of low-speed fluid by the spanwise travelling streamwise vortices, which seems to have greatly attenuated the turbulence production process. This is very much in line with the finding of DNS studies, where wide low-speed ribbons replaced the low-speed streaks.
Travelling wave solution of the Buckley-Leverett equation
Tychkov, Sergey
2016-09-01
A two-dimensional Buckley-Leverett system governing motion of two-phase flow is considered. Travelling-wave solutions for these equations are found. Wavefronts of these solutions may be circles, lines and parabolae. Values of pressure and saturation on the wave fronts are found.
Recent developments in guided wave travel time tomography
Zon, A.T. van; Volker, A.W.F.
2014-01-01
The concept of predictive maintenance using permanent sensors that monitor the integrity of an installation is an interesting addition to the current method of periodic inspections. Guided wave tomography had been developed to create a map of the wall thickness using the travel times of guided waves
Bifurcations of travelling wave solutions for two generalized Boussinesq systems
Institute of Scientific and Technical Information of China (English)
2008-01-01
Using the methods of dynamical systems for two generalized Boussinesq systems, the existence of all possible solitary wave solutions and many uncountably infinite periodic wave solutions is obtained. Exact explicit parametric representations of the travelling solutions are given. To guarantee the existence of the above solutions, all parameter conditions are determined.
EVANS FUNCTIONS AND ASYMPTOTIC STABILITY OF TRAVELING WAVE SOLUTIONS
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
This paper studies the asymptotic stability of traveling wave solutions of nonlinear systems of integral-differential equations. It has been established that linear stability of traveling waves is equivalent to nonlinear stability and some “nice structure” of the spectrum of an associated operator implies the linear stability. By using the method of variation of parameter, the author defines some complex analytic function, called the Evans function. The zeros of the Evans function corresponds to the eigenvalues of the associated linear operator. By calculating the zeros of the Evans function, the asymptotic stability of the travling wave solutions is established.
Solitary Wave and Non-traveling Wave Solutions to Two Nonlinear Evolution Equations
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
By applying the extended homogeneous balance method, we find some new explicit solutions to two nonlinear evolution equations, which include n-resonance plane solitary wave and non-traveling wave solutions.
A Low Cost Traveling Wave Tube for Wireless Communications
Vancil, Bernard Kenneth; Wintucky, Edwin G.; Williams, W. D. (Technical Monitor)
2002-01-01
Demand for high data rate wireless communications is pushing up amplifier power, bandwidth and frequency requirements. Some systems are using vacuum electron devices again because solid-state power amplifiers are not able to efficiently meet the new requirements. The traveling wave tube is the VED of choice because of its excellent broadband capability as well as high power efficiency and frequency. But TWTs are very expensive on a per watt basis below about 200 watts of output power. We propose a new traveling wave tube that utilizes cathode ray tube construction technology and electrostatic focusing. We believe the tube can be built in quantity for under $1,000 each. We discuss several traveling wave tube slow wave circuits that lend themselves to the new construction. We will present modeling results and data on prototype devices.
Traveling waves in an optimal velocity model of freeway traffic
Berg, Peter; Woods, Andrew
2001-03-01
Car-following models provide both a tool to describe traffic flow and algorithms for autonomous cruise control systems. Recently developed optimal velocity models contain a relaxation term that assigns a desirable speed to each headway and a response time over which drivers adjust to optimal velocity conditions. These models predict traffic breakdown phenomena analogous to real traffic instabilities. In order to deepen our understanding of these models, in this paper, we examine the transition from a linear stable stream of cars of one headway into a linear stable stream of a second headway. Numerical results of the governing equations identify a range of transition phenomena, including monotonic and oscillating travelling waves and a time- dependent dispersive adjustment wave. However, for certain conditions, we find that the adjustment takes the form of a nonlinear traveling wave from the upstream headway to a third, intermediate headway, followed by either another traveling wave or a dispersive wave further downstream matching the downstream headway. This intermediate value of the headway is selected such that the nonlinear traveling wave is the fastest stable traveling wave which is observed to develop in the numerical calculations. The development of these nonlinear waves, connecting linear stable flows of two different headways, is somewhat reminiscent of stop-start waves in congested flow on freeways. The different types of adjustments are classified in a phase diagram depending on the upstream and downstream headway and the response time of the model. The results have profound consequences for autonomous cruise control systems. For an autocade of both identical and different vehicles, the control system itself may trigger formations of nonlinear, steep wave transitions. Further information is available [Y. Sugiyama, Traffic and Granular Flow (World Scientific, Singapore, 1995), p. 137].
Control of spiral waves and turbulent states in a cardiac model by travelling-wave perturbations
Institute of Scientific and Technical Information of China (English)
王鹏业; 谢平; 尹华伟
2003-01-01
We propose a travelling-wave perturbation method to control the spatiotemporal dynamics in a cardiac model.It is numerically demonstrated that the method can successfully suppress the wave instability(alternans in action potential duration) in the one-dimensional case and convert spiral waves and turbulent states to the normal travelling wave states in the two-dimensional case.An experimental scheme is suggested which may provide a new design for a cardiac defibrillator.
New Exact Travelling Wave Solutions to Kundu Equation
Institute of Scientific and Technical Information of China (English)
HUANG Ding-Jiang; LI De-Sheng; ZHANG Hong-Qing
2005-01-01
Based on a first-order nonlinear ordinary differential equation with six-degree nonlinear term, we first present a new auxiliary equation expansion method and its algorithm. Being concise and straightforward, the method is applied to the Kundu equation. As a result, some new exact travelling wave solutions are obtained, which include bright and dark solitary wave solutions, triangular periodic wave solutions, and singular solutions. This algorithm can also be applied to other nonlinear evolution equations in mathematical physics.
Development of a fishbone travelling wave antenna for LHD
Energy Technology Data Exchange (ETDEWEB)
Takase, Y.; Ejiri, A.; Shiraiwa, S. [Tokyo Univ., Tokyo (JP)] [and others
2002-10-01
A travelling wave antenna in the ion cyclotron range of frequencies (ICRF) is being developed for LHD, motivated by the need to provide a capability for rotational transform profile control by noninductively driven current. Stability calculations suggest that it is possible to increase the beta limit and obtain access to the second stability regime by controlling the rotational transform profile. Current drive by the ICRF fast wave (magnetosonic wave) can be used for such a purpose. (author)
A generic travelling wave solution in dissipative laser cavity
Indian Academy of Sciences (India)
BALDEEP KAUR; SOUMENDU JANA
2016-10-01
A large family of cosh-Gaussian travelling wave solution of a complex Ginzburg–Landau equation (CGLE), that describes dissipative semiconductor laser cavity is derived. Using perturbation method, the stability region is identified. Bifurcation analysis is done by smoothly varying the cavity loss coefficient to provide insight of the system dynamics. He’s variational method is adopted to obtain the standard sech-type and the notso-explored but promising cosh-Gaussian type, travelling wave solutions. For a given set of system parameters, only one sech solution is obtained, whereas several distinct solution points are derived for cosh-Gaussian case. These solutions yield a wide variety of travelling wave profiles, namely Gaussian, near-sech, flat-top and a cosh-Gaussian with variable central dip. A split-step Fourier method and pseudospectral method have been used for direct numerical solution of the CGLE and travelling wave profiles identical to the analytical profiles have been obtained. We also identified the parametric zone that promises an extremely large family of cosh-Gaussian travelling wave solutions with tunable shape. This suggests that the cosh-Gaussian profile is quite generic and would be helpful for further theoretical as well as experimental investigation on pattern formation, pulse dynamics and localization in semiconductor laser cavity.
Structure and dynamics of modulated traveling waves in cellular flames
Bayliss, A; Riecke, H
1994-01-01
We describe spatial and temporal patterns in cylindrical premixed flames in the cellular regime, $Le < 1$, where the Lewis number $Le$ is the ratio of thermal to mass diffusivity of a deficient component of the combustible mixture. A transition from stationary, axisymmetric flames to stationary cellular flames is predicted analytically if $Le$ is decreased below a critical value. We present the results of numerical computations to show that as $Le$ is further decreased traveling waves (TWs) along the flame front arise via an infinite-period bifurcation which breaks the reflection symmetry of the cellular array. Upon further decreasing $Le$ different kinds of periodically modulated traveling waves (MTWs) as well as a branch of quasiperiodically modulated traveling waves (QPMTWs) arise. These transitions are accompanied by the development of different spatial and temporal symmetries including period doublings and period halvings. We also observe the apparently chaotic temporal behavior of a disordered cellul...
Experimental challenges of Traveling-wave Thomson scattering
Energy Technology Data Exchange (ETDEWEB)
Debus, Alexander; Steiniger, Klaus; Siebold, Mathias; Jochmann, Axel; Irman, Arie; Bussmann, Michael; Schramm, Ulrich; Cowan, Thomas; Sauerbrey, Roland [Forschungzentrum Dresden-Rossendorf, Institute for Radiation Physics, 01328 Dresden (Germany)
2011-07-01
Traveling-wave Thomson scattering is a novel interaction design that allows circumventing the Rayleigh limit in optical undulators, which is interesting for possible realizations of Thomson scattering sources with photon yields per pulse that are 2-3 orders of magnitudes beyond current designs. Here we present details on how a Traveling-wave setup has to be implemented in experiment. An emphasis is put on the use of varied-line spacing (VLS) gratings for spatio-temporal beam shaping at large interaction angles to achieve optimal overlap. At the FZD we are using the high-power laser system DRACO (250TW) to realize a Thomson source with electrons from the linear accelerator ELBE or laser-plasma accelerated electrons. We present the current status and further progress towards a head-on Thomson source and a Traveling-Wave Thomson scattering source aiming for high photon yields per pulse.
Travelling wave solutions for a second order wave equation of KdV type
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The theory of planar dynamical systems is used to study the dynamical behaviours of travelling wave solutions of a nonlinear wave equations of KdV type. In different regions of the parametric space, sufficient conditions to guarantee the existence of solitary wave solutions, periodic wave solutions, kink and anti-kink wave solutions are given. All possible exact explicit parametric representations are obtained for these waves.
Jiang, Zhu-Hui; Huang, Si-Xun; You, Xiao-Bao; Xiao, Yi-Guo
2014-05-01
Most studies of the synthetic aperture radar remote sensing of ocean internal waves are based on the solitary wave solutions of the Korteweg—de Vries (KdV) equation, and the dissipative term in the KdV equation is not taken into account. However, the dissipative term is very important, both in the synthetic aperture radar images and in ocean models. In this paper, the traveling-wave structure to characterize the ocean internal wave phenomenon is modeled, the results of numerical experiments are advanced, and a theoretical hypothesis of the traveling wave to retrieve the ocean internal wave parameters in the synthetic aperture radar images is introduced.
New traveling wave solutions for nonlinear evolution equations
Energy Technology Data Exchange (ETDEWEB)
El-Wakil, S.A. [Theoretical Research Group, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt); Madkour, M.A. [Theoretical Research Group, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt); Abdou, M.A. [Theoretical Research Group, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt)]. E-mail: m_abdou_eg@yahoo.com
2007-06-11
The generalized Jacobi elliptic function expansion method is used with a computerized symbolic computation for constructing the new exact traveling wave solutions. The validity and reliability of the method is tested by its applications on a class of nonlinear evolution equations of special interest in mathematical physics. As a result, many exact traveling wave solutions are obtained which include the kink-shaped solutions, bell-shaped solutions, singular solutions and periodic solutions. The method is straightforward and concise, and it can also be applied to other nonlinear evolution equations in mathematical physics.
Dispersion-Engineered Traveling Wave Kinetic Inductance Parametric Amplifier
Zmuidzinas, Jonas (Inventor); Day, Peter K. (Inventor)
2014-01-01
A traveling wave kinetic inductance parametric amplifier comprises a superconducting transmission line and a dispersion control element. The transmission line can include periodic variations of its dimension along its length. The superconducting material can include a high normal state resistivity material. In some instances the high normal state resistivity material includes nitrogen and a metal selected from the group consisting of titanium, niobium and vanadium. The traveling wave kinetic inductance parametric amplifier is expected to exhibit a noise temperature below 100 mK/GHz.
Polymers on disordered trees, spin glasses, and traveling waves
Energy Technology Data Exchange (ETDEWEB)
Derrida, B.; Spohn, H.
1988-06-01
We show that the problem of a directed polymer on a tree with disorder can be reduced to the study of nonlinear equations of reaction-diffusion type. These equations admit traveling wave solutions that move at all possible speeds above a certain minimal speed. The speed of the wavefront is the free energy of the polymer problem and the minimal speed corresponds to a phase transition to a glassy phase similar to the spin-glass phase. Several properties of the polymer problem can be extracted from the correspondence with the traveling wave: probability distribution of the free energy, overlaps, etc.
Noisy traveling waves: Effect of selection on genealogies
Brunet, E.; Derrida, B.; Mueller, A. H.; Munier, S.
2006-10-01
For a family of models of evolving population under selection, which can be described by noisy traveling-wave equations, the coalescence times along the genealogical tree scale like ln αN, where N is the size of the population, in contrast with neutral models for which they scale like N. An argument relating this time scale to the diffusion constant of the noisy traveling wave leads to a prediction for α which agrees with our simulations. An exactly soluble case gives trees with statistics identical to those predicted for mean-field spin glasses by Parisi's theory.
Traveling wave dispersal in partially sedentary age-structured populations
Le, Thuc Manh; Van Minh, Nguyen
2010-01-01
In this paper we present a thorough study on the existence of traveling waves in a mathematical model of dispersal in a partially sedentary age-structured population. This type of model was first proposed by Veit and Lewis in [{\\it Am. Nat.}, {\\bf 148} (1996), 255-274]. We choose the fecundity function to be the Beverton-Holt type function. We extend the theory of traveling waves in the population genetics model of Weinberger in [{\\it SIAM J. Math. Anal.}, {\\bf 13} (1982), 353-396] to the case when migration depends on age groups and a fraction of the population does not migrate.
Exact travelling wave solutions for some important nonlinear physical models
Indian Academy of Sciences (India)
Jonu Lee; Rathinasamy Sakthivel
2013-05-01
The two-dimensional nonlinear physical models and coupled nonlinear systems such as Maccari equations, Higgs equations and Schrödinger–KdV equations have been widely applied in many branches of physics. So, finding exact travelling wave solutions of such equations are very helpful in the theories and numerical studies. In this paper, the Kudryashov method is used to seek exact travelling wave solutions of such physical models. Further, three-dimensional plots of some of the solutions are also given to visualize the dynamics of the equations. The results reveal that the method is a very effective and powerful tool for solving nonlinear partial differential equations arising in mathematical physics.
Up-date of traveling wave tube improvements
Buck, E.
1978-01-01
NASA research in the area of traveling wave tube technology is reviewed, with emphasis on the basic physics of guns and collectors and a computer model for the interaction between the electron beam and the RF circuit. The design of a multistage depressed collector, capable of multiplying tube efficiency by a factor of two or more, is presented; one such design has been adopted for commercial traveling wave tube production. A three-dimensional model of electron trajectories toward the collector also receives attention, as does the problem of RF circuit losses.
Stability of traveling wave solutions to the Whitham equation
Energy Technology Data Exchange (ETDEWEB)
Sanford, Nathan, E-mail: nathansanford2013@u.northwestern.edu [Mathematics Department, Seattle University, 901 12th Avenue, Seattle, WA 98122 (United States); Kodama, Keri, E-mail: kodamak@seattleu.edu [Mathematics Department, Seattle University, 901 12th Avenue, Seattle, WA 98122 (United States); Carter, John D., E-mail: carterj1@seattleu.edu [Mathematics Department, Seattle University, 901 12th Avenue, Seattle, WA 98122 (United States); Kalisch, Henrik, E-mail: Henrik.Kalisch@math.uib.no [Department of Mathematics, University of Bergen, Postbox 7800, 5020 Bergen (Norway)
2014-06-13
The Whitham equation was proposed as an alternate model equation for the simplified description of unidirectional wave motion at the surface of an inviscid fluid. An advantage of the Whitham equation over the KdV equation is that it provides a more faithful description of short waves of small amplitude. Recently, Ehrnström and Kalisch [19] established that the Whitham equation admits periodic traveling-wave solutions. The focus of this work is the stability of these solutions. The numerical results presented here suggest that all large-amplitude solutions are unstable, while small-amplitude solutions with large enough wavelength L are stable. Additionally, periodic solutions with wavelength smaller than a certain cut-off period always exhibit modulational instability. The cut-off wavelength is characterized by kh{sub 0}=1.145, where k=2π/L is the wave number and h{sub 0} is the mean fluid depth. - Highlights: • The Whitham equation is used as a model for waves on shallow water. • The Whitham equation admits periodic traveling-wave solutions. • All large-amplitude traveling-wave Whitham solutions are unstable. • Small-amplitude solutions with sufficient period are stable.
A rational approach to the traveling wave phenomenon.
Tonndorf, J
1979-01-01
To aid comprehension of cochlear traveling waves, the present article will explain this complex phenomenon in terms of its underlying principles: (1) fluid mechanics, with particular reference to a tangible, analogous event, wave transformation on sloping beaches; (2) the central role of the cochlear stiffness gradient with respect to an energy exchange between travel speed and amplitude of cochlear waves, low pass filter action with distance, and impedance matching for the benefit of wave progression; (3) spatial domain and frequency domain considerations; (4) the solution to the classic dilemma between cochlear tuning and damping; and (5) the task of the helicotrema. I will not discuss the ultimate mechanical stimulation of cochlear hair cells that is mediated by shearing interactions between the tectorial membrane and the organ proper.
On Irrotational Flows Beneath Periodic Traveling Equatorial Waves
Quirchmayr, Ronald
2016-08-01
We discuss some aspects of the velocity field and particle trajectories beneath periodic traveling equatorial surface waves over a flat bed in a flow with uniform underlying currents. The system under study consists of the governing equations for equatorial ocean waves within a non-inertial frame of reference, where Euler's equation of motion has to be suitably adjusted, in order to account for the influence of the earth's rotation.
Traveling wave front solutions in lateral-excitatory neuronal networks
Directory of Open Access Journals (Sweden)
Sittipong Ruktamatakul
2008-05-01
Full Text Available In this paper, we discuss the shape of traveling wave front solutions to a neuronal model with the connection function to be of lateral excitation type. This means that close connecting cells have an inhibitory influence, while cells that aremore distant have an excitatory influence. We give results on the shape of the wave fronts solutions, which exhibit different shapes depend ing on the size of a threshold parameter.
On Irrotational Flows Beneath Periodic Traveling Equatorial Waves
Quirchmayr, Ronald
2017-06-01
We discuss some aspects of the velocity field and particle trajectories beneath periodic traveling equatorial surface waves over a flat bed in a flow with uniform underlying currents. The system under study consists of the governing equations for equatorial ocean waves within a non-inertial frame of reference, where Euler's equation of motion has to be suitably adjusted, in order to account for the influence of the earth's rotation.
Directory of Open Access Journals (Sweden)
Zhong-ye Tian
2014-01-01
Full Text Available The seismic responses of a long-span cable-stayed bridge under uniform excitation and traveling wave excitation in the longitudinal direction are, respectively, computed. The numerical results show that the bridge’s peak seismic responses vary significantly as the apparent wave velocity decreases. Therefore, the traveling wave effect must be considered in the seismic design of long-span bridges. The bridge’s peak seismic responses do not vary monotonously with the apparent wave velocity due to the traveling wave resonance. A new traveling wave excitation method that can simplify the multisupport excitation process into a two-support excitation process is developed.
Traveling wave solutions for reaction-diffusion systems
DEFF Research Database (Denmark)
Pedersen, Michael; Lin, Zhigui; Tian, Canrong
2010-01-01
This paper is concerned with traveling waves of reaction–diffusion systems. The definition of coupled quasi-upper and quasi-lower solutions is introduced for systems with mixed quasimonotone functions, and the definition of ordered quasi-upper and quasi-lower solutions is also given for systems...... with quasimonotone nondecreasing functions. By the monotone iteration method, it is shown that if the system has a pair of coupled quasi-upper and quasi-lower solutions, then there exists at least a traveling wave solution. Moreover, if the system has a pair of ordered quasi-upper and quasi-lower solutions......, then there exists at least a traveling wavefront. As an application we consider the delayed system of a mutualistic model....
LOCAL STABILITY OF TRAVELLING FRONTS FOR A DAMPED WAVE EQUATION
Institute of Scientific and Technical Information of China (English)
Cao LUO
2013-01-01
The paper is concerned with the long-time behaviour of the travelling fronts of the damped wave equation αutt +ut =uxx-V'(u) on R.The long-time asymptotics of the solutions of this equation are quite similar to those of the corresponding reaction-diffusion equation ut =uxx-V'(u).Whereas a lot is known about the local stability of travelling fronts in parabolic systems,for the hyperbolic equations it is only briefly discussed when the potential V is of bistable type.However,for the combustion or monostable type of V,the problem is much more complicated.In this paper,a local stability result for travelling fronts of this equation with combustion type of nonlinearity is established.And then,the result is extended to the damped wave equation with a case of monostable pushed front.
NEW EXACT TRAVELLING WAVE SOLUTIONS TO THREE NONLINEAR EVOLUTION EQUATIONS
Institute of Scientific and Technical Information of China (English)
Sirendaoreji
2004-01-01
Based on the computerized symbolic computation, some new exact travelling wave solutions to three nonlinear evolution equations are explicitly obtained by replacing the tanhξ in tanh-function method with the solutions of a new auxiliary ordinary differential equation.
Polarization of Tapered Semiconductor Travelling-Wave Amplifiers
Institute of Scientific and Technical Information of China (English)
Huang Dexiu; Li Hong
2001-01-01
The polarization of a tapered semi-conductor travelling-wave amplifier has been investigated with the transfer matrix method based on convective equation. It is shown that the apparent polarization mode competition exists, and polarization-independent tapered semiconductor travellingwave amplifiers can be obtained through the optimization of amplifier parameters.
Tuning and Matching of Constant Impedance Travelling Wave Accelerating Structure
Institute of Scientific and Technical Information of China (English)
YANG; Jing-he; ZHU; Zhi-bin; WU; Qing-feng; ZENG; Zi-qiang; WANG; Xiu-long; ZHOU; Wen-zhen
2015-01-01
As the penetration depth of electron accelerated by 10MeV electron irradiating accelerator is deep,and the accelerator has broad application prospects.The performance of the accelerator is influenced,to a great extent,by the traveling wave accelerating tube,which is the core component of the accelerator.To develop the accelerator
K-Band Traveling-Wave Tube Amplifier
Force, Dale A.; Simons, Rainee N.; Peterson, Todd T.; Spitsen, Paul C.
2010-01-01
A new space-qualified, high-power, high-efficiency, K-band traveling-wave tube amplifier (TWTA) will provide high-rate, high-capacity, direct-to-Earth communications for science data and video gathered by the Lunar Reconnaissance Orbiter (LRO) during its mission. Several technological advances were responsible for the successful demonstration of the K-band TWTA.
INSTABILITY OF TRAVELING WAVES OF THE KURAMOTO-SIVASHINSKY EQUATION
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
Consider any traveling wave solution of the Kuramoto-Sivashinsky equation that is asymptotic to a constant as x → +∞. The authors prove that it is nonlinearly unstable under H1perturbations. The proof is based on a general theorem in Banach spaces asserting that linear instability implies nonlinear instability.
On frequency and time domain models of traveling wave tubes
Théveny, Stéphane; Elskens, Yves
2016-01-01
We discuss the envelope modulation assumption of frequency-domain models of traveling wave tubes (TWTs) and test its consistency with the Maxwell equations. We compare the predictions of usual frequency-domain models with those of a new time domain model of the TWT.
BIFURCATIONS OF TRAVELLING WAVE SOLUTIONS TO A COUPLED NONLINEAR WAVE SYSTEM
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
Employ theory of bifurcations of dynamical systems to a system of coupled nonlin-ear equations, the existence of solitary wave solutions, kink wave solutions, anti-kink wave solutions and periodic wave solutions is obtained. Under different parametric conditions, various suffcient conditions to guarantee the existence of the above so-lutions are given. Some exact explicit parametric representations of travelling wave solutions are derived.
Holes and chaotic pulses of traveling waves coupled to a long-wave mode
Herrero, H; Herrero, Henar; Riecke, Hermann
1997-01-01
Localized traveling-wave pulses and holes, i.e. localized regions of vanishing wave amplitude, are investigated in a real Ginzburg-Landau equation coupled to a long-wave mode. In certain parameter regimes the pulses exhibit a Hopf bifurcation which leads to a breathing motion. Subsequently the oscillations undergo period-doubling bifurcations and become chaotic.
High-frequency homogenization for travelling waves in periodic media.
Harutyunyan, Davit; Milton, Graeme W; Craster, Richard V
2016-07-01
We consider high-frequency homogenization in periodic media for travelling waves of several different equations: the wave equation for scalar-valued waves such as acoustics; the wave equation for vector-valued waves such as electromagnetism and elasticity; and a system that encompasses the Schrödinger equation. This homogenization applies when the wavelength is of the order of the size of the medium periodicity cell. The travelling wave is assumed to be the sum of two waves: a modulated Bloch carrier wave having crystal wavevector [Formula: see text] and frequency ω1 plus a modulated Bloch carrier wave having crystal wavevector [Formula: see text] and frequency ω2. We derive effective equations for the modulating functions, and then prove that there is no coupling in the effective equations between the two different waves both in the scalar and the system cases. To be precise, we prove that there is no coupling unless ω1=ω2 and [Formula: see text] where Λ=(λ1λ2…λ d ) is the periodicity cell of the medium and for any two vectors [Formula: see text] the product a⊙b is defined to be the vector (a1b1,a2b2,…,adbd ). This last condition forces the carrier waves to be equivalent Bloch waves meaning that the coupling constants in the system of effective equations vanish. We use two-scale analysis and some new weak-convergence type lemmas. The analysis is not at the same level of rigour as that of Allaire and co-workers who use two-scale convergence theory to treat the problem, but has the advantage of simplicity which will allow it to be easily extended to the case where there is degeneracy of the Bloch eigenvalue.
High-frequency homogenization for travelling waves in periodic media
Harutyunyan, Davit; Milton, Graeme W.; Craster, Richard V.
2016-07-01
We consider high-frequency homogenization in periodic media for travelling waves of several different equations: the wave equation for scalar-valued waves such as acoustics; the wave equation for vector-valued waves such as electromagnetism and elasticity; and a system that encompasses the Schrödinger equation. This homogenization applies when the wavelength is of the order of the size of the medium periodicity cell. The travelling wave is assumed to be the sum of two waves: a modulated Bloch carrier wave having crystal wavevector k and frequency ω1 plus a modulated Bloch carrier wave having crystal wavevector m and frequency ω2. We derive effective equations for the modulating functions, and then prove that there is no coupling in the effective equations between the two different waves both in the scalar and the system cases. To be precise, we prove that there is no coupling unless ω1=ω2 and (k -m )⊙Λ ∈2 π Zd, where Λ=(λ1λ2…λd) is the periodicity cell of the medium and for any two vectors a =(a1,a2,…,ad),b =(b1,b2,…,bd)∈Rd, the product a⊙b is defined to be the vector (a1b1,a2b2,…,adbd). This last condition forces the carrier waves to be equivalent Bloch waves meaning that the coupling constants in the system of effective equations vanish. We use two-scale analysis and some new weak-convergence type lemmas. The analysis is not at the same level of rigour as that of Allaire and co-workers who use two-scale convergence theory to treat the problem, but has the advantage of simplicity which will allow it to be easily extended to the case where there is degeneracy of the Bloch eigenvalue.
The origin of traveling waves in an emperor penguin huddle
Gerum, RC; Fabry, B.; Metzner, C.; Beaulieu, M.; Ancel, A.; Zitterbart, Daniel
2013-01-01
Emperor penguins breed during the Antarctic winter and have to endure temperatures as low as −50 °C and wind speeds of up to 200 km h−1. To conserve energy, they form densely packed huddles with a triangular lattice structure. Video recordings from previous studies revealed coordinated movements in regular wave-like patterns within these huddles. It is thought that these waves are triggered by individual penguins that locally disturb the huddle structure, and that the traveling wave serves to...
Miniature traveling wave tube and method of making
Kosmahl, Henry G. (Inventor)
1989-01-01
It is an object of the invention to provide a miniature traveling wave tube which will have most of the advantages of solid state circuitry but with higher efficiency and without being highly sensitive to temperature and various types of electromagnetic radiation and subatomic particles as are solid state devices. The traveling wave tube which is about 2.5 cm in length includes a slow wave circuit (SWS) comprising apertured fins with a top cover which is insulated from the fins by strips or rungs of electrically insulating, dielectric material. Another object of the invention is to construct a SWS of extremely small size by employing various grooving or etching methods and by providing insulating strips or rungs by various deposition and masking techniques.
The origin of traveling waves in an emperor penguin huddle
Gerum, R. C.; Fabry, B.; Metzner, C.; Beaulieu, M.; Ancel, A.; Zitterbart, D. P.
2013-12-01
Emperor penguins breed during the Antarctic winter and have to endure temperatures as low as -50 °C and wind speeds of up to 200 km h-1. To conserve energy, they form densely packed huddles with a triangular lattice structure. Video recordings from previous studies revealed coordinated movements in regular wave-like patterns within these huddles. It is thought that these waves are triggered by individual penguins that locally disturb the huddle structure, and that the traveling wave serves to remove the lattice defects and restore order. The mechanisms that govern wave propagation are currently unknown, however. Moreover, it is unknown if the waves are always triggered by the same penguin in a huddle. Here, we present a model in which the observed wave patterns emerge from simple rules involving only the interactions between directly neighboring individuals, similar to the interaction rules found in other jammed systems, e.g. between cars in a traffic jam. Our model predicts that a traveling wave can be triggered by a forward step of any individual penguin located within a densely packed huddle. This prediction is confirmed by optical flow velocimetry of the video recordings of emperor penguins in their natural habitat.
Chemically driven traveling waves in DNA
Lipniacki, Tomasz
1999-12-01
The nonlinear mechanical model constructed in a previous paper [Nuovo Cimento D 20, 833 (1998)] is developed in order to study the dynamics of the DNA double helix. It is assumed that the hydrophobic interaction between subsequent base pairs may be influenced by a RNA polymerase. The Lagrangian, constructed on the basis of ``geometrical'' properties of the DNA molecule, depends on time and contains first and second derivatives of the twist angle. The energy dissipation term is added to the dynamical equations resulting from the Lagrange formalism. It is proved that the system has pulselike solitary wave solutions for which the dissipated energy is balanced by the energy pumped by the advancing RNA polymerase. The physical interpretation of our solution is the local untwisting of the DNA molecule during transcription of messenger RNA.
Do gravitational waves travel at light velocity?
Energy Technology Data Exchange (ETDEWEB)
Novello, M.; De Lorenci, V.A. [Laboratorio de Cosmologia e Fisica Experimental de Altas Energias, Centro Brasileiro de Pesquisas Fisicas, Rua Dr. Xavier Sigaud, 150, Urca, Rio de Janeiro CEP 22290-180-RJ (Brazil); de Freitas, L.R. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Ilha do Fundao-CT-Bloco A, Rio de Janeiro-RJ (Brazil)
1997-02-01
We extend the standard Feynman{endash}Deser approach of field theoretical derivation of Einstein{close_quote}s gravitational theory. We show that it is possible to obtain a theory that incorporates a great part of general relativity (GR) and can be interpreted in the standard geometrical way like GR, as far as the interaction of matter to gravity is concerned. The most important distinction of the new theory concerns the gravity-to-gravity interaction. This theory satisfies all standard tests of gravity and leads to new predictions about gravitational propagation. Since there is a strong expectation that the detection of gravitational waves will occur in the near future, the question of which theory describes nature better will probably be settled soon. {copyright} 1997 Academic Press, Inc.
Parsimonious wave-equation travel-time inversion for refraction waves
Fu, Lei
2017-02-14
We present a parsimonious wave-equation travel-time inversion technique for refraction waves. A dense virtual refraction dataset can be generated from just two reciprocal shot gathers for the sources at the endpoints of the survey line, with N geophones evenly deployed along the line. These two reciprocal shots contain approximately 2N refraction travel times, which can be spawned into O(N2) refraction travel times by an interferometric transformation. Then, these virtual refraction travel times are used with a source wavelet to create N virtual refraction shot gathers, which are the input data for wave-equation travel-time inversion. Numerical results show that the parsimonious wave-equation travel-time tomogram has about the same accuracy as the tomogram computed by standard wave-equation travel-time inversion. The most significant benefit is that a reciprocal survey is far less time consuming than the standard refraction survey where a source is excited at each geophone location.
Traveling Wave Solutions of the Benjamin-Bona-Mahony Water Wave Equations
Directory of Open Access Journals (Sweden)
A. R. Seadawy
2014-01-01
Full Text Available The modeling of unidirectional propagation of long water waves in dispersive media is presented. The Korteweg-de Vries (KdV and Benjamin-Bona-Mahony (BBM equations are derived from water waves models. New traveling solutions of the KdV and BBM equations are obtained by implementing the extended direct algebraic and extended sech-tanh methods. The stability of the obtained traveling solutions is analyzed and discussed.
Travelling wave solutions for higher-order wave equations of kdv type (iii).
Li, Jibin; Rui, Weigou; Long, Yao; He, Bin
2006-01-01
By using the theory of planar dynamical systems to the travelling wave equation of a higher order nonlinear wave equations of KdV type, the existence of smooth solitary wave, kink wave and anti-kink wave solutions and uncountably infinite many smooth and non-smooth periodic wave solutions are proved. In different regions of the parametric space, the sufficient conditions to guarantee the existence of the above solutions are given. In some conditions, exact explicit parametric representations of these waves are obtain.
Travelling wave analysis of a mathematical model of glioblastoma growth.
Gerlee, Philip; Nelander, Sven
2016-06-01
In this paper we analyse a previously proposed cell-based model of glioblastoma (brain tumour) growth, which is based on the assumption that the cancer cells switch phenotypes between a proliferative and motile state (Gerlee and Nelander, 2012). The dynamics of this model can be described by a system of partial differential equations, which exhibits travelling wave solutions whose wave speed depends crucially on the rates of phenotypic switching. We show that under certain conditions on the model parameters, a closed form expression of the wave speed can be obtained, and using singular perturbation methods we also derive an approximate expression of the wave front shape. These new analytical results agree with simulations of the cell-based model, and importantly show that the inverse relationship between wave front steepness and speed observed for the Fisher equation no longer holds when phenotypic switching is considered.
BIFURCATIONS OF TRAVELLING WAVE SOLUTIONS FOR GENERALIZED DRINFELD-SOKOLOV EQUATIONS
Institute of Scientific and Technical Information of China (English)
LONG Yao; RUI Wei-guo; HE Bin; CHEN Can
2006-01-01
Ansatz method and the theory of dynamical systems are used to study the traveling wave solutions for the generalized Drinfeld-Sokolov equations. Under two groups .of the parametric conditions, more solitary wave solutions, kink and anti-kink wave solutions and periodic wave solutions are obtained. Exact explicit parametric representations of these travelling wave solutions are given.
Snakes mimic earthworms: propulsion using rectilinear travelling waves
Marvi, Hamidreza; Bridges, Jacob; Hu, David L.
2013-01-01
In rectilinear locomotion, snakes propel themselves using unidirectional travelling waves of muscular contraction, in a style similar to earthworms. In this combined experimental and theoretical study, we film rectilinear locomotion of three species of snakes, including red-tailed boa constrictors, Dumeril's boas and Gaboon vipers. The kinematics of a snake's extension–contraction travelling wave are characterized by wave frequency, amplitude and speed. We find wave frequency increases with increasing body size, an opposite trend than that for legged animals. We predict body speed with 73–97% accuracy using a mathematical model of a one-dimensional n-linked crawler that uses friction as the dominant propulsive force. We apply our model to show snakes have optimal wave frequencies: higher values increase Froude number causing the snake to slip; smaller values decrease thrust and so body speed. Other choices of kinematic variables, such as wave amplitude, are suboptimal and appear to be limited by anatomical constraints. Our model also shows that local body lifting increases a snake's speed by 31 per cent, demonstrating that rectilinear locomotion benefits from vertical motion similar to walking. PMID:23635494
Tunnel pressure waves - A smartphone inquiry on rail travel
Müller, Andreas; Hirth, Michael; Kuhn, Jochen
2016-02-01
When traveling by rail, you might have experienced the following phenomenon: The train enters a tunnel, and after some seconds a noticeable pressure change occurs, as perceived by your ears or even by a rapid wobbling of the train windows. The basic physics is that pressure waves created by the train travel down the tunnel, are reflected at its other end, and travel back until they meet the train again. Here we will show (i) how this effect can be well understood as a kind of large-scale outdoor case of a textbook paradigm, and (ii) how, e.g., a prediction of the tunnel length from the inside of a moving train on the basis of this model can be validated by means of a mobile phone measurement.
Exact near-wall traveling waves of plane Poiseuille flow
Gibson, John; Brand, Evan
2013-11-01
We present several spatially-localized equilibrium and traveling-wave solutions of plane Couette and plane Poiseuille flow. The solutions consist of highly concentrated and spanwise-localized alternating streamwise rolls, centered over low-speed streamwise streaks and flanked on either side by high-speed streaks. For large Reynolds numbers the solutions develop critical layers that are concentrated at isolated points on the critical surface u = c . For several traveling-wave solutions of plane Poiseuille flow, the rolls are concentrated near one wall, producing streaks near the wall and larger reduction of the bulk flow in the core. These solutions form particularly isolated and elemental versions of near-wall coherent structures in shear flows and capture, as precise time-independent solutions of Navier-Stokes, the process by which near-wall rolls exchange momentum between the wall and core regions and thereby increase drag.
On Traveling Waves in Lattices: The Case of Riccati Lattices
Dimitrova, Zlatinka
2012-09-01
The method of simplest equation is applied for analysis of a class of lattices described by differential-difference equations that admit traveling-wave solutions constructed on the basis of the solution of the Riccati equation. We denote such lattices as Riccati lattices. We search for Riccati lattices within two classes of lattices: generalized Lotka-Volterra lattices and generalized Holling lattices. We show that from the class of generalized Lotka-Volterra lattices only the Wadati lattice belongs to the class of Riccati lattices. Opposite to this many lattices from the Holling class are Riccati lattices. We construct exact traveling wave solutions on the basis of the solution of Riccati equation for three members of the class of generalized Holling lattices.
Observational evidence for travelling wave modes bearing distance proportional shifts
Guruprasad, V
2015-01-01
Discrepancies of range between the Space Surveillance Network radars and the Deep Space Network in tracking the 1998 earth flyby of NEAR, and between ESA's Doppler and range data in Rosetta's 2009 flyby, reveal a consistent excess delay, or lag, equal to instantaneous one-way travel time in the telemetry signals. These lags readily explain all details of the flyby anomaly, and are shown to be symptoms of chirp d'Alembertian travelling wave solutions, relating to traditional sinusoidal waves by a rotation of the spectral decomposition due to the clock acceleration caused by the Doppler rates during the flybys. The lags thus relate to special relativity, but yield distance proportional shifts like those of cosmology at short range.
Chaotic operation and chaos control of travelling wave ultrasonic motor.
Shi, Jingzhuo; Zhao, Fujie; Shen, Xiaoxi; Wang, Xiaojie
2013-08-01
The travelling wave ultrasonic motor, which is a nonlinear dynamic system, has complex chaotic phenomenon with some certain choices of system parameters and external inputs, and its chaotic characteristics have not been studied until now. In this paper, the preliminary study of the chaos phenomenon in ultrasonic motor driving system has been done. The experiment of speed closed-loop control is designed to obtain several groups of time sampling data sequence of the amplitude of driving voltage, and phase-space reconstruction is used to analyze the chaos characteristics of these time sequences. The largest Lyapunov index is calculated and the result is positive, which shows that the travelling wave ultrasonic motor has chaotic characteristics in a certain working condition Then, the nonlinear characteristics of travelling wave ultrasonic motor are analyzed which includes Lyapunov exponent map, the bifurcation diagram and the locus of voltage relative to speed based on the nonlinear chaos model of a travelling wave ultrasonic motor. After that, two kinds of adaptive delay feedback controllers are designed in this paper to control and suppress chaos in USM speed control system. Simulation results show that the method can control unstable periodic orbits, suppress chaos in USM control system. Proportion-delayed feedback controller was designed following and arithmetic of fuzzy logic was used to adaptively adjust the delay time online. Simulation results show that this method could fast and effectively change the chaos movement into periodic or fixed-point movement and make the system enter into stable state from chaos state. Finally the chaos behavior was controlled.
Traveling and Standing Waves in Coupled Pendula and Newton's Cradle
García-Azpeitia, Carlos
2016-12-01
The existence of traveling and standing waves is investigated for chains of coupled pendula with periodic boundary conditions. The results are proven by applying topological methods to subspaces of symmetric solutions. The main advantage of this approach comes from the fact that only properties of the linearized forces are required. This allows to cover a wide range of models such as Newton's cradle, the Fermi-Pasta-Ulam lattice, and the Toda lattice.
Fault location method for transmission line based on traveling waves
Institute of Scientific and Technical Information of China (English)
ZHENG Na; ZHAO Yulin
2007-01-01
The single phase grounding fault location is the focus which researchers pay attention to and study in power system. The accurate fault location can lighten the patrolling burden, and enhance the reliability of the power network. It adopts A/D which has high speed, and uses TMS320VC5402 DSP chip as the system core. This paper presented theory of operation based on traveling waves and achieved software and hardware in detail.
New travelling wave solutions for nonlinear stochastic evolution equations
Indian Academy of Sciences (India)
Hyunsoo Kim; Rathinasamy Sakthivel
2013-06-01
The nonlinear stochastic evolution equations have a wide range of applications in physics, chemistry, biology, economics and finance from various points of view. In this paper, the (′/)-expansion method is implemented for obtaining new travelling wave solutions of the nonlinear (2 + 1)-dimensional stochastic Broer–Kaup equation and stochastic coupled Korteweg–de Vries (KdV) equation. The study highlights the significant features of the method employed and its capability of handling nonlinear stochastic problems.
Bistability of Slow and Fast Traveling Waves in Fluid Mixtures
Hollinger, S; Lücke, M; Hollinger, St.
1997-01-01
The appearence of a new type of fast nonlinear traveling wave states in binary fluid convection with increasing Soret effect is elucidated and the parameter range of their bistability with the common slower ones is evaluated numerically. The bifurcation behavior and the significantly different spatiotemporal properties of the different wave states - e.g. frequency, flow structure, and concentration distribution - are determined and related to each other and to a convenient measure of their nonlinearity. This allows to derive a limit for the applicability of small amplitude expansions. Additionally an universal scaling behavior of frequencies and mixing properties is found. PACS: 47.20.-k, 47.10.+g, 47.20.Ky
Tsai, Je-Chiang; Sneyd, James
2007-04-01
Traveling waves of calcium are widely observed under the condition that the free cytosolic calcium is buffered. Thus it is of physiological interest to determine how buffers affect the properties of calcium waves. Here we summarise and extend previous results on the existence, uniqueness and stability of traveling wave solutions of the buffered bistable equation, which is the simplest possible model of the upstroke of a calcium wave. Taken together, the results show that immobile buffers do not change the existence, uniqueness or stability of the traveling wave, while mobile buffers can eliminate a traveling wave. However, if a wave exists in the latter case, it remains unique and stable.
Stability of traveling wave solutions to the Whitham equation
Sanford, Nathan; Kodama, Keri; Carter, John D.; Kalisch, Henrik
2014-06-01
The Whitham equation was proposed as an alternate model equation for the simplified description of unidirectional wave motion at the surface of an inviscid fluid. An advantage of the Whitham equation over the KdV equation is that it provides a more faithful description of short waves of small amplitude. Recently, Ehrnström and Kalisch [19] established that the Whitham equation admits periodic traveling-wave solutions. The focus of this work is the stability of these solutions. The numerical results presented here suggest that all large-amplitude solutions are unstable, while small-amplitude solutions with large enough wavelength L are stable. Additionally, periodic solutions with wavelength smaller than a certain cut-off period always exhibit modulational instability. The cut-off wavelength is characterized by kh0=1.145, where k=2π/L is the wave number and h0 is the mean fluid depth.
Holes and chaotic pulses of traveling waves coupled to a long-wave mode
Herrero, Henar; Riecke, Hermann
1997-02-01
It is shown that localized traveling-wave pulses and holes can be stabilized by a coupling to a long-wave mode. Simulations of suitable real Ginzburg-Landau equations reveal a small parameter regime in which the pulses exhibit a breathing motion (presumably related to a front bifurcation), which subsequently becomes chaotic via period-doubling bifurcations.
Research of Bipolar HVDC Transmission Lines Based on Traveling Wave Differential Protection
Directory of Open Access Journals (Sweden)
Baina He
2013-07-01
Full Text Available The principle of the traveling wave based differential protection for bipolar HVDC transmission lines is proposed in the paper. Unlike the traditional current differential protection, the quantity of current is replaced by the quantity of the traveling wave for comparison. The traveling wave at the remote end is transferred to the local end for comparison to the local traveling wave. For the bipolar DC transmission lines, the polar-mode (aerial mode traveling waves are employed to establish the discriminative criterion. The ground-mode traveling waves are utilized for faulty line detector for bipolar operation modes. The entire protection scheme is simulated in PSCAD/EMTDC associated with the standard ±500kV HVDC transmission system. The simulation results show that the new protection has the advantages of higher sensitivity, reliability and security. The fault resistance can be coverd by the traveling wave based differential protection reaches to 500 Ohm.
Control of Spiral Waves and Spatiotemporal Chaos by Exciting Travel Wave Trains
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
Spiral waves and spatiotemporal chaos usually are harmful and need to be suppressed. In this paper, a method is proposed to control them. Travel wave trains can be generated by periodic excitations near left boundary,spiral waves and spatiotemporal chaos can be eliminated by the trains for some certain excitation periods. Obvious resonant behavior can be observed from the relation between the periods of the trains and excitation ones. The method is against noise.
Zhong-ye Tian; Meng-lin Lou
2014-01-01
The seismic responses of a long-span cable-stayed bridge under uniform excitation and traveling wave excitation in the longitudinal direction are, respectively, computed. The numerical results show that the bridge’s peak seismic responses vary significantly as the apparent wave velocity decreases. Therefore, the traveling wave effect must be considered in the seismic design of long-span bridges. The bridge’s peak seismic responses do not vary monotonously with the apparent wave velocity due t...
The effects of shock wave and quasi-traveling wave in the mechanical impact test
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
It is well-known that the numerical value is always larger than the measured value,amounting to many times,if we calculate the stress of the specimen in the impulse test using the NASTRAN and ANSYS (N-A) software.We believe that the impact induces shock wave or quasi-traveling wave in the specimen,which can qualitatively explain the discrepancy of the two values.In order to verify it,the Lax-Friedrichs (L-F) scheme is taken to simulate the transmission of shock wave and quasi-traveling wave in solid.Numerical results show that the action area of the stress wave is small and the action time is very short,so the resulting stress and actual work are not big.In addition,the distribution of the impact values obtained by the numerical simulation is in accordance with the trend of the measured impact values.
Convection in Binary Fluid Mixtures; 2, Localized Traveling Waves
Barten, W; Kamps, M; Schmitz, R
1995-01-01
Nonlinear, spatially localized structures of traveling convection rolls are investigated in quantitative detail as a function of Rayleigh number for two different Soret coupling strengths (separation ratios) with Lewis and Prandtl numbers characterizing ethanol-water mixtures. A finite-difference method was used to solve the full hydrodynamic field equations numerically. Structure and dynamics of these localized traveling waves (LTW) are dominated by the concentration field. Like in the spatially extended convective states ( cf. accompanying paper), the Soret-induced concentration variations strongly influence, via density changes, the buoyancy forces that drive convection. The spatio-temporal properties of this feed-back mechanism, involving boundary layers and concentration plumes, show that LTW's are strongly nonlinear states. Light intensity distributions are determined that can be observed in side-view shadowgraphs. Detailed analyses of all fields are made using colour-coded isoplots, among others. In th...
THE SMOOTH AND NONSMOOTH TRAVELLING WAVE SOLUTIONS IN A NONLINEAR WAVE EQUATION
Institute of Scientific and Technical Information of China (English)
李庶民
2001-01-01
The travelling wave solutions (7WS) in a class of P.D.E. is studied. The travelling wave equation of this P. D.E. is a planar cubic polynomial system in three-parameter space. The study for TWS became the topological classifications of bifurcations of phase portraits defined by the planar system. By using the theory of planar dynamical systems to do qualitative analysis, all topological classifications of the cubic polynomial system can be obtained. Returning the results of the phase plane analysis to TWS, u(ξ) , and considering discontinuity of the right side of the equation of TWS when ξ = x-ct is varied along a phase orbit and passing through a singular curve, all conditions of existence of smooth and nonsmooth travelling waves are given.
Traveling wave ion transport for the cyclotron gas stopper
Energy Technology Data Exchange (ETDEWEB)
Brodeur, M., E-mail: maxime.brodeur.2@nd.edu; Joshi, N.; Gehring, A.E.; Bollen, G.; Morrissey, D.J.; Schwarz, S.
2013-12-15
Highlights: • Estimated transport time of thermal ions of 5 ms or less for the cyclotron gas stopper using the ion surfing method. • Experimental investigation of a prototype ion conveyor to transport ions in the magnet magnetic field gradient. • Efficient long-distance ion transport with the conveyor is expected. -- Abstract: Next generation beam thermalization devices such as the cyclotron gas stopper are being developed to efficiently deliver a broad range of radioactive isotopes to experiments. Ion transport methods utilizing a traveling wave were investigated experimentally as part of the developments needed for this device. The “ion surfing” method, which will be used to transports thermal ions inside the main chamber of the cyclotron gas stopper, was found to transport ions at speeds reaching 75 m/s, resulting in net transport times as short as 5 ms. A second traveling wave transport method called the “ion conveyor” was investigated for the challenging task of extracting the ions through the cyclotron gas stopper magnetic field gradient. Results from the first prototype conveyor show a strong pressure and wave amplitude dependance for the transport efficiency. A second prototype designed to operate over a larger pressure range is currently being tested.
A Traveling Wave Type of Piezoelectric Ultrasonic Bidirectional Linear Microactuator
Sun, Dongming; Wang, Sheng; Sakurai, Junpei; Hata, Seiichi; Choi, Kee-Bong; Shimokohbe, Akira
2009-04-01
A piezoelectric ultrasonic microactuator is presented, with a cylindrical stator and slider structure. The length and diameter of the microactuator are about 10 and 1.5 mm, respectively. The stator consists of two piezoelectric ceramic (PZT) tubes connected by a thin film metallic glass (TFMG) pipe, which is fabricated using the rotating magnetron sputtering technique. Traveling wave propagation is generated on the TFMG pipe in finite element method (FEM) simulations and also observed in the measurement. Bi-directional motion of the slider was observed around 600 kHz, and the maximum velocity was about 40 mm/s at 25 V.
Traveling wave solutions for some factorized nonlinear PDEs
Cornejo-Pérez, Octavio
2009-01-01
In this work, some new special traveling wave solutions of the convective Fisher equation, the time-delayed Burgers-Fisher equation, the Burgers-Fisher equation and a nonlinear dispersive-dissipative equation (Kakutani and Kawahara 1970 J. Phys. Soc. Japan 29 1068) are obtained through the factorization technique. All of them share the same type of factorization scheme, which reduces the original equation to a Riccati equation of the same kind, whose general solution is given in terms of Bessel and Neumann functions. In addition, some novel particular solutions of the nonlinear dispersive-dissipative equation are provided.
Exact travelling wave solutions of nonlinear partial differential equations
Energy Technology Data Exchange (ETDEWEB)
Soliman, A.A. [Department of Mathematics, Faculty of Education (AL-Arish) Suez Canal University, AL-Arish 45111 (Egypt)]. E-mail: asoliman_99@yahoo.com; Abdou, M.A. [Theoretical Research Group, Department of Physics, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt)]. E-mail: m_abdou_eg@yahoo.com
2007-04-15
An extended Fan-sub equation method is developed for searching exact travelling wave solutions of nonlinear partial differential equations. The key idea of this method is to take full advantage of the general elliptic equation, involving five parameters, which has more new solutions and whose degeneracies can lead to special sub equation involving three parameters. As an illustration of the extended Fan method, more new solutions are obtained for three models namely, generalized KdV, Drinfeld-Sokolov system and RLW equation.
Proposal for generating Fock states in traveling wave fields
Energy Technology Data Exchange (ETDEWEB)
Benmoussa, Adil [Department of Physics and Astronomy, Lehman College, The City University of New York, Bronx, NY 10468-1589 (United States)]. E-mail: adil.benmoussa@lehman.cuny.edu; Gerry, Christopher C. [Department of Physics and Astronomy, Lehman College, The City University of New York, Bronx, NY 10468-1589 (United States)
2007-05-28
We describe a proposal for the generation of a single-mode photonic number state, |N>, in a traveling wave optical field. The state is obtained by state reduction from an input coherent state using Kerr media. Our method is based on a previous scheme used for hole burning in the Fock space by minimizing the Mandel Q parameter. The same method was used by Maia et al., but ours is different, it requires only one single photon injected in the entire setup and one photon detection at the end.
The Newell-Whitehead-Segel Equation for Traveling Waves
Malomed, B A
1996-01-01
An equation to describe nearly one-dimensional traveling-waves patterns is put forward. This is a dispersive generalization of the classical Newell-Whitehead-Segel (NWS) equation. Transverse stability of plane waves is considered within the framework of this equation. It is shown that the dispersion terms drastically alter the stability. A necessary stability condition is obtained in the form of a transverse Benjamin-Feir criterion. If this condition is met, a quarter of the plane-wave existence band (in terms of the squared wave number) is unstable, while three quarters are transversely stable. Next, linear defects in the form of grain boundaries (GB's) are studied. An effective Burgers equation is derived from the dispersive NWS equation, in the framework of which a GB is tantamount to a shock wave. It is shown that the GB's are generic solutions. Asymmetric GB's are moving at a constant velocity, which is found. The integrability of the Burgers equation allows one as well to analyze transient processes and...
Spike-like solitary waves in incompressible boundary layers driven by a travelling wave.
Feng, Peihua; Zhang, Jiazhong; Wang, Wei
2016-06-01
Nonlinear waves produced in an incompressible boundary layer driven by a travelling wave are investigated, with damping considered as well. As one of the typical nonlinear waves, the spike-like wave is governed by the driven-damped Benjamin-Ono equation. The wave field enters a completely irregular state beyond a critical time, increasing the amplitude of the driving wave continuously. On the other hand, the number of spikes of solitary waves increases through multiplication of the wave pattern. The wave energy grows in a sequence of sharp steps, and hysteresis loops are found in the system. The wave energy jumps to different levels with multiplication of the wave, which is described by winding number bifurcation of phase trajectories. Also, the phenomenon of multiplication and hysteresis steps is found when varying the speed of driving wave as well. Moreover, the nature of the change of wave pattern and its energy is the stability loss of the wave caused by saddle-node bifurcation.
Traveling Waves in the northern hemisphere of Mars - Structure, Variability and Energetics
Wang, Huiqun; Toigo, Anthony D.
2015-11-01
Investigations of the variability, structure and energetics of traveling waves in the northern hemisphere of Mars were conducted with the MarsWRF general circulation model. Using a simple annually repeatable dust scenario, the model reproduces the general characteristics of the observed traveling waves, including major wave periods and thermal signatures of traveling waves, suppression of transient eddy activity near the surface at northern winter solstice, and wave mode transitions among zonal wavenumber m = 1, 2 and 3 eastward traveling waves near the surface. Simulated wave structures in the temperature field differ from those in the geopotential field. Wave energetics calculations indicate a mixed baroclinic-barotropic nature for representative wave modes. This is consistent with Barnes et al. (1993). There is a large contrast in wave energetics between the near surface and higher altitudes, as well as between the poleward and equatorward side of the maximum eddy available potential energy at higher altitudes. The modeled transient eddies exhibit strong zonal variations in kinetic energy and various energy transfer terms. In particular, the eddy kinetic energy for a time period dominated by a m = 3 traveling wave shows local maxima in Acidalia, Utopia, and Arcadia, which are the origination locations of “flushing” dust storms. The eddy kinetic energy for a time period transitioning from m = 2 to m = 3 traveling waves shows local maxima in Acidalia and Utopia. There are direct energy exchanges between thermal tides and traveling waves, but the exchange rate is much slower than other major energetics terms. When thermal tides are removed from the MarsWRF simulation, the amplitudes of m = 3 traveling waves are greatly reduced. In the meantime, the isotherms of the northern baroclinic zone slope more towards the pole, satisfying an empirical condition for weaker traveling waves near the surface. However, this change cannot fully explain the strength of the
Fast Traveling-Wave Reactor of the Channel Type
Rusov, Vitaliy D; Vashchenko, Volodymyr N; Chernezhenko, Sergei A; Kakaev, Andrei A; Pantak, Oksana I
2015-01-01
The main aim of this paper is to solve the technological problems of the TWR based on the technical concept described in our priority of invention reference, which makes it impossible, in particular, for the fuel claddings damaging doses of fast neutrons to excess the ~200 dpa limit. Thus the essence of the technical concept is to provide a given neutron flux at the fuel claddings by setting the appropriate speed of the fuel motion relative to the nuclear burning wave. The basic design of the fast uranium-plutonium nuclear traveling-wave reactor with a softened neutron spectrum is developed, which solves the problem of the radiation resistance of the fuel claddings material.
The Direct Digital Modulation of Traveling Wave Tubes
Radhamohan, Ranjan S.
2004-01-01
Traveling wave tube (TWT) technology, first described by Rudolf Kompfner in the early 1940s, has been a key component of space missions from the earliest communication satellites in the 1960s to the Cassini probe today. TWTs are essentially signal amplifiers that have the special capability of operating at microwave frequencies. The microwave frequency range, which spans from approximately 500 MHz to 300 GHz, is shared by many technologies including cellular phones, satellite television, space communication, and radar. TWT devices are superior in reliability, weight, and efficiency to solid-state amplifiers at the high power and frequency levels required for most space missions. TWTs have three main components -an electron gun, slow wave structure, and collector. The electron gun generates an electron beam that moves along the length of the tube axis, inside of the slow wave circuit. At the same time, the inputted signal is slowed by its travel through the coils of the helical slow wave circuit. The interaction of the electron beam and this slowed signal produces a transfer of kinetic energy to the signal, and in turn, amplification. At the end of its travel, the spent electron beam moves into the collector where its remaining energy is dissipated as heat or harnessed for reuse. TWTs can easily produce gains in the tens of decibels, numbers that are suitable for space missions. To date, however, TWTs have typically operated at fixed levels of gain. This gain is determined by various, unchanging, physical factors of the tube. Traditionally, to achieve varying gain, an input signal s amplitude has had to first be modulated by a separate device before being fed into the TWT. This is not always desirable, as significant distortion can occur in certain situations. My mentor, Mr. Dale Force, has proposed an innovative solution to this problem called direct digital modulation . The testing and implementation of this solution is the focus of my summer internship. The
Body-wave traveltime and amplitude shifts from asymptotic travelling wave coupling
Pollitz, F.
2006-01-01
We explore the sensitivity of finite-frequency body-wave traveltimes and amplitudes to perturbations in 3-D seismic velocity structure relative to a spherically symmetric model. Using the approach of coupled travelling wave theory, we consider the effect of a structural perturbation on an isolated portion of the seismogram. By convolving the spectrum of the differential seismogram with the spectrum of a narrow window taper, and using a Taylor's series expansion for wavenumber as a function of frequency on a mode dispersion branch, we derive semi-analytic expressions for the sensitivity kernels. Far-field effects of wave interactions with the free surface or internal discontinuities are implicitly included, as are wave conversions upon scattering. The kernels may be computed rapidly for the purpose of structural inversions. We give examples of traveltime sensitivity kernels for regional wave propagation at 1 Hz. For the direct SV wave in a simple crustal velocity model, they are generally complicated because of interfering waves generated by interactions with the free surface and the Mohorovic??ic?? discontinuity. A large part of the interference effects may be eliminated by restricting the travelling wave basis set to those waves within a certain range of horizontal phase velocity. ?? Journal compilation ?? 2006 RAS.
Comparing the Robustness of High-Frequency Traveling-Wave Tube Slow-Wave Circuits
Chevalier, Christine T.; Wilson, Jeffrey D.; Kory, Carol L.
2007-01-01
A three-dimensional electromagnetic field simulation software package was used to compute the cold-test parameters, phase velocity, on-axis interaction impedance, and attenuation, for several high-frequency traveling-wave tube slow-wave circuit geometries. This research effort determined the effects of variations in circuit dimensions on cold-test performance. The parameter variations were based on the tolerances of conventional micromachining techniques.
Lateralization of travelling wave response in the hearing organ of bushcrickets.
Directory of Open Access Journals (Sweden)
Arun Palghat Udayashankar
Full Text Available Travelling waves are the physical basis of frequency discrimination in many vertebrate and invertebrate taxa, including mammals, birds, and some insects. In bushcrickets (Tettigoniidae, the crista acustica is the hearing organ that has been shown to use sound-induced travelling waves. Up to now, data on mechanical characteristics of sound-induced travelling waves were only available along the longitudinal (proximal-distal direction. In this study, we use laser Doppler vibrometry to investigate in-vivo radial (anterior-posterior features of travelling waves in the tropical bushcricket Mecopoda elongata. Our results demonstrate that the maximum of sound-induced travelling wave amplitude response is always shifted towards the anterior part of the crista acustica. This lateralization of the travelling wave response induces a tilt in the motion of the crista acustica, which presumably optimizes sensory transduction by exerting a shear motion on the sensory cilia in this hearing organ.
Lateralization of travelling wave response in the hearing organ of bushcrickets.
Palghat Udayashankar, Arun; Kössl, Manfred; Nowotny, Manuela
2014-01-01
Travelling waves are the physical basis of frequency discrimination in many vertebrate and invertebrate taxa, including mammals, birds, and some insects. In bushcrickets (Tettigoniidae), the crista acustica is the hearing organ that has been shown to use sound-induced travelling waves. Up to now, data on mechanical characteristics of sound-induced travelling waves were only available along the longitudinal (proximal-distal) direction. In this study, we use laser Doppler vibrometry to investigate in-vivo radial (anterior-posterior) features of travelling waves in the tropical bushcricket Mecopoda elongata. Our results demonstrate that the maximum of sound-induced travelling wave amplitude response is always shifted towards the anterior part of the crista acustica. This lateralization of the travelling wave response induces a tilt in the motion of the crista acustica, which presumably optimizes sensory transduction by exerting a shear motion on the sensory cilia in this hearing organ.
Pulsed response of a traveling-wave tube
May, Brian D.
1991-01-01
The consequence of frequency-domain multiple access (FDMA) channelization in a satellite communications system is that the ground- and space-based components are often required to operate at reduced output power to prevent the generation of distortions. However, the components of a time-division multiple access (TDMA) satellite system, such as a traveling-wave tube (TWT), can operate at the highest output power because the channelization technique is relatively insensitive to the distortions resulting from saturated operation. A Hughes 30-GHz TWT was tested to determine the suitability of such a device in a TDMA system. Testing was focused on the ability of the TWT to rise up to full power at the leading edge of TDMA bursts, which were simulated by a pulse train. A Wavetek model 8502A peak power meter was used to display and measure the pulsed signal waveform. Measurements of the TWT output signal rise time indicate that the TWT lengthened the rise time by 10 to 20 nsec. Imposing a modulator turn-on time that precedes the data burst by the TWT rise time is a logical approach to coordinating the traveling-wave tube amplifier and modulator specifications.
Coaxial waveguide for travelling wave MRI at ultrahigh fields.
Andreychenko, Anna; Kroeze, Hugo; Klomp, Dennis W J; Lagendijk, Jan J W; Luijten, Peter R; van den Berg, Cornelis A T
2013-09-01
At high magnetic fields the performance of a volume-type body coil inside a human sized MR-scanner is influenced by the waveguide action of the scanner's bore. This can result in undesirable strong radio frequency fields B1+) outside the coil's target volume. A radio frequency (RF) transmit system, exploiting this waveguide action of the bore, is proposed in this work. A coaxial waveguide section is introduced between the antenna and the imaging region. It is shown that the coaxial waveguide has several advantages over the initially proposed travelling wave setup based on the cylindrical waveguide. First, a novel radio frequency matching principle (based on the transmission line impedance matching) is feasible with the coaxial waveguide achieving better radio frequency transmission characteristics, such as homogeneity and power efficiency of B1+ field. In case of body torso imaging, the coaxial waveguide prevents unwanted specific absorptive rate (SAR) deposition outside the target region and thus, effectively decreases local peak SAR values by factor of 5. A 3-fold B1+ gain in the prostate can be achieved with the coaxial waveguide in comparison with the initially proposed travelling wave setup.
Electronic Power Conditioner for Ku-band Travelling Wave Tube
Kowstubha, Palle; Krishnaveni, K.; Ramesh Reddy, K.
2017-04-01
A highly sophisticated regulated power supply is known as electronic power conditioner (EPC) is required to energise travelling wave tubes (TWTs), which are used as RF signal amplifiers in satellite payloads. The assembly consisting of TWT and EPC together is known as travelling wave tube amplifier (TWTA). EPC is used to provide isolated and conditioned voltage rails with tight regulation to various electrodes of TWT and makes its RF performance independent of solar bus variations which are caused due to varying conditions of eclipse and sunlit. The payload mass and their power consumption is mainly due to the existence of TWTAs that represent about 35 % of total mass and about 70-90 % (based on the type of satellite application) of overall dc power consumption. This situation ensures a continuous improvement in the design of TWTAs and their associated EPCs to realize more efficient and light products. Critical technologies involved in EPCs are design and configuration, closed loop regulation, component and material selection, energy limiting of high voltage (HV) outputs and potting of HV card etc. This work addresses some of these critical technologies evolved in realizing and testing the state of art of EPC and it focuses on the design of HV supply with a HV and high power capability, up to 6 kV and 170 WRF, respectively required for a space TWTA. Finally, an experimental prototype of EPC with a dc power of 320 W provides different voltages required by Ku-band TWT in open loop configuration.
Electronic Power Conditioner for Ku-band Travelling Wave Tube
Kowstubha, Palle; Krishnaveni, K.; Ramesh Reddy, K.
2016-07-01
A highly sophisticated regulated power supply is known as electronic power conditioner (EPC) is required to energise travelling wave tubes (TWTs), which are used as RF signal amplifiers in satellite payloads. The assembly consisting of TWT and EPC together is known as travelling wave tube amplifier (TWTA). EPC is used to provide isolated and conditioned voltage rails with tight regulation to various electrodes of TWT and makes its RF performance independent of solar bus variations which are caused due to varying conditions of eclipse and sunlit. The payload mass and their power consumption is mainly due to the existence of TWTAs that represent about 35 % of total mass and about 70-90 % (based on the type of satellite application) of overall dc power consumption. This situation ensures a continuous improvement in the design of TWTAs and their associated EPCs to realize more efficient and light products. Critical technologies involved in EPCs are design and configuration, closed loop regulation, component and material selection, energy limiting of high voltage (HV) outputs and potting of HV card etc. This work addresses some of these critical technologies evolved in realizing and testing the state of art of EPC and it focuses on the design of HV supply with a HV and high power capability, up to 6 kV and 170 WRF, respectively required for a space TWTA. Finally, an experimental prototype of EPC with a dc power of 320 W provides different voltages required by Ku-band TWT in open loop configuration.
Traveling waves in a spring-block chain sliding down a slope
Morales, J. E.; James, G.; Tonnelier, A.
2017-07-01
Traveling waves are studied in a spring slider-block model. We explicitly construct front waves (kinks) for a piecewise-linear spinodal friction force. Pulse waves are obtained as the matching of two traveling fronts with identical speeds. Explicit formulas are obtained for the wavespeed and the wave form in the anticontinuum limit. The link with localized waves in a Burridge-Knopoff model of an earthquake fault is briefly discussed.
Institute of Scientific and Technical Information of China (English)
何俊; 黄明光; 李现霞; 李海强; 赵磊; 赵建东; 李跃; 赵石雷
2015-01-01
The linearity of the traveling-wave tube is a very important characteristic for a modern communication system. To improve the linearity of the traveling-wave tube at no expense of the saturated output power and overall efficiency, a modified pitch profile combined with a small adjustment of operating parameters is proposed. The optimal design of the helix circuit is evaluated theoretically by a large signal analysis, and the experimental test is also carried out to make a comparison of performance between the novel and original designed traveling-wave tubes. The experiments show that the saturated output powers and efficiencies of these two tubes are close to each other, while the linearity of the traveling-wave tube is obviously improved. The total phase shift and AM/PM conversion at saturation of the novel tube, averaged over the operating band, are only 30.6◦/dB and 2.5◦/dB, respectively, which are 20.1◦/dB and 1.6◦/dB lower than those of the original tube, respectively. Moreover, the third-order intermodulation of the novel tube is up to 2.2 dBc lower than that of the original tube.
Travelling waves in models of neural tissue: from localised structures to periodic waves
Meijer, Hil Gaétan Ellart; Coombes, Stephen
2014-01-01
We consider travelling waves (fronts, pulses and periodics) in spatially extended one dimensional neural field models. We demonstrate for an excitatory field with linear adaptation that, in addition to an expected stable pulse solution, a stable anti-pulse can exist. Varying the adaptation strength
On Plasma Rotation Induced by Traveling Fast Alfvin Waves
Energy Technology Data Exchange (ETDEWEB)
F.W. Perkins; R.B. White; and V.S. Chan
2001-08-09
Absorption of fast Alfven waves by the minority fundamental ion-cyclotron resonance, coupled with finite banana width physics, generates torque distributions and ultimately rotational shear layers in the bulk plasma, even when the toroidal wavenumber k(subscript ''phi'') = n/R of the fast wave vanishes (n=0) and cyclotron absorption introduces no angular momentum nor canonical angular momentum [F.W. Perkins, R.B. White, P.T. Bonoli, and V.S. Chan, Phys. Plasmas 8 (2001) 2181]. The present work extends these results to travelling waves with non-zero n where heating directly introduces angular momentum. Since tokamak fast-wave antennas have approximately one wavelength per toroidal field coil, the toroidal mode number n lies in the range n = 10-20, independent of machine size. A zero-dimensional analysis shows that the rotation rate arising from direct torque is comparable to that of the rotational shear layer and has the same scaling. Nondimensional rotation profiles for n = (-10, 10) show modest changes from the n = 0 case in the expected direction. For a balanced antenna spectrum, the nondimensional rotational profile (averaged over n = -10, 10) lies quite close to the n = 0 profile.
Bifurcations of traveling wave solutions of a generalized Dullin-Gottwald-Holm equation
Fan, Xinghua; Li, Shasha
2015-01-01
The bifurcations of traveling wave solutions of a generalized Dullin-Gottwald-Holm equation ut-α2uxxt+2ωux+βumux+γuxxx = α2(2uxuxx+uxxx) is studied by using the method of planardynamical systems. Different kinds of traveling wave solutions, such as the solitary wave solution, thepeakon wave solution and the periodic cusp wave solution are found to exist under certain parameterconditions. Results show that types of bounded traveling wave solutions are kept in the gener...
A Discrete Velocity Kinetic Model with Food Metric: Chemotaxis Traveling Waves.
Choi, Sun-Ho; Kim, Yong-Jung
2017-02-01
We introduce a mesoscopic scale chemotaxis model for traveling wave phenomena which is induced by food metric. The organisms of this simplified kinetic model have two discrete velocity modes, [Formula: see text] and a constant tumbling rate. The main feature of the model is that the speed of organisms is constant [Formula: see text] with respect to the food metric, not the Euclidean metric. The uniqueness and the existence of the traveling wave solution of the model are obtained. Unlike the classical logarithmic model case there exist traveling waves under super-linear consumption rates and infinite population pulse-type traveling waves are obtained. Numerical simulations are also provided.
New multi-soliton solutions and travelling wave solutions of the dispersive long-wave equations
Institute of Scientific and Technical Information of China (English)
张解放; 郭冠平; 吴锋民
2002-01-01
Using the extended homogeneous balance method, the (1+1)-dimensional dispersive Iong-wave equations have been solved. Starting from the homogeneous balance method, we have obtained a nonlinear transformation for simplifying a dispersive long-wave equation into a linear partial differential equation. Usually, we can obtain only a type of soliton-like solution. In this paper, we have further found some new multi-soliton solutions and exact travelling solutions of the dispersive long-wave equations from the linear partial equation.
Uniqueness and stability of traveling waves for cellular neural networks with multiple delays
Yu, Zhi-Xian; Mei, Ming
2016-01-01
In this paper, we investigate the properties of traveling waves to a class of lattice differential equations for cellular neural networks with multiple delays. Following the previous study [38] on the existence of the traveling waves, here we focus on the uniqueness and the stability of these traveling waves. First of all, by establishing the a priori asymptotic behavior of traveling waves and applying Ikehara's theorem, we prove the uniqueness (up to translation) of traveling waves ϕ (n - ct) with c ≤c* for the cellular neural networks with multiple delays, where c* < 0 is the critical wave speed. Then, by the weighted energy method together with the squeezing technique, we further show the global stability of all non-critical traveling waves for this model, that is, for all monotone waves with the speed c
General expressions of peaked traveling wave solutions of CH-γ and CH equations
Institute of Scientific and Technical Information of China (English)
ZHANG Wenling
2004-01-01
We use qualitative analysis and numerical simulation to study peaked traveling wave solutions of CH-γ and CH equations. General expressions of peakon and periodic cusp wave solutions are obtained. Some previous results become our special cases.
Travelling Wave Solutions to a Special Type of Nonlinear Evolution Equation
Institute of Scientific and Technical Information of China (English)
XU Gui-Qiong; LI Zhi-Bin
2003-01-01
A unified approach is presented for finding the travelling wave solutions to one kind of nonlinear evolution equation by introducing a concept of "rank". The key idea of this method is to make use of the arbitrariness of the manifold in Painleve analysis. We selected a new expansion variable and thus obtained a rich variety of travelling wave solutions to nonlinear evolution equation, which covered solitary wave solutions, periodic wave solutions, Weierstrass elliptic function solutions, and rational solutions. Three illustrative equations are investigated by this means, and abundant travelling wave solutions are obtained in a systematic way. In addition, some new solutions are firstly reported here.
Localized travelling waves in the asymptotic suction boundary layer
Kreilos, Tobias; Schneider, Tobias M
2016-01-01
We present two spanwise-localized travelling wave solutions in the asymptotic suction boundary layer, obtained by continuation of solutions of plane Couette flow. One of the solutions has the vortical structures located close to the wall, similar to spanwise-localized edge states previously found for this system. The vortical structures of the second solution are located in the free stream far above the laminar boundary layer and are supported by a secondary shear gradient that is created by a large-scale low-speed streak. The dynamically relevant eigenmodes of this solution are concentrated in the free stream, and the departure into turbulence from this solution evolves in the free stream towards the walls. For invariant solutions in free-stream turbulence, this solution thus shows that that the source of energy of the vortical structures can be a dynamical structure of the solution itself, instead of the laminar boundary layer.
Slip-stick excitation and travelling waves excite silo honking
Vriend, Nathalie; Warburton, Kasia; Porte, Elze
2016-11-01
Industrial storage silos filled with PET-particles can create a sound upon discharge. The sound forms a nuisance for the environment when the structure starts to act as a loudspeaker and may ultimately result in structural failure. This work investigates the phenomenon experimentally-the deployment of a microphone, an accelerometer and high-speed imaging on a laboratory set-up reveal the driving mechanism for the structural resonance: stick-slip at the wall. Particle image velocimetry shows an asymmetric, upwards travelling wave (at 50 m/s) which contains the dynamic "slip"-region. The frequency of the mechanical motion of the grains is successfully correlated to the frequency of the emitted sound. Friction models are explored to describe and quantify the frictional interaction between the grains and the wall.
Harmonic Generation in a Traveling-Wave Tube
Wong, Patrick; Zhang, Peng; Lau, Y. Y.; Greening, Geoffrey; Gilgenbach, Ronald; Chernin, David; Simon, David; Hoff, Brad
2016-10-01
Crowding of electron orbits in a traveling-wave tube (TWT) may lead to significant harmonic contents in the beam current, even in the linear regime. Here, we consider a wideband TWT that exhibits gain at the second harmonic. We analytically formulate equations governing the evolution of the generation of second harmonic, including axial variations of the Pierce parameters. The second harmonic output is phase-controlled by the input signal which consists only of a fundamental frequency. Several test cases are performed and compared with simulation using the CHRISTINE code. Reasonable agreement between theory and simulation is found. Work supported by AFOSR FA9550-15-1-0097, ONR N00014-16-1-2353, and L-3 Communications Electron Device Division.
Traveling wave ultrasonic motor using polymer-based vibrator
Wu, Jiang; Mizuno, Yosuke; Tabaru, Marie; Nakamura, Kentaro
2016-01-01
With the characteristics of low density, low elastic modulus, and low mechanical loss, poly(phenylene sulfide) (PPS) is a promising material for fabricating lightweight ultrasonic motors (USMs). For the first time, we used PPS to fabricate an annular elastomer with teeth and glued a piece of piezoelectric-ceramic annular disk to the bottom of the elastomer to form a vibrator. To explore for a material suitable for the rotor surface coming in contact with the PPS-based vibrator, several disk-shaped rotors made of different materials were fabricated to form traveling wave USMs. The polymer-based USM rotates successfully as the conventional metal-based USMs. The experimental results show that the USM with the aluminum rotor has the largest torque, which indicates that aluminum is the most suitable for the rotor surface among the tested materials.
Design and fabrication of traveling wave electroabsorption modulator
Li, Guoliang; Shin, Dong-Soo; Chang, William S. C.; Asbeck, Peter M.; Yu, Paul K. L.; Sun, Chen K.; Pappert, Stephen A.; Nguyen, Richard
2000-04-01
Semiconductor electroabsorption modulator (EAM) is a promising alternative to lithium niobate modulator for digital and analog fiber optic links due to its inherent small size, high modulation efficiency, and potential of monolithic integration with other electronic and optoelectronic components. For high-speed application, the bandwidth of the lumped element EAM is known to be RC-time limited. To achieve an ultra large bandwidth in lumped element EAM, the modulation efficiency has to be greatly sacrificed. This is especially critical in analog operation where RF link loss and noise figure must be minimized. To overcome the RC bandwidth limit and to avoid significantly compromising the modulation efficiency, the traveling wave electroabsorption modulator has been proposed and experimentally investigated by several authors.
Travelling Wave Structure of an SPS RF Cavity
CERN PhotoLab
1974-01-01
The RF cavities for acceleration of particles in the SPS have a travelling-wave structure. They operate at a fixed frequency of 200 MHz (h = 4620). With a quality factor of Q = 100, the bandwidth covers the small frequency swing for the acceleration of protons from as low as 10 GeV to the top energy of 450 GeV. Later on, for the acceleration of ions, with a larger frequency swing, turn-to-turn phase jumps did the trick. Two cavities, each consisting of 5 tank sections, were installed in long straight section 3. Each cavity is driven by a power amplifier of 750 kW CW (1 MW pulsed). Another 2 cavities were added later on. See also 7411033 and 7802190.
Existence of traveling waves for diffusive-dispersive conservation laws
Directory of Open Access Journals (Sweden)
Cezar I. Kondo
2013-02-01
Full Text Available In this work we show the existence existence and uniqueness of traveling waves for diffusive-dispersive conservation laws with flux function in $C^{1}(mathbb{R}$, by using phase plane analysis. Also we estimate the domain of attraction of the equilibrium point attractor corresponding to the right-hand state. The equilibrium point corresponding to the left-hand state is a saddle point. According to the phase portrait close to the saddle point, there are exactly two semi-orbits of the system. We establish that only one semi-orbit come in the domain of attraction and converges to $(u_{-},0$ as $yo -infty$. This provides the desired saddle-attractor connection.
Dynamical behaviours and exact travelling wave solutions of modified generalized Vakhnenko equation
Indian Academy of Sciences (India)
JUNJUN XIAO; DAHE FENG; XIA MENG; YUANQUAN CHENG
2017-01-01
By using the bifurcation theory of planar dynamical systems and the qualitative theory of differential equations, we studied the dynamical behaviours and exact travelling wave solutions of the modified generalized Vakhnenko equation (mGVE). As a result, we obtained all possible bifurcation parametric sets and many explicit formulas of smooth and non-smooth travelling waves such as cusped solitons, loop solitons, periodic cusp waves, pseudopeakon solitons, smooth periodic waves and smooth solitons. Moreover, we provided some numerical simulations of these solutions.
Tonotopically arranged traveling waves in the miniature hearing organ of bushcrickets.
Directory of Open Access Journals (Sweden)
Arun Palghat Udayashankar
Full Text Available Place based frequency discrimination (tonotopy is a fundamental property of the coiled mammalian cochlea. Sound vibrations mechanically conducted to the hearing organ manifest themselves into slow moving waves that travel along the length of the organ, also referred to as traveling waves. These traveling waves form the basis of the tonotopic frequency representation in the inner ear of mammals. However, so far, due to the secure housing of the inner ear, these waves only could be measured partially over small accessible regions of the inner ear in a living animal. Here, we demonstrate the existence of tonotopically ordered traveling waves covering most of the length of a miniature hearing organ in the leg of bushcrickets in vivo using laser Doppler vibrometery. The organ is only 1 mm long and its geometry allowed us to investigate almost the entire length with a wide range of stimuli (6 to 60 kHz. The tonotopic location of the traveling wave peak was exponentially related to stimulus frequency. The traveling wave propagated along the hearing organ from the distal (high frequency to the proximal (low frequency part of the leg, which is opposite to the propagation direction of incoming sound waves. In addition, we observed a non-linear compression of the velocity response to varying sound pressure levels. The waves are based on the delicate micromechanics of cellular structures different to those of mammals. Hence place based frequency discrimination by traveling waves is a physical phenomenon that presumably evolved in mammals and bushcrickets independently.
Tonotopically arranged traveling waves in the miniature hearing organ of bushcrickets.
Palghat Udayashankar, Arun; Kössl, Manfred; Nowotny, Manuela
2012-01-01
Place based frequency discrimination (tonotopy) is a fundamental property of the coiled mammalian cochlea. Sound vibrations mechanically conducted to the hearing organ manifest themselves into slow moving waves that travel along the length of the organ, also referred to as traveling waves. These traveling waves form the basis of the tonotopic frequency representation in the inner ear of mammals. However, so far, due to the secure housing of the inner ear, these waves only could be measured partially over small accessible regions of the inner ear in a living animal. Here, we demonstrate the existence of tonotopically ordered traveling waves covering most of the length of a miniature hearing organ in the leg of bushcrickets in vivo using laser Doppler vibrometery. The organ is only 1 mm long and its geometry allowed us to investigate almost the entire length with a wide range of stimuli (6 to 60 kHz). The tonotopic location of the traveling wave peak was exponentially related to stimulus frequency. The traveling wave propagated along the hearing organ from the distal (high frequency) to the proximal (low frequency) part of the leg, which is opposite to the propagation direction of incoming sound waves. In addition, we observed a non-linear compression of the velocity response to varying sound pressure levels. The waves are based on the delicate micromechanics of cellular structures different to those of mammals. Hence place based frequency discrimination by traveling waves is a physical phenomenon that presumably evolved in mammals and bushcrickets independently.
Guryanov, Vladimir; Eliseev, Alexey
2016-07-01
The ERA-Interim geopotential height in the Northern Hemisphere from November to March, 1992-2015 in the layer from between pressure levels 1000 mb and 1 mb is expanded into stationary and travelling zonal waves with zonal wavenumbers, k, from 1 to 10, and with periods, T, from 2 to 156 days (the so called Hayashi spectra). Among the studied waves, the largest amplitude is attained by the stationary and travelling waves with zonal wavenumber k=1 and with periods from 3 to 4 weeks in the upper stratosphere over the latitudinal belt 60-70oN. The stationary waves with k from 1 to 3 and with T from 2 to 3 weeks are most pronounced in the stratosphere. In turn, the largest amplitudes of the travelling waves with zonal wavenumbers k ≥ 5 are found in the troposphere. The dominant periods of the latter waves are about 1 week or slightly higher, and this dominant period basically decrease with increasing wavenumber. In the upper stratosphere, the eastward travelling waves generally dominate over westward ones. The only exception is the longest zonal mode with k=1, for which the amplitude of the westward travelling wave is larger than that for the eastward one. The period of the travelling waves dominating in the upper stratosphere is close to 3 weeks. In the upper troposphere, the amplitudes of the eastward waves with k from 4 to 10 is several-fold larger than those for their westward counterparts. The latter is reflected in the larger average wavenumber of the eastward travelling wave in comparison to that of the westarward one. The period of the gravest of the dominant travelling waves in the upper troposphere is close to one week, and it decreases to 2-4 days for the dominant travelling waves with k=8-10.
New Exact Travelling Wave and Periodic Solutions of Discrete Nonlinear Schr(o)dinger Equation
Institute of Scientific and Technical Information of China (English)
YANG Qin; DAI Chao-Qing; ZHANG Jie-Fang
2005-01-01
Some new exact travelling wave and period solutions of discrete nonlinear Schrodinger equation are found by using a hyperbolic tangent function approach, which was usually presented to find exact travelling wave solutions of certain nonlinear partial differential models. Now we can further extend the new algorithm to other nonlinear differentialdifferent models.
Travelling Wave Solutions in Delayed Reaction Diffusion Systems with Partial Monotonicity
Institute of Scientific and Technical Information of China (English)
Jian-hua Huang; Xing-fu Zou
2006-01-01
This paper deals with the existence of travelling wave fronts of delayed reaction diffusion systems with partial quasi-monotonicity. We propose a concept of "desirable pair of upper-lower solutions", through which a subset can be constructed. We then apply the Schauder's fixed point theorem to some appropriate operator in this subset to obtain the existence of the travelling wave fronts.
Single Wave Overtopping Volumes and their Travel Distance for Rubble Mound Breakwaters
DEFF Research Database (Denmark)
Andersen, Thomas Lykke; Burcharth, Hans F.; Gironella, F. X.
2009-01-01
In the present paper small and large scale overtopping data for rubble mound structures have been analysed with respect to single wave overtopping volumes and their travel distance. The analysis has led to formulae for estimation of maximum single wave overtopping volumes and their travel distance...
Tappe, D; Stich, A; Langeheinecke, A; von Sonnenburg, F; Muntau, B; Schäfer, J; Slesak, G
2014-05-29
In May 2014, six patients presented in Germany with a Sarcocystis-associated febrile myositis syndrome after returning from Tioman Island, Malaysia. During two earlier waves of infections, in 2011 and 2012, about 100 travellers returning to various European countries from the island were affected. While the first two waves were associated with travel to Tioman Island mostly during the summer months, this current series of infections is associated with travel in early spring, possibly indicating an upcoming new epidemic.
TRAVELING WAVE SOLUTIONS OF SOME FRACTIONAL DIFFERENTIAL EQUATIONS
Directory of Open Access Journals (Sweden)
SERIFE MUGE EGE
2016-07-01
Full Text Available The modified Kudryashov method is powerful, efficient and can be used as an alternative to establish new solutions of different type of fractional differential equations applied in mathematical physics. In this article, we’ve constructed new traveling wave solutions including symmetrical Fibonacci function solutions, hyperbolic function solutions and rational solutions of the space-time fractional Cahn Hillihard equation D_t^α u − γD_x^α u − 6u(D_x^α u^2 − (3u^2 − 1D_x^α (D_x^α u + D_x^α(D_x^α(D_x^α(D_x^α u = 0 and the space-time fractional symmetric regularized long wave (SRLW equation D_t^α(D_t^α u + D_x^α(D_x^α u + uD_t^α(D_x^α u + D_x^α u D_t^α u + D_t^α(D_t^α(D_x^α(D_x^α u = 0 via modified Kudryashov method. In addition, some of the solutions are described in the figures with the help of Mathematica.
Technique Developed for Optimizing Traveling-Wave Tubes
Wilson, Jeffrey D.
1999-01-01
A traveling-wave tube (TWT) is an electron beam device that is used to amplify electromagnetic communication waves at radio and microwave frequencies. TWT s are critical components in deep-space probes, geosynchronous communication satellites, and high-power radar systems. Power efficiency is of paramount importance for TWT s employed in deep-space probes and communications satellites. Consequently, increasing the power efficiency of TWT s has been the primary goal of the TWT group at the NASA Lewis Research Center over the last 25 years. An in-house effort produced a technique (ref. 1) to design TWT's for optimized power efficiency. This technique is based on simulated annealing, which has an advantage over conventional optimization techniques in that it enables the best possible solution to be obtained (ref. 2). A simulated annealing algorithm was created and integrated into the NASA TWT computer model (ref. 3). The new technique almost doubled the computed conversion power efficiency of a TWT from 7.1 to 13.5 percent (ref. 1).
rf traveling-wave electron gun for photoinjectors
Schaer, Mattia; Citterio, Alessandro; Craievich, Paolo; Reiche, Sven; Stingelin, Lukas; Zennaro, Riccardo
2016-07-01
The design of a photoinjector, in particular that of the electron source, is of central importance for free electron laser (FEL) machines where a high beam brightness is required. In comparison to standard designs, an rf traveling-wave photocathode gun can provide a more rigid beam with a higher brightness and a shorter pulse. This is illustrated by applying a specific optimization procedure to the SwissFEL photoinjector, for which a brightness improvement up to a factor 3 could be achieved together with a double gun output energy compared to the reference setup foreseeing a state-of-the-art S-band rf standing-wave gun. The higher brightness is mainly given by a (at least) double peak current at the exit of the gun which brings benefits for both the beam dynamics in the linac and the efficiency of the FEL process. The gun design foresees an innovative coaxial rf coupling at both ends of the structure which allows a solenoid with integrated bucking coil to be placed around the cathode in order to provide the necessary focusing right after emission.
[Human traveling wave EEG during voluntary movement of the hand].
Belov, D R; Stepanova, P A; Kolodiazhnyĭ, S F
2014-01-01
The traveling wave trajectories connected with the movements of the right hand were revealed. Above sensomotor cortex 28 electrodes were set as a rectangle--4 rows with 7 electrodes in each one. 2D center-out reaching task was used. The target appeared on the screen edge through the random intervals 0.5-2.5 s equiprobably at the left, on the right, from above or from below. The task was to touch the target with the joystick-operated cursor displacing the cursor in one of the sides from the center to edge. EEG from the target occurrence till cursor contact with it was analyzed. Leading on phase of spontaneous EEG waves in the local area of the left sensomotor cortex and in the centre of back-parietal cortex during cursor movement downwards (the hand with joystick moves to oneself) comparing to rest state and movements in three other directions is revealed. The over time smoothing of data concerning phase alignment reveals hidden constant components in EEG resembling evoked potentials.
High-speed traveling-wave electro-absorption modulators
Westergren, Urban; Yu, Yichuan; Thylén, Lars
2006-07-01
Electroabsorption modulators (EAM) based on quantum-confined Stark effect (QCSE) in multiplequantum wells (MQW) have been demonstrated to provide high-speed, low drive voltage, and high extinction ratio. They are compact in size and can be monolithically integrated with continuous-wave (CW) lasers. In order to achieve both high speed and low drive-voltage operation, travelling-wave (TW) electrode structures can be used for EAMs. The inherently low impedance of high-speed EAMs may be transformed to values close to the standard 50Ohm impedance using periodic microwave structures with a combination of passive transmission lines with high characteristic impedance and active modulator sections with low impedance. Modulation bandwidths of 100GHz (-3dBe) have been accomplished with electrical reflections lower than -10dB in a 50Ohm system. Transmission at 80Gbit/s with non-return-to-zero (NRZ) code has been demonstrated for InP-based TWEAMs using electronic time-domain multiplexing (ETDM), indicating the possibility of reaching speeds of 100Gbit/s and beyond.
New Radiation Input/Output Systems for Millimeter-Wave Gyrotron Traveling-Wave Tubes
Denisov, G. G.; Bogdashov, A. A.; Gachev, I. G.; Mishakin, S. V.; Samsonov, S. V.
2016-03-01
We consider in detail the method allowing one to input and output the microwave radiation produced by an elecrovacuum amplifier through the same barrier window, which was proposed earlier, in the context of its application in a traveling-wave tube based on a waveguide with a helically corrugated surface. Special attention is given to the splitter of differently polarized radiation, and the results of studying this splitter at wavelengths of about 6 and 1 mm theoretically and experimentally are presented.
Travelling wave solutions for the Painleve-integrable coupled KdV equations
Directory of Open Access Journals (Sweden)
Xiao-Biao Lin
2008-06-01
Full Text Available We study the travelling wave solutions for a system of coupled KdV equations derived by Lou et al [11]. In that paper, they found 5 types of Painleve integrable systems for the coupled KdV system. We show that each of them can be reduced to a partially or completely uncoupled system, through which the dynamical behavior of travelling wave solutions can be determined. In some parameter regions, exact formulas for periodic and solitary waves can be obtained while in other cases, bounded travelling wave solution are discussed.
Travelling wave-like solutions of the Zakharov-Kuznetsov equation with variable coefficients
Indian Academy of Sciences (India)
Yan-Ze Peng; E V Krishnan; Hui Feng
2008-07-01
Travelling wave-like solutions of the Zakharov-Kuznetsov equation with variable coefficients are studied using the solutions of Raccati equation. The solitary wave-like solution, the trigonometric periodic wave solution and the rational wave solution are obtained with a constraint between coefficients. The property of the solutions is numerically investigated. It is shown that the coefficients of the equation do not change the wave amplitude, but may change the wave velocity.
Traveling Wave Solutions for Lotka-Volterra System Re-Visited
Leung, Anthony W; Feng, Wei
2009-01-01
Using a new method of monotone iteration of a pair of smooth lower- and upper-solutions, the traveling wave solutions of the classical Lotka-Volterra system are shown to exist for a family of wave speeds. Such constructed upper and lower solution pair enables us to derive the explicit value of the minimal (critical) wave speed as well as the asymptotic rates of the wave solutions at infinities. Furthermore, the traveling wave corresponding to each wave speed is unique modulo a translation of the origin. The stability of the traveling wave solutions with non-critical wave speed is also studied by spectral analysis of the linearized operator in exponentially weighted Banach spaces.
Exact travelling wave solutions for four forms of nonlinear Klein-Gordon equations
Energy Technology Data Exchange (ETDEWEB)
Sirendaoreji [College of Mathematical Science, Inner Mongolia Normal University, Huhhot 010022, Inner Mongolia (China)]. E-mail: siren@imnu.edu.cn
2007-04-09
A variable separated equation and its solutions are used to construct the exact travelling wave solutions for four forms of nonlinear Klein-Gordon equations. The solutions previously obtained by the tanh and sech method are recovered. New and more exact travelling wave solutions including solitons, kink and anti-kink, bell and anti-bell solitary wave solutions, periodic solutions, singular solutions and exponential solutions are found.
The (′/-Expansion Method for Abundant Traveling Wave Solutions of Caudrey-Dodd-Gibbon Equation
Directory of Open Access Journals (Sweden)
Hasibun Naher
2011-01-01
Full Text Available We construct the traveling wave solutions of the fifth-order Caudrey-Dodd-Gibbon (CDG equation by the (/-expansion method. Abundant traveling wave solutions with arbitrary parameters are successfully obtained by this method and the wave solutions are expressed in terms of the hyperbolic, the trigonometric, and the rational functions. It is shown that the (/-expansion method is a powerful and concise mathematical tool for solving nonlinear partial differential equations.
Experimental Investigation of Self-sustained Oscillation in a Traveling Wave Thermoacoustic System
Institute of Scientific and Technical Information of China (English)
Jihao Wu; Qing Li; Fangzhong Guo
2003-01-01
A traveling wave thermoacoustic engine consisting of a loop tube with a resonator has been tested. The onset characteristic together with the transition of oscillation mode from traveling wave to standing wave and the periodic shifting between modes in this system are investigated experimentally. The process of self-sustained thermoacoustic oscillation in this heat engine is described and analyzed through phase space distribution reconstructed from the time series of acoustic signal.
Wang, Ying; Guo, Yunxi
2017-09-01
In this paper, we developed, for the first time, the exact expressions of several periodic travelling wave solutions and a solitary wave solution for a shallow water wave model of moderate amplitude. Then, we present the existence theorem of the global weak solutions. Finally, we prove the stability of solution in L1(R) space for the Cauchy problem of the equation.
Wang, Ying; Guo, Yunxi
2016-07-01
In this paper, we developed, for the first time, the exact expressions of several periodic travelling wave solutions and a solitary wave solution for a shallow water wave model of moderate amplitude. Then, we present the existence theorem of the global weak solutions. Finally, we prove the stability of solution in L1(R) space for the Cauchy problem of the equation.
Institute of Scientific and Technical Information of China (English)
2010-01-01
<正>Fault location for distribution feeders short circuit especially single-phase grounding fault is an important task in distribution system with non-effectively grounded neutral.Fault location mode for distribution feeders using fault generated current and voltage transient traveling waves was investigated.The characteristics of transient traveling waves resulted from each short circuit fault and their transmission disciplinarian in distribution feeders are analyzed.This paper proposed that double end travelling waves theory which measures arriving time of fault initiated surge at both ends of the monitored line is fit for distribution feeders but single end traveling waves theory not.According to different distribution feeders,on the basis of analyzing original traveling waves reflection rule in line terminal, Current-voltage mode,voltage-voltage mode and current-current mode for fault location based on traveling waves are proposed and aerial mode component of original traveling waves is used to realize fault location.Experimental test verify the feasibility and correctness of the proposed method.
Contribution of ultrasonic traveling wave to chemical-mechanical polishing.
Li, Liang; He, Qing; Zheng, Mian; Liu, Zheng
2015-02-01
The ultrasonic vibrators are introduced into the chemical-mechanical polishing devices, and in this polishing system, the ultrasonic vibrators generate ultrasonic traveling wave and keep coaxial with the polished silicon wafer rotating at given speed so as to compare the texture of the polished silicon wafers. And the experiments on the chemical-mechanical polishing with assisted ultrasonic vibration are accomplished in order to investigate the effect of the ultrasonic vibration on the chemical-mechanical polishing. Via comparing the roughness average of the two silicon wafers polished with assisted ultrasonic vibration and without assisted vibration, it is found that the morphology of the silicon wafer polished with assisted vibration is superior to that without assisted vibration, that is, this series of experiments indicate that the ultrasonic vibration is beneficial to the chemical-mechanical polishing. Aiming at understanding the contribution of the ultrasonic vibration to chemical-mechanical polishing in detail, the model of the chemical-mechanical polishing with the assisted ultrasonic vibration is built up, which establishes the relationship of the removal rate and the polishing variables such as the rotary speed of silicon wafers, the amplitude and the frequency of vibrators, the particle density of polishing slurry and the characteristics of polishing pad etc. This model not only could be used to explain the experimental results but also to illuminate the roles played by the polishing variables.
Two-dimensional nonlinear travelling waves in magnetohydrodynamic channel flow
Hagan, Jonathan
2013-01-01
The present study is concerned with the stability of a flow of viscous conducting liquid driven by pressure gradient in the channel between two parallel walls subject to a transverse magnetic field. Although the magnetic field has a strong stabilizing effect, this flow, similarly to its hydrodynamic counterpart -- plane Poiseuille flow, is known to become turbulent significantly below the threshold predicted by linear stability theory. We investigate the effect of the magnetic field on 2D nonlinear travelling-wave states which are found at substantially subcritical Reynolds numbers starting from $Re_n=2939$ without the magnetic field and from $Re_n\\sim6.50\\times10^3Ha$ in a sufficiently strong magnetic field defined by the Hartmann number $Ha.$ Although the latter value is by a factor of seven lower than the linear stability threshold $Re_l\\sim4.83\\times10^4Ha$,it is still more by an order of magnitude higher than the experimentally observed value for the onset of turbulence in this flow.
Photonic-Band-Gap Traveling-Wave Gyrotron Amplifier
Nanni, E. A.; Lewis, S. M.; Shapiro, M. A.; Griffin, R. G.; Temkin, R. J.
2014-01-01
We report the experimental demonstration of a gyrotron traveling-wave-tube amplifier at 250 GHz that uses a photonic band gap (PBG) interaction circuit. The gyrotron amplifier achieved a peak small signal gain of 38 dB and 45 W output power at 247.7 GHz with an instantaneous −3 dB bandwidth of 0.4 GHz. The amplifier can be tuned for operation from 245–256 GHz. The widest instantaneous −3 dB bandwidth of 4.5 GHz centered at 253.25 GHz was observed with a gain of 24 dB. The PBG circuit provides stability from oscillations by supporting the propagation of transverse electric (TE) modes in a narrow range of frequencies, allowing for the confinement of the operating TE03-like mode while rejecting the excitation of oscillations at nearby frequencies. This experiment achieved the highest frequency of operation for a gyrotron amplifier; at present, there are no other amplifiers in this frequency range that are capable of producing either high gain or high output power. This result represents the highest gain observed above 94 GHz and the highest output power achieved above 140 GHz by any conventional-voltage vacuum electron device based amplifier. PMID:24476286
Travelling Wave Magnetic Resonance Imaging at 3 Tesla
Vazquez, F; Marrufo, O; Rodriguez, A O
2013-01-01
Waveguides have been successfully used to generate magnetic resonance images at 7 T with whole-body systems. The bore limits the magnetic resonance signal transmitted because its specific cut-off frequency is greater than the majority of resonant frequencies. This restriction can be overcome by using a parallel-plate waveguide whose cut-off frequency is zero for the transversal electric modes and it can propagate any frequency. To investigate the potential benefits for whole-body imaging at 3 T, we compare numerical simulations at 1.5 T, 3 T, 7 T, and 9 T via the propagation of the parallel-plate waveguide principal mode filled with a cylindrical phantom and two surface coils. B1 mapping was computed to investigate the feasibility of this approach at 3T. The point spread function method was used to measure the imager performance for the traveling-wave magnetic resonance imaging experiment. Human leg images were acquired to experimentally validate this approach. The principal mode shows very little field magni...
Experimental Investigation of Broadband Vaned Helix Traveling-Wave Tube
Kim, Hae Jin; Jang, Lae Bong; Seo, Won Bum; Choi, Jin Joo
2006-01-01
A broadband helical traveling-wave-tube (TWT) amplifier for microwave power module (MPM) applications is designed using high frequency structure simulation (HFSS) and LMsuite code. The LMsuite, which is a one-dimensional nonlinear code, was utilized to predict the nonlinear, large-signal performance of the helical TWT. Simulations predict that an output power of 22.6 W is produced when an input power of 63.1 mW is injected at 10 GHz, corresponding to a saturated gain of 25.5 dB. The saturated bandwidth is predicted to be 6-17 GHz. Experiments on a fabricated TWT show that an output power of 18.7 W is produced when an input power of 42.6 mW is injected at 10 GHz, corresponding to a saturated gain of 26.4 dB. The saturated bandwidth is measured to be 6-16 GHz. AM/PM distortion is up to 6°/dB at a drive level 6 dB below the saturation input power. The third-order intermodulation distortion (IMD) ratio is -19 dBc at a 10 dB backoff from the P1 dB point when two-tone signals of 12 and 12.005 GHz are injected at equal amplitude.
Nonlinear dynamic analysis of traveling wave-type ultrasonic motors.
Nakagawa, Yosuke; Saito, Akira; Maeno, Takashi
2008-03-01
In this paper, nonlinear dynamic response of a traveling wave-type ultrasonic motor was investigated. In particular, understanding the transient dynamics of a bar-type ultrasonic motor, such as starting up and stopping, is of primary interest. First, the transient response of the bar-type ultrasonic motor at starting up and stopping was measured using a laser Doppler velocimeter, and its driving characteristics are discussed in detail. The motor is shown to possess amplitude-dependent nonlinearity that greatly influences the transient dynamics of the motor. Second, a dynamical model of the motor was constructed as a second-order nonlinear oscillator, which represents the dynamics of the piezoelectric ceramic, stator, and rotor. The model features nonlinearities caused by the frictional interface between the stator and the rotor, and cubic nonlinearity in the dynamics of the stator. Coulomb's friction model was employed for the interface model, and a stick-slip phenomenon is considered. Lastly, it was shown that the model is capable of representing the transient dynamics of the motor accurately. The critical parameters in the model were identified from measured results, and numerical simulations were conducted using the model with the identified parameters. Good agreement between the results of measurements and numerical simulations is observed.
Characteristics of ring type traveling wave ultrasonic motor in vacuum.
Qu, Jianjun; Zhou, Ningning; Tian, Xiu; Jin, Long; Xu, Zhike
2009-03-01
The characteristics of ultrasonic motor strongly depend on the properties of stator/rotor contact interface which are affected by ambient environment. With the developed apparatus, load properties of two ring type traveling wave ultrasonic motors in atmosphere, low vacuum and high vacuum were studied, respectively. Wear of friction material, variations of vacuum degree and the temperature of motor during the experiment were also measured. The results show that load properties of motor A in vacuum were poorer than those in atmosphere, when load torque M(f) was less than 0.55 N m. Compared to motor A, load properties of motor B were affected a little by environmental pressure. Wear of friction material in vacuum was more severe than wear in atmosphere. The temperature of motor in vacuum rose more quickly than it in atmosphere and had not reached equilibrium in 2 h experiment. However, the temperature of motor in atmosphere had reached equilibrium in about forth minutes. Furthermore, outgas was also observed during experiment under vacuum conditions.
Contact analysis and mathematical modeling of traveling wave ultrasonic motors.
Zhu, Meiling
2004-06-01
An analysis of the contact layer and a mathematical modeling of traveling wave ultrasonic motors (TWUM) are presented for the guidance of the design of contact layer and the analyses of the influence of the compressive force and contact layer on motor performance. The proposed model starts from a model previously studied but differs from that model in that it adds the analysis of the contact layer and derives the steady-state solutions of the nonlinear equations in the frequency domain, rather than in the time domain, for the analyses of vibrational responses of the stator and operational characteristics of the motor. The maximum permissible compressive force of the motor, the influences of the contact layer material, the thickness of the contact layer, and the compressive force on motor performance have been discussed. The results show that by using the model, one can understand the influence of the compressive force and contact layer material on motor performance, guide the choice of proper contact layer material, and calculate the maximum permissible compressive force and starting voltage.
Dynamics of traveling waves in fluctuating nonlocal media
S. I., Skurativskyi; I. A., Skurativska
2017-08-01
The article deals with nonlocal hydrodynamic models for structured media with a fluctuating parameter. We are interested in the structure of traveling wave solutions disturbed by noise. Using the stochastic sensitivity function technique, the confidence ellipses for periodic trajectories obeying the period doubling scenario, hidden and spiral periodic orbits are derived. To identify the peculiarities of confidence ellipses, we consider the variation of eccentricity and area over the period of a periodic trajectory. We show that the dynamics of eccentricity of noisy limit cycle, up to triple period, has the number of minima coinciding with the cycle's multiplicity, whereas this is not in the case of quadruple cycle. The profiles of function for the areas of confidence ellipses characterize the heterogeneous anatomy of stochastic attractors and possess scaling properties for multiple cycles. Considering the eccentricity and area of confidence ellipses for the spiral trajectory existing in the vicinity of Shilnikov homoclinic loop, the intensive oscillations of eccentricity and area are observed when the confidence ellipses are derived for the flow near the one dimensional manifold of Shilnikov's orbit.
Travelling waves and fold localization in hovercraft seals
Wiggins, Andrew; Zalek, Steve; Perlin, Marc; Ceccio, Steve
2013-11-01
The seal system on hovercraft consists of a series of open-ended fabric cylinders that contact the free surface and, when inflated, form a compliant pressure barrier. Due to a shortening constraint imposed by neighboring seals, bow seals operate in a post-buckled state. We present results from large-scale experiments on these structures. These experiment show the hydroelastic response of seals to be characterized by striking stable and unstable post-buckling behavior. Using detailed 3-d measurements of the deformed seal shape, dominant response regimes are identified. These indicate that mode number decreases with wetted length, and that the form of the buckling packet becomes localized with increased velocity and decreased bending stiffness. Eventually, at a critical pressure, travelling waves emerge. To interpret the wide range of observed behavior, a 2-d nonlinear post-buckling model is developed and compared with the experimental studies. The model shows the importance of seal shortening and the buckling length, which is driven by the balance of hydrodynamic and bending energies. Preliminary scaling laws for the fold amplitude and mode number are presented. The experiments may ultimately provide insight into the bedeviling problem of seal wear. Sponsored by the Office of Naval Research under grant N00014-10-1-0302, Ms. Kelly B. Cooper, program manager.
Polymers for Traveling Wave Ion Mobility Spectrometry Calibration
Duez, Quentin; Chirot, Fabien; Liénard, Romain; Josse, Thomas; Choi, ChangMin; Coulembier, Olivier; Dugourd, Philippe; Cornil, Jérôme; Gerbaux, Pascal; De Winter, Julien
2017-07-01
One of the main issues when using traveling wave ion mobility spectrometry (TWIMS) for the determination of collisional cross-section (CCS) concerns the need for a robust calibration procedure built from referent ions of known CCS. Here, we implement synthetic polymer ions as CCS calibrants in positive ion mode. Based on their intrinsic polydispersities, polymers offer in a single sample the opportunity to generate, upon electrospray ionization, numerous ions covering a broad mass range and a large CCS window for different charge states at a time. In addition, the key advantage of polymer ions as CCS calibrants lies in the robustness of their gas-phase structure with respect to the instrumental conditions, making them less prone to collisional-induced unfolding (CIU) than protein ions. In this paper, we present a CCS calibration procedure using sodium cationized polylactide and polyethylene glycol, PLA and PEG, as calibrants with reference CCS determined on a home-made drift tube. Our calibration procedure is further validated by testing the polymer calibration to determine CCS of numerous different ions for which CCS are reported in the literature. [Figure not available: see fulltext.
Controlling the onset of turbulence by streamwise traveling waves. Part 1: Receptivity analysis
Moarref, Rashad
2010-01-01
We examine the efficacy of streamwise traveling waves generated by a zero-net-mass-flux surface blowing and suction for controlling the onset of turbulence in a channel flow. For small amplitude actuation, we utilize weakly nonlinear analysis to determine base flow modifications and to assess the resulting net power balance. Receptivity analysis of the velocity fluctuations around this base flow is then employed to design the traveling waves. Our simulation-free approach reveals that, relative to the flow with no control, the downstream traveling waves with properly designed speed and frequency can significantly reduce receptivity which makes them well-suited for controlling the onset of turbulence. In contrast, the velocity fluctuations around the upstream traveling waves exhibit larger receptivity to disturbances. Our theoretical predictions, obtained by perturbation analysis (in the wave amplitude) of the linearized Navier-Stokes equations with spatially periodic coefficients, are verified using full-scale...
L2-stability of traveling wave solutions to nonlocal evolution equations
Lang, Eva; Stannat, Wilhelm
2016-10-01
Stability of the traveling wave solution to a general class of one-dimensional nonlocal evolution equations is studied in L2-spaces, thereby providing an alternative approach to the usual spectral analysis with respect to the supremum norm. We prove that the linearization around the traveling wave solution satisfies a Lyapunov-type stability condition in a weighted space L2 (ρ) for a naturally associated density ρ. The result can be applied to obtain stability of the traveling wave solution under stochastic perturbations of additive or multiplicative type. For small wave speeds, we also prove an alternative Lyapunov-type stability condition in L2 (m), where m is the symmetrizing density for the traveling wave operator, which allows to derive a long-term stochastic stability result.
Travelling waves above the canopy of aquatic vegetation
Lyubimov, D.; Lyubimova, T.; Baidina, D.
2012-04-01
When fluid moves over a saturated porous medium with high permeability and porosity, the flow partially involves the fluid in porous medium, however, because of the great resistance force there arises sharp drop of tangential velocity. This leads to the development of instability similar to the Kelvin-Helmholtz instability on discontinuity surface of the tangential velocities of homogeneous fluids. Analogy becomes even more complete if we take into account the deformability of porous medium under the influence of pressure changes. Intensive vortices above the canopy of aquatic vegetation can lead to the coherent oscillations of vegetation, such traveling waves are called monami [1]. In the present paper we investigate stability of steady flow over a saturated porous medium. The importance of this problem is related to the applications to the dynamics of pollutants in the bottom layer of vegetation: the accumulation at low flow and salvo emissions with increasing velocity. We consider a two-layer system consisting of a layer of a viscous incompressible fluid and porous layer saturated with the same fluid located underneath. The lower boundary of the system is assumed to be rigid, the upper boundary - free and non-deformable. Weak slope of the river is taken into account. The problem is solved within the framework of single approach in which a two-layer system is described by a single system of equations for saturated porous medium and the presence of two layers is modeled by introducing variable permeability and porosity, depending on vertical coordinate. The flow in a saturated porous medium is described by the Brinkman model. Solution of the problem for steady flow shows that the velocity profile has two inflection points, which leads to the instability. The neutral curves are obtained for different values of the ratio d of porous layer thickness to full thickness. It is found that the dependence of critical Reynolds number on d is non-monotonic and the wave
Theoretical Modeling and Implementation of Traveling Wave Sensor Based on PCB Coils
Directory of Open Access Journals (Sweden)
Zewen Li
2015-01-01
Full Text Available Based on analyzing characteristics of Rogowski coil, a new type of PCB traveling wave sensor with simple structure, high linearity, and anti-interference ability is proposed. The sensor has fine physical structure, which can effectively resist external electromagnetic interference by anti-interference measurement. In addition, it can greatly improve mutual inductance based on simple combinations. Simulations show that the new PCB traveling wave sensor can validly extract and deliver traveling wave signal and therefore realize fault location and protection accurately.
Calculation Method for the Prediction of the Performance of a Traveling-Wave Thermoacoustic Cooler
Ueda, Yuki
When a traveling acoustic wave propagates through a regenerator, the gas in the regenerator undergoes the Stirling thermodynamic cycle, and thus, the energy conversion between heat flux and acoustic power takes place. A cooler that utilizes this energy conversion is called as a traveling-wave thermoacoustic cooler. Swift et al. [The Journal of the Acoustical Society of America, 105, 711 (1998)] have proposed a new traveling wave thermoacoustic cooler that is equipped with a looped tube. This paper describes a numerical method to estimate the performance of this thermoacoustic cooler and shows a comparison between the estimated and experimentally obtained performances.
An Exactly Solvable Travelling Wave Equation in the Fisher-KPP Class
Brunet, Éric; Derrida, Bernard
2015-11-01
For a simple one dimensional lattice version of a travelling wave equation, we obtain an exact relation between the initial condition and the position of the front at any later time. This exact relation takes the form of an inverse problem: given the times t_n at which the travelling wave reaches the positions n, one can deduce the initial profile. We show, by means of complex analysis, that a number of known properties of travelling wave equations in the Fisher-KPP class can be recovered, in particular Bramson's shifts of the positions. We also recover and generalize Ebert-van Saarloos' corrections depending on the initial condition.
Existence and stability of traveling wave solutions for multilayer cellular neural networks
Hsu, Cheng-Hsiung; Lin, Jian-Jhong; Yang, Tzi-Sheng
2015-08-01
The purpose of this article is to investigate the existence and stability of traveling wave solutions for one-dimensional multilayer cellular neural networks. We first establish the existence of traveling wave solutions using the truncated technique. Then we study the asymptotic behaviors of solutions for the Cauchy problem of the neural model. Applying two kinds of comparison principles and the weighed energy method, we show that all solutions of the Cauchy problem converge exponentially to the traveling wave solutions provided that the initial data belong to a suitable weighted space.
Travelling wave solutions for some two-component shallow water models
Dutykh, Denys; Ionescu-Kruse, Delia
2016-07-01
In the present study we perform a unified analysis of travelling wave solutions to three different two-component systems which appear in shallow water theory. Namely, we analyze the celebrated Green-Naghdi equations, the integrable two-component Camassa-Holm equations and a new two-component system of Green-Naghdi type. In particular, we are interested in solitary and cnoidal-type solutions, as two most important classes of travelling waves that we encounter in applications. We provide a complete phase-plane analysis of all possible travelling wave solutions which may arise in these models. In particular, we show the existence of new type of solutions.
Kai Zhou; Qi-Ru Wang
2014-01-01
This paper is concerned with the existence of traveling waves for a delayed SIRS epidemic diffusion model with saturation incidence rate. By using the cross-iteration method and Schauder’s fixed point theorem, we reduce the existence of traveling waves to the existence of a pair of upper-lower solutions. By careful analyzsis, we derive the existence of traveling waves connecting the disease-free steady state and the endemic steady state through the establishment of the suitable upper-lower...
Existence Analysis of Traveling Wave Solutions for a Generalization of KdV Equation
Directory of Open Access Journals (Sweden)
Yao Long
2013-01-01
Full Text Available By using the bifurcation theory of dynamic system, a generalization of KdV equation was studied. According to the analysis of the phase portraits, the existence of solitary wave, cusp wave, periodic wave, periodic cusp wave, and compactons were discussed. In some parametric conditions, exact traveling wave solutions of this generalization of the KdV equation, which are different from those exact solutions in existing references, were given.
Symmetry and decay of traveling wave solutions to the Whitham equation
Bruell, Gabriele; Ehrnström, Mats; Pei, Long
2017-04-01
This paper is concerned with decay and symmetry properties of solitary-wave solutions to a nonlocal shallow-water wave model. An exponential decay result for supercritical solitary-wave solutions is given. Moreover, it is shown that all such solitary-wave solutions are symmetric and monotone on either side of the crest. The proof is based on the method of moving planes. Furthermore, a close relation between symmetric and traveling-wave solutions is established.
Zhao, Guangyu; Ruan, Shigui
2011-06-01
We study the existence, uniqueness, and asymptotic stability of time periodic traveling wave solutions to a periodic diffusive Lotka-Volterra competition system. Under certain conditions, we prove that there exists a maximal wave speed c(*) such that for each wave speed c ≤ c(*), there is a time periodic traveling wave connecting two semi-trivial periodic solutions of the corresponding kinetic system. It is shown that such a traveling wave is unique modulo translation and is monotone with respect to its co-moving frame coordinate. We also show that the traveling wave solutions with wave speed c c(*).
Zhao, Guangyu; Ruan, Shigui
2011-01-01
We study the existence, uniqueness, and asymptotic stability of time periodic traveling wave solutions to a periodic diffusive Lotka-Volterra competition system. Under certain conditions, we prove that there exists a maximal wave speed c* such that for each wave speed c ≤ c*, there is a time periodic traveling wave connecting two semi-trivial periodic solutions of the corresponding kinetic system. It is shown that such a traveling wave is unique modulo translation and is monotone with respect to its co-moving frame coordinate. We also show that the traveling wave solutions with wave speed c c*. PMID:21572575
BIFURCATIONS OF TRAVELLING WAVE SOLUTIONS IN VARIANT BOUSSINESQ EQUATIONS
Institute of Scientific and Technical Information of China (English)
YUAN Yu-bo; PU Dong-mei; LI Shu-min
2006-01-01
The bifurcations of solitary waves and kink waves for variant Boussinesq equations are studied by using the bifurcation theory of planar dynamical systems. The bifurcation sets and the numbers of solitary waves and kink waves for the variant Boussinesq equations are presented. Several types explicit formulas of solitary waves solutions and kink waves solutions are obtained. In the end, several formulas of periodic wave solutions are presented.
Theory of travelling wave antenna for ICRH and fast wave current drive in tokamaks
Energy Technology Data Exchange (ETDEWEB)
Vdovin, V.L. [NFI RNC Kurchatov Institute, Moscow (Russian Federation)
1993-12-31
Tokamaks` FWCD antennae require many loops with significant difficulties of location of large coaxes in a region of first wall and their matching with a generator due to mutual coupling between loops (LMC) (mainly through the plasma). It is natural to convert LMC from a defect into advantage by feeding a periodical structure at the edge loop creating the travelling wave. In this work we will give the self consistent theory of poloidal loop antennae with a Faraday screen (FS) loaded at the edges by lumped capacitances. (author) 2 refs.
Dividing to unveil protein microheterogeneities: traveling wave ion mobility study.
Halgand, F; Habchi, Johnny; Cravello, Laetitia; Martinho, Marlène; Guigliarelli, Bruno; Longhi, Sonia
2011-10-01
Overexpression of a protein in a foreign host is often the only route toward an exhaustive characterization, especially when purification from the natural source(s) is hardly achievable. The key issue in these studies relies on quality control of the purified recombinant protein to precisely determining its identity as well as any undesirable microheterogeneities. While standard proteomics approaches preclude unbiased search for modifications, the optional technique of top-down tandem mass spectrometry (MSMS) requires the use of highly accurate and highly resolved experiments to reveal subtle sequence modifications. In the present study, the top-down MSMS approach combined with traveling wave ion mobility (TWIM) separation was evaluated for its ability to achieve high sequence coverage and to reveal subtle microheterogeneities that were hitherto only accessible with Fourier-transform ion cyclotron resonance-MS instruments. The power of this approach is herein illustrated in an in-depth analysis of both the wild type and K496C variant of the recombinant X domain (XD; aa's 459-507) of the measles virus phosphoprotein expressed in Escherichia coli . Using top-down MSMS combined with TWIM, we show that XD samples occasionally exhibit a microheterogeneity that could not be anticipated from the nucleotide sequence of the encoding constructs and that likely reflects a genetic drift, neutral or not, occurring during expression. In addition, a 1-oxyl-2,2,5,5-tetramethyl-δ3-pyrroline-3-methyl methanethiosulfonate nitroxide probe that was grafted onto the K496C XD variant was shown to undergo oxidation and/or protonation in the electrospray ionization source, leading to artifactual mass increases.
Louis, Hélène; Odent, Vincent; Louvergneaux, Eric
2016-04-01
Shock waves are well-known nonlinear waves, displaying an abrupt discontinuity. Observation can be made in a lot of physical fields, as in water wave, plasma and nonlinear optics. Shock waves can either break or relax through either catastrophic or regularization phenomena. In this work, we restrain our study to dispersive shock waves. This regularization phenomenon implies the emission of dispersive waves. We demonstrate experimentally and numerically the generation of spatial dispersive shock waves in a nonlocal focusing media. The generation of dispersive shock wave in a focusing media is more problematic than in a defocusing one. Indeed, the modulational instability has to be frustrated to observe this phenomenon. In 2010, the dispersive shock wave was demonstrated experimentally in a focusing media with a partially coherent beam [1]. Another way is to use a nonlocal media [2]. The impact of nonlocality is more important than the modulational instability frustration. Here, we use nematic liquid crystals (NLC) as Kerr-like nonlocal medium. To achieve shock formation, we use the Riemann condition as initial spatial condition (edge at the beam entrance of the NLC cell). In these experimental conditions, we generate, experimentally and numerically, shock waves that relax through the emission of dispersive waves. Associated with this phenomenon, we evidence the emergence of a localized wave that travels through the transverse beam profile. The beam steepness, which is a good indicator of the shock formation, is maximal at the shock point position. This latter follows a power law versus the injected power as in [3]. Increasing the injected power, we found multiple shock points. We have good agreements between the numerical simulations and the experimental results. [1] W. Wan, D. V Dylov, C. Barsi, and J. W. Fleischer, Opt. Lett. 35, 2819 (2010). [2] G. Assanto, T. R. Marchant, and N. F. Smyth, Phys. Rev. A - At. Mol. Opt. Phys. 78, 1 (2008). [3] N. Ghofraniha, L. S
Speed ot travelling waves in reaction-diffusion equations
Benguria, R D; Méndez, V
2002-01-01
Reaction diffusion equations arise in several problems of population dynamics, flame propagation and others. In one dimensional cases the systems may evolve into travelling fronts. Here we concentrate on a reaction diffusion equation which arises as a simple model for chemotaxis and present results for the speed of the travelling fronts. (Author)
Speed ot travelling waves in reaction-diffusion equations
Energy Technology Data Exchange (ETDEWEB)
Benguria, R.D.; Depassier, M.C. [Facultad de Fisica, Pontificia Universidad Catolica de Chile, Avda. Vicuna Mackenna 4860, Santiago (Chile); Mendez, V. [Facultat de Ciencies de la Salut, Universidad Internacional de Catalunya, Gomera s/n 08190 Sant Cugat del Valles, Barcelona (Spain)
2002-07-01
Reaction diffusion equations arise in several problems of population dynamics, flame propagation and others. In one dimensional cases the systems may evolve into travelling fronts. Here we concentrate on a reaction diffusion equation which arises as a simple model for chemotaxis and present results for the speed of the travelling fronts. (Author)
The classification of the single travelling wave solutions to the variant Boussinesq equations
Indian Academy of Sciences (India)
YUE KAI
2016-10-01
The discrimination system for the polynomial method is applied to variant Boussinesq equations to classify single travelling wave solutions. In particular, we construct corresponding solutions to the concrete parameters to show that each solution in the classification can be realized.
Traveling Wave Solutions of ZK-BBM Equation Sine-Cosine Method
Directory of Open Access Journals (Sweden)
Sadaf Bibi
2014-03-01
Full Text Available Travelling wave solutions are obtained by using a relatively new technique which is called sine-cosine method for ZK-BBM equations. Solution procedure and obtained results re-confirm the efficiency of the proposed scheme.
Lunin, Andrei; Grudiev, Alexej
2011-01-01
Analytical solutions are derived for transient and steady state gradient distributions in the travelling wave accelerating structures with arbitrary variation of parameters over the structure length. The results of both the unloaded and beam loaded cases are presented.
Drábek, Pavel; Takáč, Peter
2017-02-14
We consider a one-dimensional population genetics model for the advance of an advantageous gene. The model is described by the semilinear Fisher equation with unbalanced bistable non-Lipschitzian nonlinearity f(u). The "nonsmoothness" of f allows for the appearance of travelling waves with a new, more realistic profile. We study existence, uniqueness, and long-time asymptotic behavior of the solutions u(x, t), [Formula: see text]. We prove also the existence and uniqueness (up to a spatial shift) of a travelling wave U. Our main result is the uniform convergence (for [Formula: see text]) of every solution u(x, t) of the Cauchy problem to a single travelling wave [Formula: see text] as [Formula: see text]. The speed c and the travelling wave U are determined uniquely by f, whereas the shift [Formula: see text] is determined by the initial data.
A penalization method for calculating the flow beneath travelling water waves of large amplitude
Constantin, Adrian; Scherzer, Otmar
2014-01-01
A penalization method for a suitable reformulation of the governing equations as a constrained optimization problem provides accurate numerical simulations for large-amplitude travelling water waves in irrotational flows and in flows with constant vorticity.
Yasuda, Shugo
2015-01-01
A Monte Carlo simulation for the chemotactic bacteria is developed on the basis of the kinetic modeling, i.e., the Boltzmann transport equation, and applied to the one-dimensional traveling population wave in a micro channel.In this method, the Monte Carlo method, which calculates the run-and-tumble motions of bacteria, is coupled with a finite volume method to solve the macroscopic transport of the chemical cues in the field. The simulation method can successfully reproduce the traveling population wave of bacteria which was observed experimentally. The microscopic dynamics of bacteria, e.g., the velocity autocorrelation function and velocity distribution function of bacteria, are also investigated. It is found that the bacteria which form the traveling population wave create quasi-periodic motions as well as a migratory movement along with the traveling population wave. Simulations are also performed with changing the sensitivity and modulation parameters in the response function of bacteria. It is found th...
Lattice Boltzmann simulation of transverse wave travelling in Maxwell viscoelastic fluid
Institute of Scientific and Technical Information of China (English)
Li Hua-Bing; Fang Hai-Ping
2004-01-01
A nine-velocity lattice Boltzmann method for Maxwell viscoelastic fluid is proposed. Travelling of transverse wave in Maxwell viscoelastic fluid is simulated. The instantaneous oscillating velocity, transverse shear speed and decay rate agree with theoretical results very well.
Travelling-wave solutions bifurcating from relative periodic orbits in plane Poiseuille flow
Rawat, Subhendu; Rincon, François
2016-01-01
Travelling-wave solutions are shown to bifurcate from relative periodic orbits in plane Poiseuille flow at Re = 2000 in a saddle-node infinite period bifurcation. These solutions consist in self-sustaining sinuous quasi-streamwise streaks and quasi- streamwise vortices located in the bulk of the flow. The lower branch travelling-wave solutions evolve into spanwise localized states when the spanwise size Lz of the domain in which they are computed is increased. On the contrary, upper branch of travelling-wave solutions develop multiple streaks when Lz is increased. Upper branch travelling-wave solutions can be continued into coherent solutions of the filtered equations used in large-eddy simulations where they represent turbulent coherent large-scale motions.
Exact Traveling Wave Solutions for a Kind of Generalized Ginzburg-Landau Equation
Institute of Scientific and Technical Information of China (English)
LIU Cheng-Shi
2005-01-01
Using a complete discrimination system for polynomials, new exact traveling wave solutions for generalized Ginzburg-Landau equation are obtained. The method has general meaning for many similar problems.
TRAVELING WAVE FRONTS OF A DEGENERATE PARABOLIC EQUATION WITH NON-DIVERGENCE FORM
Institute of Scientific and Technical Information of China (English)
王春朋; 尹景学
2003-01-01
We study the traveling wave solutions of a nonlinear degenerate parabolic equation with non-divergence form. Under some conditions on the source, we establish the existence, and then discuss the regularity of such solutions.
NUMERICAL SIMULATION OF TRAVELING WAVE CONVECTION IN A WEAKLY NONLINEAR REGIME
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
This paper presents a simulational result on a blinking traveling wave (BTW) state in binary fluid convection in a rectangular cell. The numerical simulations were made using the two-dimensional perturbation equations of full hydrodynamic equations. We found for the first time that the BTW or sloshing traveling wave state is a type of modulated traveling wave (MTW) generated by the motion of a source defect which originates from the reflection effect at the end walls and depends on the reduced Rayleigh number r. Comparison with the localized traveling wave (LTW) shows that the BTW is convective patterns on a weakly nonlinear branch with a small amplitude and the LTW is those on a full nonlinear branch whth a large amplitude. They have different dynamical behaviour. A discontinuous jump from the BTW branch to the stable LTW branch takes place as the oscillatory period lengthens and the amplitude grows above the upper critical value of the BTW.
Spreading speeds and traveling waves for non-cooperative reaction-diffusion systems
Wang, Haiyan
2010-01-01
Much has been studied on the spreading speed and traveling wave solutions for cooperative reaction-diffusion systems. In this paper, we shall establish the spreading speed for a large class of non-cooperative reaction-diffusion systems and characterize the spreading speed as the slowest speed of a family of non-constant traveling wave solutions. As an application, our results are applied to a partially cooperative system describing interactions between ungulates and grass.
Bifurcation analysis and the travelling wave solutions of the Klein–Gordon–Zakharov equations
Indian Academy of Sciences (India)
Zaiyun Zhang; Fnag-Li Xia; Xin-Ping Li
2013-01-01
In this paper, we investigate the bifurcations and dynamic behaviour of travelling wave solutions of the Klein–Gordon–Zakharov equations given in Shang et al, Comput. Math. Appl. 56, 1441 (2008). Under different parameter conditions, we obtain some exact explicit parametric representations of travelling wave solutions by using the bifurcation method (Feng et al, Appl. Math. Comput. 189, 271 (2007); Li et al, Appl. Math. Comput. 175, 61 (2006)).
Classification of All Single Travelling Wave Solutions to Calogero-Degasperis-Focas Equation
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Under the travelling wave transformation, Calogero-Degasperis-Focas equation is reduced to an ordinary differential equation. Using a symmetry group of one parameter, this ODE is reduced to a second-order linear inho-mogeneous ODE. Furthermore, we apply the change of the variable and complete discrimination system for polynomial to solve the corresponding integrals and obtained the classification of all single travelling wave solutions to Calogero-Degasperis-Focas equation.
The Travelling Wave Solutions for (2+1)-dimensional AKNS Equation
Institute of Scientific and Technical Information of China (English)
CHENG Zhi-long; HAO Xiao-hong
2015-01-01
Based on the travelling wave method, a (2+1)-dimensional AKNS equation is considered. Elliptic solution and soliton solution are presented and it is shown that the soliton solution can be reduced from the elliptic solution. It also proves that the result is consistent with the soliton solution of simplify Hirota bilinear method by Wazwaz and illustrate the solution are right travelling wave solution.
Alvarez, R; Van Saarloos, W; Alvarez, Roberto; Hecke, Martin van; Saarloos, Wim van
1996-01-01
In many pattern forming systems that exhibit traveling waves, sources and sinks occur which separate patches of oppositely traveling waves. We show that simple qualitative features of their dynamics can be compared to predictions from coupled amplitude equations. In heated wire convection experiments, we find a discrepancy between the observed multiplicity of sources and theoretical predictions. The expression for the observed motion of sinks is incompatible with any amplitude equation description.
Traveling Waves for an Epidemic Mo del with Vaccination and Nonlo cal Diffusion
Institute of Scientific and Technical Information of China (English)
WANG Zhi-ping; XU Rui; ZHANG Shi-hua
2015-01-01
An epidemic model with vaccination and nonlocal diffusion is proposed, and the existence of traveling wave solutions of this model is studied. By the cross-iteration scheme companied with a pair of upper and lower solutions and Schauder’s fixed point theorem, suﬃcient conditions are obtained for the existence of a traveling wave solution connecting the disease-free steady state and the endemic steady state.
Saarloos, van, W.; Alvarez, R.; Hecke, van, M
1997-01-01
In many pattern forming systems that exhibit traveling waves, sources and sinks occur which separate patches of oppositely traveling waves. We show that simple qualitative features of their dynamics can be compared to predictions from coupled amplitude equations. In heated wire convection experiments, we find a discrepancy between the observed multiplicity of sources and theoretical predictions. The expression for the observed motion of sinks is incompatible with any amplitude equation descri...
Institute of Scientific and Technical Information of China (English)
Chang Jing; Gao Yi-xian; Cai Hua
2014-01-01
In this paper, the generalized extended tanh-function method is used for constructing the traveling wave solutions of nonlinear evolution equations. We choose Fisher’s equation, the nonlinear schr¨odinger equation to illustrate the validity and ad-vantages of the method. Many new and more general traveling wave solutions are obtained. Furthermore, this method can also be applied to other nonlinear equations in physics.
Limiting Behavior of Travelling Waves for the Modified Degasperis-Procesi Equation
Directory of Open Access Journals (Sweden)
Jiuli Yin
2014-01-01
Full Text Available Using an improved qualitative method which combines characteristics of several methods, we classify all travelling wave solutions of the modified Degasperis-Procesi equation in specified regions of the parametric space. Besides some popular exotic solutions including peaked waves, and looped and cusped waves, this equation also admits some very particular waves, such as fractal-like waves, double stumpons, double kinked waves, and butterfly-like waves. The last three types of solutions have not been reported in the literature. Furthermore, we give the limiting behavior of all periodic solutions as the parameters trend to some special values.
Computation of traveling wave fronts for a nonlinear diffusion-advection model.
Mansour, M B A
2009-01-01
This paper utilizes a nonlinear reaction-diffusion-advection model for describing the spatiotemporal evolution of bacterial growth. The traveling wave solutions of the corresponding system of partial differential equations are analyzed. Using two methods, we then find such solutions numerically. One of the methods involves the traveling wave equations and solving an initial-value problem, which leads to accurate computations of the wave profiles and speeds. The second method is to construct time-dependent solutions by solving an initial-moving boundary-value problem for the PDE system, showing another approximation for such wave solutions.
Existence of traveling wave solutions for a nonlinear dissipative-dispersive equation
Institute of Scientific and Technical Information of China (English)
M. B. A. Mansour
2009-01-01
In this paper, we consider a dissipative-dispersive nonlinear equation appliable to many physical phenomena. Using the geometric singular perturbation method based on the theory of dynamical systems, we investigate the existence of its traveling wave solutions with the dissipative terms having sufficiently small coefficients. The results show that the traveling waves exist on a two-dimensional slow manifold in a three-dimensional system of ordinary differential equations (ODEs). Then, we use the Melnikov method to establish the existence of a homoclinic orbit in this manifold corresponding to a solitary wave solution of the equation. Furthermore, we present some numerical computations to show the approximations of such wave orbits.
Dynamical System Approach to a Coupled Dispersionless System: Localized and Periodic Traveling Waves
Institute of Scientific and Technical Information of China (English)
Gambo Betchewe; Kuetche Kamgang Victor; Bouetou Bouetou Thomas; Timoleon Crepin Kofane
2009-01-01
We investigate the dynamical behavior of a coupled dispersionlees system describing a current-conducting string with infinite length within a magnetic field.Thus,following a dynamical system approach,we unwrap typical miscellaneous traveling waves including localized and periodic ones.Studying the relative stabilities of such structures through their energy densities,we find that under some boundary conditions,localized waves moving in positive directions are more stable than periodic waves which in contrast stand for the most stable traveling waves in another boundary condition situation.
Lieu, Binh K; Jovanović, Mihailo R
2010-01-01
This work builds on and confirms the theoretical findings of Part 1 of this paper, Moarref & Jovanovi\\'c (2010). We use direct numerical simulations of the Navier-Stokes equations to assess the efficacy of blowing and suction in the form of streamwise traveling waves for controlling the onset of turbulence in a channel flow. We highlight the effects of the modified base flow on the dynamics of velocity fluctuations and net power balance. Our simulations verify the theoretical predictions of Part 1 that the upstream traveling waves promote turbulence even when the uncontrolled flow stays laminar. On the other hand, the downstream traveling waves with parameters selected in Part 1 are capable of reducing the fluctuations' kinetic energy, thereby maintaining the laminar flow. In flows driven by a fixed pressure gradient, a positive net efficiency as large as 25 % relative to the uncontrolled turbulent flow can be achieved with downstream waves. Furthermore, we show that these waves can also relaminarize full...
TERRAPOWER, LLC TRAVELING WAVE REACTOR DEVELOPMENT PROGRAM OVERVIEW
Directory of Open Access Journals (Sweden)
PAVEL HEJZLAR
2013-11-01
Full Text Available Energy security is a topic of high importance to many countries throughout the world. Countries with access to vast energy supplies enjoy all of the economic and political benefits that come with controlling a highly sought after commodity. Given the desire to diversify away from fossil fuels due to rising environmental and economic concerns, there are limited technology options available for baseload electricity generation. Further complicating this issue is the desire for energy sources to be sustainable and globally scalable in addition to being economic and environmentally benign. Nuclear energy in its current form meets many but not all of these attributes. In order to address these limitations, TerraPower, LLC has developed the Traveling Wave Reactor (TWR which is a near-term deployable and truly sustainable energy solution that is globally scalable for the indefinite future. The fast neutron spectrum allows up to a ∼30-fold gain in fuel utilization efficiency when compared to conventional light water reactors utilizing enriched fuel. When compared to other fast reactors, TWRs represent the lowest cost alternative to enjoy the energy security benefits of an advanced nuclear fuel cycle without the associated proliferation concerns of chemical reprocessing. On a country level, this represents a significant savings in the energy generation infrastructure for several reasons 1 no reprocessing plants need to be built, 2 a reduced number of enrichment plants need to be built, 3 reduced waste production results in a lower repository capacity requirement and reduced waste transportation costs and 4 less uranium ore needs to be mined or purchased since natural or depleted uranium can be used directly as fuel. With advanced technological development and added cost, TWRs are also capable of reusing both their own used fuel and used fuel from LWRs, thereby eliminating the need for enrichment in the longer term and reducing the overall societal waste
Prestimulus amplitudes modulate P1 latencies and evoked traveling alpha waves
Directory of Open Access Journals (Sweden)
Nicole Alexandra Himmelstoss
2015-05-01
Full Text Available Traveling waves have been well documented in the ongoing, and more recently also in the evoked EEG. In the present study we investigate what kind of physiological process might be responsible for inducing an evoked traveling wave. We used a semantic judgment task which already proved useful to study evoked traveling alpha waves that coincide with the appearance of the P1 component. We found that the P1 latency of the leading electrode is significantly correlated with prestimulus amplitude size and that this event is associated with a transient change in alpha frequency. We assume that cortical background excitability, as reflected by an increase in prestimulus amplitude, is responsible for the observed change in alpha frequency and the initiation of an evoked traveling trajectory.
Reverse cochlear propagation in the intact cochlea of the gerbil: Evidence for slow traveling waves
S.W.F. Meenderink; M. van der Heijden (Marcel)
2010-01-01
textabstractThe inner ear can produce sounds, but how these otoacoustic emissions back-propagate through the cochlea is currently debated. Two opposing views exist: fast pressure waves in the cochlear fluids and slow traveling waves involving the basilar membrane. Resolving this issue requires measu
Travelling wave solutions for a singularly perturbed Burgers–KdV equation
Indian Academy of Sciences (India)
M B A Mansour
2009-11-01
This paper concerns with the existence problem of travelling wave solutions to a singularly perturbed Burgers–KdV equation. For this, we use the dynamical systems approach, specifically, the geometric singular perturbation theory and centre manifold theory. We also numerically show approximations, in particular, for kink-type waves.
Institute of Scientific and Technical Information of China (English)
LI Zheng-yuan; LIU Ying-dong; YE Qi-xiao
2001-01-01
In this paper we study the strong and weak property of travelling wave front solutions for a class of degenerate parabolic equations. How the strong and weak property changes under the effects of wave speed and reaction-diffusion terms are showed.
Low-noise kinetic inductance traveling-wave amplifier using three-wave mixing
Energy Technology Data Exchange (ETDEWEB)
Vissers, M. R.; Erickson, R. P.; Ku, H.-S.; Vale, Leila; Wu, Xian; Hilton, G. C.; Pappas, D. P., E-mail: David.Pappas@NIST.gov [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States)
2016-01-04
We have fabricated a wide-bandwidth, high dynamic range, low-noise cryogenic amplifier based on a superconducting kinetic inductance traveling-wave device. The device was made from NbTiN and consisted of a long, coplanar waveguide on a silicon chip. By adding a DC current and an RF pump tone, we are able to generate parametric amplification using three-wave mixing (3WM). The devices exhibit gain of more than 15 dB across an instantaneous bandwidth from 4 to 8 GHz. The total usable gain bandwidth, including both sides of the signal-idler gain region, is more than 6 GHz. The noise referred to the input of the devices approaches the quantum limit, with less than 1 photon excess noise. We compare these results directly to the four-wave mixing amplification mode, i.e., without DC-biasing. We find that the 3WM mode allows operation with the pump at lower RF power and at frequencies far from the signal. We have used this knowledge to redesign the amplifiers to utilize primarily 3WM amplification, thereby allowing for direct integration into large scale qubit and detector applications.
Traveling Wave Solutions for Epidemic Cholera Model with Disease-Related Death
Tianran Zhang; Qingming Gou
2014-01-01
Based on Codeço's cholera model (2001), an epidemic cholera model that incorporates the pathogen diffusion and disease-related death is proposed. The formula for minimal wave speed c ∗ is given. To prove the existence of traveling wave solutions, an invariant cone is constructed by upper and lower solutions and Schauder's fixed point theorem is applied. The nonexistence of traveling wave solutions is proved by two-sided Laplace transform. However, to apply two-sided Laplace transform, the pri...
Qualitative Analysis and Travelling Wave Solutions for the Chaffee-Infante Equation
Qiang, Liu; Yun, Zhu; Yuanzheng, Wang
2013-04-01
This paper employs the theory of planar dynamical systems and undetermined coefficient method to study travelling wave solutions to the Chaffee-Infante equation. By qualitative analysis, global phase portraits of the dynamic system corresponding to the equation are obtained for different parameter conditions. Furthermore, the relations between the properties of travelling wave solutions and the diffusion coefficient λ of the equation are investigated. In addition, all possible kink profile solitary wave solutions and approximate damped oscillatory solutions to the equation are obtained by using undetermined coefficient method. Error estimates indicate that the approximate solutions are meaningful. Based on these studies, the main contribution in this paper is to reveal the diffusion effect on travelling wave solutions to the Chaffee-Infante equation.
Traveling Wave Solutions for Epidemic Cholera Model with Disease-Related Death
Directory of Open Access Journals (Sweden)
Tianran Zhang
2014-01-01
Full Text Available Based on Codeço’s cholera model (2001, an epidemic cholera model that incorporates the pathogen diffusion and disease-related death is proposed. The formula for minimal wave speed c∗ is given. To prove the existence of traveling wave solutions, an invariant cone is constructed by upper and lower solutions and Schauder’s fixed point theorem is applied. The nonexistence of traveling wave solutions is proved by two-sided Laplace transform. However, to apply two-sided Laplace transform, the prior estimate of exponential decrease of traveling wave solutions is needed. For this aim, a new method is proposed, which can be applied to reaction-diffusion systems consisting of more than three equations.
Traveling wave solutions for epidemic cholera model with disease-related death.
Zhang, Tianran; Gou, Qingming
2014-01-01
Based on Codeço's cholera model (2001), an epidemic cholera model that incorporates the pathogen diffusion and disease-related death is proposed. The formula for minimal wave speed c (∗) is given. To prove the existence of traveling wave solutions, an invariant cone is constructed by upper and lower solutions and Schauder's fixed point theorem is applied. The nonexistence of traveling wave solutions is proved by two-sided Laplace transform. However, to apply two-sided Laplace transform, the prior estimate of exponential decrease of traveling wave solutions is needed. For this aim, a new method is proposed, which can be applied to reaction-diffusion systems consisting of more than three equations.
TRAVELING WAVE SPEED AND SOLUTION IN REACTION-DIFFUSION EQUATION IN ONE DIMENSION
Institute of Scientific and Technical Information of China (English)
周天寿; 张锁春
2001-01-01
By Painlevé analysis, traveling wave speed and solution of reaction-diffusion equations for the concentration of one species in one spatial dimension are in detail investigated. When the exponent of the creation term is larger than the one of the annihilation term, two typical cases are studied, one with the exact traveling wave solutions, yielding the values of speeds, the other with the series expansion solution, also yielding the value of speed. Conversely, when the exponent of creation term is smaller than the one of the annihilation term, two typical cases are also studied, but only for one of them, there is a series development solution, yielding the value of speed, and for the other, traveling wave solution cannot exist. Besides, the formula of calculating speeds and solutions of planar wave within the thin boundary layer are given for a class of typical excitable media.
Mitsotakis, Dimitrios; Assylbekuly, Aydar; Zhakebaev, Dauren
2016-01-01
In this Letter we consider long capillary-gravity waves described by a fully nonlinear weakly dispersive model. First, using the phase space analysis methods we describe all possible types of localized travelling waves. Then, we especially focus on the critical regime, where the surface tension is exactly balanced by the gravity force. We show that our long wave model with a critical Bond number admits stable travelling wave solutions with a singular crest. These solutions are usually referred to in the literature as peakons or peaked solitary waves. They satisfy the usual speed-amplitude relation, which coincides with Scott-Russel's empirical formula for solitary waves, while their decay rate is the same regardless their amplitude. Moreover, they can be of depression or elevation type independent of their speed. The dynamics of these solutions are studied as well.
Behavioral analysis of cuttlefish traveling waves and its implications for neural control.
Laan, Andres; Gutnick, Tamar; Kuba, Michael J; Laurent, Gilles
2014-08-04
Traveling waves (from action potential propagation to swimming body motions or intestinal peristalsis) are ubiquitous phenomena in biological systems and yet are diverse in form, function, and mechanism. An interesting such phenomenon occurs in cephalopod skin, in the form of moving pigmentation patterns called "passing clouds". These dynamic pigmentation patterns result from the coordinated activation of large chromatophore arrays. Here, we introduce a new model system for the study of passing clouds, Metasepia tullbergi, in which wave displays are very frequent and thus amenable to laboratory investigations. The mantle of Metasepia contains four main regions of wave travel, each supporting a different propagation direction. The four regions are not always active simultaneously, but those that are show synchronized activity and maintain a constant wavelength and a period-independent duty cycle, despite a large range of possible periods (from 1.5 s to 10 s). The wave patterns can be superposed on a variety of other ongoing textural and chromatic patterns of the skin. Finally, a traveling wave can even disappear transiently and reappear in a different position ("blink"), revealing ongoing but invisible propagation. Our findings provide useful clues about classes of likely mechanisms for the generation and propagation of these traveling waves. They rule out wave propagation mechanisms based on delayed excitation from a pacemaker but are consistent with two other alternatives, such as coupled arrays of central pattern generators and dynamic attractors on a network with circular topology. Copyright © 2014 Elsevier Ltd. All rights reserved.
New Travelling Wave Solutions to Compound KdV-Burgers Equation
Institute of Scientific and Technical Information of China (English)
YU Jun; KE Yun-Quan; ZHANG Wei-Jun
2004-01-01
The compound KdV-Burgers equation and combined KdV-mKdV equation are real physical models concerning many branches in physics.In this paper,applying the improved trigonometric function method to these equations,rich explicit and exact travelling wave solutions,which contain solitary-wave solutions,periodic solutions,and combined formal solitary-wave solutions,are obtained.
New Types of Travelling Wave Solutions From (2+1)-Dimensional Davey-Stewartson Equation
Institute of Scientific and Technical Information of China (English)
ZHAO Hong
2006-01-01
In this paper, based on new auxiliary nonlinear ordinary differential equation with a sixth-degree nonlinear term, we study the (2+1)-dimensional Davey-Stewartson equation and new types of travelling wave solutions are obtained, which include new bell and kink profile solitary wave solutions, triangular periodic wave solutions, and singular solutions. The method used here can be also extended to many other nonlinear partial differential equations.
Propagating neocortical gamma bursts are coordinated by traveling alpha waves
Bahramisharif, A.; Gerven, M.A.J. van; Aarnoutse, E.J.; Mercier, M.R.; Schwartz, T.H.; Foxe, J.J.; Ramsey, N.F.; Jensen, O.
2013-01-01
Neocortical neuronal activity is characterized by complex spatiotemporal dynamics. Although slow oscillations have been shown to travel over space in terms of consistent phase advances, it is unknown how this phenomenon relates to neuronal activity in other frequency bands. We here present
Propagating neocortical gamma bursts are coordinated by traveling alpha waves
Bahramisharif, A.; Gerven, M.A.J. van; Aarnoutse, E.J.; Mercier, M.R.; Schwartz, T.H.; Foxe, J.J.; Ramsey, N.F.; Jensen, O.
2013-01-01
Neocortical neuronal activity is characterized by complex spatiotemporal dynamics. Although slow oscillations have been shown to travel over space in terms of consistent phase advances, it is unknown how this phenomenon relates to neuronal activity in other frequency bands. We here present electroco
Stewart, I. W.; Faulkner, T. R.
A theoretical study is carried out into the stability of travelling wave solutions to an approximate dynamic equation for the problem in which a nematic liquid crystal is subjected to crossed electric and magnetic fields. The authors recently found three types of travelling wave solutions for this problem [2], each characterised by the control parameter q which describes the relationship between the magnitudes of the fields and their crossed angle. Two types of stability are ex amined: the first considers perturbations which vanish outside some finite interval in the moving coordinate of the travelling wave, while the second considers quite general perturbations belonging to a weighted L2( R) space, the weighting function being determined by the particular solution and the control parameter q. When the first type of stability occurs, perturbations decay to zero as time increases. In the second type of stability perturbations may eith er decay to zero or induce a small phase shift to the original travelling wave. Both these versions of stability depend crucially on q and on the type of travelling wave solution being considered.
Modern Travelling Wave Based Fault Location Techniques for HVDC Transmission Lines
Institute of Scientific and Technical Information of China (English)
CHEN Ping; XU Bingyin; LI Jing; GE Yaozhong
2008-01-01
The modern travelling wave based fault location principles for transmission lines are ana-lyzed. In order to apply the travelling wave principles to HVDC transmission lines, the special tech-nical problems are studied. Based on this, a fault locating system for HVDC transmission lines is developed. The system can support modern double ended and single ended travelling wave princi-ples simultaneously, and it is composed of three different parts: travelling wave data acquisition and processing system, communication network and PC based master station. In the system, the fault generated transients are induced from the ground leads of the over-voltage suppression ca-pacitors of an HVDC line through specially developed travelling wave couplers.The system was applied to 500 Kv Gezhouba-Nanqiao(Shanghai)HVDC transmission line in China. Some field op- eration experiences are summarized, showing that the system has very high reliability and accu- racy,and the maximum location error is about 3 km(not more than 0.3% of the total line length). Obviously, the application of the system is successful, and the fault location problem has finally been solved completely since the line operation.
Energy Technology Data Exchange (ETDEWEB)
Mitsotakis, Dimitrios, E-mail: dmitsot@gmail.com [Victoria University of Wellington, School of Mathematics, Statistics and Operations Research, PO Box 600, Wellington 6140 (New Zealand); Dutykh, Denys, E-mail: Denys.Dutykh@univ-savoie.fr [LAMA, UMR 5127 CNRS, Université Savoie Mont Blanc, Campus Scientifique, F-73376 Le Bourget-du-Lac Cedex (France); Assylbekuly, Aydar, E-mail: asylbekuly@mail.ru [Khoja Akhmet Yassawi International Kazakh–Turkish University, Faculty of Natural Science, Department of Mathematics, 161200 Turkestan (Kazakhstan); Zhakebayev, Dauren, E-mail: daurjaz@mail.ru [Al-Farabi Kazakh National University, Faculty of Mechanics and Mathematics, Department of Mathematical and Computer Modelling, 050000 Almaty (Kazakhstan)
2017-05-25
In this Letter we consider long capillary–gravity waves described by a fully nonlinear weakly dispersive model. First, using the phase space analysis methods we describe all possible types of localized travelling waves. Then, we especially focus on the critical regime, where the surface tension is exactly balanced by the gravity force. We show that our long wave model with a critical Bond number admits stable travelling wave solutions with a singular crest. These solutions are usually referred to in the literature as peakons or peaked solitary waves. They satisfy the usual speed-amplitude relation, which coincides with Scott–Russel's empirical formula for solitary waves, while their decay rate is the same regardless their amplitude. Moreover, they can be of depression or elevation type independent of their speed. The dynamics of these solutions are studied as well. - Highlights: • A model for long capillary–gravity weakly dispersive and fully nonlinear water waves is derived. • Shallow capillary–gravity waves are classified using phase plane analysis. • Peaked travelling waves are found in the critical regime. • The dynamics of peakons in Serre–Green–Naghdi equations is studied numerically.
Josephson Traveling-Wave Parametric Amplifier with Three-Wave Mixing
Zorin, A. B.
2016-09-01
We develop a concept of the traveling-wave Josephson parametric amplifier exploiting quadratic nonlinearity of a serial array of one-junction superconducting quantum interference devices (SQUIDs) embedded in a superconducting transmission line. The external magnetic flux applied to the SQUIDs makes it possible to efficiently control the shape of their current-phase relation and, hence, the balance between quadratic and cubic (Kerr-like) nonlinearities. This property allows us to operate in the favorable three-wave-mixing mode with a minimal phase mismatch, an exponential dependence of the power gain on number of sections N , a large bandwidth, a high dynamic range, and substantially separated signal (ωs ) and pump (ωp) frequencies obeying the relation ωs+ωi=ωp, where ωi is the idler frequency. An estimation of the amplifier characteristics with typical experimental parameters, a pump frequency of 12 GHz, and N =300 yields a flat gain of 20 dB in the bandwidth of 5.6 GHz.
The Exact Traveling Wave Solutions to Two Integrable KdV6 Equations
Institute of Scientific and Technical Information of China (English)
Jibin LI; Yi ZHANG
2012-01-01
The exact explicit traveling solutions to the two completely integrable sixthorder nonlinear equations KdV6 are given by using the method of dynamical systems and Cosgrove's work.It is proved that these traveling wave solutions correspond to some orbits in the 4-dimensional phase space of two 4-dimensional dynamical systems.These orbits lie in the intersection of two level sets defined by two first integrals.
Existence of traveling wave solutions for diffusive predator-prey type systems
Hsu, Cheng-Hsiung; Yang, Chi-Ru; Yang, Ting-Hui; Yang, Tzi-Sheng
In this work we investigate the existence of traveling wave solutions for a class of diffusive predator-prey type systems whose each nonlinear term can be separated as a product of suitable smooth functions satisfying some monotonic conditions. The profile equations for the above system can be reduced as a four-dimensional ODE system, and the traveling wave solutions which connect two different equilibria or the small amplitude traveling wave train solutions are equivalent to the heteroclinic orbits or small amplitude periodic solutions of the reduced system. Applying the methods of Wazewski Theorem, LaSalle's Invariance Principle and Hopf bifurcation theory, we obtain the existence results. Our results can apply to various kinds of ecological models.
Thanh, Mai Duc
We consider an elliptic-hyperbolic model of phase transitions and we show that any Lax shock can be approximated by a traveling wave with a suitable choice of viscosity and capillarity. By varying viscosity and capillarity coefficients, we can cover any Lax shock which either remains in the same phase, or admits a phase transition. The argument used in this paper extends the one in our earlier works. The method relies on LaSalle's invariance principle and on estimating attraction region of the asymptotically stable of the associated autonomous system of differential equations. We will show that the saddle point of this system of differential equations lies on the boundary of the attraction region and that there is a trajectory leaving the saddle point and entering the attraction region. This gives us a traveling wave connecting the two states of the Lax shock. We also present numerical illustrations of traveling waves.
A Novel Traveling Wave Ultrasonic Motor Using a Bar Shaped Transducer
Institute of Scientific and Technical Information of China (English)
JIN Jiamei; ZHAO Chunsheng
2008-01-01
A novel traveling wave ultrasonic motor was proposed.The structure of the motor is rather simple and different from the conventional traveling wave ultra.sonic motors.Its production processes are very convenient.It is composed of a stator constituted with a ring and a bar shaped transducer and two cone shaped rotors.The rotors were pressed on inner surface of the ring by means of a pre-pressure system.The bar shaped transducer has a sandwich-like configuration,where two sets of piezoelectric element are bolted.One set excites a longitudinal vibration of the bar,and the other set excites a flexural vibration of the bar.The ring's traveling wave excited with the longitudinal vibration and the bending vibration of the bar transducer was simulated with FEM (finite element method).The prototype of the motor was made and investigated experimentally for its performance.Its maximum torque and ro
Development of Traveling Wave Actuators Using Waveguides of Different Geometrical Forms
Directory of Open Access Journals (Sweden)
Ramutis Bansevicius
2016-01-01
Full Text Available The paper covers the research and development of piezoelectric traveling wave actuators using different types of the waveguides. The introduced piezoelectric actuators can be characterized by specific areas of application, different resolution, and torque. All presented actuators are ultrasonic resonant devices and they were developed to increase amplitudes of the traveling wave oscillations of the contact surface. Three different waveguides are introduced, that is, symmetrical, asymmetrical, and cone type waveguide. A piezoelectric ring with the sectioned electrodes is used to excite traveling wave oscillations for all actuators. Operating principle, electrode pattern, and excitation regimes of piezoelectric actuators are described. A numerical modelling of the actuators was performed to validate the operating principle and to calculate trajectories of the contact points motion. Prototype actuators were made and experimental study was performed. The results of numerical and experimental analysis are discussed.
Some Further Results on Traveling Wave Solutions for the ZK-BBM( Equations
Directory of Open Access Journals (Sweden)
Shaoyong Li
2013-01-01
Full Text Available We investigate the traveling wave solutions for the ZK-BBM( equations by using bifurcation method of dynamical systems. Firstly, for ZK-BBM(2, 2 equation, we obtain peakon wave, periodic peakon wave, and smooth periodic wave solutions and point out that the peakon wave is the limit form of the periodic peakon wave. Secondly, for ZK-BBM(3, 2 equation, we obtain some elliptic function solutions which include periodic blow-up and periodic wave. Furthermore, from the limit forms of the elliptic function solutions, we obtain some trigonometric and hyperbolic function solutions which include periodic blow-up, blow-up, and smooth solitary wave. We also show that our work extends some previous results.
The origin of traveling waves in an emperor penguin huddle
Gerum, R.C.; Fabry, B.; Metzner, C.; Beaulieu, Michael; Ancel, André; Zitterbart, D.P.
2013-01-01
International audience; Emperor penguins breed during the Antarctic winter and have to endure temperatures as low as −50 C and wind speeds of up to 200 km h−1. To conserve energy, they form densely packed huddles with a triangular lattice structure. Video recordings from previous studies revealed coordinated movements in regular wave-like patterns within these huddles. It is thought that these waves are triggered by individual penguins that locally disturb the huddle structure, and that the t...
Traveling Wave Modes of a Plane Layered Anelastic Earth
2016-05-20
variable in the standing wave free oscillation problem is the frequency , which makes the eigenvalue problem nonlinear. The choice of the wavenumber as...38) By making the assignment Irn = κn Iqn, (39) the quadratic generalized eigenvalue problem Eq. (34) can be converted to a linear generalized...elastic eigenfunctions and the complex frequency dependent elastic moduli. The lateral standing-wave nature of the earth free oscillation problem leads to
Traveling wave solutions of nonlinear evolution equations via the enhanced (G′/G-expansion method
Directory of Open Access Journals (Sweden)
Kamruzzaman Khan
2014-07-01
Full Text Available In this article, an enhanced (G′/G-expansion method is suggested to find the traveling wave solutions for the modified Korteweg de-Vries (mKDV equation. Abundant traveling wave solutions are derived, which are expressed by the hyperbolic and trigonometric functions involving several parameters. The efficiency of this method for finding these exact solutions has been demonstrated. It is shown that the proposed method is effective and can be used for many other nonlinear evolution equations (NLEEs in mathematical physics.
A new variable coefficient algebraic method and non-traveling wave solutions of nonlinear equations
Institute of Scientific and Technical Information of China (English)
Lu Bin; Zhang Hong-Qing
2008-01-01
In this paper,a new auxiliary equation method is presented of constructing more new non-travelling wave solutions of nonlinear differential equations in mathematical physics,which is direct and more powerful than projective Riccati equation method.In order to illustrate the validity and the advantages of the method,(2+1)-dimensional asymmetric Nizhnik-Novikov-Vesselov equation is employed and many new double periodic non-travelling wave solutions are obtained.This algorithm can also be applied to other nonlinear differential equations.
Existence and qualitative properties of travelling waves for an epidemiological model with mutations
Griette, Quentin; Raoul, Gaël
2016-05-01
In this article, we are interested in a non-monotonic system of logistic reaction-diffusion equations. This system of equations models an epidemic where two types of pathogens are competing, and a mutation can change one type into the other with a certain rate. We show the existence of travelling waves with minimal speed, which are usually non-monotonic. Then we provide a description of the shape of those constructed travelling waves, and relate them to some Fisher-KPP fronts with non-minimal speed.
Traveling wave dispersal in partially sedentary age-structured biological populations
Le, Thuc Manh; Van Minh, Nguyen
2010-01-01
In this paper we present a thorough study on the existence of traveling waves in a mathematical model of dispersal in a partially sedentary age-structured population. This type of model was first proposed by Veit and Lewis in [{\\it Am. Nat.}, {\\bf 148} (1996), 255-274]. We choose the fecundity function to be the Beverton-Holt type function. We extend the theory of traveling waves in the population genetics model of Weinberger in [{\\it SIAM J. Math. Anal.}, {\\bf 13} (1982), 353-396] to the case when migration depends on age groups and a fraction of the population does not migrate.
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
In this paper, an extended method is proposed for constructing new forms ofexact travelling wave solutions to nonlinear partial differential equations by making a more general transformation. For illustration, we apply the method to the asymmetric Nizhnik-Novikov-Vesselov equation and the coupled Drinfel'd-Sokolov-Wilson equation and successfully cover the previously known travelling wave solutions found by Chen's method [Y. Chen, et al. Chaos, Solitons and Fractals 22 (2004) 675; Y. Chen, et al. Int. J. Mod. Phys. C 4 (2004) 595].
TRAVELLING WAVE SOLUTIONS OF NONLINEAR EVOLUTION EQUATIONS BY USING SYMBOLIC COMPUTATION
Institute of Scientific and Technical Information of China (English)
FanEngui
2001-01-01
Abstract. A Riccati equation involving a parameter and symbolic computation are used to uni-formly construct the different forms of travelling wave solutions for nonlinear evolution equa-tions. It is shown that the sign of the parameter can be applied in judging the existence of vari-ous forms of travelling wave solutions. An efficiency of this method is demonstrated on some e-quations,which include Burgers-Huxley equation,Caudrey-Dodd-Gibbon-Kawada equation,gen-eralized Benjamin-Bona-Mahony equation and generalized Fisher equation.
Simons, Rainee N.; Wintucky, Edwin G.
2014-01-01
This paper presents the design and test results of a CW millimeter-wave satellite beacon source, based on the second harmonic from a traveling-wave tube amplifier and utilizes a novel waveguide multimode directional coupler. A potential application of the beacon source is for investigating the atmospheric effects on Q-band (37-42 GHz) and V/W-band (71- 76 GHz) satellite-to-ground signals.
A study on the Antarctic circumpolar wave mode-A coexistence system of standing and traveling wave
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
The Antarctic circumpolar wave (ACW) has become a focus of the air-sea coupled Southern Ocean study since 1996, when it was discovered as an air-sea coupled interannual signal propagating eastward in the region of the Antarctic Circumpolar Current (ACC). In order to analyze the mechanism of discontinuity along the latitudinal propagation, a new idea that ACW is a system with a traveling wave in the Southern Pacific and Atlantic Ocean and with a concurrent standing wave in the southern Indian Ocean is proposed in this paper. Based on the ideal wave principle, the average wave parameters of ACW is achieved using a non-linear approximation method, by which we find that the standing part and the traveling part possess similar radius frequency, proving their belonging to an integral system. We also give the latitudinal distribution of wave speed with which we could tell the reason for steady propagation during the same period. The spatial distribution of the propagation reveals complex process with variant spatial and temporal scales-The ENSO scale oscillation greatly impacts on the traveling process, while the result at the south of Australia indicates little connection between the Indian Ocean and the Pacific, which may be blocked by the vibration at the west of the Pacific. The advective effect of ACC on the propagation process should be examined clearly through dynamical method.
Travelling Wave Solutions in Nonlinear Diffusive and Dispersive Media
Bazeia, D; Raposo, and E.P.
1998-01-01
We investigate the presence of soliton solutions in some classes of nonlinear partial differential equations, namely generalized Korteweg-de Vries-Burgers, Korteveg-de Vries-Huxley, and Korteveg-de Vries-Burgers-Huxley equations, which combine effects of diffusion, dispersion, and nonlinearity. We emphasize the chiral behavior of the travelling solutions, whose velocities are determined by the parameters that define the equation. For some appropriate choices, we show that these equations can be mapped onto equations of motion of relativistic 1+1 dimensional phi^{4} and phi^{6} field theories of real scalar fields. We also study systems of two coupled nonlinear equations of the types mentioned.
Explicit and exact travelling wave solutions for the generalized derivative Schroedinger equation
Energy Technology Data Exchange (ETDEWEB)
Huang Dingjiang [Department of Applied Mathematics, Dalian University of Technology, Dalian 116024 (China)]. E-mail: hdj8116@163.com; Li Desheng [Department of Applied Mathematics, Dalian University of Technology, Dalian 116024 (China); Department of Mathematics, Shenyang Normal University, Shenyang 110034 (China); Zhang Hongqing [Department of Applied Mathematics, Dalian University of Technology, Dalian 116024 (China)
2007-02-15
In this paper, a new auxiliary equation expansion method and its algorithm is proposed by studying a first order nonlinear ordinary differential equation with a sixth-degree nonlinear term. Being concise and straightforward, the method is applied to the generalized derivative Schroedinger equation. As a result, some new exact travelling wave solutions are obtained which include bright and dark solitary wave solutions, triangular periodic wave solutions and singular solutions. This algorithm can also be applied to other nonlinear wave equations in mathematical physics.
Orbital stability of periodic traveling-wave solutions for the log-KdV equation
Natali, Fábio; Pastor, Ademir; Cristófani, Fabrício
2017-09-01
In this paper we establish the orbital stability of periodic waves related to the logarithmic Korteweg-de Vries equation. Our motivation is inspired in the recent work [3], in which the authors established the well-posedness and the linear stability of Gaussian solitary waves. By using the approach put forward recently in [20] to construct a smooth branch of periodic waves as well as to get the spectral properties of the associated linearized operator, we apply the abstract theories in [13] and [25] to deduce the orbital stability of the periodic traveling waves in the energy space.
Institute of Scientific and Technical Information of China (English)
JianlanHU; X.FENG; ZhiLi
2000-01-01
New exact traveling wave solutions are derived for the fifth order KdV type equations by using a delicate way of rank analysis two-step ansatz method. Solitary shallowwater waves described by the above equation are discussed.
Proton acceleration by circularly polarized traveling electromagnetic wave
Directory of Open Access Journals (Sweden)
Amol Holkundkar
2012-09-01
Full Text Available The acceleration of charged particles, producing collimated monoenergetic beams, over short distances holds the promise to offer new tools in medicine and diagnostics. Here, we consider a possible mechanism for accelerating protons to high energies by using a phase modulated circularly polarized electromagnetic wave propagating along a constant magnetic field. It is observed that a plane wave with dimensionless amplitude of 0.1 is capable to accelerate a 1 keV proton to 386 MeV under optimum conditions. Finally, we discuss possible limitations of the acceleration scheme.
Proton acceleration by circularly polarized traveling electromagnetic wave
Holkundkar, A; Marklund, M
2012-01-01
The acceleration of charged particles, producing collimated mono-energetic beams, over short distances holds the promise to offer new tools in medicine and diagnostics. Here, we consider a possible mechanism for accelerating protons to high energies by using a phase-modulated circularly polarized electromagnetic wave propagating along a constant magnetic field. It is observed that a plane wave with dimensionless amplitude of 0.1 is capable to accelerate a 1 KeV proton to 386 MeV under optimum conditions. Finally we discuss possible limitations of the acceleration scheme.
Studies of the superconducting traveling wave cavity for high gradient LINAC
Avrakhov, Pavel; Kanareykin, Alexei; Solyak, Nikolay; Yakovlev, Vyacheslav P
2015-01-01
Use of a traveling wave (TW) accelerating structure with a small phase advance per cell instead of standing wave may provide a significant increase of accelerating gradient in a superconducting linear accelerator. The TW section achieves an accelerating gradient 1.2-1.4 larger than TESLA-shaped standing wave cavities for the same surface electric and magnetic fields. Recent tests of an L-band single-cell cavity with a waveguide feedback demonstrated an accelerating gradient comparable to the gradient in a single-cell ILC-type cavity from the same manufacturer. This article presents the next stage of the 3- cell TW resonance ring development which will be tested in the traveling wave regime. The main simulation results of the microphonics and Lorentz Force Detuning (LFD) are also considered.
Theoretical analysis of a relativistic travelling wave tube filled with plasma
Institute of Scientific and Technical Information of China (English)
Xie Hong-Quan; Liu Pu-Kun
2007-01-01
A cold and uniform plasma-filled travelling wave tube with sinusoidally corrugated slow wave structure is driven by a finite thick annular intense relal:ivistic electron beam with the entire system immersed in a strong longitudinal magnetic field.By means of the linear field theory,the dispersion relation for the relativistic travelling wave tube (RTWT) is derived.By numerical computation,the dispersion characteristics of the RTWT are analysed in difierent cases of various geometric parameters of the slow wave structure and plasma densities.Also the gain versus frequency for three difierent plasma densities and the peak gain of the tube versus plasma density are analysed.Some useful results are obtained on the basis of the discussion.
Traveling waves and breathers in an excitatory-inhibitory neural field
Folias, Stefanos E.
2017-03-01
We study existence and stability of traveling activity bump solutions in an excitatory-inhibitory (E-I) neural field with Heaviside firing rate functions by deriving existence conditions for traveling bumps and an Evans function to analyze their spectral stability. Subsequently, we show that these existence and stability results reduce, in the limit of wave speed c →0 , to the equivalent conditions developed for the stationary bump case. Using the results for the stationary bump case, we show that drift bifurcations of stationary bumps serve as a mechanism for generating traveling bump solutions in the E-I neural field as parameters are varied. Furthermore, we explore the interrelations between stationary and traveling types of bumps and breathers (time-periodic oscillatory bumps) by bridging together analytical and simulation results for stationary and traveling bumps and their bifurcations in a region of parameter space. Interestingly, we find evidence for a codimension-2 drift-Hopf bifurcation occurring as two parameters, inhibitory time constant τ and I-to-I synaptic connection strength w¯i i, are varied and show that the codimension-2 point serves as an organizing center for the dynamics of these four types of spatially localized solutions. Additionally, we describe a case involving subcritical bifurcations that lead to traveling waves and breathers as τ is varied.
Acoustic tweezing of particles using decaying opposing travelling surface acoustic waves (DOTSAW).
Ng, Jia Wei; Devendran, Citsabehsan; Neild, Adrian
2017-09-20
Surface acoustic waves offer a versatile and biocompatible method of manipulating the location of suspended particles or cells within microfluidic systems. The most common approach uses the interference of identical frequency, counter propagating travelling waves to generate a standing surface acoustic wave, in which particles migrate a distance less than half the acoustic wavelength to their nearest pressure node. The result is the formation of a periodic pattern of particles. Subsequent displacement of this pattern, the prerequisite for tweezing, can be achieved by translation of the standing wave, and with it the pressure nodes; this requires changing either the frequency of the pair of waves, or their relative phase. Here, in contrast, we examine the use of two counterpropagating traveling waves of different frequency. The non-linearity of the acoustic forces used to manipulate particles, means that a small frequency difference between the two waves creates a substantially different force field, which offers significant advantages. Firstly, this approach creates a much longer range force field, in which migration takes place across multiple wavelengths, and causes particles to be gathered together in a single trapping site. Secondly, the location of this single trapping site can be controlled by the relative amplitude of the two waves, requiring simply an attenuation of one of the electrical drive signals. Using this approach, we show that by controlling the powers of the opposing incoherent waves, 5 μm particles can be migrated laterally across a fluid flow to defined locations with an accuracy of ±10 μm.
NEW EXPLICIT AND EXACT TRAVELLING WAVE SOLUTIONS FOR A COMPOUND KdV-BURGERS EQUATION
Institute of Scientific and Technical Information of China (English)
XIA TIE-CHENG; ZHANG HONG-QING; YAN ZHEN-YA
2001-01-01
In this paper, new explicit and exact travelling wave solutions for a compound KdV-Burgers equation are obtained by using the hyperbola function method and the Wu elimination method, which include new solitary wave solutions and periodic solutions. Particularly important cases of the equation, such as the compound KdV, mKdV-Burgers and mKdV equations can be solved by this method. The method can also solve other nonlinear partial differential equations.
Wintucky, Edwin G.; Simons, Rainee N.
2014-01-01
This paper presents the design, fabrication and test results for a novel waveguide multimode directional coupler (MDC). The coupler fabricated from two dissimilar waveguides is capable of isolating the power at the second harmonic frequency from the fundamental power at the output port of a traveling-wave tube (TWT). In addition to accurate power measurements at harmonic frequencies, a potential application of the MDC is in the design of a beacon source for atmospheric propagation studies at millimeter-wave frequencies.
A nonlinear acoustic metamaterial: Realization of a backwards-traveling second-harmonic sound wave.
Quan, Li; Qian, Feng; Liu, Xiaozhou; Gong, Xiufen
2016-06-01
An ordinary waveguide with periodic vibration plates and side holes can realize an acoustic metamaterial that simultaneously possesses a negative bulk modulus and a negative mass density. The study is further extended to a nonlinear case and it is predicted that a backwards-traveling second-harmonic sound wave can be obtained through the nonlinear propagation of a sound wave in such a metamaterial.
Classical implicit travelling wave solutions for a quasilinear convection-diffusion equation
Hearns, Jessica; Van Gorder, Robert A.
2012-11-01
We discuss classical implicit solutions to the partial differential equation ut=(H(u))xx+(G(u))x, a general convection-diffusion PDE with particular subcases appearing in many areas of fluids and astrophysics. As an illustrative example, and to compare our results with those present in the literature, we frequently consider travelling wave solutions for the quasilinear PDE ut=(um)xx+(un)x, which has been used to describe the flow of viscous fluids on an inclined bed and as a model of convection-diffusion processes. When n ⩾ m > 1, this equation can be used to model the flow of a fluid under gravity through a homogeneous and isotropic porous medium. The travelling wave ODE for both the general and more specific cases have a first integral which is used to obtain an implicit solution for the travelling wave profiles. We should mention that, for some values of m, the implicit relation can be solved in closed form for explicit exact solutions. In the case of n = 2m - 1, solving the implicit relation gives a general way of obtaining the solutions found in Vanaja [Vanaja, V., 2009. Physica Scripta 80, p. 045402] where the travelling wave solutions for the cases (m, n) = (2, 3) and (m, n) = (3, 5) were explicitly constructed using a more complicated ansatz method. For other more complicated cases where inversion cannot be performed, we apply the method of series reversion to construct series solutions from the implicit relations. Furthermore, we deduce the dependence of travelling wave solutions on the wave speed, even in cases where the explicit exact solution cannot be found.
Directory of Open Access Journals (Sweden)
Sergey I. Saulenko
2011-09-01
Full Text Available Physical fundamentals of traveling wave reactor are considered. We show that the condition of existence of nuclear burning soliton-like wave in a neutron-multiplying medium is determined in general by two conditions. The first condition (necessary is determined by relationship between the equilibrium concentration and critical concentration of active (fissionable isotope that is a consequence of the Bohr–Sommerfeld quantization condition. The second condition (sufficient is set by the so-called Wigner quantum statistics, or more accurately, by a statistics of the Gaussian simplectic ensembles with respect to the parameter that describes the squared width of burning wave front of nuclear fuel active component.
Morichetti, Francesco; Canciamilla, Antonio; Ferrari, Carlo; Samarelli, Antonio; Sorel, Marc; Melloni, Andrea
2011-01-01
Wave mixing inside optical resonators, while experiencing a large enhancement of the nonlinear interaction efficiency, suffers from strong bandwidth constraints, preventing its practical exploitation for processing broad-band signals. Here we show that such limits are overcome by the new concept of travelling-wave resonant four-wave mixing (FWM). This approach combines the efficiency enhancement provided by resonant propagation with a wide-band conversion process. Compared with conventional FWM in bare waveguides, it exhibits higher robustness against chromatic dispersion and propagation loss, while preserving transparency to modulation formats. Travelling-wave resonant FWM has been demonstrated in silicon-coupled ring resonators and was exploited to realize a 630-μm-long wavelength converter operating over a wavelength range wider than 60 nm and with 28-dB gain with respect to a bare waveguide of the same physical length. Full compatibility of the travelling-wave resonant FWM with optical signal processing applications has been demonstrated through signal retiming and reshaping at 10 Gb s−1 PMID:21540838
Energy Technology Data Exchange (ETDEWEB)
Xu Rui [Department of Applied Mathematics, Xi' an Jiaotong University, Xi' an 710049 (China)]. E-mail: rxu88@yahoo.com.cn; Chaplain, M.A.J. [Department of Mathematics, University of Dundee, Dundee DD1 4HN (United Kingdom); Davidson, F.A. [Department of Mathematics, University of Dundee, Dundee DD1 4HN (United Kingdom)
2006-11-15
In this paper, we first investigate a stage-structured competitive model with time delays, harvesting, and nonlocal spatial effect. By using an iterative technique recently developed by Wu and Zou (Wu J, Zou X. Travelling wave fronts of reaction-diffusion systems with delay. J Dynam Differen Equat 2001;13:651-87), sufficient conditions are established for the existence of travelling front solution connecting the two boundary equilibria in the case when there is no positive equilibrium. The travelling wave front corresponds to an invasion by a stronger species which drives the weaker species to extinction. Secondly, we consider a stage-structured competitive model with time delays and nonlocal spatial effect when the domain is finite. We prove the global stability of each of the nonnegative equilibria and demonstrate that the more complex model studied here admits three possible long term behaviors: coexistence, bistability and dominance as is the case for the standard Lotka-Voltera competitive model.
On "new travelling wave solutions" of the KdV and the KdV-Burgers equations
Kudryashov, Nikolai A.
2009-01-01
The Korteweg-de Vries and the Korteweg-de Vries-Burgers equations are considered. Using the travelling wave the general solutions of these equations are presented. "New travelling wave solutions" of the KdV and the KdV-Burgers equations by Wazzan [Wazzan L Commun Nonlinear Sci Numer Simulat 2009:14:
Abundant new travelling wave solutions for the (2 + 1)-dimensional Sine-Gordon equation
Energy Technology Data Exchange (ETDEWEB)
Li Zhu [College of Mathematics and Information Science, Xinyang Normal University, Xinyang 464000 (China)], E-mail: lizhu1813@163.com; Dong Huanhe [College of Information Science and Engineering, Shandong University of Science and Technology, Qingdao 266510 (China)
2008-07-15
Abundant new travelling wave solutions of the (2 + 1)-dimensional Sine-Gordon equation are obtained by the generalized Jacobi elliptic function method. The solutions obtained include the kink-shaped solutions, bell-shaped solutions, singular solutions and periodic solutions.
Travelling wave analysis and jump relations for a fluid model of quasineutral plasma
Energy Technology Data Exchange (ETDEWEB)
Cordier, S. (Ecole Polytechnique, 91 - Palaiseau (France)); Degond, P. (Toulouse-3 Univ., 31 (France)); Markowich, P. (Technische Univ. Berlin (Germany)); Schmeiser, C. (Technische Univ., Vienna (Austria))
1994-05-01
A 1-D fluid model for a plasma is presented. In the quasineutral limit, this model leads to a non conservative hyperbolic system for which the jump relations are a-priority not well defined. The problem can be solved for sufficiently strong shocks via a travelling wave analysis. (authors). 5 refs.
Exponentially slow traveling waves on a finite interval for Burgers' type equation
Directory of Open Access Journals (Sweden)
Pieter De Groen
1998-11-01
Full Text Available In this paper we study for small positive $epsilon$ the slow motion of the solution for evolution equations of Burgers' type with small diffusion, $$ u_t=epsilon u_{xx}+f(u,u_x,, quad u(x,0=u_0(x, quad u(pm 1,t=pm 1, $$ on the bounded spatial domain $[-1,1]$; $f$ is a smooth function satisfying $f(1>0, f(-1<0$ and $int_{-1}^{1}f(tdt=0$. The initial and boundary value problem~($star$ has a unique asymptotically stable equilibrium solution that attracts all solutions starting with continuous initial data $u_0$. On the infinite spatial domain ${mathbb R}$ the differential equation has slow speed traveling wave solutions generated by profiles that satisfy the boundary conditions of~($star$. As long as its zero stays inside the interval $[-1,1]$, such a traveling wave suitably describes the slow long term behaviour of the solution of ($star$ and its speed characterizes the local velocity of the slow motion with exponential precision. A solution that starts near a traveling wave moves in a small neighborhood of the traveling wave with exponentially slow velocity (measured as the speed of the unique zero during an exponentially long time interval $(0,T$. In this paper we give a unified treatment of the problem, using both Hilbert space and maximum principle methods, and we give rigorous proofs of convergence of the solution and of the asymptotic estimate of the velocity.
An interleaved structure for a high-voltage planar transformer for a Travelling-wave Tube
DEFF Research Database (Denmark)
Zhao, Bin; Wang, Gang; Hurley, William G.;
2016-01-01
is proposed to reduce leakage inductance and the insulation’s thickness is adjusted to optimize the electric isolation. In addition, the resistance and parasitic capacitance are investigated. With this method, a planar transformer used for a Travelling-Wave Tube Amplifier (TWTA) is designed. Calculations...
Microwave heating offers a number of advantages over conventional heating methods, such as, rapid and volumetric heating, precise temperature control, energy efficiency and lower temperature gradient. In this article we demonstrate the use of 2450 MHz microwave traveling wave reactor to heat the cat...
Non-monotonic Travelling Wave Fronts in a System of Fractional Flow Equations from Porous Media
Zegeling, P.A.; Hönig, O.; Doster, F.; Hilfer, R.
2016-01-01
Motivated by observations of saturation overshoot, this article investigates generic classes of smooth travelling wave solutions of a system of two coupled nonlinear parabolic partial differential equations resulting from a flux function of high symmetry. All boundary resp. limit value problems of t
A Class of Traveling Wave Solutions to Some Nonlinear Partial Differential Equations
Institute of Scientific and Technical Information of China (English)
BAI Cheng-Lin
2003-01-01
For the Noyes-Fields equations, two-dimensional hyperbolic equations of conversation laws, and theBurgers-KdV equation, a class of traveling wave solutions has been obtained by constructing appropriate functiontransformations. The main idea of solving the equations is that nonlinear partial differential equations are changed intosolving algebraic equations. This method has a wide-rangingpracticability.
Travelling waves associated with saddle-node bifurcation in weakly coupled CML
Energy Technology Data Exchange (ETDEWEB)
Sotelo Herrera, Ma Dolores, E-mail: dsh@dfmf.uned.e [Departamento de Matematica Aplicada, E.U.I.T.I., Universidad Politecnica de Madrid, Ronda de Valencia 3, 28012 Madrid (Spain); San Martin, Jesus, E-mail: jsm@dfmf.uned.e [Departamento de Matematica Aplicada, E.U.I.T.I., Universidad Politecnica de Madrid, Ronda de Valencia 3, 28012 Madrid (Spain); Departamento de Fisica Matematica y de Fluidos, U.N.E.D., Senda del Rey 9, 28040 Madrid (Spain)
2010-07-19
Weakly coupled CML can be analytically solved by using perturbative methods. This technique has been recently used to deduce analytical expressions for travelling waves. Nonetheless, the results were limited for periodic solutions far away from saddle-node bifurcation. In this Letter, this problem is solved and periodic solutions, arising from the individual dynamics, are totally characterised.
A cylindrical traveling wave ultrasonic motor using a circumferential composite transducer.
Liu, Yingxiang; Liu, Junkao; Chen, Weishan
2011-11-01
This paper intends to present and verify a new idea for constructing traveling wave ultrasonic motors that may effectively avoid the drawbacks of conventional traveling wave motors using bonded PZT plates as the exciting elements. In the configuration of the motor's stator, a composite sandwich type transducer is used to excite a traveling wave in a cylinder with two cantilevers as the coupling bridges between the transducer and the cylinder. The design process of the stator is described using the FEM modal analysis method, and the establishment of traveling wave on the cylindrical stator was simulated by FEM transient analysis. To verify the theoretical analysis results, a laser Doppler scanner was employed to test the mode shapes of a prototype stator excited by the longitudinal and bending vibrations respectively. Finally, to validate the design idea, a prototype motor was fabricated and tested; the typical output features are no-load speed of 156 rpm and maximum torque of 0.75 N·m under exciting voltages of 70 V(rms) applied to excite the longitudinal vibration of the transducer and 200 V(rms) applied to excite the bending vibration.
System Identification of Mistuned Bladed Disks from Traveling Wave Response Measurements
Feiner, D. M.; Griffin, J. H.; Jones, K. W.; Kenyon, J. A.; Mehmed, O.; Kurkov, A. P.
2003-01-01
A new approach to modal analysis is presented. By applying this technique to bladed disk system identification methods, one can determine the mistuning in a rotor based on its response to a traveling wave excitation. This allows system identification to be performed under rotating conditions, and thus expands the applicability of existing mistuning identification techniques from integrally bladed rotors to conventional bladed disks.
Travelling wave solutions to nonlinear physical models by means of the ﬁrst integral method
Indian Academy of Sciences (India)
İsmail Aslan Aslan
2011-04-01
This paper presents the ﬁrst integral method to carry out the integration of nonlinear partial differential equations in terms of travelling wave solutions. For illustration, three important equations of mathematical physics are analytically investigated. Through the established ﬁrst integrals, exact solutions are successfully constructed for the equations considered.
Implementation features of the microstrip filters with traveling wave ring resonators
Directory of Open Access Journals (Sweden)
Glushechenko E. N.
2012-12-01
Full Text Available The article prsents a block diagram of a traveling wave directional filter, and a system of analytic expressions which defines the levels of the signals in the filter branches. Implementation features of the filter in the microstrip design are considered. The block diagram of such filter, its base topology and signal system are given.
Measurements on the SPS 200 MHz Travelling Wave Cavity towards an Impedance Model
Roggen, Toon; Caspers, Fritz; Vollinger, Christine; CERN. Geneva. ATS Department
2016-01-01
This note discusses the contribution of the SPS 200 MHz TWC (Travelling Wave Cavity) to the SPS longitudinal impedance model. The measurement method and setup is briefly explained and a comparison with simulations is discussed for both the fundamental pass band (FPB) as well as the Higher Order Modes (HOMs). In addition a number of improvements to the measurement setup are discussed.
Electromagnetic Excitation of a Thin Wire: A traveling-Wave Approach
Bogerd, J.C.; Tijhuis, A.G.; Klaasen, J.J.A.
1998-01-01
An approximate representation for the current along a perfectly conducting straight thin wire is presented. The current is approximated in terms of pulsed waves that travel along the wire with the velocity of the exterior medium. At the ends of the wire, these pulses are partially reflected, with a
Measurement of Flow Resistance Coefficient of Sodium Valve in Traveling Wave Reactor
Institute of Scientific and Technical Information of China (English)
LV; Ming-yu; WANG; Chong; YU; Hua-jin
2015-01-01
Traveling wave reactor(TWR)whose fundamental philosophy is achieving breeding and incineration of 238 U which is in the majority in natural uranium at original location through deepened burnup is a new concept fast reactor.It can effectively enhance utilization rate of uranium resources.TWR has much characteristics,such as
Global Existence of Solutions to the Fowler Equation in a Neighbourhood of Travelling-Waves
Directory of Open Access Journals (Sweden)
Afaf Bouharguane
2011-01-01
Full Text Available We investigate a fractional diffusion/anti-diffusion equation proposed by Andrew C. Fowler to describe the dynamics of sand dunes sheared by a fluid flow. In this paper, we prove the global-in-time well-posedness in the neighbourhood of travelling-waves solutions of the Fowler equation.
MINIMIZING COMPUTATIONAL ERRORS OF TSUNAMI WAVE-RAY AND TRAVEL TIME
Directory of Open Access Journals (Sweden)
Andrei G. Marchuk
2008-01-01
Full Text Available There are many methods for computing tsunami kinematics directly and inversely. The direct detection of waves in the deep ocean makes it possible to establish tsunami source characteristics and origin. Thus, accuracy of computational methods is very important in obtaining reliable results. In a non-homogeneous medium where tsunami wave propagation velocity varies, it is not very easy to determine a wave-ray that connects two given points along a path. The present study proposes modification in the methodology of determining tsunami travel-times and of wave-ray paths. An approximate ray trace path can be developed from a source origin point to any other point on a computational grid by solving directly the problem - and thus obtain the tsunami travel- times. The initial ray approximation can be optimized with the use of an algorithm that calculates all potential variations and applies corrections to travel-time values. Such an algorithm was tested in an area with model bathymetry and compared with a non-optimized method. The latter exceeded the optimized method by one minute of travel-time for every hour of tsunami propagation time.
Directory of Open Access Journals (Sweden)
Xiaohong Tian
2014-01-01
Full Text Available A delayed SIRS infectious disease model with nonlocal diffusion and nonlinear incidence is investigated. By constructing a pair of upper-lower solutions and using Schauder's fixed point theorem, we derive the existence of a traveling wave solution connecting the disease-free steady state and the endemic steady state.
TRAVELING WAVES CONNECTING EQUILIBRIUM AND PERIODIC ORBIT FOR DELAYED LATTICE DIFFERENTIAL EQUATION
Institute of Scientific and Technical Information of China (English)
无
2012-01-01
A class of lattice with time delay and nonlocal response is considered.By transforming the lattice delay differential system into an integral equations in a Banach space,we reduces a singular perturbation problem to a regular perturbation problem.Traveling wave solution therefore is obtained by applying Liapunov-Schmidt method and the implicit function theorem.
A New Scheme for Experimental-Based Modeling of a Traveling Wave Ultrasonic Motor
DEFF Research Database (Denmark)
Mojallali, Hamed; Amini, R.; Izadi-Zamanabadi, Roozbeh
2005-01-01
In this paper, a new method for equivalent circuit modeling of a traveling wave ultrasonic motor is presented. The free stator of the motor is modeled by an equivalent circuit containing complex circuit elements. A systematic approach for identifying the elements of the equivalent circuit...
Electromagnetic Excitation of a Thin Wire: A traveling-Wave Approach
Bogerd, J.C.; Tijhuis, A.G.; Klaasen, J.J.A.
1998-01-01
An approximate representation for the current along a perfectly conducting straight thin wire is presented. The current is approximated in terms of pulsed waves that travel along the wire with the velocity of the exterior medium. At the ends of the wire, these pulses are partially reflected, with a
Travelling waves for a Frenkel-Kontorova chain
Buffoni, Boris; Schwetlick, Hartmut; Zimmer, Johannes
2017-08-01
In this article, the Frenkel-Kontorova model for dislocation dynamics is considered, where the on-site potential consists of quadratic wells joined by small arcs, which can be spinodal (concave) as commonly assumed in physics. The existence of heteroclinic waves-making a transition from one well of the on-site potential to another-is proved by means of a Schauder fixed point argument. The setting developed here is general enough to treat such a Frenkel-Kontorova chain with smooth (C2) on-site potential. It is shown that the method can also establish the existence of two-transition waves for a piecewise quadratic on-site potential.
Directory of Open Access Journals (Sweden)
Dong Wang
2015-01-01
Full Text Available The traditional polarity comparison based travelling wave protection, using the initial wave information, is affected by initial fault angle, bus structure, and external fault. And the relationship between the magnitude and polarity of travelling wave is ignored. Because of the protection tripping and malfunction, the further application of this protection principle is affected. Therefore, this paper presents an ultra-high-speed travelling wave protection using integral based polarity comparison principle. After empirical mode decomposition of the original travelling wave, the first-order intrinsic mode function is used as protection object. Based on the relationship between the magnitude and polarity of travelling wave, this paper demonstrates the feasibility of using travelling wave magnitude which contains polar information as direction criterion. And the paper integrates the direction criterion in a period after fault to avoid wave head detection failure. Through PSCAD simulation with the typical 500 kV transmission system, the reliability and sensitivity of travelling wave protection were verified under different factors’ affection.
Construction of a series of travelling wave solutions to nonlinear equations
Energy Technology Data Exchange (ETDEWEB)
Zhao Hong [School of Physics Science and Information Engineering, Liaocheng University, Shandong 252059 (China)], E-mail: ldzhaohong@hotmail.com
2008-06-15
In this paper, based on new auxiliary ordinary differential equation with a sixth-degree nonlinear term, we study the (1 + 1)-dimensional combined KdV-MKdV equation, Hirota equation and (2 + 1)-dimensional Davey-Stewartson equation. Then, a series of new types of travelling wave solutions are obtained which include new bell and kink profile solitary wave solutions, triangular periodic wave solutions and singular solutions. The method used here can be also extended to many other nonlinear partial differential equations.
Dayton, James A., Jr.
1991-01-01
The high-power transmitters needed for high data rate communications from deep space will require a new class of compact, high efficiency traveling wave tubes (TWT's). Many of the recent TWT developments in the microwave frequency range are generically applicable to mm wave devices, in particular much of the technology of computer aided design, cathodes, and multistage depressed collectors. However, because TWT dimensions scale approximately with wavelength, mm wave devices will be physically much smaller with inherently more stringent fabrication tolerances and sensitivity to thermal dissipation.
Tennakoon, S G K; Hegseth, J J; Riecke, H; Tennakoon, Sarath G. K.; Hegseth, John. J.; Riecke, Hermann
1996-01-01
The effect of temporal modulation on traveling waves in the flows in two distinct systems of rotating cylinders, both with broken azimuthal symmetry, has been investigated. It is shown that by modulating the control parameter at twice the critical frequency one can excite phase-locked standing waves and standing-wave-like states which are not allowed when the system is rotationally symmetric. We also show how previous theoretical results can be extended to handle patterns such as these, that are periodic in two spatial direction.
Stability of Travelling Wave Solutions of the Derivative Ginzburg—Landau Equations
Institute of Scientific and Technical Information of China (English)
BolingGuo; BainianLU; 等
1997-01-01
The existence of travelling wave solution of the quinitic Ginzburg-Landau equation with derivatives is proved by the geometric singular perturbation theory.The stability of the wave solution is presented by topological methods which are proposed in Alexander,Gardner and Jones[6].The Chern number of the unstable augmented bundle is used to count the number of the linearizing operator L.For derivative Ginzburg-Landau equations,the Chern number of the unstable augmented bundle is equal to zero.I.e.c1（ε）=0,then the wave solution is stable.
Tao, Zhi-Fu; Han, Zhong-Ling; Yao, Meng
2011-01-01
Using the difference of dielectric constant between malignant tumor tissue and normal breast tissue, breast tumor microwave sensor system (BRATUMASS) determines the detected target of imaging electromagnetic trait by analyzing the properties of target tissue back wave obtained after near-field microwave radicalization (conelrad). The key of obtained target properties relationship and reconstructed detected space is to analyze the characteristics of the whole process from microwave transmission to back wave reception. Using traveling wave method, we derive spatial transmission properties and the relationship of the relation detected points distances, and valuate the properties of each unit by statistical valuation theory. This chapter gives the experimental data analysis results.
Nonlinear traveling waves for the skeleton of the Madden-Julian oscillation
Chen, Shengqian
2015-01-01
The Madden-Julian Oscillation (MJO) is the dominant component of intraseasonal (30-90 days) variability in the tropical atmosphere. Here, traveling wave solutions are presented for the MJO skeleton model of Majda and Stechmann. The model is a system of nonlinear partial differential equations that describe the evolution of the tropical atmosphere on planetary (10,000-40,000 km) spatial scales. The nonlinear traveling waves come in four types, corresponding to the four types of linear wave solutions, one of which has the properties of the MJO. In the MJO traveling wave, the convective activity has a pulse-like shape, with a narrow region of enhanced convection and a wide region of suppressed convection. Furthermore, an amplitude-dependent dispersion relation is derived, and it shows that the nonlinear MJO has a lower frequency and slower propagation speed than the linear MJO. By taking the small-amplitude limit, an analytic formula is also derived for the dispersion relation of linear waves. To derive all of t...
Symbolic computation and abundant travelling wave solutions to KdV–mKdV equation
Indian Academy of Sciences (India)
SYED TAHIR RAZA RIZVI; KASHIF ALI; ALI SARDAR; MUHAMMAD YOUNIS; AHMET BEKIR
2017-01-01
In this article, the novel $(G'/G)$-expansion method is successfully applied to construct the abundant travelling wave solutions to the KdV–mKdV equation with the aid of symbolic computation. This equation is one of the most popular equation in soliton physics and appear in many practical scenarios like thermal pulse, wave propagation of bound particle, etc. The method is reliable and useful, and gives more general exact travelling wave solutions than the existing methods. The solutions obtained are in the form of hyperbolic, trigonometricand rational functions including solitary, singular and periodic solutions which have many potential applications in physical science and engineering. Many of these solutions are new and some have already been constructed. Additionally, the constraint conditions, for the existence of the solutions are also listed.
Barker, Blake; Noble, Pascal; Rodrigues, L Miguel; Zumbrun, Kevin
2012-01-01
In this paper we consider the spectral and nonlinear stability of periodic traveling wave solutions of a generalized Kuramoto-Sivashinsky equation. In particular, we resolve the long-standing question of nonlinear modulational stability by demonstrating that spectrally stable waves are nonlinearly stable when subject to small localized (integrable) perturbations. Our analysis is based upon detailed estimates of the linearized solution operator, which are complicated by the fact that the (necessarily essential) spectrum of the associated linearization intersects the imaginary axis at the origin. We carry out a numerical Evans function study of the spectral problem and find bands of spectrally stable periodic traveling waves, in close agreement with previous numerical studies of Frisch-She-Thual, Bar-Nepomnyashchy, Chang-Demekhin-Kopelevich, and others carried out by other techniques. We also compare predictions of the associated Whitham modulation equations, which formally describe the dynamics of weak large s...
A Research of 140-GHz Folded Rectangular Gro ove Waveguide Traveling-Wave Tub e
Institute of Scientific and Technical Information of China (English)
ZHANG Minghao; WEI Yanyu; YUE Lingna; GUO Guo; WANG Yuanyuan; SHI Xianbao; WANG Wenxiang
2015-01-01
A two-section Folded rectangular groove waveguide (FRGWG) Slow wave structure (SWS) Travel-ing wave tube (TWT) with large dimension of beam tunnel is studied. Compared with the Folded waveguide (FWG) under the same size parameters conditions, the interac-tion impedance and center frequency of the FRGWG are higher. The advantage is that a beam tunnel with large dimension can be applied to the FRGWG without the influence caused by signal decrease, reflection and oscil-lation. The microwave amplification capability based on beam-wave interaction is obtained through the particle-in-cell method. This circuit structure can produce an output power of over 100W ranging from 136 to 142GHz when the operation voltage and beam current are set as 18.4kV and 150mA, respectively, for a 95mm long circuit.
Dynamical Hamiltonian-Hopf instabilities of periodic traveling waves in Klein-Gordon equations
Marangell, R.; Miller, P. D.
2015-07-01
We study the unstable spectrum close to the imaginary axis for the linearization of the nonlinear Klein-Gordon equation about a periodic traveling wave in a co-moving frame. We define dynamical Hamiltonian-Hopf instabilities as points in the stable spectrum that are accumulation points for unstable spectrum, and show how they can be determined from the knowledge of the discriminant of Hill's equation for an associated periodic potential. This result allows us to give simple criteria for the existence of dynamical Hamiltonian-Hopf instabilities in terms of instability indices previously shown to be useful in stability analysis of periodic traveling waves. We also discuss how these methods can be applied to more general nonlinear wave equations.
Symbolic computation and abundant travelling wave solutions to KdV-mKdV equation
Raza Rizvi, Syed Tahir; Ali, Kashif; Sardar, Ali; Younis, Muhammad; Bekir, Ahmet
2017-01-01
In this article, the novel ( G '/ G)-expansion method is successfully applied to construct the abundant travelling wave solutions to the KdV-mKdV equation with the aid of symbolic computation. This equation is one of the most popular equation in soliton physics and appear in many practical scenarios like thermal pulse, wave propagation of bound particle, etc. The method is reliable and useful, and gives more general exact travelling wave solutions than the existing methods. The solutions obtained are in the form of hyperbolic, trigonometric and rational functions including solitary, singular and periodic solutions which have many potential applications in physical science and engineering. Many of these solutions are new and some have already been constructed. Additionally, the constraint conditions, for the existence of the solutions are also listed.
Axisymmetry Breaking to Travelling Waves in the Cylinder with Partially Heated Sidewall
Institute of Scientific and Technical Information of China (English)
MA Dong-Jun; SUN De-Jun; YIN Xie-Yuan
2006-01-01
The transition from an axisymmetric stationary now to three-dimensional time-dependent Hows is carefully studied in a vertical cylinder partially heated from the side, with the aspect ratio A = 2 and Prandtl number Pr = 0.021. The now develops from the steady toroidal pattern beyond the first instability threshold, breaks the axisymmetric state at a Rayleigh number near 2000, and transits to standing or travelling azirnuthal waves. A new result is observed that a slightly unstable now pattern of standing waves exists and will transit to stable travelling waves after a long time evolution. The onset of oscillations is associated with a supercritical Hopf bifurcation in a system with O(2) symmetry.
Wang, Wei; Coombs, Timothy
2015-05-01
This paper studies the magnetisation and ac magnetisation losses caused by a travelling magnetic wave on a single-layer YBCO thin film. This work provides thorough investigations on how the critical magnetic field gradient has been changed by the application of a travelling wave. Several conditions were studied such as zero-field cooling (ZFC), field cooling (FC) and a delta-shaped trapped field. It was found that the travelling wave tends to attenuate the existing critical magnetic field gradients in all these conditions. This interesting magnetic behaviour can be well predicted by the finite element (FEM) software with the E-J power law and Maxwell’s equations. The numerical simulations show that the existing critical current density has been compromised after applying the travelling wave. The magnetisation profile caused by the travelling wave is very different from the standing wave, while the magnetisation based on the standing wave can be interpreted by the Bean model and constant current density assumption. Based on the numerical method, which has reliability that has been solidly proven in the study, we have extended the study to the ac magnetisation losses. Comparisons were made between the travelling wave and the standing wave for this specific YBCO sample. It was found that by applying the magnetic wave of the same amplitude, the ac magnetisation loss caused by the travelling wave is about 1/3 of that caused by the standing wave. These results are helpful in understanding the general magnetism problems and ac magnetisation loss in the travelling magnetic wave conditions such as inside a high temperature superconducting (HTS) rotating machine, etc.
Shera, Christopher A; Cooper, Nigel P
2013-04-01
At low stimulus levels, basilar-membrane (BM) mechanical transfer functions in sensitive cochleae manifest a quasiperiodic rippling pattern in both amplitude and phase. Analysis of the responses of active cochlear models suggests that the rippling is a mechanical interference pattern created by multiple internal reflection within the cochlea. In models, the interference arises when reverse-traveling waves responsible for stimulus-frequency otoacoustic emissions (SFOAEs) reflect off the stapes on their way to the ear canal, launching a secondary forward-traveling wave that combines with the primary wave produced by the stimulus. Frequency-dependent phase differences between the two waves then create the rippling pattern measurable on the BM. Measurements of BM ripples and SFOAEs in individual chinchilla ears demonstrate that the ripples are strongly correlated with the acoustic interference pattern measured in ear-canal pressure, consistent with a common origin involving the generation of SFOAEs. In BM responses to clicks, the ripples appear as temporal fine structure in the response envelope (multiple lobes, waxing and waning). Analysis of the ripple spacing and response phase gradients provides a test for the role of fast- and slow-wave modes of reverse energy propagation within the cochlea. The data indicate that SFOAE delays are consistent with reverse slow-wave propagation but much too long to be explained by fast waves.
Traveling waves for a model of gravity-driven film flows in cylindrical domains
Camassa, Roberto; Marzuola, Jeremy L.; Ogrosky, H. Reed; Vaughn, Nathan
2016-10-01
Traveling wave solutions are studied for a recently-derived model of a falling viscous film on the interior of a vertical rigid tube. By identifying a Hopf bifurcation and using numerical continuation software, families of non-trivial traveling wave solutions may be traced out in parameter space. These families all contain a single solution at a 'turnaround point' with larger film thickness than all others in the family. In an earlier paper, it was conjectured that this turnaround point may represent a critical thickness separating two distinct flow regimes observed in physical experiments as well as two distinct types of behavior in transient solutions to the model. Here, these hypotheses are verified over a range of parameter values using a combination of numerical and analytical techniques. The linear stability of these solutions is also discussed; both large- and small-amplitude solutions are shown to be unstable, though the instability mechanisms are different for each wave type. Specifically, for small-amplitude waves, the region of relatively flat film away from the localized wave crest is subject to the same instability that makes the trivial flat-film solution unstable; for large-amplitude waves, this mechanism is present but dwarfed by a much stronger tendency to relax to a regime close to that followed by small-amplitude waves.
Control of traveling-wave oscillations and bifurcation behavior in central pattern generators
Landsman, Alexandra S.; Slotine, Jean-Jacques
2012-10-01
Understanding synchronous and traveling-wave oscillations, particularly as they relate to transitions between different types of behavior, is a central problem in modeling biological systems. Here, we address this problem in the context of central pattern generators (CPGs). We use contraction theory to establish the global stability of a traveling-wave or synchronous oscillation, determined by the type of coupling. This opens the door to better design of coupling architectures to create the desired type of stable oscillations. We then use coupling that is both amplitude and phase dependent to create either globally stable synchronous or traveling-wave solutions. Using the CPG motor neuron network of a leech as an example, we show that while both traveling and synchronous oscillations can be achieved by several types of coupling, the transition between different types of behavior is dictated by a specific coupling architecture. In particular, it is only the “repulsive” but not the commonly used phase or rotational coupling that can explain the transition to high-frequency synchronous oscillations that have been observed in the heartbeat pattern generator of a leech. This shows that the overall dynamics of a CPG can be highly sensitive to the type of coupling used, even for coupling architectures that are widely believed to produce the same qualitative behavior.
A dendritic mechanism for decoding traveling waves: principles and applications to motor cortex.
Directory of Open Access Journals (Sweden)
Stewart Heitmann
2013-10-01
Full Text Available Traveling waves of neuronal oscillations have been observed in many cortical regions, including the motor and sensory cortex. Such waves are often modulated in a task-dependent fashion although their precise functional role remains a matter of debate. Here we conjecture that the cortex can utilize the direction and wavelength of traveling waves to encode information. We present a novel neural mechanism by which such information may be decoded by the spatial arrangement of receptors within the dendritic receptor field. In particular, we show how the density distributions of excitatory and inhibitory receptors can combine to act as a spatial filter of wave patterns. The proposed dendritic mechanism ensures that the neuron selectively responds to specific wave patterns, thus constituting a neural basis of pattern decoding. We validate this proposal in the descending motor system, where we model the large receptor fields of the pyramidal tract neurons - the principle outputs of the motor cortex - decoding motor commands encoded in the direction of traveling wave patterns in motor cortex. We use an existing model of field oscillations in motor cortex to investigate how the topology of the pyramidal cell receptor field acts to tune the cells responses to specific oscillatory wave patterns, even when those patterns are highly degraded. The model replicates key findings of the descending motor system during simple motor tasks, including variable interspike intervals and weak corticospinal coherence. By additionally showing how the nature of the wave patterns can be controlled by modulating the topology of local intra-cortical connections, we hence propose a novel integrated neuronal model of encoding and decoding motor commands.
Human seizures couple across spatial scales through travelling wave dynamics
Martinet, L.-E.; Fiddyment, G.; Madsen, J. R.; Eskandar, E. N.; Truccolo, W.; Eden, U. T.; Cash, S. S.; Kramer, M. A.
2017-04-01
Epilepsy--the propensity toward recurrent, unprovoked seizures--is a devastating disease affecting 65 million people worldwide. Understanding and treating this disease remains a challenge, as seizures manifest through mechanisms and features that span spatial and temporal scales. Here we address this challenge through the analysis and modelling of human brain voltage activity recorded simultaneously across microscopic and macroscopic spatial scales. We show that during seizure large-scale neural populations spanning centimetres of cortex coordinate with small neural groups spanning cortical columns, and provide evidence that rapidly propagating waves of activity underlie this increased inter-scale coupling. We develop a corresponding computational model to propose specific mechanisms--namely, the effects of an increased extracellular potassium concentration diffusing in space--that support the observed spatiotemporal dynamics. Understanding the multi-scale, spatiotemporal dynamics of human seizures--and connecting these dynamics to specific biological mechanisms--promises new insights to treat this devastating disease.
Traveling circumferential unstable wave of cylindrical flame front
Trilis, A. V.; Vasiliev, A. A.; Sukhinin, S. V.
2016-06-01
The researches of stability of cylindrical front of deflagration combustion in an annular combustion chamber were made using phenomenological model. The flame front is described as discontinuity of gasdynamic parameters. It is considered that the combustion products are under chemical equilibrium. The combustible mixture and the combustion products are ideal gases. The velocity of deflagration combustion is determined using the Chapman-Jouget theory. It depends on the temperature of combustible mixture only. It is found that the combustible flame front is unstable for several types of small disturbances in the system Mechanics of instabilities are examined using both the numeric and analytical methods. The cases of evolution of the unstable waves rotating in circular channel are presented.
Sisto, Renata; Shera, Christopher A.; Moleti, Arturo; Botti, Teresa
2013-01-01
Recent basilar-membrane (BM) vibration experiments show that the phase slope of the distortion product (DP) in the cochlear region in which a backward-traveling wave is expected is negative, which is typical of a forward-traveling wave, according to the predictions of quasi-linear approximate solutions of classical 1-D transmission-line cochlear models. This phase behavior has been interpreted as suggesting a strong deviation from the “classical” models of the otoacoustic emission (OAE) generation and transmission. In this paper, the DP phase inversion phenomenon is approached from a conservative point of view. The DP phase is calculated in a classical cochlear model. The main conclusion is that deviations from the classical model are not necessary to account for the observed phase behavior. PMID:24376285
Sisto, Renata; Shera, Christopher A.; Moleti, Arturo; Botti, Teresa
2011-11-01
Recent basilar-membrane (BM) vibration experiments show that the phase slope of the distortion product (DP) in the cochlear region in which a backward-traveling wave is expected is negative, which is typical of a forward-traveling wave, according to the predictions of quasi-linear approximate solutions of classical 1-D transmission-line cochlear models. This phase behavior has been interpreted as suggesting a strong deviation from the "classical" models of the otoacoustic emission (OAE) generation and transmission. In this paper, the DP phase inversion phenomenon is approached from a conservative point of view. The DP phase is calculated in a classical cochlear model. The main conclusion is that deviations from the classical model are not necessary to account for the observed phase behavior.
On the nonlinear dynamics of the traveling-wave solutions of the Serre equations
Mitsotakis, Dimitrios; Carter, John D
2014-01-01
In this paper, we study numerically nonlinear phenomena related to the dynamics of the traveling wave solutions of the Serre equations including their stability, their persistence, resolution into solitary waves, and wave breaking. Other forms of solutions such as DSWs, are also considered. Some differences between the solutions of the Serre equations and the full Euler equations are also studied. Euler solitary waves propagate without large variations in shape when they are used as initial conditions in the Serre equations. The nonlinearities seem to play a crucial role in the generation of small-amplitude waves and appear to cause a recurrence phenomenon in linearly unstable solutions. The numerical method used in the paper utilizes a high order FEM with smooth, periodic splines in space and explicit Runge-Kutta methods in time. The solutions of the Serre system are compared with the corresponding ones of the asymptotically-related Euler system whenever is possible.
Wang, Huiqun; Toigo, Anthony D.
2016-06-01
Investigations of the variability, structure and energetics of the m = 1-3 traveling waves in the northern hemisphere of Mars are conducted with the MarsWRF general circulation model. Using a simple, annually repeatable dust scenario, the model reproduces many general characteristics of the observed traveling waves. The simulated m = 1 and m = 3 traveling waves show large differences in terms of their structures and energetics. For each representative wave mode, the geopotential signature maximizes at a higher altitude than the temperature signature, and the wave energetics suggests a mixed baroclinic-barotropic nature. There is a large contrast in wave energetics between the near-surface and higher altitudes, as well as between the lower latitudes and higher latitudes at high altitudes. Both barotropic and baroclinic conversions can act as either sources or sinks of eddy kinetic energy. Band-pass filtered transient eddies exhibit strong zonal variations in eddy kinetic energy and various energy transfer terms. Transient eddies are mainly interacting with the time mean flow. However, there appear to be non-negligible wave-wave interactions associated with wave mode transitions. These interactions include those between traveling waves and thermal tides and those among traveling waves.
A rod type linear ultrasonic motor utilizing longitudinal traveling waves: proof of concept
Wang, Liang; Wielert, Tim; Twiefel, Jens; Jin, Jiamei; Wallaschek, Jörg
2017-08-01
This paper proposes a non-resonant linear ultrasonic motor utilizing longitudinal traveling waves. The longitudinal traveling waves in the rod type stator are generated by inducing longitudinal vibrations at one end of the waveguide and eliminating reflections at the opposite end by a passive damper. Considering the Poisson’s effect, the stator surface points move on elliptic trajectories and the slider is driven forward by friction. In contrast to many other flexural traveling wave linear ultrasonic motors, the driving direction of the proposed motor is identical to the wave propagation direction. The feasibility of the motor concept is demonstrated theoretically and experimentally. First, the design and operation principle of the motor are presented in detail. Then, the stator is modeled utilizing the transfer matrix method and verified by experimental studies. In addition, experimental parameter studies are carried out to identify the motor characteristics. Finally, the performance of the proposed motor is investigated. Overall, the results indicate very dynamic drive characteristics. The motor prototype achieves a maximum mean velocity of 115 mm s-1 and a maximum load of 0.25 N. Thereby, the start-up and shutdown times from the maximum speed are lower than 5 ms.
Directory of Open Access Journals (Sweden)
Yingxiang Liu
Full Text Available BACKGROUND: Ultrasonic motors (USM are based on the concept of driving the rotor by a mechanical vibration excited on the stator via piezoelectric effect. USM exhibit merits such as simple structure, quick response, quiet operation, self-locking when power off, nonelectromagnetic radiation and higher position accuracy. PRINCIPAL FINDINGS: A cylindrical type traveling wave ultrasonic motor using cantilever type composite transducer was proposed in this paper. There are two cantilevers on the outside surface of cylinder, four longitudinal PZT ceramics are set between the cantilevers, and four bending PZT ceramics are set on each outside surface of cantilevers. Two degenerate flexural vibration modes spatially and temporally orthogonal to each other in the cylinder are excited by the composite transducer. In this new design, a single transducer can excite a flexural traveling wave in the cylinder. Thus, elliptical motions are achieved on the teeth. The actuating mechanism of proposed motor was analyzed. The stator was designed with FEM. The two vibration modes of stator were degenerated. Transient analysis was developed to gain the vibration characteristic of stator, and results indicate the motion trajectories of nodes on the teeth are nearly ellipses. CONCLUSIONS: The study results verify the feasibility of the proposed design. The wave excited in the cylinder isn't an ideal traveling wave, and the vibration amplitudes are inconsistent. The distortion of traveling wave is generated by the deformation of bending vibration mode of cylinder, which is caused by the coupling effect between the cylinder and transducer. Analysis results also prove that the objective motions of nodes on the teeth are three-dimensional vibrations. But, the vibration in axial direction is minute compared with the vibrations in circumferential and radial direction. The results of this paper can guide the development of this new type of motor.
Evaluation of Some Slow-wave Vane Structures for Aminiature Traveling-wave Tube at 30 Ghz
Kavanagh, Frank; Ebihara, Ben; Wallett, Thomas M.; Dayton, James A., Jr.
1994-01-01
The dispersion characteristics of six vane type slow wave structures were experimentally measured near 1 GHz to determine applicability in an electrostatically focused 30 GHz miniature traveling wave tube (TWT). From the measured results, the trapezoidal vane structure appeared to be the most promising exhibiting an interaction impedance equal to 337.9 ohms at beta(L)/pi equal to 0.3. A 30 GHz trapezoidal vane structure with coupling irises was fabricated using electrical discharge machining (EDM). This structure, however, was too lossy for a short electrostatically focused tube, but several of the structures are amenable to a tube with permanent magnetic focusing.
A three-dimensional time-dependent theory for helix traveling wave tubes in beam-wave interaction
Institute of Scientific and Technical Information of China (English)
Peng Wei-Feng; Hu Yu-Lu; Yang Zhong-Hai; Li Jian-Qing; Lu Qi-Ru; Li Bin
2011-01-01
This paper presents a three-dimensional time-dependent nonlinear theory of helix traveling wave tubes for beam-wave interaction. The radio frequency electromagnetic fields are represented as the superposition of azimuthally symmetric Waves in a vacuum sheath helix. Coupling impedance is introduced to the electromagnetic field equations' stimulating sources, which makes the theory easier and more flexible to realize. The space charge fields are calculated by electron beam space-charge waves expressed as the superposition solutions of Helmholtz equations. The focusing forces due to either a solenoidal field or a periodic permanent magnetic field is also included. The dynamical equations of electrons are Lorentz equations associating with electromagnetic fields, focusing fields and space-charge fields. The numerically simulated results of a tube are presented.
Energy Flux in the Cochlea: Evidence Against Power Amplification of the Traveling Wave.
van der Heijden, Marcel; Versteegh, Corstiaen P C
2015-10-01
Traveling waves in the inner ear exhibit an amplitude peak that shifts with frequency. The peaking is commonly believed to rely on motile processes that amplify the wave by inserting energy. We recorded the vibrations at adjacent positions on the basilar membrane in sensitive gerbil cochleae and tested the putative power amplification in two ways. First, we determined the energy flux of the traveling wave at its peak and compared it to the acoustic power entering the ear, thereby obtaining the net cochlear power gain. For soft sounds, the energy flux at the peak was 1 ± 0.6 dB less than the middle ear input power. For more intense sounds, increasingly smaller fractions of the acoustic power actually reached the peak region. Thus, we found no net power amplification of soft sounds and a strong net attenuation of intense sounds. Second, we analyzed local wave propagation on the basilar membrane. We found that the waves slowed down abruptly when approaching their peak, causing an energy densification that quantitatively matched the amplitude peaking, similar to the growth of sea waves approaching the beach. Thus, we found no local power amplification of soft sounds and strong local attenuation of intense sounds. The most parsimonious interpretation of these findings is that cochlear sensitivity is not realized by amplifying acoustic energy, but by spatially focusing it, and that dynamic compression is realized by adjusting the amount of dissipation to sound intensity.
Existence of a directional Stokes drift in asymmetrical three-dimensional travelling gravity waves
Iooss, Gérard; Plotnikov, Pavel
2009-09-01
We consider periodic travelling gravity waves at the surface of an infinitely deep perfect fluid. The pattern is non-symmetric with respect to the propagation direction of the waves and we consider a general non-resonant situation. Defining a couple of amplitudes ɛ,ɛ along the basis of wave vectors which satisfy the dispersion relation, following Iooss and Plotnikov (2009), travelling waves exist with an asymptotic expansion in powers of ɛ,ɛ, for nearly all pair of angles made by the basic wave vectors with the critical propagation direction, and for values of the couple (ɛ12,ɛ22) in a subset of the plane, with asymptotic full measure at the origin. We prove the remarkable property that on the free surface, observed in the moving frame, the propagation direction of the waves differs from the asymptotic direction taken by fluid particles, by a small angle which is computed. To cite this article: G. Iooss, P. Plotnikov, C. R. Mecanique 337 (2009).
Exact traveling wave solutions to the Klein-Gordon equation using the novel (G‧/G)-expansion method
Hafez, M. G.; Alam, Md. Nur; Akbar, M. Ali
The novel (G‧/G)-expansion method is one of the powerful methods that appeared in recent times for establishing exact traveling wave solutions of nonlinear partial differential equations. Exact traveling wave solutions in terms of hyperbolic, trigonometric and rational functions to the cubic nonlinear Klein-Gordon equation via this method are obtained in this article. The efficiency of this method for finding exact solutions and traveling wave solutions has been demonstrated. It is shown that the novel (G‧/G)-expansion method is a simple and valuable mathematical tool for solving nonlinear evolution equations (NLEEs) in applied mathematics, mathematical physics and engineering.
Exact traveling wave solutions to the Klein–Gordon equation using the novel (G′/G-expansion method
Directory of Open Access Journals (Sweden)
M.G. Hafez
2014-01-01
Full Text Available The novel (G′/G-expansion method is one of the powerful methods that appeared in recent times for establishing exact traveling wave solutions of nonlinear partial differential equations. Exact traveling wave solutions in terms of hyperbolic, trigonometric and rational functions to the cubic nonlinear Klein–Gordon equation via this method are obtained in this article. The efficiency of this method for finding exact solutions and traveling wave solutions has been demonstrated. It is shown that the novel (G′/G-expansion method is a simple and valuable mathematical tool for solving nonlinear evolution equations (NLEEs in applied mathematics, mathematical physics and engineering.
Bekki, Naoaki; Shintani, Seine A.; Ishiwata, Shin'ichi; Kanai, Hiroshi
2016-04-01
We observe traveling waves, measured by the ultrasonic noninvasive imaging method, in a longitudinal beam direction from the apex to the base side on the interventricular septum (IVS) during the period from the end-diastole to the beginning of systole for a healthy human heart wall. We present a possible phenomenological model to explain part of one-dimensional cardiac behaviors for the observed traveling waves around the time of R-wave of echocardiography (ECG) in the human heart. Although the observed two-dimensional patterns of traveling waves are extremely complex and no one knows yet the exact solutions for the traveling homoclinic plane wave in the one-dimensional complex Ginzburg-Landau equation (CGLE), we numerically find that part of the one-dimensional homoclinic dynamics of the phase and amplitude patterns in the observed traveling waves is similar to that of the numerical homoclinic plane-wave solutions in the CGLE with periodic boundary condition in a certain parameter space. It is suggested that part of the cardiac dynamics of the traveling waves on the IVS can be qualitatively described by the CGLE model as a paradigm for understanding biophysical nonlinear phenomena.
A rotational traveling wave based levitation device - Modeling, design, and control
Gabai, Ran; Shaham, Ran; Cohen, Nadav; Bucher, Izhak
2016-01-01
Described is a device acting on an acoustically levitated object by manipulating the pressure and flow of a thin layer of air such that its rotation can be precisely controlled without mechanical contact. Virtual work analysis assists in simplifying the multi-actuator control problem into a problem governed by a controllable parameter. Actuation is done with a vibrating ring capable of producing ultrasonic standing and traveling waves, creating the acoustic excitation that affects the pressure in a thin, intermediate layer of gas. A distinctive vibration pattern is required to generate the temporal and spatial pressure field of the squeezed air layer that gives rise to both acoustic levitation force and rotational torque. Described are the physical and design development stages leading to an optimized structure, all followed by verifying and dynamics-calibration experiments. Moreover, by precisely controlling the ratio of standing and traveling waves in a closed-loop, one can affect the shear forces applied b...
Low-current traveling wave tube for use in the microwave power module
Palmer, Raymond W.; Ramins, Peter; Force, Dale A.; Dayton, James A.; Ebihara, Ben T.; Gruber, Robert P.
1993-01-01
The results of a traveling-wave-tube/multistage depressed-collector (TWT-MDC) design study in support of the Advanced Research Projects Agency/Department of Defense (ARPA/DOD) Microwave Power Module (MPM) Program are described. The study stressed the possible application of dynamic and other tapers to the RF output circuit of the MPM traveling wave tube as a means of increasing the RF and overall efficiencies and reducing the required beam current (perveance). The results indicate that a highly efficient, modified dynamic velocity taper (DVT) circuit can be designed for the broadband MPM application. The combination of reduced cathode current (lower perveance) and increased RF efficiency leads to (1) a substantially higher overall efficiency and reduction in the prime power to the MPM, and (2) substantially reduced levels of MDC and MPM heat dissipation, which simplify the cooling problems. However, the selected TWT circuit parameters need to be validated by cold test measurements on actual circuits.
Traveling wave solutions of the one-dimensional Boussinesq paradigm equation
Vassilev, V. M.; Djondjorov, P. A.; Hadzhilazova, M. Ts.; Mladenov, I. M.
2013-10-01
The one-dimensional quasi-stationary flow of inviscid liquid in a shallow layer with free surface is described by the so-called Boussinesq Paradigm Equation (BPE). Slightly generalized this equation appears also in the theory of longitudinal vibrations of rods and in the continuum limit for lattices. It is well known that the one-dimensional (1-D) BPE admits a one-parameter family of traveling wave solutions expressed in an analytic form through the "sech" function. In the present contribution, new analytic solutions to the 1-D BPE representing traveling waves are obtained. These solutions are expressed through Weierstrass and Jacobi elliptic functions, which in some cases reduce to elementary functions.
Traveling wave linear accelerator with RF power flow outside of accelerating cavities
Dolgashev, Valery A.
2016-06-28
A high power RF traveling wave accelerator structure includes a symmetric RF feed, an input matching cell coupled to the symmetric RF feed, a sequence of regular accelerating cavities coupled to the input matching cell at an input beam pipe end of the sequence, one or more waveguides parallel to and coupled to the sequence of regular accelerating cavities, an output matching cell coupled to the sequence of regular accelerating cavities at an output beam pipe end of the sequence, and output waveguide circuit or RF loads coupled to the output matching cell. Each of the regular accelerating cavities has a nose cone that cuts off field propagating into the beam pipe and therefore all power flows in a traveling wave along the structure in the waveguide.
Feasibility of Traveling Wave Direct Energy Conversion of Fission Reaction Fragments
Tarditi, A. G.; George, J. A.; Miley, G. H.; Scott, J. H.
2013-01-01
Fission fragment direct energy conversion has been considered in the past for the purpose of increasing nuclear power plant efficiency and for advanced space propulsion. Since the fragments carry electric charge (typically in the order of 20 e) and have 100 MeV-range kinetic energy, techniques utilizing very high-voltage DC electrodes have been considered. This study is focused on a different approach: the kinetic energy of the charged fission fragments is converted into alternating current by means of a traveling wave coupling scheme (Traveling Wave Direct Energy Converter, TWDEC), thereby not requiring the utilization of high voltage technology. A preliminary feasibility analysis of the concept is introduced based on a conceptual level study and on a particle simulation model of the beam dynamics.
Wang, Y. Q.; Guo, X. H.; Li, Y. G.; Li, J.
2010-03-01
This is a study of nonlinear traveling wave response of a cantilever circular cylindrical shell subjected to a concentrated harmonic force moving in a concentric circular path at a constant velocity. Donnell's shallow-shell theory is used, so that moderately large vibrations are analyzed. The problem is reduced to a system of ordinary differential equations by means of the Galerkin method. Frequency-responses for six different mode expansions are studied and compared with that for single mode to find the more contracted and accurate mode expansion investigating traveling wave vibration. The method of harmonic balance is applied to study the nonlinear dynamic response in forced oscillations of this system. Results obtained with analytical method are compared with numerical simulation, and the agreement between them bespeaks the validity of the method developed in this paper. The stability of the period solutions is also examined in detail.
Research on resonance and antiresonance states of free stator of traveling wave ultrasonic motors
Institute of Scientific and Technical Information of China (English)
ZU Jiakui; ZHAO Chunsheng
2004-01-01
Under the condition of high-power drive, the experimental phenomena of free stator of traveling wave ultrasonic motor takes on strong nonlinear effects. Firstly, its corresponding theories are established to analyze and compare the stator's performances at the resonance and antiresonance states. At the same time, some important parameters, such as resonance/antiresonance frequency, mechanical quality, electro-mechanic coupling, and the relative vibration effect, are selected elaborately to evaluate the vibrational performances of free stator. Then, some experimental schemes based on the laser vibration measurement are designed respectively. Under the different drives conditions, the experimental characterizations of free stator at the resonance and antiresonance states are analyzed systematically. Finally, The investigative results show that the performance at the antiresonance state is much better than that at the resonance state. Some conclusions of this paper can provide novel idea and guidance for the choosing of the operating states and driving modes of traveling wave ultrasonic motor.
Olsson, Pontus; Nysjo, Fredrik; Carlbom, Ingrid B; Johansson, Stefan
2016-01-01
Piezoelectric motors offer an attractive alternative to electromagnetic actuators in portable haptic interfaces: they are compact, have a high force-to-volume ratio, and can operate with limited or no gearing. However, the choice of a piezoelectric motor type is not obvious due to differences in performance characteristics. We present our evaluation of two commercial, operationally different, piezoelectric motors acting as actuators in two kinesthetic haptic grippers, a walking quasi-static motor and a traveling wave ultrasonic motor. We evaluate each gripper's ability to display common virtual objects including springs, dampers, and rigid walls, and conclude that the walking quasi-static motor is superior at low velocities. However, for applications where high velocity is required, traveling wave ultrasonic motors are a better option.
Three dimensional visualization and animation of travelling waves in power systems
Energy Technology Data Exchange (ETDEWEB)
Evrenosoglu, Cansin Y. [Department of Electrical and Computer Engineering, Texas A and M University, College Station, TX 77843 (United States); Abur, Ali [Electrical and Computer Engineering Department, Northeastern University, Boston, MA 02115 (United States); Akleman, Ergun [Department of Architecture, Texas A and M University, College Station, TX 77843 (United States)
2007-05-15
This paper is concerned about the animation of power system transients for educational purposes. The electromagnetic transients programs simulate voltage signals at the line terminals only. These may not be sufficient to observe and understand the travelling wave phenomenon, which is of primary interest in most relaying and fault location studies. One way to capture the travelling waves is by animating the voltage profile along the studied line. This is accomplished by a new animation software, which is described in detail in this paper. Various visualization and animation methods are employed in order to bring out different features of voltage transients. Examples involving single-phase and three-phase power systems are given to illustrate the use of the developed tool. (author)
Lotka-Volterra equations with chemotaxis: walls, barriers and travelling waves.
Pettet, G J; McElwain, D L; Norbury, J
2000-12-01
In this paper we consider a simple two species model for the growth of new blood vessels. The model is based upon the Lotka-Volterra system of predator and prey interaction, where we identify newly developed capillary tips as the predator species and a chemoattractant which directs their motion as the prey. We extend the Lotka-Volterra system to include a one-dimensional spatial dependence, by allowing the predators to migrate in a manner modelled on the phenomenon of chemotaxis. A feature of this model is its potential to support travelling wave solutions. We emphasize that in order to determine the existence of such travelling waves it is essential that the global relationships of a number of phase plane features other than the equilibria be investigated.
DIFFUSIVE-DISPERSIVE TRAVELING WAVES AND KINETIC RELATIONS IV.COMPRESSIBLE EULER EQUATIONS
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
The authors consider the Euler equations for a compressible fluid in one space dimensionwhen the equation of state of the fluid does not fulfill standard convexity assumptions andviscosity and capillarity effects are taken into account. A typical example of nonconvex con-stitutive equation for fluids is Van der Waals' equation. The first order terms of these partialdifferential equations form a nonlinear system of mixed (hyperbolic-elliptic) type. For a class ofnonconvex equations of state, an existence theorem of traveling waves solutions with arbitrarylarge amplitude is established here. The authors distinguish between classical (compressive) andnonclassical (undercompressive) traveling waves. The latter do not fulfill Lax shock inequali-ties, and are characterized by the so-called kinetic relation, whose properties are investigatedin this paper.
Different localized states of travelling-wave convection in a rectangular container
Institute of Scientific and Technical Information of China (English)
Li Guo-Dong; Huang Yong-Nian
2006-01-01
We have performed numerical simulations of localized travelling-wave convection in a binary fluid mixture heated from below in a long rectangular container. Calculations are carried out in a vertical cross section of the rolls perpendicular to their axes. For a negative enough separation ratio, two types of quite different confined states were documented by applying different control processes. One branch of localized travelling waves survives only in a very narrow band within subcritical regime, while another branch straddles the onset of convection existing both in subcritical and supercritical regions. We elucidated that concentration field and its current are key to understand how confined convection is sustained when conductive state is absolutely unstable. The weak structures in the conducting region are demonstrated too.
The vibration of a box-type structure. II - Response to a travelling pressure wave.
Popplewell, N.
1971-01-01
A finite element method is formulated for determining the transient response of a box-type structure to a traveling, arbitrarily shaped pressure wave. The method is illustrated by considering an example of practical concern - the sonic boom. The acceleration-time histories of a closed box are compared with those obtained experimentally from a simulated boom. Satisfactory agreement is obtained with only four rectangular elements per individual face and a simplified loading of the box.
Exact Traveling Wave Solutions for Wick-Type Stochastic Schamel KdV Equation
Directory of Open Access Journals (Sweden)
Hossam A. Ghany
2014-01-01
Full Text Available F-expansion method is proposed to seek exact solutions of nonlinear partial differential equations. By means of Hermite transform, inverse Hermite transform, and white noise analysis, the variable coefficients and Wick-type stochastic Schamel KdV equations are completely described. Abundant exact traveling wave solutions for variable coefficients Schamel KdV equations are given. These solutions include exact stochastic Jacobi elliptic functions, trigonometric functions, and hyperbolic functions solutions.
Conservation Laws and Traveling Wave Solutions of a Generalized Nonlinear ZK-BBM Equation
Directory of Open Access Journals (Sweden)
Khadijo Rashid Adem
2014-01-01
Full Text Available We study a generalized two-dimensional nonlinear Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZK-BBM equation, which is in fact Benjamin-Bona-Mahony equation formulated in the ZK sense. Conservation laws for this equation are constructed by using the new conservation theorem due to Ibragimov and the multiplier method. Furthermore, traveling wave solutions are obtained by employing the (G'/G-expansion method.
Travelling-waves consistent with turbulence-driven secondary flow in a square duct
Uhlmann, Markus; Pinelli, Alfredo; 10.1063/1.3466661
2010-01-01
We present numerically determined travelling-wave solutions for pressure-driven flow through a straight duct with a square cross-section. This family of solutions represents typical coherent structures (a staggered array of counter-rotating streamwise vortices and an associated low-speed streak) on each wall. Their streamwise average flow in the cross-sectional plane corresponds to an eight vortex pattern much alike the secondary flow found in the turbulent regime.
Institute of Scientific and Technical Information of China (English)
WANG Jun-Mao; ZHANG Miao; ZHANG Wen-Liang; ZHANG Rui; HAN Jia-Hua
2008-01-01
We present a new method to find the exact travelling wave solutions of nonlinear evolution equations, with the aid of the symbolic computation. Based on this method, we successfully solve the modified Benjamin-Bona-Mahoney equation, and obtain some new solutions which can be expressed by trigonometric functions and hyperbolic functions. It is shown that the proposed method is direct, effective and can be used for many other nonlinear evolution equations in mathematical physics.
Traveling-Wave Tube Cold-Test Circuit Optimization Using CST MICROWAVE STUDIO
Chevalier, Christine T.; Kory, Carol L.; Wilson, Jeffrey D.; Wintucky, Edwin G.; Dayton, James A., Jr.
2003-01-01
The internal optimizer of CST MICROWAVE STUDIO (MWS) was used along with an application-specific Visual Basic for Applications (VBA) script to develop a method to optimize traveling-wave tube (TWT) cold-test circuit performance. The optimization procedure allows simultaneous optimization of circuit specifications including on-axis interaction impedance, bandwidth or geometric limitations. The application of Microwave Studio to TWT cold-test circuit optimization is described.
The c-axis charge traveling wave in coupled system of Josephson junctions
Shukrinov, Yu M.; Hamdipour, M.
2011-01-01
We demonstrate a manifestation of the charge traveling wave along the c-axis (TW) in current voltage characteristics of coupled Josephson junctions in high-$T_c$ superconductors. The branches related to the TW with different wavelengths are found for the stacks with different number of Josephson junctions at different values of system's parameters. Transitions between the TW branches and the outermost branch are observed. Time dependence of the electric charge in the superconducting layers an...
Tarditi, A. G.; Chap, A.; Wolinsky, J.; Scott, J. H.
2015-01-01
A coordinated experimental and theory/simulation effort has been carried out to investigate the physics of the Traveling Wave Direct Energy Converter (TWDEC), a scheme that has been proposed in the past for the direct conversion into electricity of the kinetic energy of an ion beam generated from fusion reactions. This effort has been focused in particular on the TWDEC process in the high density beam regime, thus accounting for the ion beam expansion due to its space charge.
Traveling Wave Solutions of Reaction-Diffusion Equations Arising in Atherosclerosis Models
Directory of Open Access Journals (Sweden)
Narcisa Apreutesei
2014-05-01
Full Text Available In this short review article, two atherosclerosis models are presented, one as a scalar equation and the other one as a system of two equations. They are given in terms of reaction-diffusion equations in an infinite strip with nonlinear boundary conditions. The existence of traveling wave solutions is studied for these models. The monostable and bistable cases are introduced and analyzed.
The supergravity fields for a D-brane with a travelling wave from string amplitudes
Black, William; Turton, David
2010-01-01
We calculate the supergravity fields sourced by a D-brane with a null travelling wave from disk amplitudes in type IIB string theory compactified on T^4 x S^1. The amplitudes reproduce the non-trivial features of the previously known two-charge supergravity solutions in the D-brane/momentum frame, providing a direct link between the microscopic bound states and their macroscopic descriptions.
The supergravity fields for a D-brane with a travelling wave from string amplitudes
Energy Technology Data Exchange (ETDEWEB)
Black, William, E-mail: w.black@qmul.ac.u [Queen Mary University of London, Centre for Research in String Theory, Department of Physics, Mile End Road, London E1 4NS (United Kingdom); Russo, Rodolfo, E-mail: r.russo@qmul.ac.u [Queen Mary University of London, Centre for Research in String Theory, Department of Physics, Mile End Road, London E1 4NS (United Kingdom); Turton, David, E-mail: d.j.turton@qmul.ac.u [Queen Mary University of London, Centre for Research in String Theory, Department of Physics, Mile End Road, London E1 4NS (United Kingdom)
2010-11-08
We calculate the supergravity fields sourced by a D-brane with a null travelling wave from disk amplitudes in type IIB string theory compactified on T{sup 4}xS{sup 1}. The amplitudes reproduce all the non-trivial features of the previously known two-charge supergravity solutions in the D-brane/momentum duality frame, providing a direct link between the microscopic bound states and their macroscopic descriptions.
Yingxiang Liu; Weishan Chen; Junkao Liu; Shengjun Shi
2010-01-01
BACKGROUND: Ultrasonic motors (USM) are based on the concept of driving the rotor by a mechanical vibration excited on the stator via piezoelectric effect. USM exhibit merits such as simple structure, quick response, quiet operation, self-locking when power off, nonelectromagnetic radiation and higher position accuracy. PRINCIPAL FINDINGS: A cylindrical type traveling wave ultrasonic motor using cantilever type composite transducer was proposed in this paper. There are two cantilevers on the ...
Ruiz Moreno, Sergio; Guitart Felip, Jorge
1993-01-01
The authors present a simple model of a travelling wave semiconductor optical amplifier with an appreciable degree of saturation. The model uses a particular way of linearising the total carrier recombination R(N) to find useful expressions for the saturation parameter and/or the carrier lifetime. By combining these expressions and the gain measurements realised, it is possible to establish the dependence between the mentioned parameters and the input optical power. Peer Reviewed
Directory of Open Access Journals (Sweden)
Letlhogonolo Daddy Moleleki
2014-01-01
Full Text Available We analyze the (3+1-dimensional Boussinesq equation, which has applications in fluid mechanics. We find exact solutions of the (3+1-dimensional Boussinesq equation by utilizing the Lie symmetry method along with the simplest equation method. The solutions obtained are traveling wave solutions. Moreover, we construct the conservation laws of the (3+1-dimensional Boussinesq equation using the new conservation theorem, which is due to Ibragimov.
Institute of Scientific and Technical Information of China (English)
Zhongping LI; Wanjuan DU; Chunlai MU
2013-01-01
In this paper,we first find finite travelling-wave solutions,and then investigate the short time development of interfaces for non-Newtonian diffusion equations with strong absorption.We show that the initial behavior of the interface depends on the concentration of the mass of u(x,0) near x =0.More precisely,we find a critical value of the concentration,which separates the heating front of interfaces from the cooling front of them.
2D Traveling Wave Array Employing a Trapezoidal Dielectric Wedge for Beam Steering
Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranada, Felix A.
2014-01-01
This presentation addresses the progress made so far in the development of an antenna array with reconfigurable transmission line feeds connecting each element in series. In particular, 2D traveling wave array employing trapezoidal Dielectric Wedge for Beam Steering will be discussed. The presentation includes current status of the effort and suggested future work. The work is being done as part of the NASA Office of the Chief Technologist's Space Technology Research Fellowship (NSTRF).
Altan Gencer
2013-01-01
In this paper, a compact size digitally controlled speed driver for travelling wave ultrasonic motor was designed and implemented. Although the driver system is light in weight, simple, small in size, it is possible to enter speed and direction digitally as well as tracking the real motor speed, voltage and current on an LCD. The implemented system was tested in a laboratory for different speed and load cases and obtained results are presented.
Directory of Open Access Journals (Sweden)
Altan Gencer
2013-05-01
Full Text Available In this paper, a compact size digitally controlled speed driver for travelling wave ultrasonic motor was designed and implemented. Although the driver system is light in weight, simple, small in size, it is possible to enter speed and direction digitally as well as tracking the real motor speed, voltage and current on an LCD. The implemented system was tested in a laboratory for different speed and load cases and obtained results are presented.
Travelling wave solutions for some time-delayed equations through factorizations
Energy Technology Data Exchange (ETDEWEB)
Fahmy, E.S. [King Saud University, Women Students Medical Studies and Sciences Sections, Mathematics Department, P.O. Box 22452, Riyadh 11495 (Saudi Arabia)], E-mail: esfahmy@operamail.com
2008-11-15
In this work, we use factorization method to find explicit particular travelling wave solutions for the following important nonlinear second-order partial differential equations: The generalized time-delayed Burgers-Huxley, time-delayed convective Fishers, and the generalized time-delayed Burgers-Fisher. Using the particular solutions for these equations we find the general solutions, two-parameter solution, as special cases.
Finite Travelling Waves for a Semilinear Degenerate Reaction-Diffusion System
Institute of Scientific and Technical Information of China (English)
Shu WANG; Cheng Fu WANG; Dang LUO
2001-01-01
In this paper, the existence and nonexistence of finite travelling waves (FTWs) for a semilinear degenerate reaction-diffusion systemis studied, where 0 ＜αi ＜ 1, mij ≥ 0 and ∑nj=1mij ＞ 0, i,j = 1,.. N. Necessary and sufficientconditions on existence and large time behaviours of FTWs of (I) are obtained by using the matrixtheory, Schauder's fixed point theorem, and upper and lower solutions method.
Exact traveling wave solution of nonlinear variants of the RLW and the PHI-four equations
Energy Technology Data Exchange (ETDEWEB)
Soliman, A.A. [Department of Mathematics, Faculty of Education (AL-Arish), Suez Canal University, AL-Arish 45111 (Egypt); Department of Mathematics, Teacher' s College, Bisha, P.O. Box 551 (Saudi Arabia)], E-mail: asoliman_99@yahoo.com
2007-08-27
By means of the modified extended tanh-function (METF) method the multiple traveling wave solutions of some different kinds of nonlinear partial differential equations are presented and implemented in a computer algebraic system. The solutions for the nonlinear equations such as variants of the RLW and variant of the PHI-four equations are exactly obtained and so the efficiency of the method can be demonstrated.
CONVERGENCE RATES TO TRAVELLING WAVES FOR A RELAXATION MODEL WITH LARGE INITIAL DISTURBANCE
Institute of Scientific and Technical Information of China (English)
张辉; 赵引川
2004-01-01
This paper is concerned with the convergence rates to travelling waves for a relaxation model with general flux functions. Compared with former results in this direction, the main novelty in this paper lies in the fact that the initial disturbance can be chosen large in suitable norm. Our analysis is based on the L1-stability results obtained by C. Mascia and R. Natalini in [12].
Institute of Scientific and Technical Information of China (English)
XIATie-cheng; ZHANGHong-qing; LIPei-chun
2003-01-01
In this paper,many new explicit and exact travelling wave solutions for Burgers-Kolmogorov-Prtrovskii-Piscounov(Burgers-KPP) equations are obtained by using hyperbola function method and Wu-elimination method,which include new singular solitary wave solutions and periodic solutions,Particular important cases of the equation.such as the generalized Burgers-Fisher equation.Burgers-Chaffee-infante equation and KPP equation,the corresponding solutions can be obtained also,The method can also solve other nonliear partial differential equations.
Particle simulation of a ka-band gyrotron traveling wave amplifier
Energy Technology Data Exchange (ETDEWEB)
Xu Shouxi; Liu Pukun; Zhang Shichang; Du Chaohai; Xue Qianzhong; Geng Zhihui; Su Yinong [Key Laboratory of High Power Microwave Sources and Technologies, Institute of Electronics, Chinese Academy of Sciences, P.O. Box 2652, Beijing 100190 (China)
2011-08-15
The design of a ka-band gyrotron traveling wave (gyro-TWT) amplifier is presented. The gyro-TWT amplifier with a severed structure operates in the fundamental harmonic TE{sub 01} circular electric mode. The beam-wave interaction is studied by using a particle-in-cell (PIC) code. The simulations predict that the amplifier can produce an output peak power of over 155 kW, 22% efficiency, 23 dB gain, and a 3 dB bandwidth of 2 GHz for a 70 kV, 10 A electron beam with an axial velocity spread {Delta}v{sub z}/v{sub z}=5%.
Investigating Dielectric and Metamaterial Effects in a Terahertz Traveling-Wave Tube Amplifier
Starinshak, David P.; Wilson, Jeffrey D.
2008-01-01
Adding material enhancements to a terahertz traveling-wave tube amplifier is investigated. Isotropic dielectrics, negative-index metamaterials, and anisotropic crystals are simulated, and plans to increase the efficiency of the device are discussed. Early results indicate that adding dielectric to the curved sections of the serpentine-shaped slow-wave circuit produce optimal changes in the cold-test characteristics of the device and a minimal drop in operating frequency. Additional results suggest that materials with simultaneously small relative permittivities and electrical conductivities are best suited for increasing the efficiency of the device. More research is required on the subject, and recommendations are given to determine the direction.
Traveling waves for models of phase transitions of solids driven by configurational forces
Kawashima, Shuichi
2009-01-01
This article is concerned with the existence of traveling wave solutions, including standing waves, to some models based on configurational forces, describing respectively the diffusionless phase transformations of solid materials, e.g., Steel, and phase transitions due to interface motion by interface diffusion, e.g., Sintering. These models are recently proposed by Alber and Zhu. We consider both the order-parameter-conserved case and the non-conserved one, under suitable assumptions. Also we compare our results with the corresponding ones for the Allen-Cahn and the Cahn-Hilliard equations coupled with linear elasticity, which are models for diffusion-dominated phase transformations in elastic solids.
Traveling Wave-Guide Channels of a New Coupled Integrable Dispersionless System
Institute of Scientific and Technical Information of China (English)
Abbagari Souleymanou; Victor K. Kuetche; Thomas B. Bouetou; Timoleon C. Kofane
2012-01-01
In the wake of the recent investigation of new coupled integrable dispersionless equations by means of the Darboux transformation [Zhaqilao, et al., Chin. Phys; B 18 （2009） 1780], we carry out the initial value analysis of the previous system using the fourth-order Runge-Kutta＇s computational scheme. As a result, while depicting its phase portraits accordingly, we show that the above dispersionless system actually supports two kinds of solutions amongst which the localized traveling wave-guide channels. In addition, paying particular interests to such localized structures, we construct the bilinear transformation of the current system from which scattering amongst the above waves can be deeply studied.
Electrons diffraction scattering on a traveling wave - "Inelastic Kapitza-Dirac effect"
Avetissian, H K
2016-01-01
In this paper conceptual points regarding electrons elastic (Kapitza-Dirac effect) and inelastic diffraction effect on the different type slowed electromagnetic wave structures/light gratings are considered. From the unified point of view it is analyzed the main works on this subject for last four decades in chronological order, pointing out the essential peculiarity inherent in induced Cherenkov, Compton, and undulator/wiggler processes too. This review article has also a goal to resolve confusion in scientific literature connected with the recently appeared paper [6] relating the electrons diffraction on a traveling wave in a dielectric medium.
Energy Technology Data Exchange (ETDEWEB)
Zimmermann, K.; Zeidis, I.; Naletova, V.A. E-mail: naletova@imec.msu.ru; Turkov, V.A
2004-01-01
The plane flow of a layer of incompressible viscous magnetic fluid with constant magnetic permeability under the action of a traveling magnetic field is analyzed. The strength of the magnetic field producing a sinusoidal traveling small-amplitude wave on the surface of a magnetic fluid is found. This flow can be used in designing mobile robots.
Dielectric effect on the rf characteristics of a helical groove travelling wave tube
Wei, Yan-Yu; Wang, Wen-Xiang; Sun, Jia-Hong; Liu, Sheng-Gang; Baofu, Jia; Gun-Sik, Park
2002-03-01
A new type of partial-dielectric-loaded helical groove slow-wave structure (SWS) for millimetre wave travelling wave tube (TWT) is presented in this paper. The radio-frequency characteristics including the dispersion properties, the longitudinal electric field distribution and the beam-wave coupling impedance of this structure are analysed. The results show that the dispersion of the helical groove circuit is weakened, the phase velocity is reduced and the position of the maximum Ez is moved from the mouth to the inside of the groove after partially filling the dielectric materials in the helical groove SWS. Therefore, the dielectric-loaded helical groove SWS is suitable for a multi-beam TWT with broad band and high gain.
Manipulating Traveling Brain Waves with Electric Fields: From Theory to Experiment.
Gluckman, Bruce J.
2004-03-01
Activity waves in disinhibited neocortical slices have been used as a biological model for epileptic seizure propagation [1]. Such waves have been mathematically modeled with integro-differential equations [2] representing non-local reaction diffusion dynamics of an excitable medium with an excitability threshold. Stability and propagation speed of traveling pulse solutions depend strongly on the threshold in the following manner: propagation speed should decrease with increased threshold over a finite range, beyond which the waves become unstable. Because populations of neurons can be polarized with an applied electric field that effectively shifts their threshold for action potential initiation [3], we predicted, and have experimentally verified, that electric fields could be used globally or locally to speed up, slow down and even block wave propagation. [1] Telfeian and Conners, Epilepsia, 40, 1499-1506, 1999. [2] Pinto and Ermentrout, SIAM J. App. Math, 62, 206-225, 2001. [3] Gluckman, et. al. J Neurophysiol. 76, 4202-5, 1996.
Analysis of a Novel Ka-band Folded Waveguide Amplifier for Traveling-Wave Tubes
Institute of Scientific and Technical Information of China (English)
LIAO Ming-Liang; WEI Yan-Yu; HE Jun; GONG Yu-Bin; WANG Wen-Xiang; Gun-Sik Park
2009-01-01
A novel Ka-band folded waveguide (FW) amplifier for traveling wave tubes (TWT) is investigated. The dispersion curve and interaction impedance are obtained and compared to the normal FW circuit by numerical simulation. The interaction impedance is higher than a normal circuit through the whole band. We also study the beam-wave interaction in this novel circuit, and the nonlinear large-signal performance is analyzed by a 3-D particle-in-cell code MACIC3D. A much higher continuous-wave (CW) output power with a considerably shorter circuit compared to a normal circuit is predicted by our simulation. Moreover, the novel FW even has a broader 3-dB bandwidth. It therefore will be useful in designing a miniature but high-power and broadband millimeter-wave TWT.
Reverse cochlear propagation in the intact cochlea of the gerbil: evidence for slow traveling waves.
Meenderink, Sebastiaan W F; van der Heijden, Marcel
2010-03-01
The inner ear can produce sounds, but how these otoacoustic emissions back-propagate through the cochlea is currently debated. Two opposing views exist: fast pressure waves in the cochlear fluids and slow traveling waves involving the basilar membrane. Resolving this issue requires measuring the travel times of emissions from their cochlear origin to the ear canal. This is problematic because the exact intracochlear location of emission generation is unknown and because the cochlea is vulnerable to invasive measurements. We employed a multi-tone stimulus optimized to measure reverse travel times. By exploiting the dispersive nature of the cochlea and by combining acoustic measurements in the ear canal with recordings of the cochlear-microphonic potential, we were able to determine the group delay between intracochlear emission-generation and their recording in the ear canal. These delays remained significant after compensating for middle-ear delay. The results contradict the hypothesis that the reverse propagation of emissions is exclusively by direct pressure waves.
Self-consistent inclusion of space-charge in the traveling wave tube
Freeman, Jon C.
1987-01-01
It is shown how the complete field of the electron beam may be incorporated into the transmission line model theory of the traveling wave tube (TWT). The fact that the longitudinal component of the field due to the bunched beam is not used when formulating the beam-to-circuit coupling equation is not well-known. The fundamental partial differential equation for the traveling wave field is developed and compared with the older (now standard) one. The equation can be solved numerically using the same algorithms, but now the coefficients can be updated continuously as the calculation proceeds down the tube. The coefficients in the older equations are primarily derived from preliminary measurements and some trial and error. The newer coefficients can be found by a recursive method, since each has a well defined physical interpretation and can be calculated once a reasonable first trial solution is postulated. The results of the new expression were compared with those of the older forms, as well as to a field theory model to show the ease in which a reasonable fit to the field prediction is obtained. A complete summary of the existing transmission line modeling of the TWT is given to explain the somewhat vague ideas and techniques in the general area of drifting carrier-traveling circuit wave interactions. The basic assumptions and inconsistencies of the existing theory and areas of confusion in the general literature are examined and hopefully cleared up.
Analyses of the temperature field of traveling-wave rotary ultrasonic motors.
Lu, Xiaolong; Hu, Junhui; Zhao, Chunsheng
2011-12-01
In this paper, the transient and steady-state temperature field of a traveling-wave rotary ultrasonic motor is analyzed by the finite element method, based on a theoretical model of power loss of this motor in rated operation. Using this model, the temperature field of this motor is calculated and the effects of the heat conductivity of friction material, motor size, ambient temperature, and pressure on the temperature field are estimated. The calculated temperature distribution and transient temperature change agree with the experimental results. The variation of heat conductivity of the friction material has little effect on the minimum temperature in the motor but this variation seriously affects the maximum temperature in the motor when the heat conductivity of the friction material is lower than 0.5 W/(m°C). Two indices are defined to express the non-uniformity of temperature field and how quickly the temperature field reaches its steady state for traveling-wave ultrasonic motors of different sizes. It is found that traveling-wave ultrasonic motors with different sizes have different nonuniformity of temperature field and take different amounts of time to reach thermal steady state. The maximum temperature rise is lower when the ambient temperature is higher; the maximum temperature increases as the vacuum degree increases and it is not affected by the vacuum degree when the vacuum degree is too high (<10(-3) Pa).
A novel traveling wave piezoelectric actuated tracked mobile robot utilizing friction effect
Wang, Liang; Shu, Chengyou; Jin, Jiamei; Zhang, Jianhui
2017-03-01
A novel traveling wave piezoelectric-actuated tracked mobile robot with potential application to robotic rovers was proposed and investigated in this study. The proposed tracked mobile robot is composed of a parallelogram-frame-structure piezoelectric transducer with four rings and a metal track. Utilizing the converse piezoelectric and friction effects, traveling waves were propagated in the rings and then the metal track was actuated by the piezoelectric transducer. Compared with traditional tracked mechanisms, the proposed tracked mobile robot has a simpler and more compact structure without lubricant, which eliminates the problem of lubricant volatilization and deflation, thus, it could be operated in the vacuum environment. Dynamic characteristics were simulated and measured to reveal the mechanism of actuating track of the piezoelectric transducer. Experimental investigations of the traveling wave piezoelectric-actuated tracked mobile robot were then carried out, and the results indicated that the robot prototype with a pair of exciting voltages of 460 Vpp is able to achieve a maximum velocity of 57 mm s‑1 moving on the foam plate and possesses the obstacle crossing capability with a maximum height of 27 mm. The proposed tracked mobile robot exhibits potential to be the driving system of robotic rovers.
Imahori, A.; Kawakata, H.; Hirano, S.; Yoshimitsu, N.; Takahashi, N.
2015-12-01
In laboratory, it is well-known that the elastic wave speed varies prior to compression fracture of the rock (e.g., Lockner et al., 1977, JGR). Using an enough number of travel times of elastic wave paths in a sample, we can estimate internal structure of the sample. However, the number of the elastic wave transducers is limited, and only the travel times of the first arrival are available in most experiments. Employing broadband transducers (Yoshimitsu et al., 2014, GRL), later phases become available to be analyzed. In the present study, we conduct a triaxial compressive test at room temperature under a dry condition and a confining pressure of 50 MPa, using a cylindrical Westerly granite sample of 100 mm long by 50 mm in diameter. Eight transducers are attached on the sample surface. One of the transducers is used as a wave source and voltage steps are repeatedly applied to it. The elastic waves passing through the sample are sensed by the other broadband transducers, and recorded at a sampling rate of 20 Msps. P-wave speed is estimated from the travel time of the direct P, and Vp/Vs value is assumed to be the √3 to give S-wave speed. We assume that all wave paths never bend except at the top and bottom surface of the sample. We calculate the travel times of later phases reflected at the top and/or bottom surfaces within 3 times. We collate the calculated travel times with observed waveforms. We can identify the travel time of two phases: single reflection from both top and bottom of the sample. On the other hand, some other observed and calculated phase arrivals do not match with each other. Then, we try to identify some remarkable phases using the calculated travel times of PS and SP converted waves and interfacial waves, taking into consideration of wave speed anisotropy.
Integrable, oblique travelling waves in quasi-charge-neutral two-fluid plasmas
Directory of Open Access Journals (Sweden)
G. M. Webb
2008-02-01
Full Text Available A Hamiltonian description of oblique travelling waves in a two-fluid, charge-neutral, electron-proton plasma reveals that the transverse momentum equations for the electron and proton fluids are exactly integrable in cases where the total transverse momentum flux integrals, P_{y}^{(d} and P_{z}^{(d}, are both zero in the de Hoffman Teller (dHT frame. In this frame, the transverse electric fields are zero, which simplifies the transverse momentum equations for the two fluids. The integrable travelling waves for the case P_{y}^{(d}=P_{z}^{(d}=0, are investigated based on the Hamiltonian trajectories in phase space, and also on the longitudinal structure equation for the common longitudinal fluid velocity component u_{x} of the electron and proton fluids. Numerical examples of a variety of travelling waves in a cold plasma, including oscillitons, are used to illustrate the physics. The transverse, electron and proton velocity components u_{jy} and u_{jz} (j=e, p of the waves exhibit complex, rosette type patterns over several periods for u_{x}. The role of separatrices in the phase space, the rotational integral and the longitudinal structure equation on the different wave forms are discussed.
Anti-periodic traveling wave solution to a forced two-dimensional generalized KdV-Burgers equation
Institute of Scientific and Technical Information of China (English)
TAN Junyu
2003-01-01
The anti-periodic traveling wave solutions to a forced two-dimensional generalized KdV-Burgers equation are studied.Some theorems concerning the boundness, existence and uniqueness of the solution to this equation are proved.
Directory of Open Access Journals (Sweden)
Sachin Kumar
2012-10-01
Full Text Available Exact travelling wave solutions have been established for generalised sinh-Gordon andgeneralised (2+1 dimensional ZK-BBM equations by using GG expansion method whereG G( satisfies a second-order linear ordinary differential equation. The travelling wave solutionsare expressed by hyperbolic, trigonometric and rational functions.
Institute of Scientific and Technical Information of China (English)
无
2012-01-01
In this paper,we consider the reaction diffusion equations with strong generic delay kernel and non-local effect,which models the microbial growth in a flow reactor.The existence of traveling waves is established for this model.More precisely,using the geometric singular perturbation theory,we show that traveling wave solutions exist provided that the delay is sufficiently small with the strong generic delay kernel.
Institute of Scientific and Technical Information of China (English)
Deng Xi-Jun; Yan Zi-Zong; Han Li-Bo
2009-01-01
In this paper,the travelling wave solutions for the generalized Burgers-Huxley equation with nonlinear terms of any order are studied.By using the first integral method,which is based on the divisor theorem,some exact explicit travelling solitary wave solutions for the above equation are obtained.As a result,some minor errors and some known results in the previousl literature are clarified and improved.
Energy Technology Data Exchange (ETDEWEB)
Huang Dingjiang [Department of Applied Mathematics, Dalian University of Technology, Dalian 116024 (China)]. E-mail: hdj8116@163.com; Zhang Hongqing [Department of Applied Mathematics, Dalian University of Technology, Dalian 116024 (China)
2006-08-15
Many travelling wave solutions of nonlinear evolution equations can be written as a polynomial in several elementary or special functions which satisfy a first order nonlinear ordinary differential equation with a sixth-degree nonlinear term. From that property, we deduce an algebraic method for constructing those solutions by determining only a finite number of coefficients. Being concise and straightforward, the method is applied to three nonlinear evolution equations. As a result, many exact travelling wave solutions are obtained which include new bell and kink profile solitary wave solutions, triangular periodic wave solutions and singular solutions.
Traveling Wave Solutions of An Ordinary-Parabolic System in R^2 and a 2D-Strip
Directory of Open Access Journals (Sweden)
Yanling Tian
2016-04-01
Full Text Available We investigate a prey-predator model, which we describe by an ordinary-parabolic system. We obtain four types of wave solutions of this system, which are connecting different equilibria. To establish the existence of four types of traveling wave solutions with double wave speeds, we introduce a new approach to constructing monotonous iteration schemes. Moreover, by using spreading speeds, we establish the non-existence of traveling wave solutions. Our results provide insight into the dynamics of this model system.
On the evaluation of Pierce parameters C and Q in a traveling wave tube
Simon, D. H.; Wong, P.; Chernin, D.; Lau, Y. Y.; Hoff, B.; Zhang, P.; Dong, C. F.; Gilgenbach, R. M.
2017-03-01
A study of an exactly solvable model of a traveling wave tube (TWT) shows that Pierce gain parameter C and space charge parameter Q generally depend on wavenumber k in addition to frequency ω. The choice of k at which C and Q are evaluated may strongly affect their values and, consequently, the values of the small signal gain obtained from 3- and 4-wave Pierce theory. In order to illustrate this effect, we calculate the spatial amplification rate, ki, from the exact dispersion relation for a dielectric TWT model which is exactly solvable. We compare this exact value of ki with approximate values obtained from Pierce's classical 3-wave and 4-wave dispersion relations, obtained by making various assumptions on k in the evaluation of C and Q. We find that the various ways to approximate C and Q will have a significant influence on the numerical values of ki. For our dielectric TWT example, Pierce's 4-wave TWT dispersion relation generally yields the most accurate values of ki if Q is evaluated for k = ω/v0, where v0 is the beam velocity, and if the complete frequency and wavelength dependence of C is retained. Pierce's 3-wave theory also yields accurate values of ki using a different form of Q from the 4-wave theory. The implications of this result for TWT design are explored.
Theory of Multiwave Mixing within the Superconducting Kinetic-Inductance Traveling-Wave Amplifier
Erickson, Robert P
2016-01-01
We present a theory of parametric mixing within the coplanar waveguide (CPW) of a superconducting nonlinear kinetic-inductance traveling-wave (KIT) amplifier engineered with periodic dispersion loadings. This is done by first developing a metamaterial band theory of the dispersion-engineered KIT using a Floquet-Bloch construction and then applying it to the description of mixing of the nonlinear RF traveling waves. Our theory allows us to calculate signal gain vs. signal frequency in the presence of a frequency stop gap, based solely on loading design. We present results for both three-wave mixing (3WM), with applied DC bias, and four-wave mixing (4WM), without DC. Our theory predicts an intrinsic and deterministic origin to undulations of 4WM signal gain with signal frequency, apart from extrinsic sources, such as impedance mismatch, and shows that such undulations are absent from 3WM signal gain achievable with DC. Our theory is extensible to amplifiers based on Josephson junctions in a lumped LC transmissi...
Doubly Periodic Traveling Waves in a Cellular Neural Network with Linear Reaction
Directory of Open Access Journals (Sweden)
Lin JianJhong
2009-01-01
Full Text Available Szekeley observed that the dynamic pattern of the locomotion of salamanders can be explained by periodic vector sequences generated by logical neural networks. Such sequences can mathematically be described by "doubly periodic traveling waves" and therefore it is of interest to propose dynamic models that may produce such waves. One such dynamic network model is built here based on reaction-diffusion principles and a complete discussion is given for the existence of doubly periodic waves as outputs. Since there are 2 parameters in our model and 4 a priori unknown parameters involved in our search of solutions, our results are nontrivial. The reaction term in our model is a linear function and hence our results can also be interpreted as existence criteria for solutions of a nontrivial linear problem depending on 6 parameters.
Body wave travel times and amplitudes for present-day seismic model of Mars
Raevskiy, Sergey; Gudkova, Tamara
At the moment Martian interior structure models are constrained by the satellite observational data (the mass, the moment of inertia factor, the Love number k _{2}) (Konopliv et al., 2011) and high pressure experimental data (Bertka and Fei, 1997). Seismological observations could provide unparalleled capability for studying Martian interiors. Future missions include seismic experiments on Mars (Lognonné et al., 2012). The main instrument for these seismic experiments is a broadband seismometer (Robert et al., 2012). When seismic measurements are not yet available, physically consistent interior models, characterized by properties of relevant minerals, make possible to study of the seismic response of the planet. \\To estimate travel times for direct P, S, core reflected PcP, ScS and core refracted PKP body waves as a function of epicentral distance and hypocentral depth, as well as their amplitudes at the surface for a given marsquake, software product was developed in MatLab, as it encompasses many plotting routines that plot resulting travel times and ray paths. The computational results have been compared with the program TTBox (Knapmeyer, 2004). The code computes seismic ray paths and travel times for a one-dimentional spherical interior model (density and seismic velocities are functions of a radius only). Calculations of travel times tables for direct P, S, core reflected PcP, ScS and core refracted PKP waves and their amplitudes are carried out for a trial seismic model of Mars M14_3 from (Zharkov et al., 2009): the core radius is 1800 km, the thickness of the crust is 50 km. Direct and core reflected P and S waves are recorded to a maximum epicentral distance equal to about 100(°) , and PKP arrivals can be detected for epicental distances larger than 150(°) . The shadow zone is getting wider in comparison with previous results (Knapmeyer, 2010), as the liquid core radius of the seismic model under consideration is larger. Based on the estimates of
Uni-directional waves over slowly varying bottom, part II: Deformation of travelling waves
Pudjaprasetya, S.R.; Pudjaprasetya, S.R.; van Groesen, Embrecht W.C.
1996-01-01
A new Korteweg-de Vries type of equation for uni-directional waves over slowly varying bottom has been derived in Part I. The equation retains the Hamiltonian structure of the underlying complete set of equations for surface waves. For flat bottom it reduces to the standard Korteweg-de Vries
High-Power, High-Efficiency Ka-Band Space Traveling-Wave Tube
Krawczyk, Richard; Wilson, Jeffrey; Simons, Rainee; Williams, Wallace; Bhasin, Kul; Robbins, Neal; Dibb, Daniel; Menninger, William; Zhai, Xiaoling; Benton, Robert; Burdette, James
2007-01-01
The L-3 Communications Model 999H traveling-wave tube (TWT) has been demonstrated to generate an output power of 144 W at 60-percent overall efficiency in continuous-wave operation over the frequency band from 31.8 to 32.3 GHz. The best TWT heretofore commercially available for operation in the affected frequency band is characterized by an output power of only 35 W and an efficiency of 50 percent. Moreover, whereas prior TWTs are limited to single output power levels, it has been shown that the output power of the Model 999H can be varied from 54 to 144 W. A TWT is a vacuum electronic device used to amplify microwave signals. TWTs are typically used in free-space communication systems because they are capable of operating at power and efficiency levels significantly higher than those of solid-state devices. In a TWT, an electron beam is generated by an electron gun consisting of a cathode, focusing electrodes, and an anode. The electrons pass through a hole in the anode and are focused into a cylindrical beam by a stack of periodic permanent magnets and travel along the axis of an electrically conductive helix, along which propagates an electromagnetic wave that has been launched by an input signal that is to be amplified. The beam travels within the helix at a velocity close to the phase velocity of the electromagnetic wave. The electromagnetic field decelerates some of the electrons and accelerates others, causing the beam to become formed into electron bunches, which further interact with the electromagnetic wave in such a manner as to surrender kinetic energy to the wave, thereby amplifying the wave. The net result is to amplify the input signal by a factor of about 100,000. After the electrons have passed along the helix, they impinge on electrodes in a collector. The collector decelerates the electrons in such a manner as to recover most of the remaining kinetic energy and thereby significantly increase the power efficiency of the TWT.
Directory of Open Access Journals (Sweden)
Xianbin Wu
2013-01-01
Full Text Available We study a generalized KdV equation of neglecting the highest order infinitesimal term, which is an important water wave model. Some exact traveling wave solutions such as singular solitary wave solutions, semiloop soliton solutions, dark soliton solutions, dark peakon solutions, dark loop-soliton solutions, broken loop-soliton solutions, broken wave solutions of U-form and C-form, periodic wave solutions of singular type, and broken wave solution of semiparabola form are obtained. By using mathematical software Maple, we show their profiles and discuss their dynamic properties. Investigating these properties, we find that the waveforms of some traveling wave solutions vary with changes of certain parameters.
Traveling waves in Hall-magnetohydrodynamics and the ion-acoustic shock structure
Energy Technology Data Exchange (ETDEWEB)
Hagstrom, George I.; Hameiri, Eliezer [Courant Institute of Mathematical Sciences, New York, New York 10012 (United States)
2014-02-15
Hall-magnetohydrodynamics (HMHD) is a mixed hyperbolic-parabolic partial differential equation that describes the dynamics of an ideal two fluid plasma with massless electrons. We study the only shock wave family that exists in this system (the other discontinuities being contact discontinuities and not shocks). We study planar traveling wave solutions and we find solutions with discontinuities in the hydrodynamic variables, which arise due to the presence of real characteristics in Hall-MHD. We introduce a small viscosity into the equations and use the method of matched asymptotic expansions to show that solutions with a discontinuity satisfying the Rankine-Hugoniot conditions and also an entropy condition have continuous shock structures. The lowest order inner equations reduce to the compressible Navier-Stokes equations, plus an equation which implies the constancy of the magnetic field inside the shock structure. We are able to show that the current is discontinuous across the shock, even as the magnetic field is continuous, and that the lowest order outer equations, which are the equations for traveling waves in inviscid Hall-MHD, are exactly integrable. We show that the inner and outer solutions match, which allows us to construct a family of uniformly valid continuous composite solutions that become discontinuous when the diffusivity vanishes.
Existence of Traveling Waves for the Generalized F-KPP Equation.
Kollár, Richard; Novak, Sebastian
2017-03-01
Variation in genotypes may be responsible for differences in dispersal rates, directional biases, and growth rates of individuals. These traits may favor certain genotypes and enhance their spatiotemporal spreading into areas occupied by the less advantageous genotypes. We study how these factors influence the speed of spreading in the case of two competing genotypes under the assumption that spatial variation of the total population is small compared to the spatial variation of the frequencies of the genotypes in the population. In that case, the dynamics of the frequency of one of the genotypes is approximately described by a generalized Fisher-Kolmogorov-Petrovskii-Piskunov (F-KPP) equation. This generalized F-KPP equation with (nonlinear) frequency-dependent diffusion and advection terms admits traveling wave solutions that characterize the invasion of the dominant genotype. Our existence results generalize the classical theory for traveling waves for the F-KPP with constant coefficients. Moreover, in the particular case of the quadratic (monostable) nonlinear growth-decay rate in the generalized F-KPP we study in detail the influence of the variance in diffusion and mean displacement rates of the two genotypes on the minimal wave propagation speed.
Small-signal analysis of a rectangular helix structure traveling-wave-tube
Institute of Scientific and Technical Information of China (English)
Fu Cheng-Fang; Wei Yan-Yu; Duan Zhao-Yun; Wang Wen-Xiang; Gong Yu-Bin
2009-01-01
This paper investigates the properties of traveling wave-beam interaction in a rectangular helix traveling-wave-tube (TWT) for a solid sheet electron beam. The 'hot' dispersion equation is obtained by means of the self-consistent field theory. The small signal analysis, which includes the effects of the beam parameters and slow-wave structure (SWS)parameters, is carried out by theoretical computation. The numerical results show that the bandwidth and the smallsignal gain of the rectangular helix TWT increase as the beam current increases; and the beam voltage not obviously influences the small signal gain. Among different rectangular helix structures, the small-signal gain increases as the width of the rectangular helix SWS increases, however, the bandwidth decreases whether structure parameters a and Lor ψ and L are fixed or not. In addition, a comparison of the small-signal gain of this structure with a conventional round helix is made. The presented analysis will be useful for the design of the TWT with a rectangular helix circuit.
Travelling Waves for a Density Dependent Diffusion Nagumo Equation over the Real Line
Institute of Scientific and Technical Information of China (English)
Robert A. Van Gorder
2012-01-01
We consider the density dependent diffusion Nagumo equation, where the diffusion coefficient is a simple power function. This equation is used in modelling electrical pulse propagation in nerve axons and in population genetics （amongst other areas）. In the present paper, the δ-expansion method is applied to a travelling wave reduction of the problem, so that we may obtain globally valid perturbation solutions （in the sense that the perturbation solutions are valid over the entire infinite domain, not just locally; hence the results are a generalization of the local solutions considered recently in the literature）. The resulting boundary value problem is solved on the real line subject to conditions at z →±∞. Whenever a perturbative method is applied, it is important to discuss the accuracy and convergence properties of the resulting perturbation expansions. We compare our results with those of two different numerical methods （designed for initial and boundary value problems, respectively） and deduce that the perturbation expansions agree with the numerical results after a reasonable number of iterations. Finally, we are able to discuss the influence of the wave speed c and the asymptotic concentration value α on the obtained solutions. Upon recasting the density dependent diffusion Nagumo equation as a two-dimensional dynamical system, we are also able to discuss the influence of the nonlinear density dependence （which is governed by a power-law parameter m） on oscillations of the travelling wave solutions.
A fast fault location method using modal decomposition technique of traveling wave
Energy Technology Data Exchange (ETDEWEB)
Cho, Kyung Rae; Kim, Sung Soo; Kang, Yong Cheol; Park, Jong Keun [Seoul National University, Seoul (Korea, Republic of); Hong, Jun Hee [Kyungwon University, Songnam (Korea, Republic of)
1996-02-01
In this paper, a fault location algorithm is presented, which uses novel signal processing techniques and takes a new paradigm to overcome some drawbacks of the conventional methods. This new method for fault location on electric power transmission lines uses only one-terminal fault signals. The main feature of the method is hat it uses the high frequency components in fault signal and considers the influence of the source network by using a traveling wave propagation characteristics. As a result, we can develop a high speed, good accuracy fault locator. (author). 15 refs., 15 figs., 1 tab.
Optimization Design of Helix Pitch for Efficiency Enhancement in the Helix Travelling Wave Tubes
Institute of Scientific and Technical Information of China (English)
DUAN Zhao-Yun; GONG Yu-Bin; L(U) Ming-Yi; WEI Yan-Yu; WANG Wen-Xiang
2008-01-01
@@ The output section of a helix travelling wave tube usually contains a helix pitch taper for high rf electron efficiency.By keeping the rf field as synchronous as possible with the decelerating electron beam bunches,the rf field can extract much more energy from the beam,and thus the maximum electron efficiency can be realized.Recently,a global simulated annealing algorithm has been employed to design the helix pitch profile so as to improve the electron efficiency as much as possible.From the numerical results,it is concluded that the electron efficiency can be enhanced by about 4%-8%.
User's guide for a large signal computer model of the helical traveling wave tube
Palmer, Raymond W.
1992-01-01
The use is described of a successful large-signal, two-dimensional (axisymmetric), deformable disk computer model of the helical traveling wave tube amplifier, an extensively revised and operationally simplified version. We also discuss program input and output and the auxiliary files necessary for operation. Included is a sample problem and its input data and output results. Interested parties may now obtain from the author the FORTRAN source code, auxiliary files, and sample input data on a standard floppy diskette, the contents of which are described herein.
High efficiency, long life traveling wave tubes for future communications satellites
Dayton, J. A., Jr.
1988-01-01
Electron beam devices, primarily traveling wave tubes (TWTs), have been used as the power amplifiers in almost all space communications and data transmission systems. Based on the technology that is presently available and the expected success of current research efforts, it is reasonable to predict the development of a new class of microwave TWTs with efficiencies in excess of 60 percent and lifetimes of at least ten years. Because of this rapid advance of technology, the TWT is expected to remain the dominant device for power amplifiers in space.
Investigating Holey Metamaterial Effects in Terahertz Traveling-Wave Tube Amplifier
Starinshak, David P.; Wilson, Jeffrey D.; Chevalier, Christine T.
2007-01-01
Applying subwavelength holes to a novel traveling-wave tube amplifier is investigated. Plans to increase the on-axis impedance are discussed as well as optimization schemes to achieve this goal. Results suggest that an array of holes alone cannot significantly change the on-axis electric field in the vicinity of the electron beam. However, models of a beam tunnel with corrugated walls show promise in maximizing the amplifier s on-axis impedance. Additional work is required on the subject, and suggestions are made to determine research directions.
Three-dimensional nonlinear theory of travelling wave tubes and simulation
Institute of Scientific and Technical Information of China (English)
李斌; 杨中海
2003-01-01
A three-dimensional (3D) nonlinear theory of travelling wave tubes (TWTs) is developed, which includes a fundamental radio frequency (RF) and harmonics. When the instantaneous bandwidth exceeds an octave, the harmonic is generated and the mutual coupling between the harmonic and the fundamental RF can be observed in TWTs due to nonlinear interaction between the electron beam and the RF. At low frequencies the harmonic has an obvious effect.Based upon Tien's disc model, a plastic 3D super-particle model is proposed to improve the nonlinear analysis of TWTs.Numerical results employing a periodic magnetic focusing field are presented.
Electromagnetic Modeling of a Fast Traveling-Wave Beam Chopper for the SNS Project.
Kurennoy, Sergey
1998-04-01
High current and severe restrictions on beam losses, below 1 nA/m, in the designed linac for the Spallation Neutron Source (SNS) require clean and fast --- with the rise time from 2% to 98% less than 2.5 ns --- beam chopping in its front end, at the beam energy 2.5 MeV. The development of new traveling-wave deflecting current structures, based on meander lines, is discussed. Three-dimensional time-domain computer simulations are used to study transient effects in the chopper and to optimize its design.
The c-axis charge traveling wave in a coupled system of Josephson junctions
Shukrinov, Yu. M.; Hamdipour, M.
2012-05-01
We demonstrate a manifestation of the charge traveling wave along the c axis (TW) in current voltage characteristics of coupled Josephson junctions in high- T c superconductors. The branches related to the TW with different wavelengths are found for the stacks with different number of Josephson junctions at different values of system's parameters. Transitions between the TW branches and the outermost branch are observed. The electric charge in the superconducting layers and charge-charge correlation functions for TW and outermost branches show different behavior with bias current. We propose an experimental testing of the TW branching by microwave irradiation.
Modelling and characterization of a travelling-wave electro-optic modulator on InP
Directory of Open Access Journals (Sweden)
W. Pascher
2003-01-01
Full Text Available A fast travelling-wave Mach-Zehnder modulator is modelled and designed using a rigorous vectorial analysis. In order to investigate propagation characteristics, velocity and microwave loss, the semiconductor layer stack and the lossy electrodes are modelled using the method of lines. The microwave field distribution is determined, design curves are derived and the cross-sectional dimensions of the modulator are optimized. The loss of the fabricated device agrees very well with small signal measurements up to 40 GHz and HFSS simulations.
Statistics at the tip of a branching random walk and the delay of traveling waves
Brunet, É.; Derrida, B.
2009-09-01
We study the limiting distribution of particles at the frontier of a branching random walk. The positions of these particles can be viewed as the lowest energies of a directed polymer in a random medium in the mean-field case. We show that the average distances between these leading particles can be computed as the delay of a traveling wave evolving according to the Fisher-KPP front equation. These average distances exhibit universal behaviors, different from those of the probability cascades studied recently in the context of mean-field spin-glasses.
Travelling wave solutions of the Schamel–Korteweg–de Vries and the Schamel equations
Directory of Open Access Journals (Sweden)
Figen Kangalgil
2016-10-01
Full Text Available In this paper, the extended (G′/G-expansion method has been suggested for constructing travelling wave solutions of the Schamel–Korteweg–de Vries (s-KdV and the Schamel equations with aid of computer systems like Maple or Mathematica. The hyperbolic function solutions and the trigonometric function solutions with free parameters of these equations have been obtained. Moreover, it has been shown that the suggested method is elementary, effective and has been used to solve nonlinear evolution equations in applied mathematics, engineering and mathematical physics.
A new visco-elastic contact model of traveling wave ultrasonic motor with stator frictional layer
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
A new contact model of traveling wave ultrasonic motor (TWUSM) with a visco-elastic stator frictional layer was presented. In this model, the initial boundaries were revised, and the rotor revolution speed could be calculated iteratively. This model was compared with compliant slider and rigid stator model. The results of motor characteristics simulations showed that the motors based on this model would gain bigger stall torque. Then the friction and wear characteristics of two models were analyzed. The motors based on this model had lower coefficient of friction and better wear resistance.
Traveling waves in a nonlocal, piecewise linear reaction-diffusion population model
Autry, E. A.; Bayliss, A.; Volpert, V. A.
2017-08-01
We consider an analytically tractable switching model that is a simplification of a nonlocal, nonlinear reaction-diffusion model of population growth where we take the source term to be piecewise linear. The form of this source term allows us to consider both the monostable and bistable versions of the problem. By transforming to a traveling frame and choosing specific kernel functions, we are able to reduce the problem to a system of algebraic equations. We construct solutions and examine the propagation speed and monotonicity of the resulting waves.
Energy Technology Data Exchange (ETDEWEB)
Garcia-Sanchez, P; Ramos, A [Dpto. de Electronica y Electromagnetismo, Universidad de Sevilla, 41012 Sevilla (Spain); Green, Nicolas G; Morgan, H [School of Electronics and Computer Science, University of Southampton, SO17 1BJ Southampton (United Kingdom)], E-mail: pablogarcia@us.es
2008-12-01
Net fluid flow of electrolytes driven on an array of microelectrodes subjected to a travelling-wave potential is presented. Two sizes of platinum microelectrodes have been studied. In both arrays, at low voltages the liquid flows according to the prediction given by ac electroosmotic theory. At voltages above a threshold the fluid flow is reversed. Measurements of the electrical current when the microelectrode array is pumping the liquid are also reported. Transient behaviours in both electrical current and fluid velocity have been observed.
Traveling waves and the renormalization group improvedBalitsky-Kovchegov equation
Energy Technology Data Exchange (ETDEWEB)
Enberg, Rikard
2006-12-01
I study the incorporation of renormalization group (RG)improved BFKL kernels in the Balitsky-Kovchegov (BK) equation whichdescribes parton saturation. The RG improvement takes into accountimportant parts of the next-to-leading and higher order logarithmiccorrections to the kernel. The traveling wave front method for analyzingthe BK equation is generalized to deal with RG-resummed kernels,restricting to the interesting case of fixed QCD coupling. The resultsshow that the higher order corrections suppress the rapid increase of thesaturation scale with increasing rapidity. I also perform a "diffusive"differential equation approximation, which illustrates that someimportant qualitative properties of the kernel change when including RGcorrections.
Traveling-wave maser closed-cycle refrigerator data acquisition and display system
Fowler, L.; Britcliffe, M.
1987-01-01
A data acquisition and display system that automatically monitors the performance of the 4.5-K closed-cycle refrigerators used to cryogenically cool traveling-wave masers is described. The system displays and stores operating parameters for the purpose of providing status information, failure prediction, and analysis. A prototype of this system will be installed at Deep Space Network 12 in the near future. The advantages of using commercial data acquisition hardware with installed operating systems and BASIC programs for this application are discussed.
Traveling-wave maser closed-cycle refrigerator data acquisition and display system
Fowler, L.; Britcliffe, M.
1987-11-01
A data acquisition and display system that automatically monitors the performance of the 4.5-K closed-cycle refrigerators used to cryogenically cool traveling-wave masers is described. The system displays and stores operating parameters for the purpose of providing status information, failure prediction, and analysis. A prototype of this system will be installed at Deep Space Network 12 in the near future. The advantages of using commercial data acquisition hardware with installed operating systems and BASIC programs for this application are discussed.
Splitting of quantum information in travelling wave fields using only linear optical elements
Energy Technology Data Exchange (ETDEWEB)
Cardoso, W B; De Almeida, N G; Avelar, A T; Baseia, B [Instituto de Fisica, Universidade Federal de Goias, 74.001-970, Goiania-GO (Brazil)
2011-02-28
In this paper we present a feasible post-selection scheme to split quantum information in the realm of travelling waves with success probability of 50%. Taking advantage of this scheme we have also proposed the generation of a class of W states useful for perfect teleportation and superdense coding. The scheme employs only linear optical elements as beam splitters (BS) and phase shifters, plus two photon counters and a source of two spontaneous parametric down-conversion photons. It is shown that splitting of quantum information with high fidelity is possible, even when using inefficient detectors and photoabsorption BS.
Griffiths, Graham
2010-01-01
Although the Partial Differential Equations (PDE) models that are now studied are usually beyond traditional mathematical analysis, the numerical methods that are being developed and used require testing and validation. This is often done with PDEs that have known, exact, analytical solutions. The development of analytical solutions is also an active area of research, with many advances being reported recently, particularly traveling wave solutions for nonlinear evolutionary PDEs. Thus, the current development of analytical solutions directly supports the development of numerical methods by p
Development of a dual mode satellite traveling wave tube 11GHz, 12W/6W
Deml, L.
1981-02-01
A high power 11GHz dual mode traveling wave tube (TWT) was developed for use in communication satellites. The tube is based on the technology of previous space-qualified tubes (TL12006, TL12022, and TL12025). The tube operates at 12 or 6W, separated by 3dB, without a dramatic efficiency loss in the low power mode. Gain, efficiency and nonlinear distortion criteria are all met, by channel tuning the tube within the operating band (from 10.9 to 11.8 GHz). The channel bandwidth is 100MHz.
Efficient operation of a high-power {ital X}-band traveling wave tube amplifier
Energy Technology Data Exchange (ETDEWEB)
Wang, P.; Xu, Z.; Ivers, J.D.; Nation, J.A.; Naqvi, S.; Schachter, L. [Cornell University, Ithaca, New York 14853 (United States)
1999-10-01
We report experimental results demonstrating 54{percent} power conversion efficiency (43{percent} energy conversion efficiency), from a two-stage {ital X}-band traveling wave tube amplifier designed for high-power operation. The first stage of the amplifier is a 12-cm-long Boron Nitride dielectric section used to modulate the electron beam. The second stage consists of a long high-phase-velocity bunching section followed by a short low-phase-velocity output section. Output powers of up to 78 MW with narrow spectrum width were obtained with {approximately}700 kV, {approximately}200 A beam. {copyright} {ital 1999 American Institute of Physics.}
Institute of Scientific and Technical Information of China (English)
MIAO Qing-yuan; Huang De-xiu; WANG Tao; KONG Xiao-jian; KE Chang-jian
2005-01-01
A novel method to measure the gain and refractive index characteristics of traveling-wave semiconductor optical amplifier(TMA) is presented.In-out fiber ends of TWA are used to construct an external cavity resonator to produce big ripple on amplified spontaneous emission(ASE) spectrum.By this means,Hakki-Paoli method is adopted to obtain the gain spectra of TWA over a wide spectral range.From measured longitudinal mode spacing and peak wavelength shift due to increased bias current,we further calculate the effective refractive index and the refractive index change.Special feature of refractive index change above lasing threshold is revealed and explained.
An interleaved structure for a high-voltage planar transformer for a Travelling-wave Tube
DEFF Research Database (Denmark)
Zhao, Bin; Wang, Gang; Hurley, William G.;
2016-01-01
Fully interleaved structure can significantly reduce leakage inductance in transformers, However， it is hard to apply them into high-voltage applications due to the electric insulation. In this paper, a partially interleaved structure that is suitable for high-voltage high frequency applications...... is proposed to reduce leakage inductance and the insulation’s thickness is adjusted to optimize the electric isolation. In addition, the resistance and parasitic capacitance are investigated. With this method, a planar transformer used for a Travelling-Wave Tube Amplifier (TWTA) is designed. Calculations...
Kato, Hideyuki; Cuellar, Carlos A; Delgado-Lezama, Rodolfo; Rudomin, Pablo; Jimenez-Estrada, Ismael; Manjarrez, Elias; Mirasso, Claudio R
2013-07-01
The first electrophysiological evidence of the phenomenon of traveling electrical waves produced by populations of interneurons within the spinal cord was reported by our interdisciplinary research group. Two interesting observations derive from this study: first, the negative spontaneous cord dorsum potentials (CDPs) that are superimposed on the propagating sinusoidal electrical waves are not correlated with any scratching phase; second, these CDPs do not propagate along the lumbosacral spinal segments, but they appear almost simultaneously at different spinal segments. The aim of this study was to provide experimental data and a mathematical model to explain the simultaneous occurrence of traveling waves and the zero-lag synchronization of some CDPs.
Kato, Hideyuki; Cuellar, Carlos A; Delgado-Lezama, Rodolfo; Rudomin, Pablo; Jimenez-Estrada, Ismael; Manjarrez, Elias; Mirasso, Claudio R
2013-01-01
The first electrophysiological evidence of the phenomenon of traveling electrical waves produced by populations of interneurons within the spinal cord was reported by our interdisciplinary research group. Two interesting observations derive from this study: first, the negative spontaneous cord dorsum potentials (CDPs) that are superimposed on the propagating sinusoidal electrical waves are not correlated with any scratching phase; second, these CDPs do not propagate along the lumbosacral spinal segments, but they appear almost simultaneously at different spinal segments. The aim of this study was to provide experimental data and a mathematical model to explain the simultaneous occurrence of traveling waves and the zero-lag synchronization of some CDPs. PMID:24303110
Institute of Scientific and Technical Information of China (English)
Liu Yang; Wei Yan-Yu; Xu Jin; Yin Hai-Rong; Yue Ling-Na; Gong Yu-Bin; Wang Wen-Xiang
2012-01-01
An open-styled dielectric-lined azimuthally periodic circular waveguide (ODLAP-CW) for a millimeter-wave traveling-wave tube (TWT) is proposed,which is a modified form of a dielectric-lined azimuthally periodic circular waveguide (DLAP-CW).The slow-wave characteristics of the open-styled DLAP-CW are studied by using the spatial harmonics method,which includes normalized phase velocity and interaction impedance.The complicated dispersion equations are numerically solved with MATLAB and the results are in good agreement with the simulation results obtained from HFSS.The influence of structural parameters on the RF properties is investigated based on our theory.The numerical results show that the optimal thickness of the metal rod can increase the interaction impedance,with the dielectric constant held fixed.Finally,the slow-wave characteristics and transmission properties of an open-styled structure are compared with those of the DLAP-CW.The results validate that the mode competition is eliminated in the improved structure with only a slight influence on the dispersion characteristics,which may significantly improve the stability of an open-styled DLAP-CW-based TWT,and the interaction efficiency is also improved.
Makeev, Alexei G; Kurkina, Elena S; Kevrekidis, Ioannis G
2012-06-01
Kinetic Monte Carlo simulations are used to study the stochastic two-species Lotka-Volterra model on a square lattice. For certain values of the model parameters, the system constitutes an excitable medium: travelling pulses and rotating spiral waves can be excited. Stable solitary pulses travel with constant (modulo stochastic fluctuations) shape and speed along a periodic lattice. The spiral waves observed persist sometimes for hundreds of rotations, but they are ultimately unstable and break-up (because of fluctuations and interactions between neighboring fronts) giving rise to complex dynamic behavior in which numerous small spiral waves rotate and interact with each other. It is interesting that travelling pulses and spiral waves can be exhibited by the model even for completely immobile species, due to the non-local reaction kinetics.
Bani-Hani, M. A.; Karami, M. A.
2015-09-01
This paper presents vibration analysis and structural optimization of a swimming-morphing structure. The swimming of the structure is achieved by utilization of piezoelectric patches to generate traveling waves. The third mode shape of the structure in the longitudinal direction resembles the body waveform of a swimming eel. After swimming to its destination, the morphing structure changes shape from an open box to a cube using shape memory alloys (SMAs). The SMAs used for the configuration change of the box robot cannot be used for swimming since they fail to operate at high frequencies. Piezoelectric patches are actuated at the third natural frequency of the structure. We optimize the thickness of the panels and the stiffness of the springs at the joints to generate swimming waveforms that most closely resemble the body waveform of an eel. The traveling wave is generated using two piezoelectric sets of patches bonded to the first and last segments of the beams in the longitudinal direction. Excitation of the piezoelectric results in coupled system dynamics equations that can be translated into the generation of waves. Theoretical analysis based on the distributed parameter model is conducted in this paper. A scalar measure of the traveling to standing wave ratio is introduced using a 2-dimensional Fourier transform (2D-FFT) of the body deformation waveform. An optimization algorithm based on tuning the flexural transverse wave is established to obtain a higher traveling to standing wave ratio. The results are then compared to common methods in the literature for assessment of standing to traveling wave ratios. The analytical models are verified by the close agreement between the traveling waves predicted by the model and those measured in the experiments.
Phase linearity of the 914H coupled-cavity traveling wave tube
Kavanagh, Frank E.
1994-01-01
Tests of phase deviation from linearity were made on two 914H coupled-cavity traveling wave tubes (TWT). One tube had a voltage standing wave ratio (VSWR) of 2.4 and the other 1.4. The data showed that phase deviation is primarily a function of the amplitude and shape of the output VSWR. It was predicted that the low-VSWR tube would give a better system performance than the tube with a high VSWR. This prediction was confirmed by the Advanced Communications Technology Satellite (ACTS) system tests performed at the NASA Lewis Research Center. A possible improvement in the construction and stability of coupled-cavity TWT's is discussed.
Traveling wave solutions of degenerate coupled multi-KdV equations
Gürses, Metin; Pekcan, Aslı
2016-10-01
Traveling wave solutions of degenerate coupled ℓ-KdV equations are studied. Due to symmetry reduction these equations reduce to one ordinary differential equation (ODE), i.e., (f')2 = Pn(f) where Pn(f) is a polynomial function of f of degree n = ℓ + 2, where ℓ ≥ 3 in this work. Here ℓ is the number of coupled fields. There is no known method to solve such ordinary differential equations when ℓ ≥ 3. For this purpose, we introduce two different types of methods to solve the reduced equation and apply these methods to degenerate three-coupled KdV equation. One of the methods uses the Chebyshev's theorem. In this case, we find several solutions, some of which may correspond to solitary waves. The second method is a kind of factorizing the polynomial Pn(f) as a product of lower degree polynomials. Each part of this product is assumed to satisfy different ODEs.
Travelling Waves in Hall-MHD and the Ion-Acoustic Shock Structure
Hagstrom, George I
2013-01-01
Hall-MHD is a mixed hyperbolic-parabolic partial differential equation that describes the dynamics of an ideal two fluid plasma with massless electrons. We study the only shock wave family that exists in this system (the other discontinuities being contact discontinuities and not shocks). We study planar travelling wave solutions and we find solutions with discontinuities in the hydrodynamic variables, which arise due to the presence of real characteristics in Hall-MHD. We introduce a small viscosity into the equations and use the method of matched asymptotic expansions to show that solutions with a discontinuity satisfying the Rankine-Hugoniot conditions and also an entropy condition have continuous shock structures. The lowest order inner equations reduce to the compressible Navier-Stokes equations, plus an equation which implies the constancy of the magnetic field inside the shock structure. We are able to show that the current is discontinuous across the shock, even as the magnetic field is continuous, an...
Standing and travelling waves in a spherical brain model: The Nunez model revisited
Visser, S.; Nicks, R.; Faugeras, O.; Coombes, S.
2017-06-01
The Nunez model for the generation of electroencephalogram (EEG) signals is naturally described as a neural field model on a sphere with space-dependent delays. For simplicity, dynamical realisations of this model either as a damped wave equation or an integro-differential equation, have typically been studied in idealised one dimensional or planar settings. Here we revisit the original Nunez model to specifically address the role of spherical topology on spatio-temporal pattern generation. We do this using a mixture of Turing instability analysis, symmetric bifurcation theory, centre manifold reduction and direct simulations with a bespoke numerical scheme. In particular we examine standing and travelling wave solutions using normal form computation of primary and secondary bifurcations from a steady state. Interestingly, we observe spatio-temporal patterns which have counterparts seen in the EEG patterns of both epileptic and schizophrenic brain conditions.
Theory of a Traveling Wave Feed for a Planar Slot Array Antenna
Rengarajan, Sembiam
2012-01-01
Planar arrays of waveguide-fed slots have been employed in many radar and remote sensing applications. Such arrays are designed in the standing wave configuration because of high efficiency. Traveling wave arrays can produce greater bandwidth at the expense of efficiency due to power loss in the load or loads. Traveling wave planar slot arrays may be designed with a long feed waveguide consisting of centered-inclined coupling slots. The feed waveguide is terminated in a matched load, and the element spacing in the feed waveguide is chosen to produce a beam squinted from the broadside. The traveling wave planar slot array consists of a long feed waveguide containing resonant-centered inclined coupling slots in the broad wall, coupling power into an array of stacked radiating waveguides orthogonal to it. The radiating waveguides consist of longitudinal offset radiating slots in a standing wave configuration. For the traveling wave feed of a planar slot array, one has to design the tilt angle and length of each coupling slot such that the amplitude and phase of excitation of each radiating waveguide are close to the desired values. The coupling slot spacing is chosen for an appropriate beam squint. Scattering matrix parameters of resonant coupling slots are used in the design process to produce appropriate excitations of radiating waveguides with constraints placed only on amplitudes. Since the radiating slots in each radiating waveguide are designed to produce a certain total admittance, the scattering (S) matrix of each coupling slot is reduced to a 2x2 matrix. Elements of each 2x2 S-matrix and the amount of coupling into the corresponding radiating waveguide are expressed in terms of the element S11. S matrices are converted into transmission (T) matrices, and the T matrices are multiplied to cascade the coupling slots and waveguide sections, starting from the load end and proceeding towards the source. While the use of non-resonant coupling slots may provide an
Beam Coupling Impedances of Traveling-Wave Ferrite-Free Extraction Kickers
Kurennoy, Sergey
2002-04-01
Fast traveling-wave extraction kickers contain no ferrite and consist of two long metallic parallel plates supported by insulators inside a beam pipe. A beam is deflected by both the electric and magnetic fields of a TEM wave created by a pulse propagating along the strips in the direction opposite to the beam. Computations of the beam coupling impedances for such structures are difficult because of their length. In the paper, the beam coupling impedances of such transmission-line kickers are calculated by combining analytical and numerical methods: the wake potentials computed in short models are extended analytically to obtain the wakes for the long kickers, and then the corresponding beam impedances are derived. As one can expect, at very low frequencies the results are in agreement with simple analytical expressions available for the coupling impedances of striplines in beam position monitors.
Institute of Scientific and Technical Information of China (English)
QI Xing-jun; LI Xiao-jun; ZHOU Guo-liang
2006-01-01
The analysis approach of semi-active control for long-span rigid-continuous bridge under seismic travelling wave input is established. Magnetorheological dampers are set on the positions of the bridge bearings. The semi-active control calculation and analysis are performed for a five-span rigid-continuous bridge under seismic travelling waves with different apparent surface velocities. The results indicate that travelling wave effect remarkably influences the uncontrolled seismic responses, the semi-active control seismic responses and vibration control effects for the long-span rigid-continuous bridge. It is disadvantageous to the responses of the beams and the piers under the travelling wave input with lower apparent surface velocity, and travelling wave effect can decrease the vibration control effects evidently. Therefore, the travelling wave effect should be considered for the selection of the parameter values of semi-active control system in order to get the designing control effect.
Lee, Hee Yoon; Raphael, Patrick D; Park, Jesung; Ellerbee, Audrey K; Applegate, Brian E; Oghalai, John S
2015-03-10
Sound is encoded within the auditory portion of the inner ear, the cochlea, after propagating down its length as a traveling wave. For over half a century, vibratory measurements to study cochlear traveling waves have been made using invasive approaches such as laser Doppler vibrometry. Although these studies have provided critical information regarding the nonlinear processes within the living cochlea that increase the amplitude of vibration and sharpen frequency tuning, the data have typically been limited to point measurements of basilar membrane vibration. In addition, opening the cochlea may alter its function and affect the findings. Here we describe volumetric optical coherence tomography vibrometry, a technique that overcomes these limitations by providing depth-resolved displacement measurements at 200 kHz inside a 3D volume of tissue with picometer sensitivity. We studied the mouse cochlea by imaging noninvasively through the surrounding bone to measure sound-induced vibrations of the sensory structures in vivo, and report, to our knowledge, the first measures of tectorial membrane vibration within the unopened cochlea. We found that the tectorial membrane sustains traveling wave propagation. Compared with basilar membrane traveling waves, tectorial membrane traveling waves have larger dynamic ranges, sharper frequency tuning, and apically shifted positions of peak vibration. These findings explain discrepancies between previously published basilar membrane vibration and auditory nerve single unit data. Because the tectorial membrane directly overlies the inner hair cell stereociliary bundles, these data provide the most accurate characterization of the stimulus shaping the afferent auditory response available to date.
Linear and Nonlinear Modeling of a Traveling-Wave Thermoacoustic Heat Engine
Scalo, Carlo; Hesselink, Lambertus
2014-01-01
We have carried out three-dimensional Navier-Stokes simulations, from quiescent conditions to the limit cycle, of a traveling-wave thermoacoustic heat engine (TAE) composed of a long variable-area resonator shrouding a smaller annular tube, which encloses the hot (HHX) and ambient (AHX) heat-exchangers, and the regenerator (REG). Simulations are wall-resolved, with no-slip and adiabatic conditions enforced at all boundaries, while the heat transfer and drag due to the REG and HXs are modeled. HHX temperatures have been investigated in the range 440K - 500K with AHX temperature fixed at 300K. The initial exponential growth of acoustic energy is due to a network of traveling waves amplified by looping around the REG/HX unit in the direction of the imposed temperature gradient. A simple analytical model demonstrates that such thermoacoustic instability is a Lagrangian thermodynamic process resembling a Stirling cycle. A system-wide linear stability model based on Rott's theory is able to accurately predict the f...
A new traveling wave ultrasonic motor using thick ring stator with nested PZT excitation.
Chen, Weishan; Shi, Shengjun; Liu, Yingxiang; Li, Pei
2010-05-01
To avoid the disadvantages of conventional traveling wave ultrasonic motors--lower efficiency PZT working mode of d(31), fragility of the PZT element under strong excitation, fatigue of the adhesive layer under harsh environmental conditions, and low volume of the PZT material in the stator--a new type of traveling wave ultrasonic motor is presented in this paper. Here we implement the stator by nesting 64 PZT stacks in 64 slots specifically cut in a thick metal ring and 64 block springs nested within another 64 slots to produce preloading on the PZT stacks. In this new design, the d33 mode of the PZT is used to excite the flexural vibrations of the stator, and fragility of the PZT ceramics and fatigue of the adhesive layer are no longer an issue. The working principle, FEM simulation, fabrication, and performance measurements of a prototype motor were demonstrated to validate the proposed ideas. Typical output of the prototype motor is no-load speed of 15 rpm and maximum torque of 7.96 N x m. Further improvement will potentially enhance its features by increasing the accuracy in fabrication and adopting appropriate frictional material into the interface between the stator and the rotor.
ACTIVE VIBRATION CONTROL OF FINITE L-SHAPED BEAM WITH TRAVELLING WAVE APPROACH
Institute of Scientific and Technical Information of China (English)
Chunchuan Liu; Fengming Li; Wenhu Huang
2010-01-01
In this paper,the disturbance propagation and active vibration control of a finite L-shaped beam are studied.The dynamic response of the structure is obtained by the travelling wave approach.The active vibration suppression of the finite L-shaped beam is performed based on the structural vibration power flow.In the numerical calculation,the influences of the near field effect of the error sensor and the small error of the control forces on the control results are all considered.The simulation results indicate that the structural vibration response in the medium and high frequency regions can be effectively computed by the travelling wave method.The effect of the active control by controlling the power flow is much better than that by controlling the acceleration in some cases.And the control results by the power flow method are slightly affected by the locations of the error sensor and the small error of the control forces.
Monte Carlo simulation for kinetic chemotaxis model: An application to the traveling population wave
Yasuda, Shugo
2017-02-01
A Monte Carlo simulation of chemotactic bacteria is developed on the basis of the kinetic model and is applied to a one-dimensional traveling population wave in a microchannel. In this simulation, the Monte Carlo method, which calculates the run-and-tumble motions of bacteria, is coupled with a finite volume method to calculate the macroscopic transport of the chemical cues in the environment. The simulation method can successfully reproduce the traveling population wave of bacteria that was observed experimentally and reveal the microscopic dynamics of bacterium coupled with the macroscopic transports of the chemical cues and bacteria population density. The results obtained by the Monte Carlo method are also compared with the asymptotic solution derived from the kinetic chemotaxis equation in the continuum limit, where the Knudsen number, which is defined by the ratio of the mean free path of bacterium to the characteristic length of the system, vanishes. The validity of the Monte Carlo method in the asymptotic behaviors for small Knudsen numbers is numerically verified.
Traveling wave tube measurements for low-frequency properties of underwater acoustic materials
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
A traveling wave tube measurement technique for measuring acoustic properties of underwater acoustic materials was developed. Water temperature and pressure environments of the ocean can be simulated in a water-filled tube, and the acoustic parameters of samples of underwater acoustic materials are measured in the range of low-frequency. A tested sample is located at central position of the tube. A pair of projectors is separately located at both ends of the tube. Using an active anechoic technique, the sound wave transmitting the tested sample is hardly reflected by the surface of secondary transducer. So the traveling sound field is built up in the tube. By separately calculating the transfer functions of every pair of double hydrophones in the sound fields from the both sides of the sample, its reflection coefficients and transmission coefficients are obtained. In the measurement system, the inside diameter of the tube is Φ208 mm, the working frequency range is from 100 to 4000 Hz, the maximum pressure is 5 MPa. The reflection coefficients and transmission coefficients of a water layer and a stainless steel layer samples are measured actually and calculated theoretically. The results show that the measured values are in good agreement with the values calculated, and the measurement uncertainty is not greater than 1.5 dB.
Imaging the Mediterranean upper mantle by p- wave travel time tomography
Directory of Open Access Journals (Sweden)
A. Morelli
1997-06-01
Full Text Available Travel times of P-waves in the Euro-Mediterranean region show strong and consistent lateral variations, which can be associated to structural heterogeneity in the underlying crust and mantle. We analyze regional and tele- seismic data from the International Seismological Centre data base to construct a three-dimensional velocity model of the upper mantle. We parameterize the model by a 3D grid of nodes -with approximately 50 km spacing -with a linear interpolation law, which constitutes a three-dimensional continuous representation of P-wave velocity. We construct summary travel time residuals between pairs of cells of the Earth's surface, both inside our study area and -with a broader spacing -on the whole globe. We account for lower mantle heterogeneity outside the modeled region by using empirical corrections to teleseismic travel times. The tomo- graphic images show generai agreement with other seismological studies of this area, with apparently higher detail attained in some locations. The signature of past and present lithospheric subduction, connected to Euro- African convergence, is a prominent feature. Active subduction under the Tyrrhenian and Hellenic arcs is clearly imaged as high-velocity bodies spanning the whole upper mantle. A clear variation of the lithospheric structure beneath the Northem and Southern Apennines is observed, with the boundary running in correspon- dence of the Ortona-Roccamonfina tectonic lineament. The western section of the Alps appears to have better developed roots than the eastern, possibly reflecting à difference in past subduction of the Tethyan lithosphere and subsequent continental collision.
Indian Academy of Sciences (India)
Zaiyun Zhang; Jianhua Huang; Juan Zhong; Sha-Sha Dou; Jiao Liu; Dan Peng; Ting Gao
2014-06-01
In this paper, we construct the travelling wave solutions to the perturbed nonlinear Schrödinger’s equation (NLSE) with Kerr law non-linearity by the extended (′/)-expansion method. Based on this method, we obtain abundant exact travelling wave solutions of NLSE with Kerr law nonlinearity with arbitrary parameters. The travelling wave solutions are expressed by the hyperbolic functions, trigonometric functions and rational functions.
A nonlinear analysis of the terahertz serpentine waveguide traveling-wave amplifier
Energy Technology Data Exchange (ETDEWEB)
Li, Ke, E-mail: like.3714@163.com; Cao, Miaomiao, E-mail: mona486@yeah.net [Key Laboratory of High Power Microwave Sources and Technologies, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China); Institute of Electronics, University of Chinese Academy of Sciences, Beijing 100190 (China); Liu, Wenxin, E-mail: lwenxin@mail.ie.ac.cn; Wang, Yong, E-mail: wangyong3845@sina.com [Key Laboratory of High Power Microwave Sources and Technologies, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China)
2015-04-15
A nonlinear model for the numerical simulation of terahertz serpentine waveguide traveling-wave tube (SW-TWT) is described. In this model, the electromagnetic wave transmission in the SW is represented as an infinite set of space harmonics to interact with an electron beam. Analytical expressions for axial electric fields in axisymmetric interaction gaps of SW-TWTs are derived and compared with the results from CST simulation. The continuous beam is treated as discrete macro-particles with different initial phases. The beam-tunnel field equations, space-charge field equations, and motion equations are combined to solve the beam-wave interaction. The influence of backward wave and relativistic effect is also considered in the series of equations. The nonlinear model is used to design a 340 GHz SW-TWT. Several favorable comparisons of model predictions with results from a 3-D Particle-in-cell simulation code CHIPIC are presented, in which the output power versus beam voltage and interaction periods are illustrated. The relative error of the predicted output power is less than 15% in the 3 dB bandwidth and the relative error of the saturated length is less than 8%.The results show that the 1-D nonlinear analysis model is appropriate to solve the terahertz SW-TWT operation characteristics.
Simulation analysis of rectangular dielectric-loaded traveling wave amplifiers for THz sources
Directory of Open Access Journals (Sweden)
Changbiao Wang
2007-12-01
Full Text Available Nonlinear simulation results for a 220-GHz rectangular dielectric-loaded traveling-wave amplifier are presented. Simulations are used to check a linear theory that is developed by phenomenological introduction of an effective dielectric parameter for electron beam channel, and it is found that the rf power gains from Pierce three-wave theory and particle simulations are in reasonable agreement. It is shown that the rf power gain during initial beam-wave interaction is positive; the falling on the initial rf power profile, which has been thought to be the rf power transferred to the beam for bunching buildup (negative gain effect, is probably resulting from numerical errors. Beam-wave interaction mechanism is analyzed by examining the evolution of beam bunching centers. Influences of various parameters on amplifier performance are examined, and transverse space-charge effect is analyzed. A symmetric excitation scheme for rf couplers is proposed, and rf field jumps on the common intersection line of vacuum, dielectric, and metal wall, which were found in rf simulations, are explained theoretically.
Collapse of a nanoscopic void triggered by a spherically symmetric traveling sound wave.
Hołyst, Robert; Litniewski, Marek; Garstecki, Piotr
2012-05-01
Molecular-dynamics simulations of the Lennard-Jones fluid (up to 10(7) atoms) are used to analyze the collapse of a nanoscopic bubble. The collapse is triggered by a traveling sound wave that forms a shock wave at the interface. The peak temperature T(max) in the focal point of the collapse is approximately ΣR(0)(a), where Σ is the surface density of energy injected at the boundary of the container of radius R(0) and α ≈ 0.4-0.45. For Σ = 1.6 J/m(2) and R(0) = 51 nm, the shock wave velocity, which is proportional to √Σ, reaches 3400 m/s (4 times the speed of sound in the liquid); the pressure at the interface, which is proportional to Σ, reaches 10 GPa; and T(max) reaches 40,000 K. The Rayleigh-Plesset equation together with the time of the collapse can be used to estimate the pressure at the front of the shock wave.
National Aeronautics and Space Administration — Space telecommunications require amplifiers that are efficient, high-power, wideband, small, lightweight, and highly reliable. Currently, helix traveling wave tube...
Watt-Meyer, O.; Kushner, P. J.
2015-12-01
The winter season over North America during 2013/14 was dominated by a persistent ridge-trough that brought warm and dry conditions to the southwestern U.S., and markedly cold temperatures to central and eastern North America [Wang et al., 2014; Hartmann, 2015]. In addition, several cold air outbreaks occurred during the winter season, the strongest of which was around 7 January 2014 and led to minimum daily temperature records being set at many weather stations including Atlanta, Austin, Chicago and New York [Screen et al., in press]. This study uses a novel decomposition of wave variability into standing and travelling components [Watt-Meyer and Kushner, 2015] to diagnose the anomalous circulation of the 2013/14 winter season. This spectral decomposition is an improvement on previous methods because it explicitly accounts for the covariance between standing and travelling waves, and because the real-space components of the signal can be easily reconstructed. An index representing the ridge-trough dipole is computed using mid-tropospheric heights and shown to be well correlated with surface temperatures over central and eastern North America. The contributions to this dipole index from standing waves, westward travelling waves, and eastward travelling waves are calculated. The analysis demonstrates that the cold air outbreak of 7 January 2014 was driven by a synoptic wave of record breaking amplitude intensifying a persistent background amplification of the typical ridge-trough structure seen during North American winter.
Bolborici, V; Dawson, F P; Pugh, M C
2014-03-01
Piezoelectric traveling wave rotary ultrasonic motors are motors that generate torque by using the friction force between a piezoelectric composite ring (or disk-shaped stator) and a metallic ring (or disk-shaped rotor) when a traveling wave is excited in the stator. The motor speed is proportional to the amplitude of the traveling wave and, in order to obtain large amplitudes, the stator is excited at frequencies close to its resonance frequency. This paper presents a non-empirical partial differential equations model for the stator, which is discretized using the finite volume method. The fundamental frequency of the discretized model is computed and compared to the experimentally-measured operating frequency of the stator of Shinsei USR60 piezoelectric motor.
Institute of Scientific and Technical Information of China (English)
Xu Yan; George C Lee
2007-01-01
In the 1990s, several major earthquakes occurred throughout the world, with a common observation that near fault ground motion (NFGM) characteristics had a distinct impact on causing damage to civil engineering structures that could not be predicted by using far field ground motions. Since then, seismic responses of structures under NFGMs have been extensively examined, with most of the studies focusing on structures with relatively short fundamental periods, where the traveling wave effect does not need to be considered. However, for long span bridges, especially arch bridges, the traveling wave (only time delay considered) effect may be very distinct and is therefore important. In this paper, the results from a case study on the seismic response of a steel arch bridge under selected NFGMs is presented by considering the traveling wave effect with variable apparent velocities. The effects of fling step and long period pulses of NFGMs on the seismic responses of the arch bridge are also discussed.
Bennett, James E. M.; Bair, Wyeth
2015-01-01
Traveling waves in the developing brain are a prominent source of highly correlated spiking activity that may instruct the refinement of neural circuits. A candidate mechanism for mediating such refinement is spike-timing dependent plasticity (STDP), which translates correlated activity patterns into changes in synaptic strength. To assess the potential of these phenomena to build useful structure in developing neural circuits, we examined the interaction of wave activity with STDP rules in simple, biologically plausible models of spiking neurons. We derive an expression for the synaptic strength dynamics showing that, by mapping the time dependence of STDP into spatial interactions, traveling waves can build periodic synaptic connectivity patterns into feedforward circuits with a broad class of experimentally observed STDP rules. The spatial scale of the connectivity patterns increases with wave speed and STDP time constants. We verify these results with simulations and demonstrate their robustness to likely sources of noise. We show how this pattern formation ability, which is analogous to solutions of reaction-diffusion systems that have been widely applied to biological pattern formation, can be harnessed to instruct the refinement of postsynaptic receptive fields. Our results hold for rich, complex wave patterns in two dimensions and over several orders of magnitude in wave speeds and STDP time constants, and they provide predictions that can be tested under existing experimental paradigms. Our model generalizes across brain areas and STDP rules, allowing broad application to the ubiquitous occurrence of traveling waves and to wave-like activity patterns induced by moving stimuli. PMID:26308406
Directory of Open Access Journals (Sweden)
Koichi Narahara
2012-01-01
Full Text Available Nonlinear transmission lines, which define transmission lines periodically loaded with nonlinear devices such as varactors, diodes, and transistors, are modeled in the framework of finite-difference time-domain (FDTD method. Originally, some root-finding routine is needed to evaluate the contributions of nonlinear device currents appropriately to the temporally advanced electrical fields. Arbitrary nonlinear transmission lines contain large amount of nonlinear devices; therefore, it costs too much time to complete calculations. To reduce the calculation time, we recently developed a simple model of diodes to eliminate root-finding routines in an FDTD solver. Approximating the diode current-voltage relation by a piecewise-linear function, an extended Ampere's law is solved in a closed form for the time-advanced electrical fields. In this paper, we newly develop an FDTD model of field-effect transistors (FETs, together with several numerical examples that demonstrate pulse-shortening phenomena in a traveling-wave FET.
Institute of Scientific and Technical Information of China (English)
CHEN Yong; LI Biao
2004-01-01
Applying the generalized method, which is a direct and unified algebraic method for constructing multiple travelling wave solutions of nonlinear partial differential equations (PDEs), and implementing in a computer algebraic system, we consider the generalized Zakharov Kuzentsov equation with nonlinear terms of any order. As a result, we can not only successfully recover the previously known travelling wave solutions found by existing various tanh methods and other sophisticated methods, but also obtain some newformal solutions. The solutions obtained include kink-shaped solitons, bell-shaped solitons, singular solitons, and periodic solutions.
Directory of Open Access Journals (Sweden)
Olusola Tosin Kolebaje
2013-02-01
Full Text Available Exact hyperbolic, trigonometric and rational travelling wave solutions to the (2+1-dimensional Generalized Zakharov-Kuznetsov (GZK equation via the extended generalized Riccati equation mapping method are presented in this paper. The twenty one travelling wave solutions obtained were verified by putting them back into the GZK equation with the aid of Mathematica. This shows that the extended generalized Riccati equation mapping method is a powerful tool for finding exact solution to nonlinear partial differential equations in physics, mathematics and other applications.
Ginzburg, N. S.; Zotova, I. V.; Sergeev, A. S.; Zaslavsky, V. Yu.; Zheleznov, I. V.; Samsonov, S. V.; Mishakin, S. V.
2015-11-01
A time-domain self consistent theory of a gyrotron traveling wave tube with a helically corrugated operating waveguide has been developed. Based on this model, the process of short pulse amplification was studied in regimes of grazing and intersection of the dispersion curves of the electromagnetic wave and the electron beam. In the first case, the possibility of amplification without pulse form distortion was demonstrated for the pulse spectrum width of the order of the gain bandwidth. In the second case, when the electrons' axial velocity was smaller than the wave's group velocity, it was shown that the slippage of the incident signal with respect to the electron beam provides feeding of the signal by "fresh" electrons without initial modulation. As a result, the amplitude of the output pulse can exceed the amplitude of its saturated value for the case of the grazing regime, and, for optimal parameters, the peak output power can be even larger than the kinetic power of the electron beam.
Spoor, Philip S.
2005-09-01
CFIC/QDrive has developed a food storage refrigerator for the Army based on thermoacoustic technology. This ``Phase II'' SBIR project is a continuation of a ``Phase I'' effort that explored using a standing-wave thermoacoustic cooler for the refrigerator. The standing-wave cooler was found to be too inefficient with too low a power density to be practical, so it was switched to an acoustic Stirling, or traveling-wave thermoacoustic (regenerator based) cooler for Phase II. The major challenges of this project were adapting the Stirling-style cooler to a food storage application, and not the fundamentals of the cooler itself (the one exception being the issue of acoustic streaming). The challenges include: Running at 60 Hz (without frequency-shifting electronics), heat exchange without circulating fluids, dynamic balance, guarantee of long life, efficiency, and compactness (power density). How these challenges were met and how they drove the design, in most cases away from what would be ideal for the cycle itself, will be discussed. Time permitting, how the additional pressure of low unit cost would affect this type of product development will also be discussed. [Research supported by the U. S. Army through a Small Business Innovation Research (SBIR) grant.
A staggered double vane circuit for a W-band traveling-wave tube amplifier
Institute of Scientific and Technical Information of China (English)
Lai Jian-Qiang; Wei Yan-Yu; Liu Yang; Huang Min-Zhi; Tang Tao; Wang Wen-Xiang; Gong Yu-Bin
2012-01-01
Based on the combination of a staggered double vane slow wave structure (SWS) and round electron beam,a 200-W W-band traveling-wave tube (TWT) amplifier is studied in this paper.The main advantages of round beam operation over the sheet beam is that the round beam can be formed more easily and the focus requirement can be dramatically reduced.It operates in the fundamental mode at the first spatial harmonic.The geometric parameters are optimized and a transition structure for the slow wave circuit is designed which can well match the signal that enters into and goes out from the tube.Then a TWT model is established and the particle-in-cell (PIC) simulation results show that the tube can provide over 200-W output power in a frequency range of 88 GHz-103 GHz with a maximum power of 289 W at 95 GHz,on the assumption that the input power is 0.1 W and the beam power is 5.155 kW.The corresponding conversion efficiency and gain at 95 GHz are expected to be 5.6％ and 34.6 dB,respectively.Such amplifiers can potentially be used in high power microwave-power-modules (MPM) and for other portable applications.
Novel modeling technique for the stator of traveling wave ultrasonic motors.
Pons, José L; Rodríguez, Humberto; Ceres, Ramón; Calderón, Leopoldo
2003-11-01
Traveling wave ultrasonic motors (TWUM) are a promising type of piezoelectric transducers, which are based on the friction transmission of mechanical propagating waves. These waves are excited on the stator by using high Q piezoelectric ceramics. This article presents a modeling strategy, which allows for a quick and precise modal and forced analysis of the stator of TWUM. First-order shear deformation laminated plate theory is applied to annular subdomains (super-elements) of the stator. In addition to shear deformations, the model takes into account the effect of rotary inertia, the stiffness contribution of the teeth, and the linear varying thickness of the stator. Moreover, the formulation considers a more realistic function for the electric field inside the piezoelectric ceramic, i.e., a linear function, instead of the generally assumed constant electric field. The Ritz method is used to find an approximated solution for the dynamic equations. Finally, the modal response is obtained and compared against the results from classical simplified models and the finite element method. Thus, the high accuracy and short computation times of the novel strategy were demonstrated.
Energy Technology Data Exchange (ETDEWEB)
Ginzburg, N. S., E-mail: ginzburg@appl.sci-nnov.ru; Zaslavsky, V. Yu. [Institute of Applied Physics of the Russian Academy of Sciences, 46 Ul' yanov Str., 603950 Nizhny Novgorod (Russian Federation); Nizhny Novgorod State University, 23 Gagarin Ave., 603950 Nizhny Novgorod (Russian Federation); Zotova, I. V.; Sergeev, A. S.; Zheleznov, I. V.; Samsonov, S. V.; Mishakin, S. V. [Institute of Applied Physics of the Russian Academy of Sciences, 46 Ul' yanov Str., 603950 Nizhny Novgorod (Russian Federation)
2015-11-15
A time-domain self consistent theory of a gyrotron traveling wave tube with a helically corrugated operating waveguide has been developed. Based on this model, the process of short pulse amplification was studied in regimes of grazing and intersection of the dispersion curves of the electromagnetic wave and the electron beam. In the first case, the possibility of amplification without pulse form distortion was demonstrated for the pulse spectrum width of the order of the gain bandwidth. In the second case, when the electrons' axial velocity was smaller than the wave's group velocity, it was shown that the slippage of the incident signal with respect to the electron beam provides feeding of the signal by “fresh” electrons without initial modulation. As a result, the amplitude of the output pulse can exceed the amplitude of its saturated value for the case of the grazing regime, and, for optimal parameters, the peak output power can be even larger than the kinetic power of the electron beam.
Travelling waves in the occurrence of dengue haemorrhagic fever in Thailand
Cummings, Derek A. T.; Irizarry, Rafael A.; Huang, Norden E.; Endy, Timothy P.; Nisalak, Ananda; Ungchusak, Kumnuan; Burke, Donald S.
2004-01-01
Dengue fever is a mosquito-borne virus that infects 50-100 million people each year. Of these infections, 200,000-500,000 occur as the severe, life-threatening form of the disease, dengue haemorrhagic fever (DHF). Large, unanticipated epidemics of DHF often overwhelm health systems. An understanding of the spatial-temporal pattern of DHF incidence would aid the allocation of resources to combat these epidemics. Here we examine the spatial-temporal dynamics of DHF incidence in a data set describing 850,000 infections occurring in 72 provinces of Thailand during the period 1983 to 1997. We use the method of empirical mode decomposition to show the existence of a spatial-temporal travelling wave in the incidence of DHF. We observe this wave in a three-year periodic component of variance, which is thought to reflect host-pathogen population dynamics. The wave emanates from Bangkok, the largest city in Thailand, moving radially at a speed of 148km per month. This finding provides an important starting point for detecting and characterizing the key processes that contribute to the spatial-temporal dynamics of DHF in Thailand.
Collective transport for active matter run-and-tumble disk systems on a traveling-wave substrate
Sándor, Cs.; Libál, A.; Reichhardt, C.; Reichhardt, C. J. Olson
2017-01-01
We examine numerically the transport of an assembly of active run-and-tumble disks interacting with a traveling-wave substrate. We show that as a function of substrate strength, wave speed, disk activity, and disk density, a variety of dynamical phases arise that are correlated with the structure and net flux of disks. We find that there is a sharp transition into a state in which the disks are only partially coupled to the substrate and form a phase-separated cluster state. This transition is associated with a drop in the net disk flux, and it can occur as a function of the substrate speed, maximum substrate force, disk run time, and disk density. Since variation of the disk activity parameters produces different disk drift rates for a fixed traveling-wave speed on the substrate, the system we consider could be used as an efficient method for active matter species separation. Within the cluster phase, we find that in some regimes the motion of the cluster center of mass is in the opposite direction to that of the traveling wave, while when the maximum substrate force is increased, the cluster drifts in the direction of the traveling wave. This suggests that swarming or clustering motion can serve as a method by which an active system can collectively move against an external drift.
Study of a high power sine waveguide traveling wave tube amplifier centered at 8 GHz
Hoff, Brad W.; Simon, David S.; French, David M.; Lau, Y. Y.; Wong, Patrick
2016-10-01
Performance of a 20-stage X-band sine waveguide amplifier, driven by a 40 A, 100 kV, cylindrical electron beam, is studied using numerical simulation and interpreted using Pierce's classical traveling wave tube theory. For an input signal power level of 1.8 kW, particle-in-cell simulations predict gain and bandwidth values exceeding 14 dB and 13%, respectively. For an input signal power level of 7.2 kW, particle-in-cell simulations predict gain and bandwidth values exceeding 12 dB and 15%, respectively, with output power levels exceeding 110 kW at peak gain. Also given are: an assessment of the space charge factor (Pierce's QC parameter) for the complex circuit using simulation data, and an evaluation of the harmonic contents in the beam current.
Development of a fast traveling-wave beam chopper for the National Spallation Neutron Source
Energy Technology Data Exchange (ETDEWEB)
Kurennoy, S.S.; Jason, A.J.; Krawczyk, F.L.; Power, J.
1997-10-01
High current and severe restrictions on beam losses, below 1 nA/m, in the designed linac for the National Spallation Neutron Source (NSNS) require clean and fast--with the rise time from 2% to 98% less than 2.5 ns to accommodate a 402.5-MHz beam structure--beam chopping in its front end, at the beam energy 2.5 MeV. The R and D program includes both modification of the existing LANSCE coax-plate chopper to reduce parasitic coupling between adjacent plates, and development of new traveling-wave deflecting structures, in particular, based on a meander line. Using analytical methods and three-dimensional time-domain computer simulations the authors study transient effects in such structures to choose an optimal chopper design.
Development of a Fast Traveling-Wave Beam Chopper for National Spallation Neutron Source.
Kurennoy, Sergey S.; Jason, Andrew J.; Krawczyk, Frank L.
1997-05-01
High current and severe restrictions on beam losses, below 1 nA/m, in the designed linac for the NSNS require clean and fast (with the rise time from 2% to 98% less than 2.5 ns to accommodate a 402.5 MHz beam structure) beam chopping in its front end, at beam energy 2.5 MeV. The present R&D program includes both modification of the existing LANSCE coax-plate chopper to reduce parasitic coupling between adjacent plates, and development of new traveling-wave deflecting structures, in particular, based on a meander line. Using analytical methods and three-dimensional time-domain computer simulations we study transient effects in such structures to choose an optimal chopper design.
Development of a fast traveling-wave beam chopper for the SNS project
Energy Technology Data Exchange (ETDEWEB)
Kurennoy, S.S.; Power, J.F.
1998-12-31
High current and stringent restrictions on beam losses, below 1 nA/m, in the designed linac for the Spallation Neutron Source (SNS) require clean and fast--with the rise time from 2% to 98% less than 2.5 ns--beam chopping in its front end, at the beam energy 2.5 MeV. The development of new traveling-wave deflecting current structures based on meander lines is discussed. Three-dimensional time-domain computer simulations with MAFIA are used to study transient effects in the chopper and to optimize current structure design. Two options for the fast pulsed voltage generator--based on FETs and vacuum tubes--are considered, and their advantages and shortcomings for the SNS chopper are discussed.
Revised NASA axially symmetric ring model for coupled-cavity traveling-wave tubes
Wilson, Jeffrey D.
1987-01-01
A versatile large-signal, two-dimensional computer program is used by NASA to model coupled-cavity travelling-wave tubes (TWTs). In this model, the electron beam is divided into a series of disks, each of which is further divided into axially symmetric rings which can expand and contract. The trajectories of the electron rings and the radiofrequency (RF) fields are determined from the calculated axial and radial space-charge, RF, and magnetic forces as the rings pass through a sequence of cavities. By varying electrical and geometric properties of individual cavities, the model is capable of simulating severs, velocity tapers, and voltage jumps. The calculated electron ring trajectories can be used in designing magnetic focusing and multidepressed collectors. The details of using the program are presented, and results are compared with experimental data.
Ku-Band Traveling Wave Slot Array Using Simple Scanning Control
Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix A.
2015-01-01
This paper introduces a feeding concept aimed at simplifying the backend (phase shifters) of traditional phased arrays. As an alternative to traditional phased arrays, we employ a traveling wave array (TWA) using a single feedline whose propagation constant is controlled via a single, small mechanical movement without a need for phase shifters to enable scanning. Specifically, a dielectric plunger is positioned within a parallel plate waveguide (PPW) transmission line (TL) that feeds the TWA. By adjusting the position of the dielectric plunger within the PPW feeding the TWA, beam steering is achieved. A 20 element array is designed at 13GHz shown to give stable realized gain across the angular range of -25 deg. less than or equal to theta less than or equal to 25 deg. A proof of concept array is fabricated and measured to demonstrate and validate the concept's operation.
One-dimensional nonlinear theory for rectangular helix traveling-wave tube
Energy Technology Data Exchange (ETDEWEB)
Fu, Chengfang, E-mail: fchffchf@126.com; Zhao, Bo; Yang, Yudong; Ju, Yongfeng [Faculty of Electronic Information Engineering, Huaiyin Institute of Technology, Huai' an 223003 (China); Wei, Yanyu [School of Physical Electronics, University of Electronic and Technology of China, Chengdu 610054 (China)
2016-08-15
A 1-D nonlinear theory of a rectangular helix traveling-wave tube (TWT) interacting with a ribbon beam is presented in this paper. The RF field is modeled by a transmission line equivalent circuit, the ribbon beam is divided into a sequence of thin rectangular electron discs with the same cross section as the beam, and the charges are assumed to be uniformly distributed over these discs. Then a method of computing the space-charge field by solving Green's Function in the Cartesian Coordinate-system is fully described. Nonlinear partial differential equations for field amplitudes and Lorentz force equations for particles are solved numerically using the fourth-order Runge-Kutta technique. The tube's gain, output power, and efficiency of the above TWT are computed. The results show that increasing the cross section of the ribbon beam will improve a rectangular helix TWT's efficiency and reduce the saturated length.
Lalli, Priscila M; Iglesias, Bernardo A; Deda, Daiana K; Toma, Henrique E; de Sa, Gilberto F; Daroda, Romeu J; Araki, Koiti; Eberlin, Marcos N
2012-02-15
The ability of travelling wave ion mobility mass spectrometry (TWIM-MS) to resolve cationic meta/para and cis/trans isomers of mono-, di-, tri- and tetra-ruthenated supramolecular porphyrins was investigated. All meta isomers were found to be more compact than the para isomers and therefore mixtures of all isomeric pairs could be properly resolved with baseline or close to baseline peak-to-peak resolution (R(p-p)). Di-substituted cis/trans isomers were found, however, to present very similar drift times and could not be resolved. N(2) and CO(2) were tested as the drift gas, and similar α but considerably better values of R(p) and R(p-p) were always observed for CO(2).
Nonlinear dynamics of superparamagnetic beads in a traveling magnetic-field wave.
Yellen, Benjamin B; Virgin, Lawrence N
2009-07-01
The nonlinear dynamic behavior of superparamagnetic beads exposed to a periodic array of micromagnets and an external rotating field is simulated as a function of the relative size of the bead with respect to the micromagnet size and the strength of the external field relative to the pole density of the substrate. For large bead sizes, it is confirmed that the motion of the beads corresponds to the dynamics of an overdamped nonlinear harmonic oscillator. For lower bead sizes, additional subharmonic locking effects are observed along with the emergence of bounded orbits. These results qualitatively support previous experimental investigations of traveling-wave magnetophoresis and provide guidelines for achieving nearly infinite separation resolution between differently sized beads.
Closed and quasi-closed yoke configurations for travelling wave induction heaters
Directory of Open Access Journals (Sweden)
Ali K. Al-shaikhli
2015-12-01
Full Text Available The salient features of the travelling wave induction heating (TWIH make them very important technique in the field of heating flat metals. This study proposed two novel configurations, closed and quasi-closed, of the heater yoke. The proposed yokes designed to reduce the problems of slot effects and reduce the leakage flux, in order to focus the magnetic field within the heating region, which lead to improve the performance of the TWIH system. A finite-element simulation and analysis is represented in this study by using ANSYS^® programme code. A comparison analysis between the proposed configurations and the traditional one shows a superior performance of the proposed types for workpiece thickness >2 mm. The proposed methods give progress in produced power, efficiency and temperature about; 7–23, 15–40 and 10–25%, respectively, for thickness >2 mm. Moreover, wider and uniformed heat distributions are achieved with conjunction of typical yoke.
Convection in Binary Fluid Mixtures; 1, Extended Traveling Wave and Stationary States
Barten, W; Kamps, M; Schmitz, R
1995-01-01
Nonlinear convection structures are investigated in quantitative detail as a function of Rayleigh number for several negative and positive Soret coupling strengths (separation ratios) and different Lewis and Prandtl numbers characterizing different mixtures. A finite difference method was used to solve the full hydrodynamic field equations in a range of experimentally accessible parameters. We elucidate the important role that the concentration field plays in the nonlinear states of stationary overturning convection (SOC) and of traveling wave (TW) convection. Structural differences in the concentration boundary layers and of the concentration plumes in TW's and SOC's and their physical consequences are discussed. These properties show that the states con- sidered here are indeed strongly nonlinear, as expected from the magnitude of advection and diffusion in the concentration balance. The bifurcation behaviour of the states is analysed using different order parameters such as flow intensity, Nusselt number, ...
Traveling wave parametric amplifier with Josephson junctions using minimal resonator phase matching
Energy Technology Data Exchange (ETDEWEB)
White, T. C.; Mutus, J. Y.; Hoi, I.-C.; Barends, R.; Campbell, B.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Kelly, J.; Neill, C.; O' Malley, P. J. J.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; Martinis, John M., E-mail: martinis@physics.ucsb.edu [Department of Physics, University of California, Santa Barbara, California 93106-9530 (United States); Megrant, A. [Department of Physics, University of California, Santa Barbara, California 93106-9530 (United States); Department of Materials, University of California, Santa Barbara, California 93106 (United States); Chaudhuri, S. [Department of Physics, Stanford University, Stanford, California 94305 (United States); and others
2015-06-15
Josephson parametric amplifiers have become a critical tool in superconducting device physics due to their high gain and quantum-limited noise. Traveling wave parametric amplifiers (TWPAs) promise similar noise performance, while allowing for significant increases in both bandwidth and dynamic range. We present a TWPA device based on an LC-ladder transmission line of Josephson junctions and parallel plate capacitors using low-loss amorphous silicon dielectric. Crucially, we have inserted λ/4 resonators at regular intervals along the transmission line in order to maintain the phase matching condition between pump, signal, and idler and increase gain. We achieve an average gain of 12 dB across a 4 GHz span, along with an average saturation power of −92 dBm with noise approaching the quantum limit.
Magnetization of YBCO film with ac travelling magnetic waves of relatively short wavelengths
Wang, Wei; Coombs, Tim
2017-02-01
The magnetizations of the YBCO film with ac travelling magnetic waves of relatively short wavelengths were studied. The results have verified that the reported "intermediate value" of the superconducting current density [Wang et al., Appl. Phys. Lett. 104(3), 032602 (2014)] was caused by the existence of multiple transition regions in the sample: the magnetic poles induce ±JC in the pole regions, which produces two transition regions within each wavelength λ ( +JC→-JC→+JC , and vice versa, while the symbol → indicates the transition region). The current densities in the transition region are with intermediate values, which are smaller than the critical value. In case of relatively short wavelength, there are multiple transition regions, which occupy a large fraction of the YBCO sample with intermediate current values. Moreover, the wavelike current distributions might help explain the flux transportation and dc output voltage in HTS flux pump.
Design and studies on the traveling wave transverse RF deflecting structure
Institute of Scientific and Technical Information of China (English)
ZHANG Jing-Ru; HOU Mi; DAI Jian-Ping; PEI Shi-Lun; PEI Guo-Xi
2008-01-01
With the development of free electron laser (FEL) and the international linear collider (ILC), the electron bunch length is getting smaller and smaller. The traveling-wave transverse RF deflecting structure is an important part of the RF deflecting method for bunch length measurement and phase space diagnostics.The operation mode in RF deflector is the "TM11-like" mode. Since the TM11-like mode in this structure has a pair of degenerate dipole modes, two additional holes are provided on either side of each iris to stabilize the mode. The simulation and optimization have been done. A prototype has been fabricated and tested. The cold test results have been compared with the simulations of the first three modes.
One-dimensional nonlinear theory for rectangular helix traveling-wave tube
Fu, Chengfang; Wei, Yanyu; Zhao, Bo; Yang, Yudong; Ju, Yongfeng
2016-08-01
A 1-D nonlinear theory of a rectangular helix traveling-wave tube (TWT) interacting with a ribbon beam is presented in this paper. The RF field is modeled by a transmission line equivalent circuit, the ribbon beam is divided into a sequence of thin rectangular electron discs with the same cross section as the beam, and the charges are assumed to be uniformly distributed over these discs. Then a method of computing the space-charge field by solving Green's Function in the Cartesian Coordinate-system is fully described. Nonlinear partial differential equations for field amplitudes and Lorentz force equations for particles are solved numerically using the fourth-order Runge-Kutta technique. The tube's gain, output power, and efficiency of the above TWT are computed. The results show that increasing the cross section of the ribbon beam will improve a rectangular helix TWT's efficiency and reduce the saturated length.
Multiple scales analysis and travelling wave solutions for KdV type nonlinear evolution equations
Ayhan, Burcu; Ozer, M. Naci; Bekir, Ahmet
2017-01-01
Nonlinear evolution equations are the mathematical models of problems that arise in many field of science. These equations has become an important field of study in applied mathematics in recent years. We apply exact solution methods and multiple scale method which is known as a perturbation method to nonlinear evolution equations. Using exact solution methods we get travelling wave solutions expressed by hyperbolic functions, trigonometric functions and rational functions. Also we derive Nonlinear Schrödinger (NLS) type equations from Korteweg-de Vries (KdV) type nonlinear evolution equations and we get approximate solutions for KdV type equations using multiple scale method. The proposed methods are direct and effective and can be used for many nonlinear evolution equations. It is shown that these methods provide a powerful mathematical tool to solve nonlinear evolution equations in mathematical physics.