WorldWideScience

Sample records for waves standing

  1. Residual Liquefaction under Standing Waves

    DEFF Research Database (Denmark)

    Kirca, V.S. Ozgur; Sumer, B. Mutlu; Fredsøe, Jørgen

    2012-01-01

    This paper summarizes the results of an experimental study which deals with the residual liquefaction of seabed under standing waves. It is shown that the seabed liquefaction under standing waves, although qualitatively similar, exhibits features different from that caused by progressive waves....... The experimental results show that the buildup of pore-water pressure and the resulting liquefaction first starts at the nodal section and spreads towards the antinodal section. The number of waves to cause liquefaction at the nodal section appears to be equal to that experienced in progressive waves for the same...... wave height. Recommendations are made as to how to assess liquefaction potential in standing waves. Copyright © 2012 by the International Society of Offshore and Polar Engineers (ISOPE)....

  2. Students dance longitudinal standing waves

    Science.gov (United States)

    Ruiz, Michael J.

    2017-05-01

    A demonstration is presented that involves students dancing longitudinal standing waves. The resulting kinaesthetic experience and visualization both contribute towards an understanding of the natural modes of vibrations in open and closed pipes. A video of this fun classroom activity is provided (http://mjtruiz.com/ped/dance/).

  3. Gravity Capillary Standing Water Waves

    Science.gov (United States)

    Alazard, Thomas; Baldi, Pietro

    2015-09-01

    The paper deals with the 2D gravity-capillary water waves equations in their Hamiltonian formulation, addressing the question of the nonlinear interaction of a plane wave with its reflection off a vertical wall. The main result is the construction of small amplitude, standing (namely periodic in time and space, and not travelling) solutions of Sobolev regularity, for almost all values of the surface tension coefficient, and for a large set of time-frequencies. This is an existence result for a quasi-linear, Hamiltonian, reversible system of two autonomous pseudo-PDEs with small divisors. The proof is a combination of different techniques, such as a Nash-Moser scheme, microlocal analysis and bifurcation analysis.

  4. A Mathematical Prediction of Standing Waves

    Science.gov (United States)

    Higgins, Jon

    1970-01-01

    Presents a problem in standing waves that provides an example of the mathematics used by theoretical physicists to generate predictions of new phenomena from fundamental background knowledge. Mathematical analysis required to solve problem is accomplished by simple graphical processes. (BR)

  5. Residual liquefaction of seabed under standing waves

    DEFF Research Database (Denmark)

    Kirca, V.S. Ozgur; Sumer, B. Mutlu; Fredsøe, Jørgen

    2013-01-01

    This paper presents the results of an experimental study of the seabed liquefaction beneath standing waves. Silt (with d50 =0.070mm) was used in the experiments. Two kinds of measurements were carried out: pore water pressure measurements and water surface elevation measurements. These measurements...... were synchronized with video recording of the liquefaction process from the side. The ranges of the various quantities in the experiments were wave height H= 5.9-12.0 cm, wave period T= 1.09s, and water depth h=30 cm. The experiments show that the seabed liquefaction under standing waves, although...... with a diffusion coefficient equal to the coefficient of consolidation. The experiments further show that the number of waves to cause liquefaction at the nodal section appears to be equal to that experienced in progressive waves for the same wave height. © 2013 American Society of Civil Engineers....

  6. Standing waves in fiber-optic interferometers.

    Science.gov (United States)

    de Haan, V; Santbergen, R; Tijssen, M; Zeman, M

    2011-10-10

    A study is presented giving the response of three types of fiber-optic interferometers by which a standing wave through an object is investigated. The three types are a Sagnac, Mach-Zehnder and Michelson-Morley interferometer. The response of the Mach-Zehnder interferometer is similar to the Sagnac interferometer. However, the Sagnac interferometer is much harder to study because of the fact that one input port and output port coincide. Further, the Mach-Zehnder interferometer has the advantage that the output ports are symmetric, reducing the systematic effects. Examples of standing wave light absorption in several simple objects are given. Attention is drawn to the influence of standing waves in fiber-optic interferometers with weak-absorbing layers incorporated. A method is described for how these can be theoretically analyzed and experimentally measured. Further experiments are needed for a thorough comparison between theory and experiment.

  7. Future directions in standing-wave photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Alexander X., E-mail: axgray@temple.edu

    2014-08-15

    Highlights: • Probing magnetic properties at the buried interface with SW-MCD. • Probing electronic structure at the buried interface with resonant SW-XPS and SW-HAXPES. • Probing momentum-resolved electronic structure at a buried interface with SWARPES. • Adding depth resolution to photoemission microscopy with standing-wave excitation. • Standing-wave localization, total reflection and waveguide effects. - Abstract: Over the past decade, standing-wave photoemission (SW-XPS) has evolved into a powerful and versatile non-destructive technique for probing element-specific electronic, magnetic, and structural properties of buried layers and interfaces with sub-nanometer depth resolution. In this article, I will discuss several promising future directions in this emergent field stemming from experimental and theoretical studies wherein SW-XPS is combined with other X-ray techniques, such as magnetic circular dichroism (MCD), hard X-ray photoemission spectroscopy (HAXPES), angle-resolved photoemission (ARPES), and photoemission microscopy (PEEM), adding extra dimensions to the measurement and thus widening the scope of scientific and technological questions accessible via the use of standing waves. I will further discuss examples of recently developed methods for X-ray standing-wave data analysis, which yield layer-resolved matrix-element-weighted densities of states at interfaces as well as Ångstrom-level changes in periodicity of synthetic superlattices. Finally, I will explore the possibility of localizing the standing waves near the surface and within a buried layer by the use of aperiodic superlattices, total reflection, and X-ray waveguide effects.

  8. Standing waves in fiber-optic interferometers

    NARCIS (Netherlands)

    De Haan, V.; Santbergen, R.; Tijssen, M.; Zeman, M.

    2011-01-01

    A study is presented giving the response of three types of fiber-optic interferometers by which a standing wave through an object is investigated. The three types are a Sagnac, Mach–Zehnder and Michelson–Morley interferometer. The response of the Mach–Zehnder interferometer is similar to the Sagnac

  9. Standing waves for discrete nonlinear Schrodinger equations

    OpenAIRE

    Ming Jia

    2016-01-01

    The discrete nonlinear Schrodinger equation is a nonlinear lattice system that appears in many areas of physics such as nonlinear optics, biomolecular chains and Bose-Einstein condensates. By using critical point theory, we establish some new sufficient conditions on the existence results of standing waves for the discrete nonlinear Schrodinger equations. We give an appropriate example to illustrate the conclusion obtained.

  10. Guitar Strings as Standing Waves: A Demonstration

    Science.gov (United States)

    Davis, Michael

    2007-01-01

    The study demonstrates the induction of one-dimensional standing waves, called "natural-harmonics" on a guitar to provide a unique tone. The analysis shows that a normally complex vibration is composed of a number of simple and discrete vibrations.

  11. Saturation process of nonlinear standing waves

    Institute of Scientific and Technical Information of China (English)

    马大猷; 刘克

    1996-01-01

    The sound pressure of the nonlinear standing waves is distorted as expected, but also tends to saturate as being found in standing-wave tube experiments with increasing sinusoidal excitation. Saturation conditions were not actually reached, owing to limited excitation power, but the evidence of tendency to saturation is without question. It is the purpose of this investigation to find the law of saturation from the existing experimental data. The results of curve fitting indicate that negative feedback limits the growth of sound pressure with increasing excitation, the growth of the fundamental and the second harmonic by the negative feedback of their sound pressures, and the growth of the third and higher harmonics, however, by their energies (sound pressures squared). The growth functions of all the harmonics are derived, which are confirmed by the experiments. The saturation pressures and their properties are found.

  12. Standing waves for discrete nonlinear Schrodinger equations

    Directory of Open Access Journals (Sweden)

    Ming Jia

    2016-07-01

    Full Text Available The discrete nonlinear Schrodinger equation is a nonlinear lattice system that appears in many areas of physics such as nonlinear optics, biomolecular chains and Bose-Einstein condensates. By using critical point theory, we establish some new sufficient conditions on the existence results of standing waves for the discrete nonlinear Schrodinger equations. We give an appropriate example to illustrate the conclusion obtained.

  13. Standing Sound Waves in Air with DataStudio

    Science.gov (United States)

    Kraftmakher, Yaakov

    2010-01-01

    Two experiments related to standing sound waves in air are adapted for using the ScienceWorkshop data-acquisition system with the DataStudio software from PASCO scientific. First, the standing waves are created by reflection from a plane reflector. The distribution of the sound pressure along the standing wave is measured. Second, the resonance…

  14. A Fresh Look at Longitudinal Standing Waves on a Spring

    Science.gov (United States)

    Rutherford, Casey

    2013-01-01

    Transverse standing waves produced on a string, as shown in Fig. 1, are a common demonstration of standing wave patterns that have nodes at both ends. Longitudinal standing waves can be produced on a helical spring that is mounted vertically and attached to a speaker, as shown in Fig. 2, and used to produce both node-node (NN) and node-antinode…

  15. Standing Sound Waves in Air with DataStudio

    Science.gov (United States)

    Kraftmakher, Yaakov

    2010-01-01

    Two experiments related to standing sound waves in air are adapted for using the ScienceWorkshop data-acquisition system with the DataStudio software from PASCO scientific. First, the standing waves are created by reflection from a plane reflector. The distribution of the sound pressure along the standing wave is measured. Second, the resonance…

  16. A Fresh Look at Longitudinal Standing Waves on a Spring

    Science.gov (United States)

    Rutherford, Casey

    2013-01-01

    Transverse standing waves produced on a string, as shown in Fig. 1, are a common demonstration of standing wave patterns that have nodes at both ends. Longitudinal standing waves can be produced on a helical spring that is mounted vertically and attached to a speaker, as shown in Fig. 2, and used to produce both node-node (NN) and node-antinode…

  17. Radiation from cosmic string standing waves

    Science.gov (United States)

    Olum; Blanco-Pillado

    2000-05-01

    We have simulated large-amplitude standing waves on an Abelian-Higgs cosmic string in classical lattice field theory. The radiation rate falls exponentially with wavelength, as one would expect from the field profile around a gauge string. Our results agree with those of Moore and Shellard, but not with those of Vincent, Antunes, and Hindmarsh. The radiation rate falls too rapidly to sustain a scaling solution via direct radiation of particles from string length. There is thus reason to doubt claims of strong constraints on cosmic string theories from cosmic ray observations.

  18. Stationary solid particle attractors in standing waves

    Energy Technology Data Exchange (ETDEWEB)

    Lappa, Marcello, E-mail: marlappa@unina.it, E-mail: marcello.lappa@telespazio.com [Telespazio, Via Gianturco 31, Napoli 80046 (Italy)

    2014-01-15

    The present analysis extends earlier theories on patterns formed by the spontaneous accumulation and ordering of solid particles in certain types of flow by considering the case in which the particle carrier flow has the typical features of a “standing wave.” For the first time an explanation for this phenomenon is elaborated through arguments based on the interplay between vorticity and wave-interference dynamics (following a deductive approach after the so-called phase-locking or “resonance” model originally introduced by Pushkin et al. [Phys. Rev. Lett. 106, 234501 (2011)] and later variants developed by Lappa [Phys. Fluids 25(1), 012101 (2013) and Lappa, Chaos 23(1), 013105 (2013)]). The results of dedicated numerical simulations are used in synergy with available experimental work. An interesting analogy is proposed with the famous Chladni's series of experiments on patterns formed by sand on vibrating plates.

  19. Stationary solid particle attractors in standing waves

    Science.gov (United States)

    Lappa, Marcello

    2014-01-01

    The present analysis extends earlier theories on patterns formed by the spontaneous accumulation and ordering of solid particles in certain types of flow by considering the case in which the particle carrier flow has the typical features of a "standing wave." For the first time an explanation for this phenomenon is elaborated through arguments based on the interplay between vorticity and wave-interference dynamics (following a deductive approach after the so-called phase-locking or "resonance" model originally introduced by Pushkin et al. [Phys. Rev. Lett. 106, 234501 (2011)] and later variants developed by Lappa [Phys. Fluids 25(1), 012101 (2013) and Lappa, Chaos 23(1), 013105 (2013)]). The results of dedicated numerical simulations are used in synergy with available experimental work. An interesting analogy is proposed with the famous Chladni's series of experiments on patterns formed by sand on vibrating plates.

  20. Onset behavior of standing wave thermoacoustic pressure wave generator

    Science.gov (United States)

    Mehta, Shreya; Desai, Keyur; Naik, Hemant Bhimbhai; Atrey, Milind

    2012-06-01

    A standing wave type thermoacoustic pressure wave generator for 300 Hz operating frequency is designed and developed for helium as a working fluid. The device is designed as a half wave length resonator. A parallel plate type SS 304 stack is designed and fabricated. An electric heater is used for heat supply to the hot end heat exchanger while a water cooled heat exchanger is used to maintain the other end of the stack near ambient temperature. An acoustic amplifier is used to amplify the pressure ratio generated. Experiments are conducted to study the onset behavior of pressure wave generator in terms of temperature range. Observations are recorded using piezoelectric pressure transducer. The results are obtained with different charging pressure and heat inputs. A pressure ratio of around 1.1 to 1.15 has been obtained using Nitrogen as a working fluid. The onset of thermoacoustic oscillations are studied for different filling pressure and for a range of hot end temperature.

  1. A 6D standing wave Braneworld

    CERN Document Server

    Sousa, L J S; Almeida, C A S

    2012-01-01

    We constructed a six-dimensional version of the standing wave model with an anisotropic 4-brane generated by a phantom-like scalar field. The model represents a braneworld where the compact (on-brane) dimension is assumed to be sufficiently small in order to describe our universe (hybrid compactification). The proposed geometry of the brane and its transverse manifold is non-static, unlike the majority of braneworld models presented in the literature. Furthermore, we have shown that the zero-mode scalar field is localized around the brane. While in the string-like defect the scalar field is localized on a brane with decreasing warp factor, here it was possible to perform the localization with an increasing warp factor.

  2. Theoretical Study on Standing Wave Thermoacoustic Engine

    Science.gov (United States)

    Kalra, S.; Desai, K. P.; Naik, H. B.; Atrey, M. D.

    Applications of thermoacoustic engines are not limited to driving pulse tube cryocoolers. The performance of a thermoacoustic engine is governed by various design parameters like type of resonator, stack geometry, frequency, type of working gas etc. and various operating parameters like heat input, charging pressure etc. It is very important to arrive at an optimum configuration of the engine for which a theoretical model is required. In the present work, a theoretical analysis, based on linear acoustic theory of a standing wave type half wavelength thermoacoustic engine is carried out using DeltaEC software. The system dimensions like length of resonator, stack, hot and cold heat exchangers are fixed with a helium-argon mixture as the working gas and a parallel plate type stack. Later on, two plate spacings, corresponding to helium-argon mixture and nitrogen gas, are used for carrying out analysis with helium, argon, nitrogen, carbon dioxide and helium-argon mixture as working gases of the system. The effect of charging pressure on the performance of the system is studied in terms of resonating frequency, onset temperature, pressure amplitude, acoustic power and efficiency. The conclusions derived from the analysis are reported in the paper.

  3. Standing Wave Solutions in Nonhomogeneous Delayed Synaptically Coupled Neuronal Networks

    Institute of Scientific and Technical Information of China (English)

    ZHANG Linghai; STONER Melissa Anne

    2012-01-01

    The authors establish the existence and stability of standing wave solutions of a nonlinear singularly perturbed system of integral differential equations and a nonlinear scalar integral differential equation.It will be shown that there exist six standing wave solutions ((u(x,t),w(x,t)) =(U(x),W(x)) to the nonlinear singularly perturbed system of integral differential equations.Similarly,there exist six standing wave solutions u(x,t) =U(x) to the nonlinear scalar integral differential equation.The main idea to establish the stability is to construct Evans functions corresponding to several associated eigenvalue problems.

  4. Transient Response Model of Standing Wave Piezoelectric Linear Ultrasonic Motor

    Institute of Scientific and Technical Information of China (English)

    SHI Yunlai; CHEN Chao; ZHAO Chunsheng

    2012-01-01

    A transient response model for describing the starting and stopping characteristics of the standing wave piezoelectric linear ultrasonic motor was presented.Based on the contact dynamic model,the kinetic equation of the motor was derived.The starting and stopping characteristics of the standing wave piezoelectric linear ultrasonic motor according to different loads,contact stiffness and inertia mass were described and analyzed,respectively.To validate the transient response model,a standing wave piezoelectric linear ultrasonic motor based on in-plane modes was used to carry out the simulation and experimental study.The corresponding results showed that the simulation of the motor performances based on the proposed model agreed well with the experimental results.This model will helpful to improve the stepping characteristics and the control flexibility of the standing wave piezoelectric linear ultrasonic motor.

  5. Experimental study on the standing-wave tube with tapered section and its extremely nonlinear standing-wave field

    Institute of Scientific and Technical Information of China (English)

    MIN Qi; YIN Yao; LI Xiaodong; LIU Ke

    2011-01-01

    A standing-wave tube with tapered section (STTS) was evolved from a standingwave tube with abrupt section (STAS) whose abrupt section was replaced with tapered section. The research was intended to compare the acoustic properties and the extremely nonlinear pure standing waves of STTS with those of STAS. The acoustic properties of the STTS were studied with transfer matrix. It was proved, like the STAS, that the STTS was dissonant standingwave tube. With its dissonant property, the 181 dB extremely nonlinear pure standing wave was obtained in the STTS excited at its first resonance frequency. Then the comparative experimental studies on the saturation properties of the extremely nonlinear standing waves were carried out in the STTS and the STAS with the same length. It was found that the STTS could suppress the harmonics and meanwhile reduce energy loss of the standing wave more effectively. Compared with the STAS, under the same voltage of loudspeaker, the STTS obtained a higher extremely nonlinear pure standing wave. Moreover, it was found for the STTS that the third harmonic of the third resonance frequency was close to the seventh resonance frequency of sound source impedance, to which the valley value of the sound pressure level transfer function corresponded. Because of this, the third harmonic increased rapidly with the increase of fundamental wave and tended to saturate.

  6. Standing magnetic wave on Ising ferromagnet: Nonequilibrium phase transition

    Science.gov (United States)

    Halder, Ajay; Acharyya, Muktish

    2016-12-01

    The dynamical response of an Ising ferromagnet to a plane polarised standing magnetic field wave is modelled and studied here by Monte Carlo simulation in two dimensions. The amplitude of standing magnetic wave is modulated along the direction x. We have detected two main dynamical phases namely, pinned and oscillating spin clusters. Depending on the value of field amplitude the system is found to undergo a phase transition from oscillating spin cluster to pinned as the system is cooled down. The time averaged magnetisation over a full cycle of magnetic field oscillations is defined as the dynamic order parameter. The transition is detected by studying the temperature dependences of the variance of the dynamic order parameter, the derivative of the dynamic order parameter and the dynamic specific heat. The dependence of the transition temperature on the magnetic field amplitude and on the wavelength of the magnetic field wave is studied at a single frequency. A comprehensive phase boundary is drawn in the plane described by the temperature and field amplitude for two different wavelengths of the magnetic wave. The variation of instantaneous line magnetisation during a period of magnetic field oscillation for standing wave mode is compared to those for the propagating wave mode. Also the probability that a spin at any site, flips, is calculated. The above mentioned variations and the probability of spin flip clearly distinguish between the dynamical phases formed by propagating magnetic wave and by standing magnetic wave in an Ising ferromagnet.

  7. Excitation of Standing Waves by an Electric Toothbrush

    Science.gov (United States)

    Cros, Ana; Ferrer-Roca, Chantal

    2006-01-01

    There are a number of ways of exciting standing waves in ropes and springs using non-commercial vibrators such as loudspeakers, jigsaws, motors, or a simple tuning fork, including the rhythmical shaking of a handheld Slinky. We have come up with a very simple and cheap way of exciting stationary waves in a string, which anyone, particularly…

  8. Standing wave acoustic levitation on an annular plate

    Science.gov (United States)

    Kandemir, Mehmet Hakan; Çalışkan, Mehmet

    2016-11-01

    In standing wave acoustic levitation technique, a standing wave is formed between a source and a reflector. Particles can be attracted towards pressure nodes in standing waves owing to a spring action through which particles can be suspended in air. This operation can be performed on continuous structures as well as in several numbers of axes. In this study an annular acoustic levitation arrangement is introduced. Design features of the arrangement are discussed in detail. Bending modes of the annular plate, known as the most efficient sound generation mechanism in such structures, are focused on. Several types of bending modes of the plate are simulated and evaluated by computer simulations. Waveguides are designed to amplify waves coming from sources of excitation, that are, transducers. With the right positioning of the reflector plate, standing waves are formed in the space between the annular vibrating plate and the reflector plate. Radiation forces are also predicted. It is demonstrated that small particles can be suspended in air at pressure nodes of the standing wave corresponding to a particular bending mode.

  9. The nonlinear standing wave inside the space of liquid

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Based on the basic equations of hydrodynamics, the nonlinear acoustic wave equation is obtained. By taking into account the boundary condition and properties of nonlinear standing wave, the equation is solved through perturbation method, and the stable expressions of fundamental wave and second harmonic are presented. The sound pressures in an ultrasonic cleaner are measured by hydrophones, and the relationship between the received voltages of hydrophones and the output voltages of the ultrasonic generator is researched. The study shows the existence of the nonlinear effect of liquid and analyzes the frequency spectrum of the received signals by hydrophones, by which the fundamental wave, second and high order harmonics are found coexisting in the bounded space filled with liquids. The theory and experimental results testify the existence of the nonlinear standing wave in liquid. Owing to the restricted applicability of perturbation method, the theoretical results of the fundamental wave and second harmonic are good only for the weak nonlinear phenomenon.

  10. A Standing-Wave Experiment with a Guitar

    Science.gov (United States)

    Inman, Fred W.

    2006-10-01

    When teaching standing waves, one often uses as examples musical instruments with strings, e.g., pianos, violins, and guitars. In today's popular music culture, young people may be more familiar with guitars than any other string instrument. I was helping my 15-year-old granddaughter make some repairs and adjustments to her electric guitar, and the subject of the spacing between the frets on the fingerboard was raised. I told her that the physics of standing waves and the equal tempered musical scale dictate the location of the frets. The purpose of this paper is to suggest that students might be introduced to the physics of standing waves using a guitar and to the formula for the fret locations. By measuring the positions of the frets, this formula can be tested.

  11. Standing Waves and Inquiry Using Water Droplets

    Science.gov (United States)

    Sinclair, Dina; Vondracek, Mark

    2015-01-01

    Most high school and introductory college physics classes study simple harmonic motion and various wave phenomena. With the majority of states adopting the Next Generation Science Standards and pushing students to explore the scientific process for themselves, there is a growing demand for hands-on inquiry activities that involve and develop more…

  12. Standing Waves and Inquiry Using Water Droplets

    Science.gov (United States)

    Sinclair, Dina; Vondracek, Mark

    2015-01-01

    Most high school and introductory college physics classes study simple harmonic motion and various wave phenomena. With the majority of states adopting the Next Generation Science Standards and pushing students to explore the scientific process for themselves, there is a growing demand for hands-on inquiry activities that involve and develop more…

  13. Standing Slow MHD Waves in Radiatively Cooling Coronal Loops

    Indian Academy of Sciences (India)

    K. S. Al-Ghafri

    2015-06-01

    The standing slow magneto-acoustic oscillations in cooling coronal loops are investigated. There are two damping mechanisms which are considered to generate the standing acoustic modes in coronal magnetic loops, namely, thermal conduction and radiation. The background temperature is assumed to change temporally due to optically thin radiation. In particular, the background plasma is assumed to be radiatively cooling. The effects of cooling on longitudinal slow MHD modes is analytically evaluated by choosing a simple form of radiative function, that ensures the temperature evolution of the background plasma due to radiation, coincides with the observed cooling profile of coronal loops. The assumption of low-beta plasma leads to neglecting the magnetic field perturbation and, eventually, reduces the MHD equations to a 1D system modelling longitudinal MHD oscillations in a cooling coronal loop. The cooling is assumed to occur on a characteristic time scale, much larger than the oscillation period that subsequently enables using the WKB theory to study the properties of standing wave. The governing equation describing the time-dependent amplitude of waves is obtained and solved analytically. The analytically derived solutions are numerically evaluated to give further insight into the evolution of the standing acoustic waves. We find that the plasma cooling gives rise to a decrease in the amplitude of oscillations. In spite of the reduction in damping rate caused by rising the cooling, the damping scenario of slow standing MHD waves strongly increases in hot coronal loops.

  14. Cooldown Measurements in a Standing Wave Thermoacoustic Refrigerator

    CERN Document Server

    Dhuley, R C

    2016-01-01

    Thermoacoustic Refrigerators (TARs) use acoustic power to generate cold temperatures. Apart from the operating frequency and the mean temperature of the working medium, the charging pressure and the dynamic pressure in the TAR govern its attainable cold temperature. The effect of charging pressure on the dynamic pressure in a loudspeaker driven gas filled standing wave column has been well understood. The present work aims to investigate the effect of charging pressure on the cold end temperature of a standing wave TAR. The cold end temperature lift and the cooldown for several changing pressures are reported. The effect of vacuum around the cold end on the TAR performance is also presented.

  15. Magnetization dynamics and spin pumping induced by standing elastic waves

    Science.gov (United States)

    Azovtsev, A. V.; Pertsev, N. A.

    2016-11-01

    The magnetization dynamics induced by standing elastic waves excited in a thin ferromagnetic film is described with the aid of micromagnetic simulations taking into account the magnetoelastic coupling between spins and lattice strains. Our calculations are based on the numerical solution of the Landau-Lifshitz-Gilbert equation comprising the damping term and the effective magnetic field with all relevant contributions. The simulations have been performed for 2-nm-thick F e81G a19 film dynamically strained by longitudinal and transverse standing waves with various frequencies, which span a wide range around the resonance frequency νres of coherent magnetization precession in unstrained F e81G a19 film. It is found that standing elastic waves give rise to complex local magnetization dynamics and spatially inhomogeneous dynamic patterns in the form of standing spin waves with the same wavelength. Remarkably, the amplitude of magnetization precession does not go to zero at nodes of these spin waves, which cannot be precisely described by simple analytical formulae. In the steady-state regime, magnetization oscillates with the frequency of the elastic wave, except in the case of longitudinal waves with frequencies well below νres, where the magnetization precesses with variable frequency strongly exceeding the wave frequency. The results obtained for the magnetization dynamics driven by elastic waves are used to calculate the spin current pumped from the dynamically strained ferromagnet into adjacent paramagnetic metal. Numerical calculations demonstrate that the transverse charge current in the paramagnetic layer, which is created by the spin current via inverse spin Hall effect, is high enough to be measured experimentally.

  16. The treatment of radioactive wastewater by ultrasonic standing wave method

    Energy Technology Data Exchange (ETDEWEB)

    Su-xia, Hou, E-mail: hsxljj@sina.com; Ji-jun, Luo; Bin, He; Ru-song, Li; Tao, Shen

    2014-06-01

    Highlights: • USWM can be considered as the green cleaning separation techniques. • A physical model of suspended radioactive particle is established. • A computer program is developed to achieve numerical calculation and analysis. • The experimental device for low-level radioactive wastes treatment is designed. • Lots of experimental data are used to analysis the influence of the parameters. - Abstract: The radiation hazards of radionuclide arising from the storage of nuclear weapons cannot be ignored to the operators. Ultrasonic standing wave methods can be considered as the green cleaning separation techniques with high efficiency. The application of ultrasonic standing wave methods for liquid radioactive wastes treatment requires solving many problems connected with the proper selection of the frequency and power of ultrasonic transducers, and the processing time, etc. Based on the model of one single suspended radioactive particle subjected to in the field of ultrasonic standing wave, the principle of the treatment of low-level radioactive wastewater by ultrasound was analyzed. The theoretical and simulation results show that under the action of ultrasonic standing wave, the particle will move toward the wave node plane, and the time of particle reaching the plane become shorter when the radius of particle and the frequency and power of ultrasound was enlarged. The experimental results show that the radioactive concentration of wastewater could be reduced from 400 Bq L{sup −1} to 9.3 Bq L{sup −1} and the decontamination efficiency was 97.68%. The decontamination efficiency could not be obviously improved by further increasing the treating time.

  17. The periodic standing-wave approximation: post-Minkowski computation

    CERN Document Server

    Beetle, Christopher; Hernández, Napoleón; Price, Richard H

    2007-01-01

    The periodic standing wave method studies circular orbits of compact objects coupled to helically symmetric standing wave gravitational fields. From this solution an approximation is extracted for the strong field, slowly inspiralling motion of black holes and binary stars. Previous work on this model has dealt with nonlinear scalar models, and with linearized general relativity. Here we present the results of the method for the post-Minkowski (PM) approximation to general relativity, the first step beyond linearized gravity. We compute the PM approximation in two ways: first, via the standard approach of computing linearized gravitational fields and constructing from them quadratic driving sources for second-order fields, and second, by solving the second-order equations as an ``exact'' nonlinear system. The results of these computations have two distinct applications: (i) The computational infrastructure for the ``exact'' PM solution will be directly applicable to full general relativity. (ii) The results w...

  18. Precision measurements in ion traps using slowly moving standing waves

    CERN Document Server

    Walther, A; Singer, K; Schmidt-Kaler, F

    2011-01-01

    The present paper describes the experimental implementation of a measuring technique employing a slowly moving, near resonant, optical standing wave in the context of trapped ions. It is used to measure several figures of merit that are important for quantum computation in ion traps and which are otherwise not easily obtainable. Our technique is shown to offer high precision, and also in many cases using a much simpler setup than what is normally used. We demonstrate here measurements of i) the distance between two crystalline ions, ii) the Lamb-Dicke parameter, iii) temperature of the ion crystal, and iv) the interferometric stability of a Raman setup. The exact distance between two ions, in units of standing wave periods, is very important for motional entangling gates, and our method offers a practical way of calibrating this distance in the typical lab situation.

  19. Traveling and Standing Waves in Coupled Pendula and Newton's Cradle

    Science.gov (United States)

    García-Azpeitia, Carlos

    2016-12-01

    The existence of traveling and standing waves is investigated for chains of coupled pendula with periodic boundary conditions. The results are proven by applying topological methods to subspaces of symmetric solutions. The main advantage of this approach comes from the fact that only properties of the linearized forces are required. This allows to cover a wide range of models such as Newton's cradle, the Fermi-Pasta-Ulam lattice, and the Toda lattice.

  20. Attractors and chaos of electron dynamics in electromagnetic standing wave

    CERN Document Server

    Esirkepov, Timur Zh; Koga, James K; Kando, Masaki; Kondo, Kiminori; Rosanov, Nikolay N; Korn, Georg; Bulanov, Sergei V

    2014-01-01

    The radiation reaction radically influences the electron motion in an electromagnetic standing wave formed by two super-intense counter-propagating laser pulses. Depending on the laser intensity and wavelength, either classical or quantum mode of radiation reaction prevail, or both are strong. When radiation reaction dominates, electron motion evolves to limit cycles and strange attractors. This creates a new framework for high energy physics experiments on an interaction of energetic charged particle beams and colliding super-intense laser pulses.

  1. Interaction of aerosol particles with a standing wave optical field

    Science.gov (United States)

    Curry, John J.

    2016-09-01

    Trajectories of spherical dielectric particles carried across an optical standing wave by a flowing medium are investigated. Trajectories are determined by a three-dimensional Monte Carlo calculation that includes drag forces, Brownian motion, and optical gradient forces. We analyze the case of polystyrene particles with radii of order 100 nm carried across a Gaussian-mode standing wave by slowly flowing air. Particles are injected into the flowing air from a small source area such as the end of a capillary tube. Different sizes are dispersed continuously in space on the opposite side of the standing wave, demonstrating a practical way to sort particles. Certain discrete values of particle size show no interaction with the optical field, independent of intensity. These particles can be sorted with exceptionally high resolution. For example, particles with radii of 275 nm can be sorted with 1 nm resolution. This sorting scheme has the advantages of accommodating a high throughput, producing a continuous stream of continuously dispersed particles, and exhibiting excellent size resolution. The Monte Carlo results are in agreement with those obtained by a much simpler, and faster, fluid calculation based on effective velocities and effective diffusion coefficients, both obtained by averaging trajectories over multiple fringes of the optical field.

  2. Stress wave propagation on standing trees. Part 2, Formation of 3D stress wave contour maps.

    Science.gov (United States)

    Juan Su; Houjiang Zhang; Xiping Wang

    2009-01-01

    Nondestructive evaluation (NDE) of wood quality in standing trees is an important procedure in the forest operational value chain worldwide. The goal of this paper is to investigate how a stress wave travel in a tree stem as it is introduced into the tree through a mechanical impact. Experimental stress wave data was obtained on freshly cut red pine logs in the...

  3. A cylindrical standing wave ultrasonic motor using bending vibration transducer.

    Science.gov (United States)

    Liu, Yingxiang; Chen, Weishan; Liu, Junkao; Shi, Shengjun

    2011-07-01

    A cylindrical standing wave ultrasonic motor using bending vibration transducer was proposed in this paper. The proposed stator contains a cylinder and a bending vibration transducer. The two combining sites between the cylinder and the transducer locate at the adjacent wave loops of bending vibration of the transducer and have a distance that equal to the half wave length of bending standing wave excited in the cylinder. Thus, the bending mode of the cylinder can be excited by the bending vibration of the transducer. Two circular cone type rotors are pressed in contact to the end rims of the teeth, and the preload between the rotors and stator is accomplished by a spring and nut system. The working principle of the proposed motor was analyzed. The motion trajectories of teeth were deduced. The stator was designed and analyzed with FEM. A prototype motor was fabricated and measured. Typical output of the prototype is no-load speed of 165rpm and maximum torque of 0.45Nm at an exciting voltage of 200V(rms).

  4. Adsorption-Mediated Mass Streaming in a Standing Acoustic Wave

    Science.gov (United States)

    Weltsch, Oren; Offner, Avshalom; Liberzon, Dan; Ramon, Guy Z.

    2017-06-01

    Oscillating flows can generate nonzero, time-averaged fluxes despite the velocity averaging zero over an oscillation cycle. Here, we report such a flux, a nonlinear resultant of the interaction between oscillating velocity and concentration fields. Specifically, we study a gas mixture sustaining a standing acoustic wave, where an adsorbent coats the solid boundary in contact with the gas mixture. It is found that the sound wave produces a significant, time-averaged preferential flux of a "reactive" component that undergoes a reversible sorption process. This effect is measured experimentally for an air-water vapor mixture. An approximate model is shown to be in good agreement with the experimental observations, and further reveals the interplay between the sound-wave characteristics and the properties of the gas-solid sorbate-sorbent pair. The preferential flux generated by this mechanism may have potential in separation processes.

  5. CFD simulation of a 300 Hz thermoacoustic standing wave engine

    Science.gov (United States)

    Yu, Guoyao; Dai, W.; Luo, Ercang

    2010-09-01

    High frequency operation of standing wave thermoacoustic heat engines is attractive for space applications due to compact size and high reliability. To expedite practical use, further improvement and optimization should be based on deep understanding and quantitative analysis. This article focuses on using computational fluid dynamics (CFD) to investigate nonlinear phenomena and processes of a 300 Hz standing wave thermoacoustic engine (SWTE). The calculated model was tested in detail, which indicated that the co-axially stacked tube model was suitable for the simulation of SWTEs. Two methods of imposing temperature gradient across the stack were studied, and the processes of mean pressure increasing, pressure wave amplification and saturation were obtained under the thermal boundary condition of applying heating power. The acoustic fields were given, and the flow vortices and their evolution in both ends of the stack and resonator were observed. Moreover, a comparison between the simulation and experiments was made, which demonstrated the validity and power of the CFD simulation for characterizing complicated nonlinear phenomenon involved in the self-excited SWTEs.

  6. Modelling and Experiments of a Standing Wave Piezomotor

    DEFF Research Database (Denmark)

    Andersen, B.; Helbo, Jan; Blanke, Mogens

    The paper presents a new contact model for standing wave piezomotors. The contact model is based on the Hertz theory for normal contact deformations and elastic contact theory for tangential loads. The contact theory is simplified into a model with discrete springs for normal and tangential loads...... which allows the calculation of slip/stick transitions. Simulations show that tip trajectories in general cannot be prescribed. The paper presents the principle of a bending resonator. Experiments indicate that the bending vibrations are too small to generate rotor rotations. However, due to unintended...

  7. Modelling and Experiments of a Standing Wave Piezomotor

    DEFF Research Database (Denmark)

    Andersen, B.; Helbo, Jan; Blanke, Mogens

    2002-01-01

    The paper presents a new contact model for standing wave piezomotors. The contact model is based on the Hertz theory for normal contact deformations and elastic contact theory for tangential loads. The contact theory is simplified into a model with discrete springs for normal and tangential loads...... which allows the calculation of slip/stick transitions. Simulations show that tip trajectories in general cannot be prescribed. The paper presents the principle of a bending resonator. Experiments indicate that the bending vibrations are too small to generate rotor rotations. However, due to unintended...

  8. Attractors and chaos of electron dynamics in electromagnetic standing waves

    Energy Technology Data Exchange (ETDEWEB)

    Esirkepov, Timur Zh. [QuBS, Japan Atomic Energy Agency, Kizugawa, Kyoto 619-0215 (Japan); Bulanov, Stepan S. [University of California, Berkeley, CA 94720 (United States); Koga, James K.; Kando, Masaki; Kondo, Kiminori [QuBS, Japan Atomic Energy Agency, Kizugawa, Kyoto 619-0215 (Japan); Rosanov, Nikolay N. [Vavilov State Optical Institute, Saint-Petersburg 199034 (Russian Federation); Korn, Georg [ELI Beamline Facility, Institute of Physics, Czech Academy of Sciences, Prague 18221 (Czech Republic); Bulanov, Sergei V., E-mail: bulanov.sergei@jaea.go.jp [QuBS, Japan Atomic Energy Agency, Kizugawa, Kyoto 619-0215 (Japan)

    2015-09-25

    In an electromagnetic standing wave formed by two super-intense colliding laser pulses, radiation reaction totally modifies the electron motion. The quantum corrections to the electron motion and the radiation reaction force can be independently small or large, depending on the laser intensity and wavelength, thus dividing the parameter space into 4 domains. The electron motion evolves to limit cycles and strange attractors when radiation reaction dominates. This creates a new framework for high energy physics experiments on the interaction of energetic charged particle beams and colliding super-intense laser pulses.

  9. Two Mode Resonator and Contact Model for Standing Wave Piezomotor

    DEFF Research Database (Denmark)

    Andersen, B.; Blanke, Mogens; Helbo, J.

    2001-01-01

    The paper presents a model for a standing wave piezoelectric motor with a two bending mode resonator. The resonator is modelled using Hamilton's principle and the Rayleigh-Ritz method. The contact is modelled using the Lagrange Multiplier method under the assumption of slip and it is showed how...... to solve the set of differential-algebraic equations. Detailled simulations show resonance frequencies as function of the piezoelement's position, tip trajectories and contact forces. The paper demonstrates that contact stiffness and stick should be included in such model to obtain physically realistic...

  10. A standing wave braneworld and associated Sturm-Liouville problem

    CERN Document Server

    Gogberashvili, Merab; Malagon-Morejon, Dagoberto

    2010-01-01

    We present a consistent derivation of the recently proposed 5D standing wave braneworld generated by gravity coupled to a phantom-like scalar field by introducing an energy-momentum tensor on the brane with different tensions along different space-time directions and explicitly solve the corresponding junction conditions. We also analyze the Sturm-Liouville problem associated to the correct localization condition of the transverse to the brane metric and scalar fields. It is shown that this condition restricts the physically meaningful space of solutions for the localization of the fluctuations of the model.

  11. Motion of a charge in a superstrong electromagnetic standing wave

    Science.gov (United States)

    Esirkepov, Timur Z.; Bulanov, Stepan S.; Koga, James K.; Kando, Masaki; Kondo, Kiminori; Rosanov, Nikolay N.; Korn, Georg; Bulanov, Sergei V.

    2015-05-01

    Radiation reaction radically influences the electron motion in an electromagnetic standing wave formed by two super-intense colliding laser pulses. Depending on the laser intensity and wavelength, the quantum corrections to the electron motion and the radiation reaction force can be independently small or large, thus dividing the parameter space into 4 regions. When radiation reaction dominates, the electron motion evolves to limit cycles and strange attractors. This creates a new framework for high energy physics experiments on the interaction of energetic charged particle beams and colliding super-intense laser pulses.

  12. Attractors and chaos of electron dynamics in electromagnetic standing waves

    Science.gov (United States)

    Esirkepov, Timur Zh.; Bulanov, Stepan S.; Koga, James K.; Kando, Masaki; Kondo, Kiminori; Rosanov, Nikolay N.; Korn, Georg; Bulanov, Sergei V.

    2015-09-01

    In an electromagnetic standing wave formed by two super-intense colliding laser pulses, radiation reaction totally modifies the electron motion. The quantum corrections to the electron motion and the radiation reaction force can be independently small or large, depending on the laser intensity and wavelength, thus dividing the parameter space into 4 domains. The electron motion evolves to limit cycles and strange attractors when radiation reaction dominates. This creates a new framework for high energy physics experiments on the interaction of energetic charged particle beams and colliding super-intense laser pulses.

  13. Exchange anisotropy pinning of a standing spin-wave mode

    Science.gov (United States)

    Magaraggia, R.; Kennewell, K.; Kostylev, M.; Stamps, R. L.; Ali, M.; Greig, D.; Hickey, B. J.; Marrows, C. H.

    2011-02-01

    Standing spin waves in a thin film are used as sensitive probes of interface pinning induced by an antiferromagnet through exchange anisotropy. Using coplanar waveguide ferromagnetic resonance, pinning of the lowest energy spin-wave thickness mode in Ni80Fe20/Ir25Mn75 exchange-biased bilayers was studied for a range of Ir25Mn75 thicknesses. We show that pinning of the standing mode can be used to amplify, relative to the fundamental resonance, frequency shifts associated with exchange bias. The shifts provide a unique “fingerprint” of the exchange bias and can be interpreted in terms of an effective ferromagnetic film thickness and ferromagnet-antiferromagnet interface anisotropy. Thermal effects are studied for ultrathin antiferromagnetic Ir25Mn75 thicknesses, and the onset of bias is correlated with changes in the pinning fields. The pinning strength magnitude is found to grow with cooling of the sample, while the effective ferromagnetic film thickness simultaneously decreases. These results suggest that exchange bias involves some deformation of magnetic order in the interface region.

  14. Thin film characterization by resonantly excited internal standing waves

    Energy Technology Data Exchange (ETDEWEB)

    Di Fonzio, S. [SINCROTRONE TRIESTE, Trieste (Italy)

    1996-09-01

    This contribution describes how a standing wave excited in a thin film can be used for the characterization of the properties of the film. By means of grazing incidence X-ray reflectometry one can deduce the total film thickness. On the other hand in making use of a strong resonance effect in the electric field intensity distribution inside a thin film on a bulk substrate one can learn more about the internal structure of the film. The profile of the internal standing wave is proven by diffraction experiments. The most appropriate non-destructive technique for the subsequent thin film characterization is angularly dependent X-ray fluorescence analysis. The existence of the resonance makes it a powerful tool for the detection of impurities and of ultra-thin maker layers, for which the position can be determined with very high precision (about 1% of the total film thickness). This latter aspect will be discussed here on samples which had a thin Ti marker layer at different positions in a carbon film. Due to the resonance enhancement it was still possible to perform these experiments with a standard laboratory x-ray tube and with standard laboratory tool for marker or impurity detection in thin films.

  15. Contact Analysis and Modeling of Standing Wave Linear Ultrasonic Motor

    Institute of Scientific and Technical Information of China (English)

    SHI Yunlai; ZHAO Chunsheng; ZHANG Jianhui

    2011-01-01

    A contact model for describing the contact mechanics between the stator and slider of the standing wave linear ultrasonic motor was presented.The proposed model starts from the assumption that the vibration characteristics of the stator is not affected by the contact process.A modified friction models was used to analyze the contact problems.Firstly,the dynamic normal contact force,interface friction force,and steady-state characteristics were analyzed.Secondly,the influences of the contact layer material,the dynamic characteristics of the stator,and the pre-load on motor performance were simulated.Finally,to validate the contact model,a linear ultrasonic motor based on in-plane modes was used as an example.The corresponding results show that a set of simulation of motor performances based on the proposed contact mechanism is in good agreement with experimental results.This model is helpful to understanding the operation principle of the standing wave linear motor and thus contributes to the design of these tvpes of motor.

  16. A standing wave-type noncontact linear ultrasonic motor.

    Science.gov (United States)

    Hu, J; Li, G; Chan, H L; Choy, C L

    2001-05-01

    In this study, a novel standing wave-type noncontact linear ultrasonic motor is proposed and analyzed. This linear ultrasonic motor uses a properly controlled ultrasonic standing wave to levitate and drive a slider. A prototype of the motor was constructed by using a wedge-shaped aluminum stator, which was placed horizontally and driven by a multilayer PZT vibrator. The levitation and motion of the slider were observed. Assuming that the driving force was generated by the turbulent acoustic streaming in the boundary air layer next to the bottom surface of the slider, a theoretical model was developed. The calculated characteristics of this motor were found to agree quite well with the experimental results. Based on the experimental and theoretical results, guidelines for increasing the displacement and speed of the slider were obtained. It was found that increasing the stator vibration displacement, or decreasing the gradient of the stator vibration velocity and the weight per unit area of the slider, led to an increase of the slider displacement. It was also found that increasing the amplitude and gradient of the stator vibration velocity, or decreasing the weight per unit area of the slider and the driving frequency, gave rise to an increase of the slider speed. There exists an optimum roughness of the bottom surface of the slider at which the slider speed has a maximum.

  17. Influence of mass imperfections on the evolution of standing waves in slowly rotating spherical bodies

    CSIR Research Space (South Africa)

    Shatalov, MY

    2011-01-01

    Full Text Available Standing waves can exist as stable vibrating patterns in perfect structures such as spherical bodies, and inertial rotation of the body causes precession (Bryan’seffect). However, an imperfection such as light mass anisotropy destroys the standing...

  18. Photo-Ionization of Hydrogen Atom in a Circularly Polarized Standing Electromagnetic Wave

    Institute of Scientific and Technical Information of China (English)

    LIU Xiang-Tao; ZHANG Qi-Ren; WANG Wan-Zhang

    2004-01-01

    Applying time-independent non-perturbative formalism to the photo-ionization of hydrogen atom immersed in a strong circularly polarized standing electromagnetic wave, we calculate the shift of energy levels and the distortion of wave functions for the hydrogen atom, the ionization cross section induced by the standing wave, and the angular distribution of photoelectrons and obtain some interesting results.

  19. Heteroclinic standing waves in defocussing DNLS equations -- Variational approach via energy minimization

    CERN Document Server

    Herrmann, Michael

    2010-01-01

    We study heteroclinic standing waves (dark solitons) in discrete nonlinear Schr\\"{o}dinger equations with defocussing nonlinearity. Our main result is a quite elementary existence proof for waves with monotone and odd profile, and relies on minimizing an appropriately defined energy functional. We also study the continuum limit and the numerical approximation of standing waves.

  20. ORBITAL INSTABILITY OF STANDING WAVES FOR THE COUPLED NONLINEAR KLEIN-GORDON EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Gan Zaihui; Guo Boling; Zhang Jian

    2008-01-01

    This paper deals with a type of standing waves for the coupled nonlin-ear Klein-Gordon equations in three space dimensions. First we construct a suitable constrained variational problem and obtain the existence of the standing waves with ground state by using variational argument. Then we prove the orbital instability of the standing waves by defining invariant sets and applying some priori estimates.

  1. Slot-coupled CW standing wave accelerating cavity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shaoheng; Rimmer, Robert; Wang, Haipeng

    2017-05-16

    A slot-coupled CW standing wave multi-cell accelerating cavity. To achieve high efficiency graded beta acceleration, each cell in the multi-cell cavity may include different cell lengths. Alternatively, to achieve high efficiency with acceleration for particles with beta equal to 1, each cell in the multi-cell cavity may include the same cell design. Coupling between the cells is achieved with a plurality of axially aligned kidney-shaped slots on the wall between cells. The slot-coupling method makes the design very compact. The shape of the cell, including the slots and the cone, are optimized to maximize the power efficiency and minimize the peak power density on the surface. The slots are non-resonant, thereby enabling shorter slots and less power loss.

  2. Unified relativistic physics from a standing wave particle model

    CERN Document Server

    Vera, R A

    1995-01-01

    An extremely simple and unified base for physics comes out by starting all over from a single postulate on the common nature of matter and stationary forms of radiation quanta. Basic relativistic, gravitational (G) and quantum mechanical properties of a standing wave particle model have been derived. This has been done from just dual properties of radiation's and strictly homogeneous relationships for nonlocal cases in G fields. This way reduces the number of independent variables and puts into relief (and avoid) important inhomogeneity errors of some G theories. It unifies and accounts for basic principles and postulates physics. The results for gravity depend on linear radiation properties but not on arbitrary field relations. They agree with the conventional tests. However they have some fundamental differences with current G theories. The particle model, at a difference of the conventional theories, also fixes well-defined cosmological and astrophysical models that are different from the rather convention...

  3. Design and simulation of a standing wave oscillator based PLL

    Institute of Scientific and Technical Information of China (English)

    Wei ZHANG; You-de HU; Li-rong ZHENG

    2016-01-01

    A standing wave oscillator (SWO) is a perfect clock source which can be used to produce a high frequency clock signal with a low skew and high reliability. However, it is difficult to tune the SWO in a wide range of frequencies. We introduce a frequency tunable SWO which uses an inversion mode metal-oxide-semiconductor (IMOS) field-effect transistor as a varactor, and give the simulation results of the frequency tuning range and power dissipation. Based on the frequency tunable SWO, a new phase locked loop (PLL) architecture is presented. This PLL can be used not only as a clock source, but also as a clock distribution network to provide high quality clock signals. The PLL achieves an approximately 50% frequency tuning range when designed in Global Foundry 65 nm 1P9M complementary metal-oxide-semiconductor (CMOS) technology, and can be used directly in a high performance multi-core microprocessor.

  4. Suspension of atoms and gravimetry using a pulsed standing wave

    CERN Document Server

    Hughes, K J; Sackett, C A

    2009-01-01

    Atoms from an otherwise unconfined 87Rb condensate are shown to be suspended against gravity using repeated reflections from a pulsed optical standing wave. Reflection efficiency was optimized using a triple-pulse sequence that, theoretically, provides accuracies better than 99.9%. Experimentally, up to 100 reflections are observed, leading to dynamical suspension for over 100 ms. The velocity sensitivity of the reflections can be used to determine the local gravitational acceleration. Further, a gravitationally sensitive atom interferometer was implemented using the suspended atoms, with packet coherence maintained for a similar time. These techniques could be useful for the precise measurement of gravity when it is impractical to allow atoms to fall freely over a large distance.

  5. Trial Operation of a Stand-alone Wave Power System Successful

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ A group of scientists from the CAS Guangzhou Institute of Energy Conversion succeeded on January 9 in their first sea trial of a stand-alone wave power system, marking significant progress in generating stable electricity with wave energy.

  6. Coherent control of light-matter interactions in polarization standing waves

    Science.gov (United States)

    Fang, Xu; MacDonald, Kevin F.; Plum, Eric; Zheludev, Nikolay I.

    2016-08-01

    We experimentally demonstrate that standing waves formed by two coherent counter-propagating light waves can take a variety of forms, offering new approaches to the interrogation and control of polarization-sensitive light-matter interactions in ultrathin (subwavelength thickness) media. In contrast to familiar energy standing waves, polarization standing waves have constant electric and magnetic energy densities and a periodically varying polarization state along the wave axis. counterintuitively, anisotropic ultrathin (meta)materials can be made sensitive or insensitive to such polarization variations by adjusting their azimuthal angle.

  7. What are the frequencies of standing magnetopause surface waves?

    CERN Document Server

    Archer, Martin

    2014-01-01

    We estimate, for the first time, the distribution of standing magnetopause surface wave (also called Kruskal-Schwartzschild mode) frequencies using realistic models of the magnetosphere and magnetosheath utilising an entire solar cycle's worth of solar wind data. Under non-storm times or northward interplanetary magnetic field (IMF), the most likely fundamental frequency is calculated to be 0.64$\\pm$0.06 mHz, consistent with that previously inferred from observed oscillation periods of the boundary. However, the distributions exhibit significant spread (of order $\\pm$0.3 mHz), much larger than suggested by proponents of discrete, stable "magic" frequencies of magnetospheric oscillation. The frequency is found to be most dependent on the solar wind speed, southward component of the IMF and the Dst index, with the latter two being due to the erosion of the magnetosphere by reconnection and the former an effect of the expression for the surface wave phase speed. Finally, the occurrence of Kruskal-Schwartzschild ...

  8. Standing surface acoustic wave (SSAW)-based microfluidic cytometer.

    Science.gov (United States)

    Chen, Yuchao; Nawaz, Ahmad Ahsan; Zhao, Yanhui; Huang, Po-Hsun; McCoy, J Phillip; Levine, Stewart J; Wang, Lin; Huang, Tony Jun

    2014-03-07

    The development of microfluidic chip-based cytometers has become an important area due to their advantages of compact size and low cost. Herein, we demonstrate a sheathless microfluidic cytometer which integrates a standing surface acoustic wave (SSAW)-based microdevice capable of 3D particle/cell focusing with a laser-induced fluorescence (LIF) detection system. Using SSAW, our microfluidic cytometer was able to continuously focus microparticles/cells at the pressure node inside a microchannel. Flow cytometry was successfully demonstrated using this system with a coefficient of variation (CV) of less than 10% at a throughput of ~1000 events s(-1) when calibration beads were used. We also demonstrated that fluorescently labeled human promyelocytic leukemia cells (HL-60) could be effectively focused and detected with our SSAW-based system. This SSAW-based microfluidic cytometer did not require any sheath flows or complex structures, and it allowed for simple operation over a wide range of sample flow rates. Moreover, with the gentle, bio-compatible nature of low-power surface acoustic waves, this technique is expected to be able to preserve the integrity of cells and other bioparticles.

  9. SQUEEZING PROPERTIES OF A TRAPPED ION IN THE STANDING-WAVE LASER

    Institute of Scientific and Technical Information of China (English)

    FANG MAO-FA; LIU XIANG

    2001-01-01

    We investigate the squeezing properties of a trapped ion in a standing-wave laser. Our results show that the squeezing of a trapped ion in the standing-wave laser is dependent on its position in the latter, the detuning parameter and the initial average phonon number.

  10. On functional equations leading to exact solutions for standing internal waves

    NARCIS (Netherlands)

    Beckebanze, F.; Keady, G.

    The Dirichlet problem for the wave equation is a classical example of a problem which is ill-posed. Nevertheless, it has been used to model internal waves oscillating harmonically in time, in various situations, standing internal waves amongst them. We consider internal waves in two-dimensional

  11. Noise-induced standing waves in oscillatory systems with time-delayed feedback

    CERN Document Server

    Stich, Michael

    2016-01-01

    In oscillatory reaction-diffusion systems, time-delay feedback can lead to the instability of uniform oscillations with respect to formation of standing waves. Here, we investigate how the presence of additive, Gaussian white noise can induce the appearance of standing waves. Combining analytical solutions of the model with spatio-temporal simulations, we find that noise can promote standing waves in regimes where the deterministic uniform oscillatory modes are stabilized. As the deterministic phase boundary is approached, the spatio-temporal correlations become stronger, such that even small noise can induce standing waves in this parameter regime. With larger noise strengths, standing waves could be induced at finite distances from the (deterministic) phase boundary. The overall dynamics is defined through the interplay of noisy forcing with the inherent reaction-diffusion dynamics.

  12. Standing wave brass-PZT square tubular ultrasonic motor.

    Science.gov (United States)

    Park, Soonho; He, Siyuan

    2012-09-01

    This paper reports a standing wave brass-PZT tubular ultrasonic motor. The motor is composed of a brass square tube with two teeth on each tube end. Four PZT plates are attached to the outside walls of the brass tube. The motor requires only one driving signal to excite vibration in a single bending mode to generate reciprocating diagonal trajectories of teeth on the brass tube ends, which drive the motor to rotate. Bi-directional rotation is achieved by exciting different pairs of PZT plates to switch the bending vibration direction. Through using the brass-PZT tube structure, the motor can take high magnitude vibration to achieve a high output power in comparison to PZT tube based ultrasonic motors. Prototypes are fabricated and tested. The dimension of the brass-PZT tube is 3.975mm×3.975mm×16mm. Measured performance is a no-load speed of >1000RPM, a stall torque of 370μNm and a maximum output power of 16 mW when a sinusoidal driving voltage of 50V is applied. The working frequencies of the motor are 46,050Hz (clockwise) and 46,200Hz (counter-clockwise).

  13. Extracting Information from the Atom-Laser Wave Function UsingInterferometric Measurement with a Laser Standing-Wave Grating

    Institute of Scientific and Technical Information of China (English)

    刘正东; 武强; 曾亮; 林宇; 朱诗尧

    2001-01-01

    The reconstruction of the atom-laser wave function is performed using an interferometric measurement with a standing-wave grating, and the results of this scheme are studied. The relations between the measurement data and the atomic wave function are also presented. This scheme is quite applicable and effectively avoids the initial random phase problem of the method that employs the laser running wave. The information which is encoded in the atom-laser wave is extracted.

  14. Scaling-up ultrasound standing wave enhanced sedimentation filters.

    Science.gov (United States)

    Prest, Jeff E; Treves Brown, Bernard J; Fielden, Peter R; Wilkinson, Stephen J; Hawkes, Jeremy J

    2015-02-01

    Particle concentration and filtration is a key stage in a wide range of processing industries and also one that can be present challenges for high throughput, continuous operation. Here we demonstrate some features which increase the efficiency of ultrasound enhanced sedimentation and could enable the technology the potential to be scaled up. In this work, 20 mm piezoelectric plates were used to drive 100 mm high chambers formed from single structural elements. The coherent structural resonances were able to drive particles (yeast cells) in the water to nodes throughout the chamber. Ultrasound enhanced sedimentation was used to demonstrate the efficiency of the system (>99% particle clearance). Sub-wavelength pin protrusions were used for the contacts between the resonant chamber and other elements. The pins provided support and transferred power, replacing glue which is inefficient for power transfer. Filtration energies of ∼4 J/ml of suspension were measured. A calculation of thermal convection indicates that the circulation could disrupt cell alignment in ducts >35 mm high when a 1K temperature gradient is present; we predict higher efficiencies when this maximum height is observed. For the acoustic design, although modelling was minimal before construction, the very simple construction allowed us to form 3D models of the nodal patterns in the fluid and the duct structure. The models were compared with visual observations of particle movement, Chladni figures and scanning laser vibrometer mapping. This demonstrates that nodal planes in the fluid can be controlled by the position of clamping points and that the contacts could be positioned to increase the efficiency and reliability of particle manipulations in standing waves.

  15. Particle dynamics and pair production in tightly focused standing wave

    Science.gov (United States)

    Jirka, M.; Klimo, O.; Vranić, M.; Weber, S.; Korn, G.

    2017-05-01

    With the advent of 10 PW laser facilities, new regimes of laser-matter interaction are opening since effects of quantum electrodynamics, such as electron-positron pair production and cascade development, start to be important. The dynamics of light charged particles, such as electrons and positrons, is affected by the radiation reaction force. This effect can strongly influence the interaction of intense laser pulses with matter since it lowers the energy of emitting particles and transforms their energy to the gamma radiation. Consequently, electron-positron pairs can be generated via Breit-Wheeler process. To study this new regime of interaction, numerical simulations are required. With their help it is possible to predict and study quantum effects which may occur in future experiments at modern laser facilities. In this work we present results of electron interaction with an intense standing wave formed by two colliding laser pulses. Due to the necessity to achieve ultra intense laser field, the laser beam has to be focused to a μm-diameter spot. Since the paraxial approximation is not valid for tight focusing, the appropriate model describing the tightly focused laser beam has to be employed. In tightly focused laser beam the longitudinal component of the electromagnetic field becomes significant and together with the ponderomotive force they affect the dynamics of interacting electrons and also newly generated Breit-Wheeler electron-positron pairs. Using the Particle-In-Cell code we study electron dynamics, gamma radiation and pair production in such a configuration for linear polarization and different types of targets.

  16. Analysis on Non-Resonance Standing Waves and Vibration Tracks of Strings

    Science.gov (United States)

    Fang, Tian-Shen

    2007-01-01

    This paper presents an experimental technique to observe the vibration tracks of string standing waves. From the vibration tracks, we can analyse the vibration directions of harmonic waves. For the harmonic wave vibrations of strings, when the driving frequency f[subscript s] = Nf[subscript n] (N = 1, 2, 3, 4,...), both resonance and non-resonance…

  17. Standing Waves of the Inhomogeneous Klein-Gordon Equations with Critical Exponent

    Institute of Scientific and Technical Information of China (English)

    Zai Hui GAN; Jian ZHANG

    2006-01-01

    This paper is concerned with the standing wave in the inhomogeneous nonlinear Klein-Gordon equations with critical exponent. Firstly, we obtain the existence of standing waves associated with the ground states by using variational calculus as well as a compactness lemma. Next, we establish some sharp conditions for global existence in terms of the characteristics of the ground state. Then,we show that how small the initial data are for the global solutions to exist. Finally, we prove the instability of the standing wave by combining the former results.

  18. The global coherence initiative: creating a coherent planetary standing wave.

    Science.gov (United States)

    McCraty, Rollin; Deyhle, Annette; Childre, Doc

    2012-03-01

    via biological, electromagnetic, and nonlocal fields, it stands to reason that humans can work together in a co-creative relationship to consciously increase the coherence in the global field environment, which in turn distributes this information to all living systems within the field. GCI was established to help facilitate the shift in global consciousness from instability and discord to balance, cooperation, and enduring peace. A primary goal of GCI is to test the hypothesis that large numbers of people when in a heart-coherent state and holding a shared intention can encode information on the earth's energetic and geomagnetic fields, which act as carrier waves of this physiologically patterned and relevant information. In order to conduct this research, a global network of 12 to 14 ultrasensitive magnetic field detectors specifically designed to measure the earth's magnetic resonances is being installed strategically around the planet. More important is GCI's primary goal to motivate as many people as possible to work together in a more coherent and collaborative manner to increase the collective human consciousness. If we are persuaded that not only external fields of solar and cosmic origins but also human attention and emotion can directly affect the physical world and the mental and emotional states of others (consciousness), it broadens our view of what interconnectedness means and how it can be intentionally utilized to shape the future of the world we live in. It implies that our attitudes, emotions, and intentions matter and that coherent, cooperative intent can have positive effects. GCI hypothesizes that when enough individuals and social groups increase their coherence baseline and utilize that increased coherence to intentionally create a more coherent standing reference wave in the global field, it will help increase global consciousness. This can be achieved when an increasing number of people move towards more balanced and self-regulated emotions

  19. Formation of two-dimensional nonspreading atomic wave packets in the field of two standing light waves

    NARCIS (Netherlands)

    Efremov, MA; Petropavlovsky, SV; Fedorov, MV; Schleich, WP; Yakovlev, VP

    2005-01-01

    The formation of two-dimensional nonspreading atomic wave packets produced in the interaction of a beam of two-level atoms with two standing light waves polarised in the same plane is considered. The mechanism providing a dispersionless particle dynamics is the balance of two processes: a rapid deca

  20. The Shadow Knows: Inferring the Density Distribution of a Nonuniform Medium from Its Standing Wave Pattern

    Science.gov (United States)

    Binder, Philippe; Cunnyngham, Ian

    2012-01-01

    In a recent note in this journal, Gluck presents a beautiful demonstration of the standing wave generated by a strip of material with linearly varying width (a trapezoid). As expected, the resulting wave envelope (and its shadow) showed a varying wavelength--smaller as the strip width gets larger.

  1. Standing Excitation Waves in the Heart Induced by Strong Alternating Electric Fields

    Science.gov (United States)

    Gray, Richard A.; Mornev, Oleg A.; Jalife, José; Aslanidi, Oleg V.; Pertsov, Arkady M.

    2001-10-01

    We studied the effect of sinusoidal electric fields on cardiac tissue both experimentally and numerically. We found that periodic forcing at 5-20 Hz using voltage applied in the bathing solution could stop the propagation of excitation waves by producing standing waves of membrane depolarization. These patterns were independent of the driving frequency in contrast to classical standing waves. The stimulus strength required for pattern formation was large compared to the excitation threshold. A novel tridomain representation of cardiac tissue was required to reproduce this behavior numerically.

  2. The structure of standing Alfvén waves in a dipole magnetosphere with moving plasma

    Directory of Open Access Journals (Sweden)

    D. A. Kozlov

    2006-03-01

    Full Text Available The structure and spectrum of standing Alfvén waves were theoretically investigated in a dipole magnetosphere with moving plasma. Plasma motion was simulated with its azimuthal rotation. The model's scope allowed for describing a transition from the inner plasmasphere at rest to the outer magnetosphere with convecting plasma and, through the magnetopause, to the moving plasma of the solar wind. Solutions were found to equations describing longitudinal and transverse (those formed, respectively, along field lines and across magnetic shells structures of standing Alfvén waves with high azimuthal wave numbers m>>1. Spectra were constructed for a number of first harmonics of poloidal and toroidal standing Alfvén waves inside the magnetosphere. For charged particles with velocities greatly exceeding the velocity of the background plasma, an effective parallel wave component of the electric field appears in the region occupied by such waves. This results in structured high-energy-particle flows and in the appearance of multiband aurorae. The transverse structure of the standing Alfvén waves' basic harmonic was shown to be analogous to the structure of a discrete auroral arc.

  3. Overdetermined Shooting Methods for Computing Standing Water Waves with Spectral Accuracy

    CERN Document Server

    Wilkening, Jon

    2012-01-01

    A high-performance shooting algorithm is developed to compute time-periodic solutions of the free-surface Euler equations with spectral accuracy in double and quadruple precision. The method is used to study resonance and its effect on standing water waves. We identify new nucleation mechanisms in which isolated large-amplitude solutions, and closed loops of such solutions, suddenly exist for depths below a critical threshold. We also study degenerate and secondary bifurcations related to Wilton's ripples in the traveling case, and explore the breakdown of self-similarity at the crests of extreme standing waves. In shallow water, we find that standing waves take the form of counter-propagating solitary waves that repeatedly collide quasi-elastically. In deep water with surface tension, we find that standing waves resemble counter-propagating depression waves. We also discuss existence and non-uniqueness of solutions, and smooth versus erratic dependence of Fourier modes on wave amplitude and fluid depth. In t...

  4. Standing Slow MHD Waves in Radiatively Cooling Coronal Loops

    CERN Document Server

    Al-Ghafri, Khalil Salim

    2015-01-01

    The standing slow magneto-acoustic oscillations in cooling coronal loops are investigated. There are two damping mechanisms which are considered to generate the standing acoustic modes in coronal magnetic loops namely thermal conduction and radiation. The background temperature is assumed to change temporally due to optically thin radiation. In particular, the background plasma is assumed to be radiatively cooling. The effects of cooling on longitudinal slow MHD modes is analytically evaluated by choosing a simple form of radiative function that ensures the temperature evolution of the background plasma due to radiation coincides with the observed cooling profile of coronal loops. The assumption of low-beta plasma leads to neglect the magnetic field perturbation and eventually reduces the MHD equations to a 1D system modelling longitudinal MHD oscillations in a cooling coronal loop. The cooling is assumed to occur on a characteristic time scale much larger than the oscillation period that subsequently enables...

  5. Influence of standing surface waves on thermocapillary convection stability and crystal growth in weightlessness

    Science.gov (United States)

    Feonychev, A. I.

    Numerical investigation of thermocapillary flows and crystal growth by the floating zone method had been carried out in the case what free fluid surface oscillates in the form of standing wave by vibration. Two sorts of standing waves were considered. First, it is inertia-capillary standing waves due to vibration motion of fluid column as unit. These waves had been discovered under numerical investigation of problem /1/. Analytical model and the characteristic properties of these waves are described in /2/. Secondly, usual capillary waves generated by vibration of growing crystal were also considered. The effects of these surface waves on fluid flow and heat and mass transfer in process of crystal growth had been investigated over the wide ranges of dimensionless parameters for the Prandtl number is less than 1. The Marangoni number was varied from 140 to 2500, the range of cyclic frequency was between 200 and 76000. Transition from laminar thermocapillary convection to regime of flow with high oscillations (turbulent convection) happens very sharply when dimensionless amplitude (scale for linear dimensions is radius of fluid column) of standing wave reached 0.01112/n, where n is number of standing wave periods are along the length of fluid zone. If configuration of standing wave correlates with thermocapillary flow pattern two specific regimes of flow had been discovered. Flow with small oscillations is located in the range of standing wave amplitude between 0.0028 and 0.00418. In this area, radial macrosegregation of dopant is lowered by the factor of 3-6 depending on the Marangoni number. Next is an area with practically stable flow, in particular is identical to laminar flow without vibration. This area ends very sharply in the boundary of turbulent flow. All the mentioned boundaries are independent of the Marangoni number and frequency of oscillation of standing wave. For oscillatory thermocapillary convection (the Marangoni number is more than 2000

  6. Adiabatic asymmetric scattering of atoms in the field of a standing wave

    CERN Document Server

    Hakobyan, M V; Ishkhanyan, A M

    2015-01-01

    A model of the asymmetric coherent scattering process (caused by initial atomic wave-packet splitting in the momentum space) taking place at the large detuning and adiabatic course of interaction for an effective two-state system interacting with a standing wave of laser radiation is discussed. We show that the same form of initial wave-packet splitting may lead to different, in general, diffraction patterns for opposite, adiabatic and resonant, regimes of the standing-wave scattering. We show that the scattering of the Gaussian wave packet in the adiabatic case presents refraction (a limiting form of the asymmetric scattering) in contrast to the bi-refringence (the limiting case of the high-order narrowed scattering) occurring in the resonant scattering.

  7. Acoustic clouds: standing sound waves around a black hole analogue

    CERN Document Server

    Benone, Carolina L; Herdeiro, Carlos; Radu, Eugen

    2014-01-01

    Under certain conditions sound waves in fluids experience an acoustic horizon with analogue properties to those of a black hole event horizon. In particular, a draining bathtub-like model can give rise to a rotating acoustic horizon and hence a rotating black hole (acoustic) analogue. We show that sound waves, when enclosed in a cylindrical cavity, can form stationary waves around such rotating acoustic black holes. These acoustic perturbations display similar properties to the scalar clouds that have been studied around Kerr and Kerr-Newman black holes; thus they are dubbed acoustic clouds. We make the comparison between scalar clouds around Kerr black holes and acoustic clouds around the draining bathtub explicit by studying also the properties of scalar clouds around Kerr black holes enclosed in a cavity. Acoustic clouds suggest the possibility of testing, experimentally, the existence and properties of black hole clouds, using analog models.

  8. Damage Detection on Thin-walled Structures Utilizing Laser Scanning and Standing Waves

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Se Hyeok; Jeon, Jun Young; Kim, Du Hwan; Park, Gyuhae [Chonnam Nat’l Univ., Gwangju (Korea, Republic of); Kang, To; Han, Soon Woo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-05-15

    This paper describes wavenumber filtering for damage detection using single-frequency standing wave excitation and laser scanning sensing. An embedded piezoelectric sensor generates ultrasonic standing waves, and the responses are measured using a laser Doppler vibrometer and mirror tilting device. After scanning, newly developed damage detection techniques based on wavenumber filtering are applied to the full standing wave field. To demonstrate the performance of the proposed techniques, several experiments were performed on composite plates with delamination and aluminum plates with corrosion damage. The results demonstrated that the developed techniques could be applied to various structures to localize the damage, with the potential to improve the damage detection capability at a high interrogation speed.

  9. Controlled high-energy ion acceleration with intense chirped standing waves

    Science.gov (United States)

    Mackenroth, Felix; Gonoskov, Arkady; Marklund, Mattias

    2016-10-01

    We present the latest results of the recently proposed ion acceleration mechanism ``chirped standing wave acceleration''. This mechanism is based on locking the electrons of a thin plasma layer to the moving nodes of a standing wave formed by a chirped laser pulse reflected from a mirror behind the thin layer. The resulting longitudinal charge separation field between the displaced electrons and the residual ions then accelerates the latter. Since the plasma layer is stabilized by the standing wave, the formation of plasma instabilities is suppressed. Furthermore, the experimentally accessible laser chirp provides a versatile tool for manipulating the resulting ion beam in terms of maximum particle energy, particle number and spectral distribution. Through this scheme, proton beams, with energy spectra peaked around 100 MeV, were shown to be feasible for pulse energies at the level of 10 J. Wallenberg Foundation within the Grant ''Plasma based compact ion sources'' (PLIONA).

  10. Quantum Entropic Dynamics of a Trapped Ion in a Standing Wave

    Institute of Scientific and Technical Information of China (English)

    FANG Mao-Fa; ZHOU Peng; S. Swain

    2000-01-01

    By performing a unitary transformation, we transform the Hamiltonian of the trapped ion in any position of standing wave to that of the normal Jaynes-Cummings model in ionic bare basis and we obtain a general evolution operator of the trapped ion system. We study the quantum entropic dynamics of the phonons and trapped ion.Our results show that, when the trapped ion is located at the node of standing wave, the quantum entropic dynamics of phonons and trapped ion are the same as the one of the field in the Jaynes-Cummings model.When the trapped ion deviatesfrom the node of standing wave, the entropies of the phonons and ion keep their maximum value except at the initial stage, and the phonons and trapped ion become extremely entangled.

  11. Sand Bed Morphodynamics under Standing Waves and Vegetated Conditions

    Science.gov (United States)

    Landry, B. J.; Garcia, M. H.

    2010-12-01

    Littoral processes such as sediment transport, wave attenuation, and boundary layer development are governed by the presence of bathymetric features, which include large-scale sand bars upon which smaller-scale sand ripples are superimposed, as well as the presence of submarine vegetation. Numerous studies on sand ripples and bars have aided to elucidate the dynamics in oscillatory flows; however, the effect of vegetation on the system is less understood. Recent laboratory studies have focused on quantifying wave attenuation by emergent vegetation as a natural method to mitigate storm surges. The emergent vegetation, while promising for coastal protection, alters sediment transport rates directly by the physical presence of the plants near the bed and indirectly from reduction in near-bed shear stresses due to attenuated wave energy. The experimental work herein focuses on the area near the deeply submerged vegetated canopy limit (current work has a ratio of mean still water depth to plant height, H/h, = 7.9) to minimize the effect on the surface waves and discern the direct impact vegetation has on sand bed morphodynamics. Experiments were conducted in the large wave tank (49-m long by 1.83-m wide by 1.22-m deep) in the Ven Te Chow Hydrosystems Laboratory at the University of Illinois in which a high reflection wave forcing was used over a uniform sand bed with a 0.25-mm median sediment diameter in which staggered and uniform arrangements of idealized vegetation (i.e., 6.35-mm diameter rigid wooden cylinders) were positioned along the bed (e.g., at predetermined sand bar troughs and over an entire sand bar). The resulting bathymetric evolution from the vegetated case experiments were compared to the base case of no vegetation using two optical methods: a high-resolution laser displacement sensor for three-dimensional surveys and digitized profiles via high-definition panoramic images of the entire test section. The experimental findings illustrate the profound

  12. Standing-wave excited soft x-ray photoemission microscopy: application to Co microdot magnetic arrays

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Alexander; Kronast, Florian; Papp, Christian; Yang, See-Hun; Cramm, Stefan; Krug, Ingo P.; Salmassi, Farhad; Gullikson, Eric M.; Hilken, Dawn L.; Anderson, Erik H.; Fischer, Peter; Durr, Hermann A.; Schneider, Claus M.; Fadley, Charles S.

    2010-10-29

    We demonstrate the addition of depth resolution to the usual two-dimensional images in photoelectron emission microscopy (PEEM), with application to a square array of circular magnetic Co microdots. The method is based on excitation with soft x-ray standing-waves generated by Bragg reflection from a multilayer mirror substrate. Standing wave is moved vertically through sample simply by varying the photon energy around the Bragg condition. Depth-resolved PEEM images were obtained for all of the observed elements. Photoemission intensities as functions of photon energy were compared to x-ray optical calculations in order to quantitatively derive the depth-resolved film structure of the sample.

  13. Analysis of Nanometer Structure for Chromium Atoms in Gauss Standing Laser Wave

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wen-Tao; ZHU Bao-Hua; XIONG Xian-Ming

    2010-01-01

    @@ The equation of motion of two-level chromium atoms in Gauss standing laser wave is discussed and the distribution of chromium atoms is given under different transverse velocity conditions.The results show that the focusing position of atoms will be affected by the transverse velocity of atoms.Based on the four-order Runge-Kutta method,the locus of chromium atoms in Gauss standing laser wave is simulated.The three-dimensional characteristics of nanometer structures are stimulated under perfect and emanative conditions.

  14. Position-dependent dynamics of a trapped ion in a standing wave laser

    Institute of Scientific and Technical Information of China (English)

    方卯发

    2002-01-01

    We have investigated the position-dependent dynamics of a trapped ion in a standing wave laser by transforming it to the Jaynes-Cummings-type system under the Lamb-Dicke limit. A variety of novel phenomena are exhibited,e.g. periodic collapse and revival features and long-time scaled revivals of the ionic inversion, depending on its position in the standing wave. Our result provides a way of producing a system equivalent to the two-photon Jaynes-Cummings model in the trapped ion system, with its exact periodicities.

  15. A Scanned Perturbation Technique For Imaging Electromagnetic Standing Wave Patterns of Microwave Cavities

    CERN Document Server

    Gokirmak, A; Bridgewater, A; Anlage, S M; Gokirmak, Ali; Wu, Dong-Ho; Anlage, Steven M.

    1998-01-01

    We have developed a method to measure the electric field standing wave distributions in a microwave resonator using a scanned perturbation technique. Fast and reliable solutions to the Helmholtz equation (and to the Schrodinger equation for two dimensional systems) with arbitrarily-shaped boundaries are obtained. We use a pin perturbation to image primarily the microwave electric field amplitude, and we demonstrate the ability to image broken time-reversal symmetry standing wave patterns produced with a magnetized ferrite in the cavity. The whole cavity, including areas very close to the walls, can be imaged using this technique with high spatial resolution over a broad range of frequencies.

  16. Standing torsional waves in a fully saturated, porous, circular cylinder

    CERN Document Server

    Solorza, S; 10.1111/j.1365-246X.2004.02198.x

    2004-01-01

    For dynamic measurement of the elastic moduli of a porous material saturated with viscous fluid using the resonance-bar technique, one also observes attenuation. In this article we have carried out the solution of the boundary-value problem associated with standing torsional oscillations of a finite, poroelastic, circular cylinder cast in the framework of volume-averaged theory of poroelasticity. Analysing this solution by eigenvalue perturbation approach we are able to develop expressions for torsional resonance and temporal attenuation frequencies in which the dependence upon the material properties are transparent. It shows how the attenuation is controlled by the permeability and the fluid properties, and how the resonance frequency drops over its value for the dry solid-frame due to the drag effect of fluid mass. Based upon this work we have a firm basis to determine solid-frame shear modulus, permeability, and tortuosity factor from torsional oscillation experiments.

  17. On standing sausage waves in photospheric magnetic waveguides

    CERN Document Server

    Dorotovic, I; Freij, N; Karlovsky, V; Marquez, I

    2012-01-01

    By focusing on the oscillations of the cross-sectional area and the intensity of magnetic waveguides located in the lower solar atmosphere, we aim to detect and identify magnetohydrodynamic (MHD) sausage waves. Capturing several series of high-resolution images of pores and sunspots and employing wavelet analysis in conjunction with empirical mode decomposition (EMD) makes the MHD wave analysis possible. For this paper, two sunspots and one pore (with a light bridge) were chosen as representative examples of MHD waveguides in the lower solar atmosphere. The sunspots and pore display a range of periods from 4 to 65 minutes. The sunspots support longer periods than the pore - generally enabling a doubling or quadrupling of the maximum pore oscillatory period. All of these structures display area oscillations indicative of MHD sausage modes and in-phase behaviour between the area and intensity, presenting mounting evidence for the presence of the slow sausage mode within these waveguides. The presence of fast an...

  18. Homoclinic standing waves in focussing DNLS equations --Variational approach via constrained energy maximization

    CERN Document Server

    Herrmann, Michael

    2010-01-01

    We study focussing discrete nonlinear Schr\\"{o}dinger equations and present a new variational existence proof for homoclinic standing waves (bright solitons). Our approach relies on the constrained maximization of an energy functional and provides the existence of two one-parameter families of waves with unimodal and even profile function for a wide class of nonlinearities. Finally, we illustrate our results by numerical simulations.

  19. Standing Sound Waves in a tube: Approach analysis \\& sugestions

    CERN Document Server

    Vieira, L P; Lara, V O M

    2013-01-01

    In this paper we attempt to present some questions with respect to the approach used in some brazilian mid-level textbooks on the topic of stationary sound waves in tubes. In addition to ranking the textbooks within a set of criteria, we also present some suggestions for further discussions of this topic. We suggest the use of gifs and animations and the use of two experiments that allow you to view the profiles of variation of pressure and air displacement for the harmonic modes of vibration.

  20. Model independent X-ray standing wave analysis of periodic multilayer structures

    NARCIS (Netherlands)

    Yakunin, S.N.; Makhotkin, I.A.; Chuev, M.A.; Pashaev, E.M.; Zoethout, E.; Louis, E.; Kruijs, van de R.W.E.; Seregin, S.Y.; Subbotin, I.A.; Novikov, D.; Bijkerk, F.; Kovalchuk, M.V.

    2014-01-01

    We present a model independent approach for the reconstruction of the atomic concentration profile in a nanoscale layered structure, as measured using the X-ray fluorescence yield modulated by an X-ray standing wave (XSW). The approach is based on the direct regularized solution of the system of lin

  1. Model independent X-ray standing wave analysis of periodic multilayer structures

    NARCIS (Netherlands)

    Yakunin, S. N.; Makhotkin, I. A.; van de Kruijs, R. W. E.; Chuev, M. A.; Pashaev, E.M.; Zoethout, E.; E. Louis,; Seregin, Yu; Subbotin, I.A.; Novikov, D. V.; F. Bijkerk,; Kovalchuk, M. V.

    2014-01-01

    We present a model independent approach for the analysis of X-ray fluorescence yield modulated by an X-ray standing wave (XSW), that allow a fast reconstruction of the atomic distribution function inside a sample without fitting procedure. The approach is based on the direct regularized solution of

  2. Particle motion of accelerated electrons in standing-wave RF structures

    Science.gov (United States)

    Hammen, A. F. J.; Corstens, J. M.; Botman, J. I. M.; Hagedoorn, H. L.; Theuws, W. H. C.

    1999-05-01

    A Hamiltonian theory has been formulated, which is used to calculate accelerated particle motion in standing-wave RF structures. In particular, these calculations have been applied to the Eindhoven racetrack microtron accelerating cavity. The calculations are in excellent agreement with simulations performed by particle-tracking codes.

  3. Dynamics of spontaneous radiation of atoms scattered by a resonance standing light wave

    NARCIS (Netherlands)

    Fedorov, MV; Efremov, MA; Yakovlev, VP; Schleich, WP

    2003-01-01

    The scattering of atoms by a resonance standing light wave is considered under conditions when the lower of two resonance levels is metastable, while the upper level rapidly decays due to mainly spontaneous radiative transitions to the nonresonance levels of an atom. The diffraction scattering regim

  4. Vibration of a single microcapsule with a hard plastic shell in an acoustic standing wave field.

    Science.gov (United States)

    Koyama, Daisuke; Kotera, Hironori; Kitazawa, Natsuko; Yoshida, Kenji; Nakamura, Kentaro; Watanabe, Yoshiaki

    2011-04-01

    Observation techniques for measuring the small vibration of a single microcapsule of tens of nanometers in an acoustic standing wave field are discussed. First, simultaneous optical observation of a microbubble vibration by two methods is investigated, using a high-speed video camera, which permits two-dimensional observation of the bubble vibration, and a laser Doppler vibrometer (LDV), which can observe small bubble vibration amplitudes at high frequency. Bubbles of tens of micrometers size were trapped at the antinode of an acoustic standing wave generated in an observational cell. Bubble vibration at 27 kHz could be observed and the experimental results for the two methods showed good agreement. The radial vibration of microcapsules with a hard plastic shell was observed using the LDV and the measurement of the capsule vibration with radial oscillation amplitude of tens of nanometers was successful. The acoustic radiation force acting on microcapsules in the acoustic standing wave was measured from the trapped position of the standing wave and the radial oscillation amplitude of the capsules was estimated from the theoretical equation of the acoustic radiation force, giving results in good agreement with the LDV measurements. The radial oscillation amplitude of a capsule was found to be proportional to the amplitude of the driving sound pressure. A larger expansion ratio was observed for capsules closer to the resonance condition under the same driving sound pressure and frequency.

  5. Standing Waves in an Elastic Spring: A Systematic Study by Video Analysis

    Science.gov (United States)

    Ventura, Daniel Rodrigues; de Carvalho, Paulo Simeão; Dias, Marco Adriano

    2017-04-01

    The word "wave" is part of the daily language of every student. However, the physical understanding of the concept demands a high level of abstract thought. In physics, waves are oscillating variations of a physical quantity that involve the transfer of energy from one point to another, without displacement of matter. A wave can be formed by an elastic deformation, a variation of pressure, changes in the intensity of electric or magnetic fields, a propagation of a temperature variation, or other disturbances. Moreover, a wave can be categorized as pulsed or periodic. Most importantly, conditions can be set such that waves interfere with one another, resulting in standing waves. These have many applications in technology, although they are not always readily identified and/or understood by all students. In this work, we use a simple setup including a low-cost constant spring, such as a Slinky, and the free software Tracker for video analysis. We show they can be very useful for the teaching of mechanical wave propagation and the analysis of harmonics in standing waves.

  6. Acoustic radiation force of high-order Bessel beam standing wave tweezers on a rigid sphere.

    Science.gov (United States)

    Mitri, F G

    2009-12-01

    Particle manipulation using the acoustic radiation force of Bessel beams is an active field of research. In a previous investigation, [F.G. Mitri, Acoustic radiation force on a sphere in standing and quasi-standing zero-order Bessel beam tweezers, Annals of Physics 323 (2008) 1604-1620] an expression for the radiation force of a zero-order Bessel beam standing wave experienced by a sphere was derived. The present work extends the analysis of the radiation force to the case of a high-order Bessel beam (HOBB) of positive order m having an angular dependence on the phase phi. The derivation for the general expression of the force is based on the formulation for the total acoustic scattering field of a HOBB by a sphere [F.G. Mitri, Acoustic scattering of a high-order Bessel beam by an elastic sphere, Annals of Physics 323 (2008) 2840-2850; F.G. Mitri, Equivalence of expressions for the acoustic scattering of a progressive high order Bessel beam by an elastic sphere, IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 56 (2009) 1100-1103] to derive the general expression for the radiation force function YJm,st(ka,beta,m)Bessel beam standing wave incident upon a rigid sphere immersed in non-viscous water are computed. The rigid sphere calculations for YJm,st(ka,beta,m)Bessel beam standing wave (m=0). The proposed theory is of particular interest essentially due to its inherent value as a canonical problem in particle manipulation using the acoustic radiation force of a HOBB standing wave on a sphere. It may also serve as the benchmark for comparison to other solutions obtained by strictly numerical or asymptotic approaches.

  7. Illustrations and Supporting Texts for Sound Standing Waves of Air Columns in Pipes in Introductory Physics Textbooks

    Science.gov (United States)

    Zeng, Liang; Smith, Chris; Poelzer, G. Herold; Rodriguez, Jennifer; Corpuz, Edgar; Yanev, George

    2014-01-01

    In our pilot studies, we found that many introductory physics textbook illustrations with supporting text for sound standing waves of air columns in open-open, open-closed, and closed-closed pipes inhibit student understanding of sound standing wave phenomena due to student misunderstanding of how air molecules move within these pipes. Based on…

  8. Illustrations and Supporting Texts for Sound Standing Waves of Air Columns in Pipes in Introductory Physics Textbooks

    Science.gov (United States)

    Zeng, Liang; Smith, Chris; Poelzer, G. Herold; Rodriguez, Jennifer; Corpuz, Edgar; Yanev, George

    2014-01-01

    In our pilot studies, we found that many introductory physics textbook illustrations with supporting text for sound standing waves of air columns in open-open, open-closed, and closed-closed pipes inhibit student understanding of sound standing wave phenomena due to student misunderstanding of how air molecules move within these pipes. Based on…

  9. Velocity selective trapping of atoms in a frequency-modulated standing laser wave

    CERN Document Server

    Argonov, V Yu

    2013-01-01

    The wave function of a moderately cold atom in a stationary near-resonant standing light wave delocalizes very fast due to wave packet splitting. However, we show that frequency modulation of the field may suppress packet splitting for some atoms having specific velocities in a narrow range. These atoms remain localized in a small space for a long time. We propose that in a real experiment with cold atomic gas this effect may decrease the velocity distribution of atoms (the field traps the atoms with such specific velocities while all other atoms leave the field)

  10. Studies of dissipative standing shock waves around black holes

    CERN Document Server

    Das, Santabrata; Mondal, Soumen

    2009-01-01

    We investigate the dynamical structure of advective accretion flow around stationary as well as rotating black holes. For a suitable choice of input parameters, such as, accretion rate ($\\dot {\\cal M}$) and angular momentum ($\\lambda$), global accretion solution may include a shock wave. The post shock flow is located at few tens of Schwarzchild radius and it is generally very hot and dense. This successfully mimics the so called Compton cloud which is believed to be responsible for emitting hard radiations. Due to the radiative loss, a significant energy from the accreting matter is removed and the shock moves forward towards the black hole in order to maintain the pressure balance across it. We identify the effective area of the parameter space ($\\dot {\\cal M} - \\lambda$) which allows accretion flows to have some energy dissipation at the shock $(\\Delta {\\cal E})$. As the dissipation is increased, the parameter space is reduced and finally disappears when the dissipation is reached its critical value. The d...

  11. Standing waves in a partitioned tube with passive membrane

    Science.gov (United States)

    Amundsen, David E.; Cox, Edward A.; Mortell, Michael P.

    2008-11-01

    The propagation of waves within a tube containing disparate gases separated by a passive membrane is modeled and analyzed in the limit of weak dissipation and applied forcing. This provides a simple setting in which to study the nonlinear interactions within and between each gas and provides a paradigm for other similar physical systems such as laminated elastic materials. The associated resonant frequencies are found in terms of a linear functional equation involving a non-trivial combination of the separate natural frequencies. As expected, in the limit that the gases have the same material properties, the modes become commensurate and the model reduces to that of the classical shock tube. However sufficiently away from this limit it is seen that this structure is lost and smooth single mode resonant solutions arise. Using a perturbative approach these solutions are approximated and compared to numerical solutions of the full system. The transition between smooth and discontinuous solutions is also studied both numerically and analytically, based on a dimensionless parameter associated with the relative material difference.

  12. The operation of stochastic heating mechanisms in an electromagnetic standing wave configuration

    Energy Technology Data Exchange (ETDEWEB)

    Gell, Y.; Nakach, R.

    1991-10-01

    The possibility of the operation of stochastic heating mechanisms of charged particles in a configuration consisting of a left-handed circularly polarized standing electromagnetic wave and a uniform magnetic field, has been studied numerically and theoretically. It is found that such a configuration induces stochasticity, the threshold of which is dependent on two independent parameters, determined by the frequency and the amplitude of the wave and the strength of the magnetic field. From the theoretical analysis, it emerges that the origin of onset of large scale stochasticity is the destabilization of fixed points associated with an equation describing the motion of the particles in an electrostatic-type potential having standing wave characteristics. The comparison of the theoretical predictions with the numerical results is found to be quite satisfactory. Possible applications to realistic plasmas have been discussed.

  13. 驻波演示实验研究%The Demonstrating Experiment of Standing Waves

    Institute of Scientific and Technical Information of China (English)

    柳建国; 陈钺

    2015-01-01

    详析驻波演示实验,分析驻波稳定出现时,因音叉臂的振幅(即入射波源的振幅)恒为A0,故弦线长必为:L=nλ±λ(n=1,2,3,…),以校正一些资料中取L=nλ(n=1,2,3,…)之误.2122%This paper presents a detailed analysis of the standing waves demonstrating experiment. Through investigating that when the standing waves stability appears, the amplitude of the tuning fork arm (i.e., the amplitude of Incident wave source) identically equals toA0, so the length of the string must be L=nλ±λ (n=1, 2, 3,…), this paper corrects the error that some 2 12 documents make taking L=nλ (n=1, 2, 3,…).

  14. Stability of standing spin wave in permalloy thin film studied by anisotropic magnetoresistance effect

    Energy Technology Data Exchange (ETDEWEB)

    Yamanoi, K.; Yokotani, Y. [Department of Physics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan); Cui, X. [Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395 (Japan); Yakata, S. [Department of Information Electronics, Fukuoka Institute of Technology, 3-30-1 Wajiro-higashi, Higashi-ku, Fukuoka 811-0295 (Japan); Kimura, T., E-mail: t-kimu@phys.kyushu-u.ac.jp [Department of Physics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan); Research Center for Quantum Nano-Spin Sciences, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan)

    2015-12-21

    We have investigated the stability for the resonant spin precession under the strong microwave magnetic field by a specially developed detection method using the anisotropic magnetoresistance effect. The electrically separated excitation and detection circuits enable us to investigate the influence of the heating effect and the nonuniform spin dynamics independently. The large detecting current is found to induce the field shift of the resonant spectra because of the Joule heating. From the microwave power dependence, we found that the linear response regime for the standing spin wave is larger than that for the ferromagnetic resonance. This robust characteristic of the standing spin wave is an important advantage for the high power operation of the spin-wave device.

  15. A study on the Antarctic circumpolar wave mode-A coexistence system of standing and traveling wave

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The Antarctic circumpolar wave (ACW) has become a focus of the air-sea coupled Southern Ocean study since 1996, when it was discovered as an air-sea coupled interannual signal propagating eastward in the region of the Antarctic Circumpolar Current (ACC). In order to analyze the mechanism of discontinuity along the latitudinal propagation, a new idea that ACW is a system with a traveling wave in the Southern Pacific and Atlantic Ocean and with a concurrent standing wave in the southern Indian Ocean is proposed in this paper. Based on the ideal wave principle, the average wave parameters of ACW is achieved using a non-linear approximation method, by which we find that the standing part and the traveling part possess similar radius frequency, proving their belonging to an integral system. We also give the latitudinal distribution of wave speed with which we could tell the reason for steady propagation during the same period. The spatial distribution of the propagation reveals complex process with variant spatial and temporal scales-The ENSO scale oscillation greatly impacts on the traveling process, while the result at the south of Australia indicates little connection between the Indian Ocean and the Pacific, which may be blocked by the vibration at the west of the Pacific. The advective effect of ACC on the propagation process should be examined clearly through dynamical method.

  16. Conjunction of standing wave and resonance in asymmetric nanowires: a mechanism for thermal rectification and remote energy accumulation.

    Science.gov (United States)

    Liu, Yue-Yang; Zhou, Wu-Xing; Chen, Ke-Qiu

    2015-12-02

    As an important way to control and manage heat transport, thermal rectification has become an elementary issue in the field of phononics and plays a key role in the designing of thermal devices. Here we investigate systematically the standing wave and the accompanying resonance process in asymmetric nanowires to understand the standing wave itself and its great effect on thermal rectification. Results show that the standing wave is sensitive to both the structural and thermal properties of the material, and its great effect on enhancing the thermal rectification is realized not only by the energy-localization nature of the standing wave, but also by the resonance-caused large amplitude and high energy of the standing wave.

  17. Currents induced by vertical varied radiation stress in standing waves and evolution of the bed composed of fine sediments

    Institute of Scientific and Technical Information of China (English)

    Jing-Xin ZHANG; Hua LIU

    2009-01-01

    This paper extends the conventional concept of radiation stress (Longuet-Higgins and Stewart, 1964)in progressive water waves to standing waves, so that its vertical profile could be defined and calculated in a new technical way. The hydrodynamic numerical model being coupled with the vertically varying radiation stress in standing waves is used to simulate the currents being induced by standing waves in the vertical section. Numerical modeling of suspended sediment transport is then carried out to simulate the evolution of the bed composed of fine sediments by the currents. The scour and deposition patterns simulated are in qualitative agreement with prior laboratory and field observations.

  18. Coherent cooling of atoms in a frequency-modulated standing laser wave: wave function and stochastic trajectory approaches

    CERN Document Server

    Argonov, Victor

    2013-01-01

    The wave function of a moderately cold atom in a stationary near-resonant standing light wave delocalizes very fast due to wave packet splitting. However, we show that frequency modulation of the field may suppress packet splitting for some atoms having specific velocities in a narrow range. These atoms remain localized in a small space for a long time. We demonstrate and explain this effect numerically and analytically. Also we demonstrate that modulated field can not only trap, but also cool the atoms. We perform a numerical experiment with a large atomic ensebmble having wide initial velocity and energy distribution. During the experiment, most of atoms leave the wave while trapped atoms have narrow energy distribution

  19. Axial acoustic radiation force on rigid oblate and prolate spheroids in Bessel vortex beams of progressive, standing and quasi-standing waves.

    Science.gov (United States)

    Mitri, F G

    2017-02-01

    The analysis using the partial-wave series expansion (PWSE) method in spherical coordinates is extended to evaluate the acoustic radiation force experienced by rigid oblate and prolate spheroids centered on the axis of wave propagation of high-order Bessel vortex beams composed of progressive, standing and quasi-standing waves, respectively. A coupled system of linear equations is derived after applying the Neumann boundary condition for an immovable surface in a non-viscous fluid, and solved numerically by matrix inversion after performing a single numerical integration procedure. The system of linear equations depends on the partial-wave index n and the order of the Bessel vortex beam m using truncated but converging PWSEs in the least-squares sense. Numerical results for the radiation force function, which is the radiation force per unit energy density and unit cross-sectional surface, are computed with particular emphasis on the amplitude ratio describing the transition from the progressive to the pure standing waves cases, the aspect ratio (i.e., the ratio of the major axis over the minor axis of the spheroid), the half-cone angle and order of the Bessel vortex beam, as well as the dimensionless size parameter. A generalized expression for the radiation force function is derived for cases encompassing the progressive, standing and quasi-standing waves of Bessel vortex beams. This expression can be reduced to other types of beams/waves such as the zeroth-order Bessel non-vortex beam or the infinite plane wave case by appropriate selection of the beam parameters. The results for progressive waves reveal a tractor beam behavior, characterized by the emergence of an attractive pulling force acting in opposite direction of wave propagation. Moreover, the transition to the quasi-standing and pure standing wave cases shows the acoustical tweezers behavior in dual-beam Bessel vortex beams. Applications in acoustic levitation, particle manipulation and acousto

  20. Theoretical comparison of optical traps created by standing wave and single beam

    Science.gov (United States)

    Zemánek, Pavel; Jonáš, Alexandr; Jákl, Petr; Ježek, Jan; Šerý, Mojmír.; Liška, Miroslav

    2003-05-01

    We used generalised Lorenz-Mie scattering theory (GLMT) to compare submicron-sized particle optical trapping in a single focused beam and a standing wave. We focus especially on the study of maximal axial trapping force, minimal laser power necessary for confinement, axial trap position, and axial trap stiffness in dependency on trapped sphere radius, refractive index, and Gaussian beam waist size. In the single beam trap (SBT), the range of refractive indices which enable stable trapping depends strongly on the beam waist size (it grows with decreasing waist). On the contrary to the SBT, there are certain sphere sizes (non-trapping radii) that disable sphere confinement in standing wave trap (SWT) for arbitrary value of refractive index. For other sphere radii we show that the SWT enables confinement of high refractive index particle in wider laser beams and provides axial trap stiffness and maximal axial trapping force at least by two orders and one order bigger than in SBT, respectively.

  1. The periodic standing-wave approximation: computations in full general relativity

    CERN Document Server

    Hernandez, Napoleon

    2008-01-01

    The periodic standing wave method studies circular orbits of compact objects coupled to helically symmetric standing wave gravitational fields. From this solution an approximation is extracted for the strong field, slowly inspiralling motion of binary black holes and binary neutron stars. Previous work on this project has developed a method using a few multipoles of specially adapted coordinates well suited both to the radiation and the source regions. This method had previously been applied to linear and nonlinear scalar field models, to linearized gravity, and to a post-Minkowski approximation. Here we present the culmination of this approach: the application of the method in full general relativity. The fundamental equations had previously been developed and the challenge presented by this step is primarily a computational one which was approached with an innovative technique. The numerical results of these computations are compared with the corresponding results from linearized and post-Minkowksi computat...

  2. An experimental study on the coalescence process of binary droplets in oil under ultrasonic standing waves.

    Science.gov (United States)

    Luo, Xiaoming; Cao, Juhang; He, Limin; Wang, Hongping; Yan, Haipeng; Qin, Yahua

    2017-01-01

    The coalescence process of binary droplets in oil under ultrasonic standing waves was investigated with high-speed photography. Three motion models of binary droplets in coalescence process were illustrated: (1) slight translational oscillation; (2) sinusoidal translational oscillation; (3) migration along with acoustic streaming. To reveal the droplets coalescence mechanisms, the influence of main factors (such as acoustic intensity, droplet size, viscosity and interfacial tension, etc) on the motion and coalescence of binary droplets was studied under ultrasonic standing waves. Results indicate that the shortest coalescence time is achieved when binary droplets show sinusoidal translational oscillation. The corresponding acoustic intensity in this case is the optimum acoustic intensity. Under the optimum acoustic intensity, drop size decrease will bring about coalescence time decrease by enhancing the binary droplets oscillation. Moreover, there is an optimum interfacial tension to achieve the shortest coalescence time.

  3. Standing Slow-Mode Waves in Hot Coronal Loops: Observations, Modeling, and Coronal Seismology

    CERN Document Server

    Wang, Tongjiang

    2010-01-01

    Strongly damped Doppler shift oscillations are observed frequently associated with flarelike events in hot coronal loops. In this paper, a review of the observed properties and the theoretical modeling is presented. Statistical measurements of physical parameters (period, decay time, and amplitude) have been obtained based on a large number of events observed by SOHO/SUMER and Yohkoh/BCS. Several pieces of evidence are found to support their interpretation in terms of the fundamental standing longitudinal slow mode. The high excitation rate of these oscillations in small- or micro-flares suggest that the slow mode waves are a natural response of the coronal plasma to impulsive heating in closed magnetic structure. The strong damping and the rapid excitation of the observed waves are two major aspects of the waves that are poorly understood, and are the main subject of theoretical modeling. The slow waves are found mainly damped by thermal conduction and viscosity in hot coronal loops. The mode coupling seems ...

  4. RESONANT INTERACTION BETWEEN A PAUL-TRAPPED ION AND A STANDING WAVE LASER

    Institute of Scientific and Technical Information of China (English)

    FENG MANG; HAI WEN-HUA; ZHU XI-WEN; GAO KE-LIN; SHI LEI

    2000-01-01

    An ultracold two-level ion experiencing the standing wave of a resonant laser in a Paul trap is investigated in the Lamb-Dicke limit and weak excitation regime, with full consideration of the time-dependence of the trapping potential.The analytical forms of the wave functions of the system can be described with our approach, and the time evolution of the pseudo-energy of the system as well as the squeezing property of the quadrature components is studied in comparison with the treatment of harmonic oscillator model.

  5. Dynamics of Two-Level Trapped Ion in a Standing Wave Laser in Noncommutative Space

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-Xue; WU Ying

    2007-01-01

    We study the dynamics of a two-level trapped ion in a standing wave electromagnetic field in two-dimensional (2D) noncommutative spaces in the Lamb-Dicke regime under the rotating wave approximation. We obtain the explicit analytical expressions for the energy spectra, energy eigenstates, unitary time evolution operator, atomic inversion, and phonon number operators. The Rabi oscillations, the collapse, and revivals in the average atomic inversion and the average phonon number are explicitly shown to contain the information of the parameter of the space noncommutativity,which sheds light on proposing new schemes based on the dynamics of trappedion to test the noncommutativity.

  6. Localization of Matter Fields in the 5D Standing Wave Braneworld

    CERN Document Server

    Gogberashvili, Merab

    2012-01-01

    We investigate the localization problem of matter fields within the 5D standing wave braneworld. In this model the brane emits anisotropic waves into the bulk with different amplitudes along different spatial dimensions. We show that in the case of increasing warp factor there exist the pure gravitational localization of all kinds of quantum and classical particles on the brane. For classical particles the anisotropy of the background metric is hidden, brane fields exhibit standard Lorentz symmetry in spite of anisotropic nature of the primordial 5D metric.

  7. Thin films and buried interfaces characterization with X-ray standing waves

    Energy Technology Data Exchange (ETDEWEB)

    Lagomarsino, S. [CNR, Rome (Italy). Istituto Elettronica Stato Solido

    1996-09-01

    The X-ray standing wave techniques is a powerful, non destructive method to study interfaces at the atomic level. Its basic features are described here together with the peculiarities of its applications to epitaxial films and buried interfaces. As examples of applications, experiments carried out on Si/silicide interfaces, on GaAs/InAs/GaAs buried interfaces and on Si/Ge superlattices are shown.

  8. Acoustic radiation force on a rigid elliptical cylinder in plane (quasi)standing waves

    Energy Technology Data Exchange (ETDEWEB)

    Mitri, F. G., E-mail: F.G.Mitri@ieee.org [Chevron, Area 52 Technology–ETC, Santa Fe, New Mexico 87508 (United States)

    2015-12-07

    The acoustic radiation force on a 2D elliptical (non-circular) cylinder centered on the axis of wave propagation of plane quasi-standing and standing waves is derived, based on the partial-wave series expansion (PWSE) method in cylindrical coordinates. A non-dimensional acoustic radiation force function, which is the radiation force per unit length, per characteristic energy density and per unit cross-sectional surface of the ellipse, is defined in terms of the scattering coefficients that are determined by applying the Neumann boundary condition for an immovable surface. A system of linear equations involving a single numerical integration procedure is solved by matrix inversion. Numerical simulations showing the transition from the quasi-standing to the (equi-amplitude) standing wave behaviour are performed with particular emphasis on the aspect ratio a/b, where a and b are the ellipse semi-axes, as well as the dimensionless size parameter kb (where k is the wavenumber), without the restriction to a particular range of frequencies. It is found that at high kb values > 1, the radiation force per length with broadside incidence is larger, whereas the opposite situation occurs in the long-wavelength limit (i.e., kb < 1). The results are particularly relevant in acoustic levitation of elliptical cylinders, the acoustic stabilization of liquid columns in a host medium, acousto-fluidics devices, and other particle dynamics applications to name a few. Moreover, the formalism presented here may be effectively applied to compute the acoustic radiation force on other 2D surfaces of arbitrary shape such as super-ellipses, Chebyshev cylindrical particles, or other non-circular geometries.

  9. Variational Approach to the Orbital Stability of Standing Waves of the Gross-Pitaevskii Equation

    KAUST Repository

    Hadj Selem, Fouad

    2014-08-26

    This paper is concerned with the mathematical analysis of a masssubcritical nonlinear Schrödinger equation arising from fiber optic applications. We show the existence and symmetry of minimizers of the associated constrained variational problem. We also prove the orbital stability of such solutions referred to as standing waves and characterize the associated orbit. In the last section, we illustrate our results with few numerical simulations. © 2014 Springer Basel.

  10. Influence of standing wave phase error on super-resolution optical inspection for periodic microstructures

    Science.gov (United States)

    Kudo, R.; Usuki, S.; Takahashi, S.; Takamasu, K.

    2012-05-01

    The miniaturization of microfabricated structures such as patterned semiconductor wafers continues to advance, thereby increasing the demand for a high-speed, nondestructive and high-resolution measurement technique. We propose a novel optical inspecting method for a microfabricated structure using the standing wave illumination (SWI) shift as such a measurement technique. This method is based on a super-resolution algorithm in which the inspection system's resolution exceeds the diffraction limit by shifting the SWI. Resolution beyond the diffraction limit has previously been studied theoretically and realized experimentally. The influence of various experimental error factors needs to be investigated and calibration needs to be performed accordingly when actual applications that utilize the proposed method are constructed. These error factors include errors related to the phase, pitch and shift step size of the standing wave. Identifying the phase accurately is extremely difficult and greatly influences the resolution result. Hence, the SWI phase was focused upon as an experimental error factor. The effect of the phase difference between the actual experimental standing wave and the computationally set standing wave was investigated using a computer simulation. The periodic structure characteristic of a microfabricated structure was analyzed. The following findings were obtained as a result. The influence of an error is divided into three modes depending on the pitch of the periodic structure: (1) if the pitch is comparatively small, the influence of the error is cancelled, allowing the structure of a sample to be resolved correctly; (2) if the pitch of the structure is from 150 to 350 nm, the reconstructed solution shifts in a transverse direction corresponding to a phase gap of SWI; and (3) if it is a comparatively large pitch, then it is difficult to reconstruct the right pitch. Verification was experimentally attempted for mode (2), and the same result as

  11. Pulsed 5 MeV standing wave electron linac for radiation processing

    Science.gov (United States)

    Auditore, L.; Barnà, R. C.; de Pasquale, D.; Italiano, A.; Trifirò, A.; Trimarchi, M.

    2004-03-01

    Several modern applications of radiation processing require compact and self-contained electron accelerators. To match these requirements, a 5MeV, 1kW electron linac has been developed at the Dipartimento di Fisica (Università di Messina) and will be described in this paper. This standing wave accelerator, driven by a 3GHz, 2.5MW magnetron generator, has an autofocusing structure and will be used to study several applications of radiation processing.

  12. Effect of particle-particle interactions on the acoustic radiation force in an ultrasonic standing wave

    Energy Technology Data Exchange (ETDEWEB)

    Lipkens, Bart, E-mail: blipkens@wne.edu [Mechanical Engineering, Western New England University, Springfield, Massachusetts, 01119 (United States); Ilinskii, Yurii A., E-mail: ilinskii@gmail.com; Zabolotskaya, Evgenia A., E-mail: zheniazabolotskaya@gmail.com [Applied Research Laboratories, The University of Texas at Austin, Austin, Texas 78713–8029 (United States)

    2015-10-28

    Ultrasonic standing waves are widely used for separation applications. In MEMS applications, a half wavelength standing wave field is generated perpendicular to a laminar flow. The acoustic radiation force exerted on the particle drives the particle to the center of the MEMS channel, where concentrated particles are harvested. In macro-scale applications, the ultrasonic standing wave spans multiple wavelengths. Examples of such applications are oil/water emulsion splitting [1], and blood/lipid separation [2]. In macro-scale applications, particles are typically trapped in the standing wave, resulting in clumping or coalescence of particles/droplets. Subsequent gravitational settling results in separation of the secondary phase. An often used expression for the radiation force on a particle is that derived by Gorkov [3]. The assumptions are that the particle size is small relative to the wavelength, and therefore, only monopole and dipole scattering contributions are used to calculate the radiation force. This framework seems satisfactory for MEMS scale applications where each particle is treated separately by the standing wave, and concentrations are typically low. In macro-scale applications, particle concentration is high, and particle clumping or droplet coalescence results in particle sizes not necessarily small relative to the wavelength. Ilinskii et al. developed a framework for calculation of the acoustic radiation force valid for any size particle [4]. However, this model does not take into account particle to particle effects, which can become important as particle concentration increases. It is known that an acoustic radiation force on a particle or a droplet is determined by the local field. An acoustic radiation force expression is developed that includes the effect of particle to particle interaction. The case of two neighboring particles is considered. The approach is based on sound scattering by the particles. The acoustic field at the location of

  13. Simplified description of optical forces acting on a nanoparticle in the Gaussian standing wave

    Science.gov (United States)

    Zemánek, Pavel; Jonáš, Alexandr; Liška, Miroslav

    2002-05-01

    We study the axial force acting on dielectric spherical particles smaller than the trapping wavelength that are placed in the Gaussian standing wave. We derive analytical formulas for immersed particles with relative refractive indices close to unity and compare them with the numerical results obtained by generalized Lorenz-Mie theory (GLMT). We show that the axial optical force depends periodically on the particle size and that the equilibrium position of the particle alternates between the standing-wave antinodes and nodes. For certain particle sizes, gradient forces from the neighboring antinodes cancel each other and disable particle confinement. Using the GLMT we compare maximum axial trapping forces provided by the Gaussian standing-wave trap (SWT) and single-beam trap (SBT) as a function of particle size, refractive index, and beam waist size. We show that the SWT produces axial forces at least ten times stronger and permits particle confinement in a wider range of refractive indices and beam waists compared with those of the SBT.

  14. Standing wave plasmon modes interact in an antenna-coupled nanowire

    Science.gov (United States)

    Day, Jared; Large, Nicolas; Nordlander, Peter; Halas, Naomi

    2015-03-01

    In a standing wave optical cavity, the coupling of cavity modes, e.g. through a nonlinear medium, results in a rich variety of nonlinear dynamical phenomena, such as frequency pushing and pulling, mode-locking and pulsing, and modal instabilities. Metallic nanowires of finite length support a hierarchy of longitudinal surface plasmon modes with standing wave properties: the plasmonic analog of a Fabry-Pérot cavity. Here we show that positioning the nanowire within the gap of a plasmonic nanoantenna introduces a passive, hybridization-based coupling of the standing-wave nanowire plasmon modes with the antenna structure, mediating an interaction between the nanowire plasmon modes themselves. Frequency pushing and pulling, and the enhancement and suppression of specific plasmon modes, can be controlled and manipulated by nanoantenna position and shape. Dark-field spectroscopy, CL spectroscopy and imaging, and finite-difference time-domain calculations are performed to investigate these surface plasmon ``drift.'' Near-field coupling of nanoantennas to nanowire optical cavities shows that plasmon hybridization is a powerful strategy for controlling the radiative LDOS of nanowires, and could ultimately enable strategies for active control of emission properties in nanowire-based devices. Work funded by the Welch Foundation (C-1220, C-1222), the NSSEFF (N00244-09-1-0067), the ONR (N00014-10-1-0989), and the NSF (ECCS-1040478, CNS-0821727).

  15. Depth-resolved soft x-ray photoelectron emission microscopy in nanostructures via standing-wave excited photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Kronast, F.; Ovsyannikov, R.; Kaiser, A.; Wiemann, C.; Yang, S.-H.; Locatelli, A.; Burgler, D.E.; Schreiber, R.; Salmassi, F.; Fischer, P.; Durr, H.A.; Schneider, C.M.; Eberhardt, W.; Fadley, C.S.

    2008-11-24

    We present an extension of conventional laterally resolved soft x-ray photoelectron emission microscopy. A depth resolution along the surface normal down to a few {angstrom} can be achieved by setting up standing x-ray wave fields in a multilayer substrate. The sample is an Ag/Co/Au trilayer, whose first layer has a wedge profile, grown on a Si/MoSi2 multilayer mirror. Tuning the incident x-ray to the mirror Bragg angle we set up standing x-ray wave fields. We demonstrate the resulting depth resolution by imaging the standing wave fields as they move through the trilayer wedge structure.

  16. Flow under standing waves Part 1. Shear stress distribution, energy flux and steady streaming

    DEFF Research Database (Denmark)

    Gislason, Kjartan; Fredsøe, Jørgen; Deigaard, Rolf

    2009-01-01

    The conditions for energy flux, momentum flux and the resulting streaming velocity are analysed for standing waves formed in front of a fully reflecting wall. The exchange of energy between the outer wave motion and the near bed oscillatory boundary layer is considered, determining the horizontal...... energy flux inside and outside the boundary layer. The momentum balance, the mean shear stress and the resulting time averaged streaming velocities are determined. For a laminar bed boundary layer the analysis of the wave drift gives results similar to the original work of Longuet-Higgins from 1953....... The work is extended to turbulent bed boundary layers by application of a numerical model. The similarities and differences between laminar and turbulent flow conditions are discussed, and quantitative results for the magnitude of the mean shear stress and drift velocity are presented. Full two...

  17. Probing the polarity of ferroelectric thin films with x-ray standing waves

    Energy Technology Data Exchange (ETDEWEB)

    Bedzyk, M. J. [Department of Materials Science and Engineering and Materials Research Center, Northwestern University, Evanston, Illinois 60208 (United States); Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Kazimirov, A. [Department of Materials Science and Engineering and Materials Research Center, Northwestern University, Evanston, Illinois 60208 (United States); Marasco, D. L. [Department of Materials Science and Engineering and Materials Research Center, Northwestern University, Evanston, Illinois 60208 (United States); Lee, T.-L. [Department of Materials Science and Engineering and Materials Research Center, Northwestern University, Evanston, Illinois 60208 (United States); Foster, C. M. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Advanced Micro Devices, 5204 East Ben White Boulevard, Austin, Texas 78741 (United States); Bai, G.-R. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Lyman, P. F. [Department of Materials Science and Engineering and Materials Research Center, Northwestern University, Evanston, Illinois 60208 (United States); Keane, D. T. [Department of Materials Science and Engineering and Materials Research Center, Northwestern University, Evanston, Illinois 60208 (United States)

    2000-03-15

    An x-ray-diffraction method that directly senses the phase of the structure factor is demonstrated and used for determining the local polarity of thin ferroelectric films. This method is based on the excitation of an x-ray standing-wave field inside the film as a result of the interference between the strong incident x-ray wave and the weak kinematically Bragg-diffracted x-ray wave from the film. The method is used to sense the displacements of the Pb and Ti sublattices in single-crystal c-domain PbTiO{sub 3} thin films grown by metal-organic chemical-vapor deposition on SrTiO{sub 3}(001) substrates. (c) 2000 The American Physical Society.

  18. Influence of laser power on deposition of the chromium atomic beam in laser standing wave

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    One-dimensional deposition of collimated Cr atomic beam focused by a near-resonant Gaussian standing-laser field with wavelength of 425.55 nm is examined from particle-optics approach by using an adaptive step size,fourth-order Runge-Kutta type algorithm.The influence of laser power on deposition of atoms in laser standing wave is discussed and the simulative result shows that the FWHM of nanometer stripe is 102 nm and contrast is 2:1 with laser power equal to 3 mW,the FWHM is 1.2 nm and contrast is 32:1 with laser power equal to 16 mW,but with laser power increase,equal to 50 mW,the nonmeter structure forms the multi-crests and exacerbates.

  19. Simulation of Chromium Atom Deposition Pattern in a Gaussain Laser Standing Wave with Different Laser Power

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wen-Tao; ZHU Bao-Hua

    2009-01-01

    One-dimensional deposition of a neutral chromium atomic beam focused by a near-resonant Gaussian standing-laser field is discussed by using a fourth-order Runge-Kutta type algorithm. The deposition pattern of neutral chromium atoms in a laser standing wave with different laser power is discussed and the simulation result shows that the full width at half maximum (FWHM) of a nanometer stripe is 115nm and the contrast is 2.5:1 with laser power 3.93mW; the FWHM is 0.Snm and the contrast is 27:1 with laser power 16mW, the optimal laser power; but with laser power increasing to 50mW, the nanometer structure forms multi-crests and the quality worsens quickly with increasing laser power.

  20. Influence of laser power on deposition of the chromium atomic beam in laser standing wave

    Institute of Scientific and Technical Information of China (English)

    ZHANG WenTao; ZHU BaoHua; ZHANG BaoWu; LI TongBao

    2009-01-01

    One-dimensional deposition of collimated Cr atomic beam focused by a near-resonant Gaussian standing-laser field with wavelength of 425.55 nm is examined from particle-optics approach by using an adaptive step size, fourth-order Runge-Kutta type algorithm. The influence of laser power on depo-sition of atoms in laser standing wave is discussed and the simulative result shows that the FWHM of nanometer stripe is 102 nm and contrast is 2:1 with laser power equal to 3 mW, the FWHM is 1.2 nm and contrast is 32:1 with laser power equal to 16 mW, but with laser power increase, equal to 50 mW, the nonmeter structure forms the multi-crests and exacerbates.

  1. Fabrication and Operation of Acoustofluidic Devices Supporting Bulk Acoustic Standing Waves for Sheathless Focusing of Particles

    Science.gov (United States)

    Shields, C. Wyatt; Cruz, Daniela F.; Ohiri, Korine A.; Yellen, Benjamin B.; Lopez, Gabriel P.

    2016-01-01

    Acoustophoresis refers to the displacement of suspended objects in response to directional forces from sound energy. Given that the suspended objects must be smaller than the incident wavelength of sound and the width of the fluidic channels are typically tens to hundreds of micrometers across, acoustofluidic devices typically use ultrasonic waves generated from a piezoelectric transducer pulsating at high frequencies (in the megahertz range). At characteristic frequencies that depend on the geometry of the device, it is possible to induce the formation of standing waves that can focus particles along desired fluidic streamlines within a bulk flow. Here, we describe a method for the fabrication of acoustophoretic devices from common materials and clean room equipment. We show representative results for the focusing of particles with positive or negative acoustic contrast factors, which move towards the pressure nodes or antinodes of the standing waves, respectively. These devices offer enormous practical utility for precisely positioning large numbers of microscopic entities (e.g., cells) in stationary or flowing fluids for applications ranging from cytometry to assembly. PMID:27022681

  2. Cooling and trapping of three-level atoms in a bichromatic standing wave

    Science.gov (United States)

    Pu, H.; Cai, T.; Bigelow, N. P.; Grove, T. T.; Gould, P. L.

    1995-02-01

    We show that a three-level atom in the cascade configuration can be stably trapped and cooled in one dimension by an intense bichromatic standing wave. At the two-photon resonance, rectified dipole forces result in a deep potential well which can be used to localize the atoms in space. In the vicinity of the rectified potential minimum, the spatial dependence of the dressed state energies can lead to a velocity dependence of the force which produces damping of the atomic motion. Consideration of the heating effects of momentum diffusion indicates that cooling and stable trapping at low temperatures is possible in such a bichromatic field.

  3. Two-Mode Resonator and Contact Model for Standing Wave Piezomotor

    DEFF Research Database (Denmark)

    Andersen, B.; Blanke, Mogens; Helbo, J.

    2001-01-01

    The paper presents a model for a standing wave piezoelectric motor with a two bending mode resonator. The resonator is modelled using Hamilton's principle and the Rayleigh-Ritz method. The contact is modelled using the Lagrange Multiplier method under the assumption of slip and it is showed how...... to solve the set of differential-algebraic equations. Detailed simulations show resonance frequencies as function of the piezoelement's position, tip trajectories and contact forces. The paper demonstrates that contact stiffness and stick should be included in such model to obtain physically realistic...

  4. Normal incidence X-ray standing wave analysis of thin gold films

    Science.gov (United States)

    Satterley, Christopher J.; Lovelock, Kevin R. J.; Thom, Ian; Dhanak, Vinod R.; Buck, Manfred; Jones, Robert G.

    2006-11-01

    Normal incidence X-ray standing wave (NIXSW) analysis has been successfully performed on epitaxial gold films on mica substrates using reflection from the (1 1 1) planes parallel to the surface. We show that NIXSW can be used to monitor the decrease in order within the gold film caused by annealing, and the position of sulfur within a monolayer of methyl thiolate (CH 3S-) on the surface. The Au-S layer spacing was found to be 2.54 ± 0.05 Å, in close agreement with previous work on a single crystal system.

  5. Beam dynamics studies and parametric characterization of a standing wave electron linac

    Science.gov (United States)

    Dash, R.; Mondal, J.; Sharma, A.; Mittal, K. C.

    2013-07-01

    This paper presents the results of electron beam tracking simulations for a 30 MeV standing wave electron linac at Electron Beam Centre Kharghar, Navi Mumbai, India. For the pulsed mode operation of the present linac preferential operation parameters have been determined from the results of beam dynamics studies. This electron accelerator is a general purpose facility for generation of Bremsstrahlung X-rays and neutron scattering experiments. This electron accelerator-based experimental neutron facility will be used for measurement of neutron cross-section (n,γ), (n, xn) and (n, f) reactions at different energies for various materials and material irradiation studies.

  6. Influence of Atomic Motion on a Microlaser in an Optical Standing-Wave Cavity

    Institute of Scientific and Technical Information of China (English)

    张敬涛; 冯勋立; 张文琦; 徐至展

    2002-01-01

    We study the microlaser in an optical standing-wave cavity injected with two-level atoms. The results have shown the obvious infIuence of atomic centre-of-mass motion on the microlaser, such as the photon distribution, the linewidth and the frequency shift. It was found that when the momentum of atoms is comparable to that of photons, the influence of atomic motion is dominated and the number of photons in the microlaser can be greatly enhanced, owing to part of the atomic kinetic energy being transferred to the resonator. This work provides a comparison of the related studies on the atomic motion under special assumptions.

  7. Anisotropic Inflation in a 5D Standing Wave Braneworld and Dimensional Reduction

    CERN Document Server

    Gogberashvili, Merab; Malagon-Morejon, Dagoberto; Mora-Luna, Refugio Rigel

    2012-01-01

    We investigate a cosmological solution within the framework of a 5D standing wave braneworld model generated by gravity coupled to a massless scalar phantom-like field. By obtaining a full exact solution of the model we found a novel dynamical mechanism in which the anisotropic nature of the primordial metric gives rise to i) inflation along certain spatial dimensions, and ii) deflation and a shrinking reduction of the number of spatial dimensions along other directions. This dynamical mechanism can be relevant for dimensional reduction in string and other higher dimensional theories in the attempt of getting a 4D isotropic expanding space-time.

  8. Localized auroral disturbance in the morning sector of topside ionosphere as a standing electromagnetic wave

    Energy Technology Data Exchange (ETDEWEB)

    Dubinin, E.M.; Israelevich, P.L.; Nikolaeva, N.S.; Podgornyi, I.M.; Kutiev, I.

    1985-06-01

    The fine structure and plasma properties of an auroral disturbance observed with the Intercosmos-Bulgaria-1300 satellite are analyzed. The disturbance was detected in the morning sector of the sky at an altitude of about 850 km in December of 1981. Strong jumps (about 80 mV/m) in the electric and magnetic fields and fluctuations of ion density were detected within the disturbance. The electric and magnetic fields were characterized by a distinct spatial-temporal relationship typical for a standing quasi-monochromatic wave with a frequency of 1 Hz. The ratio of the amplitudes of electric and magnetic fluctuations was equal to the velocity of Alfven waves. The strong parallel component of the electric field (about 30 mV/m) and the large ion density of the fluctuations indicate changes in the plasma properties of the disturbance. The possibility of anomalous resistivity effects in the disturbance is also briefly considered. 23 references.

  9. Standing and travelling waves in a spherical brain model: The Nunez model revisited

    Science.gov (United States)

    Visser, S.; Nicks, R.; Faugeras, O.; Coombes, S.

    2017-06-01

    The Nunez model for the generation of electroencephalogram (EEG) signals is naturally described as a neural field model on a sphere with space-dependent delays. For simplicity, dynamical realisations of this model either as a damped wave equation or an integro-differential equation, have typically been studied in idealised one dimensional or planar settings. Here we revisit the original Nunez model to specifically address the role of spherical topology on spatio-temporal pattern generation. We do this using a mixture of Turing instability analysis, symmetric bifurcation theory, centre manifold reduction and direct simulations with a bespoke numerical scheme. In particular we examine standing and travelling wave solutions using normal form computation of primary and secondary bifurcations from a steady state. Interestingly, we observe spatio-temporal patterns which have counterparts seen in the EEG patterns of both epileptic and schizophrenic brain conditions.

  10. Thick brane isotropization in the 5D anisotropic standing wave braneworld model

    CERN Document Server

    Gogberashvili, Merab; Malagon-Morejon, Dagoberto; Mora-Luna, Refugio Rigel; Nucamendi, Ulises

    2014-01-01

    We study a smooth cosmological solution of the 5D anisotropic standing wave braneworld model generated by gravity coupled to a phantom-like scalar field. In this model the brane emits anisotropic waves into the bulk with different amplitudes along different spatial dimensions. We found a natural mechanism which isotropizes the braneworld, rendering a 3-brane with de Sitter symmetry embedded in a 5D de Sitter space-time for a wide class of initial conditions. The resulting thick geometrical braneworld (a de Sitter 3-brane) possesses a series of remarkable features. By explicitly solving the bulk field equations we are able to give a physical interpretation of the anisotropic dissipation: as the anisotropic energy on the 3-brane rapidly leaks into the bulk, through the nontrivial Weyl tensor components, the bulk becomes less isotropic.

  11. Nonlinear series resonance and standing waves in dual-frequency capacitive discharges

    Science.gov (United States)

    Wen, De-Qi; Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J.; Wang, You-Nian

    2017-01-01

    It is well-known that the nonlinear series resonance in a high frequency capacitive discharge enhances the electron power deposition and also creates standing waves which produce radially center-high rf voltage profiles. In this work, the dynamics of series resonance and wave effects are examined in a dual-frequency driven discharge, using an asymmetric radial transmission line model incorporating a Child law sheath. We consider a cylindrical argon discharge with a conducting electrode radius of 15 cm, gap length of 3 cm, with a base case having a 60 MHz high frequency voltage of 250 V and a 10 MHz low frequency voltage of 1000 V, with a high frequency phase shift {φ\\text{H}}=π between the two frequencies. For this phase shift there is only one sheath collapse, and the time-averaged spectral peaks of the normalized current density at the center are mainly centered on harmonic numbers 30 and 50 of the low frequency, corresponding to the first standing wave resonance frequency and the series resonance frequency, respectively. The effects of the waves on the series resonance dynamics near the discharge center give rise to significant enhancements in the electron power deposition, compared to that near the discharge edge. Adjusting the phase shift from π to 0, or decreasing the low frequency from 10 to 2 MHz, results in two or more sheath collapses, respectively, making the dynamics more complex. The sudden excitation of the perturbed series resonance current after the sheath collapse results in a current oscillation amplitude that is estimated from analytical and numerical calculations. Self-consistently determining the dc bias and including the conduction current is found to be important. The subsequent slow time variation of the high frequency oscillation is analyzed using an adiabatic theory.

  12. Separation of bacterial spores from flowing water in macro-scale cavities by ultrasonic standing waves

    CERN Document Server

    Lipkens, B; Costolo, M; Stevens, A; Rietman, Edward

    2010-01-01

    The separation of micron-sized bacterial spores (Bacillus cereus) from a steady flow of water through the use of ultrasonic standing waves is demonstrated. An ultrasonic resonator with cross-section of 0.0254 m x 0.0254 m has been designed with a flow inlet and outlet for a water stream that ensures laminar flow conditions into and out of the resonator section of the flow tube. A 0.01905-m diameter PZT-4, nominal 2-MHz transducer is used to generate ultrasonic standing waves in the resonator. The acoustic resonator is 0.0356 m from transducer face to the opposite reflector wall with the acoustic field in a direction orthogonal to the water flow direction. At fixed frequency excitation, spores are concentrated at the stable locations of the acoustic radiation force and trapped in the resonator region. The effect of the transducer voltage and frequency on the efficiency of spore capture in the resonator has been investigated. Successful separation of B. cereus spores from water with typical volume flow rates of...

  13. First-principle simulation of the acoustic radiation force on microparticles in ultrasonic standing waves

    DEFF Research Database (Denmark)

    Jensen, Mads Jakob Herring; Bruus, Henrik

    2013-01-01

    The recent development in the field of microparticle acoutophoresis in microsystems has led to an increased need for more accurate theoretical predections for the acoustic radiation force on a single microparticle in an ultrasonic standing wave. Increasingly detailed analytical solutions of this ......The recent development in the field of microparticle acoutophoresis in microsystems has led to an increased need for more accurate theoretical predections for the acoustic radiation force on a single microparticle in an ultrasonic standing wave. Increasingly detailed analytical solutions...... of this specific problem can be found in the literature [Settnes ans Bruus, Phys. Rev. E 85, 016327 (2012), and references therein], but none have included the complete contribution from thermoviscous effects. Here, we solve this problem numerically by applying a finite-element method to solve directly the mass...... (continuity), momentum (Navier-Stokes), and energy conservation equations using perturbation theory to second order in the imposed time-harmonic ultrasound field. In a two-stage calculation, we first solve the first-order equations resolving the thermoviscous boundary layer surrounding the microparticle...

  14. Stable optical trapping and sensitive characterization of nanostructures using standing-wave Raman tweezers

    Science.gov (United States)

    Wu, Mu-ying; Ling, Dong-xiong; Ling, Lin; Li, William; Li, Yong-qing

    2017-01-01

    Optical manipulation and label-free characterization of nanoscale structures open up new possibilities for assembly and control of nanodevices and biomolecules. Optical tweezers integrated with Raman spectroscopy allows analyzing a single trapped particle, but is generally less effective for individual nanoparticles. The main challenge is the weak gradient force on nanoparticles that is insufficient to overcome the destabilizing effect of scattering force and Brownian motion. Here, we present standing-wave Raman tweezers for stable trapping and sensitive characterization of single isolated nanostructures with a low laser power by combining a standing-wave optical trap with confocal Raman spectroscopy. This scheme has stronger intensity gradients and balanced scattering forces, and thus can be used to analyze many nanoparticles that cannot be measured with single-beam Raman tweezers, including individual single-walled carbon nanotubes (SWCNT), graphene flakes, biological particles, SERS-active metal nanoparticles, and high-refractive semiconductor nanoparticles. This would enable sorting and characterization of specific SWCNTs and other nanoparticles based on their increased Raman fingerprints. PMID:28211526

  15. Stable optical trapping and sensitive characterization of nanostructures using standing-wave Raman tweezers

    Science.gov (United States)

    Wu, Mu-Ying; Ling, Dong-Xiong; Ling, Lin; Li, William; Li, Yong-Qing

    2017-02-01

    Optical manipulation and label-free characterization of nanoscale structures open up new possibilities for assembly and control of nanodevices and biomolecules. Optical tweezers integrated with Raman spectroscopy allows analyzing a single trapped particle, but is generally less effective for individual nanoparticles. The main challenge is the weak gradient force on nanoparticles that is insufficient to overcome the destabilizing effect of scattering force and Brownian motion. Here, we present standing-wave Raman tweezers for stable trapping and sensitive characterization of single isolated nanostructures with a low laser power by combining a standing-wave optical trap with confocal Raman spectroscopy. This scheme has stronger intensity gradients and balanced scattering forces, and thus can be used to analyze many nanoparticles that cannot be measured with single-beam Raman tweezers, including individual single-walled carbon nanotubes (SWCNT), graphene flakes, biological particles, SERS-active metal nanoparticles, and high-refractive semiconductor nanoparticles. This would enable sorting and characterization of specific SWCNTs and other nanoparticles based on their increased Raman fingerprints.

  16. Measurements of the force fields within an acoustic standing wave using holographic optical tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Bassindale, P. G.; Drinkwater, B. W. [Faculty of Engineering, Queens building, University of Bristol, Bristol BS8 1TR (United Kingdom); Phillips, D. B. [Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Barnes, A. C. [Department of Physics, H.H.Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom)

    2014-04-21

    Direct measurement of the forces experienced by micro-spheres in an acoustic standing wave device have been obtained using calibrated optical traps generated with holographic optical tweezers. A micro-sphere, which is optically trapped in three dimensions, can be moved through the acoustic device to measure forces acting upon it. When the micro-sphere is subjected to acoustic forces, it's equilibrium position is displaced to a position where the acoustic forces and optical forces are balanced. Once the optical trapping stiffness has been calibrated, observation of this displacement enables a direct measurement of the forces acting upon the micro-sphere. The measured forces are separated into a spatially oscillating component, attributed to the acoustic radiation force, and a constant force, attributed to fluid streaming. As the drive conditions of the acoustic device were varied, oscillating forces (>2.5 pN{sub pp}) and streaming forces (<0.2 pN) were measured. A 5 μm silica micro-sphere was used to characterise a 6.8 MHz standing wave, λ = 220 μm, to a spatial resolution limited by the uncertainty in the positioning of the micro-sphere (here to within 2 nm) and with a force resolution on the order of 10 fN. The results have application in the design and testing of acoustic manipulation devices.

  17. Potential health effects of standing waves generated by low frequency noise.

    Science.gov (United States)

    Ziaran, Stanislav

    2013-01-01

    The main aim is to present the available updated knowledge regarding the potential health effects of standing waves generated by low frequency noise (LFN) from an open window in a moving car where the negative effects of LFN induced by heating components and/or heating, ventilation and air-conditioning are assessed. Furthermore, the assessment of noise in chosen enclosed spaces, such as rooms, offices, and classrooms, or other LFN sources and their effect on the human being were investigated. These types of noise are responsible for disturbance during relaxation, sleep, mental work, education, and concentration, which may reflect negatively on the comfort and health of the population and on the mental state of people such as scientific staff and students. The assessment points out the most exposed areas, and analyzes the conditions of standing wave generation in these rooms caused by outdoor and/or indoor sources. Measurements were made for three different enclosed spaces (office, flat, and passenger car) and sources (traffic specific noise at intersections, noise induced by pipe vibration, and aerodynamic noise) and their operating conditions. For the detection of LFN, the A-weighted sound pressure level and vibration were measured and a fast Fourier transform analysis was used. The LFN sources are specified and the direct effects on the human are reported. Finally, this paper suggests the possibilities for the assessment of LFN and some possible measures that can be taken to prevent or reduce them.

  18. Coronal Seismology of Flare-Excited Standing Slow-Mode Waves Observed by SDO/AIA

    Science.gov (United States)

    Wang, Tongjiang; Ofman, Leon; Davila, Joseph M.

    2016-05-01

    Flare-excited longitudinal intensity oscillations in hot flaring loops have been recently detected by SDO/AIA in 94 and 131 Å bandpasses. Based on the interpretation in terms of a slow-mode wave, quantitative evidence of thermal conduction suppression in hot (>9 MK) loops has been obtained for the first time from measurements of the polytropic index and phase shift between the temperature and density perturbations (Wang et al. 2015, ApJL, 811, L13). This result has significant implications in two aspects. One is that the thermal conduction suppression suggests the need of greatly enhanced compressive viscosity to interpret the observed strong wave damping. The other is that the conduction suppression provides a reasonable mechanism for explaining the long-duration events where the thermal plasma is sustained well beyond the duration of impulsive hard X-ray bursts in many flares, for a time much longer than expected by the classical Spitzer conductive cooling. In this study, we model the observed standing slow-mode wave in Wang et al. (2015) using a 1D nonlinear MHD code. With the seismology-derived transport coefficients for thermal conduction and compressive viscosity, we successfully simulate the oscillation period and damping time of the observed waves. Based on the parametric study of the effect of thermal conduction suppression and viscosity enhancement on the observables, we discuss the inversion scheme for determining the energy transport coefficients by coronal seismology.

  19. Two-dimensional manipulation of microparticles using phase-controllable ultrasonic standing waves

    Science.gov (United States)

    Courtney, C. R. P.; Ong, C.-K.; Drinkwater, B. W.; Wilcox, P. D.; Grinenko, A.

    2012-05-01

    The ability to trap, and then manipulate, micro-particles in a fluid, is of interest as a research tool in the biosciences. Applications include tissue engineering, particle sorting and improving alignment with bio-sensors. This paper relates to the use of phase-controllable counter-propagating ultrasonic waves to generate a standing wave with pressure nodes whose positions are determined by the relative phases of the component counter-propagating travelling waves. As dense (relative to the fluid) particles are forced to nodes in the pressure field this allows particles to be trapped at particular points and moved to arbitrary positions. Counter-propagating waves are generated using pairs of opposing transducers, matched and backed to minimise reflection. Using one pair of transducers allows particles to be trapped and manipulated in one dimension. Using two pairs of transducers, positioned orthogonally, and adjusting the relative phases appropriately, allows trapping and manipulation in two dimensions. The device is shown experimentally to be capable of trapping and manipulating 10-micron-diameter polystyrene beads in two dimensions.

  20. Generation of uniform large-area very high frequency plasmas by launching two specific standing waves simultaneously

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hsin-Liang, E-mail: hlchen@iner.gov.tw; Tu, Yen-Cheng; Hsieh, Cheng-Chang; Lin, Deng-Lain [Physics Division, Institute of Nuclear Energy Research (INER), Longtan, Taoyuan County 32546, Taiwan (China); Leou, Keh-Chyang [Department of Engineering and System Science, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China)

    2014-09-14

    With the characteristics of higher electron density and lower ion bombardment energy, large-area VHF (very high frequency) plasma enhanced chemical vapor deposition has become an essential manufacturing equipment to improve the production throughput and efficiency of thin film silicon solar cell. However, the combination of high frequency and large electrodes leads to the so-called standing wave effect causing a serious problem for the deposition uniformity of silicon thin film. In order to address this issue, a technique based on the idea of simultaneously launching two standing waves that possess similar amplitudes and are out of phase by 90° in time and space is proposed in this study. A linear plasma reactor with discharge length of 54 cm is tested with two different frequencies including 60 and 80 MHz. The experimental results show that the proposed technique could effectively improve the non-uniformity of VHF plasmas from >±60% when only one standing wave is applied to <±10% once two specific standing waves are launched at the same time. Moreover, in terms of the reactor configuration adopted in this study, in which the standing wave effect along the much shorter dimension can be ignored, the proposed technique is applicable to different frequencies without the need to alter the number and arrangement of power feeding points.

  1. Illustrations and supporting texts for sound standing waves of air columns in pipes in introductory physics textbooks

    Directory of Open Access Journals (Sweden)

    Liang Zeng

    2014-07-01

    Full Text Available In our pilot studies, we found that many introductory physics textbook illustrations with supporting text for sound standing waves of air columns in open-open, open-closed, and closed-closed pipes inhibit student understanding of sound standing wave phenomena due to student misunderstanding of how air molecules move within these pipes. Based on the construct of meaningful learning from cognitive psychology and semiotics, a quasiexperimental study was conducted to investigate the comparative effectiveness of two alternative approaches to student understanding: a traditional textbook illustration approach versus a newly designed air molecule motion illustration approach. Thirty volunteer students from introductory physics classes were randomly assigned to two groups of 15 each. Both groups were administered a presurvey. Then, group A read the air molecule motion illustration handout, and group B read a traditional textbook illustration handout; both groups were administered postsurveys. Subsequently, the procedure was reversed: group B read the air molecule motion illustration handout and group A read the traditional textbook illustration handout. This was followed by a second postsurvey along with an exit research questionnaire. The study found that the majority of students experienced meaningful learning and stated that they understood sound standing wave phenomena significantly better using the air molecule motion illustration approach. This finding provides a method for physics education researchers to design illustrations for abstract sound standing wave concepts, for publishers to improve their illustrations with supporting text, and for instructors to facilitate deeper learning in their students on sound standing waves.

  2. Development of fast two-dimensional standing wave microscopy using acousto-optic deflectors

    Science.gov (United States)

    Gliko, Olga; Reddy, Duemani G.; Brownell, William E.; Saggau, Peter

    2008-02-01

    A novel scheme for two-dimensional (2D) standing wave fluorescence microscopy (SWFM) using acousto-optic deflectors (AODs) is proposed. Two laser beams were coupled into an inverted microscope and focused at the back focal plane of the objective lens. The position of each of two beams at the back focal plane was controlled by a pair of AODs. This resulted in two collimated beams that interfered in the focal plane, creating a lateral periodic excitation pattern with variable spacing and orientation. The phase of the standing wave pattern was controlled by phase delay between two RF sinusoidal signals driving the AODs. Nine SW patterns of three different orientations about the optical axis and three different phases were generated. The excitation of the specimen using these patterns will result in a SWFM image with enhanced 2D lateral resolution with a nearly isotropic effective point-spread function. Rotation of the SW pattern relative to specimen and varying the SW phase do not involve any mechanical movements and are only limited by the time required for the acoustic wave to fill the aperture of AOD. The resulting total acquisition time can be as short as 100 µs and is only further limited by speed and sensitivity of the employed CCD camera. Therefore, this 2D SWFM can provide a real time imaging of subresolution processes such as docking and fusion of synaptic vesicles. In addition, the combination of 2D SWFM with variable angle total internal reflection (TIR) can extend this scheme to fast microscopy with enhanced three-dimensional (3D) resolution.

  3. Experimental Study on a Standing Wave Thermoacoustic Prime Mover with Air Working Gas at Various Pressures

    Science.gov (United States)

    Setiawan, Ikhsan; Achmadin, Wahyu N.; Murti, Prastowo; Nohtomi, Makoto

    2016-04-01

    Thermoacoustic prime mover is an energy conversion device which converts thermal energy into acoustic work (sound wave). The advantages of this machine are that it can work with air as the working gas and does not produce any exhaust gases, so that it is environmentally friendly. This paper describes an experimental study on a standing wave thermoacoustic prime mover with air as the working gas at various pressures from 0.05 MPa to 0.6 MPa. We found that 0.2 MPa is the optimum pressure which gives the lowest onset temperature difference of 355 °C. This pressure value would be more preferable in harnessing low grade heat sources to power the thermoacoustic prime mover. In addition, we find that the lowest onset temperature difference is obtained when rh /δ k ratio is 2.85, where r h is the hydraulic radius of the stack and δ k is the thermal penetration depth of the gas. Moreover, the pressure amplitude of the sound wave is significantly getting larger from 2.0 kPa to 9.0 kPa as the charged pressure increases from 0.05 MPa up to 0.6 MPa.

  4. Self-organization of clusters by a standing surface acoustic wave

    Science.gov (United States)

    Taillan, Christophe; Combe, Nicolas; Morillo, Joseph

    2017-07-01

    The diffusion of clusters on a crystalline substrate submitted to a standing surface acoustic wave (StSAW) is studied using molecular dynamics simulations. The distributions of positions of clusters with two, three, and four atoms are calculated and evidence that the wave encourages the presence of the clusters in the vicinity of the maximum transverse displacement field of the substrate. The physical mechanism leading to this self-organization is expected to be equivalent to the one operating for a single adatom, i.e., the displacement of the clusters induced by the longitudinal displacement field of the wave. The detailed shapes of the distributions of positions of clusters are related to the different clusters' orientation and configurations. Finally, the possibility to use a StSAW to self-organize nanostructures during growth is addressed by simulating a deposition process on the substrate. We evidence that the use of a StSAW allows to especially control the spatial repartition of grown nanostructures.

  5. In vitro ultrasound experiments: Standing wave and multiple reflections influence on the outcome.

    Science.gov (United States)

    Secomski, Wojciech; Bilmin, Krzysztof; Kujawska, Tamara; Nowicki, Andrzej; Grieb, Paweł; Lewin, Peter A

    2017-05-01

    The purpose of this work was to determine the influence of standing waves and possible multiple reflections under the conditions often encountered in examining the effects of ultrasound exposure on the cell cultures in vitro. More specifically, the goal was to quantitatively ascertain the influence of ultrasound exposure under free field (FF) and standing waves (SW) and multiple reflections (MR) conditions (SWMR) on the biological endpoint (50% cell necrosis). Such information would help in designing the experiments, in which the geometry of the container with biological tissue may prevent FF conditions to be established and in which the ultrasound generated temperature elevation is undesirable. This goal was accomplished by performing systematic, side-by-side experiments in vitro with C6 rat glioma cancer cells using 12 well and 96 well plates. It was determined that to obtain 50% of cell viability using the 12 well plates, the spatial average, temporal average (ISATA) intensities of 0.32W/cm(2) and 5.89W/cm(2) were needed under SWMR and FF conditions, respectively. For 96 well plates the results were 0.80W/cm(2) and 2.86W/cm(2) respectively. The corresponding, hydrophone measured pRMS maximum pressure amplitude values, were 0.71MPa, 0.75MPa, 0.75MPa and 0.73MPa, respectively. These results suggest that pRMS pressure amplitude was independent of the measurement set-up geometry and hence could be used to predict the cells' mortality threshold under any in vitro experimental conditions or even as a starting point for (pre-clinical) in vivo tests. The described procedure of the hydrophone measurements of the pRMS maximum pressure amplitude at the λ/2 distance (here 0.75mm) from the cell's level at the bottom of the dish or plate provides the guideline allowing the difference between the FF and SWMR conditions to be determined in any experimental setup. The outcome of the measurements also indicates that SWMR exposure might be useful at any ultrasound assisted

  6. Standing-wave-excited multiplanar fluorescence in a laser scanning microscope reveals 3D information on red blood cells

    CERN Document Server

    Amor, Rumelo; Amos, William Bradshaw; McConnell, Gail

    2014-01-01

    Standing-wave excitation of fluorescence is highly desirable in optical microscopy because it improves the axial resolution. We demonstrate here that multiplanar excitation of fluorescence by a standing wave can be produced in a single-spot laser scanning microscope by placing a plane reflector close to the specimen. We report that the relative intensities in each plane of excitation depend on the Stokes shift of the fluorochrome. We show by the use of dyes specific for the cell membrane how standing-wave excitation can be exploited to generate precise contour maps of the surface membrane of red blood cells, with an axial resolution of ~90 nm. The method, which requires only the addition of a plane mirror to an existing confocal laser scanning microscope, may well prove useful in studying diseases which involve the red cell membrane, such as malaria.

  7. Axial acoustic radiation force on rigid oblate and prolate spheroids in Bessel vortex beams of progressive, standing and quasi-standing waves

    CERN Document Server

    Mitri, F G

    2016-01-01

    The analysis using the partial-wave series expansion (PWSE) method in spherical coordinates is extended to evaluate the acoustic radiation force experienced by rigid oblate and prolate spheroids centered on the axis of wave propagation of high-order Bessel vortex beams composed of progressive, standing and quasi-standing waves, respectively. A coupled system of linear equations is derived after applying the Neumann boundary condition for an immovable surface in a non-viscous fluid, and solved numerically by matrix inversion after performing a single numerical integration procedure. The system of linear equations depends on the partial-wave index n and the order of the Bessel vortex beam m using truncated but converging PWSEs in the least-squares sense. Numerical results for the radiation force function, which is the radiation force per unit energy density and unit cross-sectional surface, are computed with particular emphasis on the amplitude ratio describing the transition from the progressive to the pure st...

  8. One-Step Generation of Scalable Multiparticle Entanglement for Hot Ions Driven by a Standing-Wave Laser

    Institute of Scientific and Technical Information of China (English)

    杨文星; 陈爱喜

    2011-01-01

    An alternative scheme is proposed for one-step generation of multiparticle cluster state with trapped ions in thermal motion. In this scheme, the ions are simultaneously illuminated by a standing-wave laser tuned to the carrier. During the operations, the vibrational mode is virtually excited, thus the quantum operations are insensitive to the heating. It is shown that the high fidelity multiparticle entanglement could be generated in just one step even including the small fluctuations of parameters. In addition, the ion does not need to be exactly positioned at the node of the standing wave, which is also important from the viewpoint of experiment.

  9. Microchannel-free collection and single-cell isolation of yeast cells in a suspension using liquid standing wave

    Science.gov (United States)

    Matsutani, Akihiro; Takada, Ayako

    2016-11-01

    We demonstrate a microchannel-free collection method at nodes of liquid standing waves by the vertical vibration of a suspension including yeast cells. The pattern formation of the collection of cells using standing waves in a suspension was investigated by varying the frequency and waveform of vibrations. The single-cell isolation of yeast cells was achieved using a microenclosure array set at the nodes. In addition, we succeeded in the microchannel-free collection of yeast cells in a suspension, where patterns were formed by tapping vibration. The proposed technique is very simple and we believe that it will be useful for single-cell analysis and investigation.

  10. High-fidelity simulation of a standing-wave thermoacoustic-piezoelectric engine

    CERN Document Server

    Lin, Jeffrey; Hesselink, Lambertus

    2015-01-01

    We have carried out wall-resolved fully unstructured Navier--Stokes simulations of a complete standing-wave thermoacoustic piezoelectric (TAP) engine model inspired by the experimental work of Smoker et al. (2012). The computational model is axisymmetric and comprises a 51 cm long cylindrical resonator divided into two sections: one of 19.5 mm in diameter, enclosing a thermoacoustic stack where a linear temperature distribution is imposed via isothermal boundary conditions; the other of 71 mm in diameter, capped by a piezoelectric diaphragm modelled via multi-oscillator broadband time-domain impedance boundary conditions (TDIBCs) matching the measured electromechanical impedance of a PZT-5A diaphragm tuned to the thermoacoustically amplified mode (388 Hz) for maximization of acoustic energy extraction. Simulations were first carried out without energy extraction from quiescent conditions to a limit cycle, for hot-to-cold temperature differences in the range $\\Delta T = 340 - 490\\textrm{ K}$, achieving acousti...

  11. Physical design and cooling test of C-band standing wave accelerating tube

    Institute of Scientific and Technical Information of China (English)

    Bai Wei; Xu Zhou; Jin Xiao; Li Ming

    2006-01-01

    The physical design and cooling test of a C-band 2MeV standing wave (SW) accelerating tube are described in this paper. The designed accelerating structure consists of 3-cell buncher and 4-cell accelerating section with a total length of about 163mm , excited with 1MW magnetron. Dynamic simulation presents that about 150mA beam pulse current and 30% capture efficiency can be achieved. By means of nonlinear Gauss fit on electron transverse distribution, the diameter of beam spot FWHM (full width at half maximum of density distribution) is about 0.55mm. Cooling test results of the accelerating tube show that frequencies of cavities are tuned to 5527MHz and the field distribution of bunching section is about 3:9:10.

  12. Theoretical research and experimental study for a new measurement method of standing wave levitation force

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xinbo; Jiang, Hai; Jiao, Xiaoyang; Zhang, Kai; Liu, Guojun; Liu, Jianfang [Jilin University, Changchun (China)

    2015-05-15

    Based on the lever principle, a novel measurement method for the standing wave levitation force is investigated and the measurement device is developed. The relative levitation force was simulated by MATLAB software, from which the relative levitation force distribution and the curves of relative levitation force in vertical and horizontal directions were obtained. To verify the rationale of the measurement method, a series of experiments were carried out with the designed measurement device system. The levitation force distribution and the curves of levitation force in vertical and horizontal directions were also obtained from the experiment. Comparing the experimental results with the simulation, the levitation force distribution situation from the experimental results and the simulation is identical.

  13. Gene Expression Analysis of Mouse Embryonic Stem Cells Following Levitation in an Ultrasound Standing Wave Trap

    Science.gov (United States)

    Bazou, Despina; Kearney, Roisin; Mansergh, Fiona; Bourdon, Celine; Farrar, Jane; Wride, Michael

    2011-01-01

    In the present paper, gene expression analysis of mouse embryonic stem (ES) cells levitated in a novel ultrasound standing wave trap (USWT) (Bazou et al. 2005a) at variable acoustic pressures (0.08–0.85 MPa) and times (5–60 min) was performed. Our results showed that levitation of ES cells at the highest employed acoustic pressure for 60 min does not modify gene expression and cells maintain their pluripotency. Embryoid bodies (EBs) also expressed the early and late neural differentiation markers, which were also unaffected by the acoustic field. Our results suggest that the ultrasound trap microenvironment is minimally invasive as the biologic consequences of ES cell replication and EB differentiation proceed without significantly affecting gene expression. The technique holds great promise in safe cell manipulation techniques for a variety of applications including tissue engineering and regenerative medicine. (E-mail: Bazoud@tcd.ie) PMID:21208732

  14. Temporal coupled mode theory of standing wave resonant cavities for infrared photodetection.

    Science.gov (United States)

    Lesmanne, Emeline; De Lamaestre, Roch Espiau; Fowler, David; Boutami, Salim; Badano, Giacomo

    2015-03-23

    Standing wave resonating cavities have been proposed in the past to increase the performance of infrared detectors by minimizing the volume of photogeneration, hence the noise, while maintaining the same quantum efficiency. We present an approach based on the temporal coupled mode theory to explain their behavior and limitations. If the ratio of the imaginary part of the absorber's dielectric function to the index of the incident medium ε″(d)/n₀ is larger than 1.4, then the absorption cross section σ(a) can attain its maximum value, which for an isolated cavity is approximately 2λ/π. Besides, for σ(a) to exceed the cavity width, the incident medium refractive index must be close to unity. Metallic loss is negligible in the infrared, making those resonators suitable for integration in infrared photodetectors.

  15. Model independent X-ray standing wave analysis of periodic multilayer structures

    CERN Document Server

    Yakunin, S N; Chuev, M A; Pashaev, E M; Zoethout, E; Louis, E; van de Kruijs, R W E; Seregin, S Yu; Subbotin, I A; Novikov, D V; Bijkerk, F; Kovalchuk, M V

    2013-01-01

    We present a model independent approach for the reconstruction of the atomic concentration profile in a nanoscale layered structure, as measured using the X-ray fluorescence yield modulated by an X-ray standing wave (XSW). The approach is based on the direct regularized solution of the system of linear equations that characterizes the fluorescence yield. The suggested technique was optimized for, but not limited to, the analysis of periodic layered structures where the XSW is formed under Bragg conditions. The developed approach was applied to the reconstruction of the atomic concentration profiles for LaN/BN multilayers with 50 periods of 35 A thick layers. The object is especially difficult to analyse with traditional methods, as the estimated thickness of the interface region between the constituent materials is comparable to the individual layer thicknesses. However, using the suggested technique it was possible to reconstruct the La atomic profile, showing that the La atoms stay localized within the LaN ...

  16. Cavity-enhanced laser cooling of solid-state materials in a standing-wave cavity

    Institute of Scientific and Technical Information of China (English)

    Youhua Jia; Biao Zhong; Jianping Yin

    2008-01-01

    We propose a new method to cool the Yba+-doped ZBLANP glass in a standing-wave cavity. There are two advantages of this cavity-enhanced technique: the pumping power is greatly enhanced and the absorption of the cooling material is greatly increased. We introduce the basic principle of the cavity-enhanced laser cooling and discuss the cooling effect of a solid-state material in a cavity. From the theoretical study, it is found that the laser cooling effect is strongly dependent on the reflectivity of the cavity mirrors, the length of the solid material, the surface scattering of the material, and so on. Some optimal parameters for efficient laser cooling are obtained.

  17. Numerical simulation of standing wave with 3D predictor-corrector finite difference method for potential flow equations

    Institute of Scientific and Technical Information of China (English)

    罗志强; 陈志敏

    2013-01-01

    A three-dimensional (3D) predictor-corrector finite difference method for standing wave is developed. It is applied to solve the 3D nonlinear potential flow equa-tions with a free surface. The 3D irregular tank is mapped onto a fixed cubic tank through the proper coordinate transform schemes. The cubic tank is distributed by the staggered meshgrid, and the staggered meshgrid is used to denote the variables of the flow field. The predictor-corrector finite difference method is given to develop the difference equa-tions of the dynamic boundary equation and kinematic boundary equation. Experimental results show that, using the finite difference method of the predictor-corrector scheme, the numerical solutions agree well with the published results. The wave profiles of the standing wave with different amplitudes and wave lengths are studied. The numerical solutions are also analyzed and presented graphically.

  18. Fluorescence x-ray standing wave study on (AlAs)(GaAs) superlattices

    CERN Document Server

    Lessmann, A; Munkholm, A; Schuster, M; Riechert, H; Materlik, G

    1999-01-01

    X-ray standing waves (XSW) were used to investigate the structure of molecular beam epitaxy (MBE) grown (AlAs) sub 3 (GaAs) sub 7 short-period superlattices (SPSL). The modulation of the Al K, As L, and Ga L x-ray fluorescence induced by XSW was measured at the zero-order superlattice (SL) satellite (AlAs)(GaAs)(004,0) and the GaAs(004) substrate Bragg reflection. From the shape of the fluorescence yield modulations and the diffraction pattern, a model of the interfaces is derived by comparing the experimental data with dynamical calculations of the x-ray wave field distribution and reflectivity. A straightforward analysis of the fluorescence measurements at the SL satellite shows that in AlAs layers a high crystalline order is established, whereas in GaAs layers a fraction of the Ga and As atoms is not on ideal lattice sites, but is displaced towards the substrate. The data can be explained by a model in which, at each AlAs/GaAs interface of the GaAs layers, two Ga atom planes are displaced by 0.035 nm and 0...

  19. Evidence of standing waves during a Pi2 pulsation event observed on Cluster

    Directory of Open Access Journals (Sweden)

    A. B. Collier

    2006-10-01

    Full Text Available Observations of Pi2 pulsations at middle and low latitudes have been explained in terms of cavity mode resonances, whereas transients associated with field-aligned currents appear to be responsible for the high latitude Pi2 signature.

    Data from Cluster are used to study a Pi2 event observed at 18:09 UTC on 21 January 2003, when three of the satellites were within the plasmasphere (L=4.7, 4.5 and 4.6 while the fourth was on the plasmapause or in the plasmatrough (L=6.6. Simultaneous pulsations at ground observatories and the injection of particles at geosynchronous orbit corroborate the occurrence of a substorm.

    Evidence of a cavity mode resonance is established by considering the phase relationship between the orthogonal electric and magnetic field components associated with radial and field-aligned standing waves. The relative phase between satellites located on either side of the geomagnetic equator indicates that the field-aligned oscillation is an odd harmonic. Finite azimuthal Poynting flux suggests that the cavity is effectively open ended and the azimuthal wave number is estimated as m~13.5.

  20. Separation of Escherichia coli bacteria from peripheral blood mononuclear cells using standing surface acoustic waves.

    Science.gov (United States)

    Ai, Ye; Sanders, Claire K; Marrone, Babetta L

    2013-10-01

    A microfluidic device was developed to separate heterogeneous particle or cell mixtures in a continuous flow using acoustophoresis. In this device, two identical surface acoustic waves (SAWs) generated by interdigital transducers (IDTs) propagated toward a microchannel, which accordingly built up a standing surface acoustic wave (SSAW) field across the channel. A numerical model, coupling a piezoelectric effect in the solid substrate and acoustic pressure in the fluid, was developed to provide a better understanding of SSAW-based particle manipulation. It was found that the pressure nodes across the channel were individual planes perpendicular to the solid substrate. In the separation experiments, two side sheath flows hydrodynamically focused the injected particle or cell mixtures into a very narrow stream along the centerline. Particles flowing through the SSAW field experienced an acoustic radiation force that highly depends on the particle properties. As a result, dissimilar particles or cells were laterally attracted toward the pressure nodes at different magnitudes, and were eventually switched to different outlets. Two types of fluorescent microspheres with different sizes were successfully separated using the developed device. In addition, Escherichia coli bacteria premixed in peripheral blood mononuclear cells (PBMCs) were also efficiently isolated using the SSAW-base separation technique. Flow cytometric analysis on the collected samples found that the purity of separated E. coli bacteria was 95.65%.

  1. Fluorescence x-ray standing wave study on (AlAs)(GaAs) superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Lessmann, A.; Brennan, S.; Munkholm, A. [Stanford Synchrotron Radiation Laboratory SSRL/SLAC, Menlo Park, CA (United States); Schuster, M.; Riechert, H. [Siemens AG, Corporate Technology, Munich (Germany); Materlik, G. [Hamburger Synchrotronstrahlungslabor HASYLAB/DESY, Hamburg (Germany)

    1999-05-21

    X-ray standing waves (XSW) were used to investigate the structure of molecular beam epitaxy (MBE) grown (AlAs){sub 3}(GaAs){sub 7} short-period superlattices (SPSL). The modulation of the Al K, As L, and Ga L x-ray fluorescence induced by XSW was measured at the zero-order superlattice (SL) satellite (AlAs)(GaAs)(004,0) and the GaAs(004) substrate Bragg reflection. From the shape of the fluorescence yield modulations and the diffraction pattern, a model of the interfaces is derived by comparing the experimental data with dynamical calculations of the x-ray wave field distribution and reflectivity. A straightforward analysis of the fluorescence measurements at the SL satellite shows that in AlAs layers a high crystalline order is established, whereas in GaAs layers a fraction of the Ga and As atoms is not on ideal lattice sites, but is displaced towards the substrate. The data can be explained by a model in which, at each AlAs/GaAs interface of the GaAs layers, two Ga atom planes are displaced by 0.035 nm and 0.008 nm and one As atom plane by 0.023 nm. The displacements within the GaAs layers exhibit a mirror symmetry with respect to the centre of each layer. (author)

  2. Precise spatial control of cavitation erosion in a vessel phantom by using an ultrasonic standing wave.

    Science.gov (United States)

    Shi, Aiwei; Huang, Peixuan; Guo, Shifang; Zhao, Lu; Jia, Yingjie; Zong, Yujin; Wan, Mingxi

    2016-07-01

    In atherosclerotic inducement in animal models, the conventionally used balloon injury is invasive, produces excessive vessel injuries at unpredictable locations and is inconvenient in arterioles. Fortunately, cavitation erosion, which plays an important role in therapeutic ultrasound in blood vessels, has the potential to induce atherosclerosis noninvasively at predictable sites. In this study, precise spatial control of cavitation erosion for superficial lesions in a vessel phantom was realised by using an ultrasonic standing wave (USW) with the participation of cavitation nuclei and medium-intensity ultrasound pulses. The superficial vessel erosions were restricted between adjacent pressure nodes, which were 0.87 mm apart in the USW field of 1 MHz. The erosion positions could be shifted along the vessel by nodal modulation under a submillimetre-scale accuracy without moving the ultrasound transducers. Moreover, the cavitation erosion of the proximal or distal wall could be determined by the types of cavitation nuclei and their corresponding cavitation pulses, i.e., phase-change microbubbles with cavitation pulses of 5 MHz and SonoVue microbubbles with cavitation pulses of 1 MHz. Effects of acoustic parameters of the cavitation pulses on the cavitation erosions were investigated. The flow conditions in the experiments were considered and discussed. Compared to only using travelling waves, the proposed method in this paper improves the controllability of the cavitation erosion and reduces the erosion depth, providing a more suitable approach for vessel endothelial injury while avoiding haemorrhage.

  3. Standing and Travelling Wave Contributions to the Persistent Ridge-Trough Over North America During Winter 2013/14

    Science.gov (United States)

    Watt-Meyer, O.; Kushner, P. J.

    2015-12-01

    The winter season over North America during 2013/14 was dominated by a persistent ridge-trough that brought warm and dry conditions to the southwestern U.S., and markedly cold temperatures to central and eastern North America [Wang et al., 2014; Hartmann, 2015]. In addition, several cold air outbreaks occurred during the winter season, the strongest of which was around 7 January 2014 and led to minimum daily temperature records being set at many weather stations including Atlanta, Austin, Chicago and New York [Screen et al., in press]. This study uses a novel decomposition of wave variability into standing and travelling components [Watt-Meyer and Kushner, 2015] to diagnose the anomalous circulation of the 2013/14 winter season. This spectral decomposition is an improvement on previous methods because it explicitly accounts for the covariance between standing and travelling waves, and because the real-space components of the signal can be easily reconstructed. An index representing the ridge-trough dipole is computed using mid-tropospheric heights and shown to be well correlated with surface temperatures over central and eastern North America. The contributions to this dipole index from standing waves, westward travelling waves, and eastward travelling waves are calculated. The analysis demonstrates that the cold air outbreak of 7 January 2014 was driven by a synoptic wave of record breaking amplitude intensifying a persistent background amplification of the typical ridge-trough structure seen during North American winter.

  4. Generation of uniform large-area very high frequency plasmas by launching two specific standing waves simultaneously

    Science.gov (United States)

    Chen, Hsin-Liang; Tu, Yen-Cheng; Hsieh, Cheng-Chang; Lin, Deng-Lain; Leou, Keh-Chyang

    2014-09-01

    With the characteristics of higher electron density and lower ion bombardment energy, large-area VHF (very high frequency) plasma enhanced chemical vapor deposition has become an essential manufacturing equipment to improve the production throughput and efficiency of thin film silicon solar cell. However, the combination of high frequency and large electrodes leads to the so-called standing wave effect causing a serious problem for the deposition uniformity of silicon thin film. In order to address this issue, a technique based on the idea of simultaneously launching two standing waves that possess similar amplitudes and are out of phase by 90° in time and space is proposed in this study. A linear plasma reactor with discharge length of 54 cm is tested with two different frequencies including 60 and 80 MHz. The experimental results show that the proposed technique could effectively improve the non-uniformity of VHF plasmas from >±60% when only one standing wave is applied to reactor configuration adopted in this study, in which the standing wave effect along the much shorter dimension can be ignored, the proposed technique is applicable to different frequencies without the need to alter the number and arrangement of power feeding points.

  5. Investigation of sound field for a standing wave tube system with flow and with lateral Helmholtz resonator Ⅰ. Theoretical analysis

    Institute of Scientific and Technical Information of China (English)

    LIU Ke; LI Song; GUO Qing; HUANG Dongtao

    2005-01-01

    A lateral Helmholtz resonator added to a standing wave tube without flow has been validated as a method of noise reduction for combustion noise radiated from combustion channel of rockets or turbines. But in fact there is a flow with low velocity in the combustion channel. Therefore the theoretical analysis carried out is aimed at sound field of standing wave tube with flow and with lateral Helmholtz resonator. Certainly a relevant math-physical model should first be formulated. Here three key problems need to be solved: (1) To formulate the discontinuity condition at the joint between the standing wave tube and Helmholtz resonator in the case of flow. (2) To determine the acoustic impedance of Helnholtz resonator, considering the effects of flow, viscous and multihole. (3) To formulate the reflection condition at the end of the standing wave tube. Some formulas for analysis of the sound field in the tube with flow and with lateral Helmholtz resonator are deduced. These theoretical works have been validated by experiments.

  6. Extraction of olive oil assisted by high-frequency ultrasound standing waves.

    Science.gov (United States)

    Juliano, Pablo; Bainczyk, Fabian; Swiergon, Piotr; Supriyatna, Made Ian Maheswara; Guillaume, Claudia; Ravetti, Leandro; Canamasas, Pablo; Cravotto, Giancarlo; Xu, Xin-Qing

    2017-09-01

    High-frequency ultrasound standing waves (megasonics) have been demonstrated to enhance oil separation in the palm oil process at an industrial level. This work investigated the application of megasonics in the olive oil process on laboratory and pilot scale levels. Sound pressure level and cavitational yield distribution were characterised with hydrophones and luminol to determine associated physical and sonochemical effects inside the reactor. The effect of water addition (0%, 15%, and 30%), megasonic power levels (0%, 50%, and 100%), and malaxation time (10min, 30min, and 50min) was evaluated using response surface methodology (RSM) in a 700g batch extraction process. The RSM showed that the effect of the megasonic treatment (585kHz) in the presence of a reflector is more prominent at longer malaxation time (50min) and at higher water addition (30%) levels post-malaxation. Longer megasonic treatment of the malaxed paste (up to 15min; 220kJ/kg) increased oil extractability by up to 3.2%. When treating the malaxed paste with the same specific energy, higher oil extractability was obtained with longer treatments and low megasonic power levels in comparison to higher power levels and shorter times. Megasonic treatment of the paste before malaxation (585kHz, 10min, 146kJ/kg) and no water addition provided an increase in oil extractability of up to 3.8% with respect to the non-sonicated control. A double sonication intervention, before and after malaxation, using low (40kHz) and high (585kHz) frequency, respectively, provided up to 2.4% increase in oil extractability. A megasonic intervention post-malaxation (400 and 600kHz, 57-67min, 18-21kJ/kg) on a pilot scale using early-harvest olive fruits resulted in up to 1.7% extra oil extractability. Oil extracted under a high sonication frequency (free radical production regime) did not impact on olive oil quality parameters at reactor characterisation levels. Megasonic standing wave forces can enhance olive oil separation

  7. Modeling stick-slip-separation dynamics in a bimodal standing wave ultrasonic motor

    Science.gov (United States)

    Li, Xiang; Yao, Zhiyuan; Lv, Qibao; Liu, Zhen

    2016-11-01

    Ultrasonic motor (USM) is an electromechanical coupling system with ultrasonic vibration, which is driven by the frictional contact force between the stator (vibrating body) and the rotor/slider (driven body). Stick-slip motion can occur at the contact interface when USM is operating, which may affect the performance of the motor. This paper develops a physically-based model to investigate the complex stick-slip-separation dynamics in a bimodal standing wave ultrasonic motor. The model includes both friction nonlinearity and intermittent separation nonlinearity of the system. Utilizing Hamilton's principle and assumed mode method, the dynamic equations of the stator are deduced. Based on the dynamics of the stator and the slider, sticking force during the stick phase is derived, which is used to examine the stick-to-slip transition. Furthermore, the stick-slip-separation kinematics is analyzed by establishing analytical criteria that predict the transition between stick, slip and separation of the interface. Stick-slip-separation motion is observed in the resulting model, and numerical simulations are performed to study the influence of parameters on the range of possible motions. Results show that stick-slip motion can occur with greater preload and smaller voltage amplitude. Furthermore, a dimensionless parameter is proposed to predict the occurrence of stick-slip versus slip-separation motions, and its role in designing ultrasonic motors is discussed. It is shown that slip-separation motion is favorable for the slider velocity.

  8. Structural analysis of bismuth nanowire by X-ray standing wave method

    CERN Document Server

    Saito, A; Kurata, T; Maruyama, J; Kuwahara, Y; Aono, M; Miki, K

    2003-01-01

    Bismuth forms perfect wires without any defects on a clean Si(001) surface. Despite the importance of this self-organized nanowire from the viewpoints of both surface science and device application, an analysis of the internal structure of the wire is quite difficult under the condition of a buried interface. In order to clarify the atomic structure of the wire capped by amorphous Si layers, the three-dimensional bismuth atomic site was measured with respect to the substrate Si lattice by the X-ray standing wave method. The results indicate that the absolute height of Bi atoms is 0.26 A upper from the bulklike Si(004) plane of the Si-dimer layer. For the structure inside the (004) plane, Bi atoms are in the range of +-0.5 A in the [110] direction from an intact Si-dimmer position. This result disagrees with recent reports that were derived from other analytical methods used solely for a clean surface. A new model was proposed and it suggests an influence of a burying effect for the wire structure. (author)

  9. Neocortical dynamics at multiple scales: EEG standing waves, statistical mechanics, and physical analogs.

    Science.gov (United States)

    Ingber, Lester; Nunez, Paul L

    2011-02-01

    The dynamic behavior of scalp potentials (EEG) is apparently due to some combination of global and local processes with important top-down and bottom-up interactions across spatial scales. In treating global mechanisms, we stress the importance of myelinated axon propagation delays and periodic boundary conditions in the cortical-white matter system, which is topologically close to a spherical shell. By contrast, the proposed local mechanisms are multiscale interactions between cortical columns via short-ranged non-myelinated fibers. A mechanical model consisting of a stretched string with attached nonlinear springs demonstrates the general idea. The string produces standing waves analogous to large-scale coherent EEG observed in some brain states. The attached springs are analogous to the smaller (mesoscopic) scale columnar dynamics. Generally, we expect string displacement and EEG at all scales to result from both global and local phenomena. A statistical mechanics of neocortical interactions (SMNI) calculates oscillatory behavior consistent with typical EEG, within columns, between neighboring columns via short-ranged non-myelinated fibers, across cortical regions via myelinated fibers, and also derives a string equation consistent with the global EEG model.

  10. Particle Accumulation in a Microchannel and Its Reduction by a Standing Surface Acoustic Wave (SSAW).

    Science.gov (United States)

    Sriphutkiat, Yannapol; Zhou, Yufeng

    2017-01-07

    Accumulation of particles in a high concentration on a microchannel wall is a common phenomenon in a colloidal fluid. Gradual accumulation/deposition of particles can eventually obstruct the fluid flow and lead to clogging, which seriously affects the accuracy and reliability of nozzle-based printing and causes damage to the nozzle. Particle accumulation in a 100 μm microchannel was investigated by light microscopy, and its area growth in an exponential format was used to quantify this phenomenon. The effects of the constriction angle and alginate concentration on particle accumulation were also studied. In order to reduce the clogging problem, an acoustic method was proposed and evaluated here. Numerical simulation was first conducted to predict the acoustic radiation force on the particles in the fluid with different viscosities. Interdigital transducers (IDTs) were fabricated on the LiNbO₃ wafer to produce standing surface acoustic waves (SSAW) in the microchannel. It was found that the actuation of SSAW can reduce the accumulation area in the microchannel by 2 to 3.7-fold. In summary, the particle accumulation becomes significant with the increase of the constriction angle and fluid viscosity. The SSAW can effectively reduce the particle accumulation and postpone clogging.

  11. A New Gravitational-wave Signature from Standing Accretion Shock Instability in Supernovae

    Science.gov (United States)

    Kuroda, Takami; Kotake, Kei; Takiwaki, Tomoya

    2016-09-01

    We present results from fully relativistic three-dimensional core-collapse supernova simulations of a non-rotating 15{M}⊙ star using three different nuclear equations of state (EoSs). From our simulations covering up to ˜350 ms after bounce, we show that the development of the standing accretion shock instability (SASI) differs significantly depending on the stiffness of nuclear EoS. Generally, the SASI activity occurs more vigorously in models with softer EoS. By evaluating the gravitational-wave (GW) emission, we find a new GW signature on top of the previously identified one, in which the typical GW frequency increases with time due to an accumulating accretion to the proto-neutron star (PNS). The newly observed quasi-periodic signal appears in the frequency range from ˜100 to 200 Hz and persists for ˜150 ms before neutrino-driven convection dominates over the SASI. By analyzing the cycle frequency of the SASI sloshing and spiral modes as well as the mass accretion rate to the emission region, we show that the SASI frequency is correlated with the GW frequency. This is because the SASI-induced temporary perturbed mass accretion strikes the PNS surface, leading to the quasi-periodic GW emission. Our results show that the GW signal, which could be a smoking-gun signature of the SASI, is within the detection limits of LIGO, advanced Virgo, and KAGRA for Galactic events.

  12. Commercialization of an S-band standing-wave electron accelerator for industrial applications

    Science.gov (United States)

    Moon, Jin-Hyeok; Kwak, Gyeong-Il; Han, Jae-Ik; Lee, Gyu-Baek; Jeon, Seong-Hwan; Kim, Jae-Young; Hwang, Cheol-Bin; Lee, Gi-Yong; Kim, Young-Man; Park, Sung-Ju

    2016-09-01

    An electron accelerator system has been developed for use in industrial, as well as possible medical, applications. Based on our experiences achieved during prototype system development and various electron beam acceleration tests, we have built a stable and compact system for sales purposes. We have integrated a self-developed accelerating cavity, an E-gun pulse driver, a radio-frequency (RF) power system, a vacuum system, a cooling system, etc. into a frame with a size of 1800 × 1000 × 1500 mm3. The accelerating structure is a side-coupled standing-wave type operating in the π/2 mode (tuned to~3 GHz). The RF power is provided by using a magnetron driven by a solid-state modulator. The electron gun is a triode type with a dispenser cathode (diameter of 11 mm). The system is capable of delivering a maximum 900-W average electron beam power with tight focusing at the target. Until now, we have performed various electron beam tests and X-ray beam tests after having built the system, have completed the beam assessment for commercializations, and have been preparing full-fledged sales activity. This article reports on our system development processes and on some of our early test results for commercializations.

  13. MICRO-MOTION EFFECT OF A TRAPPED ULTRA-COLD ION IN A STANDING-WAVE LASER

    Institute of Scientific and Technical Information of China (English)

    JIANG YU-RONG; FENG MANG; GAO KE-LIN; ZHU XI-WEN

    2001-01-01

    In the absence of the requirements of the Lamb-Dicke limit and rotating wave approximation, we semi-classically investigate the dynamics of a trapped ultra-cold ion in the standing-wave laser, with the consideration of the time- dependent potential and pseudo-potential of the Paul trap. The specific calculations show that the larger the Lamb-Dicke parameter η and the Rabi frequency Ω, the greater the difference between the dynamics in the time-dependent potential and the pseudo-potential.

  14. Orbital stability of standing waves of a class of fractional Schrödinger equations with Hartree-type nonlinearity

    KAUST Repository

    Cho, Yonggeun

    2016-05-04

    This paper is devoted to the mathematical analysis of a class of nonlinear fractional Schrödinger equations with a general Hartree-type integrand. We show the well-posedness of the associated Cauchy problem and prove the existence and stability of standing waves under suitable assumptions on the nonlinearity. Our proofs rely on a contraction argument in mixed functional spaces and the concentration-compactness method. © 2015 World Scientific Publishing Company

  15. Continuous sheathless microparticle and cell patterning using CL-SSAWs (conductive liquid-based standing surface acoustic waves)

    Science.gov (United States)

    Nam, Jeonghun; Kim, Jae Young; Lim, Chae Seung

    2017-01-01

    We present continuous, sheathless microparticle patterning using conductive liquid (CL)-based standing surface acoustic waves (SSAWs). Conventional metal electrodes patterned on a piezoelectric substrate were replaced with electrode channels filled with a CL. The device performance was evaluated with 5-μm fluorescent polystyrene particles at different flow rate and via phase shifting. In addition, our device was further applied to continuous concentration of malaria parasites at the sidewalls of the fluidic channel.

  16. Continuous sheathless microparticle and cell patterning using CL-SSAWs (conductive liquid-based standing surface acoustic waves

    Directory of Open Access Journals (Sweden)

    Jeonghun Nam

    2017-01-01

    Full Text Available We present continuous, sheathless microparticle patterning using conductive liquid (CL-based standing surface acoustic waves (SSAWs. Conventional metal electrodes patterned on a piezoelectric substrate were replaced with electrode channels filled with a CL. The device performance was evaluated with 5-μm fluorescent polystyrene particles at different flow rate and via phase shifting. In addition, our device was further applied to continuous concentration of malaria parasites at the sidewalls of the fluidic channel.

  17. Speedy standing wave design, optimization, and scaling rules of simulated moving bed systems with linear isotherms.

    Science.gov (United States)

    Weeden, George S; Wang, Nien-Hwa Linda

    2017-04-14

    Simulated Moving Bed (SMB) systems with linear adsorption isotherms have been used for many different separations, including large-scale sugar separations. While SMBs are much more efficient than batch operations, they are not widely used for large-scale production because there are two key barriers. The methods for design, optimization, and scale-up are complex for non-ideal systems. The Speedy Standing Wave Design (SSWD) is developed here to reduce these barriers. The productivity (PR) and the solvent efficiency (F/D) are explicitly related to seven material properties and 13 design parameters. For diffusion-controlled systems, the maximum PR or F/D is controlled by two key dimensionless material properties, the selectivity (α) and the effective diffusivity ratio (η), and two key dimensionless design parameters, the ratios of step time/diffusion time and pressure-limited convection time/diffusion time. The optimum column configuration for maximum PR or F/D is controlled by the weighted diffusivity ratio (η/α(2)). In general, high α and low η/α(2) favor high PR and F/D. The productivity is proportional to the ratio of the feed concentration to the diffusion time. Small particles and high diffusivities favor high productivity, but do not affect solvent efficiency. Simple scaling rules are derived from the two key dimensionless design parameters. The separation of acetic acid from glucose in biomass hydrolysate is used as an example to show how the productivity and the solvent efficiency are affected by the key dimensionless material and design parameters. Ten design parameters are optimized for maximum PR or minimum cost in one minute on a laptop computer. If the material properties are the same for different particle sizes and the dimensionless groups are kept constant, then lab-scale testing consumes less materials and can be done four times faster using particles with half the particle size. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A sound nebula: the origin of the Solar System in the field of a standing sound wave

    CERN Document Server

    Beck, Svetlana

    2016-01-01

    According to the planetary origin conceptual model proposed in this paper, the protosun centre of the pre-solar nebula exploded, resulting in a shock wave that passed through it and then returned to the centre, generating a new explosion and shock wave. Recurrent explosions in the nebula resulted in a spherical standing sound wave, whose antinodes concentrated dust into rotating rings that transformed into planets. The extremely small angular momentum of the Sun and the tilt of its equatorial plane were caused by the asymmetry of the first, most powerful explosion. Differences between inner and outer planets are explained by the migration of solid matter, while the Oort cloud is explained by the division of the pre-solar nebula into a spherical internal nebula and an expanding spherical shell of gas. The proposed conceptual model can also explain the origin and evolution of exoplanetary systems and may be of use in searching for new planets.

  19. Standing Waves in an Elastic Spring: A Systematic Study by Video Analysis

    Science.gov (United States)

    Rodrigues Ventura, Daniel; Simeão de Carvalho, Paulo; Adriano Dias, Marco

    2017-01-01

    The word "wave" is part of the daily language of every student. However, the physical understanding of the concept demands a high level of abstract thought. In physics, waves are oscillating variations of a physical quantity that involve the transfer of energy from one point to another, without displacement of matter. A wave can be…

  20. Spherical Harmonics Reveal Standing EEG Waves and Long-Range Neural Synchronization during Non-REM Sleep

    Science.gov (United States)

    Sivakumar, Siddharth S.; Namath, Amalia G.; Galán, Roberto F.

    2016-01-01

    Previous work from our lab has demonstrated how the connectivity of brain circuits constrains the repertoire of activity patterns that those circuits can display. Specifically, we have shown that the principal components of spontaneous neural activity are uniquely determined by the underlying circuit connections, and that although the principal components do not uniquely resolve the circuit structure, they do reveal important features about it. Expanding upon this framework on a larger scale of neural dynamics, we have analyzed EEG data recorded with the standard 10–20 electrode system from 41 neurologically normal children and adolescents during stage 2, non-REM sleep. We show that the principal components of EEG spindles, or sigma waves (10–16 Hz), reveal non-propagating, standing waves in the form of spherical harmonics. We mathematically demonstrate that standing EEG waves exist when the spatial covariance and the Laplacian operator on the head's surface commute. This in turn implies that the covariance between two EEG channels decreases as the inverse of their relative distance; a relationship that we corroborate with empirical data. Using volume conduction theory, we then demonstrate that superficial current sources are more synchronized at larger distances, and determine the characteristic length of large-scale neural synchronization as 1.31 times the head radius, on average. Moreover, consistent with the hypothesis that EEG spindles are driven by thalamo-cortical rather than cortico-cortical loops, we also show that 8 additional patients with hypoplasia or complete agenesis of the corpus callosum, i.e., with deficient or no connectivity between cortical hemispheres, similarly exhibit standing EEG waves in the form of spherical harmonics. We conclude that spherical harmonics are a hallmark of spontaneous, large-scale synchronization of neural activity in the brain, which are associated with unconscious, light sleep. The analogy with spherical harmonics

  1. Re-entry communication through a plasma sheath using standing wave detection and adaptive data rate control

    Science.gov (United States)

    Xie, Kai; Yang, Min; Bai, Bowen; Li, Xiaoping; Zhou, Hui; Guo, Lixin

    2016-01-01

    Radio blackout during the re-entry has puzzled the aerospace industry for decades and has not yet been completely resolved. To achieve a continuous data link in the spacecraft's re-entry period, a simple and practicable communication method is proposed on the basis that (1) the electromagnetic-wave backscatter of the plasma sheath affects the voltage standing wave ratio (VSWR) of the antenna, and the backscatter is negatively correlated to transmission components, and (2) the transmission attenuation caused by the plasma sheath reduces the channel capacity. We detect the voltage standing wave ratio changes of the antenna and then adjust the information rate to accommodate the varying channel capacity, thus guaranteeing continuous transmission (for fewer critical data). The experiment was carried out in a plasma generator with an 18-cm-thick and 30-cm-diameter hollow propagation path, and the adaptive communication was implemented using spread spectrum frequency, shift key modulation with a variable spreading factor. The experimental results indicate that, when the over-threshold of VSWR was detected, the bit rate reduced to 250 bps from 4 Mbps automatically and the tolerated plasma density increased by an order of magnitude, which validates the proposed scheme. The proposed method has little additional cost, and the adaptive control does not require a feedback channel. The method is therefore applicable to data transmission in a single direction, such as that of a one-way telemetry system.

  2. Growth and decay of discrete nonlinear Schrodinger breathers interacting with internal modes or standing-wave phonons

    Science.gov (United States)

    Johansson; Aubry

    2000-05-01

    We investigate the long-time evolution of weakly perturbed single-site breathers (localized stationary states) in the discrete nonlinear Schrodinger equation. The perturbations we consider correspond to time-periodic solutions of the linearized equations around the breather, and can be either (i) spatially localized or (ii) spatially extended. For case (i), which corresponds to the excitation of an internal mode of the breather, we find that the nonlinear interaction between the breather and its internal mode always leads to a slow growth of the breather amplitude and frequency. In case (ii), corresponding to interaction between the breather and a standing-wave phonon, the breather will grow provided that the wave vector of the phonon is such that the generation of radiating higher harmonics at the breather is possible. In other cases, breather decay is observed. This condition yields a limit value for the breather frequency above which no further growth is possible. We also discuss another mechanism for breather growth and destruction which becomes important when the amplitude of the perturbation is non-negligible, and which originates from the oscillatory instabilities of the nonlinear standing-wave phonons.

  3. A method to overcome the diffraction limit in infrared microscopy using standing waves in an attenuated total reflection configuration

    Science.gov (United States)

    Hendaoui, Nordine; Mani, Aladin; Liu, Ning; Tofail, Syed M.; Silien, Christophe; Peremans, André

    2017-01-01

    A method is proposed to overcome the diffraction limit of spatial resolution in infrared microscopy. To achieve this, standing waves in an attenuated total reflection configuration were generated to spatially modulate the absorbance of adsorbate vibrational transitions. A numerical simulation was undertaken. It showed that chemical imaging with a spatial resolution of approximately 100 nm is achievable in the case of self-assembled patterns (ofoctdecyltrichlorosilane [CH3-(CH2)17-SiCl3]), when probing the methyl modes located near 3.5 micrometres.

  4. A stand-alone power system to integrate wind, wave and solar energy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ On 12 October, 2007, an agreement on the construction of a stand-alone renewable energy (RE) system at the Dangan Island was inked between the CAS Guangzhou Institute of Energy Conversion (GIEC) and the Wanshan Exemplary Marine Development Zone in Zhuhai, a coastal city in south China's Guangdong Province.

  5. An Experimental Study of Nonlinear Standing Waves in Resonators with Numerical Comparison

    Science.gov (United States)

    Finkbeiner, Joshua R.; Raman, Ganesh; Li, Xiaofan; Steinetz, Bruce M.; Daniels, Christopher; Huff, Dennis (Technical Monitor)

    2002-01-01

    Lawrenson et. al. [Journal of the Acoustic Society of America, Nov. 1998] described the generation of shock-free high-amplitude pressure waves in closed cavities using large equipment and resonators to produce the reported effects. An attempt is made to generate shock-free high-amplitude pressure waves using relatively small resonators. Ambient air is used as the working fluid. A small cylindrical resonator is tested resulting in the lack of a shocked waveform while a larger model of the same shape produces shock waves. A small conical resonator produces shock-free pressure waves at resonance, but the amplitude of these waves is small. A larger cone resonator model produces shock-free pressure waves of higher amplitude. A large horn-cone resonator also produces shock-free high amplitude pressure waves, A numerical model is used to compare the experimental results to theoretical results. The effects of structural resonances on the production of shock-free high-amplitude pressure waves are discussed, especially concerning difficulties encountered when these resonances were in the frequency ranges of interest. Identifying features of a structural resonance are presented.

  6. Communication: Development of standing evanescent-wave fluorescence correlation spectroscopy and its application to the lateral diffusion of lipids in a supported lipid bilayer

    Science.gov (United States)

    Otosu, Takuhiro; Yamaguchi, Shoichi

    2017-07-01

    We present standing evanescent-wave fluorescence correlation spectroscopy (SEW-FCS). This technique utilizes the interference of two evanescent waves which generates a standing evanescent-wave. Fringe-pattern illumination created by a standing evanescent-wave enables us to measure the diffusion coefficients of molecules with a super-resolution corresponding to one fringe width. Because the fringe width can be reliably estimated by a simple procedure, utilization of fringes is beneficial to quantitatively analyze the slow diffusion of molecules in a supported lipid bilayer (SLB), a model biomembrane formed on a solid substrate, with the timescale relevant for reliable FCS analysis. Furthermore, comparison of the data between SEW-FCS and conventional total-internal reflection FCS, which can also be performed by the SEW-FCS instrument, effectively eliminates the artifact due to afterpulsing of the photodiode detector. The versatility of SEW-FCS is demonstrated by its application to various SLBs.

  7. Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle Patterning in Acoustic Standing Wave Fields

    Directory of Open Access Journals (Sweden)

    Shilei Liu

    2017-07-01

    Full Text Available Acoustic standing waves have been widely used in trapping, patterning, and manipulating particles, whereas one barrier remains: the lack of understanding of force conditions on particles which mainly include acoustic radiation force (ARF and acoustic streaming (AS. In this paper, force conditions on micrometer size polystyrene microspheres in acoustic standing wave fields were investigated. The COMSOL® Mutiphysics particle tracing module was used to numerically simulate force conditions on various particles as a function of time. The velocity of particle movement was experimentally measured using particle imaging velocimetry (PIV. Through experimental and numerical simulation, the functions of ARF and AS in trapping and patterning were analyzed. It is shown that ARF is dominant in trapping and patterning large particles while the impact of AS increases rapidly with decreasing particle size. The combination of using both ARF and AS for medium size particles can obtain different patterns with only using ARF. Findings of the present study will aid the design of acoustic-driven microfluidic devices to increase the diversity of particle patterning.

  8. Two-dimensional standing wave total internal reflection fluorescence microscopy: superresolution imaging of single molecular and biological specimens.

    Science.gov (United States)

    Chung, Euiheon; Kim, Daekeun; Cui, Yan; Kim, Yang-Hyo; So, Peter T C

    2007-09-01

    The development of high resolution, high speed imaging techniques allows the study of dynamical processes in biological systems. Lateral resolution improvement of up to a factor of 2 has been achieved using structured illumination. In a total internal reflection fluorescence microscope, an evanescence excitation field is formed as light is total internally reflected at an interface between a high and a low index medium. The excitation region resulting in low background fluorescence. We present even higher resolution wide-field biological imaging by use of standing wave total internal reflection fluorescence (SW-TIRF). Evanescent standing wave (SW) illumination is used to generate a sinusoidal high spatial frequency fringe pattern on specimen for lateral resolution enhancement. To prevent thermal drift of the SW, novel detection and estimation of the SW phase with real-time feedback control is devised for the stabilization and control of the fringe phase. SW-TIRF is a wide-field superresolution technique with resolution better than a fifth of emission wavelength or approximately 100 nm lateral resolution. We demonstrate the performance of the SW-TIRF microscopy using one- and two-directional SW illumination with a biological sample of cellular actin cytoskeleton of mouse fibroblast cells as well as single semiconductor nanocrystal molecules. The results confirm the superior resolution of SW-TIRF in addition to the merit of a high signal/background ratio from TIRF microscopy.

  9. 方形薄板二维驻波的研究%Research of 2-dimensional standing waves in square plate

    Institute of Scientific and Technical Information of China (English)

    方奕忠; 王钢; 沈韩; 崔新图; 廖德驹; 冯饶慧

    2014-01-01

    通过对多种振源情形下的方形薄板二维驻波图形(克拉尼图形)的观测与研究,得到不同频率下驻波图形的波节数 n+1,m+1及波矢 k ,从而导出波速(相速)u 。实验结果与理论解析解(严格解)相比较符合得很好。%2-dimensional standing waves in square plates (Chladni figures) in several cases was studied both experimentally and theoretically .Wave nodes and wave vector of the standing wave fig-ures were gotten at different frequency ,and the wave velocity was deduced .The results of the experi-ment agreed well to the analytic solutions of theory .

  10. Flow under standing waves Part 2. Scour and deposition in front of breakwaters

    DEFF Research Database (Denmark)

    Gislason, Kjartan; Fredsøe, Jørgen; Sumer, B. Mutlu

    2009-01-01

    A 3-D general purpose Navier-Stokes solver was used to calculate the 2-D flow in front of the breakwater. The k-omega, SST (shear-stress transport) model was selected as the turbulence model. The morphologic model of the present code couples the flow solution with a sediment transport description...... and routines for, updating the computational mesh based on the mass balance of sediment. Laboratory experiments of scour also were conducted in a wave flume to obtain data for model verification. Both in the numerical simulations and in the laboratory experiment, two kinds of breakwaters were used: A vertical......-wall breakwater; and a sloping-wall breakwater (Slope: 1:1.5). Numerically obtained scour-deposition profiles were compared with the experiments. The numerical results show that the equilibrium scour depth normalized by the wave height decreases with increasing water-depth-to-wave-length ratio. Although...

  11. Parametric Study of Flow Patterns behind the Standing Accretion Shock Wave for Core-Collapse Supernovae

    CERN Document Server

    Iwakami, Wakana; Yamada, Shoichi

    2013-01-01

    The systematic research of flow patterns behind the accretion shock wave is conducted using three-dimensional hydrodynamics simulations for core-collapse supernovae in this study. Changing the accretion rate and neutrino luminosity, the steady solutions of the one-dimensional irrotational accretion flow passing through the spherical shock wave are evolved by imposing a random perturbation with 1% amplitude at the onset of the simulations. Depending on the accretion rate and neutrino luminosity, various flow patterns appear behind the shock wave. We classified them into the three fundamental flow patterns: (1) sloshing motion, (2) spiral motion, (3) multiple high-entropy bubbles, and the two anomalous flow patterns: (4) spiral motion with buoyant bubbles, and (5) spiral motion with pulsating rotational velocity. The sloshing and spiral motions tend to be dominant in the higher accretion rate and lower neutrino luminosity, and the generations of multiple buoyant bubbles tend to prevail in the lower accretion ra...

  12. Nonlinear standing wave and acoustic streaming in an exponential-shape resonator by gas-kinetic scheme simulation

    Science.gov (United States)

    Zhang, Xiaoqing; Feng, Heying; Qu, Chengwu

    2016-10-01

    Nonlinear standing waves and acoustic streaming in an axial-symmetrical resonator with exponentially varying cross-sectional area were studied. A two-dimensional gas-kinetic Bhatnagar-Gross-Krook scheme based on the non-structure triangular grid was established to simulate nonlinear acoustic oscillations in the resonator. Details of the transient and steady flow fields and streaming were developed. The effects of winding index of the exponential-shape resonator, the displacement amplitude of the acoustic piston on the streaming, and the vortex pattern were analyzed. The results demonstrate that the acoustic streaming pattern in such resonators is different from the typical Rayleigh flow in a constant cross-sectional area resonator. No obvious shock wave appeared inside the exponential-shape resonator. The comparison reveals that with increasing the displacement amplitude of the acoustic piston energy dissipation is accompanied by vortex break-up from a first-level to a second-level transition, and even into turbulent flow. This research demonstrates that the exponential-shape resonator, especially that with a winding index of 2.2 exhibits better acoustic features and suppression effects on shock-wave, acoustic streaming, and the vortex.

  13. Influence of standing-wave electric field pattern on the laser damage resistance of HfO sub 2 thin films

    CERN Document Server

    Protopapa, M L; De Tomasi, F; Di Giulio, M; Perrone, M R; Scaglione, S

    2002-01-01

    The standing-wave electric field pattern that forms inside an optical coating as a consequence of laser irradiation is one of the factors influencing the coating laser-induced damage threshold. The influence of the standing-wave electric field profile on the damage resistance to ultraviolet radiation of hafnium dioxide (HfO sub 2) thin films was investigated in this work. To this end, HfO sub 2 thin films of different thicknesses deposited by the electron beam evaporation technique at the same deposition conditions were analyzed. Laser damage thresholds of the samples were measured at 308 nm (XeCl laser) by the photoacoustic beam deflection technique and microscopic inspections. The dependence of the laser damage threshold on the standing-wave electric field pattern was analyzed.

  14. Experimental Analysis on Subharmonic Standing Wave Vibrations in Lengthways Driven Strings%纵向驱动弦的次频振动实验分析

    Institute of Scientific and Technical Information of China (English)

    方天申

    2015-01-01

    讨论纵向驱动弦时的次频驻波振动现象,与弦运动轨迹的观察方法。根据弦运动轨迹,用仿真分析谐波振动可获得弦振动的有关物理信息。实验观察到,可出现非共振驻波(次频振动)振幅可比共振驻波振幅大的多现象。%It presents an experimental technique to observe the vibration tracks of string standing waves,and a subharmonic vibration of strings. The amplitude of a non-resonance subharmonic standing wave may be greater than that of a resonance standing wave in a longitudinally driven string.

  15. Investigation of sound field for a standing wave tube system with flow and with lateral Helmholtz resonator Ⅱ. Experiments and discussion

    Institute of Scientific and Technical Information of China (English)

    LI Song; LIU Ke; GUO Qing; HUANG Dongtao

    2005-01-01

    Based on the theoretical analysis of a standing wave tube with flow and lateral Helmholtz resonator, a relevant experimental apparatus were set up, and were successfully used to validate the the analysis above. Meanwhile an end correction and an equivalent radius coefficient covered in the theoretical analysis were also determined by experiments. Furthermore several results obtained from the theoretical analysis and experiments were used to discuss the effects of flow on the performance of Helmholtz resonator and the sound field in the standing wave tube. It is shown that using Helmholtz resonator for the standing wave tube with flow is still a good measure for noise reduction, even though the effect of noise reduction could be reduced because of flow.

  16. Multifrequency Compressional Magnetic Field Oscillations and Their Relation to Multiharmonic Toroidal Standing Alfvén Waves

    Science.gov (United States)

    Takahashi, K.; Waters, C. L.; Kletzing, C.; Kurth, W. S.; Smith, C. W.; Glassmeier, K. H.

    2015-12-01

    The power spectrum of the compressional component of magnetic field observed by the Van Allen Probes spacecraft near the magnetospheric equator in the dayside plasmasphere sometimes exhibits regularly spaced multiple peaks at frequencies below 50 mHz. We show by detailed analysis of events observed on two separate days in early 2014 that the frequencies change smoothly with the radial distance of the spacecraft and appear at or very near the frequencies of the odd harmonics of mutiharmonic toroidal standing Alfvén waves seen in the azimuthal component of the magnetic field. Even though the compressional component had low amplitude on one of the selected days, its spectral properties are highlighted by computing the ratio of the spectral powers of time series data obtained from spatially separated two Van Allen Probes spacecraft. The spectral similarity of the compressional and azimuthal components suggests that the compressional component contain field line resonance characteristics.

  17. Multifrequency compressional magnetic field oscillations and their relation to multiharmonic toroidal mode standing Alfvén waves

    Science.gov (United States)

    Takahashi, Kazue; Waters, Colin; Glassmeier, Karl-Heinz; Kletzing, Craig A.; Kurth, William S.; Smith, Charles W.

    2015-12-01

    The power spectrum of the compressional component of magnetic fields observed by the Van Allen Probes spacecraft near the magnetospheric equator in the dayside plasmasphere sometimes exhibits regularly spaced multiple peaks at frequencies below 50 mHz. We show by detailed analysis of events observed on two separate days in early 2014 that the frequencies change smoothly with the radial distance of the spacecraft and appear at or very near the frequencies of the odd harmonics of mutiharmonic toroidal mode standing Alfvén waves seen in the azimuthal component of the magnetic field. Even though the compressional component had a low amplitude on one of the selected days, its spectral properties are highlighted by computing the ratio of the spectral powers of time series data obtained from two spatially separated Van Allen Probes spacecraft. The spectral similarity of the compressional and azimuthal components suggests that the compressional component contains field line resonance characteristics.

  18. Design of cavities of a standing wave accelerating tube for a 6 MeV electron linear accelerator

    Directory of Open Access Journals (Sweden)

    S Zarei

    2017-08-01

    Full Text Available Side-coupled standing wave tubes in  mode are widely used in the low-energy electron linear accelerator, due to high accelerating gradient and low sensitivity to construction tolerances. The use of various simulation software for designing these kinds of tubes is very common nowadays. In this paper, SUPERFISH code and COMSOL are used for designing the accelerating and coupling cavities for a 6 MeV electron linear accelerator. Finite difference method in SUPERFISH code and Finite element method in COMSOL are used to solve the equations. Besides, dimension of accelerating and coupling cavities and also coupling iris dimension are optimized to achieve resonance frequency of 2.9985 MHz and coupling constant of 0.0112. Considering the results of this study and designing of the RF energy injection port subsequently, the construction of 6 MeV electron tube will be provided

  19. Particle dynamics and spatial $e^-e^+$ density structures at QED cascading in circularly polarized standing waves

    CERN Document Server

    Bashinov, A V; Kim, A V

    2016-01-01

    We present a comprehensive analysis of longitudinal particle drifting in a standing circularly polarized wave at extreme intensities when quantum radiation reaction (RR) effects should be accounted for. To get an insight into the physics of this phenomenon we made a comparative study considering the RR force in the Landau-Lifshitz or quantum-corrected form, including the case of photon emission stochasticity. It is shown that the cases of circular and linear polarization are qualitatively different. Moreover, specific features of particle dynamics have a strong impact on spatial structures of the electron-positron ($e^-e^+$) density created in vacuum through quantum electrodynamic (QED) cascades in counter-propagating laser pulses. 3D PIC modeling accounting for QED effects confirms realization of different pair plasma structures.

  20. Physical enviroment of 2-D animal cell aggregates formed in a short pathlength ultrasound standing wave trap.

    Science.gov (United States)

    Bazou, Despina; Kuznetsova, Larisa A; Coakley, W Terence

    2005-03-01

    2-D mammalian cell aggregates can be formed and levitated in a 1.5 MHz single half wavelength ultrasound standing wave trap. The physical environment of cells in such a trap has been examined. Attention was paid to parameters such as temperature, acoustic streaming, cavitation and intercellular forces. The extent to which these factors might be intrusive to a neural cell aggregate levitated in the trap was evaluated. Neural cells were exposed to ultrasound at a pressure amplitude of 0.54 MPa for 30 s; a small aggregate had been formed at the center of the trap. The pressure amplitude was then decreased to 0.27 MPa for 2 min, at which level the aggregation process continued at a slower rate. The pressure amplitude was then decreased to 0.06 MPa for 1 h. Temperature measurements that were conducted in situ with a 200 microm thermocouple over a 30 min period showed that the maximum temperature rise was less than 0.5 K. Acoustic streaming was measured by the particle image velocimetry method (PIV). It was shown that the hydrodynamic stress imposed on cells by acoustic streaming is less than that imposed by gentle preparative centrifugation procedures. Acoustic spectrum analysis showed that cavitation activity does not occur in the cell suspensions sonicated at the above pressures. White noise was detected only at a pressure amplitude of 1.96 MPa. Finally, it was shown that the attractive acoustic force between ultrasonically agglomerated cells is small compared with the normal attractive van der Waals force that operates at close cell surface separations. It is concluded that the standing wave trap operates only to concentrate cells locally, as in tissue, and does not modify the in vitro expression of surface receptor interactions.

  1. Mapping a plasmonic hologram with photosensitive polymer films: standing versus propagating waves.

    Science.gov (United States)

    Papke, Thomas; Yadavalli, Nataraja Sekhar; Henkel, Carsten; Santer, Svetlana

    2014-08-27

    We use a photosensitive layer containing azobenzene moieties to map near-field intensity patterns in the vicinity of nanogrids fabricated within a thin silver layer. It is known that azobenzene containing films deform permanently during irradiation, following the pattern of the field intensity. The photosensitive material reacts only to stationary waves whose intensity patterns do not change in time. In this study, we have found a periodic deformation above the silver film outside the nanostructure, even if the latter consists of just one groove. This is in contradiction to the widely accepted viewpoint that propagating surface plasmon modes dominate outside nanogrids. We explain our observation based on an electromagnetic hologram formed by the constructive interference between a propagating surface plasmon wave and the incident light. This hologram contains a stationary intensity and polarization grating that even appears in the absence of the polymer layer.

  2. Fabrication and Operation of Acoustofluidic Devices Supporting Bulk Acoustic Standing Waves for Sheathless Focusing of Particles

    OpenAIRE

    Shields, C. Wyatt; Cruz, Daniela F.; Ohiri, Korine A.; Yellen, Benjamin B.; Lopez, Gabriel P.

    2016-01-01

    Acoustophoresis refers to the displacement of suspended objects in response to directional forces from sound energy. Given that the suspended objects must be smaller than the incident wavelength of sound and the width of the fluidic channels are typically tens to hundreds of micrometers across, acoustofluidic devices typically use ultrasonic waves generated from a piezoelectric transducer pulsating at high frequencies (in the megahertz range). At characteristic frequencies that depend on the ...

  3. Instability analysis of resonant standing waves in a parametrically excited boxed basin

    Energy Technology Data Exchange (ETDEWEB)

    Sirwah, Magdy A [Department of Mathematics, Faculty of Science, Tanta University, Tanta (Egypt)], E-mail: magdysirwah@yahoo.com

    2009-06-15

    Two-mode parametric excited interfacial waves of incompressible immiscible liquids in an infinite boxed basin subjected to a vertical excitation are studied. The method of multiple time scales is used to obtain uniform solutions of the second-order system as well as the third-order one, which in turn leads to the solvability conditions of the two orders including the cubic interaction terms. The different cases of resonance that arise among the natural frequencies together with the frequency of the vertical vibration of the box are demonstrated theoretically and numerical computations of one of these cases (the two-to-one internal resonance and the principal parametric resonance) have been performed in detail in order to investigate the behavior of the resonant waves, especially the qualitative one. The autonomous system of four first-order differential equations for the modulation of the amplitudes and phases of the resonant waves is derived. Some numerical applications are achieved to show the stability criteria of the excited liquids inside the considered basin.

  4. Fast acoustic streaming in standing waves: generation of an additional outer streaming cell.

    Science.gov (United States)

    Reyt, Ida; Daru, Virginie; Bailliet, Hélène; Moreau, Solène; Valière, Jean-Christophe; Baltean-Carlès, Diana; Weisman, Catherine

    2013-09-01

    Rayleigh streaming in a cylindrical acoustic standing waveguide is studied both experimentally and numerically for nonlinear Reynolds numbers from 1 to 30 [Re(NL)=(U0/c0)(2)(R/δν)(2), with U0 the acoustic velocity amplitude at the velocity antinode, c0 the speed of sound, R the tube radius, and δν the acoustic boundary layer thickness]. Streaming velocity is measured by means of laser Doppler velocimetry in a cylindrical resonator filled with air at atmospheric pressure at high intensity sound levels. The compressible Navier-Stokes equations are solved numerically with high resolution finite difference schemes. The resonator is excited by shaking it along the axis at imposed frequency. Results of measurements and of numerical calculation are compared with results given in the literature and with each other. As expected, the axial streaming velocity measured and calculated agrees reasonably well with the slow streaming theory for small ReNL but deviates significantly from such predictions for fast streaming (ReNL>1). Both experimental and numerical results show that when ReNL is increased, the center of the outer streaming cells are pushed toward the acoustic velocity nodes until counter-rotating additional vortices are generated near the acoustic velocity antinodes.

  5. Effect of standing-wave field distribution on femosecond laser-induced damage of HfO2/SiO2 mirror coating

    Institute of Scientific and Technical Information of China (English)

    Shunli Chen; Yuan'an Zhao; Hongbo He; Manda Shao

    2011-01-01

    Single-pulse and multi-pulse damage behaviors of "standard" (with A/4 stack structure) and "modified" (with reduced standing-wave field) HfO2/SiO2 mirror coatings are investigated using a commercial 50-fs, 800-nm Tksapphire laser system. Precise morphologies of damaged sites display strikingly different features when the samples are subjected to various number of incident pulses, which are explained reasonably by the standing-wave field distribution within the coatings. Meanwhile, the single-pulse laser-induced damage threshold of the "standard" mirror is improved by about 14% while suppressing the normalized electric field intensity at the outmost interface of the HfO2 and SiO2 layers by 37%. To discuss the damage mechanism, a theoretical model based on photoionization, avalanche ionization, and decays of electrons is adopted to simulate the evolution curves of the conduction-band electron density during pulse duration.%@@ Single-pulse and multi-pulse damage behaviors of "standard"(with λ/4 stack structure) and "modified"(with reduced standing-wave field) HfO2/SiO2 mirror coatings are investigated using a commercial 50-fs,800-nm Thsapphire laser system.以Precise morphologies of damaged sites display strikingly different features when the samples are subjected to various number of incident pulses, which are explained reasonably by the standing-wave field distribution within the coatings .

  6. Goos-Hänchen shift in a standing-wave-coupled electromagnetically-induced-transparency medium

    Science.gov (United States)

    Zhang, Xiao-Jun; Wang, Hai-Hua; Liang, Zhi-Peng; Xu, Yan; Fan, Cun-Bo; Liu, Cheng-Zhi; Gao, Jin-Yue

    2015-03-01

    The Goos-Hänchen shift of the system composed by two cavity walls and an intracavity atomic sample is presented. The atomic sample is treated as a four-level double-Λ system, driven by the two counterpropagating coupling fields. The probe field experiences the discontinuous refractive index variation and is reflected. Moreover, under the phase-matching condition, the four-wave mixing effect based on electromagnetically induced transparency can cause effective reflection. The Goos-Hänchen shifts appear in both situations and are carefully investigated in this article. We refer to the first one with the incident and reflected light having identical wavelength as the linear Goos-Hänchen shift, and the second one with the reflection wavelength determined by the phase-matching condition as the nonlinear Goos-Hänchen shift. The differences between the two kinds of shifts, such as the incident angle range, conditions for the shift peaks, and controllability, are discussed.

  7. Standing spin-wave mode structure and linewidth in partially disordered hexagonal arrays of perpendicularly magnetized sub-micron Permalloy discs

    Energy Technology Data Exchange (ETDEWEB)

    Ross, N., E-mail: rossn2282@gmail.com; Kostylev, M., E-mail: mikhail.kostylev@uwa.edu.au [School of Physics, University of Western Australia, Crawley, WA (Australia); Stamps, R. L. [School of Physics, University of Western Australia, Crawley, WA (Australia); SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

    2014-09-21

    Standing spin wave mode frequencies and linewidths in partially disordered perpendicular magnetized arrays of sub-micron Permalloy discs are measured using broadband ferromagnetic resonance and compared to analytical results from a single, isolated disc. The measured mode structure qualitatively reproduces the structure expected from the theory. Fitted demagnetizing parameters decrease with increasing array disorder. The frequency difference between the first and second radial modes is found to be higher in the measured array systems than predicted by theory for an isolated disc. The relative frequencies between successive spin wave modes are unaffected by reduction of the long-range ordering of discs in the array. An increase in standing spin wave resonance linewidth at low applied magnetic fields is observed and grows more severe with increased array disorder.

  8. MAGNETOHYDRODYNAMIC SEISMOLOGY OF A CORONAL LOOP SYSTEM BY THE FIRST TWO MODES OF STANDING KINK WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y.; Hao, Q.; Cheng, X.; Chen, P. F.; Ding, M. D. [School of Astronomy and Space Science and Key Laboratory of Modern Astronomy and Astrophysics in Ministry of Education, Nanjing University, Nanjing 210046 (China); Erdélyi, R. [Solar Physics and Space Plasma Research Center (SP2RC), School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH (United Kingdom); Srivastava, A. K.; Dwivedi, B. N., E-mail: guoyang@nju.edu.cn [Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)

    2015-02-01

    We report the observation of the first two harmonics of the horizontally polarized kink waves excited in a coronal loop system lying southeast of AR 11719 on 2013 April 11. The detected periods of the fundamental mode (P {sub 1}), its first overtone (P {sub 2}) in the northern half, and that in the southern one are 530.2 ± 13.3, 300.4 ± 27.7, and 334.7 ± 22.1 s, respectively. The periods of the first overtone in the two halves are the same considering uncertainties in the measurement. We estimate the average electron density, temperature, and length of the loop system as (5.1 ± 0.8) × 10{sup 8} cm{sup –3}, 0.65 ± 0.06 MK, and 203.8 ± 13.8 Mm, respectively. As a zeroth-order estimation, the magnetic field strength, B = 8.2 ± 1.0 G, derived by the coronal seismology using the fundamental kink mode matches with that derived by a potential field model. The extrapolation model also shows the asymmetric and nonuniform distribution of the magnetic field along the coronal loop. Using the amplitude profile distributions of both the fundamental mode and its first overtone, we observe that the antinode positions of both the fundamental mode and its first overtone shift toward the weak field region along the coronal loop. The results indicate that the density stratification and the temperature difference effects are larger than the magnetic field variation effect on the period ratio. On the other hand, the magnetic field variation has a greater effect on the eigenfunction of the first overtone than the density stratification does for this case.

  9. Analytical Formulation of Equatorial Standing Wave Phenomena: Application to QBO and ENSO

    Science.gov (United States)

    Pukite, P. R.

    2016-12-01

    inversion of the biennial mode lasting from 1980 to 1996. The parsimony of these analytical models arises from applying only known cyclic forcing terms to fundamental wave equation formulations. This raises the possibility that both QBO and ENSO can be predicted years in advance, apart from a metastable biennial phase inversion in ENSO.

  10. Standing-wave excited hard x-ray phototemission studies on a Au-sandwiched Fe/MgO interface

    Energy Technology Data Exchange (ETDEWEB)

    Doering, Sven; Keutner, Christoph; Schoenbohm, Frank; Berges, Ulf; Westphal, Carsten [DELTA/Experimentelle Physik I, TU Dortmund, Otto-Hahn-Str. 4, 44221 Dortmund (Germany); Buergler, Daniel E.; Schneider, Claus M. [IFF-9, Forschungszentrum Juelich, 52425 Juelich (Germany); Gorgoi, Mihaela; Schaefers, Franz [Helmholtzzentrum Berlin fuer Materialien und Energie, Albert Einstein Str. 15, 12489 Berlin (Germany)

    2011-07-01

    Magnetic tunnel junctions (MTJs) consisting of a thin layer-stack of Fe/MgO/Fe show a high tunnel-magneto resistance (TMR) ratio at room temperature. The strength of this effect is mainly driven by the interface and thus the Fe/MgO interface has been subject of many studies during the last years. Quite recently, calculations predicted an even higher TMR ratio for modified interfaces. In that work it was proposed that a monolayer of Au at the interface prevents the oxidation of the Fe-layer, and thus an increase of the TMR effect is expected. Up to now there is no experimental evidence that a well-defined Au monolayer can be prepared with the objective of preventing the Fe oxidation at the interface. In this work we studied a Au-modified interface with standing-wave excited hard X-ray photoemission. The goal of this study was the determination of the effective roughness of the Au layer. Our data-analysis shows that Au does not grow as a protective monolayer nor any hint of FeO formation was found.

  11. Impact of Acoustic Standing Waves on Structural Responses: Reverberant Acoustic Testing (RAT) vs. Direct Field Acoustic Testing (DFAT)

    Science.gov (United States)

    Kolaini, Ali R.; Doty, Benjamin; Chang, Zensheu

    2012-01-01

    Loudspeakers have been used for acoustic qualification of spacecraft, reflectors, solar panels, and other acoustically responsive structures for more than a decade. Limited measurements from some of the recent speaker tests used to qualify flight hardware have indicated significant spatial variation of the acoustic field within the test volume. Also structural responses have been reported to differ when similar tests were performed using reverberant chambers. To address the impact of non-uniform acoustic field on structural responses, a series of acoustic tests were performed using a flat panel and a 3-ft cylinder exposed to the field controlled by speakers and repeated in a reverberant chamber. The speaker testing was performed using multi-input-single-output (MISO) and multi-input-multi-output (MIMO) control schemes with and without the test articles. In this paper the spatial variation of the acoustic field due to acoustic standing waves and their impacts on the structural responses in RAT and DFAT (both using MISO and MIMO controls for DFAT) are discussed in some detail.

  12. X-ray standing wave simulations based on Fourier vector analysis as a method to retrieve complex molecular adsorption geometries

    Directory of Open Access Journals (Sweden)

    Giuseppe eMercurio

    2014-01-01

    Full Text Available We present an analysis method of normal incidence x-ray standing wave (NIXSW data that allows detailed adsorption geometries of complex molecules to be retrieved. This method (Fourier vector analysis is based on the comparison of both the coherence and phase of NIXSW data to NIXSW simulations of different molecular geometries as the relevant internal degrees of freedom are tuned. We introduce this analysis method using the prototypical molecular switch azobenzene (AB adsorbed on the Ag(111 surface as a model system. The application of the Fourier vector analysis to AB/Ag(111 provides, on the one hand, detailed adsorption geometries including dihedral angles, and on the other hand, insights into the dynamics of molecules and their bonding to the metal substrate. This analysis scheme is generally applicable to any adsorbate, it is necessary for molecules with potentially large distortions, and will be particularly valuable for molecules whose distortion on adsorption can be mapped on a limited number of internal degrees of freedom.

  13. Ultrahigh vacuum diffractometer for grazing-angle x-ray standing-wave experiments at a vertical-wiggler source

    Science.gov (United States)

    Sakata, O.; Hashizume, H.

    1995-02-01

    An ultrahigh vacuum (UHV) diffractometer has been designed for studies of surface structures using the grazing-angle x-ray standing-wave method. The design is featured by a horizontal plane of diffraction for use at a vertical-wiggler source of synchrotron radiation. A sample is horizontally mounted in an UHV chamber (4×10-7 Pa) placed on crossed swivels, which control the glancing-incidence angle of x rays on the sample surface with a 50-μrad accuracy. The chamber accepts a sample from a transportation vessel under high vacuum. A beryllium window allows x-ray fluorescence to reach a semiconductor detector at short access. The whole assembly sits on a high-precision rotary table, regulating the sample Δθ angle with a reproducibility of better than 0.5 μrad required for control of the x-ray field profile. The system has been successfully applied to an accurate determination of the in-plane ordering of As atoms on a Si(111) surface with a 1×1 structure.

  14. Analysis of Standing Waves on GPR Hyperbolic Travel-Time Responses - Case Studies in a Fractured Granitic Rock and a Deteriorating Coastal Structure

    Directory of Open Access Journals (Sweden)

    Yun-Li Chen

    2007-01-01

    Full Text Available Utilizing Ground Penetrating Radar (GPR, emitted electromagnetic (EM standing waves can be generated in underground voids. This phenomenon can be employed for the detection of subterranean voids and fractures when one has a proper understanding of relation between the widest inner length in an underground vacant space and half an EM wavelength. In this study, indoor and outdoor small-scale experiments verified the generation of EM standing waves. These responses were then applied in an arched-top cave covered by a single layer of backfill at Gongzihliao, Taiwan. Further studies were carried out at two other sites, including a fracture located in a granite mountain without regolith on the surface at Kinmen, and a deteriorating fishing port in Nanfangao, northeast Taiwan. Applying a band-pass filter with bandwidth narrower than a typical two-octave bandwidth produced the required standing waves with recognizable positions of minimum amplitude. A hyperbolic travel-time (HTT curve revealing the minimum amplitude, known as standing-wave nodes, indicates the presence of an underground hollow diffractor with the widest inner length in the vacant space being larger than half an EM wavelength. However, a HTT curve without nodal points signifies a hollow object with the widest inner length smaller than half an EM wavelength or an underground solid diffractor. An underground arched-top cave was detected by nodal points in the arc-like curves. When emitting the radar waves toward a wall, the interval of the nodes was used for estimating the wavelength of receiving GPR signals. Identifying the occurrence of nodal points in HTT or HTTlike curves in radargrams may assist the GPR interpreting work for underground tunnels, drainages, cavities, fractures, or solid objects.

  15. Radiation forces and torque on a rigid elliptical cylinder in acoustical plane progressive and (quasi)standing waves with arbitrary incidence

    CERN Document Server

    Mitri, F G

    2016-01-01

    Analytical expressions for the axial and transverse acoustic radiation forces as well as the radiation torque per length are derived for a rigid elliptical cylinder placed arbitrarily in the field of in plane progressive, quasi-standing or standing waves. The rigid elliptical cylinder case is important to be considered as a first-order approximation of the behavior of a fluid particle suspended in air, because of the significant acoustic impedance mismatch at the particle's boundary. Based on the partial-wave series expansion method in cylindrical coordinates, non-dimensional acoustic radiation force and torque functions are derived and defined in terms of the scattering coefficients of the elliptic cylinder. A coupled system of linear equations is obtained after applying the Neumann boundary condition for an immovable surface in a non-viscous fluid, and solved numerically by matrix inversion after performing a single numerical integration procedure. Computational results for the non-dimensional force compone...

  16. On revealing the vertical structure of nanoparticle films with elemental resolution: A total external reflection X-ray standing waves study

    Energy Technology Data Exchange (ETDEWEB)

    Zargham, Ardalan, E-mail: zargham@ifp.uni-bremen.d [Institute of Solid State Physics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen (Germany); Schmidt, Thomas; Flege, Jan Ingo; Sauerbrey, Marc; Hildebrand, Radowan [Institute of Solid State Physics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen (Germany); Roehe, Sarah; Baeumer, Marcus [Applied and Physical Chemistry, University of Bremen, Leobener Str. 2, 28359, Bremen (Germany); Falta, Jens [Institute of Solid State Physics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen (Germany)

    2010-02-15

    We present a promising combination of methods to precisely determine the morphology of nanostructures, drawing on the example of monodisperse CoPt{sub 3} nanoparticle films deposited by spin coating and dip coating techniques on functionalized Au substrates. Ex-situ X-ray standing waves in total external reflection combined with X-ray reflectivity measurements were employed to determine element-specific atomic-density distributions in vertical direction.

  17. Sub-micron particle behaviour and capture at an immuno-sensor surface in an ultrasonic standing wave.

    Science.gov (United States)

    Kuznetsova, Larisa A; Martin, Stacey P; Coakley, W Terence

    2005-12-15

    The capture of 200 nm biotinylated latex beads from suspensions of concentration 10(7) to 2.5 x 10(8) particle/ml on an immuno-coated surface of the acoustic reflector in an ultrasound standing wave (USW) resonator has been studied while the acoustic pathlength was less than one half wavelength (lambda/2). The particles were delivered to the reflector's surface by acoustically induced flow. The capture dependencies on suspension concentration, duration of experiments and acoustic pressure have been established at 1.09, 1.46 and 1.75 MHz. Five-fold capture increase has been obtained at 1.75 MHz in comparison to the control (no ultrasound) situation. The contrasting behaviours of 1, 0.5 and 0.2 mum fluorescent latex beads in a lambda/4 USW resonator at 1.46 MHz have been characterized. The particle movements were observed with an epi-fluorescent microscope and the velocities of the particles were measured by particle image velocimetry (PIV). The experiments showed that whereas the trajectories of 1 mum particles were mainly affected by the direct radiation force, 0.5 mum particles were influenced both by the radiation force and acoustic streaming. The 0.2 mum latex beads followed acoustic streaming in the chamber and were not detectably affected by the radiation force. The streaming-associated behaviour of the 200 nm particles has implications for enhanced immunocapture of viruses and macromolecules (both of which are also too small to experience significant acoustic radiation force).

  18. Standing detonation wave engine

    KAUST Repository

    Kasimov, Aslan

    2015-10-08

    A detonation engine can detonate a mixture of fuel and oxidizer within a cylindrical detonation region to produce work. The detonation engine can have a first and a second inlet having ends fluidly connected from tanks to the detonation engine. The first and second inlets can be aligned along a common axis. The inlets can be connected to nozzles and a separator can be positioned between the nozzles and along the common axis.

  19. Surfing a Standing Wave

    Science.gov (United States)

    de Campos Valadares, Eduardo; Alves, Esdras Garcia

    2005-05-01

    Local "reversal of gravity" can be simulated with an inverted pendulum whose pivot is made to oscillate vertically. A beautiful demonstration of this surprising effect can be found in Ref. 1. In this case, the pendulum is a piece of plastic straw and its pivot pin is fixed at the end of a plastic ruler that is made to oscillate vertically by a small eccentric motor. A theoretical treatment of this inverted pendulum may be found in Ref. 2.

  20. Self-action of propagating and standing Lamb waves in the plates exhibiting hysteretic nonlinearity: Nonlinear zero-group velocity modes.

    Science.gov (United States)

    Gusev, Vitalyi E; Lomonosov, Alexey M; Ni, Chenyin; Shen, Zhonghua

    2017-09-01

    An analytical theory accounting for the influence of hysteretic nonlinearity of micro-inhomogeneous plate material on the Lamb waves near the S1 zero group velocity point is developed. The theory predicts that the main effect of the hysteretic quadratic nonlinearity consists in the modification of the frequency and the induced absorption of the Lamb modes. The effects of the nonlinear self-action in the propagating and standing Lamb waves are expected to be, respectively, nearly twice and three times stronger than those in the plane propagating acoustic waves. The theory is restricted to the simplest hysteretic nonlinearity, which is influencing only one of the Lamé moduli of the materials. However, possible extensions of the theory to the cases of more general hysteretic nonlinearities are discussed as well as the perspectives of its experimental testing. Applications include nondestructive evaluation of micro-inhomogeneous and cracked plates. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Analysis of Vibrating String Standing Wave Formed by Origin%利用Origin分析弦振动形成驻波的规律

    Institute of Scientific and Technical Information of China (English)

    李生仁; 白琼燕; 杨军; 李春望

    2014-01-01

    In this paper, analyzing the movement of the tiny sport on string section through wave equation in theory, deriving the relationship among the wavelength, the string tension, frequency and the density of strings when standing wave forms. Meanwhile, with evenly string vibration tester XZDY-type B, obtaining a lot of experimental data. And processing the data under the environment of Origin fitting processing system, making the data relationship chart to enable experimental data vis-ualization and informationization, the law that formed standing wave audio-visual and easier to understand.%本文通过波动方程和对弦上某一微小段的运动理论分析,推导出弦振动形成驻波时波长、弦中张力、频率和弦线密度之间的关系。同时借助XZDY-B型均匀弦振动仪,获得大量的实验数据,并在Origin环境下对数据进行系统的拟合处理,做出了数据间的关系图,使实验数据可视化和信息化,使弦振动形成驻波的规律更为直观,更容易理解。

  2. Study of molecule-metal interfaces by means of the normal incidence X-ray standing wave technique

    Energy Technology Data Exchange (ETDEWEB)

    Mercurio, Giuseppe

    2012-07-01

    Functional surfaces based on monolayers of organic molecules are currently subject of an intense research effort due to their applications in molecular electronics, sensing and catalysis. Because of the strong dependence of organic based devices on the local properties of the molecule-metal interface, a direct investigation of the interface chemistry is of paramount importance. In this context, the bonding distance, measured by means of the normal incidence X-ray standing wave technique (NIXSW), provides a direct access to the molecule-metal interactions. At the same time, NIXSW adsorption heights are used to benchmark different density functional theory (DFT) schemes and determine the ones with predictive power for similar systems. This work investigates the geometric and chemical properties of different molecule/metal interfaces, relevant to molecular electronics and functional surfaces applications, primarily by means of the NIXSW technique. All NIXSW data are analyzed with the newly developed open source program Torricelli, which is thoroughly documented in the thesis. In order to elucidate the role played by the substrate within molecule/metal interfaces, the prototype organic molecule 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) is explored on the Ag(110) surface. The molecule results more distorted and at smaller bonding distances on the more reactive Ag(110) surface, in comparison with the Ag(100), the Ag(111) and Au(111) substrates. This conclusion follows from the detailed molecular adsorption geometry obtained from the differential analysis of nonequivalent carbon and oxygen species (including a careful error analysis). Subsequently, the chemisorptive PTCDA/Ag(110) interaction is tuned by the co-deposition of an external alkali metal, namely K. As a consequence, the functional groups of PTCDA unbind from the surface, which, in turn, undergoes major reconstruction. In fact, the resulting nanopatterned surface consists of alternated up and down

  3. Simultaneous analysis of Grazing Incidence X-Ray reflectivity and X-ray standing waves from periodic multilayer systems

    NARCIS (Netherlands)

    Yakunin, S.N.; Makhotkin, I.; Chuyev, M.A.; Seregin, A.Y.; Pashayev, E.M.; Louis, E.; Kruijs, van de R.W.E.; Bijkerk, F.; Kovalchuk, M.V.

    2012-01-01

    Structural analysis of periodic multilayers with small period thickness (~4 nm) is a challenging task, especially when thicknesses of intermixed interfaces become comparable to individual layer thicknesses. In general, angular dependent X-ray fluorescence measurements, excited by the X-ray standing

  4. Standing surface acoustic waves in LiNbO3 studied by time resolved X-ray diffraction at Petra III

    Directory of Open Access Journals (Sweden)

    T. Reusch

    2013-07-01

    Full Text Available We have carried out time resolved stroboscopic diffraction experiments on standing surface acoustic waves (SAWs of Rayleigh type on a LiNbO3 substrate. A novel timing system has been developed and commissioned at the storage ring Petra III of Desy, allowing for phase locked stroboscopic diffraction experiments applicable to a broad range of timescales and experimental conditions. The combination of atomic structural resolution with temporal resolution on the picosecond time scale allows for the observation of the atomistic displacements for each time (or phase point within the SAW period. A seamless transition between dynamical and kinematic scattering regimes as a function of the instantaneous surface amplitude induced by the standing SAW is observed. The interpretation and control of the experiment, in particular disentangling the diffraction effects (kinematic to dynamical diffraction regime from possible non-linear surface effects is unambiguously enabled by the precise control of phase between the standing SAW and the synchrotron bunches. The example illustrates the great flexibility and universality of the presented timing system, opening up new opportunities for a broad range of time resolved experiments.

  5. Wave-like free-standing NiCo2O4 cathode for lithium-oxygen battery with high discharge capacity

    Science.gov (United States)

    Shen, Chen; Wen, Zhaoyin; Wang, Fan; Rui, Kun; Lu, Yan; Wu, Xiangwei

    2015-10-01

    A novel free-standing air electrode for Li-O2 battery with a wave-like microstructure is designed and synthesized through a facile electrochemical deposition process. Interconnected NiCo2O4 nanosheets with planes grown almost parallel to the surface of Ni foam build up continues porous catalytic surface with open space for the growth of Li2O2 discharge product. Li-O2 battery with the synthesized cathode delivers a high discharge capacity of 7004 mAh g-1 at 40 mA g-1 with a charge potential lower than 3.6 V (vs. Li/Li+), and significantly lower impedance compared to conventional electrode. Flower-like Li2O2 particles with a large size are observed as discharge products, consisting with the high discharge capacity. The unique wave-like microstructure and DMSO-based electrolyte with a high-doner-number are proposed to be responsible for the high discharge capacity, and the formation of large size Li2O2 discharge products. In addition, the electrode also exhibits stable cycle performance up to 100 cycles at the current density of 100 mA g-1 due to the robust composition and microstructure of the free-standing design.

  6. Electronic standing waves on the surface of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}}

    Energy Technology Data Exchange (ETDEWEB)

    Vershinin, M.; Misra, S.; Abe, Y.; Ono, S.; Ando, Y.; Yazdani, A

    2004-08-01

    Scanning tunneling microscopy (STM) measurements have shown that electronic states at the surface of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} single crystals form standing wave patterns at temperatures far below the superconducting transition. It has been shown that these patterns are consistent with those expected from the interference of well-defined quasi-particles around the Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} Fermi surface. We have extended STM measurements of these standing wave patterns to higher temperatures and have found that four unit-cell periodicity patterns observed in the superconducting state persist well above T{sub C}, in the pseudogap state. In this regime, many different experimental studies of the cuprates have long claimed the absence of well-defined quasi-particles. If the pseudogap regime is indeed devoid of any coherent quasi-particles then our results suggest that other phenomena, such as stripe formation, must play a role in formation of these patterns.

  7. W-waveform Standing Surface Acoustic Waves with Two Equilibrium Positions under Linear Phase Modulation for Patterning Microparticles into Alternate Grid Patterns

    CERN Document Server

    Lee, Junseok

    2016-01-01

    This paper presents W-waveform Standing Surface Acoustic Waves (W-SSAW), and as its application, patterning of two groups of microparticles with different sizes alternately without fixing firstly patterned particles. W-SSAW is constructed by two standing surface acoustic waves of frequencies $f$ and $2f$. Combined with linear phase modulation to translate Gor'kov potential at a constant speed, W-SSAW can selectively trap particles. The trapped particles follow the moving Gor'kov potential maintaining force equilibrium between Stokes' drag and the radiation force by W-SSAW. There exist two asymmetric equilibrium positions every period, and by the asymmetry, each group of particles is trapped at different equilibrium positions to form an alternate pattern. This technique is extended to two-dimensional alternate patterning by maintaining phase difference $90^\\circ$ between X- and Y-directional W-SSAWs. The patterning method utilizing W-SSAW is advantageous over SSAW-based patterning in that it does not require t...

  8. A supercell, Bloch wave method for calculating low-energy electron reflectivity with applications to free-standing graphene and molybdenum disulfide

    Science.gov (United States)

    McClain, John

    This dissertation reports on a novel theoretical and computational framework for calculating low-energy electron reflectivities from crystalline surfaces and its application to two layered systems of two-dimensional materials, graphene and molybdenum disulfide. The framework provides a simple and efficient approach through the matching of a small set of Fourier components of Bloch wave solutions to the Schrodinger Equation in a slab-in-supercell geometry to incoming and outgoing plane waves on both sides of the supercell. The implementation of this method is described in detail for the calculation of reflectivities in the lowest energy range, for which only specular reflection is allowed. This implementation includes the calculation of reflectivities from beams with normal or off-normal incidence. Two different algorithms are described in the case of off-normal incidence which differ in their dependence on the existence of a symmetry with a mirror plane parallel to the crystal surface. Applications to model potentials in one, two, and three dimensions display consistent results when using different supercell sizes and convergent results with the density of Fourier grids. The design of the Bloch wave matching also allows for the accurate modeling of crystalline slabs through the use of realistic potentials determined via density functional theory. The application of the method to low-energy electron scattering from free-standing systems of a few layers of graphene, including the use of these realistic potentials, demonstrates this ability of the method to accurately model real systems. It reproduces the layer-dependent oscillations found in experimental, normal incidence reflectivity curves for a few layers of graphene grown on silicon carbide. The normal incidence reflectivity curves calculated for slabs consisting of few-layer graphene on 10 layers of nickel show some qualitative agreement with experiment. General incidence reflectivity spectra for free-standing

  9. Investigation of standing-wave formation in a human skull for a clinical prototype of a large-aperture, transcranial MR-guided focused ultrasound (MRgFUS) phased array: an experimental and simulation study.

    Science.gov (United States)

    Song, Junho; Pulkkinen, Aki; Huang, Yuexi; Hynynen, Kullervo

    2012-02-01

    Standing-wave formation in an ex vivo human skull was investigated using a clinical prototype of a 30-cm diameter with 15-cm radius of curvature, low-frequency (230 kHz), hemispherical transcranial magnetic resonance-guided focused ultrasound phased array. Experimental and simulation studies were conducted with changing aperture size and f -number configurations of the phased array and qualitatively and quantitatively examined the acoustic pressure variation at the focus due to standing waves. The results demonstrated that the nodes and antinodes of standing wave produced by the small-aperture array were clearly seen at approximately every 3 mm. The effect of the standing wave became more pronounced as the focus was moved closer to skull base. However, a sharp focus was seen for the full array, and there was no such standing-wave pattern in the acoustic plane or near the skull base. This study showed that the fluctuation pressure amplitude would be greatly reduced by using a large-scale, hemispherical phased array with a low f-number.

  10. High-speed camera observation of multi-component droplet coagulation in an ultrasonic standing wave field

    Science.gov (United States)

    Reißenweber, Marina; Krempel, Sandro; Lindner, Gerhard

    2013-12-01

    With an acoustic levitator small particles can be aggregated near the nodes of a standing pressure field. Furthermore it is possible to atomize liquids on a vibrating surface. We used a combination of both mechanisms and atomized several liquids simultaneously, consecutively and emulsified in the ultrasonic field. Using a high-speed camera we observed the coagulation of the spray droplets into single large levitated droplets resolved in space and time. In case of subsequent atomization of two components the spray droplets of the second component were deposited on the surface of the previously coagulated droplet of the first component without mixing.

  11. Investigation of standing wave formation in a human skull for a clinical prototype of a large-aperture, transcranial MR-guided Focused Ultrasound (MRgFUS) phased array: An experimental and simulation study

    OpenAIRE

    Song, Junho; Pulkkinen, Aki; Huang, Yuexi; Hynynen, Kullervo

    2011-01-01

    Standing wave formation in an ex vivo human skull was investigated using a clinical prototype of a 30 cm diameter with 15 cm radius of curvature, low frequency (230 kHz), hemispherical transcranial Magnetic Resonance guided Focused Ultrasound (MRgFUS) phased-array. Experimental and simulation studies were conducted with changing aperture size and f-number configurations of the phased array, and qualitatively and quantitatively examined the acoustic pressure variation at the focus due to stand...

  12. Radiation forces and torque on a rigid elliptical cylinder in acoustical plane progressive and (quasi)standing waves with arbitrary incidence

    Science.gov (United States)

    Mitri, F. G.

    2016-07-01

    This paper presents two key contributions; the first concerns the development of analytical expressions for the axial and transverse acoustic radiation forces exerted on a 2D rigid elliptical cylinder placed in the field of plane progressive, quasi-standing, or standing waves with arbitrary incidence. The second emphasis is on the acoustic radiation torque per length. The rigid elliptical cylinder case is important to be considered as a first-order approximation of the behavior of a cylindrical fluid column trapped in air because of the significant acoustic impedance mismatch at the particle boundary. Based on the rigorous partial-wave series expansion method in cylindrical coordinates, non-dimensional acoustic radiation force and torque functions are derived and defined in terms of the scattering coefficients of the elliptic cylinder. A coupled system of linear equations is obtained after applying the Neumann boundary condition for an immovable surface in a non-viscous fluid and solved numerically by matrix inversion after performing a single numerical integration procedure. Computational results for the non-dimensional force components and torque, showing the transition from the progressive to the (equi-amplitude) standing wave behavior, are performed with particular emphasis on the aspect ratio a/b, where a and b are the semi-axes of the ellipse, the dimensionless size parameter, as well as the angle of incidence ranging from end-on to broadside incidence. The results show that the elliptical geometry has a direct influence on the radiation force and torque, so that the standard theory for circular cylinders (at normal incidence) leads to significant miscalculations when the cylinder cross section becomes non-circular. Moreover, the elliptical cylinder experiences, in addition to the acoustic radiation force, a radiation torque that vanishes for the circular cylinder case. The application of the formalism presented here may be extended to other 2D surfaces of

  13. Continuously Phase-Modulated Standing Surface Acoustic Waves for Separation of Particles and Cells in Microfluidic Channels Containing Multiple Pressure Nodes

    CERN Document Server

    Lee, Junseok; Kang, Byungjun; Lee, Hyungsuk

    2016-01-01

    This paper describes continuously phase-modulated standing surface acoustic waves (CPM-SSAW) and its application for particle separation in multiple pressure nodes. A linear change of phase in CPM-SSAW applies a force to particles whose magnitude depends on their size and contrast factors. During continuous phase modulation, we demonstrate that particles with the target dimension are translated in the direction of moving pressure nodes, whereas smaller particles show oscillatory movements. The rate of phase modulation is optimized for separation of target particles from the relationship between mean particle velocity and period of oscillation. The developed technique is applied to separate particles of the target dimension from the particle mixture. Furthermore, we also demonstrate human keratinocyte cells can be separated in the cell and bead mixture. The separation technique is incorporated with a microfluidic channel spanning multiple pressure nodes, which is advantageous over separation in a single pressu...

  14. Synthesis of Linear Array of Parallel Dipole Antennas with Minimum Standing Wave Ratio Using Simulated Annealing and Particle Swarm Optimization approach

    Directory of Open Access Journals (Sweden)

    Banani Basu

    2010-05-01

    Full Text Available In this paper, we propose a technique based on two evolutionary algorithms simulated annealing and particle swarm optimization to design a linear array of half wavelength long parallel dipole antennas that will generate a pencil beam in the horizontal plane with minimum standing wave ratio (SWR and fixed side lobe level (SLL. Dynamic range ratio of current amplitude distribution is kept at a fixed value. Two different methods have been proposed withdifferent inter-element spacing but with same current amplitude distribution. First one uses a fixed geometry and optimizes the excitation distribution on it. In the second case further reduction of SWR is done via optimization of interelement spacing while keeping the amplitude distribution same as before. Coupling effect between the elements is analyzed using induced EMF method and minimized interms of SWR. Numerical results obtained from SA are validated by comparing with results obtained using PSO.

  15. Development of A New Waveguide Arc /Standing-wave Protecting Device%新型波导电弧/驻波保护装置的研制

    Institute of Scientific and Technical Information of China (English)

    钱锰

    2001-01-01

    The waveguide arc is one of the important reasons of damaging klystron. The practical block diagram , improvement circuit and relevant data of arc/standing-wave are given in this paper. The selection of the key device is analyzed. Finally, the experimental results and characteristic curve are also given.%波导电弧(俗称打火)/驻波过大是损坏速调管的重要原因之一。本文给出了电弧/驻波保护装置的实用框图、改进电路及有关数据,并对关键器件的选择进行了详细分析,最后给出了实验结果及特性曲线。

  16. Continuously phase-modulated standing surface acoustic waves for separation of particles and cells in microfluidic channels containing multiple pressure nodes

    Science.gov (United States)

    Lee, Junseok; Rhyou, Chanryeol; Kang, Byungjun; Lee, Hyungsuk

    2017-04-01

    This paper describes continuously phase-modulated standing surface acoustic waves (CPM-SSAW) and its application for particle separation in multiple pressure nodes. A linear change of phase in CPM-SSAW applies a force to particles whose magnitude depends on their size and contrast factors. During continuous phase modulation, we demonstrate that particles with a target dimension are translated in the direction of moving pressure nodes, whereas smaller particles show oscillatory movements. The rate of phase modulation is optimized for separation of target particles from the relationship between mean particle velocity and period of oscillation. The developed technique is applied to separate particles of a target dimension from the particle mixture. Furthermore, we also demonstrate human keratinocyte cells can be separated in the cell and bead mixture. The separation technique is incorporated with a microfluidic channel spanning multiple pressure nodes, which is advantageous over separation in a single pressure node in terms of throughput.

  17. Developments in the use and capability of millimetre wave technologies for stand-off detection of threat items over the last decade

    Science.gov (United States)

    Ollett, E.; Clark, A.

    2017-05-01

    The Home Office Centre for Applied Science and Technology (CAST) has a longstanding history in the evaluation of passive and active millimetre wave (mmW) systems for stand-off detection. The requirements for stand-off detection have evolved greatly over the last decade due to changes in threat, as has the capability of technologies. CAST has worked with these changes to evaluate systems alongside other government departments, developing expertise in the standard of technology from low to high technology readiness level (TRL) as well as understanding the limitations in detection. In this paper I discuss the work that has been undertaken by CAST since 2007, exploring the developments in methodology that have become necessary for trials to capture the requirements successfully. This involves utilising aspects of test protocols to ensure consistency across testing between CAST and other organisations, allowing for a fair comparison of data. The trials undertaken vary from evaluating the system capability in a static setting to the capability in a crowded environment such as a shopping centre. Understanding the performance capability of passive and active (mmW) systems in crowded places is particularly important given the current threat status of the UK.

  18. X-ray standing wave studies of strained InxGa1-xAs/InP short-period superlattices

    Science.gov (United States)

    Aruta, Carmela; Lamberti, Carlo; Gastaldi, Luigi; Boscherini, Federico

    2003-05-01

    We report an x-ray standing wave (XSW) study on a set of structurally well-characterized InxGa1-xAs/InP short-period superlattices grown by metal-organic chemical vapor deposition and chemical-beam epitaxy techniques. It was possible to model the x-ray standing wave profiles only once the superlattice period has been assumed to be constituted by four layers of well-defined chemical composition [barrier (InP), first interface (InAs0.7P0.3), well (In0.53Ga0.47As), and second interface (In0.53Ga0.47As0.7P0.3)], and of variable thickness. The thickness of the four layers have been obtained by fitting the high resolution x-ray diffraction profiles of the heterostructures. The presence of partially disordered interface layers, as evidenced by a transmission electron microscopy study, causes a significant reduction of the coherent fraction, F, of both Ga and As atoms. The difference in F values among measured samples illustrates how the XSW can provide important information on the quality of semiconductor superlattices. Comparison with a "long period (160 Å)" In0.53Ga0.47As/InP superlattice, where the role played by InAs0.7P0.3 and In0.53Ga0.47As0.7P0.3 interface layers is negligible, confirms this picture. The coherent fraction of both As and Ga correlates well with the average perpendicular lattice misfit determined by x-ray diffraction.

  19. Drive Stands

    Data.gov (United States)

    Federal Laboratory Consortium — The Electrical Systems Laboratory (ESL)houses numerous electrically driven drive stands. A drive stand consists of an electric motor driving a gearbox and a mounting...

  20. Structural investigations of doped GaN-films with X-ray standing waves; Strukturelle Untersuchungen dotierter GaN-Filme mit stehenden Roentgenwellenfeldern

    Energy Technology Data Exchange (ETDEWEB)

    Siebert, M.

    2006-10-30

    In this thesis, the incorporation of Mg and Si in GaN-films grown on (0001)-sapphire substrates is investigated in detail by applying several synchrotron radiation techniques. The segregational behavior of Si and Mg is investigated by X-ray-photoelectron-spectroscopy (XPS) and XPS-microscopy. For the first time, it is revealed that also Si segregates to the surface and stabilizes surface facets along high-symmetry directions. Additionally, it is found that Mg also segregates to the crystal surface at concentrations far below the threshold condition for the formation of pyramidal defects. For the first time, the technique of X-ray standing waves (XSW), which allows to directly conclude on the crystal and defect structure on the atomic scale, is successfully applied to thick crystals with high defect density. In order to compensate for the high crystal mosaicity of GaN, which significantly reduces the accuracy of the XSW-measurements, the experiments were performed in near-backscattering geometry, as in this setup the intrinsic reflection width becomes large as compared to the tilt mosaicity. Influences of doped crystal material are suppressed by using a thick undoped high quality GaN-film for the formation of a standing wave field, which is used for the investigation of a thin doped film deposited on top. By performing the XSW measurements with probe signals of different surface sensitivity (fluorescence and photoelectrons) the incorporation behavior within the bulk crystal is compared to regions close to the surface. Within this thesis a technique is suggested that allows to determine the non-dipole contributions to the yield by comparing Auger electron and photoelectron secondary signals. The XSW-measurements on Si-doped samples reveal that Si is solely incorporated on substitutional Ga-sites both within the bulk crystal and close to the surface. In the bulk, Si is homogeneously distributed, distorting the crystal lattice in their vicinity. At the surface Si is

  1. Making use of x-ray optical effects in photoelectron-, Auger electron-, and x-ray emission spectroscopies: Total reflection, standing-wave excitation, and resonant effects

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S.-H. [IBM Almaden Research Center, San Jose, California 95120 (United States); Gray, A. X. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94740 (United States); Department of Physics, University of California at Davis, Davis, California 95616 (United States); Stanford Institute for Materials and Energy Science, Stanford University and SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Kaiser, A. M. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94740 (United States); Department of Physics, University of California at Davis, Davis, California 95616 (United States); Peter Grunberg Institute, PGI-6, Forschungszentrum Juelich, 52425 Juelich (Germany); Mun, B. S. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Applied Physics, Hanyang University, Ansan, Gyeonggi 426-791 (Korea, Republic of); Sell, B. C. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94740 (United States); Department of Physics, University of California at Davis, Davis, California 95616 (United States); Department of Physics, Otterbein College, Westerville, Ohio 43081 (United States); Kortright, J. B. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94740 (United States); Fadley, C. S. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94740 (United States); Department of Physics, University of California at Davis, Davis, California 95616 (United States)

    2013-02-21

    We present a general theoretical methodology and related open-access computer program for carrying out the calculation of photoelectron, Auger electron, and x-ray emission intensities in the presence of several x-ray optical effects, including total reflection at grazing incidence, excitation with standing-waves produced by reflection from synthetic multilayers and at core-level resonance conditions, and the use of variable polarization to produce magnetic circular dichroism. Calculations illustrating all of these effects are presented, including in some cases comparisons to experimental results. Sample types include both semi-infinite flat surfaces and arbitrary multilayer configurations, with interdiffusion/roughness at their interfaces. These x-ray optical effects can significantly alter observed photoelectron, Auger, and x-ray intensities, and in fact lead to several generally useful techniques for enhancing surface and buried-layer sensitivity, including layer-resolved densities of states and depth profiles of element-specific magnetization. The computer program used in this study should thus be useful for a broad range of studies in which x-ray optical effects are involved or are to be exploited in next-generation surface and interface studies of nanoscale systems.

  2. A Novel High-Frequency Voltage Standing-Wave Ratio-Based Grounding Electrode Line Fault Supervision in Ultra-High Voltage DC Transmission Systems

    Directory of Open Access Journals (Sweden)

    Yufei Teng

    2017-03-01

    Full Text Available In order to improve the fault monitoring performance of grounding electrode lines in ultra-high voltage DC (UHVDC transmission systems, a novel fault monitoring approach based on the high-frequency voltage standing-wave ratio (VSWR is proposed in this paper. The VSWR is defined considering a lossless transmission line, and the characteristics of the VSWR under different conditions are analyzed. It is shown that the VSWR equals 1 when the terminal resistance completely matches the characteristic impedance of the line, and when a short circuit fault occurs on the grounding electrode line, the VSWR will be greater than 1. The VSWR will approach positive infinity under metallic earth fault conditions, whereas the VSWR in non-metallic earth faults will be smaller. Based on these analytical results, a fault supervision criterion is formulated. The effectiveness of the proposed VSWR-based fault supervision technique is verified with a typical UHVDC project established in Power Systems Computer Aided Design/Electromagnetic Transients including DC(PSCAD/EMTDC. Simulation results indicate that the proposed strategy can reliably identify the grounding electrode line fault and has strong anti-fault resistance capability.

  3. Stand Straight and Stand Tall

    Institute of Scientific and Technical Information of China (English)

    昝亚娟

    2007-01-01

    <正>My grandfather grew up in war-torn Europe.When German soldiers occupied his hometown,the thriving (繁荣的) city of Tarow,Poland,he refused to obey them and eventually joined the Soviet army to fight for his country’s freedom."Stand straight,stand tall,"he told himself.

  4. Interface properties of magnetic tunnel junction La0.7Sr0.3MnO3/SrTiO3 superlattices studied by standing-wave excited photoemission spectroscopy

    NARCIS (Netherlands)

    Gray, A.X.; Papp, C.; Balke, B.; Yang, S.-H.; Huijben, M.; Rotenberg, E.; Bostwick, A.; Ueda, S.; Yamashita, Y.; Kobayashi, K.; Gullikson, E.M.; Kortright, J.B.; Groot, de F.M.F.; Rijnders, G.; Blank, D.H.A.; Ramesh, R.; Fadley, C.S.

    2010-01-01

    The chemical and electronic-structure profiles of magnetic tunnel junction (MTJ) La0.7Sr0.3MnO3/SrTiO3 (LSMO/STO) superlattices have been quantitatively determined via soft and hard x-ray standing-wave excited photoemission, x-ray absorption and x-ray reflectivity, in conjunction with x-ray optical

  5. Determination of dopant atomic positions with kinematical X-ray standing waves; Untersuchung von Fremdatomen in kristallinen Materialien mit kinematischen stehenden Roentgenwellen

    Energy Technology Data Exchange (ETDEWEB)

    Walz, Bente

    2011-11-15

    Recent advances in the kinematic X-ray standing wave technique (KXSW) for the determination of the atomic coordinates and displacement parameters in nonperfect crystalline materials are described in this thesis. The methodology has been improved by considering three significant aspects: - the inclusion of weak multiple beam contributions - the excitation of secondary fluorescence in multiple-element samples - the influence of the crystal mosaicity on the fluorescence yield. The improvements allowed to successfully apply the method to investigate complex oxide materials of current interest for potential device applications. The thermally-induced interdiffusion of cobalt and manganese thin films on zinc oxide single crystals has been studied to determine which lattice sites are occupied preferentially. The data analysis revealed that after thermal diffusion the adsorbed atoms occupied zinc sites in the host lattice. The mean deviation of the cobalt atomic position from the zinc lattice site was comparable to the thermal displacement parameter of the zinc atoms. In the case of manganese a secondary phase was found on the surface. Measurements performed on LaSrMnO{sub 4} provided new insight concerning the rotation of the oxygen octahedron around the manganese atoms and the concomitant displacements of the strontium and lanthanum atoms. It was found that the oxygen octahedra are rotated around the [100]-direction by 4,5 . The measurements in transmission geometry performed on titanium dioxide (rutile) demonstrated that KXSW measurements in the Laue geometry is a viable technique. By performing KXSW under grazing-incidence conditions it is possible to achieve depth resolution. The results clearly show that the extended KXSW technique is a versatile method for characterizing complex material systems. (orig.)

  6. Toward a real time stand-off submillimeter-wave imaging system with large field of view: quasi-optical system design considerations

    Science.gov (United States)

    Gandini, Erio; Llombart, Nuria

    2015-05-01

    In the frame-work of the European project CONSORTIS, a stand-off system for concealed object detections working at submillimeter-wave frequencies is being developed. The system is required to perform real-time image acquisition over a large field of view at a short range using both an active and a passive sensor operating in the frequency range from 250 to 600 GHz. In this contribution, the main trade-offs associated with the quasi-optical system design are presented. The imaging distance is from 2 m to 5 m range with a spatial resolution lower than 2 cm. Focal plane arrays will be used to achieve high imaging frame rates. Two configurations are considered in CONSORTIS: a sparse array of active transceivers and incoherent passive staring array with a large number of elements. Both cases use mechanical scanning to achieve the required field of view. This paper presents an in-depth analysis of the different trade-offs driving the quasi-optical design: from the mechanical scanner considerations to the optical beam quality required over the whole field of view. This analysis starts from the fundamental limitations of the quasi-optical mechanical systems. The limitations of the optics are discussed considering a canonical elliptical reflector as a reference. After this fundamental analysis, we compare the performances of several practical standard implementations, based on dual-reflectors and lenses, with canonical geometries. It is shown that, at short ranges, the main limitation of the optical system is the poor beam quality associated with the wide angular field of view and none of the standard implementation fulfills the requirements. In the last section, a technique to overcome this limitation is investigated. In particular, the use of optics with oversized reflectors can significantly improve the performance over a larger field of view if the coma aberrations are limited by a good angular filter.

  7. 驻波电帘除尘效率的实验研究%Experimental Study on Efficiency of Dust Removal by Standing Wave Electric Curtain

    Institute of Scientific and Technical Information of China (English)

    孙旗霞; 杨宁宁; 肖志坤; 蔡小兵; 胡更开

    2012-01-01

    月尘将对在月球表面进行巡视探测的设备产生严重不利影响。文章分析了利用驻波电帘对探测器的太阳电池板进行尘埃清除和防护,给出了电帘表面的电场分布,颗粒在电帘表面的受力状态和起跳、跃移过程,通过实验测量给出了电帘结构各参数对除尘效率的影响,制备了自清洁演示系统,对电帘的能耗进行了测定;表明驻波电帘是月表探测任务中尘埃防护的有效方法。%Lunar dust is expected to pose great harm to the instruments for lunar surface explora- tion. In this paper, dust removal from solar panel by using standing wave electric curtain is stud- ied. The electric field distribution on surface of the curtain is revealed, forces and levitation and transportation processes of the dust particles are investigated. Through experimental measure- ment, the influence of the structural parameters of electric curtain on the dust removal efficiency is characterised. A selbclean solar panel demonstration system is manufactured, and the energy consumption of the electric curtain measured. The results convey that electric curtain is an effec- tive technology for dust control in lunar surface exploration mission.

  8. X-ray standing-wave study of (AlAs){sub m}(GaAs){sub n} short-period superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Lessmann, A.; Brennan, S.; Munkholm, A. [Stanford Synchrotron Radiation Laboratory SSRL/SLAC, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Schuster, M.; Riechert, H. [Siemens AG, Corporate Technology, Otto-Hahn-Ring 6, D-81739 Munich (Germany); Materlik, G. [Hamburger Synchrotronstrahlungslabor HASYLAB am Deutschen Elektronen-Synchrotron DESY, Notkestrasse 85, D-22603 Hamburg (Germany)

    1999-04-01

    X-ray standing-waves (XSW) are used for an investigation of the structure of (AlAs){sub m}(GaAs){sub n} short-period superlattices (SL{close_quote}s). The XSW induced modulation of x-ray fluorescence from the Al, As, and Ga atoms and the total photoelectron yield are monitored around the 0th order SL satellite (AlAs)(GaAs)(004,0) and the GaAs(004) substrate Bragg reflection. From the specific shape of these modulations and the sample reflectivity, an atomic model about the interfaces is derived. This is accomplished by comparing the experimental data with dynamical calculations of x-ray wavefield distribution and reflectivity, which are based on the Takagi-Taupin equation. The fluorescence measurements at the 0th order SL satellite reveal a high crystalline order in the AlAs layers of the short-period SL, whereas in the GaAs layers, a fraction of the Ga and As atoms is not on the ideal lattice positions. From the analysis, a model of the atomic distribution along the [001] direction can be determined. This reveals that at each internal interface in the GaAs layers, two Ga atom planes are shifted by up to 0.035 nm and one As atom plane by 0.023 nm. At each interface, the shifts are directed towards the substrate. In addition, the XSW field at the GaAs(004) substrate reflection results in a moir{acute e} or beating effect in the SL structure, which can be used to determine the information depth {Lambda}{sub e} of total electron-yield measurements in a more detailed approach. {copyright} {ital 1999} {ital The American Physical Society}

  9. Thermal effects on Co/Mo2C multilayer mirrors studied by soft x-ray standing wave enhanced photoemission spectroscopy

    Science.gov (United States)

    Giglia, A.; Mukherjee, S.; Mahne, N.; Nannarone, S.; Jonnard, P.; Le Guen, K.; Yuan, Y.-Y.; André, J.-M.; Wang, Z.-S.; Li, H.-C.; Zhu, J.-T.

    2013-05-01

    Here is presented the spectroscopic study of the evolution of the first buried interfaces of a B4C capped Co/Mo2C multilayer mirror induced by thermal treatment up to 600°C. This kind of study is typically performed to simulate the response of multilayer optics working in extreme conditions, as for instance when irradiated by new high brilliance sources as Free Electron Lasers. In fact, the efficiency of multilayers is related to the optical contrast between the alternating high and low density layers, and then to the degree of interdiffusion and the creation or evolution of interface compounds. The analysis has been performed at the Co L23 edge with different soft x-ray spectroscopic techniques including diffuse and specular reflectivity, total electron and fluorescent yield at the BEAR beamline at Elettra (Trieste) (http://www.elettra.trieste.it/elettra-beamlines/bear.html). The presentation is focused on the spectroscopic results obtained by soft x-ray standing wave enhanced photoemission (XSW) from the Mo 3d, B 1s, C 1s, O 1s core levels by using a photon energy close to the Co L23 edge and corresponding to the first Bragg peak of the multilayer. The experimental results have been compared with simulations to obtain information both on the chemical state (e.g. oxidation state) and interface morphology in terms of profiles of distribution of elements and interdiffusion of B, oxidized B and C in the interface region. In summary, it is possible to conclude in favour of a good stability of the multilayer in the investigated temperature range, as confirmed by the good performance in terms of reflectivity. These results confirm the usefulness of XSW for this kind analysis of multilayer optics.

  10. Co/Mo2C mirror as studied by x-ray fluorescence and photoelectron spectroscopies induced by x-ray standing waves

    Science.gov (United States)

    Jonnard, P.; Le Guen, K.; Yuan, Y. Y.; André, J.-M.; Mukherjee, S.; Giglia, A.; Nannarone, S.; Mahne, N.; Wang, Z.-S.; Li, H.-C.; Zhu, J.-T.

    2012-12-01

    We study a periodic Co/Mo2C multilayer prepared by magnetron sputtering. The period is 4.1 nm and the sample is designed to work around 778 eV, i.e. close to the Co 2p3/2 threshold, at a glancing angle of 11°. In this condition, strong x-ray standing waves set up within the sample. In order to probe different depths within the stack, particularly the interfaces, the glancing angle is moved along the first Bragg peak, while, the B 1s, C 1s, Mo 3d or O 1s photoelectron spectra, the Co Lα x-ray spectrum as well as the drain current of the sample are measured. Boron is present in the 3.5 nm B4C capping layer and oxygen is from surface contamination. The photoelectrons bring information from the superficial zone, i.e. the 5 first nm, while the characteristic x-rays probe the whole stack. Clear modulations of the intensity of the studied signals as well as core level shifts are observed when going through the Bragg peak. In order to understand what happens in the multilayer calculations of depth distributions of the electric field and the energy loss by the radiation are made with the IMD and OPAL codes, respectively. The combination of experimental results and theoretical simulations will enable us to determine from which place originate the various signals and to know if some interaction exists between the Co and Mo2C layers.

  11. Au enrichment and vertical relaxation of the Cu3Au (111 ) surface studied by normal-incidence x-ray standing waves

    Science.gov (United States)

    Bauer, O.; Schmitz, C. H.; Ikonomov, J.; Willenbockel, M.; Soubatch, S.; Tautz, F. S.; Sokolowski, M.

    2016-06-01

    We have investigated the Cu3Au (111 ) surface, prepared under ultrahigh vacuum conditions by sputtering and annealing, by low energy electron diffraction (LEED), scanning tunneling microscopy (STM), x-ray photoelectron spectroscopy, and normal incidence x-ray standing waves (NIXSW). We find the surface to be depleted with Cu and enriched with Au at the same time, yielding a nominal Cu:Au ratio of 0.61:0.39 in the topmost layer. The STM images reveal that the first layer is nearly closely filled with atoms and contains a small amount of vacancies with an area concentration of about 5 % . Together with the Au enrichment, these cause local short-range disorder of the Au p (2 ×2 ) reconstruction. From this data, the average stoichiometry of the p (2 ×2 ) surface unit cell is estimated at C u2.22A u1.44□0.20 (instead of C u3.00A u1.00□0.00 of the ideal surface; □ denotes an atomic vacancy site). From NIXSW we find a significant outward relaxation of both the Cu and Au atoms of the topmost layer by 0.28 Å and 0.33 Å, which corresponds to 13 % and 15 % of the (111) bulk layer spacing of C u3Au . We suggest that this originates from a widening of the first/second layer spacing, by 6.8 % and 8.8 % for the Cu and Au atoms, respectively, plus an additional rigid increase in the second/third layer spacing by 6.2 % . We explain this by steric repulsions between Au atoms of the topmost layer, replacing smaller Cu atoms, and Au atoms in the second layer in combination with disorder. Finally, a lateral reconstruction, similar to that on the Au(111) surface, but with a much larger periodicity of 290 Å, is identified from LEED.

  12. A finite volume algorithm for solving nonlinear standing waves in acoustic resonators%谐振管内非线性驻波的有限体积数值算法

    Institute of Scientific and Technical Information of China (English)

    宁方立; 董梁; 张文治; 王康

    2012-01-01

    In order to expand the engineering application area of nonlinear standing waves in acoustic resonators, a new numerical algorithm is proposed for simulating nonlinear standing waves in resonators. It also can be used to overcome the shortages of the existing numerical methods, which restrict the solution to the nonlinear standing waves in cylindrical resonators and exponential resonators. The numerical algorithm is constructed based on the Navier-Stokes equations in the resonators with variable cross-section for an unsteady compressible thermoviscous fluid without truncation, and the space conservation law. The numerical algorithm-finite volume method for solving the nonlinear standing waves in acoustic resonators by piston driving is built based on the semi-implicit method for pressure-linked equations-consistent algorithm and staggered grid technique. Simulations for solving the nonlinear standing waves in cylindrical resonators, exponential resonators and conical resonators are carried out. By comparison with the existing experimental results and numerical simulation results, the accuracy of the developed finite volume algorithm is verified. Some new physical results are obtained, including unsteady velocity, density and temperature. The shock-like pressure wave shapes are found in cylindrical resonators, simultaneously, and the results show that the sharp velocity spikes appear in the cylindrical resonators. High amplitude acoustic pressures are generated in exponential resonators and conical resonators. Shock-like pressure waves and the sharp velocity spikes are not found. The strong dependence of the physical properties of nonlinear standing waves on resonator shape is demonstrated through the simulative results.%为了扩展谐振管内非线性驻波在工程中的应用,以及克服现有数值计算方法仅局限于求解直圆柱形和指数形谐振管内非线性驻波的问题.根据变截面的非稳态可压缩热黏性流体Navier-Stokes方

  13. Motion-induced X-ray and terahertz radiation of electrons captured in laser standing wave%电子在激光驻波场中运动产生的太赫兹及X射线辐射研究∗

    Institute of Scientific and Technical Information of China (English)

    朱卫卫; 张秋菊; 张延惠; 焦扬

    2015-01-01

    The motions of charged particles in electromagnetic fields composed of two or more laser beams show a variety of forms due to the adjustable properties of electromagnetic fields. In this paper, we consider the periodic laser standing wave field composed of two laser beams with opposite propagating directions. The movement of electrons in the standing wave field shows a periodic behavior, accompanied with the obvious radiation, especially when electrons are captured by the laser standing wave field. This phenomenon has aroused much interest of us. Under the existing experimental conditions, the free electron beam with low energy from an electron gun or the relativistic electron beam generated from laser acceleration can be easily obtained and injected into the periodic standing wave field. In this paper, using the single-electron model and the classical radiation theory of charged particles, we study the motion and radiation processes of low and high energy electrons in the polarized laser standing wave field. The results show that when the direction of incident electrons with low-speed is perpendicular to the direction of the laser standing wave electric field, the one-dimensional nearly periodic motion of electrons evolves into a two-dimensional folded movement by gradually increasing the light intensity of the laser standing wave field, and the strong terahertz radiation at micrometer wavelength is produced. High energy electrons generate the high-frequency radiation with the wavelength at several nanometers when the incident direction of high energy electrons is perpendicular or parallel to the direction of the laser standing wave electric field. In the case of low-energy electron, the motion of electron, frequency and intensity of radiation are affected by the laser intensity. In the case of incident high-energy electrons, the laser intensity affects the intensity of electronic radiation, and the initial electron energy influences radiation frequency. The

  14. In Situ Structural Studies of the Underpotential Deposition of Copper onto an Iodine Covered Platinum Surface Using X-Ray Standing Waves

    Science.gov (United States)

    1991-01-01

    ABSTRAc C We present initial results of an in situ structural investigation of the underpotential deposition of copper on an iodine covered platinum...compare the result of surface coverage isotherms derived from both electrochemical and x-ray measurements. 1. INTRODUCIION The underpotential deposition ...the underpotential deposition of copper on an iodine covered platinum/carbon layered synthetic microstructure. 2 THEORETICAL BACKGROUND X-ray standing

  15. Wave

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo

    2008-01-01

    Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many t...

  16. Standing steady-state wave-making calculation method for air cushion vehicles; Air cushion vehicle no teijo zoha keisanho ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Eguchi, T. [Mitsui Engineering and Shipbuilding Co. Ltd., Tokyo (Japan)

    1996-04-10

    The pulse-height distribution of a cushion room of air cushion vehicle (ACV) has been tried to be approached by means of the panel shift type Rankine source method. When using this method, it was not required to introduce the pressure distribution model simulating the fall-off effect for the step-formed cushion pressure distribution. The wave form and wave making resistance could be estimated precisely by assigning the pressure gradient to one longitudinal direction panel in the calculation. The waveform shape within the cushion room could be calculated rather precisely by comparing with the analytic solution. This calculation method did have an ability providing the pulse-height information in the cushion room of ACV for seal design and configuration of ships. The analytic solution using for the comparison was sufficient for determining the pulse-height in the high speed region. However, it was hard to respond to non-linear problems or optional shape problems. It was pointed out to be further improved. 5 refs., 8 figs.

  17. Research and Development and Related Experimental Study of Standing Wave Tude System for Sound Absorbing Wedge%吸声尖劈测试用驻波管系统研制及试验研究

    Institute of Scientific and Technical Information of China (English)

    姚磊; 童宪; 裘剑敏; 罗丰; 王欢

    2012-01-01

    主要介绍吸声尖劈测试用驻波管系统的研制及相关试验的研究工作.本系统的构建与测试基于驻波比原理,管体矩形截面为0.6 m×0.6m,长度为7.2m.系统通过传声器传动系统实现管内声压随距离变化的自动测量,距离分辨率可达0.3 mm(5 mm/s移动速度下),在40 Hz~280 Hz频段内可对材料的吸声系数、声阻抗、反射系数、声导纳进行测试,克服传统驻波比测量方法测试精度不高、测量效率低的缺点,为高效、准确测量材料吸声性能提供很好的途径.目前还未见国内关于类似系统的报道,依据相关国家校准规范经第三方计量部门鉴定,各项技术指标均满足要求.同时还通过试验研究得出对实际吸声尖劈测试具有借鉴意义的结论.%Research and development and related experimental study of a standing wave tube system applied in sound absorbing wedge measurement were discussed in this article. Based on standing wave ratio principle, the tube system with 0.6 m×0.6 m rectangular cross-section and 7.2 m length was constituted. Sound pressure along the axial distance in the tube was measured through the microphone driven by an automatic driving system which has a distance resolution of 0.3 mm at 5 mm/s velocity. The acoustical parameters, such as sound absorbing coefficient, acoustic impedance, reflection factor and acoustic admittance can be obtained through the system within frequency band 40-280 Hz. The system overcame the shortcomings of traditional standing-wave measurement methods, which are the low measurement efficiency and low measurement precision. A new efficient and precise method was then provided for sound absorbing test. No similar system has been found in our country so far. The system was calibrated by a superior metrology institute and the technical data can meet the demands. Furthermore, the experiment related to the system was done and some referential conclusions for sound absorption

  18. Standing Tall: The Benefits of Standing Devices

    Science.gov (United States)

    Warner, Mark P.

    2007-01-01

    In the author's opinion as a pediatric physical therapist, with the exception of a wheelchair, there is no other piece of assistive technology that is more beneficial to children and adults with special needs than a standing device. Postural symmetry during standing and walking activities is extremely important for everyone. Very few children…

  19. Out-standing!

    DEFF Research Database (Denmark)

    Kural, René

    2013-01-01

    Out-standing concerns the Danish tennisplayer Leif Rovsing and his outstanding piece of architecture Danish Tennis Club in Hellerup.......Out-standing concerns the Danish tennisplayer Leif Rovsing and his outstanding piece of architecture Danish Tennis Club in Hellerup....

  20. Evolved Models for Elementary Particles and Atoms Require Alternating Neutrino/Antineutrino Pairs Along Interlocked or Looped Strings. Traveling Waves, TW, and Standing Waves, SW, Alternate at Nodal Notches

    Science.gov (United States)

    McLeod, Roger David; McLeod, David Matthew

    2009-05-01

    Our hydrogen atom interacts with a neutron star. Its stringy TW/SW electron is cut by a neutrino scissor that instantly becomes its end anti-node. The string has one extra neutrino in 100,000. Antimatter remains concealed. Our Dumbo Proton of a TW state is similarly cut. Inside the star, electron string/spring compresses 100,000 and 1836 times more, to proton's linear mass density. Electrostatics encourages that caboose, stringy electron, to couple with a cut proton. Linear charge densities neutralize while composite length contracts 20%. The writhing string evicts an antineutrino at closure on Pauli's authority, becoming Mickey Neutron, with looped quarks. Unstable Mickey Neutron has his ear notch forced into an ear notch of stable Dumbo Proton, achieving immortality in this deuteron marriage. Tritium is in a m'enage a trois. Alpha Nucleus has a # grid. Meta state Ne-20 predicts alpha eviction to O-16. Schr"odinger finally prevails, so string theory and Wave Mechanics can prosper.

  1. Structure of Hydrated Zn2+ at the Rutile TiO2 (110)-Aqueous Solution Interface: Comparison of X-ray Standing Wave, X-ray Absorption Spectroscopy, and Density Functional Theory Results

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhan [Argonne National Laboratory (ANL); Fenter, Paul [Argonne National Laboratory (ANL); Kelly, Shelly D [Argonne National Laboratory (ANL); Catalano, Jeffery G. [Argonne National Laboratory (ANL); Bandura, Andrei V. [St. Petersburg State University, St. Petersburg, Russia; Kubicki, James D. [Pennsylvania State University; Sofo, Jorge O. [Pennsylvania State University; Wesolowski, David J [ORNL; Machesky, Michael L. [Illinois State Water Survey, Champaign, IL; Sturchio, N. C. [University of Illinois, Chicago; Bedzyk, Michael J. [Northwestern University, Evanston

    2006-01-01

    Adsorption of Zn{sup 2+} at the rutile TiO{sub 2} (110)-aqueous interface was studied with Bragg-reflection X-ray standing waves (XSW), polarization-dependent surface extended X-ray absorption fine structure (EXAFS) spectroscopy, and density functional theory (DFT) calculations to understand the interrelated issues of adsorption site, its occupancy, ion-oxygen coordination and hydrolysis. At pH 8, Zn{sup 2+} was found to adsorb as an inner-sphere complex at two different sites, i.e., monodentate above the bridging O site and bidentate between two neighboring terminal O sites. EXAFS results directly revealed a four or fivefold first shell coordination environment for adsorbed Zn{sup 2+} instead of the sixfold coordination found for aqueous species at this pH. DFT calculations confirmed the energetic stability of a lower coordination environment for the adsorbed species and revealed that the change to this coordination environment is correlated with the hydrolysis of adsorbed Zn{sup 2+}. In addition, the derived adsorption locations and the occupancy factors of both sites from three methods agree well, with some quantitative discrepancies in the minor site location among the XSW, EXAFS, and DFT methods. Additional XSW measurements showed that the adsorption sites of Zn{sup 2+} were unchanged at pH 6. However, the Zn{sup 2+} partitioning between the two sites changed substantially, with an almost equal distribution between the two types of sites at pH 6 compared to predominantly monodentate occupation at pH 8.

  2. Structure of Hydrated Zn2+ at the Rutile TiO2 (110)-Aqueous Solution Interface: Comparsion of X-ray Standing Wave, X-ray Absorption Spectroscopy, and Density Functional Theory Results

    Energy Technology Data Exchange (ETDEWEB)

    Zhang,Z.; Fenter, P.; Kelly, S.; Catalano, J.; Bandura, A.; Kubicki, J.; Sofo, J.; Wesolowski, D.; Machesky, M.; et al.

    2006-01-01

    Adsorption of Zn{sup 2+} at the rutile TiO2 (110)-aqueous interface was studied with Bragg-reflection X-ray standing waves (XSW), polarization-dependent surface extended X-ray absorption fine structure (EXAFS) spectroscopy, and density functional theory (DFT) calculations to understand the interrelated issues of adsorption site, its occupancy, ion-oxygen coordination and hydrolysis. At pH 8, Zn{sup 2+} was found to adsorb as an inner-sphere complex at two different sites, i.e., monodentate above the bridging O site and bidentate between two neighboring terminal O sites. EXAFS results directly revealed a four or fivefold first shell coordination environment for adsorbed Zn{sup 2+} instead of the sixfold coordination found for aqueous species at this pH. DFT calculations confirmed the energetic stability of a lower coordination environment for the adsorbed species and revealed that the change to this coordination environment is correlated with the hydrolysis of adsorbed Zn{sup 2+}. In addition, the derived adsorption locations and the occupancy factors of both sites from three methods agree well, with some quantitative discrepancies in the minor site location among the XSW, EXAFS, and DFT methods. Additional XSW measurements showed that the adsorption sites of Zn{sup 2+} were unchanged at pH 6. However, the Zn{sup 2+} partitioning between the two sites changed substantially, with an almost equal distribution between the two types of sites at pH 6 compared to predominantly monodentate occupation at pH 8.

  3. Localized standing waves in inhomogeneous Schrodinger equations

    CERN Document Server

    Marangell, R; Susanto, H

    2010-01-01

    A nonlinear Schrodinger equation arising from light propagation down an inhomogeneous medium is considered. The inhomogeneity is reflected through a non-uniform coefficient of the non-linear term in the equation. In particular, a combination of self-focusing and self-defocusing nonlinearity, with the self-defocusing region localized in a finite interval, is investigated. Using numerical computations, the extension of linear eigenmodes of the corresponding linearized system into nonlinear states is established, particularly nonlinear continuations of the fundamental state and the first excited state. The (in)stability of the states is also numerically calculated, from which it is obtained that symmetric nonlinear solutions become unstable beyond a critical threshold norm. Instability of the symmetric states is then investigated analytically through the application of a topological argument. Determination of instability of positive symmetric states is reduced to simple geometric properties of the composite phas...

  4. Travelling standing waves: a feasibility study

    NARCIS (Netherlands)

    Neer, P.L.M.J. van; Rasmijn, L.N.R.; Franse, W.J.M.; Geers, L.; Rasidovic, A.; Volker, A.W.F.

    2015-01-01

    Lately, there has been significant interest in the noninvasive manipulation of particles and liquids. The reported acoustic methods rely on either the acoustic radiation force or acoustic streaming. The latter can be used in developed flows to induce fluid velocities angled to the liquid flow direct

  5. Longitudinal stability in multiharmonic standing wave linacs

    Science.gov (United States)

    Carver, L. R.; Jones, R. M.; Jiang, Y.; Hirshfield, J. L.

    2016-09-01

    Accelerating cavities that excite multiple modes at integer harmonics of the fundamental frequency have the potential to be used to suppress the onset of rf breakdown and reduce the pulsed surface heating at high accelerating gradients. Understanding the effect of an additional harmonic cavity mode on the longitudinal beam dynamics is important to their development and use. A Hamiltonian that describes the longitudinal motion of a particle as it traverses a chain of multiharmonic cavities has been derived and is applied to the case of a second harmonic cavity. The Hamiltonian is based upon formalisms found in literature for the fundamental harmonic and is extended to include different longitudinal field distributions and harmonic frequencies. The study initially explores the longitudinal motion for moderate accelerating gradients with high-β protons, as this will allow fundamental properties of the stable region (acceptance and shape of the rf bucket) to be determined. High accelerating gradients are also investigated but the focus will be on phase stability throughout. This work concludes by considering the longitudinal dynamics of a modified European Spallation Source accelerator, comprised of multiharmonic cavities that has specifications broadly consistent with the accelerator.

  6. Probing Selenium-Ion Distributions and Changes in Redox-State at Biofilm/Mineral Interfaces by Coupling Long-period X-ray Standing Wave and XANES Measurements

    Science.gov (United States)

    Templeton, A. S.; Trainor, T. P.; Spormann, A. M.; Brown, G. E.

    2002-12-01

    Metal sorption and precipitation reactions at biological as well as mineral surfaces are important controls on metal speciation and bioavailability in natural environments. When highly hydrated biofilms form on mineral surfaces, numerous competitive and synergistic effects are predicted to occur. Experimentally, it is challenging to determine where the sorbed metal ions are localized, the relative affinity of the biological vs. mineral surface sites, or to monitor biomineralization reactions or changes in metal speciation that may also occur. A large part of the difficulty is due to the low concentrations of sorbed ions, the small length-scale of the biofilm-mineral interface, and the complex interplay between microbially-catalayzed redox transformations vs. sorption and/or transport processes. Long-period x-ray standing wave (XSW) techniques are well-suited to determining the vertical distribution of metal(oid) species within biofilms overlying mineral surfaces. We will discuss experiments where Se fluorescence yield profiles are used to compare the affinity of Burkholderia cepacia biofilms for binding Se(IV) and Se(VI) species relative to underlying alpha-Al2O3 substrates over three orders of magnitude in [Se]. In addition, we will discuss how coupling the XSW experiments to grazing-incidence, spatially-resolved Se K-edge XANES spectroscopy can be used to differentiate between the oxidation state of the Se complexes localized within the biofilm vs. the mineral surface. This approach is used to monitor changes in the relative distributions of Se(VI), Se(IV) and Se(0) species as a function of time and proximity to the mineral surface. The long-period XSW data show that selenite preferentially binds to the oxide surfaces, particularly at low [Se]. When B. cepacia is metabolically active, B. cepacia rapidly reduces a fraction of the Se(IV) to the red elemental Se form. In contrast, selenate is preferentially partitioned into the B. cepacia biofilms at all [Se] tested

  7. Forest Stand Age

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Source data for forest stand age were obtained from the USDA Forest Inventory and Analysis (FIA) DataMart and were projected for future scenarios based on selected...

  8. Variable Attitude Test Stand

    Data.gov (United States)

    Federal Laboratory Consortium — The Variable Attitude Test Stand designed and built for testing of the V-22 tilt rotor aircraft propulsion system, is used to evaluate the effect of aircraft flight...

  9. NEO Test Stand Analysis

    Science.gov (United States)

    Pike, Cody J.

    2015-01-01

    A project within SwampWorks is building a test stand to hold regolith to study how dust is ejected when exposed to the hot exhaust plume of a rocket engine. The test stand needs to be analyzed, finalized, and fabrication drawings generated to move forward. Modifications of the test stand assembly were made with Creo 2 modeling software. Structural analysis calculations were developed by hand to confirm if the structure will hold the expected loads while optimizing support positions. These calculations when iterated through MatLab demonstrated the optimized position of the vertical support to be 98'' from the far end of the stand. All remaining deflections were shown to be under the 0.6'' requirement and internal stresses to meet NASA Ground Support Equipment (GSE) Safety Standards. Though at the time of writing, fabrication drawings have yet to be generated, but are expected shortly after.

  10. Study on the linear entropy and quantum state transfer of trapped ions in a standing wave laser field%驻波激光场中囚禁离子的线性熵和量子态转移研究

    Institute of Scientific and Technical Information of China (English)

    王平; 吴俊芳; 廖庆洪; 鄢秋荣; 刘晔; 郑军

    2016-01-01

    运用量子纠缠和线性熵理论,研究了驻波激光场中囚禁离子的线性熵和量子态转移。讨论了相干角、离子的相对位相、离子与驻波激光场之间的耦合强度以及失谐量、Lamb-Dicke参数对离子线性熵的影响。结果表明,在一定的条件下可以实现囚禁离子的内态到振动态的相干转移,线性熵随时间的演化呈现非周期性的振荡行为。离子线性熵的最大值随着相干角、离子与激光场之间的耦合强度以及失谐量的增大而减小,随着Lamb-Dicke参数的增大而增大。并且可以通过调节驻波激光场来调节离子与驻波激光场之间的耦合强度和失谐量,从而达到对离子线性熵的控制与操纵,理论上提供了一种调控纠缠的方式。%Using quantum entanglement and linear entropy theory, the linear entropy and quantum state transfer of trapped ions in a standing wave laser field is studied. The effect of coherent angle, relative phase of ion, the coupling intensity and the detuning between the ion and the standing wave, Lamb-Dicke parameters on the line-ar entropy of the ion are discussed. The results show that the internal states of trapped ions can be transferred to the vibration state under certain conditions, the time evolution of linear entropy is a non periodic oscillatory be-havior. The maximum value of the ion linear entropy decreases with the increase of the coupling strength and de-tuning, and increases with the increase of the Lamb-Dicke parameter. And by adjusting laser standing wave field to regulate the coupling intensity and the detuning between the ion and the standing wave, so as to achieve the linear entropy of the ion manipulation and control, theory provides a way of linear entropy of ion regulation.

  11. PPT Thrust Stand

    Science.gov (United States)

    Haag, Thomas W.

    1995-01-01

    A torsional-type thrust stand has been designed and built to test Pulsed Plasma Thrusters (PPT's) in both single shot and repetitive operating modes. Using this stand, momentum per pulse was determined strictly as a function of thrust stand deflection, spring constant, and natural frequency. No empirical corrections were required. The accuracy of the method was verified using a swinging impact pendulum. Momentum transfer data between the thrust stand and the pendulum were consistent to within 1%. Following initial calibrations, the stand was used to test a Lincoln Experimental Satellite (LES-8/9) thruster. The LES-8/9 system had a mass of approximately 7.5 kg, with a nominal thrust to weight ratio of 1.3 x 10(exp -5). A total of 34 single shot thruster pulses were individually measured. The average impulse bit per pulse was 266 microN-s, which was slightly less than the value of 300 microN-s published in previous reports on this device. Repetitive pulse measurements were performed similar to ordinary steady-state thrust measurements. The thruster was operated for 30 minutes at a repetition rate of 132 pulses per minute and yielded an average thrust of 573 microN. Using average thrust, the average impulse bit per pulse was estimated to be 260 microN-s, which was in agreement with the single shot data. Zero drift during the repetitive pulse test was found to be approximately 1% of the measured thrust.

  12. 直线加速器驻波腔中的瞬态束流负载效应%Transient Beam Loading Effects in Standing Wave Cavities of Linear Accelerators

    Institute of Scientific and Technical Information of China (English)

    裴士伦; 王书鸿

    2006-01-01

    在高能加速器中,随着单个束团和束团串中电荷量的提高,当粒子束穿过加速腔的时候,感应出的瞬态束流负载电压也越来越高.但是,在通常分析束流负载的时候,往往对稳态束流负载研究的比较多,而对瞬态束流负载的研究要相对少一些.本文首先对束流负载的瞬态特性和束团穿过加速腔时高频源所看到谐振腔谐振频率的变化方式进行了分析,然后又对两种情况下谐振腔的最优失谐条件进行了讨论,并给出了相应的解析公式.在第1种情况下,当粒子束穿过加速腔的时候,谐振腔的自然谐振频率能够及时地得到调节,从而使高频源的电流与谐振腔的腔压同相,以提高高频源的效率;在第2种情况下,当粒子束穿过加速腔的时候,谐振腔的自然谐振频率保持不变,不能被调节.最后,还对BEPCⅡ现有预注入器的预聚束腔、BEPCⅡ未来预注入器的两个次谐波聚束腔中的瞬态束流负载效应进行了分析.%In modern high energy accelerators, with the increase of charge in a bunch or a bunch train,the induced transient beam loading voltages become higher and higher when the beams pass through the standing wave cavities. But in the usual analysis, people usually pay more attention to the steady state instead of the transient state beam loading. In this paper, the transient nature of beam loading and the cavity's frequency changing behavior seen by the RF power generator are studied, and then the optimum detuning conditions in two cases are derived. In the first case, the resonant cavity's frequency can be tuned to meet the in-phase condition between the RF power generator current and the cavity voltage during the passage of beams. While in the second case, only few bunches in the bunch train and the cavity's resonant frequency is fixed during the passage of the bunch train. At last, the beam loading effects in the prebuncher of BEPC Ⅱ pre-injector and the two SHBs of

  13. Standing equine sinus surgery.

    Science.gov (United States)

    Barakzai, Safia Z; Dixon, Padraic M

    2014-04-01

    Trephination of the equine sinuses is a common surgical procedure in sedated standing horses. Standing sinus flap surgery has become increasingly popular in equine referral hospitals and offers several advantages over sinusotomy performed under general anesthesia, including reduced patient-associated risks and costs; less intraoperative hemorrhage, allowing better visualization of the operative site; and allows surgeons to take their time. Other minimally invasive surgical procedures include sinoscopic surgery, balloon sinuplasty, and transnasal laser sinonasal fenestration. Despite the procedure used, appropriate indications for surgery, good patient selection, and familiarity with regional anatomy and surgical techniques are imperative for good results. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Blower test stand; Luftleistungspruefstand

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2003-04-01

    Blowers move air, but how much air? Extensive measurements are required for assessing blower performance in terms of the actual air flow volume. The most precise results are obtained in a test stand. [German] Luefter bewegen Luft. Aber wie viel wird tatsaechlich bewegt? Fuer die Bestimmung der tatsaechlichen Luftfoerderleistung ist ein grosser Messaufwand notwendig, die praezisesten Ergebnisse bringt ein Luftleistungsmessstand. (orig.)

  15. Principles of managing stands

    Science.gov (United States)

    David A. Marquis; Rodney Jacobs

    1989-01-01

    Forest stands are managed to achieve some combination of desired products or values. These products or values may include income and tangible benefits from timber production or fees for hunting rights and other recreational activities. The values may be intangible, such as the enjoyment of seeing wildlife or flowering plants, or the simple satisfaction of knowing that...

  16. Development of a 500 MHz high power RF test stand

    Institute of Scientific and Technical Information of China (English)

    PAN Wei-Min; SHA Peng; HUANG Tong-Ming; MA Qiang; WANG Guang-Wei; LIN Hai-Ying; ZHAO Guang-Yuan; SUN Yi; XU Bo; WANG Qun-Yao

    2012-01-01

    A flexible high power RF test stand has been designed and constructed at IHEP to test a variety of 500 MHz superconducting RF components for the upgrade project of the Beijing Electron Positron Collider (BEPC Ⅱ ),such as the input coupler,the higher order modes (HOMs) absorber and so on.A high power input coupler has been conditioned and tested with the RF power up to 250 kW in continuous wave (CW),traveling wave (TW) mode and 150 kW CW in standing wave (SW) mode.A prototype of the HOMs absorber has been tested to absorb power of 4.4 kW.An introduction of the test stand design,construction and high power tests is presented in this paper.

  17. Get up, Stand up

    Science.gov (United States)

    Melia, Ed

    2009-01-01

    Ignorance about dyslexia meant a miserable school experience for Barrie Hughes. He was in his 50s when he found the courage to stand up in front of a classroom of learners and admit he couldn't read. Barrie, who is now 59 and works for the parks department of Brighton and Hove Council, only began to learn how to read words in the last three years…

  18. Stand der Informationswissenschaft 2011

    Directory of Open Access Journals (Sweden)

    Ben Kaden

    2012-03-01

    Full Text Available Wandelnde Rahmenbedingungen stellen die Informationswissenschaft vor vielfältige Herausforderungen. So scheinen zwar digitale Technologien jedoch nicht deren Folgewirkungen auf die Disziplin und ihre Methoden in der Wechselbeziehung zur Gesellschaft umfassend berücksichtigt. Der Artikel dokumentiert die zähe Diskussion um den Stand und die Zukunft der Informationswissenschaft in Deutschland und formuliert Thesen zur Weiterentwicklung des Faches. Weiterhin werden Reaktionen auf diese Thesen in Clustern zusammengefasst und ein sich an diesen ausgerichteter Workshop dokumentiert.

  19. Coronal Waves and Oscillations

    Directory of Open Access Journals (Sweden)

    Nakariakov Valery M.

    2005-07-01

    Full Text Available Wave and oscillatory activity of the solar corona is confidently observed with modern imaging and spectral instruments in the visible light, EUV, X-ray and radio bands, and interpreted in terms of magnetohydrodynamic (MHD wave theory. The review reflects the current trends in the observational study of coronal waves and oscillations (standing kink, sausage and longitudinal modes, propagating slow waves and fast wave trains, the search for torsional waves, theoretical modelling of interaction of MHD waves with plasma structures, and implementation of the theoretical results for the mode identification. Also the use of MHD waves for remote diagnostics of coronal plasma - MHD coronal seismology - is discussed and the applicability of this method for the estimation of coronal magnetic field, transport coefficients, fine structuring and heating function is demonstrated.

  20. Multi-Purpose Test Stand

    Data.gov (United States)

    Federal Laboratory Consortium — The Multi-Purpose Test Stand is used for a wide variety of tests. The Stand is designed to be rotated through a range of fixed yaw positions to allow engines to be...

  1. Multi-Purpose Test Stand

    Data.gov (United States)

    Federal Laboratory Consortium — The Multi-Purpose Test Stand is used for a wide variety of tests. The Stand is designed to be rotated through a range of fixed yaw positions to allow engines to be...

  2. Depth-Resolved Composition and Electronic Structure of Buried Layers and Interfaces in a LaNiO{sub 3}/SrTiO{sub 3} Superlattice from Soft- and Hard- X-ray Standing-Wave Angle-Resolved Photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Eiteneer, D. [Department of Physics, University of California, Davis, California 95616 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Pálsson, G.K., E-mail: gunnar.palsson@physics.uu.se [Department of Physics, University of California, Davis, California 95616 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Nemšák, S. [Department of Physics, University of California, Davis, California 95616 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Peter-Grünberg-Institut PGI-6, Forschungszentrum Julich, 52425 Julich (Germany); Gray, A.X. [Department of Physics, University of California, Davis, California 95616 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Kaiser, A.M. [Department of Physics, University of California, Davis, California 95616 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Son, J.; LeBeau, J. [Materials Department, University of California, Santa Barbara, California 93106 (United States); Conti, G. [Department of Physics, University of California, Davis, California 95616 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); and others

    2016-08-15

    Highlights: • Depth resolved electronic structure of LaNiO{sub 3}/SrTiO{sub 3} superlattices is measured. • The structure is determined by x-ray standing wave angle-resolved photoemission. • Similarity to the electronic structure of La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/SrTiO{sub 3} is discussed. - Abstract: LaNiO{sub 3} (LNO) is an intriguing member of the rare-earth nickelates in exhibiting a metal-insulator transition for a critical film thickness of about 4 unit cells [Son et al., Appl. Phys. Lett. 96, 062114 (2010)]; however, such thin films also show a transition to a metallic state in superlattices with SrTiO{sub 3} (STO) [Son et al., Appl. Phys. Lett. 97, 202109 (2010)]. In order to better understand this transition, we have studied a strained LNO/STO superlattice with 10 repeats of [4 unit-cell LNO/3 unit-cell STO] grown on an (LaAlO{sub 3}){sub 0.3}(Sr{sub 2}AlTaO{sub 6}){sub 0.7} substrate using soft x-ray standing-wave-excited angle-resolved photoemission (SWARPES), together with soft- and hard- x-ray photoemission measurements of core levels and densities-of-states valence spectra. The experimental results are compared with state-of-the-art density functional theory (DFT) calculations of band structures and densities of states. Using core-level rocking curves and x-ray optical modeling to assess the position of the standing wave, SWARPES measurements are carried out for various incidence angles and used to determine interface-specific changes in momentum-resolved electronic structure. We further show that the momentum-resolved behavior of the Ni 3d e{sub g} and t{sub 2g} states near the Fermi level, as well as those at the bottom of the valence bands, is very similar to recently published SWARPES results for a related La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/SrTiO{sub 3} superlattice that was studied using the same technique (Gray et al., Europhysics Letters 104, 17004 (2013)), which further validates this experimental approach and our conclusions. Our

  3. Sound Waves Levitate Substrates

    Science.gov (United States)

    Lee, M. C.; Wang, T. G.

    1982-01-01

    System recently tested uses acoustic waves to levitate liquid drops, millimeter-sized glass microballoons, and other objects for coating by vapor deposition or capillary attraction. Cylindrical contactless coating/handling facility employs a cylindrical acoustic focusing radiator and a tapered reflector to generate a specially-shaped standing wave pattern. Article to be processed is captured by the acoustic force field under the reflector and moves as reflector is moved to different work stations.

  4. Standing Concertation Committee

    CERN Document Server

    HR Department

    2009-01-01

    Ordinary Meeting on 11 May 2009 The meeting of the Standing Concertation Committee held on 11 May 2009 was entirely dedicated to the preparation of the TREF meeting on 19 & 20 May 2009. The Committee took note, discussed and agreed on some clarifications on a number of documents and presentations that the Management planned to submit and/or present to TREF on the following subjects: • Personnel statistics 2008: J. Purvis presented the Personnel Statistics for 2008 prepared by HR Department. In line with the previous year, key messages were firstly, a general reduction in staff (2544 to 2400, - 6%), secondly, a reduction in administrative services personnel (from 422 to 387, - 8%) and thirdly, a marked increase in the number of Users and Unpaid Associates (from 8369 to 9140, + 9%) • Five-Yearly Review 2010: A series of draft documents were submitted for discussion, comprising an introductory document explaining the statutory basis for the following four document...

  5. Standing Concertation Committee

    CERN Multimedia

    HR Department

    2010-01-01

    Main issues examined at the meeting of 2 October 2009 The October 2009 meeting of the Standing Concertation Committee was entirely devoted to preparation of TREF’s meeting on 21-22 October. The Committee took note of, discussed and agreed on clarifications needed to some of the documents and presentations that the Management intended to submit and/or present to TREF on the following subjects: Equal opportunities The Committee took note of a preliminary report on equal opportunities at CERN drawn up by D. Chromek-Burckhart, the Equal Opportunities Officer, and T. Smith, Chairman of the Equal Opportunities Advisory Panel, containing in particular a proposal for a new process for resolving harassment conflicts. Technical analysis of the CERN Health Insurance Scheme - Actuary’s Report The Committee took note of a presentation by P. Charpentier, Chairman of the CERN Health Insurance Supervisory Board (CHIS Board), on the 2009 actuarial report on the CERN Health Insurance Scheme (CHIS). Th...

  6. Standing Concertation Commmittee

    CERN Multimedia

    HR Department

    2007-01-01

    Ordinary meeting on 2 november 2007 Extraordinary meeting on 12 November 2007 The main items discussed at the meetings of the Standing Concertation Committee on 2 November 2007 and 12 November included: Restaurants Supervisory Committee Report The committee took note of the report by the chairman of the Restaurants Supervisory Committee (RSC), T. Lagrange. In particular, it was recorded that, in Restaurant No. 1, the new kitchen and free flow arrangements had been inaugurated and all works had been commissioned on schedule in October 2007.The contractor, Novae, had taken over maintenance of the new kitchen. Some price increases were to be expected in the coming months due mainly to strong increases in the cost of basic ingredients. A problem with bad smells in the area of Restaurant No. 1 was being taken care of by tuning the ventilation system. The RSC wished to thank the management and staff of Restaurant No. 2 for their cooperation while Restaurant No 1 was ...

  7. Standing Concertation Committee

    CERN Multimedia

    HR Department

    2009-01-01

    The main items discussed at the meetings of the Standing Concertation Committee in the first quarter of 2009 included: Merit Appraisal and Recognition Scheme (MARS) 2009 exercise The committee took note of 2009 MARS ceiling guidelines giving the advancement budget by career path and amounting to approx 1.80% of the basic salary bill. To this will be added 250 steps CERN-wide, financed by savings from implementation of the international indemnity for 2007, 2008 and the first half of 2009. The specific Senior Staff Guidelines, including the proposed number of promotions from Career Path E to F, were also noted. The guidelines with respect to step distribution were also noted: the minima and maxima remain the same as in previous years. Compliance with the guidelines will continue to be monitored closely (more details, including a frequently asked questions section). It was also noted that Financial Awards (awards for extraordinary service and responsibility allowances) may b...

  8. STANDING CONCERTATION COMMMITTEE

    CERN Multimedia

    HR Department

    2008-01-01

    ORDINARY MEETING ON 27 FEBRUARY 2008 The main items discussed at the meetings of the Standing Concertation Committee on 27 February 2008 included: Short-term Saved Leave Scheme The committee noted that, by the end of February 2008, some 600 staff had subscribed to the short-term saved leave scheme: approx 58% had subscribed 1 slice, 14% two slices, 5% three slices and 23% four slices. Administrative Circular No. 4 (Rev. 4) - Unemployment Insurance Scheme The committee agreed to recommend Administrative Circular No. 4 (Rev. 4) - Unemployment Insurance Scheme to the Director-General for approval. Administrative Circular No. 30 (Rev. 2) - Financial benefits upon taking up appointment and termination of contract The committee agreed to recommend Administrative Circular No. 30 (Rev. 2) - Financial Benefits upon taking up appointment and termination of contract to the Director-General for approval. Progressive Retirement Programme The Progressive Retirement Programme (PRP) was extended for a further year to 3...

  9. STANDING CONCERTATION COMMMITTEE

    CERN Multimedia

    HR Department

    2008-01-01

    ORDINARY MEETING ON 27 FEBRUARY 2008 The main items discussed at the meetings of the Standing Concertation Committee on 27 February 2008 included: Short-term Saved Leave Scheme The committee noted that, by the end of February 2008, some 600 staff had subscribed to the short-term saved leave scheme: approx 58% had subscribed 1 slice, 14% two slices, 5% three slices and 23% four slices. Administrative Circular No. 4 (Rev. 4) - Unemployment Insurance Scheme The committee agreed to recommend Administrative Circular No. 4 (Rev. 4) - Unemployment Insurance Scheme to the Director-General for approval. Administrative Circular No. 30 (Rev. 2) - Financial benefits upon taking up appointment and termination of contract The committee agreed to recommend Administrative Circular No. 30 (Rev. 2) - Financial Benefits upon taking up appointment and termination of contract to the Director-General for approval. Progressive Retirement Programme The Progressive Retirement Programme (PRP) was extended for a further year to 3...

  10. Standing Concertation Committee

    CERN Multimedia

    HR Department

    2008-01-01

    ORDINARY MEETING ON 27 FEBRUARY 2008 The main items discussed at the meetings of the Standing Concertation Committee on 27 February 2008 included: Short-term Saved Leave Scheme The Committee noted that, by the end of February 2008, some 600 staff had enrolled in the short-term saved leave scheme: approx. 58% had signed up for 1 slice, 14% for two slices, 5% for three slices and 23% for four slices. Administrative Circular No. 4 (Rev. 4) - Unemployment Insurance Scheme The Committee agreed to recommend the Director-General to approve Administrative Circular No. 4 (Rev. 4) - Unemployment Insurance Scheme. Administrative Circular No. 30 (Rev. 2) - Financial benefits upon taking up appointment and termination of contract The Committee agreed to recommend the Director-General to approve Administrative Circular No. 30 (Rev. 2) - Financial Benefits upon taking up appointment and termination of contract. Progressive Retirement Programme The Progressive Retirement Programme (PR...

  11. Standing Concertation Committee

    CERN Multimedia

    2007-01-01

    ORDINARY MEETING ON 30 JANUARY 2007 The main items discussed at the meeting of the Standing Concertation Committee on 30 January 2007 included: Administrative Circular No. 26: with the introduction of the merit recognition system in the framework of the 5-yearly review of CERN employment conditions, Administrative Circular No. 26 has been revised. The Committee took note of the revised document which is being finalized for submission to the Director-General for approval in the near future. Technical analysis of CERN Health Insurance Scheme: the Committee was informed that a group has been set up by the Director-General to analyse the financial situation of the CERN Health Insurance Scheme in the short and long term, and to propose measures to ensure that the Scheme remains in financial balance, with adequate cover, over the medium term. The group's terms of reference and membership were communicated. Voluntary programmes It was announced that the programmes: 'part-time work as a pre-retirement mea...

  12. Standing Concertation Committee

    CERN Multimedia

    2007-01-01

    Ordinary meeting on 30 January 2007 The main items discussed at the meeting of the Standing Concertation Committee on 30 January 2007 included: Administrative Circular No. 26: with the introduction of the merit recognition system in the framework of the 5-yearly review of CERN employment conditions, Administrative Circular No. 26 has been revised. The committee took note of the revised document which is being finalized for submission to the Director-General for approval in the near future. Technical analysis of CERN Health Insurance Scheme: the Committee was informed that a group has been set up by the Director-General to analyse the financial situation of the CERN Health Insurance Scheme in the short and long term, and to propose measures to ensure that the Scheme remains in financial balance, with adequate cover, over the medium term. The group's terms of reference and membership were communicated. Voluntary programmes It was announced that the programmes: 'part-time work as a pre-retirement measure...

  13. Standing concertation commmittee

    CERN Multimedia

    HR Department

    2009-01-01

    MEETINGS ON 2 AND 9 DECEMBER 2008 The main items discussed at the meetings of the Standing Concertation Committee on 2 and 9 December 2008 included: Medical Service Report 2007 The Committee took note of the report by Dr. E. Reymond (see http://sc-me.web.cern.ch/sc-me/fr/indexFR.htm) and of a number of points raised during the discussion. It was noted that the number of professional accidents declined in 2007 (361 accidents) in comparison with 2006 (483), as well as their gravity and frequency. The CERN Medical Service carried out a study on cancer prevalence (number of cases) and incidence (new cases per year per 100000 people), between 1993 and 2007, which identified some prostate, breast and colorectal cancers, though less than in the two Host States. Specific preventive actions will be promoted by the CERN CHISboard and the Medical Service in this context as well as in other areas. The committee expressed its thanks to all members of the Medical Service for their work i...

  14. Standing Concertation Commmittee

    CERN Multimedia

    HR Department

    2007-01-01

    Ordinary meeting on 27 February 2007 The main items discussed at the meeting of the Standing Concertation Committee on 27 February 2007 included: Saved Leave Scheme (SLS): It was announced that a Management/Staff Association working group had been set up to discuss the Saved Leave Scheme (SLS): Members: M. Büttner, E. Chiaveri (chair), Ph. Defert, D. Klem, M. Vitasse, J.-M. Saint-Viteux. It was noted that the Staff Association was launching a questionnaire on SLS and distributed to all members of the personnel. Merit Recognition Guidelines : in the context of the new Merit Appraisal and Recognition Scheme (MARS), the committee took note of the CERN-wide 2007 Merit Recognition Guidelines, including the Frequently Asked Questions on HR Department's dedicated website. Information on CERN's medium and long-term plans (MTP-LTP)/Contract renewals/ External mobility The Committee took note of the information provided on CERN's MTP-LTP and of documentation distributed at the meeting by the Staff Associatio...

  15. Standing Concertation Committee

    CERN Multimedia

    HR Department

    2007-01-01

    ORDINARY MEETING ON 27 FEBRUARY 2007 The main items discussed at the meeting of the Standing Concertation Committee on 27 February 2007 included: Saved Leave Scheme (SLS): It was announced that a Management/Staff Association working group had been set up to discuss the Saved Leave Scheme (SLS): Members : M. Büttner, E. Chiaveri (chair), Ph. Defert, D. Klem, M. Vitasse, J.-M. Saint-Viteux. It was noted that the Staff Association was launching a questionnaire on SLS and distributed to all members of the personnel. Merit Recognition Guidelines: In the context of the new Merit Appraisal and Recognition Scheme (MARS), the committee took note of the CERN-wide 2007 Merit Recognition Guidelines, including the Frequently Asked Questions on HR Department's dedicated website. Information on CERN's medium and long-term plans (MTP-LTP)/Contract renewals/ External mobility The Committee took note of the information provided on CERN's MTP-LTP and of documentation distributed at the meeting by the Staff ...

  16. [Chile: Standing up again].

    Science.gov (United States)

    Reyes B, Humberto

    2010-03-01

    One of the biggest earthquakes recorded in human history has recently devastated a large part of the Chilean territory and, followed by a Tsunami, destroyed cities, seaports, fishermen's coves, bridges, and countryside houses. This cataclysm affected a large proportion of our population, leaving homeless families, no working tools for work places, hospitals, schools, public buildings, museums. However, the loss of human Uves was small compared to similar disasters. It destroyed part of the national heritage as well as damaged people's living conditions. A national movement started immediately to help and recover, and international resources, both human and technological were also set in motion. As after previous earthquakes in Chile, young M.D.'s and medical students were organized in voluntary groups backed by institutions or by their own organizations and went from large cities as Santiago and others to provide medical and psychological care to those in most need. Young members and students of other health professions (nurses, physical therapists, etc.) were included in these groups or worked in their own ones. National and international experience indicates that the forthcoming months require special care of psychological reactions and sequel (posttraumatic stress symptoms) and health consequences after water pollution, restrictions in housing and deteriorated sanitary conditions. Nevertheless, our country will stand up once more.

  17. OH Module Assembly Stand

    Energy Technology Data Exchange (ETDEWEB)

    Bolan, P.J.; /Fermilab

    1990-10-16

    There is an OR module assembly stand in use at IB4. This design has been approved by safety, as presented by Mike Foley, and has been successfully used. Another one is needed at the D-zero assembly building, but some modifications need to be made. This report will show that the new modified design is at least as strong, if not stronger, than the older IB4 design in every aspect. Since the weight distribution of the OR modules on the sling is indeterminate, this report compares three cases of support for the entire assembly: the lowest two beams only, the lowest four beams only, and all six beams. In each of these cases, the new design is stronger than the old design in maximum allowable weight. The ability of the the cradle to support the weight is also shown. For all of the failure conditions except for two, the cradle is stronger than the beams that it supports. In the two excepted situations, the calculated limit of the cradle is less than the beams it supports. This is because no credit is taken for the sling and strongback, which in reality will relieve much of the horizontal load.

  18. EUV Engineering Test Stand

    Energy Technology Data Exchange (ETDEWEB)

    Tichenor, D.A.; Kubiak, G.D.; Replogle, W.C.; Klebanoff, L.E.; Wronosky, J.B.; Hale, L.C.; Chapman, H.N.; Taylor, J.S.; Folta, J.A.; Montcalm, C.; Hudyma, R.M.

    2000-02-14

    The Engineering Test Stand (ETS) is an EUV laboratory lithography tool. The purpose of the ETS is to demonstrate EUV full-field imaging and provide data required to support production-tool development. The ETS is configured to separate the imaging system and stages from the illumination system. Environmental conditions can be controlled independently in the two modules to maximize EUV throughput and environmental control. A source of 13.4 nm radiation is provided by a laser plasma source in which a YAG laser beam is focused onto a xenon-cluster target. A condenser system, comprised of multilayer-coated mirrors and grazing-incidence mirrors, collects the EUV radiation and directs it onto a-reflecting reticle. A four-mirror, ring-field optical system, having a numerical aperture of 0.1, projects a 4x-reduction image onto the wafer plane. This design corresponds to a resolution of 70nm at a k{sub 1} of 0.52. The ETS is designed to produce full-field images in step: and-scan mode using vacuum-compatible, one-dimension-long-travel magnetically levitated stages for both reticle and wafer. Reticle protection is incorporated into the ETS design. This paper provides a system overview of the ETS design and specifications.

  19. Stand-up physics

    CERN Multimedia

    2009-01-01

    A CMS physicist and amateur stand up comic was named the winner of NESTA FameLab 2009. Tom Whyntie battled it out with nine others young scientists from across the UK to win the contest to find the country’s next top science communicator. Tom Whyntie with his prize money after the NESTA Famelab final.Tom Whyntie, who is currently doing his PhD on the CMS experiment, managed to persuade his supervisor to give him a few days off on 5 June so he could fly back to the UK for the final of NESTA FameLab 2009. In the competition, which has been dubbed ‘the X Factor for scientists’, he had just three minutes to explain a complex scientific idea to a panel of judges made up of high-profile science professionals. During the final, he captivated the audience with his talk about how finding nothing at the LHC, far from being a waste of £5 billion, would actually catalyse the next scientific revolution. It Whyntie’s own words: "If the L...

  20. Infra-Gravity Wave Generation by the Shoaling Wave Groups over Beaches

    Institute of Scientific and Technical Information of China (English)

    LIN Yu-Hsien; HWUNG Hwung-Hweng

    2012-01-01

    A physical parameter,μb,which was used to meet the forcing of primary short waves to be off-resonant before wave breaking,has been considered as an applicable parameter in the infra-gravity wave generation.Since a series of modulating wave groups for different wave conditions are performed to proceed with the resonant mechanism of infragravity waves prior to wave breaking,the amplitude growth of incident bound long wave is assumed to be simply controlled by the normalized bed slope,βb.The results appear a large dependence of the growth rate,α,of incident bound long wave,separated by the three-array method,on the normalized bed slope,βb.High spatial resolution of wave records enables identification of the cross-correlation between squared short-wave envelopes and infra-gravity waves.The crossshore structure of infra-gravity waves over beaches presents the mechanics of incident bound- and outgoing free long waves with the formation of free standing long waves in the nearshore region.The wave run-up and amplification of infra-gravity waves in the swash zone appear that the additional long waves generated by the breaking process would modify the cross-shore structure of free standing long waves.Finally,this paper would further discuss the contribution of long wave breaking and bottom friction to the energy dissipation of infra-gravity waves based on different slope conditions.

  1. Spatiotemporal chaos involving wave instability

    Science.gov (United States)

    Berenstein, Igal; Carballido-Landeira, Jorge

    2017-01-01

    In this paper, we investigate pattern formation in a model of a reaction confined in a microemulsion, in a regime where both Turing and wave instability occur. In one-dimensional systems, the pattern corresponds to spatiotemporal intermittency where the behavior of the systems alternates in both time and space between stationary Turing patterns and traveling waves. In two-dimensional systems, the behavior initially may correspond to Turing patterns, which then turn into wave patterns. The resulting pattern also corresponds to a chaotic state, where the system alternates in both space and time between standing wave patterns and traveling waves, and the local dynamics may show vanishing amplitude of the variables.

  2. Algebraically growing waves in ducts with sheared mean flow

    Science.gov (United States)

    Nayfeh, A. H.; Telionis, D. P.

    1974-01-01

    Analysis of the behavior of standing and traveling acoustic waves in a smooth duct with a fluid flow having a sheared mean velocity profile, when the waves grow algebraically as they travel along the duct axis. It is shown that standing waves growing algebraically with the axial distance cannot exist in a smooth duct when the duct wall have a finite resistance. The existence of traveling waves subject to the same law of growth is also dismissed under realistic flow conditions.

  3. Superconducting travelling wave ring with high gradient accelerating section

    Energy Technology Data Exchange (ETDEWEB)

    Avrakhov, P.; Solyak, N.; /Fermilab

    2007-06-01

    Use of a superconducting traveling wave accelerating (STWA) structure instead of a standing wave cavity has major advantages in increasing the accelerating gradient in the ILC. In contrast with standing wave cavity STWA requires feedback loop, which sends wave from the structure output to input, making a superconducting traveling wave ring (STWR). One or few input couplers need to excite STWR and compensate power dissipations due to beam loading. To control traveling wave regime in the structure two independent knobs can be used for tuning both resonant ring frequency and backward wave. We discuss two variants of the STWR with one and two feed couplers.

  4. 振幅相位调制驻波光场中冷却原子的动力学局域%Dynamical investigation on momentum spread of two-level atom by an amplitude-modulated and phase-modulated standing light wave

    Institute of Scientific and Technical Information of China (English)

    王中结; 陆同兴; 路轶群

    2001-01-01

    In this paper the model of two-level atomic momentum spread in amplitude- and phase-modulated standing light wave was investigated. this is a nonlinear quantum pendulum driven by a time-dependent perterbation with two frequencies. This system shows chaotic behaviour in the classical limit. The system exists the characteristic of dynamical localization for the same parameters as that in the classical model correspoinding to it. Localization length of the system with two incommensurate perturbing frequency is much larger than that of the system with one perturbing frequency.%分析了二能级原子在振幅相位调制驻波场作用下动量扩散模型,这是一个双频参数激励的非线性量子单摆模型。这个系统在经典极限下表现混沌行为,在相同参数条件下,这个系统具有动力学局域特征,具有两个不可约频率扰动的系统的局域长度要比单个频率扰动时大得多。

  5. Standing sausage modes in coronal loops with plasma flow

    CERN Document Server

    Li, Bo; Xia, Li-Dong; Yu, Hui

    2014-01-01

    Magnetohydrodynamic waves are important for diagnosing the physical parameters of coronal plasmas. Field-aligned flows appear frequently in coronal loops.We examine the effects of transverse density and plasma flow structuring on standing sausage modes trapped in coronal loops, and examine their observational implications. We model coronal loops as straight cold cylinders with plasma flow embedded in a static corona. An eigen-value problem governing propagating sausage waves is formulated, its solutions used to construct standing modes. Two transverse profiles are distinguished, one being the generalized Epstein distribution (profile E) and the other (N) proposed recently in Nakariakov et al.(2012). A parameter study is performed on the dependence of the maximum period $P_\\mathrm{max}$ and cutoff length-to-radius ratio $(L/a)_{\\mathrm{cutoff}}$ in the trapped regime on the density parameters ($\\rho_0/\\rho_\\infty$ and profile steepness $p$) and flow parameters (magnitude $U_0$ and profile steepness $u$). For e...

  6. Free-standing chiral plasmonics

    Science.gov (United States)

    Leong, Eunice Sok Ping; Deng, Jie; Wu, Siji; Khoo, Eng Huat; Liu, Yan Jun

    2014-11-01

    Chiral plasmonic nanostructures offer the ability to achieve strong optical circular dichroism (CD) activity over a broad spectral range, which has been challenging for chiral molecules. Chiral plasmonic nanostructures have been extensively studied based on top-down and bottom-up fabrication techniques. Particularly, in the top-down electron-beam lithography, 3D plasmonic nanostructure fabrication involves layer-by-layer patterning and complex alignment, which is time-consuming and causes many defects in the structures. Here, we present a free-standing 3D chiral plamonic nanostructures using the electron-beam lithography technique with much simplified fabrication processes. The 3D chiral plasmonic nanostructures consist of a free-standing ultrathin silicon nitride membrane with well-aligned L-shape metal nanostructures on one side and disk-shape ones on the other side. The free-standing membrane provides an ultra-smooth metal/dielectric interface and uniformly defines the gap between the upper and lower layers in an array of chiral nanostructures. Such free-standing chiral plasmonic nanostructures exhibit strong CD at optical frequencies, which can be engineered by simply changing the disk size on one side of the membrane. Experimental results are in good agreement with the finite-difference time-domain simulations. Such free-standing chiral plasmonics holds great potential for chirality analysis of biomolecules, drugs, and chemicals.

  7. FREE STANDING FILM OF POLYANILINE

    Institute of Scientific and Technical Information of China (English)

    WAN Meixiang; CAO Yong; LI Junchao; ZHOU Weixia; LI Suzhen

    1991-01-01

    A free standing film of polyaniline as large as 18cm×18cm×0.002cm can be obtained by evaporation of a solution of the chemically synthesized base in NMP. Its structure was examined by the elemental analysis, IR, U.V.-visible spectra, XPS, DSC, SEM and X-ray scattering and its conducting behavior as well as electrochemical properties were studied. Results show that the composition, structure of main chain, physical properties of the free standing tilm of polyaniline is similar to that of the powder. However, some differences in its electronic structure, conductivity at room temperature and potential of redox couple between the free standing film and powder are observed,which may be due to cross-linking of the film of polyaniline.

  8. 21 CFR 880.6990 - Infusion stand.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Infusion stand. 880.6990 Section 880.6990 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES....6990 Infusion stand. (a) Identification. The infusion stand is a stationary or movable stand...

  9. Efficient counter-propagating wave acoustic micro-particle manipulation

    Science.gov (United States)

    Grinenko, A.; Ong, C. K.; Courtney, C. R. P.; Wilcox, P. D.; Drinkwater, B. W.

    2012-12-01

    A simple acoustic system consisting of a pair of parallel singe layered piezoelectric transducers submerged in a fluid used to form standing waves by a superposition of two counter-propagating waves is reported. The nodal positions of the standing wave are controlled by applying a variable phase difference to the transducers. This system was used to manipulate polystyrene micro-beads trapped at the nodal positions of the standing wave. The demonstrated good manipulation capability of the system is based on a lowering of the reflection coefficient in a narrow frequency band near the through-thickness resonance of the transducer plates.

  10. Developing de Broglie Wave

    Directory of Open Access Journals (Sweden)

    Zheng-Johansson J. X.

    2006-10-01

    Full Text Available The electromagnetic component waves, comprising together with their generating oscillatory massless charge a material particle, will be Doppler shifted when the charge hence particle is in motion, with a velocity v, as a mere mechanical consequence of the source motion. We illustrate here that two such component waves generated in opposite directions and propagating at speed c between walls in a one-dimensional box, superpose into a traveling beat wave of wavelength Λd=vcΛ and phase velocity c2/v+v which resembles directly L. de Broglie’s hypothetic phase wave. This phase wave in terms of transmitting the particle mass at the speed v and angular frequency Ωd= 2πv/Λd, with Λd and Ωd obeying the de Broglie relations, represents a de Broglie wave. The standing-wave function of the de Broglie (phase wave and its variables for particle dynamics in small geometries are equivalent to the eigen-state solutions to Schrödinger equation of an identical system.

  11. Burnout : de stand van zaken

    NARCIS (Netherlands)

    Taris, T.; Houtman, I.L.D.; Schaufeli, W.

    2013-01-01

    Dit artikel geeft een overzicht van de stand van zaken in het onderzoek naar burnout. Burnout is een syndroom van extreme vermoeidheid (uitputting), afstand nemen van het werk (distantie) en weinig vertrouwen in het eigen kunnen (verminderde competentie), waarbij de oorzaken voor deze aspecten geleg

  12. A3 TEST STAND CONSTRUCTION

    Science.gov (United States)

    2008-01-01

    THIS IMAGE SHOWS THE DEVELOPMENT AND CONSTRUCTION OF THE A3 TEST STAND IN SUPPORT OF THE ARES/CLV UPPER STAGE ENGINE AT STENNIS SPACE CENTER, MISSISSIPPI. THIS IMAGE IS EXTRACTED FROM A HIGH DEFINITION VIDEO FILE AND IS THE HIGHEST RESOLUTION AVAILABLE.

  13. A3 TEST STAND CONSTRUCTION

    Science.gov (United States)

    2008-01-01

    THIS IMAGE SHOWS THE DEVELOPMENT AND CONSTRUCTION OF THE A3 TEST STAND IN SUPPORT OF THE ARES/CLV UPPER STAGE ENGINE AT STENNIS SPACE CENTER, MISSISSIPPI. THIS IMAGE IS EXTRACTED FROM A HIGH DEFINITION VIDEO FILE AND IS THE HIGHEST RESOLUTION AVAILABLE.

  14. Burnout : de stand van zaken

    NARCIS (Netherlands)

    Taris, T.; Houtman, I.L.D.; Schaufeli, W.

    2013-01-01

    Dit artikel geeft een overzicht van de stand van zaken in het onderzoek naar burnout. Burnout is een syndroom van extreme vermoeidheid (uitputting), afstand nemen van het werk (distantie) en weinig vertrouwen in het eigen kunnen (verminderde competentie), waarbij de oorzaken voor deze aspecten

  15. Scattering of oblique waves by permeable vertical flexible membrane wave barriers

    CERN Document Server

    Koley, Santanu

    2016-01-01

    The interaction of obliquely incident surface gravity waves with a vertical flexible permeable membrane wave barrier is investigated in the context of three-dimensional linear wave-structure interaction theory. A general formulation for wave interaction with permeable submerged vertical membrane is given. The analytic solution of the physical problem is obtained by using eigenfunction expansion method, and boundary element method has been used to get the numerical solution. In the boundary element method, since the boundary condition on the membrane is not known in advance, membrane motions and velocity potentials are solved simultaneously. From the general formulation of the submerged membrane barrier, the performance of bottom-standing, surface-piercing and fully extended membrane wave barriers are analyzed for various wave and structural parameters. It is found that the efficiency of the submerged, surface-piercing and bottom-standing membrane wave barriers can be enhanced in waves for certain design condi...

  16. High-current Standing Wave Linac With Gyrocon Power Source

    CERN Document Server

    Karliner, M M; Makarov, I G; Nezhevenko, O A; Ostreiko, G N; Persov, B Z; Serdobintsev, G V

    2004-01-01

    A gyrocon together with high-voltage 1.5 MeV accelerator ELIT-3A represents a power generator at 430 MHz serving for linear electron accelerator pulse driving. The facility description and results of calorimetric measurements of ELIT-3A electron beam power and accelerated beam at the end of accelerator are presented in the paper. 2.2 amps of pulsed current have been obtained at electron energy of 20 MeV. The achieved energy conversion efficiency is about 55%.

  17. A study of nanoparticle manipulation using ultrasonic standing waves

    NARCIS (Netherlands)

    Neer, P.L.M.J. van; Rasidovic, A.; Volker, A.W.F.

    2013-01-01

    There has been considerable interest in the noninvasive manipulation of particles in dispersions during the last 15 years. The manipulation techniques based on acoustic radiation forces are particularly interesting as they allow for the manipulation of particles based on their density, compressibili

  18. Scaling-up ultrasound standing wave enhanced sedimentation filters

    OpenAIRE

    Prest, Jeff E.; Treves Brown, Bernard J.; Fielden, Peter R.; Wilkinson, Stephen J.; Hawkes, Jeremy J.

    2015-01-01

    Particle concentration and filtration is a key stage in a wide range of processing industries and also one that can be present challenges for high throughput, continuous operation. Here we demonstrate some features which increase the efficiency of ultrasound enhanced sedimentation and could enable the technology the potential to be scaled up. In this work, 20 mm piezoelectric plates were used to drive 100 mm high chambers formed from single structural elements. The coherent structural resonan...

  19. Mechanisms of Fluid-Mud Interactions Under Waves

    Science.gov (United States)

    2011-09-30

    lutocline that occurred when the lutocline was within a few centimeters of the water surface. This three-wave instability led to generation of subharmonic ... Subharmonic standing waves on the surface of the lutocline, generated by a long surface wave train traveling from left to right in the figure...Superharmonic waves (hard to see) and the turbulent structures (middle left) within the subharmonic waves are also present. Theoretical modeling—We

  20. Phytoclimate of winter rye stands

    Energy Technology Data Exchange (ETDEWEB)

    Wittchen, U. [Federal Biological Research Centre for Agriculture and Forestry, Kleinmachnow (Germany); Chmielewski, F.M. [Humboldt-Univ. of Berlin, Faculty of Agriculture and Horticulture, Berlin (Germany)

    2005-04-01

    The present study describes the microclimate within a winter rye (Secale cereale) stand compared to that above a bare soil at the same height. It is focused on air temperature and humidity. The study is based on long-term measurements (1981-1999) at 0.2 m above ground in the agrometeorological field experiment at Berlin-Dahlem (Humboldt-University of Berlin). The microclimate within a winter rye stand differs significantly from that above a bare soil. Temperature and actual vapour pressure differences between both locations depend on the developmental stage of the plants as well as the time of the day. Their influence is so strong that a detailed analysis of the microclimate makes it necessary to break down the growing time of crop into several developmental periods. So, it was possible to describe and explain the characteristics of the phytoclimate in a relatively detailed and comprehensive manner. Thereby the assessment of potential damages caused by pests and diseases within crop stands becomes more precise. (orig.)

  1. Factors affecting forage stand establishment

    Directory of Open Access Journals (Sweden)

    Sulc R.M.

    1998-01-01

    Full Text Available Significant advances have been made in our knowledge of forage seed physiology, technology, and stand establishment practices; however, stand establishment continues to be one of the most common production problems affecting forage crops in the USA. There is a need for research on stand establishment of forage crops under abiotic and biotic stress. Although the forage seed industry produces and markets seed of high quality, new methods of assessing seed vigor are needed and their use should be expanded in the industry to enable matching seed lot performance to specific environmental conditions where performance can be maximized. Seed treatment and seed coating are used in the forage seed industry, and studies have shown they are of benefit in some environments. There is an increase in no-tillage seeding of forage crops, but improvements in the no-tillage planting equipment are needed to make them better suited to small seeds. Other recent developments in seeding techniques include broadcasting seed with dry granular and fluid fertilizers, which improves the efficiency of the seeding operation.

  2. Spreading and atomization of droplets on a vibrating surface in a standing pressure field

    Science.gov (United States)

    Deepu, P.; Basu, Saptarshi; Saha, Abhishek; Kumar, Ranganathan

    2012-10-01

    We report the first observation and analytical model of deformation and spreading of droplets on a vibrating surface under the influence of an ultrasonic standing pressure field. The standing wave allows the droplet to spread, and the spreading rate varies inversely with viscosity. In low viscosity droplets, the synergistic effect of radial acoustic force and the transducer surface acceleration also leads to capillary waves. These unstable capillary modes grow to cause ultimate disintegration into daughter droplets. We find that using nanosuspensions, spreading and disintegration can be prevented by suppressing the development of capillary modes and subsequent break-up.

  3. Transpalpebral eye enucleation in the standing horse

    DEFF Research Database (Denmark)

    Christophersen, Mogens Teken

    Transpalpebral eye enucleation in the standing horse. The Nordic Equine Veterinary Conference, Proceedings, Copenhagen. Denmark. Nov. 2011.......Transpalpebral eye enucleation in the standing horse. The Nordic Equine Veterinary Conference, Proceedings, Copenhagen. Denmark. Nov. 2011....

  4. Numerical Calculation of a Standing Soliton

    Institute of Scientific and Technical Information of China (English)

    XianchuZHOU; YiRUI

    1999-01-01

    The governing equation of a standing soliton i.e. a cubic Schroedinger equation with a complex conjugate term was simulated in this article.The simulation showed that the linear damping α affects strongly on the formation of a stable standing soliton.Laedke and Spatschek stable condition is a necessary condition,not a sufficient condition.Arbitrary initial disturbance may develop into standing soliton.The interaction of two standing solitons can be simulated.

  5. Energy in one-dimensional linear waves

    Energy Technology Data Exchange (ETDEWEB)

    Repetto, C E; Roatta, A; Welti, R J, E-mail: welti@fceia.unr.edu.ar [Laboratorio de Vibraciones y Ondas, Departamento de Fisica, Escuela de Formacion Basica, Facultad de Ciencias Exactas, IngenierIa y Agrimensura (UNR), Pellegrini 250, S2000BTP Rosario (Argentina)

    2011-11-15

    This work is based on propagation phenomena that conform to the classical wave equation. General expressions of power, the energy conservation equation in continuous media and densities of the kinetic and potential energies are presented. As an example, we study the waves in a string and focused attention on the case of standing waves. The treatment is applicable to introductory science textbooks. (letters and comment)

  6. NIF PEPC Mechanical Test Stand Safety Note

    Energy Technology Data Exchange (ETDEWEB)

    Trent, J W

    1998-05-21

    The NIF PEPC Mechanical Test Stand is to be used in the building 432. Building 432 is being used to test components and processes for NIF. The test stand is to be bolted to the floor. The test stand provides a platform from which the PEPC kinematic repeatability and vibrational characteristics of the PEPC LRU can be tested. The test stand will allow user access to the LRU to install instrumentation and to make adjustments to the kinematics. The mechanical test stand is designed to hold the 1700 lb. PEPC LRU.

  7. The WebStand Project

    CERN Document Server

    Nguyen, Benjamin; Colazzo, Dario; Vion, Antoine; Manolescu, Ioana; Senellart, Pierre

    2010-01-01

    In this paper we present the state of advancement of the French ANR WebStand project. The objective of this project is to construct a customizable XML based warehouse platform to acquire, transform, analyze, store, query and export data from the web, in particular mailing lists, with the final intension of using this data to perform sociological studies focused on social groups of World Wide Web, with a specific emphasis on the temporal aspects of this data. We are currently using this system to analyze the standardization process of the W3C, through its social network of standard setters.

  8. Juvenile Competency to Stand Trial.

    Science.gov (United States)

    Stepanyan, Sofia T; Sidhu, Shawn S; Bath, Eraka

    2016-01-01

    Competency to stand trial is interpreted as a protected due process right for all defendants and is defined as a defendant's fundamental knowledge and understanding of the criminal charges being filed, roles and procedures within the courtroom, and a general ability to work with the defense counsel. Questions of competency are most often raised by the judge, defense, or the prosecution, and competency evaluations are most often completed by psychiatrists or psychologists with forensic training or work experience. Mental illness, intellectual disability, developmental disorders, and developmental immaturity are the 4 main factors considered in most juvenile competency evaluations.

  9. Beyond Technology, there Stands Magic

    Directory of Open Access Journals (Sweden)

    Lúcia Fernandes Lobato

    2013-07-01

    Full Text Available This article shows evidence that despite the prominent influences of the technological revolution and the spectacular panoramas on the contemporary world, magic seems to stand beyond technology. To support this hypothesis, the author investigates the images on the cinema, pointing out that to discover magic in a film, for instance, it is necessary to recognize its subjective structures disguised in the objectivity of the screen. Finally, the author indicates that in the field of image production, dance films that are created out of a cross-disciplinary effort are another by product of the fusion between art and video, born out of technological advancements.

  10. Broadband wave manipulation in surface-wave photonic crystal

    CERN Document Server

    Gao, Zhen

    2016-01-01

    The ability to perfectly guide surface electromagnetic waves around ultra-sharp corners without back-scattering and radiation is in great demand for various photonic and plasmonic applications. This is fundamentally difficult to realize because of the dramatic momentum mismatch and wave nature of radiation at the sharp corners. Here we experimentally demonstrate that a simple photonic structure, a periodic square array of metallic cylinders standing on a metal surface, can behaves as a surface-wave photonic crystal with complete photonic band gap to overcome this bottleneck simply. A line-defect waveguide can support and guide surface waves around ultra-sharp corners without perceptible radiation and reflection, achieving almost perfect transmission efficiency in a broad frequency range. We also demonstrate an ideal T-shaped splitter to split input surface waves equally into two arms and a square radiation-suppressed plasmonic open resonator with high quality factors by simply inducing line-defects in this fu...

  11. Solar Charged Stand Alone Inverter

    Directory of Open Access Journals (Sweden)

    M.Vasugi

    2014-07-01

    Full Text Available This paper deals with solar powered stand alone inverter which converts the variable dc output of a photovoltaic solar panel into ac that can be fed to loads. Stand alone inverters are used in systems where the inverter get its energy from batteries charged by photo voltaic arrays. A charge controller limits the rate at which electric current is added to or drawn from electric batteries. This charge discharge controller is needed to prevent the battery from being overcharged or discharged thus prolonging its life. The charge/discharge control is necessary in order to achieve safety and increase the capacity of the battery. The project has been tested according its operational purposes. Maximum power rating of the experimented solar charge controller is 100W according battery capacities. Cost effective solar charge controller has been designed and implemented to have efficient system and much longer battery lifetime. The dc output is given to inverter and then it is supplied to loads. This method is very cheap and cost effective.

  12. Electromagnetic Waves

    DEFF Research Database (Denmark)

    This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis...

  13. A first course in vibrations and waves

    CERN Document Server

    Samiullah, Mohammad

    2015-01-01

    This book builds on introductory physics and emphasizes understanding of vibratory motion and waves based on first principles. The book is divided into three parts. Part I contains a preliminary chapter that serves as a review of relevant ideas of mechanics and complex numbers. Part II is devoted to a detailed discussion of vibrations of mechanical systems. This part covers a simple harmonic oscillator, coupled oscillators, normal coordinates, beaded string, continuous string, standing waves, and Fourier series. Part II ends with a presentation of stationary solutions of driven finite systems. Part III is concerned with waves. Here, the emphasis is on the discussion of common aspects of all types of waves. The applications to sound, electromagnetic, and matter waves are illustrated. The book also includes examples from water waves and electromagnetic waves on a transmission line. The emphasis of the book is to bring out the similarities among various types of waves. The book includes treatment of reflection a...

  14. Thinning in artificially regenerated young beech stands

    Directory of Open Access Journals (Sweden)

    Novák Jiří

    2015-12-01

    Full Text Available Although beech stands are usually regenerated naturally, an area of up to 5,000 ha year−1 is artificially regenerated by beech in the Czech Republic annually. Unfortunately, these stands often showed insufficient stand density and, consequently, lower quality of stems. Therefore, thinning methods developed for naturally regenerated beech stands are applicable with difficulties. The paper evaluates the data from two thinning experiments established in young artificially regenerated beech stands located in different growing conditions. In both experiments, thinning resulted in the lower amount of salvage cut in following years. Positive effect of thinning on periodic stand basal area increment and on periodic diameter increment of dominant trees was found in the beech stand located at middle elevations. On the other hand, thinning effects in mountain conditions were negligible. Thinning focusing on future stand quality cannot be commonly applied in artificially regenerated beech stands because of their worse initial quality and lower density. However, these stands show good growth and response to thinning, hence their management can be focused on maximising beech wood production.

  15. Improved ultrasonic TV images achieved by use of Lamb-wave orientation technique

    Science.gov (United States)

    Berger, H.

    1967-01-01

    Lamb-wave sample orientation technique minimizes the interference from standing waves in continuous wave ultrasonic television imaging techniques used with thin metallic samples. The sample under investigation is oriented such that the wave incident upon it is not normal, but slightly angled.

  16. Traveling Wave Modes of a Plane Layered Anelastic Earth

    Science.gov (United States)

    2016-05-20

    variable in the standing wave free oscillation problem is the frequency , which makes the eigenvalue problem nonlinear. The choice of the wavenumber as...38) By making the assignment Irn = κn Iqn, (39) the quadratic generalized eigenvalue problem Eq. (34) can be converted to a linear generalized...elastic eigenfunctions and the complex frequency dependent elastic moduli. The lateral standing-wave nature of the earth free oscillation problem leads to

  17. Antiplane response of isosceles triangular hill to incident SH waves

    Institute of Scientific and Technical Information of China (English)

    Qiu Faqiang; Liu Diankui

    2005-01-01

    In this paper, antiplane response of an isosceles triangular hill to incident SH waves is studied based on the method of complex function and by using moving coordinate system. The standing wave function, which can satisfy the governing equation and boundary condition, is provided. Furthermore, numerical examples are presented; the influences of wave number and angle of the incident waves and the angle of the hill's peak on ground motion are discussed.

  18. Standing helicon induced by a rapidly bent magnetic field in plasmas

    Science.gov (United States)

    Takahashi, Kazunori; Takayama, Sho; Komuro, Atsushi; Ando, Akira; Plasma physics Team

    2016-09-01

    An electron energy probability function and an rf magnetic field are measured in an rf hydrogen helicon source, where axial and transverse static magnetic fields are applied to the source by solenoids and to the diffusion chamber by filter magnets, respectively. It is demonstrated that the helicon wave is reflected by the rapidly bent magnetic field and the resultant standing wave heats the electrons between the source and the magnetic filter, while the electron cooling effect by the magnetic filter is maintained. It is interpreted that the standing wave is generated by the presence of spatially localized change of a refractive index. The application to the hydrogen negative ion source used for the neutral beam injection system for fusion plasma heating is discussed. This work is partially supported by grant-in-aid for scientific research (16H04084 and 26247096) from the Japan Society for the Promotion of Science.

  19. Reineke’s stand density index: a quantitative and non-unitless measure of stand density

    Science.gov (United States)

    Curtis L. VanderSchaaf

    2013-01-01

    When used as a measure of relative density, Reineke’s stand density index (SDI) can be made unitless by relating the current SDI to a standard density but when used as a quantitative measure of stand density SDI is not unitless. Reineke’s SDI relates the current stand density to an equivalent number of trees per unit area in a stand with a quadratic mean diameter (Dq)...

  20. Wave energy potential in Galicia (NW Spain)

    DEFF Research Database (Denmark)

    Iglesias, Gregorio; López, Mario; Carballo, Rodrigo;

    2009-01-01

    Wave power presents significant advantages with regard to other CO2-free energy sources, among which the predictability, high load factor and low visual and environmental impact stand out. Galicia, facing the Atlantic on the north-western corner of the Iberian Peninsula, is subjected to a very...... harsh wave climate; in this work its potential for energy production is assessed based on three-hourly data from a third generation ocean wave model (WAM) covering the period 1996 - 2005. Taking into account the results of this assessment along with other relevant considerations such as the location...... of ports, navigation routes, and fishing and aquaculture zones, an area is selected for wave energy exploitation. The transformation of the offshore wave field as it propagates into this area is computed by means of a nearshore wave model (SWAN) in order to select the optimum locations for a wave farm. Two...

  1. The equilibrium classical scatter spectrum of waves

    CERN Document Server

    Guruprasad, V

    2016-01-01

    Regardless of the unspecific notions of photons as light complexes, radiation bundles or wave packets, the radiation from a single state transition is at most a single continuous wave train that starts and ends with the transition. The radiation equilibrium spectrum must be the superposition sum of the spectra of such wave trains. A classical equipartition of wave trains cannot diverge since they would be finite in number, whereas standing wave modes are by definition infinite, which had doomed Rayleigh's theory, and concern only the total radiation. Wave trains are the microscopic entities of radiation interacting with matter, that correspond to molecules in kinetic theory. Their quantization came from matter transitions in Einstein's 1917 derivation of Planck's law. The spectral scatter of wave trains by Doppler shifts, which cause the wavelength displacements in Wien's law used for the frequency dependence in Einstein's derivation, is shown to yield the shape of the Planck spectrum. A Lorentz transform pro...

  2. Creating a stand-alone fundraising foundation.

    Science.gov (United States)

    Dillingham, Walter J; Weiss, Leigh H; Lawson, John M

    2012-10-01

    When considering a stand-alone fundraising foundation, healthcare organizations should: Review the costs and benefits of starting a separate stand-alone foundation. Perform a competitive analysis to see which hospitals use them. Work with a team of legal, development, and investment advisory experts who can help map out a plan. Review governance requirements. Develop an investment policy statement.

  3. SPEED ROLLER STAND MEASUREMENT SYSTEM CHECKING TECHNIQUE

    OpenAIRE

    Zybtsev, Y.; I. Marmut

    2011-01-01

    The study has shown that the accuracy of brakes checking by inertial stands depends upon the applied methods of measurement of braking parameters (stand slowing down, braking distance, brakes triggering time, current speed) as well as the methods of metrological checking of measuring system canals.

  4. Wave Reflection Caused by Wave Overtopping and Sloping Top of Spructure

    Institute of Scientific and Technical Information of China (English)

    李炎保; 谷汉斌; 张绍松

    2002-01-01

    In this paper, the theoretical analysis and experimental studies are employed to investigate the reflection characteris-tics of partial standing waves caused by wave overtopping and sloping top of structures. Based on the principle of conser-vation of wave energy flux, the third-order Stokes wave theory is used to formulate the reflection coefficient at wave over-topping; the calculation results are regressed into an applied expression. A series of experiments of wave reflection for avertical-wall structure with chanffered and overhanging upper sections are carried out to investigate the influence of topslope on wave reflection. The regularity of variation of wave reflection in this ease is analysed based on the experimentalresults.

  5. Plasma waves

    CERN Document Server

    Swanson, DG

    1989-01-01

    Plasma Waves discusses the basic development and equations for the many aspects of plasma waves. The book is organized into two major parts, examining both linear and nonlinear plasma waves in the eight chapters it encompasses. After briefly discussing the properties and applications of plasma wave, the book goes on examining the wave types in a cold, magnetized plasma and the general forms of the dispersion relation that characterize the waves and label the various types of solutions. Chapters 3 and 4 analyze the acoustic phenomena through the fluid model of plasma and the kinetic effects. Th

  6. Cold trapped atoms detected with evanescent waves

    OpenAIRE

    Cornelussen, R. A.; van Amerongen, A. H.; Wolschrijn, B. T.; Spreeuw, R. J. C.; Heuvell, H. B. van Linden van den

    2002-01-01

    We demonstrate the in situ detection of cold 87 Rb atoms near a dielectric surface using the absorption of a weak, resonant evanescent wave. We have used this technique in time of flight experiments determining the density of atoms falling on the surface. A quantitative understanding of the measured curve was obtained using a detailed calculation of the evanescent intensity distribution. We have also used it to detect atoms trapped near the surface in a standing-wave optical dipole potential....

  7. Heat Waves

    Science.gov (United States)

    Heat Waves Dangers we face during periods of very high temperatures include: Heat cramps: These are muscular pains and ... having trouble with the heat. If a heat wave is predicted or happening… - Slow down. Avoid strenuous ...

  8. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Brorsen, Michael; Frigaard, Peter

    Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star.......Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star....

  9. Wave Dragon

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter; Sørensen, H. C.

    1998-01-01

    This paper concerns with the development of the wave energy converter (WEC) Wave Dragon. This WEC is based on the overtopping principle. An overview of the performed research done concerning the Wave Dragon over the past years is given, and the results of one of the more comprehensive studies......, concerning a hydraulic evaluation and optimisation of the geometry of the Wave Dragon, is presented. Furthermore, the plans for the future development projects are sketched....

  10. Standing sausage modes in coronal loops with plasma flow

    Science.gov (United States)

    Li, Bo; Chen, Shao-Xia; Xia, Li-Dong; Yu, Hui

    2014-08-01

    Context. Magnetohydrodynamic waves are important for diagnosing the physical parameters of coronal plasmas. Field-aligned flows appear frequently in coronal loops. Aims: We examine the effects of transverse density and plasma flow structuring on standing sausage modes trapped in coronal loops, and examine their observational implications in the context of coronal seismology. Methods: We model coronal loops as straight cold cylinders with plasma flow embedded in a static corona. An eigen-value problem governing propagating sausage waves is formulated and its solutions are employed to construct standing modes. Two transverse profiles are distinguished, and are called profiles E and N. A parameter study is performed on the dependence of the maximum period Pmax and cutoff length-to-radius ratio (L/a)cutoff in the trapped regime on the density parameters (ρ0/ρ∞ and profile steepness p) and the flow parameters (its magnitude U0 and profile steepness u). Results: For either profile, introducing a flow reduces Pmax obtainable in the trapped regime relative to the static case. The value of Pmax is sensitive to p for profile N, but is insensitive to p for profile E. By far the most important effect a flow introduces is to reduce the capability for loops to trap standing sausage modes: (L/a)cutoff may be substantially reduced in the case with flow relative to the static one. In addition, (L/a)cutoff is smaller for a stronger flow, and for a steeper flow profile when the flow magnitude is fixed. Conclusions: If the density distribution can be described by profile N, then measuring the sausage mode period can help deduce the density profile steepness. However, this practice is not feasible if profile E more accurately describes the density distribution. Furthermore, even field-aligned flows with magnitudes substantially smaller than the ambient Alfvén speed can make coronal loops considerably less likely to support trapped standing sausage modes. Appendix A is available in

  11. Electromagnetic Waves

    DEFF Research Database (Denmark)

    This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis......, material characterization, electromagnetic properties of plasma, analysis and applications of periodic structures and waveguide components, etc....

  12. Wave phenomena

    CERN Document Server

    Towne, Dudley H

    1988-01-01

    This excellent undergraduate-level text emphasizes optics and acoustics, covering inductive derivation of the equation for transverse waves on a string, acoustic plane waves, boundary-value problems, polarization, three-dimensional waves and more. With numerous problems (solutions for about half). ""The material is superbly chosen and brilliantly written"" - Physics Today. Problems. Appendices.

  13. Stand, Viewpoint and Method in Sannong Studies

    Institute of Scientific and Technical Information of China (English)

    CaoJinqing

    2005-01-01

    It is now a matter of urgency to consider the issue of sannong (farmers, the countryside and agriculture) against the whole background of reform, opening-up and modernization in China and against the backdrop of the whole world, i.e., against the backdrop of the globalization of capital. In my view, one's stand is a key factor in considering this issue. I use the word “stand” in a relatively broad meaning. To put it simply, where do you stand? At what time and in what space do you stand?

  14. Recent advances in standing equine orthopedic surgery.

    Science.gov (United States)

    O'Brien, Thomas; Hunt, Robert J

    2014-04-01

    In all surgeries with the patient standing under chemical and physical restraint, patient compliance is of the utmost importance. All fractures of the third metacarpal or metatarsal condyles and sagittal fracture of the first phalanx are not amenable to internal fixation with the horse standing, and young unhandled horses may not have a suitable disposition for standing surgical treatment of septic pedal osteitis, or implantation and removal of transphyseal screws. Previous operator experience in performing the procedure or technique under general anesthesia is beneficial. Appreciation of appropriate topographic anatomic landmarks is important, and intraoperative radiographic control is useful.

  15. Properties of standing Kruskal-Schwarzschild-modes at the magnetopause

    Directory of Open Access Journals (Sweden)

    F. Plaschke

    2011-10-01

    Full Text Available The radial, oscillatory motion of the Earth's magnetopause has been found to occur predominantly with some distinct, sometimes called "magic" frequencies, which have been attributed to magnetospheric wave guide modes, typical solar wind variations or, more recently, surface waves on the magnetopause standing between the northern and southern ionospheres. In this paper we present for the first time a derivation of these surface waves, denominated as Kruskal-Schwarzschild-modes (KS-modes, in the approximation of the ideal, single-fluid magnetohydrodynamic theory for incompressible plasmas. The calculations are performed in the simplified geometry of the box magnetosphere with the magnetopause being a plane between two plasma regimes of homogeneous conditions. The reflection of the KS-modes at the ionospheres is being discussed. Under the given assumptions and realistic conditions the validity of the calculations is shown to be limited to cases of parallel or anti-parallel background magnetic fields on both sides of the magnetopause, respectively. For these cases a detailed discussion of the mode structure is presented. The magnetopause when affected by a KS-mode is found to resemble a membrane under tension with respect to its motion; the ionospheres act as supporting points of the membrane and the KS-modes correspond in this picture to their eigenmodes of oscillation. Localized pressure enhancements in the magnetosheath are discussed as possible excitation mechanism for the KS-modes.

  16. Low-Frequency Waves in Space Plasmas

    Science.gov (United States)

    Keiling, Andreas; Lee, Dong-Hun; Nakariakov, Valery

    2016-02-01

    Low-frequency waves in space plasmas have been studied for several decades, and our knowledge gain has been incremental with several paradigm-changing leaps forward. In our solar system, such waves occur in the ionospheres and magnetospheres of planets, and around our Moon. They occur in the solar wind, and more recently, they have been confirmed in the Sun's atmosphere as well. The goal of wave research is to understand their generation, their propagation, and their interaction with the surrounding plasma. Low-frequency Waves in Space Plasmas presents a concise and authoritative up-to-date look on where wave research stands: What have we learned in the last decade? What are unanswered questions? While in the past waves in different astrophysical plasmas have been largely treated in separate books, the unique feature of this monograph is that it covers waves in many plasma regions, including: Waves in geospace, including ionosphere and magnetosphere Waves in planetary magnetospheres Waves at the Moon Waves in the solar wind Waves in the solar atmosphere Because of the breadth of topics covered, this volume should appeal to a broad community of space scientists and students, and it should also be of interest to astronomers/astrophysicists who are studying space plasmas beyond our Solar System.

  17. Wave Reflection on a Two-Slope Steep Beach

    Science.gov (United States)

    2012-03-01

    surveys taken during cross-shore transport study experiment. .....................................12  Figure 7.  Sea kayak with echo sounder and...Suhayda, 1974) Natural beaches are composed of complicated slopes and encounter a wide spectrum of wave frequencies, amplitudes, and directions. Suhayda...1974) conducted a field experiment investigating standing waves on a natural beach. He expanded on the theoretical results of Lamb (1932

  18. Surface Gravity Waves: Resonance in a Fish Tank

    Science.gov (United States)

    Sinick, Scott J.; Lynch, John J.

    2010-01-01

    In this work, an inexpensive 10-gallon glass aquarium was used to study wave motion in water. The waves travel at speeds comparable to a person walking ([approximately]1 m/s). The scale of the motion allows for distances to be measured with a meterstick and for times to be measured with a stopwatch. For a wide range of water depths, standing waves…

  19. Surface Gravity Waves: Resonance in a Fish Tank

    Science.gov (United States)

    Sinick, Scott J.; Lynch, John J.

    2010-01-01

    In this work, an inexpensive 10-gallon glass aquarium was used to study wave motion in water. The waves travel at speeds comparable to a person walking ([approximately]1 m/s). The scale of the motion allows for distances to be measured with a meterstick and for times to be measured with a stopwatch. For a wide range of water depths, standing waves…

  20. Visualization of Sound Waves Using Regularly Spaced Soap Films

    Science.gov (United States)

    Elias, F.; Hutzler, S.; Ferreira, M. S.

    2007-01-01

    We describe a novel demonstration experiment for the visualization and measurement of standing sound waves in a tube. The tube is filled with equally spaced soap films whose thickness varies in response to the amplitude of the sound wave. The thickness variations are made visible based on optical interference. The distance between two antinodes is…

  1. Wave-wave interactions and deep ocean acoustics

    CERN Document Server

    Guralnik, Zachary; Bourdelais, John; Zabalgogeazcoa, Xavier

    2013-01-01

    Deep ocean acoustics, in the absence of shipping and wildlife, is driven by surface processes. Best understood is the signal generated by non-linear surface wave interactions, the Longuet-Higgins mechanism, which dominates from 0.1 to 10 Hz, and may be significant for another octave. For this source, the spectral matrix of pressure and vector velocity is derived for points near the bottom of a deep ocean resting on an elastic half-space. In the absence of a bottom, the ratios of matrix elements are universal constants. Bottom effects vitiate the usual "standing wave approximation," but a weaker form of the approximation is shown to hold, and this is used for numerical calculations. In the weak standing wave approximation, the ratios of matrix elements are independent of the surface wave spectrum, but depend on frequency and the propagation environment. Data from the Hawaii-2 Observatory are in excellent accord with the theory for frequencies between 0.1 and 1 Hz, less so at higher frequencies. Insensitivity o...

  2. Aircraft Stand Allocation with Associated Resource Scheduling

    DEFF Research Database (Denmark)

    Justesen, Tor Fog; Larsen, Jesper; Lusby, Richard Martin

    An aircraft turn-round refers to the set of processes taking place from when an aircraft parks at its arrival stand until the time it departs from its departure stand. When handling a turn-round, the different processes involved (arrival, disembarkation of passengers, cleaning, etc.) require...... different ground handling resources (taxiways, aircraft stands, gates, etc) at different times. Each resource can be claimed by at most one turn-round at a time. The aircraft stand allocation problem with associated resource scheduling is the problem of allocating the required ground handling resources...... to handle a given set of aircraft turn-rounds. We develop a set packing-based model formulation of the problem which is both flexible in the sense that it can encapsulate any type of resource required during the handling of a turn-round and strong in the sense that conflicts that occur when two or more turn...

  3. Basic Stand Alone Medicare Hospice Beneficiary PUF

    Data.gov (United States)

    U.S. Department of Health & Human Services — This release contains the Basic Stand Alone (BSA) Hospice Beneficiary Public Use Files (PUF) with information from Medicare hospice claims. The CMS BSA Hospice...

  4. Lisa's Lemonade Stand: Exploring Algebraic Ideas.

    Science.gov (United States)

    Billings, Esther M. H.; Lakatos, Tracy

    2003-01-01

    Presents an activity, "Lisa's Lemonade Stand," that actively engages students in algebraic thinking as they analyze change by investigating relationships between variables and gain experience describing and representing these relationships graphically. (YDS)

  5. Lisa's Lemonade Stand: Exploring Algebraic Ideas.

    Science.gov (United States)

    Billings, Esther M. H.; Lakatos, Tracy

    2003-01-01

    Presents an activity, "Lisa's Lemonade Stand," that actively engages students in algebraic thinking as they analyze change by investigating relationships between variables and gain experience describing and representing these relationships graphically. (YDS)

  6. 1990 sampling of treated aspen stands

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — In mid-August, 1990, sampling of aspen stand exclosures were conducted at the National Elk Refuge. This sampling is part of a study to monitor aspen regeneration on...

  7. What does 'Tropical Medicine' stand for today?

    NARCIS (Netherlands)

    Grobusch, Martin Peter

    2011-01-01

    In deze rede gaat de auteur in op het ontstaan en de evolutie van de tropische geneeskunde. Tevens geeft hij een persoonlijke kijk op de huidige stand van zaken binnen het vakgebied en de positie van het AMC Tropencentrum daarin.

  8. Automatic identification for standing tree limb pruning

    Institute of Scientific and Technical Information of China (English)

    Sun Renshan; Li Wenbin; Tian Yongchen; Hua Li

    2006-01-01

    To meet the demand of automatic pruning machines,this paper presents a new method for dynamic automatic identification of standing tree limbs and capture of the digital images of Platycladus orientalis.Methods of computer vision,image processing and wavelet analysis technology were used to compress,filter,segment,abate noise and capture the outline of the picture.We then present the arithmetic for dynamic automatic identification of standing tree limbs,extracting basic growth characteristics of the standing trees such as the form,size,degree of bending and their relative spatial position.We use pattern recognition technology to confirm the proportionate relationship matching the database and thus achieve the goal of dynamic automatic identification of standing tree limbs.

  9. Steel erected at A-3 Test Stand

    Science.gov (United States)

    2008-01-01

    Workers erect the first fabricated steel girders to arrive at the A-3 Test Stand at Stennis Space Center. Steel work began at the construction site Oct. 29 and is scheduled to continue into next spring.

  10. Basic Stand Alone Carrier Line Items PUF

    Data.gov (United States)

    U.S. Department of Health & Human Services — This release contains the Basic Stand Alone (BSA) Carrier Line Items Public Use Files (PUF) with information from Medicare Carrier claims. The CMS BSA Carrier Line...

  11. Basic Stand Alone Medicare Inpatient Claims PUF

    Data.gov (United States)

    U.S. Department of Health & Human Services — This release contains the Basic Stand Alone (BSA) Inpatient Public Use Files (PUF) named CMS 2008 BSA Inpatient Claims PUF with information from 2008 Medicare...

  12. Basic Stand Alone Medicare Outpatient Procedures PUF

    Data.gov (United States)

    U.S. Department of Health & Human Services — This release contains the Basic Stand Alone (BSA) Outpatient Procedures Public Use Files (PUF) with information from Medicare outpatient claims. The CMS BSA...

  13. TMS delivered for A-3 Test Stand

    Science.gov (United States)

    2010-01-01

    A state-of-the-art thrust measurement system for the A-3 Test Stand under construction at NASA's John C. Stennis Space Center was delivered March 17. Once completed, the A-3 stand (seen in background) will allow simulated high-altitude testing on the next generation of rocket engines for America's space program. Work on the stand began in 2007, with activation scheduled for 2012. The stand is the first major test structure to be built at Stennis since the 1960s. The recently delivered TMS was fabricated by Thrust Measurement Systems in Illinois. It is an advanced calibration system capable of measuring vertical and horizontal thrust loads with an accuracy within 0.15 percent at 225,000 pounds.

  14. Minnesota DNR Forest Stand Inventory Version 2

    Data.gov (United States)

    Minnesota Department of Natural Resources — This layer is a digital inventory of individual forest stands. The data is collected by DNR Foresters in each DNR Forestry Administrative Area, and is updated on a...

  15. Inexpensive Guitar Stand Project Really Rocks!

    Science.gov (United States)

    Horath, Larry; Horath, Elyse

    2010-01-01

    Anyone who plays a guitar needs a stand to hold the guitar when he or she is not playing it. A guitar is not an instrument that one can lay down or prop against the wall without risking potentially catastrophic and long-term damage. There are several options in pre-made guitar stands made for single or multiple guitars, but as an alternative that…

  16. Shoreline dissipation of infragravity waves

    Science.gov (United States)

    de Bakker, A. T. M.; Tissier, M. F. S.; Ruessink, B. G.

    2014-01-01

    Infragravity waves (0.005-0.05 Hz) have recently been observed to dissipate a large part of their energy in the short-wave (0.05-1 Hz) surf zone, however, the underlying mechanism is not well understood. Here, we analyse two new field data sets of near-bed pressure and velocity at up to 13 cross-shore locations in ≲2.5 m depth on a ≈1:80 and a ≈1:30 sloping beach to quantify infragravity-wave dissipation close to the shoreline and to identify the underlying dissipation mechanism. A frequency-domain Complex Eigenfunction analysis demonstrated that infragravity-wave dissipation was frequency dependent. Infragravity waves with a frequency larger than ≈0.0167-0.0245 Hz were predominantly onshore progressive, indicative of strong dissipation of the incoming infragravity waves. Instead, waves with a lower frequency showed the classic picture of cross-shore standing waves with minimal dissipation. Bulk infragravity reflection coefficients at the shallowest position (water depth ≈0.7 m) were well below 1 (≈0.20), implying that considerable dissipation took place close to the shoreline. We hypothesise that for our data sets infragravity-wave breaking is the dominant dissipation mechanism close to the shoreline, because the reflection coefficient depends on a normalised bed slope, with the higher infragravity frequencies in the mild-sloping regime where breaking is known to dominate dissipation. Additional numerical modelling indicates that, close to the shoreline of a 1:80 beach, bottom friction contributes to infragravity-wave dissipation to a limited extent, but that non-linear transfer of infragravity energy back to sea-swell frequencies is unimportant.

  17. Birch Stands Growth Increase in Western Siberia

    Science.gov (United States)

    Kharuk, Viacheslav I.; Kuzmichev, Valeriy V.; Im, Sergey T.; Ranson, Kenneth J.

    2014-01-01

    Birch (Betula pendula Roth) growth within the Western Siberia forest-steppe was analyzed based on long-term (1897-2006) inventory data (height, diameter at breast height [dbh], and stand volume). Analysis of biometry parameters showed increased growth at the beginning of twenty-first century compared to similar stands (stands age = 40-60 years) at the end of nineteenth century. Mean height, dbh, and stem volume increased from 14 to 20 m, from 16 to 22 cm, and from approx. 63 to approx. 220 cu m/ha, respectively. Significant correlations were found between the stands mean height, dbh, and volume on the one hand, and vegetation period length (r(sub s) = 0.71 to 0.74), atmospheric CO2 concentration (r(sub s) = 0.71 to 0.76), and drought index (Standardized Precipitation-Evapotranspiration Index, r(sub s) = -0.33 to -0.51) on the other hand. The results obtained have revealed apparent climate-induced impacts (e.g. increase of vegetation period length and birch habitat drying due to drought increase) on the stands growth. Along with this, a high correlation of birch biometric parameters and [CO2] in ambient air indicated an effect of CO2 fertilization. Meanwhile, further drought increase may switch birch stand growth into decline and greater mortality as has already been observed within the Trans-Baikal forest-steppe ecotone.

  18. Development of prolonged standing strain index to quantify risk levels of standing jobs.

    Science.gov (United States)

    Halim, Isa; Omar, Abdul Rahman

    2012-01-01

    Many occupations in industry such as metal stamping workers, electronics parts assembly operators, automotive industry welders, and lathe operators require working in a standing posture for a long time. Prolonged standing can contribute to discomfort and muscle fatigue particularly in the back and legs. This study developed the prolonged standing strain index (PSSI) to quantify the risk levels caused by standing jobs, and proposed recommendations to minimize the risk levels. Risk factors associated with standing jobs, such as working posture, muscles activity, standing duration, holding time, whole-body vibration, and indoor air quality, were the basis for developing the PSSI. All risk factors were assigned multipliers, and the PSSI was the product of those multipliers. Recommendations for improvement are based on the PSSI; however, extensive studies are required to validate their effectiveness. multipliers, and the PSSI was the product of those multipliers. Recommendations for improvement are based on the PSSI; however, extensive studies are required to validate their effectiveness.

  19. Travelling and standing envelope solitons in discrete non-linear cyclic structures

    Science.gov (United States)

    Grolet, Aurelien; Hoffmann, Norbert; Thouverez, Fabrice; Schwingshackl, Christoph

    2016-12-01

    Envelope solitons are demonstrated to exist in non-linear discrete structures with cyclic symmetry. The analysis is based on the Non-Linear Schrodinger Equation for the weakly non-linear limit, and on numerical simulation of the fully non-linear equations for larger amplitudes. Envelope solitons exist for parameters in which the wave equation is focussing and they have the form of shape-conserving wave packages propagating roughly with group velocity. For the limit of maximum wave number, where the group velocity vanishes, standing wave packages result and can be linked via a bifurcation to the non-localised non-linear normal modes. Numerical applications are carried out on a simple discrete system with cyclic symmetry which can be seen as a reduced model of a bladed disk as found in turbo-machinery.

  20. A wave guide model of lightning currents and their electromagnetic field

    Science.gov (United States)

    Volland, H.

    1980-01-01

    Lightning channels are considered as resonant wave guides in which only standing resonant wave modes can be excited. Two types of discharging currents develop. Type 1 is an aperiodic wave; type 2 is a damped oscillation. The electromagnetic radiation field of both types of currents is calculated and compared with the observation.

  1. Making waves

    Science.gov (United States)

    Kruse, Karsten

    2017-01-01

    Traveling waves propagating along surfaces play an important role for intracellular organization. Such waves can appear spontaneously in reaction-diffusion systems, but only few general criteria for their existence are known. Analyzing the dynamics of the Min proteins in Escherichia coli, Levine and Kessler (2016 New J. Phys. 18 122001) now identified a new mechanism for the emergence of traveling waves that relies on conservation laws. From their analysis one can expect traveling waves to be a generic feature of systems made of proteins that have a cytoplasmic and a membrane-bound state.

  2. Janus Waves

    OpenAIRE

    2016-01-01

    We show the existence of a family of waves that share a common interesting property affecting the way they propagate and focus. These waves are a superposition of twin waves, which are conjugate to each other under inversion of the propagation direction. In analogy to holography, these twin "real" and "virtual" waves are related respectively to the converging and the diverging part of the beam and can be clearly visualized in real space at two distinct foci under the action of a focusing lens...

  3. Free standing diamond-like carbon thin films by PLD for laser based electrons/protons acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Thema, F.T.; Beukes, P.; Ngom, B.D. [UNESCO Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West, 7129, PO Box722, Western Cape Province (South Africa); Manikandan, E., E-mail: mani@tlabs.ac.za [UNESCO Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West, 7129, PO Box722, Western Cape Province (South Africa); Central Research Laboratory, Sree Balaji Medical College & Hospital (SBMCH), Chrompet, Bharath University, Chennai, 600044 (India); Maaza, M., E-mail: maaza@tlabs.ac.za [UNESCO Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West, 7129, PO Box722, Western Cape Province (South Africa)

    2015-11-05

    This study we reports for the first time on the synthesis and optical characteristics of free standing diamond-like carbon (DLC) deposited by pulsed laser deposition (PLD) onto graphene buffer layers for ultrahigh intensity laser based electron/proton acceleration applications. The fingerprint techniques of micro-Raman, UV–VIS–NIR and the IR spectroscopic investigations indicate that the suitability of such free standing DLC thin-films within the laser window and long wave infrared (LWIR) spectral range and hence their appropriateness for the targeted applications. - Highlights: • We report for the first time synthesis of free standing diamond-like carbon. • Pulsed laser deposition onto graphene buffer layers. • Fingerprint techniques of micro-Raman, UV–VIS–NIR and the IR spectroscopic investigations. • Ultrahigh intensity laser based electron/proton acceleration applications. • This material's suitable for the laser window and long wave infrared (LWIR) spectral range.

  4. Advance reproduction and other stand characteristics in Pennsylvania and French stands of northern red oak

    Science.gov (United States)

    Kim C. Steiner; Marc D. Abrams; Todd W. Bowersox

    1993-01-01

    The frequent scarcity of northern red oak (NRO) advance reproduction raises questions about its regeneration potential under prevailing stand conditions in eastern North America. In contrast, NRO plantations in France typically contain abundant advance reproduction. The purpose of this study was to document stand conditions in Pennsylvania (PA) and southwestern France...

  5. Model for multi-stand management based on structural attributes of individual stands

    Science.gov (United States)

    G.W. Miller; J. Sullivan

    1997-01-01

    A growing interest in managing forest ecosystems calls for decision models that take into account attribute goals for large forest areas while continuing to recognize the individual stand as a basic unit of forest management. A dynamic, nonlinear forest management model is described that schedules silvicultural treatments for individual stands that are linked by multi-...

  6. Identification of the Rayleigh surface waves for estimation of viscoelasticity using the surface wave elastography technique.

    Science.gov (United States)

    Zhang, Xiaoming

    2016-11-01

    The purpose of this Letter to the Editor is to demonstrate an effective method for estimating viscoelasticity based on measurements of the Rayleigh surface wave speed. It is important to identify the surface wave mode for measuring surface wave speed. A concept of start frequency of surface waves is proposed. The surface wave speeds above the start frequency should be used to estimate the viscoelasticity of tissue. The motivation was to develop a noninvasive surface wave elastography (SWE) technique for assessing skin disease by measuring skin viscoelastic properties. Using an optical based SWE system, the author generated a local harmonic vibration on the surface of phantom using an electromechanical shaker and measured the resulting surface waves on the phantom using an optical vibrometer system. The surface wave speed was measured using a phase gradient method. It was shown that different standing wave modes were generated below the start frequency because of wave reflection. However, the pure symmetric surface waves were generated from the excitation above the start frequency. Using the wave speed dispersion above the start frequency, the viscoelasticity of the phantom can be correctly estimated.

  7. Wave Dragon

    DEFF Research Database (Denmark)

    Tedd, James; Kofoed, Jens Peter; Friis-Madsen, Erik

    2008-01-01

    Since March 2003 a prototype of Wave Dragon has been tested in an inland sea in Denmark. This has been a great success with all subsystems tested and improved through working in an offshore environment. The project has proved the Wave Dragon device and has enabled the next stage, a production sized...

  8. Wave Dragon

    DEFF Research Database (Denmark)

    Tedd, James; Kofoed, Jens Peter; Friis-Madsen, Erik;

    2008-01-01

    Since March 2003 a prototype of Wave Dragon has been tested in an inland sea in Denmark. This has been a great success with all subsystems tested and improved through working in an offshore environment. The project has proved the Wave Dragon device and has enabled the next stage, a production sized...

  9. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Brorsen, Michael; Frigaard, Peter

    Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star.......Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star....

  10. 46 CFR Sec. 2 - Stand-by agreements.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Stand-by agreements. Sec. 2 Section 2 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION B-CONTROL AND UTILIZATION OF PORTS OPERATING CONTRACT Sec. 2 Stand... stand-by basis. Stand-by arrangements establish the framework of rapid initiation of government...

  11. Wave Solutions

    CERN Document Server

    Christov, Ivan C

    2012-01-01

    In classical continuum physics, a wave is a mechanical disturbance. Whether the disturbance is stationary or traveling and whether it is caused by the motion of atoms and molecules or the vibration of a lattice structure, a wave can be understood as a specific type of solution of an appropriate mathematical equation modeling the underlying physics. Typical models consist of partial differential equations that exhibit certain general properties, e.g., hyperbolicity. This, in turn, leads to the possibility of wave solutions. Various analytical techniques (integral transforms, complex variables, reduction to ordinary differential equations, etc.) are available to find wave solutions of linear partial differential equations. Furthermore, linear hyperbolic equations with higher-order derivatives provide the mathematical underpinning of the phenomenon of dispersion, i.e., the dependence of a wave's phase speed on its wavenumber. For systems of nonlinear first-order hyperbolic equations, there also exists a general ...

  12. Standing sausage modes in curved coronal slabs

    Science.gov (United States)

    Pascoe, D. J.; Nakariakov, V. M.

    2016-09-01

    Context. Magnetohydrodynamic waveguides such as dense coronal loops can support standing modes. The ratios of the periods of oscillations for different longitudinal harmonics depend on the dispersive nature of the waveguide and so may be used as a seismological tool to determine coronal parameters. Aims: We extend models of standing sausage modes in low β coronal loops to include the effects of loop curvature. The behaviour of standing sausage modes in this geometry is used to explain the properties of observed oscillations that cannot be accounted for using straight loop models. Methods: We perform 2D numerical simulations of an oscillating coronal loop, modelled as a dense slab embedded in a potential magnetic field. The loop is field-aligned and so experiences expansion with height in addition to being curved. Standing sausage modes are excited by compressive perturbations of the loop and their properties are studied. Results: The spatial profiles of standing sausage modes are found to be modified by the expanding loop geometry typical for flaring loops and modelled by a potential magnetic field in our simulations. Longitudinal harmonics of order n > 1 have anti-nodes that are shifted towards the loop apex and the amplitude of anti-nodes near the loop apex is smaller than those near the loop footpoints. Conclusions: We find that the observation of standing sausage modes by the Nobeyama Radioheliograph in a flaring coronal loop on 12 January 2000 is consistent with interpretation in terms of the global mode (n = 1) and third harmonic (n = 3). This interpretation accounts for the period ratio and spatial structure of the observed oscillations.

  13. A wave lab inside a coaxial cable

    Science.gov (United States)

    Serra, João M.; Brito, Miguel C.; Alves, J. Maia; Vallera, A. M.

    2004-09-01

    The study of electromagnetic wave propagation in a coaxial cable can be a powerful approach to the study of waves at an undergraduate level. This study can explore different experimental situations, going from those where the finite velocity of propagation must be considered (distributed or transmission line behaviour), to those where this velocity may be considered infinite (lumped behaviour). We believe that the student observation of the existence of these two regimes can be important for the understanding of wave phenomena in general. In this work we show that this can be achieved using low-cost equipment and a set of quite simple experiments, such as the measurement of wave propagation velocity or the study of standing waves and resonance. The results obtained in a coherent set of selected experiments are discussed.

  14. Fundamentals of interferometric gravitational wave detectors

    CERN Document Server

    Saulson, Peter R

    2017-01-01

    LIGO's recent discovery of gravitational waves was headline news around the world. Many people will want to understand more about what a gravitational wave is, how LIGO works, and how LIGO functions as a detector of gravitational waves.This book aims to communicate the basic logic of interferometric gravitational wave detectors to students who are new to the field. It assumes that the reader has a basic knowledge of physics, but no special familiarity with gravitational waves, with general relativity, or with the special techniques of experimental physics. All of the necessary ideas are developed in the book.The first edition was published in 1994. Since the book is aimed at explaining the physical ideas behind the design of LIGO, it stands the test of time. For the second edition, an Epilogue has been added; it brings the treatment of technical details up to date, and provides references that would allow a student to become proficient with today's designs.

  15. KOHESI DAN KOHERENSI WACANA STAND UP COMEDY PRANCIS DAN INDONESIA

    OpenAIRE

    Esa Agita Anjani

    2013-01-01

    Stand up comedy is an art comedy show which develops rapidly in all over world nowadays. Stand up comedy considered as a smart comedy. This research will concern about french and indonesian stand up comedy discourse by Tomer Sisley (french) and Raditya Dika (indonesian). This paper focus on cohesion and coherence analysis. The results showed that cohesion and coherence are the most important aspect for making a good stand up comedy discourse. Cohesion aspect in stand up comedy ...

  16. Waves, damped wave and observation

    CERN Document Server

    Phung, Kim Dang

    2009-01-01

    We consider the wave equation in a bounded domain (eventually convex). Two kinds of inequality are described when occurs trapped ray. Applications to control theory are given. First, we link such kind of estimate with the damped wave equation and its decay rate. Next, we describe the design of an approximate control function by an iterative time reversal method.

  17. Gravity waves

    Science.gov (United States)

    Fritts, David

    1987-02-01

    Gravity waves contributed to the establishment of the thermal structure, small scale (80 to 100 km) fluctuations in velocity (50 to 80 m/sec) and density (20 to 30%, 0 to peak). Dominant gravity wave spectrum in the middle atmosphere: x-scale, less than 100 km; z-scale, greater than 10 km; t-scale, less than 2 hr. Theorists are beginning to understand middle atmosphere motions. There are two classes: Planetary waves and equatorial motions, gravity waves and tidal motions. The former give rise to variability at large scales, which may alter apparent mean structure. Effects include density and velocity fluctuations, induced mean motions, and stratospheric warmings which lead to the breakup of the polar vortex and cooling of the mesosphere. On this scale are also equatorial quasi-biennial and semi-annual oscillations. Gravity wave and tidal motions produce large rms fluctuations in density and velocity. The magnitude of the density fluctuations compared to the mean density is of the order of the vertical wavelength, which grows with height. Relative density fluctuations are less than, or of the order of 30% below the mesopause. Such motions may cause significant and variable convection, and wind shear. There is a strong seasonal variation in gravity wave amplitude. Additional observations are needed to address and quantify mean and fluctuation statistics of both density and mean velocity, variability of the mean and fluctuations, and to identify dominant gravity wave scales and sources as well as causes of variability, both temporal and geographic.

  18. Wave Dragon

    DEFF Research Database (Denmark)

    Tedd, James; Kofoed, Jens Peter; Knapp, W.

    2006-01-01

    Wave Dragon is a floating wave energy converter working by extracting energy principally by means of overtopping of waves into a reservoir. A 1:4.5 scale prototype has been sea tested for 20 months. This paper presents results from testing, experiences gained and developments made during...... this extended period. The prototype is highly instrumented. The overtopping characteristic and the power produced are presented here. This has enabled comparison between the prototype and earlier results from both laboratory model and computer simulation. This gives the optimal operating point and the expected...

  19. Learning to Stand: The Acceptability and Feasibility of Introducing Standing Desks into College Classrooms

    Directory of Open Access Journals (Sweden)

    Roberto M. Benzo

    2016-08-01

    Full Text Available Prolonged sedentary behavior is an independent risk factor for multiple negative health outcomes. Evidence supports introducing standing desks into K-12 classrooms and work settings to reduce sitting time, but no studies have been conducted in the college classroom environment. The present study explored the acceptability and feasibility of introducing standing desks in college classrooms. A total of 993 students and 149 instructors completed a single online needs assessment survey. This cross-sectional study was conducted during the fall semester of 2015 at a large Midwestern University. The large majority of students (95% reported they would prefer the option to stand in class. Most students (82.7% reported they currently sit during their entire class time. Most students (76.6% and instructors (86.6% reported being in favor of introducing standing desks into college classrooms. More than half of students and instructors predicted having access to standing desks in class would improve student’s “physical health”, “attention”, and “restlessness”. Collectively, these findings support the acceptability of introducing standing desks in college classrooms. Future research is needed to test the feasibility, cost-effectiveness and efficacy of introducing standing desks in college classrooms. Such studies would be useful for informing institutional policies regarding classroom designs.

  20. Sit-to-Stand and Stand-to-Sit Control Mechanisms of Two-Wheeled Wheelchair.

    Science.gov (United States)

    Abdul Ghani, N M; Tokhi, M O

    2016-04-01

    This paper presents a mechanism for standing and sitting transformation of a wheelchair using a two-wheeled inverted pendulum concept with reduced torque requirement, in simulation studies. The motivation of this work is to design a compact standing mechanism to help an elderly/disabled person with functional limitation in lower extremities to maneuver in small and confined spaces and enable them to perform standard daily life routines independently. The wheelchair system at the upright standing position is tested with different travel distances, and the challenge is to control both sit-to-stand and stand-to-sit operations in a stable manner using flexible-joint humanoid. An additional spring/damping element is incorporated at each wheel to provide a comfortable ride for the user especially during stand-to-sit transformation task. A PD-fuzzy control with modular structure is implemented, and the performance of the system is observed through visual nastran 4d (vn4d) visualization software and simulation in matlab. The stand-to-sit performance tests have shown more than 38% reduction in tilt and back seat angles fluctuation in linear travel motion using a suspension system, while the initial tilt torque needed is 50% less than the amount required in previous designs.

  1. Sliding and lower limb mechanics during sit-stand-sit transitions with a standing wheelchair.

    Science.gov (United States)

    Yang, Yu-Sheng; Chen, Ming-De; Fang, Wei-Chien; Chang, Jyh-Jong; Kuo, Chang-Chih

    2014-01-01

    This study aimed to investigate the shear displacement between the body and backrest/seat, range of motion (ROM), and force acting on the lower limb joints during sit-stand-sit transitions by operating an electric-powered standing wheelchair. The amounts of sliding along the backrest and the seat plane, ROM of lower limb joints, and force acting on the knee/foot were measured in twenty-four people with paraplegia. Without an antishear mechanism, the shear displacement was approximately 9 cm between the user's body and the backrest/seat surfaces. During standing up, the user's back slid down and the thigh was displaced rearward, but they moved in opposite directions when wheelchair sat back down. A minimum of 60 degrees of ROM at the hip and knee was needed during sit-stand-sit transitions. The maximal resultant forces acting on the knee restraints could reach 23.5% of body weight. Sliding between the body and backrest/seat occurred while transitioning from sitting to standing and vice versa. A certain amount of ROM at lower limb joints and force acting on the knee was necessitated during sit-stand-sit transitions. Careful consideration needs to be given to who the user of the electric powered standing wheelchair is.

  2. AA, wide quadrupole on measurement stand

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    Please look up 8101024 and 8103203 first. Wide quadrupole (QFW, QDW) with end-shims and shimming washers on the measurement stand. With the measurement coil one measured the harmonics of the magnetic field, determined the magnetic centre, and catalogued the effect of washer constellations.

  3. Long standing intra oral acid burn

    NARCIS (Netherlands)

    V.V. Kumar; S. Ebenezer; F. Lobbezoo

    2015-01-01

    Oral burn due to ingestion of corrosive substances can bring about debilitating consequences. It often brings mortality, and the survivors can have severe impairment of functions, especially in relation to the stomatognathic and gastrointestinal systems. This article presents a long-standing case (2

  4. Standing on the shoulders of giants.

    Science.gov (United States)

    Romanovsky, Andrej A

    2014-01-01

    In this editorial, the author explains that the journal Temperature stands on the shoulders of giants-prominent scientists of the past and current members of the Temperature community. Temperature also uses the best tools, such as Google Scholar profiles. The editorial includes a new puzzle: why does warm water freeze faster than cold water?

  5. Sherry Red Owl, Stands at Dawn Woman

    Science.gov (United States)

    Crazy Bull, Cheryl

    2014-01-01

    This article introduces Sherry Red Owl, also known as "Stands at Dawn Woman," because she greets each day as a new opportunity and has spent her life working at new things. She worked at Sinte Gleska University (SGU) during its founding years, taught at an elementary school when few Native teachers were employed in the school systems,…

  6. Standing Rock Rural Water System NPDES Permit

    Science.gov (United States)

    Under NPDES permit SD-0030996, the Standing Rock Rural Water System is authorized to discharge from its wastewater treatment facility in Corson County, South Dakota, to an unnamed tributary to Fisher Creek, a tributary to Oahe Reservoir on the Missouri R.

  7. Standing balance evaluation using a triaxial accelerometer

    NARCIS (Netherlands)

    Mayagoitia, R.E.; Mayagoitia, Ruth E.; Lotters, Joost Conrad; Lötters, Joost Conrad; Veltink, Petrus H.; Hermens, Hermanus J.

    2002-01-01

    This paper presents a new inherently triaxial accelerometer-based system for determining the ability to maintain balance while standing. In this study, the accelerometer was placed at the back of the subject at the approximate height of the centre of mass. The data were processed to obtain five

  8. A3 TEST STAND DEVELOPMENT AND CONSTRUCTION

    Science.gov (United States)

    2008-01-01

    THIS IMAGE DOCUMENTS THE DEVELOPMENT AND CONSTRUCTION OF THE A3 TEST STAND IN SUPPORT OF THE ARES/CLV UPPER STAGE ENGINE DEVELOPMENT AT STENNIS SPACE CENTER, MISSIPPI IN SUPPORT OF THE DEVELOPMENT OF THE CONSTELLATION/ARES PROJECT. THIS IMAGE IS EXTRACTED FROM A HIGH DEFINITION VIDEO FILE AND IS THE HIGHEST RESOLUTION AVAILABLE

  9. A3 TEST STAND DEVELOPMENT AND CONSTRUCTION

    Science.gov (United States)

    2008-01-01

    THIS IMAGE DOCUMENTS THE DEVELOPMENT AND CONSTRUCTION OF THE A3 TEST STAND IN SUPPORT OF THE ARES/CLV UPPER STAGE ENGINE DEVELOPMENT AT STENNIS SPACE CENTER, MISSIPPI IN SUPPORT OF THE DEVELOPMENT OF THE CONSTELLATION/ARES PROJECT. THIS IMAGE IS EXTRACTED FROM A HIGH DEFINITION VIDEO FILE AND IS THE HIGHEST RESOLUTION AVAILABLE

  10. Criteria for fitness to stand criminal trial

    African Journals Online (AJOL)

    Design. Questionnaire survey. The final rating was decided on the basis of a structured psychiatric interview. Setting. ... between the findings of the researchers and those of the ... request for an evaluation of competency to stand trial is made .... MikkelHn E. The Bridgewat8f 100: An analysis of admissions to a hospital for the.

  11. IMS Learning Design: De stand van zaken

    NARCIS (Netherlands)

    Tattersall, Colin; Manderveld, Jocelyn

    2005-01-01

    Tattersall, C. & Manderveld, J. (2004) IMS Learning Design: De stand van zaken In: Gorissen, P., Manderveld, J., Benneker, F. & Cordewener, B. Leertechnologie in de Lage Landen (pp. 31-33). Utrecht, Stichting Surf. Ook beschikbaar in dspace: http://hdl.handle.net/1820/270

  12. Uitgelicht: Familienamen en 200 jaar burgerlijke stand.

    NARCIS (Netherlands)

    Brouwer, L.

    2011-01-01

    Dit jaar bestaat de burgerlijke stand 200 jaar en gezien de efficiëntie van de persoonsregistratie die bewerkstelligd is, mogen we daar best stil bij blijven staan. We zien dan ook dat er onder andere op de archieven in den lande uitgebreid aandacht aan wordt besteed. Hier op het Meertens Instituut

  13. IMS Learning Design: De stand van zaken

    NARCIS (Netherlands)

    Tattersall, Colin; Manderveld, Jocelyn

    2005-01-01

    Tattersall, C. & Manderveld, J. (2004) IMS Learning Design: De stand van zaken In: Gorissen, P., Manderveld, J., Benneker, F. & Cordewener, B. Leertechnologie in de Lage Landen (pp. 31-33). Utrecht, Stichting Surf. Ook beschikbaar in dspace: http://hdl.handle.net/1820/270

  14. Large optics inspection, tilting, and washing stand

    Science.gov (United States)

    Ayers, Marion Jay; Ayers, Shannon Lee

    2010-08-24

    A large optics stand provides a risk free means of safely tilting large optics with ease and a method of safely tilting large optics with ease. The optics are supported in the horizontal position by pads. In the vertical plane the optics are supported by saddles that evenly distribute the optics weight over a large area.

  15. Tijdelijke hoge stand van het diaphragma

    NARCIS (Netherlands)

    Sypkens Smit, Cornelia Geertjen

    1949-01-01

    In dit proefschrift wordt de aandacht gevestigd:1. op het verschijnsel tijdelijke hoge stand van het diaphragma, 2. op bepaalde veranderingen, die men daarbij in de long kan vinden. Aanleiding waren een taantal patienten, bij wie de diagnose pleuritis, soms pneumonie was gesteld op grond van het psy

  16. Kinetic asymmetry in transfemoral amputees while performing sit to stand and stand to sit movements.

    Science.gov (United States)

    Highsmith, M Jason; Kahle, Jason T; Carey, Stephanie L; Lura, Derek J; Dubey, Rajiv V; Csavina, Kristine R; Quillen, William S

    2011-05-01

    Transitional movements are a determinant of functional independence and have limited study in amputees. Microprocessor prosthetic knees' abilities to assist transfemoral amputees with sitting and standing have not been studied. Through cross-sectional study, 21 transfemoral amputees, divided into 3 groups of 7 by knee type (power knee, C-leg, Mauch SNS) and 7 non-amputee controls (n=28) performed sit to stand and stand to sit while kinematic and kinetic data were recorded. Transfemoral amputees can stand (1.6-2.0s) and sit (2.1-2.8s) at rates comparable to controls (1.6s). Controls' ground reaction force (GRF) and knee moment production was sit to stand, amputees' asymmetry for GRF ranged from 53 to 69% and 110 to 124% for knee moments. For stand to sit, amputees' asymmetry for GRF ranged from 32 to 60% and 84 to 114% for knee moments. Hip moment asymmetry for sit to stand was less for control (21%) and power knee (34%) groups than that produced by the Mauch SNS (59%) group. For stand to sit, hip moment production for the Mauch SNS (47%) and C-leg groups (71%) were more asymmetric than controls (19%). In the majority of cases transfemoral amputees do not load their prosthesis extensively for standing up or sitting down. Therefore, this transitional movement is currently a one-legged task, which increases stress on the sound limb. Generally, the prosthetic knees studied did not produce a significant knee moment in either task. Although most differences between knee groups were not statistically significant, differences may be clinically meaningful on an individual basis. Published by Elsevier B.V.

  17. Janus Waves

    CERN Document Server

    Papazoglou, Dimitris G; Tzortzakis, Stelios

    2016-01-01

    We show the existence of a family of waves that share a common interesting property affecting the way they propagate and focus. These waves are a superposition of twin waves, which are conjugate to each other under inversion of the propagation direction. In analogy to holography, these twin "real" and "virtual" waves are related respectively to the converging and the diverging part of the beam and can be clearly visualized in real space at two distinct foci under the action of a focusing lens. Analytic formulas for the intensity distribution after focusing are derived, while numerical and experimental demonstrations are given for some of the most interesting members of this family, the accelerating Airy and ring-Airy beams.

  18. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter

    Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star....

  19. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Andersen, Thomas Lykke

    Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star....

  20. Blast Waves

    CERN Document Server

    Needham, Charles E

    2010-01-01

    The primary purpose of this text is to document many of the lessons that have been learned during the author’s more than forty years in the field of blast and shock. The writing therefore takes on an historical perspective, in some sense, because it follows the author’s experience. The book deals with blast waves propagating in fluids or materials that can be treated as fluids. It begins by distinguishing between blast waves and the more general category of shock waves. It then examines several ways of generating blast waves, considering the propagation of blast waves in one, two and three dimensions as well as through the real atmosphere. One section treats the propagation of shocks in layered gases in a more detailed manner. The book also details the interaction of shock waves with structures in particular reflections, progressing from simple to complex geometries, including planar structures, two-dimensional structures such as ramps or wedges, reflections from heights of burst, and three-dimensional st...

  1. Solitary waves for a coupled nonlinear Schrodinger system with dispersion management

    Directory of Open Access Journals (Sweden)

    Panayotis Panayotaros

    2010-08-01

    Full Text Available We consider a system of coupled nonlinear Schrodinger equations with periodically varying dispersion coefficient that arises in the context of fiber-optics communication. We use Lions's Concentration Compactness principle to show the existence of standing waves with prescribed L^2 norm in an averaged equation that approximates the coupled system. We also use the Mountain Pass Lemma to prove the existence of standing waves with prescribed frequencies.

  2. Wave Generation Theory

    DEFF Research Database (Denmark)

    Frigaard, Peter; Høgedal, Michael; Christensen, Morten

    The intention of this manual is to provide some formulas and techniques which can be used for generating waves in hydraulic laboratories. Both long crested waves (2-D waves) and short crested waves (3-D waves) are considered....

  3. Wave Generation Theory

    OpenAIRE

    Frigaard, Peter; Høgedal, Michael; Christensen, Morten

    1993-01-01

    The intention of this manual is to provide some formulas and techniques which can be used for generating waves in hydraulic laboratories. Both long crested waves (2-D waves) and short crested waves (3-D waves) are considered.

  4. Nonlinear wave-wave interactions and wedge waves

    Institute of Scientific and Technical Information of China (English)

    Ray Q.Lin; Will Perrie

    2005-01-01

    A tetrad mechanism for exciting long waves,for example edge waves,is described based on nonlinear resonant wave-wave interactions.In this mechanism,resonant interactions pass energy to an edge wave,from the three participating gravity waves.The estimated action flux into the edge wave can be orders of magnitude greater than the transfer fluxes derived from other competing mechanisms,such as triad interactions.Moreover,the numerical results show that the actual transfer rates into the edge wave from the three participating gravity waves are two-to three- orders of magnitude greater than bottom friction.

  5. General characteristics of long waves around the South African Coast

    CSIR Research Space (South Africa)

    Rossouw, M

    2013-09-01

    Full Text Available ] and Joosting [6] investigated these problems and concluded that the main cause was long-period waves. These waves were amplified in the main basin, Duncan Dock, as standing waves (also called seiches). Modifications were later made to the layout... of Duncan Dock and an additional basin, Schoeman Dock, was constructed. With the aid of physical and numerical 1.E‐06 1.E‐05 1.E‐04 1.E‐03 1.E‐02 1.E‐01 1.E+00 1.E+01 1.E+02 Wave period: 24 h 12 h 1 h 5 min 25 s 10 1 s 0...

  6. Solid Propellant Test Article (SPTA) Test Stand

    Science.gov (United States)

    1991-01-01

    This photograph shows the Solid Propellant Test Article (SPTA) test stand with the Modified Nasa Motor (M-NASA) test article at the Marshall Space Flight Center (MSFC). The SPTA test stand, 12-feet wide by 12-feet long by 24-feet high, was built in 1989 to provide comparative performance data on nozzle and case insulation material and to verify thermostructural analysis models. A modified NASA 48-inch solid motor (M-NASA motor) with a 12-foot blast tube and 10-inch throat makes up the SPTA. The M-NASA motor is being used to evaluate solid rocket motor internal non-asbestos insulation materials, nozzle designs, materials, and new inspection techniques. New internal motor case instrumentation techniques are also being evaluated.

  7. TMS installation at A-1 Test Stand

    Science.gov (United States)

    2010-01-01

    Employees at NASA's John C. Stennis Space Center complete installation of the new thrust measurement system on the A-1 Test Stand. The new TMS is a state-of-the-art upgrade from the previous system, which was installed when the testing structure was built in the 1960s. It is an advanced calibration system capable of measuring vertical and horizontal thrust loads with accuracy within 0.15 percent at 225,000 pounds. It also will allow engineers to measure thrust as they gimbal (or tilt) engines during tests. The new TMS is part of upgrades for the A-1 Test Stand in preparation for testing the next generation of American space program rocket engines.

  8. Identification of standing fronts in steady state fluid flows: exact and approximate solutions for propagating MHD modes

    Science.gov (United States)

    Pantellini, Filippo; Griton, Léa

    2016-10-01

    The spatial structure of a steady state plasma flow is shaped by the standing modes with local phase velocity exactly opposite to the flow velocity. The general procedure of finding the wave vectors of all possible standing MHD modes in any given point of a stationary flow requires numerically solving an algebraic equation. We present the graphical procedure (already mentioned by some authors in the 1960's) along with the exact solution for the Alfvén mode and approximate analytic solutions for both fast and slow modes. The technique can be used to identify MHD modes in space and laboratory plasmas as well as in numerical simulations.

  9. Manual harvesting of high population Leucaena stands

    Energy Technology Data Exchange (ETDEWEB)

    Pecson, R.D.; Van Den Beldt, R.J.

    1983-01-01

    Five-year-old giant Leucaena leucocephala, planted at spacing 1x0.5 m, were harvested using bolos (Filipino machetes) and chainsaws. For felling alone, chainsaws took 35% less time than bolos. For the total harvest including delimbing and hauling an average 20 m to the edge of the stand, chainsaws took 20% less time than bolos. Assuming chainsaws are economically viable, it may be advisable to fell with chainsaws in advance of bolo teams that buck and haul. 2 references.

  10. Airvolt Aircraft Electric Propulsion Test Stand

    Science.gov (United States)

    Samuel, Aamod; Lin, Yohan

    2015-01-01

    Development of an electric propulsion test stand that collects high-fidelity data of motor, inverter, and battery system efficiencies; thermal dynamics; and acoustics independent of manufacturer reported values will improve understanding of electric propulsion systems to be used in future aircraft. A buildup approach to this development reveals new areas of research and best practices in testing, and attempts to establish a standard for testing these systems.

  11. Spatial damping of propagating sausage waves in coronal cylinders

    CERN Document Server

    Guo, Ming-Zhe; Li, Bo; Xia, Li-Dong; Yu, Hui

    2015-01-01

    Sausage modes are important in coronal seismology. Spatially damped propagating sausage waves were recently observed in the solar atmosphere. We examine how wave leakage influences the spatial damping of sausage waves propagating along coronal structures modeled by a cylindrical density enhancement embedded in a uniform magnetic field. Working in the framework of cold magnetohydrodynamics, we solve the dispersion relation (DR) governing sausage waves for complex-valued longitudinal wavenumber $k$ at given real angular frequencies $\\omega$. For validation purposes, we also provide analytical approximations to the DR in the low-frequency limit and in the vicinity of $\\omega_{\\rm c}$, the critical angular frequency separating trapped from leaky waves. In contrast to the standing case, propagating sausage waves are allowed for $\\omega$ much lower than $\\omega_{\\rm c}$. However, while able to direct their energy upwards, these low-frequency waves are subject to substantial spatial attenuation. The spatial damping ...

  12. 7 CFR 201.77 - Length of stand requirements.

    Science.gov (United States)

    2010-01-01

    ... of stand requirements. (a) Alfalfa. Limitations on the age of stand and certified seed classes... specified by the originator or his designee. Certified seed production outside the region of adaptation...

  13. Forest evaporation models: Relationships between stand growth and evaporation

    CSIR Research Space (South Africa)

    Le Maitre, David C

    1997-06-01

    Full Text Available The relationships between forest stand structure, growth and evaporation were analysed to determine whether forest evaporation can be estimated from stand growth data. This approach permits rapid assessment of the potential impacts of afforestation...

  14. Progress of General Test Stand for Intensive Beam Cyclotron

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The general test stand for intensive beam cyclotron is one of the preliminary tasks of BRIF project at CIAE. The test stand, which actually is a small compact cyclotron with designed energy of 10 MeV,

  15. Shock Wave Emissions of a Sonoluminescing Bubble

    CERN Document Server

    Holzfuss, J; Billó, M; Holzfuss, Joachim; Ruggeberg, Matthias; Billo, Andreas

    1998-01-01

    A single bubble in water is excited by a standing ultrasound wave. At high intensity the bubble starts to emit light. Together with the emitted light pulse, a shock wave is generated in the liquid at collapse time. The time-dependent velocity of the outward-travelling shock is measured with an imaging technique. The pressure in the shock and in the bubble is shown to have a lower limit of 5500 bars. Visualization of the shock and the bubble at different phases of the acoustic cycle reveals previously unobserved dynamics during stable and unstable sonoluminescence.

  16. Observations of nearshore infragravity wave dynamics under high energy swell and wind-wave conditions

    Science.gov (United States)

    Inch, Kris; Davidson, Mark; Masselink, Gerd; Russell, Paul

    2017-04-01

    Infragravity waves (0.005-0.04 Hz) can dominate the water motion close to shore on low sloping beaches and play a significant role in beach and dune erosion. A new field data set of water surface elevation at 15 cross-shore locations on a dissipative, fetch-unlimited beach is analysed to investigate the forcing and surf zone behaviour of infragravity waves during a wide range of offshore wave conditions (Ho=0.38-3.88 m; Tp=6-20 s). Infragravity waves approach the shore as bound waves lagging slightly ( 4 s) behind the short wave (0.04-0.33 Hz) envelope and are released in the surf zone as free waves. Infragravity wave heights of up to 1 m are measured close to shore and are best predicted using an offshore forcing parameter that represents the short wave energy flux (Ho2 Tp). Considerable infragravity dissipation is observed in the surf zone and dissipation increases with offshore wave energy. Dissipation is highly frequency-dependant and a frequency-domain Complex Empirical Orthogonal Function analysis reveals (quasi-)standing waves at frequencies <0.017 Hz, but an increasingly progressive wave pattern at higher frequencies with reflection coefficients <0.1, indicative of more than 90% dissipation. Much of the observed dissipation occurs very close to shore and the dependence of the reflection coefficient on a normalised bed slope parameter implies that energy at high infragravity frequencies is dissipated by wave breaking, since these frequencies fit into a mild sloping regime. This is supported by the results of bispectral analysis which show predominantly infragravity-infragravity interactions in shallow water and the development of infragravity harmonics indicative of steepening and eventual breaking of the infragravity waves.

  17. 21 CFR 880.2700 - Stand-on patient scale.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Stand-on patient scale. 880.2700 Section 880.2700... Devices § 880.2700 Stand-on patient scale. (a) Identification. A stand-on patient scale is a device intended for medical purposes that is used to weigh a patient who is able to stand on the scale...

  18. Buoyancy-driven Magnetohydrodynamic Waves

    Science.gov (United States)

    Hague, A.; Erdélyi, R.

    2016-09-01

    Turbulent motions close to the visible solar surface may generate low-frequency internal gravity waves (IGWs) that propagate through the lower solar atmosphere. Magnetic activity is ubiquitous throughout the solar atmosphere, so it is expected that the behavior of IGWs is to be affected. In this article we investigate the role of an equilibrium magnetic field on propagating and standing buoyancy oscillations in a gravitationally stratified medium. We assume that this background magnetic field is parallel to the direction of gravitational stratification. It is known that when the equilibrium magnetic field is weak and the background is isothermal, the frequencies of standing IGWs are sensitive to the presence of magnetism. Here, we generalize this result to the case of a slowly varying temperature. To do this, we make use of the Boussinesq approximation. A comparison between the hydrodynamic and magnetohydrodynamic cases allows us to deduce the effects due to a magnetic field. It is shown that the frequency of IGWs may depart significantly from the Brunt-Väisälä frequency, even for a weak magnetic field. The mathematical techniques applied here give a clearer picture of the wave mode identification, which has previously been misinterpreted. An observational test is urged to validate the theoretical findings.

  19. Stochastic moving particle semi-implicit for inviscid fluid wave simulation

    CERN Document Server

    Naa, Christian Fredy; Kazama, Masaki

    2013-01-01

    The present paper introduces stochastic velocity as improvement for moving particle semi-implicit (MPS) method. This improvement is to overcome energy loss caused by numerical dissipation in the basic MPS that brings about rapid decay of waves. Stochastic velocity is added in the explicit step of the basic MPS method. MPS with stochastic improvement is compared with the basic method in the case of linear water waves, in particular dam break problem and standing wave in a rectangular tank. Surface detection and curve fitting are used to analyze the parameters of wave on the standing wave case. The surface detection and curved fitting was efficient to determine parameters of the wave and it was found that the stochastic improvement made the waves survived longer than in the basis method.

  20. Shallow Water Waves and Solitary Waves

    CERN Document Server

    Hereman, Willy

    2013-01-01

    Encyclopedic article covering shallow water wave models used in oceanography and atmospheric science. Sections: Definition of the Subject; Introduction and Historical Perspective; Completely Integrable Shallow Water Wave Equations; Shallow Water Wave Equations of Geophysical Fluid Dynamics; Computation of Solitary Wave Solutions; Numerical Methods; Water Wave Experiments and Observations; Future Directions, and Bibliography.

  1. NONLINEAR FARADAY WAVES IN A PARAMETRICALLY EXCITED CIRCULAR CYLINDRICAL CONTAINER

    Institute of Scientific and Technical Information of China (English)

    菅永军; 鄂学全; 柏威

    2003-01-01

    In the cylindrical coordinate system, a singular perturbation theory of multiple-scale asymptotic expansions was developed to study single standing water wave mode bysolving potential equations of water waves in a rigid circular cylinder, which is subject to avertical oscillation. It is assumed that the fluid in the circular cylindrical vessel is inviscid ,incompressible and the motion is irrotational, a nonlinear amplitude equation with cubicand vertically excited terms of the vessel was derived by expansion of two-time scales withoutconsidering the effect of surface tension. It is shown by numerical computation that differentfree surface standing wave patterns will be formed in different excited frequencies andamplitudes. The contours of free surface waves are agreed well with the experimental resultswhich were carried out several years ago.

  2. The zero inflation of standing dead tree carbon stocks

    Science.gov (United States)

    Christopher W. Woodall; David W. MacFarlane

    2012-01-01

    Given the importance of standing dead trees in numerous forest ecosystem attributes/processes such as carbon (C) stocks, the USDA Forest Service’s Forest Inventory and Analysis (FIA) program began consistent nationwide sampling of standing dead trees in 1999. Modeled estimates of standing dead tree C stocks are currently used as the official C stock estimates for the...

  3. Stocking equations for regeneration in mixed oak stands

    Science.gov (United States)

    Songlin Fei; Kim C. Steiner; James C. Finley

    2007-01-01

    Regeneration stocking equations for mixed-oak stands were developed based on data collected from nearly 14,000 plots in the central Appalachians. Maximum stand density was identified by plotting aggregate height against number of seedlings per plot, and was used as the reference level of the average maximum stand density (100 percent stocking or A-level stocking)....

  4. 5 CFR 351.401 - Determining retention standing.

    Science.gov (United States)

    2010-01-01

    ... REDUCTION IN FORCE Scope of Competition § 351.401 Determining retention standing. Each agency shall determine the retention standing of each competing employee on the basis of the factors in this subpart and... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Determining retention standing. 351.401...

  5. 5 CFR 351.506 - Effective date of retention standing.

    Science.gov (United States)

    2010-01-01

    ... the performance factor as provided in § 351.504: (a) The retention standing of each employee released... is so released. (b) The retention standing of each employee retained in a competitive level as an... been released had the exception not been used. The retention standing of each employee retained under...

  6. 21 CFR 886.1860 - Ophthalmic instrument stand.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ophthalmic instrument stand. 886.1860 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1860 Ophthalmic instrument stand. (a) Identification. An ophthalmic instrument stand is an AC-powered or nonpowered device intended to store...

  7. 49 CFR 382.119 - Stand-down waiver provision.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Stand-down waiver provision. 382.119 Section 382... SUBSTANCES AND ALCOHOL USE AND TESTING General § 382.119 Stand-down waiver provision. (a) Employers are prohibited from standing employees down, except consistent with a waiver from the Federal Motor...

  8. A Doppler Radar System for Sensing Physiological Parameters in Walking and Standing Positions

    Directory of Open Access Journals (Sweden)

    Malikeh Pour Ebrahim

    2017-03-01

    Full Text Available Doppler radar can be implemented for sensing physiological parameters wirelessly at a distance. Detecting respiration rate, an important human body parameter, is essential in a range of applications like emergency and military healthcare environments, and Doppler radar records actual chest motion. One challenge in using Doppler radar is being able to monitor several patients simultaneously and in different situations like standing, walking, or lying. This paper presents a complete transmitter-receiver Doppler radar system, which uses a 4 GHz continuous wave radar signal transmission and receiving system, to extract base-band data from a phase-shifted signal. This work reports experimental evaluations of the system for one and two subjects in various standing and walking positions. It provides a detailed signal analysis of various breathing rates of these two subjects simultaneously. These results will be useful in future medical monitoring applications.

  9. Measurement of stiffness of standing trees and felled logs using acoustics: A review.

    Science.gov (United States)

    Legg, Mathew; Bradley, Stuart

    2016-02-01

    This paper provides a review on the use of acoustics to measure stiffness of standing trees, stems, and logs. An outline is given of the properties of wood and how these are related to stiffness and acoustic velocity throughout the tree. Factors are described that influence the speed of sound in wood, including the different types of acoustic waves which propagate in tree stems and lumber. Acoustic tools and techniques that have been used to measure the stiffness of wood are reviewed. The reasons for a systematic difference between direct and acoustic measurements of stiffness for standing trees, and methods for correction, are discussed. Other techniques, which have been used in addition to acoustics to try to improve stiffness measurements, are also briefly described. Also reviewed are studies which have used acoustic tools to investigate factors that influence the stiffness of trees. These factors include different silvicultural practices, geographic and environmental conditions, and genetics.

  10. Study on the Explainable Ability by Using Airborne LIDAR in Stand Value and Stand Competition

    Science.gov (United States)

    Huang, S. C.; Yeh, J. Y.; Chen, C. T.; Chen, J. C.

    2016-06-01

    Forest canopy structure is composed by the various species. Sun light is a main factor to affect the crown structures after tree competition. However, thinning operation is an appropriate way to control canopy density, which can adjust the competition conditions in the different crown structures. Recently, Airborne Light Detection and Ranging (LiDAR), has been established as a standard technology for high precision three dimensional forest data acquisition; it could get stand characteristics with three-dimensional information that had develop potential for the structure characteristics of forest canopy. The 65 years old, different planting density of Cryptomeria japonica experiment area was selected for this study in Nanytou, Taiwan. Use the LiDAR image to estimate LiDAR characteristic values by constructed CHM, voxel-based LiDAR, mu0ltiple echoes, and assess the accuracy of stand characteristics with intensity values and field data. The competition index was calculated with field data, and estimate competition index of LiDAR via multiple linear regression. The results showed that the highest accuracy with stand characteristics was stand high which estimate by LiDAR, its average accuracy of 91.03%. LiDAR raster grid size was 20 m × 20 m for the correlation was the best, however, the higher canopy density will reduce the accuracy of the LiDAR characteristic values to estimate the stand characteristics. The significantly affect canopy thickness and the degree of competition in different planting distances.

  11. Waves & vibrations

    OpenAIRE

    Nicolas, Maxime

    2016-01-01

    Engineering school; This course is designed for students of Polytech Marseille, engineering school. It covers first the physics of vibration of the harmonic oscillator with damping and forcing, coupled oscillators. After a presentation of the wave equation, the vibration of strings, beams and membranes are studied.

  12. Wave Dragon

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter

    På foranledning af Löwenmark F.R.I, er der udført numeriske beregninger af Wave Dragons (herefter WD) armes effektivitet for forskellige geometriske udformninger. 5 geometriske modeller, hvor WD's arme er forkortet/forlænget er undersøgt for 3 forskellige drejninger af armene. I alt er 15...

  13. Wave Dragon

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter

    På foranledning af Löwenmark F.R.I, er der udført numeriske beregninger af Wave Dragons (herefter WD) armes effektivitet for forskellige geometriske udformninger. 5 geometriske modeller, hvor WD's arme er forkortet/forlænget er undersøgt for 3 forskellige drejninger af armene. I alt er 15...

  14. Existence of solitary waves in dipolar quantum gases

    KAUST Repository

    Antonelli, Paolo

    2011-02-01

    We study a nonlinear Schrdinger equation arising in the mean field description of dipolar quantum gases. Under the assumption of sufficiently strong dipolar interactions, the existence of standing waves, and hence solitons, is proved together with some of their properties. This gives a rigorous argument for the possible existence of solitary waves in BoseEinstein condensates, which originate solely due to the dipolar interaction between the particles. © 2010 Elsevier B.V. All rights reserved.

  15. Stand quality management in a late-rotation, red oak-sweetgum stand in east Mississippi: preliminary results following thinning

    Science.gov (United States)

    James S. Meadows; Daniel A. Skojac

    2012-01-01

    Stand quality management is a new management strategy in which thinning prescriptions are based solely on tree quality rather than a quantitative level of residual stand density. As long as residual density falls within fairly broad limits, prescriptions are based on tree quality alone. We applied four thinning prescriptions based on stand quality management, along...

  16. [Effects of crop tree release on stand growth and stand structure of Cunninghamia lanceolata plantation].

    Science.gov (United States)

    Wu, Jian-qiang; Wang, Yi-xiang; Yang, Yi; Zhu, Ting-ting; Zhu, Xu-dan

    2015-02-01

    Crop trees were selected in a 26-year-old even-aged Cunninghamia lanceolata plantation in Lin' an, and compared in plots that were released and unreleased to examine growth and structure responses for 3 years after thinning. Crop tree release significantly increased the mean increments of diameter and volume of individual tree by 1.30 and 1.25 times relative to trees in control stands, respectively. The increments of diameter and volume of crop trees were significantly higher than those of general trees in thinning plots, crop trees and general trees in control plots, which suggested that the responses from different tree types to crop tree release treatment were different. Crop tree release increased the average distances of crop trees to the nearest neighboring trees, reducing competition among crop trees by about 68.2%. 3-year stand volume increment for thinning stands had no significant difference with that of control stands although the number of trees was only 81.5% of the control. Crop trees in thinned plots with diameters over than 14 cm reached 18.0% over 3 years, compared with 12.0% for trees without thinning, suggesting that crop tree release benefited the larger individual trees. The pattern of tree locations in thinning plots tended to be random, complying with the rule that tree distribution pattern changes with growth. Crop tree release in C. lanceolata plantation not only promoted the stand growth, but also optimized the stand structure, benefiting crop trees sustained rapid growth and larger diameter trees production.

  17. Imaging standing surface plasmons by photon tunneling

    Science.gov (United States)

    Passian, A.; Lereu, A. L.; Wig, A.; Meriaudeau, F.; Thundat, T.; Ferrell, T. L.

    2005-04-01

    We present a direct method for optically exciting and imaging delocalized standing surface plasmons in thin metal films. We show theoretically that when imaging the field of the plasmons with a photon scanning tunneling microscope, the presence of the dielectric probe has a negligible effect on the surface modes of the metal film. We demonstrate that plasmon interference can be sustained in arbitrarily large regions of the metal film in comparison to the excitation wavelength. This knowledge can be important when seeking the relative distance between two scattering centers such as the presence of micron or submicron structures.

  18. CSNS H- ion source test stand

    Institute of Scientific and Technical Information of China (English)

    WU Xiao-Bing; ZHANG Jun-Song; ZHANG Hua-Shun; ZHAO Fu-Xiang; OUYANG Hua-Fu; CHI Yun-Long; HE Wei; HUANG Tao; LI Gang; LIU Ying-Man; LU Yan-Hua; XU Tao-Guang

    2011-01-01

    The Penning surface plasma source is adopted as the China Spallation Neutron Source (CSNS) H- ion source. The designed energy and beam current of the source are 50 keV and 20 mA, respectively, with a normalized root mean square(norm·rms.)emittance of 0.2πmm·mrad.The construction of a H-ion source test stand has been completed, and the commissioning of the source is in progress. Stable H- ion beams with energy of 50 keV and current up to 50 mA are attained. Emittance measurement for the H- beam is being prepared.

  19. Final Focus Test Stand final report

    CERN Document Server

    Jeremie, A; Burrows, P

    2013-01-01

    Future Linear colliders will need particle beam sizes in the nanometre range. The beam also needs to be stable all along the beam line and especially at the Final Focus section. A dedicated Final Focus test stand has been used for this study and is comprised of several sub-parts. First there is the Stabilisation/Isolation system with sensors and actuators stabilizing down to sub-nanometre level. Then the Magnet itself needs to comply with very specific design constraints. In addition to the mechanical items, the beam can be stabilized acting on the trajectory directly and Beam-based controls have been developed and tested on different accelerator facilities.

  20. Impact of Wave Dragon on Wave Climate

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Tedd, James; Kramer, Morten

    This report is an advisory paper for use in determining the wave dragon effects on hydrography, by considering the effect on the wave climate in the region of a wave dragon. This is to be used in the impact assessment for the Wave Dragon pre-commercial demonstrator.......This report is an advisory paper for use in determining the wave dragon effects on hydrography, by considering the effect on the wave climate in the region of a wave dragon. This is to be used in the impact assessment for the Wave Dragon pre-commercial demonstrator....

  1. Relativistic spherical plasma waves

    Science.gov (United States)

    Bulanov, S. S.; Maksimchuk, A.; Schroeder, C. B.; Zhidkov, A. G.; Esarey, E.; Leemans, W. P.

    2012-02-01

    Tightly focused laser pulses that diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we study theoretically and numerically relativistic spherical wake waves and their properties, including wave breaking.

  2. Gravitational waves

    CERN Document Server

    Ciufolini, I; Moschella, U; Fre, P

    2001-01-01

    Gravitational waves (GWs) are a hot topic and promise to play a central role in astrophysics, cosmology, and theoretical physics. Technological developments have led us to the brink of their direct observation, which could become a reality in the coming years. The direct observation of GWs will open an entirely new field: GW astronomy. This is expected to bring a revolution in our knowledge of the universe by allowing the observation of previously unseen phenomena, such as the coalescence of compact objects (neutron stars and black holes), the fall of stars into supermassive black holes, stellar core collapses, big-bang relics, and the new and unexpected.With a wide range of contributions by leading scientists in the field, Gravitational Waves covers topics such as the basics of GWs, various advanced topics, GW detectors, astrophysics of GW sources, numerical applications, and several recent theoretical developments. The material is written at a level suitable for postgraduate students entering the field.

  3. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter; Brorsen, Michael

    Nærværende rapport beskriver foreløbige hovedkonklusioner på modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star i perioden 13/9 2004 til 12/11 2004.......Nærværende rapport beskriver foreløbige hovedkonklusioner på modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star i perioden 13/9 2004 til 12/11 2004....

  4. The Mechanical Waves Conceptual Survey: An Analysis of University Students' Performance, and Recommendations for Instruction

    Science.gov (United States)

    Barniol, Pablo; Zavala, Genaro

    2017-01-01

    The Mechanical Waves Conceptual Survey (MWCS), presented in 2009, is the most important test to date that has been designed to evaluate university students' understanding of four main topics: propagation, superposition, reflection, and standing waves. In a literature review, we detected a significant need for a study that uses this test as an…

  5. The Mechanical Waves Conceptual Survey: An Analysis of University Students' Performance, and Recommendations for Instruction

    Science.gov (United States)

    Barniol, Pablo; Zavala, Genaro

    2017-01-01

    The Mechanical Waves Conceptual Survey (MWCS), presented in 2009, is the most important test to date that has been designed to evaluate university students' understanding of four main topics: propagation, superposition, reflection, and standing waves. In a literature review, we detected a significant need for a study that uses this test as an…

  6. Stand-alone system for high-resolution, real-time terahertz imaging.

    Science.gov (United States)

    Amanti, Maria I; Scalari, Giacomo; Beck, Mattias; Faist, Jerome

    2012-01-30

    In this work we present a stand-alone, portable system for high resolution real-time THz imaging. The total weight of the apparatus is less than 15 kg and its physical dimension is of ~(65 cm)3. A quantum cascade laser emitting at 3.4 THz laser based on a third-order distributed feedback cavity is used as source. It operates in continuous-wave at 50 K with more than 1 mW output power and less than 300 mW of power consumption. High resolution real-time THz imaging is reported: resolution of 2.5 times the wavelength is demonstrated.

  7. Wave Propagation

    CERN Document Server

    Ferrarese, Giorgio

    2011-01-01

    Lectures: A. Jeffrey: Lectures on nonlinear wave propagation.- Y. Choquet-Bruhat: Ondes asymptotiques.- G. Boillat: Urti.- Seminars: D. Graffi: Sulla teoria dell'ottica non-lineare.- G. Grioli: Sulla propagazione del calore nei mezzi continui.- T. Manacorda: Onde nei solidi con vincoli interni.- T. Ruggeri: "Entropy principle" and main field for a non linear covariant system.- B. Straughan: Singular surfaces in dipolar materials and possible consequences for continuum mechanics

  8. Shock Waves

    CERN Document Server

    Jiang, Z

    2005-01-01

    The International Symposium on Shock Waves (ISSW) is a well established series of conferences held every two years in a different location. A unique feature of the ISSW is the emphasis on bridging the gap between physicists and engineers working in fields as different as gas dynamics, fluid mechanics and materials sciences. The main results presented at these meetings constitute valuable proceedings that offer anyone working in this field an authoritative and comprehensive source of reference.

  9. Science stand-up at CERN

    CERN Multimedia

    Stephanie McClellan

    2013-01-01

    Supported by host Helen Keen from BBC4’s "It is Rocket Science", six amateur performers from CERN (Sam Gregson, Alex Brown, Benjamin Frisch, Claire Lee, Hugo Day and Clara Nellist) were joined on stage by geek-pop sensation Jonny Berliner and comedians Pierre Novellie and Lieven Scheire for a night of science stand-up comedy.   Host Helen Keen starts off the comedy event. (Image: Piotr Traczyk). Like the genesis of most great things, the LHComedy event began as an idea. Sam Gregson, a PhD student at CERN, had been a regular at the Cambridge Bright Club. This public engagement event promotes scientists’ research through stand-up comedy. Sam thought, “If people came to watch Bright Club at Cambridge and enjoyed the research, why can’t we do it at the biggest scientific experiment in the world?” Sam’s idea gained momentum after being introduced to FameLab participants at CERN. Similar to Bright Club, FameLab is a com...

  10. Competency to stand trial among female inpatients.

    Science.gov (United States)

    Kois, Lauren; Pearson, Jessica; Chauhan, Preeti; Goni, Margaret; Saraydarian, Lisa

    2013-08-01

    Competency to stand trial evaluations are conducted by forensic mental health professionals to opine whether defendants possess the mental abilities to understand, appreciate, and reason in regard to their court proceedings. The majority of research on competency to stand trial evaluations has focused on males, with research on female defendants being relatively underexplored. Even less is known of diverse female samples referred for competency evaluation. In the current study, we sought to examine whether characteristics associated with competency among predominantly male samples translate to a racially, ethnically, and culturally diverse group of female defendants (N = 288, 85% non-White). Chi-square analyses revealed significant relationships between findings of incompetence and defendants' diagnosis of a psychotic disorder, active psychotic symptoms, medication noncompliance, nonparticipation in the evaluation, and nonfelony charges. Logistic regression analysis indicated that defendants who experienced active psychotic symptoms, did not participate in their evaluations, and were not compliant with their medication were most likely to be found incompetent. Notably, neither minority status nor age was a significant characteristic in predicting incompetence. These findings in particular differ from much of the literature and highlight the need to examine competency within a cross-cultural framework, as characteristics associated with competency opinions do not necessarily translate across demographic groups.

  11. Wave propagation in a magneto-electro- elastic plate

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The wave propagation in a magneto-electro-elastic plate was studied. Some new characteristics were discovered: the guided waves are classified in the forms of the Quasi-P, Quasi-SV and Quasi-SH waves and arranged by the standing wavenumber; there are many patterns for the physical property of the magneto-electro-elastic dielectric medium influencing the stress wave propagation. We proposed a self-adjoint method, by which the guided-wave restriction condition was derived. After the corresponding orthogonal sets were found, the analytic dispersion equa-tion was obtained. In the end, an example was presented. The dispersive spectrum, the group velocity curved face and the steady-state response curve of a mag-neto-electro-elastic plate were plotted. Then the wave propagations affected by the induced electric and magnetic fields were analyzed.

  12. Surface acoustic wave microfluidics.

    Science.gov (United States)

    Ding, Xiaoyun; Li, Peng; Lin, Sz-Chin Steven; Stratton, Zackary S; Nama, Nitesh; Guo, Feng; Slotcavage, Daniel; Mao, Xiaole; Shi, Jinjie; Costanzo, Francesco; Huang, Tony Jun

    2013-09-21

    The recent introduction of surface acoustic wave (SAW) technology onto lab-on-a-chip platforms has opened a new frontier in microfluidics. The advantages provided by such SAW microfluidics are numerous: simple fabrication, high biocompatibility, fast fluid actuation, versatility, compact and inexpensive devices and accessories, contact-free particle manipulation, and compatibility with other microfluidic components. We believe that these advantages enable SAW microfluidics to play a significant role in a variety of applications in biology, chemistry, engineering and medicine. In this review article, we discuss the theory underpinning SAWs and their interactions with particles and the contacting fluids in which they are suspended. We then review the SAW-enabled microfluidic devices demonstrated to date, starting with devices that accomplish fluid mixing and transport through the use of travelling SAW; we follow that by reviewing the more recent innovations achieved with standing SAW that enable such actions as particle/cell focusing, sorting and patterning. Finally, we look forward and appraise where the discipline of SAW microfluidics could go next.

  13. Temporal Modulation of Traveling Waves in the Flow Between Rotating Cylinders With Broken Azimuthal Symmetry

    CERN Document Server

    Tennakoon, S G K; Hegseth, J J; Riecke, H; Tennakoon, Sarath G. K.; Hegseth, John. J.; Riecke, Hermann

    1996-01-01

    The effect of temporal modulation on traveling waves in the flows in two distinct systems of rotating cylinders, both with broken azimuthal symmetry, has been investigated. It is shown that by modulating the control parameter at twice the critical frequency one can excite phase-locked standing waves and standing-wave-like states which are not allowed when the system is rotationally symmetric. We also show how previous theoretical results can be extended to handle patterns such as these, that are periodic in two spatial direction.

  14. Blood pressure associates with standing balance in elderly outpatients.

    Science.gov (United States)

    Pasma, Jantsje H; Bijlsma, Astrid Y; Klip, Janneke M; Stijntjes, Marjon; Blauw, Gerard Jan; Muller, Majon; Meskers, Carel G M; Maier, Andrea B

    2014-01-01

    Assessment of the association of blood pressure measurements in supine and standing position after a postural change, as a proxy for blood pressure regulation, with standing balance in a clinically relevant cohort of elderly, is of special interest as blood pressure may be important to identify patients at risk of having impaired standing balance in routine geriatric assessment. In a cross-sectional cohort study, 197 community-dwelling elderly referred to a geriatric outpatient clinic of a middle-sized teaching hospital were included. Blood pressure was measured intermittently (n = 197) and continuously (subsample, n = 58) before and after a controlled postural change from supine to standing position. The ability to maintain standing balance was assessed during ten seconds of side-by-side, semi-tandem and tandem stance, with both eyes open and eyes closed. Self-reported impaired standing balance and history of falls were recorded by questionnaires. Logistic regression analyses were used to examine the association between blood pressure and 1) the ability to maintain standing balance; 2) self-reported impaired standing balance; and 3) history of falls, adjusted for age and sex. Blood pressure decrease after postural change, measured continuously, was associated with reduced ability to maintain standing balance in semi-tandem stance with eyes closed and with increased self-reported impaired standing balance and falls. Presence of orthostatic hypotension was associated with reduced ability to maintain standing balance in semi-tandem stance with eyes closed for both intermittent and continuous measurements and with increased self-reported impaired standing balance for continuous measurements. Continuous blood pressure measurements are of additional value to identify patients at risk of having impaired standing balance and may therefore be useful in routine geriatric care.

  15. Blood pressure associates with standing balance in elderly outpatients.

    Directory of Open Access Journals (Sweden)

    Jantsje H Pasma

    Full Text Available OBJECTIVES: Assessment of the association of blood pressure measurements in supine and standing position after a postural change, as a proxy for blood pressure regulation, with standing balance in a clinically relevant cohort of elderly, is of special interest as blood pressure may be important to identify patients at risk of having impaired standing balance in routine geriatric assessment. MATERIALS AND METHODS: In a cross-sectional cohort study, 197 community-dwelling elderly referred to a geriatric outpatient clinic of a middle-sized teaching hospital were included. Blood pressure was measured intermittently (n = 197 and continuously (subsample, n = 58 before and after a controlled postural change from supine to standing position. The ability to maintain standing balance was assessed during ten seconds of side-by-side, semi-tandem and tandem stance, with both eyes open and eyes closed. Self-reported impaired standing balance and history of falls were recorded by questionnaires. Logistic regression analyses were used to examine the association between blood pressure and 1 the ability to maintain standing balance; 2 self-reported impaired standing balance; and 3 history of falls, adjusted for age and sex. RESULTS: Blood pressure decrease after postural change, measured continuously, was associated with reduced ability to maintain standing balance in semi-tandem stance with eyes closed and with increased self-reported impaired standing balance and falls. Presence of orthostatic hypotension was associated with reduced ability to maintain standing balance in semi-tandem stance with eyes closed for both intermittent and continuous measurements and with increased self-reported impaired standing balance for continuous measurements. CONCLUSION: Continuous blood pressure measurements are of additional value to identify patients at risk of having impaired standing balance and may therefore be useful in routine geriatric care.

  16. Making Waves: Seismic Waves Activities and Demonstrations

    Science.gov (United States)

    Braile, S. J.; Braile, L. W.

    2011-12-01

    The nature and propagation of seismic waves are fundamental concepts necessary for understanding the exploration of Earth's interior structure and properties, plate tectonics, earthquakes, and seismic hazards. Investigating seismic waves is also an engaging approach to learning basic principles of the physics of waves and wave propagation. Several effective educational activities and demonstrations are available for teaching about seismic waves, including the stretching of a spring to demonstrate elasticity; slinky wave propagation activities for compressional, shear, Rayleigh and Love waves; the human wave activity to demonstrate P- and S- waves in solids and liquids; waves in water in a simple wave tank; seismic wave computer animations; simple shake table demonstrations of model building responses to seismic waves to illustrate earthquake damage to structures; processing and analysis of seismograms using free and easy to use software; and seismic wave simulation software for viewing wave propagation in a spherical Earth. The use of multiple methods for teaching about seismic waves is useful because it provides reinforcement of the fundamental concepts, is adaptable to variable classroom situations and diverse learning styles, and allows one or more methods to be used for authentic assessment. The methods described here have been used effectively with a broad range of audiences, including K-12 students and teachers, undergraduate students in introductory geosciences courses, and geosciences majors.

  17. Resonant response of a strong electromagnetic wave beam to a gravitational wave in a static magnetic field

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Concrete forms of resonant response (ER) for a strongelectromagnetic (EM) wave beam (photon flux) propagating in a static magnetic field to a standing gravitational wave (gravitons) are given, and the corresponding perturbation solutions and resonant conditions are obtained. It is found that perturbed EM fields (PEMFs) contain three new components with frequencies |ωg±ωe| and ωg, respectively. In the case of ωeωg, the PEMFs are manifested as the EM wave beams with frequency ωe and a standing EM wave with ωg. The former and the background EM wave beam (BEMWB) have the same propagating direction, while in the case of ωgωe, all PEMFs are expressed as the standing EM waves with frequency ωg. The resonant response occurs in two cases of ωe=1/2ωg and ωe=ωg only. Then not only the first order perturbed energy fluxes (PEFs) propagating in the same and opposite directions of the BEMWB can be generated, but also radial and tangential PEFs which are perpendicular to the above directions can be produced. This effect might provide a new way for the EM detection of the gravitational waves (GWs). Moreover, the possible schemes of displaying perturbed effects induced by the standing GW with h=10-33-10-35 and λg=0.1 m at the level of the single photon avalanche and in a typicla laboratory dimension are reviewed.

  18. Geometrical vs wave optics under gravitational waves

    CERN Document Server

    Angélil, Raymond

    2015-01-01

    We present some new derivations of the effect of a plane gravitational wave on a light ray. A simple interpretation of the results is that a gravitational wave causes a phase modulation of electromagnetic waves. We arrive at this picture from two contrasting directions, namely null geodesics and Maxwell's equations, or, geometric and wave optics. Under geometric optics, we express the geodesic equations in Hamiltonian form and solve perturbatively for the effect of gravitational waves. We find that the well-known time-delay formula for light generalizes trivially to massive particles. We also recover, by way of a Hamilton-Jacobi equation, the phase modulation obtained under wave optics. Turning then to wave optics, rather than solving Maxwell's equations directly for the fields, as in most previous approaches, we derive a perturbed wave equation (perturbed by the gravitational wave) for the electromagnetic four-potential. From this wave equation it follows that the four-potential and the electric and magnetic...

  19. FERMILAB CRYOMODULE TEST STAND RF INTERLOCK SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Troy [Fermilab; Diamond, J. S. [Fermilab; McDowell, D. [Fermilab; Nicklaus, D. [Fermilab; Prieto, P. S. [Fermilab; Semenov, A. [Fermilab

    2016-10-12

    An interlock system has been designed for the Fermilab Cryo-module Test Stand (CMTS), a test bed for the cryo- modules to be used in the upcoming Linac Coherent Light Source 2 (LCLS-II) project at SLAC. The interlock system features 8 independent subsystems, one per superconducting RF cavity and solid state amplifier (SSA) pair. Each system monitors several devices to detect fault conditions such as arcing in the waveguides or quenching of the SRF system. Additionally each system can detect fault conditions by monitoring the RF power seen at the cavity coupler through a directional coupler. In the event of a fault condition, each system is capable of removing RF signal to the amplifier (via a fast RF switch) as well as turning off the SSA. Additionally, each input signal is available for re- mote viewing and recording via a Fermilab designed digitizer board and MVME 5500 processor.

  20. Automated Test Stand for HEV Capacitor Testing

    Energy Technology Data Exchange (ETDEWEB)

    Seiber, Larry Eugene [ORNL; Armstrong, Gary [Maverick Systems

    2007-01-01

    As capacitor manufacturers race to meet the needs of the hybrid-electric vehicle (HEV) of the future, many trade-offs at the system level as well as the component level must be considered. Even though the ultra-capacitor has the spot light for recent research and development (R&D) for HEVs, the electrostatic capacitor is also the subject of R&D (for HEVs as well as wireless communications). The Department of Energy has funded the Oak Ridge National Laboratory's Power Electronic and Electric Machinery Research Center to develop an automated test to aid in the independent testing of prototype electrostatic capacitors. This paper describes the design and development of such a stand.