WorldWideScience

Sample records for waves guide cns

  1. Electromagnetic ultrasonic guided waves

    CERN Document Server

    Huang, Songling; Li, Weibin; Wang, Qing

    2016-01-01

    This book introduces the fundamental theory of electromagnetic ultrasonic guided waves, together with its applications. It includes the dispersion characteristics and matching theory of guided waves; the mechanism of production and theoretical model of electromagnetic ultrasonic guided waves; the effect mechanism between guided waves and defects; the simulation method for the entire process of electromagnetic ultrasonic guided wave propagation; electromagnetic ultrasonic thickness measurement; pipeline axial guided wave defect detection; and electromagnetic ultrasonic guided wave detection of gas pipeline cracks. This theory and findings on applications draw on the author’s intensive research over the past eight years. The book can be used for nondestructive testing technology and as an engineering reference work. The specific implementation of the electromagnetic ultrasonic guided wave system presented here will also be of value for other nondestructive test developers.

  2. Guided acoustic wave inspection system

    Science.gov (United States)

    Chinn, Diane J.

    2004-10-05

    A system for inspecting a conduit for undesirable characteristics. A transducer system induces guided acoustic waves onto said conduit. The transducer system detects the undesirable characteristics of the conduit by receiving guided acoustic waves that contain information about the undesirable characteristics. The conduit has at least two sides and the transducer system utilizes flexural modes of propagation to provide inspection using access from only the one side of the conduit. Cracking is detected with pulse-echo testing using one transducer to both send and receive the guided acoustic waves. Thinning is detected in through-transmission testing where one transducer sends and another transducer receives the guided acoustic waves.

  3. Recent Ultrasonic Guided Wave Inspection Development Efforts

    International Nuclear Information System (INIS)

    Rose, Joseph L.; Tittmann, Bernhard R.

    2001-01-01

    The recognition of such natural wave guides as plates, rods, hollow cylinders, multi-layer structures or simply an interface between two materials combined with an increased understanding of the physics and wave mechanics of guided wave propagation has led to a significant increase in the number of guided wave inspection applications being developed each year. Of primary attention Is the ability to inspect partially hidden structures, hard to access areas, and treated or insulated structures. An introduction to some physical consideration of guided waves followed by some sample problem descriptions in pipe, ice detection, fouling detection in the foods industry, aircraft, tar coated structures and acoustic microscopy is presented in this paper. A sample problem in Boundary Element Modeling is also presented to illustrate the move in guided wave analysis beyond detection and location analysis to quantification

  4. Wave propagation in plasma-filled wave-guide

    International Nuclear Information System (INIS)

    Leprince, Philippe

    1966-01-01

    This research thesis reports the study of wave propagation along a plasma column without external magnetic field. The author first present and comment various theoretical results, and dispersion curves plotted for the main modes (particularly, the bipolar mode). He tries to define fundamental magnitudes which characterise a plasma-filled wave-guide. He reports the comparison of some experimental results with the previous theoretical results. Based on the study of the bipolar mode, the author develops a method of measurement of plasma column density. In the last part, the author reports the study of the resonance of a plasma-containing cavity. Several resonances are highlighted and new dispersion curves are plotted by using a varying length cavity. He also addresses the coupling of plasma modes with guide modes, and thus indicates the shape of Brillouin diagrams for a plasma-filled wave-guide. Moreover, some phenomena highlighted during plasma column density measurements by using the cavity method could then be explained [fr

  5. Ultrasonic guided waves in eccentric annular pipes

    International Nuclear Information System (INIS)

    Pattanayak, Roson Kumar; Balasubramaniam, Krishnan; Rajagopal, Prabhu

    2014-01-01

    This paper studies the feasibility of using ultrasonic guided waves to rapidly inspect tubes and pipes for possible eccentricity. While guided waves are well established in the long range inspection of structures such as pipes and plates, studies for more complex cross sections are limited and analytical solutions are often difficult to obtain. Recent developments have made the Semi Analytical Finite Element (SAFE) method widely accessible for researchers to study guided wave properties in complex structures. Here the SAFE method is used to study the effect of eccentricity on the modal structures and velocities of lower order guided wave modes in thin pipes of diameters typically of interest to the industry. Results are validated using experiments. The paper demonstrates that even a small eccentricity in the pipe can strongly affect guided wave mode structures and velocities and hence shows potential for pipe eccentricity inspection

  6. Guided-wave acousto-optics interactions, devices, and applications

    CERN Document Server

    1990-01-01

    The field of integrated- or guided-wave optics has experienced significant and continuous growth since its inception in the late 1960s. There has been a considerable increase in research and development activity in this field worldwide and some significant advances in the realization of working in­ tegrated optic devices and modules have been made in recent years. In fact, there have already been some commercial manufacturing and technical ap­ plications of such devices and modules. The guided-wave-acoustooptics involving Bragg interactions between guided optical waves and surface acoustic waves is one of the areas of in­ tegrated-optics that has reached some degree of scientific and technological maturity. This topical volume is devoted to an in-depth treatment of this emerging branch of science and technology. Presented in this volume are concise treatments on bulk-wave acoustooptics, guided-wave optics, and surface acoustic waves, and detailed studies of guided-wave acoustooptic Bragg diffraction in thr...

  7. Guided wave based structural health monitoring: A review

    International Nuclear Information System (INIS)

    Mitra, Mira; Gopalakrishnan, S

    2016-01-01

    The paper provides a state of the art review of guided wave based structural health monitoring (SHM). First, the fundamental concepts of guided wave propagation and its implementation for SHM is explained. Following sections present the different modeling schemes adopted, developments in the area of transducers for generation, and sensing of wave, signal processing and imaging technique, statistical and machine learning schemes for feature extraction. Next, a section is presented on the recent advancements in nonlinear guided wave for SHM. This is followed by section on Rayleigh and SH waves. Next is a section on real-life implementation of guided wave for industrial problems. The paper, though briefly talks about the early development for completeness, is primarily focussed on the recent progress made in the last decade. The paper ends by discussing and highlighting the future directions and open areas of research in guided wave based SHM. (topical review)

  8. Guided-Wave Optical Biosensors

    Science.gov (United States)

    Passaro, Vittorio M. N.; Dell'Olio, Francesco; Casamassima, Biagio; De Leonardis, Francesco

    2007-01-01

    Guided-wave optical biosensors are reviewed in this paper. Advantages related to optical technologies are presented and integrated architectures are investigated in detail. Main classes of bio receptors and the most attractive optical transduction mechanisms are discussed. The possibility to use Mach-Zehnder and Young interferometers, microdisk and microring resonators, surface plasmon resonance, hollow and antiresonant waveguides, and Bragg gratings to realize very sensitive and selective, ultra-compact and fast biosensors is discussed. Finally, CMOS-compatible technologies are proved to be the most attractive for fabrication of guided-wave photonic biosensors.

  9. Electron wind in strong wave guide fields

    Science.gov (United States)

    Krienen, F.

    1985-03-01

    The X-ray activity observed near highly powered waveguide structures is usually caused by local electric discharges originating from discontinuities such as couplers, tuners or bends. In traveling waves electrons move in the direction of the power flow. Seed electrons can multipactor in a traveling wave, the moving charge pattern is different from the multipactor in a resonant structure and is self-extinguishing. The charge density in the wave guide will modify impedance and propagation constant of the wave guide. The radiation level inside the output wave guide of the SLAC, 50 MW, S-band, klystron is estimated. Possible contributions of radiation to window failure are discussed.

  10. Directional nonlinear guided wave mixing: Case study of counter-propagating shear horizontal waves

    Science.gov (United States)

    Hasanian, Mostafa; Lissenden, Cliff J.

    2018-04-01

    While much nonlinear ultrasonics research has been conducted on higher harmonic generation, wave mixing provides the potential for sensitive measurements of incipient damage unencumbered by instrumentation nonlinearity. Studies of nonlinear ultrasonic wave mixing, both collinear and noncollinear, for bulk waves have shown the robust capability of wave mixing for early damage detection. One merit of bulk wave mixing lies in their non-dispersive nature, but guided waves enable inspection of otherwise inaccessible material and a variety of mixing options. Co-directional guided wave mixing was studied previously, but arbitrary direction guided wave mixing has not been addressed until recently. Wave vector analysis is applied to study variable mixing angles to find wave mode triplets (two primary waves and a secondary wave) resulting in the phase matching condition. As a case study, counter-propagating Shear Horizontal (SH) guided wave mixing is analyzed. SH wave interactions generate a secondary Lamb wave mode that is readily receivable. Reception of the secondary Lamb wave mode is compared for an angle beam transducer, an air coupled transducer, and a laser Doppler vibrometer (LDV). Results from the angle beam and air coupled transducers are quite consistent, while the LDV measurement is plagued by variability issues.

  11. Guided waves in magnetospheric tubes of enhanced density

    International Nuclear Information System (INIS)

    Maltsev, Yu.P.; Lyatsky, W.B.

    1981-01-01

    Properties of a guided MHD-wave propagating in a magnetic field tube with the plasma density differing from the ambient density are studied. Like the Alven wave this wave propagates along the magnetic field and is connected with the field-aligned currents flowing at the periphery of the oscillating tube. The guided wave is accompanied by the magnetic field compression, nevertheless the wave moves without attenuation. The guided wave velocity is between the Alven velocities inside and outside the oscillating tube. In a tube of elliptical cross-section the propagation velocity depends on the polarization of the wave. (author)

  12. Corrosion monitoring using high-frequency guided waves

    Science.gov (United States)

    Fromme, P.

    2016-04-01

    Corrosion can develop due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Generalized corrosion leading to wall thickness loss can cause the reduction of the strength and thus degradation of the structural integrity. The monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic wedge transducers with single sided access to the structure, guided wave modes were selectively generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted for wall thickness reduction due to milling of the steel structure. From the measured signal changes due to the wave mode interference the reduced wall thickness was monitored. Good agreement with theoretical predictions was achieved. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  13. Long-Range Piping Inspection by Ultrasonic Guided Waves

    International Nuclear Information System (INIS)

    Joo, Young Sang; Lim, Sa Hoe; Eom, Heung Seop; Kim, Jae Hee

    2005-01-01

    The ultrasonic guided waves are very promising for the long-range inspection of large structures because they can propagate a long distance along the structures such as plates, shells and pipes. The guided wave inspection could be utilized for an on-line monitoring technique when the transmitting and receiving transducers are positioned at a remote point on the structure. The received signal has the information about the integrity of the monitoring area between the transmitting and receiving transducers. On-line monitoring of a pipe line using an ultrasonic guided wave can detect flaws such as corrosion, erosion and fatigue cracking at an early stage and collect useful information on the flaws. However the guided wave inspection is complicated by the dispersive characteristics for guided waves. The phase and group velocities are a function of the frequency-thickness product. Therefore, the different frequency components of the guided waves will travel at different speeds and the shape of the received signal will changed as it propagates along the pipe. In this study, we analyze the propagation characteristics of guided wave modes in a small diameter pipe of nuclear power plant and select the suitable mode for a long-range inspection. And experiments will be carried out for the practical application of a long-range inspection in a 26m long pipe by using a high-power ultrasonic inspection system

  14. Analysis of waves in the plasma guided by a periodical vane-type slow wave structure

    International Nuclear Information System (INIS)

    Wu, T.J.; Kou, C.S.

    2005-01-01

    In this study, the dispersion relation has been derived to characterize the propagation of the waves in the plasma guided by a periodical vane-type slow wave structure. The plasma is confined by a quartz plate. Results indicate that there are two different waves in this structure. One is the plasma mode that originates from the plasma surface wave propagating along the interface between the plasma and the quartz plate, and the other is the guide mode that originally travels along the vane-type slow wave structure. In contrast to its original slow wave characteristics, the guide mode becomes a fast wave in the low-frequency portion of the passband, and there exists a cut-off frequency for the guide mode. The vane-type guiding structure has been shown to limit the upper frequency of the passband of the plasma mode, compared with that of the plasma surface wave. In addition, the passband of the plasma mode increases with the plasma density while it becomes narrower for the guide mode. The influences of the parameters of the guiding structure and plasma density on the propagation of waves are also presented

  15. Matter-wave scattering and guiding by atomic arrays

    International Nuclear Information System (INIS)

    Vaishnav, J. Y.; Walls, J. D.; Apratim, M.; Heller, E. J.

    2007-01-01

    We investigate the possibility that linear arrays of atoms can guide matter waves, much as fiber optics guide light. We model the atomic line as a quasi-one-dimensional array of s-wave point scatterers embedded in two-dimensions. Our theoretical study reveals how matter-wave guiding arises from the interplay of scattering phenomena with bands and conduction along the array. We discuss the conditions under which a straight or curved array of atoms can guide a beam focused at one end of the array

  16. Development of an SH Wave Magnetostrictive Transducer Module for Guided Wave Testing of Plate Structures

    International Nuclear Information System (INIS)

    Cho, Seung Hyun; Park, Jae Ha; Kwon Hyu Sang; Ahn, Bong Young; Lee, Seung Seok

    2009-01-01

    Recently much attention has been paid to a guided wave due to its effective applicability to long range and fast inspection of structures. In guided wave based NDE, the appropriate selection of wave modes is one of important factors since the test performance is highly dependent on which mode of guided waves is employed. As far as plate-like structures are concerned, so far, SH guided wave has not been frequently applied compared to Lamb waves, which is mostly caused by the lack of proper and convenient transducers to generate and measure the SH waves. In this investigation, a new small-sized SH guided wave transducer based on magnetostriction is proposed. The present transducer was designed to be modular and be used with shear couplant to avoid the inconvenience of the existing magnetostrictive patch transducers, which comprises the ferromagnetic patch tightly bonded to a structure. The wave transduction mechanism and the detailed configuration of the present transducer are presented. Experimental verification is also conducted on test specimens and the results confirm the good performance of the present transducer module

  17. Development of an SH Wave Magnetostrictive Transducer Module for Guided Wave Testing of Plate Structures

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seung Hyun; Park, Jae Ha; Kwon Hyu Sang; Ahn, Bong Young; Lee, Seung Seok [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2009-04-15

    Recently much attention has been paid to a guided wave due to its effective applicability to long range and fast inspection of structures. In guided wave based NDE, the appropriate selection of wave modes is one of important factors since the test performance is highly dependent on which mode of guided waves is employed. As far as plate-like structures are concerned, so far, SH guided wave has not been frequently applied compared to Lamb waves, which is mostly caused by the lack of proper and convenient transducers to generate and measure the SH waves. In this investigation, a new small-sized SH guided wave transducer based on magnetostriction is proposed. The present transducer was designed to be modular and be used with shear couplant to avoid the inconvenience of the existing magnetostrictive patch transducers, which comprises the ferromagnetic patch tightly bonded to a structure. The wave transduction mechanism and the detailed configuration of the present transducer are presented. Experimental verification is also conducted on test specimens and the results confirm the good performance of the present transducer module

  18. Guided ultrasonic wave beam skew in silicon wafers

    Science.gov (United States)

    Pizzolato, Marco; Masserey, Bernard; Robyr, Jean-Luc; Fromme, Paul

    2018-04-01

    In the photovoltaic industry, monocrystalline silicon wafers are employed for solar cells with high conversion efficiency. Micro-cracks induced by the cutting process in the thin wafers can lead to brittle wafer fracture. Guided ultrasonic waves would offer an efficient methodology for the in-process non-destructive testing of wafers to assess micro-crack density. The material anisotropy of the monocrystalline silicon leads to variations of the guided wave characteristics, depending on the propagation direction relative to the crystal orientation. Selective guided ultrasonic wave excitation was achieved using a contact piezoelectric transducer with custom-made wedges for the A0 and S0 Lamb wave modes and a transducer holder to achieve controlled contact pressure and orientation. The out-of-plane component of the guided wave propagation was measured using a non-contact laser interferometer. The phase slowness (velocity) of the two fundamental Lamb wave modes was measured experimentally for varying propagation directions relative to the crystal orientation and found to match theoretical predictions. Significant wave beam skew was observed experimentally, especially for the S0 mode, and investigated from 3D finite element simulations. Good agreement was found with the theoretical predictions based on nominal material properties of the silicon wafer. The important contribution of guided wave beam skewing effects for the non-destructive testing of silicon wafers was demonstrated.

  19. Simulation tools for guided wave based structural health monitoring

    Science.gov (United States)

    Mesnil, Olivier; Imperiale, Alexandre; Demaldent, Edouard; Baronian, Vahan; Chapuis, Bastien

    2018-04-01

    Structural Health Monitoring (SHM) is a thematic derived from Non Destructive Evaluation (NDE) based on the integration of sensors onto or into a structure in order to monitor its health without disturbing its regular operating cycle. Guided wave based SHM relies on the propagation of guided waves in plate-like or extruded structures. Using piezoelectric transducers to generate and receive guided waves is one of the most widely accepted paradigms due to the low cost and low weight of those sensors. A wide range of techniques for flaw detection based on the aforementioned setup is available in the literature but very few of these techniques have found industrial applications yet. A major difficulty comes from the sensitivity of guided waves to a substantial number of parameters such as the temperature or geometrical singularities, making guided wave measurement difficult to analyze. In order to apply guided wave based SHM techniques to a wider spectrum of applications and to transfer those techniques to the industry, the CEA LIST develops novel numerical methods. These methods facilitate the evaluation of the robustness of SHM techniques for multiple applicative cases and ease the analysis of the influence of various parameters, such as sensors positioning or environmental conditions. The first numerical tool is the guided wave module integrated to the commercial software CIVA, relying on a hybrid modal-finite element formulation to compute the guided wave response of perturbations (cavities, flaws…) in extruded structures of arbitrary cross section such as rails or pipes. The second numerical tool is based on the spectral element method [2] and simulates guided waves in both isotropic (metals) and orthotropic (composites) plate like-structures. This tool is designed to match the widely accepted sparse piezoelectric transducer array SHM configuration in which each embedded sensor acts as both emitter and receiver of guided waves. This tool is under development and

  20. Ultrasonic guided wave interpretation for structural health inspections

    Science.gov (United States)

    Bingham, Jill Paisley

    Structural Health Management (SHM) combines the use of onboard sensors with artificial intelligence algorithms to automatically identify and monitor structural health issues. A fully integrated approach to SHM systems demands an understanding of the sensor output relative to the structure, along with sophisticated prognostic systems that automatically draw conclusions about structural integrity issues. Ultrasonic guided wave methods allow us to examine the interaction of multimode signals within key structural components. Since they propagate relatively long distances within plate- and shell-like structures, guided waves allow inspection of greater areas with fewer sensors, making this technique attractive for a variety of applications. This dissertation describes the experimental development of automatic guided wave interpretation for three real world applications. Using the guided wave theories for idealized plates we have systematically developed techniques for identifying the mass loading of underwater limpet mines on US Navy ship hulls, characterizing type and bonding of protective coatings on large diameter pipelines, and detecting the thinning effects of corrosion on aluminum aircraft structural stringers. In each of these circumstances the signals received are too complex for interpretation without knowledge of the guided wave physics. We employ a signal processing technique called the Dynamic Wavelet Fingerprint Technique (DFWT) in order to render the guided wave mode information in two-dimensional binary images. The use of wavelets allows us to keep track of both time and scale features from the original signals. With simple image processing we have developed automatic extraction algorithms for features that correspond to the arrival times of the guided wave modes of interest for each of the applications. Due to the dispersive nature of the guided wave modes, the mode arrival times give details of the structure in the propagation path. For further

  1. Study on guided waves in semiconductor lasers

    International Nuclear Information System (INIS)

    Pudensi, M.A.A.

    1980-01-01

    In This work we studied the guided waves in semiconductor lasers. In the first part we carried on the experimental measurements on lasers with stripe nonorthogonal to the mirrors. In the second part we developed a matrix method for the study of propagation and reflection of guided waves in lasers. (author) [pt

  2. Subduction zone guided waves in Northern Chile

    Science.gov (United States)

    Garth, Thomas; Rietbrock, Andreas

    2016-04-01

    Guided wave dispersion is observed in subduction zones as high frequency energy is retained and delayed by low velocity structure in the subducting slab, while lower frequency energy is able to travel at the faster velocities associated with the surrounding mantle material. As subduction zone guided waves spend longer interacting with the low velocity structure of the slab than any other seismic phase, they have a unique capability to resolve these low velocity structures. In Northern Chile, guided wave arrivals are clearly observed on two stations in the Chilean fore-arc on permanent stations of the IPOC network. High frequency (> 5 Hz) P-wave arrivals are delayed by approximately 2 seconds compared to the low frequency (young subducting lithosphere also has the potential to carry much larger amounts of water to the mantle than has previously been appreciated.

  3. Corrosion monitoring using high-frequency guided ultrasonic waves

    Science.gov (United States)

    Fromme, Paul

    2014-02-01

    Corrosion develops due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the structural integrity. The nondestructive detection and monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, guided wave modes were generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted and the wall thickness reduced by consecutive milling of the steel structure. Further measurements were conducted using accelerated corrosion in a salt water bath and the damage severity monitored. From the measured signal change due to the wave mode interference the wall thickness reduction was monitored. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  4. Ultrasonic guided wave for monitoring corrosion of steel bar

    Science.gov (United States)

    Liu, Xi; Qin, Lei; Huang, Bosheng

    2018-01-01

    Steel corrosion of reinforced concrete structures has become a serious problem all over the word. In this paper, the work aims at monitoring steel corrosion using ultrasonic guided wave (UGW). Ultrasonic guided wave monitoring is a dynamic and non-destructive testing technology. The advantages of ultrasonic guided wave monitoring for reinforcement corrosion are real-time, online and continuous. In addition, it can judge the different stages of steel bar corrosion, which achieved non-destructive detection.

  5. Guided wave inspection and monitoring of railway track

    CSIR Research Space (South Africa)

    Loveday, PW

    2012-07-01

    Full Text Available of as one-dimensional elastic waveguides, they are natural candidates for guided wave ultrasound, which offers the potential to interrogate a large length of rail from a single position. Guided waves have been proposed as a means of detecting the axial...

  6. Obtaining thickness profiles from the tomographic inversion of guided wave data

    NARCIS (Netherlands)

    Bloom, J.G.P.; Luiten, E.A.; Volker, A.W.F.

    2009-01-01

    Guided wave tomography is a promising technique for the monitoring of corrosion over large areas. Guided waves have a wave speed mat depends in certain frequency-thickness regimes on the local thickness of the waveguide they follow. Therefore, the travel time of the guided wave over a fixed distance

  7. 3D Guided Wave Motion Analysis on Laminated Composites

    Science.gov (United States)

    Tian, Zhenhua; Leckey, Cara; Yu, Lingyu

    2013-01-01

    Ultrasonic guided waves have proved useful for structural health monitoring (SHM) and nondestructive evaluation (NDE) due to their ability to propagate long distances with less energy loss compared to bulk waves and due to their sensitivity to small defects in the structure. Analysis of actively transmitted ultrasonic signals has long been used to detect and assess damage. However, there remain many challenging tasks for guided wave based SHM due to the complexity involved with propagating guided waves, especially in the case of composite materials. The multimodal nature of the ultrasonic guided waves complicates the related damage analysis. This paper presents results from parallel 3D elastodynamic finite integration technique (EFIT) simulations used to acquire 3D wave motion in the subject laminated carbon fiber reinforced polymer composites. The acquired 3D wave motion is then analyzed by frequency-wavenumber analysis to study the wave propagation and interaction in the composite laminate. The frequency-wavenumber analysis enables the study of individual modes and visualization of mode conversion. Delamination damage has been incorporated into the EFIT model to generate "damaged" data. The potential for damage detection in laminated composites is discussed in the end.

  8. Wave-guide type photo reactor for water purification

    International Nuclear Information System (INIS)

    Nobuaki, Negishi; Feng, He; Sadao, Matsuzawa; Koji, Takeuchi; Kayo, Ohno

    2006-01-01

    A wave-guide type photo-catalytic rod that is consisting of a glass tube with transparent TiO 2 (outside) and an optical wave-guide rod (inside) was designed and examined its performance. A model of polluted water, which contains 100 ppm of toluene or phenol, was taken in a 500 ml of beaker and the performance of this unit was evaluated by the removal rate of pollutants in water under photo-irradiation. Acrylic rod with 6-mm diameter was used as the wave-guide of light. One end of acrylic rod 50 mm had a frosted part or a screw thread for increasing seep out of the light. For the glass tube with transparent TiO 2 , four kinds with different film thickness were prepared by the dip-coating method. The wave-guide type photo-catalytic rods effectively eliminated toluene and phenol and the total amount of intermediates formation was low. (authors)

  9. Mode Identification of Guided Ultrasonic Wave using Time- Frequency Algorithm

    International Nuclear Information System (INIS)

    Yoon, Byung Sik; Yang, Seung Han; Cho, Yong Sang; Kim, Yong Sik; Lee, Hee Jong

    2007-01-01

    The ultrasonic guided waves are waves whose propagation characteristics depend on structural thickness and shape such as those in plates, tubes, rods, and embedded layers. If the angle of incidence or the frequency of sound is adjusted properly, the reflected and refracted energy within the structure will constructively interfere, thereby launching the guided wave. Because these waves penetrate the entire thickness of the tube and propagate parallel to the surface, a large portion of the material can be examined from a single transducer location. The guided ultrasonic wave has various merits like above. But various kind of modes are propagating through the entire thickness, so we don't know the which mode is received. Most of applications are limited from mode selection and mode identification. So the mode identification is very important process for guided ultrasonic inspection application. In this study, various time-frequency analysis methodologies are developed and compared for mode identification tool of guided ultrasonic signal. For this study, a high power tone-burst ultrasonic system set up for the generation and receive of guided waves. And artificial notches were fabricated on the Aluminum plate for the experiment on the mode identification

  10. Guided ionization waves: Theory and experiments

    International Nuclear Information System (INIS)

    Lu, X.; Naidis, G.V.; Laroussi, M.; Ostrikov, K.

    2014-01-01

    This review focuses on one of the fundamental phenomena that occur upon application of sufficiently strong electric fields to gases, namely the formation and propagation of ionization waves–streamers. The dynamics of streamers is controlled by strongly nonlinear coupling, in localized streamer tip regions, between enhanced (due to charge separation) electric field and ionization and transport of charged species in the enhanced field. Streamers appear in nature (as initial stages of sparks and lightning, as huge structures—sprites above thunderclouds), and are also found in numerous technological applications of electrical discharges. Here we discuss the fundamental physics of the guided streamer-like structures—plasma bullets which are produced in cold atmospheric-pressure plasma jets. Plasma bullets are guided ionization waves moving in a thin column of a jet of plasma forming gases (e.g., He or Ar) expanding into ambient air. In contrast to streamers in a free (unbounded) space that propagate in a stochastic manner and often branch, guided ionization waves are repetitive and highly-reproducible and propagate along the same path—the jet axis. This property of guided streamers, in comparison with streamers in a free space, enables many advanced time-resolved experimental studies of ionization waves with nanosecond precision. In particular, experimental studies on manipulation of streamers by external electric fields and streamer interactions are critically examined. This review also introduces the basic theories and recent advances on the experimental and computational studies of guided streamers, in particular related to the propagation dynamics of ionization waves and the various parameters of relevance to plasma streamers. This knowledge is very useful to optimize the efficacy of applications of plasma streamer discharges in various fields ranging from health care and medicine to materials science and nanotechnology

  11. Dynamic Mode Tuning of Ultrasonic Guided Wave Using an Array Transducer

    International Nuclear Information System (INIS)

    Kim, Young H.; Song, Sung J.; Park, Joon S.; Kim, Jae H.; Eom, Heung S.

    2005-01-01

    Ultrasonic guided waves have been widely employed for long range inspection of structures such as plates, rods and pipes. There are numerous modes with different wave velocities, and the appropriate mode selection is one of key techniques in the application of guided waves. In the present work, phase tuning by an array transducer was applied to generate ultrasonic guided waves. For this purpose, 8-channel ultrasonic pulser/receiver and their controller which enables sequential activation of each channels with given time delay were developed. Eight transducers were fabricated in order to generate guided waves by using an array transducer. The selective tuning of wave mode can be achieved by changing the interval between elements of an array transducer

  12. SU-8 Guiding Layer for Love Wave Devices

    Directory of Open Access Journals (Sweden)

    Michael I. Newton

    2007-11-01

    Full Text Available SU-8 is a technologically important photoresist used extensively for thefabrication of microfluidics and MEMS, allowing high aspect ratio structures to beproduced. In this work we report the use of SU-8 as a Love wave sensor guiding layerwhich allows the possibility of integrating a guiding layer with flow cell during fabrication.Devices were fabricated on ST-cut quartz substrates with a single-single finger design suchthat a surface skimming bulk wave (SSBW at 97.4 MHz was excited. SU-8 polymer layerswere successively built up by spin coating and spectra recorded at each stage; showing afrequency decrease with increasing guiding layer thickness. The insertion loss andfrequency dependence as a function of guiding layer thickness was investigated over thefirst Love wave mode. Mass loading sensitivity of the resultant Love wave devices wasinvestigated by deposition of multiple gold layers. Liquid sensing using these devices wasalso demonstrated; water-glycerol mixtures were used to demonstrate sensing of density-viscosity and the physical adsorption and removal of protein was also assessed usingalbumin and fibrinogen as model proteins.

  13. Borehole guided waves in a non-Newtonian (Maxwell) fluid-saturated porous medium

    International Nuclear Information System (INIS)

    Zhi-Wen, Cui; Jin-Xia, Liu; Ke-Xie, Wang; Gui-Jin, Yao

    2010-01-01

    The property of acoustic guided waves generated in a fluid-filled borehole surrounded by a non-Newtonian (Maxwell) fluid-saturated porous formation with a permeable wall is investigated. The influence of non-Newtonian effects on acoustic guided waves such as Stoneley waves, pseudo-Rayleigh waves, flexural waves, and screw waves propagations in a fluid-filled borehole is demonstrated based on the generalized Biot–Tsiklauri model by calculating their velocity dispersion and attenuation coefficients. The corresponding acoustic waveforms illustrate their properties in time domain. The results are also compared with those based on generalized Biot's theory. The results show that the influence of non-Newtonian effect on acoustic guided wave, especially on the attenuation coefficient of guided wave propagation in borehole is noticeable. (classical areas of phenomenology)

  14. Signal Processing Effects for Ultrasonic Guided Wave Scanning of Composites

    International Nuclear Information System (INIS)

    Roth, D.J.; Cosgriff, L.M.; Martin, R.E.; Burns, E.A.; Teemer, L.

    2005-01-01

    The goal of this ongoing work is to optimize experimental variables for a guided wave scanning method to obtain the most revealing and accurate images of defect conditions in composite materials. This study focuses on signal processing effects involved in forming guided wave scan images. Signal processing is involved at two basic levels for deriving ultrasonic guided wave scan images. At the primary level, NASA GRC has developed algorithms to extract over 30 parameters from the multimode signal and its power spectral density. At the secondary level, there are many variables for which values must be chosen that affect actual computation of these parameters. In this study, a ceramic matrix composite sample having a delamination is characterized using the ultrasonic guided wave scan method. Energy balance and decay rate parameters of the guided wave at each scan location are calculated to form images. These images are compared with ultrasonic c-scan and thermography images. The effect of the time portion of the waveform processed on image quality is assessed by comparing with images formed using the total waveform acquired

  15. Optimal synthesis of tunable elastic wave-guides

    DEFF Research Database (Denmark)

    Evgrafov, Anton; Rupp, Cory J.; Dunn, Martin L.

    2008-01-01

    Topology optimization, or control in the coefficients of partial differential equations, has been successfully utilized for designing wave-guides with precisely tailored functionalities. For many applications it would be desirable to have the possibility of drastically altering the wave...

  16. Investigation of guided waves propagation in pipe buried in sand

    International Nuclear Information System (INIS)

    Leinov, Eli; Cawley, Peter; Lowe, Michael J.S.

    2014-01-01

    The inspection of pipelines by guided wave testing is a well-established method for the detection of corrosion defects in pipelines, and is currently used routinely in a variety of industries, e.g. petrochemical and energy. When the method is applied to pipes buried in soil, test ranges tend to be significantly compromised because of attenuation of the waves caused by energy radiating into the soil. Moreover, the variability of soil conditions dictates different attenuation characteristics, which in-turn results in different, unpredictable, test ranges. We investigate experimentally the propagation and attenuation characteristics of guided waves in pipes buried in fine sand using a well characterized full scale experimental apparatus. The apparatus consists of an 8 inch-diameter, 5.6-meters long steel pipe embedded over 3 meters of its length in a rectangular container filled with fine sand, and an air-bladder for the application of overburden pressure. Longitudinal and torsional guided waves are excited in the pipe and recorded using a transducer ring (Guided Ultrasonics Ltd). Acoustic properties of the sand are measured independently in-situ and used to make model predictions of wave behavior in the buried pipe. We present the methodology and the systematic measurements of the guided waves under a range of conditions, including loose and compacted sand. It is found that the application of overburden pressure modifies the compaction of the sand and increases the attenuation, and that the measurement of the acoustic properties of sand allows model prediction of the attenuation of guided waves in buried pipes with a high level of confidence

  17. Recent Development in Ultrasonic Guided Waves for Aircraft and Composite Materials

    International Nuclear Information System (INIS)

    Rose, Joseph L.

    2009-01-01

    Emphasis in the paper is placed on describing guided wave successes and challenges for applications in aircraft and composite materials inspection. Guided wave imaging methods discussed includes line of sight, tomography, guided wave C-scan, phased array, and ultrasonic vibration methods. Applications outlined encircles lap splice, bonded repair patch, fuselage corrosion, water loaded structures, delamination, and ice detection and de-icing of various structures.

  18. Mechanical guided waves for fuel level monitoring system

    Directory of Open Access Journals (Sweden)

    Tiberiu Adrian SALAORU

    2017-09-01

    Full Text Available The mechanical guided waves have a wide range of applications in many types of equipment and devices. The fuel level is an important parameter which needs to be monitored for a vehicle which can be a space vehicle, an aircraft or any other. For this purpose mechanical guided waves can be used as they have several major advantages over any other methods. There are a wide ultrasonic sensors used for this purpose but in the most cases the mechanical waves are traveling through air or fuel for measuring their level. In general the wave propagation through a single media at a time is utilized. The method described in this work uses the propagation of the mechanical guided waves through two different media in the same time. The propagating media is the container wall and the other is the fuel. One of the advantages of this method is the reduction of the measurement errors when the incident angle to the fuel level surface is different from 90 degree. These situations could occur when the fuel tank is tilted or when the fuel surface is not flat. This measurement method will not be affected by these conditions.

  19. Guided wave crack detection and size estimation in stiffened structures

    Science.gov (United States)

    Bhuiyan, Md Yeasin; Faisal Haider, Mohammad; Poddar, Banibrata; Giurgiutiu, Victor

    2018-03-01

    Structural health monitoring (SHM) and nondestructive evaluation (NDE) deals with the nondestructive inspection of defects, corrosion, leaks in engineering structures by using ultrasonic guided waves. In the past, simplistic structures were often considered for analyzing the guided wave interaction with the defects. In this study, we focused on more realistic and relatively complicated structure for detecting any defect by using a non-contact sensing approach. A plate with a stiffener was considered for analyzing the guided wave interactions. Piezoelectric wafer active transducers were used to produce excitation in the structures. The excitation generated the multimodal guided waves (aka Lamb waves) that propagate in the plate with stiffener. The presence of stiffener in the plate generated scattered waves. The direct wave and the additional scattered waves from the stiffener were experimentally recorded and studied. These waves were considered as a pristine case in this research. A fine horizontal semi-circular crack was manufactured by using electric discharge machining in the same stiffener. The presence of crack in the stiffener produces additional scattered waves as well as trapped waves. These scattered waves and trapped wave modes from the cracked stiffener were experimentally measured by using a scanning laser Doppler vibrometer (SLDV). These waves were analyzed and compared with that from the pristine case. The analyses suggested that both size and shape of the horizontal crack may be predicted from the pattern of the scattered waves. Different features (reflection, transmission, and mode-conversion) of the scattered wave signals are analyzed. We found direct transmission feature for incident A0 wave mode and modeconversion feature for incident S0 mode are most suitable for detecting the crack in the stiffener. The reflection feature may give a better idea of sizing the crack.

  20. Preliminary design of high-power wave-guide/transmission system

    Indian Academy of Sciences (India)

    ... CW klystron followed by wave-guide filter, dual directional coupler, high-power circulator, three 3 dB magic TEE power dividers to split the main channel into four equal channels of 250 kW each. Each individual channel has dual directional couplers, flexible wave-guide sections and high power ceramic vacuum window.

  1. A Study on Elastic Guided Wave Modal Characteristics in Multi-Layered Structures

    International Nuclear Information System (INIS)

    Cho, Youn Ho; Lee, Chong Myoung

    2008-01-01

    In this study, we have developed a program which can calculate phase and group velocities, attenuation and wave structures of each mode in multi-layered plates. The wave structures of each mode are obtained, varying material properties and number of layers. The key in the success of guided wave NDE is how to optimize the mode selection scheme by minimizing energy loss when a structure is in contact with liquid. In this study, the normalized out-of-plane displacements at the surface of a free plate are used to predict the variation of modal attenuation and verily the correlation between attenuation and wave structure. It turns out that the guided wave attenuation can be efficiently obtain from the out-of-plane displacement variation of a free wave guide alleviating such mathematical difficulties in extracting complex roots for the eigenvalue problem of a liquid loaded wave guide. Through this study, the concert to optimize guided wave mode selection is accomplished to enhance sensitivity and efficiency in nondestructive evaluation for multi-layered structures.

  2. Structural damage detection using deep learning of ultrasonic guided waves

    Science.gov (United States)

    Melville, Joseph; Alguri, K. Supreet; Deemer, Chris; Harley, Joel B.

    2018-04-01

    Structural health monitoring using ultrasonic guided waves relies on accurate interpretation of guided wave propagation to distinguish damage state indicators. However, traditional physics based models do not provide an accurate representation, and classic data driven techniques, such as a support vector machine, are too simplistic to capture the complex nature of ultrasonic guide waves. To address this challenge, this paper uses a deep learning interpretation of ultrasonic guided waves to achieve fast, accurate, and automated structural damaged detection. To achieve this, full wavefield scans of thin metal plates are used, half from the undamaged state and half from the damaged state. This data is used to train our deep network to predict the damage state of a plate with 99.98% accuracy given signals from just 10 spatial locations on the plate, as compared to that of a support vector machine (SVM), which achieved a 62% accuracy.

  3. Guided Seismic Waves: Possible Diagnostics for Hot Plumes in the Mantle

    Science.gov (United States)

    Evans, J. R.; Julian, B. R.; Foulger, G. R.

    2005-12-01

    Seismic waves potentially provide by far the highest resolution view of the three-dimensional structure of the mantle, and the hope of detecting wave-speed anomalies caused by hot or compositionally buoyant mantle plumes has been a major incentive to the development of tomographic seismic techniques. Seismic tomography is limited, however, by the uneven geographical distribution of earthquakes and seismometers, which can produce artificial tomographic wave-speed anomalies that are difficult to distinguish from real structures in the mantle. An alternate approach may be possible, because hot plumes and possibly some compositional upwellings would have low seismic-wave speeds and would act as efficient waveguides over great depth ranges in the mantle. Plume-guided waves would be little affected by bends or other geometric complexities in the waveguides (analogously to French horns and fiber-optic cables), and their dispersion would make them distinctive on seismograms and would provide information on the size and structure of the waveguide. The main unanswered question is whether guided waves in plumes could be excited sufficiently to be observable. Earthquakes do not occur in the deep mantle, but at least two other possible sources of excitation can be imagined: (1) shallow earthquakes at or near plume-fed hotspots; and (2) coupling of plume-guided waves to seismic body waves near the bottom of the mantle. In the first case, downward-traveling guided waves transformed to seismic body waves at the bottom of the waveguide would have to be detected at teleseismic distances. In the second case, upward-traveling guided waves generated by teleseismic body waves would be detected on seismometers at hotspots. Qualitative reasoning based on considerations of reciprocity suggests that the signals in these two situations should be similar in size and appearance. The focusing of seismic core phases at caustics would amplify plume waves excited by either mechanism (1) or (2) at

  4. A Study on the Guided Wave Mode Conversion using Self-calibrating Technique

    International Nuclear Information System (INIS)

    Park, Jung Chul; Cho, Youn Ho

    2000-01-01

    The guided wave mode conversion phenomena were investigated for the NDE of a plate-like structure with thickness variation. The ratios of reflection and transmission (R/T) were measured via the self-calibrating procedure which allows us to obtain experimental guided wave data in a more reliable way regardless of the coupling uncertainty between transducer and specimen. The results on R/T could be used to determine the thickness reduction of the structure. It was shown that not only the incident modes but also the converted ones need to be considered in the self-calibrating guided wave inspection to extract a reasonable correlation between experimental data and the thickness variation. Through this study, the potential of guided wave inspection as a quantitative NDE technique was explored based on the combined concept of self-calibration and multi-mode conversion in guided wave scattering problems

  5. Guided wave and damage detection in composite laminates using different fiber optic sensors.

    Science.gov (United States)

    Li, Fucai; Murayama, Hideaki; Kageyama, Kazuro; Shirai, Takehiro

    2009-01-01

    Guided wave detection using different fiber optic sensors and their applications in damage detection for composite laminates were systematically investigated and compared in this paper. Two types of fiber optic sensors, namely fiber Bragg gratings (FBG) and Doppler effect-based fiber optic (FOD) sensors, were addressed and guided wave detection systems were constructed for both types. Guided waves generated by a piezoelectric transducer were propagated through a quasi-isotropic carbon fiber reinforced plastic (CFRP) laminate and acquired by these fiber optic sensors. Characteristics of these fiber optic sensors in ultrasonic guided wave detection were systematically compared. Results demonstrated that both the FBG and FOD sensors can be applied in guided wave and damage detection for the CFRP laminates. The signal-to-noise ratio (SNR) of guided wave signal captured by an FOD sensor is relatively high in comparison with that of the FBG sensor because of their different physical principles in ultrasonic detection. Further, the FOD sensor is sensitive to the damage-induced fundamental shear horizontal (SH(0)) guided wave that, however, cannot be detected by using the FBG sensor, because the FOD sensor is omnidirectional in ultrasound detection and, in contrast, the FBG sensor is severely direction dependent.

  6. Ultrasonic Guided Waves in Piezoelectric Layered Composite with Different Interfacial Properties

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2011-01-01

    Full Text Available Combining the propagation model of guided waves in a multilayered piezoelectric composite with the interfacial model of rigid, slip, and weak interfaces, the generalized dispersion characteristic equations of guided waves propagating in a piezoelectric layered composite with different interfacial properties are derived. The effects of the slip, weak, and delamination interfaces in different depths on the dispersion properties of the lowest-order mode ultrasonic guided wave are analyzed. The theory would be used to characterize the interfacial properties of piezoelectric layered composite nondestructively.

  7. High frequency guided wave propagation in monocrystalline silicon wafers

    Science.gov (United States)

    Pizzolato, Marco; Masserey, Bernard; Robyr, Jean-Luc; Fromme, Paul

    2017-04-01

    Monocrystalline silicon wafers are widely used in the photovoltaic industry for solar panels with high conversion efficiency. The cutting process can introduce micro-cracks in the thin wafers and lead to varying thickness. High frequency guided ultrasonic waves are considered for the structural monitoring of the wafers. The anisotropy of the monocrystalline silicon leads to variations of the wave characteristics, depending on the propagation direction relative to the crystal orientation. Full three-dimensional Finite Element simulations of the guided wave propagation were conducted to visualize and quantify these effects for a line source. The phase velocity (slowness) and skew angle of the two fundamental Lamb wave modes (first anti-symmetric mode A0 and first symmetric mode S0) for varying propagation directions relative to the crystal orientation were measured experimentally. Selective mode excitation was achieved using a contact piezoelectric transducer with a custom-made wedge and holder to achieve a controlled contact pressure. The out-of-plane component of the guided wave propagation was measured using a noncontact laser interferometer. Good agreement was found with the simulation results and theoretical predictions based on nominal material properties of the silicon wafer.

  8. Guided-wave tomography imaging plate defects by laser-based ultrasonic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jun Pil; Lim, Ju Young; Cho, Youn Ho [School of Mechanical Engineering, Pusan National University, Pusan (Korea, Republic of)

    2014-12-15

    Contact-guided-wave tests are impractical for investigating specimens with limited accessibility and rough surfaces or complex geometric features. A non-contact setup with a laser-ultrasonic transmitter and receiver is quite attractive for guided-wave inspection. In the present work, we developed a non-contact guided-wave tomography technique using the laser-ultrasonic technique in a plate. A method for Lamb-wave generation and detection in an aluminum plate with a pulsed laser-ultrasonic transmitter and Michelson-interferometer receiver was developed. The defect shape and area in the images obtained using laser scanning, showed good agreement with the actual defect. The proposed approach can be used as a non-contact online inspection and monitoring technique.

  9. Guided Circumferential Waves in Layered Poroelastic Cylinders

    Directory of Open Access Journals (Sweden)

    Shah S.A.

    2016-12-01

    Full Text Available The present paper investigates the propagation of time harmonic circumferential waves in a two-dimensional hollow poroelastic cylinder with an inner shaft (shaft-bearing assembly. The hollow poroelastic cylinder and inner shaft are assumed to be infinite in axial direction. The outer surface of the cylinder is stress free and at the interface, between the inner shaft and the outer cylinder, it is assumed to be free sliding and the interfacial shear stresses are zero, also the normal stress and radial displacements are continuous. The frequency equation of guided circumferential waves for a permeable and an impermeable surface is obtained. When the angular wave number vanish the frequency equation of guided circumferential waves for a permeable and an impermeable surface degenerates and the dilatational and shear waves are uncoupled. Shear waves are independent of the nature of surface. The frequency equation of a permeable and an impermeable surface for bore-piston assembly is obtained as a particular case of the model under consideration when the outer radius of the hollow poroelastic cylinder tends to infinity. Results of previous studies are obtained as a particular case of the present study. Nondimensional frequency as a function of wave number is presented graphically for two types of models and discussed. Numerical results show that, in general, the first modes are linear for permeable and impermeable surfaces and the frequency of a permeable surface is more than that of an impermeable surface.

  10. Guided wave propagation as a measure of axial loads in rails

    CSIR Research Space (South Africa)

    Loveday, PW

    2010-03-01

    Full Text Available Guided wave propagation has been proposed as a means to monitor the axial loads in continuously welded railway rails although no practical system has been developed. In this paper, the influence of axial load on the guided wave propagation...

  11. Experimental and numerical study of guided wave propagation in a thin metamaterial plate

    International Nuclear Information System (INIS)

    Zhu, R.; Huang, G.L.; Huang, H.H.; Sun, C.T.

    2011-01-01

    In this Letter, both in-plane and out-of-plane guided waves in a thin plate with local resonators are studied numerically and experimentally. Through the numerical simulation, a new metamaterial plate design is achieved for a low-frequency bandgap in both in-plane and out-of-plane guided waves. Experiments were conducted to validate the numerical design. In the experiment, piezoelectric transducers were used to generate and receive guided wave signals. The results show that the numerical predictions are in very good agreement with the experimental measurements. Specifically, the connection between the local resonance in the thin plate and its wave attenuation mechanism was discussed. -- Highlights: → Both in-plane and out-of-plane guided waves in a thin plate with local resonators are studied numerically and experimentally. → A new metamaterial plate design is achieved for a low-frequency bandgap in both in-plane and out-of-plane guided waves. → Experiments were conducted to validate the numerical design. → The connection between the local resonance in the thin plate and its wave attenuation mechanism was investigated.

  12. Mode Identification of Guided Waves in a Curved Pipe

    International Nuclear Information System (INIS)

    Eom, Heung-Seop; Lim, Sa-Hoe; Kim, Jae-Hee

    2006-01-01

    Ultrasonic guided wave technique has been widely employed for the long range inspection of structures such as plates and pipes because it has the ability to propagate over long distances. In the nuclear power field, there recently appeared a need for on-line nondestructive monitoring which can be employed during the operation stage of power plants. As ultrasonic guided waves have shown promise for on-line monitoring of power plants, a lot of work has been done in the institutes and universities on this matter. In the case of detecting defects in simple straight pipes, the dispersion curves obtained from the modeling processes are closely akin to the experimental results. But the modeling of wave propagation in some structures, such as an elbow region of a pipe, is not practical due to elbow echo and unpredictable interface conditions. This paper presents an experimental approach to identify the most dominant modes of guided waves in a curved region of a pipe, which is a key factor in detecting flaws in a pipe

  13. Guided wave testing for touch point corrosion

    International Nuclear Information System (INIS)

    Alleyne, David

    2012-01-01

    Guided wave testing (GWT) is established in the petrochemical and related industries, primarily for the detection of corrosion flaws. Touch point corrosion at support positions in pipe-work has become a significant problem within many operating gas, chemical and petro-chemical plants world-wide, particularly as a high proportion of these plants have been operational for many decades. This article demonstrates how GWT using guided waves sent axially along the pipe can be performed for the detection and accurate classification of touchpoint corrosion. The major advantage of GWT methods for the detection of touch point corrosion is its ability to examine several support positions from a single easy to access transducer position. The strategy is then to prioritize or rank the condition of the pipe at the supports by removing those with negligible wall loss from scheduling for further inspection. Guided waves are accurate at detecting and classifying corrosion patches at support positions, but deep pits within such patches are more difficult to accurately identify. Examples using data from routine inspection testing are used to support the development of the methods and testing approaches presented. Recent developments of the interpretation methods, testing procedures and calibration methods have significantly enhanced the capabilities of GWT for this important application.

  14. Modelling guided waves in the Alaskan-Aleutian subduction zone

    Science.gov (United States)

    Coulson, Sophie; Garth, Thomas; Reitbrock, Andreas

    2016-04-01

    Subduction zone guided wave arrivals from intermediate depth earthquakes (70-300 km depth) have a huge potential to tell us about the velocity structure of the subducting oceanic crust as it dehydrates at these depths. We see guided waves as the oceanic crust has a slower seismic velocity than the surrounding material, and so high frequency energy is retained and delayed in the crustal material. Lower frequency energy is not retained in this crustal waveguide and so travels at faster velocities of the surrounding material. This gives a unique observation at the surface with low frequency energy arriving before the higher frequencies. We constrain this guided wave dispersion by comparing the waveforms recorded in real subduction zones with simulated waveforms, produced using finite difference full waveform modelling techniques. This method has been used to show that hydrated minerals in the oceanic crust persist to much greater depths than accepted thermal petrological subduction zone models would suggest in Northern Japan (Garth & Rietbrock, 2014a), and South America (Garth & Rietbrock, in prep). These observations also suggest that the subducting oceanic mantle may be highly hydrated at intermediate depth by dipping normal faults (Garth & Rietbrock 2014b). We use this guided wave analysis technique to constrain the velocity structure of the down going ~45 Ma Pacific plate beneath Alaska. Dispersion analysis is primarily carried out on guided wave arrivals recorded on the Alaskan regional seismic network. Earthquake locations from global earthquake catalogues (ISC and PDE) and regional earthquake locations from the AEIC (Alaskan Earthquake Information Centre) catalogue are used to constrain the slab geometry and to identify potentially dispersive events. Dispersed arrivals are seen at stations close to the trench, with high frequency (>2 Hz) arrivals delayed by 2 - 4 seconds. This dispersion is analysed to constrain the velocity and width of the proposed waveguide

  15. Wireless guided wave and impedance measurement using laser and piezoelectric transducers

    International Nuclear Information System (INIS)

    Park, Hyun-Jun; Sohn, Hoon; Yun, Chung-Bang; Chung, Joseph; Lee, Michael M S

    2012-01-01

    Guided-wave- and impedance-based structural health monitoring (SHM) techniques have gained much attention due to their high sensitivity to small defects. One of the popular devices commonly used for guided wave and impedance measurements is a lead zirconate titanate (PZT) transducer. This study proposes a new wireless scheme where the power and data required for PZT excitation and sensing are transmitted via laser. First, a modulated laser beam is wirelessly transmitted to the photodiode connected to a PZT on a structure. Then, the photodiode converts the laser light into an electric signal, and it is applied to the PZT for excitation. The corresponding responses, impedance at the same PZT or guided waves at another PZT, are measured, re-converted into laser light, and wirelessly transmitted back to the other photodiode located in the data interrogator for signal processing. The feasibility of the proposed wireless guided wave and impedance measurement schemes has been examined through circuit analyses and experimentally investigated in a laboratory setup. (paper)

  16. Numerical studies of nonlinear ultrasonic guided waves in uniform waveguides with arbitrary cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Peng; Fan, Zheng, E-mail: ZFAN@ntu.edu.sg [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Zhou, Yu [Advanced Remanufacturing and Technology Center (ARTC), 3 Clean Tech Loop, CleanTech Two, Singapore 637143 (Singapore)

    2016-07-15

    Nonlinear guided waves have been investigated widely in simple geometries, such as plates, pipe and shells, where analytical solutions have been developed. This paper extends the application of nonlinear guided waves to waveguides with arbitrary cross sections. The criteria for the existence of nonlinear guided waves were summarized based on the finite deformation theory and nonlinear material properties. Numerical models were developed for the analysis of nonlinear guided waves in complex geometries, including nonlinear Semi-Analytical Finite Element (SAFE) method to identify internal resonant modes in complex waveguides, and Finite Element (FE) models to simulate the nonlinear wave propagation at resonant frequencies. Two examples, an aluminum plate and a steel rectangular bar, were studied using the proposed numerical model, demonstrating the existence of nonlinear guided waves in such structures and the energy transfer from primary to secondary modes.

  17. Guided Waves in Structures for SHM The Time - domain Spectral Element Method

    CERN Document Server

    Ostachowicz, Wieslaw; Krawczuk, Marek; Zak, Arkadiusz

    2011-01-01

    Presents the state of the art in the modelling, analysis and experimental investigation of elastic wave propagation using a technique of rapidly increasing interest and development Addressing an important issue in the field of guided-wave-based damage identification and structural health monitoring,Guided Waves in Structures for SHM presents the modelling, analysis and experimental investigation of elastic wave propagation in engineering structures made of isotropic or composite materials. The authors begin by summarising present-day knowledge on elastic wave propagation in solids, focusing on

  18. A Study on Techniques for Focusing Circumferential Array Guided Waves for Long Range Inspection of Pipes

    International Nuclear Information System (INIS)

    Kang, To; Kim, Hak Joon; Song, Sung Jin; Cho, Young Do; Lee, Dong Hoon; Cho, Hyun Joon

    2009-01-01

    Ultrasonic guided waves have been widely utilized for long range inspection of structures. Especially, development of array guided waves techniques and its application for long range gas pipe lines(length of from hundreds meters to few km) were getting increased. In this study, focusing algorithm for array guided waves was developed in order to improve long range inspectability and accuracy of the array guided waves techniques for long range inspection of gas pipes, and performance of the developed techniques was verified by experiments using the developed array guided wave system. As a result, S/N ratio of array guided wave signals obtained with the focusing algorithm was increased higher than that of signals without focusing algorithm

  19. Engineering progress of CNS concept in Hanaro

    International Nuclear Information System (INIS)

    Choi, C.O.; Park, K.N.; Park, S.H.

    1997-01-01

    The Korea Atomic Energy research Institute (KAERI) strives to provide utilizing facilities on and around the Hanaro reactor in order to activate advanced researches by neutron application. As one of the facilities to be installed, the conceptual design work of CNS was started in 1996 with a project schedule of 5 years so that its installation work can be finished by the year 2000. And the major engineering targets of this CNS facility are established for a minimum physical interference with the present facilities of the Hanaro, a reach-out of very-high-gain factors in the cold neutron flux, a simplicity of the maintenance of the facility, and a safety in the operation of the facility as well as the reactor. For the conceptual design of Hanaro CNS, the experience of utilization and production of cold neutron at WWR-M reactor Gatchina, Russia has been used with that of elaborations for PIK reactor in design for neutron guide systems and instruments. (author)

  20. Experiments of Long-range Inspection Method in Straight Pipes using Ultrasonic Guided Waves

    International Nuclear Information System (INIS)

    Eom, H. S.; Lim, S. H.; Kim, J. H.; Joo, Y.S.

    2006-02-01

    This report describes experimental results of a long-range inspection method of pipes using ultrasonic guided waves. In chapter 2, theory of guided wave was reviewed. In chapter 3, equipment and procedures which were used in the experiments were described. Detailed specifications of the specimens described in chapter 4. In chapter 5, we analyzed characteristics of guided wave signals according to shapes and sizes of defects and presents results of various signal processing methods

  1. Third harmonic generation of shear horizontal guided waves propagation in plate-like structures

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei Bin [School of Aerospace Engineering, Xiamen University, Xiamen (China); Xu, Chun Guang [School of Mechanical Engineering, Beijing Institute of Technology, Beijing (China); Cho, Youn Ho [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of)

    2016-04-15

    The use of nonlinear ultrasonics wave has been accepted as a promising tool for monitoring material states related to microstructural changes, as it has improved sensitivity compared to conventional non-destructive testing approaches. In this paper, third harmonic generation of shear horizontal guided waves propagating in an isotropic plate is investigated using the perturbation method and modal analysis approach. An experimental procedure is proposed to detect the third harmonics of shear horizontal guided waves by electromagnetic transducers. The strongly nonlinear response of shear horizontal guided waves is measured. The accumulative growth of relative acoustic nonlinear response with an increase of propagation distance is detected in this investigation. The experimental results agree with the theoretical prediction, and thus providing another indication of the feasibility of using higher harmonic generation of electromagnetic shear horizontal guided waves for material characterization.

  2. Guided-wave tomographic imaging of plate defects by laser-based ultrasonic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Park, Junpil; Lim, Ju Young; Cho, Youn Ho [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of)

    2016-12-15

    Contact-guided-wave tests are impractical for investigating specimens with limited accessibility and rough surfaces or complex geometric features. A non-contact setup with a laser-ultrasonic transmitter and receiver is quite attractive for guided-wave inspection. In the present work, we developed a non-contact guided-wave tomography technique using the laser-ultrasonic technique in a plate. A method for Lamb-wave generation and detection in an aluminum plate with a pulsed laser-ultrasonic transmitter and Michelson-interferometer receiver was developed. The defect shape and area in the images obtained using laser scanning, showed good agreement with the actual defect. The proposed approach can be used as a non-contact online inspection and monitoring technique.

  3. Noncontact measurement of guided ultrasonic wave scattering for fatigue crack characterization

    Science.gov (United States)

    Fromme, P.

    2013-04-01

    Fatigue cracks can develop in aerospace structures at locations of stress concentration such as fasteners. For the safe operation of the aircraft fatigue cracks need to be detected before reaching a critical length. Guided ultrasonic waves offer an efficient method for the detection and characterization of fatigue cracks in large aerospace structures. Noncontact excitation of guided waves was achieved using electromagnetic acoustic transducers (EMAT). The transducers were developed for the specific excitation of the A0 Lamb mode. Based on the induced eddy currents in the plate a simple theoretical model was developed and reasonably good agreement with the measurements was achieved. However, the detection sensitivity for fatigue cracks depends on the location and orientation of the crack relative to the measurement locations. Crack-like defects have a directionality pattern of the scattered field depending on the angle of the incident wave relative to the defect orientation and on the ratio of the characteristic defect size to wavelength. The detailed angular dependency of the guided wave field scattered at crack-like defects in plate structures has been measured using a noncontact laser interferometer. Good agreement with 3D Finite Element simulation predictions was achieved for machined part-through and through-thickness notches. The amplitude of the scattered wave was quantified for a variation of angle of the incident wave relative to the defect orientation and the defect depth. These results provide the basis for the defect characterization in aerospace structures using guided wave sensors.

  4. Monitoring of corrosion damage using high-frequency guided ultrasonic waves

    Science.gov (United States)

    Chew, D.; Fromme, P.

    2015-03-01

    Due to adverse environmental conditions corrosion can develop during the life cycle of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the integrity and load bearing capacity of the structure. Structural health monitoring of corrosion damage in difficult to access areas can in principle be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, high frequency guided wave modes were generated that penetrate through the complete thickness of the structure. Wall thickness reduction was induced using accelerated corrosion in a salt water bath. The corrosion damage was monitored based on the effect on the wave propagation and interference of the different modes. The change in the wave interference was quantified based on an analysis in the frequency domain (Fourier transform) and was found to match well with theoretical predictions for the wall thickness loss. High frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  5. Wall thinning inspection technique for large-diameter piping using guided wave

    International Nuclear Information System (INIS)

    Miki, Masahiro; Nagashima, Yoshiaki; Endou, Masao; Kodaira, Kojiro; Maniwa, Kazuhiko

    2009-01-01

    Guided wave inspection technique is effective for detecting defects like corrosion in piping, because it can perform long range inspection. It is possible to expect this inspection as a method that leads to the decrease of the inspection process and its cost, because the incidental work can be reduced. Especially, the contraction effect of the inspection work is extensive in large-diameter piping inspection. In this paper, we introduce the guided wave inspection system to large-diameter piping. The feature is a guided wave sensor that can freely transform according to the curvature of inspection object, and portable inspection equipment. We discuss the result of detection examination for artificial wall-thinning in large-diameter piping using this system. (author)

  6. Effect of pressurization on helical guided wave energy velocity in fluid-filled pipes.

    Science.gov (United States)

    Dubuc, Brennan; Ebrahimkhanlou, Arvin; Salamone, Salvatore

    2017-03-01

    The effect of pressurization stresses on helical guided waves in a thin-walled fluid-filled pipe is studied by modeling leaky Lamb waves in a stressed plate bordered by fluid. Fluid pressurization produces hoop and longitudinal stresses in a thin-walled pipe, which corresponds to biaxial in-plane stress in a plate waveguide model. The effect of stress on guided wave propagation is accounted for through nonlinear elasticity and finite deformation theory. Emphasis is placed on the stress dependence of the energy velocity of the guided wave modes. For this purpose, an expression for the energy velocity of leaky Lamb waves in a stressed plate is derived. Theoretical results are presented for the mode, frequency, and directional dependent variations in energy velocity with respect to stress. An experimental setup is designed for measuring variations in helical wave energy velocity in a thin-walled water-filled steel pipe at different levels of pressure. Good agreement is achieved between the experimental variations in energy velocity for the helical guided waves and the theoretical leaky Lamb wave solutions. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Guided Acoustic and Optical Waves in Silicon-on-Insulator for Brillouin Scattering and Optomechanics

    Science.gov (United States)

    2016-08-01

    APL PHOTONICS 1, 071301 (2016) Guided acoustic and optical waves in silicon-on- insulator for Brillouin scattering and optomechanics Christopher J...is possible to simultaneously guide optical and acoustic waves in the technologically important silicon on insulator (SOI) material system. Thin...high sound velocity — makes guiding acoustic waves difficult, motivating the use of soft chalcogenide glasses and partial or complete releases (removal

  8. Prediction and near-field observation of skull-guided acoustic waves.

    Science.gov (United States)

    Estrada, Héctor; Rebling, Johannes; Razansky, Daniel

    2017-06-21

    Ultrasound waves propagating in water or soft biological tissue are strongly reflected when encountering the skull, which limits the use of ultrasound-based techniques in transcranial imaging and therapeutic applications. Current knowledge on the acoustic properties of the cranial bone is restricted to far-field observations, leaving its near-field unexplored. We report on the existence of skull-guided acoustic waves, which was herein confirmed by near-field measurements of optoacoustically-induced responses in ex-vivo murine skulls immersed in water. Dispersion of the guided waves was found to reasonably agree with the prediction of a multilayered flat plate model. We observed a skull-guided wave propagation over a lateral distance of at least 3 mm, with a half-decay length in the direction perpendicular to the skull ranging from 35 to 300 μm at 6 and 0.5 MHz, respectively. Propagation losses are mostly attributed to the heterogenous acoustic properties of the skull. It is generally anticipated that our findings may facilitate and broaden the application of ultrasound-mediated techniques in brain diagnostics and therapy.

  9. Prediction and near-field observation of skull-guided acoustic waves

    Science.gov (United States)

    Estrada, Héctor; Rebling, Johannes; Razansky, Daniel

    2017-06-01

    Ultrasound waves propagating in water or soft biological tissue are strongly reflected when encountering the skull, which limits the use of ultrasound-based techniques in transcranial imaging and therapeutic applications. Current knowledge on the acoustic properties of the cranial bone is restricted to far-field observations, leaving its near-field unexplored. We report on the existence of skull-guided acoustic waves, which was herein confirmed by near-field measurements of optoacoustically-induced responses in ex-vivo murine skulls immersed in water. Dispersion of the guided waves was found to reasonably agree with the prediction of a multilayered flat plate model. We observed a skull-guided wave propagation over a lateral distance of at least 3 mm, with a half-decay length in the direction perpendicular to the skull ranging from 35 to 300 μm at 6 and 0.5 MHz, respectively. Propagation losses are mostly attributed to the heterogenous acoustic properties of the skull. It is generally anticipated that our findings may facilitate and broaden the application of ultrasound-mediated techniques in brain diagnostics and therapy.

  10. Study of guided wave transmission through complex junction in sodium cooled reactor

    International Nuclear Information System (INIS)

    Elie, Q.; Le Bourdais, F.; Jezzine, K.; Baronian, V.

    2015-01-01

    Ultrasonic guided wave techniques are seen as suitable candidates for the inspection of welded structures within sodium cooled fast reactors (SFR), as the long range propagation of guided waves without amplitude attenuation can overcome the accessibility problem due to the liquid sodium. In the context of the development of the Advanced Sodium Test Reactor for Industrial Demonstration (ASTRID), the French Atomic Commission (CEA) investigates non-destructive testing techniques based on guided wave propagation. In this work, guided wave NDT methods are applied to control the integrity of welds located in a junction-type structure welded to the main vessel. The method presented in this paper is based on the analysis of scattering matrices peculiar to each expected defect, and takes advantage of the multi-modal and dispersive characteristics of guided wave generation. In a simulation study, an algorithm developed using the CIVA software is presented. It permits selecting appropriate incident modes to optimize detection and identification of expected flawed configurations. In the second part of this paper, experimental results corresponding to a first validation step of the simulation results are presented. The goal of the experiments is to estimate the effectiveness of the incident mode selection in plates. The results show good agreement between experience and simulation. (authors)

  11. Scattering of guided waves at delaminations in composite plates.

    Science.gov (United States)

    Murat, Bibi I S; Khalili, Pouyan; Fromme, Paul

    2016-06-01

    Carbon fiber laminate composites are increasingly employed for aerospace structures as they offer advantages, such as a good strength to weight ratio. However, impact during the operation and servicing of the aircraft can lead to barely visible and difficult to detect damage. Depending on the severity of the impact, fiber and matrix breakage or delaminations can occur, reducing the load carrying capacity of the structure. Efficient nondestructive testing and structural health monitoring of composite panels can be achieved using guided ultrasonic waves propagating along the structure. The scattering of the A0 Lamb wave mode at delaminations was investigated using a full three-dimensional (3D) finite element (FE) analysis. The influence of the delamination geometry (size and depth) was systematically evaluated. In addition to the depth dependency, a significant influence of the delamination width due to sideways reflection of the guided waves within the delamination area was found. Mixed-mode defects were simulated using a combined model of delamination with localized material degradation. The guided wave scattering at cross-ply composite plates with impact damage was measured experimentally using a non-contact laser interferometer. Good agreement between experiments and FE predictions using the mixed-mode model for an approximation of the impact damage was found.

  12. Investigation on ultrasonic guided waves propagation in elbow pipe

    International Nuclear Information System (INIS)

    Qi, Minxin; Zhou, Shaoping; Ni, Jing; Li, Yong

    2016-01-01

    Pipeline plays an indispensable role in process industries, whose structural integrity is of great significance for the safe production. In this paper, the axial crack-like defects in 90° elbows are inspected by using the T (0, 1) mode guided waves. The detection sensitivity for different defect locations is firstly investigated by guided waves experimentally. The propagation of guided waves in the bent pipe is then simulated by using finite element method. The results show that the rates of T (0, 1) mode passing through elbow correlate strongly with the excitation frequency. Less mode conversion is generated at the frequency of 38 kHz when passing through the elbow, while most of energy converted into F (1, 2) mode at the frequency of 75 kHz. The crack in different locations of the elbow can affect the rates of mode conversion. It can be found that the crack in the middle of the elbow inhibits mode conversion and shares the highest detection sensitivity, while the crack in the extrados of elbow causes more mode conversion.

  13. The study on nondestructive evaluation for a tubular structure by the lamb-type guided wave wedge

    International Nuclear Information System (INIS)

    Cho, Yun Ho; Park, Jung Chul

    1998-01-01

    The study on the cylindrical guided wave was carried out to investigate its feasibility for nondestructive evaluation of tubular structures such as heat exchanger tubings of power industries and various pipings of chemical plants. The concept of wedge design and incident angle selection to optimize guided wave generation is presented based on the dispersion theory and the snell's law for the cylindrical guided wave. The brass tubes with artificial defects in the circumferential or axial direction were used for detect defection experiments. It was found that guided wave sensitivity for detecting an axial defect can be remarkably improved by using non-axisymmetrically launched guided waves. Through this study, it is expected that the guided wave can be successfully applied to tubular structure inspections as an more advanced and efficient NDE technique than a conventional point-by-point technique.

  14. Interface-guided mode of Lamb waves in a two-dimensional phononic crystal plate

    International Nuclear Information System (INIS)

    Huang Ping-Ping; Yao Yuan-Wei; Zhang Xin; Li Jing; Hu Ai-Zhen; Wu Fu-Gen

    2015-01-01

    We investigate the interface-guided mode of Lamb waves in a phononic crystal heterostructures plate, which is composed of two different semi-infinite phononic crystal (PC) plates. The interface-guided modes of the Lamb wave can be obtained by the lateral lattice slipping or by the interface longitudinal gliding. Significantly, it is observed that the condition to generate the interface-guided modes of the Lamb wave is more demanding than that of the studied fluid–fluid system. The interface-guided modes are strongly affected not only by the relative movement of the two semi-infinite PCs but also by the thickness of the PC plate. (paper)

  15. Influence of the Spatial Dimensions of Ultrasonic Transducers on the Frequency Spectrum of Guided Waves.

    Science.gov (United States)

    Samaitis, Vykintas; Mažeika, Liudas

    2017-08-08

    Ultrasonic guided wave (UGW)-based condition monitoring has shown great promise in detecting, localizing, and characterizing damage in complex systems. However, the application of guided waves for damage detection is challenging due to the existence of multiple modes and dispersion. This results in distorted wave packets with limited resolution and the interference of multiple reflected modes. To develop reliable inspection systems, either the transducers have to be optimized to generate a desired single mode of guided waves with known dispersive properties, or the frequency responses of all modes present in the structure must be known to predict wave interaction. Currently, there is a lack of methods to predict the response spectrum of guided wave modes, especially in cases when multiple modes are being excited simultaneously. Such methods are of vital importance for further understanding wave propagation within the structures as well as wave-damage interaction. In this study, a novel method to predict the response spectrum of guided wave modes was proposed based on Fourier analysis of the particle velocity distribution on the excitation area. The method proposed in this study estimates an excitability function based on the spatial dimensions of the transducer, type of vibration, and dispersive properties of the medium. As a result, the response amplitude as a function of frequency for each guided wave mode present in the structure can be separately obtained. The method was validated with numerical simulations on the aluminum and glass fiber composite samples. The key findings showed that it can be applied to estimate the response spectrum of a guided wave mode on any type of material (either isotropic structures, or multi layered anisotropic composites) and under any type of excitation if the phase velocity dispersion curve and the particle velocity distribution of the wave source was known initially. Thus, the proposed method may be a beneficial tool to explain

  16. Ultrasonic guided wave sensing characteristics of large area thin piezo coating

    Science.gov (United States)

    Rathod, V. T.; Jeyaseelan, A. Antony; Dutta, Soma; Mahapatra, D. Roy

    2017-10-01

    This paper reports on the characterization method and performance enhancement of thin piezo coating for ultrasonic guided wave sensing applications. We deposited the coatings by an in situ slurry coating method and studied their guided wave sensing properties on a one-dimensional metallic beam as a substrate waveguide. The developed piezo coatings show good sensitivity to the longitudinal and flexural modes of guided waves. Sensing voltage due to the guided waves at various different ultrasonic frequencies shows a linear dependence on the thickness of the coating. The coatings also exhibit linear sensor output voltage with respect to the induced dynamic strain magnitude. Diameter/size of the piezo coatings strongly influences the voltage response in relation to the wavelength. The proposed method used a characterization set-up involving coated sensors, reference transducers and an analytical model to estimate the piezoelectric coefficient of the piezo coating. The method eliminates the size dependent effect on the piezo property accurately and gives further insight to design better sensors/filters with respect to frequency/wavelength of interest. The developed coatings will have interesting applications in structural health monitoring (SHM) and internet of things (IOT).

  17. Experimental Observation of Cumulative Second-Harmonic Generation of Circumferential Guided Wave Propagation in a Circular Tube

    International Nuclear Information System (INIS)

    Deng Ming-Xi; Gao Guang-Jian; Li Ming-Liang

    2015-01-01

    The experimental observation of cumulative second-harmonic generation of the primary circumferential guided wave propagation is reported. A pair of wedge transducers is used to generate the primary circumferential guided wave desired and to detect its fundamental-frequency and second-harmonic amplitudes on the outside surface of the circular tube. The amplitudes of the fundamental waves and the second harmonics of the circumferential guided wave propagation are measured for different separations between the two wedge transducers. At the driving frequency where the primary and the double-frequency circumferential guided waves have the same linear phase velocities, the clear second-harmonic signals can be observed. The quantitative relationships between the second-harmonic amplitudes and circumferential angle are analyzed. It is experimentally verified that the second harmonics of primary circumferential guided waves do have a cumulative growth effect with the circumferential angle. (paper)

  18. Design and Implementation of an Electronic Front-End Based on Square Wave Excitation for Ultrasonic Torsional Guided Wave Viscosity Sensor

    Directory of Open Access Journals (Sweden)

    Amir Rabani

    2016-10-01

    Full Text Available The market for process instruments generally requires low cost devices that are robust, small in size, portable, and usable in-plant. Ultrasonic torsional guided wave sensors have received much attention by researchers for measurement of viscosity and/or density of fluids in recent years. The supporting electronic systems for these sensors providing many different settings of sine-wave signals are bulky and expensive. In contrast, a system based on bursts of square waves instead of sine waves would have a considerable advantage in that respect and could be built using simple integrated circuits at a cost that is orders of magnitude lower than for a windowed sine wave device. This paper explores the possibility of using square wave bursts as the driving signal source for the ultrasonic torsional guided wave viscosity sensor. A simple design of a compact and fully automatic analogue square wave front-end for the sensor is also proposed. The successful operation of the system is demonstrated by using the sensor for measuring the viscosity in a representative fluid. This work provides the basis for design and manufacture of low cost compact standalone ultrasonic guided wave sensors and enlightens the possibility of using coded excitation techniques utilising square wave sequences in such applications.

  19. Damage evaluation by a guided wave-hidden Markov model based method

    Science.gov (United States)

    Mei, Hanfei; Yuan, Shenfang; Qiu, Lei; Zhang, Jinjin

    2016-02-01

    Guided wave based structural health monitoring has shown great potential in aerospace applications. However, one of the key challenges of practical engineering applications is the accurate interpretation of the guided wave signals under time-varying environmental and operational conditions. This paper presents a guided wave-hidden Markov model based method to improve the damage evaluation reliability of real aircraft structures under time-varying conditions. In the proposed approach, an HMM based unweighted moving average trend estimation method, which can capture the trend of damage propagation from the posterior probability obtained by HMM modeling is used to achieve a probabilistic evaluation of the structural damage. To validate the developed method, experiments are performed on a hole-edge crack specimen under fatigue loading condition and a real aircraft wing spar under changing structural boundary conditions. Experimental results show the advantage of the proposed method.

  20. Guided Wave Propagation Study on Laminated Composites by Frequency-Wavenumber Technique

    Science.gov (United States)

    Tian, Zhenhua; Yu, Lingyu; Leckey, Cara A. C.

    2014-01-01

    Toward the goal of delamination detection and quantification in laminated composites, this paper examines guided wave propagation and wave interaction with delamination damage in laminated carbon fiber reinforced polymer (CFRP) composites using frequency-wavenumber (f-kappa) analysis. Three-dimensional elastodynamic finite integration technique (EFIT) is used to acquire simulated time-space wavefields for a CFRP composite. The time-space wavefields show trapped waves in the delamination region. To unveil the wave propagation physics, the time-space wavefields are further analyzed by using two-dimensional (2D) Fourier transforms (FT). In the analysis results, new f-k components are observed when the incident guided waves interact with the delamination damage. These new f-kappa components in the simulations are experimentally verified through data obtained from scanning laser Doppler vibrometer (SLDV) tests. By filtering the new f-kappa components, delamination damage is detected and quantified.

  1. Properties of Love waves in a piezoelectric layered structure with a viscoelastic guiding layer

    International Nuclear Information System (INIS)

    Liu, Jiansheng; Wang, Lijun; Lu, Yanyan; He, Shitang

    2013-01-01

    A theoretical method is developed for analyzing Love waves in a structure with a viscoelastic guiding layer bounded on a piezoelectric substrate. The dispersion equation previously derived for piezoelectric Love waves propagating in the layered structure with an elastic layer is adopted for analyzing a structure with a viscoelastic layer. A Maxwell–Weichert model is introduced to describe the shear stiffness of a polymeric material. Newton’s method is employed for the numerical calculation. The dispersion equation for piezoelectric–elastic Love waves is proved suitable for solving a structure with a viscoelastic layer on a piezoelectric substrate. The theoretical results indicate that the propagation velocity of the Love wave is mainly decided by the shear stiffness of the guiding layer, whereas the propagation loss is approximately proportional to its viscosity. A detailed experimental study was conducted on a Love wave delay line fabricated on an ST-90° X quartz substrate and overlaid with various thicknesses of SU-8 guiding layers. A tail-raising caused by the viscosity of the guiding layer existed in both the calculated and the measured propagation velocities. The calculated insertion loss of the Love wave delay lines was in good agreement with the measured results. The method and the results presented in this paper are beneficial to the design of Love wave sensors with a viscoelastic guiding layer. (paper)

  2. Fatigue crack growth monitoring in multi-layered structures using guided ultrasonic waves

    International Nuclear Information System (INIS)

    Kostson, E; Fromme, P

    2009-01-01

    This contribution investigates the application of low frequency guided ultrasonic waves for monitoring fatigue crack growth at fastener holes in the 2nd layer of multi-layered plate structures, a common problem in aerospace industry. The model multi-layered structure investigated consists of two aluminum plate-strips adhesively bonded using a structural paste adhesive. Guided ultrasonic waves were excited using multiple piezoelectric discs bonded to the surface of the multi-layered structure. The wave propagation in the tensile specimen was measured using a laser interferometer and compared to numerical simulations. Thickness and width mode shapes of the excited flexural waves were identified from Semi-Analytical Finite Element (SAFE) calculations. Experiments and 3D Finite Element (FE) simulations show a change in the scattered field around fastener holes caused by a defect in the 2nd layer. The amplitude of the guided ultrasonic wave was monitored during fatigue experiments at a single point. The measured changes in the amplitude of the ultrasonic signal due to fatigue crack growth agree well with FE simulations.

  3. Damage identification in composite panels using guided waves

    NARCIS (Netherlands)

    Loendersloot, R.; Moix-Bonet, M.

    2015-01-01

    A methodology for the identification of barely visible impact damage using guided waves on a typical aircraft composite structure is implemented. Delaminations and debondings have been introduced in two stiffened panels by means of impact loads.

  4. Simulation of Guided Wave Interaction with In-Plane Fiber Waviness

    Science.gov (United States)

    Leckey, Cara A. C.; Juarez, Peter D.

    2016-01-01

    Reducing the timeline for certification of composite materials and enabling the expanded use of advanced composite materials for aerospace applications are two primary goals of NASA's Advanced Composites Project (ACP). A key a technical challenge area for accomplishing these goals is the development of rapid composite inspection methods with improved defect characterization capabilities. Ongoing work at NASA Langley is focused on expanding ultrasonic simulation capabilities for composite materials. Simulation tools can be used to guide the development of optimal inspection methods. Custom code based on elastodynamic finite integration technique is currently being developed and implemented to study ultrasonic wave interaction with manufacturing defects, such as in-plane fiber waviness (marcelling). This paper describes details of validation comparisons performed to enable simulation of guided wave propagation in composites containing fiber waviness. Simulation results for guided wave interaction with in-plane fiber waviness are also discussed. The results show that the wavefield is affected by the presence of waviness on both the surface containing fiber waviness, as well as the opposite surface to the location of waviness.

  5. Application of RMS for damage detection by guided elastic waves

    Energy Technology Data Exchange (ETDEWEB)

    Radzienski, M; Dolinski, L; Krawczuk, M [Gdansk University of Technology, Faculty of Electrical and Control Engineering, Narutowicza 11/12, 80-952 Gdansk (Poland); Zak, A; Ostachowicz, W, E-mail: Maciej.Radzienski@gmail.com [Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-952 Gdansk (Poland)

    2011-07-19

    This paper presents certain results of an experimental study related with a damage detection in structural elements based on deviations in guided elastic wave propagation patterns. In order to excite guided elastic waves within specimens tested piezoelectric transducers have been applied. As excitation signals 5 sine cycles modulated by Hanning window have been used. Propagation of guided elastic waves has been monitored by a scanning Doppler laser vibrometer. The time signals recorded during measurement have been utilised to calculate the values of RMS. It has turned out that the values of RMS differed significantly in damaged areas from the values calculated for the healthy ones. In this way it has become possible to pinpoint precisely the locations of damage over the entire measured surface. All experimental investigations have been carried out for thin aluminium or composite plates. Damage has been simulated by a small additional mass attached on the plate surface or by a narrow notch cut. It has been shown that proposed method allows one to localise damage of various shapes and sizes within structural elements over the whole area under investigation.

  6. Application of RMS for damage detection by guided elastic waves

    Science.gov (United States)

    Radzieński, M.; Doliński, Ł.; Krawczuk, M.; dot Zak, A.; Ostachowicz, W.

    2011-07-01

    This paper presents certain results of an experimental study related with a damage detection in structural elements based on deviations in guided elastic wave propagation patterns. In order to excite guided elastic waves within specimens tested piezoelectric transducers have been applied. As excitation signals 5 sine cycles modulated by Hanning window have been used. Propagation of guided elastic waves has been monitored by a scanning Doppler laser vibrometer. The time signals recorded during measurement have been utilised to calculate the values of RMS. It has turned out that the values of RMS differed significantly in damaged areas from the values calculated for the healthy ones. In this way it has become possible to pinpoint precisely the locations of damage over the entire measured surface. All experimental investigations have been carried out for thin aluminium or composite plates. Damage has been simulated by a small additional mass attached on the plate surface or by a narrow notch cut. It has been shown that proposed method allows one to localise damage of various shapes and sizes within structural elements over the whole area under investigation.

  7. Plasma wave amplitude measurement created by guided laser wakefield

    International Nuclear Information System (INIS)

    Wojda, Franck

    2010-01-01

    The interaction of an intense laser pulse of short duration with a plasma produces a plasma wave with large amplitude in its wake, which is associated with a longitudinal electric field. It can be used to accelerate relativistic electrons injected into the wave to energies in the GeV range over distances of the order of a few centimeters, short compared to acceleration lengths in conventional accelerators. The control of the electron beam characteristics during the acceleration process is fundamental for achieving a usable laser-plasma acceleration stage. The main result of this thesis is the creation and characterization of a plasma wave in a weakly nonlinear regime over a length of several centimeters. Capillary tubes are used to guide the laser beam over these distances, while maintaining a large enough intensity (∼ 10 17 W/cm 2 ). The guided laser beam ionizes the gas in the tube and creates the plasma wave. A diagnostic based on the modification of the laser pulse spectrum was used to determine the amplitude of the plasma wave along the tube. The amplitude of the plasma wave was studied as a function of gas filling pressure, length of the capillary and laser energy. Experimental results are compared; they are in excellent agreement with analytical results and modeling. They show that the electric field associated with the plasma wave is between 1 and 10 GV/m over a length of up to 8 cm. This work has demonstrated the ability to create a controlled plasma wave in a weakly nonlinear regime. (author)

  8. Applications of Genomic Sequencing in Pediatric CNS Tumors.

    Science.gov (United States)

    Bavle, Abhishek A; Lin, Frank Y; Parsons, D Williams

    2016-05-01

    Recent advances in genome-scale sequencing methods have resulted in a significant increase in our understanding of the biology of human cancers. When applied to pediatric central nervous system (CNS) tumors, these remarkable technological breakthroughs have facilitated the molecular characterization of multiple tumor types, provided new insights into the genetic basis of these cancers, and prompted innovative strategies that are changing the management paradigm in pediatric neuro-oncology. Genomic tests have begun to affect medical decision making in a number of ways, from delineating histopathologically similar tumor types into distinct molecular subgroups that correlate with clinical characteristics, to guiding the addition of novel therapeutic agents for patients with high-risk or poor-prognosis tumors, or alternatively, reducing treatment intensity for those with a favorable prognosis. Genomic sequencing has also had a significant impact on translational research strategies in pediatric CNS tumors, resulting in wide-ranging applications that have the potential to direct the rational preclinical screening of novel therapeutic agents, shed light on tumor heterogeneity and evolution, and highlight differences (or similarities) between pediatric and adult CNS tumors. Finally, in addition to allowing the identification of somatic (tumor-specific) mutations, the analysis of patient-matched constitutional (germline) DNA has facilitated the detection of pathogenic germline alterations in cancer genes in patients with CNS tumors, with critical implications for genetic counseling and tumor surveillance strategies for children with familial predisposition syndromes. As our understanding of the molecular landscape of pediatric CNS tumors continues to advance, innovative applications of genomic sequencing hold significant promise for further improving the care of children with these cancers.

  9. Ultrasonic guided wave inspection of Inconel 625 brazed lap joints

    Science.gov (United States)

    Comot, Pierre; Bocher, Philippe; Belanger, Pierre

    2016-04-01

    The aerospace industry has been investigating the use of brazing for structural joints, as a mean of reducing cost and weight. There therefore is a need for a rapid, robust, and cost-effective non-destructive testing method for evaluating the structural integrity of the joints. The mechanical strength of brazed joints depends mainly on the amount of brittle phases in their microstructure. Ultrasonic guided waves offer the possibility of detecting brittle phases in joints using spatio-temporal measurements. Moreover, they offer the opportunity to inspect complex shape joints. This study focused on the development of a technique based on ultrasonic guided waves for the inspection of Inconel 625 lap joints brazed with BNi-2 filler metal. A finite element model of a lap joint was used to optimize the inspection parameters and assess the feasibility of detecting the amount of brittle phases in the joint. A finite element parametric study simulating the input signal shape, the center frequency, and the excitation direction was performed. The simulations showed that the ultrasonic guided wave energy transmitted through, and reflected from, the joints was proportional to the amount of brittle phases in the joint.

  10. Guided wave inspection and monitoring of railway track

    CSIR Research Space (South Africa)

    Loveday, PW

    2012-04-01

    Full Text Available for guided wave ultrasound, which offers the potential to interrogate a large length of rail from a single position. Continuously welded rail is installed in tension but temperature changes can result in rail buckling if the tension is insufficient or fatigue...

  11. Time-Averaged Adiabatic Potentials: Versatile Matter-Wave Guides and Atom Traps

    International Nuclear Information System (INIS)

    Lesanovsky, Igor; Klitzing, Wolf von

    2007-01-01

    We demonstrate a novel class of trapping potentials, time-averaged adiabatic potentials (TAAP), which allows the generation of a large variety of traps for quantum gases and matter-wave guides for atom interferometers. Examples include stacks of pancakes, rows of cigars, and multiple rings or sickles. The traps can be coupled through controllable tunneling barriers or merged altogether. We present analytical expressions for pancake-, cigar-, and ring-shaped traps. The ring geometry is of particular interest for guided matter-wave interferometry as it provides a perfectly smooth waveguide of widely tunable diameter and thus adjustable sensitivity of the interferometer. The flexibility of the TAAP would make possible the use of Bose-Einstein condensates as coherent matter waves in large-area atom interferometers

  12. High frequency guided wave propagation in monocrystalline silicon wafers

    OpenAIRE

    Pizzolato, M.; Masserey, B.; Robyr, J. L.; Fromme, P.

    2017-01-01

    Monocrystalline silicon wafers are widely used in the photovoltaic industry for solar panels with high conversion efficiency. The cutting process can introduce micro-cracks in the thin wafers and lead to varying thickness. High frequency guided ultrasonic waves are considered for the structural monitoring of the wafers. The anisotropy of the monocrystalline silicon leads to variations of the wave characteristics, depending on the propagation direction relative to the crystal orientation. Full...

  13. Modal approach for the full simulation of nondestructive tests by elastic guided waves

    International Nuclear Information System (INIS)

    Jezzine, K.

    2006-11-01

    Tools for simulating nondestructive tests by elastic guided waves are developed. Two overall formulations based on modal formalism and reciprocity are derived depending on whether transmission and reception are separated or not. They relate phenomena of guided wave radiation by a transducer, their propagation, their scattering by a non-uniformity of the guide or a defect and their reception. Receiver electrical output is expressed as a product of terms relating to each phenomenon that can be computed separately. Their computation uses developments based on the semi-analytical finite elements method, dealing with guides of arbitrary cross-section and cracks normal to the guide axis. Simulation tools are used to study means for selecting a single mode using a transducer positioned on the guide section, such a selection making easier the interpretation of the results of testing by guided waves. Two methods of mode selection are proposed, based on the use of two specific frequencies (which existence depends on guide geometry and mode symmetry). Mimicking the normal stress distribution of the mode at one of these two frequencies or the other makes it possible to radiate solely or predominantly the mode chosen. Examinations are simulated in configurations using a single or two separated transducers positioned on the section of various guide geometries and cracks of various shapes. The interest and performances of the two methods of mode selection are studied in these configurations. (author)

  14. Guided propagation of Alfven waves in a toroidal plasma

    International Nuclear Information System (INIS)

    Borg, G.G.; Brennan, M.H.; Cross, R.C.; Giannone, L.; Donnelly, I.J.

    1985-01-01

    Experimental results are presented which show that the Alfven wave is strongly guided by magnetic fields. The experiment was conducted in a Tokamak plasma using a small dipole loop antenna to generate a localised Alfven ray. The ray was observed, with magnetic probes, to propagate as a localised disturbance along the curved lines of the steady magnetic field without significant refraction due to the effects of finite frequency, resistivity or magnetic field gradients. These results agree with theoretical predictions and demonstrate that a localised Alfven wave may be excited, and may propagate, independently of the fast wave, as expected. The implication of these results for the Alfven wave heating scheme is discussed. (author)

  15. Guided propagation of Alfven waves in a toroidal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Borg, G G; Brennan, M H; Cross, R C; Giannone, L.; Donnelly, I J

    1985-10-01

    Experimental results are presented which show that the Alfven wave is strongly guided by magnetic fields. The experiment was conducted in a Tokamak plasma using a small dipole loop antenna to generate a localised Alfven ray. The ray was observed, with magnetic probes, to propagate as a localised disturbance along the curved lines of the steady magnetic field without significant refraction due to the effects of finite frequency, resistivity or magnetic field gradients. These results agree with theoretical predictions and demonstrate that a localised Alfven wave may be excited, and may propagate, independently of the fast wave, as expected. The implication of these results for the Alfven wave heating scheme is discussed.

  16. HTS-SQUID NDE Technique for Pipes based on Ultrasonic Guided Wave

    International Nuclear Information System (INIS)

    Hatsukade, Y; Masutani, N; Teranishi, S; Masamoto, K; Kanenaga, S; Adachi, S; Tanabe, K

    2017-01-01

    This article describes research on the novel high-temperature superconductor (HTS) superconducting quantum interference device (SQUID) non-destructive evaluation (NDE) technique for metallic pipes based on ultrasonic guided waves. We constructed HTS-SQUID NDE system for pipes based on ultrasonic guided waves, which were generated and received by means of the magnetostrictive effects. Using the system, we measured magnetic signals due to T (0, 1) mode ultrasonic guided waves that transmitted on aluminium pipe, and investigated influences of measurement parameters to the magnetic signals, such as direction of a HTS-SQUID gradiometer, lift-off distance, and intensity and frequency of input current fed to a magnetostrictive transmitter. With the gradiometer oriented parallel to the pipe axis, more than 10 times larger signals were measured compared with that oriented perpendicular to the pipe axis. Magnetic signals measured by the gradiometer were inverse proportional to the power of the list- off distance, and proportional to the intensity of the input current up to 1 A pp . Relation between the frequency of the input current and the measured signal was shown and discussed. (paper)

  17. HTS-SQUID NDE Technique for Pipes based on Ultrasonic Guided Wave

    Science.gov (United States)

    Hatsukade, Y.; Masutani, N.; Teranishi, S.; Masamoto, K.; Kanenaga, S.; Adachi, S.; Tanabe, K.

    2017-07-01

    This article describes research on the novel high-temperature superconductor (HTS) superconducting quantum interference device (SQUID) non-destructive evaluation (NDE) technique for metallic pipes based on ultrasonic guided waves. We constructed HTS-SQUID NDE system for pipes based on ultrasonic guided waves, which were generated and received by means of the magnetostrictive effects. Using the system, we measured magnetic signals due to T (0, 1) mode ultrasonic guided waves that transmitted on aluminium pipe, and investigated influences of measurement parameters to the magnetic signals, such as direction of a HTS-SQUID gradiometer, lift-off distance, and intensity and frequency of input current fed to a magnetostrictive transmitter. With the gradiometer oriented parallel to the pipe axis, more than 10 times larger signals were measured compared with that oriented perpendicular to the pipe axis. Magnetic signals measured by the gradiometer were inverse proportional to the power of the list- off distance, and proportional to the intensity of the input current up to 1 App. Relation between the frequency of the input current and the measured signal was shown and discussed.

  18. Propagation of ultrasonic guided waves in an acrylic plate as a cortical-bone-mimicking phantom

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Il [Kangwon National University, Chuncheon (Korea, Republic of); Choi, Bok Kyoung [Maritime Security Research Center, KIOST, Ansan (Korea, Republic of)

    2014-12-15

    The present study aims to investigate the propagation of ultrasonic guided waves in an acrylic plate as a cortical-bone-mimicking phantom. The velocities of the guided waves in a 5-mm-thick acrylic plate were measured by using the axial transmission technique. A pure A0 Lamb mode could be successfully launched in the 5-mm-thick acrylic plate through a time reversal process of Lamb waves, consistent with the fact that the time reversal process can automatically compensate for the dispersive nature of Lamb waves. The experimental velocities of the slow guided wave (SGW) and the time-reversed Lamb wave were found to be in reasonable agreement with the theoretical group velocity of the A0 Lamb mode, suggesting that both the SGW and the time-reversed Lamb wave excited in the 5-mm-thick acrylic plate correspond to the A0 Lamb mode. These results suggest that the time reversal process of Lamb waves can be usefully applied to noninvasive characterization of long cortical bones.

  19. Propagation of ultrasonic guided waves in an acrylic plate as a cortical-bone-mimicking phantom

    International Nuclear Information System (INIS)

    Lee, Kang Il; Choi, Bok Kyoung

    2014-01-01

    The present study aims to investigate the propagation of ultrasonic guided waves in an acrylic plate as a cortical-bone-mimicking phantom. The velocities of the guided waves in a 5-mm-thick acrylic plate were measured by using the axial transmission technique. A pure A0 Lamb mode could be successfully launched in the 5-mm-thick acrylic plate through a time reversal process of Lamb waves, consistent with the fact that the time reversal process can automatically compensate for the dispersive nature of Lamb waves. The experimental velocities of the slow guided wave (SGW) and the time-reversed Lamb wave were found to be in reasonable agreement with the theoretical group velocity of the A0 Lamb mode, suggesting that both the SGW and the time-reversed Lamb wave excited in the 5-mm-thick acrylic plate correspond to the A0 Lamb mode. These results suggest that the time reversal process of Lamb waves can be usefully applied to noninvasive characterization of long cortical bones.

  20. Signal characteristics of guided wave for condenser tube of NPP

    International Nuclear Information System (INIS)

    Min, Lee Dong; Hoon, Choi Sang; Yeong, Yang Tae

    2012-01-01

    A Condenser is a large heat exchanger of the shell and tube type. Cooling water enters through the water box, through the tubesheet and into the tubes(about 80,000 tubes/unit). The shell side of the condenser receives steam from the low pressure turbines exhaust. The steam is cooled to a liquid by passing over the tubes where the cooling water is circulated. Because seawater is used as a coolant, condenser tubes are easily damaged. For such a reason, nondestructive testing conducted periodically. But nondestructive testing takes a lot of manpower and time. Guided wave technique can overcome these shortcomings. In this study, we made an effort evaluating a guided wave defect signal

  1. PZT guided waves sensor permanently attached on multi-wire AWG12 cables used as communication medium

    Science.gov (United States)

    Trane, Gianpiero; Mijarez, Rito; Guevara, Ricardo; Baltazar, Arturo

    2015-03-01

    Guided waves in solid media have been used in structural health monitoring (SHM) and non-destructive testing (NDT) applications due to their mechanical propagation properties. In this context, guided waves communications offer the reuse of infrastructure as communication channel, in which the guided waves work as the information carrying signals. This study presents the proprietary design and implementation of a piezoelectric (PZT) sensor for the transmission and reception of guided waves that uses a multiple-wire AWG12 cable, commonly used in electric domestic and industrial applications, as a communication channel. The design involves electrical/mechanical coupling, electric isolation, instrumentation and casing. The PZT guided waves transmitter instrumentation includes a microcontroller-based pulse position modulator (PPM), a signal booster, a PZT crystal and a 9 V battery. Dispersion curves of the cable and dynamical linear 3D finite element (FE) models of the sensor were performed to substantiate the proper frequency selection. To evaluate the transmitter design, a receiver instrumentation package made of a PZT crystal, an amplifier and a commercial data acquisition module connected to a personal computer was implemented. Experimental tests were conducted in the laboratory using 1 m and 4 m AWG12 cables. Results showed that, although there was significant dispersion and multiple mode excitations of the transmitted pulses, the system correctly identified 10-bit frames of guided wave PPM encoded information.

  2. Guided wave imaging of oblique reflecting interfaces in pipes using common-source synthetic focusing

    Science.gov (United States)

    Sun, Zeqing; Sun, Anyu; Ju, Bing-Feng

    2018-04-01

    Cross-mode-family mode conversion and secondary reflection of guided waves in pipes complicate the processing of guided waves signals, and can cause false detection. In this paper, filters operating in the spectral domain of wavenumber, circumferential order and frequency are designed to suppress the signal components of unwanted mode-family and unwanted traveling direction. Common-source synthetic focusing is used to reconstruct defect images from the guided wave signals. Simulations of the reflections from linear oblique defects and a semicircle defect are separately implemented. Defect images, which are reconstructed from the simulation results under different excitation conditions, are comparatively studied in terms of axial resolution, reflection amplitude, detectable oblique angle and so on. Further, the proposed method is experimentally validated by detecting linear cracks with various oblique angles (10-40°). The proposed method relies on the guided wave signals that are captured during 2-D scanning of a cylindrical area on the pipe. The redundancy of the signals is analyzed to reduce the time-consumption of the scanning process and to enhance the practicability of the proposed method.

  3. Anomalous Refraction of Acoustic Guided Waves in Solids with Geometrically Tapered Metasurfaces.

    Science.gov (United States)

    Zhu, Hongfei; Semperlotti, Fabio

    2016-07-15

    The concept of a metasurface opens new exciting directions to engineer the refraction properties in both optical and acoustic media. Metasurfaces are typically designed by assembling arrays of subwavelength anisotropic scatterers able to mold incoming wave fronts in rather unconventional ways. The concept of a metasurface was pioneered in photonics and later extended to acoustics while its application to the propagation of elastic waves in solids is still relatively unexplored. We investigate the design of acoustic metasurfaces to control elastic guided waves in thin-walled structural elements. These engineered discontinuities enable the anomalous refraction of guided wave modes according to the generalized Snell's law. The metasurfaces are made out of locally resonant toruslike tapers enabling an accurate phase shift of the incoming wave, which ultimately affects the refraction properties. We show that anomalous refraction can be achieved on transmitted antisymmetric modes (A_{0}) either when using a symmetric (S_{0}) or antisymmetric (A_{0}) incident wave, the former clearly involving mode conversion. The same metasurface design also allows achieving structure embedded planar focal lenses and phase masks for nonparaxial propagation.

  4. A study on laser-based ultrasonic technique by the use of guided wave tomographic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Park, Junpil, E-mail: jpp@pusan.ac.kr; Lim, Juyoung, E-mail: jpp@pusan.ac.kr [Graduate school, School of Mechanical Engineering, Pusan National University (Korea, Republic of); Cho, Younho [School of Mechanical Engineering, Pusan National University (Korea, Republic of); Krishnaswamy, Sridhar [Center for Quality Engineering and Failure Prevention, Northwestern University, Evanston, IL (United States)

    2015-03-31

    Guided wave tests are impractical for investigating specimens with limited accessibility and coarse surfaces or geometrically complicated features. A non-contact setup with a laser ultrasonic transmitter and receiver is the classic attractive for guided wave inspection. The present work was done to develop a non-contact guided-wave tomography technique by laser ultrasonic technique in a plate-like structure. A method for Lam wave generation and detection in an aluminum plate with a pulse laser ultrasonic transmitter and a Michelson interferometer receiver has been developed. In the images obtained by laser scanning, the defect shape and area showed good agreement with the actual defect. The proposed approach can be used as a non-contact-based online inspection and monitoring technique.

  5. Quantification of thickness loss in a liquid-loaded plate using ultrasonic guided wave tomography

    Science.gov (United States)

    Rao, Jing; Ratassepp, Madis; Fan, Zheng

    2017-12-01

    Ultrasonic guided wave tomography (GWT) provides an attractive solution to map thickness changes from remote locations. It is based on the velocity-to-thickness mapping employing the dispersive characteristics of selected guided modes. This study extends the application of GWT on a liquid-loaded plate. It is a more challenging case than the application on a free plate, due to energy of the guided waves leaking into the liquid. In order to ensure the accuracy of thickness reconstruction, advanced forward models are developed to consider attenuation effects using complex velocities. The reconstruction of the thickness map is based on the frequency-domain full waveform inversion (FWI) method, and its accuracy is discussed using different frequencies and defect dimensions. Validation experiments are carried out on a water-loaded plate with an irregularly shaped defect using S0 guided waves, showing excellent performance of the reconstruction algorithm.

  6. Active Metamaterial Based Ultrasonic Guided Wave Transducer System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An active and tunable metamaterial phased array transducer for guided wave mode selection with high intensity per driving channel and with dramatically lower modal...

  7. Ultrasonic Guided Wave Method For Crack Detection In Buried Plastic Pipe

    Directory of Open Access Journals (Sweden)

    Wan Hamat Wan Sofian

    2016-01-01

    Full Text Available Plastic pipe are widely used in many fields for the fluid or gaseous product conveyance but basic components of a plastic material made it very sensitive to damage, which requires techniques for detecting damage reliable and efficient. Ultrasonic guided wave is a sensitive method based on propagation of low-frequency excitation in solid structures for damage detection. Ultrasonic guided wave method are performed to investigate the effect of crack to the frequency signal using Fast Fourier Transform (FFT analysis. This paper researched to determine performance of ultrasonic guided wave method in order to detect crack in buried pipeline. It was found that for an uncrack pipe, FFT analysis shows one peak which is the operating frequency by the piezoelectric actuator itself while the FFT analysis for single cracked pipe shows two peak which is the operating frequency by the piezoelectric actuator itself and the resultant frequency from the crack. For multi cracked pipe, the frequency signal shows more than two peak depend the number of crack. The results presented here may facilitate improvements in the accuracy and precision of pipeline crack detection.

  8. Comparison of a magnetostrictive and an EMAT guided wave technique for the long-range pipe inspection

    International Nuclear Information System (INIS)

    Jung Yong Moo; Kim, Sang Soo; Kim, Young Suk

    2005-01-01

    An EMAT sensor and a magnetostrictive sensor were developed for the long-range guided wave inspection of pipe. An array of EMAT were designed and fabricated for the generation and reception of torsional guided waves. Also a magnetostrictive sensor with a circumferentially magnetized Ni strip and coil for alternating magnetization were fabricated for torsional guided waves, T(0,1) mode. These two approaches were applied to the feeder pipe with various artificial notches. The advantages and limitations of the EMAT method and magnetostrictive method compared in the viewpoint of field application.

  9. Scanning laser vibrometer measurement of guided waves in rails

    CSIR Research Space (South Africa)

    Loveday, PW

    2012-04-01

    Full Text Available Guided wave based inspection and monitoring systems for railway tracks operate at frequencies where as many as 40 modes of propagation may exist. During the development of such systems it is advantageous to be able to measure the amplitude...

  10. 1D profiling using highly dispersive guided waves

    International Nuclear Information System (INIS)

    Volker, Arno; Zon, Tim van; Enthoven, Daniel; Verburg, Wesley

    2015-01-01

    Corrosion is one of the industries major issues regarding the integrity of assets. Currently inspections are conducted at regular intervals to ensure a sufficient integrity level of these assets. Cost reduction while maintaining a high level of reliability and safety of installations is a major challenge. There are many situations where the actual defect location is not accessible, e.g., a pipe support or a partially buried pipe. Guided wave tomography has been developed to reconstruct the wall thickness. In case of bottom of the line corrosion, i.e., a single corrosion pit, a simpler approach may be followed. Data is collected in a pit-catch configuration at the 12 o'clock position using highly dispersive guided waves. The phase spectrum is used to invert for a wall thickness profile in the circumferential direction, assuming a Gaussian defect profile. An EMAT sensor design has been made to measure at the 12 o'clock position of a pipe. The concept is evaluated on measured data, showing good sizing capabilities on a variety simple defect profiles

  11. 1-D profiling using highly dispersive guided waves

    Science.gov (United States)

    Volker, Arno; van Zon, Tim

    2014-02-01

    Corrosion is one of the industries major issues regarding the integrity of assets. Currently, inspections are conducted at regular intervals to ensure a sufficient integrity level of these assets. Cost reduction while maintaining a high level of reliability and safety of installations is a major challenge. There are many situations where the actual defect location is not accessible, e.g., a pipe support or a partially buried pipe. Guided wave tomography has been developed to reconstruct the wall thickness of steel pipes. In case of bottom of the line corrosion, i.e., a single corrosion pit, a simpler approach may be followed. Data is collected in a pitch-catch configuration at the 12 o'clock position using highly dispersive guided waves. After dispersion correction the data collapses to a short pulse, any residual dispersion indicates wall loss. The phase spectrum is used to invert for the wall thickness profile in the circumferential direction, assuming a Gaussian defect profile. The approach is evaluated on numerically simulated and on measured data. The method is intended for rapid, semi-quantitative screening of pipes.

  12. 1-D profiling using highly dispersive guided waves

    International Nuclear Information System (INIS)

    Volker, Arno; Zon, Tim van

    2014-01-01

    Corrosion is one of the industries major issues regarding the integrity of assets. Currently, inspections are conducted at regular intervals to ensure a sufficient integrity level of these assets. Cost reduction while maintaining a high level of reliability and safety of installations is a major challenge. There are many situations where the actual defect location is not accessible, e.g., a pipe support or a partially buried pipe. Guided wave tomography has been developed to reconstruct the wall thickness of steel pipes. In case of bottom of the line corrosion, i.e., a single corrosion pit, a simpler approach may be followed. Data is collected in a pitch-catch configuration at the 12 o'clock position using highly dispersive guided waves. After dispersion correction the data collapses to a short pulse, any residual dispersion indicates wall loss. The phase spectrum is used to invert for the wall thickness profile in the circumferential direction, assuming a Gaussian defect profile. The approach is evaluated on numerically simulated and on measured data. The method is intended for rapid, semi-quantitative screening of pipes

  13. Wireless power transmission using ultrasonic guided waves

    International Nuclear Information System (INIS)

    Kural, A; Pullin, R; Featherston, C; Holford, K; Paget, C

    2011-01-01

    The unavailability of suitable power supply at desired locations is currently an important obstacle in the development of distributed, wireless sensor networks for applications such as structural health monitoring of aircraft. Proposed solutions range from improved batteries to energy harvesting from vibration, temperature gradients and other sources. A novel approach is being investigated at Cardiff University School of Engineering in cooperation with Airbus. It aims to utilise ultrasonic guided Lamb waves to transmit energy through the aircraft skin. A vibration generator is to be placed in a location where electricity supply is readily available. Ultrasonic waves generated by this device will travel through the aircraft structure to a receiver in a remote wireless sensor node. The receiver will convert the mechanical vibration of the ultrasonic waves back to electricity, which will be used to power the sensor node. This paper describes the measurement and modelling of the interference pattern which emerges when Lamb waves are transmitted continuously as in this power transmission application. The discovered features of the pattern, such as a large signal amplitude variation and a relatively high frequency, are presented and their importance for the development of a power transmission system is discussed.

  14. Wireless power transmission using ultrasonic guided waves

    Energy Technology Data Exchange (ETDEWEB)

    Kural, A; Pullin, R; Featherston, C; Holford, K [School of Engineering, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 2AA (United Kingdom); Paget, C, E-mail: kurala@cardiff.ac.uk [Airbus Operations Ltd, New Filton Road, BS99 7AR Bristol (United Kingdom)

    2011-07-19

    The unavailability of suitable power supply at desired locations is currently an important obstacle in the development of distributed, wireless sensor networks for applications such as structural health monitoring of aircraft. Proposed solutions range from improved batteries to energy harvesting from vibration, temperature gradients and other sources. A novel approach is being investigated at Cardiff University School of Engineering in cooperation with Airbus. It aims to utilise ultrasonic guided Lamb waves to transmit energy through the aircraft skin. A vibration generator is to be placed in a location where electricity supply is readily available. Ultrasonic waves generated by this device will travel through the aircraft structure to a receiver in a remote wireless sensor node. The receiver will convert the mechanical vibration of the ultrasonic waves back to electricity, which will be used to power the sensor node. This paper describes the measurement and modelling of the interference pattern which emerges when Lamb waves are transmitted continuously as in this power transmission application. The discovered features of the pattern, such as a large signal amplitude variation and a relatively high frequency, are presented and their importance for the development of a power transmission system is discussed.

  15. CNS role evolution.

    Science.gov (United States)

    Payne, J L; Baumgartner, R G

    1996-01-01

    THE CNS ROLE has been actualized in a variety of ways. Flexibility-inherent in the role-and the revolution in health care consciousness tend to place the CNS at risk for criticism regarding value to the organization. At Vanderbilt University Medical Center, a CNS task force evaluated the current reality of CNS practice and recommended role changes to include the financial analysis of patient care. After incorporating a financial perspective into our present practice, we have embarked on an interesting journey of post-Master's degree study, that of the tertiary care nurse practitioner. This practice option could elevated the clinical and financial aspects of providing cost-effective health care to a more autonomous role form; however, the transition has been challenging. Since 1990, the American Nurses Association has recommended that nursing school curricula change to meet the needs of the health care environment and provide increased career flexibility through creating one advanced degree incorporating both CNS and NP functions. Swiftly moving past differences and toward similarities will bridge the gap for advanced practice nurses in the future.

  16. In Situ Guided Wave Structural Health Monitoring System

    Science.gov (United States)

    Zhao, George; Tittmann, Bernhard R.

    2011-01-01

    Aircraft engine rotating equipment operates at high temperatures and stresses. Noninvasive inspection of microcracks in those components poses a challenge for nondestructive evaluation. A low-cost, low-profile, high-temperature ultrasonic guided wave sensor was developed that detects cracks in situ. The transducer design provides nondestructive evaluation of structures and materials. A key feature of the sensor is that it withstands high temperatures and excites strong surface wave energy to inspect surface and subsurface cracks. The sol-gel bismuth titanate-based surface acoustic wave (SAW) sensor can generate efficient SAWs for crack inspection. The sensor is very thin (submillimeter) and can generate surface waves up to 540 C. Finite element analysis of the SAW transducer design was performed to predict the sensor behavior, and experimental studies confirmed the results. The sensor can be implemented on structures of various shapes. With a spray-coating process, the sensor can be applied to the surface of large curvatures. It has minimal effect on airflow or rotating equipment imbalance, and provides good sensitivity.

  17. Recent developments in guided wave travel time tomography

    Energy Technology Data Exchange (ETDEWEB)

    Zon, Tim van; Volker, Arno [TNO, Stieltjesweg 1, P.O. box 155 2600 AD Delft (Netherlands)

    2014-02-18

    The concept of predictive maintenance using permanent sensors that monitor the integrity of an installation is an interesting addition to the current method of periodic inspections. Guided wave tomography had been developed to create a map of the wall thickness using the travel times of guided waves. It can be used for both monitoring and for inspection of pipe-segments that are difficult to access, for instance at the location of pipe-supports. An important outcome of the tomography is the minimum remaining wall thickness, as this is critical in the scheduling of a replacement of the pipe-segment. In order to improve the sizing accuracy we have improved the tomography scheme. A number of major improvements have been realized allowing to extend the application envelope to pipes with a larger wall thickness and to larger distances between the transducer rings. Simulation results indicate that the sizing accuracy has improved and that is now possible to have a spacing of 8 meter between the source-ring and the receiver-ring. Additionally a reduction of the number of sensors required might be possible as well.

  18. Guided Wave Delamination Detection and Quantification With Wavefield Data Analysis

    Science.gov (United States)

    Tian, Zhenhua; Campbell Leckey, Cara A.; Seebo, Jeffrey P.; Yu, Lingyu

    2014-01-01

    Unexpected damage can occur in aerospace composites due to impact events or material stress during off-nominal loading events. In particular, laminated composites are susceptible to delamination damage due to weak transverse tensile and inter-laminar shear strengths. Developments of reliable and quantitative techniques to detect delamination damage in laminated composites are imperative for safe and functional optimally-designed next-generation composite structures. In this paper, we investigate guided wave interactions with delamination damage and develop quantification algorithms by using wavefield data analysis. The trapped guided waves in the delamination region are observed from the wavefield data and further quantitatively interpreted by using different wavenumber analysis methods. The frequency-wavenumber representation of the wavefield shows that new wavenumbers are present and correlate to trapped waves in the damage region. These new wavenumbers are used to detect and quantify the delamination damage through the wavenumber analysis, which can show how the wavenumber changes as a function of wave propagation distance. The location and spatial duration of the new wavenumbers can be identified, providing a useful means not only for detecting the presence of delamination damage but also allowing for estimation of the delamination size. Our method has been applied to detect and quantify real delamination damage with complex geometry (grown using a quasi-static indentation technique). The detection and quantification results show the location, size, and shape of the delamination damage.

  19. Laser-based linear and nonlinear guided elastic waves at surfaces (2D) and wedges (1D).

    Science.gov (United States)

    Hess, Peter; Lomonosov, Alexey M; Mayer, Andreas P

    2014-01-01

    The characteristic features and applications of linear and nonlinear guided elastic waves propagating along surfaces (2D) and wedges (1D) are discussed. Laser-based excitation, detection, or contact-free analysis of these guided waves with pump-probe methods are reviewed. Determination of material parameters by broadband surface acoustic waves (SAWs) and other applications in nondestructive evaluation (NDE) are considered. The realization of nonlinear SAWs in the form of solitary waves and as shock waves, used for the determination of the fracture strength, is described. The unique properties of dispersion-free wedge waves (WWs) propagating along homogeneous wedges and of dispersive wedge waves observed in the presence of wedge modifications such as tip truncation or coatings are outlined. Theoretical and experimental results on nonlinear wedge waves in isotropic and anisotropic solids are presented. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Ultrasonic guided wave tomography for wall thickness mapping in pipes

    Science.gov (United States)

    Willey, Carson L.

    Corrosion and erosion damage pose fundamental challenges to operation of oil and gas infrastructure. In order to manage the life of critical assets, plant operators must implement inspection programs aimed at assessing the severity of wall thickness loss (WTL) in pipelines, vessels, and other structures. Maximum defect depth determines the residual life of these structures and therefore represents one of the key parameters for robust damage mitigation strategies. In this context, continuous monitoring with permanently installed sensors has attracted significant interest and currently is the subject of extensive research worldwide. Among the different monitoring approaches being considered, significant promise is offered by the combination of guided ultrasonic wave technology with the principles of model based inversion under the paradigm of what is now referred to as guided wave tomography (GWT). Guided waves are attractive because they propagate inside the wall of a structure over a large distance. This can yield significant advantages over conventional pulse-echo thickness gage sensors that provide insufficient area coverage -- typically limited to the sensor footprint. While significant progress has been made in the application of GWT to plate-like structures, extension of these methods to pipes poses a number of fundamental challenges that have prevented the development of sensitive GWT methods. This thesis focuses on these challenges to address the complex guided wave propagation in pipes and to account for parametric uncertainties that are known to affect model based inversion and which are unavoidable in real field applications. The main contribution of this work is the first demonstration of a sensitive GWT method for accurately mapping the depth of defects in pipes. This is achieved by introducing a novel forward model that can extract information related to damage from the complex waveforms measured by pairs of guided wave transducers mounted on the pipe

  1. Implication of changing loading conditions on structural health monitoring utilising guided waves

    Science.gov (United States)

    Mohabuth, Munawwar; Kotousov, Andrei; Ng, Ching-Tai; Rose, L. R. Francis

    2018-02-01

    Structural health monitoring systems based on guided waves typically utilise a network of embedded or permanently attached sensors, allowing for the continuous detection of damage remote from a sensor location. The presence of damage is often diagnosed by analysing the residual signals from the structure after subtracting damage-free reference data. However, variations in environmental and operational conditions such as temperature, humidity, applied or thermally-induced stresses affect the measured residuals. A previously developed acoustoelastic formulation is here extended and employed as the basis for a simplified analytical model to estimate the effect of applied or thermally-induced stresses on the propagation characteristics of the fundamental Lamb wave modes. It is noted that there are special combinations of frequency, biaxial stress ratio and direction of wave propagation for which there is no change in the phase velocity of the fundamental anti-symmetric mode. The implication of these results in devising effective strategies to mitigate the effect of stress induced variations in guided-wave damage diagnostics is briefly discussed.

  2. Theoretical comparison of light scattering and guided wave coupling in multilayer coated optical components with random interface roughness

    International Nuclear Information System (INIS)

    Elson, J.M.

    1995-01-01

    In this work, we use first-order perturbation theory to calculate and then compare the (1) angular distribution of incident light scattered from a multilayer-coated optical component and (2) the angular distribution of incident light coupled into guided waves supported by the multilayer component. The incident beam is assumed to be a monochromatic plane wave and the scattering/coupling is assumed to be caused by roughness at the interfaces of the optical component. Numerical results show that for high quality (low root mean square roughness) optical components, comparison of the relative amounts of incident energy (1) scattered out of the specular beam and (2) coupled into guided waves are comparable. It follows that the guided wave energy will further contribute to the scattered field via radiative decay or be converted to heat. Thus, this work can help provide an estimation of when guided wave coupling can occur along with the expected magnitude. (orig.)

  3. Structural Diagnostics of CFRP Composite Aircraft Components by Ultrasonic Guided Waves and Built-In Piezoelectric Transducers

    Energy Technology Data Exchange (ETDEWEB)

    Matt, Howard M. [Univ. of California, San Diego, CA (United States)

    2006-01-01

    To monitor in-flight damage and reduce life-cycle costs associated with CFRP composite aircraft, an autonomous built-in structural health monitoring (SHM) system is preferred over conventional maintenance routines and schedules. This thesis investigates the use of ultrasonic guided waves and piezoelectric transducers for the identification and localization of damage/defects occurring within critical components of CFRP composite aircraft wings, mainly the wing skin-to-spar joints. The guided wave approach for structural diagnostics was demonstrated by the dual application of active and passive monitoring techniques. For active interrogation, the guided wave propagation problem was initially studied numerically by a semi-analytical finite element method, which accounts for viscoelastic damping, in order to identify ideal mode-frequency combinations sensitive to damage occurring within CFRP bonded joints. Active guided wave tests across three representative wing skin-to-spar joints at ambient temperature were then conducted using attached Macro Fiber Composite (MFC) transducers. Results from these experiments demonstrate the importance of intelligent feature extraction for improving the sensitivity to damage. To address the widely neglected effects of temperature on guided wave base damage identification, analytical and experimental analyses were performed to characterize the influence of temperature on guided wave signal features. In addition, statistically-robust detection of simulated damage in a CFRP bonded joint was successfully achieved under changing temperature conditions through a dimensionally-low, multivariate statistical outlier analysis. The response of piezoceramic patches and MFC transducers to ultrasonic Rayleigh and Lamb wave fields was analytically derived and experimentally validated. This theory is useful for designing sensors which possess optimal sensitivity toward a given mode-frequency combination or for predicting the frequency dependent

  4. On guided circumferential waves in soft electroactive tubes under radially inhomogeneous biasing fields

    Science.gov (United States)

    Wu, Bin; Su, Yipin; Chen, Weiqiu; Zhang, Chuanzeng

    2017-02-01

    Soft electroactive (EA) tube actuators and many other cylindrical devices have been proposed recently in literature, which show great advantages over those made from conventional hard solid materials. However, their practical applications may be limited because these soft EA devices are prone to various failure modes. In this paper, we present an analysis of the guided circumferential elastic waves in soft EA tube actuators, which has potential applications in the in-situ nondestructive evaluation (NDE) or online structural health monitoring (SHM) to detect structural defects or fatigue cracks in soft EA tube actuators and in the self-sensing of soft EA tube actuators based on the concept of guided circumferential elastic waves. Both circumferential SH and Lamb-type waves in an incompressible soft EA cylindrical tube under inhomogeneous biasing fields are considered. The biasing fields, induced by the application of an electric voltage difference to the electrodes on the inner and outer cylindrical surfaces of the EA tube in addition to an axial pre-stretch, are inhomogeneous in the radial direction. Dorfmann and Ogden's theory of nonlinear electroelasticity and the associated linear theory for small incremental motion constitute the basis of our analysis. By means of the state-space formalism for the incremental wave motion along with the approximate laminate technique, dispersion relations are derived in a particularly efficient way. For a neo-Hookean ideal dielectric model, the proposed approach is first validated numerically. Numerical examples are then given to show that the guided circumferential wave propagation characteristics are significantly affected by the inhomogeneous biasing fields and the geometrical parameters. Some particular phenomena such as the frequency veering and the nonlinear dependence of the phase velocity on the radial electric voltage are discussed. Our numerical findings demonstrate that it is feasible to use guided circumferential

  5. Monitoring of Defects in a Pipe Weld by a Comparison of Magnetostrictive Guided Wave Signals

    International Nuclear Information System (INIS)

    Cheong, Yong-Moo; Oh, Se-Beom; Lee, Duck-Hyun

    2016-01-01

    In this study a computer program for an accurate comparison and subtraction of guided wave signals were developed. The program contains an algorithm for calibration with the flight time and phases of ultrasonic signals in the time domain. Once the reference signals were acquired at the beginning of the monitoring, the signals can be compared to the reference. The signals due to the geometry can be eliminated clearly and an evolution of defect in a pipe can be monitored accurately. In order to improve the detectability and solve the problems of the guided wave methods, a magnetostrictive guided wave sensor technique was proposed. Because the waveforms by the magnetostrictive sensors are quite clear and repeatable, it is possible to detect the defects at the weld regions or even monitor the small variations of the defects after a permanent installation of the magnetostrictive strip sensors. In order to eliminate the signals from the geometry, such as weld, pipe support, branch connection, a computer algorithm and program were developed. A notch with 1.5% of CSA of the pipe can be detected with increased accuracy. The guided wave monitoring technique developed in this study can be a promising tool for inspection of the pipe with limited accessibility, such as insulated or buried pipe

  6. Monitoring of Defects in a Pipe Weld by a Comparison of Magnetostrictive Guided Wave Signals

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Yong-Moo; Oh, Se-Beom; Lee, Duck-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this study a computer program for an accurate comparison and subtraction of guided wave signals were developed. The program contains an algorithm for calibration with the flight time and phases of ultrasonic signals in the time domain. Once the reference signals were acquired at the beginning of the monitoring, the signals can be compared to the reference. The signals due to the geometry can be eliminated clearly and an evolution of defect in a pipe can be monitored accurately. In order to improve the detectability and solve the problems of the guided wave methods, a magnetostrictive guided wave sensor technique was proposed. Because the waveforms by the magnetostrictive sensors are quite clear and repeatable, it is possible to detect the defects at the weld regions or even monitor the small variations of the defects after a permanent installation of the magnetostrictive strip sensors. In order to eliminate the signals from the geometry, such as weld, pipe support, branch connection, a computer algorithm and program were developed. A notch with 1.5% of CSA of the pipe can be detected with increased accuracy. The guided wave monitoring technique developed in this study can be a promising tool for inspection of the pipe with limited accessibility, such as insulated or buried pipe.

  7. Development of a Novel Guided Wave Generation System Using a Giant Magnetostrictive Actuator for Nondestructive Evaluation.

    Science.gov (United States)

    Luo, Mingzhang; Li, Weijie; Wang, Junming; Wang, Ning; Chen, Xuemin; Song, Gangbing

    2018-03-04

    As a common approach to nondestructive testing and evaluation, guided wave-based methods have attracted much attention because of their wide detection range and high detection efficiency. It is highly desirable to develop a portable guided wave testing system with high actuating energy and variable frequency. In this paper, a novel giant magnetostrictive actuator with high actuation power is designed and implemented, based on the giant magnetostrictive (GMS) effect. The novel GMS actuator design involves a conical energy-focusing head that can focus the amplified mechanical energy generated by the GMS actuator. This design enables the generation of stress waves with high energy, and the focusing of the generated stress waves on the test object. The guided wave generation system enables two kinds of output modes: the coded pulse signal and the sweep signal. The functionality and the advantages of the developed system are validated through laboratory testing in the quality assessment of rock bolt-reinforced structures. In addition, the developed GMS actuator and the supporting system are successfully implemented and applied in field tests. The device can also be used in other nondestructive testing and evaluation applications that require high-power stress wave generation.

  8. Isolated vasculitis of the CNS

    International Nuclear Information System (INIS)

    Block, F.; Reith, W.

    2000-01-01

    Vasculitis is a rare cause for disease of the CNS. The isolated vasculitis of the CNS is restricted to the CNS whereas other forms of vasculitis affect various organs including the CNS. Headache, encephalopathy, focal deficits and epileptic seizures are the major symptoms suggestive for vasculitis. One major criterion of the isolated vasculitis of the CNS is the lack of evidence for other vasculitis forms or for pathology of other organs. Angiography displays multifocal segmental stenosis of intracranial vessels. MRI demonstrates multiple lesions which in part show enhancement after gadolinium. A definite diagnosis can only be made on the grounds of biopsy from leptomeninges and parenchyma. Therapy consists of corticosteroids and cyclophosphamid. (orig.) [de

  9. Spinor-electron wave guided modes in coupled quantum wells structures by solving the Dirac equation

    International Nuclear Information System (INIS)

    Linares, Jesus; Nistal, Maria C.

    2009-01-01

    A quantum analysis based on the Dirac equation of the propagation of spinor-electron waves in coupled quantum wells, or equivalently coupled electron waveguides, is presented. The complete optical wave equations for Spin-Up (SU) and Spin-Down (SD) spinor-electron waves in these electron guides couplers are derived from the Dirac equation. The relativistic amplitudes and dispersion equations of the spinor-electron wave-guided modes in a planar quantum coupler formed by two coupled quantum wells, or equivalently by two coupled slab electron waveguides, are exactly derived. The main outcomes related to the spinor modal structure, such as the breaking of the non-relativistic degenerate spin states, the appearance of phase shifts associated with the spin polarization and so on, are shown.

  10. Crack-depth effects in the cylindrically guided wave technique for bolt and pump-shaft inspections

    International Nuclear Information System (INIS)

    Tsai, Y.M.; Liu, S.N.; Light, G.M.

    1991-01-01

    Nuclear power plants have experienced the failures of bolts and pump shafts. The industry is concerned about nondestructive evaluation (NDE) techniques that can be applied to these components. The cylindrically guided wave technique (CGWT) has been developed to detect the simulated circumferential defects in long bolts and studs. The ultrasonic CGWT employs the zero-degree longitudinal waves constrained to travel within the boundary of the components with cylindrical shape during inspection. When longitudinal waves are guided to travel along a cylinder, and impinge onto a circumferential defect, the waves are scattered at the crack on the cylinder surface. In this work, the wave scattering at the circumferential crack on a long cylinder is investigated. The transfer factor of the scattered waves is calculated for a wide range of frequency spectra. The scattered waveform at a distance away from a crack is calculated. The effect that crack depth exerts to the waveform in CGWT is shown. CGWT signals, waveform calculation and so on are reported. (K.I.)

  11. Sparse and Dispersion-Based Matching Pursuit for Minimizing the Dispersion Effect Occurring when Using Guided Wave for Pipe Inspection.

    Science.gov (United States)

    Rostami, Javad; Tse, Peter W T; Fang, Zhou

    2017-06-06

    Ultrasonic guided wave is an effective tool for structural health monitoring of structures for detecting defects. In practice, guided wave signals are dispersive and contain multiple modes and noise. In the presence of overlapped wave-packets/modes and noise together with dispersion, extracting meaningful information from these signals is a challenging task. Handling such challenge requires an advanced signal processing tool. The aim of this study is to develop an effective and robust signal processing tool to deal with the complexity of guided wave signals for non-destructive testing (NDT) purpose. To achieve this goal, Sparse Representation with Dispersion Based Matching Pursuit (SDMP) is proposed. Addressing the three abovementioned facts that complicate signal interpretation, SDMP separates overlapped modes and demonstrates good performance against noise with maximum sparsity. With the dispersion taken into account, an overc-omplete and redundant dictionary of basic atoms based on a narrowband excitation signal is designed. As Finite Element Method (FEM) was used to predict the form of wave packets propagating along structures, these atoms have the maximum resemblance with real guided wave signals. SDMP operates in two stages. In the first stage, similar to Matching Pursuit (MP), the approximation improves by adding, a single atom to the solution set at each iteration. However, atom selection criterion of SDMP utilizes the time localization of guided wave reflections that makes a portion of overlapped wave-packets to be composed mainly of a single echo. In the second stage of the algorithm, the selected atoms that have frequency inconsistency with the excitation signal are discarded. This increases the sparsity of the final representation. Meanwhile, leading to accurate approximation, as discarded atoms are not representing guided wave reflections, it simplifies extracting physical meanings for defect detection purpose. To verify the effectiveness of SDMP for

  12. Sparse and Dispersion-Based Matching Pursuit for Minimizing the Dispersion Effect Occurring when Using Guided Wave for Pipe Inspection

    Directory of Open Access Journals (Sweden)

    Javad Rostami

    2017-06-01

    Full Text Available Ultrasonic guided wave is an effective tool for structural health monitoring of structures for detecting defects. In practice, guided wave signals are dispersive and contain multiple modes and noise. In the presence of overlapped wave-packets/modes and noise together with dispersion, extracting meaningful information from these signals is a challenging task. Handling such challenge requires an advanced signal processing tool. The aim of this study is to develop an effective and robust signal processing tool to deal with the complexity of guided wave signals for non-destructive testing (NDT purpose. To achieve this goal, Sparse Representation with Dispersion Based Matching Pursuit (SDMP is proposed. Addressing the three abovementioned facts that complicate signal interpretation, SDMP separates overlapped modes and demonstrates good performance against noise with maximum sparsity. With the dispersion taken into account, an overc-omplete and redundant dictionary of basic atoms based on a narrowband excitation signal is designed. As Finite Element Method (FEM was used to predict the form of wave packets propagating along structures, these atoms have the maximum resemblance with real guided wave signals. SDMP operates in two stages. In the first stage, similar to Matching Pursuit (MP, the approximation improves by adding, a single atom to the solution set at each iteration. However, atom selection criterion of SDMP utilizes the time localization of guided wave reflections that makes a portion of overlapped wave-packets to be composed mainly of a single echo. In the second stage of the algorithm, the selected atoms that have frequency inconsistency with the excitation signal are discarded. This increases the sparsity of the final representation. Meanwhile, leading to accurate approximation, as discarded atoms are not representing guided wave reflections, it simplifies extracting physical meanings for defect detection purpose. To verify the

  13. Detection of CFRP Composite Manufacturing Defects Using a Guided Wave Approach

    Science.gov (United States)

    Hudson, Tyler B.; Hou, Tan-Hung; Grimsley, Brian W.; Yuan, Fuh-Gwo

    2015-01-01

    NASA Langley Research Center is investigating a guided-wave based defect detection technique for as-fabricated carbon fiber reinforced polymer (CFRP) composites. This technique will be extended to perform in-process cure monitoring, defect detection and size determination, and ultimately a closed-loop process control to maximize composite part quality and consistency. The overall objective of this work is to determine the capability and limitations of the proposed defect detection technique, as well as the number and types of sensors needed to identify the size, type, and location of the predominant types of manufacturing defects associated with laminate layup and cure. This includes, porosity, gaps, overlaps, through-the-thickness fiber waviness, and in-plane fiber waviness. The present study focuses on detection of the porosity formed from variations in the matrix curing process, and on local overlaps intentionally introduced during layup of the prepreg. By terminating the cycle prematurely, three 24-ply unidirectional composite panels were manufactured such that each subsequent panel had a higher final degree of cure, and lower level of porosity. It was demonstrated that the group velocity, normal to the fiber direction, of a guided wave mode increased by 5.52 percent from the first panel to the second panel and 1.26 percent from the second panel to the third panel. Therefore, group velocity was utilized as a metric for degree of cure and porosity measurements. A fully non-contact guided wave hybrid system composed of an air-coupled transducer and a laser Doppler vibrometer (LDV) was used for the detection and size determination of an overlap By transforming the plate response from the time-space domain to the frequency-wavenumber domain, the total wavefield was then separated into the incident and backscatter waves. The overlap region was accurately imaged by using a zero-lag cross-correlation (ZLCC) imaging condition, implying the incident and backscattered

  14. Guided waves and ultrasonic characterization of three-dimensional composites

    Science.gov (United States)

    Leymarie, Nicolas; Baste, Stéphane

    2000-05-01

    Ultrasonic NDE of anisotropic media appears nowadays as one of the best experimental approaches in studying mechanical properties. A complete identification of stiffness tensor can be performed with phase velocity measurements of obliquely incidence ultrasonic bulk waves from water onto a plate. The medium considered, however, has to be homogeneous with respect to wavelength used. In the case of 3D-composites, textures scales may reach one millimeter and their cut-off frequency is less than MHz. The dispersion curves observed in the considered range of frequencies are often very close and sometimes may be overlapped. Experimental studies show complex signals, which are due to a combination of both bulk and guided waves. Wave-speed measurements of the bulk wave and its detection become unreliable with classical techniques of signal processing (simple time or spectral analysis). Moreover, even if the coupled time-frequency analysis with wavelet transforms allows a better interpretation of the signal, the time delay estimation for the bulk wave and so the characterization of the material remains uncertain. To understand blended signals more accurately, different analytical and numerical models are proposed to show the advantages and disadvantages of methods used in NDE.

  15. SIMPLE MODELS OF THREE COUPLED PT -SYMMETRIC WAVE GUIDES ALLOWING FOR THIRD-ORDER EXCEPTIONAL POINTS

    Directory of Open Access Journals (Sweden)

    Jan Schnabel

    2017-12-01

    Full Text Available We study theoretical models of three coupled wave guides with a PT-symmetric distribution of gain and loss. A realistic matrix model is developed in terms of a three-mode expansion. By comparing with a previously postulated matrix model it is shown how parameter ranges with good prospects of finding a third-order exceptional point (EP3 in an experimentally feasible arrangement of semiconductors can be determined. In addition it is demonstrated that continuous distributions of exceptional points, which render the discovery of the EP3 difficult, are not only a feature of extended wave guides but appear also in an idealised model of infinitely thin guides shaped by delta functions.

  16. Guided wave opto-acoustic device

    Science.gov (United States)

    Jarecki, Jr., Robert L.; Rakich, Peter Thomas; Camacho, Ryan; Shin, Heedeuk; Cox, Jonathan Albert; Qiu, Wenjun; Wang, Zheng

    2016-02-23

    The various technologies presented herein relate to various hybrid phononic-photonic waveguide structures that can exhibit nonlinear behavior associated with traveling-wave forward stimulated Brillouin scattering (forward-SBS). The various structures can simultaneously guide photons and phonons in a suspended membrane. By utilizing a suspended membrane, a substrate pathway can be eliminated for loss of phonons that suppresses SBS in conventional silicon-on-insulator (SOI) waveguides. Consequently, forward-SBS nonlinear susceptibilities are achievable at about 3000 times greater than achievable with a conventional waveguide system. Owing to the strong phonon-photon coupling achievable with the various embodiments, potential application for the various embodiments presented herein cover a range of radiofrequency (RF) and photonic signal processing applications. Further, the various embodiments presented herein are applicable to applications operating over a wide bandwidth, e.g. 100 MHz to 50 GHz or more.

  17. Nanomedicines for the Treatment of CNS Diseases.

    Science.gov (United States)

    Reynolds, Jessica L; Mahato, Ram I

    2017-03-01

    Targeting and delivering macromolecular therapeutics to the central nervous system (CNS) has been a major challenge. The blood-brain barrier (BBB) is the main obstacle that must be overcome to allow compounds to reach their targets in the brain. Therefore, much effort has been channelled into improving transport of therapeutics across the BBB and into the CNS including the use of nanoparticles. In this thematic issue, several reviews and original research are presented that address "Nanomedicines for CNS Diseases." The articles in this issue are concentrated on either CNS-HIV disease or CNS tumors. In regards to CNS-HIV disease, there are two reviews that discuss the role of nanoparticles for improving the delivery of HIV therapeutics to the CNS. In addition, there are two original articles focusing on therapies for CNS-HIV, one of them uses nanoparticles for delivery of siRNA specific to a key protein in autophagy to microglia, and another discusses nanoparticle delivery of a soluble mediator to suppress neuroinflammation. Furthermore, a comprehensive review about gene therapy for CNS neurological diseases is also included. Finally, this issue also includes review articles on enhanced drug targeting to CNS tumors. These articles include a review on the use of nanoparticles for CNS tumors, a review on functionalization (ligands) of nanoparticles for drug targeting to the brain tumor by overcoming BBB, and the final review discusses the use of macrophages as a delivery vehicle to CNS tumors. This thematic issue provides a wealth of knowledge on using nanomedicines for CNS diseases.

  18. Modeling of microwave applicators with an excitation through the wave guide using TLM method

    Directory of Open Access Journals (Sweden)

    Ranđelović Tijana

    2005-01-01

    Full Text Available In this paper, a real microwave applicator with a wave guide used to launch the energy from the source into the cavity is analyzed using 3D TLM method. In order to investigate the influence of the positions and number of feed wave guides to the number of the resonant modes inside the cavity, obtained results are compared with analytical results and results obtained by using TLM software with an impulse excitation as well. TLM method is applied to the both empty and loaded rectangular metallic cavity, and a very good agreement between simulated and experimental results is achieved.

  19. Guided wave photonics fundamentals and applications with Matlab

    CERN Document Server

    Binh, Le Nguyen

    2012-01-01

    IntroductionHistorical Overview of Integrated Optics and PhotonicsWhy Analysis of Optical Guided-wave Devices?Principal ObjectivesChapters OverviewSingle Mode Planar Optical WaveguidesFormation of Planar Single Mode Waveguide ProblemsApproximate Analytical Methods of SolutionAPPENDIX A: Maxwell Equations in Dielectric MediaAPPENDIX B: Exact Analysis of Clad-linear Optical WaveguidesAPPENDIX C: Wentzel-Kramers-Brilluoin Method, Turning Points and Connection FormulaeAPPENDIX D: Design and Simulation of Planar Optical Waveguides3D Integrated Optical WaveguidesMarcatili's Method| Effective Index M

  20. Parametric study of guided waves dispersion curves for composite plates

    Science.gov (United States)

    Predoi, Mihai Valentin; Petre, Cristian Cǎtǎlin; Kettani, Mounsif Ech Cherif El; Leduc, Damien

    2018-02-01

    Nondestructive testing of composite panels benefit from the relatively long range propagation of guided waves in sandwich structures. The guided waves are sensitive to delamination, air bubbles inclusions and cracks and can thus bring information about hidden defects in the composite panel. The preliminary data in all such inspections is represented by the dispersion curves, representing the dependency of the phase/group velocity on the frequency for the propagating modes. In fact, all modes are more or less attenuated, so it is even more important to compute the dispersion curves, which provide also the modal attenuation as function of frequency. Another important aspect is the sensitivity of the dispersion curves on each of the elastic constant of the composite, which are orthotropic in most cases. All these aspects are investigated in the present work, based on our specially developed finite element numerical model implemented in Comsol, which has several advantages over existing methods. The dispersion curves and modal displacements are computed for an example of composite plate. Comparison with literature data validates the accuracy of our results.

  1. Deep rock damage in the San Andreas Fault revealed by P- and S-type fault-zone-guided waves

    Science.gov (United States)

    Ellsworth, William L.; Malin, Peter E.

    2011-01-01

    Damage to fault-zone rocks during fault slip results in the formation of a channel of low seismic-wave velocities. Within such channels guided seismic waves, denoted by Fg, can propagate. Here we show with core samples, well logs and Fg-waves that such a channel is crossed by the SAFOD (San Andreas Fault Observatory at Depth) borehole at a depth of 2.7 km near Parkfield, California, USA. This laterally extensive channel extends downwards to at least half way through the seismogenic crust, more than about 7 km. The channel supports not only the previously recognized Love-type- (FL) and Rayleigh-type- (FR) guided waves, but also a new fault-guided wave, which we name FF. As recorded 2.7 km underground, FF is normally dispersed, ends in an Airy phase, and arrives between the P- and S-waves. Modelling shows that FF travels as a leaky mode within the core of the fault zone. Combined with the drill core samples, well logs and the two other types of guided waves, FF at SAFOD reveals a zone of profound, deep, rock damage. Originating from damage accumulated over the recent history of fault movement, we suggest it is maintained either by fracturing near the slip surface of earthquakes, such as the 1857 Fort Tejon M 7.9, or is an unexplained part of the fault-creep process known to be active at this site.

  2. PPM-based System for Guided Waves Communication Through Corrosion Resistant Multi-wire Cables

    Science.gov (United States)

    Trane, G.; Mijarez, R.; Guevara, R.; Pascacio, D.

    Novel wireless communication channels are a necessity in applications surrounded by harsh environments, for instance down-hole oil reservoirs. Traditional radio frequency (RF) communication schemes are not capable of transmitting signals through metal enclosures surrounded by corrosive gases and liquids. As an alternative to RF, a pulse position modulation (PPM) guided waves communication system has been developed and evaluated using a corrosion resistant 4H18 multi-wire cable, commonly used to descend electronic gauges in down-hole oil applications, as the communication medium. The system consists of a transmitter and a receiver that utilizes a PZT crystal, for electrical/mechanical coupling, attached to each extreme of the multi-wire cable. The modulator is based on a microcontroller, which transmits60 kHz guided wave pulses, and the demodulator is based on a commercial digital signal processor (DSP) module that performs real time DSP algorithms. Experimental results are presented, which were obtained using a 1m corrosion resistant 4H18multi-wire cable, commonly used with downhole electronic gauges in the oil sector. Although there was significant dispersion and multiple mode excitations of the transmitted guided wave energy pulses, the results show that data rates on the order of 500 bits per second are readily available employing PPM and simple communications techniques.

  3. Parametric Study of Defect Detection in Pipes with Bend Using Guided Ultrasonic Waves

    Directory of Open Access Journals (Sweden)

    Jack Tan Jin

    2016-01-01

    Full Text Available The propagation behaviour of guided ultrasonic waves in a steel pipe with welded bend is studied by finite element simulation. The effectiveness of the longitudinal L(0,2 and torsional T(0,1 guided waves in detecting circumferential cut near the weld is investigated. In order to identify the presence of the defect, the reflection strength due to the cut is studied. The geometry of the weld is constructed based on common V-bevel butt joints and the anisotropy of the 316L stainless steel weld is included to correctly predict the scattering of ultrasonic waves. The finite element model is built to allow high accuracy. Detection of small circumferential cut (up to 60° circumferential extent can be achieved with longitudinal L(0,2 mode. Detection of moderate to large circumferential cut can be achieved by torsional T(0,1 or longitudinal L(0,2 modes, with T(0,1 mode preferred due to its less mode conversion to higher order modes.

  4. Application of a Magnetostrictive Guided wave Technique to Monitor the Evolution of Defect Signals

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Yong-Moo; Oh, Se-Beom; Lee, Duck-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    An advantage of a magnetostrictive strip transducer for a long-range guided wave inspection is that wave patterns are clear and simple when compared to a conventional piezoelectric ultrasonic transducer. Therefore, if we can characterize the evolution of defect signals, it could be a promising tool for a structural health monitoring of pipes for a long period of time as well as an identification of flaw. Of course, when evaluating a signal during a realistic field examination, it should be careful because of some spurious signals or false indications, such as signals due to a directionality, multiple reflections, mode conversion, geometrical reflections etc. Therefore, the different frequency components of the guided waves will travel at different speeds and the shape of the received signal will changed as it propagates along the pipe. Once the magnetostrictive sensors are attached in the pipe permanently and the signal shape and phase can be compared to the signals before and after, we can monitor the evolution of the flow for the given period. We developed a program to subtract the guided wave signal. The program has a capability of adjusting the time scale and can minimize the noise level after subtraction. By applying the newly developed program, a notch with 2% of CSA can be detected with increased accuracy with noise reduction.

  5. Damage identification using guided waves on a composite skin-stiffener structure

    NARCIS (Netherlands)

    Loendersloot, R.; Battley, M.; Tinga, T.

    2016-01-01

    The potential of using guided waves for damage detection in composite materials has been proven by many researches in the past few years and in particular by the cases studies of the European project SARISTU. In that project integration methods for the piezoelectric wafer active sensors (PWAS),

  6. Modeling guided wave excitation in plates with surface mounted piezoelectric elements: coupled physics and normal mode expansion

    Science.gov (United States)

    Ren, Baiyang; Lissenden, Cliff J.

    2018-04-01

    Guided waves have been extensively studied and widely used for structural health monitoring because of their large volumetric coverage and good sensitivity to defects. Effectively and preferentially exciting a desired wave mode having good sensitivity to a certain defect is of great practical importance. Piezoelectric discs and plates are the most common types of surface-mounted transducers for guided wave excitation and reception. Their geometry strongly influences the proportioning between excited modes as well as the total power of the excited modes. It is highly desirable to predominantly excite the selected mode while the total transduction power is maximized. In this work, a fully coupled multi-physics finite element analysis, which incorporates the driving circuit, the piezoelectric element and the wave guide, is combined with the normal mode expansion method to study both the mode tuning and total wave power. The excitation of circular crested waves in an aluminum plate with circular piezoelectric discs is numerically studied for different disc and adhesive thicknesses. Additionally, the excitation of plane waves in an aluminum plate, using a stripe piezoelectric element is studied both numerically and experimentally. It is difficult to achieve predominant single mode excitation as well as maximum power transmission simultaneously, especially for higher order modes. However, guidelines for designing the geometry of piezoelectric elements for optimal mode excitation are recommended.

  7. An Analysis of the Guided Wave Patterns in a Small-bore Titanium Tube by a Magnetostrictive Sensor Technique

    International Nuclear Information System (INIS)

    Cheong, Yong-Moo; Kim, Shin

    2007-01-01

    The presence of damage or defects in pipes or tubes is one of the major problems in nuclear power plants. However, in many cases, it is difficult to inspect all of them by the conventional ultrasonic methods, because of their geometrical complexity and inaccessibility. The magnetostrictive guided wave technique has several advantages for practical applications, such as a 100- percent volumetric coverage of a long segment of a structure, a reduced inspection time and its cost effectiveness, as well as its' relatively simple structure. One promising feature of the magnetostrictive sensor technique is that the wave patterns are relatively clear and simple compared to the conventional piezoelectric ultrasonic transducer. If we can characterize the evolution of the defect signals, it can be a promising tool for a structural health monitoring of pipes for a long period as well as the identification of flaws. An in-bore guided wave probe was developed for an application to small bore heat exchanger tubes. The magnetostrictive probe installed on the hollow cylindrical waveguide generates and detects torsional waves in the waveguide. This waveguide is expanded by the draw bar to create an intimate mechanical contact between the waveguide and the inside surface of the tube being tested. In this paper, we analyzed the wave patterns reflected from various artificial holes in a titanium tube, which is used in the condenser in a nuclear power plant. The torsional guided waves were generated and received by a coil and a DC magnetized nickel strip as well as an inbore guided wave probe. The wave patterns from various defects were compared with two different sensor techniques and a detectable limit of the defected was estimated

  8. Standard practice for guided wave testing of above ground steel pipework using piezoelectric effect transduction

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This practice provides a procedure for the use of guided wave testing (GWT), also previously known as long range ultrasonic testing (LRUT) or guided wave ultrasonic testing (GWUT). 1.2 GWT utilizes ultrasonic guided waves, sent in the axial direction of the pipe, to non-destructively test pipes for defects or other features by detecting changes in the cross-section and/or stiffness of the pipe. 1.3 GWT is a screening tool. The method does not provide a direct measurement of wall thickness or the exact dimensions of defects/defected area; an estimate of the defect severity however can be provided. 1.4 This practice is intended for use with tubular carbon steel or low-alloy steel products having Nominal Pipe size (NPS) 2 to 48 corresponding to 60.3 to 1219.2 mm (2.375 to 48 in.) outer diameter, and wall thickness between 3.81 and 25.4 mm (0.15 and 1 in.). 1.5 This practice covers GWT using piezoelectric transduction technology. 1.6 This practice only applies to GWT of basic pipe configuration. This inc...

  9. Application of the cylindrically guided wave technique for bolt and pump shaft inspections

    International Nuclear Information System (INIS)

    Light, G.M.; Ruescher, E.H.; Bloom, E.A.; Joshi, N.R.; Tsai, Y.M.; Liu, S.N.

    1993-01-01

    Elastic wave propagation in a bounded medium significantly differs from that in an unbounded medium. The bounded medium in the form of a cylinder acts like a solid waveguide directing the wave with its geometry. A continuous or a pulsed wave interacts with cylindrical boundaries producing mode-converted signals in addition to the backwall echo. The signals are received at constant time intervals directly proportional to the diameter of a solid cylindrical object such as a bolt or an anchor stud. The Cylindrically Guided Wave Technique (CGWT) makes intelligent use of the mode-converted signals, or trailing pulses, to detect corrosion wastages and cracks in cylindrical objects. (orig.)

  10. Self-action of Bessel wave packets in a system of coupled light guides and formation of light bullets

    Energy Technology Data Exchange (ETDEWEB)

    Balakin, A. A., E-mail: balakin.alexey@yandex.ru; Mironov, V. A.; Skobelev, S. A., E-mail: sk.sa1981@gmail.com [Russian Academy of Sciences, Institute of Applied Physics (Russian Federation)

    2017-01-15

    The self-action of two-dimensional and three-dimensional Bessel wave packets in a system of coupled light guides is considered using the discrete nonlinear Schrödinger equation. The features of the self-action of such wave fields are related to their initial strong spatial inhomogeneity. The numerical simulation shows that for the field amplitude exceeding a critical value, the development of an instability typical of a medium with the cubic nonlinearity is observed. Various regimes are studied: the self-channeling of a wave beam in one light guide at powers not strongly exceeding a critical value, the formation of the “kaleidoscopic” picture of a wave packet during the propagation of higher-power radiation along a stratified medium, the formation of light bullets during competition between self-focusing and modulation instabilities in the case of three-dimensional wave packets, etc. In the problem of laser pulse shortening, the situation is considered when the wave-field stratification in the transverse direction dominates. This process is accompanied by the self-compression of laser pulses in well enough separated light guides. The efficiency of conversion of the initial Bessel field distribution to two flying parallel light bullets is about 50%.

  11. An ultrasonic guided wave approach for the inspection of overhead transmission line cables

    DEFF Research Database (Denmark)

    Yücel, Mehmet K.; Legg, Mathew; Kappatos, Vasileios

    2017-01-01

    as a non-destructive testing technique is well established for simple geometries such as plates, pipes, and rods. However, its application for multi-wire cables is still in development. In this study, ultrasonic guided waves excited by a shear mode transducer collar are utilised as a defect detection...... technique for untensioned aluminium conductor steel reinforced cable specimens. The identification and analysis of wave propagation for a broad range of frequencies is performed using a laser scanning vibrometer, and the effect of defect size on wave propagation is studied. Signal processing algorithms...

  12. Estimating state of charge and health of lithium-ion batteries with guided waves using built-in piezoelectric sensors/actuators

    Science.gov (United States)

    Ladpli, Purim; Kopsaftopoulos, Fotis; Chang, Fu-Kuo

    2018-04-01

    This work presents the feasibility of monitoring state of charge (SoC) and state of health (SoH) of lithium-ion pouch batteries with acousto-ultrasonic guided waves. The guided waves are propagated and sensed using low-profile, built-in piezoelectric disc transducers that can be retrofitted onto off-the-shelf batteries. Both experimental and analytical studies are performed to understand the relationship between guided waves generated in a pitch-catch mode and battery SoC/SoH. The preliminary experiments on representative pouch cells show that the changes in time of flight (ToF) and signal amplitude (SA) resulting from shifts in the guided wave signals correlate strongly with the electrochemical charge-discharge cycling and aging. An analytical acoustic model is developed to simulate the variations in electrode moduli and densities during cycling, which correctly validates the absolute values and range of experimental ToF. It is further illustrated via a statistical study that ToF and SA can be used in a prediction model to accurately estimate SoC/SoH. Additionally, by using multiple sensors in a network configuration on the same battery, a significantly more reliable and accurate SoC/SoH prediction is achieved. The indicative results from this study can be extended to develop a unified guided-wave-based framework for SoC/SoH monitoring of many lithium-ion battery applications.

  13. Theoretical study of the attenuation of a gaussian beam penetrating into a dielectric circular wave guide

    International Nuclear Information System (INIS)

    Crenn, J.P.

    1981-07-01

    It is proposed to draw up an approximate formula directly giving the attenuation of a gaussian beam penetrating into a superdimensioned dielectric circular wave guide. This formula is derived from optical laws, i.e. Fresnel's formulae of the reflexion of a wave on a dielectric to which a correcting term due to diffraction has been added. The results given by this formula are compared with the existing results, based on the breakdown of a gaussian beam into propagation modes, thereby enabling their validity and the field of use to be checked. An application is then made to the wave guides that will be employed in the infrared interferometer fitted in JET [fr

  14. PCA Based Stress Monitoring of Cylindrical Specimens Using PZTs and Guided Waves

    Directory of Open Access Journals (Sweden)

    Jabid Quiroga

    2017-12-01

    Full Text Available Since mechanical stress in structures affects issues such as strength, expected operational life and dimensional stability, a continuous stress monitoring scheme is necessary for a complete integrity assessment. Consequently, this paper proposes a stress monitoring scheme for cylindrical specimens, which are widely used in structures such as pipelines, wind turbines or bridges. The approach consists of tracking guided wave variations due to load changes, by comparing wave statistical patterns via Principal Component Analysis (PCA. Each load scenario is projected to the PCA space by means of a baseline model and represented using the Q-statistical indices. Experimental validation of the proposed methodology is conducted on two specimens: (i a 12.7 mm ( 1 / 2 ″ diameter, 0.4 m length, AISI 1020 steel rod, and (ii a 25.4 mm ( 1 ″ diameter, 6m length, schedule 40, A-106, hollow cylinder. Specimen 1 was subjected to axial loads, meanwhile specimen 2 to flexion. In both cases, simultaneous longitudinal and flexural guided waves were generated via piezoelectric devices (PZTs in a pitch-catch configuration. Experimental results show the feasibility of the approach and its potential use as in-situ continuous stress monitoring application.

  15. Periodicity effects on compound waves guided by a thin metal slab sandwiched between two periodically nonhomogeneous dielectric materials

    Science.gov (United States)

    Chiadini, Francesco; Fiumara, Vincenzo; Scaglione, Antonio; Lakhtakia, Akhlesh

    2017-10-01

    Surface-plasmon-polariton waves can be compounded when a sufficiently thin metal layer is sandwiched between two half spaces filled with dissimilar periodically nonhomogeneous dielectric materials. We solved the boundary-value problem for compound waves guided by a layer of a homogeneous and isotropic metal sandwiched between a structurally chiral material (SCM) and a periodically multilayered isotropic dielectric (PMLID) material. We found that the periodicities of the PMLID material and the SCM are crucial to excite a multiplicity of compound guided waves arising from strong coupling between the two interfaces.

  16. Coherent versus incoherent dynamics in InAs quantum-dot active wave guides

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, W.; Hvam, Jørn Märcher

    2001-01-01

    Coherent dynamics measured by time-resolved four-wave mixing is compared to incoherent population dynamics measured by differential transmission spectroscopy on the ground-state transition at room temperature of two types of InAs-based quantum dots with different confinement energies. The measure....... The measurements are performed with heterodyne detection on quantum-dot active wave guides to enhance the light-matter interaction length. An elastic nature of the measured dephasing is revealed which is independent of the dot energy level scheme....

  17. Using the gauge condition to simplify the elastodynamic analysis of guided wave propagation

    Directory of Open Access Journals (Sweden)

    Md Yeasin BHUIYAN

    2016-09-01

    Full Text Available In this article, gauge condition in elastodynamics is explored more to revive its potential capability of simplifying wave propagation problems in elastic medium. The inception of gauge condition in elastodynamics happens from the Navier-Lame equations upon application of Helmholtz theorem. In order to solve the elastic wave problems by potential function approach, the gauge condition provides the necessary conditions for the potential functions. The gauge condition may be considered as the superposition of the separate gauge conditions of Lamb waves and shear horizontal (SH guided waves respectively, and thus, it may be resolved into corresponding gauges of Lamb waves and SH waves. The manipulation and proper choice of the gauge condition does not violate the classical solutions of elastic waves in plates; rather, it simplifies the problems. The gauge condition allows to obtain the analytical solution of complicated problems in a simplified manner.

  18. Feasibility study on the guided wave technique for condenser tube in NPP

    International Nuclear Information System (INIS)

    Choi, Sung Nam; Kim, Young Ho; Kim, Hyung Nam; Yoo, Hyun Joo; Hwang, W. G.

    2004-01-01

    The condenser tube is examined by the eddy current test (ECT) method to identify the integrity of the nuclear power plant. Because ECT probe is moved through the tube inside to identify flaws, the ECT probe should be exchanged periodically due to the wear of probe surface in order to remove the noise form the ECT signal. Moreover, it is impossible to examine the tube by ECT method because the ECT probe can not move through the inside due to the deformation such as dent. Recently, the theory of guided wave was established and the equipment applying the theory has been actively developed so as to overcome the limitation of ECT method for the tube inspection of heater exchanger in nuclear power plant. The object of this study is to know the feasibility of applying the guided wave technique to condenser tube in NPP

  19. Application of empowerment theory for CNS practice.

    Science.gov (United States)

    Carlson-Catalano, J M

    1993-11-01

    Power is necessary for the clinical nurse specialist (CNS) to successfully conduct objectives of practice in bureaucratic hospital settings. To obtain power, the CNS could use strategies of an empowerment theory to fully operationalize roles in hospitals. This article will discuss how the CNS may be empowered utilizing strategies in four empowering categories. In addition, the many benefits of empowering the CNS are reviewed.

  20. Research on the Lift-off Effect of Receiving Longitudinal Mode Guided Waves in Pipes Based on the Villari Effect

    Directory of Open Access Journals (Sweden)

    Jiang Xu

    2016-09-01

    Full Text Available The magnetostrictive guided wave technology as a non-contact measurement can generate and receive guided waves with a large lift-off distance up to tens of millimeters. However, the lift-off distance of the receiving coil would affect the coupling efficiency from the elastic energy to the electromagnetic energy. In the existing magnetomechanical models, the change of the magnetic field in the air gap was ignored since the permeability of the rod is much greater than that of air. The lift-off distance of the receiving coil will not affect the receiving signals based on these models. However, the experimental phenomenon is in contradiction with these models. To solve the contradiction, the lift-off effect of receiving the longitudinal mode guided waves in pipes is investigated based on the Villari effect. A finite element model of receiving longitudinal guided waves in pipes is obtained based on the Villari effect, which takes into account the magnetic field in the pipe wall and the air zone at the same time. The relation between the amplitude of the induced signals and the radius (lift-off distance of the receiving coil is obtained, which is verified by experiment. The coupling efficiency of the receiver is a monotonic decline with the lift-off distance increasing. The decay rate of the low frequency wave is slower than the high frequency wave. Additionally, the results show that the rate of change of the magnetic flux in the air zone and in the pipe wall is the same order of magnitude, but opposite. However, the experimental results show that the error of the model in the large lift-off distance is obvious due to the diffusion of the magnetic field in the air, especially for the high frequency guided waves.

  1. Mode Selection for Axial Flaw Detection in Steam Generator Tube Using Ultrasonic Guided Wave

    International Nuclear Information System (INIS)

    Yoon, Byung Sik; Yang, Seung Han; Guon, Ki Il; Kim, Yong Sik

    2009-01-01

    The eddy current testing method is mainly used to inspect steam generator tube during in-service inspection period. But the general problem of assessing the structural integrity of the steam generator tube using eddy current inspection is rather complex due to the presence of noise and interference signal under various conditions. However, ultrasonic testing as a nondestructive testing tool has become quite popular and effective for the flaw detection and material characterization. Currently, ultrasonic guided wave is emerging technique in power industry because of its various merits. But most of previous studies are focused on detection of circumferential oriented flaws. In this study, the steam generator tube of nuclear power plant was selected to detect axially oriented flaws and investigate guided wave mode identification. The longitudinal wave mode is generated using piezoelectric transducer frequency from 0.5 MHz, 1.0 MHz, 2.25MHz and 5MHz. Dispersion based STFT algorithm is used as mode identification tool

  2. Guided Wave Sensing In a Carbon Steel Pipe Using a Laser Vibrometer System

    Science.gov (United States)

    Ruíz Toledo, Abelardo; Salazar Soler, Jordi; Chávez Domínguez, Juan Antonio; García Hernández, Miguel Jesús; Turó Peroy, Antoni

    2010-05-01

    Non-Destructive Evaluation (NDE) techniques have achieved a great development during the last decades as a valuable tool for material characterization, manufacturing control and structural integrity tests. Among these tools, the guided wave technology has been rapidly extended because it reduces inspection time and costs compared to the ordinary point by point testing in large structures, as well as because of the possibility of inspecting under insulation and coating conditions. This fast development has motivated the creation of several inspection and material characterization systems including different technologies which can be combined with this technique. Different measurements systems based on laser techniques have been presented in order to inspect pipes, plates and diverse structures. Many of them are experimental systems of high cost and complexity which combine the employment of a laser for generation of waves in the structure and an interferometer for detection. Some of them employ air-coupled ultrasound generation transducers, with high losses in air and which demand high energy for exciting waves in materials of high stiffness. The combined employment of a commercial vibrometer system for Lamb wave sensing in plates has been successfully shown in the literature. In this paper we present a measurement system based on the combined employment of a piezoelectric wedge transducer and a laser vibrometer to sense guided acoustic waves in carbon steel pipes. The measurement system here presented is mainly compounded of an angular wedge transducer, employed to generate the guided wave and a commercial laser vibrometer used in the detection process. The wedge transducer is excited by means of a signal function generator whose output signal has been amplified with a power signal amplifier. A high precision positioning system is employed to place the laser beam at different points through the pipe surface. The signal detected by the laser vibrometer system is

  3. CARR-CNS with crescent-shape moderator cell and sub-cooling helium jacket surrounding cell

    International Nuclear Information System (INIS)

    Yu, Qingfeng; Feng, Quanke; Kawai, Takeshi; Shen, Feng; Yuan, Luzheng

    2005-01-01

    The new type of the moderator cell was developed for the Cold Neutron Source (CNS) of the China Advanced Research Reactor (CARR) which is now constructing at the China Institute of Atomic Energy in Beijing. A crescent-shape moderator cell covered by the sub-cooling helium jacket is adopted. A crescent-shape would help to increase the volume of the moderator cell for corresponding it to the 4 cold neutron guide tubes, even if liquid hydrogen not liquid deuterium were used as a cold moderator. The sub-cooling helium jacket covering the moderator cell removes the nuclear heating of the outer shell wall of the cell. It contributes to reduce the void fraction of liquid hydrogen in the inner shell. Such a type of a moderator cell is suitable for the CNS with higher nuclear heating. The cold helium gas flows down firstly into the sub-cooling helium jacket and then flows up to the condenser. Therefore, the theory of the self-regulation for the thermo-siphon type of the CNS is also applicable

  4. CARR-CNS with crescent-shape moderator cell and sub-cooling helium jacket around cell

    International Nuclear Information System (INIS)

    Yu, Qingfeng; Feng, Quanke; Kawai, Takeshi; Cheng, Liang; Shen, Feng; Yuan, Luzheng

    2005-01-01

    The new type of the moderator cell was developed for the Cold Neutron Source (CNS) of the China Advanced Research Reactor (CARR) which is now constructing at the China Institute of Atomic Energy in Beijing. A crescent-shape moderator cell covered by the sub-cooling helium jacket is adopted. A crescent-shape would help to increase the volume of the moderator cell for corresponding it to the 4 cold neutron guide tubes, even if liquid hydrogen not liquid deuterium were used as a cold moderator. The sub-cooling helium jacket covering the moderator cell removes the nuclear heating of the outer shell wall of the cell. It contributes to reduce the void fraction of liquid hydrogen in the inner shell. Such a type of a moderator cell is suitable for the CNS with higher nuclear heating. The cold helium gas flows down firstly into the sub-cooling helium jacket and then flows up to the condenser. Therefore, the theory of the self-regulation for the thermo-siphon type of the CNS is also applicable

  5. Central Nervous System (CNS Disease Triggering Takotsubo Syndrome

    Directory of Open Access Journals (Sweden)

    Josef Finsterer

    2016-01-01

    Full Text Available Takotsubo syndrome (TTS is usually triggered by psychological or physical stress. One of the many physical sources of stress are central nervous system (CNS disorders. CNS disorders most frequently triggering TTS include subarachnoid bleeding, epilepsy, ischemic stroke, migraine, and intracerebral bleeding. More rare CNS-triggers of TTS include posterior reversible encephalopathy syndrome (PRES, amyotrophic lateral sclerosis, encephalitis, or traumatic brain or spinal cord injury. TTS triggered by any of the CNS disorders needs to be recognized since adequate treatment of TTS may improve the general outcome from the CNS disorder as well. Neurologists need to be aware of TTS as a complication of specific CNS disorders but TTS may be triggered also by CNS disorders so far not recognised as causes of TTS.

  6. The application of low frequency longitudinal guided wave mode for the inspection of multi-hole steel floral pipes

    International Nuclear Information System (INIS)

    Liu, Z H; Xie, X D; Wu, B; Li, Y H; He, C F

    2012-01-01

    Shed-pipe grouting technology, an effective advanced supporting method, is often used in the excavation of soft strata. Steel floral pipes are one of the key load-carrying components of shed-pipe grouting supporting structures. Guided waves are a very attractive methodology to inspect multi-hole steel floral pipes as they offer long range inspection capability, mode and frequency tuning, and cost effectiveness. In this contribution, preliminary experiments are described for the inspection of steel floral pipes using a low frequency longitudinal guided wave mode, L(0,2). The relation between the number of grouting holes and the peak-to-peak amplitude of the first end-reflected signal was obtained. The effect of the grouting holes in steel floral pipes on the propagation velocity of the L(0,2) mode at 30 kHz was analyzed. Experimental results indicate that the typical grouting holes in steel floral pipe have no significant effect on the propagation of this mode. As a result, low frequency longitudinal guided wave modes have potential for the non-destructive long range inspection of multi-hole steel floral pipes. Furthermore, the propagation velocity of the investigated L(0,2) mode at 30 kHz decreases linearly with the increase of the number of grouting holes in a steel floral pipe. It is also noticeable that the effect of the grouting holes cumulates along with the increase in the number of grouting holes and subsequent increase in reflection times of longitudinal guided waves in the steel floral pipe. The application potential of the low frequency longitudinal guided wave technique for the inspection of embedded steel floral pipes is discussed.

  7. Optimization and experimental validation of stiff porous phononic plates for widest complete bandgap of mixed fundamental guided wave modes

    Science.gov (United States)

    Hedayatrasa, Saeid; Kersemans, Mathias; Abhary, Kazem; Uddin, Mohammad; Van Paepegem, Wim

    2018-01-01

    Phononic crystal plates (PhPs) have promising application in manipulation of guided waves for design of low-loss acoustic devices and built-in acoustic metamaterial lenses in plate structures. The prominent feature of phononic crystals is the existence of frequency bandgaps over which the waves are stopped, or are resonated and guided within appropriate defects. Therefore, maximized bandgaps of PhPs are desirable to enhance their phononic controllability. Porous PhPs produced through perforation of a uniform background plate, in which the porous interfaces act as strong reflectors of wave energy, are relatively easy to produce. However, the research in optimization of porous PhPs and experimental validation of achieved topologies has been very limited and particularly focused on bandgaps of flexural (asymmetric) wave modes. In this paper, porous PhPs are optimized through an efficient multiobjective genetic algorithm for widest complete bandgap of mixed fundamental guided wave modes (symmetric and asymmetric) and maximized stiffness. The Pareto front of optimization is analyzed and variation of bandgap efficiency with respect to stiffness is presented for various optimized topologies. Selected optimized topologies from the stiff and compliant regimes of Pareto front are manufactured by water-jetting an aluminum plate and their promising bandgap efficiency is experimentally observed. An optimized Pareto topology is also chosen and manufactured by laser cutting a Plexiglas (PMMA) plate, and its performance in self-collimation and focusing of guided waves is verified as compared to calculated dispersion properties.

  8. Development of a Fully Automated Guided Wave System for In-Process Cure Monitoring of CFRP Composite Laminates

    Science.gov (United States)

    Hudson, Tyler B.; Hou, Tan-Hung; Grimsley, Brian W.; Yaun, Fuh-Gwo

    2016-01-01

    A guided wave-based in-process cure monitoring technique for carbon fiber reinforced polymer (CFRP) composites was investigated at NASA Langley Research Center. A key cure transition point (vitrification) was identified and the degree of cure was monitored using metrics such as amplitude and time of arrival (TOA) of guided waves. Using an automated system preliminarily developed in this work, high-temperature piezoelectric transducers were utilized to interrogate a twenty-four ply unidirectional composite panel fabricated from Hexcel (Registered Trademark) IM7/8552 prepreg during cure. It was shown that the amplitude of the guided wave increased sharply around vitrification and the TOA curve possessed an inverse relationship with degree of cure. The work is a first step in demonstrating the feasibility of transitioning the technique to perform in-process cure monitoring in an autoclave, defect detection during cure, and ultimately a closed-loop process control to maximize composite part quality and consistency.

  9. Cylindrically guided wave technique for detection of stress corrosion cracking and corrosion wastage in long stud-bolts

    International Nuclear Information System (INIS)

    Light, G.M.; Joshi, N.R.

    1986-01-01

    The authors discuss how, when performing an ultrasonic inspection of a cylindrical body, the sound waves, or pulses, will interact with the boundaries of the cylinder and produce mode-converted as well as normal longitudinal waves. The elastic energy of the wave propagating along the length of the cylinder is concentrated and produces strong echoes from shallow defects in the specimen. In threaded specimens, the guided wave produces signals from the threads that can be differentiated from defects in the cylinder. This paper reports on a study using the guided wave theory conducted to determine the optimum inspection transducer size and frequency relative to stud-bolt diameter and length. Bolts ranging from 25 to 285 cm (10 to 112 in.) in length and 2.5 to 11.5 cm (1 to 4.5 in.) in diameter were tested. For all cases, theoretical predictions agreed well with the experimental data. In this paper, the theory, experimental apparatus, and testing results are discussed

  10. Monitoring of Soft Deposition Layers in Liquid-Filled Tubes with Guided Acoustic Waves Excited by Clamp-on Transducers.

    Science.gov (United States)

    Tietze, Sabrina; Singer, Ferdinand; Lasota, Sandra; Ebert, Sandra; Landskron, Johannes; Schwuchow, Katrin; Drese, Klaus Stefan; Lindner, Gerhard

    2018-02-09

    The monitoring of liquid-filled tubes with respect to the formation of soft deposition layers such as biofilms on the inner walls calls for non-invasive and long-term stable sensors, which can be attached to existing pipe structures. For this task a method is developed, which uses an ultrasonic clamp-on device. This method is based on the impact of such deposition layers on the propagation of circumferential guided waves on the pipe wall. Such waves are partly converted into longitudinal compressional waves in the liquid, which are back-converted to guided waves in a circular cross section of the pipe. Validating this approach, laboratory experiments with gelatin deposition layers on steel tubes exhibited a distinguishable sensitivity of both wave branches with respect to the thickness of such layers. This allows the monitoring of the layer growth.

  11. Imaging ultrasonic dispersive guided wave energy in long bones using linear radon transform.

    Science.gov (United States)

    Tran, Tho N H T; Nguyen, Kim-Cuong T; Sacchi, Mauricio D; Le, Lawrence H

    2014-11-01

    Multichannel analysis of dispersive ultrasonic energy requires a reliable mapping of the data from the time-distance (t-x) domain to the frequency-wavenumber (f-k) or frequency-phase velocity (f-c) domain. The mapping is usually performed with the classic 2-D Fourier transform (FT) with a subsequent substitution and interpolation via c = 2πf/k. The extracted dispersion trajectories of the guided modes lack the resolution in the transformed plane to discriminate wave modes. The resolving power associated with the FT is closely linked to the aperture of the recorded data. Here, we present a linear Radon transform (RT) to image the dispersive energies of the recorded ultrasound wave fields. The RT is posed as an inverse problem, which allows implementation of the regularization strategy to enhance the focusing power. We choose a Cauchy regularization for the high-resolution RT. Three forms of Radon transform: adjoint, damped least-squares, and high-resolution are described, and are compared with respect to robustness using simulated and cervine bone data. The RT also depends on the data aperture, but not as severely as does the FT. With the RT, the resolution of the dispersion panel could be improved up to around 300% over that of the FT. Among the Radon solutions, the high-resolution RT delineated the guided wave energy with much better imaging resolution (at least 110%) than the other two forms. The Radon operator can also accommodate unevenly spaced records. The results of the study suggest that the high-resolution RT is a valuable imaging tool to extract dispersive guided wave energies under limited aperture. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  12. Traveling Wave-Guide Channels of a New Coupled Integrable Dispersionless System

    International Nuclear Information System (INIS)

    Souleymanou, Abbagari; Kuetche, Victor K.; Bouetou, Thomas B.; Kofane, Timoleon C.

    2012-01-01

    In the wake of the recent investigation of new coupled integrable dispersionless equations by means of the Darboux transformation [Zhaqilao, et al., Chin. Phys. B 18 (2009) 1780], we carry out the initial value analysis of the previous system using the fourth-order Runge-Kutta's computational scheme. As a result, while depicting its phase portraits accordingly, we show that the above dispersionless system actually supports two kinds of solutions amongst which the localized traveling wave-guide channels. In addition, paying particular interests to such localized structures, we construct the bilinear transformation of the current system from which scattering amongst the above waves can be deeply studied. (general)

  13. Preliminary design of high-power wave-guide/transmission system for multimegawatt CW requirements of 100 MeV proton Linac

    International Nuclear Information System (INIS)

    Shrivastava, Purushottam; Wanmode, Y.D.; Hannurkar, P.R.

    2002-01-01

    Development of a 100 MeV CW proton Linac has been planned at CAT. This Linac will be needing CW rf power in the frequency ranges of 350 MHz and 700 MHz for its RFQ and DTL/CCDTL/SFDTL structures respectively. The power to the accelerating structures will be produced by either 1 MW CW or 250 kW CW klystron/inductive output tubes (HOM IOTs). The power needed by respective feed points in the structure is max. 250 kW which will be powered by splitting the power from 1 MW klystron/klystrode into four channels by using a wave-guide system. In case of using 250 kW tubes the power to the structures will be provided directly from each tube. Two types of wave-guide transmission system have been considered, viz WR 2300 for 350 MHz rf needs and WR 1500 for 700 MHz rf needs. The typical wave-guide system has been designed using the 1 MW CW klystron followed by wave-guide filter, dual directional coupler, high-power circulator, three 3 dB magic TEE power dividers to split the main channel into four equal channels of 250 kW each. Each individual channel has dual directional couplers, flexible wave-guide sections and high power ceramic vacuum window. The circulator and each power divider is terminated into the isolated ports by high power CW loads. Out of the four channels three channels have phase shifters. Present paper describes the technological aspects and design specifications-considerations for these stringent requirements. (author)

  14. A New Detecting Technology for External Anticorrosive Coating Defects of Pipelines Based on Ultrasonic Guided Wave

    Science.gov (United States)

    Liu, Shujun; Zuo, Yonggang; Zhang, Zhen

    2018-01-01

    The external anticorrosive coating is the shelter for preventing steel pipelines from Corrosive damage. A number of pipelines face severe corrosive problems for the performance decrease of the coating, especially during long-term services, which usually led to safety accidents. To solve the detection problem about the defect of anticorrosive layer for pipeline, a new detection method for anticorrosive layer of pipelines based on Ultrasonic Guided Wave was proposed in the paper. The results from the investigation show a possibility of using the Ultrasonic Guided Wave method for detecting the damage of pipeline’s External Anticorrosive Coating.

  15. Guided wave technology for in-service inspection and online monitoring for long term operation of nuclear power plants

    International Nuclear Information System (INIS)

    Bertoncini, Francesco; Raugi, Marco; Cappelli, Mauro; Cordella, Francesco; Mazzini, Davide

    2015-01-01

    In-Service Inspection (ISI) and monitoring of all equipment (Systems, Structures and Components, SSCs) of a Nuclear Power Plant (NPP), are actions aimed at preventing failures both for economical and safety purposes. SSCs ageing due to stresses such as corrosion, load variations, flow conditions, temperature and neutron irradiation can be a potential limit for NPP life extension or operation beyond their license term (Long Term Operation. LTO). ISI has a main role on the actual possibility of LTO assuring the required safety. Guided Waves are structure-borne ultrasonic waves that propagate along the structure confined and guided by its geometric boundaries. Guided Wave Testing can find defect locations through long-range screening using low-frequency waves (from 5 to 250 kHz). The technology is regularly used for pipe testing in the oil and gas industry. In the nuclear industry, regulators are working to standardize monitoring and inspection procedures. To use the technology inside an active plant, operators must solve issues like high temperatures (up to more than 300degC inside a light-water reactor's primary piping), high wall thickness of components in the primary circuit and characteristic defect typologies. Magnetostrictive sensors are expected to overcome such issues due to their physical properties, namely robust constitution and simplicity. Recent experimental results have demonstrated magnetostrictive transducers can withstand temperatures close to 300degC. In this paper, new experimental tests conducted using such a methodology will be described and open issues related to high temperature guided wave applications (e.g. wave velocity or amplitude fluctuations during propagation in variable temperature components) will be discussed. (author)

  16. Monitoring of corrosion damage using high-frequency guided ultrasonic waves

    OpenAIRE

    Chew, D.; Fromme, P.

    2014-01-01

    Due to adverse environmental conditions corrosion can develop during the life cycle of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the integrity and load bearing capacity of the structure. Structural health monitoring of corrosion damage in difficult to access areas can in principle be achieved using high frequency guided waves propagating along...

  17. microRNAs in CNS disorders

    DEFF Research Database (Denmark)

    Kocerha, Jannet; Kauppinen, Sakari; Wahlestedt, Claes

    2009-01-01

    RNAs (miRNAs) have been identified in the mammalian central nervous system (CNS) and are reported to mediate pivotal roles in many aspects of neuronal functions. Disruption of miRNA-based post-transcriptional regulation has been implicated in a range of CNS disorders as one miRNA is predicted to impact...

  18. Application of the Guided Wave Technique to the Heat Exchanger Tube in NPP

    International Nuclear Information System (INIS)

    Yang, Dong Soon; Kim, Hyung Nam; Yoo, Hyun Joo

    2005-01-01

    The heat exchanger tube is examined by the method of eddy current test(ECT) to identify the integrity of the nuclear power plant. Because ECT probe is moved through the tube inside to identify flaws, the ECT probe should be exchanged periodically due to the wear of probe surface in order to remove the noise form the ECT signal. Moreover, it is impossible to examine the tube by ECT method because the ECT probe can not move through the inside due to the deformation such as dent. Recently, the theory of guided wave was established and the equipment applying the theory has been actively developed so as to overcome the limitation of ECT method for the tube inspection of heater exchanger in nuclear power plant. The object of this study is to know the application of the guided wave technique to heat exchanger tube in NPP

  19. Guided wave mode selection for inhomogeneous elastic waveguides using frequency domain finite element approach.

    Science.gov (United States)

    Chillara, Vamshi Krishna; Ren, Baiyang; Lissenden, Cliff J

    2016-04-01

    This article describes the use of the frequency domain finite element (FDFE) technique for guided wave mode selection in inhomogeneous waveguides. Problems with Rayleigh-Lamb and Shear-Horizontal mode excitation in isotropic homogeneous plates are first studied to demonstrate the application of the approach. Then, two specific cases of inhomogeneous waveguides are studied using FDFE. Finally, an example of guided wave mode selection for inspecting disbonds in composites is presented. Identification of sensitive and insensitive modes for defect inspection is demonstrated. As the discretization parameters affect the accuracy of the results obtained from FDFE, effect of spatial discretization and the length of the domain used for the spatial fast Fourier transform are studied. Some recommendations with regard to the choice of the above parameters are provided. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Supratentorial CNS malformations

    International Nuclear Information System (INIS)

    Zlatareva, D.

    2012-01-01

    Full text: Clinical suspicion of a developmental anomaly of the central nervous system (CNS) is a frequent indication for performing and magnetic resonance imaging (MRI) examination of the brain. Classification systems for malformation of the CNS are constantly revised according to newer scientific research. Developmental abnormalities can be classified in two main types. The first category consists of disorders of organogenesis in which genetic defects or any ischemic, metabolic, toxic or infectious insult to the developing brain can cause malformation. These malformations result from abnormal neuronal and glial proliferation and from anomalies of neuronal migration and or cortical organization. They are divided into supra- and infratentorial and may involve grey or white matter or both. The second category of congenital brain abnormalities is disorders of histogenesis which result from abnormal cell differentiation with a relatively normal brain appearance. Supratentorial CNS malformations could be divided into anomalies in telencephalic commissure, holoprosencephalies and malformations in cortical development. There are three main telencephalic commissures: the anterior commissure, the hippocampal commissure and the corpus callosum. Their morphology (hypoplasia, hyperplasia, agenesis, dysgenesis, even atrophy) reflects the development of the brain. Their agenesis, complete or partial, is one of the most commonly observed features in the malformations of the brain and is a part of many syndromes. Malformations of cortical development (MCD) are heterogeneous group of disease which result from disruption of 3 main stages of cortical development. The common clinical presentation is refractory epilepsy and or developmental delay. The most common MCD are heterotopias, focal cortical dysplasia, polymicrogyria, schizencephaly, pachygyria and lizencephaly. The exact knowledge of the brain anatomy and embryology is mandatory to provide a better apprehension of the

  1. Simulation of non-destructive inspections and acoustic emission measurements involving guided waves

    International Nuclear Information System (INIS)

    Baronian, V; Lhemery, A; Bonnet-BenDhia, A-S

    2009-01-01

    In a structure that guides elastic waves, a discontinuity (defect, shape variation) causes scattering (reflection, partial extinction or mode conversion). Two modal formulations have been developed to link separate models dealing with the calculation of the modal decomposition, with the generation and reception of guided waves (GW), with their scattering. The first concerns pulse-echo configurations (involving a single transducer), the other concerns pitch-catch configurations (two transducers involved). A new finite element (FE) method has been developed to compute the scattering by an arbitrary discontinuity, based on the modal decomposition of the field. Perfectly transparent boundary conditions (Dirichlet-to-Neuman boundaries) are developed, allowing the FE computation zone to be reduced to a minimum. A specific variational problem including these boundary conditions was obtained and solved using FE tools. By combining the modal formulations, the new FE scheme and tools for GW radiation, propagation and reception based on the Semi-Analytical Finite Element (SAFE) method, a new simulation tool has been developed. It can address almost arbitrary configurations of GW nondestructive testing. Moreover, a source inside the FE computation zone can be defined so that configurations of testing by acoustic emission can also be simulated. Examples of use of this tool are shown, some dealing with junctions of complex geometry between two guides, other with surface or bulk sources of acoustic emission.

  2. Guided wave tomography in anisotropic media using recursive extrapolation operators

    Science.gov (United States)

    Volker, Arno

    2018-04-01

    Guided wave tomography is an advanced technology for quantitative wall thickness mapping to image wall loss due to corrosion or erosion. An inversion approach is used to match the measured phase (time) at a specific frequency to a model. The accuracy of the model determines the sizing accuracy. Particularly for seam welded pipes there is a measurable amount of anisotropy. Moreover, for small defects a ray-tracing based modelling approach is no longer accurate. Both issues are solved by applying a recursive wave field extrapolation operator assuming vertical transverse anisotropy. The inversion scheme is extended by not only estimating the wall loss profile but also the anisotropy, local material changes and transducer ring alignment errors. This makes the approach more robust. The approach will be demonstrated experimentally on different defect sizes, and a comparison will be made between this new approach and an isotropic ray-tracing approach. An example is given in Fig. 1 for a 75 mm wide, 5 mm deep defect. The wave field extrapolation based tomography clearly provides superior results.

  3. Detection and mode identification of axial cracks in the steam generator tube of the nuclear power plant using ultrasonic guided wave

    International Nuclear Information System (INIS)

    Yoon, Byungsik; Yang, Seunghan; Lee, Heejong; Kim, Yongsik

    2010-01-01

    For those people who are involved in NDE, there is a growing concern regarding the significant traveling distance of a guided wave in a structure, which ensures the inspection of a large area of the structure from a single location. A significant number of studies on the guided wave have therefore been made to apply the foregoing to a nondestructive evaluation in many different industries and resulted in an increase in the efficiency of practical guided wave inspection. Unlike the previous studies based mainly on the detection of circumferential flaws, this study is focused on the axial flaw detection in the steam generator tubes of Korean standard nuclear power plants by generating the guided wave by changing frequency and selecting the applicable mode from the dispersion curve for the steam generator tube calculated in this study, where the dispersion-based short-time Fourier transform (D-STFT) algorithm is used to enhance mode identification. In conclusion, the L (0,1) mode at 2.25 MHz is found to be most sensitive in detecting axial flaws in a steam generator tube. (author)

  4. Measurement of guided mode wave vectors by analysis of the transfer matrix obtained with multi-emitters and multi-receivers in contact

    Energy Technology Data Exchange (ETDEWEB)

    Minonzio, Jean-Gabriel; Talmant, Maryline; Laugier, Pascal, E-mail: jean-gabriel.minonzio@upmc.fr [UPMC Univ Paris 06, UMR 7623, LIP, 15 rue de l' ecole de medecine F-75005, Paris (France)

    2011-01-01

    Different quantitative ultrasound techniques are currently developed for clinical assessment of human bone status. This paper is dedicated to axial transmission: emitters and receivers are linearly arranged on the same side of the skeletal site, preferentially the forearm. In several clinical studies, the signal velocity of the earliest temporal event has been shown to discriminate osteoporotic patients from healthy subjects. However, a multi parameter approach might be relevant to improve bone diagnosis and this be could be achieved by accurate measurement of guided waves wave vectors. For clinical purposes and easy access to the measurement site, the length probe is limited to about 10 mm. The limited number of acquisition scan points on such a short distance reduces the efficiency of conventional signal processing techniques, such as spatio-temporal Fourier transform. The performance of time-frequency techniques was shown to be moderate in other studies. Thus, optimised signal processing is a critical point for a reliable estimate of guided mode wave vectors. Toward this end, a technique, taking benefit of using both multiple emitters and multiple receivers, is proposed. The guided mode wave vectors are obtained using a projection in the singular vectors basis. Those are determined by the singular values decomposition of the transmission matrix between the two arrays at different frequencies. This technique enables us to recover accurately guided waves wave vectors for moderately large array.

  5. Gain factors with the new supermirror guide system at the Budapest Neutron Centre

    International Nuclear Information System (INIS)

    Rosta, L.; Cser, L.; Revay, Z.

    2002-01-01

    In parallel with the installation of a cold-neutron source (CNS) at the 10-MW Budapest Research Reactor, the neutron-guide system has been redesigned and replaced by state of art neutron optical elements. Monte Carlo calculations have been used to determine the optimal conditions for the guide parameters. For the three cold-neutron beams nearly 100 m of new guides were installed; a great part is made of supermirrors. The new in-pile guide system and the individual shutters enable minimal losses at the starting sections. The out-of-pile part was optimized for the experimental stations. The neutron-flux measurements were compared with the simulated values. The combined effect of the CNS and the guide system yields a gain factor in the flux as high as 30-60. (orig.)

  6. Using PVDF for wavenumber-frequency analysis and excitation of guided waves

    Science.gov (United States)

    Ren, Baiyang; Cho, Hwanjeong; Lissenden, Cliff J.

    2018-04-01

    The role of transducers in nondestructive evaluation using ultrasonic guided waves cannot be overstated. Energy conversion from electrical to mechanical for actuation and then back to electrical for signal processing broadly describes transduction, but there are many other aspects of transducers that determine their effectiveness. Recently we have reported on polyvinylidene difluoride (PVDF) array sensors that enable determination of the wavenumber spectrum, which enables modal content in the received signal to be characterized. Modal content is an important damage indicator because, for example, mode conversion is a frequent consequence of wave interaction with defects. Some of the positive attributes of PVDF sensors are: broad frequency bandwidth, compliance for use on curved surfaces, limited influence on the passing wave, minimal cross-talk between elements, low profile, low mass, and inexpensive. The anisotropy of PVDF films also enables them to receive either Lamb waves or shear horizontal waves by proper alignment of the material principal coordinate axes. Placing a patterned set of electrodes on the PVDF film provides data from an array of elements. A linear array of elements is used to enable a 2D fast Fourier transform to determine the wavenumber spectrum of both Lamb waves and shear horizontal waves in an aluminum plate. Moreover, since PVDF film can sustain high voltage excitation, high power pulsers can be used to improve the signal-to-noise ratio. The capability of PVDF as a transmitter has been demonstrated with high voltage excitation.

  7. Use of the cylindrically guided wave technique for the inspection of stud bolts, valve stems and pump shafts

    International Nuclear Information System (INIS)

    Light, G.M.; Bloom, E.A.; Ruescher, E.H.; Lui, S.N.

    1989-01-01

    Over the last several years, nuclear power plants have expressed concern about failures of bolting, valve stems, and pump shafts. This paper reports on the development of an ultrasonic technique to inspect these components. The authors have successfully demonstrated the cylindrically guided wave technique (CGWT) on a wide range of stud bolts. The CGWT employs zero-degree longitudinal waves constrained to travel within the boundary of the cylindrically shaped components during inspection. Theoretically explained, mode conversion occurs because the ultrasonic wave is guided down the length of the component. These mode-converted signals are dependent upon the diameter of the component under inspection and the longitudinal- and shear-wave velocities of the component material. This technique has also been successfully used on valve stems in the field. The geometry of the valve stem is very similar to that of the stud bolt

  8. Guided elastic waves produced by a periodically joined interface in a rock mass

    CSIR Research Space (South Africa)

    Yenwong Fai

    2012-09-01

    Full Text Available on Computational and Applied Mechanics SACAM2012 Johannesburg, South Africa, 3−5 September 2012 c©SACAM Guided Elastic Waves Produced by a Periodically Joined Interface in a Rock Mass A.S. Yenwong Fai School of Physics University of the Witwatersrand Johannesburg...

  9. Monitoring of fatigue damage in composite lap-joints using guided waves and FBG sensors

    Science.gov (United States)

    Karpenko, Oleksii; Khomenko, Anton; Koricho, Ermias; Haq, Mahmoodul; Udpa, Lalita

    2016-02-01

    Adhesive bonding is being increasingly employed in many applications as it offers possibility of light-weighting and efficient multi-material joining along with reduction in time and cost of manufacturing. However, failure initiation and progression in critical components like joints, specifically in fatigue loading is not well understood, which necessitates reliable NDE and SHM techniques to ensure structural integrity. In this work, concurrent guided wave (GW) and fiber Bragg grating (FBG) sensor measurements were used to monitor fatigue damage in adhesively bonded composite lap-joints. In the present set-up, one FBG sensor was strategically embedded in the adhesive bond-line of a lap-joint, while two other FBGs were bonded on the surface of the adherends. Full spectral responses of FBG sensors were collected and compared at specific intervals of fatigue loading. In parallel, guided waves were actuated and sensed using PZT wafers mounted on the composite adherends. Experimental results demonstrated that time-of-flight (ToF) of the fundamental modes transmitted through the bond-line and spectral response of FBG sensors were sensitive to fatigue loading and damage. Combination of guided wave and FBG measurements provided the desired redundancy and synergy in the data to evaluate the degradation in bond-line properties. Measurements taken in the presence of continuously applied load replicated the in-situ/service conditions. The approach shows promise in understanding the behavior of bonded joints subjected to complex loading.

  10. Field trials results of guided wave tomography

    International Nuclear Information System (INIS)

    Volker, Arno; Zon, Tim van; Leden, Edwin van der

    2015-01-01

    Corrosion is one of the industries major issues regarding the integrity of assets. Guided wave travel time tomography is a method capable of providing an absolute wall thickness map. This method is currently making the transition from the laboratory to the field. For this purpose a dedicated data acquisition system and special purpose EMAT sensor rings have been developed. The system can be deployed for permanent monitoring and inspections. Field trials have been conducted on various pipes with different diameters, containing either liquid or gas. The main focus has been on pipe supports. The results demonstrate the successful operation of the technology in the field. Expected corrosion damage was clearly visible on the produced results enabling asset owner to make calculated decisions on the pipelines safety, maintenance and operations

  11. Field trials results of guided wave tomography

    Science.gov (United States)

    Volker, Arno; van Zon, Tim; van der Leden, Edwin

    2015-03-01

    Corrosion is one of the industries major issues regarding the integrity of assets. Guided wave travel time tomography is a method capable of providing an absolute wall thickness map. This method is currently making the transition from the laboratory to the field. For this purpose a dedicated data acquisition system and special purpose EMAT sensor rings have been developed. The system can be deployed for permanent monitoring and inspections. Field trials have been conducted on various pipes with different diameters, containing either liquid or gas. The main focus has been on pipe supports. The results demonstrate the successful operation of the technology in the field. Expected corrosion damage was clearly visible on the produced results enabling asset owner to make calculated decisions on the pipelines safety, maintenance and operations.

  12. Stress wave timing nondestructive evaluation tools for inspecting historic structures : a guide for use and interpretation.

    Science.gov (United States)

    Robert Ross; Roy F. Pellerin; Norbert Volny; William W. Salsig; Robert H. Falk

    2000-01-01

    This guide was prepared to assist inspectors in the use of stress wave timing instruments and various methods of locating and defining areas of decay in timber members in historic structures. The first two sections provide (a) background information regarding conventional methods to locate and measure decay in historic structures and (b) the principles of stress wave...

  13. New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs.

    Science.gov (United States)

    Sturm, Dominik; Orr, Brent A; Toprak, Umut H; Hovestadt, Volker; Jones, David T W; Capper, David; Sill, Martin; Buchhalter, Ivo; Northcott, Paul A; Leis, Irina; Ryzhova, Marina; Koelsche, Christian; Pfaff, Elke; Allen, Sariah J; Balasubramanian, Gnanaprakash; Worst, Barbara C; Pajtler, Kristian W; Brabetz, Sebastian; Johann, Pascal D; Sahm, Felix; Reimand, Jüri; Mackay, Alan; Carvalho, Diana M; Remke, Marc; Phillips, Joanna J; Perry, Arie; Cowdrey, Cynthia; Drissi, Rachid; Fouladi, Maryam; Giangaspero, Felice; Łastowska, Maria; Grajkowska, Wiesława; Scheurlen, Wolfram; Pietsch, Torsten; Hagel, Christian; Gojo, Johannes; Lötsch, Daniela; Berger, Walter; Slavc, Irene; Haberler, Christine; Jouvet, Anne; Holm, Stefan; Hofer, Silvia; Prinz, Marco; Keohane, Catherine; Fried, Iris; Mawrin, Christian; Scheie, David; Mobley, Bret C; Schniederjan, Matthew J; Santi, Mariarita; Buccoliero, Anna M; Dahiya, Sonika; Kramm, Christof M; von Bueren, André O; von Hoff, Katja; Rutkowski, Stefan; Herold-Mende, Christel; Frühwald, Michael C; Milde, Till; Hasselblatt, Martin; Wesseling, Pieter; Rößler, Jochen; Schüller, Ulrich; Ebinger, Martin; Schittenhelm, Jens; Frank, Stephan; Grobholz, Rainer; Vajtai, Istvan; Hans, Volkmar; Schneppenheim, Reinhard; Zitterbart, Karel; Collins, V Peter; Aronica, Eleonora; Varlet, Pascale; Puget, Stephanie; Dufour, Christelle; Grill, Jacques; Figarella-Branger, Dominique; Wolter, Marietta; Schuhmann, Martin U; Shalaby, Tarek; Grotzer, Michael; van Meter, Timothy; Monoranu, Camelia-Maria; Felsberg, Jörg; Reifenberger, Guido; Snuderl, Matija; Forrester, Lynn Ann; Koster, Jan; Versteeg, Rogier; Volckmann, Richard; van Sluis, Peter; Wolf, Stephan; Mikkelsen, Tom; Gajjar, Amar; Aldape, Kenneth; Moore, Andrew S; Taylor, Michael D; Jones, Chris; Jabado, Nada; Karajannis, Matthias A; Eils, Roland; Schlesner, Matthias; Lichter, Peter; von Deimling, Andreas; Pfister, Stefan M; Ellison, David W; Korshunov, Andrey; Kool, Marcel

    2016-02-25

    Primitive neuroectodermal tumors of the central nervous system (CNS-PNETs) are highly aggressive, poorly differentiated embryonal tumors occurring predominantly in young children but also affecting adolescents and adults. Herein, we demonstrate that a significant proportion of institutionally diagnosed CNS-PNETs display molecular profiles indistinguishable from those of various other well-defined CNS tumor entities, facilitating diagnosis and appropriate therapy for patients with these tumors. From the remaining fraction of CNS-PNETs, we identify four new CNS tumor entities, each associated with a recurrent genetic alteration and distinct histopathological and clinical features. These new molecular entities, designated "CNS neuroblastoma with FOXR2 activation (CNS NB-FOXR2)," "CNS Ewing sarcoma family tumor with CIC alteration (CNS EFT-CIC)," "CNS high-grade neuroepithelial tumor with MN1 alteration (CNS HGNET-MN1)," and "CNS high-grade neuroepithelial tumor with BCOR alteration (CNS HGNET-BCOR)," will enable meaningful clinical trials and the development of therapeutic strategies for patients affected by poorly differentiated CNS tumors. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. SINS/CNS Nonlinear Integrated Navigation Algorithm for Hypersonic Vehicle

    Directory of Open Access Journals (Sweden)

    Yong-jun Yu

    2015-01-01

    Full Text Available Celestial Navigation System (CNS has characteristics of accurate orientation and strong autonomy and has been widely used in Hypersonic Vehicle. Since the CNS location and orientation mainly depend upon the inertial reference that contains errors caused by gyro drifts and other error factors, traditional Strap-down Inertial Navigation System (SINS/CNS positioning algorithm setting the position error between SINS and CNS as measurement is not effective. The model of altitude azimuth, platform error angles, and horizontal position is designed, and the SINS/CNS tightly integrated algorithm is designed, in which CNS altitude azimuth is set as measurement information. GPF (Gaussian particle filter is introduced to solve the problem of nonlinear filtering. The results of simulation show that the precision of SINS/CNS algorithm which reaches 130 m using three stars is improved effectively.

  15. Analysis of perfusion weighted image of CNS lymphoma

    International Nuclear Information System (INIS)

    Lee, In Ho; Kim, Sung Tae; Kim, Hyung-Jin; Kim, Keon Ha; Jeon, Pyoung; Byun, Hong Sik

    2010-01-01

    Purpose: It is difficult to differentiate CNS lymphoma from other tumors such as malignant gliomas, metastases, or meningiomas with conventional MR imaging, because the imaging findings are overlapped between these tumors. The purpose of this study is to investigate the perfusion weighted MR imaging findings of CNS lymphomas and to compare the relative cerebral blood volume ratios between CNS lymphomas and other tumors such as high grade gliomas, metastases, or meningiomas. Materials and methods: We retrospectively reviewed MRI findings and clinical records in 13 patients with pathologically proven CNS lymphoma between January 2006 and November 2008. We evaluated the relative cerebral blood volume ratios of tumor, which were obtained by dividing the values obtained from the normal white matter on MRI. Results: Total 13 patients (M:F = 8:5; age range 46-67 years, mean age 52.3 years) were included. The CNS lymphomas showed relatively low values of maximum relative CBV ratio in most patients regardless of primary or secondary CNS lymphoma. Conclusion: Perfusion weighted image may be helpful in the diagnosis of CNS lymphoma in spite of primary or secondary or B cell or T cell.

  16. Research on the Lift-off Effect of Receiving Longitudinal Mode Guided Waves in Pipes Based on the Villari Effect

    OpenAIRE

    Xu, Jiang; Sun, Yong; Zhou, Jinhai

    2016-01-01

    The magnetostrictive guided wave technology as a non-contact measurement can generate and receive guided waves with a large lift-off distance up to tens of millimeters. However, the lift-off distance of the receiving coil would affect the coupling efficiency from the elastic energy to the electromagnetic energy. In the existing magnetomechanical models, the change of the magnetic field in the air gap was ignored since the permeability of the rod is much greater than that of air. The lift-off ...

  17. Assessment of decay in standing timber using stress wave timing nondestructive evaluation tools : a guide for use and interpretation

    Science.gov (United States)

    Xiping Wang; Ferenc Divos; Crystal Pilon; Brian K. Brashaw; Robert J. Ross; Roy F. Pellerin

    2004-01-01

    This guide was prepared to assist field foresters in the use of stress wave timing instruments to locate and define areas of decay in standing timber. The first three sections provide background information, the principles of stress wave nondestructive testing, and measurement techniques for stress wave nondestructive testing. The last section is a detailed description...

  18. Development of a guided wave simulator and its application to monitoring of pipe wall thinning

    International Nuclear Information System (INIS)

    Furukawa, Akinori; Kojima, Fumio

    2009-01-01

    Motivated by growing demand for quantitative nondestructive evaluation of pipe wall thinning, the aim of this paper is to develop a simulator for guided wave analysis. First, an inspection system can be represented by a linear elastic system in cylindrical coordinates. Secondly a dynamical numerical scheme for wave propagation on a pipe wall is proposed based on Fourier-Galerkin approach. Finally, the effectiveness and validity of the proposed method are shown in computational experiments. (author)

  19. An invertebrate model for CNS drug discovery

    DEFF Research Database (Denmark)

    Al-Qadi, Sonia; Schiøtt, Morten; Hansen, Steen Honoré

    2015-01-01

    BACKGROUND: ABC efflux transporters at the blood brain barrier (BBB), namely the P-glycoprotein (P-gp), restrain the development of central nervous system (CNS) drugs. Consequently, early screening of CNS drug candidates is pivotal to identify those affected by efflux activity. Therefore, simple,...... barriers. CONCLUSION: Findings suggest a conserved mechanism of brain efflux activity between insects and vertebrates, confirming that this model holds promise for inexpensive and high-throughput screening relative to in vivo models, for CNS drug discovery....

  20. Laser vibrometer measurement of guided wave modes in rail track

    CSIR Research Space (South Africa)

    Loveday, PW

    2014-11-01

    Full Text Available ) in the laboratory and on an operational rail track (with S-4 60-SAR profile) and example results are presented in this section. The measurements 5 were performed using a Polytec PSV-400-M2-20 high frequency scanning vibrometer 6 equipped with the VD-09 velocity...Hz on operational rail track and to identify the modes that are capable of 16 propagating large distances. 17 18 KEYWORDS: Semi-analytical finite element method; modes of guided wave 19 propagation; laser vibrometer measurement; rail track 20 PACs...

  1. Utility of FDG-PETCT and magnetic resonance spectroscopy in differentiating between cerebral lymphoma and non-malignant CNS lesions in HIV-infected patients

    Energy Technology Data Exchange (ETDEWEB)

    Westwood, Thomas D., E-mail: tdwestwood@googlemail.com [Department of Radiology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester (United Kingdom); Hogan, Celia, E-mail: celiahogan@hotmail.com [Monsall Unit, Department of Infectious Diseases and Tropical Medicine, North Manchester General Hospital, Pennine Acute Hospitals NHS Trust (United Kingdom); Julyan, Peter J., E-mail: Peter.Julyan@christie.nhs.uk [Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Wilmslow Road, Manchester (United Kingdom); Coutts, Glyn, E-mail: Glyn.Coutts@christie.nhs.uk [Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Wilmslow Road, Manchester (United Kingdom); Bonington, Suzie, E-mail: suzi.bonington@christie.nhs.uk [Department of Radiology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester (United Kingdom); Carrington, Bernadette, E-mail: Bernadette.Carrington@christie.nhs.uk [Department of Radiology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester (United Kingdom); Taylor, Ben, E-mail: Ben.taylor@christie.nhs.uk [Department of Radiology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester (United Kingdom); Khoo, Saye, E-mail: S.H.Khoo@liverpool.ac.uk [Department of Infectious Diseases and Tropical Medicine, Royal Liverpool Hospital, Liverpool (United Kingdom); Bonington, Alec, E-mail: Alec.Bonington@pat.nhs.uk [Monsall Unit, Department of Infectious Diseases and Tropical Medicine, North Manchester General Hospital, Pennine Acute Hospitals NHS Trust (United Kingdom)

    2013-08-15

    Background and purpose: In HIV infected patients, MRI cannot reliably differentiate between central nervous system (CNS) lymphoma and non-malignant CNS lesions, particularly cerebral toxoplasmosis (CTOX). This study prospectively investigates the utility of FDG PET-CT and magnetic resonance spectroscopy (MRS) in discriminating CNS lymphoma from non-malignant CNS lesions in HIV infected patients, and assesses the ability of FDG PET-CT to guide the use of early brain biopsy. Methods: 10 HIV patients with neurological symptoms and contrast enhancing lesions on MRI were commenced on anti-toxoplasmosis therapy before undergoing FDG PET-CT and MRS. Brain biopsies were sought in those with FDG PET-CT suggestive of CNS lymphoma, and in those with a negative FDG PET-CT scan who failed to respond to therapy. Final diagnosis was based on histology or treatment response. Results: Two patients were confirmed to have CNS lymphoma and FDG PET-CT was consistent with this diagnosis in both. Six patients had cerebral toxoplasmosis in all of whom FDG PET-CT was consistent with non-malignant disease. One patient had progressive multifocal leukoencephalopathy (PML), FDG PET-CT was equivocal. One patient had a haemorrhagic brain metastasis and FDG PET-CT wrongly suggested non-malignant disease. MRS was performed successfully in eight subjects: three results were suggestive of CNS lymphoma (one true positive, two false positive), four suggested CTOX (two false negative, two true negative), one scan was equivocal. Conclusion: FDG PET-CT correctly identified all cases of CNS lymphoma and CTOX, supporting its use in this situation. MRS was unhelpful in our cohort.

  2. Utility of FDG-PETCT and magnetic resonance spectroscopy in differentiating between cerebral lymphoma and non-malignant CNS lesions in HIV-infected patients

    International Nuclear Information System (INIS)

    Westwood, Thomas D.; Hogan, Celia; Julyan, Peter J.; Coutts, Glyn; Bonington, Suzie; Carrington, Bernadette; Taylor, Ben; Khoo, Saye; Bonington, Alec

    2013-01-01

    Background and purpose: In HIV infected patients, MRI cannot reliably differentiate between central nervous system (CNS) lymphoma and non-malignant CNS lesions, particularly cerebral toxoplasmosis (CTOX). This study prospectively investigates the utility of FDG PET-CT and magnetic resonance spectroscopy (MRS) in discriminating CNS lymphoma from non-malignant CNS lesions in HIV infected patients, and assesses the ability of FDG PET-CT to guide the use of early brain biopsy. Methods: 10 HIV patients with neurological symptoms and contrast enhancing lesions on MRI were commenced on anti-toxoplasmosis therapy before undergoing FDG PET-CT and MRS. Brain biopsies were sought in those with FDG PET-CT suggestive of CNS lymphoma, and in those with a negative FDG PET-CT scan who failed to respond to therapy. Final diagnosis was based on histology or treatment response. Results: Two patients were confirmed to have CNS lymphoma and FDG PET-CT was consistent with this diagnosis in both. Six patients had cerebral toxoplasmosis in all of whom FDG PET-CT was consistent with non-malignant disease. One patient had progressive multifocal leukoencephalopathy (PML), FDG PET-CT was equivocal. One patient had a haemorrhagic brain metastasis and FDG PET-CT wrongly suggested non-malignant disease. MRS was performed successfully in eight subjects: three results were suggestive of CNS lymphoma (one true positive, two false positive), four suggested CTOX (two false negative, two true negative), one scan was equivocal. Conclusion: FDG PET-CT correctly identified all cases of CNS lymphoma and CTOX, supporting its use in this situation. MRS was unhelpful in our cohort

  3. Damage detection in hazardous waste storage tank bottoms using ultrasonic guided waves

    Science.gov (United States)

    Cobb, Adam C.; Fisher, Jay L.; Bartlett, Jonathan D.; Earnest, Douglas R.

    2018-04-01

    Detecting damage in storage tanks is performed commercially using a variety of techniques. The most commonly used inspection technologies are magnetic flux leakage (MFL), conventional ultrasonic testing (UT), and leak testing. MFL and UT typically involve manual or robotic scanning of a sensor along the metal surfaces to detect cracks or corrosion wall loss. For inspection of the tank bottom, however, the storage tank is commonly emptied to allow interior access for the inspection system. While there are costs associated with emptying a storage tank for inspection that can be justified in some scenarios, there are situations where emptying the tank is impractical. Robotic, submersible systems have been developed for inspecting these tanks, but there are some storage tanks whose contents are so hazardous that even the use of these systems is untenable. Thus, there is a need to develop an inspection strategy that does not require emptying the tank or insertion of the sensor system into the tank. This paper presents a guided wave system for inspecting the bottom of double-shelled storage tanks (DSTs), with the sensor located on the exterior side-wall of the vessel. The sensor used is an electromagnetic acoustic transducer (EMAT) that generates and receives shear-horizontal guided plate waves using magnetostriction principles. The system operates by scanning the sensor around the circumference of the storage tank and sending guided waves into the tank bottom at regular intervals. The data from multiple locations are combined using the synthetic aperture focusing technique (SAFT) to create a color-mapped image of the vessel thickness changes. The target application of the system described is inspection of DSTs located at the Hanford site, which are million-gallon vessels used to store nuclear waste. Other vessels whose exterior walls are accessible would also be candidates for inspection using the described approach. Experimental results are shown from tests on multiple

  4. Damage detection strategies for aircraft shell-like structures based on propagation guided elastic waves

    International Nuclear Information System (INIS)

    Zak, A; Ostachowicz, W; Krawczuk, M

    2011-01-01

    Damage of aircraft structural elements in any form always present high risks. Failures of these elements can be caused by various reasons including material fatigue or impact leading to damage initiation and growth. Detection of these failures at their earliest stage of development, estimation of their size and location, are one of the most crucial factors for each damage detection method. Structural health monitoring strategies based on propagation of guided elastic waves in structures and wave interaction with damage related discontinuities are very promising tools that offer not only damage detection capabilities, but are also meant to provide precise information about the state of the structures and their remaining lifetime. Because of that various techniques are employed to simulate and mimic the wave-discontinuity interactions. The use of various types of sensors, their networks together with sophisticated contactless measuring techniques are investigated both numerically and experimentally. Certain results of numerical simulations obtained by the use of the spectral finite element method are presented by the authors and related with propagation of guided elastic waves in shell-type aircraft structures. Two types of structures are considered: flat 2D panels with or without stiffeners and 3D shell structures. The applicability of two different damage detection approaches is evaluated in order to detect and localise damage in these structures. Selected results related with the use of laser scanning vibrometry are also presented and discussed by the authors.

  5. Cost estimates to guide manufacturing of composite waved beam

    International Nuclear Information System (INIS)

    Ye Jinrui; Zhang Boming; Qi Haiming

    2009-01-01

    A cost estimation model on the basis of manufacturing process has been presented. In the model, the effects of the material, labor, tool and equipment were discussed, and the corresponding formulas were provided. A method of selecting estimation variables has been provided based on a case study of composite waved beam using autoclave cure. The model parameters related to the process time estimation of the lay-up procedure were analyzed and modified for different part configurations. The result shows that there is little error while comparing the estimated process time with the practical one. The model is verified to be applicable to guide the design and manufacturing of the composite material

  6. New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs

    DEFF Research Database (Denmark)

    Sturm, Dominik; Orr, Brent A; Toprak, Umut H

    2016-01-01

    with a recurrent genetic alteration and distinct histopathological and clinical features. These new molecular entities, designated "CNS neuroblastoma with FOXR2 activation (CNS NB-FOXR2)," "CNS Ewing sarcoma family tumor with CIC alteration (CNS EFT-CIC)," "CNS high-grade neuroepithelial tumor with MN1 alteration...

  7. CNS infections in immunocompetent patients

    International Nuclear Information System (INIS)

    Hartmann, K.M.; Zimmer, A.; Reith, W.

    2008-01-01

    This article gives a review of the most frequent infective agents reasonable for CNS infections in immunocompetent patients as well as their localisation and imaging specifications. MRI scanning is the gold standard to detect inflammatory conditions in the CNS. Imaging can be normal or nonspecifically altered although the infection is culturally or bioptically proven. There are no pathognomonic, pathogen-specific imaging criteria. The localization and dimension of the inflammation depends on the infection pathway. (orig.) [de

  8. Effects of temperature variations on guided waves propagating in composite structures

    Science.gov (United States)

    Shoja, Siavash; Berbyuk, Viktor; Boström, Anders

    2016-04-01

    Effects of temperature on guided waves propagating in composite materials is a well-known problem which has been investigated in many studies. The majority of the studies is focused on effects of high temperature. Understanding the effects of low temperature has major importance in composite structures and components which are operating in cold climate conditions such as e.g. wind turbines operating in cold climate regions. In this study first the effects of temperature variations on guided waves propagating in a composite plate is investigated experimentally in a cold climate chamber. The material is a common material used to manufacture rotor blades of wind turbines. The temperature range is 25°C to -25°C and effects of temperature variations on amplitude and phase shift of the received signal are investigated. In order to apply the effects of lowering the temperature on the received signal, the Baseline Signal Stretch (BSS) method is modified and used. The modification is based on decomposing the signal into symmetric and asymmetric modes and applying two different stretch factors on each of them. Finally the results obtained based on the new method is compared with the results of application of BSS with one stretch factor and experimental measurements. Comparisons show that an improvement is obtained using the BSS with the mode decomposition method at temperature variations of more than 25°C.

  9. Experimental Verification of Guided-Wave Lumped Circuits Using Waveguide Metamaterials

    Science.gov (United States)

    Li, Yue; Zhang, Zhijun

    2018-04-01

    Through the construction and characterization in microwave frequencies, we experimentally demonstrate our recently developed theory of waveguide lumped circuits, i.e., waveguide metatronics [Sci. Adv. 2, e1501790 (2016), 10.1126/sciadv.1501790], as a method to design subwavelength-scaled analog circuits. In the paradigm of waveguide metatronics, numbers of lumped inductors and capacitors are easily integrated functionally inside the waveguide, which is an irreplaceable transmission line in millimeter-wave and terahertz systems with the advantages of low radiation loss and low crosstalk. An example of multiple-ordered metatronic filters with layered structures is fabricated utilizing the technique of substrate integrated waveguides, which can be easily constructed by the printed-circuit-board process. The materials used in the construction are also typical microwave materials with positive permittivity, low loss, and negligible dispersion, imitating the plasmonic materials with negative permittivity in the optical domain. The results verify the theory of waveguide metatronics, which provides an efficient platform of functional lumped circuit design for guided-wave processing.

  10. Guided-wave phase-matched second-harmonic generation in KTiOPO4 waveguide produced by swift heavy-ion irradiation

    Science.gov (United States)

    Cheng, Yazhou; Jia, Yuechen; Akhmadaliev, Shavkat; Zhou, Shengqiang; Chen, Feng

    2014-11-01

    We report on the guided-wave second-harmonic generation in a KTiOPO4 nonlinear optical waveguide fabricated by a 17 MeV O5+ ion irradiation at a fluence of 1.5×1015 ions/cm2. The waveguide guides light along both TE and TM polarizations, which is suitable for phase-matching frequency doubling. Second harmonics of green light at a wavelength of 532 nm have been generated through the KTiOPO4 waveguide platform under an optical pump of fundamental wave at 1064 nm in both continuous-wave and pulsed regimes, reaching optical conversion efficiencies of 5.36%/W and 11.5%, respectively. The propagation losses have been determined to be ˜3.1 and ˜5.7 dB/cm for the TE and TM polarizations at a wavelength of 632.8 nm, respectively.

  11. Bovine-associated CNS species resist phagocytosis differently

    Science.gov (United States)

    2013-01-01

    Background Coagulase-negative staphylococci (CNS) cause usually subclinical or mild clinical bovine mastitis, which often remains persistent. Symptoms are usually mild, mostly only comprising slight changes in the appearance of milk and possibly slight swelling. However, clinical mastitis with severe signs has also been reported. The reasons for the differences in clinical expression are largely unknown. Macrophages play an important role in the innate immunity of the udder. This study examined phagocytosis and killing by mouse macrophage cells of three CNS species: Staphylococcus chromogenes (15 isolates), Staphylococcus agnetis (6 isolates) and Staphylococcus simulans (15 isolates). Staphylococcus aureus (7 isolates) was also included as a control. Results All the studied CNS species were phagocytosed by macrophages, but S. simulans resisted phagocytosis more effectively than the other CNS species. Only S. chromogenes was substantially killed by macrophages. Significant variations between isolates were seen in both phagocytosis and killing by macrophages and were more common in the killing assays. Significant differences between single CNS species and S. aureus were observed in both assays. Conclusion This study demonstrated that differences in the phagocytosis and killing of mastitis-causing staphylococci by macrophages exist at both the species and isolate level. PMID:24207012

  12. ISIS Topside-Sounder Plasma-Wave Investigations as Guides to Desired Virtual Wave Observatory (VWO) Data Search Capabilities

    Science.gov (United States)

    Benson, Robert F.; Fung, Shing F.

    2008-01-01

    Many plasma-wave phenomena, observed by space-borne radio sounders, cannot be properly explained in terms of wave propagation in a cold plasma consisting of mobile electrons and infinitely massive positive ions. These phenomena include signals known as plasma resonances. The principal resonances at the harmonics of the electron cyclotron frequency, the plasma frequency, and the upper-hybrid frequency are well explained by the warm-plasma propagation of sounder-generated electrostatic waves, Other resonances have been attributed to sounder-stimulated plasma instability and non-linear effects, eigenmodes of cylindrical electromagnetic plasma oscillations, and plasma memory processes. Data from the topside sounders of the International Satellites for Ionospheric Studies (ISIS) program played a major role in these interpretations. A data transformation and preservation effort at the Goddard Space Flight Center has produced digital ISIS topside ionograms and a metadata search program that has enabled some recent discoveries pertaining to the physics of these plasma resonances. For example, data records were obtained that enabled the long-standing question (several decades) of the origin of the plasma resonance at the fundamental electron cyclotron frequency to be explained [Muldrew, Radio Sci., 2006]. These data-search capabilities, and the science enabled by them, will be presented as a guide to desired data search capabilities to be included in the Virtual Wave Observatory (VWO).

  13. Metal-dielectric metamaterials for guided wave silicon photonics.

    Science.gov (United States)

    Lupu, A; Dubrovina, N; Ghasemi, R; Degiron, A; de Lustrac, A

    2011-11-21

    The aim of the present paper is to investigate the potential of metallic metamaterials for building optical functions in guided wave optics at 1.5 µm. A significant part of this work is focused on the optimization of the refractive index variation associated with localized plasmon resonances. The minimization of metal related losses is specifically addressed as well as the engineering of the resonance frequency of the localized plasmons. Our numerical modeling results show that a periodic chain of gold cut wires placed on the top of a 100 nm silicon waveguide makes it possible to achieve a significant index variation in the vicinity of the metamaterial resonance and serve as building blocks for implementing optical functions. The considered solutions are compatible with current nano-fabrication technologies. © 2011 Optical Society of America

  14. Ensembles of novelty detection classifiers for structural health monitoring using guided waves

    Science.gov (United States)

    Dib, Gerges; Karpenko, Oleksii; Koricho, Ermias; Khomenko, Anton; Haq, Mahmoodul; Udpa, Lalita

    2018-01-01

    Guided wave structural health monitoring uses sparse sensor networks embedded in sophisticated structures for defect detection and characterization. The biggest challenge of those sensor networks is developing robust techniques for reliable damage detection under changing environmental and operating conditions (EOC). To address this challenge, we develop a novelty classifier for damage detection based on one class support vector machines. We identify appropriate features for damage detection and introduce a feature aggregation method which quadratically increases the number of available training observations. We adopt a two-level voting scheme by using an ensemble of classifiers and predictions. Each classifier is trained on a different segment of the guided wave signal, and each classifier makes an ensemble of predictions based on a single observation. Using this approach, the classifier can be trained using a small number of baseline signals. We study the performance using Monte-Carlo simulations of an analytical model and data from impact damage experiments on a glass fiber composite plate. We also demonstrate the classifier performance using two types of baseline signals: fixed and rolling baseline training set. The former requires prior knowledge of baseline signals from all EOC, while the latter does not and leverages the fact that EOC vary slowly over time and can be modeled as a Gaussian process.

  15. Modal content based damage indicators and phased array transducers for structural health monitoring of aircraft structures using ultrasonic guided waves

    Science.gov (United States)

    Ren, Baiyang

    Composite materials, especially carbon fiber reinforced polymers (CFRP), have been widely used in the aircraft industry because of their high specific strength and stiffness, resistance to corrosion and good fatigue life. Due to their highly anisotropic material properties and laminated structures, joining methods like bolting and riveting are no longer appropriate for joining CFRP since they initiate defects during the assembly and severely compromise the integrity of the structure; thus new techniques for joining CFRP are highly demanded. Adhesive bonding is a promising method because it relieves stress concentration, reduces weight and provides smooth surfaces. Additionally, it is a low-cost alternative to the co-cured method which is currently used to manufacture components of aircraft fuselage. Adhesive defects, disbonds at the interface between adherend and adhesive layer, are focused on in this thesis because they can be initialized by either poor surface preparation during the manufacturing or fatigue loads during service. Aircraft need structural health monitoring (SHM) systems to increase safety and reduce loss, and adhesive bonds usually represent the hotspots of the assembled structure. There are many nondestructive evaluation (NDE) methods for bond inspection. However, these methods cannot be readily integrated into an SHM system because of the bulk size and weight of the equipment and requirement of accessibility to one side of the bonded joint. The first objective of this work is to develop instruments, actuators, sensors and a data acquisition system for SHM of bond lines using ultrasonic guided waves which are well known to be able to cover large volume of the structure and inaccessible regions. Different from widely used guided wave sensors like PZT disks, the new actuators, piezoelectric fiber composite (PFC) phased array transducers0 (PAT), can control the modal content of the excited waves and the new sensors, polyvinylidene fluoride (PVDF

  16. CNS embryonal tumours: WHO 2016 and beyond.

    Science.gov (United States)

    Pickles, J C; Hawkins, C; Pietsch, T; Jacques, T S

    2018-02-01

    Embryonal tumours of the central nervous system (CNS) present a significant clinical challenge. Many of these neoplasms affect young children, have a very high mortality and therapeutic strategies are often aggressive with poor long-term outcomes. There is a great need to accurately diagnose embryonal tumours, predict their outcome and adapt therapy to the individual patient's risk. For the first time in 2016, the WHO classification took into account molecular characteristics for the diagnosis of CNS tumours. This integration of histological features with genetic information has significantly changed the diagnostic work-up and reporting of tumours of the CNS. However, this remains challenging in embryonal tumours due to their previously unaccounted tumour heterogeneity. We describe the recent revisions made to the 4th edition of the WHO classification of CNS tumours and review the main changes, while highlighting some of the more common diagnostic testing strategies. © 2017 British Neuropathological Society.

  17. Experimental and Computational Studies on the Scattering of an Edge-Guided Wave by a Hidden Crack on a Racecourse Shaped Hole.

    Science.gov (United States)

    Vien, Benjamin Steven; Rose, Louis Raymond Francis; Chiu, Wing Kong

    2017-07-01

    Reliable and quantitative non-destructive evaluation for small fatigue cracks, in particular those in hard-to-inspect locations, is a challenging problem. Guided waves are advantageous for structural health monitoring due to their slow geometrical decay of amplitude with propagating distance, which is ideal for rapid wide-area inspection. This paper presents a 3D laser vibrometry experimental and finite element analysis of the interaction between an edge-guided wave and a small through-thickness hidden edge crack on a racecourse shaped hole that occurs, in practice, as a fuel vent hole. A piezoelectric transducer is bonded on the straight edge of the hole to generate the incident wave. The excitation signal consists of a 5.5 cycle Hann-windowed tone burst of centre frequency 220 kHz, which is below the cut-off frequency for the first order Lamb wave modes (SH1). Two-dimensional fast Fourier transformation (2D FFT) is applied to the incident and scattered wave field along radial lines emanating from the crack mouth, so as to identify the wave modes and determine their angular variation and amplitude. It is shown experimentally and computationally that mid-plane symmetric edge waves can travel around the hole's edge to detect a hidden crack. Furthermore, the scattered wave field due to a small crack length, a , (compared to the wavelength λ of the incident wave) is shown to be equivalent to a point source consisting of a particular combination of body-force doublets. It is found that the amplitude of the scattered field increases quadratically as a function of a/λ , whereas the scattered wave pattern is independent of crack length for small cracks a < λ . This study of the forward scattering problem from a known crack size provides a useful guide for the inverse problem of hidden crack detection and sizing.

  18. Analysis of Defective Pipings in Nuclear Power Plants and Applications of Guided Ultrasonic Wave Techniques

    International Nuclear Information System (INIS)

    Koo, Dae Seo; Cheong, Yong Moo; Jung, Hyun Kyu; Park, Chi Seung; Park, Jae Suck; Choi, H. R.; Jung, S. S.

    2006-07-01

    In order to apply the guided ultrasonic techniques to the pipes in nuclear power plants, the cases of defective pipes of nuclear power plants, were investigated. It was confirmed that geometric factors of pipes, such as location, shape, and allowable space were impertinent for the application of guided ultrasonic techniques to pipes of nuclear power plants. The quality of pipes, supports, signals analysis of weldment/defects, acquisition of accurate defects signals also make difficult to apply the guided ultrasonic techniques to pipes of nuclear power plants. Thus, a piping mock-up representing the pipes in the nuclear power plants were designed and fabricated. The artificial flaws will be fabricated on the piping mock-up. The signals of guided ultrasonic waves from the artificial flaws will be analyzed. The guided ultrasonic techniques will be applied to the inspection of pipes of nuclear power plants according to the basis of signals analysis of artificial flaws in the piping mock-up

  19. Innate Interferons Regulate CNS Inflammation

    DEFF Research Database (Denmark)

    Dieu, Ruthe; Khorooshi, Reza M. H.; Mariboe, Anne

    Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) whose pathology is characterised by demyelination and axonal damage. This results from interplay between CNS-resident glia, infiltrating leukocytes and a plethora of cytokines and chemokines. Currently...... potential IFN-inducing receptor that signals through NF-kB. Receptor activator of NF-kB (RANK) belongs to the TNF-receptor superfamily and has been shown to induce IFN-beta in medullary thymic epithelial cells affecting autoimmune regulatory processes and osteoclast precursor cells in association to bone...

  20. Air pollution: mechanisms of neuroinflammation and CNS disease.

    Science.gov (United States)

    Block, Michelle L; Calderón-Garcidueñas, Lilian

    2009-09-01

    Air pollution has been implicated as a chronic source of neuroinflammation and reactive oxygen species (ROS) that produce neuropathology and central nervous system (CNS) disease. Stroke incidence and Alzheimer's and Parkinson's disease pathology are linked to air pollution. Recent reports reveal that air pollution components reach the brain; systemic effects that impact lung and cardiovascular disease also impinge upon CNS health. While mechanisms driving air pollution-induced CNS pathology are poorly understood, new evidence suggests that microglial activation and changes in the blood-brain barrier are key components. Here we summarize recent findings detailing the mechanisms through which air pollution reaches the brain and activates the resident innate immune response to become a chronic source of pro-inflammatory factors and ROS, culminating in CNS disease.

  1. Guided-wave high-performance spectrometers for the MEOS miniature earth observation satellite

    Science.gov (United States)

    Kruzelecky, Roman V.; Wong, Brian; Zou, Jing; Jamroz, Wes; Sloan, James; Cloutis, Edward

    2017-11-01

    The MEOS Miniature Earth Observing Satellite is a low-cost mission being developed for the Canadian Space Agency with international collaborations that will innovatively combine remote correlated atmospheric/land-cover measurements with the corresponding atmospheric and ecosystem modelling in near real-time to obtain simultaneous variations in lower tropospheric GHG mixing ratios and the resulting responses of the surface ecosystems. MEOS will provide lower tropospheric CO2, CH4, CO, N2O, H2O and aerosol mixing ratios over natural sources and sinks using two kinds of synergistic observations; a forward limb measurement and a follow-on nadir measurement over the same geographical tangent point. The measurements will be accomplished using separate limb and nadir suites of innovative miniature line-imaging spectrometers and will be spatially coordinated such that the same air mass is observed in both views within a few minutes. The limb data will consist of 16-pixel vertical spectral line imaging to provide 1-km vertical resolution, while the corresponding nadir measurements will view sixteen 5 by 10 km2 ground pixels with a 160-km East-West swath width. To facilitate the mission accommodation on a low-cost microsat with a net payload mass under 22 kg, groundbreaking miniature guided-wave spectrometers with advanced optical filtering and coding technologies will be employed based on MPBC's patented IOSPEC technologies. The data synergy requirements for each view will be innovatively met using two complementary miniature line-imaging spectrometers to provide broad-band measurements from 1200 to 2450 nm at about 1.2 nm/pixel bandwidth using a multislit binary-coded MEMS-IOSPEC and simultaneous high-resolution multiple microchannels at 0.03 nm FWHM using the revolutionary FP-IOSPEC Fabry-Perot guided-wave spectrometer concept. The guided-wave spectrometer integration provides an order of magnitude reduction in the mass and volume relative to traditional bulk

  2. Strength analysis of CARR-CNS with crescent-shape moderator cell and helium sub-cooling jacket covering cell

    International Nuclear Information System (INIS)

    Yu Qingfeng; Feng Quanke; Kawai Takeshi; Shen Feng; Yuan Luzheng; Cheng Liang

    2005-01-01

    The new type of the moderator cell was developed for the cold neutron source (CNS) of the China Advanced Research Reactor (CARR) which is now being constructed at the China Institute of Atomic Energy in Beijing. A crescent-shape moderator cell covered by the helium sub-cooling jacket is adopted. The structure of the moderator cell is optimized by the stress FEM analysis. A crescent-shape would help to increase the volume of the moderator cell for fitting it to the four cold neutron guide tubes, even if liquid hydrogen, not liquid deuterium, was used as a cold moderator. The helium sub-cooling jacket covering the moderator cell removes the nuclear heating of the outer shell wall of the cell. It contributes to reduce the void fraction of liquid hydrogen in the outer shell of the moderator cell. Such a type of a moderator cell is suitable for the CNS with higher nuclear heating. The cold helium gas flows down first into the helium sub-cooling jacket and then flows up to the condenser. The theory of the self-regulation suitable to the thermo-siphon type of the CNS is also applicable and validated

  3. 1D profiling using highly dispersive guided waves

    Science.gov (United States)

    Volker, Arno; Brandenburg, Martijn

    2017-02-01

    Corrosion is one of the industries major issues regarding the integrity of assets. Currently inspections are conducted at regular intervals to ensure a sufficient integrity level of these assets. There are many situations where the actual defect location is not accessible, e.g., a pipe support or a partially buried pipe. Last year an approach was presented using a phase inversion of guided waves that propagated around the circumference of a pipe. This approach works well for larger corrosion spots, but shows significant under-sizing of small spots due to lack of sufficient phase rotation. In this paper the use of arrival time and amplitude loss of higher order circumferential passes is evaluated. Using higher order passes increases sensitivity for sizing smaller defects. Different defect profiles are assumed and the change in arrival time and amplitude loss are calculated using a wave equation based approach for different defect widths and depths. This produces a differential travel time and amplitude change map as function of defect depth and defect width. The actually measured travel time change and amplitude change produces two contours in these maps. Calculating the intersection point gives the defect dimensions. The contours for amplitude loss and travel time change are quite orthogonal, this yields a good discrimination between deep and shallow defects. The approach is evaluated using experimental data from different pipes contain artificial and real defects.

  4. CNS adverse events associated with antimalarial agents. Fact or fiction?

    NARCIS (Netherlands)

    Phillips-Howard, P. A.; ter Kuile, F. O.

    1995-01-01

    CNS adverse drug events are dramatic, and case reports have influenced clinical opinion on the use of antimalarials. Malaria also causes CNS symptoms, thus establishing causality is difficult. CNS events are associated with the quinoline and artemisinin derivatives. Chloroquine, once considered too

  5. The Use of Guided Waves for Rapid Screening of Chemical Plant Pipework

    International Nuclear Information System (INIS)

    Alleyne, D. N.; Pavlakovic, B.; Lowe, M. J. S.; Cawley, P.

    2002-01-01

    The safe operation of petrochemical plant requires screening of the pipework to ensure that there are no unacceptable levels of corrosion. Unfortunately, each plant has many thousands of metres of pipe, much of which is insulated or inaccessible. Conventional methods such as visual inspection and ultrasonic thickness gauging require access to each point of the pipe which is time consuming and very expensive to achieve. Extensional or torsional ultrasonic guided waves in the pipe wall provide an attractive solution to this problem because they can be excited at one location on the pipe and will propagate many metres along the pipe, returning echoes indicating the presence of corrosion or other pipe features. Guided Ultrasonics Ltd. have now commercialised the technique and this paper describes the basis of the method, together with examples of practical test results and typical application areas

  6. Coupling of modal and finite elements methods for the diffraction of guided elastics waves: application to non destructive testing

    International Nuclear Information System (INIS)

    Baronian, V.

    2009-11-01

    A typical nondestructive examination based on guided elastic waves can be simulated by considering an elastic 2D (a plate) or 3D (a rod) guide that contains a defect (a crack, a local heterogeneity due to a weld etc.). Our aim is to solve numerically the problem of the scattering by a defect of a mode propagating in a guide. This has been achieved by developing a method that couples i) finite elements in the smallest possible region of the guide that contains the defect, with ii) the modal decomposition of waves outside this region. The main challenge consists in finding the right linking condition of both representations. A decisive tool is the obtaining of an orthogonality relation which makes it possible to project the finite element solution onto guided modes. For this, the problem is formulated in terms of hybrid vectors (displacement/stress) for which a bi-orthogonality relation exists, namely, the Fraser's relation. It is then possible to derive an exact (transparent) condition on the artificial boundaries of the finite element domain; the modal series taken into account being necessarily truncated, transparency is achieved only approximately. Eventually, this boundary condition is integrated in a variational approach (in terms of displacement) in order to develop a finite element method. The transparent boundary condition being expressed in terms of the hybrid vectors, the stress normal to the artificial boundary is introduced as a supplementary unknown, together with a mixed formulation. Both 2D and 3D isotropic guides with free boundary conditions have been considered numerically. Guided modes are computed thanks to an original modeling approach also based on the hybrid (displacement/stress) vectors; interestingly, bi-orthogonality relation expressed in a discrete form is preserved. The code implementing these methods leads to fast computations of the scattering matrix of a defect; once this matrix has been computed at various frequencies, the defect

  7. Peri-Elastodynamic Simulations of Guided Ultrasonic Waves in Plate-Like Structure with Surface Mounted PZT

    Directory of Open Access Journals (Sweden)

    Subir Patra

    2018-01-01

    Full Text Available Peridynamic based elastodynamic computation tool named Peri-elastodynamics is proposed herein to simulate the three-dimensional (3D Lamb wave modes in materials for the first time. Peri-elastodynamics is a nonlocal meshless approach which is a scale-independent generalized technique to visualize the acoustic and ultrasonic waves in plate-like structure, micro-electro-mechanical systems (MEMS and nanodevices for their respective characterization. In this article, the characteristics of the fundamental Lamb wave modes are simulated in a sample plate-like structure. Lamb wave modes are generated using a surface mounted piezoelectric (PZT transducer which is actuated from the top surface. The proposed generalized Peri-elastodynamics method is not only capable of simulating two dimensional (2D in plane wave under plane strain condition formulated previously but also capable of accurately simulating the out of plane Symmetric and Antisymmetric Lamb wave modes in plate like structures in 3D. For structural health monitoring (SHM of plate-like structures and nondestructive evaluation (NDE of MEMS devices, it is necessary to simulate the 3D wave-damage interaction scenarios and visualize the different wave features due to damages. Hence, in addition, to simulating the guided ultrasonic wave modes in pristine material, Lamb waves were also simulated in a damaged plate. The accuracy of the proposed technique is verified by comparing the modes generated in the plate and the mode shapes across the thickness of the plate with theoretical wave analysis.

  8. Peri-Elastodynamic Simulations of Guided Ultrasonic Waves in Plate-Like Structure with Surface Mounted PZT.

    Science.gov (United States)

    Patra, Subir; Ahmed, Hossain; Banerjee, Sourav

    2018-01-18

    Peridynamic based elastodynamic computation tool named Peri-elastodynamics is proposed herein to simulate the three-dimensional (3D) Lamb wave modes in materials for the first time. Peri-elastodynamics is a nonlocal meshless approach which is a scale-independent generalized technique to visualize the acoustic and ultrasonic waves in plate-like structure, micro-electro-mechanical systems (MEMS) and nanodevices for their respective characterization. In this article, the characteristics of the fundamental Lamb wave modes are simulated in a sample plate-like structure. Lamb wave modes are generated using a surface mounted piezoelectric (PZT) transducer which is actuated from the top surface. The proposed generalized Peri-elastodynamics method is not only capable of simulating two dimensional (2D) in plane wave under plane strain condition formulated previously but also capable of accurately simulating the out of plane Symmetric and Antisymmetric Lamb wave modes in plate like structures in 3D. For structural health monitoring (SHM) of plate-like structures and nondestructive evaluation (NDE) of MEMS devices, it is necessary to simulate the 3D wave-damage interaction scenarios and visualize the different wave features due to damages. Hence, in addition, to simulating the guided ultrasonic wave modes in pristine material, Lamb waves were also simulated in a damaged plate. The accuracy of the proposed technique is verified by comparing the modes generated in the plate and the mode shapes across the thickness of the plate with theoretical wave analysis.

  9. 3rd ENRI International Workshop on ATM/CNS

    CERN Document Server

    2014-01-01

    The Electronic Navigation Research Institute (ENRI) held its third International Workshop on ATM / CNS in 2013 with the theme of "Drafting the future sky". There is worldwide activity taking place in the research and development of modern air traffic management (ATM) and its enabling technologies in Communication, Navigation and Surveillance (CNS). Pioneering work is necessary to contribute to the global harmonization of air traffic management and control. At this workshop, leading experts in  research, industry and academia from around the world met to share their ideas and approaches on ATM/CNS related topics.

  10. CNS penetration of ART in HIV-infected children

    NARCIS (Netherlands)

    van den Hof, Malon; Blokhuis, Charlotte; Cohen, Sophie; Scherpbier, Henriette J.; Wit, Ferdinand W. N. M.; Pistorius, M. C. M.; Kootstra, Neeltje A.; Teunissen, Charlotte E.; Mathot, Ron A. A.; Pajkrt, Dasja

    2018-01-01

    Background: Paediatric data on CNS penetration of antiretroviral drugs are scarce. Objectives: To evaluate CNS penetration of antiretroviral drugs in HIV-infected children and explore associations with neurocognitive function. Patients and methods: Antiretroviral drug levels were measured in paired

  11. Optimization of dipeptidic inhibitors of cathepsin L for improved Toxoplasma gondii selectivity and CNS permeability.

    Science.gov (United States)

    Zwicker, Jeffery D; Diaz, Nicolas A; Guerra, Alfredo J; Kirchhoff, Paul D; Wen, Bo; Sun, Duxin; Carruthers, Vern B; Larsen, Scott D

    2018-06-01

    The neurotropic protozoan Toxoplasma gondii is the second leading cause of death due to foodborne illness in the US, and has been designated as one of five neglected parasitic infections by the Center for Disease Control and Prevention. Currently, no treatment options exist for the chronic dormant-phase Toxoplasma infection in the central nervous system (CNS). T. gondii cathepsin L (TgCPL) has recently been implicated as a novel viable target for the treatment of chronic toxoplasmosis. In this study, we report the first body of SAR work aimed at developing potent inhibitors of TgCPL with selectivity vs the human cathepsin L. Starting from a known inhibitor of human cathepsin L, and guided by structure-based design, we were able to modulate the selectivity for Toxoplasma vs human CPL by nearly 50-fold while modifying physiochemical properties to be more favorable for metabolic stability and CNS penetrance. The overall potency of our inhibitors towards TgCPL was improved from 2 μM to as low as 110 nM and we successfully demonstrated that an optimized analog 18b is capable of crossing the BBB (0.5 brain/plasma). This work is an important first step toward development of a CNS-penetrant probe to validate TgCPL as a feasible target for the treatment of chronic toxoplasmosis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Traveling wave model for laser-guided discharges

    International Nuclear Information System (INIS)

    Lampe, Martin; Fernsler, Richard F.; Slinker, Steven P.; Gordon, Daniel F.

    2010-01-01

    We present an easily solvable 1D traveling wave model for laser-guided discharges. By assuming constant propagation speed u, the hydro/electrodynamic/chemistry equations are reduced to ordinary differential equations in retarded time τ. Negative discharges are shown to propagate only if u>μE b , where μ is electron mobility and E b is the breakdown field; positive discharges propagate only if the channel preconductance exceeds ∼6x10 -11 m/Ω. The axial electric field E is shown to spike up to several times E b and then relax to ∼E b for as long as the gas remains cold. In this streamer region, the channel conductance, current, and potential all increase linearly with τ. The transition to the leader stage, where E is much smaller, occurs in two steps: excitation of vibrational and low-lying electronic states, then gas heating. The propagation range decreases as a function of initial radius and (for given maximum voltage) of the voltage rise rate. Expansion of the hot channel is shown to increase the range.

  13. Rapid, long range inspection of chemical plant pipework using guided waves

    International Nuclear Information System (INIS)

    Alleynel, D.N.; Pavlakovicl, B.; Lowel, M.J.S.; Cawley, P.

    2002-01-01

    Corrosion in pipe work is a major problem in the oil, chemical and other industries. Many pipes are insulated which means that even external corrosion cannot be seen without removing the insulation, which is prohibitively expensive. Particularly severe problems are encountered at road crossings where the pipe cannot be inspected without excavation. Ultrasonic guided waves in the pipe wall provide an attractive solution to this problem because they can be excited at one location on the pipe and will propagate many meters along the pipe returning echoes indicating the presence of corrosion or other pipe features. The technique has now been commercialized and this paper describes the results of an extensive set of field trials using the method, together with the results of systematic laboratory and theoretical investigations of the influence of defect depth and circumferential extent on the guided wave reflectivity. It is shown that propagation distances of over 25 meters in pipe diameters from 2 to 24 inch can be obtained using a dry coupled piezoelectric transducer system. The defect detection sensitivity is generally set to the removal of 10% of the cross-sectional area of the pipe at a single location, but it is often possible to find smaller defects if required. This technique was originally designed to work on pipes that were either uncoated or covered with, for example, epoxy paint. Recent tests have shown promising results with more attenuative coatings and these are discussed. The results show that the technique has wide application in pipe systems in the chemical and other industries. (author)

  14. Assessment of wall-thinning in carbon steel pipe by using laser-generated guided wave

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do Yong; Cho, Youn Ho; Lee, Joon Hyun [Pusan National University, School of Mechanical Engineering, Busan (Korea, Republic of)

    2010-10-15

    The objective of this research is to estimate the crack location and size of a carbon steel pipe by using a laser ultrasound guided wave for the wall thinning evaluation of an elbow. The wall thinning of the carbon steel pipe is one of the most serious problems in nuclear power plants, especially the wall thinning of the carbon steel elbow caused by Flow-Accelerated Corrosion (FAC). Therefore, a non-destructive inspection method of elbow is essential for the nuclear power plants to operate safely. The specimens used in this study were carbon steel elbows, which represented the main elements of real nuclear power plants. The shape of the wall thinning was an oval with a width of 120mm, a length of 80mm, and a depth of 5mm. The L(0,1) and L(0,2) modes variation of the ultrasound guided wave signal is obtained from the response of the laser generation/air-coupled detection ultrasonic hybrid system represent the characteristics of the defect. The trends of these characteristics and signal processing were use dto estimate the size and location of wall thinning

  15. Assessment of wall-thinning in carbon steel pipe by using laser-generated guided wave

    International Nuclear Information System (INIS)

    Kim, Do Yong; Cho, Youn Ho; Lee, Joon Hyun

    2010-01-01

    The objective of this research is to estimate the crack location and size of a carbon steel pipe by using a laser ultrasound guided wave for the wall thinning evaluation of an elbow. The wall thinning of the carbon steel pipe is one of the most serious problems in nuclear power plants, especially the wall thinning of the carbon steel elbow caused by Flow-Accelerated Corrosion (FAC). Therefore, a non-destructive inspection method of elbow is essential for the nuclear power plants to operate safely. The specimens used in this study were carbon steel elbows, which represented the main elements of real nuclear power plants. The shape of the wall thinning was an oval with a width of 120mm, a length of 80mm, and a depth of 5mm. The L(0,1) and L(0,2) modes variation of the ultrasound guided wave signal is obtained from the response of the laser generation/air-coupled detection ultrasonic hybrid system represent the characteristics of the defect. The trends of these characteristics and signal processing were use dto estimate the size and location of wall thinning

  16. Design of a high efficiency relativistic backward wave oscillator with low guiding magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaoze; Song, Wei; Tan, Weibing; Zhang, Ligang; Su, Jiancang; Zhu, Xiaoxin; Hu, Xianggang; Shen, Zhiyuan; Liang, Xu; Ning, Qi [Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi' an 710024 (China)

    2016-07-15

    A high efficiency relativistic backward wave oscillator working at a low guiding magnetic field is designed and simulated. A trapezoidal resonant reflector is used to reduce the modulation field in the resonant reflector to avoid overmodulation of the electron beam which will lead to a large momentum spread and then low conversion efficiency. The envelope of the inner radius of the slow wave structure (SWS) increases stepwise to keep conformal to the trajectory of the electron beam which will alleviate the bombardment of the electron on the surface of the SWS. The length of period of the SWS is reduced gradually to make a better match between phase velocity and electron beam, which decelerates continually and improves the RF current distribution. Meanwhile the modulation field is reduced by the introduction of nonuniform SWS also. The particle in cell simulation results reveal that a microwave with a power of 1.8 GW and a frequency of 14.7 GHz is generated with an efficiency of 47% when the diode voltage is 620 kV, the beam current 6.1 kA, and the guiding magnetic field 0.95 T.

  17. A Numerical Study on the Excitation of Guided Waves in Rectangular Plates Using Multiple Point Sources

    Directory of Open Access Journals (Sweden)

    Wenbo Duan

    2017-12-01

    Full Text Available Ultrasonic guided waves are widely used to inspect and monitor the structural integrity of plates and plate-like structures, such as ship hulls and large storage-tank floors. Recently, ultrasonic guided waves have also been used to remove ice and fouling from ship hulls, wind-turbine blades and aeroplane wings. In these applications, the strength of the sound source must be high for scanning a large area, or to break the bond between ice, fouling and plate substrate. More than one transducer may be used to achieve maximum sound power output. However, multiple sources can interact with each other, and form a sound field in the structure with local constructive and destructive regions. Destructive regions are weak regions and shall be avoided. When multiple transducers are used it is important that they are arranged in a particular way so that the desired wave modes can be excited to cover the whole structure. The objective of this paper is to provide a theoretical basis for generating particular wave mode patterns in finite-width rectangular plates whose length is assumed to be infinitely long with respect to its width and thickness. The wave modes have displacements in both width and thickness directions, and are thus different from the classical Lamb-type wave modes. A two-dimensional semi-analytical finite element (SAFE method was used to study dispersion characteristics and mode shapes in the plate up to ultrasonic frequencies. The modal analysis provided information on the generation of modes suitable for a particular application. The number of point sources and direction of loading for the excitation of a few representative modes was investigated. Based on the SAFE analysis, a standard finite element modelling package, Abaqus, was used to excite the designed modes in a three-dimensional plate. The generated wave patterns in Abaqus were then compared with mode shapes predicted in the SAFE model. Good agreement was observed between the

  18. PEG minocycline-liposomes ameliorate CNS autoimmune disease.

    Directory of Open Access Journals (Sweden)

    Wei Hu

    Full Text Available Minocycline is an oral tetracycline derivative with good bioavailability in the central nervous system (CNS. Minocycline, a potent inhibitor of matrix metalloproteinase (MMP-9, attenuates disease activity in experimental autoimmune encephalomyelitis (EAE, an animal model of multiple sclerosis (MS. Potential adverse effects associated with long-term daily minocycline therapy in human patients are concerning. Here, we investigated whether less frequent treatment with long-circulating polyethylene glycol (PEG minocycline liposomes are effective in treating EAE.Performing in vitro time kinetic studies of PEG minocycline-liposomes in human peripheral blood mononuclear cells (PBMCs, we determined that PEG minocycline-liposome preparations stabilized with CaCl(2 are effective in diminishing MMP-9 activity. Intravenous injections of PEG minocycline-liposomes every five days were as effective in ameliorating clinical EAE as daily intraperitoneal injections of minocycline. Treatment of animals with PEG minocycline-liposomes significantly reduced the number of CNS-infiltrating leukocytes, and the overall expression of MMP-9 in the CNS. There was also a significant suppression of MMP-9 expression and proteolytic activity in splenocytes of treated animals, but not in CNS-infiltrating leukocytes. Thus, leukocytes gaining access to the brain and spinal cord require the same absolute amount of MMP-9 in all treatment groups, but minocycline decreases the absolute cell number.Our data indicate that less frequent injections of PEG minocycline-liposomes are an effective alternative pharmacotherapy to daily minocycline injections for the treatment of CNS autoimmune diseases. Also, inhibition of MMP-9 remains a promising treatment target in EAE and patients with MS.

  19. Propagation of sound waves in ducts

    DEFF Research Database (Denmark)

    Jacobsen, Finn

    2000-01-01

    Plane wave propagation in ducts with rigid walls, radiation from ducts, classical four-pole theory for composite duct systems, and three-dimentional waves in wave guides of various cross-sectional shape are described.......Plane wave propagation in ducts with rigid walls, radiation from ducts, classical four-pole theory for composite duct systems, and three-dimentional waves in wave guides of various cross-sectional shape are described....

  20. Diffractive beam shaping, tracking and coupling for wave-guided optical waveguides (WOWs)

    DEFF Research Database (Denmark)

    Villangca, Mark Jayson; Bañas, Andrew Rafael; Aabo, Thomas

    2014-01-01

    techniques to create multiple focal spots that can be coupled into light manipulated WOWs. This is done by using a spatial light modulator to project the necessary phase to generate the multiple coupling light spots. We incorporate a diffractive setup in our Biophotonics Workstation (BWS) and demonstrate......We have previously proposed and demonstrated the targeted-light delivery capability of wave-guided optical waveguides (WOWs). The full strength of this structure-mediated paradigm can be harnessed by addressing multiple WOWs and manipulating them to work in tandem. We propose the use of diffractive...

  1. Non-contact radio frequency shielding and wave guiding by multi-folded transformation optics method.

    Science.gov (United States)

    Madni, Hamza Ahmad; Zheng, Bin; Yang, Yihao; Wang, Huaping; Zhang, Xianmin; Yin, Wenyan; Li, Erping; Chen, Hongsheng

    2016-11-14

    Compared with conventional radio frequency (RF) shielding methods in which the conductive coating material encloses the circuits design and the leakage problem occurs due to the gap in such conductive material, non-contact RF shielding at a distance is very promising but still impossible to achieve so far. In this paper, a multi-folded transformation optics method is proposed to design a non-contact device for RF shielding. This "open-shielded" device can shield any object at a distance from the electromagnetic waves at the operating frequency, while the object is still physically open to the outer space. Based on this, an open-carpet cloak is proposed and the functionality of the open-carpet cloak is demonstrated. Furthermore, we investigate a scheme of non-contact wave guiding to remotely control the propagation of surface waves over any obstacles. The flexibilities of such multi-folded transformation optics method demonstrate the powerfulness of the method in the design of novel remote devices with impressive new functionalities.

  2. Prophylactic CNS therapy in childhood leukemia

    International Nuclear Information System (INIS)

    Yokoyama, Takashi; Hiyoshi, Yasuhiko; Fujimoto, Takeo

    1982-01-01

    This study was designed to evaluate the efficacy of CNS-prophylaxis with high-dose methotrexate (MTX). Seventy children with previously untreated acute lymphoblastic leukemia (ALL) entered to this study between July 1978 and December 1980. According to initial white blood count (WBC), they were stratified to induce remission with; vincristine and prednine in low initial WBC ( lt 25,000/mm 3 ) group and these two agents plus adriamycin in high initial WBC ( gt 25,000/mm 3 ) group. After inducing remission, 62 children who achieved CR, received different CNS-prophlaxis; using a regimen of three doses of weekly high-dose MTX (1,000 mg/m 2 ) 6-hour infusion, which was repeated every 12 weeks-Group A (n = 14); high-dose MTX followed by 2400 rad cranial irradiation plus three doses of i.t. MT X-Group B (n = 15), 2400 rad cranial irradiation plus three doses of i.t. MTX-Group C (n = 16), and in 17 patients with high initial WBC, same as in Group A-Group D (n = 17). During an intravenous 6-h infusion of MTX at a dose of 1,000 mg/m 2 , the CSF concentration of MTX rose to 2.3 +- 2.4 x 10 -6 M after initiation of infusion and remained in 10 -7 M level for 48 hours. CNS-leukemia terminated complete remission in one of 14 children in Group A, two of 15 in Group B, two of 16 in Group C and two of 17 in Group D. The cumulative incidence of CNS-leukemia at 20 months calculated by the technique of Kaplan and Meier was 0% i n Group A, 18.1% in Group B, 7.1% in Group C and 50.8% in Group D. There was no statistical difference among Groups A, B and C. These data suggested that CNS-prophylaxis with high-dose intravenous MTX was effective as well as 2400 rad cranial irradiation plus three doses of i.t. MTX in childhood ALL with low initial WBC. (author)

  3. Quasi-optical millimeter wave rotating TE62 mode generator

    International Nuclear Information System (INIS)

    Li Shaopu; Zhang Conghui; Wang Zhong; Guo Feng; Chen Hongbin; Hu Linlin; Pan Wenwu

    2011-01-01

    The design,measurement technique and experimental results of rotating TE 6 2 mode generator are presented. The source includes millimeter wave optical system and open coaxial wave guide system. The millimeter wave optical system consists of pyramid antenna, hyperbolical reflector, parabolic reflector and quasi parabolic reflector. The open coaxial wave guide system contains open coaxial wave guide cavity, cylinder wave guide and output antenna. It is tested by network analyser and millimeter wave near field pattern auto-test system, and the purity of rotating TE 6 2 mode at 96.4 GHz is about 97%. (authors)

  4. Observation of skull-guided acoustic waves in a water-immersed murine skull using optoacoustic excitation

    Science.gov (United States)

    Estrada, Héctor; Rebling, Johannes; Razansky, Daniel

    2017-02-01

    The skull bone, a curved solid multilayered plate protecting the brain, constitutes a big challenge for the use of ultrasound-mediated techniques in neuroscience. Ultrasound waves incident from water or soft biological tissue are mostly reflected when impinging on the skull. To this end, skull properties have been characterized for both high-intensity focused ultrasound (HIFU) operating in the narrowband far-field regime and optoacoustic imaging applications. Yet, no study has been conducted to characterize the near-field of water immersed skulls. We used the thermoelastic effect with a 532 nm pulsed laser to trigger a wide range of broad-band ultrasound modes in a mouse skull. In order to capture the waves propagating in the near-field, a thin hydrophone was scanned in close proximity to the skull's surface. While Leaky pseudo-Lamb waves and grazing-angle bulk water waves are clearly visible in the spatio-temporal data, we were only able to identify skull-guided acoustic waves after dispersion analysis in the wavenumber-frequency space. The experimental data was found to be in a reasonable agreement with a flat multilayered plate model.

  5. System and Method for Measuring the Transfer Function of a Guided Wave Device

    Science.gov (United States)

    Froggatt, Mark E. (Inventor); Erdogan, Turan (Inventor)

    2002-01-01

    A method/system are provided for measuring the NxN scalar transfer function elements for an N-port guided wave device. Optical energy of a selected wavelength is generated at a source and directed along N reference optical paths having N reference path lengths. Each reference optical path terminates in one of N detectors such that N reference signals are produced at the N detectors. The reference signals are indicative of amplitude, phase and frequency of the optical energy carried along the N reference optical paths. The optical energy from the source is also directed to the N-ports of the guided wave device and then on to each of the N detectors such that N measurement optical paths are defined between the source and each of the N detectors. A portion of the optical energy is modified in terms of at least one of the amplitude and phase to produce N modified signals at each of the N detectors. At each of the N detectors, each of the N modified signals is combined with a corresponding one of the N reference signals to produce corresponding N combined signals at each of the N detectors. A total of N(sup 2) measurement signals are generated by the N detectors. Each of the N(sup 2) measurement signals is sampled at a wave number increment (Delta)k so that N(sup 2) sampled signals are produced. The NxN transfer function elements are generated using the N(sup 2) sampled signals. Reference and measurement path length constraints are defined such that the N combined signals at each of the N detectors are spatially separated from one another in the time domain.

  6. Autoimmune process in CNS under Cs-137 inner irradiation

    International Nuclear Information System (INIS)

    Lisyany, N.I.; Liubich, L.D.

    1996-01-01

    Autoimmune hypothesis as to the development of radiation-induced brain injuries stands high among the concepts of the CNS post-radiation damage pathogenesis. To study the changes occurring in a living organism affected by a small-dose radiation due to incorporated radionuclides as well as to create adequate models are of critical importance in the post-Chernobyl period. The effects of chronic small-dose inner radiation on the development of autoimmune responses were evaluated by determining the level of the CNS proteins and protein-induced antibodies to the CNS components. (author)

  7. Simultaneous excitation system for efficient guided wave structural health monitoring

    Science.gov (United States)

    Hua, Jiadong; Michaels, Jennifer E.; Chen, Xin; Lin, Jing

    2017-10-01

    Many structural health monitoring systems utilize guided wave transducer arrays for defect detection and localization. Signals are usually acquired using the ;pitch-catch; method whereby each transducer is excited in turn and the response is received by the remaining transducers. When extensive signal averaging is performed, the data acquisition process can be quite time-consuming, especially for metallic components that require a low repetition rate to allow signals to die out. Such a long data acquisition time is particularly problematic if environmental and operational conditions are changing while data are being acquired. To reduce the total data acquisition time, proposed here is a methodology whereby multiple transmitters are simultaneously triggered, and each transmitter is driven with a unique excitation. The simultaneously transmitted waves are captured by one or more receivers, and their responses are processed by dispersion-compensated filtering to extract the response from each individual transmitter. The excitation sequences are constructed by concatenating a series of chirps whose start and stop frequencies are randomly selected from a specified range. The process is optimized using a Monte-Carlo approach to select sequences with impulse-like autocorrelations and relatively flat cross-correlations. The efficacy of the proposed methodology is evaluated by several metrics and is experimentally demonstrated with sparse array imaging of simulated damage.

  8. Modal approach for the full simulation of nondestructive tests by elastic guided waves; Approche modale pour la simulation globale de controles non-destructifs par ondes elastiques guidees

    Energy Technology Data Exchange (ETDEWEB)

    Jezzine, K

    2006-11-15

    Tools for simulating nondestructive tests by elastic guided waves are developed. Two overall formulations based on modal formalism and reciprocity are derived depending on whether transmission and reception are separated or not. They relate phenomena of guided wave radiation by a transducer, their propagation, their scattering by a non-uniformity of the guide or a defect and their reception. Receiver electrical output is expressed as a product of terms relating to each phenomenon that can be computed separately. Their computation uses developments based on the semi-analytical finite elements method, dealing with guides of arbitrary cross-section and cracks normal to the guide axis. Simulation tools are used to study means for selecting a single mode using a transducer positioned on the guide section, such a selection making easier the interpretation of the results of testing by guided waves. Two methods of mode selection are proposed, based on the use of two specific frequencies (which existence depends on guide geometry and mode symmetry). Mimicking the normal stress distribution of the mode at one of these two frequencies or the other makes it possible to radiate solely or predominantly the mode chosen. Examinations are simulated in configurations using a single or two separated transducers positioned on the section of various guide geometries and cracks of various shapes. The interest and performances of the two methods of mode selection are studied in these configurations. (author)

  9. Characterizing Hypervelocity Impact (HVI-Induced Pitting Damage Using Active Guided Ultrasonic Waves: From Linear to Nonlinear

    Directory of Open Access Journals (Sweden)

    Menglong Liu

    2017-05-01

    Full Text Available Hypervelocity impact (HVI, ubiquitous in low Earth orbit with an impacting velocity in excess of 1 km/s, poses an immense threat to the safety of orbiting spacecraft. Upon penetration of the outer shielding layer of a typical two-layer shielding system, the shattered projectile, together with the jetted materials of the outer shielding material, subsequently impinge the inner shielding layer, to which pitting damage is introduced. The pitting damage includes numerous craters and cracks disorderedly scattered over a wide region. Targeting the quantitative evaluation of this sort of damage (multitudinous damage within a singular inspection region, a characterization strategy, associating linear with nonlinear features of guided ultrasonic waves, is developed. Linear-wise, changes in the signal features in the time domain (e.g., time-of-flight and energy dissipation are extracted, for detecting gross damage whose characteristic dimensions are comparable to the wavelength of the probing wave; nonlinear-wise, changes in the signal features in the frequency domain (e.g., second harmonic generation, which are proven to be more sensitive than their linear counterparts to small-scale damage, are explored to characterize HVI-induced pitting damage scattered in the inner layer. A numerical simulation, supplemented with experimental validation, quantitatively reveals the accumulation of nonlinearity of the guided waves when the waves traverse the pitting damage, based on which linear and nonlinear damage indices are proposed. A path-based rapid imaging algorithm, in conjunction with the use of the developed linear and nonlinear indices, is developed, whereby the HVI-induced pitting damage is characterized in images in terms of the probability of occurrence.

  10. Sleep disorders in children after treatment for a CNS tumour.

    Science.gov (United States)

    Verberne, Lisa M; Maurice-Stam, Heleen; Grootenhuis, Martha A; Van Santen, Hanneke M; Schouten-Van Meeteren, Antoinette Y N

    2012-08-01

    The long-term survival of children with a central nervous system (CNS) tumour is improving. However, they experience late effects, including altered habits and patterns of sleep. We evaluated the presence and type of sleep disorders and daytime sleepiness in these children, and its associations with clinical characteristics and daily performance (fatigue and psychosocial functioning). In a cross-sectional study at the outpatient clinic of the Emma Children's Hospital AMC (February-June 2010), sleep, fatigue and psychosocial functioning were analysed in 31 CNS tumour patients (mean age: 11.8years; 20 boys) and compared with 78 patients treated for a non-CNS malignancy (mean age: 9.7years; 41 boys) and norm data. Questionnaires applied were the Sleep Disorder Scale for Children, the Epworth Sleepiness Scale, the Pediatric Quality of Life Inventory, and the Strengths and Difficulties Questionnaire. Sleeping habits and endocrine deficiencies were assessed with a self-developed questionnaire. Increased somnolence was found in CNS tumour patients compared with those with a non-CNS malignancy (8.8±2.8 versus 7.5±2.7; Psleep. No specific risk factors were identified for a sleep disorder in CNS tumour patients, but their excessive somnolence was correlated with lower fatigue related quality of life (QoL) (r=-0.78, Psleep quality and diminish fatigue. © 2011 European Sleep Research Society.

  11. Prediction of human CNS pharmacokinetics using a physiologically-based pharmacokinetic modeling approach

    NARCIS (Netherlands)

    Yamamoto, Yumi; Valitalo, Pyry A.; Wong, Yin Cheong; Huntjens, Dymphy R.; Proost, Johannes H.; Vermeulen, An; Krauwinkel, Walter; Beukers, Margot W.; Kokki, Hannu; Kokki, Merja; Danhof, Meindert; van Hasselt, Johan G. C.; de Lange, Elizabeth C. M.

    2018-01-01

    Knowledge of drug concentration-time profiles at the central nervous system (CNS) target-site is critically important for rational development of CNS targeted drugs. Our aim was to translate a recently published comprehensive CNS physiologically-based pharmacokinetic (PBPK) model from rat to human,

  12. 2D full wave simulation on electromagnetic wave propagation in toroidal plasma

    International Nuclear Information System (INIS)

    Hojo, Hitoshi; Uruta, Go; Nakayama, Kazunori; Mase, Atsushi

    2002-01-01

    Global full-wave simulation on electromagnetic wave propagation in toroidal plasma with an external magnetic field imaging a tokamak configuration is performed in two dimensions. The temporal behavior of an electromagnetic wave launched into plasma from a wave-guiding region is obtained. (author)

  13. Therapy of CNS leukemia with intraventricular chemotherapy and low-dose neuraxis radiotherapy

    International Nuclear Information System (INIS)

    Steinherz, P.; Jereb, B.; Galicich, J.

    1985-01-01

    Successful treatment of CNS leukemic relapse has been frustrated by frequent local recurrence and eventual marrow relapse. The authors describe the treatment of meningeal leukemia in 39 children with intrathecal remission induction followed by the placement of an Ommaya reservoir to facilitate the administration and distribution of chemotherapeutic agents into the CSF. Six hundred or 900 rad of craniospinal radiation and maintenance intraventricular and intrathecal chemotherapy was then administered. Systemic reinduction therapy was added in the later cases. Sixteen children (41%) experienced no further events, with 17+ months to 13+ years (median, 25 months) follow-up . Eleven patients (28%) had CNS recurrence, nine (23%) bone marrow (BM) relapse, and two (5%) testicular relapse as the next adverse event. The course of patients with first isolated CNS relapse differed from that of the others. Eleven (69%) of 16 patients treated for first isolated CNS relapse are alive and 9 are event free, while only 35% of patients whose CNS relapse occurred simultaneously or after recurrent disease at other sites are alive (P = .04). Seven of 23 in the later group are event free. The difference is due to the increased incidence of BM relapse in the later group (30% v 6%; P = .04). For patients with first isolated CNS relapse, the life-table median CNS remission duration is 42 months. The projected CNS relapse-free survival and event-free survival 8 to 10 years after CNS relapse are 40% and 32%, respectively. Headache, nausea, and emesis of short duration were frequent during therapy. In three patients, the reservoir had to be removed for infection. No patient suffered neurologic deficit related to the reservoir. The therapy described can reduce the CNS relapse rate with manageable toxicity

  14. Estimation of seismic velocity in the subducting crust of the Pacific slab beneath Hokkaido, northern Japan by using guided waves

    Science.gov (United States)

    Shiina, T.; Nakajima, J.; Toyokuni, G.; Kita, S.; Matsuzawa, T.

    2014-12-01

    A subducting crust contains a large amount of water as a form of hydrous minerals (e.g., Hacker et al., 2003), and the crust plays important roles for water transportation and seismogenesis in subduction zones at intermediate depths (e.g., Kirby et al., 1996; Iwamori, 2007). Therefore, the investigation of seismic structure in the crust is important to understand ongoing physical processes with subduction of oceanic lithosphere. A guided wave which propagates in the subducting crust is recorded in seismograms at Hokkaido, northern Japan (Shiina et al., 2014). Here, we estimated P- and S-wave velocity in the crust with guided waves, and obtained P-wave velocity of 6.6-7.3 km/s and S-wave velocity of 3.6-4.2 km/s at depths of 50-90 km. Moreover, Vp/Vs ratio in the crust is calculated to be 1.80-1.85 in that depth range. The obtained P-wave velocity about 6.6km/s at depths of 50-70 km is consistent with those estimated in Tohoku, northeast Japan (Shiina et al., 2013), and this the P-wave velocity is lower than those expected from models of subducting crustal compositions, such as metamorphosed MORB model (Hacker et al., 2003). In contrast, at greater depths (>80 km), the P-wave velocity marks higher velocity than the case of NE Japan and the velocity is roughly comparable to those of the MORB model. The obtained S-wave velocity distribution also shows characteristics similar to P waves. This regional variation may be caused by a small variation in thermal regime of the Pacific slab beneath the two regions as a result of the normal subduction in Tohoku and oblique subduction in Hokkaido. In addition, the effect of seismic anisotropy in the subducting crust would not be ruled out because rays used in the analysis in Hokkaido propagate mostly in the trench-parallel direction, while those in Tohoku are sufficiently criss-crossed.

  15. Phased laser diode array permits selective excitation of ultrasonic guided waves in coated bone-mimicking tubes

    Science.gov (United States)

    Moilanen, Petro; Salmi, Ari; Kilappa, Vantte; Zhao, Zuomin; Timonen, Jussi; Hæggström, Edward

    2017-10-01

    This paper validates simulation predictions, which state that specific modes could be enhanced in quantitative ultrasonic bone testing. Tunable selection of ultrasonic guided wave excitation is useful in non-destructive testing since it permits the mediation of energy into diagnostically useful modes while reducing the energy mediated into disturbing contributions. For instance, it is often challenging to distinguish and extract the useful modes from ultrasound signals measured in bone covered by a soft tissue. We show that a laser diode array can selectively excite ultrasound in bone mimicking phantoms. A fiber-coupled diode array (4 elements) illuminated two solid tubes (2-3 mm wall thickness) embraced by an opaque soft-tissue mimicking elastomer coating (5 mm thick). A predetermined time delay matching the selected mode and frequency was employed between the outputs of the elements. The generated ultrasound was detected by a 215 kHz piezo receiver. Our results suggest that this array reduces the disturbances caused by the elastomer cover and so pave way to permit non-contacting in vivo guided wave ultrasound assessment of human bones. The implementation is small, inexpensive, and robust in comparison with the conventional pulsed lasers.

  16. Pharmacokinetic, Pharmacogenetic, and Other Factors Influencing CNS Penetration of Antiretrovirals

    Directory of Open Access Journals (Sweden)

    Jacinta Nwamaka Nwogu

    2016-01-01

    Full Text Available Neurological complications associated with the human immunodeficiency virus (HIV are a matter of great concern. While antiretroviral (ARV drugs are the cornerstone of HIV treatment and typically produce neurological benefit, some ARV drugs have limited CNS penetration while others have been associated with neurotoxicity. CNS penetration is a function of several factors including sieving role of blood-brain and blood-CSF barriers and activity of innate drug transporters. Other factors are related to pharmacokinetics and pharmacogenetics of the specific ARV agent or mediated by drug interactions, local inflammation, and blood flow. In this review, we provide an overview of the various factors influencing CNS penetration of ARV drugs with an emphasis on those commonly used in sub-Saharan Africa. We also summarize some key associations between ARV drug penetration, CNS efficacy, and neurotoxicity.

  17. The Effect of General Corrosion on the Guided Wave Inspection of the Pipeline

    Directory of Open Access Journals (Sweden)

    Zhang Jin Heng

    2016-01-01

    Full Text Available The guided wave method can inspect pipelines very quickly and widely. For instance, it can inspect the overall pipelines by digging several detection pits or removing part of coating material to set the array ring. However, it will make the guided wave attenuate more seriously and make the signals hard to identify when setting the array ring on the general corrosion. In this study, the wave propagation will be discussed when the general corrosion is under the array ring and the severe localized corrosion is inside the general corrosion via experiment and finite element method. The results showed that the excitation energy will be lower when the array ring set on the pipe surface with the general corrosion. By two-dimensional Fourier transform analysis, its non-uniform contact surface will increase asymmetric modal and mix signals. The energy attenuation will increase when the corrosion depth is deepened or the inspection frequency is risen. For example, the 2 mm deep general corrosion will attenuate −1.09 dB/m at 20 kHz and attenuate −3.01 dB/m at 40 kHz; the 4 mm deep general corrosion will attenuation −5.76 dB/m at 20 kHz and attenuation −23.19 dB/m at 40 kHz. However, the coherent signals which were caused by the general corrosion will decay with increasing frequency. For example, the coherent signals of 2 mm deep general corrosion are −23.67 dB at 20 kHz and −35.44 dB at 40 kHz; then, the 20 mm long and 3.5 mm deep localized corrosion which signal is −26.34 dB at 20 kHz and −26.94 dB at 40 kHz will be detected easily at high frequency. It can provide detectors to understand the impact when the array ring set on the area of general corrosion and the way to distinguish the localized corrosion which is inside the area of general corrosion.

  18. CNS-directed gene therapy for lysosomal storage diseases

    OpenAIRE

    Sands, Mark S; Haskins, Mark E

    2008-01-01

    Lysosomal storage diseases (LSDs) are a group of inherited metabolic disorders usually caused by deficient activity of a single lysosomal enzyme. As most lysosomal enzymes are ubiquitously expressed, a deficiency in a single enzyme can affect multiple organ systems, including the central nervous system (CNS). At least 75% of all LSDs have a significant CNS component. Approaches such as bone marrow transplantation (BMT) or enzyme replacement therapy (ERT) can effectively treat the systemic dis...

  19. Genetic models for CNS inflammation

    DEFF Research Database (Denmark)

    Owens, T; Wekerle, H; Antel, J

    2001-01-01

    The use of transgenic technology to over-express or prevent expression of genes encoding molecules related to inflammation has allowed direct examination of their role in experimental disease. This article reviews transgenic and knockout models of CNS demyelinating disease, focusing primarily on ...

  20. Bortezomib-related neuropathy may mask CNS relapse in multiple myeloma: A call for diligence.

    Science.gov (United States)

    Abid, Muhammad Bilal; De Mel, Sanjay; Abid, Muhammad Abbas; Tan, Kong Bing; Chng, Wee Joo

    2016-07-02

    Neuropathy is a common adverse effect of bortezomib. Isolated central nervous system (CNS) relapse in MM remains exceedingly rare and carries a dismal prognosis. We present an unusual case of bortezomib related neuropathy masking a CNS relapse of MM. A 57-year-old female was diagnosed with standard-risk MM with clinical and cytogenetic features not typically associated with CNS involvement. She was treated with 4 cycles of bortezomib/cyclophosphamide/dexamethasone (VCD) and achieved a VGPR, after which she underwent an autologous stem cell transplant (ASCT) followed by bortezomib maintenance. Six months after ASCT she developed symptoms suggestive of peripheral neuropathy which was attributed to bortezomib. However the symptoms persisted despite discontinuation of bortezomib. Imaging and cerebrospinal fluid analysis subsequently confirmed a CNS relapse. CNS involvement in MM (CNS-MM) is uncommon and is considered an aggressive disease. Recently published literature has reported biomarkers with prognostic potential. However, isolated CNS relapse is even less common; an event which carries a very poor prognosis. Given the heterogeneous neurologic manifestations associated with MM, clinical suspicion may be masked by confounding factors such as bortezomib-based therapy. The disease may further remain incognito if the patient does not exhibit any of the high risk features and biomarkers associated with CNS involvement. In the era of proteasome inhibitor (PtdIns)/immunomodulator (IMID)-based therapy for MM which carries neurologic adverse effects, it is prudent to consider CNS relapse early. This case further highlights the need for more robust biomarkers to predict CNS relapse and use of newer novel agents which demonstrate potential for CNS penetration.

  1. Tone burst generator for a Non-Destructive Testing system based on ultrasonic guided waves

    OpenAIRE

    Jiménez Sánchez, Daniel

    2011-01-01

    English: This PFC provides a design of a tested and specific tone-burst generator circuit for a Non-Destructive System based on ultrasonid guided waves. This circuit includes a complementary protection circuit for the NDT system working in a pulse-echo configuration. In this paper, a brief state f art about different driving circuits employed in distinct NDE systems is presented. Castellano: El PFC proporciona un diseño electrónico específico y probado de un circuito excitador de salvas (C...

  2. Actuarial risk of isolated CNS involvement in Ewing's sarcoma following prophylactic cranial irradiation and intrathecal methotrexate

    International Nuclear Information System (INIS)

    Trigg, M.E.; Makuch, R.; Glaubiger, D.

    1985-01-01

    Records of 154 patients with Ewing's sarcoma treated at the National Cancer Institute were reviewed to assess the incidence and risk of developing isolated central nervous system (CNS) Ewing's sarcoma. Sixty-two of the 154 patients had received CNS irradiation and intrathecal (i.t.) methotrexate as part of their initial therapy to prevent the occurrence of isolated CNS Ewing's sarcoma. The risk of developing isolate CNS Ewing's sarcoma was greatest within the first two years after diagnosis and was approximately 10%. The overall risk of CNS recurrence in the group of patients receiving DNS treatment was similar to the group receiving no therapy directed to the CNS. The occurrence of isolated CNS involvement was not prevented by the use of CNS irradiation and i.t. methotrexate. Because of a lack of efficacy to the CNS irradiation regimen, current treatment regimens do not include therapy directed to CNS

  3. Can injured adult CNS axons regenerate by recapitulating development?

    Science.gov (United States)

    Hilton, Brett J; Bradke, Frank

    2017-10-01

    In the adult mammalian central nervous system (CNS), neurons typically fail to regenerate their axons after injury. During development, by contrast, neurons extend axons effectively. A variety of intracellular mechanisms mediate this difference, including changes in gene expression, the ability to form a growth cone, differences in mitochondrial function/axonal transport and the efficacy of synaptic transmission. In turn, these intracellular processes are linked to extracellular differences between the developing and adult CNS. During development, the extracellular environment directs axon growth and circuit formation. In adulthood, by contrast, extracellular factors, such as myelin and the extracellular matrix, restrict axon growth. Here, we discuss whether the reactivation of developmental processes can elicit axon regeneration in the injured CNS. © 2017. Published by The Company of Biologists Ltd.

  4. Integrated coherent matter wave circuits

    International Nuclear Information System (INIS)

    Ryu, C.; Boshier, M. G.

    2015-01-01

    An integrated coherent matter wave circuit is a single device, analogous to an integrated optical circuit, in which coherent de Broglie waves are created and then launched into waveguides where they can be switched, divided, recombined, and detected as they propagate. Applications of such circuits include guided atom interferometers, atomtronic circuits, and precisely controlled delivery of atoms. We report experiments demonstrating integrated circuits for guided coherent matter waves. The circuit elements are created with the painted potential technique, a form of time-averaged optical dipole potential in which a rapidly moving, tightly focused laser beam exerts forces on atoms through their electric polarizability. Moreover, the source of coherent matter waves is a Bose-Einstein condensate (BEC). Finally, we launch BECs into painted waveguides that guide them around bends and form switches, phase coherent beamsplitters, and closed circuits. These are the basic elements that are needed to engineer arbitrarily complex matter wave circuitry

  5. Netrin-1 Confines Rhombic Lip-Derived Neurons to the CNS

    Directory of Open Access Journals (Sweden)

    Andrea R. Yung

    2018-02-01

    Full Text Available During brainstem development, newborn neurons originating from the rhombic lip embark on exceptionally long migrations to generate nuclei important for audition, movement, and respiration. Along the way, this highly motile population passes several cranial nerves yet remains confined to the CNS. We found that Ntn1 accumulates beneath the pial surface separating the CNS from the PNS, with gaps at nerve entry sites. In mice null for Ntn1 or its receptor DCC, hindbrain neurons enter cranial nerves and migrate into the periphery. CNS neurons also escape when Ntn1 is selectively lost from the sub-pial region (SPR, and conversely, expression of Ntn1 throughout the mutant hindbrain can prevent their departure. These findings identify a permissive role for Ntn1 in maintaining the CNS-PNS boundary. We propose that Ntn1 confines rhombic lip-derived neurons by providing a preferred substrate for tangentially migrating neurons in the SPR, preventing their entry into nerve roots.

  6. CNS complications of rotavirus gastroenteritis

    International Nuclear Information System (INIS)

    Volosinova, D.

    2010-01-01

    Rotavirus infection may be accompanied by serious complications, e.g. disabilities central nervous system (CNS). Theory rotavirus penetration across the blood-brain barrier and subsequent rota-associated convulsions by the 2-year case-history of the patient. Rotavirosis minor gastrointestinal symptoms may lead to erroneous diagnosis. (author)

  7. CNS Involvement in AML Patient Treated with 5-Azacytidine

    Directory of Open Access Journals (Sweden)

    Diamantina Vasilatou

    2014-01-01

    Full Text Available Central nervous system (CNS involvement in acute myeloid leukemia (AML is a rare complication of the disease and is associated with poor prognosis. Sometimes the clinical presentation can be unspecific and the diagnosis can be very challenging. Here we report a case of CNS infiltration in a patient suffering from AML who presented with normal complete blood count and altered mental status.

  8. Quantitative Evaluation of Defect Based on Ultrasonic Guided Wave and CHMM

    Directory of Open Access Journals (Sweden)

    Chen Le

    2016-01-01

    Full Text Available The axial length of pipe defects is not linear with the reflection coefficient, which is difficult to identify the axial length of the defect by the reflection coefficient method. Continuous Hidden Markov Model (CHMM is proposed to accurately classify the axial length of defects, achieving the objective of preliminary quantitative evaluation. Firstly, wavelet packet decomposition method is used to extract the characteristic information of the guided wave signal, and Kernel Sliced Inverse Regression (KSIR method is used to reduce the dimension of feature set. Then, a variety of CHMM models are trained for classification. Finally, the trained models are used to identify the artificial corrosion defects on the outer surface of the pipe. The results show that the CHMM model has better robustness and can accurately identify the axial defects.

  9. Adverse CNS-effects of beta-adrenoceptor blockers.

    Science.gov (United States)

    Gleiter, C H; Deckert, J

    1996-11-01

    In 1962 propranolol, the first beta adrenoceptor antagonist (beta blocker), was brought on to the market. There is now a host of different beta blockers available, and these compounds are among the most commonly prescribed groups of drugs. The efficacy of beta blockers has been proven predominantly for the treatment of cardiovascular diseases. Beta blockers are also used for certain types of CNS disorders, such as anxiety disorders, essential tremor and migraine. While low toxicity means that they have a favorable risk-benefit ratio, given the high intensity of use, it is essential to have a comprehensive knowledge of adverse events. Adverse events of beta blockers that can be related to the CNS are quite often neglected, even in textbooks of clinical pharmacology or review articles, and thus often misdiagnosed. The following article, therefore, after summarizing the use of beta blockers for CNS indications, critically reviews the literature on centrally mediated adverse events. General pharmacological features of beta blockers and their molecular basis of action will briefly be addressed to the extent that they are or may become relevant for central nervous pharmacotherapy and side-effects.

  10. Differential expression of metallothioneins in the CNS of mice with experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Espejo, C; Carrasco, J; Hidalgo, J

    2001-01-01

    Multiple sclerosis is an inflammatory, demyelinating disease of the CNS. Metallothioneins-I+II are antioxidant proteins induced in the CNS by immobilisation stress, trauma or degenerative diseases which have been postulated to play a neuroprotective role, while the CNS isoform metallothionein......-III has been related to Alzheimer's disease. We have analysed metallothioneins-I-III expression in the CNS of mice with experimental autoimmune encephalomyelitis. Moreover, we have examined the putative role of interferon-gamma, a pro-inflammatory cytokine, in the control of metallothioneins expression...

  11. Autologous US-guided PRP injection versus US-guided focal extracorporeal shock wave therapy for chronic lateral epicondylitis: A minimum of 2-year follow-up retrospective comparative study.

    Science.gov (United States)

    Alessio-Mazzola, Mattia; Repetto, Ilaria; Biti, Besmir; Trentini, Roberto; Formica, Matteo; Felli, Lamberto

    2018-01-01

    To compare the efficacy of two independent groups of patients treated with ultrasound (US)-guided extracorporeal shock wave (ESW) therapy and with US-guided injection of platelet-rich plasma (PRP) for chronic lateral epicondylitis (LE) with a minimum of 2-year follow-up. We retrospectively evaluated 63 patients treated for chronic LE (31 patients with autologous US-guided PRP injection and 32 patients with US-guided focal ESW therapy) from 2009 to 2014. All the patients were evaluated by means of Roles-Maudsley (RM) score, quick Disabilities of Arm, Shoulder, and Hand (QuickDASH) score, visual analogic scale (VAS) and patient-rated tennis elbow evaluation (PRTEE) to retrospectively assess the pain relief, level of activity, the self-reported function and subjective satisfaction at minimum of 2-year follow-up. Both US-guided autologous PRP injection and US-guided focal ESW administration proved effective in chronic LE with significant improvement in the QuickDASH, VAS, RM and PRTEE scores ( p 0.05). The mean time between treatment and symptom resolution was significantly shorter for the PRP treatment ( p = 0.0212); furthermore, the mean time to return to the normal activities was quicker for PRP group ( p = 0.0119). Both PRP injection and ESW therapy are feasible and safe options for the treatment of chronic LE with low risk of complications and with good long-term follow-up results. US-guided PRP injection has quick efficacy when compared with US-guided focal ESW therapy.

  12. Electrophysiological CNS-processes related to associative learning in humans.

    Science.gov (United States)

    Christoffersen, Gert R J; Schachtman, Todd R

    2016-01-01

    The neurophysiology of human associative memory has been studied with electroencephalographic techniques since the 1930s. This research has revealed that different types of electrophysiological processes in the human brain can be modified by conditioning: sensory evoked potentials, sensory induced gamma-band activity, periods of frequency-specific waves (alpha and beta waves, the sensorimotor rhythm and the mu-rhythm) and slow cortical potentials. Conditioning of these processes has been studied in experiments that either use operant conditioning or repeated contingent pairings of conditioned and unconditioned stimuli (classical conditioning). In operant conditioning, the appearance of a specific brain process is paired with an external stimulus (neurofeedback) and the feedback enables subjects to obtain varying degrees of control of the CNS-process. Such acquired self-regulation of brain activity has found practical uses for instance in the amelioration of epileptic seizures, Autism Spectrum Disorders (ASD) and Attention Deficit Hyperactivity Disorder (ADHD). It has also provided communicative means of assistance for tetraplegic patients through the use of brain computer interfaces. Both extra and intracortically recorded signals have been coupled with contingent external feedback. It is the aim for this review to summarize essential results on all types of electromagnetic brain processes that have been modified by classical or operant conditioning. The results are organized according to type of conditioned EEG-process, type of conditioning, and sensory modalities of the conditioning stimuli. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Assessment of Pipe Wall Loss Using Guided Wave Testing

    International Nuclear Information System (INIS)

    Joo, Kyung Mun; Jin, Seuk Hong; Moon, Yong Sig

    2010-01-01

    Flow accelerated corrosion(FAC) of carbon steel pipes in nuclear power plants has been known as one of the major degradation mechanisms. It could have bad influence on the plant reliability and safety. Also detection of FAC is a significant cost to the nuclear power plant because of the need to remove and replace insulation. Recently, the interest of the guided wave testing(GWT) has grown because it allows long range inspection without removing insulation of the pipe except at the probe position. If GWT can be applied to detection of FAC damages, it will can significantly reduce the cost for the inspection of the pipes. The objective of this study was to determine the capability of GWT to identify location of FAC damages. In this paper, three kinds of techniques were used to measure the amplitude ratio between the first and the second welds at the elbow area of mock-ups that contain real FAC damages. As a result, optimal inspection technique and minimum detectability to detect FAC damages drew a conclusion

  14. CNS infiltration of peripheral immune cells: D-Day for neurodegenerative disease?

    Science.gov (United States)

    Rezai-Zadeh, Kavon; Gate, David; Town, Terrence

    2009-12-01

    While the central nervous system (CNS) was once thought to be excluded from surveillance by immune cells, a concept known as "immune privilege," it is now clear that immune responses do occur in the CNS-giving rise to the field of neuroimmunology. These CNS immune responses can be driven by endogenous (glial) and/or exogenous (peripheral leukocyte) sources and can serve either productive or pathological roles. Recent evidence from mouse models supports the notion that infiltration of peripheral monocytes/macrophages limits progression of Alzheimer's disease pathology and militates against West Nile virus encephalitis. In addition, infiltrating T lymphocytes may help spare neuronal loss in models of amyotrophic lateral sclerosis. On the other hand, CNS leukocyte penetration drives experimental autoimmune encephalomyelitis (a mouse model for the human demyelinating disease multiple sclerosis) and may also be pathological in both Parkinson's disease and human immunodeficiency virus encephalitis. A critical understanding of the cellular and molecular mechanisms responsible for trafficking of immune cells from the periphery into the diseased CNS will be key to target these cells for therapeutic intervention in neurodegenerative diseases, thereby allowing neuroregenerative processes to ensue.

  15. Beam pattern improvement by compensating array nonuniformities in a guided wave phased array

    International Nuclear Information System (INIS)

    Kwon, Hyu-Sang; Lee, Seung-Seok; Kim, Jin-Yeon

    2013-01-01

    This paper presents a simple data processing algorithm which can improve the performance of a uniform circular array based on guided wave transducers. The algorithm, being intended to be used with the delay-and-sum beamformer, effectively eliminates the effects of nonuniformities that can significantly degrade the beam pattern. Nonuniformities can arise intrinsically from the array geometry when the circular array is transformed to a linear array for beam steering and extrinsically from unequal conditions of transducers such as element-to-element variations of sensitivity and directivity. The effects of nonuniformities are compensated by appropriately imposing weight factors on the elements in the projected linear array. Different cases are simulated, where the improvements of the beam pattern, especially the level of the highest sidelobe, are clearly seen, and related issues are discussed. An experiment is performed which uses A0 mode Lamb waves in a steel plate, to demonstrate the usefulness of the proposed method. The discrepancy between theoretical and experimental beam patterns is explained by accounting for near-field effects. (paper)

  16. Drug Delivery to CNS: Challenges and Opportunities with Emphasis on Biomaterials Based Drug Delivery Strategies.

    Science.gov (United States)

    Khambhla, Ekta; Shah, Viral; Baviskar, Kalpesh

    2016-01-01

    The current epoch has witnessed a lifestyle impregnated with stress, which is a major cause of several neurological disorders. High morbidity and mortality rate due to neurological diseases and disorders have generated a huge social impact. Despite voluminous research, patients suffering from fatal and/or debilitating CNS diseases such as brain tumors, HIV, encephalopathy, Alzheimer's, epilepsy, Parkinson's, migraine and multiple sclerosis outnumbered those suffering from systemic cancer or heart diseases. The brain being a highly sensitive neuronal organ, has evolved with vasculature barriers, which regulates the efflux and influx of substances to CNS. Treatment of CNS diseases/disorders is challenging because of physiologic, metabolic and biochemical obstacles created by these barriers which comprise mainly of BBB and BCFB. The inability of achieving therapeutically active concentration has become the bottleneck level difficulty, hampering the therapeutic efficiency of several promising drug candidates for CNS related disorders. Parallel maturation of an effective CNS drug delivery strategy with CNS drug discovery is the need of the hour. Recently, the focus of the pharmaceutical community has aggravated in the direction of developing novel and more efficient drug delivery systems, giving the potential of more effective and safer CNS therapies. The present review outlines several hurdles in drug delivery to the CNS along with ideal physicochemical properties desired in drug substance/formulation for CNS delivery. The review also focuses on different conventional and novel strategies for drug delivery to the CNS. The article also assesses and emphasizes on possible benefits of biomaterial based formulations for drug delivery to the CNS.

  17. Spontaneous calcium waves in granule cells in cerebellar slice cultures

    DEFF Research Database (Denmark)

    Apuschkin, Mia; Ougaard, Maria; Rekling, Jens C

    2013-01-01

    Multiple regions in the CNS display propagating correlated activity during embryonic and postnatal development. This activity can be recorded as waves of increased calcium concentrations in spiking neurons or glia cells, and have been suggested to be involved in patterning, axonal guidance and es......, that the propagating wave activity is carried through the tissue by axonal collaterals formed by neighboring granule cells, and further suggest that the correlated activity may be related to processes that ensure correct postnatal wiring of the cerebellar circuits....

  18. Waves and Particles, The Orbital Atom, Parts One and Two of an Integrated Science Sequence, Teacher's Guide, 1973 Edition.

    Science.gov (United States)

    Portland Project Committee, OR.

    This teacher's guide includes parts one and two of the four-part third year Portland Project, a three-year integrated secondary science curriculum sequence. The Harvard Project Physics textbook is used for reading assignments for part one. Assignments relate to waves, light, electricity, magnetic fields, Faraday and the electrical age,…

  19. Causes of CNS inflammation and potential targets for anticonvulsants.

    Science.gov (United States)

    Falip, Mercé; Salas-Puig, Xavier; Cara, Carlos

    2013-08-01

    Inflammation is one of the most important endogenous defence mechanisms in an organism. It has been suggested that inflammation plays an important role in the pathophysiology of a number of human epilepsies and convulsive disorders, and there is clinical and experimental evidence to suggest that inflammatory processes within the CNS may either contribute to or be a consequence of epileptogenesis. This review discusses evidence from human studies on the role of inflammation in epilepsy and highlights potential new targets in the inflammatory cascade for antiepileptic drugs. A number of mechanisms have been shown to be involved in CNS inflammatory reactions. These include an inflammatory response at the level of the blood-brain barrier (BBB), immune-mediated damage to the CNS, stress-induced release of inflammatory mediators and direct neuronal dysfunction or damage as a result of inflammatory reactions. Mediators of inflammation in the CNS include interleukin (IL)-1β, tumour necrosis factor-α, nuclear factor-κB and toll-like receptor-4 (TLR4). IL-1β, BBB and high-mobility group box-1-TLR4 signalling appear to be the most promising targets for anticonvulsant agents directed at inflammation. Such agents may provide effective therapy for drug-resistant epilepsies in the future.

  20. Pericytes Stimulate Oligodendrocyte Progenitor Cell Differentiation during CNS Remyelination

    Directory of Open Access Journals (Sweden)

    Alerie Guzman De La Fuente

    2017-08-01

    Full Text Available The role of the neurovascular niche in CNS myelin regeneration is incompletely understood. Here, we show that, upon demyelination, CNS-resident pericytes (PCs proliferate, and parenchymal non-vessel-associated PC-like cells (PLCs rapidly develop. During remyelination, mature oligodendrocytes were found in close proximity to PCs. In Pdgfbret/ret mice, which have reduced PC numbers, oligodendrocyte progenitor cell (OPC differentiation was delayed, although remyelination proceeded to completion. PC-conditioned medium accelerated and enhanced OPC differentiation in vitro and increased the rate of remyelination in an ex vivo cerebellar slice model of demyelination. We identified Lama2 as a PC-derived factor that promotes OPC differentiation. Thus, the functional role of PCs is not restricted to vascular homeostasis but includes the modulation of adult CNS progenitor cells involved in regeneration.

  1. Cerebral blood flow variations in CNS lupus

    International Nuclear Information System (INIS)

    Kushner, M.J.; Tobin, M.; Fazekas, F.; Chawluk, J.; Jamieson, D.; Freundlich, B.; Grenell, S.; Freemen, L.; Reivich, M.

    1990-01-01

    We studied the patterns of cerebral blood flow (CBF), over time, in patients with systemic lupus erythematosus and varying neurologic manifestations including headache, stroke, psychosis, and encephalopathy. For 20 paired xenon-133 CBF measurements, CBF was normal during CNS remissions, regardless of the symptoms. CBF was significantly depressed during CNS exacerbations. The magnitude of change in CBF varied with the neurologic syndrome. CBF was least affected in patients with nonspecific symptoms such as headache or malaise, whereas patients with encephalopathy or psychosis exhibited the greatest reductions in CBF. In 1 patient with affective psychosis, without clinical or CT evidence of cerebral ischemia, serial SPECT studies showed resolution of multifocal cerebral perfusion defects which paralleled clinical recovery

  2. Near-to-eye electroholography via guided-wave acousto-optics for augmented reality

    Science.gov (United States)

    Jolly, Sundeep; Savidis, Nickolaos; Datta, Bianca; Smalley, Daniel; Bove, V. Michael

    2017-03-01

    Near-to-eye holographic displays act to directly project wavefronts into a viewer's eye in order to recreate 3-D scenes for augmented or virtual reality applications. Recently, several solutions for near-to-eye electroholography have been proposed based on digital spatial light modulators in conjunction with supporting optics, such as holographic waveguides for light delivery; however, such schemes are limited by the inherent low space-bandwidth product available with current digital SLMs. In this paper, we depict a fully monolithic, integrated optical platform for transparent near-to-eye holographic display requiring no supporting optics. Our solution employs a guided-wave acousto-optic spatial light modulator implemented in lithium niobate in conjunction with an integrated Bragg-regime reflection volume hologram.

  3. Observations at the CNS-PNS border of ventral roots connected to a neuroma

    Directory of Open Access Journals (Sweden)

    Sten Remahl

    2010-10-01

    Full Text Available Previous studies have shown that numerous sprouts originating from a neuroma, after nerve injury in neonatal animals, can invade spinal nerve roots. In this study the border between the central and peripheral nervous system (CNS-PNS border of ventral roots in kittens was examined with both light and electron microscopy after early postnatal sciatic nerve resection. A transient ingrowth of substance P positive axons was observed into the CNS, but no spouts remained 6 weeks after the injury. Using serial sections and electron microscopy it was possible to identify small bundles of unmyelinated axons that penetrated from the root fascicles for a short distance into the CNS. These axons ended blindly, sometimes with a growth cone-like terminal swelling filled with vesicles. The axon bundles were accompanied by p75 positive cells in both the root fascicles and the pia mater, but not in the CNS. It may thus be suggested that neurotrophin presenting p75 positive cells could facilitate axonal growth into the pia mater and that the lack of such cells in the CNS compartment might contribute to the failure of growth into the CNS. A maldevelopment of myelin sheaths at the CNS-PNS border of motor axons was observed and it seems possible that this could have consequences for the propagation of action potential across this region after neonatal nerve injury.

  4. Basic Concepts of CNS Development.

    Science.gov (United States)

    Nowakowski, R. S.

    1987-01-01

    The goals of this review are to: (1) provide a set of concepts to aid in the understanding of complex processes which occur during central nervous system (CNS) development; (2) illustrate how they contribute to our knowlege of adult brain anatomy; and (3) delineate how modifications of normal developmental processes may affect the structure and…

  5. Drug Elucidation: Invertebrate Genetics Sheds New Light on the Molecular Targets of CNS Drugs

    Directory of Open Access Journals (Sweden)

    Donard S. Dwyer

    2014-07-01

    Full Text Available Many important drugs approved to treat common human diseases were discovered by serendipity, without a firm understanding of their modes of action. As a result, the side effects and interactions of these medications are often unpredictable, and there is limited guidance for improving the design of next-generation drugs. Here, we review the innovative use of simple model organisms, especially Caenorhabditis elegans, to gain fresh insights into the complex biological effects of approved CNS medications. Whereas drug discovery involves the identification of new drug targets and lead compounds/biologics, and drug development spans preclinical testing to FDA approval, drug elucidation refers to the process of understanding the mechanisms of action of marketed drugs by studying their novel effects in model organisms. Drug elucidation studies have revealed new pathways affected by antipsychotic drugs, e.g., the insulin signaling pathway, a trace amine receptor and a nicotinic acetylcholine receptor. Similarly, novel targets of antidepressant drugs and lithium have been identified in C. elegans, including lipid-binding/transport proteins and the SGK-1 signaling pathway, respectively. Elucidation of the mode of action of anesthetic agents has shown that anesthesia can involve mitochondrial targets, leak currents and gap junctions. The general approach reviewed in this article has advanced our knowledge about important drugs for CNS disorders and can guide future drug discovery efforts.

  6. Lamb wave propagation in monocrystalline silicon wafers.

    Science.gov (United States)

    Fromme, Paul; Pizzolato, Marco; Robyr, Jean-Luc; Masserey, Bernard

    2018-01-01

    Monocrystalline silicon wafers are widely used in the photovoltaic industry for solar panels with high conversion efficiency. Guided ultrasonic waves offer the potential to efficiently detect micro-cracks in the thin wafers. Previous studies of ultrasonic wave propagation in silicon focused on effects of material anisotropy on bulk ultrasonic waves, but the dependence of the wave propagation characteristics on the material anisotropy is not well understood for Lamb waves. The phase slowness and beam skewing of the two fundamental Lamb wave modes A 0 and S 0 were investigated. Experimental measurements using contact wedge transducer excitation and laser measurement were conducted. Good agreement was found between the theoretically calculated angular dependency of the phase slowness and measurements for different propagation directions relative to the crystal orientation. Significant wave skew and beam widening was observed experimentally due to the anisotropy, especially for the S 0 mode. Explicit finite element simulations were conducted to visualize and quantify the guided wave beam skew. Good agreement was found for the A 0 mode, but a systematic discrepancy was observed for the S 0 mode. These effects need to be considered for the non-destructive testing of wafers using guided waves.

  7. Guided acoustic and optical waves in silicon-on-insulator for Brillouin scattering and optomechanics

    Directory of Open Access Journals (Sweden)

    Christopher J. Sarabalis

    2016-10-01

    Full Text Available We numerically study silicon waveguides on silica showing that it is possible to simultaneously guide optical and acoustic waves in the technologically important silicon on insulator (SOI material system. Thin waveguides, or fins, exhibit geometrically softened mechanical modes at gigahertz frequencies with phase velocities below the Rayleigh velocity in glass, eliminating acoustic radiation losses. We propose slot waveguides on glass with telecom optical frequencies and strong radiation pressure forces resulting in Brillouin gains on the order of 500 and 50 000 W−1m−1 for backward and forward Brillouin scattering, respectively.

  8. Handbook of Ocean Wave Energy

    DEFF Research Database (Denmark)

    This book offers a concise, practice-oriented reference-guide to the field of ocean wave energy. The ten chapters highlight the key rules of thumb, address all the main technical engineering aspects and describe in detail all the key aspects to be considered in the techno-economic assessment...... in the wave energy sector. •Offers a practice-oriented reference guide to the field of ocean wave energy •Presents an overview as well as a deeper insight into wave energy converters •Covers both the economic and engineering aspects related to ocean wave energy conversion...... of wave energy converters. Written in an easy-to-understand style, the book answers questions relevant to readers of different backgrounds, from developers, private and public investors, to students and researchers. It is thereby a valuable resource for both newcomers and experienced practitioners...

  9. Handbook of Ocean Wave Energy

    DEFF Research Database (Denmark)

    This book offers a concise, practice-oriented reference-guide to the field of ocean wave energy. The ten chapters highlight the key rules of thumb, address all the main technical engineering aspects and describe in detail all the key aspects to be considered in the techno-economic assessment...... of wave energy converters. Written in an easy-to-understand style, the book answers questions relevant to readers of different backgrounds, from developers, private and public investors, to students and researchers. It is thereby a valuable resource for both newcomers and experienced practitioners...... in the wave energy sector. •Offers a practice-oriented reference guide to the field of ocean wave energy •Presents an overview as well as a deeper insight into wave energy converters •Covers both the economic and engineering aspects related to ocean wave energy conversion...

  10. The retina as a window to the brain-from eye research to CNS disorders.

    Science.gov (United States)

    London, Anat; Benhar, Inbal; Schwartz, Michal

    2013-01-01

    Philosophers defined the eye as a window to the soul long before scientists addressed this cliché to determine its scientific basis and clinical relevance. Anatomically and developmentally, the retina is known as an extension of the CNS; it consists of retinal ganglion cells, the axons of which form the optic nerve, whose fibres are, in effect, CNS axons. The eye has unique physical structures and a local array of surface molecules and cytokines, and is host to specialized immune responses similar to those in the brain and spinal cord. Several well-defined neurodegenerative conditions that affect the brain and spinal cord have manifestations in the eye, and ocular symptoms often precede conventional diagnosis of such CNS disorders. Furthermore, various eye-specific pathologies share characteristics of other CNS pathologies. In this Review, we summarize data that support examination of the eye as a noninvasive approach to the diagnosis of select CNS diseases, and the use of the eye as a valuable model to study the CNS. Translation of eye research to CNS disease, and deciphering the role of immune cells in these two systems, could improve our understanding and, potentially, the treatment of neurodegenerative disorders.

  11. Characterization of Aircraft Structural Damage Using Guided Wave Based Finite Element Analysis for In-Flight Structural Health Management

    Science.gov (United States)

    Seshadri, Banavara R.; Krishnamurthy, Thiagarajan; Ross, Richard W.

    2016-01-01

    The development of multidisciplinary Integrated Vehicle Health Management (IVHM) tools will enable accurate detection, diagnosis and prognosis of damage under normal and adverse conditions during flight. The adverse conditions include loss of control caused by environmental factors, actuator and sensor faults or failures, and structural damage conditions. A major concern is the growth of undetected damage/cracks due to fatigue and low velocity foreign object impact that can reach a critical size during flight, resulting in loss of control of the aircraft. To avoid unstable catastrophic propagation of damage during a flight, load levels must be maintained that are below the load-carrying capacity for damaged aircraft structures. Hence, a capability is needed for accurate real-time predictions of safe load carrying capacity for aircraft structures with complex damage configurations. In the present work, a procedure is developed that uses guided wave responses to interrogate damage. As the guided wave interacts with damage, the signal attenuates in some directions and reflects in others. This results in a difference in signal magnitude as well as phase shifts between signal responses for damaged and undamaged structures. Accurate estimation of damage size and location is made by evaluating the cumulative signal responses at various pre-selected sensor locations using a genetic algorithm (GA) based optimization procedure. The damage size and location is obtained by minimizing the difference between the reference responses and the responses obtained by wave propagation finite element analysis of different representative cracks, geometries and sizes.

  12. Slow Waves in Fractures Filled with Viscous Fluid

    Energy Technology Data Exchange (ETDEWEB)

    Korneev, Valeri

    2008-01-08

    Stoneley guided waves in a fluid-filled fracture generally have larger amplitudes than other waves, and therefore, their properties need to be incorporated in more realistic models. In this study, a fracture is modeled as an infinite layer of viscous fluid bounded by two elastic half-spaces with identical parameters. For small fracture thickness, I obtain a simple dispersion equation for wave-propagation velocity. This velocity is much smaller than the velocity of a fluid wave in a Biot-type solution, in which fracture walls are assumed to be rigid. At seismic prospecting frequencies and realistic fracture thicknesses, the Stoneley guided wave has wavelengths on the order of several meters and an attenuation Q factor exceeding 10, which indicates the possibility of resonance excitation in fluid-bearing rocks. The velocity and attenuation of Stoneley guided waves are distinctly different at low frequencies for water and oil. The predominant role of fractures in fluid flow at field scales is supported by permeability data showing an increase of several orders of magnitude when compared to values obtained at laboratory scales. These data suggest that Stoneley guided waves should be taken into account in theories describing seismic wave propagation in fluid-saturated rocks.

  13. HB-GAM (pleiotrophin) reverses inhibition of neural regeneration by the CNS extracellular matrix

    Science.gov (United States)

    Paveliev, Mikhail; Fenrich, Keith K.; Kislin, Mikhail; Kuja-Panula, Juha; Kulesskiy, Evgeny; Varjosalo, Markku; Kajander, Tommi; Mugantseva, Ekaterina; Ahonen-Bishopp, Anni; Khiroug, Leonard; Kulesskaya, Natalia; Rougon, Geneviève; Rauvala, Heikki

    2016-01-01

    Chondroitin sulfate (CS) glycosaminoglycans inhibit regeneration in the adult central nervous system (CNS). We report here that HB-GAM (heparin-binding growth-associated molecule; also known as pleiotrophin), a CS-binding protein expressed at high levels in the developing CNS, reverses the role of the CS chains in neurite growth of CNS neurons in vitro from inhibition to activation. The CS-bound HB-GAM promotes neurite growth through binding to the cell surface proteoglycan glypican-2; furthermore, HB-GAM abrogates the CS ligand binding to the inhibitory receptor PTPσ (protein tyrosine phosphatase sigma). Our in vivo studies using two-photon imaging of CNS injuries support the in vitro studies and show that HB-GAM increases dendrite regeneration in the adult cerebral cortex and axonal regeneration in the adult spinal cord. Our findings may enable the development of novel therapies for CNS injuries. PMID:27671118

  14. Guided Wave Propagation in a Gold Electrode Film on a Pb(Mg1/3Nb2/3)O3−33%PbTiO3 Ferroelectric Single Crystal Substrate

    International Nuclear Information System (INIS)

    Huang Nai-Xing; LÜ Tian-Quan; Zhang Rui; Wang Yu-Ling; Cao Wen-Wu

    2014-01-01

    Dispersion relations of Love mode acoustic guided waves propagation in Pb(Mg 1/3 Nb 2/3 )O 3 −33%PbTiO 3 (PMN-0.33 PT) single crystal with a gold electrode film are calculated. There is no cross coupling among Love wave modes, which is conducive to eliminating the cross interference between modes. The general formula is derived to precisely measure the thickness of the electrode. More acoustic energy would be concentrated inside the electrode with the increase of film thickness for a given frequency. Compared with the PZT-5 ceramic, [001] c poled PMN-33%PT single crystal has a slower attenuation of the amplitude of the acoustic guided wave. Therefore, single crystal is extremely suitable for making low loss acoustic wave devices with a high operating frequency

  15. Detecting delaminations and disbondings on full-scale wing composite panel by guided waves based SHM system

    Science.gov (United States)

    Monaco, E.; Boffa, N. D.; Memmolo, V.; Ricci, F.; Maio, L.

    2016-04-01

    A full-scale lower wing panel made of composite material has been designed, manufactured and sensorised within the European Funded research project named SARISTU. The authors contributed to the whole development of the system, from design to implementation as well as to the impacts campaign phase where Barely Visible and Visible Damages (BVID and VID) are to be artificially induced on the panel by a pneumatic impact machine. This work summarise part of the experimental results related to damages production, their assessment by C-SCAN as reference NDT method as well as damage detection of delimitations by a guided waves based SHM. The SHM system is made by customized piezoelectric patches secondary bonded on the wing plate acting both as guided waves sources and receivers. The paper will deal mostly with the experimental impact campaign and the signal analyses carried out to extract the metrics more sensitive to damages induced. Image reconstruction of the damages dimensions and shapes will be also described based mostly on the combination of metrics maps over the plate partial surfaces. Finally a comparison of damages maps obtained by the SHM approach and those obtained by "classic" C-SCAN will be presented analyzing briefly pros and cons of the two different approached as a combination to the most effective structural maintenance scenario of a commercial aircraft.

  16. On Multiple Hall-Like Electron Currents and Tripolar Guide Magnetic Field Perturbations During Kelvin-Helmholtz Waves

    Science.gov (United States)

    Sturner, Andrew P.; Eriksson, Stefan; Nakamura, Takuma; Gershman, Daniel J.; Plaschke, Ferdinand; Ergun, Robert E.; Wilder, Frederick D.; Giles, Barbara; Pollock, Craig; Paterson, William R.; Strangeway, Robert J.; Baumjohann, Wolfgang; Burch, James L.

    2018-02-01

    Two magnetopause current sheet crossings with tripolar guide magnetic field signatures were observed by multiple Magnetosphere Multiscale (MMS) spacecraft during Kelvin-Helmholtz wave activity. The two out-of-plane magnetic field depressions of the tripolar guide magnetic field are largely supported by the observed in-plane electron currents, which are reminiscent of two clockwise Hall current loop systems. A comparison with a three-dimensional kinetic simulation of Kelvin-Helmholtz waves and vortex-induced reconnection suggests that MMS likely encountered the two Hall magnetic field depressions on either side of a magnetic reconnection X-line. Moreover, MMS observed an out-of-plane current reversal and a corresponding in-plane magnetic field rotation at the center of one of the current sheets, suggesting the presence of two adjacent flux ropes. The region inside one of the ion-scale flux ropes was characterized by an observed decrease of the total magnetic field, a strong axial current, and significant enhancements of electron density and parallel electron temperature. The flux rope boundary was characterized by currents opposite this axial current, strong in-plane and converging electric fields, parallel electric fields, and weak electron-frame Joule dissipation. These return current region observations may reflect a need to support the axial current rather than representing local reconnection signatures in the absence of any exhausts.

  17. Problems of prophylactic CNS radiotherapy in acute children's leukemia

    International Nuclear Information System (INIS)

    Bek, V.; Pribylova, O.; Abrahamova, J.; Hynieova, H.; Hrodek, O.

    1980-01-01

    The prophylactic treatment of the CNS was conducted by cobalt teletherapy of the cranium and by intrathecal application of MTX after the induction of primary remission in 70 children with acute leukemia throughout 5 years up to the end of 1978. The method of the combined radio- and chemoprophylaxis of the CNS was being changed during the years, especially as far as the radiation dose for the cranium was concerned. A detailed analysis made in a group of 59 children with the minimum interval of 18 months from the beginning of the treatment showed the best results after the application of a dose of 24 Gy/3 weeks. Following this procedure the relapse of leukemia in the CNS occurred in 9% only, whereas on the application of doses of 20 Gy and lower it occurred in 35 to 40%. On the whole 24 out of 59 children, i.e. 41%, are surviving, 35 children, i.e. 59%, died. Mostly complete, but only temporary, epilation was an invariable consequence of the irradiation of the cranium. The somnolence syndrome was only sporadically observed. It cannot be excluded, however, that some of its forms in patients discharged from hospital escaped attention. No case was recorded of serious impairment of the CNS of the leukoencephalopathic type. Up to now the psychomotor, intellectual and emotional development of the surviving children has been normal. (author)

  18. VIIP: Central Nervous System (CNS) Modeling

    Science.gov (United States)

    Vera, Jerry; Mulugeta, Lealem; Nelson, Emily; Raykin, Julia; Feola, Andrew; Gleason, Rudy; Samuels, Brian; Ethier, C. Ross; Myers, Jerry

    2015-01-01

    Current long-duration missions to the International Space Station and future exploration-class missions beyond low-Earth orbit expose astronauts to increased risk of Visual Impairment and Intracranial Pressure (VIIP) syndrome. It has been hypothesized that the headward shift of cerebrospinal fluid (CSF) and blood in microgravity may cause significant elevation of intracranial pressure (ICP), which in turn may then induce VIIP syndrome through interaction with various biomechanical pathways. However, there is insufficient evidence to confirm this hypothesis. In this light, we are developing lumped-parameter models of fluid transport in the central nervous system (CNS) as a means to simulate the influence of microgravity on ICP. The CNS models will also be used in concert with the lumped parameter and finite element models of the eye described in the related IWS works submitted by Nelson et al., Feola et al. and Ethier et al.

  19. CNS metastasis from malignant uveal melanoma: a clinical and histopathological characterisation

    DEFF Research Database (Denmark)

    Holfort, S K; Lindegaard, J; Isager, P

    2008-01-01

    was observed in two cases (14%). The amount of tumour infiltrating lymphocytes was pronounced in three cases (23%). CONCLUSION: The proportion of uveal melanoma patients having CNS metastasis was 0.7%. Eleven patients had multiple organ metastases, and the average time from the initial CNS symptoms to death...

  20. The Feasibility of Structural Health Monitoring Using the Fundamental Shear Horizontal Guided Wave in a Thin Aluminum Plate

    Directory of Open Access Journals (Sweden)

    Jorge Franklin Mansur Rodrigues Filho

    2017-05-01

    Full Text Available Structural health monitoring (SHM is emerging as an essential tool for constant monitoring of safety-critical engineering components. Ultrasonic guided waves stand out because of their ability to propagate over long distances and because they can offer good estimates of location, severity, and type of damage. The unique properties of the fundamental shear horizontal guided wave (SH0 mode have recently generated great interest among the SHM community. The aim of this paper is to demonstrate the feasibility of omnidirectional SH0 SHM in a thin aluminum plate using a three-transducer sparse array. Descriptions of the transducer, the finite element model, and the imaging algorithm are presented. The image localization maps show a good agreement between the simulations and experimental results. The SH0 SHM method proposed in this paper is shown to have a high resolution and to be able to locate defects within 5% of the true location. The short input signal as well the non-dispersive nature of SH0 leads to high resolution in the reconstructed images. The defect diameter estimated using the full width at half maximum was 10 mm or twice the size of the true diameter.

  1. Interneuron progenitor transplantation to treat CNS dysfunction

    Directory of Open Access Journals (Sweden)

    Muhammad O Chohan

    2016-08-01

    Full Text Available Due to the inadequacy of endogenous repair mechanisms diseases of the nervous system remain a major challenge to scientists and clinicians. Stem cell based therapy is an exciting and viable strategy that has been shown to ameliorate or even reverse symptoms of CNS dysfunction in preclinical animal models. Of particular importance has been the use of GABAergic interneuron progenitors as a therapeutic strategy. Born in the neurogenic niches of the ventral telencephalon, interneuron progenitors retain their unique capacity to disperse, integrate and induce plasticity in adult host circuitries following transplantation. Here we discuss the potential of interneuron based transplantation strategies as it relates to CNS disease therapeutics. We also discuss mechanisms underlying their therapeutic efficacy and some of the challenges that face the field.

  2. Real-time Cure Monitoring of Composites Using a Guided wave-based System with High Temperature Piezoelectric Transducers, Fiber Bragg Gratings, and Phase-shifted Fiber Bragg Gratings

    Science.gov (United States)

    Hudson, Tyler Blake

    An in-process, in-situ cure monitoring technique utilizing a guided wave-based concept for carbon fiber reinforced polymer (CFRP) composites was investigated. Two automated cure monitoring systems using guided-wave ultrasonics were developed for characterizing the state of the cure. In the first system, surface mounted high-temperature piezoelectric transducer arrays were employed for actuation and sensing. The second system motivated by the success of the first system includes a single piezoelectric disc, bonded onto the surface of the composite for excitation; fiber Bragg gratings (FBGs) and/or phase-shifted fiber Bragg gratings (PSFBGs) were embedded in the composite for distributed cure sensing. Composite material properties (viscosity and degree of cure) evolved during cure of the panels fabricated from HexcelRTM IM7/8552 prepreg correlated well to the amplitude, time of arrival, and group velocity of the guided wave-based measurements during the cure cycle. In addition, key phase transitions (gelation and vitrification) were clearly identified from the experimental data during the same cure cycle. The material properties and phase transitions were validated using cure process modeling software (e.g., RAVENRTM). The high-temperature piezoelectric transducer array system demonstrated the feasibility of a guided wave-based, in-process, cure monitoring and provided the framework for defect detection during cure. Ultimately, this system could provide a traceable data stream for non-compliance investigations during serial production and perform closed-loop process control to maximize composite panel quality and consistency. In addition, this system could be deployed as a "smart" caul/tool plate to existing production lines without changing the design of the aircraft/structure. With the second system, strain in low frequency (quasi-static) and the guided wavebased signals in several hundred kilohertz range were measured almost simultaneously using the same FBG or PS

  3. Dynamic diffraction-limited light-coupling of 3D-maneuvered wave-guided optical waveguides.

    Science.gov (United States)

    Villangca, Mark; Bañas, Andrew; Palima, Darwin; Glückstad, Jesper

    2014-07-28

    We have previously proposed and demonstrated the targeted-light delivery capability of wave-guided optical waveguides (WOWs). As the WOWs are maneuvered in 3D space, it is important to maintain efficient light coupling through the waveguides within their operating volume. We propose the use of dynamic diffractive techniques to create diffraction-limited spots that will track and couple to the WOWs during operation. This is done by using a spatial light modulator to encode the necessary diffractive phase patterns to generate the multiple and dynamic coupling spots. The method is initially tested for a single WOW and we have experimentally demonstrated dynamic tracking and coupling for both lateral and axial displacements.

  4. Dynamic diffraction-limited light-coupling of 3D-maneuvered wave-guided optical waveguides

    DEFF Research Database (Denmark)

    Villangca, Mark Jayson; Bañas, Andrew Rafael; Palima, Darwin

    2014-01-01

    We have previously proposed and demonstrated the targeted-light delivery capability of wave-guided optical waveguides (WOWs). As the WOWs are maneuvered in 3D space, it is important to maintain efficient light coupling through the waveguides within their operating volume. We propose the use...... of dynamic diffractive techniques to create diffraction-limited spots that will track and couple to the WOWs during operation. This is done by using a spatial light modulator to encode the necessary diffractive phase patterns to generate the multiple and dynamic coupling spots. The method is initially tested...... for a single WOW and we have experimentally demonstrated dynamic tracking and coupling for both lateral and axial displacements....

  5. Study of guided modes in three-dimensional composites

    Science.gov (United States)

    Baste, S.; Gerard, A.

    The propagation of elastic waves in a three-dimensional carbon-carbon composite is modeled with a mixed variational method, using the Bloch or Floquet theories and the Hellinger-Reissner function for two independent fields. The model of the equivalent homogeneous material only exists below a cut-off frequency of about 600 kHz. The existence below the cut-off frequency of two guided waves can account for the presence of a slow guided wave on either side of the cut-off frequency. Optical modes are generated at low frequencies, and can attain high velocites (rapid guided modes of 15,000 m/sec).

  6. Neuroprotective effects of estrogen in CNS injuries: insights from animal models

    Directory of Open Access Journals (Sweden)

    Raghava N

    2017-07-01

    Full Text Available Narayan Raghava,1 Bhaskar C Das,2 Swapan K Ray1 1Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA; 2Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA Abstract: Among the estrogens that are biosynthesized in the human body, 17β-estradiol (estradiol or E2 is the most common and the best estrogen for neuroprotection in animal models of the central nervous system (CNS injuries such as spinal cord injury (SCI, traumatic brain injury (TBI, and ischemic brain injury (IBI. These CNS injuries are not only serious health problems, but also enormous economic burden on the patients, their families, and the society at large. Studies from animal models of these CNS injuries provide insights into the multiple neuroprotective mechanisms of E2 and also suggest the possibility of translating the therapeutic efficacy of E2 in the treatment SCI, TBI, and IBI in humans in the near future. The pathophysiology of these injuries includes loss of motor function in the limbs, arms and their extremities, cognitive deficit, and many other serious consequences including life-threatening paralysis, infection, and even death. The potential application of E2 therapy to treat the CNS injuries may become a trend as the results are showing significant therapeutic benefits of E2 for neuroprotection when administered into the animal models of SCI, TBI, and IBI. This article describes the plausible mechanisms how E2 works with or without the involvement of estrogen receptors and provides an overview of the known neuroprotective effects of E2 in these three CNS injuries in different animal models. Because activation of estrogen receptors has profound implications in maintaining and also affecting normal physiology, there are notable impediments in translating E2 therapy to the clinics for neuroprotection in CNS injuries in humans. While E2 may not yet be the sole molecule for

  7. Foxp3+ regulatory T cells control persistence of viral CNS infection.

    Directory of Open Access Journals (Sweden)

    Dajana Reuter

    Full Text Available We earlier established a model of a persistent viral CNS infection using two week old immunologically normal (genetically unmodified mice and recombinant measles virus (MV. Using this model infection we investigated the role of regulatory T cells (Tregs as regulators of the immune response in the brain, and assessed whether the persistent CNS infection can be modulated by manipulation of Tregs in the periphery. CD4(+ CD25(+ Foxp3(+ Tregs were expanded or depleted during the persistent phase of the CNS infection, and the consequences for the virus-specific immune response and the extent of persistent infection were analyzed. Virus-specific CD8(+ T cells predominantly recognising the H-2D(b-presented viral hemagglutinin epitope MV-H(22-30 (RIVINREHL were quantified in the brain by pentamer staining. Expansion of Tregs after intraperitoneal (i.p. application of the superagonistic anti-CD28 antibody D665 inducing transient immunosuppression caused increased virus replication and spread in the CNS. In contrast, depletion of Tregs using diphtheria toxin (DT in DEREG (depletion of regulatory T cells-mice induced an increase of virus-specific CD8(+ effector T cells in the brain and caused a reduction of the persistent infection. These data indicate that manipulation of Tregs in the periphery can be utilized to regulate virus persistence in the CNS.

  8. Management of CNS tumors

    International Nuclear Information System (INIS)

    Griem, M.L.

    1987-01-01

    The treatment of tumors of the CNS has undergone a number of changes based on the impact of CT. The use of intraoperative US for the establishment of tumor location and tumor histology is demonstrated. MR imaging also is beginning to make an impact on the diagnosis and treatment of tumors of the CNS. Examples of MR images are shown. The authors then discuss the important aspects of tumor histology as it affects management and newer concepts in surgery, radiation, and chemotherapy on tumor treatment. The role of intraoperative placement of radioactive sources, the utilization of heavy particle radiation therapy, and the potential role of other experimental radiation therapy techniques are discussed. The role of hyperfractionated radiation and of neutrons and x-ray in a mixed-beam treatment are discussed in perspective with standard radiation therapy. Current chemotherapy techniques, including intraarterial chemotherapy, are discussed. The complications of radiation therapy alone and in combination with chemotherapy in the management of primary brain tumors, brain metastases, and leukemia are reviewed. A summary of the current management of pituitary tumors, including secreting pituitary adenomas and chromophobe adenomas, are discussed. The treatment with heavy particle radiation, transsphenoidal microsurgical removal, and combined radiotherapeutic and surgical management are considered. Tumor metastasis management of lesions of the brain and spinal cord are considered

  9. Monitoring the reflection from an artificial defect in rail track using guided wave ultrasound

    Science.gov (United States)

    Loveday, Philip W.; Taylor, Rebecca M. C.; Long, Craig S.; Ramatlo, Dineo A.

    2018-04-01

    Guided wave ultrasound has the potential to detect relatively large defects in continuously welded rail track at long range. As monitoring can be performed in near real time it would be acceptable to only detect fairly large cracks provided this is achieved prior to complete rail breakage. Heavy haul rail lines are inspected periodically by conventional ultrasound and sections with even relatively small cracks are removed; therefore, no sizable defects are available to demonstrate monitoring in the presence of realistic environmental operating conditions. Instead, we glued a small mass to the rail to simulate reflection from a crack and monitored the guided wave signals as the glue joint deteriorated over time. Data was collected over a two week period on an operational heavy haul line. A piezoelectric transducer mounted under the head of the rail was used in pulse-echo mode to transmit and receive a mode of propagation with energy confined mainly in the head of the rail. The small mass was attached under the head of the rail, at a distance of 375m from the transducer, using a cyanoacrylate glue, which was not expected to remain intact for long. Pre-processing of the collected signals involved rejection of signals containing train noise, averaging, filtering and dispersion compensation. Reflections from aluminothermic welds were used to stretch and scale the signals to reduce the influence of temperature variations. Singular value decomposition and independent component analysis were then applied to the signals with the aim of separating the reflection caused by the artificial defect from the background signal. The performance of these techniques was compared for different time spans. The reflection from the artificial defect showed unanticipated fluctuations.

  10. Novel agents in CNS myeloma treatment.

    Science.gov (United States)

    Gozzetti, Alessandro; Cerase, Alfonso

    2014-01-01

    Central nervous system localization of multiple myeloma (CNS-MM) accounts for about 1% of all MM.Treatment is still unsatisfactory. Many treatments have been described in the literature: chemotherapy (CHT), intrathecal therapy (IT), and radiotherapy (RT), with survivals reported between one month and six months. Recent drugs such as the immunomodulatory drugs (IMiDs) and proteasome inhibitors (bortezomib) have changed the treatment of patients with MM, both younger and older, with a significant improvement in response and survival. The activity of new drugs in CNSMM has been reported but is still not well known. Bortezomib does not cross the blood brain barrier (BBB), and IMID’s seem to have only a minimal crossover. The role of novel agents in CNS MM management will be discussed as well as the potential role of other new immunomodulatory drugs (pomalidomide) and proteasome inhibitors that seem to cross the BBB and hold promise into the treatment of this rare and still incurable localization of the disease.

  11. Warped frequency transform analysis of ultrasonic guided waves in long bones

    Science.gov (United States)

    De Marchi, L.; Baravelli, E.; Xu, K.; Ta, D.; Speciale, N.; Marzani, A.; Viola, E.

    2010-03-01

    Long bones can be seen as irregular hollow tubes, in which, for a given excitation frequency, many ultrasonic Guided Waves (GWs) can propagate. The analysis of GWs is potential to reflect more information on both geometry and material properties of the bone than any other method (such as dual-energy X-ray absorptiometry, or quantitative computed tomography), and can be used in the assessment of osteoporosis and in the evaluation of fracture healing. In this study, time frequency representations (TFRs) were used to gain insights into the expected behavior of GWs in bones. To this aim, we implemented a dedicated Warped Frequency Transform (WFT) which decomposes the spectrotemporal components of the different propagating modes by selecting an appropriate warping map to reshape the frequency axis. The map can be designed once the GWs group velocity dispersion curves can be predicted. To this purpose, the bone is considered as a hollow cylinder with inner and outer diameter of 16.6 and 24.7 mm, respectively, and linear poroelastic material properties in agreement with the low level of stresses induced by the waves. Timetransient events obtained experimentally, via a piezoelectric ultrasonic set-up applied to bovine tibiae, are analyzed. The results show that WFT limits interference patterns which appear with others TFRs (such as scalograms or warpograms) and produces a sparse representation suitable for characterization purposes. In particular, the mode-frequency combinations propagating with minimal losses are identified.

  12. Experimental Results of Guided Wave Travel Time Tomography

    Science.gov (United States)

    Volker, Arno; Mast, Arjan; Bloom, Joost

    2010-02-01

    Corrosion is one of the industries major issues regarding the integrity of assets. Currently inspections are conducted at regular intervals to ensure a sufficient integrity level of these assets. Both economical and social requirements are pushing the industry to even higher levels of availability, reliability and safety of installations. The concept of predictive maintenance using permanent sensors that monitor the integrity of an installation is an interesting addition to the current method of periodic inspections reducing uncertainty and extending inspection intervals. Guided wave travel time tomography is a promising method to monitor the wall thickness quantitatively over large areas. Obviously the robustness and reliability of such a monitoring system is of paramount importance. Laboratory experiments have been carried out on a 10″ pipe with a nominal wall thickness of 8 mm. Multiple, inline defects have been created with a realistic morphology. The depth of the defects was increased stepwise from 0.5 mm to 2 mm. Additionally the influences of the presence of liquid inside the pipe and surface roughness have been evaluated as well. Experimental results show that this method is capable of providing quantitative wall thickness information over a distance of 4 meter, with a sufficient accuracy such that results can be used for trending. The method has no problems imaging multiple defects.

  13. Large scale implementation of guided wave based broken rail monitoring

    Science.gov (United States)

    Burger, Francois A.; Loveday, Philip W.; Long, Craig S.

    2015-03-01

    A guided wave ultrasound system has been developed over the past 17 years to detect breaks in continuously welded rail track. Installation of the version 4 system on an 840 km long heavy duty freight line was conducted between January 2013 and June 2014. The system operates in pitch - catch mode with alternate transmit and receive transducers spaced approximately 1km apart. If the acoustic signal is not received at the receive station an alarm is triggered to indicate a break in the rail between the transmit station and the receive station. The system is permanently installed, powered by solar panels and issues broken rail alarms using the GSM network where available, and digital radio technology in other areas. A total of 931 stations were installed and the entire length of rail is interrogated every fifteen minutes. The system operates reliably although some problems involving unreliable GSM communication and theft of solar panels have been experienced. In the first two months of operation four broken rails were detected and train operation was halted temporarily for repairs.

  14. Simulation of guided-wave ultrasound propagation in composite laminates: Benchmark comparisons of numerical codes and experiment.

    Science.gov (United States)

    Leckey, Cara A C; Wheeler, Kevin R; Hafiychuk, Vasyl N; Hafiychuk, Halyna; Timuçin, Doğan A

    2018-03-01

    Ultrasonic wave methods constitute the leading physical mechanism for nondestructive evaluation (NDE) and structural health monitoring (SHM) of solid composite materials, such as carbon fiber reinforced polymer (CFRP) laminates. Computational models of ultrasonic wave excitation, propagation, and scattering in CFRP composites can be extremely valuable in designing practicable NDE and SHM hardware, software, and methodologies that accomplish the desired accuracy, reliability, efficiency, and coverage. The development and application of ultrasonic simulation approaches for composite materials is an active area of research in the field of NDE. This paper presents comparisons of guided wave simulations for CFRP composites implemented using four different simulation codes: the commercial finite element modeling (FEM) packages ABAQUS, ANSYS, and COMSOL, and a custom code executing the Elastodynamic Finite Integration Technique (EFIT). Benchmark comparisons are made between the simulation tools and both experimental laser Doppler vibrometry data and theoretical dispersion curves. A pristine and a delamination type case (Teflon insert in the experimental specimen) is studied. A summary is given of the accuracy of simulation results and the respective computational performance of the four different simulation tools. Published by Elsevier B.V.

  15. The training on propagation of guided electromagnetic waves from the point of view of LSM LSE modes; La ensenanza de las ondas electromagneticas guiadas desde el punto de vista de los modos LSM y LSE

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, J.

    1997-09-01

    In this work, LSM and LSE modes are proposed as a didactic alternative for modeling the propagation of guided electromagnetic waves. Our considerations can be applied to the most common electromagnetic waves guiding systems: empty metallic waveguides, metallic waveguides partially filled with dielectrics, dielectric sheet waveguides and 3-D dielectric waveguides. In all cases, our interest is focussed on modes with a defined polarization; therefore the teaching activity can be treated from the scalar wave approximation point of view. (Author)

  16. Parametric study of guided ultrasonic wave propagation in carbon-fiber composite plates

    Science.gov (United States)

    Ibrahim, N. A.; Kamarudin, M. A.; Jurimi, M. H. F. M.; Murat, B. I. S.

    2018-03-01

    The aim of this work is to study the guided ultrasonic wave (GUW) behaviour in composite plates using 3D Finite Element Analysis (FEA). Two types of composite models are chosen: plates with and without damage. The damage is modelled as a circular-shaped delamination inside the plate, representing one kind of low-velocity impact damage. Parameters such as excitation frequency, monitoring directivity, plate thickness, delamination size and shape were used to investigate the influence of these parameters on the GUW propagation and scattering behaviour. The models were constructed and coded in Matlab platform, while the simulations were performed in ABAQUS Explicit. From the results, the received signals have shown a strong dependency on the parameters. Significant scattering from the models with delamination were also observed, which indicates the possibility of using GUW for rapid non-destructive monitoring of composite panels and structures.

  17. Microtubule-Targeting Agents Enter the Central Nervous System (CNS): Double-edged Swords for Treating CNS Injury and Disease.

    Science.gov (United States)

    Hur, Eun-Mi; Lee, Byoung Dae

    2014-12-01

    Microtubules have been among the most successful targets in anticancer therapy and a large number of microtubule-targeting agents (MTAs) are in various stages of clinical development for the treatment of several malignancies. Given that injury and diseases in the central nervous system (CNS) are accompanied by acute or chronic disruption of the structural integrity of neurons and that microtubules provide structural support for the nervous system at cellular and intracellular levels, microtubules are emerging as potential therapeutic targets for treating CNS disorders. It has been postulated that exogenous application of MTAs might prevent the breakdown or degradation of microtubules after injury or during neurodegeneration, which will thereby aid in preserving the structural integrity and function of the nervous system. Here we review recent evidence that supports this notion and also discuss potential risks of targeting microtubules as a therapy for treating nerve injury and neurodegenerative diseases.

  18. Microtubule-Targeting Agents Enter the Central Nervous System (CNS: Double-edged Swords for Treating CNS Injury and Disease

    Directory of Open Access Journals (Sweden)

    Eun-Mi Hur

    2014-12-01

    Full Text Available Microtubules have been among the most successful targets in anticancer therapy and a large number of microtubule-targeting agents (MTAs are in various stages of clinical development for the treatment of several malignancies. Given that injury and diseases in the central nervous system (CNS are accompanied by acute or chronic disruption of the structural integrity of neurons and that microtubules provide structural support for the nervous system at cellular and intracellular levels, microtubules are emerging as potential therapeutic targets for treating CNS disorders. It has been postulated that exogenous application of MTAs might prevent the breakdown or degradation of microtubules after injury or during neurodegeneration, which will thereby aid in preserving the structural integrity and function of the nervous system. Here we review recent evidence that supports this notion and also discuss potential risks of targeting microtubules as a therapy for treating nerve injury and neurodegenerative diseases.

  19. EMMPRIN, an upstream regulator of MMPs, in CNS biology.

    Science.gov (United States)

    Kaushik, Deepak Kumar; Hahn, Jennifer Nancy; Yong, V Wee

    2015-01-01

    Matrix metalloproteinases (MMPs) are engaged in pathologies associated with infections, tumors, autoimmune disorders and neurological dysfunctions. With the identification of an upstream regulator of MMPs, EMMPRIN (Extracellular matrix metalloproteinase inducer, CD147), it is relevant to address if EMMPRIN plays a role in the pathology of central nervous system (CNS) diseases. This would enable the possibility of a more upstream and effective therapeutic target. Indeed, conditions including gliomas, Alzheimer's disease (AD), multiple sclerosis (MS), and other insults such as hypoxia/ischemia show elevated levels of EMMPRIN which correlate with MMP production. In contrast, given EMMPRIN's role in CNS homeostasis with respect to regulation of monocarboxylate transporters (MCTs) and interactions with adhesion molecules including integrins, we need to consider that EMMPRIN may also serve important regulatory or protective functions. This review summarizes the current understanding of EMMPRIN's involvement in CNS homeostasis, its possible roles in escalating or reducing neural injury, and the mechanisms of EMMPRIN including and apart from MMP induction. Copyright © 2015 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  20. CNS effects following the treatment of malignancy

    International Nuclear Information System (INIS)

    Rane, N.; Quaghebeur, G.

    2012-01-01

    Corporeal and central nervous system (CNS) axis chemotherapy and radiotherapy have long been used for the effective treatment and prophylaxis of CNS, body malignancies, and leukaemias. However, they are not without their problems. Following the proliferation of magnetic resonance neuroimaging in recent years it has become clear that the spectrum of toxicity that these therapies produce ranges from subclinical white matter changes to overt brain necrosis. The effects are both direct and indirect and via different pathological mechanisms. Chronic and progressive changes can be detected many years after the initial intervention. In addition to leucoencephalopathic changes, grey matter changes are now well described. Changes may be difficult to distinguish from tumour recurrence, though may be reversible and remediable, and are thus very important to differentiate. In this review toxic effects are classified and their imaging appearances discussed, with reference to specific syndromes.

  1. Therapeutic potential of agmatine for CNS disorders.

    Science.gov (United States)

    Neis, Vivian B; Rosa, Priscila B; Olescowicz, Gislaine; Rodrigues, Ana Lúcia S

    2017-09-01

    Agmatine is a neuromodulator that regulates multiple neurotransmitters and signaling pathways. Several studies have focused on elucidating the mechanisms underlying the neuroprotective effects of this molecule, which seems to be mediated by a reduction in oxidative damage, neuroinflammation, and proapoptotic signaling. Since these events are implicated in acute and chronic excitotoxicity-related disorders (ischemia, epilepsy, traumatic brain injury, spinal cord injury, neurodegenerative, and psychiatric disorders) as well as in nociception, agmatine has been proposed as a therapeutic strategy for the treatment of central nervous system (CNS) disorders. Agmatine also stimulates the expression of trophic factors and adult neurogenesis, contributing to its ability to induce endogenous repair mechanisms. Therefore, considering its wide range of biological effects, this review summarizes the current knowledge about its protective and regenerative properties in the CNS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Mechanisms of CNS invasion and damage by parasites.

    Science.gov (United States)

    Kristensson, Krister; Masocha, Willias; Bentivoglio, Marina

    2013-01-01

    Invasion of the central nervous system (CNS) is a most devastating complication of a parasitic infection. Several physical and immunological barriers provide obstacles to such an invasion. In this broad overview focus is given to the physical barriers to neuroinvasion of parasites provided at the portal of entry of the parasites, i.e., the skin and epithelial cells of the gastrointestinal tract, and between the blood and the brain parenchyma, i.e., the blood-brain barrier (BBB). A description is given on how human pathogenic parasites can reach the CNS via the bloodstream either as free-living or extracellular parasites, by embolization of eggs, or within red or white blood cells when adapted to intracellular life. Molecular mechanisms are discussed by which parasites can interact with or pass across the BBB. The possible targeting of the circumventricular organs by parasites, as well as the parasites' direct entry to the brain from the nasal cavity through the olfactory nerve pathway, is also highlighted. Finally, examples are given which illustrate different mechanisms by which parasites can cause dysfunction or damage in the CNS related to toxic effects of parasite-derived molecules or to immune responses to the infection. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Effectiveness of Prescription-Based CNS Stimulants on Hospitalization in Patients With Schizophrenia

    DEFF Research Database (Denmark)

    Rohde, Christopher; Polcwiartek, Christoffer; Asztalos, Marton

    2018-01-01

    were used to investigate the effectiveness of CNS stimulants in patients with schizophrenia between 1995 and 2014; a mirror-image model with 605 individuals, using paired t tests and Wilcoxon signed rank tests, and a follow-up study with 789 individuals, using a conditional risk-set model. RESULTS: CNS...

  4. Non-diffractive waves

    CERN Document Server

    Hernandez-Figueroa, Hugo E; Recami, Erasmo

    2013-01-01

    This continuation and extension of the successful book ""Localized Waves"" by the same editors brings together leading researchers in non-diffractive waves to cover the most important results in their field and as such is the first to present the current state.The well-balanced presentation of theory and experiments guides readers through the background of different types of non-diffractive waves, their generation, propagation, and possible applications. The authors include a historical account of the development of the field, and cover different types of non-diffractive waves, including Airy

  5. Guided wave propagation and scattering in pipeworks comprising elbows: Theoretical and experimental results

    International Nuclear Information System (INIS)

    Bakkali, M El; Lhémery, A; Baronian, V; Chapuis, B

    2015-01-01

    Elastic guided waves (GW) are used to inspect pipeworks in various industries. Modelling tools for simulating GW inspection are necessary to understand complex scattering phenomena occurring at specific features (welds, elbows, junctions...). In pipeworks, straight pipes coexist with elbows. GW propagation in the former cases is well-known, but is less documented in the latter. Their scattering at junction of straight and curved pipes constitutes a complex phenomenon. When a curved part is joined to two straight parts, these phenomena couple and give rise to even more complex wave structures. In a previous work, the SemiAnalytic Finite Element method extended to curvilinear coordinates was used to handle GW propagation in elbows, combined with a mode matching method to predict their scattering at the junction with a straight pipe. Here, a pipework comprising an arbitrary number of elbows of finite length and of different curvature linking straight pipes is considered. A modal scattering matrix is built by cascading local scattering and propagation matrices. The overall formulation only requires meshing the pipe section to compute both the modal solutions and the integrals resulting from the mode-matching method for computing local scattering matrices. Numerical predictions using this approach are studied and compared to experiments

  6. Current approaches to enhance CNS delivery of drugs across the brain barriers

    Directory of Open Access Journals (Sweden)

    Lu CT

    2014-05-01

    Full Text Available Cui-Tao Lu,1 Ying-Zheng Zhao,2,3 Ho Lun Wong,4 Jun Cai,5 Lei Peng,2 Xin-Qiao Tian1 1The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, People’s Republic of China; 2Hainan Medical College, Haikou City, Hainan Province, People’s Republic of China; 3College of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang Province, People’s Republic of China; 4School of Pharmacy, Temple University, Philadelphia, PA, USA; 5Departments of Pediatrics and Anatomical Sciences and Neurobiology, University of Louisville School of Medicine Louisville, KY, USA Abstract: Although many agents have therapeutic potentials for central nervous system (CNS diseases, few of these agents have been clinically used because of the brain barriers. As the protective barrier of the CNS, the blood–brain barrier and the blood–cerebrospinal fluid barrier maintain the brain microenvironment, neuronal activity, and proper functioning of the CNS. Different strategies for efficient CNS delivery have been studied. This article reviews the current approaches to open or facilitate penetration across these barriers for enhanced drug delivery to the CNS. These approaches are summarized into three broad categories: noninvasive, invasive, and miscellaneous techniques. The progresses made using these approaches are reviewed, and the associated mechanisms and problems are discussed. Keywords: drug delivery system, blood–brain barrier (BBB, central nervous system, brain-targeted therapy, cerebrospinal fluid (CSF

  7. When the Tail Can't Wag the Dog: The Implications of CNS-Intrinsic Initiation of Neuroinflammation

    Directory of Open Access Journals (Sweden)

    Deirdre S Davis

    2009-04-01

    Full Text Available The CNS (central nervous system is unquestionably the central organ that regulates directly or indirectly all physiological systems in the mammalian body. Yet, when considering the defence of the CNS from pathogens, the CNS has often been considered passive and subservient to the pro-inflammatory responses of the immune system. In this view, neuroinflammatory disorders are examples of when the tail (the immune system wags the dog (the CNS to the detriment of an individual's function and survival.

  8. A method for the measurement of dispersion curves of circumferential guided waves radiating from curved shells: experimental validation and application to a femoral neck mimicking phantom

    Science.gov (United States)

    Nauleau, Pierre; Minonzio, Jean-Gabriel; Chekroun, Mathieu; Cassereau, Didier; Laugier, Pascal; Prada, Claire; Grimal, Quentin

    2016-07-01

    Our long-term goal is to develop an ultrasonic method to characterize the thickness, stiffness and porosity of the cortical shell of the femoral neck, which could enhance hip fracture risk prediction. To this purpose, we proposed to adapt a technique based on the measurement of guided waves. We previously evidenced the feasibility of measuring circumferential guided waves in a bone-mimicking phantom of a circular cross-section of even thickness. The goal of this study is to investigate the impact of the complex geometry of the femoral neck on the measurement of guided waves. Two phantoms of an elliptical cross-section and one phantom of a realistic cross-section were investigated. A 128-element array was used to record the inter-element response matrix of these waveguides. This experiment was simulated using a custom-made hybrid code. The response matrices were analyzed using a technique based on the physics of wave propagation. This method yields portions of dispersion curves of the waveguides which were compared to reference dispersion curves. For the elliptical phantoms, three portions of dispersion curves were determined with a good agreement between experiment, simulation and theory. The method was thus validated. The characteristic dimensions of the shell were found to influence the identification of the circumferential wave signals. The method was then applied to the signals backscattered by the superior half of constant thickness of the realistic phantom. A cut-off frequency and some portions of modes were measured, with a good agreement with the theoretical curves of a plate waveguide. We also observed that the method cannot be applied directly to the signals backscattered by the lower half of varying thicknesses of the phantom. The proposed approach could then be considered to evaluate the properties of the superior part of the femoral neck, which is known to be a clinically relevant site.

  9. Constraining the hydration of the subducting Nazca plate beneath Northern Chile using subduction zone guided waves

    Science.gov (United States)

    Garth, Tom; Rietbrock, Andreas

    2017-09-01

    Guided wave dispersion is observed from earthquakes at 180-280 km depth recorded at stations in the fore-arc of Northern Chile, where the 44 Ma Nazca plate subducts beneath South America. Characteristic P-wave dispersion is observed at several stations in the Chilean fore-arc with high frequency energy (>5 Hz) arriving up to 3 s after low frequency (accounted for if dipping low velocity fault zones are included within the subducting lithospheric mantle. A grid search over possible LVL and faults zone parameters (width, velocity contrast and separation distance) was carried out to constrain the best fitting model parameters. Our results imply that fault zone structures of 0.5-1.0 km thickness, and 5-10 km spacing, consistent with observations at the outer rise are present within the subducted slab at intermediate depths. We propose that these low velocity fault zone structures represent the hydrated structure within the lithospheric mantle. They may be formed initially by normal faults at the outer rise, which act as a pathway for fluids to penetrate the deeper slab due to the bending and unbending stresses within the subducting plate. Our observations suggest that the lithospheric mantle is 5-15% serpentinised, and therefore may transport approximately 13-42 Tg/Myr of water per meter of arc. The guided wave observations also suggest that a thin LVL (∼1 km thick) interpreted as un-eclogitised subducted oceanic crust persists to depths of at least 220 km. Comparison of the inferred seismic velocities with those predicted for various MORB assemblages suggest that this thin LVL may be accounted for by low velocity lawsonite-bearing assemblages, suggesting that some mineral-bound water within the oceanic crust may be transported well beyond the volcanic arc. While older subducting slabs may carry more water per metre of arc, approximately one third of the oceanic material subducted globally is of a similar age to the Nazca plate. This suggests that subducting oceanic

  10. Nootropic, anxiolytic and CNS-depressant studies on different plant sources of shankhpushpi.

    Science.gov (United States)

    Malik, Jai; Karan, Maninder; Vasisht, Karan

    2011-12-01

    Shankhpushpi, a well-known drug in Ayurveda, is extensively used for different central nervous system (CNS) effects especially memory enhancement. Different plants are used under the name shankhpushpi in different regions of India, leading to an uncertainty regarding its true source. Plants commonly used under the name shankhpushpi are: Convolvulus pluricaulis Chois., Evolvulus alsinoides Linn., both from Convolvulaceae, and Clitoria ternatea Linn. (Leguminosae). To find out the true source of shankhpushpi by evaluating and comparing memory-enhancing activity of the three above mentioned plants. Anxiolytic, antidepressant and CNS-depressant activities of these three plants were also compared and evaluated. The nootropic activity of the aqueous methanol extract of each plant was tested using elevated plus-maze (EPM) and step-down models. Anxiolytic, antidepressant and CNS-depressant studies were evaluated using EPM, Porsolt?s swim despair and actophotometer models, respectively. C. pluricaulis extract (CPE) at a dose of 100 mg/kg, p.o. showed maximum nootropic and anxiolytic activity (p nootropic, anxiolytic and CNS-depressant activity. The results of memory-enhancing activity suggest C. pluricaulis to be used as true source of shankhpushpi.

  11. Shock-induced borehole waves and fracture effects

    NARCIS (Netherlands)

    Fan, H.; Smeulders, D.M.J.

    2012-01-01

    We perform wave experiments using a vertical shock tube setup. Shock waves are generated by the rupture of a thin membrane. In the test section the incident pressure waves generate borehole-guided waves along water-saturated samples. The tube is equipped with side wall gages and a mobile pressure

  12. Formation of ECR Plasma in a Dielectric Plasma Guide under Self-Excitation of a Standing Ion-Acoustic Wave

    Science.gov (United States)

    Balmashnov, A. A.; Kalashnikov, A. V.; Kalashnikov, V. V.; Stepina, S. P.; Umnov, A. M.

    2018-01-01

    The formation of a spatially localized plasma with a high brightness has been experimentally observed in a dielectric plasma guide under the electron cyclotron resonance discharge at the excitation of a standing ion-acoustic wave. The results obtained show the possibility of designing compact high-intensity radiation sources with a spectrum determined by the working gas or gas mixture type, high-intensity chemically active particle flow sources, and plasma thrusters for correcting orbits of light spacecraft.

  13. Glucocorticoid treatment of MCMV infected newborn mice attenuates CNS inflammation and limits deficits in cerebellar development.

    Directory of Open Access Journals (Sweden)

    Kate Kosmac

    2013-03-01

    Full Text Available Infection of the developing fetus with human cytomegalovirus (HCMV is a major cause of central nervous system disease in infants and children; however, mechanism(s of disease associated with this intrauterine infection remain poorly understood. Utilizing a mouse model of HCMV infection of the developing CNS, we have shown that peripheral inoculation of newborn mice with murine CMV (MCMV results in CNS infection and developmental abnormalities that recapitulate key features of the human infection. In this model, animals exhibit decreased granule neuron precursor cell (GNPC proliferation and altered morphogenesis of the cerebellar cortex. Deficits in cerebellar cortical development are symmetric and global even though infection of the CNS results in a non-necrotizing encephalitis characterized by widely scattered foci of virus-infected cells with mononuclear cell infiltrates. These findings suggested that inflammation induced by MCMV infection could underlie deficits in CNS development. We investigated the contribution of host inflammatory responses to abnormal cerebellar development by modulating inflammatory responses in infected mice with glucocorticoids. Treatment of infected animals with glucocorticoids decreased activation of CNS mononuclear cells and expression of inflammatory cytokines (TNF-α, IFN-β and IFNγ in the CNS while minimally impacting CNS virus replication. Glucocorticoid treatment also limited morphogenic abnormalities and normalized the expression of developmentally regulated genes within the cerebellum. Importantly, GNPC proliferation deficits were normalized in MCMV infected mice following glucocorticoid treatment. Our findings argue that host inflammatory responses to MCMV infection contribute to deficits in CNS development in MCMV infected mice and suggest that similar mechanisms of disease could be responsible for the abnormal CNS development in human infants infected in-utero with HCMV.

  14. The shifting landscape of metastatic breast cancer to the CNS.

    Science.gov (United States)

    Quigley, Matthew R; Fukui, Olivia; Chew, Brandon; Bhatia, Sanjay; Karlovits, Steven

    2013-07-01

    The improved survival following the diagnosis of breast cancer has potentially altered the characteristics and course of patients presenting with CNS involvement. We therefore sought to define our current cohort of breast cancer patients with metastatic disease to the CNS in regard to modern biomarkers and clinical outcome. Review of clinical and radiographic records of women presenting to a tertiary medical center with the new diagnosis of CNS metastatic disease from breast cancer. This was a retrospective review from patients identities obtained from two prospective databases. There were 88 women analyzed who were treated over the period of January 2003 to February 2010, average age 56.9 years. At the time of initial presentation of CNS disease, 68 % of patients had multiple brain metastases, 17 % had a solitary metastasis, and 15 % had only leptomeningeal disease (LMD). The median survival for all patients from the time of diagnosis of breast disease was 50.0 months, and 9.7 months from diagnosis of CNS involvement. The only factor related to overall survival was estrogen receptor-positive pathology (57.6 v. 38.2 months, p = .02 log-rank); those related to survival post CNS diagnosis were presentation with LMD (p = .004, HR = 3.1, Cox regression) and triple-negative hormonal/HER2 status (p = .02, HR = 2.3, Cox regression). Patients with either had a median survival of 3.1 months (no patients in common). Of the 75 patients who initially presented with metastatic brain lesions, 20 (26 %) subsequently developed LMD in the course of their disease (median 10.4 months), following which survival was grim (1.8 months median). Symptoms of LMD were most commonly lower extremity weakness (14/33), followed by cranial nerve deficits (11/33). The recently described Graded Prognostic Assessment (GPA) tumor index stratified median survival at 2.5, 5.9, 13.1, and 21.7 months, respectively, for indices of 1-4 (p = .004, log-rank), which

  15. The shielding calculation for the CN guide shielding assembly in HANARO

    International Nuclear Information System (INIS)

    Kim, H. S.; Lee, B. C.; Lee, K. H.; Kim, H.

    2006-01-01

    The cold neutron research facility in HANARO is under construction. The area including neutron guides and rotary shutter in the reactor hall should be shielded by the guide shielding assembly which is constructed of heavy concrete blocks and structure. The guide shielding assembly is divided into 2 parts, A and B. Part A is about 6.4 meters apart from the reactor biological shield and it is constructed of heavy concrete blocks whose density is above 4.0g/cm 3 . And part B is a fixed heavy concrete structure whose density is above 3.5g/cm 3 . The rotary shutter is also made with heavy concrete whose density is above 4.0g/cm 3 and includes 5 neutron guides inside. It can block the neutron beam by rotating when CNS is not operating. The dose criterion outside the guide shielding assembly is established as 12.5 μSv/hr which is also applied to reactor shielding in HANARO

  16. Guided wave radiation in a finite-sized metallic or composite plate-like structure for its nondestructive testing

    International Nuclear Information System (INIS)

    Stevenin, Mathilde

    2016-01-01

    Different models are developed to provide generic tools for simulating nondestructive methods relying on elastic guided waves applied to metallic or composite plates. Various inspection methods of these structures exist or are under study. Most of them make use of ultrasonic sources of finite size; all are sensitive to reflection phenomena resulting from the finite size of the monitored objects. The developed models deal with transducer diffraction effects and edge reflection. As the interpretation of signals measured in guided wave inspection often uses the concept of modes, the models themselves are explicitly modal. The case of isotropic plates (metal) and anisotropic (multilayer composites) are considered; a general approach under the stationary phase approximation allows us to consider all the cases of interest. For the first, the validity of a Fraunhofer-like approximation leads to a very efficient computation of the direct and reflected fields radiated by a source. For the second, special attention is paid to the treatment of caustics. The stationary phase approximation being difficult to generalize, a model (so-called 'pencil model') of more geometrical nature is proposed with a high degree of genericity. It chains terms of isotropic or anisotropic propagation and terms of interaction with a boundary. The equivalence of the stationary phase approximation and the pencil model is demonstrated in the case of the radiation and reflection in an isotropic plate, for which an experimental validation is proceeded. (author) [fr

  17. Ketamine displaces the novel NMDA receptor SPET probe [123I]CNS-1261 in humans in vivo

    International Nuclear Information System (INIS)

    Stone, James M.; Erlandsson, Kjell; Arstad, Erik; Bressan, Rodrigo A.; Squassante, Lisa; Teneggi, Vincenza; Ell, Peter J.; Pilowsky, Lyn S.

    2006-01-01

    [ 123 I]CNS-1261 [N-(1-naphthyl)-N'-(3-iodophenyl)-N-methylguanidine] is a high-affinity SPET ligand with selectivity for the intrachannel PCP/ketamine/MK-801 site of the N-methyl-D-aspartate (NMDA) receptor. This study evaluated the effects of ketamine (a specific competitor for the intrachannel PCP/ketamine/MK-801 site) on [ 123 I]CNS-1261 binding to NMDA receptors in vivo. Ten healthy volunteers underwent 2 bolus-plus-infusion [ 123 I]CNS-1261 scans, one during placebo and the other during a ketamine challenge. Ketamine administration led to a significant decrease in [ 123 I]CNS-1261 V T in most of the brain regions examined (P 123 I]CNS-1261 appears to be a specific ligand in vivo for the intrachannel PCP/ketamine/MK-801 NMDA binding site

  18. [11C]NS8880, a promising PET radiotracer targeting the norepinephrine transporter

    DEFF Research Database (Denmark)

    Vase, Karina Højrup; Peters, Dan; Nielsen, Elsebeth Ø

    2014-01-01

    -azabicyclo[3.2.1]octane (NS8880), targeting NET. NS8880 has an in vitro binding profile comparable to desipramine and is structurally not related to reboxetine. METHODS: Labeling of NS8880 with [11C] was achieved by a non-conventional technique: substitution of pyridinyl fluorine with [11C]methanolate...... yields with high purity. The PET in vivo evaluation in pig and rat revealed a rapid brain uptake of [11C]NS8880 and fast obtaining of equilibrium. Highest binding was observed in thalamic and hypothalamic regions. Pretreatment with desipramine efficiently reduced binding of [11C]NS8880. CONCLUSION: Based...... on the pre-clinical results obtained so far [11C]NS8880 displays promising properties for PET imaging of NET....

  19. Morphological evaluation of fetus CNS and its related anomalies

    International Nuclear Information System (INIS)

    Oi, Shizuo; Tamaki, Norihiko; Matsumoto, Satoshi; Katayama, Kazuaki; Mochizuki, Matsuto

    1989-01-01

    The fetus central nervous system was evaluated morphologically by ultrasonography (US), magnetic resonance imaging (MRI), and CT scan to analyze the prenatal diagnostic value for CNS anomalies. A total of 31 patients with 42 lesions had been diagnosed during the preceding 7 years. The patients included 24 with hydrocephalus, three with anencephaly, three with myeloschisis, three with holoprosencephaly, three with an encephalocele, two with a Dandy-Walker cyst, one with hydroencephalodysplasia, one with an intracranial neoplasm, one with sacrococcygeal teratoma, and one with sacral agenesis. Compared with US and MRI, CT proved to be more accurate in the detection of spine and cranium-bone morphology. This finding seems to be valuable in the diagnosis of spina bifida, cranium bifidum and some cases of hypertensive hydrocephalus, especially in the axial view. MRI was definitely superior in the anatomico-pathological diagnosis of cerebral dysgenesis, ventriculomegaly, intracranial tumors, and other brain parenchymal changes in view of multi-dimensional analysis. The most considerable disadvantage of MRI in the diagnosis of a fetus CNS anomaly is the poor information about spine and cranium morphology. A super-conducting MRI system is still insufficient to demonstrate the spinal cord of a fetus. US was routinely used, and the multidimensional slices were useful for screening the CNS abnormalies. Some of the fetus brain lesions, such as intracranial hematomas, had a specific echogenecity on US. However, US sometimes failed to demarcate the cerebral parenchymal or subdural morphological changes because its artifacts had hyperchoic shadows. While US, MRI, and CT were valuable diagnostic tools in the morphological evaluation of fetus CNS and its related anomalies, each modality has different diagnostic advantages and disadvantages. Improvement can be expected when these diagnostic imaging modalities are complementary, depending upon the nature of the anatomy. (J.P.N.)

  20. Analysis of neurocognitive function and CNS endpoints in the PROTEA trial

    DEFF Research Database (Denmark)

    Clarke, Amanda; Johanssen, Veronika; Gerstoft, Jan

    2014-01-01

    INTRODUCTION: During treatment with protease inhibitor monotherapy, the number of antiretrovirals with therapeutic concentrations in the cerebrospinal fluid (CSF) is lower, compared to standard triple therapy. However, the clinical consequences are unclear. METHODS: A total of 273 patients with HIV...... and the Grooved Pegboard Test at screening, baseline and at Week 48. A global neurocognitive score (NPZ-5) was derived by averaging the standardized results of the five domains. In a central nervous system (CNS) sub-study (n=70), HIV RNA levels in the CNS were evaluated at baseline and Week 48. Clinical adverse...... events related to the CNS were collected at each visit. RESULTS: Patients were 83% male and 88% White, with median age 43 years. There were more patients with nadir CD4 count below 200 cells/µL in the DRV/r monotherapy arm (41/137, 30%) than the triple therapy arm (30/136, 22%). At Week 48...

  1. Nuclear innovation through collaboration. 35th Annual CNS conference and 39th CNS/CNA student conference

    International Nuclear Information System (INIS)

    2015-01-01

    The Canadian Nuclear Society (CNS) held its 35th Annual Conference in Saint John, New Brunswick, Canada on May 31 to June 3, 2015, combined with the 39th Annual CNS/CNA Student Conference. With the theme of the conference, 'Nuclear Innovation through Collaboration', more than 425 delegates, exhibitors and students were in attendance. The conference commenced with two strong plenary sessions on Utility Collaborations to Improve Lifetime Performance; and, Performance Improvement Programs: Goals and Experience. The second day consisted of the panel discussions on International Developments in Used Nuclear Fuel Repository Programs, and two plenary sessions on: Enterprise Risk Management; and, Vendor Role in a Continuously Improving Industry. The third day contained a number of interesting features, including plenary sessions on Waste Management and Decommissioning; Developing Technologies and Resources, and a panel discussion on the Transportation of Used Nuclear Fuel. All three days of the conference also contained parallel sessions with over 100 technical papers presented at the main and student sessions. The technical session titles were: Refurbishment and Life Extension; Thermalhydraulics; Nuclear Materials; WMD - Radiation Monitoring; Safety and Licensing; Communication; Safety and Licensing; Instrumentation and Control; Advanced Reactor Designs; WMD - Deep Geological Repository Packaging; Reactor Physics; Chemistry and Materials; Advanced Fuel Cycles; Waste Management and Decommissioning; and, Medical Physics and Radiation Biology.

  2. Cell therapy for spinal cord injury informed by electromagnetic waves.

    Science.gov (United States)

    Finnegan, Jack; Ye, Hui

    2016-10-01

    Spinal cord injury devastates the CNS, besetting patients with symptoms including but not limited to: paralysis, autonomic nervous dysfunction, pain disorders and depression. Despite the identification of several molecular and genetic factors, a reliable regenerative therapy has yet to be produced for this terminal disease. Perhaps the missing piece of this puzzle will be discovered within endogenous electrotactic cellular behaviors. Neurons and stem cells both show mediated responses (growth rate, migration, differentiation) to electromagnetic waves, including direct current electric fields. This review analyzes the pathophysiology of spinal cord injury, the rationale for regenerative cell therapy and the evidence for directing cell therapy via electromagnetic waves shown by in vitro experiments.

  3. Metallothionein expression and roles in the CNS

    DEFF Research Database (Denmark)

    Penkowa, Milena

    2002-01-01

      Metallothioneins (MTs) are low-molecular-weight (6-7 kDa) nonenzymatic proteins (60-68 amino acid residues, 25-30% being cysteine) expressed ubiquitous in the animal kingdom. In the central nervous system (CNS), three MT isoforms are known, namely MT-I to MT-III. MT-I and MT-II (MT...

  4. CNS Involvement in Hemophagocytic Lymphohistiocytosis: CT and MR Findings

    International Nuclear Information System (INIS)

    Chung, Tae Woong

    2007-01-01

    Hemophagocytic lymphohistiocytosis (HLH) is a rare disorder that is characterized by proliferation of benign histiocytes, and this commonly involves the liver, spleen, lymph nodes, bone marrow and central nervous system (CNS). We report here on the CT and MR imaging findings in a case of CNS HLH that showed multiple ring enhancing masses mimicking abscess or another mass on the CT and MR imaging. emophagocytic lymphohistiocytosis (HLH) is a rare disorder that is characterized by nonmalignant diffuse infiltration of multiple organs, including the central nervous system (CNS), by lymphocytes and histiocytes (1). Many radiologic reports describing diffuse white matter infiltrations, parenchymal atrophy and calcification have been published, but the characteristics of these findings remain non-specific, especially in immunocompromised patients. We present here a case of HLH in a 3-year-old boy who presented with multiple ring enhancing lesions involving the brain. In conclusion, although the CT and MRI findings of HLH with ring enhancing parenchymal lesions are nonspecific and mimic abscess, and especially in the immunosuppressed patients, increased diffusion at the center on DWI may be a finding of HLH to differentiate it from abscess, which has restricted diffusion at the center. However, the pathologic correlation with DWI according to the lesion stage certainly needs further study with a larger number of patients

  5. Is risk of central nervous system (CNS) relapse related to adjuvant taxane treatment in node-positive breast cancer? Results of the CNS substudy in the intergroup Phase III BIG 02-98 Trial

    DEFF Research Database (Denmark)

    Pestalozzi, B.C.; Francis, P.; Quinaux, E.

    2008-01-01

    BACKGROUND: Breast cancer central nervous system (CNS) metastases are an increasingly important problem because of high CNS relapse rates in patients treated with trastuzumab and/or taxanes. PATIENTS AND METHODS: We evaluated data from 2887 node-positive breast cancer patients randomised in the BIG...

  6. Endovascular brain intervention and mapping in a dog experimental model using magnetically-guided micro-catheter technology.

    Science.gov (United States)

    Kara, Tomas; Leinveber, Pavel; Vlasin, Michal; Jurak, Pavel; Novak, Miroslav; Novak, Zdenek; Chrastina, Jan; Czechowicz, Krzysztof; Belehrad, Milos; Asirvatham, Samuel J

    2014-06-01

    Despite the substantial progress that has been achieved in interventional cardiology and cardiac electrophysiology, endovascular intervention for the diagnosis and treatment of central nervous system (CNS) disorders such as stroke, epilepsy and CNS malignancy is still limited, particularly due to highly tortuous nature of the cerebral arterial and venous system. Existing interventional devices and techniques enable only limited and complicated access especially into intra-cerebral vessels. The aim of this study was to develop a micro-catheter magnetically-guided technology specifically designed for endovascular intervention and mapping in deep CNS vascular structures. Mapping of electrical brain activity was performed via the venous system on an animal dog model with the support of the NIOBE II system. A novel micro-catheter specially designed for endovascular interventions in the CNS, with the support of the NIOBE II technology, was able to reach safely deep intra-cerebral venous structures and map the electrical activity there. Such structures are not currently accessible using standard catheters. This is the first study demonstrating successful use of a new micro-catheter in combination with NIOBE II technology for endovascular intervention in the brain.

  7. Contribution of Schwann Cells to Remyelination in a Naturally Occurring Canine Model of CNS Neuroinflammation.

    Directory of Open Access Journals (Sweden)

    Kristel Kegler

    Full Text Available Gliogenesis under pathophysiological conditions is of particular clinical relevance since it may provide evidence for regeneration promoting cells recruitable for therapeutic purposes. There is evidence that neurotrophin receptor p75 (p75NTR-expressing cells emerge in the lesioned CNS. However, the phenotype and identity of these cells, and signals triggering their in situ generation under normal conditions and certain pathological situations has remained enigmatic. In the present study, we used a spontaneous, idiopathic and inflammatory CNS condition in dogs with prominent lympho-histiocytic infiltration as a model to study the phenotype of Schwann cells and their relation to Schwann cell remyelination within the CNS. Furthermore, the phenotype of p75NTR-expressing cells within the injured CNS was compared to their counter-part in control sciatic nerve and after peripheral nerve injury. In addition, organotypic slice cultures were used to further elucidate the origin of p75NTR-positive cells. In cerebral and cerebellar white and grey matter lesions as well as in the brain stem, p75NTR-positive cells co-expressed the transcription factor Sox2, but not GAP-43, GFAP, Egr2/Krox20, periaxin and PDGFR-α. Interestingly, and contrary to the findings in control sciatic nerves, p75NTR-expressing cells only co-localized with Sox2 in degenerative neuropathy, thus suggesting that such cells might represent dedifferentiated Schwann cells both in the injured CNS and PNS. Moreover, effective Schwann cell remyelination represented by periaxin- and P0-positive mature myelinating Schwann cells, was strikingly associated with the presence of p75NTR/Sox2-expressing Schwann cells. Intriguingly, the emergence of dedifferentiated Schwann cells was not affected by astrocytes, and a macrophage-dominated inflammatory response provided an adequate environment for Schwann cells plasticity within the injured CNS. Furthermore, axonal damage was reduced in brain stem areas

  8. An innovative design for using flexible printed coils for magnetostrictive-based longitudinal guided wave sensors in steel strand inspection

    International Nuclear Information System (INIS)

    Tse, P W; Liu, X C; Wang, X J; Liu, Z H; Wu, B; He, C F

    2011-01-01

    Magnetostrictive sensors (MsSs) that can excite and receive guided waves are commonly used in detecting defects that may occur in cables and strands for supporting heavy structures. A conventional MsS has a hard sensing coil that is wound onto a bobbin with electric wires to generate the necessary dynamic magnetic field to excite the desired guided waves. This tailor-made hard coil is usually bulky and is not flexible enough to fit steel strands of various sizes. The conventional MsS also cannot be mounted to any steel strand that does not have a free end to allow the bobbin to pass through the structure of the tested strand. Such inflexibilities limit the use of conventional MsSs in practical situations. To solve these limitations, an innovative type of coil, called a flexible printed coil (FPC), which is made out of flexible printed film, has been designed to replace the inflexible hard coil. The flexible structure of the FPC ensures that the new MsS can be easily installed on and removed from steel strands with different diameters and without free ends. Moreover, the FPC-based MsS can be wrapped into multiple layers due to its thin and flexible design. Although multi-layer FPC creates a minor asymmetry in the dynamic magnetic field, the results of finite element analysis and experiments confirm that the longitudinal guided waves excited by a FPC-based MsS are comparable to those excited by a conventional hard coil MsS. No significant reduction in defect inspection performance was found; in fact, further advantages were identified when using the FPC-based MsS. When acting as the transmitter, the innovative FPC-based MsS can cover a longer inspection length of strand. When acting as the receiver, the FPC-based MsS is more sensitive to smaller defects that are impossible to detect using a hard coil MsS. Hence, the multi-layer FPC-based MsS has great potential for replacing the conventional hard coil MsS because of its convenient installation, and ease of fitting to

  9. Intraoperative squash smear cytology in CNS lesions: A study of 150 pediatric cases

    Directory of Open Access Journals (Sweden)

    Arpita Jindal

    2017-01-01

    Full Text Available Background: Tumors of the central nervous system in the pediatric age group occur relatively frequently during the early years of life. Brain tumors are the most common solid malignancies of childhood and only second to acute childhood leukemia. Squash cytology is an indispensable diagnostic aid to central nervous system (CNS lesions. The definitive diagnosis of brain lesions is confirmed by histological examination. Aim: To study the cytology of CNS lesions in pediatric population and correlate it with histopathology. Materials and Methods: One hundred and fifty cases of CNS lesions in pediatric patients were studied over a period of 2 years. Intraoperative squash smears were prepared, stained with hematoxylin and eosin, and examined. Remaining sample was subjected to histopathological examination. Results: Medulloblastoma (24.0% was the most frequently encountered tumor followed by pilocyctic astrocytoma (21.33% and ependymoma (13.33%. Diagnostic accuracy of squash smear technique was 94.67% when compared with histological diagnosis. Conclusion: Smear cytology is a fairly accurate tool for intraoperative CNS consultations.

  10. Intellectual abilities among survivors of childhood leukaemia as a function of CNS irradiation

    International Nuclear Information System (INIS)

    Eiser, C.

    1978-01-01

    Twenty-eight children in remission at least 2 years after completing chemotherapy for acute lymphoblastic leukaemia were assessed on standardised psychological tests. It was found that 7 who never had central nervous system (CNS) irradiation and 9 having prophylactic CNS irradiation at least 6 months after diagnosis tended to perform at average or above levels, while those 10 each having prophylactic CNS irradiation (within 2 months of diagnosis) were generally at lower ability. Within the latter group 3 children showed serious intellectual impairments, while the group as a whole functioned especially poorly on quantitative tasks and those involving speeded performance with abstract material. General language ability was not affected. Practical and theoretical implications are discussed. (author)

  11. P-glycoprotein trafficking as a therapeutic target to optimize CNS drug delivery.

    Science.gov (United States)

    Davis, Thomas P; Sanchez-Covarubias, Lucy; Tome, Margaret E

    2014-01-01

    The primary function of the blood-brain barrier (BBB)/neurovascular unit is to protect the central nervous system (CNS) from potentially harmful xenobiotic substances and maintain CNS homeostasis. Restricted access to the CNS is maintained via a combination of tight junction proteins as well as a variety of efflux and influx transporters that limits the transcellular and paracellular movement of solutes. Of the transporters identified at the BBB, P-glycoprotein (P-gp) has emerged as the transporter that is the greatest obstacle to effective CNS drug delivery. In this chapter, we provide data to support intracellular protein trafficking of P-gp within cerebral capillary microvessels as a potential target for improved drug delivery. We show that pain-induced changes in P-gp trafficking are associated with changes in P-gp's association with caveolin-1, a key scaffolding/trafficking protein that colocalizes with P-gp at the luminal membrane of brain microvessels. Changes in colocalization with the phosphorylated and nonphosphorylated forms of caveolin-1, by pain, are accompanied by dynamic changes in the distribution, relocalization, and activation of P-gp "pools" between microvascular endothelial cell subcellular compartments. Since redox-sensitive processes may be involved in signaling disassembly of higher-order structures of P-gp, we feel that manipulating redox signaling, via specific protein targeting at the BBB, may protect disulfide bond integrity of P-gp reservoirs and control trafficking to the membrane surface, providing improved CNS drug delivery. The advantage of therapeutic drug "relocalization" of a protein is that the physiological impact can be modified, temporarily or long term, despite pathology-induced changes in gene transcription. © 2014 Elsevier Inc. All rights reserved.

  12. Glypicans and FGFs in CNS Development and Function

    NARCIS (Netherlands)

    Galli, Antonella

    2003-01-01

    One of the most important events during central nervous system (CNS) development is the communication between cells. Cell-to-cell signaling implicates the interaction between a signaling molecules (or ligands) and their receptors. Ligand-receptor interaction is a tightly regulated process and is

  13. The Wave Energy Sector

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter

    2017-01-01

    This Handbook for Ocean Wave Energy aims at providing a guide into the field of ocean wave energy utilization. The handbook offers a concise yet comprehensive overview of the main aspects and disciplines involved in the development of wave energy converters (WECs). The idea for the book has been...... shaped by the development, research, and teaching that we have carried out at the Wave Energy Research Group at Aalborg University over the past decades. It is our belief and experience that it would be useful writing and compiling such a handbook in order to enhance the understanding of the sector...

  14. Recombinant human tripeptidyl peptidase-1 infusion to the monkey CNS: Safety, pharmacokinetics, and distribution

    Energy Technology Data Exchange (ETDEWEB)

    Vuillemenot, Brian R., E-mail: bvuillemenot@bmrn.com [BioMarin Pharmaceutical Inc., Novato, CA (United States); Kennedy, Derek [BioMarin Pharmaceutical Inc., Novato, CA (United States); Reed, Randall P.; Boyd, Robert B. [Northern Biomedical Research, Inc., Muskegon, MI (United States); Butt, Mark T. [Tox Path Specialists, LLC, Hagerstown, MD (United States); Musson, Donald G.; Keve, Steve; Cahayag, Rhea; Tsuruda, Laurie S.; O' Neill, Charles A. [BioMarin Pharmaceutical Inc., Novato, CA (United States)

    2014-05-15

    CLN2 disease is caused by deficiency in tripeptidyl peptidase-1 (TPP1), leading to neurodegeneration and death. The safety, pharmacokinetics (PK), and CNS distribution of recombinant human TPP1 (rhTPP1) were characterized following a single intracerebroventricular (ICV) or intrathecal-lumbar (IT-L) infusion to cynomolgus monkeys. Animals received 0, 5, 14, or 20 mg rhTPP1, ICV, or 14 mg IT-L, in artificial cerebrospinal fluid (aCSF) vehicle. Plasma and CSF were collected for PK analysis. Necropsies occurred at 3, 7, and 14 days post-infusion. CNS tissues were sampled for rhTPP1 distribution. TPP1 infusion was well tolerated and without effect on clinical observations or ECG. A mild increase in CSF white blood cells (WBCs) was detected transiently after ICV infusion. Isolated histological changes related to catheter placement and infusion were observed in ICV treated animals, including vehicle controls. The CSF and plasma exposure profiles were equivalent between animals that received an ICV or IT-L infusion. TPP1 levels peaked at the end of infusion, at which point the enzyme was present in plasma at 0.3% to 0.5% of CSF levels. TPP1 was detected in brain tissues with half-lives of 3–14 days. CNS distribution between ICV and IT-L administration was similar, although ICV resulted in distribution to deep brain structures including the thalamus, midbrain, and striatum. Direct CNS infusion of rhTPP1 was well tolerated with no drug related safety findings. The favorable nonclinical profile of ICV rhTPP1 supports the treatment of CLN2 by direct administration to the CNS. - Highlights: • TPP1 enzyme replacement therapy to the CNS is in development for CLN2 disease. • Toxicology, pharmacokinetics, and CNS distribution were assessed in monkeys. • TPP1 infusion directly to the brain did not result in any safety concerns. • A positive pharmacokinetic and distribution profile resulted from TPP1 infusion. • This study demonstrates the feasibility of ICV administered

  15. Recombinant human tripeptidyl peptidase-1 infusion to the monkey CNS: Safety, pharmacokinetics, and distribution

    International Nuclear Information System (INIS)

    Vuillemenot, Brian R.; Kennedy, Derek; Reed, Randall P.; Boyd, Robert B.; Butt, Mark T.; Musson, Donald G.; Keve, Steve; Cahayag, Rhea; Tsuruda, Laurie S.; O'Neill, Charles A.

    2014-01-01

    CLN2 disease is caused by deficiency in tripeptidyl peptidase-1 (TPP1), leading to neurodegeneration and death. The safety, pharmacokinetics (PK), and CNS distribution of recombinant human TPP1 (rhTPP1) were characterized following a single intracerebroventricular (ICV) or intrathecal-lumbar (IT-L) infusion to cynomolgus monkeys. Animals received 0, 5, 14, or 20 mg rhTPP1, ICV, or 14 mg IT-L, in artificial cerebrospinal fluid (aCSF) vehicle. Plasma and CSF were collected for PK analysis. Necropsies occurred at 3, 7, and 14 days post-infusion. CNS tissues were sampled for rhTPP1 distribution. TPP1 infusion was well tolerated and without effect on clinical observations or ECG. A mild increase in CSF white blood cells (WBCs) was detected transiently after ICV infusion. Isolated histological changes related to catheter placement and infusion were observed in ICV treated animals, including vehicle controls. The CSF and plasma exposure profiles were equivalent between animals that received an ICV or IT-L infusion. TPP1 levels peaked at the end of infusion, at which point the enzyme was present in plasma at 0.3% to 0.5% of CSF levels. TPP1 was detected in brain tissues with half-lives of 3–14 days. CNS distribution between ICV and IT-L administration was similar, although ICV resulted in distribution to deep brain structures including the thalamus, midbrain, and striatum. Direct CNS infusion of rhTPP1 was well tolerated with no drug related safety findings. The favorable nonclinical profile of ICV rhTPP1 supports the treatment of CLN2 by direct administration to the CNS. - Highlights: • TPP1 enzyme replacement therapy to the CNS is in development for CLN2 disease. • Toxicology, pharmacokinetics, and CNS distribution were assessed in monkeys. • TPP1 infusion directly to the brain did not result in any safety concerns. • A positive pharmacokinetic and distribution profile resulted from TPP1 infusion. • This study demonstrates the feasibility of ICV administered

  16. Wave energy transfer in elastic half-spaces with soft interlayers.

    Science.gov (United States)

    Glushkov, Evgeny; Glushkova, Natalia; Fomenko, Sergey

    2015-04-01

    The paper deals with guided waves generated by a surface load in a coated elastic half-space. The analysis is based on the explicit integral and asymptotic expressions derived in terms of Green's matrix and given loads for both laminate and functionally graded substrates. To perform the energy analysis, explicit expressions for the time-averaged amount of energy transferred in the time-harmonic wave field by every excited guided or body wave through horizontal planes and lateral cylindrical surfaces have been also derived. The study is focused on the peculiarities of wave energy transmission in substrates with soft interlayers that serve as internal channels for the excited guided waves. The notable features of the source energy partitioning in such media are the domination of a single emerging mode in each consecutive frequency subrange and the appearance of reverse energy fluxes at certain frequencies. These effects as well as modal and spatial distribution of the wave energy coming from the source into the substructure are numerically analyzed and discussed.

  17. Dispersion Energy Analysis of Rayleigh and Love Waves in the Presence of Low-Velocity Layers in Near-Surface Seismic Surveys

    Science.gov (United States)

    Mi, Binbin; Xia, Jianghai; Shen, Chao; Wang, Limin

    2018-03-01

    High-frequency surface-wave analysis methods have been effectively and widely used to determine near-surface shear (S) wave velocity. To image the dispersion energy and identify different dispersive modes of surface waves accurately is one of key steps of using surface-wave methods. We analyzed the dispersion energy characteristics of Rayleigh and Love waves in near-surface layered models based on numerical simulations. It has been found that if there is a low-velocity layer (LVL) in the half-space, the dispersion energy of Rayleigh or Love waves is discontinuous and ``jumping'' appears from the fundamental mode to higher modes on dispersive images. We introduce the guided waves generated in an LVL (LVL-guided waves, a trapped wave mode) to clarify the complexity of the dispersion energy. We confirm the LVL-guided waves by analyzing the snapshots of SH and P-SV wavefield and comparing the dispersive energy with theoretical values of phase velocities. Results demonstrate that LVL-guided waves possess energy on dispersive images, which can interfere with the normal dispersion energy of Rayleigh or Love waves. Each mode of LVL-guided waves having lack of energy at the free surface in some high frequency range causes the discontinuity of dispersive energy on dispersive images, which is because shorter wavelengths (generally with lower phase velocities and higher frequencies) of LVL-guided waves cannot penetrate to the free surface. If the S wave velocity of the LVL is higher than that of the surface layer, the energy of LVL-guided waves only contaminates higher mode energy of surface waves and there is no interlacement with the fundamental mode of surface waves, while if the S wave velocity of the LVL is lower than that of the surface layer, the energy of LVL-guided waves may interlace with the fundamental mode of surface waves. Both of the interlacements with the fundamental mode or higher mode energy may cause misidentification for the dispersion curves of surface

  18. Tailored central nervous system-directed treatment strategy for isolated CNS recurrence of adult acute myeloid leukemia.

    Science.gov (United States)

    Zheng, Changcheng; Liu, Xin; Zhu, Weibo; Cai, Xiaoyan; Wu, Jingsheng; Sun, Zimin

    2014-06-01

    The aim of this report was to investigate the tailored treatment strategies for isolated central nervous system (CNS) recurrence in adult patients with acute myeloid leukemia (AML). Isolated CNS recurrence was documented in 34 patients: there were 18, 6, and 10 patients with meningeal involvement type (type A), cranial nerve palsy type (type B), and myeloid sarcoma type (type C), respectively. For patients with type A, intrathecal chemotherapy was the predominant strategy. For type B, systemic HD-Ara-C with four cycles was the main treatment. For type C, cranial irradiation or craniospinal irradiation was adopted and two cycles of HD-Ara-C were given after the irradiation. The 5-year cumulative incidence of CNS recurrence was 12.8%. There was a significantly higher WBC count (32.6∼60.8 × 10(9)/l) in patients at first diagnosis who developed CNS recurrence (all of the three types) compared with patients with no CNS recurrence (10.1 × 10(9)/l) (P = 0.005). We found that a significantly more patients with AML-M5 and 11q23 abnormalities developed CNS recurrence in type A (P adult AML, but further studies are needed to improve the long-term survival.

  19. Treatment options for Primary CNS Lymphoma.

    Science.gov (United States)

    Laghari, Altaf Ali; Ahmed, Syed Ijlal; Jabbar, Adnan; Shamim, Muhammad Shahzad

    2018-03-01

    Primary CNS lymphoma (PCNSL) is a rare and aggressive brain tumour that is uniformly fatal. The rarity of the disease and the poor response to treatment makes it difficult to reach a consensus with regards to treatment options. In this review, the authors have discussed different treatment modalities used in the management of PCNSL including chemotherapy, surgery and radiation, as well as the results of recent clinical trials on treatment options for PCNSL.

  20. Ketamine displaces the novel NMDA receptor SPET probe [{sup 123}I]CNS-1261 in humans in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Stone, James M. [Institute of Psychiatry, King' s College London, De Crespigny Park London, SE5 8AF (United Kingdom)]. E-mail: j.stone@iop.kcl.ac.uk; Erlandsson, Kjell [Institute of Nuclear Medicine, University College London, London, W1N 8AA (United Kingdom); Arstad, Erik [Institute of Psychiatry, King' s College London, De Crespigny Park London, SE5 8AF (United Kingdom); Bressan, Rodrigo A. [Institute of Psychiatry, King' s College London, De Crespigny Park London, SE5 8AF (United Kingdom); Squassante, Lisa [GlaxoSmithKline (GSK), Verona 37135 (Italy); Teneggi, Vincenza [GlaxoSmithKline (GSK), Verona 37135 (Italy); Ell, Peter J. [Institute of Nuclear Medicine, University College London, London, W1N 8AA (United Kingdom); Pilowsky, Lyn S. [Institute of Psychiatry, King' s College London, De Crespigny Park London, SE5 8AF (United Kingdom); Institute of Nuclear Medicine, University College London, London, W1N 8AA (United Kingdom)

    2006-02-15

    [{sup 123}I]CNS-1261 [N-(1-naphthyl)-N'-(3-iodophenyl)-N-methylguanidine] is a high-affinity SPET ligand with selectivity for the intrachannel PCP/ketamine/MK-801 site of the N-methyl-D-aspartate (NMDA) receptor. This study evaluated the effects of ketamine (a specific competitor for the intrachannel PCP/ketamine/MK-801 site) on [{sup 123}I]CNS-1261 binding to NMDA receptors in vivo. Ten healthy volunteers underwent 2 bolus-plus-infusion [{sup 123}I]CNS-1261 scans, one during placebo and the other during a ketamine challenge. Ketamine administration led to a significant decrease in [{sup 123}I]CNS-1261 V {sub T} in most of the brain regions examined (P<.05). [{sup 123}I]CNS-1261 appears to be a specific ligand in vivo for the intrachannel PCP/ketamine/MK-801 NMDA binding site.

  1. Nuclear innovation through collaboration. 35th Annual CNS conference and 39th CNS/CNA student conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-07-01

    The Canadian Nuclear Society (CNS) held its 35th Annual Conference in Saint John, New Brunswick, Canada on May 31 to June 3, 2015, combined with the 39th Annual CNS/CNA Student Conference. With the theme of the conference, 'Nuclear Innovation through Collaboration', more than 425 delegates, exhibitors and students were in attendance. The conference commenced with two strong plenary sessions on Utility Collaborations to Improve Lifetime Performance; and, Performance Improvement Programs: Goals and Experience. The second day consisted of the panel discussions on International Developments in Used Nuclear Fuel Repository Programs, and two plenary sessions on: Enterprise Risk Management; and, Vendor Role in a Continuously Improving Industry. The third day contained a number of interesting features, including plenary sessions on Waste Management and Decommissioning; Developing Technologies and Resources, and a panel discussion on the Transportation of Used Nuclear Fuel. All three days of the conference also contained parallel sessions with over 100 technical papers presented at the main and student sessions. The technical session titles were: Refurbishment and Life Extension; Thermalhydraulics; Nuclear Materials; WMD - Radiation Monitoring; Safety and Licensing; Communication; Safety and Licensing; Instrumentation and Control; Advanced Reactor Designs; WMD - Deep Geological Repository Packaging; Reactor Physics; Chemistry and Materials; Advanced Fuel Cycles; Waste Management and Decommissioning; and, Medical Physics and Radiation Biology.

  2. NIKHEF traveling wave monitor: user guide

    International Nuclear Information System (INIS)

    Sluijk, T.

    1984-01-01

    The NIKHEF Travelling Wave Monitor (TWM) is a sensitive, non intercepting device to measure beam displacement. The measurement is independent of the beam intensity. The TWM consists of a waveguide assembly and separate electronics assembly. Specifications are given, as well as instructions for use. (Auth./G.J.P.)

  3. Lamb wave propagation in monocrystalline silicon wafers

    OpenAIRE

    Fromme, P.; Pizzolato, M.; Robyr, J-L; Masserey, B.

    2018-01-01

    Monocrystalline silicon wafers are widely used in the photovoltaic industry for solar panels with high conversion efficiency. Guided ultrasonic waves offer the potential to efficiently detect micro-cracks in the thin wafers. Previous studies of ultrasonic wave propagation in silicon focused on effects of material anisotropy on bulk ultrasonic waves, but the dependence of the wave propagation characteristics on the material anisotropy is not well understood for Lamb waves. The phase slowness a...

  4. Simulation and analysis of the transmission properties of curved-straight neutron guide systems

    International Nuclear Information System (INIS)

    Copley, J.R.D.; Mildner, D.F.R.

    1992-01-01

    This paper reports that the spatial intensity distribution of neutrons emerging from a curved guide is far from uniform, particularly at short wavelengths, and curved guides are sometimes followed by a straight section of guide to make the intensity distribution more uniform. The behavior of neutrons within curved-straight neutron guide systems is examined using both ray-tracing and analytical approaches to the problem. The intensity distribution within the straight guide tends to wash from one side of the guide to the other. The amplitude of this transverse wave decreases with increasing guide length, and the characteristic length of the wave decreases with increasing neutron wavelength

  5. Near-surface viscosity measurements with a love acoustic wave device

    International Nuclear Information System (INIS)

    Collings, A.F.; Cooper, B.J.; Lappas, S.; Sor, J.A.

    1999-01-01

    Full text: In the last decade, considerable research effort has been directed towards interfacing piezoelectric transducers with biological detection systems to produce efficient and highly selective biosensors. Several types of piezoelectric or, more specifically, acoustic wave transducers have been investigated. Our group has developed Love wave (guided surface skimming wave) devices which are made by attaching a thin overlayer with the appropriate acoustic properties to the surface of a conventional surface horizontal mode device. An optimised layer concentrates most of the propagating wave energy in the guiding layer and can improve the device sensitivity in detecting gas-phase mass loading on the surface some 20- to 40-fold. Love wave devices used in liquid phase sensing will also respond to viscous, as well as mass, loading on the device surface. We have studied the propagation of viscous waves into liquid sitting on a Love wave device both theoretically and experimentally. Modelling of the effect of a viscous liquid layer on a Love wave propagating in a layered medium predicts the velocity profile in the solid substrate and in the adjoining liquid. This is a function of the thickness of the guiding layer, the elastic properties of the guiding layer and the piezoelectric substrate, and of the viscosity and density of the liquid layer. We report here on measurements of the viscosity of aqueous glycerine solutions made with a quartz Love wave device with a 5.5 μm SiO 2 guiding layer. The linear relationship between the decrease in the device frequency and the square root of the viscosity density product is accurately observed at Newtonian viscosities. At higher viscosities, there is an increase in damping, the insertion loss of the device saturates, Δf is no longer proportional to (ηp) l/2 and reaches a maximum. We also show results for the determination of the gelation time in protein and inorganic aqueous gels and for the rate of change of viscosity with

  6. Neonatal CNS infection and inflammation caused by Ureaplasma species: rare or relevant?

    Science.gov (United States)

    Glaser, Kirsten; Speer, Christian P

    2015-02-01

    Colonization with Ureaplasma species has been associated with adverse pregnancy outcome, and perinatal transmission has been implicated in the development of bronchopulmonary dysplasia in preterm neonates. Little is known about Ureaplasma-mediated infection and inflammation of the CNS in neonates. Controversy remains concerning its incidence and implication in the pathogenesis of neonatal brain injury. In vivo and in vitro data are limited. Despite improving care options for extremely immature preterm infants, relevant complications remain. Systematic knowledge of ureaplasmal infection may be of great benefit. This review aims to summarize pathogenic mechanisms, clinical data and diagnostic pitfalls. Studies in preterm and term neonates are critically discussed with regard to their limitations. Clinical questions concerning therapy or prophylaxis are posed. We conclude that ureaplasmas may be true pathogens, especially in preterm neonates, and may cause CNS inflammation in a complex interplay of host susceptibility, serovar pathogenicity and gestational age-dependent CNS vulnerability.

  7. Alcohol intake alters immune responses and promotes CNS viral persistence in mice.

    Science.gov (United States)

    Loftis, Jennifer M; Taylor, Jonathan; Raué, Hans-Peter; Slifka, Mark K; Huang, Elaine

    2016-10-01

    Chronic hepatitis C virus (HCV) infection leads to progressive liver disease and is associated with a variety of extrahepatic effects, including central nervous system (CNS) damage and neuropsychiatric impairments. Alcohol abuse can exacerbate these adverse effects on brain and behavior, but the molecular mechanisms are not well understood. This study investigated the role of alcohol in regulating viral persistence and CNS immunopathology in mice infected with lymphocytic choriomeningitis virus (LCMV), a model for HCV infections in humans. Female and male BALB/c mice (n=94) were exposed to alcohol (ethanol; EtOH) and water (or water only) using a two-bottle choice paradigm, followed one week later by infection with either LCMV clone 13 (causes chronic infection similar to chronic HCV), LCMV Armstrong (causes acute infection), or vehicle. Mice were monitored for 60days post-infection and continued to receive 24-h access to EtOH and water. Animals infected with LCMV clone 13 drank more EtOH, as compared to those with an acute or no viral infection. Six weeks after infection with LCMV clone 13, mice with EtOH exposure evidenced higher serum viral titers, as compared to mice without EtOH exposure. EtOH intake was also associated with reductions in virus-specific CD8(+) T cell frequencies (particularly CD11a(hi) subsets) and evidence of persistent CNS viremia in chronically infected mice. These findings support the hypothesis that EtOH use and chronic viral infection can result in combined toxic effects accelerating CNS damage and neuropsychiatric dysfunction and suggest that examining the role of EtOH in regulating viral persistence and CNS immunopathology in mice infected with LCMV can lead to a more comprehensive understanding of comorbid alcohol use disorder and chronic viral infection. Published by Elsevier B.V.

  8. Newnes short wave listening handbook

    CERN Document Server

    Pritchard, Joe

    2013-01-01

    Newnes Short Wave Listening Handbook is a guide for starting up in short wave listening (SWL). The book is comprised of 15 chapters that discuss the basics and fundamental concepts of short wave radio listening. The coverage of the text includes electrical principles; types of signals that can be heard in the radio spectrum; and using computers in SWL. The book also covers SWL equipment, such as receivers, converters, and circuits. The text will be of great use to individuals who want to get into short wave listening.

  9. Lesion stiffness measured by shear-wave elastography: Preoperative predictor of the histologic underestimation of US-guided core needle breast biopsy.

    Science.gov (United States)

    Park, Ah Young; Son, Eun Ju; Kim, Jeong-Ah; Han, Kyunghwa; Youk, Ji Hyun

    2015-12-01

    To determine whether lesion stiffness measured by shear-wave elastography (SWE) can be used to predict the histologic underestimation of ultrasound (US)-guided 14-gauge core needle biopsy (CNB) for breast masses. This retrospective study enrolled 99 breast masses from 93 patients, including 40 high-risk lesions and 59 ductal carcinoma in situ (DCIS), which were diagnosed by US-guided 14-gauge CNB. SWE was performed for all breast masses to measure quantitative elasticity values before US-guided CNB. To identify the preoperative factors associated with histologic underestimation, patients' age, symptoms, lesion size, B-mode US findings, and quantitative SWE parameters were compared according to the histologic upgrade after surgery using the chi-square test, Fisher's exact test, or independent t-test. The independent factors for predicting histologic upgrade were evaluated using multivariate logistic regression analysis. The underestimation rate was 28.3% (28/99) in total, 25.0% (10/40) in high-risk lesions, and 30.5% (18/59) in DCIS. All elasticity values of the upgrade group were significantly higher than those of the non-upgrade group (PBreast lesion stiffness quantitatively measured by SWE could be helpful to predict the underestimation of malignancy in US-guided 14-gauge CNB. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Chemokines in the balance: maintenance of homeostasis and protection at CNS barriers

    Directory of Open Access Journals (Sweden)

    Jessica L Williams

    2014-05-01

    Full Text Available In the adult central nervous system (CNS, chemokines and their receptors are involved in developmental, physiological and pathological processes. Although most lines of investigation focus on their ability to induce the migration of cells, recent studies indicate that chemokines also promote cellular interactions and activate signaling pathways that maintain CNS homeostatic functions. Many homeostatic chemokines are expressed on the vasculature of the blood brain barrier including CXCL12, CCL19, CCL20, and CCL21. While endothelial cell expression of these chemokines is known to regulate the entry of leukocytes into the CNS during immunosurveillance, new data indicate that CXCL12 is also involved in diverse cellular activities including adult neurogenesis and neuronal survival, having an opposing role to the homeostatic chemokine, CXCL14, which appears to regulate synaptic inputs to neural precursors. Neuronal expression of CX3CL1, yet another homeostatic chemokine that promotes neuronal survival and communication with microglia, is partly regulated by CXCL12. Regulation of CXCL12 is unique in that it may regulate its own expression levels via binding to its scavenger receptor CXCR7/ACKR3. In this review, we explore the diverse roles of these and other homeostatic chemokines expressed within the CNS, including the possible implications of their dysfunction as a cause of neurologic disease.

  11. Dynamic of CSF and serum biomarkers in HIV-1 subtype C encephalitis with CNS genetic compartmentalization-case study.

    Science.gov (United States)

    de Almeida, Sergio M; Rotta, Indianara; Ribeiro, Clea E; Oliveira, Michelli F; Chaillon, Antoine; de Pereira, Ana Paula; Cunha, Ana Paula; Zonta, Marise; Bents, Joao França; Raboni, Sonia M; Smith, Davey; Letendre, Scott; Ellis, Ronald J

    2017-06-01

    Despite the effective suppression of viremia with antiretroviral therapy, HIV can still replicate in the central nervous system (CNS). This was a longitudinal study of the cerebrospinal fluid (CSF) and serum dynamics of several biomarkers related to inflammation, the blood-brain barrier, neuronal injury, and IgG intrathecal synthesis in serial samples of CSF and serum from a patient infected with HIV-1 subtype C with CNS compartmentalization.The phylogenetic analyses of plasma and CSF samples in an acute phase using next-generation sequencing and F-statistics analysis of C2-V3 haplotypes revealed distinct compartmentalized CSF viruses in paired CSF and peripheral blood mononuclear cell samples. The CSF biomarker analysis in this patient showed that symptomatic CSF escape is accompanied by CNS inflammation, high levels of cell and humoral immune biomarkers, CNS barrier dysfunction, and an increase in neuronal injury biomarkers with demyelization. Independent and isolated HIV replication can occur in the CNS, even in HIV-1 subtype C, leading to compartmentalization and development of quasispecies distinct from the peripheral plasma. These immunological aspects of the HIV CNS escape have not been described previously. To our knowledge, this is the first report of CNS HIV escape and compartmentalization in HIV-1 subtype C.

  12. Drug induced increases in CNS dopamine alter monocyte, macrophage and T cell functions: implications for HAND

    Science.gov (United States)

    Gaskill, Peter J.; Calderon, Tina M.; Coley, Jacqueline S.; Berman, Joan W.

    2013-01-01

    Central nervous system (CNS) complications resulting from HIV infection remain a major public health problem as individuals live longer due to the success of combined antiretroviral therapy (cART). As many as 70% of HIV infected people have HIV associated neurocognitive disorders (HAND). Many HIV infected individuals abuse drugs, such as cocaine, heroin or methamphetamine, that may be important cofactors in the development of HIV CNS disease. Despite different mechanisms of action, all drugs of abuse increase extracellular dopamine in the CNS. The effects of dopamine on HIV neuropathogenesis are not well understood, and drug induced increases in CNS dopamine may be a common mechanism by which different types of drugs of abuse impact the development of HAND. Monocytes and macrophages are central to HIV infection of the CNS and to HAND. While T cells have not been shown to be a major factor in HIV-associated neuropathogenesis, studies indicate that T cells may play a larger role in the development of HAND in HIV infected drug abusers. Drug induced increases in CNS dopamine may dysregulate functions of, or increase HIV infection in, monocytes, macrophages and T cells in the brain. Thus, characterizing the effects of dopamine on these cells is important for understanding the mechanisms that mediate the development of HAND in drug abusers. PMID:23456305

  13. Clearance of an immunosuppressive virus from the CNS coincides with immune reanimation and diversification

    Directory of Open Access Journals (Sweden)

    McGavern Dorian B

    2007-06-01

    Full Text Available Abstract Once a virus infection establishes persistence in the central nervous system (CNS, it is especially difficult to eliminate from this specialized compartment. Therefore, it is of the utmost importance to fully understand scenarios during which a persisting virus is ultimately purged from the CNS by the adaptive immune system. Such a scenario can be found following infection of adult mice with an immunosuppressive variant of lymphocytic choriomeningitis virus (LCMV referred to as clone 13. In this study we demonstrate that following intravenous inoculation, clone 13 rapidly infected peripheral tissues within one week, but more slowly inundated the entire brain parenchyma over the course of a month. During the establishment of persistence, we observed that genetically tagged LCMV-specific cytotoxic T lymphocytes (CTL progressively lost function; however, the severity of this loss in the CNS was never as substantial as that observed in the periphery. One of the most impressive features of this model system is that the peripheral T cell response eventually regains functionality at ~60–80 days post-infection, and this was associated with a rapid decline in virus from the periphery. Coincident with this "reanimation phase" was a massive influx of CD4 T and B cells into the CNS and a dramatic reduction in viral distribution. In fact, olfactory bulb neurons served as the last refuge for the persisting virus, which was ultimately purged from the CNS within 200 days post-infection. These data indicate that a functionally revived immune response can prevail over a virus that establishes widespread presence both in the periphery and brain parenchyma, and that therapeutic enhancement of an existing response could serve as an effective means to thwart long term CNS persistence.

  14. Imaging aspects of neurologic emergencies in children treated for non-CNS malignancies

    International Nuclear Information System (INIS)

    Kaste, S.C.; Langston, J.; Rodriguez-Galindo, C.; Furman, W.L.; Thompson, S.J.

    2000-01-01

    There is a paucity of radiologic literature addressing neurologic emergencies in children receiving therapy for non-CNS primary malignancies. In the acute setting, many of these children present to local community hospitals. This pictorial is from a single institutional experience describing the spectrum of neurologic emergencies seen in children with non-CNS cancers. We hope to familiarize pediatric radiologists with these entities in order to expedite diagnosis, facilitate treatment, and minimize morbity and mortality that may be associated with these complications. (orig.)

  15. The Extracellular Environment of the CNS: Influence on Plasticity, Sprouting, and Axonal Regeneration after Spinal Cord Injury

    Science.gov (United States)

    Forbes, Lindsey H.

    2018-01-01

    The extracellular environment of the central nervous system (CNS) becomes highly structured and organized as the nervous system matures. The extracellular space of the CNS along with its subdomains plays a crucial role in the function and stability of the CNS. In this review, we have focused on two components of the neuronal extracellular environment, which are important in regulating CNS plasticity including the extracellular matrix (ECM) and myelin. The ECM consists of chondroitin sulfate proteoglycans (CSPGs) and tenascins, which are organized into unique structures called perineuronal nets (PNNs). PNNs associate with the neuronal cell body and proximal dendrites of predominantly parvalbumin-positive interneurons, forming a robust lattice-like structure. These developmentally regulated structures are maintained in the adult CNS and enhance synaptic stability. After injury, however, CSPGs and tenascins contribute to the structure of the inhibitory glial scar, which actively prevents axonal regeneration. Myelin sheaths and mature adult oligodendrocytes, despite their important role in signal conduction in mature CNS axons, contribute to the inhibitory environment existing after injury. As such, unlike the peripheral nervous system, the CNS is unable to revert to a “developmental state” to aid neuronal repair. Modulation of these external factors, however, has been shown to promote growth, regeneration, and functional plasticity after injury. This review will highlight some of the factors that contribute to or prevent plasticity, sprouting, and axonal regeneration after spinal cord injury. PMID:29849554

  16. Metallothionein-1+2 protect the CNS after a focal brain injury

    DEFF Research Database (Denmark)

    Giralt, Mercedes; Penkowa, Milena; Lago, Natalia

    2002-01-01

    We have evaluated the physiological relevance of metallothionein-1+2 (MT-1+2) in the CNS following damage caused by a focal cryolesion onto the cortex. In comparison to normal mice, transgenic mice overexpressing the MT-1 isoform (TgMTI* mice) showed a significant decrease of the number...... dramatically reduced the cryolesion-induced oxidative stress and neuronal apoptosis. Remarkably, these effects were also obtained by the intraperitoneal administration of MT-2 to both normal and MT-1+2 knock-out mice. These results fully support the notion that MT-1+2 are essential in the CNS for coping...

  17. The mastermind approach to CNS drug therapy: translational prediction of human brain distribution, target site kinetics, and therapeutic effects

    OpenAIRE

    de Lange, Elizabeth CM

    2013-01-01

    Despite enormous advances in CNS research, CNS disorders remain the world?s leading cause of disability. This accounts for more hospitalizations and prolonged care than almost all other diseases combined, and indicates a high unmet need for good CNS drugs and drug therapies. Following dosing, not only the chemical properties of the drug and blood?brain barrier (BBB) transport, but also many other processes will ultimately determine brain target site kinetics and consequently the CNS effects. ...

  18. CNS recruitment of CD8+ T lymphocytes specific for a peripheral virus infection triggers neuropathogenesis during polymicrobial challenge.

    Directory of Open Access Journals (Sweden)

    Christine M Matullo

    2011-12-01

    Full Text Available Although viruses have been implicated in central nervous system (CNS diseases of unknown etiology, including multiple sclerosis and amyotrophic lateral sclerosis, the reproducible identification of viral triggers in such diseases has been largely unsuccessful. Here, we explore the hypothesis that viruses need not replicate in the tissue in which they cause disease; specifically, that a peripheral infection might trigger CNS pathology. To test this idea, we utilized a transgenic mouse model in which we found that immune cells responding to a peripheral infection are recruited to the CNS, where they trigger neurological damage. In this model, mice are infected with both CNS-restricted measles virus (MV and peripherally restricted lymphocytic choriomeningitis virus (LCMV. While infection with either virus alone resulted in no illness, infection with both viruses caused disease in all mice, with ∼50% dying following seizures. Co-infection resulted in a 12-fold increase in the number of CD8+ T cells in the brain as compared to MV infection alone. Tetramer analysis revealed that a substantial proportion (>35% of these infiltrating CD8+ lymphocytes were LCMV-specific, despite no detectable LCMV in CNS tissues. Mechanistically, CNS disease was due to edema, induced in a CD8-dependent but perforin-independent manner, and brain herniation, similar to that observed in mice challenged intracerebrally with LCMV. These results indicate that T cell trafficking can be influenced by other ongoing immune challenges, and that CD8+ T cell recruitment to the brain can trigger CNS disease in the apparent absence of cognate antigen. By extrapolation, human CNS diseases of unknown etiology need not be associated with infection with any particular agent; rather, a condition that compromises and activates the blood-brain barrier and adjacent brain parenchyma can render the CNS susceptible to pathogen-independent immune attack.

  19. Cancers of the Brain and CNS: Global Patterns and Trends in Incidence.

    Science.gov (United States)

    Mortazavi, S M J; Mortazavi, S A R; Paknahad, M

    2018-03-01

    Miranda-Filho et al. in their recently published paper entitled "Cancers of the brain and CNS: global patterns and trends in incidence" provided a global status report of the geographic and temporal variations in the incidence of brain and CNS cancers in different countries across continents worldwide. While the authors confirm the role of genetic risk factors and ionizing radiation exposures, they claimed that no firm conclusion could be drawn about the role of exposure to non-ionizing radiation. The paper authored by Miranda-Filho et al. not only addresses a challenging issue, it can be considered as a good contribution in the field of brain and CNS cancers. However, our correspondence addresses a basic shortcoming of this paper about the role of electromagnetic fields and cancers and provides evidence showing that exposure to radiofrequency electromagnetic fields (RF-EMFs), at least at high levels and long durations, can increases the risk of cancer.

  20. Evaluation of pipeline defect's characteristic axial length via model-based parameter estimation in ultrasonic guided wave-based inspection

    International Nuclear Information System (INIS)

    Wang, Xiaojuan; Tse, Peter W; Dordjevich, Alexandar

    2011-01-01

    The reflection signal from a defect in the process of guided wave-based pipeline inspection usually includes sufficient information to detect and define the defect. In previous research, it has been found that the reflection of guided waves from even a complex defect primarily results from the interference between reflection components generated at the front and the back edges of the defect. The respective contribution of different parameters of a defect to the overall reflection can be affected by the features of the two primary reflection components. The identification of these components embedded in the reflection signal is therefore useful in characterizing the concerned defect. In this research, we propose a method of model-based parameter estimation with the aid of the Hilbert–Huang transform technique for the purpose of decomposition of a reflection signal to enable characterization of the pipeline defect. Once two primary edge reflection components are decomposed and identified, the distance between the reflection positions, which closely relates to the axial length of the defect, could be easily and accurately determined. Considering the irregular profiles of complex pipeline defects at their two edges, which is often the case in real situations, the average of varied axial lengths of such a defect along the circumference of the pipeline is used in this paper as the characteristic value of actual axial length for comparison purpose. The experimental results of artificial defects and real corrosion in sample pipes were considered in this paper to demonstrate the effectiveness of the proposed method

  1. Experimental observation of spontaneous depolarized guided acoustic-wave Brillouin scattering in side cores of a multicore fiber

    Science.gov (United States)

    Hayashi, Neisei; Mizuno, Yosuke; Nakamura, Kentaro; Set, Sze Yun; Yamashita, Shinji

    2018-06-01

    Spontaneous depolarized guided acoustic-wave Brillouin scattering (GAWBS) was experimentally observed in one of the side cores of an uncoated multicore fiber (MCF). The frequency bandwidth in the side core was up to ∼400 MHz, which is 0.5 times that in the central core. The GAWBS spectrum of the side core of the MCF included intrinsic peaks, which had different acoustic resonance frequencies from those of the central core. In addition, the spontaneous depolarized GAWBS in the central/side core was unaffected by that in the other core. These results will lead to the development of polarization/phase modulators using an MCF.

  2. Laser generated guided waves and finite element modeling for the thickness gauging of thin layers.

    Science.gov (United States)

    Lefevre, F; Jenot, F; Ouaftouh, M; Duquennoy, M; Ourak, M

    2010-03-01

    In this paper, nondestructive testing has been performed on a thin gold layer deposited on a 2 in. silicon wafer. Guided waves were generated and studied using a laser ultrasonic setup and a two-dimensional fast Fourier transform technique was employed to obtain the dispersion curves. A gold layer thickness of 1.33 microm has been determined with a +/-5% margin of error using the shape of the two first propagating modes, assuming for the substrate and the layer an uncertainty on the elastic parameters of +/-2.5%. A finite element model has been implemented to validate the data post-treatment and the experimental results. A good agreement between the numerical simulation, the analytical modeling and the experimentations has been observed. This method was considered suitable for thickness layer higher than 0.7 microm.

  3. A safety assessment methodology applied to CNS/ATM-based air traffic control system

    Energy Technology Data Exchange (ETDEWEB)

    Vismari, Lucio Flavio, E-mail: lucio.vismari@usp.b [Safety Analysis Group (GAS), School of Engineering at University of Sao Paulo (Poli-USP), Av. Prof. Luciano Gualberto, Trav.3, n.158, Predio da Engenharia de Eletricidade, Sala C2-32, CEP 05508-900, Sao Paulo (Brazil); Batista Camargo Junior, Joao, E-mail: joaocamargo@usp.b [Safety Analysis Group (GAS), School of Engineering at University of Sao Paulo (Poli-USP), Av. Prof. Luciano Gualberto, Trav.3, n.158, Predio da Engenharia de Eletricidade, Sala C2-32, CEP 05508-900, Sao Paulo (Brazil)

    2011-07-15

    In the last decades, the air traffic system has been changing to adapt itself to new social demands, mainly the safe growth of worldwide traffic capacity. Those changes are ruled by the Communication, Navigation, Surveillance/Air Traffic Management (CNS/ATM) paradigm , based on digital communication technologies (mainly satellites) as a way of improving communication, surveillance, navigation and air traffic management services. However, CNS/ATM poses new challenges and needs, mainly related to the safety assessment process. In face of these new challenges, and considering the main characteristics of the CNS/ATM, a methodology is proposed at this work by combining 'absolute' and 'relative' safety assessment methods adopted by the International Civil Aviation Organization (ICAO) in ICAO Doc.9689 , using Fluid Stochastic Petri Nets (FSPN) as the modeling formalism, and compares the safety metrics estimated from the simulation of both the proposed (in analysis) and the legacy system models. To demonstrate its usefulness, the proposed methodology was applied to the 'Automatic Dependent Surveillance-Broadcasting' (ADS-B) based air traffic control system. As conclusions, the proposed methodology assured to assess CNS/ATM system safety properties, in which FSPN formalism provides important modeling capabilities, and discrete event simulation allowing the estimation of the desired safety metric.

  4. A safety assessment methodology applied to CNS/ATM-based air traffic control system

    International Nuclear Information System (INIS)

    Vismari, Lucio Flavio; Batista Camargo Junior, Joao

    2011-01-01

    In the last decades, the air traffic system has been changing to adapt itself to new social demands, mainly the safe growth of worldwide traffic capacity. Those changes are ruled by the Communication, Navigation, Surveillance/Air Traffic Management (CNS/ATM) paradigm , based on digital communication technologies (mainly satellites) as a way of improving communication, surveillance, navigation and air traffic management services. However, CNS/ATM poses new challenges and needs, mainly related to the safety assessment process. In face of these new challenges, and considering the main characteristics of the CNS/ATM, a methodology is proposed at this work by combining 'absolute' and 'relative' safety assessment methods adopted by the International Civil Aviation Organization (ICAO) in ICAO Doc.9689 , using Fluid Stochastic Petri Nets (FSPN) as the modeling formalism, and compares the safety metrics estimated from the simulation of both the proposed (in analysis) and the legacy system models. To demonstrate its usefulness, the proposed methodology was applied to the 'Automatic Dependent Surveillance-Broadcasting' (ADS-B) based air traffic control system. As conclusions, the proposed methodology assured to assess CNS/ATM system safety properties, in which FSPN formalism provides important modeling capabilities, and discrete event simulation allowing the estimation of the desired safety metric.

  5. Natural host genetic resistance to lentiviral CNS disease: a neuroprotective MHC class I allele in SIV-infected macaques.

    Directory of Open Access Journals (Sweden)

    Joseph L Mankowski

    Full Text Available Human immunodeficiency virus (HIV infection frequently causes neurologic disease even with anti-retroviral treatment. Although associations between MHC class I alleles and acquired immunodeficiency syndrome (AIDS have been reported, the role MHC class I alleles play in restricting development of HIV-induced organ-specific diseases, including neurologic disease, has not been characterized. This study examined the relationship between expression of the MHC class I allele Mane-A*10 and development of lentiviral-induced central nervous system (CNS disease using a well-characterized simian immunodeficiency (SIV/pigtailed macaque model. The risk of developing CNS disease (SIV encephalitis was 2.5 times higher for animals that did not express the MHC class I allele Mane-A*10 (P = 0.002; RR = 2.5. Animals expressing the Mane-A*10 allele had significantly lower amounts of activated macrophages, SIV RNA, and neuronal dysfunction in the CNS than Mane-A*10 negative animals (P<0.001. Mane-A*10 positive animals with the highest CNS viral burdens contained SIV gag escape mutants at the Mane-A*10-restricted KP9 epitope in the CNS whereas wild type KP9 sequences dominated in the brain of Mane-A*10 negative animals with comparable CNS viral burdens. These concordant findings demonstrate that particular MHC class I alleles play major neuroprotective roles in lentiviral-induced CNS disease.

  6. CD11c-expressing cells affect Treg behavior in the meninges during CNS infection1

    Science.gov (United States)

    O’Brien, Carleigh A.; Overall, Christopher; Konradt, Christoph; O’Hara Hall, Aisling C.; Hayes, Nikolas W.; Wagage, Sagie; John, Beena; Christian, David A.; Hunter, Christopher A.; Harris, Tajie H.

    2017-01-01

    Treg cells play an important role in the CNS during multiple infections as well as autoimmune inflammation, but the behavior of this cell type in the CNS has not been explored. In mice, infection with Toxoplasma gondii leads to a Th1-polarized parasite-specific effector T cell response in the brain. Similarly, the Treg cells in the CNS during T. gondii infection are Th1-polarized, exemplified by T-bet, CXCR3, and IFN-γ expression. Unlike effector CD4+ T cells, an MHC Class II tetramer reagent specific for T. gondii did not recognize Treg cells isolated from the CNS. Likewise, TCR sequencing revealed minimal overlap in TCR sequence between effector and regulatory T cells in the CNS. Whereas effector T cells are found in the brain parenchyma where parasites are present, Treg cells were restricted to the meninges and perivascular spaces. The use of intravital imaging revealed that activated CD4+ T cells within the meninges were highly migratory, while Treg cells moved more slowly and were found in close association with CD11c+ cells. To test whether the behavior of Tregs in the meninges is influenced by interactions with CD11c+ cells, mice were treated with anti-LFA-1 antibodies to reduce the number of CD11c+ cells in this space. The anti-LFA-1 treatment led to fewer contacts between Tregs and the remaining CD11c+ cells and increased the speed of Treg cell migration. These data suggest that Treg cells are anatomically restricted within the CNS and the interaction with CD11c+ populations regulates their local behavior during T. gondii infection. PMID:28389591

  7. In vivo human apolipoprotein E isoform fractional turnover rates in the CNS.

    Directory of Open Access Journals (Sweden)

    Kristin R Wildsmith

    Full Text Available Apolipoprotein E (ApoE is the strongest genetic risk factor for Alzheimer's disease and has been implicated in the risk for other neurological disorders. The three common ApoE isoforms (ApoE2, E3, and E4 each differ by a single amino acid, with ApoE4 increasing and ApoE2 decreasing the risk of Alzheimer's disease (AD. Both the isoform and amount of ApoE in the brain modulate AD pathology by altering the extent of amyloid beta (Aβ peptide deposition. Therefore, quantifying ApoE isoform production and clearance rates may advance our understanding of the role of ApoE in health and disease. To measure the kinetics of ApoE in the central nervous system (CNS, we applied in vivo stable isotope labeling to quantify the fractional turnover rates of ApoE isoforms in 18 cognitively-normal adults and in ApoE3 and ApoE4 targeted-replacement mice. No isoform-specific differences in CNS ApoE3 and ApoE4 turnover rates were observed when measured in human CSF or mouse brain. However, CNS and peripheral ApoE isoform turnover rates differed substantially, which is consistent with previous reports and suggests that the pathways responsible for ApoE metabolism are different in the CNS and the periphery. We also demonstrate a slower turnover rate for CSF ApoE than that for amyloid beta, another molecule critically important in AD pathogenesis.

  8. Elevated interferon-gamma in CNS inflammatory disease: a potential complication for bone marrow reconstitution in MS

    DEFF Research Database (Denmark)

    Hassan-Zahraee, M; Tran, E H; Bourbonnière, L

    2000-01-01

    but levels were higher in IFNgamma transgenics. BM transplantation into IFNgamma-deficient recipients also had a high failure rate. Transplants of BM from mice lacking expression of IFNgamma-receptor failed, whereas IFNgamma-deficient grafts survived, suggesting that IFNgamma response status of the graft can......Bone marrow transplantation (BMT) is increasingly used to treat Multiple Sclerosis (MS) a CNS inflammatory disease with elevated CNS and systemic IFNgamma levels. We wished to determine the effect of IFNgamma on BM graft survival in a transgenic mouse model for chronic MS. BM transplantation...... into transgenic mice which express elevated levels of IFNgamma in the CNS was unsuccessful. By contrast, there was 100% survival of even fully allogeneic, T-depleted transplants to transgenics that over express TNFalpha in the CNS, using the same MBP promoter. IFNgamma was detectable in spleen of irradiated mice...

  9. CNS-targets in control of energy and glucose homeostasis.

    Science.gov (United States)

    Kleinridders, André; Könner, A Christine; Brüning, Jens C

    2009-12-01

    The exceeding efforts in understanding the signals initiated by nutrients and hormones in the central nervous system (CNS) to regulate glucose and energy homeostasis have largely revolutionized our understanding of the neurocircuitry in control of peripheral metabolism. The ability of neurons to sense nutrients and hormones and to adopt a coordinated response to these signals is of crucial importance in controlling food intake, energy expenditure, glucose and lipid metabolism. Anatomical lesion experiments, pharmacological inhibition of signaling pathways, and, more recently, the analysis of conditional mouse mutants with modifications of hormone and nutrient signaling in defined neuronal populations have broadened our understanding of these complex neurocircuits. This review summarizes recent findings regarding the role of the CNS in sensing and transmitting nutritional and hormonal signals to control energy and glucose homeostasis and aims to define them as potential novel drug targets for the treatment of obesity and type 2 diabetes mellitus.

  10. Número e espaçamento entre hastes de guia de onda para medida da umidade do solo com TDR Number and spacing between wave guide rods for measurement of soil water content with TDR

    Directory of Open Access Journals (Sweden)

    Eugênio F. Coelho

    2003-08-01

    feasibility of the use of wave guides of two and three rods with different spacings. Disturbed soil samples were packed in PVC tube segments of 0.075 m diameter. Two sets of 24 have guides were constructed. One of this sets had a capacitor. In each set one half of the wave guides had two rods and the other half contained three rods. The rod spacing varied from 0.009 to 0.022 m. Soil water content data from gravimetry and soil bulk dielectric constant values from Trase System analyzer were collected during drying process with water content values ranging from 0.31 to 0.13 m³ m-3. Five mathematical models were fitted to water content and bulk dielectric constant data. The Malicki's model was the most adequate for estimating soil water content as a function of bulk dielectric constant. The wave guides with three rods 0.017 m apart from each other showed the best performance. The three-rod wave-guides without capacitor performed better for water content determination than the two-rod wave-guides without capacitor. The three-rod wave-guides without capacitor performed better than three-rod wave-guides with capacitor.

  11. Mast Cells and Innate Lymphoid Cells: Underappreciated Players in CNS Autoimmune Demyelinating Disease.

    Science.gov (United States)

    Brown, Melissa A; Weinberg, Rebecca B

    2018-01-01

    Multiple sclerosis (MS) and its mouse model, experimental autoimmune encephalomyelitis, are autoimmune CNS inflammatory diseases. As a result of a breakdown in the relatively impermeable blood-brain barrier (BBB) in affected individuals, myelin-specific CD4 + and CD8 + T cells gain entry into the immune privileged CNS and initiate myelin, oligodendrocyte, and nerve axon destruction. However, despite the absolute requirement for T cells, there is increasing evidence that innate immune cells also play critical amplifying roles in disease pathogenesis. By modulating the character and magnitude of the myelin-reactive T cell response and regulating BBB integrity, innate cells affect both disease initiation and progression. Two classes of innate cells, mast cells and innate lymphoid cells (ILCs), have been best studied in models of allergic and gastrointestinal inflammatory diseases. Yet, there is emerging evidence that these cell types also exert a profound influence in CNS inflammatory disease. Both cell types are residents within the meninges and can be activated early in disease to express a wide variety of disease-modifying cytokines and chemokines. In this review, we discuss how mast cells and ILCs can have either disease-promoting or -protecting effects on MS and other CNS inflammatory diseases and how sex hormones may influence this outcome. These observations suggest that targeting these cells and their unique mediators can be exploited therapeutically.

  12. Serial brain MRI findings in CNS involvement of familial erythrophagocytic lymphohistiocytosis: a case report

    International Nuclear Information System (INIS)

    Cho, Kyung Soo; Yoo, Jeong Hyun; Suh, Jeong Soo; Ryu, Kyung Ha; Hong, Ki Sook; Kim, Hak Jin

    2002-01-01

    Familial erythrophagocytic lymphohistiocytosis is a fatal early childhood disorder characterized by multiorgan lymphohistiocytic infiltration and active hemophagocytosis. Involvement of the central nervous system (CNS) is not uncommon and is characterized by rapidly progressive tissue damage affecting both the gray and white matter. We encountered a case of familial erythrophagocytic lymphohistiocytosis with CNS involvement. Initial T2-weighted MRI of the brain demonstrated high signal intensity in the right thalamus, though after chemotherapy, which led to the relief of neurologic symptoms, this disappeared. After four months. however, the patient's neurologic symptoms recurred, and follow-up T2-weighted MR images showed high signal intensity in the thalami, basal ganglia, and cerebral and cerebellar white matter. Brain MRI is a useful imaging modality for the evaluation of CNS involvement and monitoring the response to treatment

  13. Towards an Ultrasonic Guided Wave Procedure for Health Monitoring of Composite Vessels: Application to Hydrogen-Powered Aircraft.

    Science.gov (United States)

    Yaacoubi, Slah; McKeon, Peter; Ke, Weina; Declercq, Nico F; Dahmene, Fethi

    2017-09-19

    This paper presents an overview and description of the approach to be used to investigate the behavior and the defect sensitivity of various ultrasonic guided wave (UGW) modes propagating specifically in composite cylindrical vessels in the framework of the safety of hydrogen energy transportation such as hydrogen-powered aircrafts. These structures which consist of thick and multi-layer composites are envisioned for housing hydrogen gas at high pressures. Due to safety concerns associated with a weakened structure, structural health monitoring techniques are needed. A procedure for optimizing damage detection in these structural types is presented. It is shown that a finite element method can help identify useful experimental parameters including frequency range, excitation type, and receiver placement.

  14. Novel CNS drug discovery and development approach: model-based integration to predict neuro-pharmacokinetics and pharmacodynamics.

    Science.gov (United States)

    de Lange, Elizabeth C M; van den Brink, Willem; Yamamoto, Yumi; de Witte, Wilhelmus E A; Wong, Yin Cheong

    2017-12-01

    CNS drug development has been hampered by inadequate consideration of CNS pharmacokinetic (PK), pharmacodynamics (PD) and disease complexity (reductionist approach). Improvement is required via integrative model-based approaches. Areas covered: The authors summarize factors that have played a role in the high attrition rate of CNS compounds. Recent advances in CNS research and drug discovery are presented, especially with regard to assessment of relevant neuro-PK parameters. Suggestions for further improvements are also discussed. Expert opinion: Understanding time- and condition dependent interrelationships between neuro-PK and neuro-PD processes is key to predictions in different conditions. As a first screen, it is suggested to use in silico/in vitro derived molecular properties of candidate compounds and predict concentration-time profiles of compounds in multiple compartments of the human CNS, using time-course based physiology-based (PB) PK models. Then, for selected compounds, one can include in vitro drug-target binding kinetics to predict target occupancy (TO)-time profiles in humans. This will improve neuro-PD prediction. Furthermore, a pharmaco-omics approach is suggested, providing multilevel and paralleled data on systems processes from individuals in a systems-wide manner. Thus, clinical trials will be better informed, using fewer animals, while also, needing fewer individuals and samples per individual for proof of concept in humans.

  15. Immune regulation and CNS autoimmune disease

    DEFF Research Database (Denmark)

    Antel, J P; Owens, T

    1999-01-01

    The central nervous system is a demonstrated target of both clinical and experimental immune mediated disorders. Immune regulatory mechanisms operative at the levels of the systemic immune system, the blood brain barrier, and within the CNS parenchyma are important determinants of the intensity...... and duration of the tissue directed injury. Convergence of research, involving direct manipulation of specific cells and molecular mediators in animal models and in vitro analysis of human immune and neural cells and tissues, is providing increasing insight into the role of these immune regulatory functions...

  16. Wave Tank Testing and Model Validation of an Autonomous Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Bret Bosma

    2015-08-01

    Full Text Available A key component in bringing ocean wave energy converters from concept to commercialization is the building and testing of scaled prototypes to provide model validation. A one quarter scale prototype of an autonomous two body heaving point absorber was modeled, built, and tested for this work. Wave tank testing results are compared with two hydrodynamic and system models—implemented in both ANSYS AQWA and MATLAB/Simulink—and show model validation over certain regions of operation. This work will serve as a guide for future developers of wave energy converter devices, providing insight in taking their design from concept to prototype stage.

  17. Neurolymphomatosis: An International Primary CNS Lymphoma Collaborative Group report

    NARCIS (Netherlands)

    S. Grisariu (Sigal); B. Avni (Batia); T.T. Batchelor (Tracy); M.J. van den Bent (Martin); F. Bokstein (Felix); D. Schiff (David); O. Kuittinen (Outi); M.C. Chamberlain (Marc C.); P. Roth (Patrick); A. Nemets (Anatoly); E. Shalom (Edna); D. Ben-Yehuda (Dina); T. Siegal (Tali)

    2010-01-01

    textabstractNeurolymphomatosis (NL) is a rare clinical entity. The International Primary CNS Lymphoma Collaborative Group retrospectively analyzed 50 patients assembled from 12 centers in 5 countries over a 16-year period. NL was related to non-Hodgkin lymphoma in 90% and to acute leukemia in 10%.

  18. Regulation of Adult CNS Axonal Regeneration by the Post-transcriptional Regulator Cpeb1

    Directory of Open Access Journals (Sweden)

    Wilson Pak-Kin Lou

    2018-01-01

    Full Text Available Adult mammalian central nervous system (CNS neurons are unable to regenerate following axonal injury, leading to permanent functional impairments. Yet, the reasons underlying this regeneration failure are not fully understood. Here, we studied the transcriptome and translatome shortly after spinal cord injury. Profiling of the total and ribosome-bound RNA in injured and naïve spinal cords identified a substantial post-transcriptional regulation of gene expression. In particular, transcripts associated with nervous system development were down-regulated in the total RNA fraction while remaining stably loaded onto ribosomes. Interestingly, motif association analysis of post-transcriptionally regulated transcripts identified the cytoplasmic polyadenylation element (CPE as enriched in a subset of these transcripts that was more resistant to injury-induced reduction at the transcriptome level. Modulation of these transcripts by overexpression of the CPE binding protein, Cpeb1, in mouse and Drosophila CNS neurons promoted axonal regeneration following injury. Our study uncovered a global evolutionarily conserved post-transcriptional mechanism enhancing regeneration of injured CNS axons.

  19. Nuclear Containment Inspection Using AN Array of Guided Wave Sensors for Damage Localization

    Science.gov (United States)

    Cobb, A. C.; Fisher, J. L.

    2010-02-01

    Nuclear power plant containments are typically both the last line of defense against the release of radioactivity to the environment and the first line of defense to protect against intrusion from external objects. As such, it is important to be able to locate any damage that would limit the integrity of the containment itself. Typically, a portion of the containment consists of a metallic pressure boundary that encloses the reactor primary circuit. It is made of thick steel plates welded together, lined with concrete and partially buried, limiting areas that can be visually inspected for corrosion damage. This study presents a strategy using low frequency (<50 kHz) guided waves to find corrosion-like damage several meters from the probe in a mock-up of the containment vessel. A magnetostrictive sensor (MsS) is scanned across the width of the vessel, acquiring waveforms at a fixed interval. A beam forming strategy is used to localize the defects. Experimental results are presented for a variety of damage configurations, demonstrating the efficacy of this technique for detecting damage smaller than the ultrasonic wavelength.

  20. A case study of application of guided waves for detecting corrosion in pipelines

    Science.gov (United States)

    Rostami, Javad; Safizadeh, Mir Saeed

    2012-05-01

    Every year noticeable amount of money is spent on fixing and replacing the damaged pipes which carry gas and fuel. Since there is a possibility for a catastrophic failure, knowing the proper time of this repair is of great importance. Because significant proportion of failures is due to wall thinning of pipes because of the corrosion, detecting the wall thinning has been a main part of nondestructive testing of pipes. There are wide variety of NDT techniques to detect this kind of defect such as conventional ultrasonic, eddy current, radiography etc. but some of these techniques, for example conventional ultrasonic needs the insulation of pipes removed and in some other cases such as radiography the test is not done at a reasonable speed. A new method of nondestructive testing of pipes which has the potential to test a long distance in a short period of time and does not need the whole insulation removed, has drawn a lot of attention. In this paper, the ability of ultrasonic guided waves for detecting corrosion in gas pipelines is experimentally investigated.

  1. Application of the cylindrically guided wave technique for bolt and pump-shaft inspections

    International Nuclear Information System (INIS)

    Light, G.M.; Ruescher, E.H.; Bloom, E.A.; Tsai, Y.M.

    1990-01-01

    Southwest Research Institute (SwRI) has been working with the cylindrically guided wave technique (CGWT) since late 1982. The initial work was aimed at inspecting reactor pressure vessel hold-down studs. The CGWT was shown to be able to detect defects as small as 0.060 inch (1.5 mm) deep through metal paths up to 120 inches (304 cm) in stud bolt carbon steel. Later developments in the application of CGWT were aimed at inspecting reactor coolant pump (RCP) shafts. The RCP shafts are usually approximately 2 meters long and have changing diameters along the length, from approximately 12 cm to 23 cm in discrete steps. The pump shafts have been susceptible to small cracks and can be inspected most cost-effectively from the top of the shaft. A matrix transducer composed of six 1-inch (2.54-cm) diameter transducers along with pulsing and receiving electronics (EPRI Pump-Shaft Inspection System) was developed during 1988. A patent application for this technology has been made. This report describes the work conducted during 1989 and the results obtained

  2. On the effects of geometry on guided electromagnetic waves

    Directory of Open Access Journals (Sweden)

    Tucker Robin W.

    2007-01-01

    Full Text Available The method of moving (Cartan coframes is used to analyze the influence of geometry on the behavior of electromagnetic fields in confining guides and the effect of such fields on their ultra-relativistic sources. Such issues are of relevance to a number of topical problems in accelerator science where the need to control the motion of high current-density micro-meter size bunches of relativistic radiating charge remains a technical and theoretical challenge. By dimensionally reducing the exterior equations for the sources and fields on spacetime using symmetries exhibited by the confining guides one achieves a unifying view that offers natural perturbative approaches for dealing with smooth non-uniform and curved guides. The issue of the back-reaction of radiation fields on the sources is approached in terms of a simple charged relativistic fluid model. .

  3. Detail Design of the hydrogen system and the gas blanketing system for the HANARO-CNS

    International Nuclear Information System (INIS)

    Choi, Jung Woon; Kim, Hark Rho; Kim, Young Ki; Wu, Sang Ik; Kim, Bong Su; Lee, Yong Seop

    2007-04-01

    The cold neutron source (CNS), which will be installed in the vertical CN hole of the reflector tank at HANARO, makes thermal neutrons to moderate into the cold neutrons with the ranges of 0.1 ∼ 10 meV passing through a moderator at about 22K. A moderator to produce cold neutrons is liquid hydrogen, which liquefies by the heat transfer with cryogenic helium flowing from the helium refrigeration system (HRS). Because of its installed location, the hydrogen system is designed to be surrounded by the gas blanketing system to notify the leakage on the system and to prevent hydrogen leakage out of the CNS. The hydrogen system, consisted of hydrogen charging unit, hydrogen storage unit, hydrogen buffer tank, and hydrogen piping, is designed to smoothly and safely supply hydrogen to and to draw back hydrogen from the IPA of the CNS under the HRS operation mode. Described is that calculation for total required hydrogen amount in the CNS as well as operation schemes of the hydrogen system. The gas blanketing system (GBS) is designed for the supply of the compressed nitrogen gas into the air pressurized valves for the CNS, to isolate the hydrogen system from the air and the water, and to prevent air or water intrusion into the vacuum system as well as the hydrogen system. All detail descriptions are shown inhere as well as the operation scheme for the GBS

  4. How to turn gravity waves into Alfven waves and other such tricks

    International Nuclear Information System (INIS)

    Newington, Marie E; Cally, Paul S

    2011-01-01

    Recent observations of travelling gravity waves at the base of the chromosphere suggest an interplay between gravity wave propagation and magnetic field. Our aims are: to explain the observation that gravity wave flux is suppressed in magnetic regions; to understand why we see travelling waves instead of standing waves; and to see if gravity waves can undergo mode conversion and couple to Alfven waves in regions where the plasma beta is of order unity. We model gravity waves in a VAL C atmosphere, subject to a uniform magnetic field of various orientations, considering both adiabatic and radiatively damped propagation. Results indicate that in the presence of a magnetic field, the gravity wave can propagate as a travelling wave, with the magnetic field orientation playing a crucial role in determining the wave character. For the majority of magnetic field orientations, the gravity wave is reflected at low heights as a slow magneto-acoustic wave, explaining the observation of reduced flux in magnetic regions. In a highly inclined magnetic field, the gravity wave undergoes mode conversion to either field guided acoustic waves or Alfven waves. The primary effect of incorporating radiative damping is a reduction in acoustic and magnetic fluxes measured at the top of the integration region. By demonstrating the mode conversion of gravity waves to Alfven waves, this work identifies a possible pathway for energy transport from the solar surface to the upper atmosphere.

  5. Flavonoids and the CNS

    DEFF Research Database (Denmark)

    Jäger, Anna Katharina; Saaby, Lasse

    2011-01-01

    Flavonoids are present in almost all terrestrial plants, where they provide UV-protection and colour. Flavonoids have a fused ring system consisting of an aromatic ring and a benzopyran ring with a phenyl substituent. The flavonoids can be divided into several classes depending on their structure....... Flavonoids are present in food and medicinal plants and are thus consumed by humans. They are found in plants as glycosides. Before oral absorption, flavonoids undergo deglycosylation either by lactase phloridzin hydrolase or cytosolic ß-glucocidase. The absorbed aglycone is then conjugated by methylation......, sulphatation or glucuronidation. Both the aglycones and the conjugates can pass the blood-brain barrier. In the CNS several flavones bind to the benzodiazepine site on the GABA(A)-receptor resulting in sedation, anxiolytic or anti-convulsive effects. Flavonoids of several classes are inhibitors of monoamine...

  6. Current status of self rectifying air turbines for wave energy conversion

    International Nuclear Information System (INIS)

    Setoguchi, Toshiaki; Takao, Manabu

    2006-01-01

    This paper reviews the present state of the art on self rectifying air turbines, which could be used for wave energy conversion. The overall performances of the turbines under irregular wave conditions, which typically occur in the sea, have been evaluated numerically and compared from the viewpoints of their starting and running characteristics. The types of turbine included in the paper are: (a) Wells turbine with guide vanes (WTGV); (b) turbine with self-pitch-controlled blades (TSCB); (c) biplane Wells turbine with guide vanes (BWGV); (d) impulse turbine with self-pitch-controlled guide vanes (ISGV); and (e) impulse turbine with fixed guide vanes (IFGV). As a result, under irregular wave conditions, it is found that the running and starting characteristics of impulse type turbines could be superior to those of the Wells turbine. Moreover, the authors have explained the mechanism of the hysteretic behavior of the Wells turbine and the necessity of links for improvement of the performance of the ISGV

  7. A map of taste neuron projections in the Drosophila CNS

    Indian Academy of Sciences (India)

    2014-07-08

    Jul 8, 2014 ... information that they represent. The extensive ... physiology and behaviour in the wild type and in these mutants .... taste information is processed in the CNS. 2. ..... gene affecting the specificity of the chemosensory neurons of.

  8. Phantom limb pain: a case of maladaptive CNS plasticity?

    DEFF Research Database (Denmark)

    Flor, Herta; Nikolajsen, Lone; Jensen, Troels Staehelin

    2006-01-01

    might be a phenomenon of the CNS that is related to plastic changes at several levels of the neuraxis and especially the cortex. Here, we discuss the evidence for putative pathophysiological mechanisms with an emphasis on central, and in particular cortical, changes. We cite both animal and human...

  9. Experimental analysis on stress wave in inhomogeneous multi-layered structures

    International Nuclear Information System (INIS)

    Cho, Yun Ho; Ham, Hyo Sick

    1998-01-01

    The guided wave propagation in inhomogeneous multi-layered structures is experimentally explored based on theoretical dispersion curves. It turns out that proper selection of incident angle and frequency is critical for guided wave generation in multi-layered structures. Theoretical dispersion curves greatly depend on adhesive zone thickness, layer thickness and material properties. It was possible to determine the adhesive zone thickness of an inhomogeneous multi-layered structure by monitoring experimentally the change of dispersion curves.

  10. CLIPPERS among patients diagnosed with non-specific CNS neuroinflammatory diseases

    DEFF Research Database (Denmark)

    Kerrn-Jespersen, B M; Lindelof, M; Illes, Zsolt

    2014-01-01

    Chronic Lymphocytic Inflammation with Pontine Perivascular Enhancement Responsive to Steroids (CLIPPERS) is an inflammatory CNS disorder characterized by 1) subacute onset of cerebellar and brainstem symptoms, 2) peripontine contrast-enhancing perivascular lesions with a "salt-and-pepper" appeara...

  11. Nonlinear Electron Waves in Strongly Magnetized Plasmas

    DEFF Research Database (Denmark)

    Pécseli, Hans; Juul Rasmussen, Jens

    1980-01-01

    Weakly nonlinear dispersive electron waves in strongly magnetized plasma are considered. A modified nonlinear Schrodinger equation is derived taking into account the effect of particles resonating with the group velocity of the waves (nonlinear Landau damping). The possibility of including the ion...... dynamics in the analysis is also demonstrated. As a particular case the authors investigate nonlinear waves in a strongly magnetized plasma filled wave-guide, where the effects of finite geometry are important. The relevance of this problem to laboratory experiments is discussed....

  12. Shear Alfven wave excitation by direct antenna coupling and fast wave resonant mode conversion

    International Nuclear Information System (INIS)

    Borg, G.G.

    1994-01-01

    Antenna coupling to the shear Alfven wave by both direct excitation and fast wave resonant mode conversion is modelled analytically for a plasma with a one dimensional linear density gradient. We demonstrate the existence of a shear Alfven mode excited directly by the antenna. For localised antennas, this mode propagates as a guided beam along the steady magnetic field lines intersecting the antenna. Shear Alfven wave excitation by resonant mode conversion of a fast wave near the Alfven resonance layer is also demonstrated and we prove that energy is conserved in this process. We compare the efficiency of these two mechanisms of shear Alfven wave excitation and present a simple analytical formula giving the ratio of the coupled powers. Finally, we discuss the interpretation of some experimental results. 45 refs., 7 figs

  13. Laser Generated Leaky Acoustic Waves for Needle Visualization.

    Science.gov (United States)

    Wu, Kai-Wen; Wang, Yi-An; Li, Pai-Chi

    2018-04-01

    Ultrasound (US)-guided needle operation is usually used to visualize both tissue and needle position such as tissue biopsy and localized drug delivery. However, the transducer-needle orientation is limited due to reflection of the acoustic waves. We proposed a leaky acoustic wave method to visualize the needle position and orientation. Laser pulses are emitted on top of the needle to generate acoustic waves; then, these acoustic waves propagate along the needle surface. Leaky wave signals are detected by the US array transducer. The needle position can be calculated by phase velocities of two different wave modes and their corresponding emission angles. In our experiments, a series of needles was inserted into a tissue mimicking phantom and porcine tissue to evaluate the accuracy of the proposed method. The results show that the detection depth is up to 51 mm and the insertion angle is up to 40° with needles of different diameters. It is demonstrated that the proposed approach outperforms the conventional B-mode US-guided needle operation in terms of the detection range while achieving similar accuracy. The proposed method reveals the potentials for further clinical applications.

  14. Congenital diseases and syndromes. An illustrated radiological guide

    Energy Technology Data Exchange (ETDEWEB)

    Al-Tubaikh, Jarrah Ali [Universitaetsklinikum Muenchen, Klinikum Grosshadern (Germany). Inst. fuer Klinische Radiologie; Sabah Hospital (Kuwait). Dept. of Diagnostic Radiology; Reiser, Maximilian F. [Universitaetsklinikum Muenchen, Klinikum Grosshadern (Germany). Inst. fuer Klinische Radiologie

    2009-07-01

    Congenital Diseases and Syndromes - An Illustrated Radiological Guide is designed to serve the radiologist as an easy-to-use visual guide that illustrates the typical diagnostic radiological features of the most common congenital diseases and syndromes. The book is organised according to body system, with chapters focusing on the CNS, the head and neck, the chest and heart, the abdomen and pelvis, and the musculoskeletal system. A final chapter is devoted to phakomatosis. Each syndrome or disease is illustrated by multiple images as well as by high-quality digital medical illustrations depicting those radiological signs that are difficult to detect. The reader is thereby familiarised with the various congenital anomalies from the radiological point of view. In addition, etiology, diagnostic criteria, and main symptoms are described, and potential differential diagnoses highlighted. This book will be immensely useful for junior radiologists, radiology students, and doctors in any specialty who are interested in congenital malformations and syndromes. (orig.)

  15. Congenital diseases and syndromes. An illustrated radiological guide

    International Nuclear Information System (INIS)

    Al-Tubaikh, Jarrah Ali; Sabah Hospital; Reiser, Maximilian F.

    2009-01-01

    Congenital Diseases and Syndromes - An Illustrated Radiological Guide is designed to serve the radiologist as an easy-to-use visual guide that illustrates the typical diagnostic radiological features of the most common congenital diseases and syndromes. The book is organised according to body system, with chapters focusing on the CNS, the head and neck, the chest and heart, the abdomen and pelvis, and the musculoskeletal system. A final chapter is devoted to phakomatosis. Each syndrome or disease is illustrated by multiple images as well as by high-quality digital medical illustrations depicting those radiological signs that are difficult to detect. The reader is thereby familiarised with the various congenital anomalies from the radiological point of view. In addition, etiology, diagnostic criteria, and main symptoms are described, and potential differential diagnoses highlighted. This book will be immensely useful for junior radiologists, radiology students, and doctors in any specialty who are interested in congenital malformations and syndromes. (orig.)

  16. Inflammatory cytokines in the brain: does the CNS shape immune responses?

    Science.gov (United States)

    Owens, T; Renno, T; Taupin, V; Krakowski, M

    1994-12-01

    Immune responses in the central nervous system (CNS) have traditionally been regarded as representing the intrusion of an unruly, ill-behaved mob of leukocytes into the well-ordered and organized domain of thought and reason. However, results accumulated over the past few years suggest that, far from being an immunologically privileged organ, T lymphocytes may be regular and frequent visitors to the CNS, for purposes of immune surveillance. Here, Trevor Owens and colleagues propose that the brain itself can regulate or shape immune responses therein. Furthermore, given that the immune cells may be subverted to autoimmunity, they suggest that the study of inflammatory autoimmune disease in the brain may shed light on the ability of the local environment to regulate immune responses.

  17. Malignant lymphoma in central nervous system (CNS)

    International Nuclear Information System (INIS)

    Fujiyoshi, Kenji; Fukuyama, Hidenao; Akiguchi, Ichiro; Kameyama, Masakuni; Nishimura, Toshio.

    1984-01-01

    A 71-year-old male was admitted to Kohka Public Hospital on January 4, 1980, because of frequent vomiting and recent memory loss. Two weeks before admission upper G-I series showed no abnormalities. Physical and neurological examinations revealed no abnormalities except for slightly apathetic appearance and recent memory loss. Mild pleocytosis and marked increase of protein in CSF were observed. CT scan on January 17 showed high density areas in both medial sides of temporal lobes with remarkable contrast enhancement. His memory and, consciousness disturbances gradually aggravated, accompanied by abnormal density spreading around the ventricle walls like ventriculitis. He was transfered to Kyoto University Hospital on March 17, and malignant lymphoma was diagnosed on the basis of CSF cytology. Radiation and chemotherapy alleviated the CNS involvement and he regained normal mental function. On June 16, he developed pneumonia followed by status epilepticus. Autopsy findings revealed no lymphoid cell infiltration, but fibrous tissues in both hippocampal gyri and lymphomatous cells in the liver, which could not be suspected on clinical examinations. Apparent malignant lymphoma cells were not found in lymph nodes. This case indicated peculiar evolution of malignant lymphoma from liver to CNS or vice versa. We could not decide which organ was primary. CT findings of this case was very interesting; they resembled ventriculitis, which simulate tumors such as medulloblastoma or ependymoma spreading under ependymal lining. (author)

  18. Towards an Ultrasonic Guided Wave Procedure for Health Monitoring of Composite Vessels: Application to Hydrogen-Powered Aircraft

    Directory of Open Access Journals (Sweden)

    Slah Yaacoubi

    2017-09-01

    Full Text Available This paper presents an overview and description of the approach to be used to investigate the behavior and the defect sensitivity of various ultrasonic guided wave (UGW modes propagating specifically in composite cylindrical vessels in the framework of the safety of hydrogen energy transportation such as hydrogen-powered aircrafts. These structures which consist of thick and multi-layer composites are envisioned for housing hydrogen gas at high pressures. Due to safety concerns associated with a weakened structure, structural health monitoring techniques are needed. A procedure for optimizing damage detection in these structural types is presented. It is shown that a finite element method can help identify useful experimental parameters including frequency range, excitation type, and receiver placement.

  19. A Novel Robust H∞ Filter Based on Krein Space Theory in the SINS/CNS Attitude Reference System

    Directory of Open Access Journals (Sweden)

    Fei Yu

    2016-03-01

    Full Text Available Owing to their numerous merits, such as compact, autonomous and independence, the strapdown inertial navigation system (SINS and celestial navigation system (CNS can be used in marine applications. What is more, due to the complementary navigation information obtained from two different kinds of sensors, the accuracy of the SINS/CNS integrated navigation system can be enhanced availably. Thus, the SINS/CNS system is widely used in the marine navigation field. However, the CNS is easily interfered with by the surroundings, which will lead to the output being discontinuous. Thus, the uncertainty problem caused by the lost measurement will reduce the system accuracy. In this paper, a robust H∞ filter based on the Krein space theory is proposed. The Krein space theory is introduced firstly, and then, the linear state and observation models of the SINS/CNS integrated navigation system are established reasonably. By taking the uncertainty problem into account, in this paper, a new robust H∞ filter is proposed to improve the robustness of the integrated system. At last, this new robust filter based on the Krein space theory is estimated by numerical simulations and actual experiments. Additionally, the simulation and experiment results and analysis show that the attitude errors can be reduced by utilizing the proposed robust filter effectively when the measurements are missing discontinuous. Compared to the traditional Kalman filter (KF method, the accuracy of the SINS/CNS integrated system is improved, verifying the robustness and the availability of the proposed robust H∞ filter.

  20. Attenuation Analysis of Lamb Waves Using the Chirplet Transform

    NARCIS (Netherlands)

    Kerber, Florian; Sprenger, Helge; Niethammer, Marc; Luangvilai, Kritsakorn; Jacobs, Laurence J.

    2010-01-01

    Guided Lamb waves are commonly used in nondestructive evaluation to monitor plate-like structures or to characterize properties of composite or layered materials. However, the dispersive propagation and multimode excitability of Lamb waves complicate their analysis. Advanced signal processing

  1. Maternal stress, nutrition and physical activity: Impact on immune function, CNS development and psychopathology.

    Science.gov (United States)

    Marques, Andrea Horvath; Bjørke-Monsen, Anne-Lise; Teixeira, Antônio L; Silverman, Marni N

    2015-08-18

    Evidence suggests that maternal and fetal immune dysfunction may impact fetal brain development and could play a role in neurodevelopmental disorders, although the definitive pathophysiological mechanisms are still not completely understood. Stress, malnutrition and physical inactivity are three maternal behavioral lifestyle factors that can influence immune and central nervous system (CNS) functions in both the mother and fetus, and may therefore, increase risk for neurodevelopmental/psychiatric disorders. First, we will briefly review some aspects of maternal-fetal immune system interactions and development of immune tolerance. Second, we will discuss the bidirectional communication between the immune system and CNS and the pathways by which immune dysfunction could contribute to neurodevelopmental disorders. Third, we will discuss the effects of prenatal stress and malnutrition (over and undernutrition) on perinatal programming of the CNS and immune system, and how this might influence neurodevelopment. Finally, we will discuss the beneficial impact of physical fitness during pregnancy on the maternal-fetal unit and infant and how regular physical activity and exercise can be an effective buffer against stress- and inflammatory-related disorders. Although regular physical activity has been shown to promote neuroplasticity and an anti-inflammatory state in the adult, there is a paucity of studies evaluating its impact on CNS and immune function during pregnancy. Implementing stress reduction, proper nutrition and ample physical activity during pregnancy and the childbearing period may be an efficient strategy to counteract the impact of maternal stress and malnutrition/obesity on the developing fetus. Such behavioral interventions could have an impact on early development of the CNS and immune system and contribute to the prevention of neurodevelopmental and psychiatric disorders. Further research is needed to elucidate this relationship and the underlying

  2. SPARC and GluA1-Containing AMPA Receptors Promote Neuronal Health Following CNS Injury

    Directory of Open Access Journals (Sweden)

    Emma V. Jones

    2018-02-01

    Full Text Available The proper formation and maintenance of functional synapses in the central nervous system (CNS requires communication between neurons and astrocytes and the ability of astrocytes to release neuromodulatory molecules. Previously, we described a novel role for the astrocyte-secreted matricellular protein SPARC (Secreted Protein, Acidic and Rich in Cysteine in regulating α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs and plasticity at developing synapses. SPARC is highly expressed by astrocytes and microglia during CNS development but its level is reduced in adulthood. Interestingly, SPARC has been shown to be upregulated in CNS injury and disease. However, the role of SPARC upregulation in these contexts is not fully understood. In this study, we investigated the effect of chronic SPARC administration on glutamate receptors on mature hippocampal neuron cultures and following CNS injury. We found that SPARC treatment increased the number of GluA1-containing AMPARs at synapses and enhanced synaptic function. Furthermore, we determined that the increase in synaptic strength induced by SPARC could be inhibited by Philanthotoxin-433, a blocker of homomeric GluA1-containing AMPARs. We then investigated the effect of SPARC treatment on neuronal health in an injury context where SPARC expression is upregulated. We found that SPARC levels are increased in astrocytes and microglia following middle cerebral artery occlusion (MCAO in vivo and oxygen-glucose deprivation (OGD in vitro. Remarkably, chronic pre-treatment with SPARC prevented OGD-induced loss of synaptic GluA1. Furthermore, SPARC treatment reduced neuronal death through Philanthotoxin-433 sensitive GluA1 receptors. Taken together, this study suggests a novel role for SPARC and GluA1 in promoting neuronal health and recovery following CNS damage.

  3. Nogo-A is a reliable oligodendroglial marker in adult human and mouse CNS and in demyelinated lesions

    DEFF Research Database (Denmark)

    Kuhlmann, Tanja; Remington, Leah; Maruschak, Brigitte

    2007-01-01

    to be strongly expressed in mature oligodendrocytes in vivo. In the present investigation we analyzed the expression patterns of Nogo-A in adult mouse and human CNS as well as in demyelinating animal models and multiple sclerosis lesions. Nogo-A expression was compared with that of other frequently used...... oligodendroglial markers such as CC1, CNP, and in situ hybridization for proteolipid protein mRNA. Nogo-A strongly and reliably labeled oligodendrocytes in the adult CNS as well as in demyelinating lesions and thus represents a valuable tool for the identification of oligodendrocytes in human and mouse CNS tissue...

  4. Comparative analysis of acid sphingomyelinase distribution in the CNS of rats and mice following intracerebroventricular delivery.

    Directory of Open Access Journals (Sweden)

    Christopher M Treleaven

    Full Text Available Niemann-Pick A (NPA disease is a lysosomal storage disorder (LSD caused by a deficiency in acid sphingomyelinase (ASM activity. Previously, we reported that biochemical and functional abnormalities observed in ASM knockout (ASMKO mice could be partially alleviated by intracerebroventricular (ICV infusion of hASM. We now show that this route of delivery also results in widespread enzyme distribution throughout the rat brain and spinal cord. However, enzyme diffusion into CNS parenchyma did not occur in a linear dose-dependent fashion. Moreover, although the levels of hASM detected in the rat CNS were determined to be within the range shown to be therapeutic in ASMKO mice, the absolute amounts represented less than 1% of the total dose administered. Finally, our results also showed that similar levels of enzyme distribution are achieved across rodent species when the dose is normalized to CNS weight as opposed to whole body weight. Collectively, these data suggest that the efficacy observed following ICV delivery of hASM in ASMKO mice could be scaled to CNS of the rat.

  5. Guide device

    International Nuclear Information System (INIS)

    Brammer, C.M. Jr.

    1977-01-01

    Disclosed is a fuel handling guide tube centering device for use in nuclear reactors during fuel assembly handling operations. The device comprises an outer ring secured to the flange of a nuclear reactor pressure vessel, a rotatable table rotatably coupled to the outer ring, and a plurality of openings through the table. Truncated locating cones are positioned in each of the openings in the table, and the locating cones center the guide tube during fuel handling operations. The openings in the table are located such that each fuel assembly in the nuclear core may be aligned with one of the openings by a suitable rotation of the table. The locating cones thereby provide alignment between the fuel handling mechanism located in the guide tube and the individual fuel assemblies of the cone. The need for a device to provide alignment is especially critical for floating nuclear power plants, where wave motion may exist during fuel handling operations. 5 claims, 4 figures

  6. Elastic waves at periodically-structured surfaces and interfaces of solids

    Directory of Open Access Journals (Sweden)

    A. G. Every

    2014-12-01

    Full Text Available This paper presents a simple treatment of elastic wave scattering at periodically structured surfaces and interfaces of solids, and the existence and nature of surface acoustic waves (SAW and interfacial (IW waves at such structures. Our treatment is embodied in phenomenological models in which the periodicity resides in the boundary conditions. These yield zone folding and band gaps at the boundary of, and within the Brillouin zone. Above the transverse bulk wave threshold, there occur leaky or pseudo-SAW and pseudo-IW, which are attenuated via radiation into the bulk wave continuum. These have a pronounced effect on the transmission and reflection of bulk waves. We provide examples of pseudo-SAW and pseudo-IW for which the coupling to the bulk wave continuum vanishes at isloated points in the dispersion relation. These supersonic guided waves correspond to embedded discrete eigenvalues within a radiation continuum. We stress the generality of the phenomena that are exhibited at widely different scales of length and frequency, and their relevance to situations as diverse as the guiding of seismic waves in mine stopes, the metrology of periodic metal interconnect structures in the semiconductor industry, and elastic wave scattering by an array of coplanar cracks in a solid.

  7. Tendencies the treatment of the central nervous system (CNS) tumors

    International Nuclear Information System (INIS)

    Alert Silva, Jose; Jimenez Medina, Jose

    2004-01-01

    It is known that the treatment of the central nervous system (CNS) tumors is based on the use of surgery and radiotherapy (RT) and that chemotherapy (QMT) is used even more, as well as the other drugs. A bibliographic review was made to update the knowledge on the current trends and perspectives of RT applied to CNS tumors. The following were found among them: a) combinations of RT and CMT; b) radiosensitizers incorporated to the radiant treatment; c) angiogenesis inhibitors associated with RT; d) the scale-up or increase of the RT doses thanks to the development of new technologies, such as 3 D conformal radiotherapy, intensity- modulated radiotherapy, surgery and others. Another field of research is that of the changes in the rhythm or fractioning of the RT: hyperfractionated, accelerated, combinations of both, etc., which will allow mainly to increase the dosage scale-up

  8. Commercial viability of CNS drugs: balancing the risk/reward profile.

    Science.gov (United States)

    Johnson, Ginger S

    2014-01-01

    CNS has historically been a formidable therapeutic area in which to innovate owing to biological (e.g., complex neurobiology, difficulty reaching the target), as well as clinical (e.g., subjective clinical endpoints, high placebo response, lack of biomarkers) challenges. In the current market where many of the larger diseases are dominated by a generic standard of care, commercial challenges now make the triple threat of scientific-clinical-commercial risk too much for many players to tackle. However, opportunities do exist for smaller biotech companies to concentrate on narrowly focused patient populations associated with high unmet need for which risk can be tightly defined. In CNS, there are two major areas to balance the risk/reward profile and create commercially viable opportunities: To realize value, all companies (start-ups and big players) must define, measure and quantify clear and meaningful value to all stakeholders: physicians, patients, caregivers and payers. © 2013.

  9. Metallothionein Expression and Roles During Neuropathology in the CNS

    DEFF Research Database (Denmark)

    Penkowa, Milena

    2006-01-01

    , their receptors and neurotrophins (TGFb, TGFb-Receptor, bFGF, bFGF-Receptor, VEGF, NT-3, NT-4/5, NGF); angiogenesis; and growth cone formation. Hence, MT-I+II enhance CNS tissue repair as seen clearly after the cryogenic injury, after which MT-I+II promote substitution of the necrotic lesion cavity with a glial...

  10. Endovascular transplantation of stem cells to the injured rat CNS

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, Johan; Soederman, Mikael; Andersson, Tommy; Holmin, Staffan [Karolinska University Hospital, Department of Clinical Neuroscience, Karolinska Institutet, Department of Neuroradiology, Stockholm (Sweden); Le Blanc, Katarina [Karolinska University Hospital, Department of Stem Cell Research, Karolinska Institutet, Department of Clinical Immunology, Stockholm (Sweden)

    2009-10-15

    Transplantation procedures using intraparenchymal injection of stem cells result in tissue injury in addition to associated surgical risks. Intravenous injection of mesenchymal stem cells gives engraftment to lesions, but the method has low efficiency and specificity. In traumatic brain injuries (TBI), there is a transient breakdown of the blood-brain barrier and an inflammatory response, which increase migration of cells from blood to parenchyma. The aim of this investigation was to analyze the effect of intra-arterial administration on cellular engraftment. Experimental TBI was produced in a rat model. Endovascular technique was used to administer human mesenchymal stem cells in the ipsilateral internal carotid artery. Evaluation of engraftment and side effects were performed by immunohistochemical analysis of the brain and several other organs. The results were compared to intravenous administration of stem cells. Intra-arterial transplantion of mesenchymal stem cells resulted in central nervous system (CNS) engraftment without thromboembolic ischemia. We observed a significantly higher number of transplanted cells in the injured hemisphere after intra-arterial compared to intravenous administration both 1 day (p<0.01) and 5 days (p<0.05) after the transplantation. Some cells were also detected in the spleen but not in the other organs analyzed. Selective intra-arterial administration of mesenchymal stem cells to the injured CNS is a minimally invasive method for transplantation. The method is significantly more efficient than the intravenous route and causes no side effects in the current model. The technique can potentially be used for repeated transplantation to the CNS after TBI and in other diseases. (orig.)

  11. Endovascular transplantation of stem cells to the injured rat CNS

    International Nuclear Information System (INIS)

    Lundberg, Johan; Soederman, Mikael; Andersson, Tommy; Holmin, Staffan; Le Blanc, Katarina

    2009-01-01

    Transplantation procedures using intraparenchymal injection of stem cells result in tissue injury in addition to associated surgical risks. Intravenous injection of mesenchymal stem cells gives engraftment to lesions, but the method has low efficiency and specificity. In traumatic brain injuries (TBI), there is a transient breakdown of the blood-brain barrier and an inflammatory response, which increase migration of cells from blood to parenchyma. The aim of this investigation was to analyze the effect of intra-arterial administration on cellular engraftment. Experimental TBI was produced in a rat model. Endovascular technique was used to administer human mesenchymal stem cells in the ipsilateral internal carotid artery. Evaluation of engraftment and side effects were performed by immunohistochemical analysis of the brain and several other organs. The results were compared to intravenous administration of stem cells. Intra-arterial transplantion of mesenchymal stem cells resulted in central nervous system (CNS) engraftment without thromboembolic ischemia. We observed a significantly higher number of transplanted cells in the injured hemisphere after intra-arterial compared to intravenous administration both 1 day (p<0.01) and 5 days (p<0.05) after the transplantation. Some cells were also detected in the spleen but not in the other organs analyzed. Selective intra-arterial administration of mesenchymal stem cells to the injured CNS is a minimally invasive method for transplantation. The method is significantly more efficient than the intravenous route and causes no side effects in the current model. The technique can potentially be used for repeated transplantation to the CNS after TBI and in other diseases. (orig.)

  12. Primary CNS lymphoma as a cause of Korsakoff syndrome.

    Science.gov (United States)

    Toth, Cory; Voll, Chris; Macaulay, Robert

    2002-01-01

    Korsakoff syndrome presents with memory dysfunction with retrograde amnesia, anterograde amnesia, limited insight into dysfunction, and confabulation. The most common etiology of Korsakoff syndrome is thiamine deficiency secondary to alcoholism. There are limited case reports of structural lesions causing Korsakoff syndrome. A 46-year-old male with a long history of alcoholism presented with a history of confusion, amnesia, and confabulation with no localizing features on neurological examination. The patient showed no clinical change with intravenous thiamine. Computed tomography of the brain revealed a heterogenous, enhancing mass lesion centered within the third ventricle, with other lesions found throughout cortical and subcortical regions. The patient was given dexamethasone i.v. without noticeable clinical improvement but with marked radiological improvement with mass reduction. Stereotactic biopsy revealed a diagnosis of primary central nervous system (CNS) lymphoma. Most patients presenting with Korsakoff syndrome have thiamine deficiency; however, mass lesions can produce an identical clinical picture. This is the first case report of a patient with primary CNS lymphoma presenting as Korsakoff syndrome.

  13. The energy transport by the propagation of sound waves in wave guides with a moving medium

    NARCIS (Netherlands)

    le Grand, P.

    1977-01-01

    The problem of the propagation of sound waves radiated by a source in a fluid moving with subsonic velocity between two parallel walls or inside a cylindrical tube is considered in [2], The most interesting thing of this problem is that waves may occur with constant amplitude coming from infinity.

  14. CSF Hypocretin-1 Levels and Clinical Profiles in Narcolepsy and Idiopathic CNS Hypersomnia in Norway

    Science.gov (United States)

    Heier, Mona Skard; Evsiukova, Tatiana; Vilming, Steinar; Gjerstad, Michaela D.; Schrader, Harald; Gautvik, Kaare

    2007-01-01

    Objective: To evaluate the relationship between CSF hypocretin-1 levels and clinical profiles in narcolepsy and CNS hypersomnia in Norwegian patients. Method: CSF hypocretin-1 was measured by a sensitive radioimmunoassay in 47 patients with narcolepsy with cataplexy, 7 with narcolepsy without cataplexy, 10 with idiopathic CNS hypersomnia, and a control group. Results: Low hypocretin-1 values were found in 72% of the HLA DQB1*0602 positive patients with narcolepsy and cataplexy. Patients with low CSF hypocretin-1 levels reported more extensive muscular involvement during cataplectic attacks than patients with normal levels. Hypnagogic hallucinations and sleep paralysis occurred more frequently in patients with cataplexy than in the other patient groups, but with no correlation to hypocretin-1 levels. Conclusion: About three quarters of the HLA DQB1*0602 positive patients with narcolepsy and cataplexy had low CSF hypocretin-1 values, and appear to form a distinct clinical entity. Narcolepsy without cataplexy could not be distinguished from idiopathic CNS hypersomnia by clinical symptoms or biochemical findings. Citation: Heier MS; Evsiukova T; Vilming S; Gjerstad MD; Schrader H; Gautvik K. CSF hypocretin-1 levels and clinical profiles in narcolepsy and idiopathic CNS hypersomnia in norway. SLEEP 2007;30(8):969-973. PMID:17702265

  15. Palmitoylethanolamide in CNS health and disease.

    Science.gov (United States)

    Mattace Raso, Giuseppina; Russo, Roberto; Calignano, Antonio; Meli, Rosaria

    2014-08-01

    The existence of acylethanolamides (AEs) in the mammalian brain has been known for decades. Among AEs, palmitoylethanolamide (PEA) is abundant in the central nervous system (CNS) and conspicuously produced by neurons and glial cells. Antihyperalgesic and neuroprotective properties of PEA have been mainly related to the reduction of neuronal firing and to control of inflammation. Growing evidence suggest that PEA may be neuroprotective during CNS neurodegenerative diseases. Advances in the understanding of the physiology and pharmacology of PEA have potentiated its interest as useful biological tool for disease management. Several rapid non-genomic and delayed genomic mechanisms of action have been identified for PEA as peroxisome proliferator-activated receptor (PPAR)-α dependent. First, an early molecular control, through Ca(+2)-activated intermediate- and/or big-conductance K(+) channels opening, drives to rapid neuronal hyperpolarization. This is reinforced by the increase of the inward Cl(-) currents due to the modulation of the gamma aminobutyric acid A receptor and by the desensitization of the transient receptor potential channel type V1. Moreover, the gene transcription-mediated mechanism sustains the long-term anti-inflammatory effects, by reducing pro-inflammatory enzyme expression and increasing neurosteroid synthesis. Overall, the integration of these different modes of action allows PEA to exert an immediate and prolonged efficacious control in neuron signaling either on inflammatory process or neuronal excitability, maintaining cellular homeostasis. In this review, we will discuss the effect of PEA on metabolism, behavior, inflammation and pain perception, related to the control of central functions and the emerging evidence demonstrating its therapeutic efficacy in several neurodegenerative diseases. Copyright © 2014. Published by Elsevier Ltd.

  16. Detection and assessment of flaws in friction stir welded joints using ultrasonic guided waves: experimental and finite element analysis

    Science.gov (United States)

    Fakih, Mohammad Ali; Mustapha, Samir; Tarraf, Jaafar; Ayoub, Georges; Hamade, Ramsey

    2018-02-01

    Ultrasonic guided waves (GWs), e.g. Lamb waves, have been proven effective in the detection of defects such as corrosion, cracking, delamination, and debonding in both composite and metallic structures. They are a significant tool employed in structural health monitoring. In this study, the ability of ultrasonic GWs to assess the quality of friction stir welding (FSW) was investigated. Four friction stir welded AZ31B magnesium plates processed with different welding parameters and a non-welded plate were used. The fundamental symmetric (S0) Lamb wave mode was excited using piezoelectric wafers (PZTs). Further, the S0 mode was separated using the "Improved complete ensemble empirical mode decomposition with adaptive noise (Improved CEEMDAN)" technique. A damage index (DI) was defined based on the variation in the amplitude of the captured wave signals in order to detect the presence and asses the severity of damage resulting from the welding process. As well, computed tomography (CT) scanning was used as a non-destructive testing (NDT) technique to assess the actual weld quality and validate predictions based on the GW approach. The findings were further confirmed using finite element analysis (FEA). To model the actual damage profile in the welds, "Mimics" software was used for the 3D reconstruction of the CT scans. The built 3D models were later used for evaluation of damage volume and for FEA. The damage volumes were correlated to the damage indices computed from both experimental and numerical data. The proposed approach showed high sensitivity of the S0 mode to internal flaws within the friction stir welded joints. This methodology has great potential as a future classification method of FSW quality.

  17. Slow wave cyclotron maser

    International Nuclear Information System (INIS)

    Kho, T.H.; Lin, A.T.

    1988-01-01

    Cyclotron masers such as Gyrotrons and the Autoresonance Masers, are fast wave devices: the electromagnetic wave's phase velocity v rho , is greater than the electron beam velocity, v b . To be able to convert the beam kinetic energy into radiation in these devices the beam must have an initial transverse momentum, usually obtained by propagating the beam through a transverse wiggler magnet, or along a nonuniform guide magnetic field before entry into the interaction region. Either process introduces a significant amount of thermal spread in the beam which degrades the performance of the maser. However, if the wave phase velocity v rho v b , the beam kinetic energy can be converted directly into radiation without the requirement of an initial transverse beam momentum, making a slow wave cyclotron maser a potentially simpler and more compact device. The authors present the linear and nonlinear physics of the slow wave cyclotron maser and examine its potential for practical application

  18. Sleep disorders in children after treatment for a CNS tumour

    NARCIS (Netherlands)

    Verberne, Lisa M.; Maurice-Stam, Heleen; Grootenhuis, Martha A.; van Santen, Hanneke M.; Schouten-van Meeteren, Antoinette Y. N.

    2012-01-01

    The long-term survival of children with a central nervous system (CNS) tumour is improving. However, they experience late effects, including altered habits and patterns of sleep. We evaluated the presence and type of sleep disorders and daytime sleepiness in these children, and its associations with

  19. Non-Destructive Inspection of Impact Damage in Composite Aircraft Panels by Ultrasonic Guided Waves and Statistical Processing.

    Science.gov (United States)

    Capriotti, Margherita; Kim, Hyungsuk E; Scalea, Francesco Lanza di; Kim, Hyonny

    2017-06-04

    This paper discusses a non-destructive evaluation (NDE) technique for the detection of damage in composite aircraft structures following high energy wide area blunt impact (HEWABI) from ground service equipment (GSE), such as heavy cargo loaders and other heavy equipment. The test structures typically include skin, co-cured stringers, and C-frames that are bolt-connected onto the skin with shear ties. The inspection exploits the waveguide geometry of these structures by utilizing ultrasonic guided waves and a line scan approach. Both a contact prototype and a non-contact prototype were developed and tested on realistic test panels subjected to impact in the laboratory. The results are presented in terms of receiver operating characteristic curves that show excellent probability of detection with low false alarm rates for defects located in the panel skin and stringers.

  20. New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs

    NARCIS (Netherlands)

    Sturm, Dominik; Orr, Brent A.; Toprak, Umut H.; Hovestadt, Volker; Jones, David T. W.; Capper, David; Sill, Martin; Buchhalter, Ivo; Northcott, Paul A.; Leis, Irina; Ryzhova, Marina; Koelsche, Christian; Pfaff, Elke; Allen, Sariah J.; Balasubramanian, Gnanaprakash; Worst, Barbara C.; Pajtler, Kristian W.; Brabetz, Sebastian; Johann, Pascal D.; Sahm, Felix; Reimand, Jüri; Mackay, Alan; Carvalho, Diana M.; Remke, Marc; Phillips, Joanna J.; Perry, Arie; Cowdrey, Cynthia; Drissi, Rachid; Fouladi, Maryam; Giangaspero, Felice; Łastowska, Maria; Grajkowska, Wiesława; Scheurlen, Wolfram; Pietsch, Torsten; Hagel, Christian; Gojo, Johannes; Lötsch, Daniela; Berger, Walter; Slavc, Irene; Haberler, Christine; Jouvet, Anne; Holm, Stefan; Hofer, Silvia; Prinz, Marco; Keohane, Catherine; Fried, Iris; Mawrin, Christian; Scheie, David; Mobley, Bret C.; Schniederjan, Matthew J.; Santi, Mariarita; Buccoliero, Anna M.; Dahiya, Sonika; Kramm, Christof M.; von Bueren, André O.; von Hoff, Katja; Rutkowski, Stefan; Herold-Mende, Christel; Frühwald, Michael C.; Milde, Till; Hasselblatt, Martin; Wesseling, Pieter; Rößler, Jochen; Schüller, Ulrich; Ebinger, Martin; Schittenhelm, Jens; Frank, Stephan; Grobholz, Rainer; Vajtai, Istvan; Hans, Volkmar; Schneppenheim, Reinhard; Zitterbart, Karel; Collins, V. Peter; Aronica, Eleonora; Varlet, Pascale; Puget, Stephanie; Dufour, Christelle; Grill, Jacques; Figarella-Branger, Dominique; Wolter, Marietta; Schuhmann, Martin U.; Shalaby, Tarek; Grotzer, Michael; van Meter, Timothy; Monoranu, Camelia-Maria; Felsberg, Jörg; Reifenberger, Guido; Snuderl, Matija; Forrester, Lynn Ann; Koster, Jan; Versteeg, Rogier; Volckmann, Richard; van Sluis, Peter; Wolf, Stephan; Mikkelsen, Tom; Gajjar, Amar; Aldape, Kenneth; Moore, Andrew S.; Taylor, Michael D.; Jones, Chris; Jabado, Nada; Karajannis, Matthias A.; Eils, Roland; Schlesner, Matthias; Lichter, Peter; von Deimling, Andreas; Pfister, Stefan M.; Ellison, David W.; Korshunov, Andrey; Kool, Marcel

    2016-01-01

    Primitive neuroectodermal tumors of the central nervous system (CNS-PNETs) are highly aggressive, poorly differentiated embryonal tumors occurring predominantly in young children but also affecting adolescents and adults. Herein, we demonstrate that a significant proportion of institutionally

  1. New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs

    NARCIS (Netherlands)

    Sturm, Dominik; Orr, Brent A.; Toprak, Umut H.; Hovestadt, Volker; Jones, David T W; Capper, David; Sill, Martin; Buchhalter, Ivo; Northcott, Paul A.; Leis, Irina; Ryzhova, Marina; Koelsche, Christian; Pfaff, Elke; Allen, Sariah J.; Balasubramanian, Gnanaprakash; Worst, Barbara C.; Pajtler, Kristian W.; Brabetz, Sebastian; Johann, Pascal D.; Sahm, Felix; Reimand, Jüri; Mackay, Alan; Carvalho, Diana M.; Remke, Marc; Phillips, Joanna J.; Perry, Arie; Cowdrey, Cynthia; Drissi, Rachid; Fouladi, Maryam; Giangaspero, Felice; Łastowska, Maria; Grajkowska, Wiesława; Scheurlen, Wolfram; Pietsch, Torsten; Hagel, Christian; Gojo, Johannes; Lötsch, Daniela; Berger, Walter; Slavc, Irene; Haberler, Christine; Jouvet, Anne; Holm, Stefan; Hofer, Silvia; Prinz, Marco; Keohane, Catherine; Fried, Iris; Mawrin, Christian; Scheie, David; Mobley, Bret C.; Schniederjan, Matthew J.; Santi, Mariarita; Buccoliero, Anna M.; Dahiya, Sonika; Kramm, Christof M.; Von Bueren, André O.; Von Hoff, Katja; Rutkowski, Stefan; Herold-Mende, Christel; Frühwald, Michael C.; Milde, Till; Hasselblatt, Martin; Wesseling, Pieter; Rößler, Jochen; Schüller, Ulrich; Ebinger, Martin; Schittenhelm, Jens; Frank, Stephan; Grobholz, Rainer; Vajtai, Istvan; Hans, Volkmar; Schneppenheim, Reinhard; Zitterbart, Karel; Collins, V. Peter; Aronica, Eleonora; Varlet, Pascale; Puget, Stephanie; Dufour, Christelle; Grill, Jacques; Figarella-Branger, Dominique; Wolter, Marietta; Schuhmann, Martin U.; Shalaby, Tarek; Grotzer, Michael; Van Meter, Timothy; Monoranu, Camelia Maria; Felsberg, Jörg; Reifenberger, Guido; Snuderl, Matija; Forrester, Lynn Ann; Koster, Jan; Versteeg, Rogier; Volckmann, Richard; Van Sluis, Peter; Wolf, Stephan; Mikkelsen, Tom; Gajjar, Amar; Aldape, Kenneth; Moore, Andrew S.; Taylor, Michael D.; Jones, Chris; Jabado, Nada; Karajannis, Matthias A.; Eils, Roland; Schlesner, Matthias; Lichter, Peter; Von Deimling, Andreas; Pfister, Stefan M.; Ellison, David W.; Korshunov, Andrey; Kool, Marcel

    2016-01-01

    Summary Primitive neuroectodermal tumors of the central nervous system (CNS-PNETs) are highly aggressive, poorly differentiated embryonal tumors occurring predominantly in young children but also affecting adolescents and adults. Herein, we demonstrate that a significant proportion of

  2. Statistical lamb wave localization based on extreme value theory

    Science.gov (United States)

    Harley, Joel B.

    2018-04-01

    Guided wave localization methods based on delay-and-sum imaging, matched field processing, and other techniques have been designed and researched to create images that locate and describe structural damage. The maximum value of these images typically represent an estimated damage location. Yet, it is often unclear if this maximum value, or any other value in the image, is a statistically significant indicator of damage. Furthermore, there are currently few, if any, approaches to assess the statistical significance of guided wave localization images. As a result, we present statistical delay-and-sum and statistical matched field processing localization methods to create statistically significant images of damage. Our framework uses constant rate of false alarm statistics and extreme value theory to detect damage with little prior information. We demonstrate our methods with in situ guided wave data from an aluminum plate to detect two 0.75 cm diameter holes. Our results show an expected improvement in statistical significance as the number of sensors increase. With seventeen sensors, both methods successfully detect damage with statistical significance.

  3. 4th ENRI International Workshop on ATM/CNS

    CERN Document Server

    2017-01-01

    This book is a compilation of selected papers from the 4th ENRI International Workshop on ATM/CNS (EIWAC2015). The work focuses on novel techniques for aviation infrastructure in air traffic management (ATM) and communications, navigation, surveillance, and informatics (CNSI) domains. The contents make valuable contributions to academic researchers, engineers in the industry, and regulators of aviation authorities. As well, readers will encounter new ideas for realizing a more efficient and safer aviation system. .

  4. Handbook of ocean wave energy

    CERN Document Server

    Kofoed, Jens

    2017-01-01

    This book is open access under a CC BY-NC 2.5 license. This book offers a concise, practice-oriented reference-guide to the field of ocean wave energy. The ten chapters highlight the key rules of thumb, address all the main technical engineering aspects and describe in detail all the key aspects to be considered in the techno-economic assessment of wave energy converters. Written in an easy-to-understand style, the book answers questions relevant to readers of different backgrounds, from developers, private and public investors, to students and researchers. It is thereby a valuable resource for both newcomers and experienced practitioners in the wave energy sector.

  5. A Plant's Response to Gravity as a Wave Guide Phenomenon

    Science.gov (United States)

    Wagner, Orvin

    1997-11-01

    Plant experimental data provides a unifying wave theory (W-wave theory) for the growth and development of plants. A plant's response to gravity is an important aspect of this theory. It appears that a plant part is tuned to the angle with which it initially grew with respect to the gravitational field and changes produce correction responses. This is true because the velocity of W-waves (whose standing waves determine plant structure) within plant tissue is found to be different in different directions (angle a) with respect to the gravitational field. I found that there are preferred values of a, namely integral multiples of near 5 degrees for some plants. Conifers apparently are more sensitive to the gravitational field than deciduous trees, in the cases studied, so their structure is determined in more detail by the gravitational field. A plant's response to gravity appears to be a fundamental phenomenon and may provide a new model for gravity that can be experimentally verified in the laboratory. Along these same lines accelerometers placed in plant tissue indicate that plants produce gravity related forces that facilitate sap flow. See the

  6. Evaluation of calcium, magnesium, zinc, aluminum and manganese deposition in bones and CNS of rats fed calcium-deficient diets

    International Nuclear Information System (INIS)

    Yasui, Masayuki; Ota, Kiichiro; Sasajima, Kazuhisa; Iwata, Shiro.

    1994-01-01

    The long term intake of unbalanced mineral diets has been reported to be one of the pathogenetic factors of central nervous system (CNS) degeneration, and the unbalanced mineral distribution in the bones clinically is expressed as a metabolic bone disorder or deposition of neurotoxic minerals/metals. The unbalanced mineral or metal diets in animals provoke the unbalanced mineral distribution in bones and soft tissues. In this study, the calcium (Ca), magnesium (Mg), zinc (Zn), aluminum (Al) and manganese (Mn) contents in the CNS and the bones of rats maintained on unbalanced mineral diets were analyzed to investigate the roles of bone on CNS degeneration. Male Wistar rats were maintained for 90 days on the following diets: (A) standard diet, (B) low Ca diet, (C) low Ca-Mg diet, (D) low Ca-Mg diet with high Al. Al and Mn contents were determined in the frontal cortex, spinal cord, lumbar spine and femur using inductively coupled plasma emission spectrometry (ICP) for Ca, Mg and Zn, and neutron activation analysis (NAA) for Al and Mn. Intake of low Ca and Mg with added Al in rats led to the abnormal distribution of metals or minerals in the bones and in the CNS. These results illustrate that unbalanced mineral diets and metal-metal interactions may lead to the irregular deposition of Al and Mn in the bones and ultimately in the CNS, thus inducing CNS degeneration. (author)

  7. Distribution of CNS Species on Teat Skin and in Milk Samples from Dairy Cows in Automatic Milking Systems

    DEFF Research Database (Denmark)

    Mahmmod, Yasser; Svennesen, Line; Pedersen, Karl

    identified in milk samples. Staphylococcus chromogenes was detected in both milk (n= 2) and teat skin (n= 1) samples. Data collection will be finished in April 2017. The final results will give new insights into herd specific CNS species patterns and the microbial ecology and epidemiology of common CNS...

  8. Mer tyrosine kinase promotes the survival of t(1;19)-positive acute lymphoblastic leukemia (ALL) in the central nervous system (CNS).

    Science.gov (United States)

    Krause, Sarah; Pfeiffer, Christian; Strube, Susanne; Alsadeq, Ameera; Fedders, Henning; Vokuhl, Christian; Loges, Sonja; Waizenegger, Jonas; Ben-Batalla, Isabel; Cario, Gunnar; Möricke, Anja; Stanulla, Martin; Schrappe, Martin; Schewe, Denis M

    2015-01-29

    Patients with t(1;19)-positive acute lymphoblastic leukemia (ALL) are prone to central nervous system (CNS) relapses, and expression of the TAM (Tyro3, Axl, and Mer) receptor Mer is upregulated in these leukemias. We examined the functional role of Mer in the CNS in preclinical models and performed correlative studies in 64 t(1;19)-positive and 93 control pediatric ALL patients. ALL cells were analyzed in coculture with human glioma cells and normal rat astrocytes: CNS coculture caused quiescence and protection from methotrexate toxicity in Mer(high) ALL cell lines, which was antagonized by short hairpin RNA-mediated knockdown of Mer. Mer expression was upregulated, prosurvival Akt and mitogen-activated protein kinase signaling were activated, and secretion of the Mer ligand Galectin-3 was stimulated. Mer(high) t(1;19) primary cells caused CNS involvement to a larger extent in murine xenografts than in their Mer(low) counterparts. Leukemic cells from Mer(high) xenografts showed enhanced survival in coculture. Treatment of Mer(high) patient cells with the Mer-specific inhibitor UNC-569 in vivo delayed leukemia onset, reduced CNS infiltration, and prolonged survival of mice. Finally, a correlation between high Mer expression and CNS positivity upon initial diagnosis was observed in t(1;19) patients. Our data provide evidence that Mer is associated with survival in the CNS in t(1;19)-positive ALL, suggesting a role as a diagnostic marker and therapeutic target. © 2015 by The American Society of Hematology.

  9. Use of Guided Acoustic Waves to Assess the Effects of Thermal-Mechanical Cycling on Composite Stiffness

    Science.gov (United States)

    Seale, Michael D.; Madaras, Eric I.

    2000-01-01

    The introduction of new, advanced composite materials into aviation systems requires it thorough understanding of the long-term effects of combined thermal and mechanical loading. As part of a study to evaluate the effects of thermal-mechanical cycling, it guided acoustic (Lamb) wave measurement system was used to measure the bending and out-of-plane stiffness coefficients of composite laminates undergoing thermal-mechanical loading. The system uses a pulse/receive technique that excites an antisymmetric Lamb mode and measures the time-of-flight over a wide frequency range. Given the material density and plate thickness, the bending and out-of-plane shear stiffnesses are calculated from a reconstruction of the velocity dispersion curve. A series of 16 and 32-ply composite laminates were subjected to it thermal-mechanical loading profile in load frames equipped with special environmental chambers. The composite systems studied were it graphite fiber reinforced amorphous thermoplastic polyimide and it graphite fiber reinforced bismaleimide thermoset. The samples were exposed to both high and low temperature extremes its well as high and low strain profiles. The bending and out-of-plane stiffnesses for composite sample that have undergone over 6,000 cycles of thermal-mechanical loading are reported. The Lamb wave generated elastic stiffness results have shown decreases of up to 20% at 4,936 loading cycles for the graphite/thermoplastic samples and up to 64% at 4,706 loading cycles for the graphite/thermoset samples.

  10. Developmental hyperoxia alters CNS mechanisms underlying hypoxic ventilatory depression in neonatal rats.

    Science.gov (United States)

    Hill, Corey B; Grandgeorge, Samuel H; Bavis, Ryan W

    2013-12-01

    Newborn mammals exhibit a biphasic hypoxic ventilatory response (HVR), but the relative contributions of carotid body-initiated CNS mechanisms versus central hypoxia on ventilatory depression during the late phase of the HVR are not well understood. Neonatal rats (P4-5 or P13-15) were treated with a nonselective P2 purinergic receptor antagonist (pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid, or PPADS; 125mgkg(-1), i.p.) to pharmacologically denervate the peripheral chemoreceptors. At P4-5, rats reared in normoxia showed a progressive decline in ventilation during a 10-min exposure to 12% O2 (21-28% decrease from baseline). No hypoxic ventilatory depression was observed in the older group of neonatal rats (i.e., P13-15), suggesting that the contribution of central hypoxia to hypoxic ventilatory depression diminishes with age. In contrast, rats reared in moderate hyperoxia (60% O2) from birth exhibited no hypoxic ventilatory depression at either age studied. Systemic PPADS had no effect on the ventilatory response to 7% CO2, suggesting that the drug did not cross the blood-brain barrier. These findings indicate that (1) CNS hypoxia depresses ventilation in young, neonatal rats independent of carotid body activation and (2) hyperoxia alters the development of CNS pathways that modulate the late phase of the hypoxic ventilatory response. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Detailed phase matching characterization of inter-modal four-wave mixing in a two-mode fiber

    DEFF Research Database (Denmark)

    Friis, Søren Michael Mørk; Jung, Y.; Begleris, I.

    2016-01-01

    We experimentally characterize the phase matching properties of two inter-modal four-wave mixing processes in a graded index fiber guiding the LP01 and LP11 mode-groups.......We experimentally characterize the phase matching properties of two inter-modal four-wave mixing processes in a graded index fiber guiding the LP01 and LP11 mode-groups....

  12. Discrimination of different brain metastases and primary CNS lymphomas using morphologic criteria and diffusion tensor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bette, S.; Wiestler, B.; Huber, T.; Boeckh-Behrens, T.; Zimmer, C.; Kirschke, J. [Technical University Munich, Klinikum rechts der Isar (Germany). Dept. of Neuroradiology; Delbridge, C. [Technical University Munich, Klinikum rechts der Isar (Germany). Dept. of Neuropathology; Meyer, B.; Gempt, J. [Technical University Munich, Klinikum rechts der Isar (Germany). Dept. of Neurosurgery

    2016-12-15

    Brain metastases are a common complication of cancer and occur in about 15-40% of patients with malignancies. The aim of this retrospective study was to differentiate between metastases from different primary tumors/CNS lymphyomas using morphologic criteria, fractional anisotropy (FA) and apparent diffusion coefficient (ADC). Morphologic criteria such as hemorrhage, cysts, pattern of contrast enhancement and location were reported in 200 consecutive patients with brain metastases/primary CNS lymphomas. FA and ADC values were measured in regions of interest (ROIs) placed in the contrast-enhancing tumor part, the necrosis and the non-enhancing peritumoral region (NEPTR). Differences between histopathological subtypes of metastases were analyzed using non-parametric tests, decision trees and hierarchical clustering analysis. Significant differences were found in morphologic criteria such as hemorrhage or pattern of contrast enhancement. In diffusion measurements, significant differences between the different tumor entities were only found in ADC analyzed in the contrast-enhancing tumor part. Among single tumor entities, primary CNS lymphomas showed significantly lower median ADC values in the contrast-enhancing tumor part (ADC{sub lymphoma} 0.92 [0.83-1.07] vs. ADC{sub no} {sub lymphoma} 1.35 [1.10-1.64] P=0.001). Further differentiation between types of metastases was not possible using FA and ADC. There were morphologic differences among the main subtypes of brain metastases/CNS lymphomas. However, due to a high variability of common types of metastases and low specificity, prospective differentiation remained challenging. DTI including FA and ADC was not a reliable tool for differentiation between different histopathological subtypes of brain metastases except for CNS lymphomas showing lower ADC values. Biopsy, surgery and staging remain essential for diagnosis.

  13. Effects on DHEA levels by estrogen in rat astrocytes and CNS co-cultures via the regulation of CYP7B1-mediated metabolism

    DEFF Research Database (Denmark)

    Fex Svenningsen, Åsa; Wicher, Grzegorz; Lundqvist, Johan

    2011-01-01

    The neurosteroid dehydroepiandrosterone (DHEA) is formed locally in the CNS and has been implicated in several processes essential for CNS function, including control of neuronal survival. An important metabolic pathway for DHEA in the CNS involves the steroid hydroxylase CYP7B1. In previous...... studies, CYP7B1 was identified as a target for estrogen regulation in cells of kidney and liver. In the current study, we examined effects of estrogens on CYP7B1-mediated metabolism of DHEA in primary cultures of rat astrocytes and co-cultures of rat CNS cells. Astrocytes, which interact with neurons...... whereby estrogen can exert protective effects in the CNS may involve increase of the levels of DHEA by suppression of its metabolism....

  14. Comparative antibiogram of coagulase-negative Staphylococci (CNS) associated with subclinical and clinical mastitis in dairy cows.

    Science.gov (United States)

    Bansal, B K; Gupta, D K; Shafi, T A; Sharma, S

    2015-03-01

    The present study was planned to determine the in vitro antibiotic susceptibility of coagulase-negative Staphylococci (CNS) strains isolated from clinical and subclinical cases of mastitis in dairy cows. Antibiotic sensitivity profile will be helpful to recommend early therapy at the field level prior to availability of CST results. The milk samples from cases of clinical mastitis received in Mastitis Laboratory, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana and those of subclinical mastitis collected during routine screening of state dairy farms, were subjected to microbial culture. Identification of CNS organisms was done by standard biochemical tests. Antibiotic sensitivity testing, based on 30 antibiotics belonging to 12 groups, was done on 58 randomly selected CNS isolates (clinical isolates: 41, subclinical isolates: 17). Isolates were highly susceptible to chloramphenicol (98.3%), gentamicin (93.1%), streptomycin (91.4%), linezolid (91.4%), ceftixozime (87.9%), cloxacillin (86.2%), clotrimazole (86.2%), bacitracin (86.2%), enrofloxacin (84.5%) and ceftrioxone + tazobactum (70.7%), while resistance was observed against amoxicillin (77.6%), penicillin (75.9%), ampicillin (74.1%) and cefoperazone (51.7%). Overall, isolates from clinical cases of mastitis had a higher resistance than subclinical isolates. CNS isolates were susceptible to chloramphenicol, gentamicin and streptomycin, while higher resistance was recorded against routinely used penicillin group.

  15. Guided modes in silicene-based waveguides

    Science.gov (United States)

    Yu, Mengzhuo; He, Ying; Yang, Yanfang; Zhang, Huifang

    2018-02-01

    Silicene is a new Dirac-type electron system similar to graphene. A monolayer silicene sheet forms a quantum well induced by an electrostatic potential, which acts as an electron waveguide. The guided modes in the silicene waveguide have been investigated. Electron waves can propagate in the silicene-based waveguide in the cases of Klein tunneling and classical motion. The behavior of the wave function depends on the spin and valley indices. The amplitude of the electron wave function in the silicene waveguide can be controlled by the external electric field. These phenomena may be helpful for the potential applications of silicene-based electronic devices.

  16. Non-Destructive Inspection of Impact Damage in Composite Aircraft Panels by Ultrasonic Guided Waves and Statistical Processing

    Directory of Open Access Journals (Sweden)

    Margherita Capriotti

    2017-06-01

    Full Text Available This paper discusses a non-destructive evaluation (NDE technique for the detection of damage in composite aircraft structures following high energy wide area blunt impact (HEWABI from ground service equipment (GSE, such as heavy cargo loaders and other heavy equipment. The test structures typically include skin, co-cured stringers, and C-frames that are bolt-connected onto the skin with shear ties. The inspection exploits the waveguide geometry of these structures by utilizing ultrasonic guided waves and a line scan approach. Both a contact prototype and a non-contact prototype were developed and tested on realistic test panels subjected to impact in the laboratory. The results are presented in terms of receiver operating characteristic curves that show excellent probability of detection with low false alarm rates for defects located in the panel skin and stringers.

  17. Glibenclamide for the Treatment of Acute CNS Injury

    Directory of Open Access Journals (Sweden)

    J. Marc Simard

    2013-10-01

    Full Text Available First introduced into clinical practice in 1969, glibenclamide (US adopted name, glyburide is known best for its use in the treatment of diabetes mellitus type 2, where it is used to promote the release of insulin by blocking pancreatic KATP [sulfonylurea receptor 1 (Sur1-Kir6.2] channels. During the last decade, glibenclamide has received renewed attention due to its pleiotropic protective effects in acute CNS injury. Acting via inhibition of the recently characterized Sur1-Trpm4 channel (formerly, the Sur1-regulated NCCa-ATP channel and, in some cases, via brain KATP channels, glibenclamide has been shown to be beneficial in several clinically relevant rodent models of ischemic and hemorrhagic stroke, traumatic brain injury, spinal cord injury, neonatal encephalopathy of prematurity, and metastatic brain tumor. Glibenclamide acts on microvessels to reduce edema formation and secondary hemorrhage, it inhibits necrotic cell death, it exerts potent anti-inflammatory effects and it promotes neurogenesis—all via inhibition of Sur1. Two clinical trials, one in TBI and one in stroke, currently are underway. These recent findings, which implicate Sur1 in a number of acute pathological conditions involving the CNS, present new opportunities to use glibenclamide, a well-known, safe pharmaceutical agent, for medical conditions that heretofore had few or no treatment options.

  18. Mode repulsion of ultrasonic guided waves in rails

    CSIR Research Space (South Africa)

    Loveday, Philip W

    2018-03-01

    Full Text Available . The modes can therefore be numbered in the same way that Lamb waves in plates are numbered, making it easier to communicate results. The derivative of the eigenvectors with respect to wavenumber contains the same repulsion term and shows how the mode shapes...

  19. Lentiviral-mediated administration of IL-25 in the CNS induces alternative activation of microglia

    DEFF Research Database (Denmark)

    Maiorino, C; Khorooshi, R; Ruffini, F

    2013-01-01

    Interleukin-25 (IL-25) is the only anti-inflammatory cytokine of the IL-17 family, and it has been shown to be efficacious in inhibiting neuroinflammation. Known for its effects on cells of the adaptive immune system, it has been more recently described to be effective also on cells of the innate...... was partly inhibited and the CNS protected from immune-mediated damage. To our knowledge, this is the first example of M2 shift (alternative activation) induced in vivo on CNS-resident myeloid cells by gene therapy, and may constitute a promising strategy to investigate the potential role of protective...

  20. Numerical simulation of electromagnetic wave propagation using time domain meshless method

    International Nuclear Information System (INIS)

    Ikuno, Soichiro; Fujita, Yoshihisa; Itoh, Taku; Nakata, Susumu; Nakamura, Hiroaki; Kamitani, Atsushi

    2012-01-01

    The electromagnetic wave propagation in various shaped wave guide is simulated by using meshless time domain method (MTDM). Generally, Finite Differential Time Domain (FDTD) method is applied for electromagnetic wave propagation simulation. However, the numerical domain should be divided into rectangle meshes if FDTD method is applied for the simulation. On the other hand, the node disposition of MTDM can easily describe the structure of arbitrary shaped wave guide. This is the large advantage of the meshless time domain method. The results of computations show that the damping rate is stably calculated in case with R < 0.03, where R denotes a support radius of the weight function for the shape function. And the results indicate that the support radius R of the weight functions should be selected small, and monomials must be used for calculating the shape functions. (author)

  1. Early wound site seeding in a patient with CNS high-grade neuroepithelial tumor with BCOR alteration: A case report.

    Science.gov (United States)

    Kirkman, Matthew A; Pickles, Jessica C; Fairchild, Amy R; Avery, Aimee; Pietsch, Torsten; Jacques, Thomas S; Aquilina, Kristian

    2018-05-30

    Advances in molecular profiling have facilitated the emergence of newly defined entities of central nervous system tumor, including CNS high-grade neuroepithelial tumor with BCOR alteration (CNS HGNET-BCOR). Relatively little is known about the clinical behaviour of these newly-characterized tumors. We describe a pediatric male patient with CNS HGNET-BCOR who developed seeding of the tumor into the site of the surgical wound within months of surgery for resection of a residual posterior fossa tumor. This case emphasises three important points. First, CNS HGNET-BCOR can be aggressive tumors that necessitate close clinical and radiological surveillance. Second, surveillance imaging in such cases should incorporate the surgical incision site into the field of view, and this should be closely scrutinised to ensure the timely detection of wound site seeding. Third, wound site seeding may still occur despite the use of meticulous surgical techniques. Copyright © 2018. Published by Elsevier Inc.

  2. Theoretical study on guided wave propagation in (1 - x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (x = 0.29 and 0.33) single crystal plates

    International Nuclear Information System (INIS)

    Chen Chuanwen; Zhang Rui; Cao Wenwu

    2009-01-01

    The propagation of guided waves in free standing (1 - x)Pb(Mg 1/3 Nb 2/3 )O 3 -xPbTiO 3 [PMN-xPT] (x = 0.29 or 0.33) single crystal plates has been studied theoretically. The polar directions are in the (111) family directions of the cubic reference coordinates but the crystals are being polarized along [0 0 1] c , [0 1 1] c and [1 1 1] c of the cubic reference directions so that the effective microscopic symmetries are 4mm, mm2 and 3m, respectively. Multiple mode couplings appear in the dispersion curves for both the symmetric and the antisymmetric Lamb and shear horizontal modes. The velocities of most guided waves decrease rapidly with frequency. Then, after passing a minimum, they begin to increase with frequency and eventually saturate to the shear wave velocity v sz (or v 1 = 3507 m s -1 for [1 1 1] c polarized sample). For a [1 1 1] c polarized single domain PMN-0.33PT sample, the S 1 mode instead of the S 0 mode approaches the Rayleigh velocity v R at high frequencies.

  3. Micropituitarism and cortical dysplasia: an unknown association of two uncommon CNS disorders

    International Nuclear Information System (INIS)

    Blinder, G.; Corat-Simon, J.; Hershkovitz, E.

    2001-01-01

    We describe a case of two known pathologies of the CNS in an unusual association: the concomitant presentation of the micropituitarism and cortical dysplasia. To our knowledge, this association is unreported to date. (orig.)

  4. Micropituitarism and cortical dysplasia: an unknown association of two uncommon CNS disorders

    Energy Technology Data Exchange (ETDEWEB)

    Blinder, G. [MAR Bikur Cholim Hospital Jerusalem (MOR-MAR), Jerusalem (Israel); Corat-Simon, J. [Dept. of Radiology, Assaf Harofeh Medical Center, Zrifin, Beer Jakov (Israel); Hershkovitz, E. [Dept. of Pediatrics, Soroka Medical Center, Beer Sheba (Israel)

    2001-06-01

    We describe a case of two known pathologies of the CNS in an unusual association: the concomitant presentation of the micropituitarism and cortical dysplasia. To our knowledge, this association is unreported to date. (orig.)

  5. Leukoencephalopathy following CNS prophylaxis therapy in pediatric leukemia : MR imaging findings

    International Nuclear Information System (INIS)

    Kim, Jong Sub; Lee, Sang Kwon; Kim, Tae Hun; Kim, Yong Joo; Kang, Duck Sik; Kwon, Soon Hak; Lee, Keon Soo

    2001-01-01

    To evaluate the MR imaging findings and the usefulness of MR imaging in the diagnosis and follow-up leukoencephalopathy following CNS prophylaxis therapy in pediatric leukemia. We retrospectively evaluated the MR imaging findings of eight children with white matter abnormalities on MR out of seventeen acute leukemic patients with various neuropsychiatric symptoms who received intrathecal methotrexate administration, with or without cranial irradiation. In all cases, initial MR was performed within a week of the onset of neuropsychiatric symptoms. Follow-up MR was performed one to sixteen months after initial study, and the MR imaging findings were compared with the initial findings. The initial MR imaging findings were classified into three categories : focal or multifocal white matter abnormalities (3/8), and diffuse white matter abnormalities without enhancement (3/8), and diffuse white matter abnormalities with enhancement (2/8). At follow-up MR, diffuse or focal atrophic changes were noted in all children. White matter abnormalities improved in two out of three patients with focal or multifocal white matter abnormalities. In five with diffuse white matter abnormalities, the extent of these showed no significant change, but contrast enhancement was markedly reduced in two children in whom diffuse white matter abnormalities with enhancement had been demonstrated. In pediatric leukemia, the MR imaging findings of leukoencephalopathy following CNS prophylaxis therapy are variable, but are specific with the clinical history of neuropsychiatric symptoms after intrathecal methotrexate administration, with or without cranial irradiation. The MR imaging is valuable in the diagnosis and follow-up of leukoencephalopathy following CNS prophylaxis therapy in pediatric leukemia

  6. Blood-CNS Barrier Impairment in ALS Patients versus an Animal Model

    Directory of Open Access Journals (Sweden)

    Svitlana eGarbuzova-Davis

    2014-02-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a severe neurodegenerative disease with a compli-cated and poorly understood pathogenesis. Recently, alterations in the blood-Central Nervous System barrier (B-CNS-B have been recognized as a key factor possibly aggravating motor neuron damage. The majority of findings on ALS microvascular pathology have been deter-mined in mutant SOD1 rodent models, identifying barrier damage during disease develop-ment which might similarly occur in familial ALS patients carrying the SOD1 mutation. However, our knowledge of B-CNS-B competence in sporadic ALS (SALS has been limited. We recently showed structural and functional impairment in postmortem gray and white mat-ter microvessels of medulla and spinal cord tissue from SALS patients, suggesting pervasive barrier damage. Although numerous signs of barrier impairment (endothelial cell degenera-tion, capillary leakage, perivascular edema, downregulation of tight junction proteins, and microhemorrhages are indicated in both mutant SOD1 animal models of ALS and SALS pa-tients, other pathogenic barrier alterations have as yet only been identified in SALS patients. Pericyte degeneration, perivascular collagen IV expansion, and white matter capillary abnor-malities in SALS patients are significant barrier related pathologies yet to be noted in ALS SOD1 animal models. In the current review, these important differences in blood-CNS barrier damage between ALS patients and animal models, which may signify altered barrier transport mechanisms, are discussed. Understanding discrepancies in barrier condition between ALS patients and animal models may be crucial for developing effective therapies.

  7. Guided modes of elliptical metamaterial waveguides

    International Nuclear Information System (INIS)

    Halterman, Klaus; Feng, Simin; Overfelt, P. L.

    2007-01-01

    The propagation of guided electromagnetic waves in open elliptical metamaterial waveguide structures is investigated. The waveguide contains a negative-index media core, where the permittivity ε and permeability μ are negative over a given bandwidth. The allowed mode spectrum for these structures is numerically calculated by solving a dispersion relation that is expressed in terms of Mathieu functions. By probing certain regions of parameter space, we find the possibility exists to have extremely localized waves that transmit along the surface of the waveguide

  8. The imaging appearances of intracranial CNS infections in adult HIV and AIDS patients

    Energy Technology Data Exchange (ETDEWEB)

    Offiah, C.E. [Department of Neuroradiology, Hope Hospital, Stott Lane, Salford, Manchester (United Kingdom)]. E-mail: chockycj@yahoo.co.uk; Turnbull, I.W. [Department of Neuroradiology, Hope Hospital, Stott Lane, Salford, Manchester (United Kingdom)

    2006-05-15

    The spectrum of pathology affecting the central nervous system (CNS) in patients suffering from acquired immunodeficiency syndrome (AIDS) is broad and comprises predominantly opportunistic infections and neoplasms. It is estimated that approximately one-third of all patients with AIDS develop neurological complications. The organisms responsible for AIDS are human retroviruses: primarily the human immunodeficiency virus type 1 (HIV). In this review we shall focus on the neurological complications of HIV and AIDS which are applicable to the more frequently occurring intracranial infective organisms. Attention will be paid specifically to those CNS manifestations occurring in the adult HIV and AIDS population as infection in the paediatric HIV and AIDS group, although bearing some similarities, demonstrates some important differences.

  9. The imaging appearances of intracranial CNS infections in adult HIV and AIDS patients

    International Nuclear Information System (INIS)

    Offiah, C.E.; Turnbull, I.W.

    2006-01-01

    The spectrum of pathology affecting the central nervous system (CNS) in patients suffering from acquired immunodeficiency syndrome (AIDS) is broad and comprises predominantly opportunistic infections and neoplasms. It is estimated that approximately one-third of all patients with AIDS develop neurological complications. The organisms responsible for AIDS are human retroviruses: primarily the human immunodeficiency virus type 1 (HIV). In this review we shall focus on the neurological complications of HIV and AIDS which are applicable to the more frequently occurring intracranial infective organisms. Attention will be paid specifically to those CNS manifestations occurring in the adult HIV and AIDS population as infection in the paediatric HIV and AIDS group, although bearing some similarities, demonstrates some important differences

  10. Dosimetric Comparison and Potential for Improved Clinical Outcomes of Paediatric CNS Patients Treated with Protons or IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Armoogum, Kris S., E-mail: kris.armoogum@nhs.net [Department of Radiotherapy Physics, Royal Derby Hospital, Derby Hospitals NHS Foundation Trust, Uttoxeter Road, Derby DE22 3NE (United Kingdom); Thorp, Nicola [The Clatterbridge Cancer Centre NHS Foundation Trust, Clatterbridge Road, Bebington, Wirral CH63 4JY (United Kingdom)

    2015-04-28

    Background: We compare clinical outcomes of paediatric patients with CNS tumours treated with protons or IMRT. CNS tumours form the second most common group of cancers in children. Radiotherapy plays a major role in the treatment of many of these patients but also contributes to late side effects in long term survivors. Radiation dose inevitably deposited in healthy tissues outside the clinical target has been linked to detrimental late effects such as neurocognitive, behavioural and vascular effects in addition to endocrine abnormalities and second tumours. Methods: A literature search was performed using keywords: protons, IMRT, CNS and paediatric. Of 189 papers retrieved, 10 were deemed relevant based on title and abstract screening. All papers directly compared outcomes from protons with photons, five papers included medulloblastoma, four papers each included craniopharyngioma and low grade gliomas and three papers included ependymoma. Results: This review found that while proton beam therapy offered similar clinical target coverage, there was a demonstrable reduction in integral dose to normal structures. Conclusions: This in turn suggests the potential for superior long term outcomes for paediatric patients with CNS tumours both in terms of radiogenic second cancers and out-of-field adverse effects.

  11. Dosimetric Comparison and Potential for Improved Clinical Outcomes of Paediatric CNS Patients Treated with Protons or IMRT

    Directory of Open Access Journals (Sweden)

    Kris S. Armoogum

    2015-04-01

    Full Text Available Background: We compare clinical outcomes of paediatric patients with CNS tumours treated with protons or IMRT. CNS tumours form the second most common group of cancers in children. Radiotherapy plays a major role in the treatment of many of these patients but also contributes to late side effects in long term survivors. Radiation dose inevitably deposited in healthy tissues outside the clinical target has been linked to detrimental late effects such as neurocognitive, behavioural and vascular effects in addition to endocrine abnormalities and second tumours. Methods: A literature search was performed using keywords: protons, IMRT, CNS and paediatric. Of 189 papers retrieved, 10 were deemed relevant based on title and abstract screening. All papers directly compared outcomes from protons with photons, five papers included medulloblastoma, four papers each included craniopharyngioma and low grade gliomas and three papers included ependymoma. Results: This review found that while proton beam therapy offered similar clinical target coverage, there was a demonstrable reduction in integral dose to normal structures. Conclusions: This in turn suggests the potential for superior long term outcomes for paediatric patients with CNS tumours both in terms of radiogenic second cancers and out-of-field adverse effects.

  12. Flavonoids and the CNS

    Directory of Open Access Journals (Sweden)

    Anna K. Jäger

    2011-02-01

    Full Text Available Flavonoids are present in almost all terrestrial plants, where they provide UV-protection and colour. Flavonoids have a fused ring system consisting of an aromatic ring and a benzopyran ring with a phenyl substituent. The flavonoids can be divided into several classes depending on their structure. Flavonoids are present in food and medicinal plants and are thus consumed by humans. They are found in plants as glycosides. Before oral absorption, flavonoids undergo deglycosylation either by lactase phloridzin hydrolase or cytosolic β-glucocidase. The absorbed aglycone is then conjugated by methylation, sulphatation or glucuronidation. Both the aglycones and the conjugates can pass the blood-brain barrier. In the CNS several flavones bind to the benzodiazepine site on the GABAA-receptor resulting in sedation, anxiolytic or anti-convulsive effects. Flavonoids of several classes are inhibitors of monoamine oxidase A or B, thereby working as anti-depressants or to improve the conditions of Parkinson’s patients. Flavanols, flavanones and anthocyanidins have protective effects preventing inflammatory processes leading to nerve injury. Flavonoids seem capable of influencing health and mood.

  13. Thyroid Hormone in the CNS: Contribution of Neuron-Glia Interaction.

    Science.gov (United States)

    Noda, Mami

    2018-01-01

    The endocrine system and the central nervous system (CNS) are intimately linked. Among hormones closely related to the nervous system, thyroid hormones (THs) are critical for the regulation of development and differentiation of neurons and neuroglia and hence for development and function of the CNS. T3 (3,3',5-triiodothyronine), an active form of TH, is important not only for neuronal development but also for differentiation of astrocytes and oligodendrocytes, and for microglial development. In adult brain, T3 affects glial morphology with sex- and age-dependent manner and therefore may affect their function, leading to influence on neuron-glia interaction. T3 is an important signaling factor that affects microglial functions such as migration and phagocytosis via complex mechanisms. Therefore, dysfunction of THs may impair glial function as well as neuronal function and thus disturb the brain, which may cause mental disorders. Investigations on molecular and cellular basis of hyperthyroidism and hypothyroidism will help us to understand changes in neuron-glia interaction and therefore consequent psychiatric symptoms. © 2018 Elsevier Inc. All rights reserved.

  14. Neuropsychological screening as a standard of care during discharge from psychiatric hospitalization: the preliminary psychometrics of the CNS Screen.

    Science.gov (United States)

    Levy, Boaz; Celen-Demirtas, Selda; Surguladze, Tinatin; Eranio, Sara; Ellison, James

    2014-03-30

    Cost-prohibitive factors currently prevent a warranted integration of neuropsychological screenings into routine psychiatric evaluations, as a standard of care. To overcome this challenge, the current study examined the psychometric properties of a new computerized measure-the CNS Screen. One hundred and twenty six psychiatric inpatients completed the CNS Screen, the Montreal Cognitive Assessment (MoCA), and the Quick Inventory of Depressive Symptomatology-Self Rated (QIDS-SR₁₆) on the day of hospital discharge. Statistical analysis established convergent validity with a moderate correlation between the self-administered CNS Screen and the clinician-administered MoCA (r=0.64). Discriminant validity was implicated by a non-significant correlation with the QIDS-SR₁₆. Concurrent validity was supported by a moderate, negative correlation with patients' age (r=-0.62). In addition, consistent with previous findings, patients with psychotic disorders exhibited significantly poorer performance on the CNS Screen than patients with a mood disorder. Similarly, patients with a formal disability status scored significantly lower than other patients. The CNS Screen was well tolerated by all patients. With further development, this type of measure may provide a cost-effective approach to expanding neuropsychological screenings on inpatient psychiatric units. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Enhancing Psychosocial Outcomes for Young Adult Childhood CNS Cancer Survivors: Importance of Addressing Vocational Identity and Community Integration

    Science.gov (United States)

    Strauser, David R.; Wagner, Stacia; Wong, Alex W. K.

    2012-01-01

    The purpose of this study was to examine the relationship between vocational identity, community integration, positive and negative affect, and satisfaction with life in a group of young adult central nervous system (CNS) cancer survivors. Participants in this study included 45 young adult CNS cancer survivors who ranged in age from 18 to 30 years…

  16. Fast Lamb wave energy shift approach using fully contactless ultrasonic system to characterize concrete structures

    Science.gov (United States)

    Ham, Suyun; Popovics, John S.

    2015-03-01

    Ultrasonic techniques provide an effective non-destructive evaluation (NDE) method to monitor concrete structures, but the need to perform rapid and accurate structural assessment requires evaluation of hundreds, or even thousands, of measurement datasets. Use of a fully contactless ultrasonic system can save time and labor through rapid implementation, and can enable automated and controlled data acquisition, for example through robotic scanning. Here we present results using a fully contactless ultrasonic system. This paper describes our efforts to develop a contactless ultrasonic guided wave NDE approach to detect and characterize delamination defects in concrete structures. The developed contactless sensors, controlled scanning system, and employed Multi-channel Analysis of Surface Waves (MASW) signal processing scheme are reviewed. Then a guided wave interpretation approach for MASW data is described. The presence of delamination is interpreted by guided plate wave (Lamb wave) behavior, where a shift in excited Lamb mode phase velocity, is monitored. Numerically simulated and experimental ultrasonic data collected from a concrete sample with simulated delamination defects are presented, where the occurrence of delamination is shown to be associated with a mode shift in Lamb wave energy.

  17. Melanocortin signaling in the CNS directly regulates circulating cholesterol

    OpenAIRE

    Perez-Tilve, Diego; Hofmann, Susanna M; Basford, Joshua; Nogueiras, Ruben; Pfluger, Paul T; Patterson, James T; Grant, Erin; Wilson-Perez, Hilary E; Granholm, Norman A; Arnold, Myrtha; Trevaskis, James L; Butler, Andrew A; Davidson, William S; Woods, Stephen C; Benoit, Stephen C

    2010-01-01

    Cholesterol circulates in the blood in association with triglycerides and other lipids, and elevated blood low-density lipoprotein cholesterol carries a risk for metabolic and cardiovascular disorders, whereas high-density lipoprotein (HDL) cholesterol in the blood is thought to be beneficial. Circulating cholesterol is the balance among dietary cholesterol absorption, hepatic synthesis and secretion, and the metabolism of lipoproteins by various tissues. We found that the CNS is also an impo...

  18. Photonics surface waves on metamaterials interfaces

    DEFF Research Database (Denmark)

    Takayama, Osamu; Bogdanov, Andrey; Lavrinenko, Andrei V

    2017-01-01

    A surface wave (SW) in optics is a light wave, which is supported at an interface of two dissimilar media and propagates along the interface with its field amplitude exponentially decaying away from the boundary. The research on surface waves has been flourishing in last few decades thanks...... to their unique properties of surface sensitivity and field localization. These features have resulted in applications in nano-guiding, sensing, light-trapping and imaging based on the near-field techniques, contributing to the establishment of the nanophotonics as a field of research. Up to present, a wide...... variety of surface waves has been investigated in numerous material and structure settings. This paper reviews the recent progress and development in the physics of SWs localized at metamaterial interfaces, as well as bulk media in order to provide broader perspectives on optical surface waves in general...

  19. A diagnostic imaging approach for online characterization of multi-impact in aircraft composite structures based on a scanning spatial-wavenumber filter of guided wave

    Science.gov (United States)

    Ren, Yuanqiang; Qiu, Lei; Yuan, Shenfang; Su, Zhongqing

    2017-06-01

    Monitoring of impact and multi-impact in particular in aircraft composite structures has been an intensive research topic in the field of guided-wave-based structural health monitoring (SHM). Compared with the majority of existing methods such as those using signal features in the time-, frequency- or joint time-frequency domain, the approach based on spatial-wavenumber filter of guided wave shows superb advantage in effectively distinguishing particular wave modes and identifying their propagation direction relative to the sensor array. However, there exist two major issues when conducting online characterization of multi-impact event. Firstly, the spatial-wavenumber filter should be realized in the situation that the wavenumber of high spatial resolution of the complicated multi-impact signal cannot be measured or modeled. Secondly, it's difficult to identify the multiple impacts and realize multi-impact localization due to the overlapping of wavenumbers. To address these issues, a scanning spatial-wavenumber filter based diagnostic imaging method for online characterization of multi-impact event is proposed to conduct multi-impact imaging and localization in this paper. The principle of the scanning filter for multi-impact is developed first to conduct spatial-wavenumber filtering and to achieve wavenumber-time imaging of the multiple impacts. Then, a feature identification method of multi-impact based on eigenvalue decomposition and wavenumber searching is presented to estimate the number of impacts and calculate the wavenumber of the multi-impact signal, and an image mapping method is proposed as well to convert the wavenumber-time image to an angle-distance image to distinguish and locate the multiple impacts. A series of multi-impact events are applied to a carbon fiber laminate plate to validate the proposed methods. The validation results show that the localization of the multiple impacts are well achieved.

  20. Instantaneous wave emission model

    International Nuclear Information System (INIS)

    Kruer, W.L.

    1970-12-01

    A useful treatment of electrostatic wave emission by fast particles in a plasma is given. First, the potential due to a fast particle is expressed as a simple integration over the particle orbit; several interesting results readily follow. The potential in the wake of an accelerating particle is shown to be essentially that produced through local excitation of the plasma by the particle free-streaming about its instantaneous orbit. Application is made to one dimension, and it is shown that the wave emission and adsorption synchronize to the instantaneous velocity distribution function. Guided by these calculations, we then formulate a test particle model for computing the instantaneous wave emission by fast particles in a Vlasov plasma. This model lends itself to physical interpretation and provides a direct approach to many problems. By adopting a Fokker-Planck description for the particle dynamics, we calculate the broadening of the wave-particle resonance due to velocity diffusion and drag

  1. Inflammatory cytokines in the brain: does the CNS shape immune responses?

    DEFF Research Database (Denmark)

    Owens, T; Renno, T; Taupin, V

    1994-01-01

    Immune responses in the central nervous system (CNS) have traditionally been regarded as representing the intrusion of an unruly, ill-behaved mob of leukocytes into the well-ordered and organized domain of thought and reason. However, results accumulated over the past few years suggest that, far ...

  2. Radio wave propagation and parabolic equation modeling

    CERN Document Server

    Apaydin, Gokhan

    2018-01-01

    A thorough understanding of electromagnetic wave propagation is fundamental to the development of sophisticated communication and detection technologies. The powerful numerical methods described in this book represent a major step forward in our ability to accurately model electromagnetic wave propagation in order to establish and maintain reliable communication links, to detect targets in radar systems, and to maintain robust mobile phone and broadcasting networks. The first new book on guided wave propagation modeling and simulation to appear in nearly two decades, Radio Wave Propagation and Parabolic Equation Modeling addresses the fundamentals of electromagnetic wave propagation generally, with a specific focus on radio wave propagation through various media. The authors explore an array of new applications, and detail various v rtual electromagnetic tools for solving several frequent electromagnetic propagation problems. All of the methods described are presented within the context of real-world scenari...

  3. MODOS GUIADOS EM SLABS METAMATERIAIS GUIDED MODES IN METAMATERIAL SLABS

    Directory of Open Access Journals (Sweden)

    Leonardo André Ambrosio

    2006-12-01

    Full Text Available Este trabalho apresenta um estudo de revisão de modos propagantes em um guia-de-onda slab constituído de materiais com índices de refração negativo, os chamados metamateriais, Mostra-se que os modos guiados em um slab metamaterial possuem algumas propriedades particulares, tais como a propagação de ondas lentas simétricas ou anti-simétricas, a ausência de modos fundamentais para ondas rápidas e a possibilidade de propagação de ondas guiadas em um meio menos denso. A análise é baseada em expansões de campo no guia e nos espaços superior e inferior ao mesmo.This paper presents a review of the propagation modes in a slab waveguide consisting of negative refraction index materials, known as metamaterials. Some particular properties of guided modes in a metamaterial slab, such as slow symmetric or antisymmetric slow wave propagation, the absence of fundamental modes for fast waves and the possibility of guided waves in a less dense medium. The analysis is based on field expansions in the guide and the upper and lower spaces of it.

  4. A study on the ferrite image guide for Ka-band

    International Nuclear Information System (INIS)

    Arestova, Iliyana

    2018-01-01

    A ferrite image guide (FIG) has been investigated experimentally in the frequency range 26÷40 GHz by cavity resonator method (CRM) and theoretically by finite element method (FEM). The FIG’s wavelengths have been obtained and compared in a demagnetized state as well as in three different cases of homogeneous magnetization: 1) magnetization, which is perpendicular to the direction of propagation and parallel to the ground plane (Case 1); 2) magnetization, which is perpendicular to the direction of propagation and the ground plane (Case 2); 3) magnetization, which is parallel to the direction of propagation (Case 3). The distribution of the electric field magnitude in these three cases of magnetization has been verified by numerical simulations. Our investigations have shown that Case 2 seems to be the most promising from a point of view of practical realization of millimetre wave non reciprocal devices. Only in this case an asymmetrical shift of the maximum of the electric field magnitude has been observed, which fully corresponds to non reciprocal behaviour of coupled ferrite-dielectric image guide structures in millimetre wave range. Key words: ferrite devices, image guide, cavity resonator method, finite element method, millimetre waves

  5. Comparative antibiogram of coagulase-negative Staphylococci (CNS associated with subclinical and clinical mastitis in dairy cows

    Directory of Open Access Journals (Sweden)

    B. K. Bansal

    2015-03-01

    Full Text Available Aim: The present study was planned to determine the in vitro antibiotic susceptibility of coagulase-negative Staphylococci (CNS strains isolated from clinical and subclinical cases of mastitis in dairy cows. Antibiotic sensitivity profile will be helpful to recommend early therapy at the field level prior to availability of CST results. Materials and Methods: The milk samples from cases of clinical mastitis received in Mastitis Laboratory, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana and those of subclinical mastitis collected during routine screening of state dairy farms, were subjected to microbial culture. Identification of CNS organisms was done by standard biochemical tests. Antibiotic sensitivity testing, based on 30 antibiotics belonging to 12 groups, was done on 58 randomly selected CNS isolates (clinical isolates: 41, subclinical isolates: 17. Results: Isolates were highly susceptible to chloramphenicol (98.3%, gentamicin (93.1%, streptomycin (91.4%, linezolid (91.4%, ceftixozime (87.9%, cloxacillin (86.2%, clotrimazole (86.2%, bacitracin (86.2%, enrofloxacin (84.5% and ceftrioxone + tazobactum (70.7%, while resistance was observed against amoxicillin (77.6%, penicillin (75.9%, ampicillin (74.1% and cefoperazone (51.7%. Overall, isolates from clinical cases of mastitis had a higher resistance than subclinical isolates. Conclusion: CNS isolates were susceptible to chloramphenicol, gentamicin and streptomycin, while higher resistance was recorded against routinely used penicillin group.

  6. Mining the topography and dynamics of the 4D Nucleome to identify novel CNS drug pathways.

    Science.gov (United States)

    Higgins, Gerald A; Allyn-Feuer, Ari; Georgoff, Patrick; Nikolian, Vahagn; Alam, Hasan B; Athey, Brian D

    2017-07-01

    The pharmacoepigenome can be defined as the active, noncoding province of the genome including canonical spatial and temporal regulatory mechanisms of gene regulation that respond to xenobiotic stimuli. Many psychotropic drugs that have been in clinical use for decades have ill-defined mechanisms of action that are beginning to be resolved as we understand the transcriptional hierarchy and dynamics of the nucleus. In this review, we describe spatial, temporal and biomechanical mechanisms mediated by psychotropic medications. Focus is placed on a bioinformatics pipeline that can be used both for detection of pharmacoepigenomic variants that discretize drug response and adverse events to improve pharmacogenomic testing, and for the discovery of novel CNS therapeutics. This approach integrates the functional topology and dynamics of the transcriptional hierarchy of the pharmacoepigenome, gene variant-driven identification of pharmacogenomic regulatory domains, and mesoscale mapping for the discovery of novel CNS pharmacodynamic pathways in human brain. Examples of the application of this pipeline are provided, including the discovery of valproic acid (VPA) mediated transcriptional reprogramming of neuronal cell fate following injury, and mapping of a CNS pathway glutamatergic pathway for the mood stabilizer lithium. These examples in regulatory pharmacoepigenomics illustrate how ongoing research using the 4D nucleome provides a foundation to further insight into previously unrecognized psychotropic drug pharmacodynamic pathways in the human CNS. Copyright © 2017. Published by Elsevier Inc.

  7. Distributed feedback guided surface acoustic wave microresonator

    Science.gov (United States)

    Golan, G.; Griffel, G.; Seidman, A.; Croitoru, N.

    1989-08-01

    Surface acoustic wave resonators have been used in a number of applications: high-Q frequency filtering, very accurate frequency sources, etc. A major disadvantage of conventional resonators is their large dimensions, which makes them inadequate for integrated acoustics applications. In order to overcome these size limitations a new type of microresonator was designed, developed, and tested. In this paper, theoretical calculations and measurements on two kinds of such devices (a corrugated waveguide filter and a microresonator structure) are presented and their possible applications are discussed.

  8. Magnetic domain walls as reconfigurable spin-wave nano-channels

    Science.gov (United States)

    Wagner, Kai

    Research efforts to utilize spin waves as information carriers for wave based logic in micro- and nano-structured ferromagnetic materials have increased tremendously over the recent years. However, finding efficient means of tailoring and downscaling guided spin-wave propagation in two dimensions, while maintaining energy efficiency and reconfigurability, still remains a delicate challenge. Here we target these challenges by spin-wave transport inside nanometer-scaled potential wells formed along magnetic domain walls. For this, we investigate the magnetization dynamics of a rectangular-like element in a Landau state exhibiting a so called 180° Néel wall along its center. By microwave antennae the rf-excitation is constricted to one end of the domain wall and the spin-wave intensities are recorded by means of Brillouin-Light Scattering microscopy revealing channeled transport. Additional micromagnetic simulations with pulsed as well as cw-excitation are performed to yield further insight into this class of modes. We find several spin-wave modes quantized along the width of the domain wall yet with well defined wave vectors along the wall, exhibiting positive dispersion. In a final step, we demonstrate the flexibility of these spin-wave nano-channels based on domain walls. In contrast to wave guides realised by fixed geometries, domain walls can be easily manipulated. Here we utilize small external fields to control its position with nanometer precision over a micrometer range, while still enabling transport. Domain walls thus, open the perspective for reprogrammable and yet non-volatile spin-wave waveguides of nanometer width. Financial support by the Deutsche Forschungsgemeinschaft within project SCHU2922/1-1 is gratefully acknowledged.

  9. Decreased Cognitive/CNS Function in Young Adults at Risk for Hypertension: Effects of Sleep Deprivation

    Directory of Open Access Journals (Sweden)

    James A. McCubbin

    2012-01-01

    Full Text Available Hypertension has been linked to impaired cognitive/CNS function, and some of these changes may precede development of frank essential hypertension. The stress and fatigue of sleep deprivation may exacerbate these cognitive changes in young adults at risk. We hypothesize that individuals at risk for hypertension will show significant declines in cognitive function during a night of sleep deprivation. Fifty-one young adults were recruited for 28-hour total sleep deprivation studies. Hypertension risk was assessed by mildly elevated resting blood pressure and by family history of hypertension. A series of cognitive memory tasks was given at four test sessions across the sleep deprivation period. Although initially comparable in cognitive performance, persons at risk showed larger declines across the night for several indices of working memory, including code substitution, category, and order recall. These results suggest that cognitive/CNS changes may parallel or precede blood pressure dysregulation in the early stages of hypertension development. The role of CNS changes in the etiology of essential hypertension is discussed.

  10. Pygmy squids and giant brains: mapping the complex cephalopod CNS by phalloidin staining of vibratome sections and whole-mount preparations

    DEFF Research Database (Denmark)

    Wollesen, T; Loesel, R; Wanninger, A

    2009-01-01

    experiments are less time-consuming and allow a high throughput of samples. Besides other advantages summarized here, phalloidin reliably labels the entire neuropil of the CNS of all squids, cuttlefish and octopuses investigated. This facilitates high-resolution in toto reconstructions of the CNS...

  11. Development of a 2 MW relativistic backward wave oscillator

    Indian Academy of Sciences (India)

    In this paper, a high power relativistic backward wave oscillator (BWO) experiment is reported. A 230 keV, 2 kA, 150 ns relativistic electron beam is generated using a Marx generator. The beam is then injected into a hollow rippled wall metallic cylindrical tube that forms a slow wave structure. The beam is guided using an ...

  12. XY sex chromosome complement, compared with XX, in the CNS confers greater neurodegeneration during experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Du, Sienmi; Itoh, Noriko; Askarinam, Sahar; Hill, Haley; Arnold, Arthur P; Voskuhl, Rhonda R

    2014-02-18

    Women are more susceptible to multiple sclerosis (MS) and have more robust immune responses than men. However, men with MS tend to demonstrate a more progressive disease course than women, suggesting a disconnect between the severity of an immune attack and the CNS response to a given immune attack. We have previously shown in an MS model, experimental autoimmune encephalomyelitis, that autoantigen-sensitized XX lymph node cells, compared with XY, are more encephalitogenic. These studies demonstrated an effect of sex chromosomes in the induction of immune responses, but did not address a potential role of sex chromosomes in the CNS response to immune-mediated injury. Here, we examined this possibility using XX versus XY bone marrow chimeras reconstituted with a common immune system of one sex chromosomal type. We found that experimental autoimmune encephalomyelitis mice with an XY sex chromosome complement in the CNS, compared with XX, demonstrated greater clinical disease severity with more neuropathology in the spinal cord, cerebellum, and cerebral cortex. A candidate gene on the X chromosome, toll-like receptor 7, was then examined. Toll-like receptor 7 expression in cortical neurons was higher in mice with XY compared with mice with XX CNS, consistent with the known neurodegenerative role for toll-like receptor 7 in neurons. These results suggest that sex chromosome effects on neurodegeneration in the CNS run counter to effects on immune responses, and may bear relevance to the clinical enigma of greater MS susceptibility in women but faster disability progression in men. This is a demonstration of a direct effect of sex chromosome complement on neurodegeneration in a neurological disease.

  13. User guide – COE Calculation Tool for Wave Energy Converters

    DEFF Research Database (Denmark)

    Chozas, Julia Fernandez; Kofoed, Jens Peter; Jensen, Niels Ejner Helstrup

    Aalborg University together with Energinet.dk and Julia F. Chozas Consulting Engineer, have released a freely available online spreadsheet to evaluate the Levelised Cost of Energy (LCOE) for wave energy projects. The open-access tool calculates the LCOE based on the power production of a Wave...... Energy Converter (WEC) at a particular location. Production data may derive from laboratory testing, numerical modelling or from sea trials. The tool has been developed as a transparent and simple model that evaluates WEC’s economic feasibility in a range of locations, while scaling WEC’s features...

  14. T cells targeting a neuronal paraneoplastic antigen mediate tumor rejection and trigger CNS autoimmunity with humoral activation.

    Science.gov (United States)

    Blachère, Nathalie E; Orange, Dana E; Santomasso, Bianca D; Doerner, Jessica; Foo, Patricia K; Herre, Margaret; Fak, John; Monette, Sébastien; Gantman, Emily C; Frank, Mayu O; Darnell, Robert B

    2014-11-01

    Paraneoplastic neurologic diseases (PND) involving immune responses directed toward intracellular antigens are poorly understood. Here, we examine immunity to the PND antigen Nova2, which is expressed exclusively in central nervous system (CNS) neurons. We hypothesized that ectopic expression of neuronal antigen in the periphery could incite PND. In our C57BL/6 mouse model, CNS antigen expression limits antigen-specific CD4+ and CD8+ T-cell expansion. Chimera experiments demonstrate that this tolerance is mediated by antigen expression in nonhematopoietic cells. CNS antigen expression does not limit tumor rejection by adoptively transferred transgenic T cells but does limit the generation of a memory population that can be expanded upon secondary challenge in vivo. Despite mediating cancer rejection, adoptively transferred transgenic T cells do not lead to paraneoplastic neuronal targeting. Preliminary experiments suggest an additional requirement for humoral activation to induce CNS autoimmunity. This work provides evidence that the requirements for cancer immunity and neuronal autoimmunity are uncoupled. Since humoral immunity was not required for tumor rejection, B-cell targeting therapy, such as rituximab, may be a rational treatment option for PND that does not hamper tumor immunity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. LATE-BREAKING ABSTRACT: Early relapse of non-small cell lung cancer (NSCLC) found after CNS-symptoms

    DEFF Research Database (Denmark)

    Hansen, Niels-Chr. G.; Laursen, Christian B.; Jeppesen, Stefan S.

    2016-01-01

    whether the introduction in 2010 of follow-up by CT of thorax and upper abdomen every three months has reduced the incidence of relapse suspected from CNS-symptoms.Results: All 827 NSCLC patients from Funen completing curative treatment from 2005 to 2013 were included. The total number of relapses found...... or III were found.Conclusion: CT-based follow-up has not reduced the incidence of relapse suspected from CNS-symptoms in stage II-IV, and therefore we suggest routine MR of the brain before curative treatment for this group of patients.Number, fractions(%), and [95%CI]Jan. 2005 - June 2010July 2010 - Dec...... after symptoms within 24 months decreased in the 3½ years after the introduction of CT-based follow-up, p < 0,001 (table), but the total fraction presenting with CNS-symptoms did not change, p = 0.296. Relapses after stage I cancer decreased (p = 0.025), while no differences or changes for stages II...

  16. Behavioral and Genetic Evidence for GIRK Channels in the CNS: Role in Physiology, Pathophysiology, and Drug Addiction.

    Science.gov (United States)

    Mayfield, Jody; Blednov, Yuri A; Harris, R Adron

    2015-01-01

    G protein-coupled inwardly rectifying potassium (GIRK) channels are widely expressed throughout the brain and mediate the inhibitory effects of many neurotransmitters. As a result, these channels are important for normal CNS function and have also been implicated in Down syndrome, Parkinson's disease, psychiatric disorders, epilepsy, and drug addiction. Knockout mouse models have provided extensive insight into the significance of GIRK channels under these conditions. This review examines the behavioral and genetic evidence from animal models and genetic association studies in humans linking GIRK channels with CNS disorders. We further explore the possibility that subunit-selective modulators and other advanced research tools will be instrumental in establishing the role of individual GIRK subunits in drug addiction and other relevant CNS diseases and in potentially advancing treatment options for these disorders. © 2015 Elsevier Inc. All rights reserved.

  17. Lamb Wave Tomography for Corrosion Mapping

    Science.gov (United States)

    Hinders, Mark K.; McKeon, James C. P.

    1999-01-01

    As the world-wide civil aviation fleet continues to age, methods for accurately predicting the presence of structural flaws-such as hidden corrosion-that compromise airworthiness become increasingly necessary. Ultrasonic guided waves, Lamb waves, allow large sections of aircraft structures to be rapidly inspected. However, extracting quantitative information from Lamb wave data has always involved highly trained personnel with a detailed knowledge of mechanical-waveguide physics. Our work focuses on using a variety of different tomographic reconstruction techniques to graphically represent the Lamb wave data in images that can be easily interpreted by technicians. Because the velocity of Lamb waves depends on thickness, we can convert the travel times of the fundamental Lamb modes into a thickness map of the inspection region. In this paper we show results for the identification of single or multiple back-surface corrosion areas in typical aluminum aircraft skin structures.

  18. Computer simulation of driven Alfven waves

    International Nuclear Information System (INIS)

    Geary, J.L. Jr.

    1986-01-01

    The first particle simulation study of shear Alfven wave resonance heating is presented. Particle simulation codes self-consistently follow the time evolution of the individual and collective aspects of particle dynamics as well as wave dynamics in a fully nonlinear fashion. Alfven wave heating is a possible means of increasing the temperature of magnetized plasmas. A new particle simulation model was developed for this application that incorporates Darwin's formulation of the electromagnetic fields with a guiding center approximation for electron motion perpendicular to the ambient magnetic field. The implementation of this model and the examination of its theoretical and computational properties are presented. With this model, several cases of Alfven wave heating is examined in both uniform and nonuniform simulation systems in a two dimensional slab. For the inhomogeneous case studies, the kinetic Alfven wave develops in the vicinity of the shear Alfven resonance region

  19. Enigmatic electrons, photons, and ''empty'' waves

    International Nuclear Information System (INIS)

    MacGregor, M.H.

    1995-01-01

    A spectroscopic analysis is made of electrons and photons from the standpoint of physical realism. In this conceptual framework, moving particles are portrayed as localized entities which are surrounded by ''empty'' waves. A spectroscopic model for the electron Stands as a guide for a somewhat similar, but in essential respects radically different, model for the photon. This leads in turn to a model for the ''zeron''. the quantum of the empty wave. The properties of these quanta mandate new basis states, and hence an extension of our customary framework for dealing with them. The zeron wave field of a photon differs in one important respect from the standard formalism for an electromagnetic wave. The vacuum state emerges as more than just a passive bystander. Its polarization properties provide wave stabilization, particle probability distributions, and orbit quantization. Questions with regard to special relativity are discussed

  20. Management and Outcome of Patients With Langerhans Cell Histiocytosis and Single-Bone CNS-Risk Lesions: A Multi-Institutional Retrospective Study

    NARCIS (Netherlands)

    Chellapandian, Deepak; Shaikh, Furqan; van den Bos, Cor; Somers, Gino R.; Astigarraga, Itziar; Jubran, Rima; Degar, Barbara; Carret, Anne-Sophie; Mandel, Karen; Belletrutti, Mark; Dix, David; Visser, Johannes; Abuhadra, Nour; Chang, Tiffany; Rollins, Barret; Whitlock, James; Weitzman, Sheila; Abla, Oussama

    2015-01-01

    Children with Langerhans cell histiocytosis (LCH) and single-bone CNS-risk lesions have been reported to be at increased risk of diabetes insipidus (DI), central nervous system neurodegeneration (CNS-ND), and recurrence of disease. However, it is unknown whether the addition of chemotherapy or