Pore-scale modeling of wettability alteration during primary drainage
Kallel, W.; van Dijke, M. I. J.; Sorbie, K. S.; Wood, R.
2017-03-01
While carbonate reservoirs are recognized to be weakly-to-moderately oil-wet at the core-scale, pore-scale wettability distributions remain poorly understood. In particular, the wetting state of micropores (pores polar non-hydrocarbon compounds from the oil-phase into the water-phase. We implement a diffusion/adsorption model for these compounds that triggers a wettability alteration from initially water-wet to intermediate-wet conditions. This mechanism is incorporated in a quasi-static pore-network model to which we add a notional time-dependency of the quasi-static invasion percolation mechanism. The model qualitatively reproduces experimental observations where an early rapid wettability alteration involving these small polar species occurred during primary drainage. Interestingly, we could invoke clear differences in the primary drainage patterns by varying both the extent of wettability alteration and the balance between the processes of oil invasion and wetting change. Combined, these parameters dictate the initial water saturation for waterflooding. Indeed, under conditions where oil invasion is slow compared to a fast and relatively strong wetting change, the model results in significant non-zero water saturations. However, for relatively fast oil invasion or small wetting changes, the model allows higher oil saturations at fixed maximum capillary pressures, and invasion of micropores at moderate capillary pressures.
Colloid dispersion on the pore scale.
Baumann, Thomas; Toops, Laura; Niessner, Reinhard
2010-02-01
Dispersion describes the spreading of a tracer or contaminant in an aquifer. Detailed knowledge of dispersion is the key to successful risk assessment in case of groundwater pollution or groundwater protection. The dispersion of colloids on the pore scale is controlled by flow velocity, ionic strength, colloid size, colloid concentration, and colloid-matrix interactions. The objective of this study was to provide quantitative data and to assess the scale dependency of colloid dispersion on the pore scale. The positions of carboxylated polystyrene microspheres (1 microm, 0.5 microm) were recorded during transport experiments in silicon micromodels with three pore topologies. The positions were combined into particle trajectories revealing the flow path of individual colloids. More than thousand trajectories were evaluated for each experiment to obtain the dispersivity of the colloids for flow distances between 10 and 1000 microm. All experiments were run at high Peclet numbers. The pore scale dispersivity was on the order of 8-30% of the flow distance with pure water, dependent on the heterogeneity of the pore topology. The dispersivity was positively correlated with the ionic strength and inversely correlated with the colloid size and the flow velocity. A coating of the micromodel surface with humic acid also increased dispersivity. The quantitative data set presented here supports the theoretical framework for colloid transport and allows to parametrize colloid transport on the pore scale. Copyright 2009 Elsevier Ltd. All rights reserved.
Pore-Scale Model for Microbial Growth
Tartakovsky, G.; Tartakovsky, A. M.; Scheibe, T. D.
2011-12-01
A lagrangian particle model based on smoothed particle hydrodynamics (SPH) is used to simulate pore-scale flow, reactive transport and biomass growth which is controlled by the mixing of an electron donor and acceptor, in a microfluidic porous cell. The experimental results described in Ch. Zhang et al "Effects of pore-scale heterogeneity and transverse mixing on bacterial growth in porous media" were used for this study. The model represents the homogeneous pore structure of a uniform array of cylindrical posts with microbes uniformly distributed on the grain surfaces. Each one of the two solutes (electron donor and electron acceptor) enters the domain unmixed through separate inlets. In the model, pair-wise particle-particle interactions are used to simulate interactions within the biomass, and both biomass-fluid and biomass-soil grain interactions. The biomass growth rate is described by double Monod kinetics. For the set of parameters used in the simulations the model predicts that: 1) biomass grows in the shape of bridges connecting soil grains and oriented in the direction of flow so as to minimize resistance to the fluid flow; and 2) the biomass growth occurs only in the mixing zone. Using parameters available in the literature, the biomass growth model agrees qualitatively with the experimental results. In order to achieve quantitative agreement, model calibration is required.
Measurements of pore-scale flow through apertures
Energy Technology Data Exchange (ETDEWEB)
Chojnicki, Kirsten [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-09-01
Pore-scale aperture effects on flow in pore networks was studied in the laboratory to provide a parameterization for use in transport models. Four cases were considered: regular and irregular pillar/pore alignment with and without an aperture. The velocity field of each case was measured and simulated, providing quantitatively comparable results. Two aperture effect parameterizations were considered: permeability and transmission. Permeability values varied by an order of magnitude between the cases with and without apertures. However, transmission did not correlate with permeability. Despite having much greater permeability the regular aperture case permitted less transmission than the regular case. Moreover, both irregular cases had greater transmission than the regular cases, a difference not supported by the permeabilities. Overall, these findings suggest that pore-scale aperture effects on flow though a pore-network may not be adequately captured by properties such as permeability for applications that are interested in determining particle transport volume and timing.
Microfluidic Experiments Studying Pore Scale Interactions of Microbes and Geochemistry
Chen, M.; Kocar, B. D.
2016-12-01
Understanding how physical phenomena, chemical reactions, and microbial behavior interact at the pore-scale is crucial to understanding larger scale trends in groundwater chemistry. Recent studies illustrate the utility of microfluidic devices for illuminating pore-scale physical-biogeochemical processes and their control(s) on the cycling of iron, uranium, and other important elements 1-3. These experimental systems are ideal for examining geochemical reactions mediated by microbes, which include processes governed by complex biological phenomenon (e.g. biofilm formation, etc.)4. We present results of microfluidic experiments using a model metal reducing bacteria and varying pore geometries, exploring the limitations of the microorganisms' ability to access tight pore spaces, and examining coupled biogeochemical-physical controls on the cycling of redox sensitive metals. Experimental results will provide an enhanced understanding of coupled physical-biogeochemical processes transpiring at the pore-scale, and will constrain and compliment continuum models used to predict and describe the subsurface cycling of redox-sensitive elements5. 1. Vrionis, H. A. et al. Microbiological and geochemical heterogeneity in an in situ uranium bioremediation field site. Appl. Environ. Microbiol. 71, 6308-6318 (2005). 2. Pearce, C. I. et al. Pore-scale characterization of biogeochemical controls on iron and uranium speciation under flow conditions. Environ. Sci. Technol. 46, 7992-8000 (2012). 3. Zhang, C., Liu, C. & Shi, Z. Micromodel investigation of transport effect on the kinetics of reductive dissolution of hematite. Environ. Sci. Technol. 47, 4131-4139 (2013). 4. Ginn, T. R. et al. Processes in microbial transport in the natural subsurface. Adv. Water Resour. 25, 1017-1042 (2002). 5. Scheibe, T. D. et al. Coupling a genome-scale metabolic model with a reactive transport model to describe in situ uranium bioremediation. Microb. Biotechnol. 2, 274-286 (2009).
Reactive/Adsorptive transport in (partially-) saturated porous media: from pore scale to core scale
Raoof, A.
2011-01-01
Pore-scale modeling provides opportunities to study transport phenomena in fundamental ways because detailed information is available at the microscopic pore scale. This offers the best hope for bridging the traditional gap that exists between pore scale and macro (lab) scale description of the
Pore-scale uncertainty quantification with multilevel Monte Carlo
Icardi, Matteo
2014-01-06
Computational fluid dynamics (CFD) simulations of pore-scale transport processes in porous media have recently gained large popularity. However the geometrical details of the pore structures can be known only in a very low number of samples and the detailed flow computations can be carried out only on a limited number of cases. The explicit introduction of randomness in the geometry and in other setup parameters can be crucial for the optimization of pore-scale investigations for random homogenization. Since there are no generic ways to parametrize the randomness in the porescale structures, Monte Carlo techniques are the most accessible to compute statistics. We propose a multilevel Monte Carlo (MLMC) technique to reduce the computational cost of estimating quantities of interest within a prescribed accuracy constraint. Random samples of pore geometries with a hierarchy of geometrical complexities and grid refinements, are synthetically generated and used to propagate the uncertainties in the flow simulations and compute statistics of macro-scale effective parameters.
A Dynamic Pore-Scale Model of Imbibition
DEFF Research Database (Denmark)
Mogensen, Kristian; Stenby, Erling Halfdan
1998-01-01
We present a dynamic pore-scale network model of imbibition, capable of calculating residual oil saturation for any given capillary number, viscosity ratio, contact angle and aspect ratio. Our goal is not to predict the outcome of core floods, but rather to perform a sensitivity analysis of the a......We present a dynamic pore-scale network model of imbibition, capable of calculating residual oil saturation for any given capillary number, viscosity ratio, contact angle and aspect ratio. Our goal is not to predict the outcome of core floods, but rather to perform a sensitivity analysis...... of the above-mentioned parameters, except the viscosity ratio. We find that contact angle, aspect ratio and capillary number all have a significant influence on the competition between piston-like advance, leading to high recovery, and snap-off, causing oil entrapment. Due to enormous CPU-time requirements we...... been entirely inhibited, in agreement with results obtained by Blunt using a quasi-static model. For higher aspect ratios, the effect of rate and contact angle is more pronounced. Many core floods are conducted at capillary numbers in the range 10 to10.6. We believe that the excellent recoveries...
Maes, Julien; Geiger, Sebastian
2018-01-01
Laboratory experiments have shown that oil production from sandstone and carbonate reservoirs by waterflooding could be significantly increased by manipulating the composition of the injected water (e.g. by lowering the ionic strength). Recent studies suggest that a change of wettability induced by a change in surface charge is likely to be one of the driving mechanism of the so-called low-salinity effect. In this case, the potential increase of oil recovery during waterflooding at low ionic strength would be strongly impacted by the inter-relations between flow, transport and chemical reaction at the pore-scale. Hence, a new numerical model that includes two-phase flow, solute reactive transport and wettability alteration is implemented based on the Direct Numerical Simulation of the Navier-Stokes equations and surface complexation modelling. Our model is first used to match experimental results of oil droplet detachment from clay patches. We then study the effect of wettability change on the pore-scale displacement for simple 2D calcite micro-models and evaluate the impact of several parameters such as water composition and injected velocity. Finally, we repeat the simulation experiments on a larger and more complex pore geometry representing a carbonate rock. Our simulations highlight two different effects of low-salinity on oil production from carbonate rocks: a smaller number of oil clusters left in the pores after invasion, and a greater number of pores invaded.
Gerke, Kirill; Vasilyev, Roman; Korost, Dmitry; Karsanina, Marina; Mallants, Dirk; Gorbunova, Ella; Shein, Evgeny; Gartsman, Boris; Bedrikovetsky, Pavel; Tairova, Aliya; Skvortsova, Elena
2013-04-01
Conventional methods of determining transport properties on core samples using information from hydraulic conductivity, water retention curves, electrical properties, or formation factor have substantial shortcomings: (1) they represent quasi-1D flow; (2) possess no a priori information on sample's representativity in terms of its internal heterogeneity; (3) measurements may seriously alter sample properties, e.g. sample saturation and through-flow can mobilize fine material potentially causing pore blockage; also, saturation in the laboratory may cause swelling or mineral dissolution of some materials hence affecting the measured hydraulic properties, while full saturation may never occur under field conditions; (4) they require standard shape and size for coring material, thus representing serious limitations for fragile, consolidated, or cemented samples; (5) often represent quasi-static processes, while flow under field conditions is highly dynamic; (6) some fitting parameters are invoked to represent pore-connectivity or "tortuosity" and used in cross-property relationships without real physical meaning (e.g., linkage between water retention curve and unsaturated hydraulic conductivity. Based on experimental data from a broad range of porous materials we show how these shortcomings can be overcame via pore-scale modeling using structural and surface property information. In particular we use following datasets: 1) deep vadose zones for arid environment (central Australia), 2) shallow-to-deep aquifers (Central Russian Upland), 3) agricultural soils known for their preferential flow (Central Russian Upland), and 4) extremely stony forest soils (Russian Far East). Several approaches exist for acquisition of structural information, with the most information-rich being X-ray microtomography. Alternatively, 2D thin-sections may be used with higher spatial resolution but with limited information on connectivity; reconstruction methods (sequential and stochastic) can
Multiphysics pore-scale model for the rehydration of porous foods
Sman, van der R.G.M.; Vergeldt, F.J.; As, van H.; Dalen, van G.; Voda, A.; Duynhoven, van J.P.M.
2014-01-01
In this paper we present a pore-scale model describing the multiphysics occurring during the rehydration of freeze-dried vegetables. This pore-scale model is part of a multiscale simulation model, which should explain the effect of microstructure and pre-treatments on the rehydration rate.
Simulation of Flow and Transport at the Micro (Pore) Scale
Energy Technology Data Exchange (ETDEWEB)
Trebotich, D; Miller, G H
2007-04-05
An important problem in porous media involves the ability of micron and submicron-sized biological particles such as viruses or bacteria to move in groundwater systems through geologic media characterized by rock or mixed gravel, clay and sand materials. Current simulation capabilities require properly upscaled (continuum) models of colloidal filtration and adsorption to augment existing theories of fluid flow and chemical transport. Practical models typically address flow and transport behavior in aquifers over distances of 1 to 10 km where, for example, fluid momentum balance is governed by the simple Darcy's Law as a function of a pressure gradient, elevation gradient and a medium-dependent permeability parameter. In addition to fluid advection, there are multiple transport processes occurring in these systems including diffusion, dispersion and chemical interactions with solids or other aqueous chemical species. Particle transport is typically modeled in the same way as dissolved species, except that additional loss terms are incorporated to model particle filtration (physical interception), adsorption (chemical interception) and inactivation. Proper resolution of these processes at the porous medium continuum scale constitutes an important closure problem in subsurface science. We present a new simulation capability based on enabling technologies developed for microfluidics applications to model transport of colloidal-sized particles at the microscale, with relevance to the pore scale in geophysical subsurface systems. Particulate is represented by a bead-rod polymer model and is fully-coupled to a Newtonian solvent described by Navier-Stokes. Finite differences are used to discretize the interior of the domain; a Cartesian grid embedded boundary/volume-of-fluid method is used near boundaries and interfaces. This approach to complex geometry is amenable to direct simulation on grids obtained from surface extractions of tomographic image data. Short
Pore-scale Simulations of Capillary Trapping of CO2 Under Supercritical Conditions
Zhang, Y.; Andersson, L.; Herring, A. L.; Wildenschild, D.; Schaap, M. G.
2016-12-01
Carbon capture and storage is the only feasible and promising technology to reduce the global warming effects caused by carbon emissions while allowing continued large-scale use of fossil fuels. Deep saline aquifers have the largest identified storage potential for CO2. Injection of CO2 into deep saline aquifers leads to a multi-component, multiphase flow system, while capillary trapping of CO2 is an essential mechanism after the injection phase, in which CO2 becomes immobile. This process is unique and complex because CO2 phase properties (e.g. viscosity, density, and interfacial tension) exhibit large changes with pressure and temperature, which can strongly alter the efficiency of CO2 storage. This study is to investigate whether multiple drainage and imbibition of capillary trapping enhance the efficiency of geological CO2 storage in deep saline aquifers where super-critical conditions prevail. To this end, the CO2-Brine model is carried out within a Lattice Boltzmann (LB) framework to efficiently handle porous media in pore scale. A multi-component LB model with Shan-Chen-type model and Equation of State model that describe the physical interrelations among pressures, densities, and temperatures are combined.
Shen, C.; Molins, S.; Trebotich, D.; Steefel, C.
2011-12-01
Precipitation (or dissolution) of mineral grains modifies the geometry of the pore space in subsurface sediment with evolving solid-liquid boundaries. In turn, changes in the pore space alter the groundwater flow through the sediment, which ultimately affects the continuum scale reaction rates that are relevant for field applications such as carbon sequestration. Modeling provides a unique tool to understand and quantify the feedback processes between mineral precipitation (or dissolution) and flow at the pore scale. However, for modeling to accurately resolve the flow and reactive transport dynamics at the micrometer length scale in real porous media sediments, a method capable of representing complex solid-fluid and fluid-fluid boundaries in a high performance simulation framework is necessary. Here we present a modeling approach coupling flow and transport at the pore scale with multicomponent geochemistry that utilizes the embedded boundary method to characterize fluid-solid interfaces. The development is based on an adaptive, parallelized flow and transport software package, Chombo, and the geochemical code, CrunchFlow, providing powerful simulation capabilities. We demonstrate the approach in simulation of calcite dissolution in complex pore structures that are reconstructed from synchrotron-based x-ray computed microtomography (CMT) images. We apply high resolution techniques to track sharp gradients of concentrations that typically drive precipitation and dissolution reactions. We show that the approach is consistent with that used for moving fluid-fluid interfaces, and thus providing a robust and algorithmically consistent methodology that can be applied in multiphase flow problems. We use the model to examine the inter-dependence between continuum-scale dissolution/precipitation rates and flow patterns at the pore scale in different porous media geometries by using volume averaging methods.
Lester, D. R.; Trefry, M. G.; Metcalfe, G.
2016-11-01
The macroscopic spreading and mixing of solute plumes in saturated porous media is ultimately controlled by processes operating at the pore scale. Whilst the conventional picture of pore-scale mechanical dispersion and molecular diffusion leading to persistent hydrodynamic dispersion is well accepted, this paradigm is inherently two-dimensional (2D) in nature and neglects important three-dimensional (3D) phenomena. We discuss how the kinematics of steady 3D flow at the pore scale generate chaotic advection-involving exponential stretching and folding of fluid elements-the mechanisms by which it arises and implications of microscopic chaos for macroscopic dispersion and mixing. Prohibited in steady 2D flow due to topological constraints, these phenomena are ubiquitous due to the topological complexity inherent to all 3D porous media. Consequently 3D porous media flows generate profoundly different fluid deformation and mixing processes to those of 2D flow. The interplay of chaotic advection and broad transit time distributions can be incorporated into a continuous-time random walk (CTRW) framework to predict macroscopic solute mixing and spreading. We show how these results may be generalised to real porous architectures via a CTRW model of fluid deformation, leading to stochastic models of macroscopic dispersion and mixing which both honour the pore-scale kinematics and are directly conditioned on the pore-scale architecture.
Instabilities and pattern formation on the pore scale
Juel, Anne
What links a baby's first breath to adhesive debonding, enhanced oil recovery, or even drop-on-demand devices? All these processes involve moving or expanding bubbles displacing fluid in a confined space, bounded by either rigid or elastic walls. In this talk, we show how spatial confinement may either induce or suppress interfacial instabilities and pattern formation in such flows. We demonstrate that a simple change in the bounding geometry can radically alter the behaviour of a fluid-displacing air finger both in rigid and elastic vessels. A rich array of propagation modes, including steady and oscillatory fingers, is uncovered when air displaces oil from axially uniform tubes that have local variations in flow resistance within their cross-sections. Moreover, we show that the experimentally observed states can all be captured by a two-dimensional depth-averaged model for bubble propagation through wide channels. Viscous fingering in Hele-Shaw cells is a classical and widely studied fluid-mechanical instability: when air is injected into the narrow, liquid-filled gap between parallel rigid plates, the axisymmetrically expanding air-liquid interface tends to be unstable to non-axisymmetric disturbances. We show how the introduction of wall elasticity (via the replacement of the upper bounding plate by an elastic membrane) can weaken or even suppress the fingering instability by allowing changes in cell confinement through the flow-induced deflection of the boundary. The presence of a deformable boundary also makes the system prone to additional solid-mechanical instabilities, and these wrinkling instabilities can in turn enhance viscous fingering. The financial support of EPSRC and the Leverhulme Trust is gratefully acknowledged.
Effects of pore-scale physics on uranium geochemistry in Hanford sediments
Energy Technology Data Exchange (ETDEWEB)
Hu, Qinhong; Ewing, Robert P.
2013-11-25
Overall, this work examines a key scientific issue, mass transfer limitations at the pore-scale, using both new instruments with high spatial resolution, and new conceptual and modeling paradigms. The complementary laboratory and numerical approaches connect pore-scale physics to macroscopic measurements, providing a previously elusive scale integration. This Exploratory research project produced five peer-reviewed journal publications and eleven scientific presentations. This work provides new scientific understanding, allowing the DOE to better incorporate coupled physical and chemical processes into decision making for environmental remediation and long-term stewardship.
Magnini, M.; Beisel, A. M.; Ferrari, A.; Thome, J. R.
2017-11-01
The fluid mechanics of elongated bubbles in confined gas-liquid flows in micro-geometries is important in pore-scale flow processes for enhanced oil recovery and mobilization of colloids in unsaturated soil. The efficiency of such processes is traditionally related to the thickness of the liquid film trapped between the elongated bubble and the pore's wall, which is assumed constant. However, the surface of long bubbles presents undulations in the vicinity of the rear meniscus, which may significantly decrease the local thickness of the liquid film, thus impacting the process of interest. This study presents a systematic analysis of these undulations and the minimum film thickness induced in the range Ca = 0.001- 0.5 and Re = 0.1- 2000 . Pore-scale Computational Fluid Dynamics (CFD) simulations are performed with a self-improved version of the opensource solver ESI OpenFOAM which is based on a Volume of Fluid method to track the gas-liquid interface. A lubrication model based on the extension of the classical axisymmetric Bretherton theory is utilized to better understand the CFD results. The profiles of the rear meniscus of the bubble obtained with the lubrication model agree fairly well with those extracted from the CFD simulations. This study shows that the Weber number of the flow, We = Ca Re , is the parameter that best describes the dynamics of the interfacial waves. When We 0.1, a larger number of wave crests becomes evident on the surface of the rear meniscus of the bubble. The liquid film thickness at the crests of the undulations thins considerably as the Reynolds number is increased, down to less than 60% of the value measured in the flat film region. This may significantly influence important environmental processes, such as the detachment and mobilization of micron-sized pollutants and pathogenic micro-organisms adhering at the pore's wall in unsaturated soil.
Effect of morphology on water sorption in cellular solid foods. Part I: Pore scale network model
Esveld, D.C.; Sman, van der R.G.M.; Dalen, van G.; Duynhoven, van J.P.M.; Meinders, M.B.J.
2012-01-01
A pore scale network model is developed to predict the dynamics of moisture diffusion into complex cellular solid foods like bread, crackers, and cereals. The morphological characteristics of the sample, including the characteristics of each cellular void and the open pore connections between them
Subsecond pore-scale displacement processes and relaxation dynamics in multiphase flow.
Armstrong, Ryan T; Ott, Holger; Georgiadis, Apostolos; Rücker, Maja; Schwing, Alex; Berg, Steffen
2014-12-01
With recent advances at X-ray microcomputed tomography (μCT) synchrotron beam lines, it is now possible to study pore-scale flow in porous rock under dynamic flow conditions. The collection of four-dimensional data allows for the direct 3-D visualization of fluid-fluid displacement in porous rock as a function of time. However, even state-of-the-art fast-μCT scans require between one and a few seconds to complete and the much faster fluid movement occurring during that time interval is manifested as imaging artifacts in the reconstructed 3-D volume. We present an approach to analyze the 2-D radiograph data collected during fast-μCT to study the pore-scale displacement dynamics on the time scale of 40 ms which is near the intrinsic time scale of individual Haines jumps. We present a methodology to identify the time intervals at which pore-scale displacement events in the observed field of view occur and hence, how reconstruction intervals can be chosen to avoid fluid-movement-induced reconstruction artifacts. We further quantify the size, order, frequency, and location of fluid-fluid displacement at the millisecond time scale. We observe that after a displacement event, the pore-scale fluid distribution relaxes to (quasi-) equilibrium in cascades of pore-scale fluid rearrangements with an average relaxation time for the whole cascade between 0.5 and 2.0 s. These findings help to identify the flow regimes and intrinsic time and length scales relevant to fractional flow. While the focus of the work is in the context of multiphase flow, the approach could be applied to many different μCT applications where morphological changes occur at a time scale less than that required for collecting a μCT scan.
Intercomparison of 3D pore-scale flow and solute transport simulation methods
Energy Technology Data Exchange (ETDEWEB)
Yang, Xiaofan; Mehmani, Yashar; Perkins, William A.; Pasquali, Andrea; Schönherr, Martin; Kim, Kyungjoo; Perego, Mauro; Parks, Michael L.; Trask, Nathaniel; Balhoff, Matthew T.; Richmond, Marshall C.; Geier, Martin; Krafczyk, Manfred; Luo, Li-Shi; Tartakovsky, Alexandre M.; Scheibe, Timothy D.
2016-09-01
Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include 1) methods that explicitly model the three-dimensional geometry of pore spaces and 2) methods that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of the first type, using computational fluid dynamics (CFD) codes employing a standard finite volume method (FVM), against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that validation to include additional models of the first type based on the lattice Boltzmann method (LBM) and smoothed particle hydrodynamics (SPH), as well as a model of the second type, a pore-network model (PNM). The PNM approach used in the current study was recently improved and demonstrated to accurately simulate solute transport in a two-dimensional experiment. While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries on solute transport in the manner of PNMs has not been fully determined. We apply all four approaches (FVM-based CFD, LBM, SPH and PNM) to simulate pore-scale velocity distributions and (for capable codes) nonreactive solute transport, and intercompare the model results. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations). Generally good agreement was achieved among the various approaches, but some differences were observed depending on the model context. The intercomparison work was challenging because of variable capabilities of the codes, and inspired some code enhancements to allow consistent comparison of flow and transport simulations across the full suite of methods. This study provides support for confidence
Benchmark Study of 3D Pore-scale Flow and Solute Transport Simulation Methods
Scheibe, T. D.; Yang, X.; Mehmani, Y.; Perkins, W. A.; Pasquali, A.; Schoenherr, M.; Kim, K.; Perego, M.; Parks, M. L.; Trask, N.; Balhoff, M.; Richmond, M. C.; Geier, M.; Krafczyk, M.; Luo, L. S.; Tartakovsky, A. M.
2015-12-01
Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include 1) methods that explicitly model the three-dimensional geometry of pore spaces and 2) methods that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of the first type, using computational fluid dynamics (CFD) codes employing standard finite volume method (FVM), against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that benchmark study to include additional models of the first type based on the immersed-boundary method (IMB), lattice Boltzmann method (LBM), and smoothed particle hydrodynamics (SPH), as well as a model of the second type, a pore-network model (PNM). While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries in the manner of PNMs has not been fully determined. We apply all five approaches (FVM-based CFD, IMB, LBM, SPH and PNM) to simulate pore-scale velocity distributions and nonreactive solute transport, and intercompare the model results. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations). Generally good agreement was achieved among the various approaches, but some differences were observed depending on the model context. The benchmark study was challenging because of variable capabilities of the codes, and inspired some code enhancements to allow consistent comparison of flow and transport simulations across the full suite of methods. This study provides support for confidence in a variety of pore-scale modeling methods, and motivates further development and application of pore-scale simulation methods.
Characterization of double continuum formulations of transport through pore-scale information
Porta, G.; Ceriotti, G.; Bijeljic, B.
2016-12-01
Information on pore-scale characteristics is becoming increasingly available at unprecedented levels of detail from modern visualization/data-acquisition techniques. These advancements are not completely matched by corresponding developments of operational procedures according to which we can engineer theoretical findings aiming at improving our ability to reduce the uncertainty associated with the outputs of continuum-scale models to be employed at large scales. We present here a modeling approach which rests on pore-scale information to achieve a complete characterization of a double continuum model of transport and fluid-fluid reactive processes. Our model makes full use of pore-scale velocity distributions to identify mobile and immobile regions. We do so on the basis of a pointwise (in the pore space) evaluation of the relative strength of advection and diffusion time scales, as rendered by spatially variable values of local Péclet numbers. After mobile and immobile regions are demarcated, we build a simplified unit cell which is employed as a representative proxy of the real porous domain. This model geometry is then employed to simplify the computation of the effective parameters embedded in the double continuum transport model, while retaining relevant information from the pore-scale characterization of the geometry and velocity field. We document results which illustrate the applicability of the methodology to predict transport of a passive tracer within two- and three-dimensional media upon comparison with direct pore-scale numerical simulation of transport in the same geometrical settings. We also show preliminary results about the extension of this model to fluid-fluid reactive transport processes. In this context, we focus on results obtained in two-dimensional porous systems. We discuss the impact of critical quantities required as input to our modeling approach to obtain continuum-scale outputs. We identify the key limitations of the proposed
Noiriel, Catherine; Daval, Damien
2017-04-18
The reactivity of carbonate and silicate minerals is at the heart of porosity and pore geometry changes in rocks injected with CO2, which ultimately control the evolution of flow and transport properties of fluids in porous and/or fractured geological reservoirs. Modeling the dynamics of CO2-water-rock interactions is challenging because of the resulting large geochemical disequilibrium, the reservoir heterogeneities, and the large space and time scales involved in the processes. In particular, there is a lack of information about how the macroscopic properties of a reservoir, e.g., the permeability, will evolve as a result of geochemical reactions at the molecular scale. Addressing this point requires a fundamental understanding of how the microstructures influence the macroscopic properties of rocks. The pore scale, which ranges from a few nanometers to centimeters, has stood out as an essential scale of observation of geochemical processes in rocks. Transport or surface reactivity limitations due to the pore space architecture, for instance, are best described at the pore scale itself. It can be also considered as a mesoscale for aggregating and increasing the gain of fundamental understanding of microscopic interfacial processes. Here we focus on the potential application of a combination of physicochemical measurements coupled with nanoscale and microscale imaging techniques during laboratory experiments to improve our understanding of the physicochemical mechanisms that occur at the fluid-solid interface and the dynamics of the coupling between the geochemical reactions and flow and transport modifications at the pore scale. Imaging techniques such as atomic force microscopy, vertical scanning interferometry, focused ion beam transmission electron microscopy, and X-ray microtomography, are ideal for investigating the reactivity dynamics of these complex materials. Minerals and mineral assemblages, i.e., rocks, exhibit heterogeneous and anisotropic reactivity
Energy Technology Data Exchange (ETDEWEB)
Yan, Zhifeng; Liu, Chongxuan; Todd-Brown, Katherine E.; Liu, Yuanyuan; Bond-Lamberty, Ben; Bailey, Vanessa L.
2016-11-15
The relationship between microbial respiration rate and soil moisture content is an important property for understanding and predicting soil organic carbon degradation, CO_{2} production and emission, and their subsequent effects on climate change. This paper reports a pore-scale modeling study to investigate the response of heterotrophic respiration to moisture conditions in soils and to evaluate various factors that affect this response. X-ray computed tomography was used to derive soil pore structures, which were then used for pore-scale model investigation. The pore-scale results were then averaged to calculate the effective respiration rates as a function of water content in soils. The calculated effective respiration rate first increases and then decreases with increasing soil water content, showing a maximum respiration rate at water saturation degree of 0.75 that is consistent with field and laboratory observations. The relationship between the respiration rate and moisture content is affected by various factors, including pore-scale organic carbon bioavailability, the rate of oxygen delivery, soil pore structure and physical heterogeneity, soil clay content, and microbial drought resistivity. Simulations also illustrates that a larger fraction of CO_{2} produced from microbial respiration can be accumulated inside soil cores under higher saturation conditions, implying that CO_{2} flux measured on the top of soil cores may underestimate or overestimate true soil respiration rates under dynamic moisture conditions. Overall, this study provides mechanistic insights into the soil respiration response to the change in moisture conditions, and reveals a complex relationship between heterotrophic microbial respiration rate and moisture content in soils that is affected by various hydrological, geochemical, and biophysical factors.
Intercomparison of 3D pore-scale flow and solute transport simulation methods
Energy Technology Data Exchange (ETDEWEB)
Yang, Xiaofan; Mehmani, Yashar; Perkins, William A.; Pasquali, Andrea; Schönherr, Martin; Kim, Kyungjoo; Perego, Mauro; Parks, Michael L.; Trask, Nathaniel; Balhoff, Matthew T.; Richmond, Marshall C.; Geier, Martin; Krafczyk, Manfred; Luo, Li-Shi; Tartakovsky, Alexandre M.; Scheibe, Timothy D.
2016-09-01
Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include methods that 1) explicitly model the three-dimensional geometry of pore spaces and 2) those that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of class 1, based on direct numerical simulation using computational fluid dynamics (CFD) codes, against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that validation to include additional models of class 1 based on the immersed-boundary method (IMB), lattice Boltzmann method (LBM), smoothed particle hydrodynamics (SPH), as well as a model of class 2 (a pore-network model or PNM). The PNM approach used in the current study was recently improved and demonstrated to accurately simulate solute transport in a two-dimensional experiment. While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries on solute transport in the manner of PNMs has not been fully determined. We apply all four approaches (CFD, LBM, SPH and PNM) to simulate pore-scale velocity distributions and nonreactive solute transport, and intercompare the model results with previously reported experimental observations. Experimental observations are limited to measured pore-scale velocities, so solute transport comparisons are made only among the various models. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations).
Impact of Porous Media and NAPL Spatial Variability at the Pore Scale on Interphase Mass Transfer
Copty, N. K.; Agaoglu, B.; Scheytt, T.
2015-12-01
Sherwood number expressions are often used to model NAPL dissolution in porous media. Such expressions are generally derived from meso-scale experiments and expressed in terms of fluid and porous medium properties averaged over some representative volume. In this work a pore network model is used to examine the influence of porous media and NAPL pore scale variability on interphase mass transfer. The focus was on assessing the impact of (i) NAPL saturation, (ii) interfacial area (iii) NAPL spatial distribution at the pore scale, (iv) grain size heterogeneity and (v) REV or domain size on the apparent interphase mass transfer. Variability of both the mass transfer coefficient that explicitly accounts for the interfacial area and the mass transfer coefficient that lumps the interfacial area was examined. It was shown that pore scale NAPL distribution and its orientation relative to the flow direction have significant impact on flow bypassing and the interphase mass transfer coefficient. This results in a complex non-linear relationship between interfacial area and the REV-based interphase mass transfer rate. In other words, explicitly accounting for the interfacial area does not eliminate the variability of the mass transfer coefficient. Moreover, grain size heterogeneity can also lead to a decrease in the interphase mass transfer. It was also shown that, even for explicitly defined flow patterns, changing the domain size over which the mass transfer process is average influences the extent of NAPL bypassing and dilution and, consequently, the interphase mass transfer.
High Fidelity Computational Analysis of CO2 Trapping at Pore Scales
Energy Technology Data Exchange (ETDEWEB)
Kumar, Vinod
2013-07-13
With an alarming rise in carbon dioxide (CO2) emission from anthropogenic sources, CO2 sequestration has become an attractive choice to mitigate the emission. Some popular storage media for CO{sub 2} are oil reservoirs, deep coal-bed, and deep oceanic-beds. These have been used for the long term CO{sub 2} storage. Due to special lowering viscosity and surface tension property of CO{sub 2}, it has been widely used for enhanced oil recovery. The sites for CO{sub 2} sequestration or enhanced oil recovery mostly consist of porous rocks. Lack of knowledge of molecular mobility under confinement and molecule-surface interactions between CO2 and natural porous media results in generally governed by unpredictable absorption kinetics and total absorption capacity for injected fluids, and therefore, constitutes barriers to the deployment of this technology. Therefore, it is important to understand the flow dynamics of CO{sub 2} through the porous microstructures at the finest scale (pore-scale) to accurately predict the storage potential and long-term dynamics of the sequestered CO{sub 2}. This report discusses about pore-network flow modeling approach using variational method and analyzes simulated results this method simulations at pore-scales for idealized network and using Berea Sandstone CT scanned images. Variational method provides a promising way to study the kinetic behavior and storage potential at the pore scale in the presence of other phases. The current study validates variational solutions for single and two-phase Newtonian and single phase non-Newtonian flow through angular pores for special geometries whose analytical and/or empirical solutions are known. The hydraulic conductance for single phase flow through a triangular duct was also validated against empirical results derived from lubricant theory.
Seetha, N.; Raoof, Amir; Mohan Kumar, M. S.; Majid Hassanizadeh, S.
2017-05-01
Transport and deposition of nanoparticles in porous media is a multi-scale problem governed by several pore-scale processes, and hence, it is critical to link the processes at pore scale to the Darcy-scale behavior. In this study, using pore network modeling, we develop correlation equations for deposition rate coefficients for nanoparticle transport under unfavorable conditions at the Darcy scale based on pore-scale mechanisms. The upscaling tool is a multi-directional pore-network model consisting of an interconnected network of pores with variable connectivities. Correlation equations describing the pore-averaged deposition rate coefficients under unfavorable conditions in a cylindrical pore, developed in our earlier studies, are employed for each pore element. Pore-network simulations are performed for a wide range of parameter values to obtain the breakthrough curves of nanoparticle concentration. The latter is fitted with macroscopic 1-D advection-dispersion equation with a two-site linear reversible deposition accounting for both equilibrium and kinetic sorption. This leads to the estimation of three Darcy-scale deposition coefficients: distribution coefficient, kinetic rate constant, and the fraction of equilibrium sites. The correlation equations for the Darcy-scale deposition coefficients, under unfavorable conditions, are provided as a function of measurable Darcy-scale parameters, including: porosity, mean pore throat radius, mean pore water velocity, nanoparticle radius, ionic strength, dielectric constant, viscosity, temperature, and surface potentials of the particle and grain surfaces. The correlation equations are found to be consistent with the available experimental results, and in qualitative agreement with Colloid Filtration Theory for all parameters, except for the mean pore water velocity and nanoparticle radius.
mehmani, Y.; Sun, T.; Balhoff, M.; Bryant, S. L.; Eichhubl, P.
2012-12-01
In order to safely store CO2 in depleted reservoirs and deep saline aquifers, a better understanding of the storage mechanisms of CO2 is required. Reaction of CO2 with minerals to form precipitate in the subsurface helps to securely store CO2 over geologic time periods, but a concern is the formation of localized channels through which CO2 could travel at large, localized rates. Pore-scale network modeling is an attractive option for modeling and understanding this inherently pore-level process, but the relatively small domains of network models may prevent capturing of any such "emergent phenomena" and more importantly their study. Here, we develop a transient, single-phase, reactive pore-network model that includes reduction of throat conductivity as a result of precipitation. The novelty of this work is the implementation of a new Mortar/Transport method for coupling pore networks together at model interfaces that ensure continuity of pressures, species concentrations, and fluxes. Coupled sub-domains are solved separately in parallel and information is effectively communicated between them via the coupling process. The multiscale method can be further applied to modeling of multi-species/multiphase transport phenomena in highly heterogeneous media arising in various subsurface applications, and may potentially be applied to the seamless inclusion of pore-scale models in continuum simulators. The coupling allows for modeling at larger scales which may lead to more accurate upscaling approaches. Here, we couple pore-scale models with large variation in permeability and porosity which results initial preferential pathways for flow. Our simulation results suggest that the preferential pathways close in time due to precipitation, but are not redirected at late times.
DEFF Research Database (Denmark)
Rolle, Massimo; Kitanidis, Peter
breakthrough curves. Such dilution breakthrough curves allow capturing the compound-specific mixing of the different solutes and provide useful insights on the interplay between advective and diffusive processes, mass transfer limitations, and incomplete mixing in the heterogeneous pore-scale domains......Compound-specific diffusivities significantly impact solute transport and mixing at different scales. Although diffusive processes occur at the small pore scale, their effects propagate and remain important at larger macroscopic scales [1]. In this pore-scale modeling study in saturated porous...... media we show that compound-specific effects are important not only at steady-state and for the lateral displacement of solutes with different diffusivities but also for transient transport and solute breakthrough [2]. We performed flow and transport simulations in two-dimensional pore-scale domains...
On the predictivity of pore-scale simulations: estimating uncertainties with multilevel Monte Carlo
Icardi, Matteo
2016-02-08
A fast method with tunable accuracy is proposed to estimate errors and uncertainties in pore-scale and Digital Rock Physics (DRP) problems. The overall predictivity of these studies can be, in fact, hindered by many factors including sample heterogeneity, computational and imaging limitations, model inadequacy and not perfectly known physical parameters. The typical objective of pore-scale studies is the estimation of macroscopic effective parameters such as permeability, effective diffusivity and hydrodynamic dispersion. However, these are often non-deterministic quantities (i.e., results obtained for specific pore-scale sample and setup are not totally reproducible by another “equivalent” sample and setup). The stochastic nature can arise due to the multi-scale heterogeneity, the computational and experimental limitations in considering large samples, and the complexity of the physical models. These approximations, in fact, introduce an error that, being dependent on a large number of complex factors, can be modeled as random. We propose a general simulation tool, based on multilevel Monte Carlo, that can reduce drastically the computational cost needed for computing accurate statistics of effective parameters and other quantities of interest, under any of these random errors. This is, to our knowledge, the first attempt to include Uncertainty Quantification (UQ) in pore-scale physics and simulation. The method can also provide estimates of the discretization error and it is tested on three-dimensional transport problems in heterogeneous materials, where the sampling procedure is done by generation algorithms able to reproduce realistic consolidated and unconsolidated random sphere and ellipsoid packings and arrangements. A totally automatic workflow is developed in an open-source code [2015. https://bitbucket.org/micardi/porescalemc.], that include rigid body physics and random packing algorithms, unstructured mesh discretization, finite volume solvers
Pore-Scale Simulations Of Flow And Heat Transport In Saturated Permeable Media
Zegers, G. R., Sr.; Herrera, P. A.
2015-12-01
The study of heat transport in porous media is important for applications such as the use of temperature as environmental tracer, geothermal energy, fuel cells, etc. In recent years, there have been several advances in computational techniques that have allowed to investigate different processes in porous media at the pore-scale through detailed numerical simulations that considered synthetic porous media formed by regular grains and pore bodies arranged in different geometrical configurations. The main objective of this research is to investigate the influence of pore configurations on flow velocity and heat transport in 2D saturated porous media. We use OpenFOAM to solve flow and heat transport equations at the pore-scale. We performed detailed pore-scale numerical simulations in synthetic 2D porous media generated from regularly placed and randomly distributed circular solid grains. For each geometrical configuration we performed numerical simulations to compute the flow field in order to calculate properties such as as tortuosity, mean velocity and hydraulic conductivity, and to identify Lagrangian coherent structures to charaterize the velocity fields. We then perform heat transport simulations to relate the properties of the velocity fields and the main heat transport mechanisms. The analysis of the simulations results showed that in all the simulated configurations effective flow properties become valid at scales of 10 to 15 pore bodies. For the same porosity and boundary conditions we obtained that as expected tortuosity in the random structure is higher than in the regular configurations, while hydraulic conductivity is smaller for the random case. The results of heat transport simulations show significant differences in temperature distribution for the regular and random pore structures. For the simulated boundary and initial conditions, heat transport is more efficient in the random structure than in the regular geometry. This result indicates that the
On the predictivity of pore-scale simulations: Estimating uncertainties with multilevel Monte Carlo
Icardi, Matteo; Boccardo, Gianluca; Tempone, Raúl
2016-09-01
A fast method with tunable accuracy is proposed to estimate errors and uncertainties in pore-scale and Digital Rock Physics (DRP) problems. The overall predictivity of these studies can be, in fact, hindered by many factors including sample heterogeneity, computational and imaging limitations, model inadequacy and not perfectly known physical parameters. The typical objective of pore-scale studies is the estimation of macroscopic effective parameters such as permeability, effective diffusivity and hydrodynamic dispersion. However, these are often non-deterministic quantities (i.e., results obtained for specific pore-scale sample and setup are not totally reproducible by another ;equivalent; sample and setup). The stochastic nature can arise due to the multi-scale heterogeneity, the computational and experimental limitations in considering large samples, and the complexity of the physical models. These approximations, in fact, introduce an error that, being dependent on a large number of complex factors, can be modeled as random. We propose a general simulation tool, based on multilevel Monte Carlo, that can reduce drastically the computational cost needed for computing accurate statistics of effective parameters and other quantities of interest, under any of these random errors. This is, to our knowledge, the first attempt to include Uncertainty Quantification (UQ) in pore-scale physics and simulation. The method can also provide estimates of the discretization error and it is tested on three-dimensional transport problems in heterogeneous materials, where the sampling procedure is done by generation algorithms able to reproduce realistic consolidated and unconsolidated random sphere and ellipsoid packings and arrangements. A totally automatic workflow is developed in an open-source code [1], that include rigid body physics and random packing algorithms, unstructured mesh discretization, finite volume solvers, extrapolation and post-processing techniques. The
Tang, Youneng; Valocchi, Albert J.; Werth, Charles J.
2015-03-01
It is a challenge to upscale solute transport in porous media for multispecies bio-kinetic reactions because of incomplete mixing within the elementary volume and because biofilm growth can change porosity and affect pore-scale flow and diffusion. To address this challenge, we present a hybrid model that couples pore-scale subdomains to continuum-scale subdomains. While the pore-scale subdomains involving significant biofilm growth and reaction are simulated using pore-scale equations, the other subdomains are simulated using continuum-scale equations to save computational time. The pore-scale and continuum-scale subdomains are coupled using a mortar method to ensure continuity of solute concentration and flux at the interfaces. We present results for a simplified two-dimensional system, neglect advection, and use dual Monod kinetics for solute utilization and biofilm growth. The results based on the hybrid model are consistent with the results based on a pore-scale model for three test cases that cover a wide range of Damköhler (Da = reaction rate/diffusion rate) numbers for both homogeneous (spatially periodic) and heterogeneous pore structures. We compare results from the hybrid method with an upscaled continuum model and show that the latter is valid only for cases of small Damköhler numbers, consistent with other results reported in the literature.
Pore-scale simulation of miscible displacement in porous media using the lattice Boltzmann method
Xia, Ming
2016-03-01
A numerical model based on the lattice Boltzmann method is presented to investigate the viscous fingering phenomena of miscible displacement processes in porous media, which involves the fluid flow, heat transfer and mass transport. Especially, temperature- and concentration-dependent pore-fluid viscosity is considered. A complete list is derived and given for the conversion of relevant physical variables to lattice units to facilitate the understanding and implementation of the coupled problems involving fluid flow, heat transfer and mass transport using the LBM. To demonstrate the proposed model capacity, two different complex geometry microstructures using high resolution micro-computed tomography (micro-CT) images of core sample have been obtained and incorporated as computation geometries for modeling miscible displacement processes in porous media. The viscous fingering phenomena of miscible displacement processes are simulated in two different cases, namely in a channel and a porous medium respectively. Some influencing factors on the miscible displacement process, such as the pore-scale microstructure, Le number and Re number, are studied in great detail. The related simulation results have demonstrated that: (1) the existence of the pore-scale microstructure can have a significant effect on the front morphologies and front propagation speed in the miscible displacement process; (2) as the Le number increases, the fluid front and thermal front evolve differently, with the thermal front being less unstable due to more diffusion; (3) a larger Re number can lead to an increase in the propagation speed of the front.
Microtomography and pore-scale modeling of two-phase Fluid Distribution
Energy Technology Data Exchange (ETDEWEB)
Silin, D.; Tomutsa, L.; Benson, S.; Patzek, T.
2010-10-19
Synchrotron-based X-ray microtomography (micro CT) at the Advanced Light Source (ALS) line 8.3.2 at the Lawrence Berkeley National Laboratory produces three-dimensional micron-scale-resolution digital images of the pore space of the reservoir rock along with the spacial distribution of the fluids. Pore-scale visualization of carbon dioxide flooding experiments performed at a reservoir pressure demonstrates that the injected gas fills some pores and pore clusters, and entirely bypasses the others. Using 3D digital images of the pore space as input data, the method of maximal inscribed spheres (MIS) predicts two-phase fluid distribution in capillary equilibrium. Verification against the tomography images shows a good agreement between the computed fluid distribution in the pores and the experimental data. The model-predicted capillary pressure curves and tomography-based porosimetry distributions compared favorably with the mercury injection data. Thus, micro CT in combination with modeling based on the MIS is a viable approach to study the pore-scale mechanisms of CO{sub 2} injection into an aquifer, as well as more general multi-phase flows.
Pore-scale structure of a NAPL front during invasion into strongly and weakly water-wetting sands
Molnar, I. L.; Willson, C. S.; O'Carroll, D. M.; Gerhard, J.
2016-12-01
An improved understanding of the mechanisms governing Non-Aqueous Phase Liquid (NAPL) transport through porous media is critical to solving a number of important environmental problems (e.g., transport and remediation of chlorinated solvents to carbon sequestration in deep brine aquifers for long-term storage). The pore-scale distribution of NAPL governs the efficiency of remedial activities and trapping processes. Understanding the pore-scale distribution of NAPL during water drainage and imbibition is vital to improving continuum-scale models. While these models may reasonably predict NAPL saturation, they may rely on potentially incorrect assumptions of pore-scale NAPL distribution to assess relative permeability or dissolution rates. Until recently, most pore-scale studies have focused on residual NAPL following water imbibition with little emphasis on examining pore-scale behaviour during water drainage. As a result, the pore-scale structure of the drainage front remains poorly understood. In addition, almost no studies have examined how wettability, a major factor impacting pore-scale NAPL distribution, influences the pore-scale structure of the drainage front. This study examines the pore-scale distribution of a tetrachloroethylene/surfactant mixture during water drainage in strongly (iron oxide) and weakly water-wetting (quartz) sands. Dodecylamine was used to render quartz media weakly water wetting while keeping iron oxide strongly water wetting. SXCMT was employed to image the length of the front during drainage. Absorption-edge imaging was employed to segment the grain, water and NAPL phases followed by extensive characterization of the segmented pore network and fluid distributions. Comparing and contrasting the high resolution quartz and iron oxide datasets highlights the wettability mechanisms responsible for changes in continuum-scale flow and dissolution relationships. Specific attention was placed on examining capillary pressure as a function of
Pore-scale supercritical CO_{2} dissolution and mass transfer under drainage conditions
Energy Technology Data Exchange (ETDEWEB)
Chang, Chun; Zhou, Quanlin; Oostrom, Mart; Kneafsey, Timothy J.; Mehta, Hardeep
2017-02-01
Abstract: Recently, both core- and pore-scale imbibition experiments have shown non-equilibrium dissolution of supercritical CO_{2} (scCO_{2}) and a prolonged depletion of residual scCO_{2}. In this study, pore-scale scCO_{2} dissolution and mass transfer under drainage conditions were investigated using a two-dimensional heterogeneous micromodel and a novel fluorescent water dye with a sensitive pH range between 3.7 and 6.5. Drainage experiments were conducted at 9 MPa and 40 °C by injecting scCO_{2} into the sandstone-analogue pore network initially saturated by water without dissolved CO_{2} (dsCO_{2}). During the experiments, time-lapse images of dye intensity, reflecting water pH, were obtained. These images show non-uniform pH in individual pores and pore clusters, with average pH levels gradually decreasing with time. Further analysis on selected pores and pore clusters shows that (1) rate-limited mass transfer prevails with slowly decreasing pH over time when the scCO_{2}-water interface area is low with respect to the volume of water-filled pores and pore clusters, (2) fast scCO_{2} dissolution and phase equilibrium occurs when scCO_{2} bubbles invade into water-filled pores, significantly enhancing the area-to-volume ratio, and (3) a transition from rate-limited to diffusion-limited mass transfer occurs in a single pore when a medium area-to-volume ratio is prevalent. The analysis also shows that two fundamental processes – scCO_{2} dissolution at phase interfaces and diffusion of dsCO_{2} at the pore scale (10-100 µm) observed after scCO_{2} bubble invasion into water-filled pores without pore throat constraints – are relatively fast. The overall slow dissolution of scCO_{2} in the millimeter-scale micromodel can be attributed to the small area-to-volume ratios that represent pore-throat configurations and characteristics of phase
Electro-osmosis in inhomogeneously charged microporous media by pore-scale modeling.
Zhang, Li; Wang, Moran
2017-01-15
Surface charge at solid-electrolyte interface is generally coupled with the local electrolyte properties (ionic concentration, pH, etc.), and therefore not as assumed homogeneous on the solid surfaces in the previous studies. The inhomogeneous charge brings huge challenges in predictions of electro-osmotic transport and has never been well studied. In this work, we first propose a classification of electro-osmosis based on a dimensionless number which is the ratio of the Debye length to the characteristic pore size. In the limit of thin electrical double layer, we establish a pore-scale numerical model for inhomogeneously charged electro-osmosis including four ions: Na(+),Cl(-),H(+) and OH(-). Based on reconstructed porous media, we simulate the electro-osmosis with inhomogeneous charge using lattice Boltzmann method. The nonlinear response of electro-osmotic velocity to applied electrical field and the reverse flow have been observed and analyzed. Copyright © 2016 Elsevier Inc. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Slater, Lee; Ntarlagiannis, Dimitrios; Personna, Yves R.; Hubbard, Susan
2007-10-01
The authors measured Spectral Induced Polarization (SIP) signatures in sand columns during (1) FeS biomineralization produced by sulfate reducing bacteria (D. vulgaris) under anaerboci conditions, and (2) subsequent biomineral dissolution upon return to an aerobic state. The low-frequency (0.1-10 Hz peak) relaxations produced during biomineralization can be modeled with a Cole-Cole formulation, from which the evolution of the polarization magnitude and relaxation length scale can be estimated. They find that the modeled time constant is consistent with the polarizable elements being biomineral encrused pores. Evolution of the model parameters is consistent with FeS surface area increases and pore-size reduction during biomineral growth, and subsequent biomineral dissolution (FeS surface area decreases and pore expansion) upon return to the aerobic state. They conclude that SIP signatures are diagnostic of pore-scale geometrical changes associated with FeS biomineralization by sulfate reducing bacteria.
Pore-scale simulations of concentration tails in heterogeneous porous media
Di Palma, Paolo Roberto; Parmigiani, Andrea; Huber, Christian; Guyennon, Nicolas; Viotti, Paolo
2017-10-01
The retention of contaminants in the finest and less-conductive regions of natural aquifer is known to strongly affect the decontamination of polluted aquifers. In fact, contaminant transfer from low to high mobility regions at the back end of a contaminant plume (i.e. back diffusion) is responsible for the long-term release of contaminants during remediation operation. In this paper, we perform pore-scale calculations for the transport of contaminant through heterogeneous porous media composed of low and high mobility regions with two objectives: (i) study the effect of permeability contrast and solute transport conditions on the exchange of solutes between mobile and immobile regions and (ii) estimate the mass of contaminants sequestered in low mobility regions based on concentration breakthrough curves.
A Pore Scale Flow Simulation of Reconstructed Model Based on the Micro Seepage Experiment
Directory of Open Access Journals (Sweden)
Jianjun Liu
2017-01-01
Full Text Available Researches on microscopic seepage mechanism and fine description of reservoir pore structure play an important role in effective development of low and ultralow permeability reservoir. The typical micro pore structure model was established by two ways of the conventional model reconstruction method and the built-in graphics function method of Comsol® in this paper. A pore scale flow simulation was conducted on the reconstructed model established by two different ways using creeping flow interface and Brinkman equation interface, respectively. The results showed that the simulation of the two models agreed well in the distribution of velocity, pressure, Reynolds number, and so on. And it verified the feasibility of the direct reconstruction method from graphic file to geometric model, which provided a new way for diversifying the numerical study of micro seepage mechanism.
A Dynamic Two-Phase Pore-Scale Model of Imbibition
DEFF Research Database (Denmark)
Mogensen, Kristian; Stenby, Erling Halfdan
1998-01-01
We present a dynamic pore-scale network model of imbibition, capable of calculating residual oil saturation for any given capillary number, viscosity ratio, contact angle, and aspect ratio. Our goal is not to predict the outcome of core floods, but rather to perform a sensitivity analysis...... of the above-mentioned parameters, except from the viscosity ratio. We find that contact angle, aspect ratio, and capillary number all have a significant influence on the competition between piston-lice advance, leading to high recovery, and snap-off, causing oil entrapment. Due to significant CPU......-off has been entirely inhibited, in agreement with results obtained by Blunt (1997) who used a quasi-static model. For higher aspect ratios, the effect of rate and contact angle is more pronounced....
Reactive Transport in Porous Media: Pore-scale Mass Exchange between Aqueous Phase and Biofilms
Hassanizadeh, S.; Qin, C.
2013-12-01
In the presence of water and necessary nutrients, biofilms can grow on soil grain surfaces. They occupy void pore spaces blocking water flow. As a result, some hydrodynamic properties of porous media like porosity and permeability will be reduced. This ultimately leads to a condition known as bioclogging. Also, biofilms can degrade certain compounds. So, the features of bioclogging and biodegradation in porous media with biofilms have given rise to a broad range of environmental and engineering applications, such as bioremediation, biobarriers, microbial enhanced oil recovery, and protection of steel corrosion. To date, a number of macroscale and pore-scale models for describing biodegradation in porous media with biofilms are available in the literature. At the macro scale, to simplify numerical implementation, a ';one-equation' model is normally preferred. In this approach, only the solute concentration in aqueous phase is modeled associated with the consumption of solute in biofilms. Because the solute concentration in biofilms is different from that in aqueous phase, an effectiveness factor may be used in Monod kinetics for relating reaction rate within biofilms to the solute concentration in aqueous phase. Notice that this approach has its validity domains like local equilibrium and reaction-rate limited consumption. Another approach to modeling biodegradation is referred to as a ';two-equation' model, in which one needs to simultaneously track the solute concentrations in both aqueous phase and biofilms. In addition, the two concentrations may be related by a first-order kinetic mass exchange model. This first-rate exchange model is normally represented by a constant mas exchange coefficient multiplied by the concentration difference in the two domains. Here, one may question if complex advection-diffusion-reaction processes can be represented just by a constant mass exchange coefficient. In addition, the kinetic model of mass exchange between aqueous phase
Pore-scale modeling of wettability effects on CO2-brine displacement during geological storage
Basirat, Farzad; Yang, Zhibing; Niemi, Auli
2017-11-01
Wetting properties of reservoir rocks and caprocks can vary significantly, and they strongly influence geological storage of carbon dioxide in deep saline aquifers, during which CO2 is supposed to displace the resident brine and to become permanently trapped. Fundamental understanding of the effect of wettability on CO2-brine displacement is thus important for improving storage efficiency and security. In this study, we investigate the influence of wetting properties on two-phase flow of CO2 and brine at the pore scale. A numerical model based on the phase field method is implemented to simulate the two-phase flow of CO2-brine in a realistic pore geometry. Our focus is to study the pore-scale fluid-fluid displacement mechanisms under different wetting conditions and to quantify the effect of wettability on macroscopic parameters such as residual brine saturation, capillary pressure, relative permeability, and specific interfacial area. Our simulation results confirm that both the trapped wetting phase saturation and the normalized interfacial area increase with decreasing contact angle. However, the wetting condition does not appear to influence the CO2 breakthrough time and saturation. We also show that the macroscopic capillary pressures based on the pressure difference between inlet and outlet can differ significantly from the phase averaging capillary pressures for all contact angles when the capillary number is high (log Ca > -5). This indicates that the inlet-outlet pressure difference may not be a good measure of the continuum-scale capillary pressure. In addition, the results show that the relative permeability of CO2 can be significantly lower in strongly water-wet conditions than in the intermediate-wet conditions.
Vavra, Eric D; Zeng, Yongchao; Xiao, Siyang; Hirasaki, George J; Biswal, Sibani L
2018-01-16
Microfluidic devices are versatile tools for studying transport processes at a microscopic scale. A demand exists for microfluidic devices that are resistant to low molecular-weight oil components, unlike traditional polydimethylsiloxane (PDMS) devices. Here, we demonstrate a facile method for making a device with this property, and we use the product of this protocol for examining the pore-scale mechanisms by which foam recovers crude oil. A pattern is first designed using computer-aided design (CAD) software and printed on a transparency with a high-resolution printer. This pattern is then transferred to a photoresist via a lithography procedure. PDMS is cast on the pattern, cured in an oven, and removed to obtain a mold. A thiol-ene crosslinking polymer, commonly used as an optical adhesive (OA), is then poured onto the mold and cured under UV light. The PDMS mold is peeled away from the optical adhesive cast. A glass substrate is then prepared, and the two halves of the device are bonded together. Optical adhesive-based devices are more robust than traditional PDMS microfluidic devices. The epoxy structure is resistant to swelling by many organic solvents, which opens new possibilities for experiments involving light organic liquids. Additionally, the surface wettability behavior of these devices is more stable than that of PDMS. The construction of optical adhesive microfluidic devices is simple, yet requires incrementally more effort than the making of PDMS-based devices. Also, though optical adhesive devices are stable in organic liquids, they may exhibit reduced bond-strength after a long time. Optical adhesive microfluidic devices can be made in geometries that act as 2-D micromodels for porous media. These devices are applied in the study of oil displacement to improve our understanding of the pore-scale mechanisms involved in enhanced oil recovery and aquifer remediation.
Shear Wave Elastographic Alterations in the Kidney After Extracorporeal Shock Wave Lithotripsy.
Turkay, Rustu; Inci, Ercan; Bas, Derya; Atar, Arda
2017-10-13
Extracorporeal shock wave lithotripsy (ESWL) is a method used frequently for the treatment of renal stone disease. Although its safety is proven, there are still concerns about its unwanted effects on kidneys. In this prospective study, we aimed to evaluate renal tissue alterations with shear wave elastography (SWE) after ESWL. We also studied the correlation between SWE and resistive index (RI) changes. The study included 59 patients who underwent ESWL treatment for renal stone disease. We performed SWE and color Doppler ultrasonography to calculate SWE and RI values before, 1 hour after, and 1 week after lithotripsy treatment. A binary comparison was performed by the Bonferroni test. The correlation between SWE and RI values was evaluated by a Pearson correlation analysis. The patients included 26 women (44.1%) and 33 men (55.9%). Their ages ranged from 20 to 65 years (mean ± SD, 45.0 ± 1.1 years). Stone diameters ranged from 7 to 19 mm (mean, 13.0 ± 0.5 mm). There was a significant difference in SWE values before and 1 hour after lithotripsy treatment (P = .001; P .99; P > .05). Resistive index values increased significantly 1 hour after lithotripsy treatment and returned to prelithotripsy values 1 week after treatment. In the correlation analysis, SWE and RI values were not correlated. Measurements of alterations in SWE values after ESWL can provide useful information about renal tissue injury. © 2017 by the American Institute of Ultrasound in Medicine.
Pore scale simulations for the extension of the Darcy-Forchheimer law to shear thinning fluids
Tosco, Tiziana; Marchisio, Daniele; Lince, Federica; Boccardo, Gianluca; Sethi, Rajandrea
2014-05-01
Flow of non-Newtonian fluids through porous media at high Reynolds numbers is often encountered in chemical, pharmaceutical and food as well as petroleum and groundwater engineering and in many other industrial applications (1 - 2). In particular, the use of shear thinning polymeric solutions has been recently proposed to improve colloidal stability of micro- and nanoscale zerovalent iron particles (MZVI and NZVI) for groundwater remediation. In all abovementioned applications, it is of paramount importance to correctly predict the pressure drop resulting from non-Newtonian fluid flow through the porous medium. For small Reynolds numbers, usually up to 1, typical of laboratory column tests, the extended Darcy law is known to be applicable also to non Newtonian fluids, provided that all non-Newtonian effects are lumped together into a proper viscosity parameter (1,3). For higher Reynolds numbers (eg. close to the injection wells) non linearities between pressure drop and flow rate arise, and the Darcy-Forchheimer law holds for Newtonian fluids, while for non-Newtonian fluids, it has been demonstrated that, at least for simple rheological models (eg. power law fluids) a generalized Forchheimer law can be applied, even if the determination of the flow parameters (permeability K, inertial coefficient β, and equivalent viscosity) is not straightforward. This work (co-funded by European Union project AQUAREHAB FP7 - Grant Agreement Nr. 226565) aims at proposing an extended formulation of the Darcy-Forchheimer law also for shear-thinning fluids, and validating it against results of pore-scale simulations via computational fluid dynamics (4). Flow simulations were performed using Fluent 12.0 on four different 2D porous domains for Newtonian and non-Newtonian fluids (Cross, Ellis and Carreau models). The micro-scale flow simulation results are analyzed in terms of 'macroscale' pressure drop between inlet and outlet of the model domain as a function of flow rate. The
Pore-scale mechanisms of gas flow in tight sand reservoirs
Energy Technology Data Exchange (ETDEWEB)
Silin, D.; Kneafsey, T.J.; Ajo-Franklin, J.B.; Nico, P.
2010-11-30
Tight gas sands are unconventional hydrocarbon energy resource storing large volume of natural gas. Microscopy and 3D imaging of reservoir samples at different scales and resolutions provide insights into the coaredo not significantly smaller in size than conventional sandstones, the extremely dense grain packing makes the pore space tortuous, and the porosity is small. In some cases the inter-granular void space is presented by micron-scale slits, whose geometry requires imaging at submicron resolutions. Maximal Inscribed Spheres computations simulate different scenarios of capillary-equilibrium two-phase fluid displacement. For tight sands, the simulations predict an unusually low wetting fluid saturation threshold, at which the non-wetting phase becomes disconnected. Flow simulations in combination with Maximal Inscribed Spheres computations evaluate relative permeability curves. The computations show that at the threshold saturation, when the nonwetting fluid becomes disconnected, the flow of both fluids is practically blocked. The nonwetting phase is immobile due to the disconnectedness, while the permeability to the wetting phase remains essentially equal to zero due to the pore space geometry. This observation explains the Permeability Jail, which was defined earlier by others. The gas is trapped by capillarity, and the brine is immobile due to the dynamic effects. At the same time, in drainage, simulations predict that the mobility of at least one of the fluids is greater than zero at all saturations. A pore-scale model of gas condensate dropout predicts the rate to be proportional to the scalar product of the fluid velocity and pressure gradient. The narrowest constriction in the flow path is subject to the highest rate of condensation. The pore-scale model naturally upscales to the Panfilov's Darcy-scale model, which implies that the condensate dropout rate is proportional to the pressure gradient squared. Pressure gradient is the greatest near the
DEFF Research Database (Denmark)
Wildenschild, D.; Culligan, K.A.; Christensen, Britt Stenhøj Baun
2006-01-01
characterization. The results clearly illustrate the advantage of using X-ray tomography together with cluster analysis-based image processing techniques. We were able to obtain detailed information on pore scale distribution of air and water phases, as well as quantitative measures of air bubble size and air...
Pore-scale modeling of hydromechanical coupled mechanics in hydrofracturing process
Chen, Zhiqiang; Wang, Moran
2017-05-01
Hydrofracturing is an important technique in petroleum industry to stimulate well production. Yet the mechanism of induced fracture growth is still not fully understood, which results in some unsatisfactory wells even with hydrofracturing treatments. In this work we establish a more accurate numerical framework for hydromechanical coupling, where the solid deformation and fracturing are modeled by discrete element method and the fluid flow is simulated directly by lattice Boltzmann method at pore scale. After validations, hydrofracturing is simulated with consideration on the strength heterogeneity effects on fracture geometry and microfailure mechanism. A modified topological index is proposed to quantify the complexity of fracture geometry. The results show that strength heterogeneity has a significant influence on hydrofracturing. In heterogeneous samples, the fracturing behavior is crack nucleation around the tip of fracture and connection of it to the main fracture, which is usually accompanied by shear failure. However, in homogeneous ones the fracture growth is achieved by the continuous expansion of the crack, where the tensile failure often dominates. It is the fracturing behavior that makes the fracture geometry in heterogeneous samples much more complex than that in homogeneous ones. In addition, higher pore pressure leads to more shear failure events for both heterogeneous and homogeneous samples.
Pore-scale simulation of fluid flow and solute dispersion in three-dimensional porous media
Icardi, Matteo
2014-07-31
In the present work fluid flow and solute transport through porous media are described by solving the governing equations at the pore scale with finite-volume discretization. Instead of solving the simplified Stokes equation (very often employed in this context) the full Navier-Stokes equation is used here. The realistic three-dimensional porous medium is created in this work by packing together, with standard ballistic physics, irregular and polydisperse objects. Emphasis is placed on numerical issues related to mesh generation and spatial discretization, which play an important role in determining the final accuracy of the finite-volume scheme and are often overlooked. The simulations performed are then analyzed in terms of velocity distributions and dispersion rates in a wider range of operating conditions, when compared with other works carried out by solving the Stokes equation. Results show that dispersion within the analyzed porous medium is adequately described by classical power laws obtained by analytic homogenization. Eventually the validity of Fickian diffusion to treat dispersion in porous media is also assessed. © 2014 American Physical Society.
Valocchi, A. J.; Werth, C. J.; Yoon, H.; Tang, Y.
2012-12-01
Several studies have demonstrated the important role played by mixing-controlled reactions in porous media. For example, transverse mixing of nutrients along the fringes of a contaminant plume is often the limiting step that controls overall degradation rate during natural or engineered in situ bioremediation. Similar mixing processes can promote precipitation/dissolution reactions during geological sequestration of carbon dioxide. Field and laboratory investigations have demonstrated that the length scale of transverse mixing zones can be very small, often on the order of centimeters or less. To study dispersion, mixing and reaction at this scale, we use pore-scale numerical simulation models and micro-fluidics laboratory experiments. An overview of our methods and findings, including comparisons between direct numerical simulations and laboratory experiments will be presented. The presentation will emphasize recent results including: (a) coupling of precipitation/dissolution with porosity reduction under different geochemical conditions, and (b) impact of pore structure on biodegradation and biofilm growth patterns. Our work has improved understanding of coupled flow, transport and reaction processes; however, there remain significant challenges in extending the results to larger field scales.
Toward direct pore-scale modeling of three-phase displacements
Mohammadmoradi, Peyman; Kantzas, Apostolos
2017-12-01
A stable spreading film between water and gas can extract a significant amount of bypassed non-aqueous phase liquid (NAPL) through immiscible three-phase gas/water injection cycles. In this study, the pore-scale displacement mechanisms by which NAPL is mobilized are incorporated into a three-dimensional pore morphology-based model under water-wet and capillary equilibrium conditions. The approach is pixel-based and the sequence of invasions is determined by the fluids' connectivity and the threshold capillary pressure of the advancing interfaces. In addition to the determination of three-phase spatial saturation profiles, residuals, and capillary pressure curves, dynamic finite element simulations are utilized to predict the effective permeabilities of the rock microtomographic images as reasonable representations of the geological formations under study. All the influential features during immiscible fluid flow in pore-level domains including wetting and spreading films, saturation hysteresis, capillary trapping, connectivity, and interface development strategies are taken into account. The capabilities of the model are demonstrated by the successful prediction of saturation functions for Berea sandstone and the accurate reconstruction of three-phase fluid occupancies through a micromodel.
Energy Technology Data Exchange (ETDEWEB)
Liu, Qingjie; Shen, Pingping; Wu, Yu-Shu
2004-03-15
A dynamic pore-scale network model is presented for investigating the effects of interfacial tension and oil-water viscosity on relative permeability during chemical flooding. This model takes into account both viscous and capillary forces in analyzing the impact of chemical properties on flow behavior or displacement configuration, as opposed to the conventional or invasion percolation algorithm which incorporates capillary pressure only. The study results indicate that both water and oil relative-permeability curves are dependent strongly on interfacial tension as well as an oil-water viscosity ratio. In particular, water and oil relative-permeability curves are both found to shift upward as interfacial tension is reduced, and they both tend to become linear versus saturation once interfacial tension is at low values. In addition, the oil-water viscosity ratio appears to have only a small effect under conditions of high interfacial tension. When the interfacial tension is low, however, water relative permeability decreases more rapidly (with the increase in the aqueous-phase viscosity) than oil relative permeability. The breakthrough saturation of the aqueous phase during chemical flooding tends to decrease with the reduction of interfacial tension and may also be affected by the oil-water viscosity ratio.
Porous media flux sensitivity to pore-scale geostatistics: A bottom-up approach
Di Palma, P. R.; Guyennon, N.; Heße, F.; Romano, E.
2017-04-01
Macroscopic properties of flow through porous media can be directly computed by solving the Navier-Stokes equations at the scales related to the actual flow processes, while considering the porous structures in an explicit way. The aim of this paper is to investigate the effects of the pore-scale spatial distribution on seepage velocity through numerical simulations of 3D fluid flow performed by the lattice Boltzmann method. To this end, we generate multiple random Gaussian fields whose spatial correlation follows an assigned semi-variogram function. The Exponential and Gaussian semi-variograms are chosen as extreme-cases of correlation for short distances and statistical properties of the resulting porous media (indicator field) are described using the Matèrn covariance model, with characteristic lengths of spatial autocorrelation (pore size) varying from 2% to 13% of the linear domain. To consider the sensitivity of the modeling results to the geostatistical representativeness of the domain as well as to the adopted resolution, porous media have been generated repetitively with re-initialized random seeds and three different resolutions have been tested for each resulting realization. The main difference among results is observed between the two adopted semi-variograms, indicating that the roughness (short distances autocorrelation) is the property mainly affecting the flux. However, computed seepage velocities show additionally a wide variability (about three orders of magnitude) for each semi-variogram model in relation to the assigned correlation length, corresponding to pore sizes. The spatial resolution affects more the results for short correlation lengths (i.e., small pore sizes), resulting in an increasing underestimation of the seepage velocity with the decreasing correlation length. On the other hand, results show an increasing uncertainty as the correlation length approaches the domain size.
Thermal conductivity of granular porous media: A pore scale modeling approach
Directory of Open Access Journals (Sweden)
R. Askari
2015-09-01
Full Text Available Pore scale modeling method has been widely used in the petrophysical studies to estimate macroscopic properties (e.g. porosity, permeability, and electrical resistivity of porous media with respect to their micro structures. Although there is a sumptuous literature about the application of the method to study flow in porous media, there are fewer studies regarding its application to thermal conduction characterization, and the estimation of effective thermal conductivity, which is a salient parameter in many engineering surveys (e.g. geothermal resources and heavy oil recovery. By considering thermal contact resistance, we demonstrate the robustness of the method for predicting the effective thermal conductivity. According to our results obtained from Utah oil sand samples simulations, the simulation of thermal contact resistance is pivotal to grant reliable estimates of effective thermal conductivity. Our estimated effective thermal conductivities exhibit a better compatibility with the experimental data in companion with some famous experimental and analytical equations for the calculation of the effective thermal conductivity. In addition, we reconstruct a porous medium for an Alberta oil sand sample. By increasing roughness, we observe the effect of thermal contact resistance in the decrease of the effective thermal conductivity. However, the roughness effect becomes more noticeable when there is a higher thermal conductivity of solid to fluid ratio. Moreover, by considering the thermal resistance in porous media with different grains sizes, we find that the effective thermal conductivity augments with increased grain size. Our observation is in a reasonable accordance with experimental results. This demonstrates the usefulness of our modeling approach for further computational studies of heat transfer in porous media.
Modeling Solute Diffusion in the Presence of Pore-Scale Heterogeneity
Energy Technology Data Exchange (ETDEWEB)
FLEMING,SEAN W.; HAGGERTY,ROY
1999-10-21
A range of pore diffusivities, D{sub p}, is implied by the high degree of pore-scale heterogeneity observed in core samples of the Culebra (dolomite) Member of the Rustler formation, NM. Earlier tracer tests in the culebra at the field-scale have confirmed significant heterogeneity in diffusion rate coefficients (the combination of D{sub p} and matrix block size). In this study, expressions for solute diffusion in the presence of multiple simultaneous matrix diffusivities are presented and used to model data from eight laboratory-scale diffusion experiments performed on five Culebra samples. A lognormal distribution of D{sub p} is assumed within each of the lab samples. The estimated standard deviation ({sigma}{sub d}) of In(D{sub p}) within each sample ranges from 0 to 1, with most values lying between 0.5 and 1. The variability over all samples leads to a combined {sigma}{sub d} in the range of 1.0 to 1.2, which appears to be consistent with a best-fit statistical distribution of formation factor measurements for similar Culebra samples. A comparison of the estimation results to other rock properties suggests that, at the lab-scale, the geometric mean of D{sub p} increases with bulk porosity and the quantity of macroscopic features such as vugs and fractures. However, {sigma}{sub d} appears to be determined by variability within such macroscopic features and/or by micropore-scale heterogeneity. In addition, comparison of these experiments to those at larger spatial scales suggests that increasing sample volume results in an increase in {sigma}{sub d}.
Reactive transport in porous media: Pore-network model approach compared to pore-scale model
Varloteaux, Clément; Vu, Minh Tan; Békri, Samir; Adler, Pierre M.
2013-02-01
Accurate determination of three macroscopic parameters governing reactive transport in porous media, namely, the apparent solute velocity, the dispersion, and the apparent reaction rate, is of key importance for predicting solute migration through reservoir aquifers. Two methods are proposed to calculate these parameters as functions of the Péclet and the Péclet-Dahmköhler numbers. In the first method called the pore-scale model (PSM), the porous medium is discretized by the level set method; the Stokes and convection-diffusion equations with reaction at the wall are solved by a finite-difference scheme. In the second method, called the pore-network model (PNM), the void space of the porous medium is represented by an idealized geometry of pore bodies joined by pore throats; the flow field is computed by solving Kirchhoff's laws and transport calculations are performed in the asymptotic regime where the solute concentration undergoes an exponential evolution with time. Two synthetic geometries of porous media are addressed by using both numerical codes. The first geometry is constructed in order to validate the hypotheses implemented in PNM. PSM is also used for a better understanding of the various reaction patterns observed in the asymptotic regime. Despite the PNM approximations, a very good agreement between the models is obtained, which shows that PNM is an accurate description of reactive transport. PNM, which can address much larger pore volumes than PSM, is used to evaluate the influence of the concentration distribution on macroscopic properties of a large irregular network reconstructed from microtomography images. The role of the dimensionless numbers and of the location and size of the largest pore bodies is highlighted.
Directory of Open Access Journals (Sweden)
Mohamed Regaieg
Full Text Available Although thermal methods have been popular and successfully applied in heavy oil recovery, they are often found to be uneconomic or impractical. Therefore, alternative production protocols are being actively pursued and interesting options include water injection and polymer flooding. Indeed, such techniques have been successfully tested in recent laboratory investigations, where X-ray scans performed on homogeneous rock slabs during water flooding experiments have shown evidence of an interesting new phenomenon-post-breakthrough, highly dendritic water fingers have been observed to thicken and coalesce, forming braided water channels that improve sweep efficiency. However, these experimental studies involve displacement mechanisms that are still poorly understood, and so the optimization of this process for eventual field application is still somewhat problematic. Ideally, a combination of two-phase flow experiments and simulations should be put in place to help understand this process more fully. To this end, a fully dynamic network model is described and used to investigate finger thickening during water flooding of extra-heavy oils. The displacement physics has been implemented at the pore scale and this is followed by a successful benchmarking exercise of the numerical simulations against the groundbreaking micromodel experiments reported by Lenormand and co-workers in the 1980s. A range of slab-scale simulations has also been carried out and compared with the corresponding experimental observations. We show that the model is able to replicate finger architectures similar to those observed in the experiments and go on to reproduce and interpret, for the first time to our knowledge, finger thickening following water breakthrough. We note that this phenomenon has been observed here in homogeneous (i.e. un-fractured media: the presence of fractures could be expected to exacerbate such fingering still further. Finally, we examine the impact of
Regaieg, Mohamed; McDougall, Steven Robert; Bondino, Igor; Hamon, Gerald
2017-01-01
Although thermal methods have been popular and successfully applied in heavy oil recovery, they are often found to be uneconomic or impractical. Therefore, alternative production protocols are being actively pursued and interesting options include water injection and polymer flooding. Indeed, such techniques have been successfully tested in recent laboratory investigations, where X-ray scans performed on homogeneous rock slabs during water flooding experiments have shown evidence of an interesting new phenomenon-post-breakthrough, highly dendritic water fingers have been observed to thicken and coalesce, forming braided water channels that improve sweep efficiency. However, these experimental studies involve displacement mechanisms that are still poorly understood, and so the optimization of this process for eventual field application is still somewhat problematic. Ideally, a combination of two-phase flow experiments and simulations should be put in place to help understand this process more fully. To this end, a fully dynamic network model is described and used to investigate finger thickening during water flooding of extra-heavy oils. The displacement physics has been implemented at the pore scale and this is followed by a successful benchmarking exercise of the numerical simulations against the groundbreaking micromodel experiments reported by Lenormand and co-workers in the 1980s. A range of slab-scale simulations has also been carried out and compared with the corresponding experimental observations. We show that the model is able to replicate finger architectures similar to those observed in the experiments and go on to reproduce and interpret, for the first time to our knowledge, finger thickening following water breakthrough. We note that this phenomenon has been observed here in homogeneous (i.e. un-fractured) media: the presence of fractures could be expected to exacerbate such fingering still further. Finally, we examine the impact of several system
Pore-scale modeling of moving contact line problems in immiscible two-phase flow.
Kucala, A.; Noble, D.; Martinez, M. J.
2016-12-01
Two immiscible fluids in static equilibrium form a common interface along a solid surface, characterized as the static contact (wetting) angle and is a function of surface geometry, intermolecular forces, and interfacial surface energies manifested as interfacial tension. This static configuration may become perturbed due to external force imbalances (mass injection, pressure gradients, buoyancy, etc.) and the contact line location and interface curvature becomes dynamic. Accurate modeling of moving contact line (MCL) problems is imperative in predicting capillary pressure vs. saturation curves, permeability, and preferential flow paths for a variety of applications, including geological carbon storage (GCS) and enhanced oil recovery (EOR). Here, we present a model for the moving contact line using pore-scale computational fluid dynamics (CFD) which solves the full, time-dependent Navier-Stokes equations using the Galerkin finite-element method. The MCL is modeled as a surface traction force proportional to the surface tension, dependent on the static properties of the immiscible fluid/solid system. The moving two-phase interface is tracked using the level set method and discretized with the conformal decomposition finite element method (CDFEM), allowing for surface tension effects to be computed at the exact interface location. We present a variety of verification test cases for simple two- and three-dimensional geometries to validate the current model, including threshold pressure predictions in flows through pore-throats for a variety of wetting angles. Simulations involving more complex geometries are also presented to be used in future simulations for GCS and EOR problems. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000
Pore-Scale Investigation of Biomass Plug Development and Propagation in Porous Media
Energy Technology Data Exchange (ETDEWEB)
Stewart, Terri L.; Fogler, H S.
2002-01-09
Biomass plugging of porous media finds application in enhanced oil recovery and bioremediation. An understanding of biomass plugging of porous media was sought by using a porous glass micromodel through which biomass and nutrient were passed. This paper describes the pore-scale physics of biomass plug propagation of Leuconostoc mesenteroides under nutrient-rich conditions. It was found that as the nutrient flowed through the micromodel, the initial biomass plug occurred at the nutrient-inoculum interface due to growth in the larger pore throats. As growth proceeded, biomass filled and closed these larger pore throats, until only isolated groupings of pore throats with smaller radii remained empty. As nutrient flow continued, a maximum pressure drop was reached. At the maximum pressure drop, the biomass yielded in a manner similar to a Bingham plastic to form a breakthrough channel consisting of a path of interconnected pore throats. The channel incorporated the isolated groupings of empty pore throats that had been present before breakthrough. As the nutrient flow continued, subsequent plugs developed as breakthrough channels refilled with biomass and in situ growth was stimulated in the region just downstream of the previous plug. The downstream plugs had a higher fraction of isolated groupings of empty pore throats which can be attributed to depletion of nutrient downstream. When the next breakthrough channel formed, it incorporated these isolated groupings, causing the breakthrough channels to be branched. It was observed that the newly formed plug could be less stable with this higher fraction of empty pore throats and that the location of breakthrough channels changed in subsequent plugs. This change in breakthrough channel location could be attributed to the redistribution of nutrient flow and the changes in flowrate in the pore throats.
Reservoir condition pore-scale imaging of multiple fluid phases using X-ray microtomography.
Andrew, Matthew; Bijeljic, Branko; Blunt, Martin
2015-02-25
X-ray microtomography was used to image, at a resolution of 6.6 µm, the pore-scale arrangement of residual carbon dioxide ganglia in the pore-space of a carbonate rock at pressures and temperatures representative of typical formations used for CO2 storage. Chemical equilibrium between the CO2, brine and rock phases was maintained using a high pressure high temperature reactor, replicating conditions far away from the injection site. Fluid flow was controlled using high pressure high temperature syringe pumps. To maintain representative in-situ conditions within the micro-CT scanner a carbon fiber high pressure micro-CT coreholder was used. Diffusive CO2 exchange across the confining sleeve from the pore-space of the rock to the confining fluid was prevented by surrounding the core with a triple wrap of aluminum foil. Reconstructed brine contrast was modeled using a polychromatic x-ray source, and brine composition was chosen to maximize the three phase contrast between the two fluids and the rock. Flexible flow lines were used to reduce forces on the sample during image acquisition, potentially causing unwanted sample motion, a major shortcoming in previous techniques. An internal thermocouple, placed directly adjacent to the rock core, coupled with an external flexible heating wrap and a PID controller was used to maintain a constant temperature within the flow cell. Substantial amounts of CO2 were trapped, with a residual saturation of 0.203±0.013, and the sizes of larger volume ganglia obey power law distributions, consistent with percolation theory.
Pore-scale capillary pressure analysis using multi-scale X-ray micromotography
Garing, Charlotte; de Chalendar, Jacques A.; Voltolini, Marco; Ajo-Franklin, Jonathan B.; Benson, Sally M.
2017-06-01
A multi-scale synchrotron-based X-ray microtomographic dataset of residually trapped air after gravity-driven brine imbibition was acquired for three samples with differing pore topologies and morphologies; image volumes were reconstructed with voxel sizes from 4.44 μm down to 0.64 μm. Capillary pressure distributions among the population of trapped ganglia were investigated by calculating interfacial curvature in order to assess the potential for remobilization of residually-trapped non-wetting ganglia due to differences in capillary pressure presented by neighbor ganglia. For each sample, sintered glass beads, Boise sandstone and Fontainebleau sandstone, sub-volumes with different voxel sizes were analyzed to quantify air/brine interfaces and interfacial curvatures and investigate the effect of image resolution on both fluid phase identification and curvature estimates. Results show that the method developed for interfacial curvature estimation leads to reliable capillary pressure estimates for gas ganglia. Higher resolution images increase confidence in curvature calculations, especially for the sandstone samples that display smaller gas-brine interfaces which are then represented by a higher number of voxels when imaged with a micron or sub-micron voxels size. The analysis of sub-volumes from the Boise and Fontainebleau dataset highlights the presence of a residually-trapped gas phase consisting of ganglia located in one or few pores and presenting significantly different capillary pressures, especially in the case of Fontainebleau sandstone. As a result, Ostwald ripening could occur, leading to gas transfer from ganglia with higher capillary pressure to surrounding ganglia with lower capillary pressures. More generally, at the pore-scale, most gas ganglia do present similar capillary pressures and Ostwald ripening would then not represent a major mechanism for residually-trapped gas transfer and remobilization.
Pak, Tannaz; Butler, Ian B; Geiger, Sebastian; van Dijke, Marinus I J; Sorbie, Ken S
2015-02-17
Using X-ray computed microtomography, we have visualized and quantified the in situ structure of a trapped nonwetting phase (oil) in a highly heterogeneous carbonate rock after injecting a wetting phase (brine) at low and high capillary numbers. We imaged the process of capillary desaturation in 3D and demonstrated its impacts on the trapped nonwetting phase cluster size distribution. We have identified a previously unidentified pore-scale event during capillary desaturation. This pore-scale event, described as droplet fragmentation of the nonwetting phase, occurs in larger pores. It increases volumetric production of the nonwetting phase after capillary trapping and enlarges the fluid-fluid interface, which can enhance mass transfer between the phases. Droplet fragmentation therefore has implications for a range of multiphase flow processes in natural and engineered porous media with complex heterogeneous pore spaces.
Han, J.; Keehm, Y.
2011-12-01
Carbon dioxide is a green-house gas and is believed to be responsible for global warming and climate change. Many countries are looking for various techniques for effective storage of CO2 and the geological sequestration is regarded as the most economical and efficient option. For successful geological sequestration, accurate evaluation of physical properties of the target formation and their changes when CO2 is injected, is essential. Since physical property changes during CO2 injection are strongly dependent on the pore-scale details of the target formation, we used a series of pore-scale simulation techniques including CO2 injection simulation to estimate physical properties of CO2 bearing formations. The study area, Kyeongsang basin is located in southeastern part of Korea, which has many industrial complexes including power plants. We first obtained high-resolution 3D microstructures from core samples of the prospective formation. We performed a set of pore-scale simulation and estimated physical properties, such as porosity, permeability, electrical conductivity and velocity. Then we used lattice-Boltzmann two-phase flow simulation to mimic CO2 injection into the formation. During this simulation, a variety of microstructures with different CO2 saturation were obtained and we again performed pore-scale simulation to estimate the changes of physical properties as CO2 saturation increases. These quantitative interrelations between physical properties and CO2 saturation would be a valuable piece of information to evaluate the performance of the target formation. Acknowledgement: This work was supported by the Energy Resources R&D program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No. 2010201020001A)
Energy Technology Data Exchange (ETDEWEB)
Molins, Sergi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division; Trebotich, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division; Steefel, Carl I. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division; Shen, Chaopeng [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division
2012-03-30
The scale-dependence of geochemical reaction rates hinders their use in continuum scale models intended for the interpretation and prediction of chemical fate and transport in subsurface environments such as those considered for geologic sequestration of CO_{2}. Processes that take place at the pore scale, especially those involving mass transport limitations to reactive surfaces, may contribute to the discrepancy commonly observed between laboratory-determined and continuum-scale or field rates. In this study we investigate the dependence of mineral dissolution rates on the pore structure of the porous media by means of pore scale modeling of flow and multicomponent reactive transport. The pore scale model is composed of high-performance simulation tools and algorithms for incompressible flow and conservative transport combined with a general-purpose multicomponent geochemical reaction code. The model performs direct numerical simulation of reactive transport based on an operator-splitting approach to coupling transport and reactions. The approach is validated with a Poiseuille flow single-pore experiment and verified with an equivalent 1-D continuum-scale model of a capillary tube packed with calcite spheres. Using the case of calcite dissolution as an example, the high-resolution model is used to demonstrate that nonuniformity in the flow field at the pore scale has the effect of decreasing the overall reactivity of the system, even when systems with identical reactive surface area are considered. In conclusion, the effect becomes more pronounced as the heterogeneity of the reactive grain packing increases, particularly where the flow slows sufficiently such that the solution approaches equilibrium locally and the average rate becomes transport-limited.
Russo, A.E.; Narter, M.; Brusseau, M.L.
2009-01-01
Synchrotron X-ray microtomography was used to characterize the pore-scale morphology and distribution of an organic immiscible liquid (trichloroethene) during water flushing to examine dissolution dynamics. The experiments were conducted with a natural porous medium that has a large particle-size distribution. The results were compared to those of a previous experiment conducted with a well-sorted natural sand. The median organic-liquid blob volume was smaller, and smaller blobs composed a la...
Pore-scale modelling of the combined effect of physical and chemical heterogeneity on reactive flows
Oliveira, T. D. S.; Bijeljic, B.; Blunt, M. J.
2016-12-01
We perform direct numerical simulations to study the combined impact of physical and chemical heterogeneity in subsurface rock to provide insights into the source of the discrepancy observed between mineral dissolution rates observed in laboratory experiments and in field-scale natural systems. The ultimate goal of this work is to use pore-scale simulation to compute upscaled properties - such as effective reaction rate - for use in larger-scale models.We present a methodology to simulate multispecies reactive flow through pore-space images obtained from micro-tomography. Using the sequential non-iterative approach, we couple the simulation of the transport equations with an advanced geochemical solver designed specifically for applications that require sequential equilibrium calculations. This geochemical solver uses novel numerical methods for the solution of multiphase chemical equilibrium and kinetics problems in a well-stirred batch model. Our model assumes that reactions can be classified into fast reactions, which are considered to be in equilibrium, and slow reactions, considered to be controlled by kinetics. This assumption of partial equilibrium simplifies the problem by replacing differential equations with algebraic ones. We allow for chemical heterogeneity of the solid phase by associating each voxel to a different mineral and reaction rate. A steady-state flow problem is solved in the pore space using a finite volume method to calculate the velocity field. Then we solve an advection-diffusion equation for the concentration and, modelling each liquid voxel as a well-mixed batch with a solid wall where applicable, we calculate reaction using the aforementioned geochemical solver. Both fluid-fluid and fluid-solid reactions are considered, geometry changes due to dissolution and precipitation are taken into account, and the velocity field is updated. We present the validation tests for acidic brine injected into rock for a range of transport (P
Pore-scale mechanisms for hysteresis in capillary-dominated drainage and imbibition (Invited)
Sheppard, A.; Wildenschild, D.; Andersson, L.; Herring, A. L.
2013-12-01
Understanding the flow of two immiscible fluid phases through the pore space of rocks and soils is a complex problem involving fluid dynamics, surface science and geometry. Invariably one fluid, usually water, preferentially coats the solid surface. Of major interest, and a significant challenge for multiphase fluid modelling, is the fact that the flow displays hysteresis: the measured difference in pressure between fluids (the capillary pressure) is higher when the water is draining out than when it is imbibing back in. One consequence of this hysteresis include capillary trapping, of relevance to waterflooding oil recovery and geosequestration of CO¬2. While several models have attempted with mixed success to capture this hysteresis at the macro-scale, no consensus yet exists on its pore-scale causes. The current work makes use of X-ray micro-tomography (MCT) data to help identify resolve this question. We first enumerate the different mechanisms that have been proposed in the literature for this hysteresis. We break these mechanisms into two categories: local mechanisms that may occur inside a single geometric feature (such as a pore or throat) and those that may only be observed within some sort of labyrinth. Local mechanisms include contact angle hysteresis (induced by surface, chemistry surface roughness and/or interface pinning), the ink-bottle effect and geometric bistability associated with the stability of both main terminal menisci and arc menisci in a constrictive pore space element. The nonlocal mechanisms are fluid trapping (possible for both wetting and nonwetting fluids) and structure hysteresis arising from heterogeneity in the pore system. Our results arise from the analysis of imaging experiments in which water was successively imbibed into and drained from small samples of Bentheimer sandstone and unconsolidated grain packs. The experiment were conducted at both synchrotron and laboratory X-ray MCT facilities, with both imaging setups having
Pore-scale Analysis of Equilibrium and Non-equilibrium DNAPL Mass Transfer
Roberts, K. L.; Willson, C. S.; Thompson, K. E.; Moe, W. M.
2008-12-01
A large number of groundwater aquifers are contaminated by dense nonaqueous phase liquids (DNAPL) comprised of chlorinated hydrocarbons. While there have been a large number of experimental and modeling studies investigating NAPL dissolution at various length scales, rate-limiting processes involved in DNAPL dissolution remain poorly understood. Appropriate mathematical models for describing localized phenomena in a manner conducive to continuum scale modeling are not yet fully developed or have not been robustly tested in comparison to experimental data. Here, high-resolution (i.e., ~10 micron) synchrotron X-ray tomography was used to non-destructively obtain three-dimensional images of the internal structure of a series of unconsolidated porous media (40/50 Accusand) systems at various stages of tetrachloroethene (PCE) dissolution during equilibrium and non-equilibrium mass transfer conditions. Algorithms developed by our group were used to: (1) quantify the granular packing characteristics (e.g., grain sizes, shapes, coordination number); (2) pore network structure (e.g., individual pore body geometry and connectivity); and (3) DNAPL blob characteristics (e.g., blobs sizes, interfacial areas); and (4) correlations between the blob characteristics and pore network structure. Generation of the detailed pore network structure allowed pore network modeling to be performed on the actual void space geometry and topology. A unique aspect of this approach is that it directly incorporated pore-scale preferential flow paths that formed due to pore-level heterogeneities and NAPL blob location and geometry. Analysis of the granular packing and pore network structure properties indicate that the column preparation technique resulted in uniform packing among the different systems. This allowed us to assess the impact of flowrates and local pore-level properties on mass transfer and dissolution of individual DNAPL blobs. Experimental results from columns subjected to low flow
Dynamic pore-scale network model (PNM) of water imbibition in porous media
Li, J.; McDougall, S. R.; Sorbie, K. S.
2017-09-01
A dynamic pore-scale network model is presented which simulates 2-phase oil/water displacement during water imbibition by explicitly modelling intra-pore dynamic bulk and film flows using a simple local model. A new dynamic switching parameter, λ, is proposed within this model which is able to simulate the competition between local capillary forces and viscous forces over a very wide range of flow conditions. This quantity (λ) determines the primary pore filling mechanism during imbibition; i.e. whether the dominant force is (i) piston-like displacement under viscous forces, (ii) film swelling/collapse and snap-off due to capillary forces, or (iii) some intermediate local combination of both mechanisms. A series of 2D dynamic pore network simulations is presented which shows that the λ-model can satisfactorily reproduce and explain different filling regimes of water imbibition over a wide range of capillary numbers (Ca) and viscosity ratios (M). These imbibition regimes are more complex than those presented under drainage by (Lenormand et al. (1983)), since they are determined by a wider group of control parameters. Our simulations show that there is a coupling between viscous and capillary forces that is much less important in drainage. The effects of viscosity ratio during imbibition are apparent even under conditions of very slow flow (low Ca)-displacements that would normally be expected to be completely capillary dominated. This occurs as a result of the wetting films having a much greater relative mobility in the higher M cases (e.g. M = 10) thus leading to a higher level of film swelling/snap-off, resulting in local oil cluster bypassing and trapping, and hence a poorer oil recovery. This deeper coupled viscous mechanism is the underlying reason why the microscopic displacement efficiency is lower for higher M cases in water imbibition processes. Additional results are presented from the dynamic model on the corresponding effluent fractional flows (fw
Dutta, Sajal Kanti; Chakraborty, Saikat
2016-12-01
Hemicelluloses are the earth’s second most abundant structural polymers, found in lignocellulosic biomass. Efficient enzymatic depolymerization of xylans by cleaving their β-(1 → 4)-glycosidic bonds to produce soluble sugars is instrumental to the cost-effective production of liquid biofuels. Here we show that the multi-scale two-phase process of enzymatic hydrolysis of amorphous hemicelluloses is dominated by its smallest scale-the pores. In the crucial first five hours, two to fourfold swelling of the xylan particles allow the enzymes to enter the pores and undergo rapid non-equilibrium adsorption on the pore surface before they hydrolyze the solid polymers, albeit non-competitively inhibited by the products xylose and xylobiose. Rapid pore-scale reactive dissolution increases the solid carbohydrate’s porosity to 80-90%. This tightly coupled experimental and theoretical study quantifies the complex temporal dynamics of the transport and reaction processes coupled across scales and phases to show that this unique pore-scale phenomenon can be exploited to accelerate the depolymerization of hemicelluloses to monomeric sugars in the first 5-6 h. We find that an ‘optimal substrate loading’ of 5 mg/ml (above which substrate inhibition sets in) accelerates non-equilibrium enzyme adsorption and solid hemicellulose depolymerization at the pore-scale, which contributes three-quarters of the soluble sugars produced for bio-alcohol fermentation.
Energy Technology Data Exchange (ETDEWEB)
Wood, Brian D. [Oregon State Univ., Corvallis, OR (United States)
2013-11-04
Biogeochemical reactive transport processes in the subsurface environment are important to many contemporary environmental issues of significance to DOE. Quantification of risks and impacts associated with environmental management options, and design of remediation systems where needed, require that we have at our disposal reliable predictive tools (usually in the form of numerical simulation models). However, it is well known that even the most sophisticated reactive transport models available today have poor predictive power, particularly when applied at the field scale. Although the lack of predictive ability is associated in part with our inability to characterize the subsurface and limitations in computational power, significant advances have been made in both of these areas in recent decades and can be expected to continue. In this research, we examined the upscaling (pore to Darcy and Darcy to field) the problem of bioremediation via biofilms in porous media. The principle idea was to start with a conceptual description of the bioremediation process at the pore scale, and apply upscaling methods to formally develop the appropriate upscaled model at the so-called Darcy scale. The purpose was to determine (1) what forms the upscaled models would take, and (2) how one might parameterize such upscaled models for applications to bioremediation in the field. We were able to effectively upscale the bioremediation process to explain how the pore-scale phenomena were linked to the field scale. The end product of this research was to produce a set of upscaled models that could be used to help predict field-scale bioremediation. These models were mechanistic, in the sense that they directly incorporated pore-scale information, but upscaled so that only the essential features of the process were needed to predict the effective parameters that appear in the model. In this way, a direct link between the microscale and the field scale was made, but the upscaling process
Russo, A E; Narter, M; Brusseau, M L
2009-08-01
Synchrotron X-ray microtomography was used to characterize the pore-scale morphology and distribution of an organic immiscible liquid (trichloroethene) during water flushing to examine dissolution dynamics. The experiments were conducted with a natural porous medium that has a large particle-size distribution. The results were compared to those of a previous experiment conducted with a well-sorted natural sand. The median organic-liquid blob volume was smaller, and smaller blobs composed a larger fraction of the distribution, for the poorly sorted medium. In addition, mass removal was less spatially uniform for the poorly sorted medium. The concentration of trichloroethene in the column effluent was monitored during dissolution to assess mass-flux behavior. A first-order mass transfer equation was used to simulate the measured elution curves. Organic-liquid/water interfacial areas measured with microtomography were used as input, and simulated effluent concentrations were compared to the measured effluent concentrations to determine best-fit values for the mass-transfer coefficient. The value obtained for the poorly sorted medium was approximately 10 times smaller than that obtained for the well-sorted medium. This disparity indicates that hydraulic accessibility of the organic liquid is more constrained for the poorly sorted medium, which would be consistent with a more complex pore-scale flow field for the poorly sorted medium.
Boek, E.; Gray, F.; Welch, N.; Shah, S.; Crawshaw, J.
2014-12-01
In CO2 sequestration operations, CO2 injected into a brine aquifer dissolves in the liquid to create an acidic solution. This may result in dissolution of the mineral grains in the porous medium. Experimentally, it is hard to investigate this process at the pore scale. Therefore we develop a new hybrid particle simulation algorithm to study the dissolution of solid objects in a laminar flow field, as encountered in porous media flow situations. First, we calculate the flow field using a multi-relaxation-time lattice Boltzmann (LB) algorithm implemented on GPUs, which demonstrates a very efficient use of the GPU device and a considerable performance increase over CPU calculations. Second, using a stochastic particle approach, we solve the advection-diffusion equation for a single reactive species and dissolve solid voxels according to our reaction model. To validate our simulation, we first calculate the dissolution of a solid sphere as a function of time under quiescent conditions. We compare with the analytical solution for this problem [1] and find good agreement. Then we consider the dissolution of a solid sphere in a laminar flow field and observe a significant change in the sphericity with time due to the coupled dissolution - flow process. Second, we calculate the dissolution of a cylinder in channel flow in direct comparison with corresponding dissolution experiments. We discuss the evolution of the shape and dissolution rate. Finally, we calculate the dissolution of carbonate rock samples at the pore scale in direct comparison with micro-CT experiments. This work builds on our recent research on calculation of multi-phase flow [2], [3] and hydrodynamic dispersion and molecular propagator distributions for solute transport in homogeneous and heterogeneous porous media using LB simulations [4]. It turns out that the hybrid simulation model is a suitable tool to study reactive flow processes at the pore scale. This is of great importance for CO2 storage and
de Vries, Enno T.; Raoof, Amir; van Genuchten, Martinus Th.
2017-07-01
Many environmental and agricultural applications involve the transport of water and dissolved constituents through aggregated soil profiles, or porous media that are structured, fractured or macroporous in other ways. During the past several decades, various process-based macroscopic models have been used to simulate contaminant transport in such media. Many of these models consider advective-dispersive transport through relatively large inter-aggregate pore domains, while exchange with the smaller intra-aggregate pores is assumed to be controlled by diffusion. Exchange of solute between the two domains is often represented using a first-order mass transfer coefficient, which is commonly obtained by fitting to observed data. This study aims to understand and quantify the solute exchange term by applying a dual-porosity pore-scale network model to relatively large domains, and analysing the pore-scale results in terms of the classical dual-porosity (mobile-immobile) transport formulation. We examined the effects of key parameters (notably aggregate porosity and aggregate permeability) on the main dual-porosity model parameters, i.e., the mobile water fraction (ϕm) and the mass transfer coefficient (α). Results were obtained for a wide range of aggregate porosities (between 0.082 and 0.700). The effect of aggregate permeability was explored by varying pore throat sizes within the aggregates. Solute breakthrough curves (BTCs) obtained with the pore-scale network model at several locations along the domain were analysed using analytical solutions of the dual-porosity model to obtain estimates of ϕm and α. An increase in aggregate porosity was found to decrease ϕm and increase α, leading to considerable tailing in the BTCs. Changes in the aggregate pore throat size affected the relative flow velocity between the intra- and inter-aggregate domains. Higher flow velocities within the aggregates caused a change in the transport regime from diffusion dominated to more
Energy Technology Data Exchange (ETDEWEB)
Molaeimanesh, Gholam Reza; Akbari, Mohammad Hadi [Shiraz University, Shiraz (Iran, Islamic Republic of)
2015-03-15
A pore-scale model based on the lattice Boltzmann method (LBM) is proposed for the cathode electrode of a PEM fuel cell with heterogeneous and anisotropic porous gas diffusion layer (GDL) and interdigitated flow field. An active approach is implemented to model multi-component transport in GDL, which leads to enhanced accuracy, especially at higher activation over-potentials. The core of the paper is the implementation of an electrochemical reaction with an active approach in a multi-component lattice Boltzmann model for the first time. After model validation, the capability of the presented model is demonstrated through a parametric study. Effects of activation over-potential, pressure differential between inlet and outlet gas channels, land width to channel width ratio, and channel width are investigated. The results show the significant influence of GDL microstructure on the oxygen distribution and current density profile.
Morales, V. L.; Dentz, M.; Willmann, M.; Holzner, M.
2017-09-01
We study the evolution of velocity in time, which fundamentally controls the way dissolved substances are transported and spread in porous media. Experiments are conducted that use tracer particles to track the motion of substances in water, as it flows through transparent, 3-D synthetic sandstones. Particle velocities along streamlines are found to be intermittent and strongly correlated, while their probability density functions are lognormal and nonstationary. We demonstrate that these particle velocity characteristics can be explained and modeled as a continuous time random walk that is both Markovian and mean reverting toward the stationary state. Our model accurately captures the fine-scale velocity fluctuations observed in each tested sandstone, as well as their respective dispersion regime progression from initially ballistic, to superdiffusive, and finally Fickian. Model parameterization is based on the correlation length and mean and standard deviation of the velocity distribution, thus linking pore-scale attributes with macroscale transport behavior for both short and long time scales.
Final Report, DE-FG02-92ER14261, Pore Scale Geometric and Fluid Distribution Analysis
Energy Technology Data Exchange (ETDEWEB)
W. Brent Lindquist
2005-01-21
The elucidation of the relationship between pore scale structure and fluid flow in porous media is a fundamental problem of long standing interest. Incomplete characterization of medium properties continues to be a limiting factor in accurate field scale simulations. The accomplishments of this grant have kept us at the forefront in investigating the applicability of X-ray computed microtomography (XCMT) as a tool for contributing to the understanding of this relationship. Specific accomplishments have been achieved in four areas: - development of numerical algorithms (largely in the field of computational geometry) to provide automated recognition of and measurements on features of interest in the pore space. These algorithms have been embodied in a software package, 3DMA-Rock. - application of these algorithms to extensive studies of the pore space of sandstones. - application of these algorithms to studies of fluid (oil/water) partitioning in the pore space of Berea sandstone and polyethylene models. - technology transfer.
Gao, Jinfang; Xing, Huilin; Tian, Zhiwei; Pearce, Julie K.; Sedek, Mohamed; Golding, Suzanne D.; Rudolph, Victor
2017-01-01
Injection of CO2 subsurface may lead to chemical reactivity of rock where CO2 is dissolved in groundwater. This process can modify pore networks to increase or decrease porosity through mineral dissolution and precipitation. A lattice Boltzmann (LB) based computational model study on the pore scale reactive transport in three dimensional heterogeneous porous media (sandstone consisting of both reactive and non-reactive minerals) is described. This study examines how fluid transport in porous materials subject to reactive conditions is affected by unsteady state local reactions and unstable dissolution fronts. The reaction of a calcite cemented core sub-plug from the Hutton Sandstone of the Surat Basin, Australia, is used as a study case. In particular, the work studies the interaction of acidic fluid (an aqueous solution with an elevated concentration of carbonic acid) with reactive (e.g. calcite) and assumed non-reactive (e.g. quartz) mineral surfaces, mineral dissolution and mass transfer, and resultant porosity change. The proposed model is implemented in our custom LBM code and suitable for studies of multiple mineral reactions with disparate reaction rates. A model for carbonic acid reaction with calcite cemented sandstone in the CO2-water-rock system is verified through laboratory experimental data including micro-CT characterization before and after core reaction at reservoir conditions. The experimentally validated model shows: (1) the dissolution of calcite cement forms conductive channels at the pore scale, and enables the generation of pore throats and connectivity; (2) the model is able to simulate the reaction process until the reaction equilibrium status is achieved (around 1440 days); (3) calcite constituting a volume of around 9.6% of the whole core volume is dissolved and porosity is consequently increased from 1.1% to 10.7% on reaching equilibrium; (4) more than a third of the calcite (constituting 7.4% of the total core volume) is unaffected
Energy Technology Data Exchange (ETDEWEB)
Andy Miller
2009-01-25
Environmental systems exhibit a range of complexities which exist at a range of length and mass scales. Within the realm of radionuclide fate and transport, much work has been focused on understanding pore scale processes where complexity can be reduced to a simplified system. In describing larger scale behavior, the results from these simplified systems must be combined to create a theory of the whole. This process can be quite complex, and lead to models which lack transparency. The underlying assumption of this approach is that complex systems will exhibit complex behavior, requiring a complex system of equations to describe behavior. This assumption has never been tested. The goal of the experiments presented is to ask the question: Do increasingly complex systems show increasingly complex behavior? Three experimental tanks at the intermediate scale (Tank 1: 2.4m x 1.2m x 7.6cm, Tank 2: 2.4m x 0.61m x 7.6cm, Tank 3: 2.4m x 0.61m x 0.61m (LxHxW)) have been completed. These tanks were packed with various physical orientations of different particle sizes of a uranium contaminated sediment from a former uranium mill near Naturita, Colorado. Steady state water flow was induced across the tanks using constant head boundaries. Pore water was removed from within the flow domain through sampling ports/wells; effluent samples were also taken. Each sample was analyzed for a variety of analytes relating to the solubility and transport of uranium. Flow fields were characterized using inert tracers and direct measurements of pressure head. The results show that although there is a wide range of chemical variability within the flow domain of the tank, the effluent uranium behavior is simple enough to be described using a variety of conceptual models. Thus, although there is a wide range in variability caused by pore scale behaviors, these behaviors appear to be smoothed out as uranium is transported through the tank. This smoothing of uranium transport behavior transcends
Fathi, H.; Raoof, A.; Mansouri, S.H.
2017-01-01
The production of liquid water in cathode catalyst layer, CCL, is a significant barrier to increase the efficiency of proton exchange membrane fuel cell. Here we present, for the first time, a direct three-dimensional pore-scale modelling to look at the complex immiscible two-phase flow in CCL.
Daniele Tonina; Alberto Bellin
2008-01-01
Pore-scale dispersion (PSD), aquifer heterogeneity, sampling volume, and source size influence solute concentrations of conservative tracers transported in heterogeneous porous formations. In this work, we developed a new set of analytical solutions for the concentration ensemble mean, variance, and coefficient of variation (CV), which consider the effects of all these...
Pore-scale studies of interphase mass and heat transfer during two-phase flow in porous media
Hassanizadeh, S. M.; Karadimitriou, N.; Zhang, Q.; Nuske, P.
2015-12-01
Micro-models have been proven to be a valuable tool in porous media studies by allowing the observation of flow and transport on the micro-scale. They help to increase our insight of flow and transport phenomena on both micro- and macro-scales. A micro-model is an artificial representation of a porous medium, made of a transparent material. We have used Poly-Di-Methyl-Siloxane (PDMS), which is a viscoelastic, silicon-based organic polymer. It is optically transparent, inert, non-toxic, and non-flammable. We have studied capillary phenomena, colloid transport, and heat transfer during two-phase flow. We have shown that capillarity phenomena are controlled by fluid-fluid interfaces at the micro-scale. In colloid transport experiments, we directly observe colloids movement, their retention at interfaces, and mobilization with the moving interface and contact lines. We have also performed heat transport experiments where the two fluids have distinctly different temperatures at the pore scale. Under such conditions, fluid-fluid interfaces play a major role in heat transport processes. Our results suggest that average fluid-fluid interfacial area could be an important state variable for the macroscale description of two-phase flow and transport processes.
Nomeli, Mohammad; Riaz, Amir
2017-11-01
Direct numerical simulation of reactive flow and a long-term geochemical modeling of CO2 sequestration is carried out in a fractured media to investigate its impact on CO2 transport and storage capacity. The fracture is modeled by considering flow of CO2 between finite plates. We study the physics and the critical time of blockage for a fracture to interpret the results. To this end, we employ direct numerical simulation tools and algorithms to simulate incompressible flow along with necessary transport equations that capture the kinetics of relevant chemical reactions. The numerical model is based on a finite volume method using a sequential non-iterative approach. It is found that the reactive transport of minerals has an important effect on reservoir porosity and permeability. According to the simulations, the flow of injected CO2 in the fracture is controlled by changes in the pore-scale permeability. The fracture ceases to be a fluid channel due to geochemical reactions of minerals. In addition, using parameter analysis we also determine the effect of various reaction kinetics on permeability of porous media.
Decker, Mark; Or, Dani; Pitman, Andy; Ukkola, Anna
2017-03-01
The Community Atmosphere Biosphere Land Exchange (CABLE) land surface model overestimates evapotranspiration (E) at numerous flux tower sites during boreal spring. The overestimation of E is not eliminated when the nonlinear dependence of soil evaporation on soil moisture or a simple litter layer is introduced into the model. New resistance terms, previously developed from a pore-scale model of soil evaporation, are incorporated into the treatment of under canopy water vapor transfer in CABLE. The new resistance terms reduce the large positive bias in spring time E at multiple flux tower sites and also improve the simulation of daily sensible heat flux. The reduction in the spring E bias allows the soil to retain water into the summer, improving the seasonality of E. The simulation of daily E is largely insensitive to the details of the implementation of the pore model resistance scheme. The more physically based treatment of soil evaporation presented here eliminates the need for empirical functions that reduce evaporation as a function of soil moisture that are included in many land surface models.
Yao, Chuanjin
2014-05-06
Knowledge of micrometer-size polyacrylamide elastic microsphere (MPEM) transport and retention mechanisms in porous media is essential for the application of MPEMs as a smart sweep improvement and profile modification agent in improving oil recovery. A transparent micromodel packed with translucent quartz sand was constructed and used to investigate the pore-scale transport, surface deposition-release, and plugging deposition-remigration mechanisms of MPEMs in porous media. The results indicate that the combination of colloidal and hydrodynamic forces controls the deposition and release of MPEMs on pore-surfaces; the reduction of fluid salinity and the increase of Darcy velocity are beneficial to the MPEM release from pore-surfaces; the hydrodynamic forces also influence the remigration of MPEMs in pore-throats. MPEMs can plug pore-throats through the mechanisms of capture-plugging, superposition-plugging, and bridge-plugging, which produces resistance to water flow; the interception with MPEM particulate filters occurring in the interior of porous media can enhance the plugging effect of MPEMs; while the interception with MPEM particulate filters occurring at the surface of low-permeability layer can prevent the low-permeability layer from being damaged by MPEMs. MPEMs can remigrate in pore-throats depending on their elasticity through four steps of capture-plugging, elastic deformation, steady migration, and deformation recovery. © 2014 American Chemical Society.
Schnaar, Gregory; Brusseau, Mark L
2006-11-01
The objective of this study was to characterize the pore-scale dissolution of organic immiscible-liquid blobs residing within natural porous media. Synchrotron X-ray microtomography was used to obtain high-resolution, three-dimensional images of the aqueous, organic-liquid, and solid phases residing in columns packed with one of two porous media. Images of the packed columns were obtained after a stable, discontinuous distribution (e.g., residual saturation) of the organic liquid (trichloroethene) had been established, and three subsequent times during column flushing. These data were used to characterize the morphology of the organic-liquid blobs as a function of dissolution, and to quantify changes in total organic-liquid volume, surface area, and water-organic liquid interfacial area. The dissolution dynamics of individual blobs appeared to be influenced by the local pore configuration. In addition to dissolution-induced shrinkage, some blobs were observed to separate into multiple distinct subunits. The median blob size decreased by approximately a factor of 2 at the point where approximately 90% of the initial organic-liquid volume had been removed. The ratio of capillary associated interfacial area to total water-organic liquid interfacial area increased by 50% at the point where approximately 95% of the initial mass had been removed. A nearly linear relationship was observed between both total and capillary associated interfacial area and organic liquid volumetric fraction. Changes in the measured aqueous-phase trichloroethene effluent concentrations were well correlated with changes in the volume, surface area, and number of blobs. The effluent concentration data were adequately described by a first-order mass transfer expression employing a constant value of the mass-transfer coefficient, with values for the water-organic liquid interfacial area obtained independently from the microtomography data.
Verma, Rahul
2018-01-06
Understanding of pore-scale physics for multiphase flow in porous media is essential for accurate description of various flow phenomena. In particular, capillarity and wettability strongly influence capillary pressure-saturation and relative permeability relationships. Wettability is quantified by the contact angle of the fluid-fluid interface at the pore walls. In this work we focus on the non-trivial interface equilibria in presence of non-neutral wetting and complex geometries. We quantify the accuracy of a volume-of-fluid (VOF) formulation, implemented in a popular open-source computational fluid dynamics code, compared with a new formulation of a level set (LS) method, specifically developed for quasi-static capillarity-dominated displacement. The methods are tested in rhomboidal packings of spheres for a range of contact angles and for different rhomboidal configurations and the accuracy is evaluated against the semi-analytical solutions obtained by Mason and Morrow (1994). While the VOF method is implemented in a general purpose code that solves the full Navier-Stokes (NS) dynamics in a finite volume formulation, with additional terms to model surface tension, the LS method is optimised for the quasi-static case and, therefore, less computationally expensive. To overcome the shortcomings of the finite volume NS-VOF system for low capillary number flows, and its computational cost, we introduce an overdamped dynamics and a local time stepping to speed up the convergence to the steady state, for every given imposed pressure gradient (and therefore saturation condition). Despite these modifications, the methods fundamentally differ in the way they capture the interface, as well as in the number of equations solved and in the way the mean curvature (or equivalently capillary pressure) is computed. This study is intended to provide a rigorous validation study and gives important indications on the errors committed by these methods in solving more complex geometry
Leclaire, Sébastien; Parmigiani, Andrea; Malaspinas, Orestis; Chopard, Bastien; Latt, Jonas
2017-03-01
This article presents a three-dimensional numerical framework for the simulation of fluid-fluid immiscible compounds in complex geometries, based on the multiple-relaxation-time lattice Boltzmann method to model the fluid dynamics and the color-gradient approach to model multicomponent flow interaction. New lattice weights for the lattices D3Q15, D3Q19, and D3Q27 that improve the Galilean invariance of the color-gradient model as well as for modeling the interfacial tension are derived and provided in the Appendix. The presented method proposes in particular an approach to model the interaction between the fluid compound and the solid, and to maintain a precise contact angle between the two-component interface and the wall. Contrarily to previous approaches proposed in the literature, this method yields accurate solutions even in complex geometries and does not suffer from numerical artifacts like nonphysical mass transfer along the solid wall, which is crucial for modeling imbibition-type problems. The article also proposes an approach to model inflow and outflow boundaries with the color-gradient method by generalizing the regularized boundary conditions. The numerical framework is first validated for three-dimensional (3D) stationary state (Jurin's law) and time-dependent (Washburn's law and capillary waves) problems. Then, the usefulness of the method for practical problems of pore-scale flow imbibition and drainage in porous media is demonstrated. Through the simulation of nonwetting displacement in two-dimensional random porous media networks, we show that the model properly reproduces three main invasion regimes (stable displacement, capillary fingering, and viscous fingering) as well as the saturating zone transition between these regimes. Finally, the ability to simulate immiscible two-component flow imbibition and drainage is validated, with excellent results, by numerical simulations in a Berea sandstone, a frequently used benchmark case used in this
Alhashmi, Z; Blunt, M J; Bijeljic, B
2015-08-01
We present a pore scale model capable of simulating fluid/fluid reactive transport on images of porous media from first principles. We use a streamline-based particle tracking method for simulating flow and transport, while for reaction to occur, both reactants must be within a diffusive distance of each other during a time-step. We assign a probability of reaction (Pr), as a function of the reaction rate constant (kr) and the diffusion length. Firstly, we validate our model for reaction against analytical solutions for the bimolecular reaction (A+B→C) in a free fluid. Then, we simulate transport and reaction in a beadpack to validate the model through predicting the fluid/fluid reaction experimental results provided by Gramling et al. (2002). Our model accurately predicts the experimental data, as it takes into account the degree of incomplete mixing present at the sub-pore (image voxel) level, in contrast to advection-dispersion-reaction equation (ADRE) model that over-predicts pore scale mixing. Finally, we show how our model can predict dynamic changes in the reaction rate accurately accounting for the local geometry, topology and flow field at the pore scale. We demonstrate the substantial difference between the predicted early-time reaction rate in comparison to the ADRE model. Copyright © 2015. Published by Elsevier B.V.
Li, Yaofa; Kazemifar, Farzan; Blois, Gianluca; Christensen, Kenneth; Kenneth Christensen, Notre Dame Team
2017-11-01
Multiphase flow in porous media is relevant to a range of applications in the energy and environmental sectors. Recently, the interest has been renewed by geological storage of CO2 within saline aquifers. Central to this goal is predicting the fidelity of candidate sites pre-injection of CO2 and its post-injection migration. Moreover, local pressure buildup may cause micro-seismic events, which could prove disastrous, and possibly compromise seal integrity. Evidence shows that the large-scale events are coupled with pore-scale phenomena, necessitating the understanding of pore-scale stress, strain, and flow processes and their representation in large-scale modeling. To this end, the pore-scale flow of water and supercritical CO2 is investigated under reservoir-relevant conditions over a range of wettability conditions in 2D heterogeneous micromodels that reflect the complexity of real sandstone. High-speed fluorescent microscopy, complemented by a fast differential pressure transmitter, allows for simultaneous measurement of the flow field within and the instantaneous pressure drop across the micromodels. A flexible micromodel is also designed, to be used in conjunction with the micro-PIV technique, enabling the quantification of coupled solid-liquid interactions. This work was supported as part of the GSCO2, an EFRC funded by the US DOE, Office of Science, and partially supported by WPI-I2CNER.
Rolandi, M. Cristina; Nolte, Froukje; van de Hoef, Tim P.; Remmelink, Maurice; Baan, Jan; Piek, Jan J.; Spaan, Jos A. E.; Siebes, Maria
2012-01-01
Key points The Valsalva manoeuvre provokes strong changes in the cardiovascular system and can be used to alter parameters of cardiac mechanics for studying cardiaccoronary interaction in humans. Cardiac contraction results in coronary forward and backward travelling waves that can be quantified by
Energy Technology Data Exchange (ETDEWEB)
Johnson, P.A.; McCall, K.R.; Meegan, G.D. Jr. [Los Alamos National Lab., NM (United States)
1993-11-01
Experiments in rock show a large nonlinear elastic wave response, far greater than that of gases, liquids and most other solids. The large response is attributed to structural defects in rock including microcracks and grain boundaries. In the earth, a large nonlinear response may be responsible for significant spectral alteration at amplitudes and distances currently considered to be well within the linear elastic regime.
Tartakovsky, G. D.; Tartakovsky, A. M.; Scheibe, T. D.; Fang, Y.; Mahadevan, R.; Lovley, D. R.
2013-09-01
Recent advances in microbiology have enabled the quantitative simulation of microbial metabolism and growth based on genome-scale characterization of metabolic pathways and fluxes. We have incorporated a genome-scale metabolic model of the iron-reducing bacteria Geobacter sulfurreducens into a pore-scale simulation of microbial growth based on coupling of iron reduction to oxidation of a soluble electron donor (acetate). In our model, fluid flow and solute transport is governed by a combination of the Navier-Stokes and advection-diffusion-reaction equations. Microbial growth occurs only on the surface of soil grains where solid-phase mineral iron oxides are available. Mass fluxes of chemical species associated with microbial growth are described by the genome-scale microbial model, implemented using a constraint-based metabolic model, and provide the Robin-type boundary condition for the advection-diffusion equation at soil grain surfaces. Conventional models of microbially-mediated subsurface reactions use a lumped reaction model that does not consider individual microbial reaction pathways, and describe reactions rates using empirically-derived rate formulations such as the Monod-type kinetics. We have used our pore-scale model to explore the relationship between genome-scale metabolic models and Monod-type formulations, and to assess the manifestation of pore-scale variability (microenvironments) in terms of apparent Darcy-scale microbial reaction rates. The genome-scale model predicted lower biomass yield, and different stoichiometry for iron consumption, in comparison to prior Monod formulations based on energetics considerations. We were able to fit an equivalent Monod model, by modifying the reaction stoichiometry and biomass yield coefficient, that could effectively match results of the genome-scale simulation of microbial behaviors under excess nutrient conditions, but predictions of the fitted Monod model deviated from those of the genome-scale model
Energy Technology Data Exchange (ETDEWEB)
Tartakovsky, Guzel D.; Tartakovsky, Alexandre M.; Scheibe, Timothy D.; Fang, Yilin; Mahadevan, Radhakrishnan; Lovley, Derek R.
2013-09-07
Recent advances in microbiology have enabled the quantitative simulation of microbial metabolism and growth based on genome-scale characterization of metabolic pathways and fluxes. We have incorporated a genome-scale metabolic model of the iron-reducing bacteria Geobacter sulfurreducens into a pore-scale simulation of microbial growth based on coupling of iron reduction to oxidation of a soluble electron donor (acetate). In our model, fluid flow and solute transport is governed by a combination of the Navier-Stokes and advection-diffusion-reaction equations. Microbial growth occurs only on the surface of soil grains where solid-phase mineral iron oxides are available. Mass fluxes of chemical species associated with microbial growth are described by the genome-scale microbial model, implemented using a constraint-based metabolic model, and provide the Robin-type boundary condition for the advection-diffusion equation at soil grain surfaces. Conventional models of microbially-mediated subsurface reactions use a lumped reaction model that does not consider individual microbial reaction pathways, and describe reactions rates using empirically-derived rate formulations such as the Monod-type kinetics. We have used our pore-scale model to explore the relationship between genome-scale metabolic models and Monod-type formulations, and to assess the manifestation of pore-scale variability (microenvironments) in terms of apparent Darcy-scale microbial reaction rates. The genome-scale model predicted lower biomass yield, and different stoichiometry for iron consumption, in comparisonto prior Monod formulations based on energetics considerations. We were able to fit an equivalent Monod model, by modifying the reaction stoichiometry and biomass yield coefficient, that could effectively match results of the genome-scale simulation of microbial behaviors under excess nutrient conditions, but predictions of the fitted Monod model deviated from those of the genome-scale model under
Molins, S.; Trebotich, D.; Yang, L.; Ajo Franklin, J. B.; Ligocki, T.; Shen, C.; Steefel, C. I.
2013-12-01
Mineral trapping is generally considered to account for most of the long-term trapping of CO2 in the subsurface. Prediction of mineral trapping at the reservoir scale requires knowledge of continuum-scale mineral dissolution and precipitation rates. However, processes that take place at the pore scale (e.g., transport limitation to reactive surfaces) affect rates applicable at the continuum scale. To explore the pore scale processes that result in the discrepancy between rates measured in laboratory experiments and those calibrated from continuum-scale models, we have developed a high-resolution pore scale model of a capillary tube experiment. The capillary tube (L=0.7-cm, D=500-μm) is packed with crushed calcite (Iceland spar) and the resulting 3D pore structure is imaged by X-ray computed microtomography (XCMT) at Berkeley Lab's Advanced Light Source at a 0.899-μm resolution. A solution in equilibrium with a partial pressure of CO2 of 4 bars is injected at a rate of 5 microliter/min and the effluent concentrations of calcium are measured to ensure steady state conditions are achieved. A simulation domain is constructed from the XCMT image using implicit functions to represent the mineral surface locally on a grid. The pore-scale reactive transport model is comprised of high performance simulation tools and algorithms for incompressible Navier-Stokes flow, advective-diffusive transport and multicomponent geochemical reactions. Simulations are performed using 6,144 processors on NERSC's Cray XE6 Hopper to achieve a grid resolution of 2.32 μm. Equivalent continuum scale simulations are also performed to evaluate the effect of pore scale processes. Comparison of results is performed based on flux-averaged effluent calcium concentrations, which are used as indicator of effective rates in the capillary tube. Results from both pore- and continuum-scale simulations overestimate the calcium effluent concentrations, suggesting that the TST rate expression parameters
Kohanpur, A. H.; Chen, Y.; Valocchi, A. J.; Tudek, J.; Crandall, D.
2016-12-01
CO2-brine flow in deep natural rocks is the focus of attention in geological storage of CO2. Understanding rock/flow properties at pore-scale is a vital component in field-scale modeling and prediction of fate of injected CO2. There are many challenges in working at the pore scale, such as size and selection of representative elementary volume (REV), particularly for material with complex geometry and heterogeneity, and the high computational costs. These issues factor into trade-offs that need to be made in choosing and applying pore-scale models. On one hand, pore-network modeling (PNM) simplifies the geometry and flow equations but can provide characteristic curves on fairly large samples. On the other hand, the lattice Boltzmann method (LBM) solves Navier-Stokes equations on the real geometry but is limited to small samples due to its high computational costs. Thus, both methods have some advantages but also face some challenges, which warrants a more detailed comparison and evaluation. In this study, we used industrial and micro-CT scans of actual reservoir rock samples to characterize pore structure at different resolutions. We ran LBM models directly on the characterized geometry and PNM on the equivalent 3D extracted network to determine single/two-phase flow properties during drainage and imbibition processes. Specifically, connectivity, absolute permeability, relative permeability curve, capillary pressure curve, and interface location are compared between models. We also did simulations on several subsamples from different locations including different domain sizes and orientations to encompass analysis of heterogeneity and isotropy. This work is primarily supported as part of the Center for Geologic Storage of CO2, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science and partially supported by the International Institute for Carbon-Neutral Energy Research (WPI-I2CNER) based at Kyushu University, Japan.
Inci, Ercan; Turkay, Rustu; Nalbant, Mustafa Orhan; Yenice, Mustafa Gurkan; Tugcu, Volkan
2017-04-01
The goal of this study was to measure corpus cavernosum (CC) penis rigidity with shear wave elastography (SWE) in healthy volunteers and to evaluate the change of rigidity with age. SWE was performed in 60 healthy volunteers (age range 20-71, mean 47±12,83 years). Volunteers were divided into 2 groups by age (Group 1 age penis (proximal, middle and glans penis) on both sides of CC. All values of SWE (in kilo Pascal) were noted along with volunteers' ages. The measurements were done both with transverse (T) and longitudinal (L) sections. We compared all SW values of penis parts and their alterations with age. The shear wave elastography values of CC penis increased with increasing age (ppenis (ppenis (ppenis rigidity and its alteration with age. These data may create a new approach in the evaluation process and treatment options for penile pathologies. Copyright © 2017 Elsevier B.V. All rights reserved.
Pore-Scale Study of the Impact of Fracture and Wettability on Two-Phase Flow Properties of Rock
Energy Technology Data Exchange (ETDEWEB)
Silin, D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ajo-Franklin, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Helland, J. O. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Jettestuen, E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hatzignatiou, D. G. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2012-08-01
Fractures and wettability are among other factors that can strongly affect the twophase flow properties of porous media. Maximal-inscribed spheres (MIS) and finite-difference flow simulations on computer-generated structures mimicking micro-CT images of fractured rock suggest the character of the capillary pressure and relative permeability curves modification by natural or induced fracture and wettability alteration.
Fathi, H.; Raoof, A.; Mansouri, S. H.
2017-05-01
The production of liquid water in cathode catalyst layer, CCL, is a significant barrier to increase the efficiency of proton exchange membrane fuel cell. Here we present, for the first time, a direct three-dimensional pore-scale modelling to look at the complex immiscible two-phase flow in CCL. After production of the liquid water at the surface of CCL agglomerates due to the electrochemical reactions, water spatial distribution affects transport of oxygen through the CCL as well as the rate of reaction at the agglomerate surfaces. To explore the wettability effects, we apply hydrophilic and hydrophobic properties using different surface contact angles. Effective diffusivity is calculated under several water saturation levels. Results indicate larger diffusive transport values for hydrophilic domain compared to the hydrophobic media where the liquid water preferentially floods the larger pores. However, hydrophobic domain showed more available surface area and higher oxygen consumption rate at the reaction sites under various saturation levels, which is explained by the effect of wettability on pore-scale distribution of water. Hydrophobic domain, with a contact angle of 150, reveals efficient water removal where only 28% of the pore space stays saturated. This condition contributes to the enhanced available reaction surface area and oxygen diffusivity.
Bijeljic, B.; Andrew, M. G.; Menke, H. P.; Blunt, M. J.
2013-12-01
Advances in X ray imaging techniques made it possible not only to accurately describe solid and fluid(s) distributions in the pore space but also to study dynamics of multi-phase flow and reactive transport in-situ. This has opened up a range of new opportunities to better understand fundamental physics at the pore scale by experiment, and test and validate theoretical models in order to develop predictive tools at the pore scale and use it for upscaling. Firstly, we illustrate this concept by describing a new methodology for predicting non-Fickian transport in millimeter-sized three-dimensional micro-CT images of a beadpack, a sandstone, and a carbonate, representing porous media with an increasing degree of pore-scale complexity. The key strategy is to retain the full information on flow and transport signature of a porous medium by using probability distribution functions (PDFs) of voxel velocities for flow, and both PDFs of particle displacements and PDFs of particle transit times between voxels for transport. For this purpose, direct-simulation flow and transport model is used to analyse the relationship between pore structure, velocity, and the dynamics of the evolving plume. The model predictions for PDFs of particle displacements obtained by the model are in excellent agreement with those measured on similar cores in nuclear magnetic resonance experiments. A key determinant for non-Fickian transport is the spread in velocity distribution in the pore space. Further, we present micro-CT imaging of capillary trapping of scCO2 at reservoir conditions in a range of carbonates and sandstones having different pore structure and demonstrate that substantial quantities of scCO2 can be trapped in the pore space. Higher residual scCO2 saturations are found in sandstones compared to carbonates. The trapped ganglia exhibit different distribution of size, related to the inherent structure of pore space. Pore structures with large, open pores that are well connected lead
Music genre preference and tempo alter alpha and beta waves in human non-musicians
Directory of Open Access Journals (Sweden)
Hunter Gentry
2013-10-01
Full Text Available This study examined the effects of music genre and tempo on brain activation patterns in 10 nonmusicians.Two genres (rock and jazz and three tempos (slowed, medium/normal, andquickened were examined using EEG recording and analyzed through Fast Fourier Transform(FFT analysis. When participants listened to their preferred genre, an increase in alpha waveamplitude was observed. Alpha waves were not significantly affected by tempo. Beta waveamplitude increased significantly as the tempo increased. Genre had no effect on beta waves. Thefindings of this study indicate that genre preference and artificially modified tempo do affectalpha and beta wave activation in non-musicians listening to preselected songs.
Moradi, A.
2015-12-01
To properly model soil thermal performance in unsaturated porous media, for applications such as SBTES systems, knowledge of both soil hydraulic and thermal properties and how they change in space and time is needed. Knowledge obtained from pore scale to macroscopic scale studies can help us to better understand these systems and contribute to the state of knowledge which can then be translated to engineering applications in the field (i.e. implementation of SBTES systems at the field scale). One important thermal property that varies with soil water content, effective thermal conductivity, is oftentimes included in numerical models through the use of empirical relationships and simplified mathematical formulations developed based on experimental data obtained at either small laboratory or field scales. These models assume that there is local thermodynamic equilibrium between the air and water phases for a representative elementary volume. However, this assumption may not always be valid at the pore scale, thus questioning the validity of current modeling approaches. The purpose of this work is to evaluate the validity of the local thermodynamic equilibrium assumption as related to the effective thermal conductivity at pore scale. A numerical model based on the coupled Cahn-Hilliard and heat transfer equation was developed to solve for liquid flow and heat transfer through variably saturated porous media. In this model, the evolution of phases and the interfaces between phases are related to a functional form of the total free energy of the system. A unique solution for the system is obtained by solving the Navier-Stokes equation through free energy minimization. Preliminary results demonstrate that there is a correlation between soil temperature / degree of saturation and equivalent thermal conductivity / heat flux. Results also confirm the correlation between pressure differential magnitude and equilibrium time for multiphase flow to reach steady state conditions
Puyguiraud, Alexandre; Dentz, Marco; Gouze, Philippe
2017-04-01
For the past several years a lot of attention has been given to pore-scale flow in order to understand and model transport, mixing and reaction in porous media. Nevertheless we believe that an accurate study of spatial and temporal evolution of velocities could bring important additional information for the upscaling from pore to higher scales. To gather these pieces of information, we perform Stokes flow simulations on pore-scale digitized images of a Berea sandstone core. First, micro-tomography (XRMT) imaging and segmentation processes allow us to obtain 3D black and white images of the sample [1]. Then we used an OpenFoam solver to perform the Stokes flow simulations mentioned above, which gives us the velocities at the interfaces of a cubic mesh. Subsequently, we use a particle streamline reconstruction technique which uses the Eulerian velocity field previously obtained. This technique, based on a modified Pollock algorithm [2], enables us to make particle tracking simulations on the digitized sample. In order to build a stochastic pore-scale transport model, we analyze the Lagrangian velocity series in two different ways. First we investigate the velocity evolution by sampling isochronically (t-Lagrangian), and by studying its statistical properties in terms of one- and two-points statistics. Intermittent patterns can be observed. These are due to the persistance of low velocities over a characteristic space length. Other results are investigated, such as correlation functions and velocity PDFs, which permit us to study more deeply this persistence in the velocities and to compute the correlation times. However, with the second approach, doing these same analysis in space by computing the velocities equidistantly, enables us to remove the intermittency shown in the temporal evolution and to model these velocity series as a Markov process. This renders the stochastic particle dynamics into a CTRW [3]. [1] Gjetvaj, F., A. Russian, P. Gouze, and M. Dentz (2015
Energy Technology Data Exchange (ETDEWEB)
GLASS JR.,ROBERT J.; CONRAD,STEPHEN H.; YARRINGTON,LANE
2000-03-08
The authors reconceptualize macro modified invasion percolation (MMIP) at the near pore (NP) scale and apply it to simulate the non-wetting phase invasion experiments of Glass et al [in review] conducted in macro-heterogeneous porous media. For experiments where viscous forces were non-negligible, they redefine the total pore filling pressure to include viscous losses within the invading phase as well as the viscous influence to decrease randomness imposed by capillary forces at the front. NP-MMIP exhibits the complex invasion order seen experimentally with characteristic alternations between periods of gravity stabilized and destabilized invasion growth controlled by capillary barriers. The breaching of these barriers and subsequent pore scale fingering of the non-wetting phase is represented extremely well as is the saturation field evolution, and total volume invaded.
Directory of Open Access Journals (Sweden)
Moussa Tembely
2017-10-01
Full Text Available Most of the pore-scale imaging and simulations of non-Newtonian fluid are based on the simplifying geometry of network modeling and overlook the fluid rheology and heat transfer. In the present paper, we developed a non-isothermal and non-Newtonian numerical model of the flow properties at pore-scale by simulation of the 3D micro-CT images using a Finite Volume Method (FVM. The numerical model is based on the resolution of the momentum and energy conservation equations. Owing to an adaptive mesh generation technique and appropriate boundary conditions, rock permeability and mobility are accurately computed. A temperature and concentration-dependent power-law viscosity model in line with the experimental measurement of the fluid rheology is adopted. The model is first applied at isothermal condition to 2 benchmark samples, namely Fontainebleau sandstone and Grosmont carbonate, and is found to be in good agreement with the Lattice Boltzmann method (LBM. Finally, at non-isothermal conditions, an effective mobility is introduced that enables to perform a numerical sensitivity study to fluid rheology, heat transfer, and operating conditions. While the mobility seems to evolve linearly with polymer concentration in agreement with a derived theoretical model, the effect of the temperature seems negligible by comparison. However, a sharp contrast is found between carbonate and sandstone under the effect of a constant temperature gradient. Besides concerning the flow index and consistency factor, a master curve is derived when normalizing the mobility for both the carbonate and the sandstone.
Precisely proportioned: intertidal barnacles alter penis form to suit coastal wave action
Neufeld, Christopher J; Palmer, A. Richard
2008-01-01
For their size, barnacles possess the longest penis of any animal (up to eight times their body length). However, as one of few sessile animals to copulate, they face a trade-off between reaching more mates and controlling ever-longer penises in turbulent flow. We observed that penises of an intertidal barnacle (Balanus glandula) from wave-exposed shores were shorter than, stouter than, and more than twice as massive for their length as, those from nearby protected bays. In addition, penis shape variation was tightly correlated with maximum velocity of breaking waves, and, on all shores, larger barnacles had disproportionately stouter penises. Finally, field experiments confirmed that most of this variation was due to phenotypic plasticity: barnacles transplanted to a wave-exposed outer coast produced dramatically shorter and wider penises than counterparts moved to a protected harbour. Owing to the probable trade-off between penis length and ability to function in flow, and owing to the ever-changing wave conditions on rocky shores, intertidal barnacles appear to have acquired the capacity to change the size and shape of their penises to suit local hydrodynamic conditions. This dramatic plasticity in genital form is a valuable reminder that factors other than the usual drivers of genital diversification—female choice, sexual conflict and male–male competition—can influence genital form. PMID:18252665
Idealized numerical studies of gravity wave alteration in the tropopause region
Bense, Vera; Spichtinger, Peter
2017-04-01
When travelling through the tropopause region, characterised by strong gradients in static stability, wind shear and trace gases, the properties of gravity waves often change drastically. Within this work, the EULAG model (Prusa et al., 2008) is used to provide an idealized setup for sensitivity studies on these modifications. The characteristics of the tropopause are introduced by specifiying environmental profiles for Brunt-Väisälä frequency and horizontal wind speed, partly extracted from measurement and reanalysis data. Tropospheric and stratospheric wave spectra extracted for flows under varying tropopause sharpness are analysed, respectively. In particular, different regimes for transmission behaviour are classified for a series of Brunt-Väisälä frequency profiles showing a tropopause inversion layer (TIL, see e.g. Birner et al., 2002). Furthermore, this study focusses on the comparison of transmission coefficients deduced from numerical simulations with values derived from asymptotical analysis of the governing equations and investigates where the threshold of linear behaviour are for the respective setups, The wave generation is implemented in the model both through topography at the lower model domain and through the prescription of wave packets at initialization of the simulations. References: Prusa, J. M., P. K. Smolarkiewicz, P. K. and A. A. Wyszogrodzki, 2008: EULAG, a computational model for multiscale flows, Computers & Fluids 37, 1193-1207 Birner, T., A. Doernbrack, and U. Schumann, 2002: How sharp is the tropopause at midlatitudes?, Geophys. Res. Lett., 29, 1700, doi:10.1029/2002GL015142.
Chapman, E.; Yang, J.; Crawshaw, J.; Boek, E. S.
2012-04-01
In the 1980s, Lenormand et al. carried out their pioneering work on displacement mechanisms of fluids in etched networks [1]. Here we further examine displacement mechanisms in relation to capillary filling rules for spontaneous imbibition. Understanding the role of spontaneous imbibition in fluid displacement is essential for refining pore network models. Generally, pore network models use simple capillary filling rules and here we examine the validity of these rules for spontaneous imbibition. Improvement of pore network models is vital for the process of 'up-scaling' to the field scale for both enhanced oil recovery (EOR) and carbon sequestration. In this work, we present our experimental microfluidic research into the displacement of both supercritical CO2/deionised water (DI) systems and analogous n-decane/air - where supercritical CO2 and n-decane are the respective wetting fluids - controlled by imbibition at the pore scale. We conducted our experiments in etched PMMA and silicon/glass micro-fluidic hydrophobic chips. We first investigate displacement in single etched pore junctions, followed by displacement in complex network designs representing actual rock thin sections, i.e. Berea sandstone and Sucrosic dolomite. The n-decane/air experiments were conducted under ambient conditions, whereas the supercritical CO2/DI water experiments were conducted under high temperature and pressure in order to replicate reservoir conditions. Fluid displacement in all experiments was captured via a high speed video microscope. The direction and type of displacement the imbibing fluid takes when it enters a junction is dependent on the number of possible channels in which the wetting fluid can imbibe, i.e. I1, I2 and I3 [1]. Depending on the experiment conducted, the micro-models were initially filled with either DI water or air before the wetting fluid was injected. We found that the imbibition of the wetting fluid through a single pore is primarily controlled by the
Karsanina, Marina; Gerke, Kirill; Khirevich, Siarhei; Sizonenko, Timofey; Korost, Dmitry
2017-04-01
Permeability is one of the fundamental properties of porous media and is required for large-scale Darcian fluid flow and mass transport models. Whilst permeability can be directly measured at a range of scales, there are increasing opportunities to evaluate permeability from pore-scale simulations. It is well known that single phase flow properties of digital rocks will depend on the resolution of the 3D pore image. Such studies are usually performed by coarsening X-ray microtomography scans. Recently we have proposed a novel approach to fuse multi-scale porous media images using stochastic reconstruction techniques based on directional correlation functions. Here we apply this slightly modified approach to create 3D pore images of different spatial resolution, i.e. stochastic super-resolution method. Contrary to coarsening techniques, this approach preserves porosity values and allows to incorporate fine scale data coming from such imaging techniques as SEM or FIB-SEM. We compute absolute permeability of the same porous media species under different resolutions using lattice-Boltzmann and finite difference methods to model Stokes flow in order to elucidate the effects of image resolution on resulting permeability values and compare stochastic super-resolution technique against conventional coarsening image processing technique. References: 1) Karsanina, M.V., Gerke, K.M., Skvortsova, E.B. and Mallants, D. (2015) Universal spatial correlation functions for describing and reconstructing soil microstructure. PLoS ONE 10(5), e0126515. 2) Gerke, K. M., & Karsanina, M. V. (2015). Improving stochastic reconstructions by weighting correlation functions in an objective function. EPL (Europhysics Letters),111(5), 56002. 3) Gerke, K. M., Karsanina, M. V., Vasilyev, R. V., & Mallants, D. (2014). Improving pattern reconstruction using directional correlation functions. EPL (Europhysics Letters), 106(6), 66002. 4) Gerke, K.M., Karsanina, M. V, Mallants, D., 2015. Universal
Energy Technology Data Exchange (ETDEWEB)
Downs, M.B.
1987-01-01
Two aspects of the secretory process were examined: (1) exocytosis, as measured by amylase release, and (2) the kinetics of the intracellular transport and packaging of secretory proteins, as assessed by electron microscopic autoradiographic analysis of the intracellular distribution of pulse-labelled secretory proteins. The exocytotic response was evaluated by measuring the discharge of amylase from pancreatic tissue slices. Under nonstimulated conditions, there was no difference in the kinetics of amylase discharge from tissue slices kinetically heated to 37/sup 0/C or 40/sup 0/C, indicating that a thermally induced increase in the metabolic rate of the tissue does not significantly alter the basal rate of exocytosis. Analysis of the release of both pulse-labelled secretory proteins and amylase from CC-stimulated tissue indicated that irradiation in a 25 mW/cm/sup 2/ field altered the kinetics of intracellular transport of newly synthesized secretory proteins in a manner not duplicated by kinetic heating. Electron microscopic autoradiography and morphometric analysis failed to elucidate the mechanism by which protein processing was altered.
Willson, Clinton S.; Stacey, Robert W.; Ham, Kyungmin; Thompson, Karsten E.
2004-10-01
The entrapment of nonwetting phase fluids in unconsolidated porous media systems is strongly dependent on the pore-scale geometry and topology. Synchrotron X-ray tomography allows us to nondestructively obtain high-resolution (on the order of 1-10 micron), three-dimensional images of multiphase porous media systems. Over the past year, a number of multiphase porous media systems have been imaged using the synchrotron X-ray tomography station at the GeoSoilEnviroCARS beamline at the Advanced Photon Source. For each of these systems, we are able to: (1) obtain the physically-representative network structure of the void space including the pore body and throat distribution, coordination number, and aspect ratio; (2) characterize the individual nonwetting phase blobs/ganglia (e.g., volume, sphericity, orientation, surface area); and (3) correlate the porous media and fluid properties. The images, data, and network structure obtained from these experiments provide us with a better understanding of the processes and phenomena associated with the entrapment of nonwetting phase fluids. Results from these experiments will also be extremely useful for researchers interested in interphase mass transfer and those utilizing network models to study the flow of multiphase fluids in porous media systems.
Energy Technology Data Exchange (ETDEWEB)
Danno, K.; Takigawa, M.; Horio, T.
1984-02-01
The alterations in lectin fluorescence stainings to the epidermis were examined in guinea pig skin treated with topical application of a 1% 8-methoxypsoralen (8-MOP) solution plus long-wave ultraviolet (UVA) radiation (1.5-3.5 J/cm2) (PUVA). Serial biopsy specimens taken up to 21 days postirradiation were stained with 8 commercially available lectins labeled with either fluorescein isothiocyanate (FITC) or biotin (followed by avidin D-FITC): Bandeiraea simplicifolia agglutinin I (BSA), concanavalin A (Con-A), Dolichos biflorus agglutinin (DBA), peanut agglutinin (PNA), Ricinus communis agglutinin I (RCA), soybean agglutinin (SBA), Ulex europeus agglutinin I (UEA), and wheat germ agglutinin (WGA). In normal guinea pig skin UEA staining was absent. Following PUVA treatment, UEA and DBA stainings became apparent or stronger in intensity after days 7-14 (UEA) and days 4-7 (DBA), respectively, and returned to negative or weak by days 14-21. Stainings with Con-A, SBA, and WGA gave remarkable decreases in intensity after days 2-4 and recovered to the baseline by days 7-14. Intensity of BSA, PNA, and RCA stainings was decreased to a lesser degree than the other lectins. Such changes were not produced by application of 8-MOP, UVA radiation (less than 10 J/cm2), UVB radiation (900-2700 mJ/cm2), or tape stripping. These results suggest that PUVA treatment perturbs the composition or organization of epidermal cell surface glycoconjugates to induce alterations in lectin stainings.
Most, S.; Jia, N.; Bijeljic, B.; Nowak, W.
2016-12-01
Pre-asymptotic characteristics are almost ubiquitous when analyzing solute transport processes in porous media. These pre-asymptotic aspects are caused by spatial coherence in the velocity field and by its heterogeneity. For the Lagrangian perspective of particle displacements, the causes of pre-asymptotic, non-Fickian transport are skewed velocity distribution, statistical dependencies between subsequent increments of particle positions (memory) and dependence between the x, y and z-components of particle increments. Valid simulation frameworks should account for these factors. We propose a particle tracking random walk (PTRW) simulation technique that can use empirical pore-space velocity distributions as input, enforces memory between subsequent random walk steps, and considers cross dependence. Thus, it is able to simulate pre-asymptotic non-Fickian transport phenomena. Our PTRW framework contains an advection/dispersion term plus a diffusion term. The advection/dispersion term produces time-series of particle increments from the velocity CDFs. These time series are equipped with memory by enforcing that the CDF values of subsequent velocities change only slightly. The latter is achieved through a random walk on the axis of CDF values between 0 and 1. The virtual diffusion coefficient for that random walk is our only fitting parameter. Cross-dependence can be enforced by constraining the random walk to certain combinations of CDF values between the three velocity components in x, y and z. We will show that this modelling framework is capable of simulating non-Fickian transport by comparison with a pore-scale transport simulation and we analyze the approach to asymptotic behavior.
Gerke, Kirill
2015-04-01
In this contribution we introduce a novel free software which solves the Stokes equation to obtain velocity fields for low Reynolds-number flows within externally generated 3D pore geometries. Provided with velocity fields, one can calculate permeability for known pressure gradient boundary conditions via Darcy\\'s equation. Finite-difference schemes of 2nd and 4th order of accuracy are used together with an artificial compressibility method to iteratively converge to a steady-state solution of Stokes\\' equation. This numerical approach is much faster and less computationally demanding than the majority of open-source or commercial softwares employing other algorithms (finite elements/volumes, lattice Boltzmann, etc.) The software consists of two parts: 1) a pre and post-processing graphical interface, and 2) a solver. The latter is efficiently parallelized to use any number of available cores (the speedup on 16 threads was up to 10-12 depending on hardware). Due to parallelization and memory optimization our software can be used to obtain solutions for 300x300x300 voxels geometries on modern desktop PCs. The software was successfully verified by testing it against lattice Boltzmann simulations and analytical solutions. To illustrate the software\\'s applicability for numerous problems in Earth Sciences, a number of case studies have been developed: 1) identifying the representative elementary volume for permeability determination within a sandstone sample, 2) derivation of permeability/hydraulic conductivity values for rock and soil samples and comparing those with experimentally obtained values, 3) revealing the influence of the amount of fine-textured material such as clay on filtration properties of sandy soil. This work was partially supported by RSF grant 14-17-00658 (pore-scale modelling) and RFBR grants 13-04-00409-a and 13-05-01176-a.
Reynolds, C. A.; Menke, H. P.; Blunt, M. J.; Krevor, S. C.
2015-12-01
We observe a new type of non-wetting phase flow using time-resolved pore scale imaging. The traditional conceptual model of drainage involves a non-wetting phase invading a porous medium saturated with a wetting phase as either a fixed, connected flow path through the centres of pores or as discrete ganglia which move individually through the pore space, depending on the capillary number. We observe a new type of flow behaviour at low capillary number in which the flow of the non-wetting phase occurs through networks of persistent ganglia that occupy the large pores but continuously rearrange their connectivity (Figure 1). Disconnections and reconnections occur randomly to provide short-lived pseudo-steady state flow paths between pores. This process is distinctly different to the notion of flowing ganglia which coalesce and break-up. The size distribution of ganglia is dependent on capillary number. Experiments were performed by co-injecting N2and 25 wt% KI brine into a Bentheimer sandstone core (4mm diameter, 35mm length) at 50°C and 10 MPa. Drainage was performed at three flow rates (0.04, 0.3 and 1 ml/min) at a constant fractional flow of 0.5 and the variation in ganglia populations and connectivity observed. We obtained images of the pore space during steady state flow with a time resolution of 43 s over 1-2 hours. Experiments were performed at the Diamond Light Source synchrotron. Figure 1. The position of N2 in the pore space during steady state flow is summed over 40 time steps. White indicates that N2 occupies the space over >38 time steps and red <5 time steps.
DEFF Research Database (Denmark)
Ibsen, Lars Bo
2008-01-01
Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many...... times smaller it remains very high. For example, whilst there is enough potential wave power off the UK to supply the electricity demands several times over, the economically recoverable resource for the UK is estimated at 25% of current demand; a lot less, but a very substantial amount nonetheless....
Noh, D. H.
2015-12-01
Accumulation of bacterial biopolymers in porous media is known to decrease permeability by several orders of magnitude, referred to as bioclogging, thereby altering the hydraulic flow systems of porous media. Successful microbial bioclogging treatments require geophysical monitoring techniques to provide appropriate spatial and temporal information on bacterial growth and activities in the subsurface; such monitoring datasets can be used to evaluate the status of plugged reservoir sections and optimize re-treatment if the plug degrades. This study investigated the variations of P- and S-wave attenuation of porous media for monitoring in-situ accumulation of bacterial biopolymers in sediments. Column experiments, where Leuconostoc mesenterorides were stimulated to produce the insoluble polysaccharide biopolymer (referred to as dextran) in a sand pack, were performed while monitoring changes in permeability as well as P- and S-wave responses. P-wave responses at ultrasonic and sub-ultrasonic frequency ranges (i.e., hundreds of kHz and tens of kHz) and S-wave responses at several kHz were acquired using ultrasonic transducers and bender elements during accumulation of the biopolymer. The permeability of the sand pack was reduced by more than one order of magnitude while the insoluble biopolymer, dextran, produced by Leuconostoc mesenteroides occupied ~10% pore volume. The amplitude of the P-wave signals decreased at the both ultrasonic (hundreds of kHz) and sub-ultrasonic (tens of kHz) frequency ranges; and the spectral ratio calculations confirmed an increase in P-wave attenuation (1/QP) in the both frequency ranges. The amplitude of the S-wave signals significantly increased during the increase in S-wave velocity, possibly due to the increased shear stiffness of the medium. However, the spectral ratio calculation suggested an increase in S-wave attenuation (1/QS) in the several kHz band. The observed changes in permeability and P- and S-wave attenuation were
Directory of Open Access Journals (Sweden)
Adejoke Olukayode Obajuluwa
Full Text Available Humans in modern society are exposed to an ever-increasing number of electromagnetic fields (EMFs and some studies have demonstrated that these waves can alter brain function but the mechanism still remains unclear. Hence, this study sought to investigate the effect of 2.5Â Ghz band radio-frequency electromagnetic waves (RF-EMF exposure on cerebral cortex acetylcholinesterase (AChE activity and their mRNA expression level as well as locomotor function and anxiety-linked behaviour in male rats. Animals were divided into four groups namely; group 1 was control (without exposure, group 2â4 were exposed to 2.5Â Ghz radiofrequency waves from an installed WI-FI device for a period of 4, 6 and 8 weeks respectively. The results revealed that WiFi exposure caused a significant increase in anxiety level and affect locomotor function. Furthermore, there was a significant decrease in AChE activity with a concomitant increase in AChE mRNA expression level in WiFi exposed rats when compared with control. In conclusions, these data showed that long term exposure to WiFi may lead to adverse effects such as neurodegenerative diseases as observed by a significant alteration on AChE gene expression and some neurobehavioral parameters associated with brain damage. Keywords: Acetylcholinesterase, Radiofrequency, Electromagnetic waves, mRNA, Gene expression
Due to climate change, heat waves are predicted to become more frequent and severe. While long-term studies on temperature stress have been conducted on important crops such as maize (Zea mays), the immediate and or long-term effects of short duration but extreme high temperature events during key d...
Bartosiewicz, Maciej; Laurion, Isabelle; Clayer, François; Maranger, Roxane
2016-06-21
Increasing air temperatures may result in stronger lake stratification, potentially altering nutrient and biogenic gas cycling. We assessed the impact of climate forcing by comparing the influence of stratification on oxygen, nutrients, and global-warming potential (GWP) of greenhouse gases (the sum of CH4, CO2, and N2O in CO2 equivalents) emitted from a shallow productive lake during an average versus a heat-wave year. Strong stratification during the heat wave was accompanied by an algal bloom and chemically enhanced carbon uptake. Solar energy trapped at the surface created a colder, isolated hypolimnion, resulting in lower ebullition and overall lower GWP during the hotter-than-average year. Furthermore, the dominant CH4 emission pathway shifted from ebullition to diffusion, with CH4 being produced at surprisingly high rates from sediments (1.2-4.1 mmol m(-2) d(-1)). Accumulated gases trapped in the hypolimnion during the heat wave resulted in a peak efflux to the atmosphere during fall overturn when 70% of total emissions were released, with littoral zones acting as a hot spot. The impact of climate warming on the GWP of shallow lakes is a more complex interplay of phytoplankton dynamics, emission pathways, thermal structure, and chemical conditions, as well as seasonal and spatial variability, than previously reported.
Qajar, Jafar; Arns, Christoph H.
2016-09-01
The application of X-ray micro-computed tomography (μ-CT) for quantitatively characterizing reactive-flow induced pore structure evolution including local particle detachment, displacement and deposition in carbonate rocks is investigated. In the studies conducted in this field of research, the experimental procedure has involved alternating steps of imaging and ex-situ core sample alteration. Practically, it is impossible to return the sample, with micron precision, to the same position and orientation. Furthermore, successive images of a sample in pre- and post-alteration states are usually taken at different conditions such as different scales, resolutions and signal-to-noise ratios. These conditions accompanying with subresolution features in the images make voxel-by-voxel comparisons of successive images problematic. In this paper, we first address the respective challenges in voxel-wise interpretation of successive images of carbonate rocks subject to reactive flow. Reactive coreflood in two carbonate cores with different rock types are considered. For the first rock, we used the experimental and imaging results published by Qajar et al. (2013) which showed a quasi-uniform dissolution regime. A similar reactive core flood was conducted in the second rock which resulted in wormhole-like dissolution regime. We particularly examine the major image processing operations such as transformation of images to the same grey-scale, noise filtering and segmentation thresholding and propose quantitative methods to evaluate the effectiveness of these operations in voxel-wise analysis of successive images of a sample. In the second part, we generalize the methodology based on the three-phase segmentation of normalized images, microporosity assignment and 2D histogram of image intensities to estimate grey-scale changes of individual image voxels for a general case where the greyscale images are segmented into arbitrary number of phases. The results show that local (voxel
Loganathan, Sundareswaran; Rathinasamy, Sheeladevi
2016-01-01
Noise stress has different effects on memory and novelty and the link between them with an electroencephalogram (EEG) has not yet been reported. To find the effect of sub-acute noise stress on the memory and novelty along with EEG and neurotransmitter changes. Eight-arm maze (EAM) and Y-maze to analyze the memory and novelty by novel object test. Four groups of rats were used: Control, control treated with Scoparia dulcis extract, noise exposed, and noise exposed which received Scoparia extract. The results showed no marked difference observed between control and control treated with Scoparia extract on EAM, Y-maze, novel object test, and EEG in both prefrontal and occipital region, however, noise stress exposed rats showed significant increase in the reference memory and working memory error in EAM and latency delay, triad errors in Y-maze, and prefrontal and occipital EEG frequency rate with the corresponding increase in plasma corticosterone and epinephrine, and significant reduction in the novelty test, and significant reduction in the novelty test, amplitude of prefrontal, occipital EEG, and acetylcholine. These noise stress induced changes in EAM, Y-maze, novel object test, and neurotransmitters were significantly prevented when treated with Scoparia extract and these changes may be due to the normalizing action of Scoparia extract on the brain, which altered due to noise stress. Noise stress exposure causes EEG, behavior, and neurotransmitter alteration in the frontoparietal and occipital regions mainly involved in planning and recognition memoryOnly the noise stress exposed animals showed the significant alteration in the EEG, behavior, and neurotransmittersHowever, these noise stress induced changes in EEG behavior and neurotransmitters were significantly prevented when treated with Scoparia extractThese changes may be due to the normalizing action of Scoparia dulcis (adoptogen) on the brain which altered by noise stress. Abbreviations used: EEG
Directory of Open Access Journals (Sweden)
Kanitz Wilhelm
2007-07-01
Full Text Available Abstract Background Oocyte developmental competence is highly affected by the phase of ovarian follicular wave. Previous studies have shown that oocytes from subordinate follicles recovered at growth phase (day 3 after estrus are developmentally more competent than those recovered at dominance phase (day 7 after estrus. However, the molecular mechanisms associated with these differences are not well elucidated. Therefore, the objective of this study was to investigate transcript abundance of bovine oocytes retrieved from small follicles at growth and dominance phases of the first follicular wave and to identify candidate genes related to oocyte developmental competence using cDNA microarray. Results Comparative gene expression analysis of oocytes from growth and dominance phases and subsequent data analysis using Significant Analysis of Microarray (SAM revealed a total of 51 differentially regulated genes, including 36 with known function, 6 with unknown function and 9 novel transcripts. Real-time PCR has validated 10 transcripts revealed by microarray analysis and quantified 5 genes in cumulus cells derived from oocytes of both phases. The expression profile of 8 (80% transcripts (ANAXA2, FL396, S100A10, RPL24, PP, PTTG1, MSX1 and BMP15 was in agreement with microarray data. Transcript abundance of five candidate genes in relation to oocyte developmental competence was validated using Brilliant Cresyl Blue (BCB staining as an independent model. Furthermore, localization of mRNA and protein product of the candidate gene MSX1 in sections of ovarian follicles at days 0, 1, 3 and 7 of estrous cycle showed a clear fluorescent signal in both oocytes and cumulus cells with higher intensity in the former. Moreover, the protein product was detected in bovine oocytes and early cleavage embryos after fertilization with higher intensity around the nucleus. Conclusion This study has identified distinct sets of differentially regulated transcripts between
Zhang, Wei; Rudolf, Volker H W; Ma, Chun-Sen
2015-12-01
The frequency and duration of periods with high temperatures are expected to increase under global warming. Thus, even short-lived organisms are increasingly likely to experience periods of hot temperatures at some point of their life-cycle. Despite recent progress, it remains unclear how various temperature experiences during the life-cycle of organisms affect demographic traits. We simulated hot days (daily mean temperature of 30 °C) increasingly experienced under field conditions and investigated how the timing and duration of such hot days during the life cycle of Plutella xylostella affects adult traits. We show that hot days experienced during some life stages (but not all) altered adult lifespan, fecundity, and oviposition patterns. Importantly, the effects of hot days were contingent on which stage was affected, and these stage-specific effects were not always additive. Thus, adults that experience different temporal patterns of hot periods (i.e., changes in timing and duration) during their life-cycle often had different demographic rates and reproductive patterns. These results indicate that we cannot predict the effects of current and future climate on natural populations by simply focusing on changes in the mean temperature. Instead, we need to incorporate the temporal patterns of heat events relative to the life-cycle of organisms to describe population dynamics and how they will respond to future climate change.
Gerritsen, S.
2007-01-01
In this thesis we study wave propagation in inhomogeneous media. Examples of the classical (massless) waves we consider are acoustic waves (sound) and electromagnetic waves (light, for example). Interaction with inhomogeneities embedded in a reference medium alter the propagation direction, velocity
Directory of Open Access Journals (Sweden)
Simeng Zhu
2014-12-01
Full Text Available Athletic training can result in increased left ventricular (LV wall thickness, termed physiologic hypertrophy (PhH. By contrast, pathologic hypertrophy (PaH can be due to hypertension, aortic stenosis, or genetic mutation causing hypertrophic cardiomyopathy (HCM. Because morphologic (LV dimension, wall thickness, mass, etc. and functional index similarities (LV ejection fraction, cardiac output, peak filling rate, etc. limit diagnostic specificity, ability to differentiate between PhH and PaH is important. Conventional echocardiographic diastolic function (DF indexes have limited ability to differentiate between PhH and PaH and cannot provide information on chamber property (stiffness and relaxation. We hypothesized that kinematic model-based DF assessment can differentiate between PhH and PaH and, by providing chamber properties, has even greater value compared with conventional metrics. For validation, we assessed DF in the following three age-matched groups: pathologic (HCM hypertrophy (PaH, n = 14, PhH (Olympic rowers, PhH, n = 21, and controls (n = 21. Magnetic resonance imaging confirmed presence of both types of hypertrophy and determined LV mass and chamber size. Model-based indexes, chamber stiffness (k, relaxation/viscoelasticity (c, and load (xo and conventional indexes, Epeak (peak of E-wave, ratio of Epeak to Apeak (E/A, E-wave acceleration time (AT, and E-wave deceleration time (DT were computed. We analyzed 1588 E waves distributed as follows: 328 (PaH, 672 (athletes, and 588 (controls. Among conventional indexes, Epeak and E-wave DT were similar between PaH and PhH, whereas E/A and E-wave AT were lower in PaH. Model-based analysis showed that PaH had significantly higher relaxation/viscoelasticity (c and chamber stiffness (k than PhH. The physiologic equation of motion for filling-based derivation of the model provides a mechanistic understanding of the differences between PhH and PaH.
Energy Technology Data Exchange (ETDEWEB)
Lee, Sang Shin [SK E and S, Busan (Korea, Republic of); Kim, Jeong Soo [Pukyong National University, Busan (Korea, Republic of); Kim, Heuy Dong [Andong National University, Andong (Korea, Republic of)
2015-03-15
This experimental study scrutinizes the structural variation of a premixed propane-air flame according to the frequency change of ultrasonic standing waves (USWs) at various equivalence ratios. Visualization technique via Schlieren photography is employed in the observation of the flame structure and in the analysis of the flame velocities along the propagation. A distorted flame front and horizontal splitting in the burnt zone result from the USW. The vertical locations of the distortion and horizontal stripes are closely dependent on the frequency of the USW. In addition, the propagation velocity of the flame front floored by the standing wave is greater than that in the case without the excitation by the standing wave. As expected, the influence of the USW on the premixed-flame propagation becomes prominent as the frequency increases. The results suggest that a well-defined USW may be applied to combustion devices, such as gas turbines and chemical rocket engines, to achieve an active control of the instability that frequently intervenes in such systems.
Zwanenburg, T S; van Zeeland, A A; Natarajan, A T
1985-01-01
Incorporation of BrdUrd into nuclear DNA sensitizes CHO cells (1) to the induction of chromosomal aberrations by X-rays and 0.5 MeV neutrons and (2) to induction of chromosomal aberrations and SCEs by lw-UV. We have attempted to establish a correlation between induced chromosomal alterations and induced single- or double-strand breaks in DNA. The data show that while DSBs correlate very well with X-ray-induced aberrations, no clear correlation could be established between lw-UV induced SSBs (including alkali-labile sites) and chromosomal alterations. In addition the effect of 3-aminobenzamide (3AB) on the induction of chromosomal aberrations and SCEs induced by lw-UV has been determined. It is shown that 3AB is without any effect when lw-UV-irradiated cells are posttreated with this inhibitor. The significance of these results is discussed.
A fast Laplace solver approach to pore scale permeability
Arns, Christoph; Adler, Pierre
2017-04-01
The permeability of a porous medium can be derived by solving the Stokes equations in the pore space with no slip at the walls. The resulting velocity averaged over the pore volume yields the permeability KS by application of the Darcy law. The Stokes equations can be solved by a number of different techniques such as finite differences, finite volume, Lattice Boltzmann, but whatever the technique it remains a heavy task since there are four unknowns at each node (the three velocity components and the pressure) which necessitate the solution of four equations (the projection of Newton's law on each axis and mass conservation). By comparison, the Laplace equation is scalar with a single unknown at each node. The objective of this work is to replace the Stokes equations by an elliptical equation with a space dependent permeability. More precisely, the local permeability k is supposed to be proportional to (r-alpha)**2 where r is the distance of the voxel to the closest wall, and alpha a constant; k is zero in the solid phase. The elliptical equation is div(k gradp)=0. A macroscopic pressure gradient is assumed to be exerted on the medium and again the resulting velocity averaged over space yields a permeability K_L. In order to validate this method, systematic calculations have been performed. First, elementary shapes (plane channel, circular pipe, rectangular channels) were studied for which flow occurs along parallel lines in which case KL is the arithmetic average of the k's. KL was calculated for various discretizations of the pore space and various values of alpha. For alpha=0.5, the agreement with the exact analytical value of KS is excellent for the plane and rectangular channels while it is only approximate for circular pipes. Second, the permeability KL of channels with sinusoidal walls was calculated and compared with analytical results and numerical ones provided by a Lattice Boltzmann algorithm. Generally speaking, the discrepancy does not exceed 25% when alpha=0.5. Third, the most important test was performed on two types of real media that were used for previous studies. A fracture network measured by FIB/SEM in a low permeability sandstone was used for that purpose; the two dimensionless permeabilities KS and KL are equal to 9.3d-3 and 8.5d-3. Similar calculations were performed on 256 samples of Fontainebleau sandstones and the agreement was in general excellent, except may be for very low permeabilities. To conclude, the Laplace solver is significantly more stable than the lattice Boltzmann approach, uses less memory, and is significantly faster. Permeabilities are in excellent agreement over a wide range of porosities.
DEFF Research Database (Denmark)
This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis...
Kallosh, Renata
1994-01-01
We study the gravitational waves in the 10-dimensional target space of the superstring theory. Some of these waves have unbroken supersymmetries. They consist of Brinkmann metric and of a 2-form field. Sigma-model duality is applied to such waves. The corresponding solutions we call dual partners of gravitational waves, or dual waves. Some of these dual waves upon Kaluza-Klein dimensional reduction to 4 dimensions become equivalent to the conformo-stationary solutions of axion-dilaton gravity...
Directory of Open Access Journals (Sweden)
Fassi-Fihri O.
2006-11-01
imbibition in both crude oil and brine can be interpreted as a consequence of two coexisting networks that are oil- or water-wet : kaolinite on one hand (due to high content, and homogeneous distribution, and essentially quartz, feldspar and illite on the other. A quantitative analysis of phase distribution could confirm this hypothesis. - The difference between the Wettability Index measured for oil and water zone samples could be due to differences in clay distribution (depending on the diagenetic history. For an actual field limestone, cryo-SEM observations of fluid distribution lead to an interpretation of sample behavior during displacement tests. They show that intergranular mesopores are preferentially oil-wet, whilst cement micropores remain water-wet. This points out a wettability heterogeneity at the pore scale, leading to an intermediate wettability on a macroscopic scale and thus demonstrates the importance of pore size and geometry. Wettability alteration could be related to geometric parameters during oil invasion. When oil invaded the initially waterwet pore space, its distribution was controlled by both pore size and prevailing capillary pressure : the largest pores were invaded by oil while the smaller ones remained oil free. Aging then caused adsorption of polar oil compounds on the exposed surface. Spontaneous imbibition of oil could therefore be due to a continuous pore network within the oil-wet intergranular mesopores, whilst spontaneous imbibition of brine could be related to brine circulation in water-wet micropores of the calcitic cement. Cryo-SEM has a resolution below the size of minerals constituting natural porous media. It makes it possible to study in situ the influence of various parameters (pore mineralogy, geometry, surface chemistry, etc. on wettability. Microscopic studies of oil-brine-rock systems (associated with other imaging techniques such as the X-ray computed tomography contribute to a better understanding of intermediate
Turbulence generation by waves
Energy Technology Data Exchange (ETDEWEB)
Kaftori, D.; Nan, X.S.; Banerjee, S. [Univ. of California, Santa Barbara, CA (United States)
1995-12-31
The interaction between two-dimensional mechanically generated waves, and a turbulent stream was investigated experimentally in a horizontal channel, using a 3-D LDA synchronized with a surface position measuring device and a micro-bubble tracers flow visualization with high speed video. Results show that although the wave induced orbital motion reached all the way to the wall, the characteristics of the turbulence wall structures and the turbulence intensity close to the wall were not altered. Nor was the streaky nature of the wall layer. On the other hand, the mean velocity profile became more uniform and the mean friction velocity was increased. Close to the free surface, the turbulence intensity was substantially increased as well. Even in predominantly laminar flows, the introduction of 2-D waves causes three dimensional turbulence. The turbulence enhancement is found to be proportional to the wave strength.
Swanson, DG
1989-01-01
Plasma Waves discusses the basic development and equations for the many aspects of plasma waves. The book is organized into two major parts, examining both linear and nonlinear plasma waves in the eight chapters it encompasses. After briefly discussing the properties and applications of plasma wave, the book goes on examining the wave types in a cold, magnetized plasma and the general forms of the dispersion relation that characterize the waves and label the various types of solutions. Chapters 3 and 4 analyze the acoustic phenomena through the fluid model of plasma and the kinetic effects. Th
DEFF Research Database (Denmark)
Kramer, Morten; Brorsen, Michael; Frigaard, Peter
Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star.......Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star....
Heat Waves Dangers we face during periods of very high temperatures include: Heat cramps: These are muscular pains and ... having trouble with the heat. If a heat wave is predicted or happening… - Slow down. Avoid strenuous ...
DEFF Research Database (Denmark)
Kofoed, Jens Peter; Frigaard, Peter; Sørensen, H. C.
1998-01-01
This paper concerns with the development of the wave energy converter (WEC) Wave Dragon. This WEC is based on the overtopping principle. An overview of the performed research done concerning the Wave Dragon over the past years is given, and the results of one of the more comprehensive studies......, concerning a hydraulic evaluation and optimisation of the geometry of the Wave Dragon, is presented. Furthermore, the plans for the future development projects are sketched....
Energy Technology Data Exchange (ETDEWEB)
Miller, Jonah Maxwell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-10-18
This report has slides on Gravitational Waves; Pound and Rebka: A Shocking Fact; Light is a Ruler; Gravity is the Curvature of Spacetime; Gravitational Waves Made Simple; How a Gravitational Wave Affects Stuff Here; LIGO; This Detection: Neutron Stars; What the Gravitational Wave Looks Like; The Sound of Merging Neutron Stars; Neutron Star Mergers: More than GWs; The Radioactive Cloud; The Kilonova; and finally Summary, Multimessenger Astronomy.
Blok, H.; van den Berg, P.M.
2011-01-01
This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis, material characterization, electromagnetic properties of plasma, analysis and applications of periodic structures and waveguide components, etc.
DEFF Research Database (Denmark)
Tedd, James; Kofoed, Jens Peter; Knapp, W.
2006-01-01
Wave Dragon is a floating wave energy converter working by extracting energy principally by means of overtopping of waves into a reservoir. A 1:4.5 scale prototype has been sea tested for 20 months. This paper presents results from testing, experiences gained and developments made during...
Towne, Dudley H
1988-01-01
This excellent undergraduate-level text emphasizes optics and acoustics, covering inductive derivation of the equation for transverse waves on a string, acoustic plane waves, boundary-value problems, polarization, three-dimensional waves and more. With numerous problems (solutions for about half). ""The material is superbly chosen and brilliantly written"" - Physics Today. Problems. Appendices.
Directory of Open Access Journals (Sweden)
Tong A.-T.
2012-11-01
Full Text Available A method is presented for the simulation of pore flow in granular materials. The numerical model uses a combination of the discrete element method for the solid phase and a novel finite volume formulation for the fluid phase. The solid is modeled as an assembly of spherical particles, where contact interactions are governed by elasto-plastic relations. Incompressible Stokes flow is considered, assuming that inertial forces are small in comparison with viscous forces. Pore geometry and pore connections are defined locally through regular triangulation of spheres, from which a tetrahedral mesh arises. The definition of pore-scale hydraulic conductivities is a key aspect of this model. In this sense, the model is similar to a pore-network model. Permeability measurements on bi-dispersed glass beads are reported and compared with model predictions, validating the definition of local conductivities. Une méthode est présentée pour la simulation de l’écoulement porale dans les matériaux granulaires. Le modèle numérique est basé sur la méthode des éléments discrets pour la phase solide et sur une nouvelle méthode de type volumes finis pour la phase fluide. Le solide est modélisé comme un arrangement de particules sphériques avec des interactions de type élasto-plastique aux contacts. On considère un écoulement de Stokes incompressible en supposant que les forces inertielles sont négligeables par rapport aux forces visqueuses. La géométrie des pores et leur connectivité sont définies sur la base d’une triangulation régulière des sphères qui aboutit à un maillage tétraédrique. La définition des conductivités hydrauliques à l’échelle des pores est un point clef du modèle qui se rapproche sur ce point à des modèles de type pore-network. Des mesures de perméabilités sur des assemblages bi-disperses de billes de verre sont présentées et comparées aux prédictions du modèle ce qui valide la définition des
Energy Technology Data Exchange (ETDEWEB)
Graham, T. B.
2010-04-01
The IR Hot Wave{trademark} furnace is a breakthrough heat treatment system for manufacturing metal components. Near-infrared (IR) radiant energy combines with IR convective heating for heat treating. Heat treatment is an essential process in the manufacture of most components. The controlled heating and cooling of a metal or metal alloy alters its physical, mechanical, and sometimes chemical properties without changing the object's shape. The IR Hot Wave{trademark} furnace offers the simplest, quickest, most efficient, and cost-effective heat treatment option for metals and metal alloys. Compared with other heat treatment alternatives, the IR Hot Wave{trademark} system: (1) is 3 to 15 times faster; (2) is 2 to 3 times more energy efficient; (3) is 20% to 50% more cost-effective; (4) has a {+-}1 C thermal profile compared to a {+-}10 C thermal profile for conventional gas furnaces; and (5) has a 25% to 50% smaller footprint.
CERN. Geneva
2005-01-01
We will present a brief introduction to the physics of gravitational waves and their properties. We will review potential astrophysical sources of gravitational waves, and the physics and astrophysics that can be learned from their study. We will survey the techniques and technologies for detecting gravitational waves for the first time, including bar detectors and broadband interferometers, and give a brief status report on the international search effort, with special emphasis on the LIGO detectors and search results.
Papazoglou, Dimitris G.; Fedorov, Vladimir Yu.; Tzortzakis, Stelios
2016-01-01
We show the existence of a family of waves that share a common interesting property affecting the way they propagate and focus. These waves are a superposition of twin waves, which are conjugate to each other under inversion of the propagation direction. In analogy to holography, these twin "real" and "virtual" waves are related respectively to the converging and the diverging part of the beam and can be clearly visualized in real space at two distinct foci under the action of a focusing lens...
2005-01-01
tut quiz Tutorial Quiz Interactive Media Element This interactive tutorial reviews the mechanisms of Rossby waves. Rossby waves in both the northern and southern hemispheres are considered. The interactions involve answering simple fill-in-the-blank questions. Diagrams are used to illustrate some of the concepts reviewed. MR4322 Dynamic Meteorology
DEFF Research Database (Denmark)
Tedd, James; Kofoed, Jens Peter; Friis-Madsen, Erik
2008-01-01
Since March 2003 a prototype of Wave Dragon has been tested in an inland sea in Denmark. This has been a great success with all subsystems tested and improved through working in an offshore environment. The project has proved the Wave Dragon device and has enabled the next stage, a production sized...
DEFF Research Database (Denmark)
Kramer, Morten; Brorsen, Michael; Frigaard, Peter
Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star.......Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star....
Christov, Ivan C
2012-01-01
In classical continuum physics, a wave is a mechanical disturbance. Whether the disturbance is stationary or traveling and whether it is caused by the motion of atoms and molecules or the vibration of a lattice structure, a wave can be understood as a specific type of solution of an appropriate mathematical equation modeling the underlying physics. Typical models consist of partial differential equations that exhibit certain general properties, e.g., hyperbolicity. This, in turn, leads to the possibility of wave solutions. Various analytical techniques (integral transforms, complex variables, reduction to ordinary differential equations, etc.) are available to find wave solutions of linear partial differential equations. Furthermore, linear hyperbolic equations with higher-order derivatives provide the mathematical underpinning of the phenomenon of dispersion, i.e., the dependence of a wave's phase speed on its wavenumber. For systems of nonlinear first-order hyperbolic equations, there also exists a general ...
Khishvand, M.; Alizadeh, A. H.; Oraki Kohshour, I.; Piri, M.; Prasad, R. S.
2017-05-01
A series of micro-scale core-flooding experiments were performed on reservoir core samples at elevated temperature and pressure conditions to develop better insights into wettability alteration and pore-scale displacement mechanisms taking place during low-salinity waterflooding (LSWF). Two individual miniature core samples were cut from a preserved reservoir whole core, saturated to establish initial reservoir fluid saturation conditions, and subsequently waterflooded with low-salinity and high-salinity brines. A third miniature sister core sample was also cut, solvent-cleaned, and subjected to a dynamic wettability restoration process (to reestablish native state wettability) and then a low-salinity waterflood. All samples were imaged during the experiments using a micro-CT scanner to obtain fluid occupancy maps and measure in situ oil-water contact angles. The results of the experiments performed on the preserved core samples show a significantly improved performance of low-salinity waterflooding compared to that of high-salinity waterflooding (HSWF). Pore-scale contact angle measurements provide direct evidence of wettability alteration from weakly oil-wet toward weakly water-wet conditions during LSWF, whereas contact angles measured during HSWF remain unchanged. We believe that the reduction in oil-water contact angles toward increased water-wetness lowers the threshold water pressure needed to displace oil from some medium-sized pore elements. Contact angles measured during the dynamic wettability restoration process show an equilibrium wettability state very similar to the initial one observed in the preserved samples. This indicates that drilling fluid contaminants had a negligible effect on the reservoir rock wettability. The experimental results also reveal similarities between saturation trends for the preserved-LSWF and restored-LSWF tests.
Berg, Ward; Smit, Han
2007-01-01
textabstractThis paper explains why consolidation acquisitions occur in waves and it predicts the differing role each firm is likely to play in the consolidation game. We propose that whether a firm assumes the role of rival consolidator, target, or passive observer depends on the position of the firm relative to the entity that merges first. Our model predicts that an initial acquisition triggers a wave of follow-on acquisitions, where the process of asset accumulation by the consolidator is...
DEFF Research Database (Denmark)
Kramer, Morten; Andersen, Thomas Lykke
Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star....
DEFF Research Database (Denmark)
Kramer, Morten; Frigaard, Peter
Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star....
Needham, Charles E
2010-01-01
The primary purpose of this text is to document many of the lessons that have been learned during the author’s more than forty years in the field of blast and shock. The writing therefore takes on an historical perspective, in some sense, because it follows the author’s experience. The book deals with blast waves propagating in fluids or materials that can be treated as fluids. It begins by distinguishing between blast waves and the more general category of shock waves. It then examines several ways of generating blast waves, considering the propagation of blast waves in one, two and three dimensions as well as through the real atmosphere. One section treats the propagation of shocks in layered gases in a more detailed manner. The book also details the interaction of shock waves with structures in particular reflections, progressing from simple to complex geometries, including planar structures, two-dimensional structures such as ramps or wedges, reflections from heights of burst, and three-dimensional st...
DEFF Research Database (Denmark)
Frigaard, Peter; Høgedal, Michael; Christensen, Morten
The intention of this manual is to provide some formulas and techniques which can be used for generating waves in hydraulic laboratories. Both long crested waves (2-D waves) and short crested waves (3-D waves) are considered....
Invariance analysis and conservation laws of the wave equation on ...
Indian Academy of Sciences (India)
In this paper we discuss symmetries of classes of wave equations that arise as a consequence of some Vaidya metrics. We show how the wave equation is altered by the underlying geometry. In particular, a range of consequences on the form of the wave equation, the symmetries and number of conservation laws, inter alia ...
[Alterations in arterial compliance of dyslipidemic patients].
Clara, Fernando Mario; Corral, Pablo; Blanco, Gustavo Hector; Scandurra, Adriana Graciela; Meschino, Gustavo Javier
2015-01-01
We studied the alteration on the distensibility of the arterial walls caused by dyslipidemia LDLc dependent, along the decades of life, by means of a study of the radial artery pulse wave. We made an analysis of the radial artery pulse wave records acquired by means a movement displacement sensor, placed on radial palpation area. We recruited 100 dyslipidemic men without other cardiovascular risk factors, between the 3rd and the 6th decade. We identified the reflected wave in the records and we computed the augmentation index in order to quantify its amplitude and position. This index is useful to assess the endothelial dysfunction. Besides, we defined a velocity coefficient as the ratio between the size of the individuals and the delay time between the peak of the systolic wave and the arrival of the reflected wave. Results were compared against those obtained in a group of 161 healthy volunteers. We found that dyslipidemic patients presented augmentation index values similar to controls until the fourth decade, increasing thereafter with significant differences only in the 6th decade. No significant differences were found in the velocity index in any of the ages studied. We conclude that alterations produced by dyslipidemia take decades to manifest, and they begin affecting the mechanism of vasodilation of distal arteries with highest proportion of smooth muscle, without altering the proximal conduit arteries with more elastin content. Copyright © 2013 Sociedad Española de Arteriosclerosis. Published by Elsevier España. All rights reserved.
Efficient Wave Energy Amplification with Wave Reflectors
Kramer, Morten Mejlhede; Frigaard, Peter Bak
2002-01-01
Wave Energy Converters (WEC's) extract wave energy from a limited area, often a single point or line even though the wave energy is generally spread out along the wave crest. By the use of wave reflectors (reflecting walls) the wave energy is effectively focused and increased to approximately 130-140%. In the paper a procedure for calculating the efficiency and optimizing the geometry of wave reflectors are described, this by use of a 3D boundary element method. The calculations are verified ...
Indian Academy of Sciences (India)
IAS Admin
(2). Hence, small amplitude waves are also called linear waves. Most of the aspects of the ocean waves can be explained by the small amplitude wave theory. Let us now see the water particle motion due to waves. While wave energy is carried by the wave as it progresses forward, the water particles oscillate up and down.
Shallow Water Waves and Solitary Waves
Hereman, Willy
2013-01-01
Encyclopedic article covering shallow water wave models used in oceanography and atmospheric science. Sections: Definition of the Subject; Introduction and Historical Perspective; Completely Integrable Shallow Water Wave Equations; Shallow Water Wave Equations of Geophysical Fluid Dynamics; Computation of Solitary Wave Solutions; Numerical Methods; Water Wave Experiments and Observations; Future Directions, and Bibliography.
Wave groups in unidirectional surface wave models
van Groesen, Embrecht W.C.
1998-01-01
Uni-directional wave models are used to study wave groups that appear in wave tanks of hydrodynamic laboratories; characteristic for waves in such tanks is that the wave length is rather small, comparable to the depth of the layer. In second-order theory, the resulting Nonlinear Schrödinger (NLS)
DEFF Research Database (Denmark)
Kramer, Morten; Frigaard, Peter
På foranledning af Löwenmark F.R.I, er der udført numeriske beregninger af Wave Dragons (herefter WD) armes effektivitet for forskellige geometriske udformninger. 5 geometriske modeller, hvor WD's arme er forkortet/forlænget er undersøgt for 3 forskellige drejninger af armene. I alt er 15...
Ciufolini, I; Moschella, U; Fre, P
2001-01-01
Gravitational waves (GWs) are a hot topic and promise to play a central role in astrophysics, cosmology, and theoretical physics. Technological developments have led us to the brink of their direct observation, which could become a reality in the coming years. The direct observation of GWs will open an entirely new field: GW astronomy. This is expected to bring a revolution in our knowledge of the universe by allowing the observation of previously unseen phenomena, such as the coalescence of compact objects (neutron stars and black holes), the fall of stars into supermassive black holes, stellar core collapses, big-bang relics, and the new and unexpected.With a wide range of contributions by leading scientists in the field, Gravitational Waves covers topics such as the basics of GWs, various advanced topics, GW detectors, astrophysics of GW sources, numerical applications, and several recent theoretical developments. The material is written at a level suitable for postgraduate students entering the field.
DEFF Research Database (Denmark)
Kramer, Morten; Frigaard, Peter; Brorsen, Michael
Nærværende rapport beskriver foreløbige hovedkonklusioner på modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star i perioden 13/9 2004 til 12/11 2004.......Nærværende rapport beskriver foreløbige hovedkonklusioner på modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star i perioden 13/9 2004 til 12/11 2004....
Ferrarese, Giorgio
2011-01-01
Lectures: A. Jeffrey: Lectures on nonlinear wave propagation.- Y. Choquet-Bruhat: Ondes asymptotiques.- G. Boillat: Urti.- Seminars: D. Graffi: Sulla teoria dell'ottica non-lineare.- G. Grioli: Sulla propagazione del calore nei mezzi continui.- T. Manacorda: Onde nei solidi con vincoli interni.- T. Ruggeri: "Entropy principle" and main field for a non linear covariant system.- B. Straughan: Singular surfaces in dipolar materials and possible consequences for continuum mechanics
Jiang, Z
2005-01-01
The International Symposium on Shock Waves (ISSW) is a well established series of conferences held every two years in a different location. A unique feature of the ISSW is the emphasis on bridging the gap between physicists and engineers working in fields as different as gas dynamics, fluid mechanics and materials sciences. The main results presented at these meetings constitute valuable proceedings that offer anyone working in this field an authoritative and comprehensive source of reference.
INTERFERENCE OF COUNTERPROPAGATING SHOCK WAVES
Directory of Open Access Journals (Sweden)
P. V. Bulat
2015-03-01
Full Text Available The subject of study. We examined the interaction of counterpropagating shock waves. The necessity of counterpropagating shock waves studying occurs at designing of high Mach number modern internal compression air intakes, Ramjets with subsonic and supersonic combustion, in asymmetrical supersonic nozzles and in some other cases. In a sense, this problem is a generalization of the case of an oblique shock reflection from the wall or from the plane of symmetry. With the renewed vigor, the interest to this problem emerged at the end of the 90s. This was due to the start of the programs for flight study at hypersonic speeds. The first experiments performed with air intakes, which realized the interaction of counterpropagating shock waves have shown that the change in flow velocity is accompanied by abrupt alteration of shock-wave structure, the occurrence of nonstationary and oscillatory phenomena. With an increase of flow velocity these phenomena undesirable for aircraft structure became more marked. The reason is that there are two fundamentally different modes of interaction of counterpropagating shock waves: a four-wave regular and a five-wave irregular. The transition from one mode to another can be nonstationary abrupt or gradual, it can also be accompanied by hysteresis. Main results. Criteria for the transition from regular reflection of counterpropagating shock waves to irregular are described: the criterion of von Neumann and the stationary Mach configuration criterion. We described areas in which the transition from one reflection type to another is possible only in abrupt way, as well as areas of possible gradual transition. Intensity dependences of the reflected shock waves from the intensity of interacting counterpropagating shocks were given. Qualitative pictures of shock-wave structures arising from the interaction of counterpropagating shock waves were shown. Calculation results of the intensity of outgoing gas
REFLECTION OF ELECTROMAGNETIC WAVES FROM SOUND WAVES
The reflection of electromagnetic waves normally incident on the wavefronts of a semi-infinite standing sound wave is discussed. By analogy with the...with the sound frequency. An experiment is described in which the Bragg reflection of 3 cm electromagnetic waves from a standing sound wave beneath a water surface is observed.
Impact of Wave Dragon on Wave Climate
DEFF Research Database (Denmark)
Andersen, Thomas Lykke; Tedd, James; Kramer, Morten
This report is an advisory paper for use in determining the wave dragon effects on hydrography, by considering the effect on the wave climate in the region of a wave dragon. This is to be used in the impact assessment for the Wave Dragon pre-commercial demonstrator....
Altered ventricular stretch contributes to initiation of cardiac memory.
Sosunov, Eugene A; Anyukhovsky, Evgeny P; Rosen, Michael R
2008-01-01
Cardiac memory is a change in T-wave morphology induced by ventricular pacing or arrhythmias that persist after resumption of normal AV conduction. Changing the pacemaker site from atrium to ventricle alters ventricular activation and the mechanical pattern of ventricular contraction. Either or both alterations affect T-wave configuration. The purpose of this study was to study the role of altered contractile patterns on initiation of cardiac memory. Isolated rabbit hearts were immersed in Tyrode's solution (37 degrees C) and aortically perfused at a constant pressure of 70 mmHg. Three orthogonal quasi-ECG leads were recorded via six Ag-AgCl electrodes located on the walls of the bath. Hearts were paced at a constant cycle length from either the right atrial appendage or left ventricle lateral wall. The pulmonary artery was sealed, and both ventricles contracted isovolumetrically. Cardiac memory was quantified as T-wave vector displacement expressed as distance between T-wave vector peaks during atrial pacing before and after ventricular pacing. Five minutes of ventricular pacing induced significant T-wave vector displacement that returned to control in 5 to 10 minutes. No significant changes in intraventricular pressure occurred during and after ventricular pacing. Interventions that decreased ventricular load (shunting both ventricles to the bath) or contractility (excitation-contraction uncoupler blebbistatin) significantly decreased developed pressure and eliminated T-wave vector displacement. Neither intervention affected ventricular activation during ventricular pacing. Locally applied left ventricular epicardial stretch induced T-wave vector displacement similar to that induced by ventricular pacing. Altered ventricular activation during ventricular pacing initiates cardiac memory via induction of altered contractile patterns and altered stretch.
Efficient Wave Energy Amplification with Wave Reflectors
DEFF Research Database (Denmark)
Kramer, Morten Mejlhede; Frigaard, Peter Bak
2002-01-01
Wave Energy Converters (WEC's) extract wave energy from a limited area, often a single point or line even though the wave energy is generally spread out along the wave crest. By the use of wave reflectors (reflecting walls) the wave energy is effectively focused and increased to approximately 130......-140%. In the paper a procedure for calculating the efficiency and optimizing the geometry of wave reflectors are described, this by use of a 3D boundary element method. The calculations are verified by laboratory experiments and a very good agreement is found. The paper gives estimates of possible power benifit...... for different geometries of the wave reflectors and optimal geometrical design parameters are specified. On this basis inventors of WEC's can evaluate whether a specific WEC possible could benefit from wave reflectors....
Effect of wettability alteration on long-term behavior of fluids in subsurface
Energy Technology Data Exchange (ETDEWEB)
Bandara, Uditha C.; Palmer, Bruce J.; Tartakovsky, Alexandre M.
2016-01-13
Wettability is an important factor affecting fluid behavior in the subsurface, including oil, gas, and supercritical CO$_2$ in deep geological reservoirs. For example, CO$_2$ is generally assumed to behave as a non-wetting fluid, which favors safe storage. However, because of chemical heterogeneity of the reservoirs, mixed wettability conditions can exist. Furthermore, recent experiments suggest that with time, the wettability of super-critical CO$_2$ may change from non-wetting to partially-wetting due to changes in electrostatic interactions. These changes are caused by chemical reactions between dissolved CO$_2$ and its environment. To date, the effect of wettability alteration and mixed wettability on the long term fate of injected CO$_2$ has not well been studied. Here, we use the multiphase Pairwise Force Smoothed Particle Hydrodynamics (PF-SPH) Model to study complex pore-scale processes involved in geological CO$_2$ sequestration, including the effect of spatial and temporal wettability variations on long-term distribution of CO$_2$ in porous media. Results reveal that in the absence of dissolution of supercritical CO$_2$ and precipitation of carbonate minerals (mineral trapping), the amount of trapped supercritical CO$_2$ significantly decreases as the wettability of the porous media changes from brine-wet to partial-wet or CO$_2$-wet.
Georgi, Howard
1993-01-01
The first complete introduction to waves and wave phenomena by a renowned theorist. Covers damping, forced oscillations and resonance; normal modes; symmetries; traveling waves; signals and Fourier analysis; polarization; diffraction.
Optimal synthesis of tunable elastic wave-guides
DEFF Research Database (Denmark)
Evgrafov, Anton; Rupp, Cory J.; Dunn, Martin L.
2008-01-01
Topology optimization, or control in the coefficients of partial differential equations, has been successfully utilized for designing wave-guides with precisely tailored functionalities. For many applications it would be desirable to have the possibility of drastically altering the wave-guiding p...
The Effect of the Leeuwin Current on Offshore Surface Gravity Waves in Southwest Western Australia
Wandres, Moritz; Wijeratne, E. M. S.; Cosoli, Simone; Pattiaratchi, Charitha
2017-11-01
The knowledge of regional wave regimes is critical for coastal zone planning, protection, and management. In this study, the influence of the offshore current regime on surface gravity waves on the southwest Western Australian (SWWA) continental shelf was examined. This was achieved by coupling the three dimensional, free surface, terrain-following hydrodynamic Regional Ocean Modelling System (ROMS) and the third generation wave model Simulating WAves Nearshore (SWAN) using the Coupled Ocean-Atmosphere-WaveSediment Transport (COAWST) model. Different representative states of the Leeuwin Current (LC), a strong pole-ward flowing boundary current with a persistent eddy field along the SWWA shelf edge were simulated and used to investigate their influence on different large wave events. The coupled wave-current simulations were compared to wave only simulations, which represented scenarios in the absence of a background current field. Results showed that the LC and the eddy field significantly impact SWWA waves. Significant wave heights increased (decreased) when currents were opposing (aligning with) the incoming wave directions. During a fully developed LC system significant wave heights were altered by up to ±25% and wave directions by up to ±20°. The change in wave direction indicates that the LC may modify nearshore wave dynamics and consequently alter sediment patterns. Operational regional wave forecasts and hindcasts may give flawed predictions if wave-current interaction is not properly accounted for.
Westerhof, E.
2010-01-01
This lecture gives an overview of heating and current drive with electron cyclotron waves. We present the main theoretical aspects of wave propagation, wave absorption, and non-inductive current drive, as well as important technical aspects for the application of high power electron cyclotron waves,
Westerhof, E.
2012-01-01
This lecture gives an overview of heating and current drive with electron cyclotron waves. We present the main theoretical aspects of wave propagation, wave absorption, and non-inductive current drive, as well as important technical aspects for the application of high power electron cyclotron waves,
Westerhof, E.
2008-01-01
This lecture gives an overview of heating and current drive with electron cyclotron waves. We present the main theoretical aspects of wave propagation, wave absorption, and non-inductive current drive, as well as important technical aspects for the application of high power electron cyclotron waves,
Properties of Longitudinal Flux Tube Waves. III; Wave Propagation in Solar and Stellar Wind FLows
Cuntz, M.; Suess, S. T.
2004-01-01
We discuss the analytic properties of longitudinal tube waves taking into account ambient wind flows. This is an extension of the studies of Papers I and II, which assumed a mean flow speed of zero and also dealt with a simplified horizontal pressure balance. Applications include the study of longitudinal flux tube waves in stars with significant mass loss and the heating and dynamics of plumes in the solar wind. Slow magnetosonic waves, also called longitudinal waves, have been observed in solar plumes and are likely an important source of heating. We show that the inclusion of ambient wind flows considerably alters the limiting shock strength as well as the energy damping length of the waves.
DEFF Research Database (Denmark)
Alikhani, Amir; Frigaard, Peter; Burcharth, Hans F.
1998-01-01
The data collected over the course of the experiment must be analysed and converted into a form suitable for its intended use. Type of analyses range from simple to sophisticated. Depending on the particular experiment and the needs of the researcher. In this study three main part of irregular wave...... data analyses are presented e.g. Time Domain (Statistical) Analyses, Frequency Domain (Spectral) Analyses and Wave Reflection Analyses. Random wave profile and definitions of representative waves, distributions of individual wave height and wave periods and spectra of sea waves are presented....
Energy Technology Data Exchange (ETDEWEB)
Muller, Norbert; Piechna, Janusz; Sun, Guangwei; Parraga, Pablo-Francisco
2018-01-02
A wave disc engine apparatus is provided. A further aspect employs a constricted nozzle in a wave rotor channel. A further aspect provides a sharp bend between an inlet and an outlet in a fluid pathway of a wave rotor, with the bend being spaced away from a peripheral edge of the wave rotor. A radial wave rotor for generating electricity in an automotive vehicle is disclosed in yet another aspect.
Wave Transformation and Undertow Over a Barred Beach
Fujii, E.; Özkan-Haller, H.; Long, J.
2004-12-01
The mean cross-shore flow (undertow) over a barred beach is examined by calibrating an existing wave and circulation model which will provide predictions that will be compared to in-situ measurements. The wave model applied to the experiment is a linear shoaling model with wave breaking dissipation according to Dally, Dean, and Dalrymple (2002); following the calibration of the wave model the undertow model by Garcez Faria et al. (2000) is calibrated. The experiment was conducted in the long wave flume at the O.H. Hinsdale Wave Research Laboratory at Oregon State University (OSU). Regular waves with a wave height of 0.60 meters and a frequency of 0.25 Hz were generated and vertical velocity profiles were collected at seven different cross-shore locations each with eight to nine points per profile. Three Acoustic Doppler Velocimeters(ADV) were used to collect the cross-shore flow velocities and six fixed wave gauges were used to measure the water surface elevation. The data collected from the wave gauges were processed using a zero-upcrossing analysis followed by ensemble averaging the waves to determine the average wave height of each cross-shore gage. This approach was taken since regular waves are assumed to be similar to one another and would yield higher numbers of realizations, making it a more statistically reliable estimate. In total, 49 different time series were analyzed for each wave gage, yielding a reliable wave height estimate. The calibration of the wave model was accomplished by altering the three free parameters: higher breaking threshold γ , lower breaking threshold γ s, and an empirical constant κ , until the wave model best fit the data. Subsequently, the undertow model was calibrated by varying the eddy viscosity (μ ) for each profile. The presented work was performed as part of the Research Experience for Undergraduates (REU) program during the summer of 2004 at OSU.
Robust Wave Resource Estimation
DEFF Research Database (Denmark)
Lavelle, John; Kofoed, Jens Peter
2013-01-01
An assessment of the wave energy resource at the location of the Danish Wave Energy test Centre (DanWEC) is presented in this paper. The Wave Energy Converter (WEC) test centre is located at Hanstholm in the of North West Denmark. Information about the long term wave statistics of the resource...... is necessary for WEC developers, both to optimise the WEC for the site, and to estimate its average yearly power production using a power matrix. The wave height and wave period sea states parameters are commonly characterized with a bivariate histogram. This paper presents bivariate histograms and kernel...... density estimates of the PDF as a function both of Hm0 and Tp, and Hm0 and T0;2, together with the mean wave power per unit crest length, Pw, as a function of Hm0 and T0;2. The wave elevation parameters, from which the wave parameters are calculated, are filtered to correct or remove spurious data...
Experimental investigation of shock wave - bubble interaction
Energy Technology Data Exchange (ETDEWEB)
Alizadeh, Mohsen
2010-04-09
expanded beam of a Q-switched laser pulse at wavelength of λ=532 nm and with pulse duration of ∼4 ns is focused at the center of a water tank using an aberration minimized lens design. Single cavitation bubbles are initiated via optical breakdown at this location which coincides with the position of which the shock wave is focused. The energy of the shock wave source has been altered in 8 steps. The pressure pulse amplitude of the impinging shock wave measured at the distance of about 1.8 mm above the focus location range from 24.4 MPa to 108.1 MPa. The lithotripter shock wave impact time is varied in three steps which provides the possibility of investigation of the bubble dynamics in both cases of collapsing and expanding cavities at the moment of the shock wave impingement. After the shock wave impact, the bubble spherical symmetry is broken and a liquid jet develops in the original direction of the shock propagation. The speed of the jet is increasing with the shock wave energy. Due to the energy transfer from the shock wave to the bubble, the forced cavity implosion is more violent in comparison to free oscillation. The pressure pulse amplitude released from the forced bubble collapse is amplified and the collapse time is reduced. These effects are discussed in chapter 5. Generally, when the bubble is collapsing at the time of the shock impact, the forced cavity collapse is more violent with a resultant of more pressure enhancement compared to the expanding bubbles at the moment of the shock arrival. The maximum pressure enhancement and reduction of bubble collapse time occur when the time interval between the moments of the shock impact and bubble collapse approaches the pulse duration of the compression part of the shock wave profile (i.e. ∼1 μs). For each specific shock wave arrival time, increasing the shock intensity leads to the fact that the bubble collapse takes place earlier relative to the moment of the shock impact and having more collapse pressure
Wiley, Scott
2008-01-01
This viewgraph document reviews some mountain wave turbulence and operational hazards while soaring. Maps, photographs, and satellite images of the meteorological phenomena are included. Additionally, photographs of aircraft that sustained mountain wave damage are provided.
Nijhof, M.J.J.
2010-01-01
In this work, the accuracy, efficiency and range of applicability of various (approximate) models for viscothermal wave propagation are investigated. Models for viscothermal wave propagation describe thewave behavior of fluids including viscous and thermal effects. Cases where viscothermal effects
... this page: //medlineplus.gov/ency/article/002693.htm Cold wave lotion poisoning To use the sharing features on this page, please enable JavaScript. Cold wave lotion is a hair care product used ...
Electromagnetic ultrasonic guided waves
Huang, Songling; Li, Weibin; Wang, Qing
2016-01-01
This book introduces the fundamental theory of electromagnetic ultrasonic guided waves, together with its applications. It includes the dispersion characteristics and matching theory of guided waves; the mechanism of production and theoretical model of electromagnetic ultrasonic guided waves; the effect mechanism between guided waves and defects; the simulation method for the entire process of electromagnetic ultrasonic guided wave propagation; electromagnetic ultrasonic thickness measurement; pipeline axial guided wave defect detection; and electromagnetic ultrasonic guided wave detection of gas pipeline cracks. This theory and findings on applications draw on the author’s intensive research over the past eight years. The book can be used for nondestructive testing technology and as an engineering reference work. The specific implementation of the electromagnetic ultrasonic guided wave system presented here will also be of value for other nondestructive test developers.
Coronal Waves and Oscillations
Directory of Open Access Journals (Sweden)
Nakariakov Valery M.
2005-07-01
Full Text Available Wave and oscillatory activity of the solar corona is confidently observed with modern imaging and spectral instruments in the visible light, EUV, X-ray and radio bands, and interpreted in terms of magnetohydrodynamic (MHD wave theory. The review reflects the current trends in the observational study of coronal waves and oscillations (standing kink, sausage and longitudinal modes, propagating slow waves and fast wave trains, the search for torsional waves, theoretical modelling of interaction of MHD waves with plasma structures, and implementation of the theoretical results for the mode identification. Also the use of MHD waves for remote diagnostics of coronal plasma - MHD coronal seismology - is discussed and the applicability of this method for the estimation of coronal magnetic field, transport coefficients, fine structuring and heating function is demonstrated.
Energy Technology Data Exchange (ETDEWEB)
Menikoff, Ralph [Los Alamos National Laboratory
2015-12-14
The Zel’dovich-von Neumann-Doering (ZND) profile of a detonation wave is derived. Two basic assumptions are required: i. An equation of state (EOS) for a partly burned explosive; P(V, e, λ). ii. A burn rate for the reaction progress variable; d/dt λ = R(V, e, λ). For a steady planar detonation wave the reactive flow PDEs can be reduced to ODEs. The detonation wave profile can be determined from an ODE plus algebraic equations for points on the partly burned detonation loci with a specified wave speed. Furthermore, for the CJ detonation speed the end of the reaction zone is sonic. A solution to the reactive flow equations can be constructed with a rarefaction wave following the detonation wave profile. This corresponds to an underdriven detonation wave, and the rarefaction is know as a Taylor wave.
Directory of Open Access Journals (Sweden)
Josep Martí
2014-10-01
Full Text Available The concept of alterity constitutes an important issue in anthropological research and, therefore, in the study of musical practices, as well. Without it, we could hardly understand other kinds of music situated in different spaces and time from the observer. In order to effectively approach these musical practices, we have to develop strategies to help us reduce as much as possible that which distorts the vision of the other. However, beyond the strictly epistemological and methodological issues, the study of music cannot ignore the ethical question related to the manner in which Western thought has understood and treated the other: through a hierarchical and stereotypical type of thinking based on the condition of otherness. Throughout the article, different alterity procedures are presented and discussed, such as synecdochization, exoticization, undervaluation, overvaluation, misunderstanding and exclusion. Taking these different alterity strategies into account may help us to better understand how the musical other is constructed, used and ultimately instrumentalized.
Ghanbarian, Behzad; Berg, Carl F.
2017-09-01
Accurate quantification of formation resistivity factor F (also called formation factor) provides useful insight into connectivity and pore space topology in fully saturated porous media. In particular the formation factor has been extensively used to estimate permeability in reservoir rocks. One of the widely applied models to estimate F is Archie's law (F = ϕ- m in which ϕ is total porosity and m is cementation exponent) that is known to be valid in rocks with negligible clay content, such as clean sandstones. In this study we compare formation factors determined by percolation and effective-medium theories as well as Archie's law with numerical simulations of electrical resistivity on digital rock models. These digital models represent Bentheimer and Fontainebleau sandstones and are derived either by reconstruction or directly from micro-tomographic images. Results show that the universal quadratic power law from percolation theory accurately estimates the calculated formation factor values in network models over the entire range of porosity. However, it crosses over to the linear scaling from the effective-medium approximation at the porosity of 0.75 in grid models. We also show that the effect of critical porosity, disregarded in Archie's law, is nontrivial, and the Archie model inaccurately estimates the formation factor in low-porosity homogeneous sandstones.
Flow of an aqueous foam through a two-dimensional porous medium: a pore scale investigation
Meheust, Y.; Jones, S. A.; Dollet, B.; Cox, S.; Cantat, I.
2012-12-01
Flowing foams are used in many engineering and technical applications. A well-known application is oil recovery. Another one is the remediation of polluted soil: the foam is injected into the ground in order to mobilize chemical species present in the medium. Apart from potential interesting physico-chemical and biochemical properties, foams have peculiar flow properties that might be of benefit to the application. We address here this physical aspect of the topic. As a precursor to the study of foam flow through a complex porous material, we first study the behavior of an aqueous two-dimensional foam flowing through a medium consisting of two parallel channels with different widths, at fixed medium porosity, that is, at fixed total combined width of the two channels. The flow velocity, and hence flux, in each channel is measured by analyzing images of the flowing foam. It is then compared to a theoretical model, the basic assumption of which is that the pressure drop along a channel is identical for both channels. This pressure drop both consists of (i) a dynamic pressure drop, which is controlled by bubble-wall friction and depends on the foam velocity in the channel, and (ii) a capillary pressure drop over the bubble films that emerge at the channel outlet, the latter pressure drop being controlled by the radius of curvature of the bubble film. Based on this assumption, the dependence of the ratio of the foam velocities in the two channels is inferred as a function of the channel width ratio. It compares well to the measurements and shows that the flow behavior is highly dependent on the foam structure within the narrowest of the two channels, especially when a "bamboo" structure is obtained. Consequently, the flux in a channel is found to have a more complicated relation to the channel width than expected for the flow of a standard Newtonian fluid in the same geometry. We provide a comparison to this reference configuration. We then study the flow of the same foam into a two-dimensional porous medium consisting of cylinders that have been positioned randomly between the two plates of the Hele-Shaw cell described above. Intermittent flow and non-stationarity of the velocity field are observed under permanent controlled inlet flow. Flow channeling is also different from what would be expected for a Newtonian fluid, which allows a different part of the pore population to be visited. Foam flow in a two-dimensional porous medium;
Pore-Scale Effects of Soil Structure And Microbial EPS Production On Soil Water Retention
Orner, E.; Anderson, E.; Rubinstein, R. L.; Chau, J. F.; Shor, L. M.; Gage, D. J.
2013-12-01
Climate-induced changes to the hydrological cycle will increase the frequency of extreme weather events including powerful storms and prolonged droughts. Moving forward, one of the major factors limiting primary productivity in terrestrial ecosystems will be sub-optimal soil moisture. We focus here on the ability of soils to retain moisture under drying conditions. A soil's ability to retain moisture is influenced by many factors including its texture, its structure, and the activities of soil microbes. In soil microcosms, the addition of small amounts of microbially-produced extracellular polymeric substances (EPS) can dramatically shift moisture retention curves. The objective of this research is to better understand how soil structure and EPS may act together to retain moisture in unsaturated soils. Replicate micromodels with exactly-conserved 2-D physical geometry were initially filled with aqueous suspensions of one of two types of bacteria: one mutant was ultra- muccoid and the other was non-muccoid. Replicate micromodels were held at a fixed, external, relative humidity, and the position of the air-water interface was imaged over time as water evaporates. There was no forced convection of air or water inside the micromodels: drying was achieved by water evaporation and diffusion alone. We used a fully automated, inverted microscope to image replicate drying lanes each with dimensions of 1 mm x 10 mm. A complete set of images was collected every 30 minutes for 30 hours. The results show devices loaded with the highly muccoid strain remained >40% hydrated for 13 h, while devices loaded with the non-muccoid remained >40% hydrated for only 6 h, and were completely dry by 13 h. Current work is comparing interfacial water fluxes in structured and unstructured settings, and is attempting to model the synergistic effects of soil structure and EPS content on moisture retention in real soils. This research may allow more accurate description of naturally-occurring feedbacks between the soil carbon and water cycles, and may enable agriculture biotechnology that enhances natural soil processes for improved resiliency of terrestrial ecosystems.
Pore-Scale Simulation and Sensitivity Analysis of Apparent Gas Permeability in Shale Matrix.
Zhang, Pengwei; Hu, Liming; Meegoda, Jay N
2017-01-25
Extremely low permeability due to nano-scale pores is a distinctive feature of gas transport in a shale matrix. The permeability of shale depends on pore pressure, porosity, pore throat size and gas type. The pore network model is a practical way to explain the macro flow behavior of porous media from a microscopic point of view. In this research, gas flow in a shale matrix is simulated using a previously developed three-dimensional pore network model that includes typical bimodal pore size distribution, anisotropy and low connectivity of the pore structure in shale. The apparent gas permeability of shale matrix was calculated under different reservoir pressures corresponding to different gas exploitation stages. Results indicate that gas permeability is strongly related to reservoir gas pressure, and hence the apparent permeability is not a unique value during the shale gas exploitation, and simulations suggested that a constant permeability for continuum-scale simulation is not accurate. Hence, the reservoir pressures of different shale gas exploitations should be considered. In addition, a sensitivity analysis was also performed to determine the contributions to apparent permeability of a shale matrix from petro-physical properties of shale such as pore throat size and porosity. Finally, the impact of connectivity of nano-scale pores on shale gas flux was analyzed. These results would provide an insight into understanding nano/micro scale flows of shale gas in the shale matrix.
Pore-scale simulations to determine the applied hydrodynamic torque and colloid immobilization
The importance of adhesive and diffusion forces on colloid retention is well established, and theory has been developed in the literature to predict these factors. Conversely, the role of hydrodynamic forces and torques on colloid retention has received considerably less attention. Recent research ...
Karsanina, M.; Gerke, K.; Vasilyev, R.; Skvortsova, E. B.; Korost, D. V.; Mallants, D.
2013-12-01
It is now well-established that structure of porous or composite media (i.e., distribution of different materials or phases) defines all physical properties, including multi-phase flow and solute transport. To characterize soil structure conventional soil science uses such metrics as grain size distribution, morphology or numerous classifications. However, all these descriptors provide only limited and often qualitative information about structural properties, cannot be used to reconstruct real structure or predict physical properties. With the progress of modern non-destructive analysis tools we can obtain detailed 3D structure information and use it for calculation of any physical property. Such 3D data is a valuable verification dataset to check the usefulness of soil structure description using stochastic measures such as correlation functions. Any potential soil structure descriptor should possess two main features: 1) represent structure in some mathematical way, 2) reconstruction based on this mathematical function alone should be statistically equal to the original structure (e.g., have similar pore size distributions, physical properties, etc.). To check the applicability to soil science, we choose different 2D and 3D segmented soil images and calculated their correlation function. The modified Yeong-Torquato procedure was then used to reconstruct images based on calculated correlation functions. This method was applied to three different soil datasets: 1) a set of 2D thin-sections, 2) 3D images of soils with known hydraulic properties (Ksat and WRC), 3) 3D images of soils and aggregates from the same soil profile, but different genetic horizons. In the first case, we use conventional morphological descriptors in 2D original and reconstructed images (pore size, shapes and orientations) to quantify reconstructions quality. In the second case, we use pore-network models extracted from original and reconstructed 3D images to calculate Ksat, WRC and relative permeabilities, which in turn were used for comparison. We also used pore-size distributions, cluster analysis and local porosity theory analysis to explain any observed differences. For the last dataset only two-point correlation statistics were calculated and the resulting functions compared for similarity. Conclusions are as follows: i) each set of correlation functions (two-point probability, linear and cluster functions) was unique for a given genetic profile; ii) conventional morphological analysis resulted in perfect agreement for almost all soil types; iii) physical properties simulated using 3D stochastic reconstructions were in relatively good agreement with those simulated on original soil scans; iv) reconstructions do not work properly for soils with statistically inhomogeneous structures. This work was partially supported by RFBR grants 12-05-33089, 12-04-32264, 13-04-00409, 13-05-01176 and 12-05-01130.
Effect of Pore-scale Velocity on the Biodegradation of Contaminants during Transport in Porous Media
Mendoza-Sanchez, I.; Autenrieth, R. L.; McDonald, T. J.; Cunningham, J. A.
2007-12-01
Column experiments were conducted to evaluate the effect of pore velocity on the extent of biodegradation of cis- dichloroethene (cis-DCE) during transport in porous media. The columns were filled with homogeneous glass beads and inoculated with the KB-1 culture (provided by SiREM, Guelph, Ontario, Canada), which is capable of complete dechlorination of perchloroethene to ethene. The columns were fed continuously with a synthetic groundwater containing a constant concentration of cis-DCE. Three different pore flow velocities (0.03, 0.08, and 0.51 m/day) were tested in duplicate, subjecting each column to a constant velocity for the entire experiment. Dechlorination of cis-DCE to vinyl chloride and ethene was monitored over time and space within the columns. Protein concentrations, also measured over time and space, were used to relate cell growth to biodegradation efficiency. At the end of the experiment, microbial DNA was harvested from the columns, and denaturing gradient gel electrophoresis (DGGE) was used to determine differences in the microbial communities that had developed in the columns subjected to different flow rates. The results show that the pore velocity has a strong influence on the microbial population and the degree of dechlorination. At high flow velocity (0.51 m/day), the degradation of cis-DCE to ethene was complete, and the organism capable of cis-DCE dechlorination ({Dehalococcoides sp.}) was present at the end of the experiment. In contrast, at medium and low flow velocities (0.08 and 0.03 m/day), incomplete dechlorination was observed with an absence or low concentration of {Dehalococcoides sp}. These results suggest that it is important for field-scale groundwater remediation to understand the interaction between physical and biological processes on the scale of single pores.
Pore-Scale Transport of Strontium During Dynamic Water Content Changes in the Unsaturated Zone
Weaver, W.; Kibbey, T. C. G.; Papelis, C.
2016-12-01
Dynamic water content changes in the unsaturated zone caused by natural and manmade processes, such as evaporation, rainfall, and irrigation, have an effect on contaminant mobility. In general, in the unsaturated zone, evaporation causes an increase in contaminant concentrations, potentially leading to sorption of contaminants on aquifer materials or precipitation of crystalline or amorphous phases. On the other hand, increase of water content may result in dissolution of precipitated phases and increased mobility of contaminants. The objective of this study was to develop a quantitative model for the transport of strontium through sand under dynamic water content conditions, as a function of strontium concentration, pH, and ionic strength. Strontium was selected as a surrogate for strontium-90, a by-product of nuclear reactions. The dynamic water content was determined using an automated device for rapidly measuring the hysteretic capillary pressure—saturation relationship, followed by ambient air evaporation, and gravimetric water content measurement. Strontium concentrations were measured using inductively coupled plasma mass spectrometry (ICP-MS). Flow interruption experiments were conducted to determine whether equilibrium conditions existed for a given flowrate. Scanning electron microscopy (SEM) was used to visualize the treated quartz sand particles and the distribution of strontium on sand grains was determined using elemental maps created by energy-dispersive x-ray spectroscopy (EDX). Strontium behavior appears to be pH dependent as well as ionic strength dependent under these conditions.
A pore-scale model of two-phase flow in water-wet rock
Energy Technology Data Exchange (ETDEWEB)
Silin, Dmitriy; Patzek, Tad
2009-02-01
A finite-difference discretization of Stokes equations is used to simulate flow in the pore space of natural rocks. Numerical solutions are obtained using the method of artificial compressibility. In conjunction with Maximal Inscribed Spheres method, these computations produce relative permeability curves. The results of computations are in agreement with laboratory measurements.
From Pore Scale to Turbulent Flow with the Unstructured Lattice Boltzmann Method
DEFF Research Database (Denmark)
Matin, Rastin
Abstract: The lattice Boltzmann method is a class of methods in computational fluid dynamics for simulating fluid flow. Implementations on unstructured grids are particularly relevant for various engineering applications, where geometric flexibility or high resolution near a body or a wall...... at the walls, which corroborates experimental measurements in cylindrical pipes....
Capillary Pressure in a Wedge-Shaped Channel from Pore-Scale Imaging
Liu, Y.; Pyrak-Nolte, L. J.; Nolte, D. D.; Giordano, N. J.
2008-12-01
Our previous experimental investigations of capillary pressure in two-dimensional porous structures observed that, just prior to breakthrough, a deviation occurs between the externally measured capillary pressure and the capillary pressure measured from interfacial curvature. To explore this deviation, we used laser confocal microscopy to image the three-dimensional fluid distribution of two immiscible fluids in a simple wedge-shaped channel to determine whether this deviation occurs from the hidden curvature or the presence of thin films. The wedge-shaped channel was fabricated using two different approaches: two-photon polymerization and broad-illumination photolithography. Both techniques use UV-sensitive photoresist (SU-8) to construct a wedge-shaped micromodel containing a channel that is 100 microns wide at the inlet and 20 microns wide at the outlet with a constant channel depth of 40 microns. A Zeiss LSM 510 Laser Scanning Confocal Microscope was used to image the air and water distributions within the micromodel. Initially, the micromodel was saturated withwater containing Alex Fluor-488 or FITC solution by 1%wt. In these experiments, water is the wetting phase and air is the non-wetting phase. A series of drainage and imbibition cycles were performed by incrementing or decrementing the air pressure appropriately. For each increment in pressure, the system was allowed to equilibrate and then a z-stack scan of the fluid distribution was collected with the confocal microscope. The confocal images were analyzed to extract the volume saturation of air and water, the curvature of the three-dimensional fluid-air interface, and the interfacial area per volume. We observed a hysteretic relationship between capillary pressure and wetting phase saturation for the wedge-shaped channel. An analysis of the capillary pressure from interfacial curvature found that initially the calculated and measured values of capillary pressure were equal. However, as breakthrough was approached, a deviation between these two pressures occurred. We hypothesize that the deviation occurs because of the presence of films. As the non-wetting phase pressure increases during drainage, two pockets of wetting phase (water) are observed to move along the edges of the channel. Initially, the air-water interface moves at a higher rate than the pockets of water. However, prior to breakthrough, the pockets continue to move along the edge of the sample although the air-water is almost stationary. Additional research is required to determine if film movement and communication with the inlet-outlet reservoirs is affecting the interpretation of capillary pressure from interfacial curvature. Acknowledgments: This research is supported by the National Science Foundation (0509759-EAR) and Sandia National Laboratory.
Effects of varying microbial distributions when modelling pore-scale biodegradation
Schmidt, S. I.; Picioreanu, C.; Mackay, R.; Thullner, M.; Kreft, J. U.
2012-04-01
We have developed a numerical model to study the impact of single cell processes and micro-scale heterogeneities on biodegradation in contaminated aquifers on the pore level (pore of 1 mm length). The model is able to consider the spatial distribution of solutes along the length and width of the pore and of individual microbial cells and cell clusters along the pore wall. The model was applied to study biodegradation of easily degradable substances as well as of more refractory contaminants. The interplay between total biomass (varying from 100,000 to 10,000,000 cells/cm3), cell distribution (biomass distributed homogeneously, as a film along the wall, or clustered in two colonies with various distance), and flow rate (between 0.1 and 7 m/d) was tested. First results indicated that scenarios where the inflow concentration was smaller than approximately 5 times the Monod half-saturation constant, degradation varied considerably (up to 50 percent points) between the different microbial distribution types tested. At higher inflow concentration, extent of degradation depended only on the biomass density, not cell distribution. We conclude that depending on how the biomass is distributed, especially for the easier-to-degrade substances, micro-scale distribution of degrader cells matters.
Sterlini-Van der Meer, Fenneke
2009-01-01
The sea floor of shallow seas is rarely flat and often dynamic. A widely occurring bedform type is the sand wave. Sand waves form more or less regular wavelike patterns on the seabed with crests up to one third of the water depth, wave lengths of hundreds of metres and a migration rate of metres up
DEFF Research Database (Denmark)
Kofoed, Jens Peter; Frigaard, Peter
Wave Dragon is a wave energy converter of the overtopping type. The device has been thoroughly tested on a 1:51.8 scale model in wave laboratories and a 1:4.5 scale model deployed in Nissum Bredning, a large inland waterway in Denmark. Based on the experience gained a full scale, multi MW prototype...
DEFF Research Database (Denmark)
Burcharth, H. F.; Larsen, Brian Juul
The investigation concerns the design of a new internal breakwater in the main port of Ibiza. The objective of the model tests was in the first hand to optimize the cross section to make the wave reflection low enough to ensure that unacceptable wave agitation will not occur in the port. Secondly...... wave overtopping was studied as well....
Modeling Regional Seismic Waves
1991-03-25
Shear waves are almost always observed from underground explosions. One can visualize many ways to convert explosion P waves into SV waves. An ob- vious...of the observed moment to the input source moment, Moba /Mo, as a function of the compressional velocities a, of the embedded sphere for different whole
Fundamentals of wave phenomena
Hirose, Akira
2010-01-01
This textbook provides a unified treatment of waves that either occur naturally or can be excited and propagated in various media. This includes both longitudinal and transverse waves. The book covers both mechanical and electrical waves, which are normally covered separately due to their differences in physical phenomena.
Directory of Open Access Journals (Sweden)
Andreas Spiegelberg
2016-12-01
With the still unmet need for a clinically acceptable method for acquiring intracranial compliance, and the revival of ICP waveform analysis, B-waves are moving back into the research focus. Herein we provide a concise review of the literature on B-waves, including a critical assessment of non-invasive methods for obtaining B-wave surrogates.
Indian Academy of Sciences (India)
We present a broad overview of the emerging field of gravitational-wave astronomy. Although gravitational waves have not been directly de- tected yet, the worldwide scientific community is engaged in an exciting search for these elusive waves. Once detected, they will open up a new observational window to the Universe.
Spin wave generation by surface acoustic waves
Li, Xu; Labanowski, Dominic; Salahuddin, Sayeef; Lynch, Christopher S.
2017-07-01
Surface acoustic waves (SAW) on piezoelectric substrates can excite spin wave resonance (SWR) in magnetostrictive films through magnetoelastic coupling. This acoustically driven SWR enables the excitation of a single spin wave mode with an in-plane wave vector k matched to the magnetoelastic wave vector. A 2D frequency domain finite element model is presented that fully couples elastodynamics, micromagnetics, and piezoelectricity with interface spin pumping effects taken into account. It is used to simulate SAW driven SWR on a ferromagnetic and piezoelectric heterostructure device with an interdigital transducer configuration. These results, for the first time, present the spatial distribution of magnetization components that, together with elastic wave, exponentially decays along the propagation direction due to magnetic damping. The results also show that the system transmission rate S21(dB) can be tuned by both an external bias field and the SAW wavevector. Acoustic spin pumping at magnetic film/normal metal interface leads to damping enhancement in magnetic films that decreases the energy absorption rate from elastic energy. This weakened interaction between the magnetic energy and elastic energy leads to a lower evanescence rate of the SAW that results in a longer distance propagation. With strong magnetoelastic coupling, the SAW driven spin wave is able to propagate up to 1200 μm. The results give a quantitative indication of the acoustic spin pumping contribution to linewidth broadening.
Wave turbulence in annular wave tank
Onorato, Miguel; Stramignoni, Ettore
2014-05-01
We perform experiments in an annular wind wave tank at the Dipartimento di Fisica, Universita' di Torino. The external diameter of the tank is 5 meters while the internal one is 1 meter. The tank is equipped by two air fans which can lead to a wind of maximum 5 m/s. The present set up is capable of studying the generation of waves and the development of wind wave spectra for large duration. We have performed different tests including different wind speeds. For large wind speed we observe the formation of spectra consistent with Kolmogorv-Zakharov predictions.
How Misinformation Alters Memories.
Wright, Daniel B.; Loftus, Elizabeth F.
1998-01-01
Notes that a multitude of studies have demonstrated that misleading postevent information affects people's memories. Contents that the fuzzy-trace theory is a positive step toward understanding the malleability of memory. Discusses fuzzy-trace theory in terms of three primary areas of study: altered response format, maximized misinformation…
L.B.C. Bralten (Linda); P.J. French (Pim)
2011-01-01
textabstractGliomas are the most common type of primary brain tumor and have a dismal prognosis. Understanding the genetic alterations that drive glioma formation and progression may help improve patient prognosis by identification of novel treatment targets. Recently, two major studies have
Chernyi, G. G.
Theoretical and experimental research related to the generation and propagation of exothermic waves in combustible gas mixtures as well as solid and liquid combustible media is reviewed. In particular, attention is given to detonation phenomena, the stationary structure of chemical detonation waves for various gas and condensed explosive models, discontinuous solutions for motions with exothermic discontinuities, and heat release in thermonuclear reactions. The discussion also covers frontal polymerization and crystallization waves, stationary combustion waves in systems with high-temperature self-propagating synthesis, and initiation of exothermic waves in continua with allowance for transfer processes.
DEFF Research Database (Denmark)
Sørensen, H. C.; Hansen, R.; Friis-Madsen, E.
2000-01-01
The Wave Dragon is an offshore wave energy converter of the overtopping type, utilizing a patented wave reflector design to focus the waves towards a ramp, and the overtopping is used for electricity production through a set of Kaplan/propeller hydro turbines. During the last 2 years, excessive...... design an testing has been performed on a scale 1:50 model of the Wave Dragon, and on a scale 1:3:5 model turbine. Thus survivability, overtopping, hydraulic response, turbine performance and feasibility have been verified....
DEFF Research Database (Denmark)
Frigaard, Peter; Kofoed, Jens Peter; Tedd, James William
2006-01-01
The Wave Dragon is a 4 to 11 MW offshore wave energy converter of the overtopping type. It basically consists of two wave reflectors focusing the waves towards a ramp, a reservoir for collecting the overtopping water and a number of hydro turbines for converting the pressure head into power......'s first offshore wave energy converter. During this period an extensive measuring program has established the background for optimal design of the structure and regulation of the power take off system. Planning for full scale deployment of a 7 MW unit within the next 2 years is in progress. The prototype...
Pulsars and Gravitational Waves
Lee, K. J.; Xu, R. X.; Qiao, G. J.
2010-04-01
The relationship between pulsar-like compact stars and gravitational waves is briefly reviewed. Due to regular spins, pulsars could be useful tools for us to detect ~nano-Hz low-frequency gravitational waves by pulsar-timing array technique; besides, they would also be ~kilo-Hz high-frequency gravitational wave radiators because of their compactness. The wave strain of an isolated pulsar depends on the equation state of cold matter at supra-nuclear densities. Therefore, a real detection of gravitational wave should be very meaningful in gravity physics, micro-theory of elementary strong interaction, and astronomy.
Elmore, William C
1985-01-01
Because of the increasing demands and complexity of undergraduate physics courses (atomic, quantum, solid state, nuclear, etc.), it is often impossible to devote separate courses to the classic wave phenomena of optics, acoustics, and electromagnetic radiation. This brief comprehensive text helps alleviate the problem with a unique overview of classical wave theory in one volume.By examining a sequence of concrete and specific examples (emphasizing the physics of wave motion), the authors unify the study of waves, developing abstract and general features common to all wave motion. The fundam
Engelbrecht, Jüri
2015-01-01
This book addresses the modelling of mechanical waves by asking the right questions about them and trying to find suitable answers. The questions follow the analytical sequence from elementary understandings to complicated cases, following a step-by-step path towards increased knowledge. The focus is on waves in elastic solids, although some examples also concern non-conservative cases for the sake of completeness. Special attention is paid to the understanding of the influence of microstructure, nonlinearity and internal variables in continua. With the help of many mathematical models for describing waves, physical phenomena concerning wave dispersion, nonlinear effects, emergence of solitary waves, scales and hierarchies of waves as well as the governing physical parameters are analysed. Also, the energy balance in waves and non-conservative models with energy influx are discussed. Finally, all answers are interwoven into the canvas of complexity.
4-wave dynamics in kinetic wave turbulence
Chibbaro, Sergio; Rondoni, Lamberto
2016-01-01
A general Hamiltonian wave system with quartic resonances is considered, in the standard kinetic limit of a continuum of weakly interacting dispersive waves with random phases. The evolution equation for the multimode characteristic function $Z$ is obtained within an "interaction representation" and a perturbation expansion in the small nonlinearity parameter. A frequency renormalization is performed to remove linear terms that do not appear in the 3-wave case. Feynman-Wyld diagrams are used to average over phases, leading to a first order differential evolution equation for $Z$. A hierarchy of equations, analogous to the Boltzmann hierarchy for low density gases is derived, which preserves in time the property of random phases and amplitudes. This amounts to a general formalism for both the $N$-mode and the 1-mode PDF equations for 4-wave turbulent systems, suitable for numerical simulations and for investigating intermittency.
Generation of proton aurora by magnetosonic waves.
Xiao, Fuliang; Zong, Qiugang; Wang, Yongfu; He, Zhaoguo; Su, Zhenpeng; Yang, Chang; Zhou, Qinghua
2014-06-05
Earth's proton aurora occurs over a broad MLT region and is produced by the precipitation of low-energy (2-10 keV) plasmasheet protons. Proton precipitation can alter chemical compositions of the atmosphere, linking solar activity with global climate variability. Previous studies proposed that electromagnetic ion cyclotron waves can resonate with protons, producing proton scattering precipitation. A long-outstanding question still remains whether there is another mechanism responsible for the proton aurora. Here, by performing satellite data analysis and diffusion equation calculations, we show that fast magnetosonic waves can produce trapped proton scattering that yields proton aurora. This provides a new insight into the mechanism of proton aurora. Furthermore, a ray-tracing study demonstrates that magnetosonic wave propagates over a broad MLT region, consistent with the global distribution of proton aurora.
Wave Overtopping Characteristics of the Wave Dragon
DEFF Research Database (Denmark)
Tedd, James; Kofoed, Jens Peter
Simulation work has been used extensively with the Wave dragon and other overtopping devices to analyse the power production performance of them and to optimise the structural design and the control strategy. A time domain approach to this is well documented in Jakobsen & Frigaard 1999. Using...... measurements taken from the Wave Dragon Nissum Bredning prototype, some of the previous assumptions have been slightly modified and improved upon, so that the simulation method better represents the reality of what is occurring....
Cycloidal Wave Energy Converter
Energy Technology Data Exchange (ETDEWEB)
Stefan G. Siegel, Ph.D.
2012-11-30
This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will
Immunization alters body odor.
Kimball, Bruce A; Opiekun, Maryanne; Yamazaki, Kunio; Beauchamp, Gary K
2014-04-10
Infections have been shown to alter body odor. Because immune activation accompanies both infection and immunization, we tested the hypothesis that classical immunization might similarly result in the alteration of body odors detectable by trained biosensor mice. Using a Y-maze, we trained biosensor mice to distinguish between urine odors from rabies-vaccinated (RV) and unvaccinated control mice. RV-trained mice generalized this training to mice immunized with the equine West Nile virus (WNV) vaccine compared with urine of corresponding controls. These results suggest that there are similarities between body odors of mice immunized with these two vaccines. This conclusion was reinforced when mice could not be trained to directly discriminate between urine odors of RV- versus WNV-treated mice. Next, we trained biosensor mice to discriminate the urine odors of mice treated with lipopolysaccharide (LPS; a general elicitor of innate immunological responses) from the urine of control mice. These LPS-trained biosensors could distinguish between the odors of LPS-treated mouse urine and RV-treated mouse urine. Finally, biosensor mice trained to distinguish between the odors of RV-treated mouse urine and control mouse urine did not generalize this training to discriminate between the odors of LPS-treated mouse urine and control mouse urine. From these experiments, we conclude that: (1) immunization alters urine odor in similar ways for RV and WNV immunizations; and (2) immune activation with LPS also alters urine odor but in ways different from those of RV and WNV. Published by Elsevier Inc.
Wave energy converter effects on wave propagation: A sensitivity study in Monterey Bay, CA
Chang, G.; Jones, C. A.; Roberts, J.; Magalen, J.; Ruehl, K.; Chartrand, C.
2014-12-01
The development of renewable offshore energy in the United States is growing rapidly and wave energy is one of the largest resources currently being evaluated. The deployment of wave energy converter (WEC) arrays required to harness this resource could feasibly number in the hundreds of individual devices. The WEC arrays have the potential to alter nearshore wave propagation and circulation patterns and ecosystem processes. As the industry progresses from pilot- to commercial-scale it is important to understand and quantify the effects of WECs on the natural nearshore processes that support a local, healthy ecosystem. To help accelerate the realization of commercial-scale wave power, predictive modeling tools have been developed and utilized to evaluate the likelihood of environmental impact. At present, direct measurements of the effects of different types of WEC arrays on nearshore wave propagation are not available; therefore wave model simulations provide the groundwork for investigations of the sensitivity of model results to prescribed WEC characteristics over a range of anticipated wave conditions. The present study incorporates a modified version of an industry standard wave modeling tool, SWAN (Simulating WAves Nearshore), to simulate wave propagation through a hypothetical WEC array deployment site on the California coast. The modified SWAN, referred to as SNL-SWAN, incorporates device-specific WEC power take-off characteristics to more accurately evaluate a WEC device's effects on wave propagation. The primary objectives were to investigate the effects of a range of WEC devices and device and array characteristics (e.g., device spacing, number of WECs in an array) on nearshore wave propagation using SNL-SWAN model simulations. Results showed that significant wave height was most sensitive to variations in WEC device type and size and the number of WEC devices in an array. Locations in the lee centerline of the arrays in each modeled scenario showed the
[Electroencephalographic alterations in children with attention deficit hyperactivity disorder].
Castañeda-Cabrero, C; Lorenzo-Sanz, G; Caro-Martínez, E; Galán-Sánchez, J M; Sáez-Alvarez, J; Quintana-Aparicio, P; Paradinas-Jiménez, F
Attention deficit hyperactivity disorder (ADHD) is a syndrome that affects between 3 5% of the population of school aged children, and may be accompanied by learning, language, behavioural or motor disorders. Although various electroencephalographic alterations have been described in these patients, their pathological significance has not been determined. There have also been reports of children with neuropsychological and language disorders having epileptiform anomalies in the EEG recording. We conducted a study of 15 children, with no history of seizures, who had been referred to Child Neurology for treatment and who satisfied the criteria for ADHD according to the DSM IV and the ADHRS (attention deficit/hyperactivity rating scale). The EEG recording in the waking state showed significant anomalies in two of our patients (acute spike and wave paroxysmal activity in the left temporoparietal region and spike wave discharges during hyperventilation). The polysomnographic study revealed specific alterations in four children. There was a continuous spike wave trace during slow sleep (CSWS) in one case, paroxysmal activity (slow acute waves, spikes) in the temporoparietal region with secondary generalization or transmission (two cases), and frequent generalized paroxysmal discharges of slow acute waves in all phases of sleep (one case). The neurophysiological disorders observed in some of our patients could make it necessary to consider performing a night time polysomnographic study in certain cases of ADHD.
CERN. Geneva
2016-01-01
In the past year, the LIGO-Virgo Collaboration announced the first secure detection of gravitational waves. This discovery heralds the beginning of gravitational wave astronomy: the use of gravitational waves as a tool for studying the dense and dynamical universe. In this talk, I will describe the full spectrum of gravitational waves, from Hubble-scale modes, through waves with periods of years, hours and milliseconds. I will describe the different techniques one uses to measure the waves in these bands, current and planned facilities for implementing these techniques, and the broad range of sources which produce the radiation. I will discuss what we might expect to learn as more events and sources are measured, and as this field matures into a standard part of the astronomical milieu.
DEFF Research Database (Denmark)
Frigaard, Peter; Andersen, Thomas Lykke
The present book describes the most important aspects of wave analysis techniques applied to physical model tests. Moreover, the book serves as technical documentation for the wave analysis software WaveLab 3, cf. Aalborg University (2012). In that respect it should be mentioned that supplementary...... to the present technical documentation exists also the online help document describing the WaveLab software in detail including all the inputs and output fields. In addition to the two main authors also Tue Hald, Jacob Helm-Petersen and Morten Møller Jakobsen have contributed to the note. Their input is highly...... acknowledged. The outline of the book is as follows: • Chapter 2 and 3 describes analysis of waves in time and frequency domain. • Chapter 4 and 5 describes the separation of incident and reflected waves for the two-dimensional case. • Chapter 6 describes the estimation of the directional spectra which also...
Ockendon, Hilary
2016-01-01
Now in its second edition, this book continues to give readers a broad mathematical basis for modelling and understanding the wide range of wave phenomena encountered in modern applications. New and expanded material includes topics such as elastoplastic waves and waves in plasmas, as well as new exercises. Comprehensive collections of models are used to illustrate the underpinning mathematical methodologies, which include the basic ideas of the relevant partial differential equations, characteristics, ray theory, asymptotic analysis, dispersion, shock waves, and weak solutions. Although the main focus is on compressible fluid flow, the authors show how intimately gasdynamic waves are related to wave phenomena in many other areas of physical science. Special emphasis is placed on the development of physical intuition to supplement and reinforce analytical thinking. Each chapter includes a complete set of carefully prepared exercises, making this a suitable textbook for students in applied mathematics, ...
Digital Repository Service at National Institute of Oceanography (India)
Varkey, M.J.
of component waves of various periods and heights. This is the most commonly used theory for practical applications like design of ships, oil rigs and coastal structures such as jetties, ports, and sea walls. This theory also provides sufficient intellectual... of wind waves in the sea is a wide and interesting field with ap- plications in marine exploration ac- tivities, underwater pipe laying, pol- lution control, ports and shipping in- volving billions of dollars worth of transactions. Not all sea waves look...
Flammer, Carson
2005-01-01
Intended to facilitate the use and calculation of spheroidal wave functions, this applications-oriented text features a detailed and unified account of the properties of these functions. Addressed to applied mathematicians, mathematical physicists, and mathematical engineers, it presents tables that provide a convenient means for handling wave problems in spheroidal coordinates.Topics include separation of the scalar wave equation in spheroidal coordinates, angle and radial functions, integral representations and relations, and expansions in spherical Bessel function products. Additional subje
DEFF Research Database (Denmark)
Takayama, Osamu; Crasovan, Lucian Cornel; Johansen, Steffen Kjær
2008-01-01
The interface of two semi-infinite media, where at least one of them is a birefringent crystal, supports a special type of surface wave that was predicted theoretically by D'yakonov in 1988. Since then, the properties of such waves, which exist in transparent media only under very special......, the existence of these surface waves in specific material examples is analyzed, discussing the challenge posed by their experimental observation....
2015-10-30
Coastal Inlets Research Program WaveNet WaveNet is a web-based, Graphical-User-Interface ( GUI ) data management tool developed for Corps coastal...generates tabular and graphical information for project planning and design documents. The WaveNet is a web-based GUI designed to provide users with a...data from different sources, and employs a combination of Fortran, Python and Matlab codes to process and analyze data for USACE applications
CERN. Geneva HR-RFA
2006-01-01
We will present a brief introduction to the physics of gravitational waves and their properties. We will review potential astrophysical sources of gravitational waves, and the physics and astrophysics that can be learned from their study. We will survey the techniques and technologies for detecting gravitational waves for the first time, including bar detectors and broadband interferometers, and give a brief status report on the international search effort.
CERN. Geneva
2006-01-01
Gravitational wave astronomy is expected to become an observational field within the next decade. First direct detection of gravitational waves is possible with existing terrestrial-based detectors, and highly probable with proposed upgrades. In this three-part lecture series, we give an overview of the field, including material on gravitional wave sources, detection methods, some details of interferometric detectors, data analysis methods, and current results from observational data-taking runs of the LIGO and GEO projects.
Hanna, James P.
1994-06-01
The Waveform and Vector Exchange Specification (WAVES) is the Industry standard representation for digital stimulus and response for both the design and test communities. The VHSIC Hardware Description Language (VHDL) is the Industry standard language for the design, modeling, and simulation of digital electronics. Together VHDL and WAVES provide powerful support for top-down design and test methodologies and concurrent engineering practices. Although the syntax of WAVES is a subset of VHDL, no special support for using WAVES in a VHDL environment is defined within the language. This report will introduce and describe a VHDL package that was developed at Rome Laboratory to provide a software interface to support the use of WAVES in a VHDL environment. This VHDL package is referred to as the WAVES VHDL interface and has been proposed as a standard practice for a top-down design and test methodology using WAVES and VHDL. This report is not intended to provide a tutorial on VHDL or WAVES. It is assumed that the reader has an adequate understanding of the VHDL language and some modeling techniques. Further, it is assumed that the reader has an understanding of the WAVES language and can follow a simple Level 1 dataset description.
Hernandez-Figueroa, Hugo E; Recami, Erasmo
2013-01-01
This continuation and extension of the successful book ""Localized Waves"" by the same editors brings together leading researchers in non-diffractive waves to cover the most important results in their field and as such is the first to present the current state.The well-balanced presentation of theory and experiments guides readers through the background of different types of non-diffractive waves, their generation, propagation, and possible applications. The authors include a historical account of the development of the field, and cover different types of non-diffractive waves, including Airy
DEFF Research Database (Denmark)
Burcharth, H. F.; Frigaard, Peter
1989-01-01
Wave loads may be defined as time varying forces on a body resulting from the wave induced flow fields which surrounds the body in whole or in part. Such unsteady fluid forces are the net result of pressure and shear forces integrated over the instantaneous wetted area.......Wave loads may be defined as time varying forces on a body resulting from the wave induced flow fields which surrounds the body in whole or in part. Such unsteady fluid forces are the net result of pressure and shear forces integrated over the instantaneous wetted area....
David, P
2013-01-01
Propagation of Waves focuses on the wave propagation around the earth, which is influenced by its curvature, surface irregularities, and by passage through atmospheric layers that may be refracting, absorbing, or ionized. This book begins by outlining the behavior of waves in the various media and at their interfaces, which simplifies the basic phenomena, such as absorption, refraction, reflection, and interference. Applications to the case of the terrestrial sphere are also discussed as a natural generalization. Following the deliberation on the diffraction of the "ground? wave around the ear
Godin, Oleg A.
2015-04-01
Much like light and sound, acoustic-gravity waves in inhomogeneous atmosphere often have a caustic or caustics, where the ray theory predicts unphysical, divergent values of the wave amplitude and needs to be modified. Increase of the wave magnitude in the vicinity of a caustic makes such vicinities of primary interest in a number of problems, where a signal needs to be separated from a background noise. The value of wave focusing near caustics should be carefully quantified in order to evaluate possible nonlinearities promoted by the focusing. Physical understanding of the wave field in the vicinity of a caustic is also important for understanding of the wave reflection from and transmission (tunneling) through the caustic. To our knowledge, in contrast to caustics of acoustic, electromagnetic, and seismic waves as well as gravity waves in incompressible fluids, asymptotics of acoustic-gravity waves in the vicinity of a caustic have never been studied systematically. In this paper, we fill this gap. Atmospheric waves are considered as linear acoustic-gravity waves in a neutral, horizontally stratified, moving ideal gas of variable composition. Air temperature and wind velocity are assumed to be gradually varying functions of height, and slowness of these variations determines the large parameter of the problem. The scale height of the atmosphere can be large or small compared to the vertical wavelength. It is found that the uniform asymptotics of the wave field in the presence of a simple caustic can be expressed in terms of the Airy function and its derivative. As for the acoustic waves, the argument of the Airy function is expressed in terms of the eikonal calculated in the ray, or WKB, approximation. The geometrical, or Berry, phase, which arises in the consistent WKB approximation for acoustic-gravity waves, plays an important role in the caustic asymptotics. In the uniform asymptotics, the terms with the Airy function and its derivative are weighted by cosine
DEFF Research Database (Denmark)
Kofoed, Jens Peter
2017-01-01
shaped by the development, research, and teaching that we have carried out at the Wave Energy Research Group at Aalborg University over the past decades. It is our belief and experience that it would be useful writing and compiling such a handbook in order to enhance the understanding of the sector......This Handbook for Ocean Wave Energy aims at providing a guide into the field of ocean wave energy utilization. The handbook offers a concise yet comprehensive overview of the main aspects and disciplines involved in the development of wave energy converters (WECs). The idea for the book has been...
Exact Solution for a Gravitational Wave Detector
Rabounski, Dmitri; Borissova, Larissa
2008-04-01
The experimental statement on gravitational waves proceeds from the equation for deviating geodesic lines and the equation for deviating non-geodesics. Weber's result was not based upon an exact solution to the equations, but on an approximate analysis of what could be expected: he expected that a plane weak wave of the space metric may displace two resting particles with respect to each other. In this work, exact solutions are presented for the deviation equation of both free and spring-connected particles. The solutions show that a gravitational wave may displace particles in a two-particle system only if they are in motion with respect to each other or the local space (there is no effect if they are at rest). Thus, gravitational waves produce a parametric effect on a two-particle system. According to the solutions, an altered detector construction can be proposed such that it might interact with gravitational waves: 1) a horizontally suspended cylindrical pig, whose butt-ends have basic relative oscillations induced by a laboratory source; 2) a free-mass detector where suspended mirrors have laboratory induced basic oscillations relative to each other.
Exitation of Whistler Waves by a Helical Wave Structure
DEFF Research Database (Denmark)
Balmashnov, A. A.; Lynov, Jens-Peter; Michelsen, Poul
1981-01-01
The excitation of whistler waves in a radial inhomogeneous plasma is investigated experimentally, using a slow-wave structure consisting of a helix of variable length surrounding the plasma column. The excited waves were observed to have a wave-vector parallel to the external magnetic field....... The possibility of exciting the waves in different radial regions is demonstrated....
Experimental Study of the WEPTOS Wave Energy Converter
DEFF Research Database (Denmark)
Pecher, Arthur; Kofoed, Jens Peter; Marchalot, Tanguy
This report presents the results of an experimental study on the power conversion capabilities and structural loads of the WEPTOS wave energy converter. The investigation focuses mainly at identifying the performance of the WEPTOS prototype in a wide range of production wave states...... and at the mooring forces and structural bending moments in extreme wave conditions, in order to estimate the performance and structural loads of larger WEPTOS machines being located at various offshore locations of interest. The following aspects were the main subjects of investigation: Performance of the prototype...... under a constant and linear PTO loading, the opening angle of the device, the effect of alterations to the wave conditions, and mooring forces and structural bending moments in production and extreme wave states. During the study, a highly realistic scale model was supplied by the client, WEPTOS, which...
Parametric analysis of change in wave number of surface waves
Directory of Open Access Journals (Sweden)
Tadić Ljiljana
2015-01-01
Full Text Available The paper analyzes the dependence of the change wave number of materials soil constants, ie the frequency of the waves. The starting point in this analysis cosists of wave equation and dynamic stiffness matrix of soil.
Design wave estimation considering directional distribution of waves
Digital Repository Service at National Institute of Oceanography (India)
SanilKumar, V.; Deo, M.C.
The design of coastal and offshore structures requires design significant wave height having a certain return period. The commonly followed procedure to estimate the design wave height, does not give any consideration to the directions of waves...
Indian Academy of Sciences (India)
Conformal transformations; conformal Killing vectors; -waves. Abstract. Brinkmann [1] has shown that conformally related distinct Ricci flat solutions are -waves. Brinkmann's result has been generalized to include the conformally invariant source terms. It has been shown that [4] if g i k and g ¯ i k ( = − 2 g i k , : a ...
Directory of Open Access Journals (Sweden)
Zheng-Johansson J. X.
2006-10-01
Full Text Available The electromagnetic component waves, comprising together with their generating oscillatory massless charge a material particle, will be Doppler shifted when the charge hence particle is in motion, with a velocity v, as a mere mechanical consequence of the source motion. We illustrate here that two such component waves generated in opposite directions and propagating at speed c between walls in a one-dimensional box, superpose into a traveling beat wave of wavelength Λd=vcΛ and phase velocity c2/v+v which resembles directly L. de Broglie’s hypothetic phase wave. This phase wave in terms of transmitting the particle mass at the speed v and angular frequency Ωd= 2πv/Λd, with Λd and Ωd obeying the de Broglie relations, represents a de Broglie wave. The standing-wave function of the de Broglie (phase wave and its variables for particle dynamics in small geometries are equivalent to the eigen-state solutions to Schrödinger equation of an identical system.
Gravitational waves from inflation
Guzzetti, M. C.; Bartolo, N.; Liguori, M.; Matarrese, S.
2016-09-01
The production of a stochastic background of gravitational waves is a fundamental prediction of any cosmological inflationary model. The features of such a signal encode unique information about the physics of the Early Universe and beyond, thus representing an exciting, powerful window on the origin and evolution of the Universe. We review the main mechanisms of gravitational-wave production, ranging from quantum fluctuations of the gravitational field to other mechanisms that can take place during or after inflation. These include e.g. gravitational waves generated as a consequence of extra particle production during inflation, or during the (p)reheating phase. Gravitational waves produced in inflation scenarios based on modified gravity theories and second-order gravitational waves are also considered. For each analyzed case, the expected power spectrum is given. We discuss the discriminating power among different models, associated with the validity/violation of the standard consistency relation between tensor-to-scalar ratio r and tensor spectral index nT. In light of the prospects for (directly/indirectly) detecting primordial gravitational waves, we give the expected present-day gravitational radiation spectral energy-density, highlighting the main characteristics imprinted by the cosmic thermal history, and we outline the signatures left by gravitational waves on the Cosmic Microwave Background and some imprints in the Large-Scale Structure of the Universe. Finally, current bounds and prospects of detection for inflationary gravitational waves are summarized.
Viswanathan, Koushik; Sundaram, Narayan; Chandrasekar, Srinivasan
Stick-slip, manifest as intermittent tangential motion between two dry solid surfaces, is a friction instability that governs diverse phenomena from automobile brake squeals to earthquakes. We show, using high-speed in situ imaging of an adhesive polymer interface, that low velocity stick-slip is fundamentally of three kinds, corresponding to passage of three different surface waves -- separation pulses, slip pulses and the well-known Schallamach waves. These waves, traveling much slower than elastic waves, have clear distinguishing properties. Separation pulses and Schallamach waves involve local interface separation, and propagate in opposite directions while slip pulses are characterized by a sharp stress front and do not display any interface detachment. A change in the stick-slip mode from separation to slip pulse is effected simply by increasing the normal force. Together, these three waves constitute all possible stick-slip modes in adhesive friction and are shown to have direct analogues in muscular locomotory waves in soft bodied invertebrates. A theory for slow wave propagation is also presented which is capable of explaining the attendant interface displacements, velocities and stresses.
Houlrik, Jens Madsen
2009-01-01
The Lorentz transformation applies directly to the kinematics of moving particles viewed as geometric points. Wave propagation, on the other hand, involves moving planes which are extended objects defined by simultaneity. By treating a plane wave as a geometric object moving at the phase velocity, novel results are obtained that illustrate the…
Those Elusive Gravitational Waves
MOSAIC, 1976
1976-01-01
The presence of gravitational waves was predicted by Einstein in his theory of General Relativity. Since then, scientists have been attempting to develop a detector sensitive enough to measure these cosmic signals. Once the presence of gravitational waves is confirmed, scientists can directly study star interiors, galaxy cores, or quasars. (MA)
Parsimonious Surface Wave Interferometry
Li, Jing
2017-10-24
To decrease the recording time of a 2D seismic survey from a few days to one hour or less, we present a parsimonious surface-wave interferometry method. Interferometry allows for the creation of a large number of virtual shot gathers from just two reciprocal shot gathers by crosscoherence of trace pairs, where the virtual surface waves can be inverted for the S-wave velocity model by wave-equation dispersion inversion (WD). Synthetic and field data tests suggest that parsimonious wave-equation dispersion inversion (PWD) gives S-velocity tomograms that are comparable to those obtained from a full survey with a shot at each receiver. The limitation of PWD is that the virtual data lose some information so that the resolution of the S-velocity tomogram can be modestly lower than that of the S-velocity tomogram inverted from a conventional survey.
Electromagnetic wave energy converter
Bailey, R. L. (Inventor)
1973-01-01
Electromagnetic wave energy is converted into electric power with an array of mutually insulated electromagnetic wave absorber elements each responsive to an electric field component of the wave as it impinges thereon. Each element includes a portion tapered in the direction of wave propagation to provide a relatively wideband response spectrum. Each element includes an output for deriving a voltage replica of the electric field variations intercepted by it. Adjacent elements are positioned relative to each other so that an electric field subsists between adjacent elements in response to the impinging wave. The electric field results in a voltage difference between adjacent elements that is fed to a rectifier to derive dc output power.
Ion Acoustic Waves in the Presence of Electron Plasma Waves
DEFF Research Database (Denmark)
Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens
1977-01-01
Long-wavelength ion acoustic waves in the presence of propagating short-wavelength electron plasma waves are examined. The influence of the high frequency oscillations is to decrease the phase velocity and the damping distance of the ion wave.......Long-wavelength ion acoustic waves in the presence of propagating short-wavelength electron plasma waves are examined. The influence of the high frequency oscillations is to decrease the phase velocity and the damping distance of the ion wave....
4-wave dynamics in kinetic wave turbulence
Chibbaro, Sergio; Dematteis, Giovanni; Rondoni, Lamberto
2018-01-01
A general Hamiltonian wave system with quartic resonances is considered, in the standard kinetic limit of a continuum of weakly interacting dispersive waves with random phases. The evolution equation for the multimode characteristic function Z is obtained within an ;interaction representation; and a perturbation expansion in the small nonlinearity parameter. A frequency renormalization is performed to remove linear terms that do not appear in the 3-wave case. Feynman-Wyld diagrams are used to average over phases, leading to a first order differential evolution equation for Z. A hierarchy of equations, analogous to the Boltzmann hierarchy for low density gases is derived, which preserves in time the property of random phases and amplitudes. This amounts to a general formalism for both the N-mode and the 1-mode PDF equations for 4-wave turbulent systems, suitable for numerical simulations and for investigating intermittency. Some of the main results which are developed here in detail have been tested numerically in a recent work.
Wave Energy Converter (WEC) Array Effects on Wave Current and Sediment Circulation: Monterey Bay CA.
Energy Technology Data Exchange (ETDEWEB)
Roberts, Jesse D.; Jones, Craig; Magalen, Jason
2014-09-01
The goal s of this study were to develop tools to quantitatively characterize environments where wave energy converter ( WEC ) devices may be installed and to assess e ffects on hydrodynamics and lo cal sediment transport. A large hypothetical WEC array was investigated using wave, hydrodynamic, and sediment transport models and site - specific average and storm conditions as input. The results indicated that there were significant changes in sediment s izes adjacent to and in the lee of the WEC array due to reduced wave energy. The circulation in the lee of the array was also altered; more intense onshore currents were generated in the lee of the WECs . In general, the storm case and the average case show ed the same qualitative patterns suggesting that these trends would be maintained throughout the year. The framework developed here can be used to design more efficient arrays while minimizing impacts on nearshore environmen ts.
Abnormal Waves Modelled as Second-order Conditional Waves
DEFF Research Database (Denmark)
Jensen, Jørgen Juncher
2005-01-01
The paper presents results for the expected second order short-crested wave conditional of a given wave crest at a specific point in time and space. The analysis is based on the second order Sharma and Dean shallow water wave theory. Numerical results showing the importance of the spectral density......, the water depth and the directional spreading on the conditional mean wave profile are presented. Application of conditional waves to model and explain abnormal waves, e.g. the well-known New Year Wave measured at the Draupner platform January 1st 1995, is discussed. Whereas the wave profile can be modelled...... quite well by the second order conditional wave including directional spreading and finite water depth the probability to encounter such a wave is still, however, extremely rare. The use of the second order conditional wave as initial condition to a fully non-linear three-dimensional analysis...
Inner harbour wave agitation using boussinesq wave model
Directory of Open Access Journals (Sweden)
Panigrahi Jitendra K.
2015-01-01
Full Text Available Short crested waves play an important role for planning and design of harbours. In this context a numerical simulation is carried out to evaluate wave tranquility inside a real harbour located in east coast of India. The annual offshore wave climate proximity- to harbour site is established using Wave Model (WAM hindcast wave data. The deep water waves are transformed to harbour front using a Near Shore spectral Wave model (NSW. A directional analysis is carried out to determine the probable incident wave directions towards the harbour. Most critical threshold wave height and wave period is chosen for normal operating conditions using exceedence probability analysis. Irregular random waves from various directions are generated confirming to Pierson Moskowitz spectrum at 20m water depth. Wave incident into inner harbor through harbor entrance is performed using Boussinesq Wave model (BW. Wave disturbance experienced inside the harbour and at various berths are analysed. The paper discusses the progresses took place in short wave modeling and it demonstrates application of wave climate for the evaluation of harbor tranquility using various types of wave models.
Inner harbour wave agitation using boussinesq wave model
Directory of Open Access Journals (Sweden)
Jitendra K. Panigrahi
2015-01-01
Full Text Available Short crested waves play an important role for planning and design of harbours. In this context a numerical simulation is carried out to evaluate wave tranquility inside a real harbour located in east coast of India. The annual offshore wave climate proximity to harbour site is established using Wave Model (WAM hindcast wave data. The deep water waves are transformed to harbour front using a Near Shore spectral Wave model (NSW. A directional analysis is carried out to determine the probable incident wave directions towards the harbour. Most critical threshold wave height and wave period is chosen for normal operating conditions using exceedence probability analysis. Irregular random waves from various directions are generated confirming to Pierson Moskowitz spectrum at 20 m water depth. Wave incident into inner harbor through harbor entrance is performed using Boussinesq Wave model (BW. Wave disturbance experienced inside the harbour and at various berths are analysed. The paper discusses the progresses took place in short wave modeling and it demonstrates application of wave climate for the evaluation of harbor tranquility using various types of wave models.
Stress wave focusing transducers
Energy Technology Data Exchange (ETDEWEB)
Visuri, S.R., LLNL
1998-05-15
Conversion of laser radiation to mechanical energy is the fundamental process behind many medical laser procedures, particularly those involving tissue destruction and removal. Stress waves can be generated with laser radiation in several ways: creation of a plasma and subsequent launch of a shock wave, thermoelastic expansion of the target tissue, vapor bubble collapse, and ablation recoil. Thermoelastic generation of stress waves generally requires short laser pulse durations and high energy density. Thermoelastic stress waves can be formed when the laser pulse duration is shorter than the acoustic transit time of the material: {tau}{sub c} = d/c{sub s} where d = absorption depth or spot diameter, whichever is smaller, and c{sub s} = sound speed in the material. The stress wave due to thermoelastic expansion travels at the sound speed (approximately 1500 m/s in tissue) and leaves the site of irradiation well before subsequent thermal events can be initiated. These stress waves, often evolving into shock waves, can be used to disrupt tissue. Shock waves are used in ophthalmology to perform intraocular microsurgery and photodisruptive procedures as well as in lithotripsy to fragment stones. We have explored a variety of transducers that can efficiently convert optical to mechanical energy. One such class of transducers allows a shock wave to be focused within a material such that the stress magnitude can be greatly increased compared to conventional geometries. Some transducer tips could be made to operate regardless of the absorption properties of the ambient media. The size and nature of the devices enable easy delivery, potentially minimally-invasive procedures, and precise tissue- targeting while limiting thermal loading. The transducer tips may have applications in lithotripsy, ophthalmology, drug delivery, and cardiology.
Geyer, Anna
2016-01-01
Following a general principle introduced by Ehrnstr\\"{o}m et.al. we prove that for an equation modeling the free surface evolution of moderate amplitude waves in shallow water, all symmetric waves are traveling waves.
Mandal, Birendra Nath
2015-01-01
The theory of water waves is most varied and is a fascinating topic. It includes a wide range of natural phenomena in oceans, rivers, and lakes. It is mostly concerned with elucidation of some general aspects of wave motion including the prediction of behaviour of waves in the presence of obstacles of some special configurations that are of interest to ocean engineers. Unfortunately, even the apparently simple problems appear to be difficult to tackle mathematically unless some simplified assumptions are made. Fortunately, one can assume water to be an incompressible, in viscid and homogeneous
DEFF Research Database (Denmark)
Jensen, J.; Houmann, Jens Christian Gylden; Bjerrum Møller, Hans
1975-01-01
The energies of spin waves propagating in the c direction of Tb have been studied by inelastic neutron scattering, as a function of a magnetic field applied along the easy and hard directions in the basal plane, and as a function of temperature. From a general spin Hamiltonian, consistent...... with the symmetry, we deduce the dispersion relation for the spin waves in a basal-plane ferromagnet. This phenomenological spin-wave theory accounts for the observed behavior of the magnon energies in Tb. The two q⃗-dependent Bogoliubov components of the magnon energies are derived from the experimental results...
Kaliski, S
2013-01-01
This book gives a comprehensive overview of wave phenomena in different media with interacting mechanical, electromagnetic and other fields. Equations describing wave propagation in linear and non-linear elastic media are followed by equations of rheological models, models with internal rotational degrees of freedom and non-local interactions. Equations for coupled fields: thermal, elastic, electromagnetic, piezoelectric, and magneto-spin with adequate boundary conditions are also included. Together with its companion volume Vibrations and Waves. Part A: Vibrations this work provides a wealth
Corinaldesi, Ernesto
1963-01-01
Geared toward advanced undergraduate and graduate students of physics, this text provides readers with a background in relativistic wave mechanics and prepares them for the study of field theory. The treatment originated as a series of lectures from a course on advanced quantum mechanics that has been further amplified by student contributions.An introductory section related to particles and wave functions precedes the three-part treatment. An examination of particles of spin zero follows, addressing wave equation, Lagrangian formalism, physical quantities as mean values, translation and rotat
Altered fingerprints: analysis and detection.
Yoon, Soweon; Feng, Jianjiang; Jain, Anil K
2012-03-01
The widespread deployment of Automated Fingerprint Identification Systems (AFIS) in law enforcement and border control applications has heightened the need for ensuring that these systems are not compromised. While several issues related to fingerprint system security have been investigated, including the use of fake fingerprints for masquerading identity, the problem of fingerprint alteration or obfuscation has received very little attention. Fingerprint obfuscation refers to the deliberate alteration of the fingerprint pattern by an individual for the purpose of masking his identity. Several cases of fingerprint obfuscation have been reported in the press. Fingerprint image quality assessment software (e.g., NFIQ) cannot always detect altered fingerprints since the implicit image quality due to alteration may not change significantly. The main contributions of this paper are: 1) compiling case studies of incidents where individuals were found to have altered their fingerprints for circumventing AFIS, 2) investigating the impact of fingerprint alteration on the accuracy of a commercial fingerprint matcher, 3) classifying the alterations into three major categories and suggesting possible countermeasures, 4) developing a technique to automatically detect altered fingerprints based on analyzing orientation field and minutiae distribution, and 5) evaluating the proposed technique and the NFIQ algorithm on a large database of altered fingerprints provided by a law enforcement agency. Experimental results show the feasibility of the proposed approach in detecting altered fingerprints and highlight the need to further pursue this problem.
Effects of ship-induced waves on aquatic ecosystems.
Gabel, Friederike; Lorenz, Stefan; Stoll, Stefan
2017-12-01
Most larger water bodies worldwide are used for navigation, and the intensity of commercial and recreational navigation is expected to further increase. Navigation profoundly affects aquatic ecosystems. To facilitate navigation, rivers are trained and developed, and the direct effects of navigation include chemical and biological impacts (e.g., inputs of toxic substances and dispersal of non-native species, respectively). Furthermore, propagating ships create hydrodynamic alterations, often simply summarized as waves. Although ship-induced waves are recognized as influential stressors, knowledge on their effects is poorly synthesized. We present here a review on the effects of ship-induced waves on the structure, function and services of aquatic ecosystems based on more than 200 peer reviewed publications and technical reports. Ship-induced waves act at multiple organizational levels and different spatial and temporal scales. All the abiotic and biotic components of aquatic ecosystems are affected, from the sediment and nutrient budget to the planktonic, benthic and fish communities. We highlight how the effects of ship-induced waves cascade through ecosystems and how different effects interact and feed back into the ecosystem finally leading to altered ecosystem services and human health effects. Based on this synthesis of wave effects, we discuss strategies for mitigation. This may help to develop scientifically based and target-oriented management plans for navigational waters that optimize abiotic and biotic integrity and their ecosystem services and uses. Copyright © 2017 Elsevier B.V. All rights reserved.
Wave Height Distribution for Nonlinear Swell Waves in Deep an Depth Limited Wave Conditions
DEFF Research Database (Denmark)
Nørgaard, Jørgen Harck; Andersen, Thomas Lykke; Knudsen, Jannie Elkær
2017-01-01
This paper presents initial results from an on-going study on the influence from wave nonlinearity on the wave height distribution in deep- and depth-limited nonlinear wave conditions. A fully nonlinear VOF model, IH-2VOF, is applied to model the propagation of irregular waves on a sloping sea bed...... from deep to shallow water, including the effects of wave breaking. Different wave nonlinearities are evaluated in the model and the effects of the wave nonlinearity, described by the so-called Ursell-number, on the wave height distributions along the sloping sea bed are evaluated. The widely used...
Music alters visual perception.
Jolij, Jacob; Meurs, Maaike
2011-04-21
Visual perception is not a passive process: in order to efficiently process visual input, the brain actively uses previous knowledge (e.g., memory) and expectations about what the world should look like. However, perception is not only influenced by previous knowledge. Especially the perception of emotional stimuli is influenced by the emotional state of the observer. In other words, how we perceive the world does not only depend on what we know of the world, but also by how we feel. In this study, we further investigated the relation between mood and perception. We let observers do a difficult stimulus detection task, in which they had to detect schematic happy and sad faces embedded in noise. Mood was manipulated by means of music. We found that observers were more accurate in detecting faces congruent with their mood, corroborating earlier research. However, in trials in which no actual face was presented, observers made a significant number of false alarms. The content of these false alarms, or illusory percepts, was strongly influenced by the observers' mood. As illusory percepts are believed to reflect the content of internal representations that are employed by the brain during top-down processing of visual input, we conclude that top-down modulation of visual processing is not purely predictive in nature: mood, in this case manipulated by music, may also directly alter the way we perceive the world.
Altered Perspectives: Immersive Environments
Shipman, J. S.; Webley, P. W.
2016-12-01
Immersive environments provide an exciting experiential technology to visualize the natural world. Given the increasing accessibility of 360o cameras and virtual reality headsets we are now able to visualize artistic principles and scientific concepts in a fully immersive environment. The technology has become popular for photographers as well as designers, industry, educational groups, and museums. Here we show a sci-art perspective on the use of optics and light in the capture and manipulation of 360o images and video of geologic phenomena and cultural heritage sites in Alaska, England, and France. Additionally, we will generate intentionally altered perspectives to lend a surrealistic quality to the landscapes. Locations include the Catacombs of Paris, the Palace of Versailles, and the Northern Lights over Fairbanks, Alaska. Some 360o view cameras now use small portable dual lens technology extending beyond the 180o fish eye lens previously used, providing better coverage and image quality. Virtual reality headsets range in level of sophistication and cost, with the most affordable versions using smart phones and Google Cardboard viewers. The equipment used in this presentation includes a Ricoh Theta S spherical imaging camera. Here we will demonstrate the use of 360o imaging with attendees being able to be part of the immersive environment and experience our locations as if they were visiting themselves.
Music alters visual perception.
Directory of Open Access Journals (Sweden)
Jacob Jolij
Full Text Available BACKGROUND: Visual perception is not a passive process: in order to efficiently process visual input, the brain actively uses previous knowledge (e.g., memory and expectations about what the world should look like. However, perception is not only influenced by previous knowledge. Especially the perception of emotional stimuli is influenced by the emotional state of the observer. In other words, how we perceive the world does not only depend on what we know of the world, but also by how we feel. In this study, we further investigated the relation between mood and perception. METHODS AND FINDINGS: We let observers do a difficult stimulus detection task, in which they had to detect schematic happy and sad faces embedded in noise. Mood was manipulated by means of music. We found that observers were more accurate in detecting faces congruent with their mood, corroborating earlier research. However, in trials in which no actual face was presented, observers made a significant number of false alarms. The content of these false alarms, or illusory percepts, was strongly influenced by the observers' mood. CONCLUSIONS: As illusory percepts are believed to reflect the content of internal representations that are employed by the brain during top-down processing of visual input, we conclude that top-down modulation of visual processing is not purely predictive in nature: mood, in this case manipulated by music, may also directly alter the way we perceive the world.
Tiec, Alexandre Le
2016-01-01
The existence of gravitational radiation is a natural prediction of any relativistic description of the gravitational interaction. In this chapter, we focus on gravitational waves, as predicted by Einstein's general theory of relativity. First, we introduce those mathematical concepts that are necessary to properly formulate the physical theory, such as the notions of manifold, vector, tensor, metric, connection and curvature. Second, we motivate, formulate and then discuss Einstein's equation, which relates the geometry of spacetime to its matter content. Gravitational waves are later introduced as solutions of the linearized Einstein equation around flat spacetime. These waves are shown to propagate at the speed of light and to possess two polarization states. Gravitational waves can interact with matter, allowing for their direct detection by means of laser interferometers. Finally, Einstein's quadrupole formulas are derived and used to show that nonspherical compact objects moving at relativistic speeds a...
DEFF Research Database (Denmark)
Bredmose, Henrik; Peregrine, D.H.; Bullock, G.N.
2009-01-01
a better understanding of the processes involved. The wave's approach towards a structure is modelled with classical irrotational flow to obtain the different types of impact profiles that may or may not lead to air entrapment. The subsequent impact is modelled with a novel compressible-flow model...... local error. The high pressures measured during wave impacts on a breakwater are reproduced and it is shown that trapped air can be compressed to a pressure of several atmospheres. Pressure shock waves, reflected off nearby surfaces such as the seabed, can lead to pressures comparable with those...... for a homogeneous mixture of incompressible liquid and ideal gas. This enables a numerical description of both trapped air pockets and the propagation of pressure shock waves through the aerated water. An exact Riemann solver is developed to permit a finite-volume solution to the flow model with smallest possible...
Hietala, Vincent M.; Vawter, Gregory A.
1993-01-01
The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size.
Sound wave transmission (image)
When sounds waves reach the ear, they are translated into nerve impulses. These impulses then travel to the brain where they are interpreted by the brain as sound. The hearing mechanisms within the inner ear, can ...
Acoustics waves and oscillations
Sen, S.N.
2013-01-01
Parameters of acoustics presented in a logical and lucid style Physical principles discussed with mathematical formulations Importance of ultrasonic waves highlighted Dispersion of ultrasonic waves in viscous liquids explained This book presents the theory of waves and oscillations and various applications of acoustics in a logical and simple form. The physical principles have been explained with necessary mathematical formulation and supported by experimental layout wherever possible. Incorporating the classical view point all aspects of acoustic waves and oscillations have been discussed together with detailed elaboration of modern technological applications of sound. A separate chapter on ultrasonics emphasizes the importance of this branch of science in fundamental and applied research. In this edition a new chapter ''Hypersonic Velocity in Viscous Liquids as revealed from Brillouin Spectra'' has been added. The book is expected to present to its readers a comprehensive presentation of the subject matter...
National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NDBC SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have waves data. Because of the nature of SOS requests, requests for data...
DEFF Research Database (Denmark)
Margheritini, Lucia; Vicinanza, Diego; Frigaard, Peter
2008-01-01
The SSG (Sea Slot-cone Generator) is a wave energy converter of the overtopping type. The structure consists of a number of reservoirs one on the top of each others above the mean water level, in which the water of incoming waves is stored temporary. In each reservoir, expressively designed low...... head hydroturbines are converting the potential energy of the stored water into power. A key to success for the SSG will be the low cost of the structure and its robustness. The construction of the pilot plant is scheduled and this paper aims to describe the concept of the SSG wave energy converter...... and the studies behind the process that leads to its construction. The pilot plant is an on-shore full scale module in 3 levels with an expected power production of 320 MWh/y in the North Sea. Location, wave climate and laboratory tests results will be used here to describe the pilot plant and its characteristics....
Wave Equation Inversion of Skeletonized SurfaceWaves
Zhang, Zhendong
2015-08-19
We present a surface-wave inversion method that inverts for the S-wave velocity from the Rayleigh dispersion curve for the fundamental-mode. We call this wave equation inversion of skeletonized surface waves because the dispersion curve for the fundamental-mode Rayleigh wave is inverted using finite-difference solutions to the wave equation. The best match between the predicted and observed dispersion curves provides the optimal S-wave velocity model. Results with synthetic and field data illustrate the benefits and limitations of this method.
Electromagnetic van Kampen waves
Energy Technology Data Exchange (ETDEWEB)
Ignatov, A. M., E-mail: aign@fpl.gpi.ru [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)
2017-01-15
The theory of van Kampen waves in plasma with an arbitrary anisotropic distribution function is developed. The obtained solutions are explicitly expressed in terms of the permittivity tensor. There are three types of perturbations, one of which is characterized by the frequency dependence on the wave vector, while for the other two, the dispersion relation is lacking. Solutions to the conjugate equations allowing one to solve the initial value problem are analyzed.
Shatah, Jalal
2000-01-01
This volume contains notes of the lectures given at the Courant Institute and a DMV-Seminar at Oberwolfach. The focus is on the recent work of the authors on semilinear wave equations with critical Sobolev exponents and on wave maps in two space dimensions. Background material and references have been added to make the notes self-contained. The book is suitable for use in a graduate-level course on the topic.
Bukhari, Ijaz; Nuhman-ul-Haq; Hyat, Khizar
2013-01-01
Watermarking helps in ensuring originality, ownership and copyrights of a digital image. This paper aims at embedding a Watermark in an image using Wave Atom Transform. Preference of Wave Atoms on other transformations has been due to its sparser expansion, adaptability to the direction of local pattern, and sharp frequency localization. In this scheme, we had tried to spread the watermark in an image so that the information at one place is very small and undetectable. In order to extract the...
Bonnor, W. B.; Piper, M. S.
1997-01-01
Einstein's equations admit solutions corresponding to photon rockets. In these a massive particle recoils because of the anisotropic emission of photons. In this paper we ask whether rocket motion can be powered only by the emission of gravitational waves. We use the double series approximation method and show that this is possible. A loss of mass and gain in momentum arise in the second approximation because of the emission of quadrupole and octupole waves.
Sound Waves Levitate Substrates
Lee, M. C.; Wang, T. G.
1982-01-01
System recently tested uses acoustic waves to levitate liquid drops, millimeter-sized glass microballoons, and other objects for coating by vapor deposition or capillary attraction. Cylindrical contactless coating/handling facility employs a cylindrical acoustic focusing radiator and a tapered reflector to generate a specially-shaped standing wave pattern. Article to be processed is captured by the acoustic force field under the reflector and moves as reflector is moved to different work stations.
DEFF Research Database (Denmark)
Kramer, Morten; Kristensen, Tom Sten
Design pile loads in this document are based on the Morison equation. In Chapter 3 and 4 the background for the design loads provided in Chapter 5 are given. In the remaining chapters from Chapter 6 and onward discussions and explanations of the results are given. A historical list of activities ...... to the present revision is given in Appendix A. Calculations of extreme events with wave slamming and plunging wave breaking is included in Appendix B and C....
When "altering brain function" becomes "mind control".
Koivuniemi, Andrew; Otto, Kevin
2014-01-01
Functional neurosurgery has seen a resurgence of interest in surgical treatments for psychiatric illness. Deep brain stimulation (DBS) technology is the preferred tool in the current wave of clinical experiments because it allows clinicians to directly alter the functions of targeted brain regions, in a reversible manner, with the intent of correcting diseases of the mind, such as depression, addiction, anorexia nervosa, dementia, and obsessive compulsive disorder. These promising treatments raise a critical philosophical and humanitarian question. "Under what conditions does 'altering brain function' qualify as 'mind control'?" In order to answer this question one needs a definition of mind control. To this end, we reviewed the relevant philosophical, ethical, and neurosurgical literature in order to create a set of criteria for what constitutes mind control in the context of DBS. We also outline clinical implications of these criteria. Finally, we demonstrate the relevance of the proposed criteria by focusing especially on serendipitous treatments involving DBS, i.e., cases in which an unintended therapeutic benefit occurred. These cases highlight the importance of gaining the consent of the subject for the new therapy in order to avoid committing an act of mind control.
When Altering Brain Function Becomes Mind Control
Directory of Open Access Journals (Sweden)
Andrew Sanford Koivuniemi
2014-10-01
Full Text Available Functional neurosurgery has seen a resurgence of interest in surgical treatments for psychiatric illness. Deep brain stimulation (DBS technology is the preferred tool in the current wave of clinical experiments because it allows clinicians to directly alter the functions of targeted brain regions, in a reversible manner, with the intent of correcting diseases of the mind, such as depression, addiction, anorexia nervosa, dementia, and obsessive compulsive disorder. These promising treatments raise a critical philosophical and humanitarian question. Under what conditions does ‘altering brain function’ qualify as ‘mind control’? In order to answer this question one needs a definition of mind control. To this end, we reviewed the relevant philosophical, ethical, and neurosurgical literature in order to create a set of criteria for what constitutes mind control in the context of DBS. We also outline clinical implications of these criteria. Finally, we demonstrate the relevance of the proposed criteria by focusing especially on serendipitous treatments involving DBS, i.e., cases in which an unintended therapeutic benefit occurred. These cases highlight the importance of gaining the consent of the subject for the new therapy in order to avoid committing an act of mind control.
Wind Generated Rogue Waves in an Annular Wave Flume.
Toffoli, A; Proment, D; Salman, H; Monbaliu, J; Frascoli, F; Dafilis, M; Stramignoni, E; Forza, R; Manfrin, M; Onorato, M
2017-04-07
We investigate experimentally the statistical properties of a wind-generated wave field and the spontaneous formation of rogue waves in an annular flume. Unlike many experiments on rogue waves where waves are mechanically generated, here the wave field is forced naturally by wind as it is in the ocean. What is unique about the present experiment is that the annular geometry of the tank makes waves propagating circularly in an unlimited-fetch condition. Within this peculiar framework, we discuss the temporal evolution of the statistical properties of the surface elevation. We show that rogue waves and heavy-tail statistics may develop naturally during the growth of the waves just before the wave height reaches a stationary condition. Our results shed new light on the formation of rogue waves in a natural environment.
Chorus Wave Modulation of Langmuir Waves in the Radiation Belts
Li, Jinxing; Bortnik, Jacob; An, Xin; Li, Wen; Thorne, Richard M.; Zhou, Meng; Kurth, William S.; Hospodarsky, George B.; Funsten, Herbert O.; Spence, Harlan E.
2017-12-01
Using high-resolution waveforms measured by the Van Allen Probes, we report a novel observation in the radiation belts. Namely, we show that multiband, discrete, rising-tone whistler mode chorus emissions exhibit a one-to-one correlation with Langmuir wave bursts. Moreover, the periodic Langmuir wave bursts are generally observed at the phase location where the chorus wave E|| component is oriented opposite to its propagation direction. The electron measurements show a beam in phase space density at the particle velocity that matches the parallel phase velocity of the chorus waves. Based on this evidence, we conclude that the chorus waves accelerate the suprathermal electrons via Landau resonance and generate a localized electron beam in phase space density. Consequently, the Langmuir waves are excited locally and are modulated by the chorus wave phase. This microscale interaction between chorus waves and high-frequency electrostatic waves provides a new insight into the nonlinear wave-particle interaction process.
Conklin, John
2016-03-01
With the expected direct detection of gravitational waves by Advanced LIGO and pulsar timing arrays in the near future, and with the recent launch of LISA Pathfinder this can arguably be called the decade of gravitational waves. Low frequency gravitational waves in the mHz range, which can only be observed from space, provide the richest science and complement high frequency observatories on the ground. A space-based observatory will improve our understanding of the formation and growth of massive black holes, create a census of compact binary systems in the Milky Way, test general relativity in extreme conditions, and enable searches for new physics. LISA, by far the most mature concept for detecting gravitational waves from space, has consistently ranked among the nation's top priority large science missions. In 2013, ESA selected the science theme ``The Gravitational Universe'' for its third large mission, L3, under the Cosmic Visions Program, with a planned launch date of 2034. NASA has decided to join with ESA on the L3 mission as a junior partner and has recently assembled a study team to provide advice on how NASA might contribute to the European-led mission. This talk will describe these efforts and the activities of the Gravitational Wave Science Interest Group and the L3 Study Team, which will lead to the first space-based gravitational wave observatory.
Grimshaw, RHJ
2007-01-01
After the initial observation by John Scott Russell of a solitary wave in a canal, his insightful laboratory experiments and the subsequent theoretical work of Boussinesq, Rayleigh and Korteweg and de Vries, interest in solitary waves in fluids lapsed until the mid 1960's with the seminal paper of Zabusky and Kruskal describing the discovery of the soliton. This was followed by the rapid development of the theory of solitons and integrable systems. At the same time came the realization that solitary waves occur naturally in many physical systems, and play a fundamental role in many circumstances. The aim of this text is to describe the role that soliton theory plays in fluids in several contexts. After an historical introduction, the book is divided five chapters covering the basic theory of the Korteweg-de Vries equation, and the subsequent application to free-surface solitary waves in water to internal solitary waves in the coastal ocean and the atmospheric boundary layer, solitary waves in rotating flows, ...
Calcium wave signaling in cancer cells
PARKASH, JAI; ASOTRA, KAMLESH
2010-01-01
Ca2+ functions as an important signaling messenger right from beginning of the life to final moment of the end of the life. Ca2+ is needed at several steps of the cell cycle such as early G1, at the G1/S, and G2/M transitions. The Ca2+ signals in the form of time-dependent changes in intracellular Ca2+ concentrations, [Ca2+]i, are presented as brief spikes organized into regenerative Ca2+ waves. Ca2+-mediated signaling pathways have also been shown to play important roles in carcinogenesis such as transformation of normal cells to cancerous cells, tumor formation and growth, invasion, angiogenesis and metastasis. Since the global Ca2+ oscillations arise from Ca2+ waves initiated locally, it results in stochastic oscillations because although each cell has many IP3Rs and Ca2+ ions, the law of large numbers does not apply to the initiating event which is restricted to very few IP3Rs due to steep Ca2+ concentration gradients. The specific Ca2+ signaling information is likely to be encoded in a calcium code as the amplitude, duration, frequency, waveform or timing of Ca2+ oscillations and decoded again at a later stage. Since Ca2+ channels or pumps involved in regulating Ca2+ signaling pathways show altered expression in cancer, one can target these Ca2+ channels and pumps as therapeutic options to decrease proliferation of cancer cells and to promote their apoptosis. These studies can provide novel insights into alterations in Ca2+ wave patterns in carcinogenesis and lead to development of newer technologies based on Ca2+ waves for the diagnosis and therapy of cancer. PMID:20875431
Shock wave treatment in medicine
Indian Academy of Sciences (India)
Extracorporeal shock wave therapy in orthopedics and traumatology is still a young therapy method. Since the last few years the development of shock wave therapy has progressed rapidly. Shock waves have changed the treatment of urolithiasis substantially. Today shock waves are the first choice to treat kidney and ...
Nonlinear surface waves over topography
Janssen, T.T.
2006-01-01
As ocean surface waves radiate into shallow coastal areas and onto beaches, their lengths shorten, wave heights increase, and the wave shape transforms from nearsinusoidal to the characteristic saw-tooth shapes at the onset of breaking; in the ensuing breaking process the wave energy is cascaded to
Westerhof, Nico; Segers, Patrick; Westerhof, Berend E.
2015-01-01
Wave separation analysis and wave intensity analysis (WIA) use (aortic) pressure and flow to separate them in their forward and backward (reflected) waves. While wave separation analysis uses measured pressure and flow, WIA uses their derivatives. Because differentiation emphasizes rapid changes,
Partnership for Wave Power - Roadmaps
DEFF Research Database (Denmark)
Nielsen, Kim; Krogh, Jan; Brodersen, Hans Jørgen
This Wave Energy Technology Roadmap is developed by the Partnership for Wave Power including nine Danish wave energy developers. It builds on to the strategy [1] published by the Partnership in 2012, a document that describes the long term vision of the Danish Wave Energy sector: “By 2030...
Wave-plate structures, power selective optical filter devices, and optical systems using same
Koplow, Jeffrey P [San Ramon, CA
2012-07-03
In an embodiment, an optical filter device includes an input polarizer for selectively transmitting an input signal. The device includes a wave-plate structure positioned to receive the input signal, which includes first and second substantially zero-order, zero-wave plates arranged in series with and oriented at an angle relative to each other. The first and second zero-wave plates are configured to alter a polarization state of the input signal passing in a manner that depends on the power of the input signal. Each zero-wave plate includes an entry and exit wave plate each having a fast axis, with the fast axes oriented substantially perpendicular to each other. Each entry wave plate is oriented relative to a transmission axis of the input polarizer at a respective angle. An output polarizer is positioned to receive a signal output from the wave-plate structure and selectively transmits the signal based on the polarization state.
Numerical modelling of wind effects on breaking waves in the surf zone
Xie, Zhihua
2017-10-01
Wind effects on periodic breaking waves in the surf zone have been investigated in this study using a two-phase flow model. The model solves the Reynolds-averaged Navier-Stokes equations with the k - 𝜖 turbulence model simultaneously for the flows both in the air and water. Both spilling and plunging breakers over a 1:35 sloping beach have been studied under the influence of wind, with a focus during wave breaking. Detailed information of the distribution of wave amplitudes and mean water level, wave-height-to-water-depth ratio, the water surface profiles, velocity, vorticity, and turbulence fields have been presented and discussed. The inclusion of wind alters the air flow structure above water waves, increases the generation of vorticity, and affects the wave shoaling, breaking, overturning, and splash-up processes. Wind increases the water particle velocities and causes water waves to break earlier and seaward, which agrees with the previous experiment.
Resonant Wave-Particle Manipulation Techniques
Zhmoginov, Andrey I.
Charged particle dynamics can be altered considerably even by weak electromagnetic waves if some of the particles are in resonance. Depending on the wave parameters, the resonances in the phase space can either be well separated, in which case the particle dynamics is regular almost everywhere, or they can overlap leading to stochastic particle motion in a large volume of the phase space. Although different, both of these regimes allow one to manipulate particle ensembles by arranging resonant interactions with appropriate waves. This thesis is devoted to studying two wave-particle manipulation techniques having potential applications in fusion and laser-plasma interaction research. Specifically, we study the alpha-channeling effect (which relies on stochastic diffusion of resonant particles) and the so-called negative-mass effect (NME) (which involves the conservation of the adiabatic invariant). The alpha-channeling effect entails the use of radio-frequency waves to expel and cool high-energetic alpha particles born in a fusion reactor; the device reactivity can then be increased even further by redirecting the extracted energy to fuel ions. Recently, the alpha-channeling technique, originally proposed for tokamaks, was shown to be suitable for application in mirror machines as well. In the first part of this thesis, we deepen the understanding of issues and possibilities of the alpha-channeling implementation in open-ended reactors. We verify the feasibility of this technique and identify specific waves and supplementary techniques, which can potentially be used for implementing the alpha-channeling in realistic mirror devices. We also propose a new technique for using the alpha-channeling wave energy to catalyze fusion reaction by employing minority ions as a mediator species. In the second part of this thesis, the NME manifesting itself as an unusual response of a resonant particle to external adiabatic perturbations mimicking the behavior of a particle with a
Directory of Open Access Journals (Sweden)
Juliano José Jorge
2002-03-01
Full Text Available A recidiva de cálculos urinários é freqüente, necessitando múltiplas aplicações de ondas de choque para seu tratamento. O objetivo deste trabalho é pesquisar alterações morfológicas agudas ocorridas nos rins de ratos submetidos a reaplicação de ondas de choque. Foram utilizados 48 ratos, distribuídos em 4 grupos de 12 animais. O grupo I recebeu duas aplicações de 2000 ondas de choque, com 14 KV de intensidade em intervalo de 14 dias entre as aplicações. O grupo II serviu de controle. O grupo III recebeu apenas uma aplicação. O grupo IV serviu de controle. Os rins foram examinados após 72 horas da aplicação das ondas de choque, observando: hemorragias subcapsular, intersticial e glomerular; perda da junção corticomedular; infiltrado crônico; necrose cortical e edema perivascular. Os resultados mostraram que a reaplicação de ondas de choque eletro-hidráulicas sobre rins de ratos não causou maiores danos que os produzidos pela primeira aplicação.Urinary calculus recidives are frequents, needing shock waves multiple applications for its treatment. This research studies acute morphological changes that occur in the kidneys of rats subjected to electro-hydraulic shock waves reapplication. The experiment used 48 rats, divided in four groups of 12. The first group received two 2,000 shock waves applications with 14 kV intensity and a fourteen-day interval between the applications. The third group received only one 2,000 shock waves application of the same intensity. The second and fourth groups were control groups. The kidneys were examined 72 hours after the application, observing: subcapsular, interstitial and glomerular hemorrhage; corticol results showed that electro-hydraulic shock reapplication in the rat kidneys didn’t greater damages than the first application.
Spontaneous glial calcium waves in the retina develop over early adulthood.
Kurth-Nelson, Zeb L; Mishra, Anusha; Newman, Eric A
2009-09-09
Intercellular glial Ca(2+) waves constitute a signaling pathway between glial cells. Artificial stimuli have previously been used to evoke these waves, and their physiological significance has been questioned. We report here that Ca(2+) waves occur spontaneously in rat retinal glial cells, both in the isolated retina and in vivo. These spontaneous waves are propagated by ATP release. In the isolated retina, suramin (P2 receptor antagonist) reduces the frequency of spontaneous wave generation by 53%, and apyrase (ATP-hydrolyzing enzyme) reduces frequency by 95-100%. Luciferin-luciferase chemiluminescence reveals waves of ATP matching the spontaneous Ca(2+) waves, indicating that ATP release occurs as spontaneous Ca(2+) waves are generated. Wave generation also depends on age. Spontaneous wave frequency rises from 0.27 to 1.0 per minute per mm(2), as rats age from 20 to 120 d. The sensitivity of glia to ATP does not increase with age, but the ATP released by evoked waves is 31% greater in 120-d-old than in 20-d-old rats, suggesting that increased ATP release in older animals could account for the higher frequency of wave generation. Simultaneous imaging of glial Ca(2+) and arterioles in the isolated retina demonstrates that spontaneous waves alter vessel diameter, implying that spontaneous waves may have a significant impact on retinal physiology. Spontaneous intercellular glial Ca(2+) waves also occur in the retina in vivo, with frequency, speed, and diameter similar to the isolated retina. Increased spontaneous wave occurrence with age suggests that wave generation may be related to retinal pathology.
Nonlinear wave interactions of kinetic sound waves
Directory of Open Access Journals (Sweden)
G. Brodin
2015-08-01
Full Text Available We reconsider the nonlinear resonant interaction between three electrostatic waves in a magnetized plasma. The general coupling coefficients derived from kinetic theory are reduced here to the low-frequency limit. The main contribution to the coupling coefficient we find in this way agrees with the coefficient recently presented in Annales Geophysicae. But we also deduce another contribution which sometimes can be important, and which qualitatively agrees with that of an even more recent paper. We have thus demonstrated how results derived from fluid theory can be improved and generalized by means of kinetic theory. Possible extensions of our results are outlined.
Metamaterials, from electromagnetic waves to water waves, bending waves and beyond
Dupont, G.
2015-08-04
We will review our recent work on metamaterials for different types of waves. Transposition of transform optics to water waves and bending waves on plates will be considered with potential applications of cloaking to water waves protection and anti-vibrating systems.
Partial-wave expansions of angular spectra of plane waves.
Lock, James A
2006-11-01
Focused electromagnetic beams are frequently modeled by either an angular spectrum of plane waves or a partial-wave sum of spherical multipole waves. The connection between these two beam models is explored here. The partial-wave expansion of an angular spectrum containing evanescent components is found to possess only odd partial waves. On the other hand, the partial-wave expansion of an alternate angular spectrum constructed so as to be free of evanescent components contains all partial waves but describes a propagating beam with a small amount of standing-wave component mixed in. A procedure is described for minimizing the standing-wave component so as to more accurately model a purely forward propagating experimental beam.
Wave Dragon Wave Energy Converters Used as Coastal Protection
DEFF Research Database (Denmark)
Nørgaard, Jørgen Harck; Andersen, Thomas Lykke; Kofoed, Jens Peter
2011-01-01
This paper deals with wave energy converters used to reduce the wave height along shorelines. For this study the Wave Dragon wave energy converter is chosen. The wave height reduction from a single device has been evaluated from physical model tests in scale 1:51.8 of the 260 x 150 m, 24 kW/m model....... Different stiffness of the mooring system and reflector joints has been tested for different wave steepness and relative floating ratios. The influence of each of these parameters on the wave transmission is presented. Additionally, a numerical case study is performed for the Santander Bay in the northern...... Spain, to evaluate the potential for reducing wave heights close the shore by means of Wave Dragons....
Nonstationary distributions of wave intensities in wave turbulence
Choi, Yeontaek; Jo, Sanggyu; Kwon, Young-Sam; Nazarenko, Sergey
2017-09-01
We obtain a general solution for the probability density function (PDF) of wave intensities in non-stationary wave turbulence. The solution is expressed in terms of the initial PDF and the wave action spectrum satisfying the wave-kinetic equation. We establish that, in the absence of wave breaking, the wave statistics converge to a Gaussian distribution in forced-dissipated wave systems while approaching a steady state. Also, we find that in non-stationary systems, if the statistic is Gaussian initially, it will remain Gaussian for all time. Generally, if the statistic is not initially Gaussian, it will remain non-Gaussian over the characteristic nonlinear evolution time of the wave spectrum. In freely decaying wave turbulence, substantial deviations from Gaussianity may persist infinitely long.
Prototype Testing of the Wave Energy Converter Wave Dragon
DEFF Research Database (Denmark)
Kofoed, Jens Peter; Frigaard, Peter Bak; Friis-Madsen, Erik
2004-01-01
The Wave Dragon is an offshore wave energy converter of the overtopping type. It consists of two wave reflectors focusing the incoming waves towards a ramp, a reservoir for collecting the overtopping water and a number of hydro turbines for converting the pressure head into power. In the period...... from 1998 to 2001 extensive wave tank testing on a scale model was carried at Aalborg University. Then, a 57 x 27 m wide and 237 tonnes heavy (incl. ballast) prototype of the Wave Dragon, placed in Nissum Bredning, Denmark, was grid connected in May 2003 as the world's first offshore wave energy...... converter. The prototype is fully equipped with hydro turbines and automatic control systems, and is instrumented in order to monitor power production, wave climate, forces in mooring lines, stresses in the structure and movements of the Wave Dragon. During the last months, extensive testing has started...
Prototype Testing of the Wave Energy Converter Wave Dragon
DEFF Research Database (Denmark)
Kofoed, Jens Peter; Frigaard, Peter; Friis-Madsen, Erik
2006-01-01
The Wave Dragon is an offshore wave energy converter of the overtopping type. It consists of two wave reflectors focusing the incoming waves towards a ramp, a reservoir for collecting the overtopping water and a number of hydro turbines for converting the pressure head into power. In the period...... from 1998 to 2001 extensive wave tank testing on a scale model was carried at Aalborg University. Then, a 57!27 m wide and 237 tonnes heavy (incl. ballast) prototype of the Wave Dragon, placed in Nissum Bredning, Denmark, was grid connected in May 2003 as the world’s first offshore wave energy...... converter. The prototype is fully equipped with hydro turbines and automatic control systems, and is instrumented in order to monitor power production, wave climate, forces in mooring lines, stresses in the structure and movements of the Wave Dragon. In the period May 2003 to January 2005 an extensive...
Yuan, Tao
Sensing and imaging using Terahertz (THz) radiation has attracted more and more interest in the last two decades thanks to the abundant material 'finger prints' in the THz frequency range. The low photon energy also makes THz radiation an attractive tool for nondestructive evaluation of materials and devices, biomedical applications, security checks and explosive screening. Due to the long wavelength, the far-field THz wave optical systems have relatively low spatial resolution. This physical limitation confines THz wave sensing and imaging to mostly macro-size samples. To investigate local material properties or micro-size structures and devices, near-field technology has to be employed. In this dissertation, the Electro-Optical THz wave emission microscope is investigated. The basic principle is to focus the femtosecond laser to a tight spot on a thin THz emitter layer to produce a THz wave source with a similar size as the focus spot. The apparatus provides a method for placing a THz source with sub-wavelength dimension in the near-field range of the investigated sample. Spatial resolution to the order of one tenth of the THz wavelength is demonstrated by this method. The properties of some widely used THz wave emission materials under tight focused pump light are studied. As an important branch of THz time domain spectroscopy (THz-TDS), THz wave emission spectroscopy has been widely used as a tool to investigate the material physics, such as energy band structure, carrier dynamics, material nonlinear properties and dynamics. As the main work of this dissertation, we propose to combine the THz wave emission spectroscopy with scanning probe microscopy (SPM) to build a tip-assisted THz wave emission microscope (TATEM), which is a valuable extension to current SPM science and technology. Illuminated by a femtosecond laser, the biased SPM tip forms a THz wave source inside the sample beneath the tip. The source size is proportional to the apex size of the tip so
Potential changes of wave steepness and occurrence of rogue waves
Bitner-Gregersen, Elzbieta M.; Toffoli, Alessandro
2015-04-01
Wave steepness is an important characteristic of a sea state. It is also well established that wave steepness is one of the parameter responsible for generation of abnormal waves called also freak or rogue waves. The study investigates changes of wave steepness in the past and future wave climate in the North Atlantic. The fifth assessment report IPCC (2013) uses four scenarios for future greenhouse gas concentrations in the atmosphere called Representative Concentration Pathways (RCP). Two of these scenarios RCP 4.5 and RCP 8.5 have been selected to project future wave conditions in the North Atlantic. RCP 4.5 is believed to achieve the political target of a maximum global mean temperature increase of 2° C while RPC 8.5 is close to 'business as usual' and expected to give a temperature increase of 4° C or more. The analysis includes total sea, wind sea and swell. Potential changes of wave steepness for these wave systems are shown and compared with wave steepness derived from historical data. Three historical data sets with different wave model resolutions are used. The investigations show also changes in the mean wind direction as well as in the relative direction between wind sea and swell. Consequences of wave steepness changes for statistics of surface elevation and generation of rogue waves are demonstrated. Uncertainties associated with wave steepness projections are discussed.
McGourty, L.; Rideout, K.
2005-12-01
"Waves in Motion" This teaching unit was created by Leslie McGourty and Ken Rideout under the Research Experience for Teachers (RET) program at MIT Haystack Observatory during the summer of 2005. The RET program is funded by a grant from the National Science Foundation. The goals of this teaching unit are to deepen students' understanding about waves, wave motion, and the electromagnetic spectrum as a whole. Specifically students will comprehend the role radio waves play in our daily lives and in the investigation of the universe. The lessons can be used in a high school physics, earth science or astronomy curriculum. The unit consists of a series of interlocking lectures, activities, and investigations that can be used as stand alone units to supplement a teacher's existing curriculum, as an independent investigation for a student, or as a long exploration into radio astronomy with a theme of waves in space: how and where they carry their information. Special emphasis is given to the Relativity theories in honor of the "World Year of Physics" to celebrate Einstein's 1905 contributions. The lessons are currently being implemented at the high school level, the preliminary results of which will be presented. At the end of the academic year, the units will be evaluated and updated, reflecting student input and peer review after which they will be posted on the internet for teachers to use in their classrooms.
Rupture, waves and earthquakes
UENISHI, Koji
2017-01-01
Normally, an earthquake is considered as a phenomenon of wave energy radiation by rupture (fracture) of solid Earth. However, the physics of dynamic process around seismic sources, which may play a crucial role in the occurrence of earthquakes and generation of strong waves, has not been fully understood yet. Instead, much of former investigation in seismology evaluated earthquake characteristics in terms of kinematics that does not directly treat such dynamic aspects and usually excludes the influence of high-frequency wave components over 1 Hz. There are countless valuable research outcomes obtained through this kinematics-based approach, but “extraordinary” phenomena that are difficult to be explained by this conventional description have been found, for instance, on the occasion of the 1995 Hyogo-ken Nanbu, Japan, earthquake, and more detailed study on rupture and wave dynamics, namely, possible mechanical characteristics of (1) rupture development around seismic sources, (2) earthquake-induced structural failures and (3) wave interaction that connects rupture (1) and failures (2), would be indispensable. PMID:28077808
Rupture, waves and earthquakes.
Uenishi, Koji
2017-01-01
Normally, an earthquake is considered as a phenomenon of wave energy radiation by rupture (fracture) of solid Earth. However, the physics of dynamic process around seismic sources, which may play a crucial role in the occurrence of earthquakes and generation of strong waves, has not been fully understood yet. Instead, much of former investigation in seismology evaluated earthquake characteristics in terms of kinematics that does not directly treat such dynamic aspects and usually excludes the influence of high-frequency wave components over 1 Hz. There are countless valuable research outcomes obtained through this kinematics-based approach, but "extraordinary" phenomena that are difficult to be explained by this conventional description have been found, for instance, on the occasion of the 1995 Hyogo-ken Nanbu, Japan, earthquake, and more detailed study on rupture and wave dynamics, namely, possible mechanical characteristics of (1) rupture development around seismic sources, (2) earthquake-induced structural failures and (3) wave interaction that connects rupture (1) and failures (2), would be indispensable.
Modelling wave-boundary layer interaction for wind power applications
Jenkins, A. D.; Barstad, I.; Gupta, A.; Adakudlu, M.
2012-04-01
Marine wind power production facilities are subjected to direct and indirect effects of ocean waves. Direct effects include forces due to wave orbital motions and slamming of the water surface under breaking wave conditions, corrosion and icing due to sea spray, and the effects of wave-generated air bubbles. Indirect effects include include the influence of waves on the aerodynamic sea-surface roughness, air turbulence, the wind velocity profile, and air velocity oscillations, wave-induced currents and sediment transport. Field observations within the boundary layers from floating measurement may have to be corrected to account for biases induced as a result of wave-induced platform motions. To estimate the effect of waves on the atmospheric boundary layer we employ the WRF non-hydrostatic mesoscale atmosphere model, using the default YSU planetary boundary layer (PBL) scheme and the WAM spectral wave model, running simultaneously and coupled using the open-source coupler MCEL which can interpolate between different model grids and timesteps. The model is driven by the WRF wind velocity at 10 m above the surface. The WRF model receives from WAM updated air-sea stress fields computed from the wind input source term, and computes new fields for the Charnock parameter and marine surface aerodynamic roughness. Results from a North Atlantic and Nordic Seas simulation indicate that the two-way coupling scheme alters the 10 metre wind predicted by WRF by up to 10 per cent in comparison with a simulation using a constant Charnock parameter. The changes are greatest in developing situations with passages of fronts, moving depressions and squalls. This may be directly due to roughness length changes, or may be due to changes in the timing of front/depression/squall passages. Ongoing work includes investigating the effect of grid refinement/nesting, employing different PBL schemes, and allowing the wave field to change the direction of the total air-sea stress.
Tango waves in a bidomain model of fertilization calcium waves
Li, Yue-Xian
2003-12-01
Fertilization of an egg cell is marked by one or several Ca 2+ waves that travel across the intra-cellular space, called fertilization Ca 2+ waves. Patterns of Ca 2+ waves observed in mature or immature oocytes include traveling fronts and pulses as well as concentric and spiral waves. These patterns have been studied in other excitable media in physical, chemical, and biological systems. Here, we report the discovery of a new wave phenomenon in the numerical study of a bidomain model of fertilization Ca 2+ waves. This wave is a front that propagates in a back-and-forth manner that resembles the movement of tango dancers, thus is called a tango wave. When the medium is excitable, a forward-moving tango wave can generate traveling pulses that propagate down the space without reversal. The study shows that the occurrence of tango waves is related to spatial inhomogeneity in the local dynamics. This is tested and confirmed by simulating similar waves in a medium with stationary spatial inhomogeneity. Similar waves are also obtained in a FitzHugh-Nagumo system with a linear spatial ramp. In both the bidomain model of Ca 2+ waves and the FitzHugh-Nagumo system, the front is stable when the slope of a linear ramp is large. As the slope decreases beyond a critical value, front oscillations occur. The study shows that tango waves facilitate the dispersion of localized Ca 2+. Key features of the bidomain model underlying the occurrence of tango waves are revealed. These features are commonly found in egg cells of a variety of species. Thus, we predict that tango waves can occur in real egg cells provided that a slowly varying inhomogeneity does occur following the sperm entry. The observation of tango wave-like waves in nemertean worm and ascidian eggs seems to support such a prediction.
Wind and wave dataset for Matara, Sri Lanka
Luo, Yao; Wang, Dongxiao; Priyadarshana Gamage, Tilak; Zhou, Fenghua; Madusanka Widanage, Charith; Liu, Taiwei
2018-01-01
We present a continuous in situ hydro-meteorology observational dataset from a set of instruments first deployed in December 2012 in the south of Sri Lanka, facing toward the north Indian Ocean. In these waters, simultaneous records of wind and wave data are sparse due to difficulties in deploying measurement instruments, although the area hosts one of the busiest shipping lanes in the world. This study describes the survey, deployment, and measurements of wind and waves, with the aim of offering future users of the dataset the most comprehensive and as much information as possible. This dataset advances our understanding of the nearshore hydrodynamic processes and wave climate, including sea waves and swells, in the north Indian Ocean. Moreover, it is a valuable resource for ocean model parameterization and validation. The archived dataset (Table 1) is examined in detail, including wave data at two locations with water depths of 20 and 10 m comprising synchronous time series of wind, ocean astronomical tide, air pressure, etc. In addition, we use these wave observations to evaluate the ERA-Interim reanalysis product. Based on Buoy 2 data, the swells are the main component of waves year-round, although monsoons can markedly alter the proportion between swell and wind sea. The dataset (Luo et al., 2017) is publicly available from Science Data Bank (https://doi.org/10.11922/sciencedb.447" target="_blank">https://doi.org/10.11922/sciencedb.447).
Wind and wave dataset for Matara, Sri Lanka
Directory of Open Access Journals (Sweden)
Y. Luo
2018-01-01
Full Text Available We present a continuous in situ hydro-meteorology observational dataset from a set of instruments first deployed in December 2012 in the south of Sri Lanka, facing toward the north Indian Ocean. In these waters, simultaneous records of wind and wave data are sparse due to difficulties in deploying measurement instruments, although the area hosts one of the busiest shipping lanes in the world. This study describes the survey, deployment, and measurements of wind and waves, with the aim of offering future users of the dataset the most comprehensive and as much information as possible. This dataset advances our understanding of the nearshore hydrodynamic processes and wave climate, including sea waves and swells, in the north Indian Ocean. Moreover, it is a valuable resource for ocean model parameterization and validation. The archived dataset (Table 1 is examined in detail, including wave data at two locations with water depths of 20 and 10 m comprising synchronous time series of wind, ocean astronomical tide, air pressure, etc. In addition, we use these wave observations to evaluate the ERA-Interim reanalysis product. Based on Buoy 2 data, the swells are the main component of waves year-round, although monsoons can markedly alter the proportion between swell and wind sea. The dataset (Luo et al., 2017 is publicly available from Science Data Bank (https://doi.org/10.11922/sciencedb.447.
Modulation of radio frequency signals by ULF waves
Directory of Open Access Journals (Sweden)
C. L. Waters
2007-06-01
Full Text Available The ionospheric plasma is continually perturbed by ultra-low frequency (ULF; 1–100 mHz plasma waves that are incident from the magnetosphere. In this paper we present a combined experimental and modeling study of the variation in radio frequency of signals propagating in the ionosphere due to the interaction of ULF wave energy with the ionospheric plasma. Modeling the interaction shows that the magnitude of the ULF wave electric field, e, and the geomagnetic field, B_{0}, giving an e×B_{0} drift, is the dominant mechanism for changing the radio frequency. We also show how data from high frequency (HF Doppler sounders can be combined with HF radar data to provide details of the spatial structure of ULF wave energy in the ionosphere. Due to spatial averaging effects, the spatial structure of ULF waves measured in the ionosphere may be quite different to that obtained using ground based magnetometer arrays. The ULF wave spatial structure is shown to be a critical parameter that determines how ULF wave effects alter the frequency of HF signals propagating through the ionosphere.
Modulation of radio frequency signals by ULF waves
Directory of Open Access Journals (Sweden)
C. L. Waters
2007-06-01
Full Text Available The ionospheric plasma is continually perturbed by ultra-low frequency (ULF; 1–100 mHz plasma waves that are incident from the magnetosphere. In this paper we present a combined experimental and modeling study of the variation in radio frequency of signals propagating in the ionosphere due to the interaction of ULF wave energy with the ionospheric plasma. Modeling the interaction shows that the magnitude of the ULF wave electric field, e, and the geomagnetic field, B0, giving an e×B0 drift, is the dominant mechanism for changing the radio frequency. We also show how data from high frequency (HF Doppler sounders can be combined with HF radar data to provide details of the spatial structure of ULF wave energy in the ionosphere. Due to spatial averaging effects, the spatial structure of ULF waves measured in the ionosphere may be quite different to that obtained using ground based magnetometer arrays. The ULF wave spatial structure is shown to be a critical parameter that determines how ULF wave effects alter the frequency of HF signals propagating through the ionosphere.
Conversion from surface wave to surface wave on reflection
DEFF Research Database (Denmark)
Novitsky, Andrey
2010-01-01
We discuss the reflection and transmission of an incident surface wave to a pure surface wave state at another interface. This is allowed only for special media parameters: at least one of the media must be magnetic. We found such material characteristics that the obliquely incident surface wave...... can be transmitted without changing its direction (nevertheless the amplitude varies). For other media parameters, only normally incident surface waves can be converted to surface waves. We propose applications of the predicted conversion as a beam splitter and polarization filter for surface waves....
Experimental Study on the WavePiston Wave Energy Converter
DEFF Research Database (Denmark)
Pecher, Arthur; Kofoed, Jens Peter; Angelelli, E.
This report presents the results of an experimental study of the power performance of the WavePiston wave energy converter. It focuses mainly on evaluating the power generating capabilities of the device and the effect of the following issues: Scaling ratios PTO loading Wave height and wave period...... dependency Oblique incoming waves Distance between plates During the study, the model supplied by the client, WavePiston, has been rigorously tested as all the anticipated tests have been done thoroughly and during all tests, good quality data has been obtained from all the sensors....
Thoracic shock wave injury causes behavioral abnormalities in mice.
Miyazaki, Hiromi; Miyawaki, Hiroki; Satoh, Yasushi; Saiki, Takami; Kawauchi, Satoko; Sato, Shunichi; Saitoh, Daizoh
2015-12-01
Mild traumatic brain injury (mTBI) is caused by complex mechanisms of systemic, local and cerebral responses to blast exposure. However, the molecular mechanisms of cognitive impairment after exposure to blast waves are not clearly known. We tested the hypothesis that thoracic injury induced functional and morphological impairment in the brain, leading to behavioral abnormalities. Mice were exposed to laser-induced shock waves (LISWs) impacting the thorax and assessed for behavioral outcome at 7 and 28 days post injury. Hippocampus and lung were collected for histopathological analysis and gene expression profiling after injury. Thoracic injury transiently decreased the heart rate, blood pressure, peripheral oxyhemoglobin saturation and cerebral blood flow immediately after LISW exposure. Although LISWs exposure caused pulmonary contusions, hemorrhage was not apparent in the brain. At 7 and 28 days after, the injured mice exhibited impaired short-term memory and depression-like behavior compared with controls. Histological assessments showed an increase in neuronal cell death after shock wave exposure, especially in the CA3 region of the hippocampus. Moreover, shock wave exposure altered the expression of functionally relevant genes in the hippocampus at 1 h and 1 day post injury. Our findings indicate that the LISW-induced thoracic injury with no direct impact on the brain affected the hippocampal gene expression and led to morphological alterations, resulting in behavioral abnormalities. Therefore, body protection may be extremely important in the effective prevention against blast-induced alterations in brain function.
Gavrilyuk, S L; Sukhinin, S V
2017-01-01
Starting with the basic notions and facts of the mathematical theory of waves illustrated by numerous examples, exercises, and methods of solving typical problems Chapters 1 & 2 show e.g. how to recognize the hyperbolicity property, find characteristics, Riemann invariants and conservation laws for quasilinear systems of equations, construct and analyze solutions with weak or strong discontinuities, and how to investigate equations with dispersion and to construct travelling wave solutions for models reducible to nonlinear evolution equations. Chapter 3 deals with surface and internal waves in an incompressible fluid. The efficiency of mathematical methods is demonstrated on a hierarchy of approximate submodels generated from the Euler equations of homogeneous and non-homogeneous fluids. The self-contained presentations of the material is complemented by 200+ problems of different level of difficulty, numerous illustrations, and bibliographical recommendations.
Yerganian, Simon Scott
2001-07-17
A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.
2016-01-01
This volume brings together four lecture courses on modern aspects of water waves. The intention, through the lectures, is to present quite a range of mathematical ideas, primarily to show what is possible and what, currently, is of particular interest. Water waves of large amplitude can only be fully understood in terms of nonlinear effects, linear theory being not adequate for their description. Taking advantage of insights from physical observation, experimental evidence and numerical simulations, classical and modern mathematical approaches can be used to gain insight into their dynamics. The book presents several avenues and offers a wide range of material of current interest. Due to the interdisciplinary nature of the subject, the book should be of interest to mathematicians (pure and applied), physicists and engineers. The lectures provide a useful source for those who want to begin to investigate how mathematics can be used to improve our understanding of water wave phenomena. In addition, some of the...
DEFF Research Database (Denmark)
Jensen, Jonas
This PhD project investigates and further develops methods for ultrasound plane wave imaging and blood flow estimation with the objective of overcoming some of the major limitations in conventional ultrasound systems, which are related to low frame rates and only estimation of velocities along...... the ultrasound beam. The first part of the contribution investigates the compromise between frame rate and plane wave image quality including the influence of grating lobes from a λ-pitch transducer. A method for optimizing the image quality is suggested, and it is shown that the frame rate can be increased...... healthy volunteers. Complex flow patterns were measured in an anthropomorphic flow phantom and showed good agreement with the velocity field simulated using computational fluid dynamics. The last part of the contribution investigates two clinical applications. Plane wave imaging was used for slow velocity...
Kurth, W. S.; Hospodarsky, G. B.; Kirchner, D. L.; Mokrzycki, B. T.; Averkamp, T. F.; Robison, W. T.; Piker, C. W.; Sampl, M.; Zarka, P.
2017-11-01
Jupiter is the source of the strongest planetary radio emissions in the solar system. Variations in these emissions are symptomatic of the dynamics of Jupiter's magnetosphere and some have been directly associated with Jupiter's auroras. The strongest radio emissions are associated with Io's interaction with Jupiter's magnetic field. In addition, plasma waves are thought to play important roles in the acceleration of energetic particles in the magnetosphere, some of which impact Jupiter's upper atmosphere generating the auroras. Since the exploration of Jupiter's polar magnetosphere is a major objective of the Juno mission, it is appropriate that a radio and plasma wave investigation is included in Juno's payload. This paper describes the Waves instrument and the science it is to pursue as part of the Juno mission.
Nonlinear elastic waves in materials
Rushchitsky, Jeremiah J
2014-01-01
The main goal of the book is a coherent treatment of the theory of propagation in materials of nonlinearly elastic waves of displacements, which corresponds to one modern line of development of the nonlinear theory of elastic waves. The book is divided on five basic parts: the necessary information on waves and materials; the necessary information on nonlinear theory of elasticity and elastic materials; analysis of one-dimensional nonlinear elastic waves of displacement – longitudinal, vertically and horizontally polarized transverse plane nonlinear elastic waves of displacement; analysis of one-dimensional nonlinear elastic waves of displacement – cylindrical and torsional nonlinear elastic waves of displacement; analysis of two-dimensional nonlinear elastic waves of displacement – Rayleigh and Love nonlinear elastic surface waves. The book is addressed first of all to people working in solid mechanics – from the students at an advanced undergraduate and graduate level to the scientists, professional...
Directory of Open Access Journals (Sweden)
A. V. Vikulin
2015-09-01
Full Text Available Gravity phenomena related to the Earth movements in the Solar System and through the Galaxy are reviewed. Such movements are manifested by geological processes on the Earth and correlate with geophysical fields of the Earth. It is concluded that geodynamic processes and the gravity phenomena (including those of cosmic nature are related. The state of the geomedium composed of blocks is determined by stresses with force moment and by slow rotational waves that are considered as a new type of movements [Vikulin, 2008, 2010]. It is shown that the geomedium has typical rheid properties [Carey, 1954], specifically an ability to flow while being in the solid state [Leonov, 2008]. Within the framework of the rotational model with a symmetric stress tensor, which is developed by the authors [Vikulin, Ivanchin, 1998; Vikulin et al., 2012a, 2013], such movement of the geomedium may explain the energy-saturated state of the geomedium and a possibility of its movements in the form of vortex geological structures [Lee, 1928]. The article discusses the gravity wave detection method based on the concept of interactions between gravity waves and crustal blocks [Braginsky et al., 1985]. It is concluded that gravity waves can be recorded by the proposed technique that detects slow rotational waves. It is shown that geo-gravitational movements can be described by both the concept of potential with account of gravitational energy of bodies [Kondratyev, 2003] and the nonlinear physical acoustics [Gurbatov et al., 2008]. Based on the combined description of geophysical and gravitational wave movements, the authors suggest a hypothesis about the nature of spin, i.e. own moment as a demonstration of the space-time ‘vortex’ properties.
Directory of Open Access Journals (Sweden)
A. V. Vikulin
2014-01-01
Full Text Available Gravity phenomena related to the Earth movements in the Solar System and through the Galaxy are reviewed. Such movements are manifested by geological processes on the Earth and correlate with geophysical fields of the Earth. It is concluded that geodynamic processes and the gravity phenomena (including those of cosmic nature are related. The state of the geomedium composed of blocks is determined by stresses with force moment and by slow rotational waves that are considered as a new type of movements [Vikulin, 2008, 2010]. It is shown that the geomedium has typical rheid properties [Carey, 1954], specifically an ability to flow while being in the solid state [Leonov, 2008]. Within the framework of the rotational model with a symmetric stress tensor, which is developed by the authors [Vikulin, Ivanchin, 1998; Vikulin et al., 2012a, 2013], such movement of the geomedium may explain the energy-saturated state of the geomedium and a possibility of its movements in the form of vortex geological structures [Lee, 1928]. The article discusses the gravity wave detection method based on the concept of interactions between gravity waves and crustal blocks [Braginsky et al., 1985]. It is concluded that gravity waves can be recorded by the proposed technique that detects slow rotational waves. It is shown that geo-gravitational movements can be described by both the concept of potential with account of gravitational energy of bodies [Kondratyev, 2003] and the nonlinear physical acoustics [Gurbatov et al., 2008]. Based on the combined description of geophysical and gravitational wave movements, the authors suggest a hypothesis about the nature of spin, i.e. own moment as a demonstration of the space-time ‘vortex’ properties.
Metamaterials and wave control
Lheurette, Eric
2013-01-01
Since the concept was first proposed at the end of the 20th Century, metamaterials have been the subject of much research and discussion throughout the wave community. More than 10 years later, the number of related published articles is increasing significantly. Onthe one hand, this success can be attributed to dreams of new physical objects which are the consequences of the singular properties of metamaterials. Among them, we can consider the examples of perfect lensing and invisibility cloaking. On other hand,metamaterials also provide new tools for the design of well-known wave functions s
Mechanics, Waves and Thermodynamics
Ranjan Jain, Sudhir
2016-05-01
Figures; Preface; Acknowledgement; 1. Energy, mass, momentum; 2. Kinematics, Newton's laws of motion; 3. Circular motion; 4. The principle of least action; 5. Work and energy; 6. Mechanics of a system of particles; 7. Friction; 8. Impulse and collisions; 9. Central forces; 10. Dimensional analysis; 11. Oscillations; 12. Waves; 13. Sound of music; 14. Fluid mechanics; 15. Water waves; 16. The kinetic theory of gases; 17. Concepts and laws of thermodynamics; 18. Some applications of thermodynamics; 19. Basic ideas of statistical mechanics; Bibliography; Index.
Lominadze, D G
2013-01-01
Cyclotron Waves in Plasma is a four-chapter text that covers the basic physical concepts of the theory of cyclotron waves and cyclotron instabilities, brought about by the existence of steady or alternating plasma currents flowing perpendicular to the magnetic field.This book considers first a wide range of questions associated with the linear theory of cyclotron oscillations in equilibrium plasmas and in electron plasmas in metals and semiconductors. The next chapter deals with the parametric excitation of electron cyclotron oscillations in plasma in an alternating electric field. A chapter f
Li, Tatsien
2017-01-01
This book focuses on nonlinear wave equations, which are of considerable significance from both physical and theoretical perspectives. It also presents complete results on the lower bound estimates of lifespan (including the global existence), which are established for classical solutions to the Cauchy problem of nonlinear wave equations with small initial data in all possible space dimensions and with all possible integer powers of nonlinear terms. Further, the book proposes the global iteration method, which offers a unified and straightforward approach for treating these kinds of problems. Purely based on the properties of solut ions to the corresponding linear problems, the method simply applies the contraction mapping principle.
Périnet, Nicolas; Chergui, Jalel; Juric, Damir; Shin, Seungwon
2016-01-01
We report on the numerical and theoretical study of the subcritical bifurcation of parametrically amplified waves appearing at the interface between two immiscible incompressible fluids when the layer of the lower fluid is very shallow. As a critical control parameter is surpassed, small amplitude surface waves bifurcate towards highly nonlinear ones, with twice their amplitude. We propose a simple phenomenological model which can describe the observed bifurcation. We relate this hysteresis with the change of shear stress using a simple stress balance, in agreement with numerical results.
Arterial stiffness and wave reflections in marathon runners.
Vlachopoulos, Charalambos; Kardara, Despina; Anastasakis, Aris; Baou, Katerina; Terentes-Printzios, Dimitrios; Tousoulis, Dimitris; Stefanadis, Christodoulos
2010-09-01
Regular aerobic exercise has beneficial effects on the cardiovascular system. Marathon running is an aerobic and extremely vigorous exercise. Arterial stiffness and wave reflections are independent predictors of cardiovascular risk. We investigated the acute effect of marathon race on aortic stiffness and wave reflections, as well as possible chronic alterations of these indexes in marathon runners. We studied 49 marathon runners (age 38 +/- 9 years) and 46 recreationally active control subjects (age 37 +/- 5 years). To investigate the acute effect of marathon race, a subgroup of 20 runners was evaluated after the race as well. Aortic stiffness was evaluated with carotid-femoral pulse wave velocity (PWV) and wave reflections with augmentation index (AIx). Marathon runners had significantly higher systolic, diastolic, pulse (both aortic and brachial), and mean pressures compared to controls (P Marathon runners had significantly higher PWV (6.89 m/s vs. 6.33 m/s, P Marathon race caused a significant fall in both AIx (12.2% vs. -5.8%, P marathon race, whereas aortic stiffness was not altered. Moreover, marathon runners have increased aortic stiffness and pressures, whereas wave reflections indexes do not differ compared to controls.
Genetic alteration in hepatocellular carcinoma
Energy Technology Data Exchange (ETDEWEB)
Kim, Yoo Chul; Kang, Tae Woong; Lee, Jin Oh [Korea Cancer Center Hospital of Korea Atomic Energy Research Institute, Seoul (Korea, Republic of)
1994-12-01
Cancer of stomach, colon and liver are a group of the most common cancer in Korea. However, results with current therapeutic modalities are still unsatisfactory. The intensive efforts have been made to understand basic pathogenesis and to find better therapeutic tools for the treatment of this miserable disease. We studied the alteration of tumor suppressor genes and oncogenes in hepatocellular carcinoma in Korea. We found that alteration of Rb gene, APC were 33 %, 13 % respectively. But alterations of oncogenes such as myc, ras and mdm2 were rarely found. Our results suggests that HBV may act as oncogenic role in hepatocarcinogenesis instead of oncogenes. 6 figs, 2 tabs. (Author).
Nonlinear waves and weak turbulence
Zakharov, V E
1997-01-01
This book is a collection of papers on dynamical and statistical theory of nonlinear wave propagation in dispersive conservative media. Emphasis is on waves on the surface of an ideal fluid and on Rossby waves in the atmosphere. Although the book deals mainly with weakly nonlinear waves, it is more than simply a description of standard perturbation techniques. The goal is to show that the theory of weakly interacting waves is naturally related to such areas of mathematics as Diophantine equations, differential geometry of waves, Poincaré normal forms, and the inverse scattering method.
BERGSHOEFF, E
We present plane-wave-type solutions to the superstring effective action which have unbroken space-time supersymmetries. They describe dilaton, axion and gauge fields in a generalization of the Brinkmann metric. A crucial property of the solutions is a conspiracy between the metric and the axion
BERGSHOEFF, EA; KALLOSH, R; ORTIN, T
1993-01-01
We present plane-wave-type solutions of the lowest-order superstring effective action which have unbroken space-time supersymmetries. They are given by a stringy generalization of the Brinkmann metric, dilaton, axion, and gauge fields. Some conspiracy between the metric and the axion field is
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 5. Flood Wave Propagation-The Saint Venant Equations. P P Mujumdar. General Article Volume 6 Issue 5 May 2001 pp 66-73. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/006/05/0066-0073 ...
Tucker, Vance A.
1971-01-01
Capillary and gravity water waves are related to the position, wavelength, and velocity of an object in flowing water. Water patterns are presented for ships and the whirling beetle with an explanation of how the design affects the objects velocity and the observed water wavelengths. (DS)
DEFF Research Database (Denmark)
Dühring, Maria Bayard
application is modulation of optical waves in waveguides. This presentation elaborates on how a SAW is generated by interdigital transducers using a 2D model of a piezoelectric, inhomogeneous material implemented in the high-level programming language Comsol Multiphysics. The SAW is send through a model...
Van Gunsteren, F.F.
1978-01-01
This thesis is the result of an investigation of the assumptions underlying the general applied method for the calculation of springing of ships in waves, which has been proposed by the author some decade ago. It has been found that, contrary to the general practice in seakeeping research, the
"Hearing" Electromagnetic Waves
Rojo, Marta; Munoz, Juan
2014-01-01
In this work, an educational experience is described in which a microwave communication link is used to make students aware that all electromagnetic waves have the same physical nature and properties. Experimental demonstrations are linked to theoretical concepts to increase comprehension of the physical principles underlying electromagnetic…
Semiclassical multicomponent wave function
Mostovoy, M.V.
1994-01-01
A consistent method for obtaining the semiclassical multicomponent wave function for any value of adiabatic parameter is discussed and illustrated by examining the motion of a neutral particle in a nonuniform magnetic field. The method generalizes the Bohr-Sommerfeld quantization rule to
Energy Technology Data Exchange (ETDEWEB)
Menikoff, Ralph [Los Alamos National Laboratory
2012-04-03
Shock initiation in a plastic-bonded explosives (PBX) is due to hot spots. Current reactive burn models are based, at least heuristically, on the ignition and growth concept. The ignition phase occurs when a small localized region of high temperature (or hot spot) burns on a fast time scale. This is followed by a growth phase in which a reactive front spreads out from the hot spot. Propagating reactive fronts are deflagration waves. A key question is the deflagration speed in a PBX compressed and heated by a shock wave that generated the hot spot. Here, the ODEs for a steady deflagration wave profile in a compressible fluid are derived, along with the needed thermodynamic quantities of realistic equations of state corresponding to the reactants and products of a PBX. The properties of the wave profile equations are analyzed and an algorithm is derived for computing the deflagration speed. As an illustrative example, the algorithm is applied to compute the deflagration speed in shock compressed PBX 9501 as a function of shock pressure. The calculated deflagration speed, even at the CJ pressure, is low compared to the detonation speed. The implication of this are briefly discussed.
2013-10-06
Shock waves are a primary mechanism for the acceleration of particles at the Sun and in other astrophysical settings, such as supernovae . Shocks at the...Publishers Limited. All rights reserved Approved for public release; distribution is unlimited. DISTRIBUTION LIST DTIC/OCP 8725 John J. Kingman Rd
Elandt, Ryan B.; Shakeri, Mostafa; Alam, Mohammad-Reza
2014-02-01
Here we show that a nonlinear resonance between oceanic surface waves caused by small seabed features (the so-called Bragg resonance) can be utilized to create the equivalent of lenses and curved mirrors for surface gravity waves. Such gravity wave lenses, which are merely small changes to the seafloor topography and therefore are surface noninvasive, can focus or defocus the energy of incident waves toward or away from any desired focal point. We further show that for a broadband incident wave spectrum (i.e., a wave group composed of a multitude of different-frequency waves), a polychromatic topography (occupying no more than the area required for a monochromatic lens) can achieve a broadband lensing effect. Gravity wave lenses can be utilized to create localized high-energy wave zones (e.g., for wave energy harvesting or creating artificial surf zones) as well as to disperse waves in order to create protected areas (e.g., harbors or areas near important offshore facilities). In reverse, lensing of oceanic waves may be caused by natural seabed features and may explain the frequent appearance of very high amplitude waves in certain bodies of water.
Electromagnetic waves, gravitational waves and the prophets who predicted them
Papachristou, Costas J.
2016-01-01
Using non-excessively-technical language and written in informal style, this article introduces the reader to the concepts of electromagnetic and gravitational waves and recounts the prediction of existence of these waves by Maxwell and Einstein, respectively. The issue of gravitational radiation is timely in view of the recent announcement of the detection of gravitational waves by the LIGO scientific team.
Real time wave measurements and wave hindcasting in deep waters
Digital Repository Service at National Institute of Oceanography (India)
Anand, N.M.; Mandal, S.; SanilKumar, V.; Nayak, B.U.
Deep water waves off Karwar (lat. 14~'45.1'N, long. 73~'34.8'E) at 75 m water depth pertaining to peak monsoon period have been measured using a Datawell waverider buoy. Measured wave data show that the significant wave height (Hs) predominantly...
Investigation of Wave Transmission from a Floating Wave Dragon Wave Energy Converter
DEFF Research Database (Denmark)
Nørgaard, Jørgen Harck; Andersen, Thomas Lykke
2012-01-01
This paper focuses on the calibration of the MIKE21BW model against the measured wave height reduction behind a 24 kW/m Wave Dragon (WD) wave energy converter. A numerical model is used to determine the wave transmission through the floating WD in varying wave conditions. The transmission obtained...... from the MIKE21BW model is compared to results from a simpler model, based on the integration of wave energy flux. The conclusion is that the simplified approach provides results similar to the transmission obtained from the numerical model, both for a single WD and a farm of multiple WDs....
Hypothesis tests for hydrologic alteration
Kroll, Charles N.; Croteau, Kelly E.; Vogel, Richard M.
2015-11-01
Hydrologic systems can be altered by anthropogenic and climatic influences. While there are a number of statistical frameworks for describing and evaluating the extent of hydrologic alteration, here we present a new framework for assessing whether statistically significant hydrologic alteration has occurred, or whether the shift in the hydrologic regime is consistent with the natural variability of the system. Four hypothesis tests based on shifts of flow duration curves (FDCs) are developed and tested using three different experimental designs based on different strategies for resampling of annual FDCs. The four hypothesis tests examined are the Kolmogorov-Smirnov (KS), Kuiper (K), confidence interval (CI), and ecosurplus and ecodeficit (Eco). Here 117 streamflow sites that have potentially undergone hydrologic alteration due to reservoir construction are examined. 20 years of pre-reservoir record is used to develop the critical value of the test statistic for type I errors of 5% and 10%, while 10 years of post-alteration record is used to examine the power of each test. The best experimental design, based on calculating the mean annual FDC from an exhaustive jackknife resampling regime, provided a larger number of unique values of each test statistic and properly reproduced type I errors. Of the four tests, the CI test consistently had the highest power, while the K test had the second highest power; KS and Eco always had the lowest power. The power of the CI test appeared related to the storage ratio of the reservoir, a rough measure of the hydrologic alteration of the system.
Wave intensity analysis and its application to the coronary circulation
Davies, JE; Escaned, JE; Hughes, A; Parker, K
Wave intensity analysis (WIA) is a technique developed from the field of gas dynamics that is now being applied to assess cardiovascular physiology. It allows quantification of the forces acting to alter flow and pressure within a fluid system, and as such it is highly insightful in ascribing cause to dynamic blood pressure or velocity changes. When co-incident waves arrive at the same spatial location they exert either counteracting or summative effects on flow and pressure. WIA however allows waves of different origins to be measured uninfluenced by other simultaneously arriving waves. It therefore has found particular applicability within the coronary circulation where both proximal (aortic) and distal (myocardial) ends of the coronary artery can markedly influence blood flow. Using these concepts, a repeating pattern of 6 waves has been consistently identified within the coronary arteries, 3 originating proximally and 3 distally. Each has been associated with a particular part of the cardiac cycle. The most clinically relevant wave to date is the backward decompression wave, which causes the marked increase in coronary flow velocity observed at the start of the diastole. It has been proposed that this wave is generated by the elastic re-expansion of the intra-myocardial blood vessels that are compressed during systolic contraction. Particularly by quantifying this wave, WIA has been used to provide mechanistic and prognostic insight into a number of conditions including aortic stenosis, left ventricular hypertrophy, coronary artery disease and heart failure. It has proven itself to be highly sensitive and as such a number of novel research directions are encouraged where further insights would be beneficial. PMID:28971104
Transformation method and wave control
Chang, Zheng; Hu, Jin; Hu, Geng-Kai
2010-12-01
Transformation method provides an efficient way to control wave propagation by materials. The transformed relations for field and material during a transformation are essential to fulfill this method. We propose a systematic method to derive the transformed relations for a general physic process, the constraint conditions are obtained by considering geometrical and physical constraint during a mapping. The proposed method is applied to Navier's equation for elastodynamics, Helmholtz's equation for acoustic wave and Maxwell's equation for electromagnetic wave, the corresponding transformed relations are derived, which can be used in the framework of transformation method for wave control. We show that contrary to electromagnetic wave, the transformed relations are not uniquely determined for elastic wave and acoustic wave, so we have a freedom to choose them differently. Using the obtained transformed relations, we also provide some examples for device design, a concentrator for elastic wave, devices for illusion acoustic and illusion optics are conceived and validated by numerical simulations.
Superluminal waves in amplifying media
Energy Technology Data Exchange (ETDEWEB)
Oraevsky, Anatolii N [P.N. Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)
1998-12-31
In amplifying media steady-state waves can travel faster than the speed of light in vacuum without violating the principles of special relativity. The possibility of generating superluminal waves in induced elementary particle production processes is discussed. (methodological notes)
Gravitational Waves: The Evidence Mounts
Wick, Gerald L.
1970-01-01
Reviews the work of Weber and his colleagues in their attempts at detecting extraterrestial gravitational waves. Coincidence events recorded by special detectors provide the evidence for the existence of gravitational waves. Bibliography. (LC)
Interpretation of wave energy spectra
National Research Council Canada - National Science Library
Thompson, E.F
1980-01-01
Guidelines for interpreting nondirectional wave energy spectra and presented. A simple method is given for using the spectrum to estimate a significant height and period for each major wave train in most sea states...
Wave propagation in electromagnetic media
Davis, Julian L
1990-01-01
This is the second work of a set of two volumes on the phenomena of wave propagation in nonreacting and reacting media. The first, entitled Wave Propagation in Solids and Fluids (published by Springer-Verlag in 1988), deals with wave phenomena in nonreacting media (solids and fluids). This book is concerned with wave propagation in reacting media-specifically, in electro magnetic materials. Since these volumes were designed to be relatively self contained, we have taken the liberty of adapting some of the pertinent material, especially in the theory of hyperbolic partial differential equations (concerned with electromagnetic wave propagation), variational methods, and Hamilton-Jacobi theory, to the phenomena of electromagnetic waves. The purpose of this volume is similar to that of the first, except that here we are dealing with electromagnetic waves. We attempt to present a clear and systematic account of the mathematical methods of wave phenomena in electromagnetic materials that will be readily accessi...
Diurnal variation of mountain waves
Directory of Open Access Journals (Sweden)
R. M. Worthington
2006-11-01
Full Text Available Mountain waves could be modified as the boundary layer varies between stable and convective. However case studies show mountain waves day and night, and above e.g. convective rolls with precipitation lines over mountains. VHF radar measurements of vertical wind (1990–2006 confirm a seasonal variation of mountain-wave amplitude, yet there is little diurnal variation of amplitude. Mountain-wave azimuth shows possible diurnal variation compared to wind rotation across the boundary layer.
Regulatory effects of terahertz waves
Vyacheslav F. Kirichuk; Alexey N. Ivanov
2013-01-01
There are modern data about biological effects of terahertz (THz) waves in this article. Items of interaction of THz waves with bio objects of different organization level. A complex of the data indicates that the realization of a THz wave effect in biosystems is possible at molecular, cellular, tissular, organ and system levels of regulation. There are data about changes in nervous and humoral regulation of an organism and metabolic effects of THz waves.
Extreme events in Faraday waves
Punzmann, Horst; Shats, Michael; Xia, Hua
2014-05-01
Observations of extreme wave events in the ocean are rare due to their low statistical probability. In the laboratory however, the evolution of extreme wave events can be studied in great detail with high spatial and temporal resolution. The reported surface wave experiments in the short wavelength gravity-capillary range aim to contribute to the understanding of some of the underlying mechanisms for rogue wave generation. In this talk, we report on extreme wave events in parametrically excited Faraday waves. Faraday waves appear if a fluid is accelerated (normal to the fluid surface) above a critical threshold. A variety of novel tools have been deployed to characterize the 2D surface elevation. The results presented show spatio-temporal and statistical data on the surface wave conditions leading up to extreme wave events. The peak in wave amplitude during such an event is shown to exceed six times the standard deviation of the average wave field with significantly increased statistical probability compared to the background wave field [1]. The experiments also show that parametrically excited waves can be viewed as assembles of oscillons [2] (or oscillating solitons) where modulation instability seems to play a crucial role in their formation. More detailed studies on the oscillon dynamics reveal that the onset of an increased probability of extreme wave events correlates with the increase in the oscillons mobility and merger [3]. Reference: 1. Xia H., Maimbourg T., Punzmann H., and Shats M., Oscillon dynamics and rogue wave generation in Faraday surface ripples, Physical Review Letters 109, 114502 (2012) 2. Shats M., Xia H., and Punzmann H., Parametrically excited water surface ripples as ensembles of oscillons, Physical Review Letters 108, 034502 (2012) 3. Shats M., Punzmann H., Xia H., Capillary rogue waves, Physical Review Letters, 104, 104503 (2010)
Gravitational Waves from Orphan Memory
McNeill, Lucy O.; Thrane, Eric; Lasky, Paul D.
2017-01-01
Gravitational-wave memory manifests as a permanent distortion of an idealized gravitational-wave detector and arises generically from energetic astrophysical events. For example, binary black hole mergers are expected to emit memory bursts a little more than an order of magnitude smaller in strain than the oscillatory parent waves. We introduce the concept of "orphan memory": gravitational-wave memory for which there is no detectable parent signal. In particular, high-frequency gravitational-...
M, Sunitha; S, Chandrasekharappa; Brid, S V
2014-09-01
Pregnancy although a physiological phenomena affects all the functions of the maternal body and brings about remarkable changes in the cardiovascular system. The cardiovascular changes and many of the physiological adaptations of normal pregnancy alter the physical findings thus, sometimes misleading the diagnosis of heart disease. Pregnancy also brings about various changes in the electrocardiogram, further confusing with that of heart disease. This study is undertaken to highlight the effect of normal pregnancy on the QRS axis, Q wave and T-wave of the Electrocardiogram and thereby helps us to distinguish it from that of pathological changes. To study the effect of normal pregnancy on the QRS axis, Q wave and T-wave in the electrocardiogram and to compare with that of normal non pregnant women. Fifty normal pregnant women in 2nd and 3rd trimester each between 20- 35 y of age and 50 normal non pregnant women of the same age group were selected for the study. A 12 lead ECG was recorded by using ECG machine with special emphasis on QRS axis, Q wave and T-wave changes and all the parameters were analysed. The ECG changes observed in our study include, deviation of QRS axis towards left as pregnancy advanced, significant increased incidence of occurrence of prominent Q waves in lead II, III and avF in pregnant group (p < 0.05 ) and, T-wave abnormalities like flat and inverted T-waves in lead III, V1 - V3 were more frequent in pregnant group ( p<0.05 ) than in non pregnant group. Normal pregnancy brings about various changes in ECG. These changes during pregnancy should be interpretated with caution by the physicians. It is necessary to understand the normal physiological changes which in turn help us in better management of those with cardiac disease.
Electromagnetic wave dynamics in matter-wave superradiant scattering.
Deng, L; Payne, M G; Hagley, E W
2010-02-05
We present a small-signal wave propagation theory on matter-wave superradiant scattering. We show, in a longitudinally excited condensate, that the backward-propagating, superradiantly generated optical field propagates with ultraslow group velocity and that the small-signal gain profile has a Bragg resonance. We further show a unidirectional suppression of optical superradiant scattering, and explain why matter-wave superradiance can occur only when the pump laser is red detuned. This is the first analytical theory on field propagation in matter-wave superradiance that can explain all matter-wave superradiance experiments to date that used a single-frequency, long-pulse, red-detuned laser.
Effect of a modified sinusoidal forcing on spiral wave in a simulated reaction-diffusion system.
Khaothong, Kritsana; Sutthiopad, Malee; Kumchaiseemak, Nakorn; Luengviriya, Jiraporn; Kanchanawarin, Jarin; Müller, Stefan C.; Luengviriya, Chaiya
2017-09-01
Spiral waves are often found in excitable media. In the hearts, they are abnormal forms of action potential propagation. Under an external forcing, the spiral waves drift and are subsequently terminated at the boundary. Spiral waves can be studied in simulations using a discrete reaction-diffusion system; thereby the time step must not exceed a numerical stability limit (ts). In this article, we present the dynamics of spiral waves in a simulated system under an external forcing as a modified sinusoidal function of time. The spiral waves are forced to drift along a straight line with a velocity and an angle depending on the time step. An optimization study provides the optimal time step of 0.2ts, where further reductions of the time step do not alter the drifting of the spiral waves.
Directory of Open Access Journals (Sweden)
Abdolrahman Razani
2007-11-01
Full Text Available Shock wave theory was studied in literature by many authors. This article presents a survey with references about various topics related to shock waves: Hyperbolic conservation laws, Well-posedness theory, Compactness theory, Shock and reaction-diffusion wave, The CJ and ZND theory, Existence of detonation in Majda's model, Premixed laminar flame, Multidimensional gas flows, Multidimensional Riemann problem.
Fredericks, R. W.
1980-01-01
Topics included in the WISP science objectives are: (1) VLF wave injection experiments; (2) traveling ionospheric disturbances and atmospheric gravity waves; (3) ionospheric bubbles; and (4) plasma wave physics. Flow charts of the WISP investigation organization, the project life cycle and the instrumentation are given.
The wave buoy analogy - estimating high-frequency wave excitations
DEFF Research Database (Denmark)
Nielsen, Ulrik Dam
2008-01-01
The paper deals with the wave buoy analogy where a ship is considered as a wave buoy, so that measured ship responses are used as a basis to estimate wave spectra and associated sea state parameters. The study presented follows up on a previous paper, Nielsen [Nielsen UD. Response-based estimation...... of sea state parameters — influence of filtering. Ocean Engineering 2007;34:1797–810.], where time series of ship responses were generated from a known wave spectrum for the purpose of the inverse process — the estimation of the underlying wave excitations. Similar response generations and vice versa...... be estimated reasonably well, even considering high-frequency wave components of a wind sea wave spectrum....
Experiments on the WavePiston, Wave Energy Converter
DEFF Research Database (Denmark)
Angelelli, E.; Zanuttigh, B.; Kofoed, Jens Peter
2011-01-01
This paper analyses the performance of a new Wave Energy Converter (WEC) of the Oscillating Water Column type (OWC), named WavePiston. This near-shore floating device is composed of plates (i.e. energy collectors) sliding around a cylinder, that is placed perpendicular to the shore. Tests...... in the wave basin at Aalborg University allowed to investigate power production in the North Sea typical wave climate, with varying design parameters such as plate dimensions and their mutual distance. The power produced per meter by each collector is about the 5% of the available wave power. Experimental...... results and survivability considerations suggest that the WavePiston would be particularly suited for installations in milder seas. An example application is therefore presented in the Mediterranean Sea, off-shore the island of Sicily. In this case, each collector harvests the 10% of the available wave...
Testing, Analysis and Control of Wave Dragon, Wave Energy Converter
DEFF Research Database (Denmark)
Tedd, James
One of the prongs in the attack on climate change is the development of alternative, non-polluting sources of energy. Wave Dragon is a device at the forefront of this field of development, converting the energy of ocean waves into electricity. This thesis presents the author's work on the technical...... the expected performance. Other sources of generation are presented, including development and tank testing of a novel power absorbing joint. Wave Dragon belongs in the family of overtopping wave energy converters. The energy is captured by waves running up a ramp and overtopping the crest into a reservoir...... of the process Wave Dragon has undergone to develop from an inventor's concept to a serious contender in the wave energy industry is very valuable. This shows the gradual steps of development testing, increasing in scale and complexity, in parallel with the growth in the organisational structure behind...
Radial Shock Wave Devices Generate Cavitation.
Császár, Nikolaus B M; Angstman, Nicholas B; Milz, Stefan; Sprecher, Christoph M; Kobel, Philippe; Farhat, Mohamed; Furia, John P; Schmitz, Christoph
2015-01-01
Conflicting reports in the literature have raised the question whether radial extracorporeal shock wave therapy (rESWT) devices and vibrating massage devices have similar energy signatures and, hence, cause similar bioeffects in treated tissues. We used laser fiber optic probe hydrophone (FOPH) measurements, high-speed imaging and x-ray film analysis to compare fundamental elements of the energy signatures of two rESWT devices (Swiss DolorClast; Electro Medical Systems, Nyon, Switzerland; D-Actor 200; Storz Medical, Tägerwillen, Switzerland) and a vibrating massage device (Vibracare; G5/General Physiotherapy, Inc., Earth City, MO, USA). To assert potential bioeffects of these treatment modalities we investigated the influence of rESWT and vibrating massage devices on locomotion ability of Caenorhabditis elegans (C. elegans) worms. FOPH measurements demonstrated that both rESWT devices generated acoustic waves with comparable pressure and energy flux density. Furthermore, both rESWT devices generated cavitation as evidenced by high-speed imaging and caused mechanical damage on the surface of x-ray film. The vibrating massage device did not show any of these characteristics. Moreover, locomotion ability of C. elegans was statistically significantly impaired after exposure to radial extracorporeal shock waves but was unaffected after exposure of worms to the vibrating massage device. The results of the present study indicate that both energy signature and bioeffects of rESWT devices are fundamentally different from those of vibrating massage devices. Prior ESWT studies have shown that tissues treated with sufficient quantities of acoustic sound waves undergo cavitation build-up, mechanotransduction, and ultimately, a biological alteration that "kick-starts" the healing response. Due to their different treatment indications and contra-indications rESWT devices cannot be equated to vibrating massage devices and should be used with due caution in clinical practice.
Radial Shock Wave Devices Generate Cavitation.
Directory of Open Access Journals (Sweden)
Nikolaus B M Császár
Full Text Available Conflicting reports in the literature have raised the question whether radial extracorporeal shock wave therapy (rESWT devices and vibrating massage devices have similar energy signatures and, hence, cause similar bioeffects in treated tissues.We used laser fiber optic probe hydrophone (FOPH measurements, high-speed imaging and x-ray film analysis to compare fundamental elements of the energy signatures of two rESWT devices (Swiss DolorClast; Electro Medical Systems, Nyon, Switzerland; D-Actor 200; Storz Medical, Tägerwillen, Switzerland and a vibrating massage device (Vibracare; G5/General Physiotherapy, Inc., Earth City, MO, USA. To assert potential bioeffects of these treatment modalities we investigated the influence of rESWT and vibrating massage devices on locomotion ability of Caenorhabditis elegans (C. elegans worms.FOPH measurements demonstrated that both rESWT devices generated acoustic waves with comparable pressure and energy flux density. Furthermore, both rESWT devices generated cavitation as evidenced by high-speed imaging and caused mechanical damage on the surface of x-ray film. The vibrating massage device did not show any of these characteristics. Moreover, locomotion ability of C. elegans was statistically significantly impaired after exposure to radial extracorporeal shock waves but was unaffected after exposure of worms to the vibrating massage device.The results of the present study indicate that both energy signature and bioeffects of rESWT devices are fundamentally different from those of vibrating massage devices.Prior ESWT studies have shown that tissues treated with sufficient quantities of acoustic sound waves undergo cavitation build-up, mechanotransduction, and ultimately, a biological alteration that "kick-starts" the healing response. Due to their different treatment indications and contra-indications rESWT devices cannot be equated to vibrating massage devices and should be used with due caution in clinical
INTERFERENCE OF UNIDIRECTIONAL SHOCK WAVES
Directory of Open Access Journals (Sweden)
P. V. Bulat
2015-05-01
Full Text Available Subject of study.We consider interference of unidirectional shock waves or, as they are called, catching up shock waves. The scope of work is to give a classification of the shock-wave structures that arise in this type of interaction of shock waves, and the area of their existence. Intersection of unidirectional shock waves results in arising of a shock-wave structure at the intersection point, which contains the main shock wave, tangential discontinuity and one more reflected gas-dynamic discontinuity of unknown beforehand type. The problem of determining the type of reflected discontinuity is the main problem that one has to solve in the study of catching shock waves interference. Main results.The paper presents the pictures of shock-wave structures arising at the interaction of catching up shock waves. The areas with a regular and irregular unidirectional interaction of shocks are described. Characteristic shock-wave structures are of greatest interest, where reflected gas-dynamic discontinuity degenerates into discontinuous characteristics. Such structures have a number of extreme properties. We have found the areas of existence for such shock-wave structures. There are also areas in which the steady-state solution is not available. The latter has determined revival of interest for the theoretical study of the problem, because the facts of sudden shock-wave structure destruction inside the air intake of supersonic aircrafts at high Mach numbers have been discovered. Practical significance.The theory of interference for unidirectional shock waves and design procedure are usable in the design of supersonic air intakes. It is also relevant for application possibility investigation of catching up oblique shock waves to create overcompressed detonation in perspective detonation air-jet and rocket engines.
Franceschetti, Massimo
2017-01-01
Understand the relationship between information theory and the physics of wave propagation with this expert guide. Balancing fundamental theory with engineering applications, it describes the mechanism and limits for the representation and communication of information using electromagnetic waves. Information-theoretic laws relating functional approximation and quantum uncertainty principles to entropy, capacity, mutual information, rate distortion, and degrees of freedom of band-limited radiation are derived and explained. Both stochastic and deterministic approaches are explored, and applications for sensing and signal reconstruction, wireless communication, and networks of multiple transmitters and receivers are reviewed. With end-of-chapter exercises and suggestions for further reading enabling in-depth understanding of key concepts, it is the ideal resource for researchers and graduate students in electrical engineering, physics and applied mathematics looking for a fresh perspective on classical informat...
Nonlinear Hysteretic Torsional Waves.
Cabaret, J; Béquin, P; Theocharis, G; Andreev, V; Gusev, V E; Tournat, V
2015-07-31
We theoretically study and experimentally report the propagation of nonlinear hysteretic torsional pulses in a vertical granular chain made of cm-scale, self-hanged magnetic beads. As predicted by contact mechanics, the torsional coupling between two beads is found to be nonlinear hysteretic. This results in a nonlinear pulse distortion essentially different from the distortion predicted by classical nonlinearities and in a complex dynamic response depending on the history of the wave particle angular velocity. Both are consistent with the predictions of purely hysteretic nonlinear elasticity and the Preisach-Mayergoyz hysteresis model, providing the opportunity to study the phenomenon of nonlinear dynamic hysteresis in the absence of other types of material nonlinearities. The proposed configuration reveals a plethora of interesting phenomena including giant amplitude-dependent attenuation, short-term memory, as well as dispersive properties. Thus, it could find interesting applications in nonlinear wave control devices such as strong amplitude-dependent filters.
Sachdev, PL
2004-01-01
Understanding the causes and effects of explosions is important to experts in a broad range of disciplines, including the military, industrial and environmental research, aeronautic engineering, and applied mathematics. Offering an introductory review of historic research, Shock Waves and Explosions brings analytic and computational methods to a wide audience in a clear and thorough way. Beginning with an overview of the research on combustion and gas dynamics in the 1970s and 1980s, the author brings you up to date by covering modeling techniques and asymptotic and perturbative methods and ending with a chapter on computational methods.Most of the book deals with the mathematical analysis of explosions, but computational results are also included wherever they are available. Historical perspectives are provided on the advent of nonlinear science, as well as on the mathematical study of the blast wave phenomenon, both when visualized as a point explosion and when simulated as the expansion of a high-pressure ...
Magnetostatic wave oscillator frequencies
Sethares, J. C.; Stiglitz, M. R.; Weinberg, I. J.
1981-03-01
The frequencies of magnetostatic wave (MSW) oscillators employing three principal modes of propagation, surface (MSSW), forward (MSFVW), and backward (MSBVW) volume waves, have been investigated. Previous (MSW) oscillator papers dealt with MSSW. Oscillators were fabricated using LPE-YIG MSW delay lines in a feedback loop of a 2-4 GHz amplifier. Wide and narrow band transducers were employed. Oscillator frequency as a function of biasing field is in agreement with a theoretical analysis. The analysis predicts frequency in terms of material parameters, biasing field, and transducer geometry. With wide band transducers a comb of frequencies is generated. Narrow band transducers for MSSW and MSFVW select a single mode; and MSBVW selects two modes. Spurious modes, attributed to instrumentation, are more than 20 dB below the main response, and bandwidths are less than 0.005 percent. No other spurious modes are observed. MSW oscillators produce clean electronically tunable signals and appear attractive in frequency agile systems.
Electromagnetic fields and waves
Iskander, Magdy F
2013-01-01
The latest edition of Electromagnetic Fields and Waves retains an authoritative, balanced approach, in-depth coverage, extensive analysis, and use of computational techniques to provide a complete understanding of electromagnetic—important to all electrical engineering students. An essential feature of this innovative text is the early introduction of Maxwell's equations, together with the quantifying experimental observations made by the pioneers who discovered electromagnetics. This approach directly links the mathematical relations in Maxwell's equations to real experiments and facilitates a fundamental understanding of wave propagation and use in modern practical applications, especially in today's wireless world. New and expanded topics include the conceptual relationship between Coulomb's law and Gauss's law for calculating electric fields, the relationship between Biot-Savart's and Ampere's laws and their use in calculating magnetic fields from current sources, the development of Faraday's law from e...
Tian, Jing
2001-03-01
The telecom wave is sweeping the globe; however, many of us feel caught in backwater disciplines. How does one leverage her skills to become a player in a fast-growing field? This talk will suggest some strategies and share some personal experiences: in transitioning from established companies (electronics and biotech) to a very early stage telecom start-up; in choosing an appropriate industry segment and the right startup; and in preparing for immersing oneself in the start up environment.
Frozen waves: experimental generation
Vieira, TA; Gesualdi, MRR; Zamboni-Rached, M
2012-01-01
Frozen waves (FWs) are very interesting particular cases of nondiffracting beams whose envelopes are static and whose longitudinal intensity patterns can be chosen a priori. We present here for the first time (that we know of) the experimental generation of FWs. The experimental realization of these FWs was obtained using a holographic setup for the optical reconstruction of computer generated holograms (CGH), based on a 4-f Fourier filtering system and a nematic liquid crystal spatial light ...
Romero, Gustavo E.
2017-01-01
I discuss the recent claims made by Mario Bunge on the philosophical implications of the discovery of gravitational waves. I think that Bunge is right when he points out that the detection implies the materiality of spacetime, but I reject his identification of spacetime with the gravitational field. I show that Bunge's analysis of the spacetime inside a hollow sphere is defective, but this in no way affects his main claim.
2006-01-01
Internal waves are waves that travel within the interior of a fluid. The waves propagate at the interface or boundary between two layers with sharp density differences, such as temperature. They occur wherever strong tides or currents and stratification occur in the neighborhood of irregular topography. They can propagate for several hundred kilometers. The ASTER false-color VNIR image off the island of Tsushima in the Korea Strait shows the signatures of several internal wave packets, indicating a northern propagation direction. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate. Size: 60 by 120 kilometers (37.2 by 74.4 miles) Location: 34.6 degrees North latitude, 129.5 degrees East longitude Orientation: North at top Image Data: ASTER bands 3, 2, and 1 Original Data Resolution: 90
Directory of Open Access Journals (Sweden)
S. Galtier
2001-01-01
Full Text Available We describe the fundamental differences between weak (wave turbulence in incompressible and weakly compressible MHD at the level of three-wave interactions. The main difference is in the structure of the resonant manifolds and the mechanisms of redistribution of spectral densities along the applied magnetic field B0. Similar to pure acoustic waves, a three-wave resonance between collinear wave vectors is observed but, in addition, we also have a resonance through tilted planes and spheres. The properties of resonances and their consequences for the asymptotics are also discussed.
DEFF Research Database (Denmark)
This book offers a concise, practice-oriented reference-guide to the field of ocean wave energy. The ten chapters highlight the key rules of thumb, address all the main technical engineering aspects and describe in detail all the key aspects to be considered in the techno-economic assessment...... in the wave energy sector. •Offers a practice-oriented reference guide to the field of ocean wave energy •Presents an overview as well as a deeper insight into wave energy converters •Covers both the economic and engineering aspects related to ocean wave energy conversion...
Wang, Zhenyu; Li, Chunyang; Zatianina, Razafizana; Zhang, Pei; Zhang, Yongqiang
2017-11-01
Cloaking is a challenging topic in the field of wave motion, and is of significant theoretical value. In this article, a type of carpet cloak has been theoretically designed for water waves by using the effective medium and transformation theory. This carpet cloak device, created by a three-dimensional printer, is composed of a periodic structure which realizes the equivalent anisotropic water depth. We demonstrate its excellent cloaking performance numerically and experimentally in a wide range of frequencies and angles of incidence, with low wave attenuation characteristics and simple device realization of this carpet cloak illustrating that water wave transformation is a powerful method with which to manipulate water waves.
Psychoacoustics and Neurophysiological Alterations after 30-36 Hours of Sleep Deprivation.
Díaz-Leines, Sergio; Gama-Moreno, Olga; Poblano, Adrián; Flores-Avalos, Blanca
2017-01-01
Sleep deprivation (SD) may result in perceptual and cognitive alterations in healthy subjects. Our objective was to compare whether psychoacoustics and neurophysiological variables in healthy subjects were altered after SD of 30-36 h. We examined 22 subjects by means of several psychoacoustics tests, P300 and mismatch negativity (MMN) recordings, and brainstem auditory evoked potentials (BAEP) before and after 30-36 h of SD. In the psychoacoustics tests, we found that after SD, difficulties were experienced by the left ear in the discrimination of words in noise and by the right ear in music discrimination. In the neurophysiological tests, we found delayed latencies of P300 and MMN wave; there was a delay of wave I in both ears, and wave V in the right ear in BAEP. We found significant correlations with positive direction between P300 latency and words in noise and music discrimination in the right ear. SD results in alterations of central auditory processing perception and delays of brain neurophysiological responses, with some correlations between the psychoacoustics and neurophysiological tests. These alterations may relate to other cognitive alterations that deserve more research in future studies. © 2017 S. Karger AG, Basel.
Giammarinaro, Bruno; Espíndola, David; Coulouvrat, François; Pinton, Gianmarco
2018-01-01
Focusing is a ubiquitous way to transform waves. Recently, a new type of shock wave has been observed experimentally with high-frame-rate ultrasound: shear shock waves in soft solids. These strongly nonlinear waves are characterized by a high Mach number, because the shear wave velocity is much slower, by 3 orders of magnitude, than the longitudinal wave velocity. Furthermore, these waves have a unique cubic nonlinearity which generates only odd harmonics. Unlike longitudinal waves for which only compressional shocks are possible, shear waves exhibit cubic nonlinearities which can generate positive and negative shocks. Here we present the experimental observation of shear shock wave focusing, generated by the vertical motion of a solid cylinder section embedded in a soft gelatin-graphite phantom to induce linearly vertically polarized motion. Raw ultrasound data from high-frame-rate (7692 images per second) acquisitions in combination with algorithms that are tuned to detect small displacements (approximately 1 μ m ) are used to generate quantitative movies of gel motion. The features of shear shock wave focusing are analyzed by comparing experimental observations with numerical simulations of a retarded-time elastodynamic equation with cubic nonlinearities and empirical attenuation laws for soft solids.
Review of water wave kinematics
Energy Technology Data Exchange (ETDEWEB)
Sterndorff, M.J.
1995-03-01
The present report covers a comprehensive review of water wave kinematics carried out by Danish Hydraulic Institute (DHI) in connection with the EFP`93 project: Dynamics of Mono Tower Platforms (ref. EFP`93, 1313/93-0009). This project is carried out in cooperation with Ramboell, Hannemann and Hoejlund A/S. The main objectives of the project are to develop and verify a method for the determination of the non-linear wave load and the dynamic response of mono tower platforms. One of the characteristics of mono tower platforms is that due to the small water plane area the hydrodynamic loading will be very concentrated. Such platforms may therefore respond strongly and in a highly dynamic manner to short waves and high order components of extreme waves having periods corresponding to the first natural period of the platform. A key element in the hydrodynamic load process is the wave kinematics. The present report is a comprehensive review of recent literature concerning wave theories, wave-current interaction, laboratory experiments, and field measurements of water wave kinematics. The review has been concentrated on non-breaking waves on deep to intermediate water depths. Papers concerning shallow water waves have only been reviewed if they present methods which may be applied for deep to intermediate water waves. (au) EFP-93; 30 refs.
Brief communication: Multiscaled solitary waves
Derzho, Oleg G.
2017-11-01
It is analytically shown how competing nonlinearities yield multiscaled structures for internal solitary waves in stratified shallow fluids. These solitary waves only exist for large amplitudes beyond the limit of applicability of the Korteweg-de Vries (KdV) equation or its usual extensions. The multiscaling phenomenon exists or does not exist for almost identical density profiles. The trapped core inside the wave prevents the appearance of such multiple scales within the core area. The structural stability of waves of large amplitudes is briefly discussed. Waves of large amplitudes displaying quadratic, cubic and higher-order nonlinear terms have stable and unstable branches. Multiscaled waves without a vortex core are shown to be structurally unstable. It is anticipated that multiscaling phenomena will exist for solitary waves in various physical contexts.
Residual Liquefaction under Standing Waves
DEFF Research Database (Denmark)
Kirca, V.S. Ozgur; Sumer, B. Mutlu; Fredsøe, Jørgen
2012-01-01
This paper summarizes the results of an experimental study which deals with the residual liquefaction of seabed under standing waves. It is shown that the seabed liquefaction under standing waves, although qualitatively similar, exhibits features different from that caused by progressive waves....... The experimental results show that the buildup of pore-water pressure and the resulting liquefaction first starts at the nodal section and spreads towards the antinodal section. The number of waves to cause liquefaction at the nodal section appears to be equal to that experienced in progressive waves for the same...... wave height. Recommendations are made as to how to assess liquefaction potential in standing waves. Copyright © 2012 by the International Society of Offshore and Polar Engineers (ISOPE)....
Intercellular ultrafast Ca2+ wave in vascular smooth muscle cells: numerical and experimental study
Quijano, J. C.; Raynaud, F.; Nguyen, D.; Piacentini, N.; Meister, J. J.
2016-08-01
Vascular smooth muscle cells exhibit intercellular Ca2+ waves in response to local mechanical or KCl stimulation. Recently, a new type of intercellular Ca2+ wave was observed in vitro in a linear arrangement of smooth muscle cells. The intercellular wave was denominated ultrafast Ca2+ wave and it was suggested to be the result of the interplay between membrane potential and Ca2+ dynamics which depended on influx of extracellular Ca2+, cell membrane depolarization and its intercel- lular propagation. In the present study we measured experimentally the conduction velocity of the membrane depolarization and performed simulations of the ultrafast Ca2+ wave along coupled smooth muscle cells. Numerical results reproduced a wide spectrum of experimental observations, including Ca2+ wave velocity, electrotonic membrane depolarization along the network, effects of inhibitors and independence of the Ca2+ wave speed on the intracellular stores. The numerical data also provided new physiological insights suggesting ranges of crucial model parameters that may be altered experimentally and that could significantly affect wave kinetics allowing the modulation of the wave characteristics experimentally. Numerical and experimental results supported the hypothesis that the propagation of membrane depolarization acts as an intercellular messenger mediating intercellular ultrafast Ca2+ waves in smooth muscle cells.
Waves in geophysical fluids tsunamis, rogue waves, internal waves and internal tides
Schneider, Wilhelm; Trulsen, Karsten
2006-01-01
Waves in Geophysical Fluids describes: the forecasting and risk evaluation of tsunamis by tectonic motion, land slides, explosions, run-up, and maps the tsunami sources in the world's oceans; stochastic Monte-Carlo simulations and focusing mechanisms for rogue waves, nonlinear wave models, breather formulas, and the kinematics of the Draupner wave; the full story about the discovery of the very large oceanic internal waves, how the waves are visible from above through the signatures on the sea surface, and how to compute them; observations of energetic internal tides and hot spots from several field campaigns in all parts of the world's oceans, with interpretation of spectra. An essential work for students, scientists and engineers working with the fundamental and applied aspects of ocean waves.
Skeletonized wave equation of surface wave dispersion inversion
Li, Jing
2016-09-06
We present the theory for wave equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. Similar to wave-equation travel-time inversion, the complicated surface-wave arrivals in traces are skeletonized as simpler data, namely the picked dispersion curves in the (kx,ω) domain. Solutions to the elastic wave equation and an iterative optimization method are then used to invert these curves for 2D or 3D velocity models. This procedure, denoted as wave equation dispersion inversion (WD), does not require the assumption of a layered model and is less prone to the cycle skipping problems of full waveform inversion (FWI). The synthetic and field data examples demonstrate that WD can accurately reconstruct the S-wave velocity distribution in laterally heterogeneous media.
Zhao, Guoping
2014-01-01
In education, art has often been perceived as entertainment and decoration and is the first subject to go when there are budget cuts or test-score pressures. Drawing on Emmanuel Lévinas's idea of the primacy of radical alterity that breaks the totality of our being, enables self-transformation and ethics, and ensures community as a totality…
Epigenetic alterations in hematopoietic malignancies.
Chung, Young Rock; Schatoff, Emma; Abdel-Wahab, Omar
2012-10-01
Gene discovery efforts in patients with hematopoietic malignancies have brought to the forefront a series of mutations in genes thought to be involved in the epigenetic regulation of gene transcription. These mutations occur in genes known, or suspected, to play a role in modifying cytosine nucleotides on DNA and/or altering the state of histone modifications. Genes such as ASXL1, DNMT3A, EZH2, IDH1/2, MLL1, and TET2 all have been shown to be mutated and/or translocated in patients with myeloid malignancies. Intriguingly, many of the alterations affecting DNA cytosine modifications in myeloid malignancies (mutations in DNMT3A, IDH1/2, and TET2) have also been found in patients with T-cell lymphomas, and EZH2 mutations appear to be critical in T-cell acute lymphoblastic leukemia development as well. In addition, the discovery of frequent mutations in CREBBP, EP300, EZH2, and MLL2 in B-cell lymphomas suggests that epigenetic alterations play a critical role in lymphomagenesis. The purpose of this review is to present functional evidence of how alterations in these epigenetic modifiers promote hematopoietic transformation. The conclusions drawn from these data are valuable in understanding biological mechanisms and potential therapeutic targets.
DEFF Research Database (Denmark)
Dose, Nynne; Michelsen, Marie Mide; Mygind, Naja Dam
2017-01-01
OBJECTIVES: CMD could be the explanation of angina pectoris with no obstructive CAD and may cause ventricular repolarization changes. We compared T-wave morphology and QTc interval in women with angina pectoris with a control group as well as the associations with CMD. METHODS: Women with angina...... pectoris and no obstructive coronary artery disease (n=138) and age-matched controls were compared in regard to QTc interval and morphology combination score (MCS) based on T-wave asymmetry, flatness and presence of T-wave notch. CMD was assessed as a coronary flow velocity reserve (CFVR) by transthoracic...... was attenuated after multivariable adjustment (p=0.08). CONCLUSION: This study suggests that women with angina pectoris have alterations in T-wave morphology as well as longer QTc interval compared with a reference population. CMD might be an explanation....
The influence of strong field vacuum polarization on gravitational-electromagnetic wave interaction
Forsberg, Mats; Papadopoulos, Demetrios; Brodin, Gert
2010-01-01
The interaction between gravitational and electromagnetic waves in the presence of a static magnetic field is studied. The field strength of the static field is allowed to surpass the Schwinger critical field, such that the quantum electrodynamical (QED) effects of vacuum polarization and magnetization are significant. Equations governing the interaction are derived and analyzed. It turns out that the energy conversion from gravitational to electromagnetic waves can be significantly altered d...
Wave Induced Loads on the LEANCON Wave Energy Converter
DEFF Research Database (Denmark)
Frigaard, Peter; Kofoed, Jens Peter; Beserra, Eliab Ricarte
This report is a product of the co-operation agreement between Aalborg University and LEANCON (by Kurt Due Rasmussen) on the evaluation and development of the LEANCON wave energy converter (WEC). The work reported here has focused on evaluation of the wave induced loads on the device, based...... in the laboratory, all under the supervision of the personnel of the Wave Energy Research Group at Department of Civil Engineering, Aalborg University....
Hydrodynamic Performance of a Wave Energy Converter
Yang, Yingchen
2010-11-01
To harvest energy from ocean waves, a new wave energy converter (WEC) was proposed and tested in a wave tank. The WEC freely floats on the water surface and rides waves. It utilizes its wave-driven angular oscillation to convert the mechanical energy of waves into electricity. To gain the maximum possible angular oscillation of the WEC under specified wave conditions, both floatation of the WEC and wave interaction with the WEC play critical roles in a joint fashion. During the experiments, the submersion condition of the WEC and wave condition were varied. The results were analyzed in terms of the oscillation amplitude, stability, auto-orientation capability, and wave frequency dependency.
Wave-equation Qs Inversion of Skeletonized Surface Waves
Li, Jing
2017-02-08
We present a skeletonized inversion method that inverts surface-wave data for the Qs quality factor. Similar to the inversion of dispersion curves for the S-wave velocity model, the complicated surface-wave arrivals are skeletonized as simpler data, namely the amplitude spectra of the windowed Rayleigh-wave arrivals. The optimal Qs model is the one that minimizes the difference in the peak frequencies of the predicted and observed Rayleigh wave arrivals using a gradient-based wave-equation optimization method. Solutions to the viscoelastic wave-equation are used to compute the predicted Rayleigh-wave arrivals and the misfit gradient at every iteration. This procedure, denoted as wave-equation Qs inversion (WQs), does not require the assumption of a layered model and tends to have fast and robust convergence compared to full waveform inversion (FWI). Numerical examples with synthetic and field data demonstrate that the WQs method can accurately invert for a smoothed approximation to the subsurface Qs distribution as long as the Vs model is known with sufficient accuracy.
Skeletonized wave-equation Qs tomography using surface waves
Li, Jing
2017-08-17
We present a skeletonized inversion method that inverts surface-wave data for the Qs quality factor. Similar to the inversion of dispersion curves for the S-wave velocity model, the complicated surface-wave arrivals are skeletonized as simpler data, namely the amplitude spectra of the windowed Rayleigh-wave arrivals. The optimal Qs model is then found that minimizes the difference in the peak frequencies of the predicted and observed Rayleigh wave arrivals using a gradient-based wave-equation optimization method. Solutions to the viscoelastic wave-equation are used to compute the predicted Rayleigh-wave arrivals and the misfit gradient at every iteration. This procedure, denoted as wave-equation Qs tomography (WQs), does not require the assumption of a layered model and tends to have fast and robust convergence compared to Q full waveform inversion (Q-FWI). Numerical examples with synthetic and field data demonstrate that the WQs method can accurately invert for a smoothed approximation to the subsur-face Qs distribution as long as the Vs model is known with sufficient accuracy.
Gabor Wave Packet Method to Solve Plasma Wave Equations
Energy Technology Data Exchange (ETDEWEB)
A. Pletzer; C.K. Phillips; D.N. Smithe
2003-06-18
A numerical method for solving plasma wave equations arising in the context of mode conversion between the fast magnetosonic and the slow (e.g ion Bernstein) wave is presented. The numerical algorithm relies on the expansion of the solution in Gaussian wave packets known as Gabor functions, which have good resolution properties in both real and Fourier space. The wave packets are ideally suited to capture both the large and small wavelength features that characterize mode conversion problems. The accuracy of the scheme is compared with a standard finite element approach.
1942-05-04
following hYJ?oth- .. esis: The detonation wave ini tiatos the detonation in the neie ;hboring layer of the intact explosive by the discontinuity of...3-2) may be stated as ( 4-4) / ( -’« dJ:J. ~ = ~- {1.;. n)’A (n,’P, V) as a conversion formula U1 the abo’lre s~nso. i.e., / li This is the... formula ( 4-4) which expresses x in terms of n. If we have oontinui ty, i.e,., if n _,. 0 implies P ~p , V --+V , then ( 3-3) yields A (n 1 Pl. V
Directional Ocean Wave Spectra
1991-01-01
Press or the Set ies Editors. Published in the Series Handbook of Paleozoology, Emil Kurt-Schnyder and Hans Reiber, Irans- lated by Emil Kucera ... Jan 19S) possible, but wave-current interactions must be taken I’ hrý1 B" %nv~ N . and w’ ’A I’ lw"iR Kcis’. oi . 1" into account. I-0& 111( Oplen...ice pack that was deformned h\\ ain underlying sase Npecrum. givntedreto of eeg ,. propagation: train.’ Phe deformed ice \\ieklded a simple, wecll
Wave propagation scattering theory
Birman, M Sh
1993-01-01
The papers in this collection were written primarily by members of the St. Petersburg seminar in mathematical physics. The seminar, now run by O. A. Ladyzhenskaya, was initiated in 1947 by V. I. Smirnov, to whose memory this volume is dedicated. The papers in the collection are devoted mainly to wave propagation processes, scattering theory, integrability of nonlinear equations, and related problems of spectral theory of differential and integral operators. The book is of interest to mathematicians working in mathematical physics and differential equations, as well as to physicists studying va
Millimeter Wave Communications
1984-06-01
64 64:7 34OF9 043 64 ?~ 4’ ’ J "IN0 ŗ 34 69044137 Saw a.? 64 3 3 6 N @6’ 4’ ) IF6 1.41 W i V ature will give values to be expected (Reference 9: 322...Octooer 1978, the Atmospheric Sciences Laboratories c’nducted a malor test called DIRT-I, to obtain direct sensor information about the properties of dust...wave frequencies (2.15) D where G v Antenna gain a Wavelength in meters c = Speed of light - 3.0 x 10meterslsecond f a Frequency in Hertz A
Kelly, Bernard J.
2010-01-01
Einstein's General Theory of Relativity is our best classical description of gravity, and informs modern astronomy and astrophysics at all scales: stellar, galactic, and cosmological. Among its surprising predictions is the existence of gravitational waves -- ripples in space-time that carry energy and momentum away from strongly interacting gravitating sources. In my talk, I will give an overview of the properties of this radiation, recent breakthroughs in computational physics allowing us to calculate the waveforms from galactic mergers, and the prospect of direct observation with interferometric detectors such as LIGO and LISA.
Webb, Robert H
2005-01-01
This undergraduate textbook presents thorough coverage of the standard topics of classical optics and optical instrument design; it also offers significant details regarding the concepts of modern optics. Its survey of the mathematical tools of optics grants students insights into the physical principles of quantum mechanics.Two principal concepts occur throughout: a treatment of scattering from real scatterers (leading to Huygens' principles, diffraction theory, the index of refraction, and related topics); and the difference between coherent and noncoherent wave phenomena. Examinations of su
Kashchenko, Serguey
2015-01-01
This monograph examines in detail models of neural systems described by delay-differential equations. Each element of the medium (neuron) is an oscillator that generates, in standalone mode, short impulses also known as spikes. The book discusses models of synaptic interaction between neurons, which lead to complex oscillatory modes in the system. In addition, it presents a solution to the problem of choosing the parameters of interaction in order to obtain attractors with predetermined structure. These attractors are represented as images encoded in the form of autowaves (wave memory). The target audience primarily comprises researchers and experts in the field, but it will also be beneficial for graduate students.
DEFF Research Database (Denmark)
Jensen, J.; Houmann, Jens Christian Gylden
1975-01-01
The selection rules for the linear couplings between magnons and phonons propagating in the c direction of a simple basal-plane hcp ferromagnet are determined by general symmetry considerations. The acoustic-optical magnon-phonon interactions observed in the heavy-rare-earth metals have been expl...... by Liu. The coupled magnon—transverse-phonon system for the c direction of Tb is analyzed in detail, and the strengths of the couplings are deduced as a function of wave vector by combining the experimental studies with the theory....
Holographic magnetisation density waves
Energy Technology Data Exchange (ETDEWEB)
Donos, Aristomenis [Centre for Particle Theory and Department of Mathematical Sciences, Durham University,Stockton Road, Durham, DH1 3LE (United Kingdom); Pantelidou, Christiana [Departament de Fisica Quantica i Astrofisica & Institut de Ciencies del Cosmos (ICC),Universitat de Barcelona,Marti i Franques 1, 08028 Barcelona (Spain)
2016-10-10
We numerically construct asymptotically AdS black brane solutions of D=4 Einstein theory coupled to a scalar and two U(1) gauge fields. The solutions are holographically dual to d=3 CFTs in a constant external magnetic field along one of the U(1)’s. Below a critical temperature the system’s magnetisation density becomes inhomogeneous, leading to spontaneous formation of current density waves. We find that the transition can be of second order and that the solutions which minimise the free energy locally in the parameter space of solutions have averaged stressed tensor of a perfect fluid.
Han, J.; Keehm, Y.
2010-12-01
Carbon dioxide is believed to be responsible for global warming and climate change, and Korea government puts a great effort in CCS (Carbon Capture and Storage). The geological sequestration is regarded as one viable option and we are looking for prospecting formations for carbon storage. In this paper, we present a new approach to determine physical property changes during CO2 injection and preliminary results from applying the method to one of prospective Tertiary formation in South Korea. The so-called computational rock physics method is composed of three steps: 1) acquisition of high-resolution pore microstructures by X-ray micro-tomography; 2) CO2 injection simulation using lattice-Boltzmann (LB) two-phase flow simulation; and 3) FEM property simulations (electrical and elastic) at different CO2 saturations during the injection. We have been shown the viability of the method last year. This year we applied this method to one of CS (carbon storage) target area, Pukpyeong formation located in north-eastern part of South Korea. From thin section analysis, we found that the formation is composed of mudstone, sandstone and conglomerate, and most of them are poorly consolidated. The mudstone and poorly-sorted conglomerate are believed to have very low permeability, and the effect of CO2 injection would be significant. Thus we focus on sandstone units and get pore microstructure of those units. We then performed the computational rock physics analysis, and present the relations of Vp - CO2 saturation, and electrical conductivity - CO2 saturation for a few sand units. We also present the preliminary upscaling results by putting combined sandstone and mudstone units into FEM modeling. The modeling results implies that the new computational approach can be very useful to characterizing the CS sites especially in early stage. Acknowledgement: This work was supported by the Energy R&D program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (2010T100100500).
Saxena, Nishank; Hofmann, Ronny; Alpak, Faruk O.; Berg, Steffen; Dietderich, Jesse; Agarwal, Umang; Tandon, Kunj; Hunter, Sander; Freeman, Justin; Wilson, Ove Bjorn
2017-11-01
We generate a novel reference dataset to quantify the impact of numerical solvers, boundary conditions, and simulation platforms. We consider a variety of microstructures ranging from idealized pipes to digital rocks. Pore throats of the digital rocks considered are large enough to be well resolved with state-of-the-art micro-computerized tomography technology. Permeability is computed using multiple numerical engines, 12 in total, including, Lattice-Boltzmann, computational fluid dynamics, voxel based, fast semi-analytical, and known empirical models. Thus, we provide a measure of uncertainty associated with flow computations of digital media. Moreover, the reference and standards dataset generated is the first of its kind and can be used to test and improve new fluid flow algorithms. We find that there is an overall good agreement between solvers for idealized cross-section shape pipes. As expected, the disagreement increases with increase in complexity of the pore space. Numerical solutions for pipes with sinusoidal variation of cross section show larger variability compared to pipes of constant cross-section shapes. We notice relatively larger variability in computed permeability of digital rocks with coefficient of variation (of up to 25%) in computed values between various solvers. Still, these differences are small given other subsurface uncertainties. The observed differences between solvers can be attributed to several causes including, differences in boundary conditions, numerical convergence criteria, and parameterization of fundamental physics equations. Solvers that perform additional meshing of irregular pore shapes require an additional step in practical workflows which involves skill and can introduce further uncertainty. Computation times for digital rocks vary from minutes to several days depending on the algorithm and available computational resources. We find that more stringent convergence criteria can improve solver accuracy but at the expense of longer computation time.
Smith, Megan M; Sholokhova, Yelena; Hao, Yue; Carroll, Susan A
2013-01-02
We present characterization and geochemical data from a core-flooding experiment on a sample from the Three Fingers evaporite unit forming the lower extent of caprock at the Weyburn-Midale reservoir, Canada. This low-permeability sample was characterized in detail using X-ray computed microtomography before and after exposure to CO(2)-acidified brine, allowing mineral phase and voidspace distributions to be quantified in three dimensions. Solution chemistry indicated that CO(2)-acidified brine preferentially dissolved dolomite until saturation was attained, while anhydrite remained unreactive. Dolomite dissolution contributed to increases in bulk permeability through the formation of a localized channel, guided by microfractures as well as porosity and reactive phase distributions aligned with depositional bedding. An indirect effect of carbonate mineral reactivity with CO(2)-acidified solution is voidspace generation through physical transport of anhydrite freed from the rock matrix following dissolution of dolomite. The development of high permeability fast pathways in this experiment highlights the role of carbonate content and potential fracture orientations in evaporite caprock formations considered for both geologic carbon sequestration and CO(2)-enhanced oil recovery operations.
Directory of Open Access Journals (Sweden)
Shixiong Song
2014-01-01
CFD results and empirical correlations’ predictions of pressure drop and local Nusselt numbers. Local pebble surface temperature distributions in several default conditions are investigated. Thermal removal capacities of molten salt are confirmed in the case of nominal condition; the pebble surface temperature under the condition of local power distortion shows the tolerance of pebble in extreme neutron dose exposure. The numerical experiments of local pebble insufficient cooling indicate that in the molten salt cooled pebble bed reactor, the pebble surface temperature is not very sensitive to loss of partial coolant. The methods and results of this paper would be useful for optimum designs and safety analysis of molten salt cooled pebble bed reactors.
Recent studies highlight the important role that the upper litter layer in forest soils (biomat) plays in hillslope and catchment runoff generation. This biomat layer is a very loose material with high porosity and organic content. Direct sampling is usually problematic due to li...
Tokan-Lawal, Adenike; Prodanović, Maša.; Eichhubl, Peter
2015-08-01
Natural fractures can provide preferred flow pathways in otherwise low-permeability reservoirs. In deep subsurface reservoirs including tight oil and gas reservoirs, as well as in hydrothermal systems, fractures are frequently lined or completely filled with mineral cement that reduces or occludes fracture porosity and permeability. Fracture cement linings potentially reduce flow connectivity between the fracture and host rock and increase fracture wall roughness, which constricts flow. We combined image-based fracture space characterization, mercury injection capillary pressure and permeability experiments, and numerical simulations to evaluate the influence of fracture-lining cement on single-phase and multiphase flows along a natural fracture from the Travis Peak Formation, a tight gas reservoir sandstone in East Texas. Using X-ray computed microtomographic image analysis, we characterized fracture geometry and the connectivity and geometric tortuosity of the fracture pore space. Combining level set method-based progressive quasistatic and lattice Boltzmann simulations, we assessed the capillary-dominated displacement properties and the (relative) permeability of a cement-lined fracture. Published empirical correlations between aperture and permeability for barren fractures provide permeability estimates that vary among each other, and differ from our results, vary by several orders of magnitude. Compared to barren fractures, cement increases the geometric tortuosity, aperture variation of the pore space, and capillary pressure while reducing the single-phase permeability by up to 2 orders of magnitude. For multiphase displacement, relative permeability and fluid entrapment geometry resemble those of porous media and differ from those characteristic of barren fractures.
Directory of Open Access Journals (Sweden)
Emad W. Al-Shalabi
2016-01-01
Full Text Available Oil recovery prediction and field pilot implements require basic understanding and estimation of displacement efficiency. Corefloods and glass micromodels are two of the commonly used experimental methods to achieve this. In this paper, waterflood recovery is investigated using layered etched glass micromodel and Berea sandstone core plugs with large permeability contrasts. This study focuses mainly on the effect of permeability (heterogeneity in stratified porous media with no cross-flow. Three experimental setups were designed to represent uniformly stratified oil reservoir with vertical discontinuity in permeability. Waterflood recovery to residual oil saturation (Sor is measured through glass micromodel (to aid visual observation, linear coreflood, and forced drainage-imbibition processes by ultracentrifuge. Six oil samples of low-to-medium viscosity and porous media of widely different permeability (darcy and millidarcy ranges were chosen for the study. The results showed that waterflood displacement efficiencies are consistent in both permeability ranges, namely, glass micromodel and Berea sandstone core plugs. Interestingly, the experimental results show that the low permeability zones resulted in higher ultimate oil recovery compared to high permeability zones. At Sor microheterogeneity and fingering are attributed for this phenomenon. In light of the findings, conformance control is discussed for better sweep efficiency. This paper may be of help to field operators to gain more insight into microheterogeneity and fingering phenomena and their impact on waterflood recovery estimation.
Modeling Pore-Scale Oil-Gas Systems Using Gradient Theory with Peng-Robinson Equation of State
Fan, Xiaolin
2016-06-01
This research addresses a sequential convex splitting method for numerical simulation of multicomponent two-phase fluids mixture in a single-pore at constant temperature, which is modeled by the gradient theory with Peng-Robinson equation of state. The gradient theory of thermodynamics and variational calculus are utilized to obtain a system of chemical equilibrium equations which are transformed into a transient system as a numerical strategy on which the numerical scheme is based. The proposed numerical algorithm avoids computing Hessian matrix arising from the second-order derivative of homogeneous contribution of free energy; it is also quite robust. This scheme is proved to be unconditionally component-wise energy stable. The Raviart-Thomas mixed finite element method is applied to spatial discretization.
DEFF Research Database (Denmark)
Addassi, Mouadh; Schreyer, Lynn; Johannesson, Björn
2016-01-01
Here we illustrate the usefulness of using the chemical potential as the primary unknown by modeling isothermal vapor transport through a partially saturated cylindrically symmetric capillary tube of variable cross-sectional area using a single equation. There are no fitting parameters and the nu......Here we illustrate the usefulness of using the chemical potential as the primary unknown by modeling isothermal vapor transport through a partially saturated cylindrically symmetric capillary tube of variable cross-sectional area using a single equation. There are no fitting parameters...... and the numerical solutions to the equation are compared with experimental results with excellent agreement. We demonstrate that isothermal vapor transport can be accurately modeled without modeling the details of the contact angle, microscale temperature fluctuations, or pressure fluctuations using a modification...
Nole, Michael; Daigle, Hugh; Cook, Ann E.; Hillman, Jess I. T.; Malinverno, Alberto
2017-02-01
The goal of this study is to computationally determine the potential distribution patterns of diffusion-driven methane hydrate accumulations in coarse-grained marine sediments. Diffusion of dissolved methane in marine gas hydrate systems has been proposed as a potential transport mechanism through which large concentrations of hydrate can preferentially accumulate in coarse-grained sediments over geologic time. Using one-dimensional compositional reservoir simulations, we examine hydrate distribution patterns at the scale of individual sand layers (1-20 m thick) that are deposited between microbially active fine-grained material buried through the gas hydrate stability zone (GHSZ). We then extrapolate to two-dimensional and basin-scale three-dimensional simulations, where we model dipping sands and multilayered systems. We find that properties of a sand layer including pore size distribution, layer thickness, dip, and proximity to other layers in multilayered systems all exert control on diffusive methane fluxes toward and within a sand, which in turn impact the distribution of hydrate throughout a sand unit. In all of these simulations, we incorporate data on physical properties and sand layer geometries from the Terrebonne Basin gas hydrate system in the Gulf of Mexico. We demonstrate that diffusion can generate high hydrate saturations (upward of 90%) at the edges of thin sands at shallow depths within the GHSZ, but that it is ineffective at producing high hydrate saturations throughout thick (greater than 10 m) sands buried deep within the GHSZ. Furthermore, we find that hydrate in fine-grained material can preserve high hydrate saturations in nearby thin sands with burial.Plain Language SummaryThis study combines one-, two-, and three-dimensional simulations to explore one potential process by which methane dissolved in water beneath the seafloor can be converted into solid methane hydrate. This work specifically examines one end-member methane transport mechanism, diffusion, and its potential to help grow methane hydrate in the pore space of marine sediments. The simulations presented here span hundreds of thousands of years to capture the evolution of a diffusion-dominated gas hydrate system over geologic time.
Directory of Open Access Journals (Sweden)
Zhiqiang Chen
2016-03-01
Full Text Available The hydro-mechanical coupling transport process of sand production is numerically investigated with special attention paid to the bonding effect between sand grains. By coupling the lattice Boltzmann method (LBM and the discrete element method (DEM, we are able to capture particles movements and fluid flows simultaneously. In order to account for the bonding effects on sand production, a contact bond model is introduced into the LBM-DEM framework. Our simulations first examine the experimental observation of “initial sand production is evoked by localized failure” and then show that the bonding or cement plays an important role in sand production. Lower bonding strength will lead to more sand production than higher bonding strength. It is also found that the influence of flow rate on sand production depends on the bonding strength in cemented granular media, and for low bonding strength sample, the higher the flow rate is, the more severe the erosion found in localized failure zone becomes.
The detection of gravitational waves
Barish, Barry C
1996-01-01
General Relativity predicts the emission of gravitanional waves whenever compact concentrations of energy change shape. This could occur in a variety of astrophysical phenomena. For example, the coalescence of binary systems such as a pair of neutron stars or black holes emit gravitanional waves that propagate through space at the speed of light, and in principle, can be directly detected on the earth's surface. This lecture series will review the possible sources of gravitanional waves and the various approaches toward detection, with special emphasis on long baseline interferometer detectors. The Laser Interferometer Gravitanional Wave Observatory (LIGO) is being constructed with a goal to detect these waves and then to use them as a new tool to explore and study the Universe. The sources of gravitanional waves and techniques for detection will be presented, as well as the status and prospects for the LIGO project.
DEFF Research Database (Denmark)
Vicinanza, Diego; Margheritini, Lucia; Kofoed, Jens Peter
2012-01-01
The Sea-wave Slot-cone Generator concept (SSG) is a Wave Energy Converter based on the wave overtopping principle utilizing several reservoirs placed on top of each other, in which the energy of the incoming wave will be stored as potential energy. The water captured in the reservoirs will then run...... through turbines for electricity production. The system utilizes a wide spectrum of different wave conditions by means of multiple reservoirs, located at different levels above the still water level. Thereby, it obtains a high overall efficiency and it can be suitable for shoreline and breakwater...... at the Svaaheia site (Norway), Port of Hanstholm (Denmark) and Port of Garibaldi (Oregon, USA). In the last-mentioned two projects, the Sea-wave Slot-cone Generator technology is integrated into outer harbor breakwater and jetty reconstruction projects. Comprehensive studies have been performed in the last years...
Oscillating nonlinear acoustic shock waves
DEFF Research Database (Denmark)
Gaididei, Yuri; Rasmussen, Anders Rønne; Christiansen, Peter Leth
2016-01-01
We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show...... that at resonance a stationary state arise consisting of multiple oscillating shock waves. Off resonance driving leads to a nearly linear oscillating ground state but superimposed by bursts of a fast oscillating shock wave. Based on a travelling wave ansatz for the fluid velocity potential with an added 2'nd order...... polynomial in the space and time variables, we find analytical approximations to the observed single shock waves in an infinitely long tube. Using perturbation theory for the driven acoustic system approximative analytical solutions for the off resonant case are determined....
DEFF Research Database (Denmark)
This book offers a concise, practice-oriented reference-guide to the field of ocean wave energy. The ten chapters highlight the key rules of thumb, address all the main technical engineering aspects and describe in detail all the key aspects to be considered in the techno-economic assessment...... of wave energy converters. Written in an easy-to-understand style, the book answers questions relevant to readers of different backgrounds, from developers, private and public investors, to students and researchers. It is thereby a valuable resource for both newcomers and experienced practitioners...... in the wave energy sector. •Offers a practice-oriented reference guide to the field of ocean wave energy •Presents an overview as well as a deeper insight into wave energy converters •Covers both the economic and engineering aspects related to ocean wave energy conversion...
F wave studies after intrathecal methotrexate administration.
Grzelec, H; Fryze, C; Nowacki, P; Zdziarska, B
1996-10-01
Electrophysiological examinations were done on 20 patients aged 40-71 years with recently diagnosed high grade non-Hodgkin's lymphomas. General chemotherapy and intrathecal chemotherapy in order to prevent central nervous system (CNS) involvement were begun. On the first day of chemotherapeutic cycle patients received intrathecally methotrexate (ITMTX) and prednisolone. Electrophysiological study was carried out twice in each subject: before ITMTX injection and a day after injection. The study procedure included: a conventional nerve conduction examination (peripheral conduction velocity and compound muscle action potential amplitude), the F wave latency and amplitude measurement and F ratio (F-M-1/2M) calculation for peroneal and tibial nerve bilaterally. Results of the first and the second examinations were statistically compared by t-Student's test. No significant differences between values of estimated parameters were found. The study revealed no recent alterations in proximal, paraspinal motor conduction and motor neuron excitability due to antidromical activation after single ITMTX administration.
Exhaust Nozzle Plume and Shock Wave Interaction
Castner, Raymond S.; Elmiligui, Alaa; Cliff, Susan
2013-01-01
Fundamental research for sonic boom reduction is needed to quantify the interaction of shock waves generated from the aircraft wing or tail surfaces with the exhaust plume. Both the nozzle exhaust plume shape and the tail shock shape may be affected by an interaction that may alter the vehicle sonic boom signature. The plume and shock interaction was studied using Computational Fluid Dynamics simulation on two types of convergent-divergent nozzles and a simple wedge shock generator. The nozzle plume effects on the lower wedge compression region are evaluated for two- and three-dimensional nozzle plumes. Results show that the compression from the wedge deflects the nozzle plume and shocks form on the deflected lower plume boundary. The sonic boom pressure signature of the wedge is modified by the presence of the plume, and the computational predictions show significant (8 to 15 percent) changes in shock amplitude.
Quantum Emulation of Gravitational Waves.
Fernandez-Corbaton, Ivan; Cirio, Mauro; Büse, Alexander; Lamata, Lucas; Solano, Enrique; Molina-Terriza, Gabriel
2015-07-14
Gravitational waves, as predicted by Einstein's general relativity theory, appear as ripples in the fabric of spacetime traveling at the speed of light. We prove that the propagation of small amplitude gravitational waves in a curved spacetime is equivalent to the propagation of a subspace of electromagnetic states. We use this result to propose the use of entangled photons to emulate the evolution of gravitational waves in curved spacetimes by means of experimental electromagnetic setups featuring metamaterials.
Stigloher, Johannes; Decker, Martin; Körner, Helmut S.; TANABE, Kenji; Moriyama, Takahiro; Taniguchi, Takuya; Hata, Hiroshi; Madami, Marco; Gubbiotti, Gianluca; Kobayashi, Kensuke; Ono, Teruo; Back, Christian H.
2016-01-01
We report the experimental observation of Snell's law for magneto-static spin waves in thin ferromagnetic Permalloy films by imaging incident, refracted and reflected waves. We use a thickness step as the interface between two media with different dispersion relation. Since the dispersion relation for magneto-static waves in thin ferromagnetic films is anisotropic, deviations from the isotropic Snell's law known in optics are observed for incidence angles larger than 25\\textdegree{} with resp...
Energy Technology Data Exchange (ETDEWEB)
Brodin, G., E-mail: gert.brodin@physics.umu.se [Department of Physics, Umeå University, SE-901 87 Umeå (Sweden); Stenflo, L. [Department of Physics, Linköping University, SE-581 83 Linköping (Sweden)
2017-03-18
Considering a class of solutions where the density perturbations are functions of time, but not of space, we derive a new exact large amplitude wave solution for a cold uniform electron plasma. This result illustrates that most simple analytical solutions can appear even if the density perturbations are large. - Highlights: • The influence of large amplitude electromagnetic waves on electrostatic oscillations is found. • A generalized Mathieu equation is derived. • Anharmonic wave profiles are computed numerically.
Surface Waves on Metamaterials Interfaces
DEFF Research Database (Denmark)
Takayama, Osamu; Shkondin, Evgeniy; Panah, Mohammad Esmail Aryaee
2016-01-01
We analyze surface electromagnetic waves supported at the interface between isotropic medium and effective anisotropic material that can be realized by alternating conductive and dielectrics layers. This configuration can host various types of surface waves and therefore can serve as a rich...... platform for applications of surface photonics. Most of these surface waves are directional and as such their propagation can be effectively controlled by changing wavelength or material parameters tuning....
Vector wave propagation method.
Fertig, M; Brenner, K-H
2010-04-01
In this paper, we extend the scalar wave propagation method (WPM) to vector fields. The WPM [Appl. Opt.32, 4984 (1993)] was introduced in order to overcome the major limitations of the beam propagation method (BPM). With the WPM, the range of application can be extended from the simulation of waveguides to simulation of other optical elements like lenses, prisms and gratings. In that reference it was demonstrated that the wave propagation scheme provides valid results for propagation angles up to 85 degrees and that it is not limited to small index variations in the axis of propagation. Here, we extend the WPM to three-dimensional vectorial fields (VWPMs) by considering the polarization dependent Fresnel coefficients for transmission in each propagation step. The continuity of the electric field is maintained in all three dimensions by an enhanced propagation vector and the transfer matrix. We verify the validity of the method by transmission through a prism and by comparison with the focal distribution from vectorial Debye theory. Furthermore, a two-dimensional grating is simulated and compared with the results from three-dimensional RCWA. Especially for 3D problems, the runtime of the VWPM exhibits special advantage over the RCWA.
Rotational waves in geodynamics
Gerus, Artyom; Vikulin, Alexander
2015-04-01
The rotation model of a geoblock with intrinsic momentum was constructed by A.V. Vikulin and A.G. Ivanchin [9, 10] to describe seismicity within the Pacific Ocean margin. It is based on the idea of a rotational motion of geoblocks as the parts of the rotating body of the Earth that generates rotary deformation waves. The law of the block motion was derived in the form of the sine-Gordon equation (SG) [5, 9]; the dimensionless form of the equation is: δ2θ δ2θ δξ2 - δη2 = sinθ, (1) where θ = β/2, ξ = k0z and η = v0k0t are dimensionless coordinates, z - length of the chain of masses (blocks), t - time, β - turn angle, ν0 - representative velocity of the process, k0 - wave number. Another case analyzed was a chain of nonuniformly rotating blocks, with deviation of force moments from equilibrium positions μ, considering friction forces α along boundaries, which better matched a real-life seismic process. As a result, the authors obtained the law of motion for a block in a chain in the form of the modified SG equation [8]: δ2θ δ2θ δθ- δξ2 - δ η2 = sin θ+ α δη + μδ(ξ)sin θ (2)
Ferrate, Andres
2010-01-01
Catch Google Wave, the revolutionary Internet protocol and web service that lets you communicate and collaborate in realtime. With this book, you'll understand how Google Wave integrates email, instant messaging (IM), wiki, and social networking functionality into a powerful and extensible platform. You'll also learn how to use its features, customize its functions, and build sophisticated extensions with Google Wave's open APIs and network protocol. Written for everyone -- from non-techies to ninja coders -- Google Wave: Up and Running provides a complete tour of this complex platform. You'
Wave-equation dispersion inversion
Li, Jing
2016-12-08
We present the theory for wave-equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. The dispersion curves are obtained from Rayleigh waves recorded by vertical-component geophones. Similar to wave-equation traveltime tomography, the complicated surface wave arrivals in traces are skeletonized as simpler data, namely the picked dispersion curves in the phase-velocity and frequency domains. Solutions to the elastic wave equation and an iterative optimization method are then used to invert these curves for 2-D or 3-D S-wave velocity models. This procedure, denoted as wave-equation dispersion inversion (WD), does not require the assumption of a layered model and is significantly less prone to the cycle-skipping problems of full waveform inversion. The synthetic and field data examples demonstrate that WD can approximately reconstruct the S-wave velocity distributions in laterally heterogeneous media if the dispersion curves can be identified and picked. The WD method is easily extended to anisotropic data and the inversion of dispersion curves associated with Love waves.
Electromagnetic waves in stratified media
Wait, James R; Fock, V A; Wait, J R
2013-01-01
International Series of Monographs in Electromagnetic Waves, Volume 3: Electromagnetic Waves in Stratified Media provides information pertinent to the electromagnetic waves in media whose properties differ in one particular direction. This book discusses the important feature of the waves that enables communications at global distances. Organized into 13 chapters, this volume begins with an overview of the general analysis for the electromagnetic response of a plane stratified medium comprising of any number of parallel homogeneous layers. This text then explains the reflection of electromagne
Graff, Karl F
1991-01-01
This highly useful textbook presents comprehensive intermediate-level coverage of nearly all major topics of elastic wave propagation in solids. The subjects range from the elementary theory of waves and vibrations in strings to the three-dimensional theory of waves in thick plates. The book is designed not only for a wide audience of engineering students, but also as a general reference for workers in vibrations and acoustics. Chapters 1-4 cover wave motion in the simple structural shapes, namely strings, longitudinal rod motion, beams and membranes, plates and (cylindrical) shells. Chapter
DEFF Research Database (Denmark)
Dahl, Jens Peder; Varro, S.; Wolf, A.
2007-01-01
We derive explicit expressions for the Wigner function of wave functions in D dimensions which depend on the hyperradius-that is, of s waves. They are based either on the position or the momentum representation of the s wave. The corresponding Wigner function depends on three variables......: the absolute value of the D-dimensional position and momentum vectors and the angle between them. We illustrate these expressions by calculating and discussing the Wigner functions of an elementary s wave and the energy eigenfunction of a free particle....
Newnes short wave listening handbook
Pritchard, Joe
2013-01-01
Newnes Short Wave Listening Handbook is a guide for starting up in short wave listening (SWL). The book is comprised of 15 chapters that discuss the basics and fundamental concepts of short wave radio listening. The coverage of the text includes electrical principles; types of signals that can be heard in the radio spectrum; and using computers in SWL. The book also covers SWL equipment, such as receivers, converters, and circuits. The text will be of great use to individuals who want to get into short wave listening.
Longitudinal spread of mechanical excitation through tectorial membrane traveling waves.
Sellon, Jonathan B; Farrahi, Shirin; Ghaffari, Roozbeh; Freeman, Dennis M
2015-10-20
The mammalian inner ear separates sounds by their frequency content, and this separation underlies important properties of human hearing, including our ability to understand speech in noisy environments. Studies of genetic disorders of hearing have demonstrated a link between frequency selectivity and wave properties of the tectorial membrane (TM). To understand these wave properties better, we developed chemical manipulations that systematically and reversibly alter TM stiffness and viscosity. Using microfabricated shear probes, we show that (i) reducing pH reduces TM stiffness with little change in TM viscosity and (ii) adding PEG increases TM viscosity with little change in TM stiffness. By applying these manipulations in measurements of TM waves, we show that TM wave speed is determined primarily by stiffness at low frequencies and by viscosity at high frequencies. Both TM viscosity and stiffness affect the longitudinal spread of mechanical excitation through the TM over a broad range of frequencies. Increasing TM viscosity or decreasing stiffness reduces longitudinal spread of mechanical excitation, thereby coupling a smaller range of best frequencies and sharpening tuning. In contrast, increasing viscous loss or decreasing stiffness would tend to broaden tuning in resonance-based TM models. Thus, TM wave and resonance mechanisms are fundamentally different in the way they control frequency selectivity.
Propagation of electromagnetic wave in dusty plasma and the influence of dust size distribution
Energy Technology Data Exchange (ETDEWEB)
Li, Hui [Department of Physics, Harbin Institute of Technology, Harbin (China); China Research Institute of Radio Wave Propagation (CRIRP), Beijing (China); Wu, Jian [China Research Institute of Radio Wave Propagation (CRIRP), Beijing (China); Zhou, Zhongxiang; Yuan, Chengxun [Department of Physics, Harbin Institute of Technology, Harbin (China)
2016-07-15
The effect of charged dust particle and their size distribution on the propagation of electromagnetic wave in a dusty plasma is investigated. It is shown that the additional collision mechanism provided by charged dust particles can significantly alter the electromagnetic properties of a plasma, leading to the appearance of attenuation of electromagnetic wave through dusty plasma. The attenuation coefficient mainly depends on the dust density, radius, and the charge numbers on the dust surface. The results described here will be used to enhance understanding of electromagnetic wave propagation processed in space and laboratory dusty plasma.
van Gestel, Iris; Ijland, Marga M; Willekes, Christine; Evers, Johannes L H; Hoogland, Henk J
2008-11-01
To investigate whether intrauterine manipulation affects the direction or alters the frequency of endometrial wavelike activity. Prospective observational study. University hospital-based fertility clinic. Thirty-six patients undergoing intrauterine insemination (IUI). Ultrasound observation before and after IUI. Endometrial wave type and endometrial wave frequency before and after IUI. There was no difference in the direction and frequency of endometrial waves before and after IUI in 36 patients. Although the induction of uterine contractions by intrauterine manipulation has been suggested in the literature, the present study shows no contractions or induction of unfavorable (fundus to cervix) endometrial wavelike activity in 36 patients undergoing IUI.
Stabilized wave segments in an excitable medium with a phase wave at the wave back
Zykov, V. S.; Bodenschatz, E.
2014-04-01
The propagation velocity and the shape of a stationary propagating wave segment are determined analytically for excitable media supporting excitation waves with trigger fronts and phase backs. The general relationships between the medium's excitability and the wave segment parameters are obtained in the framework of the free boundary approach under quite usual assumptions. Two universal limits restricting the region of existence of stabilized wave segments are found. The comparison of the analytical results with numerical simulations of the well-known Kessler-Levine model demonstrates their good quantitative agreement. The findings should be applicable to a wide class of systems, such as the propagation of electrical waves in the cardiac muscle or wave propagation in autocatalytic chemical reactions, due to the generality of the free-boundary approach used.
Excitation of surface plasma waves over corrugated slow-wave ...
Indian Academy of Sciences (India)
A microwave propagating along vacuum–dielectric–plasma interface excites surface plasma wave (SPW). A periodic slow-wave structure placed over dielectric slows down the SPW. The phase velocity of slow SPW is sensitive to height, periodicity, number of periods, thickness and the separation between dielectric and ...
Wave Forces on a Vertical Smooth Cylinder in Directional Waves
DEFF Research Database (Denmark)
Høgedal, M.; Skourup, J.; Burcharth, H. F.
1994-01-01
In this paper the results from physical experiments with an instrumented cylinder conducted in laboratory environments are presented. The primary aim of the study has been to investigate the effect from wave directionality on the local and depth integrated maximum wave forces on a smooth vertical...
Solitary wave and periodic wave solutions for Burgers, Fisher ...
Indian Academy of Sciences (India)
Home; Journals; Pramana – Journal of Physics; Volume 85; Issue 1. Solitary wave and periodic wave solutions for Burgers, Fisher, Huxley and combined forms of these equations by the (′/)-expansion method. Jalil Manafian Mehrdad Lakestani. Volume 85 Issue 1 July 2015 pp 31-52 ...
New exact travelling wave solutions of bidirectional wave equations
Indian Academy of Sciences (India)
where , , and d are real constants. In general, the exact travelling wave solutions will be helpful in the theoretical and numerical study of the nonlinear evolution systems. In this paper, we obtain exact travelling wave solutions of system (1) using the modiﬁed tanh–coth function method with computerized symbolic ...
Excitation of surface plasma waves over corrugated slow-wave ...
Indian Academy of Sciences (India)
Abstract. A microwave propagating along vacuum–dielectric–plasma interface excites surface plasma wave (SPW). A periodic slow-wave structure placed over dielectric slows down the SPW. The phase velocity of slow SPW is sensitive to height, periodicity, number of periods, thickness and the separation between ...
From the Somigliana waves to the evanescent waves
Directory of Open Access Journals (Sweden)
Pietro Caloi
2010-02-01
Full Text Available The Rayleigh equation has real coefficients; therefore, also the case of complex conjugated roots may be explained physically. The Author proves that the Somigliana waves may be formed for Poisson ratio values until 0.30543; for gradually less rigid media, they are missing altogether and degenerate into evanescent waves.
Short wave breaking effects on low frequency waves
Daly, C.; Roelvink, J.A.; Van Dongeren, A.; Van Thiel de Vries, J.S.M.; McCall, R.T.
2010-01-01
The effect of short wave breaking on low frequency waves is investigated using two breaker formulations implemented in a time-dependent numerical model (XBeach): (1) an advective-deterministic approach (ADA) and (2) the probabilistic breaker formulation of Roelvink (1993). Previous research has
Ulysses Observations of Nonlinear Wave-wave Interactions in the ...
Indian Academy of Sciences (India)
Home; Journals; Journal of Astrophysics and Astronomy; Volume 21; Issue 3-4. Ulysses Observations of Nonlinear Wave-wave Interactions in the Source Regions of Type III Solar Radio Bursts. G. Thejappa R. J. MacDowall. Session XI – Solar Wind & Interplanetary Magnetic Fields Volume 21 Issue 3-4 ...
Buccal alterations in diabetes mellitus
Directory of Open Access Journals (Sweden)
Negrato Carlos
2010-01-01
Full Text Available Abstract Long standing hyperglycaemia besides damaging the kidneys, eyes, nerves, blood vessels, heart, can also impair the function of the salivary glands leading to a reduction in the salivary flow. When salivary flow decreases, as a consequence of an acute hyperglycaemia, many buccal or oral alterations can occur such as: a increased concentration of mucin and glucose; b impaired production and/or action of many antimicrobial factors; c absence of a metalloprotein called gustin, that contains zinc and is responsible for the constant maturation of taste papillae; d bad taste; e oral candidiasis f increased cells exfoliation after contact, because of poor lubrication; g increased proliferation of pathogenic microorganisms; h coated tongue; i halitosis; and many others may occur as a consequence of chronic hyperglycaemia: a tongue alterations, generally a burning mouth; b periodontal disease; c white spots due to demineralization in the teeth; d caries; e delayed healing of wounds; f greater tendency to infections; g lichen planus; h mucosa ulcerations. Buccal alterations found in diabetic patients, although not specific of this disease, have its incidence and progression increased when an inadequate glycaemic control is present.
Vector plane wave spectrum of an arbitrary polarized electromagnetic wave.
Guo, Hanming; Chen, Jiabi; Zhuang, Songlin
2006-03-20
By using the method of modal expansions of the independent transverse fields, a formula of vector plane wave spectrum (VPWS) of an arbitrary polarized electromagnetic wave in a homogenous medium is derived. In this formula VPWS is composed of TM- and TE-mode plane wave spectrum, where the amplitude and unit polarized direction of every plane wave are separable, which has more obviously physical meaning and is more convenient to apply in some cases compared to previous formula of VPWS. As an example, the formula of VPWS is applied to the well-known radially and azimuthally polarized beam. In addition, vector Fourier-Bessel transform pairs of an arbitrary polarized electromagnetic wave with circular symmetry are also derived.
Pulse wave analysis with diffusing-wave spectroscopy.
Belau, Markus; Scheffer, Wolfgang; Maret, Georg
2017-07-01
Hypertension is a major risk factor for cardiovascular disease and thus at the origin of many deaths by e.g. heart attack or stroke. Hypertension is caused by many factors including an increase in arterial stiffness which leads to changes in pulse wave velocity and wave reflections. Those often result in an increased left ventricular load which may result in heart failure as well as an increased pulsatile pressure in the microcirculation l to damage to blood vessels. In order to specifically treat the different causes of hypertension it is desirable to perform a pulse wave analysis as a complement to measurements of systolic and diastolic pressure by brachial cuff sphygmomanometry. Here we show that Diffusing Wave Spectroscopy, a novel non-invasive portable tool, is able to monitor blood flow changes with a high temporal resolution. The measured pulse travel times give detailed information of the pulse wave blood flow profile.
Wave-to-wire Modelling of Wave Energy Converters
DEFF Research Database (Denmark)
Ferri, Francesco
and non-technical issues. These can be efficiently summarised in the cost of the energy produced by the various wave energy converters: If compared with other renewable energy technologies the cost of energy from the ocean waves is still significantly higher. Holding the comparison it also important...... to noticed that there is not a clear front runner in the wave energy sector, which fades effort and funding over a too broad frame. In order to assist efficient development and analysis of wave energy converters and therefore to accelerate the sector progression towards commercialisation, a generally......, but talking about renewable energy partially ravels the problem out. Wave energy is a large, mostly untapped, renewable energy resource. It has the potential to contribute significantly to the future energy mix, but the sector has not yet rolled off into the market in consequence of a number of technical...
Turbulent wind waves on a water current
Directory of Open Access Journals (Sweden)
M. V. Zavolgensky
2008-05-01
Full Text Available An analytical model of water waves generated by the wind over the water surface is presented. A simple modeling method of wind waves is described based on waves lengths diagram, azimuthal hodograph of waves velocities and others. Properties of the generated waves are described. The wave length and wave velocity are obtained as functions on azimuth of wave propagation and growth rate. Motionless waves dynamically trapped into the general picture of three dimensional waves are described. The gravitation force does not enter the three dimensional of turbulent wind waves. That is why these waves have turbulent and not gravitational nature. The Langmuir stripes are naturally modeled and existence of the rogue waves is theoretically proved.
Standing wave tube electro active polymer wave energy converter
Jean, Philippe; Wattez, Ambroise; Ardoise, Guillaume; Melis, C.; Van Kessel, R.; Fourmon, A.; Barrabino, E.; Heemskerk, J.; Queau, J. P.
2012-04-01
Over the past 4 years SBM has developed a revolutionary Wave Energy Converter (WEC): the S3. Floating under the ocean surface, the S3 amplifies pressure waves similarly to a Ruben's tube. Only made of elastomers, the system is entirely flexible, environmentally friendly and silent. Thanks to a multimodal resonant behavior, the S3 is capable of efficiently harvesting wave energy from a wide range of wave periods, naturally smoothing the irregularities of ocean wave amplitudes and periods. In the S3 system, Electro Active Polymer (EAP) generators are distributed along an elastomeric tube over several wave lengths, they convert wave induced deformations directly into electricity. The output is high voltage multiphase Direct Current with low ripple. Unlike other conventional WECs, the S3 requires no maintenance of moving parts. The conception and operating principle will eventually lead to a reduction of both CAPEX and OPEX. By integrating EAP generators into a small scale S3, SBM achieved a world first: direct conversion of wave energy in electricity with a moored flexible submerged EAP WEC in a wave tank test. Through an extensive testing program on large scale EAP generators, SBM identified challenges in scaling up to a utility grid device. French Government supports the consortium consisting of SBM, IFREMER and ECN in their efforts to deploy a full scale prototype at the SEMREV test center in France at the horizon 2014-2015. SBM will be seeking strategic as well as financial partners to unleash the true potentials of the S3 Standing Wave Tube Electro Active Polymer WEC.
Encounter Probability of Significant Wave Height
DEFF Research Database (Denmark)
Liu, Z.; Burcharth, H. F.
The determination of the design wave height (often given as the significant wave height) is usually based on statistical analysis of long-term extreme wave height measurement or hindcast. The result of such extreme wave height analysis is often given as the design wave height corresponding to a c...
Surf Wave Hydrodynamics in the Coastal Environment
Salmon, J.E.
2016-01-01
Stochastic wave models play a central role in our present-day wave modelling capabilities. They are frequently used to compute wave statistics, to generate boundary conditions and to include wave effects in coupled model systems. Historically, such models were developed to predict the wave field
Gravitational wave experiments
Hamilton, W O
1993-01-01
There were three oral sessions and one poster session for Workshop C1 on Gravitational Wave Experiments. There was also an informal experimental roundtable held one after- noon. The ﬁrst two oral sessions were devoted mainly to progress reports from various interferometric and bar detector groups. A total of 15 papers were presented in these two sessions. The third session of Workshop C1 was devoted primarily to theoretical and experimental investigations associated with the proposed interferometric detectors. Ten papers were presented in this session. In addition, there were a total of 13 papers presented in the poster session. There was some overlap between the presentations in the third oral session and the posters since only two of the serious posters were devoted to technology not pertinent to interferometers. In general, the papers showed the increasing maturity of the experimental aspects of the ﬁeld since most presented the results of completed investigations rather than making promises of wonderf...
Metamaterial electromagnetic wave absorbers.
Watts, Claire M; Liu, Xianliang; Padilla, Willie J
2012-06-19
The advent of negative index materials has spawned extensive research into metamaterials over the past decade. Metamaterials are attractive not only for their exotic electromagnetic properties, but also their promise for applications. A particular branch-the metamaterial perfect absorber (MPA)-has garnered interest due to the fact that it can achieve unity absorptivity of electromagnetic waves. Since its first experimental demonstration in 2008, the MPA has progressed significantly with designs shown across the electromagnetic spectrum, from microwave to optical. In this Progress Report we give an overview of the field and discuss a selection of examples and related applications. The ability of the MPA to exhibit extreme performance flexibility will be discussed and the theory underlying their operation and limitations will be established. Insight is given into what we can expect from this rapidly expanding field and future challenges will be addressed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Focusing of electromagnetic waves
Energy Technology Data Exchange (ETDEWEB)
Dhayalan, V.
1996-12-31
The focusing of electromagnetic waves inside a slab has been examined together with two special cases in which the slab is reduced to a single interface or a single medium. To that end the exact solutions for the fields inside a layered medium have been used, given in terms of the outside current source in order to obtain the solutions for the focused electric field inside a slab. Both exact and asymptotic solutions of the problem have been considered, and the validity of the latter has been discussed. The author has developed a numerical algorithm for evaluation of the diffraction integral with special emphasis on reducing the computing time. The numerical techniques in the paper can be readily applied to evaluate similar diffraction integrals occurring e.g. in microstrip antennas. 46 refs.
Solymar, Laszlo
2014-01-01
Metamaterials is a young subject born in the 21st century. It is concerned with artificial materials which can have electrical and magnetic properties difficult or impossible to find in nature. The building blocks in most cases are resonant elements much smaller than the wavelength of the electromagnetic wave. The book offers a comprehensive treatment of all aspects of research in this field at a level that should appeal to final year undergraduates in physics or in electrical and electronic engineering. The mathematics is kept at a minimum; the aim is to explain the physics in simple terms and enumerate the major advances. It can be profitably read by graduate and post-graduate students in order to find out what has been done in the field outside their speciality, and by experts who may gain new insight about the inter-relationship of the physical phenomena involved.
Gravitational waves and antennas
CERN. Geneva
2003-01-01
Gravitational waves and their detection represent today a hot topic, which promises to play a central role in astrophysics, cosmology and theoretical physics. Technological developments have enabled the construction of such sensitive detectors that the detection of gravitational radiation and the start of a new astronomy could become a reality during the next few years. This is expected to bring a revolution in our knowledge of the universe by allowing the observation of hiterto unseen phenomena such as coalescence of compact objects (neutron stars and black holes) fall of stars into supermassive black holes, stellar core collapses, big bang relics and the new and unexpected. In these lectures I give a brief overview of this challenging field of modern physics. Topics : Basic properties of gravitational radiation. Astrophysical sources. Principle of operation of detectors. Interferometers (both ground based and space-based), bars and spheres. Present status of the experiments, their recent results and their f...
Hydraulic Response of the Wave Energy Converter Wave Dragon in Nissum Bredning
DEFF Research Database (Denmark)
Kofoed, Jens Peter; Frigaard, Peter
This report deals with the hydraulic performance of the wave energy converter Wave Dragon, Nissum Bredning prototype.......This report deals with the hydraulic performance of the wave energy converter Wave Dragon, Nissum Bredning prototype....
Fascinating World of Shock Waves
Indian Academy of Sciences (India)
Srimath
The dissipation of mechanical, nuclear, chemi- cal, and electrical energy in a limited space will usually result in ... the vehicle and the shock wave usually referred to as the shock layer will be a region of high .... successfully visualized a shock wave during an electric spark discharge process using stroboscopic method.
Exact piecewise flat gravitational waves
van de Meent, M.|info:eu-repo/dai/nl/314007067
2011-01-01
We generalize our previous linear result (van de Meent 2011 Class. Quantum Grav 28 075005) in obtaining gravitational waves from our piecewise flat model for gravity in 3+1 dimensions to exact piecewise flat configurations describing exact planar gravitational waves. We show explicitly how to
Wave Manipulation by Topology Optimization
DEFF Research Database (Denmark)
Andkjær, Jacob Anders
topology optimization can be used to design structures for manipulation of the electromagnetic and acoustic waves. The wave problems considered here fall within three classes. The first class concerns the design of cloaks, which when wrapped around an object will render the object undetectable...
Opdriftsbaserede modeller for Wave Star
DEFF Research Database (Denmark)
Kramer, Morten
Formålet med dette skrift er at få en forhåndsvurdering af mulige effektforøgelser for Wave Star ved anvendelse af aktiv akkumulatordrift. Disse vurderinger baseres på simuleringsmodeller for driften af Wave Star i uregelmæssige bølger. Modellen er udarbejdet i programmeringssproget Delphi og er en...
Shipman, Bob
2006-01-01
When children first hear the term "sound wave" perhaps they might associate it with the way a hand waves or perhaps the squiggly line image on a television monitor when sound recordings are being made. Research suggests that children tend to think sound somehow travels as a discrete package, a fast-moving invisible thing, and not something that…
DEFF Research Database (Denmark)
Olsen, M.; Smith, H.; Scott, Alwyn C.
1984-01-01
A wave tank experiment (first described by the nineteenth-century engineer and naval architect John Scott Russell) relates a linear eigenvalue problem from elementary quantum mechanics to a striking feature of modern nonlinear wave theory: multiple generation of solitons. The tank experiment...
Wave Generation in Physical Models
DEFF Research Database (Denmark)
Andersen, Thomas Lykke; Frigaard, Peter
The present book describes the most important aspects of wave generation techniques in physical models. Moreover, the book serves as technical documentation for the wave generation software AwaSys 6, cf. Aalborg University (2012). In addition to the two main authors also Tue Hald and Michael...
Book review: Extreme ocean waves
Geist, Eric L.
2017-01-01
“Extreme Ocean Waves”, edited by E. Pelinovsky and C. Kharif, second edition, Springer International Publishing, 2016; ISBN: 978-3-319-21574-7, ISBN (eBook): 978-3-319-21575-4The second edition of “Extreme Ocean Waves” published by Springer is an update of a collection of 12 papers edited by Efim Pelinovsky and Christian Kharif following the April 2007 meeting of the General Assembly of the European Geosciences Union. In this edition, three new papers have been added and three more have been substantially revised. Color figures are now included, which greatly aids in reading several of the papers, and is especially helpful in visualizing graphs as in the paper on symbolic computation of nonlinear wave resonance (Tobisch et al.). A note on terminology: extreme waves in this volume broadly encompass different types of waves, including deep-water and shallow-water rogue waves (which are alternatively termed freak waves), and internal waves. One new paper on tsunamis (Viroulet et al.) is now included in the second edition of this volume. Throughout the book, the reader will find a combination of laboratory, theoretical, and statistical/empirical treatment necessary for the complete examination of this subject. In the Introduction, the editors underscore the importance of studying extreme waves, documenting a dramatic instance of damaging extreme waves that recently occurred in 2014.
Spin waves theory and applications
Stancil, Daniel D
2009-01-01
Magnetic materials can support propagating waves of magnetization; since these are oscillations in the magneto static properties of the material, they are called magneto static waves (sometimes 'magnons' or 'magnetic polarons'). This book discusses magnetic properties of materials, and magnetic moments of atoms and ions
Directional wave measurements and modelling
Digital Repository Service at National Institute of Oceanography (India)
Anand, N.M.; Nayak, B.U.; Bhat, S.S.; SanilKumar, V.
-dimensional spectra and sech@u2@@ (beta theta) spreading function seem to provide a better estimate of the directional energy distribution for the monsoon conditions. While non-linear wave-wave interaction seems to be the major governing factor in the directional...
Wave energy absorption by ducks
DEFF Research Database (Denmark)
Kurniawan, Adi
2017-01-01
We study the absorption of wave energy by a single and multiple cam-shaped bodies referred to as ducks. Numerical models are developed under the assumptions of linear theory. We consider wave absorption by a single duck as well as by two lines of ducks meeting at an angle....
Compressive passive millimeter wave imager
Gopalsami, Nachappa; Liao, Shaolin; Elmer, Thomas W; Koehl, Eugene R; Heifetz, Alexander; Raptis, Apostolos C
2015-01-27
A compressive scanning approach for millimeter wave imaging and sensing. A Hadamard mask is positioned to receive millimeter waves from an object to be imaged. A subset of the full set of Hadamard acquisitions is sampled. The subset is used to reconstruct an image representing the object.
Probabilistic aspects of ocean waves
Battjes, J.A.
1977-01-01
Background material for a special lecture on probabilistic aspects of ocean waves for a seminar in Trondheim. It describes long term statistics and short term statistics. Statistical distributions of waves, directional spectra and frequency spectra. Sea state parameters, response peaks, encounter
Sediment transport under breaking waves
DEFF Research Database (Denmark)
Christensen, Erik Damgaard; Hjelmager Jensen, Jacob; Mayer, Stefan
2000-01-01
generated at the surface where the wave breaks as well as the turbulence generated near the bed due to the wave-motion and the undertow. In general, the levels of turbulent kinetic energy are found to be higher than experiments show. This results in an over prediction of the sediment transport. Nevertheless...
Collected papers on wave mechanics
Schrödinger, Erwin
1929-01-01
Quantisation as a problem of proper values ; the continuous transition from micro- to macro-mechanics ; on the relation between the quantum mechanics of Heisenberg, Born, and Jordan, and that of Schrödinger ; the Compton effect ; the energy-momentum theorem for material waves ; the exchange of energy according to wave mechanics
Assimilation of Wave Imaging Radar Observations for Real-time Wave-by-Wave Forecasting
Energy Technology Data Exchange (ETDEWEB)
Simpson, Alexandra [Oregon State Univ., Corvallis, OR (United States); Haller, Merrick [Oregon State Univ., Corvallis, OR (United States). School of Civil & Construction Engineering; Walker, David [SRI International, Menlo Park, CA (United States); Lynett, Pat [Univ. of Southern California, Los Angeles, CA (United States)
2017-08-29
This project addressed Topic 3: “Wave Measurement Instrumentation for Feed Forward Controls” under the FOA number DE-FOA-0000971. The overall goal of the program was to develop a phase-resolving wave forecasting technique for application to the active control of Wave Energy Conversion (WEC) devices. We have developed an approach that couples a wave imaging marine radar with a phase-resolving linear wave model for real-time wave field reconstruction and forward propagation of the wave field in space and time. The scope of the project was to develop and assess the performance of this novel forecasting system. Specific project goals were as follows: Develop and verify a fast, GPU-based (Graphical Processing Unit) wave propagation model suitable for phase-resolved computation of nearshore wave transformation over variable bathymetry; Compare the accuracy and speed of performance of the wave model against a deep water model in their ability to predict wave field transformation in the intermediate water depths (50 to 70 m) typical of planned WEC sites; Develop and implement a variational assimilation algorithm that can ingest wave imaging radar observations and estimate the time-varying wave conditions offshore of the domain of interest such that the observed wave field is best reconstructed throughout the domain and then use this to produce model forecasts for a given WEC location; Collect wave-resolving marine radar data, along with relevant in situ wave data, at a suitable wave energy test site, apply the algorithm to the field data, assess performance, and identify any necessary improvements; and Develop a production cost estimate that addresses the affordability of the wave forecasting technology and include in the Final Report. The developed forecasting algorithm (“Wavecast”) was evaluated for both speed and accuracy against a substantial synthetic dataset. Early in the project, performance tests definitively demonstrated that the system was capable of
Bubble Dynamics and Shock Waves
2013-01-01
This volume of the Shock Wave Science and Technology Reference Library is concerned with the interplay between bubble dynamics and shock waves. It is divided into four parts containing twelve chapters written by eminent scientists. Topics discussed include shock wave emission by laser generated bubbles (W Lauterborn, A Vogel), pulsating bubbles near boundaries (DM Leppinen, QX Wang, JR Blake), interaction of shock waves with bubble clouds (CD Ohl, SW Ohl), shock propagation in polydispersed bubbly liquids by model equations (K Ando, T Colonius, CE Brennen. T Yano, T Kanagawa, M Watanabe, S Fujikawa) and by DNS (G Tryggvason, S Dabiri), shocks in cavitating flows (NA Adams, SJ Schmidt, CF Delale, GH Schnerr, S Pasinlioglu) together with applications involving encapsulated bubble dynamics in imaging (AA Doinikov, A Novell, JM Escoffre, A Bouakaz), shock wave lithotripsy (P Zhong), sterilization of ships’ ballast water (A Abe, H Mimura) and bubbly flow model of volcano eruptions ((VK Kedrinskii, K Takayama...
Juno Waves observations at Jupiter
Kurth, W. S.; Hospodarsky, G. B.; Imai, M.; Tetrick, S. S.; Gurnett, D. A.; Ye, S.-Y.; Louarn, P.; Valek, P.; Allegrini, F.; Connerney, J. E. P.; Mauk, B. H.; Bolton, S. J.; Levin, S. M.; Adriani, A.; Gladstone, G. R.; McComas, D. J.; Zarka, P.
2017-09-01
The Juno spacecraft successfully entered Jupiter orbit on 5 July 2016. One of Juno's primary objectives is to explore Jupiter's polar magnetosphere. An obvious major aspect of this exploration includes remote and in situ observations of Jupiter's auroras and the processes responsible for them. To this end, Juno carries a suite of particle, field, and remote sensing instruments. One of these instruments is a radio and plasma wave instrument called Waves, designed to detect one electric field component of waves in the frequency range of 50 Hz to 41 MHz and one magnetic field component of waves in the range of 50 Hz to 20 kHz. Juno has now made scientific observations on several perijove passes beginning with Perijove 1 on 27 August 2016. This paper presents some of the early observations of the Juno Waves instrument.
Shallow water cnoidal wave interactions
Directory of Open Access Journals (Sweden)
A. R. Osborne
1994-01-01
Full Text Available The nonlinear dynamics of cnoidal waves, within the context of the general N-cnoidal wave solutions of the periodic Korteweg-de Vries (KdV and Kadomtsev-Petvishvilli (KP equations, are considered. These equations are important for describing the propagation of small-but-finite amplitude waves in shallow water; the solutions to KdV are unidirectional while those of KP are directionally spread. Herein solutions are constructed from the 0-function representation of their appropriate inverse scattering transform formulations. To this end a general theorem is employed in the construction process: All solutions to the KdV and KP equations can be written as the linear superposition of cnoidal waves plus their nonlinear interactions. The approach presented here is viewed as significant because it allows the exact construction of N degree-of-freedom cnoidal wave trains under rather general conditions.
Taylor, W. W. L.
1986-01-01
Waves in space plasmas (WISP) utilizes powerful radio transmitters and sensitive receivers to probe the secrets of the magnetosphere, ionosphere and atmosphere. The scientific objective is to achieve a better understanding of the physical processes occurring in these regions. For example, audio frequency radio waves will be radiated from the long WISP antenna, will travel to the outer reaches of the magnetosphere, and will interact with Van Allen belt particles, releasing some of their energy which amplifies the waves. Study of this interaction will give a better understanding of a major magnetospheric process, wave-particle interactions. Radio waves from WISP at higher frequencies (AM radio and beyond) will be reflected by the ionosphere and will, for example, advance our understanding of bubbles in the equatorial ionosphere which affect satellite communications.
Strong winds and waves offshore
DEFF Research Database (Denmark)
Larsén, Xiaoli Guo
2016-01-01
This report is prepared for Statoil, with the intention to introdu e DTU Wind Energy's ongoing resear h a tivities on o shore extreme wind and wave onditions. The purpose is to share our re ent ndings and to establish possible further ollaboration with Statoil. The fo us of this report is on the ......This report is prepared for Statoil, with the intention to introdu e DTU Wind Energy's ongoing resear h a tivities on o shore extreme wind and wave onditions. The purpose is to share our re ent ndings and to establish possible further ollaboration with Statoil. The fo us of this report...... is on the meteorologi al and o eani onditions related to storm winds and waves over the North Sea. With regard to the o shore wind energy appli ation, the parameters addressed here in lude: extreme wind and extreme waves, storm wind and waves and turbulen e issues for o shore onditions....
Three-wave and four-wave interactions in gravity wave turbulence
Aubourg, Quentin; Campagne, Antoine; Peureux, Charles; Ardhuin, Fabrice; Sommeria, Joel; Viboud, Samuel; Mordant, Nicolas
2017-11-01
Weak-turbulence theory is a statistical framework to describe a large ensemble of nonlinearly interacting waves. The archetypal example of such system is the ocean surface that is made of interacting surface gravity waves. Here we describe a laboratory experiment dedicated to probe the statistical properties of turbulent gravity waves. We set up an isotropic state of interacting gravity waves in the Coriolis facility (13-m-diam circular wave tank) by exciting waves at 1 Hz by wedge wave makers. We implement a stereoscopic technique to obtain a measurement of the surface elevation that is resolved in both space and time. Fourier analysis shows that the laboratory spectra are systematically steeper than the theoretical predictions and the field observations in the Black Sea by Leckler et al. [F. Leckler et al., J. Phys. Oceanogr. 45, 2484 (2015), 10.1175/JPO-D-14-0237.1]. We identify a strong impact of surface dissipation on the scaling of the Fourier spectrum at the scales that are accessible in the experiments. We use bicoherence and tricoherence statistical tools in frequency and/or wave-vector space to identify the active nonlinear coupling. These analyses are also performed on the field data by Leckler et al. for comparison with the laboratory data. Three-wave coupling is characterized by and shown to involve mostly quasiresonances of waves with second- or higher-order harmonics. Four-wave coupling is not observed in the laboratory but is evidenced in the field data. We discuss temporal scale separation to explain our observations.
Tropical cyclogenesis in a tropical wave critical layer: easterly waves
Directory of Open Access Journals (Sweden)
T. J. Dunkerton
2009-08-01
Full Text Available The development of tropical depressions within tropical waves over the Atlantic and eastern Pacific is usually preceded by a "surface low along the wave" as if to suggest a hybrid wave-vortex structure in which flow streamlines not only undulate with the waves, but form a closed circulation in the lower troposphere surrounding the low. This structure, equatorward of the easterly jet axis, is identified herein as the familiar critical layer of waves in shear flow, a flow configuration which arguably provides the simplest conceptual framework for tropical cyclogenesis resulting from tropical waves, their interaction with the mean flow, and with diabatic processes associated with deep moist convection. The recirculating Kelvin cat's eye within the critical layer represents a sweet spot for tropical cyclogenesis in which a proto-vortex may form and grow within its parent wave. A common location for storm development is given by the intersection of the wave's critical latitude and trough axis at the center of the cat's eye, with analyzed vorticity centroid nearby. The wave and vortex live together for a time, and initially propagate at approximately the same speed. In most cases this coupled propagation continues for a few days after a tropical depression is identified. For easterly waves, as the name suggests, the propagation is westward. It is shown that in order to visualize optimally the associated Lagrangian motions, one should view the flow streamlines, or stream function, in a frame of reference translating horizontally with the phase propagation of the parent wave. In this co-moving frame, streamlines are approximately equivalent to particle trajectories. The closed circulation is quasi-stationary, and a dividing streamline separates air within the cat's eye from air outside. The critical layer equatorward of the easterly jet axis is important to tropical cyclogenesis because its cat's eye provides (i a region of
Wave-particle interaction in the Faraday waves.
Francois, N; Xia, H; Punzmann, H; Shats, M
2015-10-01
Wave motion in disordered Faraday waves is analysed in terms of oscillons or quasi-particles. The motion of these oscillons is measured using particle tracking tools and it is compared with the motion of fluid particles on the water surface. Both the real floating particles and the oscillons, representing the collective fluid motion, show Brownian-type dispersion exhibiting ballistic and diffusive mean squared displacement at short and long times, respectively. While the floating particles motion has been previously explained in the context of two-dimensional turbulence driven by Faraday waves, no theoretical description exists for the random walk type motion of oscillons. It is found that the r.m.s velocity ⟨μ̃(osc)⟩(rms) of oscillons is directly related to the turbulent r.m.s. velocity ⟨μ̃⟩(rms) of the fluid particles in a broad range of vertical accelerations. The measured ⟨μ̃(osc)⟩(rms) accurately explains the broadening of the frequency spectra of the surface elevation observed in disordered Faraday waves. These results suggest that 2D turbulence is the driving force behind both the randomization of the oscillons motion and the resulting broadening of the wave frequency spectra. The coupling between wave motion and hydrodynamic turbulence demonstrated here offers new perspectives for predicting complex fluid transport from the knowledge of wave field spectra and vice versa.
Acid Sulfate Alteration on Mars
Ming, D. W.; Morris, R. V.
2016-01-01
A variety of mineralogical and geochemical indicators for aqueous alteration on Mars have been identified by a combination of surface and orbital robotic missions, telescopic observations, characterization of Martian meteorites, and laboratory and terrestrial analog studies. Acid sulfate alteration has been identified at all three landing sites visited by NASA rover missions (Spirit, Opportunity, and Curiosity). Spirit landed in Gusev crater in 2004 and discovered Fe-sulfates and materials that have been extensively leached by acid sulfate solutions. Opportunity landing on the plains of Meridiani Planum also in 2004 where the rover encountered large abundances of jarosite and hematite in sedimentary rocks. Curiosity landed in Gale crater in 2012 and has characterized fluvial, deltaic, and lacustrine sediments. Jarosite and hematite were discovered in some of the lacustrine sediments. The high elemental abundance of sulfur in surface materials is obvious evidence that sulfate has played a major role in aqueous processes at all landing sites on Mars. The sulfate-rich outcrop at Meridiani Planum has an SO3 content of up to 25 wt.%. The interiors of rocks and outcrops on the Columbia Hills within Gusev crater have up to 8 wt.% SO3. Soils at both sites generally have between 5 to 14 wt.% SO3, and several soils in Gusev crater contain around 30 wt.% SO3. After normalization of major element compositions to a SO3-free basis, the bulk compositions of these materials are basaltic, with a few exceptions in Gusev crater and in lacustrine mudstones in Gale crater. These observations suggest that materials encountered by the rovers were derived from basaltic precursors by acid sulfate alteration under nearly isochemical conditions (i.e., minimal leaching). There are several cases, however, where acid sulfate alteration minerals (jarosite and hematite) formed in open hydrologic systems, e.g., in Gale crater lacustrine mudstones. Several hypotheses have been suggested for the
Wave directional spectrum from array measurements
Digital Repository Service at National Institute of Oceanography (India)
Fernandes, A.A; Sarma, Y; Menon, H.B.
Using the method of Esteva (1976, 1977), whcih assumes that at the frequency band the waves approach from just a single "mean" wave direction, wave direction has been consistently, accurately and unambiguously evaluated as a function of frequency...