Music Tune Restoration Based on a Mother Wavelet Construction
Fadeev, A. S.; Konovalov, V. I.; Butakova, T. I.; Sobetsky, A. V.
2017-01-01
It is offered to use the mother wavelet function obtained from the local part of an analyzed music signal. Requirements for the constructed function are proposed and the implementation technique and its properties are described. The suggested approach allows construction of mother wavelet families with specified identifying properties. Consequently, this makes possible to identify the basic signal variations of complex music signals including local time-frequency characteristics of the basic one.
Signal-dependent independent component analysis by tunable mother wavelets
Energy Technology Data Exchange (ETDEWEB)
Seo, Kyung Ho
2006-02-15
The objective of this study is to improve the standard independent component analysis when applied to real-world signals. Independent component analysis starts from the assumption that signals from different physical sources are statistically independent. But real-world signals such as EEG, ECG, MEG, and fMRI signals are not statistically independent perfectly. By definition, standard independent component analysis algorithms are not able to estimate statistically dependent sources, that is, when the assumption of independence does not hold. Therefore before independent component analysis, some preprocessing stage is needed. This paper started from simple intuition that wavelet transformed source signals by 'well-tuned' mother wavelet will be simplified sufficiently, and then the source separation will show better results. By the correlation coefficient method, the tuning process between source signal and tunable mother wavelet was executed. Gamma component of raw EEG signal was set to target signal, and wavelet transform was executed by tuned mother wavelet and standard mother wavelets. Simulation results by these wavelets was shown.
Zhou, Jing; Schalkoff, Robert J; Dean, Brian C; Halford, Jonathan J
2012-01-01
New wavelet-derived features and strategies that can improve autonomous EEG classifier performance are presented. Various feature sets based on the morphological structure of wavelet subband coefficients are derived and evaluated. The performance of these new feature sets is superior to Guler's classic features in both sensitivity and specificity. In addition, the use of (scalp electrode) spatial information is also shown to improve EEG classification. Finally, a new strategy based upon concurrent use of several mother wavelets is shown to result in increased sensitivity and specificity. Various attempts at reducing feature vector dimension are shown. A non-parametric method, k-NNR, is implemented for classification and 10-fold cross-validation is used for assessment.
Energy Technology Data Exchange (ETDEWEB)
Jauregui Correa, Juan Carlos; Rubio Cerda, Eduardo; Gonzalez Brambila, Oscar [CIATEQ, A.C., Queretaro (Mexico)
2007-11-15
The modern processes of signal analysis that measure mechanical vibrations are based on the fast transform of Fourier (FFT), nevertheless, this method is not able to identify transient phenomena nor of nonlinear nature. Although many efforts have been made to try to identify these phenomena in the frequency spectra, it is not possible to correlate the spectra with the physical characteristics of this type of phenomena. Within these phenomena on the rubbing of a rotor against the housing or trunnion of a bearing, this phenomenon has a nonlinear behavior, as it is demonstrated in this paper. In the first part a method based on the of signal analysis type wavelets is presented and how this technique can be used to predict transient and nonlinear phenomena. Once defined the method, its application in the identification of the friction of rotors is demonstrated. With this, one demonstrates that the method presented in this paper allows to also identifying in real time the rubbing phenomenon and also that it can be used as an of analysis technique in the preventive maintenance systems. [Spanish] Los procesos modernos de analisis de senales que miden vibraciones mecanicas se basan en la transformada rapida de Fourier (FFT por sus siglas en ingles), sin embargo, este metodo no es capaz de identificar fenomenos transitorios ni de naturaleza no lineal. A pesar de que se han hecho muchos esfuerzos para tratar de identificar estos fenomenos en los espectros de frecuencia, no es posible correlacionar el espectro con las caracteristicas fisicas de este tipo de fenomenos. Dentro de estos fenomenos sobre el rozamiento de un rotor contra la carcasa o munon de una chumacera, este fenomeno tiene un comportamiento no lineal, como se demuestra en este trabajo. En la primera parte se presenta un metodo basado en el analisis de senales tipo wavelets y como esta tecnica puede utilizarse para predecir fenomenos transitorios y no lineales. Una vez definido el metodo, se demuestra su
Kamble, Saurabh Prakash; Thawkar, Shashank; Gaikwad, Vinayak G.; Kothari, D. P.
2017-08-01
Detection of disturbances is the first step of mitigation. Power electronics plays a crucial role in modern power system which makes system operation efficient but it also bring stationary disturbances in the power system and added impurities to the supply. It happens because of the non-linear loads used in modern day power system which inject disturbances like harmonic disturbances, flickers, sag etc. in power grid. These impurities can damage equipments so it is necessary to mitigate these impurities present in the supply very quickly. So, digital signal processing techniques are incorporated for detection purpose. Signal processing techniques like fast Fourier transform, short-time Fourier transform, Wavelet transform etc. are widely used for the detection of disturbances. Among all, wavelet transform is widely used because of its better detection capabilities. But, which mother wavelet has to use for detection is still a mystery. Depending upon the periodicity, the disturbances are classified as stationary and non-stationary disturbances. This paper presents the importance of selection of mother wavelet for analyzing stationary disturbances using discrete wavelet transform. Signals with stationary disturbances of various frequencies are generated using MATLAB. The analysis of these signals is done using various mother wavelets like Daubechies and bi-orthogonal wavelets and the measured root mean square value of stationary disturbance is obtained. The measured value obtained by discrete wavelet transform is compared with the exact RMS value of the frequency component and the percentage differences are presented which helps to select optimum mother wavelet.
Kamble, Saurabh Prakash; Thawkar, Shashank; Gaikwad, Vinayak G.; Kothari, D. P.
2017-12-01
Detection of disturbances is the first step of mitigation. Power electronics plays a crucial role in modern power system which makes system operation efficient but it also bring stationary disturbances in the power system and added impurities to the supply. It happens because of the non-linear loads used in modern day power system which inject disturbances like harmonic disturbances, flickers, sag etc. in power grid. These impurities can damage equipments so it is necessary to mitigate these impurities present in the supply very quickly. So, digital signal processing techniques are incorporated for detection purpose. Signal processing techniques like fast Fourier transform, short-time Fourier transform, Wavelet transform etc. are widely used for the detection of disturbances. Among all, wavelet transform is widely used because of its better detection capabilities. But, which mother wavelet has to use for detection is still a mystery. Depending upon the periodicity, the disturbances are classified as stationary and non-stationary disturbances. This paper presents the importance of selection of mother wavelet for analyzing stationary disturbances using discrete wavelet transform. Signals with stationary disturbances of various frequencies are generated using MATLAB. The analysis of these signals is done using various mother wavelets like Daubechies and bi-orthogonal wavelets and the measured root mean square value of stationary disturbance is obtained. The measured value obtained by discrete wavelet transform is compared with the exact RMS value of the frequency component and the percentage differences are presented which helps to select optimum mother wavelet.
Talhaoui, Hicham; Menacer, Arezki; Kessal, Abdelhalim; Kechida, Ridha
2014-09-01
This paper presents new techniques to evaluate faults in case of broken rotor bars of induction motors. Procedures are applied with closed-loop control. Electrical and mechanical variables are treated using fast Fourier transform (FFT), and discrete wavelet transform (DWT) at start-up and steady state. The wavelet transform has proven to be an excellent mathematical tool for the detection of the faults particularly broken rotor bars type. As a performance, DWT can provide a local representation of the non-stationary current signals for the healthy machine and with fault. For sensorless control, a Luenberger observer is applied; the estimation rotor speed is analyzed; the effect of the faults in the speed pulsation is compensated; a quadratic current appears and used for fault detection. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Review Paper :Comparative Analysis Of Mother Wavelet Functions With The ECG Signals
Directory of Open Access Journals (Sweden)
Kapil Tajane
2014-01-01
Full Text Available Electrocardiographic ECG gives the information about electrical activity of the heart captured over time by attaching an external electrode to the skin. Now a days ECG signal is used as a baseline to determine the hearts condition. It is very much essential to detect and process ECG signal accurately. ECG consists of various types of noise such as muscle noise, baseline wander and power line interference etc. To remove such types of noise wavelet transform is used. Mother wavelet is an effective tool for denoising such signals. But selection of proper mother wavelet for the ECG signal is again a challenging task. This paper gives the survey about the wavelet transforms useful for ECG denoising. The different wavelet transform are compared and from that we can decide which one is more suitable.
Directory of Open Access Journals (Sweden)
Bakkali Saad
2008-06-01
Full Text Available Wavelet transforms originated in geophysics in the early 1980s for the analysis of seismic signals. Since then, significant mathematical advances in wavelet theory have enabled a suite of applications in diverse fields. In geophysics, the power of wavelets for analysis of non stationary processes that contain multiscale features, detection
of singularities, analysis of transient phenomena, fractal and multifractal processes, and signal compression is now being exploited for the study of several processes including resistivity surveys. The present paper deals with denoising Moroccan phosphate "disturbances" resistivity data? map using the Haar wavelet mother transform method. The results show a significant suppression of noise and a very good smoothing and recovery of resistivity anomalies.
Directory of Open Access Journals (Sweden)
Verônica Isabela Quandt
Full Text Available Introduction Crackles are discontinuous, non-stationary respiratory sounds and can be characterized by their duration and frequency. In the literature, many techniques of filtering, feature extraction, and classification were presented. Although the discrete wavelet transform (DWT is a well-known tool in this area, issues like signal border extension, mother-wavelet selection, and its subbands were not properly discussed. Methods In this work, 30 different mother-wavelets 8 subbands were assessed, and 9 border extension modes were evaluated. The evaluations were done based on the energy representation of the crackle considering the mother-wavelet and the border extension, allowing a reduction of not representative subbands. Results Tests revealed that the border extension mode considered during the DWT affects crackle characterization, whereas SP1 (Smooth-Padding of order 1 and ASYMW (Antisymmetric-Padding (whole-point modes shall not be used. After DWT, only 3 subbands (D3, D4, and D5 were needed to characterize crackles. Finally, from the group of mother-wavelets tested, Daubechies 7 and Symlet 7 were found to be the most adequate for crackle characterization. Discussion DWT can be used to characterize crackles when proper border extension mode, mother-wavelet, and subbands are taken into account.
Application of 3D wavelet transforms for crack detection in rotor ...
Indian Academy of Sciences (India)
MS received 15 December 2007; revised 5 May 2009. Abstract. The dynamics and diagnostics of a cracked rotor have been gaining importance in recent years. The early detection of faults like fatigue cracks in rotor shafts are very important to prevent catastrophic failure of the rotor system. Vibration monitoring during start ...
Application of 3D wavelet transforms for crack detection in rotor ...
Indian Academy of Sciences (India)
The dynamics and diagnostics of a cracked rotor have been gaining importance in recent years. The early detection of faults like fatigue cracks in rotor shafts are very important to prevent catastrophic failure of the rotor system. Vibration monitoring during start up or shut-down is as important as during steady state operation ...
Directory of Open Access Journals (Sweden)
Sahar Zolfaghari
2017-12-01
Full Text Available As a result of increasing machines capabilities in modern manufacturing, machines run continuously for hours. Therefore, early fault detection is required to reduce the maintenance expenses and obviate high cost and unscheduled downtimes. Fault diagnosis systems that provide features extraction and patterns classification of the fault are able to detect and classify the failures in machines. The majority of the related works that reported a procedure for detection of rotor bar breakage so far have applied motor current signal analysis using discrete wavelet transform. In this paper, the most appropriate features are extracted from the coefficients of a wavelet packet transform after fast Fourier transform of current signal. The aim of this study is to develop an effective and sensitive method for fault detection under low load conditions. Through combining the strength of both time-scale and frequency domain analysis techniques, a unified wavelet packet signature analysis pinpoints the fault signature in the special fault-oriented frequency bands. The wavelet analysis combined with a feed-forward neural network classifier provides an intelligent methodology for the automatic diagnosis of the fault severity during runtime of the motor. The faults severity is considered as one, two, and three broken rotor bars. The results have confirmed that the proposed method is effective for diagnosing rotor bar breakage fault in an induction motor and classification of fault severity.
Le, Thien-Phu
2017-10-01
The frequency-scale domain decomposition technique has recently been proposed for operational modal analysis. The technique is based on the Cauchy mother wavelet. In this paper, the approach is extended to the Morlet mother wavelet, which is very popular in signal processing due to its superior time-frequency localization. Based on the regressive form and an appropriate norm of the Morlet mother wavelet, the continuous wavelet transform of the power spectral density of ambient responses enables modes in the frequency-scale domain to be highlighted. Analytical developments first demonstrate the link between modal parameters and the local maxima of the continuous wavelet transform modulus. The link formula is then used as the foundation of the proposed modal identification method. Its practical procedure, combined with the singular value decomposition algorithm, is presented step by step. The proposition is finally verified using numerical examples and a laboratory test.
Energy Technology Data Exchange (ETDEWEB)
Szu, H.; Hsu, C. [Univ. of Southwestern Louisiana, Lafayette, LA (United States)
1996-12-31
Human sensors systems (HSS) may be approximately described as an adaptive or self-learning version of the Wavelet Transforms (WT) that are capable to learn from several input-output associative pairs of suitable transform mother wavelets. Such an Adaptive WT (AWT) is a redundant combination of mother wavelets to either represent or classify inputs.
Energy Technology Data Exchange (ETDEWEB)
Amador G, R.; Castillo D, R.; Ortiz V, J. [ININ, Carretera Mexico-Toluca S/N La Marquesa, 52750 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: ramador@nuclear.inin.mx
2007-07-01
Diverse types of transitory events can lead to oscillations of power in nuclear reactors. In such events, the power monitors provide a signal that contains important characteristics of the transitory one, as the oscillation frequency, tendencies, changes and the instants or periods in those that important events are presented. This characteristics are detected by means of diverse analysis techniques, as Autoregressive methods, Fourier Transform, Fourier Transform in Short Time, Wavelets Transform, among others. Presently work is used the one Wavelets Continuous Transform because it allows to carry out studies of the stationary, quasi-stationary and transitory signals in the Time-scale and Time-scale-spectrum planes. Contrary to other similar works, this work describes a methodology for the selection of the scales and the Wavelet mother to be applied the one Wavelets Continuous Transform, with the objective of detecting to the dominant frequencies of the system. To prove the proposal a broadly well-known real signal of an event of power oscillations it has been used. The obtained results correspond to three families of Wavelets mothers that fulfilled the conditions of scales and central frequency of the proposal. The results show that the value of the certain frequency oscillation in this work is practically the same one reported in other studies with other techniques. (Author)
Al-Qazzaz, Noor Kamal; Bin Mohd Ali, Sawal Hamid; Ahmad, Siti Anom; Islam, Mohd Shabiul; Escudero, Javier
2015-11-17
We performed a comparative study to select the efficient mother wavelet (MWT) basis functions that optimally represent the signal characteristics of the electrical activity of the human brain during a working memory (WM) task recorded through electro-encephalography (EEG). Nineteen EEG electrodes were placed on the scalp following the 10-20 system. These electrodes were then grouped into five recording regions corresponding to the scalp area of the cerebral cortex. Sixty-second WM task data were recorded from ten control subjects. Forty-five MWT basis functions from orthogonal families were investigated. These functions included Daubechies (db1-db20), Symlets (sym1-sym20), and Coiflets (coif1-coif5). Using ANOVA, we determined the MWT basis functions with the most significant differences in the ability of the five scalp regions to maximize their cross-correlation with the EEG signals. The best results were obtained using "sym9" across the five scalp regions. Therefore, the most compatible MWT with the EEG signals should be selected to achieve wavelet denoising, decomposition, reconstruction, and sub-band feature extraction. This study provides a reference of the selection of efficient MWT basis functions.
Directory of Open Access Journals (Sweden)
Noor Kamal Al-Qazzaz
2015-11-01
Full Text Available We performed a comparative study to select the efficient mother wavelet (MWT basis functions that optimally represent the signal characteristics of the electrical activity of the human brain during a working memory (WM task recorded through electro-encephalography (EEG. Nineteen EEG electrodes were placed on the scalp following the 10–20 system. These electrodes were then grouped into five recording regions corresponding to the scalp area of the cerebral cortex. Sixty-second WM task data were recorded from ten control subjects. Forty-five MWT basis functions from orthogonal families were investigated. These functions included Daubechies (db1–db20, Symlets (sym1–sym20, and Coiflets (coif1–coif5. Using ANOVA, we determined the MWT basis functions with the most significant differences in the ability of the five scalp regions to maximize their cross-correlation with the EEG signals. The best results were obtained using “sym9” across the five scalp regions. Therefore, the most compatible MWT with the EEG signals should be selected to achieve wavelet denoising, decomposition, reconstruction, and sub-band feature extraction. This study provides a reference of the selection of efficient MWT basis functions.
Aboufadel, Edward
1999-01-01
An accessible and practical introduction to wavelets. With applications in image processing, audio restoration, seismology, and elsewhere, wavelets have been the subject of growing excitement and interest over the past several years. Unfortunately, most books on wavelets are accessible primarily to research mathematicians. Discovering Wavelets presents basic and advanced concepts of wavelets in a way that is accessible to anyone with only a fundamental knowledge of linear algebra. The basic concepts of wavelet theory are introduced in the context of an explanation of how the FBI uses wavelets
Chan, Y T
1995-01-01
Since the study of wavelets is a relatively new area, much of the research coming from mathematicians, most of the literature uses terminology, concepts and proofs that may, at times, be difficult and intimidating for the engineer. Wavelet Basics has therefore been written as an introductory book for scientists and engineers. The mathematical presentation has been kept simple, the concepts being presented in elaborate detail in a terminology that engineers will find familiar. Difficult ideas are illustrated with examples which will also aid in the development of an intuitive insight. Chapter 1 reviews the basics of signal transformation and discusses the concepts of duals and frames. Chapter 2 introduces the wavelet transform, contrasts it with the short-time Fourier transform and clarifies the names of the different types of wavelet transforms. Chapter 3 links multiresolution analysis, orthonormal wavelets and the design of digital filters. Chapter 4 gives a tour d'horizon of topics of current interest: wave...
Wavelets for Sparse Representation of Music
DEFF Research Database (Denmark)
Endelt, Line Ørtoft; Harbo, Anders La-Cour
2004-01-01
to the number of vanishing moments of the mother wavelet, and to the smoothness of the signal. In this paper we present the result of applying two classical families of wavelets to a series of musical signals. The purpose is to determine a general relation between the number of vanishing moments of the wavelet......We are interested in obtaining a sparse representation of music signals by means of a discrete wavelet transform (DWT). That means we want the energy in the representation to be concentrated in few DWT coefficients. It is well-known that the decay of the DWT coefficients is strongly related...
Wavelet applications in engineering electromagnetics
National Research Council Canada - National Science Library
Sarkar, Tapan; Salazar-Palma, Magdalena; Wicks, Michael C
2002-01-01
... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Road Map of the Book . . . . . . Introduction . . . . . . . . Why Use Wavelets? . . . . . . What Are Wavelets? . . . . . . What Is the Wavelet Transform? . . . Use...
A Wavelet-based Algorithm for Vehicle Flow Information Extraction
Ling-ling Li; Li-duan Liang; Lei Shi; Zhi Qiao
2013-01-01
This paper proposed an improved algorithm applied in video intelligent traffic control system for vehicle detection. The accuracy of original algorithm, which is based on the comparision of contrast and luminance distortion of present image with background, reduces greatly under bad weather because of false detection caused by noises in captured images. In this paper we chose Daubechies wavelet as mother wavelet to add a 2-dimension wavelet process before the algorithm, just after the image i...
Applications of a fast, continuous wavelet transform
Energy Technology Data Exchange (ETDEWEB)
Dress, W.B.
1997-02-01
A fast, continuous, wavelet transform, based on Shannon`s sampling theorem in frequency space, has been developed for use with continuous mother wavelets and sampled data sets. The method differs from the usual discrete-wavelet approach and the continuous-wavelet transform in that, here, the wavelet is sampled in the frequency domain. Since Shannon`s sampling theorem lets us view the Fourier transform of the data set as a continuous function in frequency space, the continuous nature of the functions is kept up to the point of sampling the scale-translation lattice, so the scale-translation grid used to represent the wavelet transform is independent of the time- domain sampling of the signal under analysis. Computational cost and nonorthogonality aside, the inherent flexibility and shift invariance of the frequency-space wavelets has advantages. The method has been applied to forensic audio reconstruction speaker recognition/identification, and the detection of micromotions of heavy vehicles associated with ballistocardiac impulses originating from occupants` heart beats. Audio reconstruction is aided by selection of desired regions in the 2-D representation of the magnitude of the transformed signal. The inverse transform is applied to ridges and selected regions to reconstruct areas of interest, unencumbered by noise interference lying outside these regions. To separate micromotions imparted to a mass-spring system (e.g., a vehicle) by an occupants beating heart from gross mechanical motions due to wind and traffic vibrations, a continuous frequency-space wavelet, modeled on the frequency content of a canonical ballistocardiogram, was used to analyze time series taken from geophone measurements of vehicle micromotions. By using a family of mother wavelets, such as a set of Gaussian derivatives of various orders, features such as the glottal closing rate and word and phrase segmentation may be extracted from voice data.
From cardinal spline wavelet bases to highly coherent dictionaries
Energy Technology Data Exchange (ETDEWEB)
Andrle, Miroslav; Rebollo-Neira, Laura [Aston University, Birmingham B4 7ET (United Kingdom)
2008-05-02
Wavelet families arise by scaling and translations of a prototype function, called the mother wavelet. The construction of wavelet bases for cardinal spline spaces is generally carried out within the multi-resolution analysis scheme. Thus, the usual way of increasing the dimension of the multi-resolution subspaces is by augmenting the scaling factor. We show here that, when working on a compact interval, the identical effect can be achieved without changing the wavelet scale but reducing the translation parameter. By such a procedure we generate a redundant frame, called a dictionary, spanning the same spaces as a wavelet basis but with wavelets of broader support. We characterize the correlation of the dictionary elements by measuring their 'coherence' and produce examples illustrating the relevance of highly coherent dictionaries to problems of sparse signal representation. (fast track communication)
Research of the Lifting Wavelet Arithmetic and Applied in Rotary Mechanic Fault Diagnosis
Zhang, S. Q.; He, N.; Lv, J. T.; Xu, X. H.; Zang, X. Y.
2006-10-01
The lifting wavelet transform is completely based on the space-time area instead of relying on Fourier transform, so it can construct wavelet in non-shift area to achieve the separation of signal in different frequency bands. In this paper, the lifting scheme of wavelet and its multiphase expression are analysed, and applied to fault diagnosis of gears rolling bearings and rotor rubbings. Simulation was accomplished based on the analysis of fault vibration signals. The results indicate that the lifting scheme of wavelet is effective to pick up fault characteristics.
Applications of a fast continuous wavelet transform
Dress, William B.
1997-04-01
A fast, continuous, wavelet transform, justified by appealing to Shannon's sampling theorem in frequency space, has been developed for use with continuous mother wavelets and sampled data sets. The method differs from the usual discrete-wavelet approach and from the standard treatment of the continuous-wavelet transform in that, here, the wavelet is sampled in the frequency domain. Since Shannon's sampling theorem lets us view the Fourier transform of the data set as representing the continuous function in frequency space, the continuous nature of the functions is kept up to the point of sampling the scale-translation lattice, so the scale-translation grid used to represent the wavelet transform is independent of the time-domain sampling of the signal under analysis. Although more computationally costly and not represented by an orthogonal basis, the inherent flexibility and shift invariance of the frequency-space wavelets are advantageous for certain applications. The method has been applied to forensic audio reconstruction, speaker recognition/identification, and the detection of micromotions of heavy vehicles associated with ballistocardiac impulses originating from occupants' heart beats. Audio reconstruction is aided by selection of desired regions in the 2D representation of the magnitude of the transformed signals. The inverse transform is applied to ridges and selected regions to reconstruct areas of interest, unencumbered by noise interference lying outside these regions. To separate micromotions imparted to a mass- spring system by an occupant's beating heart from gross mechanical motions due to wind and traffic vibrations, a continuous frequency-space wavelet, modeled on the frequency content of a canonical ballistocardiogram, was used to analyze time series taken from geophone measurements of vehicle micromotions. By using a family of mother wavelets, such as a set of Gaussian derivatives of various orders, different features may be extracted from voice
Daily water level forecasting using wavelet decomposition and artificial intelligence techniques
Seo, Youngmin; Kim, Sungwon; Kisi, Ozgur; Singh, Vijay P.
2015-01-01
Reliable water level forecasting for reservoir inflow is essential for reservoir operation. The objective of this paper is to develop and apply two hybrid models for daily water level forecasting and investigate their accuracy. These two hybrid models are wavelet-based artificial neural network (WANN) and wavelet-based adaptive neuro-fuzzy inference system (WANFIS). Wavelet decomposition is employed to decompose an input time series into approximation and detail components. The decomposed time series are used as inputs to artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS) for WANN and WANFIS models, respectively. Based on statistical performance indexes, the WANN and WANFIS models are found to produce better efficiency than the ANN and ANFIS models. WANFIS7-sym10 yields the best performance among all other models. It is found that wavelet decomposition improves the accuracy of ANN and ANFIS. This study evaluates the accuracy of the WANN and WANFIS models for different mother wavelets, including Daubechies, Symmlet and Coiflet wavelets. It is found that the model performance is dependent on input sets and mother wavelets, and the wavelet decomposition using mother wavelet, db10, can further improve the efficiency of ANN and ANFIS models. Results obtained from this study indicate that the conjunction of wavelet decomposition and artificial intelligence models can be a useful tool for accurate forecasting daily water level and can yield better efficiency than the conventional forecasting models.
Skopina, Maria; Protasov, Vladimir
2016-01-01
This book presents a systematic study of multivariate wavelet frames with matrix dilation, in particular, orthogonal and bi-orthogonal bases, which are a special case of frames. Further, it provides algorithmic methods for the construction of dual and tight wavelet frames with a desirable approximation order, namely compactly supported wavelet frames, which are commonly required by engineers. It particularly focuses on methods of constructing them. Wavelet bases and frames are actively used in numerous applications such as audio and graphic signal processing, compression and transmission of information. They are especially useful in image recovery from incomplete observed data due to the redundancy of frame systems. The construction of multivariate wavelet frames, especially bases, with desirable properties remains a challenging problem as although a general scheme of construction is well known, its practical implementation in the multidimensional setting is difficult. Another important feature of wavelet is ...
Wavelets, vibrations and scalings
Meyer, Yves
1997-01-01
Physicists and mathematicians are intensely studying fractal sets of fractal curves. Mandelbrot advocated modeling of real-life signals by fractal or multifractal functions. One example is fractional Brownian motion, where large-scale behavior is related to a corresponding infrared divergence. Self-similarities and scaling laws play a key role in this new area. There is a widely accepted belief that wavelet analysis should provide the best available tool to unveil such scaling laws. And orthonormal wavelet bases are the only existing bases which are structurally invariant through dyadic dilations. This book discusses the relevance of wavelet analysis to problems in which self-similarities are important. Among the conclusions drawn are the following: 1) A weak form of self-similarity can be given a simple characterization through size estimates on wavelet coefficients, and 2) Wavelet bases can be tuned in order to provide a sharper characterization of this self-similarity. A pioneer of the wavelet "saga", Meye...
Hramov, Alexander E; Makarov, Valeri A; Pavlov, Alexey N; Sitnikova, Evgenia
2015-01-01
This book examines theoretical and applied aspects of wavelet analysis in neurophysics, describing in detail different practical applications of the wavelet theory in the areas of neurodynamics and neurophysiology and providing a review of fundamental work that has been carried out in these fields over the last decade. Chapters 1 and 2 introduce and review the relevant foundations of neurophysics and wavelet theory, respectively, pointing on one hand to the various current challenges in neuroscience and introducing on the other the mathematical techniques of the wavelet transform in its two variants (discrete and continuous) as a powerful and versatile tool for investigating the relevant neuronal dynamics. Chapter 3 then analyzes results from examining individual neuron dynamics and intracellular processes. The principles for recognizing neuronal spikes from extracellular recordings and the advantages of using wavelets to address these issues are described and combined with approaches based on wavelet neural ...
Directory of Open Access Journals (Sweden)
IONESCU Cristian Andrei
2011-06-01
Full Text Available The objective of this paper is to analyze the role of helicopter rotor, to classify them by type, and to imagine new types of helicopter rotors that can equip future helicopters. Finally, the author shows a coaxial rotor 3D model such a best alternative to equip the new helicopters.
Wavelets in scientific computing
DEFF Research Database (Denmark)
Nielsen, Ole Møller
1998-01-01
such a function well. These properties of wavelets have lead to some very successful applications within the field of signal processing. This dissertation revolves around the role of wavelets in scientific computing and it falls into three parts: Part I gives an exposition of the theory of orthogonal, compactly...
Directory of Open Access Journals (Sweden)
Isti Qomah
2017-01-01
Full Text Available Kerusakan batang rotor merupakan salah satu jenis kerusakan pada motor induksi yang dapat menyebabkan masalah serius. Kerusakan tersebut dapat mencapai 5% - 10% dari seluruh kasus gangguan motor induksi. Oleh karena itu, perlu adanya diagnosis awal yang mendeteksi adanya gangguan pada rotor motor induksi, agar dapat dilakukan perbaikan lebih cepat dan tanggap sebelum terjadi gangguan yang lebih besar. Tugas Akhir ini membahas terkait teknik deteksi kerusakan batang rotor pada motor induksi dengan menggunakan analisis arus mula. Sistem yang digunakan berbasis decomposition wavelet transform terlebih dahulu kemudian dilanjutkan dengan analisis berbasis hilbert transform sebagai perangkat pengolahan sinyal sehingga mampu mendeteksi motor dalam keadaan sehat atau mengalami kerusakan. Pengujian sistem dilakukan dalam beberapa kondisi, yaitu kondisi tanpa beban dan berbeban. Selain itu, kondisi yang diberikan adalah kecacatan mulai dai 1BRB hingga 3BRB. Hasil pengujian membuktikan bahwa decomposition wavelet transform dan Hilbert transform mampu mendeteksi perbedaan kondisi pada motor induksi normal ataupun rusak pada batang rotor.
Directory of Open Access Journals (Sweden)
MIHAIL PRICOP
2016-06-01
Full Text Available Vulnerable and critical mechanical systems are bearings and drive belts. Signal analysis of vibration highlights the changes in root mean square, the frequency spectrum (frequencies and amplitudes in the time- frequency (Short Time Fourier Transform and Wavelet Transform, are the most used method for faults diagnosis and location of rotating machinery. This article presents the results of an experimental study applied on a di agnostic platform of rotating machinery through three Wavelet methods: (Discrete Wavelet Transform -DWT, Continuous Wavelet Transform -CWT, Wavelet Packet Transform -WPT with different mother wavelet. Wavelet Transform is used to decompose the original sig nal into sub -frequency band signals in order to obtain multiple data series at different resolutions and to identify faults appearing in the complex rotation systems. This paper investigates the use of different mother wavelet functions for drive belts and bearing fault diagnosis. The results demonstrate the possibility of using different mother wavelets in rotary systems diagnosis detecting and locating in this way the faults in bearings and drive belts.
Elastic wavelets and their application to problems of solitary wave propagation
Directory of Open Access Journals (Sweden)
Cattani, Carlo
2008-03-01
Full Text Available The paper can be referred to that direction in the wavelet theory, which was called by Kaiser "the physical wavelets". He developed the analysis of first two kinds of physical wavelets - electromagnetic (optic and acoustic wavelets. Newland developed the technique of application of harmonic wavelets especially for studying the harmonic vibrations. Recently Cattani and Rushchitsky proposed the 4th kind of physical wavelets - elastic wavelets. This proposal was based on three main elements: 1. Kaiser's idea of constructing the physical wavelets on the base of specially chosen (admissible solutions of wave equations. 2. Developed by one of authors theory of solitary waves (with profiles in the form of Chebyshov-Hermite functions propagated in elastic dispersive media. 3. The theory and practice of using the wavelet "Mexican Hat" system, the mother and farther wavelets (and their Fourier transforms of which are analytically represented as the Chebyshov-Hermite functions of different indexes. An application of elastic wavelets to studying the evolution of solitary waves of different shape during their propagation through composite materials is shown on many examples.
Zhou, Jing; Schalkoff, Robert J; Dean, Brian C; Halford, Jonathan J
2013-01-01
Automatic detection and classification of Epileptiform transients is an open and important clinical issue. In this paper, we test 5 feature sets derived from a group of morphology-based wavelet features and compare the results with that of a Guler-suggested feature set. We also implement a multiple-mother-wavelet strategy and compare performance with the usual single-mother-wavelet strategy. The results indicate that both the derived features and the multiple-mother-wavelet strategy improved classifier performance, using a variety of performance measures. We assess the statistical significance of the performance improvement of the new feature sets/strategy. In most cases, the performance improvement is either significant or highly significant.
Battle, G A
1999-01-01
WAVELETS AND RENORMALIZATION describes the role played by wavelets in Euclidean field theory and classical statistical mechanics. The author begins with a stream-lined introduction to quantum field theory from a rather basic point of view. Functional integrals for imaginary-time-ordered expectations are introduced early and naturally, while the connection with the statistical mechanics of classical spin systems is introduced in a later chapter.A vastly simplified (wavelet) version of the celebrated Glimm-Jaffe construction of the F 4 3 quantum field theory is presented. It is due to Battle and
Fang, Li-Zhi
1998-01-01
Recent advances have shown wavelets to be an effective, and even necessary, mathematical tool for theoretical physics. This book is a timely overview of the progress of this new frontier. It includes an introduction to wavelet analysis, and applications in the fields of high energy physics, astrophysics, cosmology and statistical physics. The topics are selected for the interests of physicists and graduate students of theoretical studies. It emphasizes the need for wavelets in describing and revealing structure in physical problems, which is not easily accomplishing by other methods.
Wavelet analysis in neurodynamics
Pavlov, Aleksei N.; Hramov, Aleksandr E.; Koronovskii, Aleksei A.; Sitnikova, Evgenija Yu; Makarov, Valeri A.; Ovchinnikov, Alexey A.
2012-09-01
Results obtained using continuous and discrete wavelet transforms as applied to problems in neurodynamics are reviewed, with the emphasis on the potential of wavelet analysis for decoding signal information from neural systems and networks. The following areas of application are considered: (1) the microscopic dynamics of single cells and intracellular processes, (2) sensory data processing, (3) the group dynamics of neuronal ensembles, and (4) the macrodynamics of rhythmical brain activity (using multichannel EEG recordings). The detection and classification of various oscillatory patterns of brain electrical activity and the development of continuous wavelet-based brain activity monitoring systems are also discussed as possibilities.
Blatter, Christian
1998-01-01
The Wavelet Transform has stimulated research that is unparalleled since the invention of the Fast Fourier Transform and has opened new avenues of applications in signal processing, image compression, radiology, cardiology, and many other areas. This book grew out of a short course for mathematics students at the ETH in Zurich; it provides a solid mathematical foundation for the broad range of applications enjoyed by the wavelet transform. Numerous illustrations and fully worked out examples enhance the book.
From Calculus to Wavelets: A New Mathematical Technique Wavelet ...
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 4. From Calculus to Wavelets: A New Mathematical Technique Wavelet Analysis Physical Properties. Gerald B Folland. General Article Volume 2 Issue 4 April 1997 pp 25-37 ...
Lecture notes on wavelet transforms
Debnath, Lokenath
2017-01-01
This book provides a systematic exposition of the basic ideas and results of wavelet analysis suitable for mathematicians, scientists, and engineers alike. The primary goal of this text is to show how different types of wavelets can be constructed, illustrate why they are such powerful tools in mathematical analysis, and demonstrate their use in applications. It also develops the required analytical knowledge and skills on the part of the reader, rather than focus on the importance of more abstract formulation with full mathematical rigor. These notes differs from many textbooks with similar titles in that a major emphasis is placed on the thorough development of the underlying theory before introducing applications and modern topics such as fractional Fourier transforms, windowed canonical transforms, fractional wavelet transforms, fast wavelet transforms, spline wavelets, Daubechies wavelets, harmonic wavelets and non-uniform wavelets. The selection, arrangement, and presentation of the material in these ...
Target recognition by wavelet transform
Li Zheng Dong; He Wu Liang; Pei Chun Lan; Peng Wen; SongChen; Zheng Xiao Dong
2002-01-01
Wavelet transform has an important character of multi-resolution power, which presents pyramid structure, and this character coincides the way by which people distinguish object from coarse to fineness and from large to tiny. In addition to it, wavelet transform benefits to reducing image noise, simplifying calculation, and embodying target image characteristic point. A method of target recognition by wavelet transform is provided
Pearlman, William A
2013-01-01
This book explains the stages necessary to create a wavelet compression system for images and describes state-of-the-art systems used in image compression standards and current research. It starts with a high level discussion of the properties of the wavelet transform, especially the decomposition into multi-resolution subbands. It continues with an exposition of the null-zone, uniform quantization used in most subband coding systems and the optimal allocation of bitrate to the different subbands. Then the image compression systems of the FBI Fingerprint Compression Standard and the JPEG2000 S
High power for rotors; Rotor unter Starkstrom
Energy Technology Data Exchange (ETDEWEB)
Marter, H.J.
2003-08-01
Tidal energy is going strong: A new tidal power plant is projected off the coast of southern England. Of the envisaged underwater rotors, one has been installed for test purposes. (orig.) [German] Wellenenergie ist en vogue: Vor der Kueste Suedenglands wird ein neuartiges Tidenkraftwerk getestet. Die starke Stroemung soll maechtige Unterwasser-Rotoren antreiben. Zum Test dreht sich erst einmal nur einer. (orig.)
Wavelets in functional data analysis
Morettin, Pedro A; Vidakovic, Brani
2017-01-01
Wavelet-based procedures are key in many areas of statistics, applied mathematics, engineering, and science. This book presents wavelets in functional data analysis, offering a glimpse of problems in which they can be applied, including tumor analysis, functional magnetic resonance and meteorological data. Starting with the Haar wavelet, the authors explore myriad families of wavelets and how they can be used. High-dimensional data visualization (using Andrews' plots), wavelet shrinkage (a simple, yet powerful, procedure for nonparametric models) and a selection of estimation and testing techniques (including a discussion on Stein’s Paradox) make this a highly valuable resource for graduate students and experienced researchers alike.
Wavelets theory, algorithms, and applications
Montefusco, Laura
2014-01-01
Wavelets: Theory, Algorithms, and Applications is the fifth volume in the highly respected series, WAVELET ANALYSIS AND ITS APPLICATIONS. This volume shows why wavelet analysis has become a tool of choice infields ranging from image compression, to signal detection and analysis in electrical engineering and geophysics, to analysis of turbulent or intermittent processes. The 28 papers comprising this volume are organized into seven subject areas: multiresolution analysis, wavelet transforms, tools for time-frequency analysis, wavelets and fractals, numerical methods and algorithms, and applicat
Indian Academy of Sciences (India)
University of Hyderabad. His current research interests are in the areas of quantum information ..... The enterprising reader can perform a multi-level decomposition and reconstruction to discover that the problems of overshoots and undershoots plaguing the Fourier transform are absent in discrete wavelet transform. 1kn&(ff.
Søgaard, Andreas
For the LHC Run 2 and beyond, experiments are pushing both the energy and the intensity frontier so the need for robust and efficient pile-up mitigation tools becomes ever more pressing. Several methods exist, relying on uniformity of pile-up, local correlations of charged to neutral particles, and parton shower shapes, all in $y − \\phi$ space. Wavelets are presented as tools for pile-up removal, utilising their ability to encode position and frequency information simultaneously. This allows for the separation of individual hadron collision events by angular scale and thus for subtracting of soft, diffuse/wide-angle contributions while retaining the hard, small-angle components from the hard event. Wavelet methods may utilise the same assumptions as existing methods, the difference being the underlying, novel representation. Several wavelet methods are proposed and their effect studied in simple toy simulation under conditions relevant for the LHC Run 2. One full pile-up mitigation tool (‘wavelet analysis...
Energy Technology Data Exchange (ETDEWEB)
Cheney, M.C. [PS Enterprises, Inc., Glastonbury, CT (United States)
1997-12-31
The cost of energy for renewables has gained greater significance in recent years due to the drop in price in some competing energy sources, particularly natural gas. In pursuit of lower manufacturing costs for wind turbine systems, work was conducted to explore an innovative rotor designed to reduce weight and cost over conventional rotor systems. Trade-off studies were conducted to measure the influence of number of blades, stiffness, and manufacturing method on COE. The study showed that increasing number of blades at constant solidity significantly reduced rotor weight and that manufacturing the blades using pultrusion technology produced the lowest cost per pound. Under contracts with the National Renewable Energy Laboratory and the California Energy Commission, a 400 kW (33m diameter) turbine was designed employing this technology. The project included tests of an 80 kW (15.5m diameter) dynamically scaled rotor which demonstrated the viability of the design.
Federal Laboratory Consortium — This test apparatus, when combined with the National Full-Scale Aerodynamics Complex, produces a thorough, full-scale test capability. The Large Rotor Test Apparatus...
Directory of Open Access Journals (Sweden)
H. Ben Attia Sethom
2008-06-01
Full Text Available This paper presents a method to detect and localize intermittent misfiring default on a Pulse Width Modulation (PWM inverter supplying a squirrel cage induction machine. The proposed method is based on the Discrete Wavelet Transform (DWT technique to analyse stator current signals. The intermittent misfiring detection is performed thanks to the Daubechies wavelet mother in high frequency bands of the stator current signal. The localisation of the phase where the intermittent misfiring occurs is determined by a statistic approach. This approach is based on the computing of mean power characteristics of the detail signals which are obtained from the stator current wavelet decomposition.
Directory of Open Access Journals (Sweden)
Alejandro J. Orozco-Naranjo
2013-11-01
Full Text Available This paper presents the results obtained by developing a methodology to detect 5 types of heartbeats (Normal (N, Right bundle branch block (RBBB, Left bundle branch block (LBBB, Premature atrial contraction (APC and Premature ventricular contraction (PVC, using Wavelet transform packets with non-adaptative mode applied on features extraction from heartbeats. It was used the Shannon function to calculate the entropy and It was added an identification nodes stage per every type of cardiac signal in the Wavelet tree. The using of Wavelet packets transform allows the access to information which results of decomposition of low and high frecuency, giving providing a more integral analysis than achieved by the discrete Wavelet transform. Three families of mother Wavelet were evaluated on transformation: Daubechies, Symlet and Reverse Biorthogonal, which were results from a previous research in that were identified the mother Wavelet that had higher entropy with the cardiac signals. With non-adaptive mode, the computational cost is reduced when Wavelet packets are used; this cost represents the most marked disadvantage from the transform. To classify the heartbeats were used Support Vector Machines and Multilayer Perceptron. The best classification error was achieved employing Support Vector Machine and a radial basis function; it was 2.57 %.
Energy Technology Data Exchange (ETDEWEB)
Zahra, Noor e; Sevindir, Huliya A.; Aslan, Zafar; Siddiqi, A. H. [Sharda University, SET, Department of Electronics and Communication, Knowledge Park 3rd, Gr. Noida (India); University of Kocaeli, Department of Mathematics, 41380 Kocaeli (Turkey); Istanbul Aydin University, Department of Computer Engineering, 34295 Istanbul (Turkey); Sharda University, SET, Department of Mathematics, 32-34 Knowledge Park 3rd, Greater Noida (India)
2012-07-17
The aim of this study is to provide emerging applications of wavelet methods to medical signals and images, such as electrocardiogram, electroencephalogram, functional magnetic resonance imaging, computer tomography, X-ray and mammography. Interpretation of these signals and images are quite important. Nowadays wavelet methods have a significant impact on the science of medical imaging and the diagnosis of disease and screening protocols. Based on our initial investigations, future directions include neurosurgical planning and improved assessment of risk for individual patients, improved assessment and strategies for the treatment of chronic pain, improved seizure localization, and improved understanding of the physiology of neurological disorders. We look ahead to these and other emerging applications as the benefits of this technology become incorporated into current and future patient care. In this chapter by applying Fourier transform and wavelet transform, analysis and denoising of one of the important biomedical signals like EEG is carried out. The presence of rhythm, template matching, and correlation is discussed by various method. Energy of EEG signal is used to detect seizure in an epileptic patient. We have also performed denoising of EEG signals by SWT.
Zahra, Noor e.; Sevindir, Hulya Kodal; Aslan, Zafer; Siddiqi, A. H.
2012-07-01
The aim of this study is to provide emerging applications of wavelet methods to medical signals and images, such as electrocardiogram, electroencephalogram, functional magnetic resonance imaging, computer tomography, X-ray and mammography. Interpretation of these signals and images are quite important. Nowadays wavelet methods have a significant impact on the science of medical imaging and the diagnosis of disease and screening protocols. Based on our initial investigations, future directions include neurosurgical planning and improved assessment of risk for individual patients, improved assessment and strategies for the treatment of chronic pain, improved seizure localization, and improved understanding of the physiology of neurological disorders. We look ahead to these and other emerging applications as the benefits of this technology become incorporated into current and future patient care. In this chapter by applying Fourier transform and wavelet transform, analysis and denoising of one of the important biomedical signals like EEG is carried out. The presence of rhythm, template matching, and correlation is discussed by various method. Energy of EEG signal is used to detect seizure in an epileptic patient. We have also performed denoising of EEG signals by SWT.
Noise reduction by wavelet thresholding
National Research Council Canada - National Science Library
Jansen, Maarten
2001-01-01
.... I rather present new material and own insights in the que stions involved with wavelet based noise reduction . On the other hand , the presented material does cover a whole range of methodologies, and in that sense, the book may serve as an introduction into the domain of wavelet smoothing. Throughout the text, three main properties show up ever again: spar...
Jeffrey H. Gove
2017-01-01
This package adds several classes, generics and associated methods as well as a few various functions to help with wavelet decomposition of sampling surfaces generated using sampSurf. As such, it can be thought of as an extension to sampSurf for wavelet analysis.
Adaptive boxcar/wavelet transform
Sezer, Osman G.; Altunbasak, Yucel
2009-01-01
This paper presents a new adaptive Boxcar/Wavelet transform for image compression. Boxcar/Wavelet decomposition emphasizes the idea of average-interpolation representation which uses dyadic averages and their interpolation to explain a special case of biorthogonal wavelet transforms (BWT). This perspective for image compression together with lifting scheme offers the ability to train an optimum 2-D filter set for nonlinear prediction (interpolation) that will adapt to the context around the low-pass wavelet coefficients for reducing energy in the high-pass bands. Moreover, the filters obtained after training is observed to posses directional information with some textural clues that can provide better prediction performance. This work addresses a firrst step towards obtaining this new set of training-based fillters in the context of Boxcar/Wavelet transform. Initial experimental results show better subjective quality performance compared to popular 9/7-tap and 5/3-tap BWTs with comparable results in objective quality.
Satellite image compression using wavelet
Santoso, Alb. Joko; Soesianto, F.; Dwiandiyanto, B. Yudi
2010-02-01
Image data is a combination of information and redundancies, the information is part of the data be protected because it contains the meaning and designation data. Meanwhile, the redundancies are part of data that can be reduced, compressed, or eliminated. Problems that arise are related to the nature of image data that spends a lot of memory. In this paper will compare 31 wavelet function by looking at its impact on PSNR, compression ratio, and bits per pixel (bpp) and the influence of decomposition level of PSNR and compression ratio. Based on testing performed, Haar wavelet has the advantage that is obtained PSNR is relatively higher compared with other wavelets. Compression ratio is relatively better than other types of wavelets. Bits per pixel is relatively better than other types of wavelet.
Wavelet frames and their duals
DEFF Research Database (Denmark)
Lemvig, Jakob
2008-01-01
frames with good time localization and other attractive properties. Furthermore, the dual wavelet frames are constructed in such a way that we are guaranteed that both frames will have the same desirable features. The construction procedure works for any real, expansive dilation. A quasi-affine system....... The signals are then represented by linear combinations of the building blocks with coefficients found by an associated frame, called a dual frame. A wavelet frame is a frame where the building blocks are stretched (dilated) and translated versions of a single function; such a frame is said to have wavelet...... structure. The dilation of the wavelet building blocks in higher dimension is done via a square matrix which is usually taken to be integer valued. In this thesis we step away from the "usual" integer, expansive dilation and consider more general, expansive dilations. In most applications of wavelet frames...
A Class of Wavelet-Based Rayleigh-Euler Beam Element for Analyzing Rotating Shafts
Directory of Open Access Journals (Sweden)
Jiawei Xiang
2011-01-01
Full Text Available A class of wavelet-based Rayleigh-Euler rotating beam element using B-spline wavelets on the interval (BSWI is developed to analyze rotor-bearing system. The effects of translational and rotary inertia, torsion moment, axial displacement, cross-coupled stiffness and damping coefficients of bearings, hysteric and viscous internal damping, gyroscopic moments and bending deformation of the system are included in the computational model. In order to get a generalized formulation of wavelet-based element, each boundary node is collocated six degrees of freedom (DOFs: three translations and three rotations; whereas, each inner node has only three translations. Typical numerical examples are presented to show the accuracy and efficiency of the presented method.
An Introduction to Wavelet Theory and Analysis
Energy Technology Data Exchange (ETDEWEB)
Miner, N.E.
1998-10-01
This report reviews the history, theory and mathematics of wavelet analysis. Examination of the Fourier Transform and Short-time Fourier Transform methods provides tiormation about the evolution of the wavelet analysis technique. This overview is intended to provide readers with a basic understanding of wavelet analysis, define common wavelet terminology and describe wavelet amdysis algorithms. The most common algorithms for performing efficient, discrete wavelet transforms for signal analysis and inverse discrete wavelet transforms for signal reconstruction are presented. This report is intended to be approachable by non- mathematicians, although a basic understanding of engineering mathematics is necessary.
Influences of the signal border extension in the discrete wavelet transform in EEG spike detection
Directory of Open Access Journals (Sweden)
Edras Reily Pacola
Full Text Available Abstract Introduction The discrete wavelet transform is used in many studies as signal preprocessor for EEG spike detection. An inherent process of this mathematical tool is the recursive wavelet convolution over the signal that is decomposed into detail and approximation coefficients. To perform these convolutions, firstly it is necessary to extend signal borders. The selection of an unsuitable border extension algorithm may increase the false positive rate of an EEG spike detector. Methods In this study we analyzed nine different border extensions used for convolution and 19 mother wavelets commonly seen in other EEG spike detectors in the literature. Results The border extension may degrade an EEG spike detector up to 44.11%. Furthermore, results behave differently for distinct number of wavelet coefficients. Conclusion There is not a best border extension to be used with any EEG spike detector based on the discrete wavelet transform, but the selection of the most adequate border extension is related to the number of coefficients of a mother wavelet.
Energy Technology Data Exchange (ETDEWEB)
Busmann, H.G.; Kensche, C.; Berg-Pollack, A.; Buerkner, F.; Sayer, F.; Wiemann, K. [Fraunhofer-Center fuer Windenergie- und Meerestechnik, Bremerhaven (Germany)
2007-02-15
Current approval of rotor blades comprises characterization of materials, full-blade tests with static up- and down-bending, and a modal analysis. In addition to these tests, cyclic testing of full-size rotor blades is increasingly discussed to become subject of official certification procedures. Open questions regarding their operational relevance, large investment costs and long duration of up to 4 months for forthcoming large blades now deepen the demand for a new testing methodology. Component testing and scaling methods, highly developed calculation methods, and the definition of blade families of closely related structures are proposed to increase the relevance as well as to decrease costs and duration of the approval procedure. (orig.)
Rotor for a pyrolysis centrifuge reactor
DEFF Research Database (Denmark)
2015-01-01
The present invention relates to a rotor for a pyrolysis centrifuge reactor, said rotor comprising a rotor body having a longitudinal centre axis, and at least one pivotally mounted blade being adapted to pivot around a pivot axis under rotation of the rotor body around the longitudinal centre axis....... Moreover, the present invention relates to a pyrolysis centrifuge reactor applying such a rotor....
Noise reduction in ultrasonic NDT using undecimated wavelet transforms.
Pardo, E; San Emeterio, J L; Rodriguez, M A; Ramos, A
2006-12-22
Translation-invariant wavelet processing is applied to grain noise reduction in ultrasonic non-destructive testing of materials. In particular, the undecimated wavelet transform (UWT), which is essentially a discrete wavelet transform (DWT) that avoids decimation, is used. Two different UWT processors have been specifically developed for that purpose, based on two UWT implementation schemes: the "à trous" algorithm and the cycle-spinning scheme. The performance of these two UWT processors is compared with that of a classical DWT processor, by using synthetic grain noise registers and experimental pulse-echo NDT traces. The synthetic ultrasonic traces have been generated by an own-developed frequency-domain model that includes frequency dependence in both material attenuation and scattering. The experimental ultrasonic traces have been obtained by inspecting a piece of carbon-fiber reinforced plastic composite in which we have mechanized artificial flaws. Decomposition level-dependent thresholds, which are suitable for correlated noise, are specifically determined in all cases. Soft thresholding, Daubechies db6 mother wavelet and the three well-known threshold selection rules, Universal, Minimax and SURE, are applied to the different decomposition levels. The performance of the different de-noising procedures for single echo detection has been comparatively evaluated in terms of signal-to-noise ratio enhancement.
Rosyidi, Sri; Taha, Mohd; Chik, Zamri; Ismail, Amiruddin
2009-09-01
Surface wave method consists of measurement and processing of the dispersive Rayleigh waves recorded from two or more vertical transducers. The dispersive phase data are inverted and the shear wave velocity versus depth is obtained. However, in case of residual soil, the reliable phase spectrum curve is difficult to be produced. Noises from nature and other human-made sources disturb the generated surface wave data. In this paper, a continuous wavelet transform based on mother wavelet of Gaussian Derivative was used to analyze seismic waves in different frequency and time. Time-frequency wavelet spectrum was employed to localize the interested seismic response spectrum of generated surface waves. It can also distinguish the fundamental mode of the surface wave from the higher modes of reflected body waves. The results presented in this paper showed that the wavelet analysis is able to determine reliable surface wave spectrum of sandy clayey residual soil.
Iris Recognition Using Wavelet
Directory of Open Access Journals (Sweden)
Khaliq Masood
2013-08-01
Full Text Available Biometric systems are getting more attention in the present era. Iris recognition is one of the most secure and authentic among the other biometrics and this field demands more authentic, reliable and fast algorithms to implement these biometric systems in real time. In this paper, an efficient localization technique is presented to identify pupil and iris boundaries using histogram of the iris image. Two small portions of iris have been used for polar transformation to reduce computational time and to increase the efficiency of the system. Wavelet transform is used for feature vector generation. Rotation of iris is compensated without shifts in the iris code. System is tested on Multimedia University Iris Database and results show that proposed system has encouraging performance.
Directory of Open Access Journals (Sweden)
Hannu Olkkonen
2013-01-01
Full Text Available In this work we introduce a new family of splines termed as gamma splines for continuous signal approximation and multiresolution analysis. The gamma splines are born by -times convolution of the exponential by itself. We study the properties of the discrete gamma splines in signal interpolation and approximation. We prove that the gamma splines obey the two-scale equation based on the polyphase decomposition. to introduce the shift invariant gamma spline wavelet transform for tree structured subscale analysis of asymmetric signal waveforms and for systems with asymmetric impulse response. Especially we consider the applications in biomedical signal analysis (EEG, ECG, and EMG. Finally, we discuss the suitability of the gamma spline signal processing in embedded VLSI environment.
From Fourier analysis to wavelets
Gomes, Jonas
2015-01-01
This text introduces the basic concepts of function spaces and operators, both from the continuous and discrete viewpoints. Fourier and Window Fourier Transforms are introduced and used as a guide to arrive at the concept of Wavelet transform. The fundamental aspects of multiresolution representation, and its importance to function discretization and to the construction of wavelets is also discussed. Emphasis is given on ideas and intuition, avoiding the heavy computations which are usually involved in the study of wavelets. Readers should have a basic knowledge of linear algebra, calculus, and some familiarity with complex analysis. Basic knowledge of signal and image processing is desirable. This text originated from a set of notes in Portuguese that the authors wrote for a wavelet course on the Brazilian Mathematical Colloquium in 1997 at IMPA, Rio de Janeiro.
A new fractional wavelet transform
Dai, Hongzhe; Zheng, Zhibao; Wang, Wei
2017-03-01
The fractional Fourier transform (FRFT) is a potent tool to analyze the time-varying signal. However, it fails in locating the fractional Fourier domain (FRFD)-frequency contents which is required in some applications. A novel fractional wavelet transform (FRWT) is proposed to solve this problem. It displays the time and FRFD-frequency information jointly in the time-FRFD-frequency plane. The definition, basic properties, inverse transform and reproducing kernel of the proposed FRWT are considered. It has been shown that an FRWT with proper order corresponds to the classical wavelet transform (WT). The multiresolution analysis (MRA) associated with the developed FRWT, together with the construction of the orthogonal fractional wavelets are also presented. Three applications are discussed: the analysis of signal with time-varying frequency content, the FRFD spectrum estimation of signals that involving noise, and the construction of fractional Harr wavelet. Simulations verify the validity of the proposed FRWT.
Wavelet transforms and their applications
Debnath, Lokenath
2015-01-01
This textbook is an introduction to wavelet transforms and accessible to a larger audience with diverse backgrounds and interests in mathematics, science, and engineering. Emphasis is placed on the logical development of fundamental ideas and systematic treatment of wavelet analysis and its applications to a wide variety of problems as encountered in various interdisciplinary areas. Numerous standard and challenging topics, applications, and exercises are included in this edition, which will stimulate research interest among senior undergraduate and graduate students. The book contains a large number of examples, which are either directly associated with applications or formulated in terms of the mathematical, physical, and engineering context in which wavelet theory arises. Topics and Features of the Second Edition: · Expanded and revised the historical introduction by including many new topics such as the fractional Fourier transform, and the construction of wavelet bases in various spaces ...
Rotor/body aerodynamic interactions
Betzina, M. D.; Smith, C. A.; Shinoda, P.
1985-01-01
A wind tunnel investigation was conducted in which independent, steady state aerodynamic forces and moments were measured on a 2.24 m diam. two bladed helicopter rotor and on several different bodies. The mutual interaction effects for variations in velocity, thrust, tip-path-plane angle of attack, body angle of attack, rotor/body position, and body geometry were determined. The results show that the body longitudinal aerodynamic characteristics are significantly affected by the presence of a rotor and hub, and that the hub interference may be a major part of such interaction. The effects of the body on the rotor performance are presented.
Variable Speed Rotor System Project
National Aeronautics and Space Administration — Variable speed rotors will give helicopters several advantages: higher top speed, greater fuel efficiency, momentary emergency over-power, resonance detuning...
Damping augmentation of helicopter rotors using magnetorheological dampers
Zhao, Yongsheng
parameter perturbation. In first case, it is assumed that some MR dampers are damaged which lead to an unstable or marginally stable rotor. The use of the remaining operational MR dampers to recover the stability margin is investigated. It is shown that using the developed control strategy, the MR dampers can successfully recover the stability and stability margin of the rotor in most studied cases. The robustness of parameter perturbations are studied by perturbing mass, damping, and stiffness parameters. The method to improve the robustness of the feedback linearization control is suggested and is approved feasible. To evaluate the damping provided by lead lag dampers and predict the aeromechnical instability, damping identification algorithms from rotor stability test data are developed. First, the linear damping identification is researched. Three existing methods: Hilbert transform, moving block method with time domain window, and wavelet transform are evaluated and compared. Hybrid algorithms combining the advantages of the three methods are developed and applied to experimental test data. A nonlinear damping identification algorithm designed specifically for the system with MR dampers is developed. The envelope of the free response of such system is derived and the damping identification problem is transformed to envelope detection problem, so that algorithms used in linear damping identification can be applied. For the single degree of freedom system, all three methods accurately identify dampings: Hilbert transform, moving block method with time domain window, and wavelet transform. For the system with persistent excitation such as rotor stability test data, the hybrid methods again show better performance than other methods.
Rotor and wind turbine formalism
DEFF Research Database (Denmark)
Branlard, Emmanuel Simon Pierre
2017-01-01
The main conventions used in this book for the study of rotors are introduced in this chapter. The main assumptions and notations are provided. The formalism specific to wind turbines is presented. The forces, moments, velocities and dimensionless coefficients used in the study of rotors...
Wavelet analysis of bioimpendancometric data
Dumler, A.; Zubarev, M.; Muraviev, N.; Mamatova, A.; Salnikova, N.; Podtaev, S.; Stepanov, R.; Frick, P.
2010-04-01
Up-to-date bioimpedancometric methods offer a wide spectrum of data that can be used for complex analysis of cardiovascular system state. Still, the use of appropriate mathematical approaches for data processing and calculation of main parameters is essential for confident diagnosis. The data processing problems are mainly connected with unavoidable noise sources, device noises, necessity to differentiate the registered data, pattern recognition of the structures responsible for specific fragments of the heart cycle and for the integral characteristics. In this work wavelet analysis is offered to resolve the various upcoming problems. Approaches based on decomposition of the analyzed signal on the base of special functions - wavelets - allow filtration of noises, artefacts and trends caused by side processes. They offer a wide spectrum of spectral and correlation analysis of synchronously recorded signals (for polyrheocardiograf those are impedance signals, cardiogram and phonocardiogram). Wavelet decomposition allows to distinguish high-frequency device noise from low-frequency variations caused by breathing, for example. Use of original wavelet differentiation algorithm allows to combine filtration and calculation of the derivatives of rheocardiogram. Time-spectral representation of the data on the surface forms the wavelet-portrait that gives images with relief markers of cardiac cycle phases. Utilization of the offered mathematical method raises the self-descriptiveness of impedancometric examination of cardiovascular system and makes more accurate the definition of traditional hemodynamic parameters.
Chiariotti, P.; Martarelli, M.; Revel, G. M.
2017-12-01
A novel non-destructive testing procedure for delamination detection based on the exploitation of the simultaneous time and spatial sampling provided by Continuous Scanning Laser Doppler Vibrometry (CSLDV) and the feature extraction capability of Multi-Level wavelet-based processing is presented in this paper. The processing procedure consists in a multi-step approach. Once the optimal mother-wavelet is selected as the one maximizing the Energy to Shannon Entropy Ratio criterion among the mother-wavelet space, a pruning operation aiming at identifying the best combination of nodes inside the full-binary tree given by Wavelet Packet Decomposition (WPD) is performed. The pruning algorithm exploits, in double step way, a measure of the randomness of the point pattern distribution on the damage map space with an analysis of the energy concentration of the wavelet coefficients on those nodes provided by the first pruning operation. A combination of the point pattern distributions provided by each node of the ensemble node set from the pruning algorithm allows for setting a Damage Reliability Index associated to the final damage map. The effectiveness of the whole approach is proven on both simulated and real test cases. A sensitivity analysis related to the influence of noise on the CSLDV signal provided to the algorithm is also discussed, showing that the processing developed is robust enough to measurement noise. The method is promising: damages are well identified on different materials and for different damage-structure varieties.
Gaussian wavelet based dynamic filtering (GWDF) method for medical ultrasound systems.
Wang, Peidong; Shen, Yi; Wang, Qiang
2007-05-01
In this paper, a novel dynamic filtering method using Gaussian wavelet filters is proposed to remove noise from ultrasound echo signal. In the proposed method, a mother wavelet is first selected with its central frequency (CF) and frequency bandwidth (FB) equal to those of the transmitted signal. The actual frequency of the received signal at a given depth is estimated through the autocorrelation technique. Then the mother wavelet is dilated using the ratio between the transmitted central frequency and the actual frequency as the scale factor. The generated daughter wavelet is finally used as the dynamic filter at this depth. Frequency-demodulated Gaussian wavelet is chosen in this paper because its power spectrum is well-matched with that of the transmitted ultrasound signal. The proposed method is evaluated by simulations using Field II program. Experiments are also conducted out on a standard ultrasound phantom using a 192-element transducer with the center frequency of 5 MHz. The phantom contains five point targets, five circular high scattering regions with diameters of 2, 3, 4, 5, 6 mm respectively, and five cysts with diameters of 6, 5, 4, 3, 2 mm respectively. Both simulation and experimental results show that optimal signal-to-noise ratio (SNR) can be obtained and useful information can be extracted along the depth direction irrespective of the diagnostic objects.
Oversampling of wavelet frames for real dilations
DEFF Research Database (Denmark)
Bownik, Marcin; Lemvig, Jakob
2012-01-01
We generalize the Second Oversampling Theorem for wavelet frames and dual wavelet frames from the setting of integer dilations to real dilations. We also study the relationship between dilation matrix oversampling of semi-orthogonal Parseval wavelet frames and the additional shift invariance gain...
On Fractals, Fractional Splines and Wavelets
2005-01-07
this picture. QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture. From Goldberger, Rigney and West Heart Arterial tree Dendritic...this picture. Mandelbrot meets Mondrian 27 FRACTIONAL WAVELETS Basic ingredients Constructing fractional wavelets Fractional B-spline wavelets Multi
A high-performance seizure detection algorithm based on Discrete Wavelet Transform (DWT) and EEG.
Chen, Duo; Wan, Suiren; Xiang, Jing; Bao, Forrest Sheng
2017-01-01
In the past decade, Discrete Wavelet Transform (DWT), a powerful time-frequency tool, has been widely used in computer-aided signal analysis of epileptic electroencephalography (EEG), such as the detection of seizures. One of the important hurdles in the applications of DWT is the settings of DWT, which are chosen empirically or arbitrarily in previous works. The objective of this study aimed to develop a framework for automatically searching the optimal DWT settings to improve accuracy and to reduce computational cost of seizure detection. To address this, we developed a method to decompose EEG data into 7 commonly used wavelet families, to the maximum theoretical level of each mother wavelet. Wavelets and decomposition levels providing the highest accuracy in each wavelet family were then searched in an exhaustive selection of frequency bands, which showed optimal accuracy and low computational cost. The selection of frequency bands and features removed approximately 40% of redundancies. The developed algorithm achieved promising performance on two well-tested EEG datasets (accuracy >90% for both datasets). The experimental results of the developed method have demonstrated that the settings of DWT affect its performance on seizure detection substantially. Compared with existing seizure detection methods based on wavelet, the new approach is more accurate and transferable among datasets.
Wavelets for sign language translation
Wilson, Beth J.; Anspach, Gretel
1993-10-01
Wavelet techniques are applied to help extract the relevant parameters of sign language from video images of a person communicating in American Sign Language or Signed English. The compression and edge detection features of two-dimensional wavelet analysis are exploited to enhance the algorithms under development to classify the hand motion, hand location with respect to the body, and handshape. These three parameters have different processing requirements and complexity issues. The results are described for applying various quadrature mirror filter designs to a filterbank implementation of the desired wavelet transform. The overall project is to develop a system that will translate sign language to English to facilitate communication between deaf and hearing people.
DEFF Research Database (Denmark)
Sørensen, Jens Nørkær
2016-01-01
The finite-bladed optimum Betz rotor is treated. It is first very recently that a complete description of this rotor has been derived. In the chapter, a full analytical solution to the Betz rotor problem will be given, and the results will be compared to other optimum rotor models, both...
Wavelet-based associative memory
Jones, Katharine J.
2004-04-01
Faces provide important characteristics of a person"s identification. In security checks, face recognition still remains the method in continuous use despite other approaches (i.e. fingerprints, voice recognition, pupil contraction, DNA scanners). With an associative memory, the output data is recalled directly using the input data. This can be achieved with a Nonlinear Holographic Associative Memory (NHAM). This approach can also distinguish between strongly correlated images and images that are partially or totally enclosed by others. Adaptive wavelet lifting has been used for Content-Based Image Retrieval. In this paper, adaptive wavelet lifting will be applied to face recognition to achieve an associative memory.
Wavelet Analysis for Molecular Dynamics
2015-06-01
2480. 4. Ismail AE, Rutledge GC, Stephanopoulos G. Topological coarse graining of polymer chains using wavelet-accelerated Monte Carlo. I. Freely...accelerated Monte Carlo. II. Self-avoiding chains. J Chem Phys. 2005;122:234902. 6. Coifman R, Maggioni M. Diffusion wavelets. Appl Comput Harm Anal...INFORMATION CTR DTIC OCA 2 (PDF) DIRECTOR US ARMY RESEARCH LAB RDRL CIO LL IMAL HRA MAIL & RECORDS MGMT 1 (PDF) GOVT PRINTG OFC A MALHOTRA 1 (PDF) DIR USARL RDRL WML B B RICE 21 INTENTIONALLY LEFT BLANK. 22
Rotor blade assembly having internal loading features
Soloway, Daniel David
2017-05-16
Rotor blade assemblies and wind turbines are provided. A rotor blade assembly includes a rotor blade having exterior surfaces defining a pressure side, a suction side, a leading edge and a trailing edge each extending between a tip and a root, the rotor blade defining a span and a chord, the exterior surfaces defining an interior of the rotor blade. The rotor blade assembly further includes a loading assembly, the loading assembly including a weight disposed within the interior and movable generally along the span of the rotor blade, the weight connected to a rotor blade component such that movement of the weight towards the tip causes application of a force to the rotor blade component by the weight. Centrifugal force due to rotation of the rotor blade biases the weight towards the tip.
Aircraft Rotor Surface Coating Qualification Testing Aircraft Rotor Surface Coating
National Research Council Canada - National Science Library
2006-01-01
.... The Aviation and Missile Research, Development and Engineering Center "AMRDEC" located at Redstone Arsenal, AL selected the NCDMM to coordinate the initial effort to qualify a new aircraft rotor...
Calvi, M; Bottura, L; Masi, A; Siemko, A
2006-01-01
Premature training quenches are caused by transient energy released within the magnet coil while it is energized. Signals recorded across the so-called quench antenna carry information about these disturbances. A new method for identifying and characterizing those events is proposed, which applies the wavelet transform approach to the recorded signals. Such an approach takes into account the time of occurrence as well as frequency content of the events. The choice of the optimal mother wavelet is discussed, and the results obtained from the application of the method to actual signals are given. The criteria to recognize the interesting events are presented as well as the methodology to classify their global behavior.
Practical wavelet signal processing for automated testing
Berry, S
1999-01-01
Wavelets are very versatile signal-processing tools that can be used in automated testing for noise reduction, edge detection, focus determination of video camera, and multi-scale frequency/time domain analysis of signals. This paper presents an overview of wavelets and discusses how examples of the use of wavelets in electrical and optical testing are explored. Tools and routines for using wavelets are discussed for several programming languages and software packages including C/ATLAS, C, WAVELAB, MATLAB and the MATLAB Wavelet toolbox. (15 refs).
Optimal Wavelets for Speech Signal Representations
Directory of Open Access Journals (Sweden)
Shonda L. Walker
2003-08-01
Full Text Available It is well known that in many speech processing applications, speech signals are characterized by their voiced and unvoiced components. Voiced speech components contain dense frequency spectrum with many harmonics. The periodic or semi-periodic nature of voiced signals lends itself to Fourier Processing. Unvoiced speech contains many high frequency components and thus resembles random noise. Several methods for voiced and unvoiced speech representations that utilize wavelet processing have been developed. These methods seek to improve the accuracy of wavelet-based speech signal representations using adaptive wavelet techniques, superwavelets, which uses a linear combination of adaptive wavelets, gaussian methods and a multi-resolution sinusoidal transform approach to mention a few. This paper addresses the relative performance of these wavelet methods and evaluates the usefulness of wavelet processing in speech signal representations. In addition, this paper will also address some of the hardware considerations for the wavelet methods presented.
Directory of Open Access Journals (Sweden)
Raisah Hayati
2014-03-01
Full Text Available Detection of low signal and determination target locations is the basis and important in the system radar. Performance of radar can enhanced with enhancement signal-to-noise ratio in the receiver. In this research, will show a algorithm in radar signal processing, that is for extract the signal target in the place of noise. Discrete Cosine Transform (DCT and Discrete Wavelet Transform (DWT is the success full mathematic function in the signal processing in the last twenty years. In this research will simulate signal with DCT and DWT, analysis his performance in radar signal processing. DWT signal processing will analysis and compare with mother wavelet Haar, Daubechies-12, Coiflet-5 and Symlet-8. DCT signal processing will analysis and compare with same of window function with use in signal restrictions. Window function have influence signal resolution in domain frequency. Window function that use in this research Rectangular, Hamming, Hanning and Dolph-Chebyshev. The result of simulation and analysis Is: mother wavelet with DWT, wavelet Daubechies-12 and Symlet-8 give the best performance and mother wavelet Haar give bad performance. Wavelet Daubechies-12 give the biggest signal to noise ratio that is 32,0603 dB. Mother wavelet Symlet-8 give 32,6589 dB. Mother wavelet Haar give 14,6692 dB. Testing window function DCT, window Dolph-Chebyshev give the best performance, with give the best separation of signal. Analysis of signal reflection that accept of radar give the result that DWT is better performance than DCT in breaking of noise.
Online Wavelet Complementary velocity Estimator.
Righettini, Paolo; Strada, Roberto; KhademOlama, Ehsan; Valilou, Shirin
2018-01-02
In this paper, we have proposed a new online Wavelet Complementary velocity Estimator (WCE) over position and acceleration data gathered from an electro hydraulic servo shaking table. This is a batch estimator type that is based on the wavelet filter banks which extract the high and low resolution of data. The proposed complementary estimator combines these two resolutions of velocities which acquired from numerical differentiation and integration of the position and acceleration sensors by considering a fixed moving horizon window as input to wavelet filter. Because of using wavelet filters, it can be implemented in a parallel procedure. By this method the numerical velocity is estimated without having high noise of differentiators, integration drifting bias and with less delay which is suitable for active vibration control in high precision Mechatronics systems by Direct Velocity Feedback (DVF) methods. This method allows us to make velocity sensors with less mechanically moving parts which makes it suitable for fast miniature structures. We have compared this method with Kalman and Butterworth filters over stability, delay and benchmarked them by their long time velocity integration for getting back the initial position data. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Wavelet library for constrained devices
Ehlers, Johan Hendrik; Jassim, Sabah A.
2007-04-01
The wavelet transform is a powerful tool for image and video processing, useful in a range of applications. This paper is concerned with the efficiency of a certain fast-wavelet-transform (FWT) implementation and several wavelet filters, more suitable for constrained devices. Such constraints are typically found on mobile (cell) phones or personal digital assistants (PDA). These constraints can be a combination of; limited memory, slow floating point operations (compared to integer operations, most often as a result of no hardware support) and limited local storage. Yet these devices are burdened with demanding tasks such as processing a live video or audio signal through on-board capturing sensors. In this paper we present a new wavelet software library, HeatWave, that can be used efficiently for image/video processing/analysis tasks on mobile phones and PDA's. We will demonstrate that HeatWave is suitable for realtime applications with fine control and range to suit transform demands. We shall present experimental results to substantiate these claims. Finally this library is intended to be of real use and applied, hence we considered several well known and common embedded operating system platform differences; such as a lack of common routines or functions, stack limitations, etc. This makes HeatWave suitable for a range of applications and research projects.
Genetics Home Reference: Rotor syndrome
... TYPE Sources for This Page Strassburg CP. Hyperbilirubinemia syndromes (Gilbert-Meulengracht, Crigler-Najjar, Dubin-Johnson, and Rotor syndrome). Best Pract Res Clin Gastroenterol. 2010 Oct;24( ...
A Wavelet Perspective on the Allan Variance.
Percival, Donald B
2016-04-01
The origins of the Allan variance trace back 50 years ago to two seminal papers, one by Allan (1966) and the other by Barnes (1966). Since then, the Allan variance has played a leading role in the characterization of high-performance time and frequency standards. Wavelets first arose in the early 1980s in the geophysical literature, and the discrete wavelet transform (DWT) became prominent in the late 1980s in the signal processing literature. Flandrin (1992) briefly documented a connection between the Allan variance and a wavelet transform based upon the Haar wavelet. Percival and Guttorp (1994) noted that one popular estimator of the Allan variance-the maximal overlap estimator-can be interpreted in terms of a version of the DWT now widely referred to as the maximal overlap DWT (MODWT). In particular, when the MODWT is based on the Haar wavelet, the variance of the resulting wavelet coefficients-the wavelet variance-is identical to the Allan variance when the latter is multiplied by one-half. The theory behind the wavelet variance can thus deepen our understanding of the Allan variance. In this paper, we review basic wavelet variance theory with an emphasis on the Haar-based wavelet variance and its connection to the Allan variance. We then note that estimation theory for the wavelet variance offers a means of constructing asymptotically correct confidence intervals (CIs) for the Allan variance without reverting to the common practice of specifying a power-law noise type a priori. We also review recent work on specialized estimators of the wavelet variance that are of interest when some observations are missing (gappy data) or in the presence of contamination (rogue observations or outliers). It is a simple matter to adapt these estimators to become estimators of the Allan variance. Finally we note that wavelet variances based upon wavelets other than the Haar offer interesting generalizations of the Allan variance.
Vibration response of misaligned rotors
Patel, Tejas H.; Darpe, Ashish K.
2009-08-01
Misalignment is one of the common faults observed in rotors. Effect of misalignment on vibration response of coupled rotors is investigated in the present study. The coupled rotor system is modelled using Timoshenko beam elements with all six dof. An experimental approach is proposed for the first time for determination of magnitude and harmonic nature of the misalignment excitation. Misalignment effect at coupling location of rotor FE model is simulated using nodal force vector. The force vector is found using misalignment coupling stiffness matrix, derived from experimental data and applied misalignment between the two rotors. Steady-state vibration response is studied for sub-critical speeds. Effect of the types of misalignment (parallel and angular) on the vibration behaviour of the coupled rotor is examined. Along with lateral vibrations, axial and torsional vibrations are also investigated and nature of the vibration response is also examined. It has been found that the misalignment couples vibrations in bending, longitudinal and torsional modes. Some diagnostic features in the fast Fourier transform (FFT) of torsional and longitudinal response related to parallel and angular misalignment have been revealed. Full spectra and orbit plots are effectively used to reveal the unique nature of misalignment fault leading to reliable misalignment diagnostic information, not clearly brought out by earlier studies.
Directory of Open Access Journals (Sweden)
Kartik V. Bulusu
2015-09-01
Full Text Available The coherent secondary flow structures (i.e., swirling motions in a curved artery model possess a variety of spatio-temporal morphologies and can be encoded over an infinitely-wide range of wavelet scales. Wavelet analysis was applied to the following vorticity fields: (i a numerically-generated system of Oseen-type vortices for which the theoretical solution is known, used for bench marking and evaluation of the technique; and (ii experimental two-dimensional, particle image velocimetry data. The mother wavelet, a two-dimensional Ricker wavelet, can be dilated to infinitely large or infinitesimally small scales. We approached the problem of coherent structure detection by means of continuous wavelet transform (CWT and decomposition (or Shannon entropy. The main conclusion of this study is that the encoding of coherent secondary flow structures can be achieved by an optimal number of binary digits (or bits corresponding to an optimal wavelet scale. The optimal wavelet-scale search was driven by a decomposition entropy-based algorithmic approach and led to a threshold-free coherent structure detection method. The method presented in this paper was successfully utilized in the detection of secondary flow structures in three clinically-relevant blood flow scenarios involving the curved artery model under a carotid artery-inspired, pulsatile inflow condition. These scenarios were: (i a clean curved artery; (ii stent-implanted curved artery; and (iii an idealized Type IV stent fracture within the curved artery.
Wavelet analysis on paleomagnetic (and computer simulated VGP time series
Directory of Open Access Journals (Sweden)
A. Siniscalchi
2003-06-01
Full Text Available We present Continuous Wavelet Transform (CWT data analysis of Virtual Geomagnetic Pole (VGP latitude time series. The analyzed time series are sedimentary paleomagnetic and geodynamo simulated data. Two mother wavelets (the Morlet function and the first derivative of a Gaussian function are used in order to detect features related to the spectral content as well as polarity excursions and reversals. By means of the Morlet wavelet, we estimate both the global spectrum and the time evolution of the spectral content of the paleomagnetic data series. Some peaks corresponding to the orbital components are revealed by the spectra and the local analysis helped disclose their statistical significance. Even if this feature could be an indication of orbital influence on geodynamo, other interpretations are possible. In particular, we note a correspondence of local spectral peaks with the appearance of the excursions in the series. The comparison among the paleomagnetic and simulated spectra shows a similarity in the high frequency region indicating that their degree of regularity is analogous. By means of Gaussian first derivative wavelet, reversals and excursions of polarity were sought. The analysis was performed first on the simulated data, to have a guide in understanding the features present in the more complex paleomagnetic data. Various excursions and reversals have been identified, despite of the prevalent normality of the series and its inherent noise. The found relative chronology of the paleomagnetic data reversals was compared with a coeval global polarity time scale (Channel et al., 1995. The relative lengths of polarity stability intervals are found similar, but a general shift appears between the two scales, that could be due to the datation uncertainties of the Hauterivian/Barremian boundary.
Intelligent Sensing in Inverter-fed Induction Motors: Wavelet-based Symbolic Dynamic Analysis
Directory of Open Access Journals (Sweden)
Rohan SAMSI
2008-07-01
Full Text Available Wavelet transform allows adaptive usage of windows to extract pertinent information from sensor signals, and symbolic dynamic analysis provides coarse graining of the underlying information for enhanced computational speed and robustness of sensor-data-driven decision-making. These two concepts are synergistically combined for real-time intelligent sensing of faults whose signatures are small compared to coefficients of dominant frequencies in the signal. Feasibility of the proposed intelligent sensing method is demonstrated on an experimental apparatus for early detection of rotor bar breakage in an inverter-fed induction motor.
Wavelet Transform Based Filter to Remove the Notches from Signal Under Harmonic Polluted Environment
Das, Sukanta; Ranjan, Vikash
2017-12-01
The work proposes to annihilate the notches present in the synchronizing signal required for converter operation appearing due to switching of semiconductor devices connected to the system in the harmonic polluted environment. The disturbances in the signal are suppressed by wavelet based novel filtering technique. In the proposed technique, the notches in the signal are determined and eliminated by the wavelet based multi-rate filter using `Daubechies4' (db4) as mother wavelet. The computational complexity of the adapted technique is very less as compared to any other conventional notch filtering techniques. The proposed technique is developed in MATLAB/Simulink and finally validated with dSPACE-1103 interface. The recovered signal, thus obtained, is almost free of the notches.
Wavelet package frequency-band energy ratios of human EEG signals in sleeping
Wang, Li; Han, Qingpeng; Wang, Ping; Wen, Bangchun
2005-12-01
Human EEG (Electroencephalogram) signals, including 4 rhythms i.e. δ, θ, α, β, are typically nonlinear. They just coincide with different human sleeping states. The wavelet package decomposition and reconstruction techniques are firstly introduced in order to analyze the nonlinear EEG. A 6 level decomposition of EEG was achieved with "db20" as the mother wavelet, and the above 4 rhythms were combined with specialized 8 frequency sub-bands obtained in wavelet package transform. The four frequency band energy ratios, with normalized values, were calculated from the reconstructed signals. These frequency band energy ratios are used as quantify estimation indexes for human sleeping states. The experimental results confirm the proposed method to be effective.
Cross wavelet analysis: significance testing and pitfalls
Directory of Open Access Journals (Sweden)
D. Maraun
2004-01-01
Full Text Available In this paper, we present a detailed evaluation of cross wavelet analysis of bivariate time series. We develop a statistical test for zero wavelet coherency based on Monte Carlo simulations. If at least one of the two processes considered is Gaussian white noise, an approximative formula for the critical value can be utilized. In a second part, typical pitfalls of wavelet cross spectra and wavelet coherency are discussed. The wavelet cross spectrum appears to be not suitable for significance testing the interrelation between two processes. Instead, one should rather apply wavelet coherency. Furthermore we investigate problems due to multiple testing. Based on these results, we show that coherency between ENSO and NAO is an artefact for most of the time from 1900 to 1995. However, during a distinct period from around 1920 to 1940, significant coherency between the two phenomena occurs.
Modeling Network Traffic in Wavelet Domain
Directory of Open Access Journals (Sweden)
Sheng Ma
2004-12-01
Full Text Available This work discovers that although network traffic has the complicated short- and long-range temporal dependence, the corresponding wavelet coefficients are no longer long-range dependent. Therefore, a "short-range" dependent process can be used to model network traffic in the wavelet domain. Both independent and Markov models are investigated. Theoretical analysis shows that the independent wavelet model is sufficiently accurate in terms of the buffer overflow probability for Fractional Gaussian Noise traffic. Any model, which captures additional correlations in the wavelet domain, only improves the performance marginally. The independent wavelet model is then used as a unified approach to model network traffic including VBR MPEG video and Ethernet data. The computational complexity is O(N for developing such wavelet models and generating synthesized traffic of length N, which is among the lowest attained.
Wavelet analysis of epileptic spikes
Latka, M; Kozik, A; West, B J; Latka, Miroslaw; Was, Ziemowit; Kozik, Andrzej; West, Bruce J.
2003-01-01
Interictal spikes and sharp waves in human EEG are characteristic signatures of epilepsy. These potentials originate as a result of synchronous, pathological discharge of many neurons. The reliable detection of such potentials has been the long standing problem in EEG analysis, especially after long-term monitoring became common in investigation of epileptic patients. The traditional definition of a spike is based on its amplitude, duration, sharpness, and emergence from its background. However, spike detection systems built solely around this definition are not reliable due to the presence of numerous transients and artifacts. We use wavelet transform to analyze the properties of EEG manifestations of epilepsy. We demonstrate that the behavior of wavelet transform of epileptic spikes across scales can constitute the foundation of a relatively simple yet effective detection algorithm.
Discrete frequency slice wavelet transform
Yan, Zhonghong; Tao, Ting; Jiang, Zhongwei; Wang, Haibin
2017-11-01
This paper introduces a new kind of Time-Frequency Representation (TFR) method called Discrete Frequency Slice Wavelet Transform (DFSWT). It is an improved version of Frequency Slice Wavelet Transform (FSWT). The previous researches on FSWT show that it is a new efficient TFR in an easy way without strict limitation as traditional wavelet theory. DFSWT as well as FSWT are defined directly in frequency domain, and still keep its properties in time-frequency domain as FSWT decomposition, reconstruction and filter design, etc. However, the original signal is decomposed and reconstructed on a Chosen Frequency Domains (CFD) as need of application. CFD means that the decomposition and reconstruction are not completed on all frequency components. At first, it is important to discuss the necessary condition of CFD to reconstruct the original signal. And then based on norm l2, an optimization algorithm is introduced to reconstruct the original signal even accurately. Finally, for a test example, the TFR analysis of a real life signal is shown. Some conclusions are drawn that the concept of CFD is very useful to application, and the DFSWT can become a simple and easy tool of TFR method, and also provide a new idea of low speed sampling of high frequency signal in applications.
Electric Equipment Diagnosis based on Wavelet Analysis
Stavitsky, Sergey A.; Palukhin, Nikolay E.; Kobenko, Juri V.; Riabova, Elena S.
2016-02-01
Due to electric equipment development and complication it is necessary to have a precise and intense diagnosis. Nowadays there are two basic ways of diagnosis: analog signal processing and digital signal processing. The latter is more preferable. The basic ways of digital signal processing (Fourier transform and Fast Fourier transform) include one of the modern methods based on wavelet transform. This research is dedicated to analyzing characteristic features and advantages of wavelet transform. This article shows the ways of using wavelet analysis and the process of test signal converting. In order to carry out this analysis, computer software Mathcad was used and 2D wavelet spectrum for a complex function was created.
Image Retrieval Based on Wavelet Features
Murtagh, F.
2006-04-01
A dominant (additive, stationary) Gaussian noise component in image data will ensure that wavelet coefficients are of Gaussian distribution, and in such a case Shannon entropy quantifies the wavelet transformed data well. But we find that both Gaussian and long tailed distributions may well hold in practice for wavelet coefficients. We investigate entropy-related features based on different wavelet transforms and the newly developed curvelet transform. Using a materials grading case study, we find that second, third, fourth order moments allow 100% successful test set discrimination.
Analytical methods in rotor dynamics
Dimarogonas, Andrew D; Chondros, Thomas G
2013-01-01
The design and construction of rotating machinery operating at supercritical speeds was, in the 1920s, an event of revolutionary importance for the then new branch of dynamics known as rotor dynamics. In the 1960s, another revolution occurred: In less than a decade, imposed by operational and economic needs, an increase in the power of turbomachinery by one order of magnitude took place. Dynamic analysis of complex rotor forms became a necessity, while the importance of approximate methods for dynamic analysis was stressed. Finally, the emergence of fracture mechanics, as a new branch of applied mechanics, provided analytical tools to investigate crack influence on the dynamic behavior of rotors. The scope of this book is based on all these developments. No topics related to the well-known classical problems are included, rather the book deals exclusively with modern high-power turbomachinery.
On cup anemometer rotor aerodynamics.
Pindado, Santiago; Pérez, Javier; Avila-Sanchez, Sergio
2012-01-01
The influence of anemometer rotor shape parameters, such as the cups' front area or their center rotation radius on the anemometer's performance was analyzed. This analysis was based on calibrations performed on two different anemometers (one based on magnet system output signal, and the other one based on an opto-electronic system output signal), tested with 21 different rotors. The results were compared to the ones resulting from classical analytical models. The results clearly showed a linear dependency of both calibration constants, the slope and the offset, on the cups' center rotation radius, the influence of the front area of the cups also being observed. The analytical model of Kondo et al. was proved to be accurate if it is based on precise data related to the aerodynamic behavior of a rotor's cup.
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Tail rotor. 29.1565 Section 29.1565 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS....1565 Tail rotor. Each tail rotor must be marked so that its disc is conspicuous under normal daylight...
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Tail rotor. 27.1565 Section 27.1565 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... Tail rotor. Each tail rotor must be marked so that its disc is conspicuous under normal daylight ground...
Infinite matrices, wavelet coefficients and frames
Directory of Open Access Journals (Sweden)
N. A. Sheikh
2004-01-01
Full Text Available We study the action of A on f∈L2(ℝ and on its wavelet coefficients, where A=(almjklmjk is a double infinite matrix. We find the frame condition for A-transform of f∈L2(ℝ whose wavelet series expansion is known.
Application of wavelets in speech processing
Farouk, Mohamed Hesham
2014-01-01
This book provides a survey on wide-spread of employing wavelets analysis in different applications of speech processing. The author examines development and research in different application of speech processing. The book also summarizes the state of the art research on wavelet in speech processing.
Parsimonious Wavelet Kernel Extreme Learning Machine
Directory of Open Access Journals (Sweden)
Wang Qin
2015-11-01
Full Text Available In this study, a parsimonious scheme for wavelet kernel extreme learning machine (named PWKELM was introduced by combining wavelet theory and a parsimonious algorithm into kernel extreme learning machine (KELM. In the wavelet analysis, bases that were localized in time and frequency to represent various signals effectively were used. Wavelet kernel extreme learning machine (WELM maximized its capability to capture the essential features in “frequency-rich” signals. The proposed parsimonious algorithm also incorporated significant wavelet kernel functions via iteration in virtue of Householder matrix, thus producing a sparse solution that eased the computational burden and improved numerical stability. The experimental results achieved from the synthetic dataset and a gas furnace instance demonstrated that the proposed PWKELM is efficient and feasible in terms of improving generalization accuracy and real time performance.
OPTIMAL DESIGNS FOR SPLINE WAVELET REGRESSION MODELS.
Maronge, Jacob M; Zhai, Yi; Wiens, Douglas P; Fang, Zhide
2017-05-01
In this article we investigate the optimal design problem for some wavelet regression models. Wavelets are very flexible in modeling complex relations, and optimal designs are appealing as a means of increasing the experimental precision. In contrast to the designs for the Haar wavelet regression model (Herzberg and Traves 1994; Oyet and Wiens 2000), the I-optimal designs we construct are different from the D-optimal designs. We also obtain c-optimal designs. Optimal (D- and I-) quadratic spline wavelet designs are constructed, both analytically and numerically. A case study shows that a significant saving of resources may be realized by employing an optimal design. We also construct model robust designs, to address response misspecification arising from fitting an incomplete set of wavelets.
Wavelets and the Lifting Scheme
DEFF Research Database (Denmark)
la Cour-Harbo, Anders; Jensen, Arne
The objective of this article is to give a concise introduction to the discrete wavelet transform (DWT) based on a technique called lifting. The lifting technique allows one to give an elementary, but rigorous, definition of the DWT, with modest requirements on the reader. A basic knowledge of li...... of linear algebra and signal processing will suffice. The lifting based definition is equivalent to the usual filer bank based definition of the DWT. The article does not discuss applications in any detail. The reader is referred to other articles in this collection....
Wavelets and the lifting scheme
DEFF Research Database (Denmark)
la Cour-Harbo, Anders; Jensen, Arne
2009-01-01
The objective of this article is to give a concise introduction to the discrete wavelet transform (DWT) based on a technique called lifting. The lifting technique allows one to give an elementary, but rigorous, definition of the DWT, with modest requirements on the reader. A basic knowledge of li...... of linear algebra and signal processing will suffice. The lifting based definition is equivalent to the usual filer bank based definition of the DWT. The article does not discuss applications in any detail. The reader is referred to other articles in this collection....
Wavelets and the lifting scheme
DEFF Research Database (Denmark)
la Cour-Harbo, Anders; Jensen, Arne
2012-01-01
The objective of this article is to give a concise introduction to the discrete wavelet transform (DWT) based on a technique called lifting. The lifting technique allows one to give an elementary, but rigorous, definition of the DWT, with modest requirements on the reader. A basic knowledge of li...... of linear algebra and signal processing will suffice. The lifting based definition is equivalent to the usual filer bank based definition of the DWT. The article does not discuss applications in any detail. The reader is referred to other articles in this collection....
Complex Wavelet Based Modulation Analysis
DEFF Research Database (Denmark)
Luneau, Jean-Marc; Lebrun, Jérôme; Jensen, Søren Holdt
2008-01-01
Low-frequency modulation of sound carry important information for speech and music. The modulation spectrum i commonly obtained by spectral analysis of the sole temporal envelopes of the sub-bands out of a time-frequency analysis. Processing in this domain usually creates undesirable distortions...... polynomial trends. Moreover an analytic Hilbert-like transform is possible with complex wavelets implemented as an orthogonal filter bank. By working in an alternative transform domain coined as “Modulation Subbands”, this transform shows very promising denoising capabilities and suggests new approaches for joint...
Seamless multiresolution isosurfaces using wavelets
Energy Technology Data Exchange (ETDEWEB)
Udeshi, T.; Hudson, R.; Papka, M. E.
2000-04-11
Data sets that are being produced by today's simulations, such as the ones generated by DOE's ASCI program, are too large for real-time exploration and visualization. Therefore, new methods of visualizing these data sets need to be investigated. The authors present a method that combines isosurface representations of different resolutions into a seamless solution, virtually free of cracks and overlaps. The solution combines existing isosurface generation algorithms and wavelet theory to produce a real-time solution to multiple-resolution isosurfaces.
Wavelet analysis of multifractal functions
Jaffard, Stephane
1995-09-01
Multifractal signals are characterized by a local Holder exponent that may change completely from point to point. We show that wavelet methods are an extremely efficient tool for determining the exact Holder exponent of a function, or at least, for getting some information about this Holder exponent, such as the Spectrum of Singularities. We construct functions that have a given Holder exponent in a deterministic setting and also in a probabilistic setting (we then obtain the Multifractional Brownian Motion); we also study the Multifractal Formalism for Functions and give some results about its validity.
Mount, Nick J.; Tate, Nicholas J.; Sarker, Maminul H.; Thorne, Colin R.
2013-01-01
In this study continuous wavelet transforms are used to explore spatio-temporal patterns of multi-scale bank line retreat along a 204 km reach of the Jamuna River, Bangladesh. A sequence of eight bank line retreat series, derived from remotely-sensed imagery for the period 1987-1999, is transformed using the Morlet mother wavelet. Bank erosion is shown to operate at several characteristic spatial and temporal scales. Local erosion and bank line retreat are shown to occur in short, well def...
Electrocardiogram de-noising based on forward wavelet transform ...
Indian Academy of Sciences (India)
cation of the Forward Wavelet Transform Translation Invariant (FWT_TI) to each. Bionic Wavelet ... wavelet coefficients obtained from the application of the Bionic Wavelet Transform (BWT) to the noisy ECG signal. ...... Han J Y, Lee S K and Park H B 2009 Denoising ECG using Translation Invariant Multiwavelet. Int. J. Electr.
Dynamic Calibration of the NASA Ames Rotor Test Apparatus Steady/Dynamic Rotor Balance
Peterson, Randall L.; vanAken, Johannes M.
1996-01-01
The NASA Ames Rotor Test Apparatus was modified to include a Steady/Dynamic Rotor Balance. The dynamic calibration procedures and configurations are discussed. Random excitation was applied at the rotor hub, and vibratory force and moment responses were measured on the steady/dynamic rotor balance. Transfer functions were computed using the load cell data and the vibratory force and moment responses from the rotor balance. Calibration results showing the influence of frequency bandwidth, hub mass, rotor RPM, thrust preload, and dynamic loads through the stationary push rods are presented and discussed.
Darmstadt Rotor No. 2, II: Design of Leaning Rotor Blades
Directory of Open Access Journals (Sweden)
Jörg Bergner
2003-01-01
Full Text Available For Darmstadt University of Technology's axial singlestage transonic compressor rig, a new three-dimensional aft-swept rotor was designed and manufactured at MTU Aero Engines in Munich, Germany. The application of carbon fiber–reinforced plastic made it possible to overcome structural constraints and therefore to further increase the amount of lean and sweep of the blade. The aim of the design was to improve the mechanical stability at operation that is close to stall.
Wavelet subspaces invariant under groups of translation operators
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
One can always construct a wavelet from an MRA (see, for instance, Ch. 2 in [5]), but not every wavelet can be obtained in this manner. The first example of a wavelet which cannot be obtained from an MRA was given by Journé. In [1] we characterized a large class of wavelets, which also includes Journé's wavelet, and ...
Application of the cross wavelet transform and wavelet coherence to geophysical time series
Directory of Open Access Journals (Sweden)
A. Grinsted
2004-01-01
Full Text Available Many scientists have made use of the wavelet method in analyzing time series, often using popular free software. However, at present there are no similar easy to use wavelet packages for analyzing two time series together. We discuss the cross wavelet transform and wavelet coherence for examining relationships in time frequency space between two time series. We demonstrate how phase angle statistics can be used to gain confidence in causal relationships and test mechanistic models of physical relationships between the time series. As an example of typical data where such analyses have proven useful, we apply the methods to the Arctic Oscillation index and the Baltic maximum sea ice extent record. Monte Carlo methods are used to assess the statistical significance against red noise backgrounds. A software package has been developed that allows users to perform the cross wavelet transform and wavelet coherence (www.pol.ac.uk/home/research/waveletcoherence/.
Adapted wavelet analysis from theory to software
Wickerhauser, Mladen Victor
1994-01-01
This detail-oriented text is intended for engineers and applied mathematicians who must write computer programs to perform wavelet and related analysis on real data. It contains an overview of mathematical prerequisites and proceeds to describe hands-on programming techniques to implement special programs for signal analysis and other applications. From the table of contents: - Mathematical Preliminaries - Programming Techniques - The Discrete Fourier Transform - Local Trigonometric Transforms - Quadrature Filters - The Discrete Wavelet Transform - Wavelet Packets - The Best Basis Algorithm - Multidimensional Library Trees - Time-Frequency Analysis - Some Applications - Solutions to Some of the Exercises - List of Symbols - Quadrature Filter Coefficients
Discretization of quaternionic continuous wavelet transforms
Askari Hemmat, A.; Thirulogasanthar, K.; Krzyżak, A.
2017-07-01
A scheme to form a basis and a frame for a Hilbert space of quaternion valued square integrable function from a basis and a frame, respectively, of a Hilbert space of complex valued square integrable functions is introduced. Using the discretization techniques for 2D-continuous wavelet transform of the SIM(2) group, the quaternionic continuous wavelet transform, living in a complex valued Hilbert space of square integrable functions, of the quaternion wavelet group is discretized, and thereby, a discrete frame for quaternion valued Hilbert space of square integrable functions is obtained.
Rotor blades for turbine engines
Piersall, Matthew R; Potter, Brian D
2013-02-12
A tip shroud that includes a plurality of damping fins, each damping fin including a substantially non-radially-aligned surface that is configured to make contact with a tip shroud of a neighboring rotor blade. At least one damping fin may include a leading edge damping fin and at least one damping fin may include a trailing edge damping fin. The leading edge damping fin may be configured to correspond to the trailing edge damping fin.
Significance tests for the wavelet cross spectrum and wavelet linear coherence
Directory of Open Access Journals (Sweden)
Z. Ge
2008-12-01
Full Text Available This work attempts to develop significance tests for the wavelet cross spectrum and the wavelet linear coherence as a follow-up study on Ge (2007. Conventional approaches that are used by Torrence and Compo (1998 based on stationary background noise time series were used here in estimating the sampling distributions of the wavelet cross spectrum and the wavelet linear coherence. The sampling distributions are then used for establishing significance levels for these two wavelet-based quantities. In addition to these two wavelet quantities, properties of the phase angle of the wavelet cross spectrum of, or the phase difference between, two Gaussian white noise series are discussed. It is found that the tangent of the principal part of the phase angle approximately has a standard Cauchy distribution and the phase angle is uniformly distributed, which makes it impossible to establish significance levels for the phase angle. The simulated signals clearly show that, when there is no linear relation between the two analysed signals, the phase angle disperses into the entire range of [−π,π] with fairly high probabilities for values close to ±π to occur. Conversely, when linear relations are present, the phase angle of the wavelet cross spectrum settles around an associated value with considerably reduced fluctuations. When two signals are linearly coupled, their wavelet linear coherence will attain values close to one. The significance test of the wavelet linear coherence can therefore be used to complement the inspection of the phase angle of the wavelet cross spectrum. The developed significance tests are also applied to actual data sets, simultaneously recorded wind speed and wave elevation series measured from a NOAA buoy on Lake Michigan. Significance levels of the wavelet cross spectrum and the wavelet linear coherence between the winds and the waves reasonably separated meaningful peaks from those generated by randomness in the data set. As
Significance tests for the wavelet cross spectrum and wavelet linear coherence
Directory of Open Access Journals (Sweden)
Z. Ge
2008-12-01
Full Text Available This work attempts to develop significance tests for the wavelet cross spectrum and the wavelet linear coherence as a follow-up study on Ge (2007. Conventional approaches that are used by Torrence and Compo (1998 based on stationary background noise time series were used here in estimating the sampling distributions of the wavelet cross spectrum and the wavelet linear coherence. The sampling distributions are then used for establishing significance levels for these two wavelet-based quantities. In addition to these two wavelet quantities, properties of the phase angle of the wavelet cross spectrum of, or the phase difference between, two Gaussian white noise series are discussed. It is found that the tangent of the principal part of the phase angle approximately has a standard Cauchy distribution and the phase angle is uniformly distributed, which makes it impossible to establish significance levels for the phase angle. The simulated signals clearly show that, when there is no linear relation between the two analysed signals, the phase angle disperses into the entire range of [−π,π] with fairly high probabilities for values close to ±π to occur. Conversely, when linear relations are present, the phase angle of the wavelet cross spectrum settles around an associated value with considerably reduced fluctuations. When two signals are linearly coupled, their wavelet linear coherence will attain values close to one. The significance test of the wavelet linear coherence can therefore be used to complement the inspection of the phase angle of the wavelet cross spectrum.
The developed significance tests are also applied to actual data sets, simultaneously recorded wind speed and wave elevation series measured from a NOAA buoy on Lake Michigan. Significance levels of the wavelet cross spectrum and the wavelet linear coherence between the winds and the waves reasonably separated meaningful peaks from those generated by randomness in the
Wavelet primal sketch representation using Marr wavelet pyramid and its reconstruction
Van De Ville, Dimitri; Unser, Michael
2009-08-01
Based on the class of complex gradient-Laplace operators, we show the design of a non-separable two-dimensional wavelet basis from a single and analytically defined generator wavelet function. The wavelet decomposition is implemented by an efficient FFT-based filterbank. By allowing for slight redundancy, we obtain the Marr wavelet pyramid decomposition that features improved translation-invariance and steerability. The link with Marr's theory of early vision is due to the replication of the essential processing steps (Gaussian smoothing, Laplacian, orientation detection). Finally, we show how to find a compact multiscale primal sketch of the image, and how to reconstruct an image from it.
Rathinasamy, Maheswaran; Bindhu, V M; Adamowski, Jan; Narasimhan, Balaji; Khosa, Rakesh
2017-10-01
An investigation of the scaling characteristics of vegetation and temperature data derived from LANDSAT data was undertaken for a heterogeneous area in Tamil Nadu, India. A wavelet-based multiresolution technique decomposed the data into large-scale mean vegetation and temperature fields and fluctuations in horizontal, diagonal, and vertical directions at hierarchical spatial resolutions. In this approach, the wavelet coefficients were used to investigate whether the normalized difference vegetation index (NDVI) and land surface temperature (LST) fields exhibited self-similar scaling behaviour. In this study, l-moments were used instead of conventional simple moments to understand scaling behaviour. Using the first six moments of the wavelet coefficients through five levels of dyadic decomposition, the NDVI data were shown to be statistically self-similar, with a slope of approximately -0.45 in each of the horizontal, vertical, and diagonal directions of the image, over scales ranging from 30 to 960 m. The temperature data were also shown to exhibit self-similarity with slopes ranging from -0.25 in the diagonal direction to -0.20 in the vertical direction over the same scales. These findings can help develop appropriate up- and down-scaling schemes of remotely sensed NDVI and LST data for various hydrologic and environmental modelling applications. A sensitivity analysis was also undertaken to understand the effect of mother wavelets on the scaling characteristics of LST and NDVI images.
Rathinasamy, Maheswaran; Bindhu, V. M.; Adamowski, Jan; Narasimhan, Balaji; Khosa, Rakesh
2017-10-01
An investigation of the scaling characteristics of vegetation and temperature data derived from LANDSAT data was undertaken for a heterogeneous area in Tamil Nadu, India. A wavelet-based multiresolution technique decomposed the data into large-scale mean vegetation and temperature fields and fluctuations in horizontal, diagonal, and vertical directions at hierarchical spatial resolutions. In this approach, the wavelet coefficients were used to investigate whether the normalized difference vegetation index (NDVI) and land surface temperature (LST) fields exhibited self-similar scaling behaviour. In this study, l-moments were used instead of conventional simple moments to understand scaling behaviour. Using the first six moments of the wavelet coefficients through five levels of dyadic decomposition, the NDVI data were shown to be statistically self-similar, with a slope of approximately -0.45 in each of the horizontal, vertical, and diagonal directions of the image, over scales ranging from 30 to 960 m. The temperature data were also shown to exhibit self-similarity with slopes ranging from -0.25 in the diagonal direction to -0.20 in the vertical direction over the same scales. These findings can help develop appropriate up- and down-scaling schemes of remotely sensed NDVI and LST data for various hydrologic and environmental modelling applications. A sensitivity analysis was also undertaken to understand the effect of mother wavelets on the scaling characteristics of LST and NDVI images.
Mouse EEG spike detection based on the adapted continuous wavelet transform
Tieng, Quang M.; Kharatishvili, Irina; Chen, Min; Reutens, David C.
2016-04-01
Objective. Electroencephalography (EEG) is an important tool in the diagnosis of epilepsy. Interictal spikes on EEG are used to monitor the development of epilepsy and the effects of drug therapy. EEG recordings are generally long and the data voluminous. Thus developing a sensitive and reliable automated algorithm for analyzing EEG data is necessary. Approach. A new algorithm for detecting and classifying interictal spikes in mouse EEG recordings is proposed, based on the adapted continuous wavelet transform (CWT). The construction of the adapted mother wavelet is founded on a template obtained from a sample comprising the first few minutes of an EEG data set. Main Result. The algorithm was tested with EEG data from a mouse model of epilepsy and experimental results showed that the algorithm could distinguish EEG spikes from other transient waveforms with a high degree of sensitivity and specificity. Significance. Differing from existing approaches, the proposed approach combines wavelet denoising, to isolate transient signals, with adapted CWT-based template matching, to detect true interictal spikes. Using the adapted wavelet constructed from a predefined template, the adapted CWT is calculated on small EEG segments to fit dynamical changes in the EEG recording.
Directory of Open Access Journals (Sweden)
Cristhian Moreno-Chaparro
2011-12-01
Full Text Available This paper proposes a monthly electricity forecast method for the National Interconnected System (SIN of Colombia. The method preprocesses the time series using a Multiresolution Analysis (MRA with Discrete Wavelet Transform (DWT; a study for the selection of the mother wavelet and her order, as well as the level decomposition was carried out. Given that original series follows a non-linear behaviour, a neural nonlinear autoregressive (NAR model was used. The prediction was obtained by adding the forecast trend with the estimated obtained by the residual series combined with further components extracted from preprocessing. A bibliographic review of studies conducted internationally and in Colombia is included, in addition to references to investigations made with wavelet transform applied to electric energy prediction and studies reporting the use of NAR in prediction.
Flywheel Rotor Safe-Life Technology
Ratner, J. K. H.; Chang, J. B.; Christopher, D. A.; McLallin, Kerry L. (Technical Monitor)
2002-01-01
Since the 1960s, research has been conducted into the use of flywheels as energy storage systems. The-proposed applications include energy storage for hybrid and electric automobiles, attitude control and energy storage for satellites, and uninterruptible power supplies for hospitals and computer centers. For many years, however, the use of flywheels for space applications was restricted by the total weight of a system employing a metal rotor. With recent technological advances in the manufacturing of composite materials, however, lightweight composite rotors have begun to be proposed for such applications. Flywheels with composite rotors provide much higher power and energy storage capabilities than conventional chemical batteries. However, the failure of a high speed flywheel rotor could be a catastrophic event. For this reason, flywheel rotors are classified by the NASA Fracture Control Requirements Standard as fracture critical parts. Currently, there is no industry standard to certify a composite rotor for safe and reliable operation forth( required lifetime of the flywheel. Technical problems hindering the development of this standard include composite manufacturing inconsistencies, insufficient nondestructive evaluation (NDE) techniques for detecting defects and/or impact damage, lack of standard material test methods for characterizing composite rotor design allowables, and no unified proof (over-spin) test for flight rotors. As part of a flywheel rotor safe-life certification pro-ram funded b the government, a review of the state of the art in composite rotors is in progress. The goal of the review is to provide a clear picture of composite flywheel rotor technologies. The literature review has concentrated on the following topics concerning composites and composite rotors: durability (fatigue) and damage tolerance (safe-life) analysis/test methods, in-service NDE and health monitoring techniques, spin test methods/ procedures, and containment options
Optimization of wind turbine rotors
Energy Technology Data Exchange (ETDEWEB)
Nygaard, Tor Anders
1999-07-01
The Constrained Steepest Descent method has been applied to the optimization of wind turbine rotors through the development of a numerical model. The model consists of an optimization kernel, an aerodynamic model, a structural dynamic model of a rotating beam, and a cost model for the wind turbine. The cost of energy is minimized directly by varying the blade design, the rotational speed and the resulting design of the drive-train and tower. The aerodynamic model is a combination of a fast engineering model based on strip-theory and two and three-dimensional Euler solvers. The two-dimensional Euler solver is used for generation of pre-stall airfoil data. Comparisons with experimental data verify that the engineering model effectively approximates non-stalled flow, except at the blade tip. The three-dimensional Euler solver is in good agreement with the experimental data at the tip, and is therefore a useful supplement for corrections of the tip-loss model, and evaluation of an optimized design. The structural dynamic model evaluates stresses and deformations for the blade. It is based on constitutive relations for a slender beam that are solved with the equations of motions using a finite-difference method. The cost model evaluates the design change of the wind turbine and the resulting costs that occur when a change in blade design modifies the blade mass and the overall forces. The cost model is based on engineering design rules for the drive-train and tower. The model was applied using a Danish 600 kW wind turbine as a reference. Two rotors were optimized using traditional NACA airfoils and a new low-lift airfoil family developed specifically for wind turbine purposes. The cost of energy decreased four percent for the NACA rotor, and seven percent for the low-lift rotor. Optimizations with a high number of degrees of freedom show that a designer has considerable flexibility in choosing some primary parameters such as rated power and rotor diameter, if the rest
Applying wavelet entropy principle in fault classification
Energy Technology Data Exchange (ETDEWEB)
El Safty, S.; El-Zonkoly, A. [Arab Academy for Science and Technology, Miami, Alexandria, P.O.1029 (Egypt)
2009-11-15
The ability to detect and classify the type of fault plays a great role in the protection of power system. This procedure is required to be precise with no time consumption. In this paper detection of fault type has been implemented using wavelet analysis together with wavelet entropy principle. The simulation of power system is carried out using PSCAD/EMTDC. Different types of faults were studied obtaining various current waveforms. These current waveforms were decomposed using wavelet analysis into different approximation and details. The wavelet entropies of such decompositions are analyzed reaching a successful methodology for fault classification. The suggested approach is tested using different fault types and proven successful identification for the type of fault. (author)
Image Registration Using Redundant Wavelet Transforms
National Research Council Canada - National Science Library
Brown, Richard
2001-01-01
.... In our research, we present a fundamentally new wavelet-based registration algorithm utilizing redundant transforms and a masking process to suppress the adverse effects of noise and improve processing efficiency...
Wavelets theory and applications for manufacturing
Gao, Robert X
2011-01-01
With the aim of facilitating signal processing in manufacturing, this book presents a systematic description of the fundamentals on wavelet transform and the ways of applying it to the condition monitoring and health diagnosis of rotating machine components.
Framelets and wavelets algorithms, analysis, and applications
Han, Bin
2017-01-01
Marking a distinct departure from the perspectives of frame theory and discrete transforms, this book provides a comprehensive mathematical and algorithmic introduction to wavelet theory. As such, it can be used as either a textbook or reference guide. As a textbook for graduate mathematics students and beginning researchers, it offers detailed information on the basic theory of framelets and wavelets, complemented by self-contained elementary proofs, illustrative examples/figures, and supplementary exercises. Further, as an advanced reference guide for experienced researchers and practitioners in mathematics, physics, and engineering, the book addresses in detail a wide range of basic and advanced topics (such as multiwavelets/multiframelets in Sobolev spaces and directional framelets) in wavelet theory, together with systematic mathematical analysis, concrete algorithms, and recent developments in and applications of framelets and wavelets. Lastly, the book can also be used to teach on or study selected spe...
Coherent states, wavelets, and their generalizations
Ali, Syed Twareque; Gazeau, Jean-Pierre
2014-01-01
This second edition is fully updated, covering in particular new types of coherent states (the so-called Gazeau-Klauder coherent states, nonlinear coherent states, squeezed states, as used now routinely in quantum optics) and various generalizations of wavelets (wavelets on manifolds, curvelets, shearlets, etc.). In addition, it contains a new chapter on coherent state quantization and the related probabilistic aspects. As a survey of the theory of coherent states, wavelets, and some of their generalizations, it emphasizes mathematical principles, subsuming the theories of both wavelets and coherent states into a single analytic structure. The approach allows the user to take a classical-like view of quantum states in physics. Starting from the standard theory of coherent states over Lie groups, the authors generalize the formalism by associating coherent states to group representations that are square integrable over a homogeneous space; a further step allows one to dispense with the group context altoget...
Electric Equipment Diagnosis based on Wavelet Analysis
Directory of Open Access Journals (Sweden)
Stavitsky Sergey A.
2016-01-01
Full Text Available Due to electric equipment development and complication it is necessary to have a precise and intense diagnosis. Nowadays there are two basic ways of diagnosis: analog signal processing and digital signal processing. The latter is more preferable. The basic ways of digital signal processing (Fourier transform and Fast Fourier transform include one of the modern methods based on wavelet transform. This research is dedicated to analyzing characteristic features and advantages of wavelet transform. This article shows the ways of using wavelet analysis and the process of test signal converting. In order to carry out this analysis, computer software Mathcad was used and 2D wavelet spectrum for a complex function was created.
Modelling spatial density using continuous wavelet transforms
Indian Academy of Sciences (India)
Space debris; wavelets; Mexican hat; Laplace distribution; random search; parameter estimation. ... Digital Mapping and Modelling Division, Advanced Data Processing Research Institute, Secunderabad 500 009, India; Department of Mathematics, Osmania University, Hyderabad 500 007, India; Applied Mathematics ...
Wavelet based approach for facial expression recognition
Directory of Open Access Journals (Sweden)
Zaenal Abidin
2015-03-01
Full Text Available Facial expression recognition is one of the most active fields of research. Many facial expression recognition methods have been developed and implemented. Neural networks (NNs have capability to undertake such pattern recognition tasks. The key factor of the use of NN is based on its characteristics. It is capable in conducting learning and generalizing, non-linear mapping, and parallel computation. Backpropagation neural networks (BPNNs are the approach methods that mostly used. In this study, BPNNs were used as classifier to categorize facial expression images into seven-class of expressions which are anger, disgust, fear, happiness, sadness, neutral and surprise. For the purpose of feature extraction tasks, three discrete wavelet transforms were used to decompose images, namely Haar wavelet, Daubechies (4 wavelet and Coiflet (1 wavelet. To analyze the proposed method, a facial expression recognition system was built. The proposed method was tested on static images from JAFFE database.
Rotor Flapping Response to Active Control
Nguyen, Khanh; Johnson, Wayne
2004-01-01
Rotor active control using higher harmonic blade pitch has been proposed as a means to reduce both rotor radiated noise and airframe vibration and to enhance rotor performance. The higher harmonic input, however, can affect rotor thrust and cyclic flapping - the basic trim characteristics of the rotor. Some of the trim changes can negate the active control benefits. For example, wind tunnel test results of a full scale BO-105 rotor with individual-blade control indicate some rotor performance improvements, accompanied with changes in rotor trim, using two-per-rev blade pitch input. The observed performance benefits could therefore be a simple manifestation of the trim change rather than an efficient redistribution of the rotor airloads. More recently, the flight test of the BO-105 helicopter equip,ped with individual-blade-control actuators also reported trim changes whenever the two-per-rev blade pitch for noise reduction was activated. The pilot had to adjust the trim control to maintain the aircraft under a constant flight path. These two cases highlight the, importance of trim considerations in the application of active control to rotorcraft.
Energy from Swastika-Shaped Rotors
Directory of Open Access Journals (Sweden)
McCulloch M. E.
2015-04-01
Full Text Available It is suggested here that a swastika-shaped rotor exposed to waves will rotate in the di- rection its arms are pointing (towards the arm-tips due to a sheltering effect. A formula is derived to predict the motion obtainable from swastika rotors of different sizes given the ocean wave height and phase speed and it is suggested that the rotor could provide a new, simpler method of wave energy generation. It is also proposed that the swastika rotor could generate energy on a smaller scale from sound waves and Brownian motion, and potentially the zero point field.
Helicopter Rotor Blade Monitoring using Autonomous Wireless Sensor Network
Sanchez Ramirez, Andrea; Loendersloot, Richard; Tinga, Tiedo; Basu, B.
2013-01-01
The advancement on Wireless Sensor Networks for vibration monitoring presents important possibilities for helicopter rotor health and usage monitoring. While main rotor blades account for the main source of lift for helicopters, rotor induced vibration establishes an important source for
The wavelet response as a multiscale NDT method.
Le Gonidec, Y; Conil, F; Gibert, D
2003-08-01
We analyze interfaces by using reflected waves in the framework of the wavelet transform. First, we introduce the wavelet transform as an efficient method to detect and characterize a discontinuity in the acoustical impedance profile of a material. Synthetic examples are shown for both an isolated reflector and multiscale clusters of nearby defects. In the second part of the paper we present the wavelet response method as a natural extension of the wavelet transform when the velocity profile to be analyzed can only be remotely probed by propagating wavelets through the medium (instead of being directly convolved as in the wavelet transform). The wavelet response is constituted by the reflections of the incident wavelets on the discontinuities and we show that both transforms are equivalent when multiple scattering is neglected. We end this paper by experimentally applying the wavelet response in an acoustic tank to characterize planar reflectors with finite thicknesses.
Directory of Open Access Journals (Sweden)
Dileep Kumar
2017-01-01
Full Text Available Traditionally permanent acoustic sensors leak detection techniques have been proven to be very effective in water distribution pipes. However, these methods need long distance deployment and proper position of sensors and cannot be implemented on underground pipelines. An inline-inspection acoustic device is developed which consists of acoustic sensors. The device will travel by the flow of water through the pipes which record all noise events and detect small leaks. However, it records all the noise events regarding background noises, but the time domain noisy acoustic signal cannot manifest complete features such as the leak flow rate which does not distinguish the leak signal and environmental disturbance. This paper presents an algorithm structure with the modularity of wavelet and neural network, which combines the capability of wavelet transform analyzing leakage signals and classification capability of artificial neural networks. This study validates that the time domain is not evident to the complete features regarding noisy leak signals and significance of selection of mother wavelet to extract the noise event features in water distribution pipes. The simulation consequences have shown that an appropriate mother wavelet has been selected and localized to extract the features of the signal with leak noise and background noise, and by neural network implementation, the method improves the classification performance of extracted features.
Wavelet Based Protection Scheme for Multi Terminal Transmission System with PV and Wind Generation
Manju Sree, Y.; Goli, Ravi kumar; Ramaiah, V.
2017-08-01
A hybrid generation is a part of large power system in which number of sources usually attached to a power electronic converter and loads are clustered can operate independent of the main power system. The protection scheme is crucial against faults based on traditional over current protection since there are adequate problems due to fault currents in the mode of operation. This paper adopts a new approach for detection, discrimination of the faults for multi terminal transmission line protection in presence of hybrid generation. Transient current based protection scheme is developed with discrete wavelet transform. Fault indices of all phase currents at all terminals are obtained by analyzing the detail coefficients of current signals using bior 1.5 mother wavelet. This scheme is tested for different types of faults and is found effective for detection and discrimination of fault with various fault inception angle and fault impedance.
Characteristic analysis of underwater acoustic scattering echoes in the wavelet transform domain
Yang, Mei; Li, Xiukun; Yang, Yang; Meng, Xiangxia
2017-03-01
Underwater acoustic scattering echoes have time-space structures and are aliasing in time and frequency domains. Different series of echoes properties are not identified when incident angle is unknown. This article investigates variations in target echoes of monostatic sonar to address this problem. The mother wavelet with similar structures has been proposed on the basis of preprocessing signal waveform using matched filter, and the theoretical expressions between delay factor and incident angle are derived in the wavelet domain. Analysis of simulation data and experimental results in free-field pool show that this method can effectively separate geometrical scattering components of target echoes. The time delay estimation obtained from geometrical echoes at a single angle is consistent with target geometrical features, which provides a basis for object recognition without angle information. The findings provide valuable insights for analyzing elastic scattering echoes in actual ocean environment.
Innovative multi rotor wind turbine designs
Energy Technology Data Exchange (ETDEWEB)
Kale, S.A.; Sapali, S.N. [College of Engineering. Mechanical Engineering Dept, Pune (India)
2012-07-01
Among the renewable energy sources, today wind energy is the most recognized and cost effective. Developers and researchers in this sector are optimistic and continuously working innovatively to improve the technology. The wind power obtained is proportional to the swept area of wind turbine. The swept area is increased by using a single rotor of large diameter or multi rotors in array. The rotor size is growing continuously with mature technology. Multi rotor technology has a long history and the multi rotor concept persists in a variety of modern innovative systems but the concept has fallen out of consideration in mainstream design from the perception that is complex and unnecessary as very large single rotor units are now technically feasible. This work addresses the evaluation of different multi rotor wind turbine systems. These innovative wind turbines are evaluated on the basis of feasibility, technological advantages, security of expected power performance, cost, reliability, impact of innovative system, comparison with existing wind turbine design. The findings of this work will provide guidelines for the practical and economical ways for further research on the multi rotor wind turbines. (Author)
Rotor theories by Professor Joukowsky: Momentum theories
DEFF Research Database (Denmark)
van Kuik, G. A. M.; Sørensen, Jens Nørkær; Okulov, V. L.
2015-01-01
This paper is the first of two papers on the history of rotor aerodynamics with special emphasis on the role of Joukowsky. The present one focuses on the development of the momentum theory while the second one surveys the development of vortex theory for rotors. Joukowsky has played a major role ...
14 CFR 33.34 - Turbocharger rotors.
2010-01-01
... STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.34 Turbocharger rotors. Each turbocharger case must be designed and constructed to be able to contain fragments of a... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbocharger rotors. 33.34 Section 33.34...
Khoje, Suchitra
2018-02-01
Images of four qualities of mangoes and guavas are evaluated for color and textural features to characterize and classify them, and to model the fruit appearance grading. The paper discusses three approaches to identify most discriminating texture features of both the fruits. In the first approach, fruit's color and texture features are selected using Mahalanobis distance. A total of 20 color features and 40 textural features are extracted for analysis. Using Mahalanobis distance and feature intercorrelation analyses, one best color feature (mean of a* [L*a*b* color space]) and two textural features (energy a*, contrast of H*) are selected as features for Guava while two best color features (R std, H std) and one textural features (energy b*) are selected as features for mangoes with the highest discriminate power. The second approach studies some common wavelet families for searching the best classification model for fruit quality grading. The wavelet features extracted from five basic mother wavelets (db, bior, rbior, Coif, Sym) are explored to characterize fruits texture appearance. In third approach, genetic algorithm is used to select only those color and wavelet texture features that are relevant to the separation of the class, from a large universe of features. The study shows that image color and texture features which were identified using a genetic algorithm can distinguish between various qualities classes of fruits. The experimental results showed that support vector machine classifier is elected for Guava grading with an accuracy of 97.61% and artificial neural network is elected from Mango grading with an accuracy of 95.65%. The proposed method is nondestructive fruit quality assessment method. The experimental results has proven that Genetic algorithm along with wavelet textures feature has potential to discriminate fruit quality. Finally, it can be concluded that discussed method is an accurate, reliable, and objective tool to determine fruit
Investigation of using wavelet analysis for classifying pattern of cyclic voltammetry signals
Jityen, Arthit; Juagwon, Teerasak; Jaisuthi, Rawat; Osotchan, Tanakorn
2017-09-01
Wavelet analysis is an excellent technique for data processing analysis based on linear vector algebra since it has an ability to perform local analysis and is able to analyze an unspecific localized area of a large signal. In this work, the wavelet analysis of cyclic waveform was investigated in order to find the distinguishable feature from the cyclic data. The analyzed wavelet coefficients were proposed to be used as selected cyclic feature parameters. The cyclic voltammogram (CV) of different electrodes consisting of carbon nanotube (CNT) and several types of metal phthalocyanine (MPc) including CoPc, FePc, ZnPc and MnPc powders was used as several sets of cyclic data for various types of coffee. The mixture powder was embedded in a hollow Teflon rod and used as working electrodes. Electrochemical response of the fabricated electrodes in Robusta, blend coffee I, blend coffee II, chocolate malt and cocoa at the same concentrations was measured with scanning rate of 0.05V/s from -1.5 to 1.5V respectively to Ag/AgCl electrode for five scanning loops. The CV of blended CNT electrode with some MPc electrodes indicated the ionic interaction which can be the effect of catalytic oxidation of saccharides and/or polyphenol on the sensor surface. The major information of CV response can be extracted by using several mother wavelet families viz. daubechies (dB1 to dB3), coiflets (coiflet1), biorthogonal (Bior1.1) and symlets (sym2) and then the discrimination of these wavelet coefficients of each data group can be separated by principal component analysis (PCA). The PCA results indicated the clearly separate groups with total contribution more than 62.37% representing from PC1 and PC2.
Exploration of micro-diamagnetic levitation rotor
Su, Yufeng; Zhang, Kun; Ye, Zhitong; Xiao, Zhiming; Takahata, Kenichi
2017-12-01
We investigated a micro-diamagnetic levitation rotor system (MDLRS) in which the rotor freely levitates above the magnets. To explore the characteristics of the rotor, we carried out numerical simulations of and experiments on the MDLRS. Numerical simulation results show that the steady-state levitation height of the rotor is 130 µm, which is basically consistent with the experimental result (132 µm). Under the actuation of a regulated nitrogen flow, experimental results from the rotation speed of the rotor show that the maximum rate is 500 rpm at a flow rate of 28.16 sccm. Furthermore, an empirical model of the relationship between the flow rate and the rotation speed is proposed.
Open Rotor - Analysis of Diagnostic Data
Envia, Edmane
2011-01-01
NASA is researching open rotor propulsion as part of its technology research and development plan for addressing the subsonic transport aircraft noise, emission and fuel burn goals. The low-speed wind tunnel test for investigating the aerodynamic and acoustic performance of a benchmark blade set at the approach and takeoff conditions has recently concluded. A high-speed wind tunnel diagnostic test campaign has begun to investigate the performance of this benchmark open rotor blade set at the cruise condition. Databases from both speed regimes will comprise a comprehensive collection of benchmark open rotor data for use in assessing/validating aerodynamic and noise prediction tools (component & system level) as well as providing insights into the physics of open rotors to help guide the development of quieter open rotors.
Substantially parallel flux uncluttered rotor machines
Hsu, John S.
2012-12-11
A permanent magnet-less and brushless synchronous system includes a stator that generates a magnetic rotating field when sourced by polyphase alternating currents. An uncluttered rotor is positioned within the magnetic rotating field and is spaced apart from the stator. An excitation core is spaced apart from the stator and the uncluttered rotor and magnetically couples the uncluttered rotor. The brushless excitation source generates a magnet torque by inducing magnetic poles near an outer peripheral surface of the uncluttered rotor, and the stator currents also generate a reluctance torque by a reaction of the difference between the direct and quadrature magnetic paths of the uncluttered rotor. The system can be used either as a motor or a generator
Image wavelet decomposition and applications
Treil, N.; Mallat, S.; Bajcsy, R.
1989-01-01
The general problem of computer vision has been investigated for more that 20 years and is still one of the most challenging fields in artificial intelligence. Indeed, taking a look at the human visual system can give us an idea of the complexity of any solution to the problem of visual recognition. This general task can be decomposed into a whole hierarchy of problems ranging from pixel processing to high level segmentation and complex objects recognition. Contrasting an image at different representations provides useful information such as edges. An example of low level signal and image processing using the theory of wavelets is introduced which provides the basis for multiresolution representation. Like the human brain, we use a multiorientation process which detects features independently in different orientation sectors. So, images of the same orientation but of different resolutions are contrasted to gather information about an image. An interesting image representation using energy zero crossings is developed. This representation is shown to be experimentally complete and leads to some higher level applications such as edge and corner finding, which in turn provides two basic steps to image segmentation. The possibilities of feedback between different levels of processing are also discussed.
Rotors stress analysis and design
Vullo, Vincenzo
2013-01-01
Stress and strain analysis of rotors subjected to surface and body loads, as well as to thermal loads deriving from temperature variation along the radius, constitutes a classic subject of machine design. Nevertheless attention is limited to rotor profiles for which governing equations are solvable in closed form. Furthermore very few actual engineering issues may relate to structures for which stress and strain analysis in the linear elastic field and, even more, under non-linear conditions (i.e. plastic or viscoelastic conditions) produces equations to be solved in closed form. Moreover, when a product is still in its design stage, an analytical formulation with closed-form solution is of course simpler and more versatile than numerical methods, and it allows to quickly define a general configuration, which may then be fine-tuned using such numerical methods. In this view, all subjects are based on analytical-methodological approach, and some new solutions in closed form are presented. The analytical formul...
Multiresolution wavelet-ANN model for significant wave height forecasting.
Digital Repository Service at National Institute of Oceanography (India)
Deka, P.C.; Mandal, S.; Prahlada, R.
Hybrid wavelet artificial neural network (WLNN) has been applied in the present study to forecast significant wave heights (Hs). Here Discrete Wavelet Transformation is used to preprocess the time series data (Hs) prior to Artificial Neural Network...
Wavelet transforms as solutions of partial differential equations
Energy Technology Data Exchange (ETDEWEB)
Zweig, G.
1997-10-01
This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Wavelet transforms are useful in representing transients whose time and frequency structure reflect the dynamics of an underlying physical system. Speech sound, pressure in turbulent fluid flow, or engine sound in automobiles are excellent candidates for wavelet analysis. This project focused on (1) methods for choosing the parent wavelet for a continuous wavelet transform in pattern recognition applications and (2) the more efficient computation of continuous wavelet transforms by understanding the relationship between discrete wavelet transforms and discretized continuous wavelet transforms. The most interesting result of this research is the finding that the generalized wave equation, on which the continuous wavelet transform is based, can be used to understand phenomena that relate to the process of hearing.
Wavelet-frame-based microcalcification detection
Chang, Charles C.; Wu, Hsien-Hsun S.; Liu, Jyh-Charn S.; Chui, Charles K.
1997-10-01
As the leading cause of death for adult women under 54 years of age in the United States, breast cancer accounts for 29% of all cancers in women. Early diagnosis of breast cancer is the most effective approach to reduce death rate. The rapid climbing of the health care cost further reiterates the importance of cost-effective, accurate screening tools for breast cancer. This paper proposes a wavelet frame based computer algorithm for screening of microcalcifications on digitized mammographical imagery. Despite its simplicity, the discrete wavelet transform (DWT) of compactly supported wavelets has been effectively used for detection of various types of signals. However, the shifting variant property of DWT makes it very unstable for detection of minute microcalcifications. Although increasing the sampling rate will improve the detection probability, this approach will drastically increase the size of mammographical images. The wavelet frame transform can be easily derived from the DWT algorithm by eliminating its down sampling step. The subtle difference between DWT and WF in down sampling is shown to be critical to the accuracy of microcalcifications detection. Without any down sampling, local image information at different scales is preserved. By joint thresholding of wavelet coefficients at different scales, one can accurately pin point suspected microcalcifications. A simple partitioning technique enables the detection algorithm to process image blocks independently. Four different partitioning techniques have been compared, and the method of repeating the end value on each partition boundary has the least significant impact on the detection accuracy.
Nuclear data compression and reconstruction via discrete wavelet transform
Energy Technology Data Exchange (ETDEWEB)
Park, Young Ryong; Cho, Nam Zin [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)
1997-12-31
Discrete Wavelet Transforms (DWTs) are recent mathematics, and begin to be used in various fields. The wavelet transform can be used to compress the signal and image due to its inherent properties. We applied the wavelet transform compression and reconstruction to the neutron cross section data. Numerical tests illustrate that the signal compression using wavelet is very effective to reduce the data saving spaces. 7 refs., 4 figs., 3 tabs. (Author)
Fast generation of computer-generated holograms using wavelet shrinkage.
Shimobaba, Tomoyoshi; Ito, Tomoyoshi
2017-01-09
Computer-generated holograms (CGHs) are generated by superimposing complex amplitudes emitted from a number of object points. However, this superposition process remains very time-consuming even when using the latest computers. We propose a fast calculation algorithm for CGHs that uses a wavelet shrinkage method, eliminating small wavelet coefficient values to express approximated complex amplitudes using only a few representative wavelet coefficients.
A simple output voltage control scheme for single phase wavelet ...
African Journals Online (AJOL)
DR OKE
Wavelet based techniques have been extensively used in various power engineering applications. Recently, wavelet has also been proposed to generate switching signal for single-phase pulse-width-modulated (PWM) dc-ac inverter. The main advantage of the wavelet modulated (WM) scheme is that a single synthesis ...
14 CFR 27.547 - Main rotor structure.
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main rotor structure. 27.547 Section 27.547... structure. (a) Each main rotor assembly (including rotor hubs and blades) must be designed as prescribed in this section. (b) (c) The main rotor structure must be designed to withstand the following loads...
Wind rotor with vertical axis. Vindrotor med vertikal axel
Energy Technology Data Exchange (ETDEWEB)
Colling, J.; Sjoenell, B.
1987-06-15
This rotor is of dual type i.e. a paddle wheel shaped rotor close to the vertical axis and a second rotor consisting of vertical blades with wing profile and attached to radial spokes which are fixed to the axis together with the paddle wheel rotor. (L.F.).
Reference Model 2: "Rev 0" Rotor Design
Energy Technology Data Exchange (ETDEWEB)
Barone, Matthew F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Berg, Jonathan Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Griffith, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2011-12-01
The preliminary design for a three-bladed cross-flow rotor for a reference marine hydrokinetic turbine is presented. A rotor performance design code is described, along with modifications to the code to allow prediction of blade support strut drag as well as interference between two counter-rotating rotors. The rotor is designed to operate in a reference site corresponding to a riverine environment. Basic rotor performance and rigid-body loads calculations are performed to size the rotor elements and select the operating speed range. The preliminary design is verified with a simple finite element model that provides estimates of bending stresses during operation. A concept for joining the blades and support struts is developed and analyzed with a separate finite element analysis. Rotor mass, production costs, and annual energy capture are estimated in order to allow calculations of system cost-of-energy. Evaluation Only. Created with Aspose.Pdf.Kit. Copyright 2002-2011 Aspose Pty Ltd Evaluation Only. Created with Aspose.Pdf.Kit. Copyright 2002-2011 Aspose Pty Ltd
Spatial Verification Using Wavelet Transforms: A Review
Weniger, Michael; Friederichs, Petra
2016-01-01
Due to the emergence of new high resolution numerical weather prediction (NWP) models and the availability of new or more reliable remote sensing data, the importance of efficient spatial verification techniques is growing. Wavelet transforms offer an effective framework to decompose spatial data into separate (and possibly orthogonal) scales and directions. Most wavelet based spatial verification techniques have been developed or refined in the last decade and concentrate on assessing forecast performance (i.e. forecast skill or forecast error) on distinct physical scales. Particularly during the last five years, a significant growth in meteorological applications could be observed. However, a comparison with other scientific fields such as feature detection, image fusion, texture analysis, or facial and biometric recognition, shows that there is still a considerable, currently unused potential to derive useful diagnostic information. In order to tab the full potential of wavelet analysis, we revise the stat...
Applications of adaptive wavelets for speech
Kadambe, Shubha L.; Srinivasan, Pramila
1994-07-01
Our objective is to demonstrate the applicability of adaptive wavelets for speech applications. In particular, we discuss two applications, namely, classification of unvoiced sounds and speaker identification. First, a method to classify unvoiced sounds using adaptive wavelets, which would help in developing a unified algorithm to classify phonemes (speech sounds), is described. Next, the applicability of adaptive wavelets to identify speakers using very short speech data (one pitch period) is exhibited. The described text-independent phoneme based speaker identification algorithm identifies a speaker by first modeling phonemes and then by clustering all the phonemes belonging to the same speaker into one class. For both applications, we use feed-forward neural network architecture. We demonstrate the performance of both unvoiced sounds classifier and speaker identification algorithms by using representative real speech examples.
Improvement of electrocardiogram by empirical wavelet transform
Chanchang, Vikanda; Kumchaiseemak, Nakorn; Sutthiopad, Malee; Luengviriya, Chaiya
2017-09-01
Electrocardiogram (ECG) is a crucial tool in the detection of cardiac arrhythmia. It is also often used in a routine physical exam, especially, for elderly people. This graphical representation of electrical activity of heart is obtained by a measurement of voltage at the skin; therefore, the signal is always contaminated by noise from various sources. For a proper interpretation, the quality of the ECG should be improved by a noise reduction. In this article, we present a study of a noise filtration in the ECG by using an empirical wavelet transform (EWT). Unlike the traditional wavelet method, EWT is adaptive since the frequency spectrum of the ECG is taken into account in the construction of the wavelet basis. We show that the signal-to-noise ratio increases after the noise filtration for different noise artefacts.
Apparatus and method for magnetically unloading a rotor bearing
Energy Technology Data Exchange (ETDEWEB)
Sanders, Seth Robert
2018-02-13
An apparatus and method for unloading a rotor bearing is described. The apparatus includes an electromagnet for levitating the rotor. In one embodiment, a sensor of the magnetic field near the electromagnet is used to control the current to levitate the rotor. In another embodiment, a method is provided that includes rotating the rotor, increasing the current to levitate the rotor and decrease the gap between electromagnet and rotor, and then reducing the current to levitate the rotor with a minimal amount of electric power to the electromagnet.
Directory of Open Access Journals (Sweden)
David Middleton
2005-01-01
Full Text Available Translated onto glass from copper plates As from Rembrandt or Brueghel or their heirs In whose busy depictions such an act Is incidental, some side-alley fact, Now placed here in the center by Millet -- This all too human scene, both rude and true: A mother wrinkling up her young son’s gown Before he wets himself on backdoor steps Where his six-year-old sister, shrinking, stares At the wobbly colossus, wholly exposed. His soft hand grips his mother’s muscled wrist, Still nearer to the milked...
Multiple piece turbine rotor blade
Energy Technology Data Exchange (ETDEWEB)
Kimmel, Keith D.; Plank, William L.
2016-07-19
A spar and shell turbine rotor blade with a spar and a tip cap formed as a single piece, the spar includes a bottom end with dovetail or fir tree slots that engage with slots on a top end of a root section, and a platform includes an opening on a top surface for insertion of the spar in which a shell made from an exotic high temperature resistant material is secured between the tip cap and the platform. The spar is tapered to form thinner walls at the tip end to further reduce the weight and therefore a pulling force due to blade rotation. The spar and tip cap piece is made from a NiAL material to further reduce the weight and the pulling force.
Cyclic Control Optimization for a Smart Rotor
DEFF Research Database (Denmark)
Bergami, Leonardo; Henriksen, Lars Christian
2012-01-01
bending moment within a rotor revolution. The method is applied to a rotor equipped with trailing edge flaps, and capable of individual blade pitching. Results show that the optimized cyclic control significantly alleviates the load variations from periodic disturbances; the combination of both cyclic......The paper presents a method to determine cyclic control trajectories for a smart rotor undergoing periodic-deterministic load variations. The control trajectories result from a constrained optimization problem, where the cost function to minimize is given by the variation of the blade root flapwise...... flap and pitch allows to reduce the action (and hence the wear) on the pitch actuators, and still to achieve considerable load alleviation....
Rotor inflow variability with advance ratio
Hoad, Danny R.; Althoff, Susan L.; Elliott, Joe W.
1988-01-01
A comparative study is conducted for the results of inflow calculations based on several analytical wake methods and laser-velocimeter rotor inflow measurements near a rectangular four-bladed rotor system operating in forward flight. The induced-flow characteristics at all advance ratios were found to be unsymmetrical about the longitudinal centerline, with maximum downwash in the rear portion of the disk, and skewed toward the advancing blade-side. Comparisons among analytical methods show that the region of induced upflow over the rotor disk was effectively modeled only at an advance ratio value of 0.15.
Helicopter rotor induced velocities theory and experiment
Berry, John D.; Hoad, Danny R.; Elliott, Joe W.; Althoff, Susan L.
1987-01-01
An investigation has been performed to assess methods used for rotor inflow modeling. A key element of this assessment has been the recent acquisition of high quality experimental measurements of inflow velocities taken in the proximity of a lifting rotor in forward flight. Widely used rotor performance predictive methods are based on blade element strip theory coupled with an inflow model. The inflow prediction models assessed in this paper include the uniform inflow based on momentum, a skewed disk model, and two methods based on a vortex wake structure.
Pegg, R. J.; Shidler, P. A.
1978-01-01
Approaches to minimizing the noise generated by the interaction of the tail rotor blades with the wake of the main rotor considered include repositioning of the tail rotor with respect to the main rotor, changes in the rotational direction of the tail rotor, and modification of the main rotor tip vortex. A variable geometry model was built which had the capability of varying tail rotor position relative to the main rotor as well as direction of tail rotor rotation. Acoustic data taken from the model in the Langley anechoic noise facility indicates interaction effects due to both main rotor shed vortex and the main rotor turbulence.
How Successful Are Wavelets in Detecting Jumps?
Directory of Open Access Journals (Sweden)
Burak Alparslan Eroğlu
2017-11-01
Full Text Available We evaluate the performances of wavelet jump detection tests by using simulated high-frequency data, in which jumps and some other non-standard features are present. Wavelet-based jump detection tests have a clear advantage over the alternatives, as they are capable of stating the exact timing and number of jumps. The results indicate that, in addition to those advantages, these detection tests also preserve desirable power and size properties even in non-standard data environments, whereas their alternatives fail to sustain their desirable properties beyond standard data features.
A wavelet "time-shift-detail" decomposition
Levan, N.; Kubrusly, Carlos S.
2003-01-01
\\begin{abstract}We show that, with respect to an orthonormal wavelet $\\psi(.)\\in \\L^{2}(\\RR),$ any $f(.)\\in\\L^{2}(\\RR)$ is, on the one hand, the sum of its ``layers of details'' over all time-shifts, and on the other hand, the sum of its layers of details over all scales. The latter is well known and is a consequence of a wandering subspace decomposition of $\\L^{2}(\\RR)$ which, in turn, resulted from a wavelet Multiresolution Analysis (MRA). The former has not been discussed before. We show ...
Modified wavelet transform for unbiased frequency representation
Telfer, Brian A.; Szu, Harold H.
1992-10-01
A new wavelet transform normalization procedure is proposed for the construction of a weighted bank of matched filters. The standard normalization results in higher input frequencies producing larger wavelet transform magnitudes if the amplitude of the frequencies is held constant, while the new normalization produces equal responses. This is illustrated with an example of Gibb's overshooting phenomenon, and connections to neural networks are discussed. Another example is presented which illustrates a cocktail party effect. A derivation is given to show that an inverse transform still exists when using the new normalization.
Wavelet methods in mathematical analysis and engineering
Damlamian, Alain
2010-01-01
This book gives a comprehensive overview of both the fundamentals of wavelet analysis and related tools, and of the most active recent developments towards applications. It offers a stateoftheart in several active areas of research where wavelet ideas, or more generally multiresolution ideas have proved particularly effective. The main applications covered are in the numerical analysis of PDEs, and signal and image processing. Recently introduced techniques such as Empirical Mode Decomposition (EMD) and new trends in the recovery of missing data, such as compressed sensing, are also presented.
Filtering, Coding, and Compression with Malvar Wavelets
1993-12-01
2-10 2.4. The Malvar Wavelet Represented in Polyphase Form ...................... 2-11 3.1. (a) Real Part and (b) Imaginary Part of the Complex... Sleeping Pill", Using (a) 1 Point Overlap and (b) 50% (128 Point) Overlap ...... ............... 5-8 5.8. Reconstruction of the Same Sentence (From Sample...For example, if M=2 then 2-10 LICOMP_ U-Cc LCC-N SX,8) Y() Figure 2.4. The Malvar Wavelet Represented in Polyphase Form the signal would be broken
New Algorithm For Calculating Wavelet Transforms
Directory of Open Access Journals (Sweden)
Piotr Lipinski
2009-04-01
Full Text Available In this article we introduce a new algorithm for computing Discrete Wavelet Transforms (DWT. The algorithm aims at reducing the number of multiplications, required to compute a DWT. The algorithm is general and can be used to compute a variety of wavelet transform (Daubechies and CDF. Here we focus on CDF 9/7 filters, which are used in JPEG2000 compression standard. We show that the algorithm outperforms convolution-based and lifting-based algorithms in terms of number of multiplications.
Multiresolution signal decomposition transforms, subbands, and wavelets
Akansu, Ali N; Haddad, Paul R
2001-01-01
The uniqueness of this book is that it covers such important aspects of modern signal processing as block transforms from subband filter banks and wavelet transforms from a common unifying standpoint, thus demonstrating the commonality among these decomposition techniques. In addition, it covers such ""hot"" areas as signal compression and coding, including particular decomposition techniques and tables listing coefficients of subband and wavelet filters and other important properties.The field of this book (Electrical Engineering/Computer Science) is currently booming, which is, of course
Sutha, P; Jayanthi, V E
2017-12-08
Birth defect-related demise is mainly due to congenital heart defects. In the earlier stage of pregnancy, fetus problem can be identified by finding information about the fetus to avoid stillbirths. The gold standard used to monitor the health status of the fetus is by Cardiotachography(CTG), cannot be used for long durations and continuous monitoring. There is a need for continuous and long duration monitoring of fetal ECG signals to study the progressive health status of the fetus using portable devices. The non-invasive method of electrocardiogram recording is one of the best method used to diagnose fetal cardiac problem rather than the invasive methods.The monitoring of the fECG requires development of a miniaturized hardware and a efficient signal processing algorithms to extract the fECG embedded in the mother ECG. The paper discusses a prototype hardware developed to monitor and record the raw mother ECG signal containing the fECG and a signal processing algorithm to extract the fetal Electro Cardiogram signal. We have proposed two methods of signal processing, first is based on the Least Mean Square (LMS) Adaptive Noise Cancellation technique and the other method is based on the Wavelet Transformation technique. A prototype hardware was designed and developed to acquire the raw ECG signal containing the mother and fetal ECG and the signal processing techniques were used to eliminate the noises and extract the fetal ECG and the fetal Heart Rate Variability was studied. Both the methods were evaluated with the signal acquired from a fetal ECG simulator, from the Physionet database and that acquired from the subject. Both the methods are evaluated by finding heart rate and its variability, amplitude spectrum and mean value of extracted fetal ECG. Also the accuracy, sensitivity and positive predictive value are also determined for fetal QRS detection technique. In this paper adaptive filtering technique uses Sign-sign LMS algorithm and wavelet techniques with
A Study of Coaxial Rotor Performance and Flow Field Characteristics
2016-01-22
Inc. Ames, Iowa, USA ABSTRACT As a precursor to studying the acoustics of a coaxial rotor system, the aerodynamics and flow field of a coaxial rotor... aerodynamics model, was used to predict coaxial rotor performance in hover and forward flight. RotUNS steady hover calculations showed improved performance...small unmanned aerial vehicles ( UAVs ) market. As with all rotorcraft, the rotor noise generated by a coaxial rotor system must be mitigated to minimize
HARP model rotor test at the DNW. [Hughes Advanced Rotor Program
Dawson, Seth; Jordan, David; Smith, Charles; Ekins, James; Silverthorn, Lou
1989-01-01
Data from a test of a dynamically scaled model of the Hughes Advanced Rotor Program (HARP) bearingless model main rotor and 369K tail rotor are reported. The history of the HARP program and its goals are reviewed, and the main and tail rotor models are described. The test facilities and instrumentation are described, and wind tunnel test data are presented on hover, forward flight performance, and blade-vortex interaction. Performance data, acoustic data, and dynamic data from near field/far field and shear layer studies are presented.
Parallel object-oriented, denoising system using wavelet multiresolution analysis
Kamath, Chandrika; Baldwin, Chuck H.; Fodor, Imola K.; Tang, Nu A.
2005-04-12
The present invention provides a data de-noising system utilizing processors and wavelet denoising techniques. Data is read and displayed in different formats. The data is partitioned into regions and the regions are distributed onto the processors. Communication requirements are determined among the processors according to the wavelet denoising technique and the partitioning of the data. The data is transforming onto different multiresolution levels with the wavelet transform according to the wavelet denoising technique, the communication requirements, and the transformed data containing wavelet coefficients. The denoised data is then transformed into its original reading and displaying data format.
A New Texture Synthesis Algorithm Based on Wavelet Packet Tree
Directory of Open Access Journals (Sweden)
Hsi Chin Hsin
2012-01-01
Full Text Available This paper presents an efficient texture synthesis based on wavelet packet tree (TSWPT. It has the advantage of using a multiresolution representation with a greater diversity of bases functions for the nonlinear time series applications such as fractal images. The input image is decomposed into wavelet packet coefficients, which are rearranged and organized to form hierarchical trees called wavelet packet trees. A 2-step matching, that is, coarse matching based on low-frequency wavelet packet coefficients followed by fine matching based on middle-high-frequency wavelet packet coefficients, is proposed for texture synthesis. Experimental results show that the TSWPT algorithm is preferable, especially in terms of computation time.
Energy Technology Data Exchange (ETDEWEB)
Cruz-Vega, Israel; Rangel-Magdaleno, Jose; Ramirez-Cortes, Juan; Peregrina-Barreto, Hayde [Santa María Tonantzintla, Puebla (Mexico)
2017-06-15
There is an increased interest in developing reliable condition monitoring and fault diagnosis systems of machines like induction motors; such interest is not only in the final phase of the failure but also at early stages. In this paper, several levels of damage of rotor bars under different load conditions are identified by means of vibration signals. The importance of this work relies on a simple but effective automatic detection algorithm of the damage before a break occurs. The feature extraction is based on discrete wavelet analysis and auto- correlation process. Then, the automatic classification of the fault degree is carried out by a binary classification tree. In each node, com- paring the learned levels of the breaking off correctly identifies the fault degree. The best results of classification are obtained employing computational intelligence techniques like support vector machines, multilayer perceptron, and the k-NN algorithm, with a proper selection of their optimal parameters.
Aeroelastic optimization of a helicopter rotor
Lim, Joon W.; Chopra, Inderjit
1988-01-01
Structural optimization of a hingeless rotor is investigated to reduce oscillatory hub loads while maintaining aeroelastic stability in forward flight. Design variables include spanwise distribution of nonstructural mass, chordwise location of blade center of gravity and blade bending stiffnesses (flap, lag and torsion). A comprehensive aeroelastic analysis of rotors, based on a finite element method in space and time, is linked with optimization algorithms to perform optimization of rotor blades. Sensitivity derivatives of blade response, hub loads, and eigenvalues with respect to the design variables are derived using a direct analytical approach, and constitute an integral part of the basic blade response and stability analyses. This approach reduces the computation time substantially; an 80 percent reduction of CPU time to achieve an optimum solution, as compared to the widely adopted finite difference approach. Through stiffness and nonstructural mass distributions, a 60-90 percent reduction in all six 4/rev hub loads is achieved for a four-bladed soft-inplane rotor.
On optimisation of wavelet algorithms for non-perfect wavelet compression of digital medical images
Ricke, J
2001-01-01
Aim: Optimisation of medical image compression. Evaluation of wavelet-filters for wavelet-compression. Results: Application of filters with different complexity results in significant variations in the quality of image reconstruction after compression specifically in low frequency information. Filters of high complexity proved to be advantageous despite of heterogenous results during visual analysis. For high frequency details, complexity of filters did not prove to be of significant impact on image after reconstruction.
Quaternion Wavelet Analysis and Application in Image Denoising
Directory of Open Access Journals (Sweden)
Ming Yin
2012-01-01
Full Text Available The quaternion wavelet transform is a new multiscale analysis tool. Firstly, this paper studies the standard orthogonal basis of scale space and wavelet space of quaternion wavelet transform in spatial L2(R2, proves and presents quaternion wavelet’s scale basis function and wavelet basis function concepts in spatial scale space L2(R2;H, and studies quaternion wavelet transform structure. Finally, the quaternion wavelet transform is applied to image denoising, and generalized Gauss distribution is used to model QWT coefficients’ magnitude distribution, under the Bayesian theory framework, to recover the original coefficients from the noisy wavelet coefficients, and so as to achieve the aim of denoising. Experimental results show that our method is not only better than many of the current denoising methods in the peak signal to noise ratio (PSNR, but also obtained better visual effect.
Rotor dynamic analysis of main coolant pump
Energy Technology Data Exchange (ETDEWEB)
Lee, Chong Won; Seo, Jeong Hwan; Kim, Choong Hwan; Shin, Jae Chul; Wang, Lei Tian [Korea Advanced Institute of Science and Technology, Taejon (Korea)
1999-03-01
A rotor dynamic analysis program DARBS/MCP, for the main coolant pump of the integral reactor, has been developed. The dynamic analysis model of the main coolant pump includes a vertical shaft, three grooved radial journal bearings and gaps that represent the structure-fluid interaction effects between the rotor and the lubricant fluid. The electromagnetic force from the motor and the hydro-dynamic force induced by impeller are the major sources of vibration that may affect the rotor system stability. DARBS/MCP is a software that is developed to effectively analyze the dynamics of MCP rotor systems effectively by applying powerful numerical algorithms such as FEM with modal truncation and {lambda}-matrix method for harmonic analysis. Main design control parameters, that have much influence to the dynamic stability, have been found by Taguchi's sensitivity analysis method. Design suggestions to improve the stability of MCP rotor system have been documented. The dynamic bearing parameters of the journal bearings used for main coolant pump have been determined by directly solving the Reynolds equation using FDM method. Fluid-structure interaction effect that occurs at the small gaps between the rotor and the stator were modeled as equivalent seals, the electromagnetic force effect was regarded as a linear negative radial spring and the impeller was modeled as a rigid disk with hydrodynamic and static radial force. Although there exist critical speeds in the range of operational speeds for type I and II rotor systems, the amplitude of vibration appears to be less than the vibration limit set by the API standards. Further more, it has been verified that the main design parameters such as the clearance and length of journal bearings, and the static radial force of impeller should be properly adjusted, in order to the improve dynamic stability of the rotor system. (author). 39 refs., 81 figs., 17 tabs.
Aeroelastic Considerations for Torsionally Soft Rotors,
1986-08-01
the rotor controls and R rotor radius, ft. drive system. It is powered by a variable frequency synchronous motor rated at 47 hp V free-stream velocity...Anhedral Tipo I I* 9.2 ACR2 0 ACM1F LHNGIIUDINNL NOSE-OOWN ELASTICCYCLIC TWIS 0fC. ~J~M PITCH SLa ELASTIC .4 ICIIIDAt AT At# qV. AT , C I 0. 4 a, PIC
Tail Rotor Airfoils Stabilize Helicopters, Reduce Noise
2010-01-01
Founded by former Ames Research Center engineer Jim Van Horn, Van Horn Aviation of Tempe, Arizona, built upon a Langley Research Center airfoil design to create a high performance aftermarket tail rotor for the popular Bell 206 helicopter. The highly durable rotor has a lifetime twice that of the original equipment manufacturer blade, reduces noise by 40 percent, and displays enhanced performance at high altitudes. These improvements benefit helicopter performance for law enforcement, military training, wildfire and pipeline patrols, and emergency medical services.
Transonic Axial Splittered Rotor Tandem Stator Stage
2016-12-01
and Frost [3], and Figure 1 is a cascade view of the rotor incorporating splitter vanes. Figure 2 is a projected view of Wennerstrom’s rotor...Numbered from the upstream direction where the flow of air is coming from as seen in Figure 6. These three rings are holed where sensor instrumentation can...be placed. AS1 contains the inlet temperature and pressure sensors , AS2 contains the casing transient pressure sensors , and AS3 contains the outlet
Application of wavelet transform to seismic data; Wavelet henkan no jishin tansa eno tekiyo
Energy Technology Data Exchange (ETDEWEB)
Nakagami, K.; Murayama, R.; Matsuoka, T. [Japan National Oil Corp., Tokyo (Japan)
1996-05-01
Introduced herein is the use of the wavelet transform in the field of seismic exploration. Among applications so far made, there are signal filtering, break point detection, data compression, and the solution of finite differential equations in the wavelet domain. In the field of data compression in particular, some examples of practical application have been introduced already. In seismic exploration, it is expected that the wavelet transform will separate signals and noises in data in a way different from the Fourier transform. The continuous wavelet transform displays time change in frequency easy to read, but is not suitable for the analysis and processing large quantities of data. On the other hand, the discrete wavelet transform, being an orthogonal transform, can handle large quantities of data. As compared with the conventional Fourier transform that handles only the frequency domain, the wavelet transform handles the time domain as well as the frequency domain, and therefore is more convenient in handling unsteady signals. 9 ref., 8 figs.
Monthly Energy Consumption Forecasting Using Wavelet Analysis ...
African Journals Online (AJOL)
Monthly energy forecasts help heavy consumers of electric power to prepare adequate budget to pay their electricity bills and also draw the attention of management and stakeholders to electricity consumption levels so that energy efficiency measures are put in place to reduce cost. In this paper, a wavelet transform and ...
Wavelet based multicarrier code division multiple access ...
African Journals Online (AJOL)
This paper presents the study on Wavelet transform based Multicarrier Code Division Multiple Access (MC-CDMA) system for a downlink wireless channel. The performance of the system is studied for Additive White Gaussian Noise Channel (AWGN) and slowly varying multipath channels. The bit error rate (BER) versus ...
Wavelets: Applications to Image Compression-II
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 3. Wavelets: Applications to Image Compression – II. Sachin P Nanavati ... National PARAM Supercomputing Facility, Centre for Development of Advanced Computing (C-DAC). Pune University Campus, Ganesh Khind, Pune 411 007, India.
Conductance calculations with a wavelet basis set
DEFF Research Database (Denmark)
Thygesen, Kristian Sommer; Bollinger, Mikkel; Jacobsen, Karsten Wedel
2003-01-01
. The linear-response conductance is calculated from the Green's function which is represented in terms of a system-independent basis set containing wavelets with compact support. This allows us to rigorously separate the central region from the contacts and to test for convergence in a systematic way...
Wavelet Transform-A New Mathematical Microscope
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 3. Wavelet Transform - A New Mathematical Microscope. Sachin P Nanavati Prasanta K Panigrahi. General Article Volume 9 Issue 3 March 2004 pp 50-64. Fulltext. Click here to view fulltext PDF. Permanent link:
Wave Forecasting Using Neuro Wavelet Technique
Directory of Open Access Journals (Sweden)
Pradnya Dixit
2014-12-01
Full Text Available In the present work a hybrid Neuro-Wavelet Technique is used for forecasting waves up to 6 hr, 12 hr, 18 hr and 24 hr in advance using hourly measured significant wave heights at an NDBC station 41004 near the east coast of USA. The NW Technique is employed by combining two methods, Discrete Wavelet Transform and Artificial Neural Networks. The hourly data of previously measured significant wave heights spanning over 2 years from 2010 and 2011 is used to calibrate and test the models. The discrete wavelet transform of NWT analyzes frequency of signal with respect to time at different scales. It decomposes time series into low (approximate and high (detail frequency components. The decomposition of approximate can be carried out up to desired multiple levels in order to provide more detail and approximate components which provides relatively smooth varying amplitude series. The neural network is trained with decorrelated approximate and detail wavelet coefficients. The outputs of networks during testing are reconstructed back using inverse DWT. The results were judged by drawing the wave plots, scatter plots and other error measures. The developed models show reasonable accuracy in prediction of significant wave heights from 6 to 24 hours. To compare the results traditional ANN models were also developed at the same location using the same data and for same time interval.
monthly energy consumption forecasting using wavelet analysis
African Journals Online (AJOL)
User
Wavelet Transform (CWT) and Discrete Wave- let Transform (DWT) (Lee et al., 2000). CWT is mainly used for theoretical research, but. DWT is more popular in the field ... man brain processes information. ANNs are composed of simple elements or neurons oper- ating in parallel with connections or weights between them.
Adaptive wavelet algorithms for solving operator equations
Gantumur, T.
2006-01-01
This thesis treats various aspects of adaptive wavelet algorithms for solving operator equations. For a separable Hilbert space H, a linear functional f in H', and a boundedly invertible linear operator A:H->H', we consider the problem of finding u from H satisfying Au=f. Typically A is given by a
García Plaza, E.; Núñez López, P. J.
2018-01-01
The wavelet packet transform method decomposes a time signal into several independent time-frequency signals called packets. This enables the temporary location of transient events occurring during the monitoring of the cutting processes, which is advantageous in monitoring condition and fault diagnosis. This paper proposes the monitoring of surface roughness using a single low cost sensor that is easily implemented in numerical control machine tools in order to make on-line decisions on workpiece surface finish quality. Packet feature extraction in vibration signals was applied to correlate the sensor signals to measured surface roughness. For the successful application of the WPT method, mother wavelets, packet decomposition level, and appropriate packet selection methods should be considered, but are poorly understood aspects in the literature. In this novel contribution, forty mother wavelets, optimal decomposition level, and packet reduction methods were analysed, as well as identifying the effective frequency range providing the best packet feature extraction for monitoring surface finish. The results show that mother wavelet biorthogonal 4.4 in decomposition level L3 with the fusion of the orthogonal vibration components (ax + ay + az) were the best option in the vibration signal and surface roughness correlation. The best packets were found in the medium-high frequency DDA (6250-9375 Hz) and high frequency ADA (9375-12500 Hz) ranges, and the feed acceleration component ay was the primary source of information. The packet reduction methods forfeited packets with relevant features to the signal, leading to poor results for the prediction of surface roughness. WPT is a robust vibration signal processing method for the monitoring of surface roughness using a single sensor without other information sources, satisfactory results were obtained in comparison to other processing methods with a low computational cost.
Dynamic Gust Load Analysis for Rotors
Directory of Open Access Journals (Sweden)
Yuting Dai
2016-01-01
Full Text Available Dynamic load of helicopter rotors due to gust directly affects the structural stress and flight performance for helicopters. Based on a large deflection beam theory, an aeroelastic model for isolated helicopter rotors in the time domain is constructed. The dynamic response and structural load for a rotor under the impulse gust and slope-shape gust are calculated, respectively. First, a nonlinear Euler beam model with 36 degrees-of-freedoms per element is applied to depict the structural dynamics for an isolated rotor. The generalized dynamic wake model and Leishman-Beddoes dynamic stall model are applied to calculate the nonlinear unsteady aerodynamic forces on rotors. Then, we transformed the differential aeroelastic governing equation to an algebraic one. Hence, the widely used Newton-Raphson iteration algorithm is employed to simulate the dynamic gust load. An isolated helicopter rotor with four blades is studied to validate the structural model and the aeroelastic model. The modal frequencies based on the Euler beam model agree well with published ones by CAMRAD. The flap deflection due to impulse gust with the speed of 2m/s increases twice to the one without gust. In this numerical example, results indicate that the bending moment at the blade root is alleviated due to elastic effect.
Thermal Bending of the Rotor Due to Rotor-to-Stator Rub
Directory of Open Access Journals (Sweden)
Paul Goldman
2000-01-01
Full Text Available The rotor thermal bending due to the rotor-to-stator rubbing can lead to one of three types of observed rotor lateral motion: (1 spiral with increasing amplitude, (2 oscillating between rub]no-rub conditions, and (3 asymptotical approach to the rotor limit cycle. Based on the machinery observations, it is assumed in the analytical part of the paper that the speed scale of transient thermal effects is considerably lower than that of rotor vibrations, and that the thermal effect reflects only on the rotor steady-state vibrational response. This response would change due to thermally induced bow of the rotor, which can be considered to slowly vary in timefor the purpose of rotor vibration calculations. Thus uncoupled from the thermal problem, the rotor vibration is analyzed. The major consideration is given to the rotor which experiences intermittent contact with the stator, due to predetermined thermal bow, unbalance force, and radial constant load force. In the case of inelastic impact, it causes an on/off, step-change in the stiffness of the system. Using a specially developed variable transformation for the system with discontinuities, and averaging technique the resonance regimes of motion are obtained. These regimes are used to calculate the heat generated during contact stage, as a function of thermal bow modal parameters, which is used as a boundary condition for the rotor heat transfer problem. The latter is treated as quasi-static, which reduces the problem to an ordinary differential equation for the thermal bow vector. It is investigated from the stability standpoint.
Directory of Open Access Journals (Sweden)
Jikai Chen
2016-12-01
Full Text Available In a power system, the analysis of transient signals is the theoretical basis of fault diagnosis and transient protection theory. Shannon wavelet entropy (SWE and Shannon wavelet packet entropy (SWPE are powerful mathematics tools for transient signal analysis. Combined with the recent achievements regarding SWE and SWPE, their applications are summarized in feature extraction of transient signals and transient fault recognition. For wavelet aliasing at adjacent scale of wavelet decomposition, the impact of wavelet aliasing is analyzed for feature extraction accuracy of SWE and SWPE, and their differences are compared. Meanwhile, the analyses mentioned are verified by partial discharge (PD feature extraction of power cable. Finally, some new ideas and further researches are proposed in the wavelet entropy mechanism, operation speed and how to overcome wavelet aliasing.
Classification of mammographic microcalcifications using wavelets
Chitre, Yateen S.; Dhawan, Atam P.; Moskowitz, Myron; Sarwal, Alok; Bonasso, Christine; Narayan, Suresh B.
1995-05-01
Breast cancer is the leading cause of death among women. Breast cancer can be detected earlier by mammography than any other non-invasive examination. About 30% to 50% of breast cancers demonstrate tiny granulelike deposits of calcium called microcalcifications. It is difficult to distinguish between benign and malignant cases based on an examination of calcification regions, especially in hard-to-diagnose cases. We investigate the potential of using energy and entropy features computed from wavelet packets for their correlation with malignancy. Two types of Daubechies discrete filters were used as prototype wavelets. The energy and entropy features were computed for 128 benign and 63 malignant cases and analyzed using a multivariate cluster analysis and a univariate statistical analysis to reduce the feature set to a `five best set of features.' The efficacy of the reduced feature set to discriminate between the malignant and benign categories was evaluated using different multilayer perceptron architectures. The multilayer perceptron was trained using the backpropagation algorithm for various training and test set sizes. For each case 40 partitions of the data set were used to set up the training and test sets. The performance of the features was evaluated by computing the best area under the relative operating characteristic (ROC) curve and the average area under the ROC curve. The performance of the features computed from the wavelet packets was compared to a second set of features consisting of the wavelet packet features, image structure features and cluster features. The classification results are encouraging and indicate the potential of using features derived from wavelet packets in discriminating microcalcification regions into benign and malignant categories.
Dynamics of High-Speed Rotors Supported in Sliding Bearings
Šimek, J.; Svoboda, R.
The higher the operating speed, the more serious are problems with rotor stability. Three basic groups of rotors are analyzed and some methods of suppressing instability are shown. In the first group are classical elastic rotors supported in hydrodynamic bearings. Practically all high-speed rotors now run in tilting pad bearings, which are inherently stable, but in specific conditions even tiling pad bearings may not ensure rotor stability. The second group is composed of combustion engines turbocharger rotors, which are characteristic by heavy impellers at both overhung ends of elastic shaft. These rotors are in most cases supported in floating ring bearings, which bring special features to rotor behaviour. The third group of rotors with gas bearings exhibits special features.
Time-Frequency-Wavenumber Analysis of Surface Waves Using the Continuous Wavelet Transform
Poggi, V.; Fäh, D.; Giardini, D.
2013-03-01
A modified approach to surface wave dispersion analysis using active sources is proposed. The method is based on continuous recordings, and uses the continuous wavelet transform to analyze the phase velocity dispersion of surface waves. This gives the possibility to accurately localize the phase information in time, and to isolate the most significant contribution of the surface waves. To extract the dispersion information, then, a hybrid technique is applied to the narrowband filtered seismic recordings. The technique combines the flexibility of the slant stack method in identifying waves that propagate in space and time, with the resolution of f- k approaches. This is particularly beneficial for higher mode identification in cases of high noise levels. To process the continuous wavelet transform, a new mother wavelet is presented and compared to the classical and widely used Morlet type. The proposed wavelet is obtained from a raised-cosine envelope function (Hanning type). The proposed approach is particularly suitable when using continuous recordings (e.g., from seismological-like equipment) since it does not require any hardware-based source triggering. This can be subsequently done with the proposed method. Estimation of the surface wave phase delay is performed in the frequency domain by means of a covariance matrix averaging procedure over successive wave field excitations. Thus, no record stacking is necessary in the time domain and a large number of consecutive shots can be used. This leads to a certain simplification of the field procedures. To demonstrate the effectiveness of the method, we tested it on synthetics as well on real field data. For the real case we also combine dispersion curves from ambient vibrations and active measurements.
Palaniswamy, Sumithra; Duraisamy, Prakash; Alam, Mohammad Showkat; Yuan, Xiaohui
2012-04-01
Automatic speech processing systems are widely used in everyday life such as mobile communication, speech and speaker recognition, and for assisting the hearing impaired. In speech communication systems, the quality and intelligibility of speech is of utmost importance for ease and accuracy of information exchange. To obtain an intelligible speech signal and one that is more pleasant to listen, noise reduction is essential. In this paper a new Time Adaptive Discrete Bionic Wavelet Thresholding (TADBWT) scheme is proposed. The proposed technique uses Daubechies mother wavelet to achieve better enhancement of speech from additive non- stationary noises which occur in real life such as street noise and factory noise. Due to the integration of human auditory system model into the wavelet transform, bionic wavelet transform (BWT) has great potential for speech enhancement which may lead to a new path in speech processing. In the proposed technique, at first, discrete BWT is applied to noisy speech to derive TADBWT coefficients. Then the adaptive nature of the BWT is captured by introducing a time varying linear factor which updates the coefficients at each scale over time. This approach has shown better performance than the existing algorithms at lower input SNR due to modified soft level dependent thresholding on time adaptive coefficients. The objective and subjective test results confirmed the competency of the TADBWT technique. The effectiveness of the proposed technique is also evaluated for speaker recognition task under noisy environment. The recognition results show that the TADWT technique yields better performance when compared to alternate methods specifically at lower input SNR.
Kong, Yun; Wang, Tianyang; Li, Zheng; Chu, Fulei
2017-09-01
Planetary transmission plays a vital role in wind turbine drivetrains, and its fault diagnosis has been an important and challenging issue. Owing to the complicated and coupled vibration source, time-variant vibration transfer path, and heavy background noise masking effect, the vibration signal of planet gear in wind turbine gearboxes exhibits several unique characteristics: Complex frequency components, low signal-to-noise ratio, and weak fault feature. In this sense, the periodic impulsive components induced by a localized defect are hard to extract, and the fault detection of planet gear in wind turbines remains to be a challenging research work. Aiming to extract the fault feature of planet gear effectively, we propose a novel feature extraction method based on spectral kurtosis and time wavelet energy spectrum (SK-TWES) in the paper. Firstly, the spectral kurtosis (SK) and kurtogram of raw vibration signals are computed and exploited to select the optimal filtering parameter for the subsequent band-pass filtering. Then, the band-pass filtering is applied to extrude periodic transient impulses using the optimal frequency band in which the corresponding SK value is maximal. Finally, the time wavelet energy spectrum analysis is performed on the filtered signal, selecting Morlet wavelet as the mother wavelet which possesses a high similarity to the impulsive components. The experimental signals collected from the wind turbine gearbox test rig demonstrate that the proposed method is effective at the feature extraction and fault diagnosis for the planet gear with a localized defect.
Directory of Open Access Journals (Sweden)
Griselda Pollock
2009-01-01
Full Text Available In the late 1980s a practising painter who is also a practising psychoanalyst reflected upon the significance of events occurring in her painting and being reflected upon in her notebooks to evolve a major theoretical intervention in psychoanalytical thinking at the intersections of British Object Relations (Bion, Laing, Winnicott in which she was trained at the Tavistock and Parisian Lacanian and post Lacanian thinking (Laplanche, Guattari, Aulagnier, Dolto. Supplementing the then dominant understanding of Lacan's phallic Symbolic, defined by the sovereignty of the phallus as the sole signifier, Bracha Ettinger proposed a further symbol, the Matrix and its non-phallic, non-Oedipal process, metramorphosis. The matrixial enables us to catch up into theoretical knowledge another, shifting but not excluding dimension of subjectivity that is the effect , on all subjects, irrespective of later, Oedipalised gender or sexuality, of the feminine sexual specificity of human generation in the non-prohibited intimacy of the feminine-becoming-maternal-in co-emergence-with an-unknown-becoming-partial-other. Moving beyond the theoretical engagements of object relations with early mother-child, hence post-natal relations between subjects, hence beyond intersubjectivity, Ettinger has been exploring, for almost two decades, the implications for theories of subjectivity and hence for ethics and even the politics of our multiple moments of transsubjective co-affections and co-effects, of the proposition that the feminine, understood as this sexual specificity of the severality of mutual co-effecting becoming of life, has something profound to offer our understanding of the human, its ethics, aesthetics and even politics. Daring to theorize the gift to later subjectivities of the prolonged encounter-event between pre-natality and pre-maternity, Ettinger has contributed to debates about the maternal, the feminine and human subjectivity in general. In
Electric Drive Control with Rotor Resistance and Rotor Speed Observers Based on Fuzzy Logic
Directory of Open Access Journals (Sweden)
C. Ben Regaya
2014-01-01
Full Text Available Many scientific researchers have proposed the control of the induction motor without speed sensor. These methods have the disadvantage that the variation of the rotor resistance causes an error of estimating the motor speed. Thus, simultaneous estimation of the rotor resistance and the motor speed is required. In this paper, a scheme for estimating simultaneously the rotor resistance and the rotor speed of an induction motor using fuzzy logic has been developed. We present a method which is based on two adaptive observers using fuzzy logic without affecting each other and a simple algorithm in order to facilitate the determination of the optimal values of the controller gains. The control algorithm is proved by the simulation tests. The results analysis shows the characteristic robustness of the two observers of the proposed method even in the case of variation of the rotor resistance.
THE DESIGN OF AXIAL PUMP ROTORS USING THE NUMERICAL METHODS
Directory of Open Access Journals (Sweden)
Ali BEAZIT
2010-06-01
Full Text Available The researches in rotor theory, the increasing use of computers and the connection between design and manufacturing of rotors, have determined the revaluation and completion of classical rotor geometry. This paper presents practical applications of mathematical description of rotor geometry. A program has been created to describe the rotor geometry for arbitrary shape of the blade. The results can be imported by GAMBIT - a processor for geometry with modeling and mesh generations, to create a mesh needed in hydrodynamics analysis of rotor CFD. The results obtained are applicable in numerical methods and are functionally convenient for CAD/CAM systems.
Stability of Rotor Systems: A Complex Modelling Approach
DEFF Research Database (Denmark)
Kliem, Wolfhard; Pommer, Christian; Stoustrup, Jakob
1996-01-01
with the results of the classical approach using Rayleighquotients. Several rotor systems are tested: a simple Laval rotor, a Laval rotor with additional elasticity and damping in thr bearings, and a number of rotor systems with complex symmetric 4x4 randomly generated matrices.......A large class of rotor systems can be modelled by a complex matrix differential equation of secondorder. The angular velocity of the rotor plays the role of a parameter. We apply the Lyapunov matrix equation in a complex setting and prove two new stability results which are compared...
Directory of Open Access Journals (Sweden)
Abazar Solgi
2017-06-01
given from Fourier transform that was introduced in the nineteenth-century. Overall, concept of wavelet transform for current theory was presented by Morlet and a team under the supervision of Alex Grossman at the Research Center for Theoretical Physics Marcel in France. After the parameters decomposition using wavelet analysis and using principal component analysis (PCA, the main components were determined. These components are then used as input to the support vector machine model to obtain a hybrid model of Wavelet-SVM (WSVM. For this study, a series of monthly of BOD in Karun River in Molasani station and auxiliary variables dissolved oxygen (DO, temperature and monthly river flow in a 13 years period (2002-2014 were used. Results and Discussion: To run the SVM model, seven different combinations were evaluated. Combination 6 which was contained of 4 parameters including BOD, dissolved oxygen (DO, temperature and monthly river flow with a time lag have best performance. The best structure had RMSE equal to 0.0338 and the coefficient of determination equal to 0.84. For achieving the results of the WSVM, the wavelet transform and input parameters were decomposed to sub-signal, then this sub-signals were studied with Principal component analysis (PCA method and important components were entered as inputs to SVM model to obtain the hybrid model WSVM. After numerous run this program in certain modes and compare them with each other, the results was obtained. One of the key points about the choice of the mother wavelet is the time series. So, the patterns of the mother wavelet functions that can better adapt to diagram curved of time series can do the mappings operation and therefore will have better results. In this study, according to different wavelet tests and according to the above note, four types of mother wavelet functions Haar, Db2, Db7 and Sym3 were selected. Conclusions: Compare the results of the monthly modeling indicate that the use of wavelet transforms can
Smart rotor modeling aero-servo-elastic modeling of a smart rotor with adaptive trailing edge flaps
Bergami, Leonardo
2014-01-01
A smart rotor is a wind turbine rotor that, through a combination of sensors, control units and actuators actively reduces the variation of the aerodynamic loads it has to withstand. Smart rotors feature?promising load alleviation potential and might provide the technological breakthrough required by the next generation of large wind turbine rotors.The book presents the aero-servo-elastic model of a smart rotor with Adaptive Trailing Edge Flaps for active load alleviation and provides an insight on the rotor aerodynamic, structural and control modeling. A novel model for the unsteady aerodynam
Directory of Open Access Journals (Sweden)
Akimov Pavel Alekseevich
2012-10-01
Full Text Available Part 1 of this paper represents an introduction into the multi-resolution wavelet analysis. The wavelet-based analysis is an exciting new problem-solving tool used by mathematicians, scientists and engineers. In the paper, the authors try to present the fundamental elements of the multi-resolution wavelet analysis in a way that is accessible to an engineer, a scientist and an applied mathematician both as a theoretical approach and as a potential practical method of solving problems (particularly, boundary problems of structural mechanics and mathematical physics. The main goal of the contemporary wavelet research is to generate a set of basic functions (or general expansion functions and transformations that will provide an informative, efficient and useful description of a function or a signal. Another central idea is that of multi-resolution whereby decomposition of a signal represents the resolution of the detail. The multi-resolution decomposition seems to separate components of a signal in a way that is superior to most other methods of analysis, processing or compression. Due to the ability of the discrete wavelet transformation technique to decompose a signal at different independent scaling levels and to do it in a very flexible way, wavelets can be named "the microscopes of mathematics". Indeed, the use of the wavelet analysis and wavelet transformations requires a new point of view and a new method of interpreting representations.
A rotor optimization using regression analysis
Giansante, N.
1984-01-01
The design and development of helicopter rotors is subject to the many design variables and their interactions that effect rotor operation. Until recently, selection of rotor design variables to achieve specified rotor operational qualities has been a costly, time consuming, repetitive task. For the past several years, Kaman Aerospace Corporation has successfully applied multiple linear regression analysis, coupled with optimization and sensitivity procedures, in the analytical design of rotor systems. It is concluded that approximating equations can be developed rapidly for a multiplicity of objective and constraint functions and optimizations can be performed in a rapid and cost effective manner; the number and/or range of design variables can be increased by expanding the data base and developing approximating functions to reflect the expanded design space; the order of the approximating equations can be expanded easily to improve correlation between analyzer results and the approximating equations; gradients of the approximating equations can be calculated easily and these gradients are smooth functions reducing the risk of numerical problems in the optimization; the use of approximating functions allows the problem to be started easily and rapidly from various initial designs to enhance the probability of finding a global optimum; and the approximating equations are independent of the analysis or optimization codes used.
Research on ghost imaging method based on wavelet transform
Li, Mengying; He, Ruiqing; Chen, Qian; Gu, Guohua; Zhang, Wenwen
2017-09-01
We present an algorithm of extracting the wavelet coefficients of object based on ghost imaging (GI) system. Through modification of the projected random patterns by using a series of templates, wavelet transform GI (WTGI) can directly measure the high frequency components of wavelet coefficients without needing the original image. In this study, we theoretically and experimentally perform the high frequency components of wavelet coefficients detection with an arrow and a letter A based on GI and WTGI. Comparing with the traditional method, the use of the algorithm proposed in this paper can significantly improve the quality of the image of wavelet coefficients in both cases. The special advantages of GI will make the wavelet coefficient detection based on WTGI very valuable in real applications.
Wavelet-Based MPNLMS Adaptive Algorithm for Network Echo Cancellation
Directory of Open Access Journals (Sweden)
Hongyang Deng
2007-03-01
Full Text Available The ÃŽÂ¼-law proportionate normalized least mean square (MPNLMS algorithm has been proposed recently to solve the slow convergence problem of the proportionate normalized least mean square (PNLMS algorithm after its initial fast converging period. But for the color input, it may become slow in the case of the big eigenvalue spread of the input signal's autocorrelation matrix. In this paper, we use the wavelet transform to whiten the input signal. Due to the good time-frequency localization property of the wavelet transform, a sparse impulse response in the time domain is also sparse in the wavelet domain. By applying the MPNLMS technique in the wavelet domain, fast convergence for the color input is observed. Furthermore, we show that some nonsparse impulse responses may become sparse in the wavelet domain. This motivates the usage of the wavelet-based MPNLMS algorithm. Advantages of this approach are documented.
Wavelet-Based MPNLMS Adaptive Algorithm for Network Echo Cancellation
Directory of Open Access Journals (Sweden)
Doroslovački Miloš
2007-01-01
Full Text Available The μ-law proportionate normalized least mean square (MPNLMS algorithm has been proposed recently to solve the slow convergence problem of the proportionate normalized least mean square (PNLMS algorithm after its initial fast converging period. But for the color input, it may become slow in the case of the big eigenvalue spread of the input signal's autocorrelation matrix. In this paper, we use the wavelet transform to whiten the input signal. Due to the good time-frequency localization property of the wavelet transform, a sparse impulse response in the time domain is also sparse in the wavelet domain. By applying the MPNLMS technique in the wavelet domain, fast convergence for the color input is observed. Furthermore, we show that some nonsparse impulse responses may become sparse in the wavelet domain. This motivates the usage of the wavelet-based MPNLMS algorithm. Advantages of this approach are documented.
FPGA Implementations of Bireciprocal Lattice Wave Discrete Wavelet Filter Banks
Directory of Open Access Journals (Sweden)
Jassim M. Abdul-Jabbar
2012-06-01
Full Text Available In this paper, a special type of IIR filter banks; that is the bireciprocal lattice wave digital filter (BLWDF bank, is presented to simulate scaling and wavelet functions of six-level wavelet transform. 1st order all-pass sections are utilized for the realization of such filter banks in wave lattice structures. The resulting structures are a bireciprocal lattice wave discrete wavelet filter banks (BLW-DWFBs. Implementation of these BLW-DWFBs are accomplished on Spartan-3E FPGA kit. Implementation complexity and operating frequency characteristics of such discrete wavelet 5th order filter bank is proved to be comparable to the corresponding characteristics of the lifting scheme implementation of Bio. 5/3 wavelet filter bank. On the other hand, such IIR filter banks possess superior band discriminations and perfect roll-off frequency characteristics when compared to their Bio. 5/3 wavelet FIR counterparts.
Detecting Impulses in Mechanical Signals by Wavelets
Directory of Open Access Journals (Sweden)
Yang W-X
2004-01-01
Full Text Available The presence of periodical or nonperiodical impulses in vibration signals often indicates the occurrence of machine faults. This knowledge is applied to the fault diagnosis of such machines as engines, gearboxes, rolling element bearings, and so on. The development of an effective impulse detection technique is necessary and significant for evaluating the working condition of these machines, diagnosing their malfunctions, and keeping them running normally over prolong periods. With the aid of wavelet transforms, a wavelet-based envelope analysis method is proposed. In order to suppress any undesired information and highlight the features of interest, an improved soft threshold method has been designed so that the inspected signal is analyzed in a more exact way. Furthermore, an impulse detection technique is developed based on the aforementioned methods. The effectiveness of the proposed technique on the extraction of impulsive features of mechanical signals has been proved by both simulated and practical experiments.
Joint multifractal analysis based on wavelet leaders
Jiang, Zhi-Qiang; Yang, Yan-Hong; Wang, Gang-Jin; Zhou, Wei-Xing
2017-12-01
Mutually interacting components form complex systems and these components usually have long-range cross-correlated outputs. Using wavelet leaders, we propose a method for characterizing the joint multifractal nature of these long-range cross correlations; we call this method joint multifractal analysis based on wavelet leaders (MF-X-WL). We test the validity of the MF-X-WL method by performing extensive numerical experiments on dual binomial measures with multifractal cross correlations and bivariate fractional Brownian motions (bFBMs) with monofractal cross correlations. Both experiments indicate that MF-X-WL is capable of detecting cross correlations in synthetic data with acceptable estimating errors. We also apply the MF-X-WL method to pairs of series from financial markets (returns and volatilities) and online worlds (online numbers of different genders and different societies) and determine intriguing joint multifractal behavior.
Wavelets and their applications past and future
Coifman, Ronald R.
2009-04-01
As this is a conference on mathematical tools for defense, I would like to dedicate this talk to the memory of Louis Auslander, who through his insights and visionary leadership, brought powerful new mathematics into DARPA, he has provided the main impetus to the development and insertion of wavelet based processing in defense. My goal here is to describe the evolution of a stream of ideas in Harmonic Analysis, ideas which in the past have been mostly applied for the analysis and extraction of information from physical data, and which now are increasingly applied to organize and extract information and knowledge from any set of digital documents, from text to music to questionnaires. This form of signal processing on digital data, is part of the future of wavelet analysis.
Combined wavelets-DCT image compression
Ansari, Ahmad C.; Gertner, Izidor; Zeevi, Yehoshua Y.
1992-07-01
The mappings from multidimension to one dimension, or the inverse mappings, are theoretically described by space filling curves, i.e., Peano curves or Hilbert curves. The Peano Scan is an application of the Peano curve to the scanning of images, and it is used for analyzing, clustering, or compressing images, and for limiting the number of the colors used in an image. In this paper an efficient method for visual data compression is presented, combining generalized Peano Scan, wavelet decomposition, and adaptive subband coding technique. The Peano Scan is incorporated with the encoding scheme in order to cluster highly correlated pixels. Using wavelet decomposition, an adaptive subband coding technique is developed to encode each subband separately with an optimum algorithm. Discrete Cosine Transform (DCT) is applied on the low spatial frequency subband, and high spatial frequency subbands are encoded using Run Length encoding technique.
Microbinary element for optical wavelet transform
Huang, Gaogui; Feng, Wenyi; Yan, Yingbai; Jin, Guofan
1997-09-01
In order to simplify an opto-electronic hybrid system for texture segmentation based on the multi-channel filtering framework in the human visual theory, a micro-binary optical element (BOE) is designed and fabricated. The BOE has the functions of splitting, filtering and imaging simultaneously. The focal length of the BOE is 150mm and the diameter is 4mm. It contains sixteen Gabor wavelet filters with scales decreased by 2 orders and with our orientations separated every 45 degree, which can be used to perform a nearly complete decomposition with wavelet transform. The relief surface structure with minimum feature scale of 1.5micrometers is fabricated by using the photolithography and ion etching technique. In this paper, the functions of the BOE and the simulation of the filtering are described in detail, the experimental results and improvement of the element are given.
ECG signal denoising via empirical wavelet transform.
Singh, Omkar; Sunkaria, Ramesh Kumar
2017-03-01
This paper presents new methods for baseline wander correction and powerline interference reduction in electrocardiogram (ECG) signals using empirical wavelet transform (EWT). During data acquisition of ECG signal, various noise sources such as powerline interference, baseline wander and muscle artifacts contaminate the information bearing ECG signal. For better analysis and interpretation, the ECG signal must be free of noise. In the present work, a new approach is used to filter baseline wander and power line interference from the ECG signal. The technique utilized is the empirical wavelet transform, which is a new method used to compute the building modes of a given signal. Its performance as a filter is compared to the standard linear filters and empirical mode decomposition.The results show that EWT delivers a better performance.
Transformer Protection Using the Wavelet Transform
ÖZGÖNENEL, Okan; ÖNBİLGİN, Güven; KOCAMAN, Çağrı
2014-01-01
This paper introduces a novel approach for power transformer protection algorithm. Power system signals such as current and voltage have traditionally been analysed by the Fast Fourier Transform. This paper aims to prove that the Wavelet Transform is a reliable and computationally efficient tool for distinguishing between the inrush currents and fault currents. The simulated results presented clearly show that the proposed technique for power transformer protection facilitates the a...
Wavelet Denoising within the Lifting Scheme Framework
Directory of Open Access Journals (Sweden)
M. P. Paskaš
2012-11-01
Full Text Available In this paper, we consider an example of the lifting scheme and present the results of the simple lifting scheme implementation using lazy transform. The paper is tutorial-oriented. The results are obtained by testing several common test signals for the signal denoising problem and using different threshold values. The lifting scheme represents an effective and flexible tool that can be used for introducing signal dependence into the problem by improving the wavelet properties.
DEFF Research Database (Denmark)
Burström, B; Diderichsen, Finn; Shouls, S
1999-01-01
To study trends in the health and socioeconomic circumstances of lone mothers in Sweden over the years 1979-1995, and to make comparisons with couple mothers over the same period.......To study trends in the health and socioeconomic circumstances of lone mothers in Sweden over the years 1979-1995, and to make comparisons with couple mothers over the same period....
Digital Image Watermarking Algorithm Based on Wavelet Packet
Geetha, A.; B.Vijayakumari; C.Nagavani; T.Pandiselvi
2011-01-01
In this paper, a method for Digital Image Watermarking based on the modification of certain subband of the wavelet packet decomposition was presented. A key is used for wavelet bases selection, watermark generation and selection of blocks for embedding the watermark bits. To efficiently embed the watermark within the images and provide the robustness for the watermark detection under attacks, watermark is embedded by quantizing the mean of the wavelet coefficient block. A method for exploitin...
An introduction to random vibrations, spectral & wavelet analysis
Newland, D E
2005-01-01
One of the first engineering books to cover wavelet analysis, this classic text describes and illustrates basic theory, with a detailed explanation of the workings of discrete wavelet transforms. Computer algorithms are explained and supported by examples and a set of problems, and an appendix lists ten computer programs for calculating and displaying wavelet transforms.Starting with an introduction to probability distributions and averages, the text examines joint probability distributions, ensemble averages, and correlation; Fourier analysis; spectral density and excitation response relation
On transforms between Gabor frames and wavelet frames
DEFF Research Database (Denmark)
Christensen, Ole; Goh, Say Song
2013-01-01
We describe a procedure that enables us to construct dual pairs of wavelet frames from certain dual pairs of Gabor frames. Applying the construction to Gabor frames generated by appropriate exponential Bsplines gives wavelet frames generated by functions whose Fourier transforms are compactly...... supported splines with geometrically distributed knot sequences. There is also a reverse transform, which yields pairs of dual Gabor frames when applied to certain wavelet frames....
Hermitian Mindlin Plate Wavelet Finite Element Method for Load Identification
Xiaofeng Xue; Xuefeng Chen; Xingwu Zhang; Baijie Qiao; Jia Geng
2016-01-01
A new Hermitian Mindlin plate wavelet element is proposed. The two-dimensional Hermitian cubic spline interpolation wavelet is substituted into finite element functions to construct frequency response function (FRF). It uses a system’s FRF and response spectrums to calculate load spectrums and then derives loads in the time domain via the inverse fast Fourier transform. By simulating different excitation cases, Hermitian cubic spline wavelets on the interval (HCSWI) finite elements are used t...
Tip Vortex and Wake Characteristics of a Counterrotating Open Rotor
VanZante, Dale E.; Wernet, Mark P.
2012-01-01
One of the primary noise sources for Open Rotor systems is the interaction of the forward rotor tip vortex and blade wake with the aft rotor. NASA has collaborated with General Electric on the testing of a new generation of low noise, counterrotating Open Rotor systems. Three-dimensional particle image velocimetry measurements were acquired in the intra-rotor gap of the Historical Baseline blade set. The velocity measurements are of sufficient resolution to characterize the tip vortex size and trajectory as well as the rotor wake decay and turbulence character. The tip clearance vortex trajectory is compared to results from previously developed models. Forward rotor wake velocity profiles are shown. Results are presented in a form as to assist numerical modeling of Open Rotor system aerodynamics and acoustics.
Duval, R. W.; Bahrami, M.
1985-01-01
The Rotor Systems Research Aircraft uses load cells to isolate the rotor/transmission systm from the fuselage. A mathematical model relating applied rotor loads and inertial loads of the rotor/transmission system to the load cell response is required to allow the load cells to be used to estimate rotor loads from flight data. Such a model is derived analytically by applying a force and moment balance to the isolated rotor/transmission system. The model is tested by comparing its estimated values of applied rotor loads with measured values obtained from a ground based shake test. Discrepancies in the comparison are used to isolate sources of unmodeled external loads. Once the structure of the mathematical model has been validated by comparison with experimental data, the parameters must be identified. Since the parameters may vary with flight condition it is desirable to identify the parameters directly from the flight data. A Maximum Likelihood identification algorithm is derived for this purpose and tested using a computer simulation of load cell data. The identification is found to converge within 10 samples. The rapid convergence facilitates tracking of time varying parameters of the load cell model in flight.
Denoising solar radiation data using coiflet wavelets
Energy Technology Data Exchange (ETDEWEB)
Karim, Samsul Ariffin Abdul, E-mail: samsul-ariffin@petronas.com.my; Janier, Josefina B., E-mail: josefinajanier@petronas.com.my; Muthuvalu, Mohana Sundaram, E-mail: mohana.muthuvalu@petronas.com.my [Department of Fundamental and Applied Sciences, Faculty of Sciences and Information Technology, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak Darul Ridzuan (Malaysia); Hasan, Mohammad Khatim, E-mail: khatim@ftsm.ukm.my [Jabatan Komputeran Industri, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Sulaiman, Jumat, E-mail: jumat@ums.edu.my [Program Matematik dengan Ekonomi, Universiti Malaysia Sabah, Beg Berkunci 2073, 88999 Kota Kinabalu, Sabah (Malaysia); Ismail, Mohd Tahir [School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM Minden, Penang (Malaysia)
2014-10-24
Signal denoising and smoothing plays an important role in processing the given signal either from experiment or data collection through observations. Data collection usually was mixed between true data and some error or noise. This noise might be coming from the apparatus to measure or collect the data or human error in handling the data. Normally before the data is use for further processing purposes, the unwanted noise need to be filtered out. One of the efficient methods that can be used to filter the data is wavelet transform. Due to the fact that the received solar radiation data fluctuates according to time, there exist few unwanted oscillation namely noise and it must be filtered out before the data is used for developing mathematical model. In order to apply denoising using wavelet transform (WT), the thresholding values need to be calculated. In this paper the new thresholding approach is proposed. The coiflet2 wavelet with variation diminishing 4 is utilized for our purpose. From numerical results it can be seen clearly that, the new thresholding approach give better results as compare with existing approach namely global thresholding value.
Wavelet and statistical analysis for melanoma classification
Nimunkar, Amit; Dhawan, Atam P.; Relue, Patricia A.; Patwardhan, Sachin V.
2002-05-01
The present work focuses on spatial/frequency analysis of epiluminesence images of dysplastic nevus and melanoma. A three-level wavelet decomposition was performed on skin-lesion images to obtain coefficients in the wavelet domain. A total of 34 features were obtained by computing ratios of the mean, variance, energy and entropy of the wavelet coefficients along with the mean and standard deviation of image intensity. An unpaired t-test for a normal distribution based features and the Wilcoxon rank-sum test for non-normal distribution based features were performed for selecting statistically correlated features. For our data set, the statistical analysis of features reduced the feature set from 34 to 5 features. For classification, the discriminant functions were computed in the feature space using the Mahanalobis distance. ROC curves were generated and evaluated for false positive fraction from 0.1 to 0.4. Most of the discrimination functions provided a true positive rate for melanoma of 93% with a false positive rate up to 21%.
Detection of geomagnetic jerks using wavelet analysis
Alexandrescu, Mioara; Gibert, Dominique; Hulot, Gauthier; Le MouëL, Jean-Louis; Saracco, Ginette
1995-07-01
Wavelet analysis is applied to detect and characterize singular events, or singularities, or jerks, in the time series made of the last century monthly mean values of the east component of the geomagnetic field from European observatories. After choosing a well-adapted wavelet function, the analysis is first performed on synthetic series including an "internal", or "main", signal made of smooth variation intervals separated by singular events with different "regularities", a white noise and an "external" signal made of the sum of a few harmonics of a long-period variation (11 years). The signatures of the main, noise, and harmonic signals are studied and compared, and the conditions in which the singular events can be clearly isolated in the composite signal are elucidated. Then we apply the method systematically to the real geomagnetic series (monthly means of Y from European observatories) and show that five arid only five remarkable events are found in 1901, 1913, 1925, 1969, and 1978. The characteristics of these singularities (in particular, homogeneity of some derived functions of the wavelet transform over a large range of timescales) demonstrate that these events have a single source (of course, internal). Also the events are more singular than was previously supposed (their "regularity" is closer to 1.5 than to 2., indicating that noninteger powers of time should be used in representing the time series between the jerks).
Structural Pounding Detection by Using Wavelet Scalogram
Directory of Open Access Journals (Sweden)
Shutao Xing
2012-01-01
Full Text Available Structural pounding can cause considerable damage and even lead to collapse of structures. Most research focuses on modeling, parameter investigation, and mitigation approaches. With the development of structural health monitoring, the on-line detection of pounding becomes possible. The detection of pounding can provide useful information of potential damage of structures. This paper proposed using wavelet scalograms of dynamic response to detect pounding and examined the feasibility of this method. Numerical investigations were performed on a pounding system that consisted of a damped single-degree-of-freedom (SDOF structure and a rigid barrier. Hertz contact model was used to simulate pounding behavior. The responses and pounding forces of the system under harmonic and earthquake excitations were numerically solved. The wavelet scalograms of acceleration responses were used to identify poundings. It was found that the scalograms can indicate the occurrence of pounding and occurrence time very well. The severity of the poundings was also approximately estimated. Experimental studies were carried out, in which shake table tests were conducted on a bridge model that underwent pounding between its different components during ground motion excitation. The wavelet scalograms of the bridge responses indicated pounding occurrence quite well. Hence the conclusions from the numerical studies were verified experimentally.
Pedestrian detection based on redundant wavelet transform
Huang, Lin; Ji, Liping; Hu, Ping; Yang, Tiejun
2016-10-01
Intelligent video surveillance is to analysis video or image sequences captured by a fixed or mobile surveillance camera, including moving object detection, segmentation and recognition. By using it, we can be notified immediately in an abnormal situation. Pedestrian detection plays an important role in an intelligent video surveillance system, and it is also a key technology in the field of intelligent vehicle. So pedestrian detection has very vital significance in traffic management optimization, security early warn and abnormal behavior detection. Generally, pedestrian detection can be summarized as: first to estimate moving areas; then to extract features of region of interest; finally to classify using a classifier. Redundant wavelet transform (RWT) overcomes the deficiency of shift variant of discrete wavelet transform, and it has better performance in motion estimation when compared to discrete wavelet transform. Addressing the problem of the detection of multi-pedestrian with different speed, we present an algorithm of pedestrian detection based on motion estimation using RWT, combining histogram of oriented gradients (HOG) and support vector machine (SVM). Firstly, three intensities of movement (IoM) are estimated using RWT and the corresponding areas are segmented. According to the different IoM, a region proposal (RP) is generated. Then, the features of a RP is extracted using HOG. Finally, the features are fed into a SVM trained by pedestrian databases and the final detection results are gained. Experiments show that the proposed algorithm can detect pedestrians accurately and efficiently.
Effectiveness of Wavelet Denoising on Electroencephalogram Signals
Directory of Open Access Journals (Sweden)
Md. Mamun
2013-02-01
Full Text Available Analyzing Electroencephalogram (EEG signal is a challenge due to the various artifacts used by Electromyogram, eye blink and Electrooculogram. The present de-noising techniques that are based on the frequency selective filtering suffers from a substantial loss of the EEG data. Noise removal using wavelet has the characteristic of preserving signal uniqueness even if noise is going to be minimized. To remove noise from EEG signal, this research employed discrete wavelet transform. Root mean square difference has been used to find the usefulness of the noise elimination. In this research, four different discrete wavelet functions have been used to remove noise from the Electroencephalogram signal gotten from two different types of patients (healthy and epileptic to show the effectiveness of DWT on EEG noise removal. The result shows that the WF orthogonal meyer is the best one for noise elimination from the EEG signal of epileptic subjects and the WF Daubechies 8 (db8 is the best one for noise elimination from the EEG signal on healthy subjects.
Effectiveness of Wavelet Denoising on Electroencephalogram Signals
Directory of Open Access Journals (Sweden)
Md. Mamun
2013-01-01
Full Text Available Analyzing Electroencephalogram (EEG signal is a challenge due to the various artifacts used by Electromyogram,eye blink and Electrooculogram. The present de-noising techniques that are based on the frequency selective filteringsuffers from a substantial loss of the EEG data. Noise removal using wavelet has the characteristic of preservingsignal uniqueness even if noise is going to be minimized. To remove noise from EEG signal, this research employeddiscrete wavelet transform. Root mean square difference has been used to find the usefulness of the noiseelimination. In this research, four different discrete wavelet functions have been used to remove noise from theElectroencephalogram signal gotten from two different types of patients (healthy and epileptic to show theeffectiveness of DWT on EEG noise removal. The result shows that the WF orthogonal meyer is the best one fornoise elimination from the EEG signal of epileptic subjects and the WF Daubechies 8 (db8 is the best one for noiseelimination from the EEG signal on healthy subjects.
Wavelets in Recognition of Bird Sounds
Directory of Open Access Journals (Sweden)
Juha T. Tanttu
2007-01-01
Full Text Available This paper presents a novel method to recognize inharmonic and transient bird sounds efficiently. The recognition algorithm consists of feature extraction using wavelet decomposition and recognition using either supervised or unsupervised classifier. The proposed method was tested on sounds of eight bird species of which five species have inharmonic sounds and three reference species have harmonic sounds. Inharmonic sounds are not well matched to the conventional spectral analysis methods, because the spectral domain does not include any visible trajectories that computer can track and identify. Thus, the wavelet analysis was selected due to its ability to preserve both frequency and temporal information, and its ability to analyze signals which contain discontinuities and sharp spikes. The shift invariant feature vectors calculated from the wavelet coefficients were used as inputs of two neural networks: the unsupervised self-organizing map (SOM and the supervised multilayer perceptron (MLP. The results were encouraging: the SOM network recognized 78% and the MLP network 96% of the test sounds correctly.
Wireless Light-Emitting Electrochemical Rotors.
Eßmann, Vera; Voci, Silvia; Loget, Gabriel; Sojic, Neso; Schuhmann, Wolfgang; Kuhn, Alexander
2017-10-05
Bipolar electrochemistry has been shown to enable and control various kinds of propulsion of nonwired conducting objects: translation, rotation, and levitation. There is a very rapid development in the field of controlled motion combined with other functionalities. Here we integrate two different concepts in one system to generate wireless electrochemical motion of a specifically designed rotor and track its polarization simultaneously by electrochemical light emission. Locally produced hydrogen bubbles at the cathodic pole of the bipolar rotor are the driving force of the motion, whereas [Ru(bpy)3]Cl2 and tripropylamine react at the anodic extremity, thus generating an electrochemiluminescence signal with an intensity directly correlated with the orientation of the rotor arms. This allows in a straightforward way the qualitative visualization of the changing interfacial potential differences during rotation and shows for the first time that light emission can be coupled to autonomously rotating bipolar electrodes.
Wind Turbine Rotors with Active Vibration Control
DEFF Research Database (Denmark)
Svendsen, Martin Nymann
This thesis presents a framework for structural modeling, analysis and active vibration damping of rotating wind turbine blades and rotors. A structural rotor model is developed in terms of finite beam elements in a rotating frame of reference. The element comprises a representation of general...... formulation. The element provides an accurate representation of the eigenfrequencies and whirling modes of the gyroscopic system, and identifies lightly damped edge-wise modes. By adoption of a method for active, collocated resonant vibration of multi-degree-of-freedom systems it is demonstrated...... that these are geometrically well separated. For active vibration control in three-bladed wind turbine rotors the present work presents a resonance-based method for groups of one collective and two whirling modes. The controller is based on the existing resonant format and introduces a dual system targeting the collective...
Evolution of Rotor Wake in Swirling Flow
El-Haldidi, Basman; Atassi, Hafiz; Envia, Edmane; Podboy, Gary
2000-01-01
A theory is presented for modeling the evolution of rotor wakes as a function of axial distance in swirling mean flows. The theory, which extends an earlier work to include arbitrary radial distributions of mean swirl, indicates that swirl can significantly alter the wake structure of the rotor especially at large downstream distances (i.e., for moderate to large rotor-stator spacings). Using measured wakes of a representative scale model fan stage to define the mean swirl and initial wake perturbations, the theory is used to predict the subsequent evolution of the wakes. The results indicate the sensitivity of the wake evolution to the initial profile and the need to have complete and consistent initial definition of both velocity and pressure perturbations.
Coupled rotor/airframe vibration analysis
Sopher, R.; Studwell, R. E.; Cassarino, S.; Kottapalli, S. B. R.
1982-01-01
A coupled rotor/airframe vibration analysis developed as a design tool for predicting helicopter vibrations and a research tool to quantify the effects of structural properties, aerodynamic interactions, and vibration reduction devices on vehicle vibration levels is described. The analysis consists of a base program utilizing an impedance matching technique to represent the coupled rotor/airframe dynamics of the system supported by inputs from several external programs supplying sophisticated rotor and airframe aerodynamic and structural dynamic representation. The theoretical background, computer program capabilities and limited correlation results are presented in this report. Correlation results using scale model wind tunnel results show that the analysis can adequately predict trends of vibration variations with airspeed and higher harmonic control effects. Predictions of absolute values of vibration levels were found to be very sensitive to modal characteristics and results were not representative of measured values.
Diagnosis of wind turbine rotor system
DEFF Research Database (Denmark)
Niemann, Hans Henrik; Mirzaei, Mahmood; Henriksen, Lars Christian
2016-01-01
is based on available standard sensors on wind turbines. The method can be used both on-line as well as off-line. Faults or changes in the rotor system will result in asymmetries, which can be monitored and diagnosed. This can be done by using the multi-blade coordinate transformation. Changes in the rotor......This paper describes a model free method for monitoring and fault diagnosis of the elements in a rotor system for a wind turbine. The diagnosis as well as the monitoring is done without using any model of the wind turbine and the applied controller or a description of the wind profile. The method...... system that can be diagnosed and monitored are: actuator faults, sensor faults and internal blade changes as e.g. change in mass of a blade....
[Wavelet entropy analysis of spontaneous EEG signals in Alzheimer's disease].
Zhang, Meiyun; Zhang, Benshu; Chen, Ying
2014-08-01
Wavelet entropy is a quantitative index to describe the complexity of signals. Continuous wavelet transform method was employed to analyze the spontaneous electroencephalogram (EEG) signals of mild, moderate and severe Alzheimer's disease (AD) patients and normal elderly control people in this study. Wavelet power spectrums of EEG signals were calculated based on wavelet coefficients. Wavelet entropies of mild, moderate and severe AD patients were compared with those of normal controls. The correlation analysis between wavelet entropy and MMSE score was carried out. There existed significant difference on wavelet entropy among mild, moderate, severe AD patients and normal controls (Pentropy for mild, moderate, severe AD patients was significantly lower than that for normal controls, which was related to the narrow distribution of their wavelet power spectrums. The statistical difference was significant (Pentropy of EEG and the MMSE score were significantly correlated (r= 0. 601-0. 799, Pentropy is a quantitative indicator describing the complexity of EEG signals. Wavelet entropy is likely to be an electrophysiological index for AD diagnosis and severity assessment.
Wavelet-based moment invariants for pattern recognition
Chen, Guangyi; Xie, Wenfang
2011-07-01
Moment invariants have received a lot of attention as features for identification and inspection of two-dimensional shapes. In this paper, two sets of novel moments are proposed by using the auto-correlation of wavelet functions and the dual-tree complex wavelet functions. It is well known that the wavelet transform lacks the property of shift invariance. A little shift in the input signal will cause very different output wavelet coefficients. The autocorrelation of wavelet functions and the dual-tree complex wavelet functions, on the other hand, are shift-invariant, which is very important in pattern recognition. Rotation invariance is the major concern in this paper, while translation invariance and scale invariance can be achieved by standard normalization techniques. The Gaussian white noise is added to the noise-free images and the noise levels vary with different signal-to-noise ratios. Experimental results conducted in this paper show that the proposed wavelet-based moments outperform Zernike's moments and the Fourier-wavelet descriptor for pattern recognition under different rotation angles and different noise levels. It can be seen that the proposed wavelet-based moments can do an excellent job even when the noise levels are very high.
EEG Signal Decomposition and Improved Spectral Analysis Using Wavelet Transform
National Research Council Canada - National Science Library
Bhatti, Muhammad
2001-01-01
EEG (Electroencephalograph), as a noninvasive testing method, plays a key role in the diagnosing diseases, and is useful for both physiological research and medical applications. Wavelet transform (WT...
Polynomial Representations for a Wavelet Model of Interest Rates
Directory of Open Access Journals (Sweden)
Dennis G. Llemit
2015-12-01
Full Text Available In this paper, we approximate a non – polynomial function which promises to be an essential tool in interest rates forecasting in the Philippines. We provide two numerical schemes in order to generate polynomial functions that approximate a new wavelet which is a modification of Morlet and Mexican Hat wavelets. The first is the Polynomial Least Squares method which approximates the underlying wavelet according to desired numerical errors. The second is the Chebyshev Polynomial approximation which generates the required function through a sequence of recursive and orthogonal polynomial functions. We seek to determine the lowest order polynomial representations of this wavelet corresponding to a set of error thresholds.
Wavelet coherence model for diagnosis of Alzheimer disease.
Sankari, Ziad; Adeli, Hojjat; Adeli, Anahita
2012-10-01
This article presents a wavelet coherence investigation of electroencephalograph (EEG) readings acquired from patients with Alzheimer disease (AD) and healthy controls. Pairwise electrode wavelet coherence is calculated over each frequency band (delta, theta, alpha, and beta). For comparing the synchronization fraction of 2 EEG signals, a wavelet coherence fraction is proposed which is defined as the fraction of the signal time during which the wavelet coherence value is above a certain threshold. A one-way analysis of variance test shows a set of statistically significant differences in wavelet coherence between AD and controls. The wavelet coherence method is effective for studying cortical connectivity at a high temporal resolution. Compared with other conventional AD coherence studies, this study takes into account the time-frequency changes in coherence of EEG signals and thus provides more correlational details. A set of statistically significant differences was found in the wavelet coherence among AD and controls. In particular, temporocentral regions show a significant decrease in wavelet coherence in AD in the delta band, and the parietal and central regions show significant declines in cortical connectivity with most of their neighbors in the theta and alpha bands. This research shows that wavelet coherence can be used as a powerful tool to differentiate between healthy elderly individuals and probable AD patients.
Discrete Wavelet Transform-Partial Least Squares Versus Derivative ...
African Journals Online (AJOL)
Discrete Wavelet Transform-Partial Least Squares Versus Derivative Ratio Spectrophotometry for Simultaneous Determination of Chlorpheniramine Maleate and Dexamethasone in the Presence of Parabens in Pharmaceutical Dosage Form.
Modal dynamics of structures with bladed isotropic rotors and its complexity for 2-bladed rotors
DEFF Research Database (Denmark)
Hansen, Morten Hartvig
2016-01-01
The modal dynamics of structures with bladed isotropic rotors is analyzed using Hill’s method. First, analytical derivation of the periodic system matrix shows that isotropic rotors with more than two blades can be represented by an exact Fourier series with 3/rev as the highest order. For 2-bladed...... rotors, the inverse mass matrix has an infinite Fourier series with harmonic components of decreasing norm, thus the system matrix can be approximated by a truncated Fourier series of predictable accuracy. Second, a novel method for automatically identifying the principal solutions of Hill’s eigenvalue...
ASPECTS REGARDING THE ROTOR BLADE GEOMETRY
Directory of Open Access Journals (Sweden)
MARZA Carmen
2017-05-01
Full Text Available The consumers’ energy needs and the variable wind potential have led the wind turbine producers to construct turbines that could efficiently operate in an as wide as possible range of wind speed power and domain. The rotor blade geometry is one of the factors that directly affect the turbine efficiency. The performance of the wind turbine depends upon blade and shape size but also upon their number. One of the main objectives in the design of the rotor blades lies in having an aerodynamic shape with high lift capacity and small drag force.
Variable diameter wind turbine rotor blades
Jamieson, Peter McKeich; Hornzee-Jones, Chris; Moroz, Emilian M.; Blakemore, Ralph W.
2005-12-06
A system and method for changing wind turbine rotor diameters to meet changing wind speeds and control system loads is disclosed. The rotor blades on the wind turbine are able to adjust length by extensions nested within or containing the base blade. The blades can have more than one extension in a variety of configurations. A cable winching system, a hydraulic system, a pneumatic system, inflatable or elastic extensions, and a spring-loaded jack knife deployment are some of the methods of adjustment. The extension is also protected from lightning by a grounding system.
Power Properties of Two Interacting Wind Turbine Rotors
DEFF Research Database (Denmark)
Okulov, Valery; Mikkelsen, Robert Flemming; Sørensen, Jens Nørkær
2016-01-01
rotors are threebladed and designed using blade element/lifting line (BE/LL) optimum theory at a tip speed ratio, λ, of 5 with a constant design lift coefficient along the span, CL= 0.8. Measurements of the rotor characteristics were conducted by strain sensors installed in the rotor mounting...
Power Properties of Two Interacting Wind Turbine Rotors
DEFF Research Database (Denmark)
Okulov, Valery; Mikkelsen, Robert Flemming; Sørensen, Jens Nørkær
2017-01-01
rotors are three-bladed and designed using blade element/lifting line (BE/LL) optimum theory at a tip-speed ratio, λ, of 5 with a constant design lift coefficient along the span, CL = 0.8. Measurements of the rotor characteristics were conducted by strain sensors installed in the rotor mounting...
Calculation in the Field of Segmental Rotor Machines Taking into ...
African Journals Online (AJOL)
The stator mmf over a segment of the segmental rotor reluctance machine is treated as an infinite array of generators feeding a common busbar, and the magnetic potential of the rotor segment is obtained as the potential of the equivalent busbar. The rotor potential for any airgap profile is readily obtained and it is shown ...
Fine tuning of molecular rotor function in photochemical molecular switches
ter Wiel, Matthijs K. J.; Feringa, Ben L.
2009-01-01
Molecular switches are used as scaffolds for the construction of controlled molecular rotors. The internal position of the switching entity in the molecule controls the dynamic behaviour of the rotor moiety in the molecule. Six new molecular motors with o-xylyl rotor moieties were prepared on the
Light Rotor: The 10-MW reference wind turbine
DEFF Research Database (Denmark)
Bak, Christian; Bitsche, Robert; Yde, Anders
2012-01-01
This paper describes the design of a rotor and a wind turbine for an artificial 10-MW wind turbine carried out in the Light Rotor project. The turbine called the Light Rotor 10-MW Reference Wind Turbine (LR10-MW RWT), is designed with existing methods and techniques and serves as a reference...
Dovetail Rotor Construction For Permanent-Magnet Motors
Kintz, Lawrence J., Jr.; Puskas, William J.
1988-01-01
New way of mounting magnets in permanent-magnet, electronically commutated, brushless dc motors. Magnets wedge shaped, tapering toward center of rotor. Oppositely tapered pole pieces, electron-beam welded to rotor hub, retain magnets against centrifugal force generated by spinning rotor. To avoid excessively long electron-beam welds, pole pieces assembled in segments rather than single long bars.
Effect of Rotor Diameter on the Thermal Stresses of a Turbine Rotor Model
Dávalos, J. O.; García, J. C.; Urquiza, G.; Castro-Gómez, L. L.; Rodríguez, J. A.; De Santiago, O.
2016-04-01
Thermal stresses in a simplified steam turbine rotor model during a cold startup are analyzed using finite element analysis (FEA). In order to validate the numerical model, an experimental array is developed in which a hollow cylinder is heated with hot air in the external surface. At the thick wall of the cylinder, temperature distribution is measured in real time, while at the same time an algorithm computes thermal stresses. Additional computational fluid dynamics (CFD) calculations are made to obtain magnitudes of velocity and pressure in order to compute convective heat transfer coefficient. The experimental results show good agreement with the FEA computations. To evaluate the effect of rotor diameter size, FEA computations with variation in external and internal diameters are performed. Results show that thermal stresses are proportional to rotor diameter size. Also, zones of higher stress concentration are found in the external and internal surfaces of the rotor.
Time Frequency Features of Rotor Systems with Slowly Varying Mass
Directory of Open Access Journals (Sweden)
Tao Yu
2011-01-01
Full Text Available With the analytic method and numerical method respectively, the asymptotic solutions and finite element model of rotor system with single slowly varying mass is obtained to investigate the time frequency features of such rotor system; furthermore, with given model of slowly varying mass, the rotor system with dual slowly varying mass is studied. For the first order approximate solution is used, there exists difference between the results with analytic method and numerical method. On the base of common characteristics of rotor system with dual slowly varying mass, the general rules and formula describing the frequency distribution of rotor system with multiple slowly varying mass are proposed.
T700 power turbine rotor multiplane/multispeed balancing demonstration
Burgess, G.; Rio, R.
1979-01-01
Research was conducted to demonstrate the ability of influence coefficient based multispeed balancing to control rotor vibration through bending criticals. Rotor dynamic analyses were conducted of the General Electric T700 power turbine rotor. The information was used to generate expected rotor behavior for optimal considerations in designing a balance rig and a balance technique. The rotor was successfully balanced 9500 rpm. Uncontrollable coupling behavior prevented observations through the 16,000 rpm service speed. The balance technique is practical and with additional refinement it can meet production standards.
Optical Shaft-Angle Encoder For Helicopter Rotor
Golub, Robert A.; Fitzpatrick, Fred; Dennis, Dale V.; Taylor, Bryant D.
1993-01-01
Angular position of helicopter rotor blade determined precisely. Accomplished by use of optical shaft-angle encoder called "256 Ring" on rotor swashplate. Each 360 degree rotation of helicopter main rotor broken down into 256 reflective segments. As rotor rotates, beam of light reflected in turn from each segment into optoelectronic system. One of 256 segments reflects larger pulse than others do. Position of rotor determined by counting number of pulses after this reference pulse. While swashplate mounting requirements unique to each type of helicopter, concept applicable to all types of rotorcraft.
A VORTEX MODEL OF A HELICOPTER ROTOR
Directory of Open Access Journals (Sweden)
Valentin BUTOESCU
2009-06-01
Full Text Available A vortex model of a helicopter rotor is presented. Each blade of the rotor has three degrees of freedom: flapping, lagging and feathering. The motions after each degree of freedom are also known for all blades. The blade is modelled as a thin vortex surface. The wakes are free fluid surfaces. A system of five equations are obtained: the first one is the integral equation of the lifting surface (rotor, the next three describe the wakes motion, and the last one relates the vortex strength on the wakes and the variation of vorticity on the rotor. A numerical solution of this system is presented. To avoid the singularities that can occur due to the complexity of vortex system, a desingularized model of the vortex core was adopted. A Mathcad worksheet containing the method has been written.The original contribution of the work. The calculation method of the motion of the wakes free vortex system, the development of the vortex cores in time and a new method to approximate the aerodynamic influence of remoted wake regions.
Development of the optimum rotor theories
DEFF Research Database (Denmark)
Okulov, Valery; Sørensen, Jens Nørkær; van Kuik, Gijs A.M.
The purpose of this study is the examination of optimum rotor theories with ideal load distributions along the blades, to analyze some of the underlying ideas and concepts, as well as to illuminate them. The book gives the historical background of the issue and presents the analysis of the proble...
Impedance Calculations of Induction Machine Rotor Conductors ...
African Journals Online (AJOL)
The exact calculation of the impedance of induction machine rotor conductors at several operating frequencies are necessary if the dynamic behaviour of the machine is to give a good correlation between the simulated starting torque and current and the experimental results. This paper describes a method of' calculating ...
The Evolution of Rotor and Blade Design
Energy Technology Data Exchange (ETDEWEB)
Tangler, J.
2000-08-01
The objective of this paper is to provide a historical perspective of the evolution of rotor and blade design during the last 20 years. This evolution is a balanced integration of economic, aerodynamic, structural dynamic, noise, and aesthetic considerations, which are known to be machine type and size dependent.
Rotor Vibration Reduction via Active Hybrid Bearings
DEFF Research Database (Denmark)
Nicoletti, Rodrigo; Santos, Ilmar
2002-01-01
The use of fluid power to reduce and control rotor vibration in rotating machines is investigated. An active hybrid bearing is studied, whose main objective is to reduce wear and vibration between rotating and stationary machinery parts. By injecting pressurised oil into the oil film, through...... with experiment, and simulations show the feasibility of controlling shaft vibration through this active device....
Rotor Design for Diffuser Augmented Wind Turbines
Directory of Open Access Journals (Sweden)
Søren Hjort
2015-09-01
Full Text Available Diffuser augmented wind turbines (DAWTs can increase mass flow through the rotor substantially, but have often failed to fulfill expectations. We address high-performance diffusers, and investigate the design requirements for a DAWT rotor to efficiently convert the available energy to shaft energy. Several factors can induce wake stall scenarios causing significant energy loss. The causality between these stall mechanisms and earlier DAWT failures is discussed. First, a swirled actuator disk CFD code is validated through comparison with results from a far wake swirl corrected blade-element momentum (BEM model, and horizontal-axis wind turbine (HAWT reference results. Then, power efficiency versus thrust is computed with the swirled actuator disk (AD code for low and high values of tip-speed ratios (TSR, for different centerbodies, and for different spanwise rotor thrust loading distributions. Three different configurations are studied: The bare propeller HAWT, the classical DAWT, and the high-performance multi-element DAWT. In total nearly 400 high-resolution AD runs are generated. These results are presented and discussed. It is concluded that dedicated DAWT rotors can successfully convert the available energy to shaft energy, provided the identified design requirements for swirl and axial loading distributions are satisfied.
rotor of the SC rotating condenser
1974-01-01
The rotor of the rotating condenser was installed instead of the tuning fork as the modulating element of the radiofrequency system, when the SC accelerator underwent extensive improvements between 1973 to 1975 (see object AC-025). The SC was the first accelerator built at CERN. It operated from August 1957 until it was closed down at the end of 1990.
Electrocardiogram de-noising based on forward wavelet transform ...
Indian Academy of Sciences (India)
noising based on thresholding of the coefficients obtained from the application of the Forward Wavelet Transform Translation Invariant (FWT_TI) to each Bionic Wavelet coefficient. The De-noise De-noised ECG is obtained from the application ...
adaptive single-pole autoreclosure scheme based on wavelet ...
African Journals Online (AJOL)
DEPT OF AGRICULTURAL ENGINEERING
WAVELET TRANSFORM AND MULTILAYER PERCEPTRON. E. A. Frimpong, P. Y. Okyere and E. K. Anto. Department of ... value to achieve successful autoreclosing (Park et al., 2004; Megahed et al., 2003; Kim et al.,. 2000; Ahn ... transform (Fitton et al., 1996; Zoric et al.,. 2000), and wavelet transform (Yu and Song,. 1998a ...
Wavelet Transforms: Application to Data Analysis - I -10 ...
Indian Academy of Sciences (India)
include image processing and artificial intelligence. ... Fourier domain. Broadly speaking, two different fea- tures common to all wavelets are responsible for their utility value. The basis functions of the wavelets are produced from two units, the ... Here, j and k take integral values, the values of j range from 0 to 00, whereas ...
Polarized spectral features of human breast tissues through wavelet ...
Indian Academy of Sciences (India)
2015-11-27
Nov 27, 2015 ... Fluorescence characteristics of human breast tissues are investigated through wavelet transform and principal component analysis (PCA). Wavelet transform of polarized fluorescence spectra of human breast tissues is found to localize spectral features that can reliably differentiate different tissue types.
Noisy signal filtration using complex wavelet basis sets
Yaseen, A. S.; Pavlova, O. N.; Pavlov, A. N.
2017-07-01
Methods of noisy signal filtration using a discrete wavelet transform (DWT) with real basis sets of the Daubechies family are compared to methods employing a double-density dual-tree complex wavelet transform (DDCWT) with excess (nonorthonormalized) basis sets. Recommendations concerning the choice of filter parameters for minimization of the error of noisy signal filtration are formulated.
SVD-based digital image watermarking using complex wavelet ...
Indian Academy of Sciences (India)
A new robust method of non-blind image watermarking is proposed in this paper. The suggested method is performed by modiﬁcation on singular value decomposition (SVD) of images in Complex Wavelet Transform (CWT) domain while CWT provides higher capacity than the real wavelet domain. Modiﬁcation of the ...
Multidimensional filter banks and wavelets research developments and applications
Levy, Bernard
1997-01-01
Multidimensional Filter Banks and Wavelets: Reserach Developments and Applications brings together in one place important contributions and up-to-date research results in this important area. Multidimensional Filter Banks and Wavelets: Research Developments and Applications serves as an excellent reference, providing insight into some of the most important research issues in the field.
Fault diagnosis in gear using wavelet envelope power spectrum ...
African Journals Online (AJOL)
An experimental data set is used to compare the diagnostic capability of the fast Fourier transform power spectrum to the wavelet envelope power spectrum as respectively computed using Laplace and Morlet wavelet functions. The gear testing apparatus was used for experimental studies to obtain the vibration signal from ...
Multiresolution signal decomposition schemes. Part 2: Morphological wavelets
H.J.A.M. Heijmans (Henk); J. Goutsias (John)
1999-01-01
htmlabstractIn its original form, the wavelet transform is a linear tool. However, it has been increasingly recognized that nonlinear extensions are possible. A major impulse to the development of nonlinear wavelet transforms has been given by the introduction of the lifting scheme by Sweldens. The
Wavelet transform of generalized functions in K′{Mp} spaces
Indian Academy of Sciences (India)
Using convolution theory in K { M p } space we obtain bounded results for the wavelet transform. Calderón-type reproducing formula is derived in distribution sense as an application of the same. An inversion formula for the wavelet transform of generalized functions is established.
A Load Balanced Domain Decomposition Method Using Wavelet Analysis
Energy Technology Data Exchange (ETDEWEB)
Jameson, L; Johnson, J; Hesthaven, J
2001-05-31
Wavelet Analysis provides an orthogonal basis set which is localized in both the physical space and the Fourier transform space. We present here a domain decomposition method that uses wavelet analysis to maintain roughly uniform error throughout the computation domain while keeping the computational work balanced in a parallel computing environment.
Utilization of rotor kinetic energy storage for hybrid vehicles
Hsu, John S [Oak Ridge, TN
2011-05-03
A power system for a motor vehicle having an internal combustion engine, the power system comprises an electric machine (12) further comprising a first excitation source (47), a permanent magnet rotor (28) and a magnetic coupling rotor (26) spaced from the permanent magnet rotor and at least one second excitation source (43), the magnetic coupling rotor (26) also including a flywheel having an inertial mass to store kinetic energy during an initial acceleration to an operating speed; and wherein the first excitation source is electrically connected to the second excitation source for power cycling such that the flywheel rotor (26) exerts torque on the permanent magnet rotor (28) to assist braking and acceleration of the permanent magnet rotor (28) and consequently, the vehicle. An axial gap machine and a radial gap machine are disclosed and methods of the invention are also disclosed.
Rotor for a line start permanent magnet machine
Melfi, Mike; Schiferl, Rich; Umans, Stephen
2017-07-11
A rotor comprises laminations with a plurality of rotor bar slots with an asymmetric arrangement about the rotor. The laminations also have magnet slots equiangularly spaced about the rotor. The magnet slots extend near to the rotor outer diameter and have permanent magnets disposed in the magnet slots creating magnetic poles. The magnet slots may be formed longer than the permanent magnets disposed in the magnets slots and define one or more magnet slot apertures. The permanent magnets define a number of poles and a pole pitch. The rotor bar slots are spaced from adjacent magnet slots by a distance that is at least 4% of the pole pitch. Conductive material is disposed in the rotor bar slots, and in some embodiments, may be disposed in the magnet slot apertures.
Speed benefits of tilt-rotor designs for LHX
Mcdaniel, R. L.; Adams, J. V.; Balberde, A.; Dereska, S. P.; Gearin, C. J.; Shaw, D. E.
1983-01-01
The merits of an advanced helicopter and a tilt rotor aircraft for light utility, scout, and attack roles in combat missions envisioned for the year 2000 and beyond were compared. It is demonstrated that speed has increasing value for 11 different mission classes broadly encompassing the intended LHX roles. Helicopter speeds beyond 250 knots are judged to have lower military worth. Since the tilt rotor concept offers a different cost speed relationship than that of helicopters, assessment of a tilt rotor LHX variant was warranted. The technical parameters of an advanced tilt rotor are stablished. Parameters of representative missions are identified, computed relative value of the tilt rotor LHX are compared to the baseline helicopter, a first-order life cycle estimate for the tilt rotor LHX is established, military worth of the alternative design is computed and the results are evaluated. It is suggested that the tilt rotor is the solution with the greatest capability for meeting the uncertainties of future needs.
Wavelet discretization of the engineered barrier system. Technical report
Energy Technology Data Exchange (ETDEWEB)
Nasif, Hesham; Umeki, Hiroyuki [Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan)
2001-06-01
The relative merits of the wavelet-Galerkin solution of the nonlinear system of partial differential equations arising from a model formulation of migration of high-level radioactive waste (HLW) are quantitatively and qualitatively analyzed. Wavelet functions are generated by dilation and translation on a scaling function. The wavelet functions are localized in space and compactly supported, so these properties can be utilized to solve differential equations that have severe 'stiff'. A mathematical model for predicting the nuclide migration of (HLW) was formulated and compared with the results from the reference case. The model, which is wavelet-discretized model, is devised to be very reasonable and accurate by proper selection of wavelet order and dilation order pair. We would like to thank Mr. Atsushi Neyama (Computer Software Development Co., Ltd.) and Prof. Atsuyuki Suzuki (Department of Quantum Engineering and Systems Science) for some productive discussions and their critical reviews of this study. (author)
Some Results on the Wavelet Packet Decomposition of Nonstationary Processes
Directory of Open Access Journals (Sweden)
Sami Touati
2002-11-01
Full Text Available Wavelet/wavelet packet decomposition has become a very useful tool in describing nonstationary processes. Important examples of nonstationary processes encountered in practice are cyclostationary processes or almost-cyclostationary processes. In this paper, we study the statistical properties of the wavelet packet decomposition of a large class of nonstationary processes, including in particular cyclostationary and almost-cyclostationary processes. We first investigate in a general framework, the existence and some properties of the cumulants of wavelet packet coefficients. We then study more precisely the almost-cyclostationary case, and determine the asymptotic distributions of wavelet packet coefficients. Finally, we particularize some of our results in the cyclostationary case before providing some illustrative simulations.
International Conference and Workshop on Fractals and Wavelets
Barnsley, Michael; Devaney, Robert; Falconer, Kenneth; Kannan, V; PB, Vinod
2014-01-01
Fractals and wavelets are emerging areas of mathematics with many common factors which can be used to develop new technologies. This volume contains the selected contributions from the lectures and plenary and invited talks given at the International Workshop and Conference on Fractals and Wavelets held at Rajagiri School of Engineering and Technology, India from November 9-12, 2013. Written by experts, the contributions hope to inspire and motivate researchers working in this area. They provide more insight into the areas of fractals, self similarity, iterated function systems, wavelets and the applications of both fractals and wavelets. This volume will be useful for the beginners as well as experts in the fields of fractals and wavelets.
Introduction to wavelet-based compression of medical images.
Schomer, D F; Elekes, A A; Hazle, J D; Huffman, J C; Thompson, S K; Chui, C K; Murphy, W A
1998-01-01
Medical image compression can significantly enhance the performance of picture archiving and communication systems and may be considered an enabling technology for telemedicine. The wavelet transform is a powerful mathematical tool with many unique qualities that are useful for image compression and processing applications. Although wavelet concepts can be traced back to 1910, the mathematics of wavelets have only recently been formalized. By exploiting spatial and spectral information redundancy in images, wavelet-based methods offer significantly better results for compressing medical images than do compression algorithms based on Fourier methods, such as the discrete cosine transform used by the Joint Photographic Experts Group. Furthermore, wavelet-based compression does not suffer from blocking artifacts, and the restored image quality is generally superior at higher compression rates.
Combining Wavelet Transform and Hidden Markov Models for ECG Segmentation
Directory of Open Access Journals (Sweden)
Jérôme Boudy
2007-01-01
Full Text Available This work aims at providing new insights on the electrocardiogram (ECG segmentation problem using wavelets. The wavelet transform has been originally combined with a hidden Markov models (HMMs framework in order to carry out beat segmentation and classification. A group of five continuous wavelet functions commonly used in ECG analysis has been implemented and compared using the same framework. All experiments were realized on the QT database, which is composed of a representative number of ambulatory recordings of several individuals and is supplied with manual labels made by a physician. Our main contribution relies on the consistent set of experiments performed. Moreover, the results obtained in terms of beat segmentation and premature ventricular beat (PVC detection are comparable to others works reported in the literature, independently of the type of the wavelet. Finally, through an original concept of combining two wavelet functions in the segmentation stage, we achieve our best performances.
Discrete wavelet analysis for multiparticle production experiments
Georgopoulos, G; Vassiliou, Maria
2000-01-01
In high energy nucleus-nucleus collisions (SPS, RHIC, LHC) and in cosmic ray interactions, many particles are produced in the available phase space. We make an attempt to apply the wavelets technique in order to classify such events according to the event pattern and also to locate the so-called "clustering" in a distribution. After describing the method, we demonstrate its power (a) to a single event, produced by a pion condensation theoretical model, (b) to a sample of Pb-Pb simulated data at 158 GeV/c per nucleon taking into account all the experimental uncertainties. (15 refs).
Lung tissue classification using wavelet frames.
Depeursinge, Adrien; Sage, Daniel; Hidki, Asmâa; Platon, Alexandra; Poletti, Pierre-Alexandre; Unser, Michael; Müller, Henning
2007-01-01
We describe a texture classification system that identifies lung tissue patterns from high-resolution computed tomography (HRCT) images of patients affected with interstitial lung diseases (ILD). This pattern recognition task is part of an image-based diagnostic aid system for ILDs. Five lung tissue patterns (healthy, emphysema, ground glass, fibrosis and microdules) selected from a multimedia database are classified using the overcomplete discrete wavelet frame decompostion combined with grey-level histogram features. The overall multiclass accuracy reaches 92.5% of correct matches while combining the two types of features, which are found to be complementary.
Bailey, Sarah
2012-05-01
Kangaroo mother care is a safe, simple method to care for low birth weight infants. This article looks at its origins, what is involved in kangaroo mother care and reviews the evidence for improved outcomes resulting from its implementation.
Directory of Open Access Journals (Sweden)
Stefania Salvatore
2016-07-01
Full Text Available Abstract Background Wastewater-based epidemiology (WBE is a novel approach in drug use epidemiology which aims to monitor the extent of use of various drugs in a community. In this study, we investigate functional principal component analysis (FPCA as a tool for analysing WBE data and compare it to traditional principal component analysis (PCA and to wavelet principal component analysis (WPCA which is more flexible temporally. Methods We analysed temporal wastewater data from 42 European cities collected daily over one week in March 2013. The main temporal features of ecstasy (MDMA were extracted using FPCA using both Fourier and B-spline basis functions with three different smoothing parameters, along with PCA and WPCA with different mother wavelets and shrinkage rules. The stability of FPCA was explored through bootstrapping and analysis of sensitivity to missing data. Results The first three principal components (PCs, functional principal components (FPCs and wavelet principal components (WPCs explained 87.5-99.6 % of the temporal variation between cities, depending on the choice of basis and smoothing. The extracted temporal features from PCA, FPCA and WPCA were consistent. FPCA using Fourier basis and common-optimal smoothing was the most stable and least sensitive to missing data. Conclusion FPCA is a flexible and analytically tractable method for analysing temporal changes in wastewater data, and is robust to missing data. WPCA did not reveal any rapid temporal changes in the data not captured by FPCA. Overall the results suggest FPCA with Fourier basis functions and common-optimal smoothing parameter as the most accurate approach when analysing WBE data.
Tottenham, Nim; Shapiro, Mor; Telzer, Eva H.; Humphreys, Kathryn L.
2012-01-01
In altricial species, like the human, the caregiver, very often the mother, is one of the most potent stimuli during development. The distinction between mothers and other adults is learned early in life and results in numerous behaviors in the child, most notably mother-approach and stranger wariness. The current study examined the influence of…
Pearce, Joseph Chilton
1994-01-01
Examines the nature of mother-child bonding from the prenatal stage through early infancy, discussing how the mother's actions, even before birth, stimulate her child's senses. Explains the crucial role that physical contact, breastfeeding, and visual stimuli have on mother-child bonding in human and animal newborns. (MDM)
Solar activity explored with new wavelet methods
Directory of Open Access Journals (Sweden)
H. Lundstedt
2005-06-01
Full Text Available In order to improve the forecasts of the impact of solar activity on the terrestrial environment on time scales longer than days, improved understanding and forecasts of the solar activity are needed. The first results of a new approach of modelling and forecasting solar activity are presented. Time series of solar activity indicators, such as sunspot number, group sunspot number, F10.7, E10.7, solar magnetic mean field, Mount Wilson plage and sunspot index, have been studied with new wavelet methods; ampligrams and time-scale spectra. Wavelet power spectra of the sunspot number for the period 1610 up to the present show not only that a dramatic increase in the solar activity took place after 1940 but also that an interesting change occurred in 1990. The main 11-year solar cycle was further studied with ampligrams for the period after 1850. time-scale spectra were used to examine the processes behind the variability of the solar activity. Several interesting deterministic and more stochastic features were detected in the time series of the solar activity indicators. The solar nature of these features will be further studied. Keywords. Solar physics, astrophysics and astronomy (Magnetic fields; Stellar interiors and dynamo theory – Space plasma physics (nonlinear phenomena
ERG signal analysis using wavelet transform.
Barraco, R; Persano Adorno, D; Brai, M
2011-09-01
The wavelet analysis is a powerful tool for analyzing and detecting features of signals characterized by time-dependent statistical properties, as biomedical signals. The identification and the analysis of the components of these signals in the time-frequency domain, give meaningful information about the physiological mechanisms that govern them. This article presents the results of the wavelet analysis applied to the a-wave component of the human electroretinogram. In order to deepen and improve our knowledge about the behavior of the early photoreceptoral response, including the possible activation of interactions and correlations among the photoreceptors, we have detected and identified the stable time-frequency components of the a-wave, using six representative values of luminance. The results indicate the occurrence of three frequencies lying in the range 20-200 Hz. The lowest one is attributed to the summed activities of the photoreceptors. The others are weaker and at low luminance one of them does not occur. We relate them to the response of the rods and the cones whose aggregate activities are non-linear and typically exhibit self-organization under selective stimuli. The identification of the stable frequency components and of their times of occurrence helps us to shine light about the complex mechanisms governing the a-wave. The present results are promising toward the assessment of more refined model concerning the photoreceptoral activities.
Multifractal and wavelet analysis of epileptic seizures
Dick, Olga E.; Mochovikova, Irina A.
The aim of the study is to develop quantitative parameters of human electroencephalographic (EEG) recordings with epileptic seizures. We used long-lasting recordings from subjects with epilepsy obtained as part of their clinical investigation. The continuous wavelet transform of the EEG segments and the wavelet-transform modulus maxima method enable us to evaluate the energy spectra of the segments, to fin lines of local maximums, to gain the scaling exponents and to construct the singularity spectra. We have shown that the significant increase of the global energy with respect to background and the redistribution of the energy over the frequency range are observed in the patterns involving the epileptic activity. The singularity spectra expand so that the degree of inhomogenety and multifractality of the patterns enhances. Comparing the results gained for the patterns during different functional probes such as open and closed eyes or hyperventilation we demonstrate the high sensitivity of the analyzed parameters (the maximal global energy, the width and asymmetry of the singularity spectrum) for detecting the epileptic patterns.
Inertial Sensor Signals Denoising with Wavelet Transform
Directory of Open Access Journals (Sweden)
Ioana-Raluca EDU
2015-03-01
Full Text Available In the current paper we propose a new software procedure for processing data from an inertial navigation system boarded on a moving vehicle, in order to achieve accurate navigation information on the displacement of the vehicle in terms of position, speed, acceleration and direction. We divided our research in three phases. In the first phase of our research, we implemented a real-time evaluation criterion with the intention of achieving real-time data from an accelerometer. It is well-known that most errors in the detection of position, velocity and attitude in inertial navigation occur due to difficult numerical integration of noise. In the second phase, we were interested in achieving a better estimation and compensation of the gyro sensor angular speed measurements. The errors of these sensors occur because of their miniaturization, they cannot be eliminated but can be modelled by applying specific signal processing methods. The objective of both studies was to propose a signal processing algorithm, based on Wavelet filter, along with a criterion for evaluating and updating the optimal decomposition level of Wavelet transform for achieving accurate information from inertial sensors. In the third phase of our work we are suggesting the utility of a new complex algorithm for processing data from an inertial measurement unit, containing both miniaturized accelerometers and gyros, after undergoing a series of numerical simulations and after obtaining accurate information on vehicle displacement
Helicopter rotor noise investigation during ice accretion
Cheng, Baofeng
An investigation of helicopter rotor noise during ice accretion is conducted using experimental, theoretical, and numerical methods. This research is the acoustic part of a joint helicopter rotor icing physics, modeling, and detection project at The Pennsylvania State University Vertical Lift Research Center of Excellence (VLRCOE). The current research aims to provide acoustic insight and understanding of the rotor icing physics and investigate the feasibility of detecting rotor icing through noise measurements, especially at the early stage of ice accretion. All helicopter main rotor noise source mechanisms and their change during ice accretion are discussed. Changes of the thickness noise, steady loading noise, and especially the turbulent boundary layer - trailing edge (TBL-TE) noise due to ice accretion are identified and studied. The change of the discrete frequency noise (thickness noise and steady loading noise) due to ice accretion is calculated by using PSU-WOPWOP, an advanced rotorcraft acoustic prediction code. The change is noticeable, but too small to be used in icing detection. The small thickness noise change is due to the small volume of the accreted ice compared to that of the entire blade, although a large iced airfoil shape is used. For the loading noise calculation, two simplified methods are used to generate the loading on the rotor blades, which is the input for the loading noise calculation: 1) compact loading from blade element momentum theory, icing effects are considered by increasing the drag coefficient; and 2) pressure loading from the 2-D CFD simulation, icing effects are considered by using the iced airfoil shape. Comprehensive rotor broadband noise measurements are carried out on rotor blades with different roughness sizes and rotation speeds in two facilities: the Adverse Environment Rotor Test Stand (AERTS) facility at The Pennsylvania State University, and The University of Maryland Acoustic Chamber (UMAC). In both facilities the
Comparative evaluation of different wavelet thresholding methods for neural signal processing.
Barabino, Gianluca; Baldazzi, Giulia; Sulas, Eleonora; Carboni, Caterina; Raffo, Luigi; Pani, Danilo
2017-07-01
Neural signal decoding is the basis for the development of neuroprosthetic devices and systems. Depending on the part of the nervous system these signals are picked up from, different signal-to-noise ratios (SNR) can be experienced. Wavelet denoising is often adopted due to its capability of reducing, to some extent, the noise falling within the signal spectrum. Several variables influence the denoising quality, but usually the focus in on the selection of the best performing mother wavelet. However, the threshold definition and the way it is applied to the signal have a significant impact on the denoising quality, determining the amount of noise removed and the distortion introduced on the signal. This work presents a comparative analysis of different threshold definition and thresholding mechanisms on neural signals, either largely adopted for neural signal processing or not. In order to evaluate the quality of the denoising in terms of the introduced distortion, which is important when decoding is implemented through spike-sorting algorithms, a synthetic dataset built on real action potentials was used, creating signals with different SNR and characterized by an additive white Gaussian noise (AWGN). The obtained results reveal the superiority of an approach, originally conceived for noisy non-linear time series, over the more typical ones. When compared to the original signal, a correlation above 0.9 was obtained, while in terms of root mean square error (RMSE) an improvement of 13% and 33% was reported with respect to the Minimax and Universal thresholds respectively.
Wavelet-based Characterization of Small-scale Solar Emission Features at Low Radio Frequencies
Energy Technology Data Exchange (ETDEWEB)
Suresh, A. [Indian Institute of Science Education and Research, Pune-411008 (India); Sharma, R.; Oberoi, D. [National Centre for Radio Astrophysics, Tata Institute for Fundamental Research, Pune 411007 (India); Das, S. B. [Indian Institute of Science Education and Research, Kolkata-741249 (India); Pankratius, V.; Lonsdale, C. J.; Cappallo, R. J.; Corey, B. E.; Kratzenberg, E. [MIT Haystack Observatory, Westford, MA 01886 (United States); Timar, B. [California Institute of Technology, Pasadena, CA 91125 (United States); Bowman, J. D. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Briggs, F. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Deshpande, A. A. [Raman Research Institute, Bangalore 560080 (India); Emrich, D. [International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102 (Australia); Goeke, R. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Greenhill, L. J. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Hazelton, B. J. [Department of Physics, University of Washington, Seattle, WA 98195 (United States); Johnston-Hollitt, M. [School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140 (New Zealand); Kaplan, D. L. [Department of Physics, University of Wisconsin–Milwaukee, Milwaukee, WI 53201 (United States); Kasper, J. C., E-mail: akshay@students.iiserpune.ac.in [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); and others
2017-07-01
Low radio frequency solar observations using the Murchison Widefield Array have recently revealed the presence of numerous weak short-lived narrowband emission features, even during moderately quiet solar conditions. These nonthermal features occur at rates of many thousands per hour in the 30.72 MHz observing bandwidth, and hence necessarily require an automated approach for their detection and characterization. Here, we employ continuous wavelet transform using a mother Ricker wavelet for feature detection from the dynamic spectrum. We establish the efficacy of this approach and present the first statistically robust characterization of the properties of these features. In particular, we examine distributions of their peak flux densities, spectral spans, temporal spans, and peak frequencies. We can reliably detect features weaker than 1 SFU, making them, to the best of our knowledge, the weakest bursts reported in literature. The distribution of their peak flux densities follows a power law with an index of −2.23 in the 12–155 SFU range, implying that they can provide an energetically significant contribution to coronal and chromospheric heating. These features typically last for 1–2 s and possess bandwidths of about 4–5 MHz. Their occurrence rate remains fairly flat in the 140–210 MHz frequency range. At the time resolution of the data, they appear as stationary bursts, exhibiting no perceptible frequency drift. These features also appear to ride on a broadband background continuum, hinting at the likelihood of them being weak type-I bursts.
Kandala, Chari V.; Sundaram, Jaya; Govindarajan, K. N.; Butts, Chris L.; Subbiah, Jeyam
2009-03-01
Moisture and oil contents are important quality factors often measured and monitored in the processing and storage of food products such as corn and peanuts. For estimating these parameters for peanuts nondestructively a parallel-plate capacitance sensor was used in conjunction with an impedance analyzer. Impedance, phase angle and dissipation factor were measured for the parallel-plate system, holding the in-shell peanut samples between its plates, at frequencies ranging between 1MHz and 30 MHz in intervals of 0.5 MHz. The acquired signals were analyzed with discrete wavelet analysis. The signals were decomposed to 6 levels using Daubechies mother wavelet. The decomposition coefficients of the sixth level were passed onto a stepwise variable selection routine to select significant variables. A linear regression was developed using only the significant variables to predict the moisture and oil content of peanut pods (inshell peanuts) from the impedance measurements. The wavelet analysis yielded similar R2 values with fewer variables as compared to multiple linear and partial least squares regressions. The estimated values were found to be in good agreement with the standard values for the samples tested. Ability to estimate the moisture and oil contents in peanuts without shelling them will be of considerable help to the peanut industry.
Aerodynamic design of the National Rotor Testbed.
Energy Technology Data Exchange (ETDEWEB)
Kelley, Christopher Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-10-01
A new wind turbine blade has been designed for the National Rotor Testbed (NRT) project and for future experiments at the Scaled Wind Farm Technology (SWiFT) facility with a specific focus on scaled wakes. This report shows the aerodynamic design of new blades that can produce a wake that has similitude to utility scale blades despite the difference in size and location in the atmospheric boundary layer. Dimensionless quantities circulation, induction, thrust coefficient, and tip-speed-ratio were kept equal between rotor scales in region 2 of operation. The new NRT design matched the aerodynamic quantities of the most common wind turbine in the United States, the GE 1.5sle turbine with 37c model blades. The NRT blade design is presented along with its performance subject to the winds at SWiFT. The design requirements determined by the SWiFT experimental test campaign are shown to be met.
CFD simulations of the MEXICO rotor
DEFF Research Database (Denmark)
Bechmann, Andreas; Sørensen, Niels N.; Zahle, Frederik
2011-01-01
The wake behind a wind turbine model is investigated using Computational Fluid Dynamics (CFD), and results are compared with measurements. The turbine investigated is the three‐bladed test rotor (D = 4.5 m) used in the Model Experiments in Controlled Conditions (MEXICO) wind tunnel experiment....... During the MEXICO experiment, particle image velocimetry measurements of the induction upstream and downstream of the rotor were performed for different operating conditions, giving a unique dataset to verify theoretical models and CFD models. The present paper first describes the efforts in reproducing...... the experimental results using the Reynold‐Averaged Navier‐Stokes method. Second, three‐dimensional airfoil characteristics are extracted that allow simulations with simpler wake models. Copyright © 2011 John Wiley & Sons, Ltd....
Evolutionary Spectra Estimation of Field Measurement Typhoon Processes Using Wavelets
Directory of Open Access Journals (Sweden)
Guang-Dong Zhou
2015-01-01
Full Text Available This paper presents a wavelet-based method for estimating evolutionary power spectral density (EPSD of nonstationary stochastic oscillatory processes and its application to field measured typhoon processes. The EPSD, which is deduced in a closed form based on the definition of the EPSD and the algorithm of the continuous wavelet transform, can be formulated as a sum of squared moduli of the wavelet functions in time domain modulated by frequency-dependent coefficients that relate to the squared values of wavelet coefficients and two wavelet functions with different time shifts. A parametric study is conducted to examine the efficacy of the wavelet-based estimation method and the accuracy of different wavelets. The results indicate that all of the estimated EPSDs have acceptable accuracy in engineering application and the Morlet transform can provide desirable estimations in both time and frequency domains. Finally, the proposed method is adopted to investigate the time-frequency characteristics of the Typhoon Matsa measured in bridge site. The nonstationary energy distribution and stationary frequency component during the whole process are found. The work in this paper may promote an improved understanding of the nonstationary features of typhoon winds.
Kreeger, Richard E.; Tsao, Jen-Ching
2014-01-01
Testing of a thermally-protected helicopter rotor in the Icing Research Tunnel (IRT) was completed. Data included inter-cycle and cold blade ice shapes. Accreted ice shapes were thoroughly documented, including tracing, scanning and photographing. This was the first time this scanning capability was used outside of NASA. This type of data has never been obtained for a rotorcraft before. This data will now be used to validate the latest generation of icing analysis tools.
Balancing of Rigid and Flexible Rotors
1986-01-01
IA14 nf~VO1lS t’ , f,~ riabtiB SVM-12 Balancing of Rigid and Flexible Rotors Neville F. Rieger Stress Technology, Inc. 1986 The Shock end Vibration...a bearing or other Atructural components by fatigue . Unbalance is therefore recognized as an important potential cause of machinery failure. A number...runout on slow rotation, stress relaxation with time often heavy vibration during rota- "tion Section of blade or vane broken Visually observable; bearing
A Magnetorheological Fluid Damper for Rotor Applications
Forte, P.; Paternò, M.; Rustighi, E.
2004-01-01
Even though we are still far from industrial applications, in the last decade there has been increasing attention directed toward the employment of electrorheological (ER) and magnetorheological (MR) fluids in active bearings and active squeeze film dampers in rotordynamics. MR fluids react to magnetic fields undergoing reversible changes in their mechanical characteristics, viscosity, and stiffness in particular. In previous literature, some applications of ER fluids in rotor squeeze film da...
Quantum diffusion in the quasiperiodic kicked rotor
Lignier, Hans; Garreau, Jean Claude; Szriftgiser, Pascal; Delande, Dominique
2004-01-01
We study the mechanisms responsible for quantum diffusion in the quasiperiodic kicked rotor. We report experimental measurements of the diffusion constant on the atomic version of the system and develop a theoretical approach (based on the Floquet theorem) explaining the observations, especially the ``sub-Fourier'' character of the resonances observed in the vicinity of exact periodicity, i.e. the ability of the system to distinguish two neighboring driving frequencies in a time shorter than ...
Bunnoon, Pituk; Chalermyanont, Kusumal; Limsakul, Chusak
2010-02-01
This paper proposed the discrete transform and neural network algorithms to obtain the monthly peak load demand in mid term load forecasting. The mother wavelet daubechies2 (db2) is employed to decomposed, high pass filter and low pass filter signals from the original signal before using feed forward back propagation neural network to determine the forecasting results. The historical data records in 1997-2007 of Electricity Generating Authority of Thailand (EGAT) is used as reference. In this study, historical information of peak load demand(MW), mean temperature(Tmean), consumer price index (CPI), and industrial index (economic:IDI) are used as feature inputs of the network. The experimental results show that the Mean Absolute Percentage Error (MAPE) is approximately 4.32%. This forecasting results can be used for fuel planning and unit commitment of the power system in the future.
Li, Jingsong; Yu, Benli; Fischer, Horst
2015-04-01
This paper presents a novel methodology-based discrete wavelet transform (DWT) and the choice of the optimal wavelet pairs to adaptively process tunable diode laser absorption spectroscopy (TDLAS) spectra for quantitative analysis, such as molecular spectroscopy and trace gas detection. The proposed methodology aims to construct an optimal calibration model for a TDLAS spectrum, regardless of its background structural characteristics, thus facilitating the application of TDLAS as a powerful tool for analytical chemistry. The performance of the proposed method is verified using analysis of both synthetic and observed signals, characterized with different noise levels and baseline drift. In terms of fitting precision and signal-to-noise ratio, both have been improved significantly using the proposed method.
On the Daubechies-based wavelet differentiation matrix
Jameson, Leland
1993-01-01
The differentiation matrix for a Daubechies-based wavelet basis is constructed and superconvergence is proven. That is, it will be proven that under the assumption of periodic boundary conditions that the differentiation matrix is accurate of order 2M, even though the approximation subspace can represent exactly only polynomials up to degree M-1, where M is the number of vanishing moments of the associated wavelet. It is illustrated that Daubechies-based wavelet methods are equivalent to finite difference methods with grid refinement in regions of the domain where small-scale structure is present.
EEG Artifact Removal Using a Wavelet Neural Network
Nguyen, Hoang-Anh T.; Musson, John; Li, Jiang; McKenzie, Frederick; Zhang, Guangfan; Xu, Roger; Richey, Carl; Schnell, Tom
2011-01-01
!n this paper we developed a wavelet neural network. (WNN) algorithm for Electroencephalogram (EEG) artifact removal without electrooculographic (EOG) recordings. The algorithm combines the universal approximation characteristics of neural network and the time/frequency property of wavelet. We. compared the WNN algorithm with .the ICA technique ,and a wavelet thresholding method, which was realized by using the Stein's unbiased risk estimate (SURE) with an adaptive gradient-based optimal threshold. Experimental results on a driving test data set show that WNN can remove EEG artifacts effectively without diminishing useful EEG information even for very noisy data.
Wavelets an elementary treatment of theory and applications
Koornwinder, T H
1993-01-01
Nowadays, some knowledge of wavelets is almost mandatory for mathematicians, physicists and electrical engineers. The emphasis in this volume, based on an intensive course on Wavelets given at CWI, Amsterdam, is on the affine case. The first part presents a concise introduction of the underlying theory to the uninitiated reader. The second part gives applications in various areas. Some of the contributions here are a fresh exposition of earlier work by others, while other papers contain new results by the authors. The areas are so diverse as seismic processing, quadrature formulae, and wavelet
Identification Method of Mud Shale Fractures Base on Wavelet Transform
Xia, Weixu; Lai, Fuqiang; Luo, Han
2018-01-01
In recent years, inspired by seismic analysis technology, a new method for analysing mud shale fractures oil and gas reservoirs by logging properties has emerged. By extracting the high frequency attribute of the wavelet transform in the logging attribute, the formation information hidden in the logging signal is extracted, identified the fractures that are not recognized by conventional logging and in the identified fracture segment to show the “cycle jump”, “high value”, “spike” and other response effect is more obvious. Finally formed a complete wavelet denoising method and wavelet high frequency identification fracture method.
Wavelets for computer-aided breast cancer diagnosis
Myers, Lemuel R., Jr.; Kocur, Catherine M.; Rogers, Steven K.; Eisenbies, Chris; Hoffmeister, Jeffrey W.
1995-04-01
More than 50 million women over the age of 40 are currently at risk for breast cancer in the United States. Computer-aided diagnosis, used as a `second opinion' to radiologists, will aid in decreasing the number of false readings of mammograms. A novel feature extraction method is presented that provides increased classification power. Wavelets, previously only exploited for their segmentation benefits, are explored as features for classification. Daubechies4, Daubechies20, and biorthogonal wavelets are each investigated. Applied to 94 difficult-to- diagnose digitized microcalcification cases, performance is 74 percent correct classifications. Feature selection techniques are presented which further improve wavelet classification performance to 88 percent correct classification.
A First Course in Wavelets with Fourier Analysis
Boggess, Albert
2011-01-01
A comprehensive, self-contained treatment of Fourier analysis and wavelets-now in a new edition Through expansive coverage and easy-to-follow explanations, A First Course in Wavelets with Fourier Analysis, Second Edition provides a self-contained mathematical treatment of Fourier analysis and wavelets, while uniquely presenting signal analysis applications and problems. Essential and fundamental ideas are presented in an effort to make the book accessible to a broad audience, and, in addition, their applications to signal processing are kept at an elementary level. The book begins with an intr
EEG seizure identification by using optimized wavelet decomposition.
Pinzon-Morales, R D; Orozco-Gutierrez, A; Castellanos-Dominguez, G
2011-01-01
A methodology for wavelet synthesis based on lifting scheme and genetic algorithms is presented. Often, the wavelet synthesis is addressed to solve the problem of choosing properly a wavelet function from an existing library, but which may be not specially designed to the application in hand. The task under consideration is the identification of epileptic seizures over electroencephalogram recordings. Although basic classifiers are employed, results rendered that the proposed methodology is successful in the considered study achieving similar classification rates that had been reported in literature.
An experimental study on improvement of Savonius rotor performance
Directory of Open Access Journals (Sweden)
N.H. Mahmoud
2012-03-01
In this work different geometries of Savonius wind turbine are experimentally studied in order to determine the most effective operation parameters. It was found that, the two blades rotor is more efficient than three and four ones. The rotor with end plates gives higher efficiency than those of without end plates. Double stage rotors have higher performance compared to single stage rotors. The rotors without overlap ratio (β are better in operation than those with overlap. The results show also that the power coefficient increases with rising the aspect ratio (α. The conclusions from the measurements of the static torque for each rotor at different wind speeds verify the above summarized results of this work.
RFI Mitigation in Microwave Radiometry Using Wavelets
Directory of Open Access Journals (Sweden)
José Miguel Tarongí
2009-09-01
Full Text Available The performance of microwave radiometers can be seriously degraded by the presence of radio-frequency interference (RFI. Spurious signals and harmonics from lower frequency bands, spread-spectrum signals overlapping the “protected” band of operation, or out-of-band emissions not properly rejected by the pre-detection filters due to the finite rejection modify the detected power and the estimated antenna temperature from which the geophysical parameters will be retrieved. In recent years, techniques to detect the presence of RFI have been developed. They include time- and/or frequency domain analyses, or statistical analysis of the received signal which, in the absence of RFI, must be a zero-mean Gaussian process. Current mitigation techniques are mostly based on blanking in the time and/or frequency domains where RFI has been detected. However, in some geographical areas, RFI is so persistent in time that is not possible to acquire RFI-free radiometric data. In other applications such as sea surface salinity retrieval, where the sensitivity of the brightness temperature to salinity is weak, small amounts of RFI are also very difficult to detect and mitigate. In this work a wavelet-based technique is proposed to mitigate RFI (cancel RFI as much as possible. The interfering signal is estimated by using the powerful denoising capabilities of the wavelet transform. The estimated RFI signal is then subtracted from the received signal and a “cleaned” noise signal is obtained, from which the power is estimated later. The algorithm performance as a function of the threshold type, and the threshold selection method, the decomposition level, the wavelet type and the interferenceto-noise ratio is presented. Computational requirements are evaluated in terms of quantization levels, number of operations, memory requirements (sequence length. Even though they are high for today’s technology, the algorithms presented can be applied to recorded data
Directory of Open Access Journals (Sweden)
Li Song
2010-04-01
Full Text Available Abstract Background Quantitative proteomics technologies have been developed to comprehensively identify and quantify proteins in two or more complex samples. Quantitative proteomics based on differential stable isotope labeling is one of the proteomics quantification technologies. Mass spectrometric data generated for peptide quantification are often noisy, and peak detection and definition require various smoothing filters to remove noise in order to achieve accurate peptide quantification. Many traditional smoothing filters, such as the moving average filter, Savitzky-Golay filter and Gaussian filter, have been used to reduce noise in MS peaks. However, limitations of these filtering approaches often result in inaccurate peptide quantification. Here we present the WaveletQuant program, based on wavelet theory, for better or alternative MS-based proteomic quantification. Results We developed a novel discrete wavelet transform (DWT and a 'Spatial Adaptive Algorithm' to remove noise and to identify true peaks. We programmed and compiled WaveletQuant using Visual C++ 2005 Express Edition. We then incorporated the WaveletQuant program in the Trans-Proteomic Pipeline (TPP, a commonly used open source proteomics analysis pipeline. Conclusions We showed that WaveletQuant was able to quantify more proteins and to quantify them more accurately than the ASAPRatio, a program that performs quantification in the TPP pipeline, first using known mixed ratios of yeast extracts and then using a data set from ovarian cancer cell lysates. The program and its documentation can be downloaded from our website at http://systemsbiozju.org/data/WaveletQuant.
Wavelet-based information filtering for fault diagnosis of electric drive systems in electric ships.
Silva, Andre A; Gupta, Shalabh; Bazzi, Ali M; Ulatowski, Arthur
2017-09-21
Electric machines and drives have enjoyed extensive applications in the field of electric vehicles (e.g., electric ships, boats, cars, and underwater vessels) due to their ease of scalability and wide range of operating conditions. This stems from their ability to generate the desired torque and power levels for propulsion under various external load conditions. However, as with the most electrical systems, the electric drives are prone to component failures that can degrade their performance, reduce the efficiency, and require expensive maintenance. Therefore, for safe and reliable operation of electric vehicles, there is a need for automated early diagnostics of critical failures such as broken rotor bars and electrical phase failures. In this regard, this paper presents a fault diagnosis methodology for electric drives in electric ships. This methodology utilizes the two-dimensional, i.e. scale-shift, wavelet transform of the sensor data to filter optimal information-rich regions which can enhance the diagnosis accuracy as well as reduce the computational complexity of the classifier. The methodology was tested on sensor data generated from an experimentally validated simulation model of electric drives under various cruising speed conditions. The results in comparison with other existing techniques show a high correct classification rate with low false alarm and miss detection rates. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Equations of motion for a rotor blade, including gravity, pitch action and rotor speed variations
DEFF Research Database (Denmark)
Kallesøe, Bjarne Skovmose
2007-01-01
This paper extends Hodges-Dowell's partial differential equations of blade motion, by including the effects from gravity, pitch action and varying rotor speed. New equations describing the pitch action and rotor speeds are also derived. The physical interpretation of the individual terms...... in the equations is discussed. The partial differential equations of motion are approximated by ordinary differential equations of motion using an assumed mode method. The ordinary differential equations are used to simulate a sudden pitch change of a rotating blade. This work is a part of a project on pitch blade...
Rotor Performance Enhancement Using Slats on the Inner Part of a 10MW Rotor
DEFF Research Database (Denmark)
Gaunaa, Mac; Zahle, Frederik; Sørensen, Niels N.
2013-01-01
The present work continues the investigations of using slats on the inner parts of wind turbine rotors by using an updated version of the 2D CFD based airfoil/slat design tool earlier used by the authors in combination with the rotor design methods from [8] to design slats for 0:1 > r=R > 0:3 for...... to predictions of a lifting line based computational tool based on 2D airfoil polars to highlight the 3D rotational effects on airfoil coefficients of the slatted inner airfoil sections....
Rotor Performance Enhancement Using Slats on the Inner Part of a 10MW Rotor
DEFF Research Database (Denmark)
The present work continues the investigations of using slats on the inner parts of wind turbine rotors by using an updated version of the 2D CFD based airfoil/slat design tool earlier used by the authors in combination with the rotor design methods from [8] to design slats for 0:1 > r=R > 0:3 for...... to predictions of a lifting line based computational tool based on 2D airfoil polars to highlight the 3D rotational effects on airfoil coefficients of the slatted inner airfoil sections....
Numerical modeling of a rotor misalignment; Modelado numerico del desalineamiento de un rotor
Energy Technology Data Exchange (ETDEWEB)
Leon Pina, Roberto
2009-12-15
In the turbo-machinery area after an unbalancing, the misalignment is the fault that most frequently appears, and this one has been little studied compared to the unbalance. The misalignment appears when the geometric centers of two shafts and/or bearings do not coincide, these differences take place by different factors such as: incorrect installation of the bearings or rotors, thermal effects, or rotor weight, to mention some of them. The of the misalignment diagnosis continues being an area little studied, since the effects it generates are complex and include diverse physical processes reason why it presents/displays similar symptoms to those of other faults; thus, one of the methods that are used to diagnose this fault, is based on analyzing the vibration phantoms but this works only under particular conditions. In order to reproduce the dynamic behavior of a misaligned rotor, in the present work non-linear simplified models of the supports are used, whose objective is to contribute to facilitate future studies of the flow-dynamic behavior of the bearing, helping to identify the type and magnitude of the existing non-linearity in the supports and leaning in the analysis of the vibratory behavior of misaligned rotors observed in the field. [Spanish] En el area de turbomaquinaria despues del desbalance, el desalineamiento es la falla que se presenta con mayor frecuencia, y esta se ha estudiado poco comparada con el desbalance. El desalineamiento se presenta cuando los centros geometricos de dos flechas y/o chumaceras no coinciden, estas diferencias se producen por diferentes factores como: instalacion incorrecta de las chumaceras o rotores, efectos termicos, o el peso del rotor, por mencionar algunos. El diagnostico del desalineamiento sigue siendo una area poco estudiada, ya que los efectos que genera son complejos y abarcan diversos procesos fisicos por lo que presenta sintomas similares a los de otras fallas; asi, uno de los metodos que se utilizan para
Khazaei, Somayeh; Sebastiani, Daniel
2017-11-01
We study the influence of rotational coupling between a pair of methyl rotators on the tunneling spectrum in condensed phase. Two interacting adjacent methyl groups are simulated within a coupled-pair model composed of static rotational potential created by the chemical environment and the interaction potential between two methyl groups. We solve the two-dimensional time-independent Schrödinger equation analytically by expanding the wave functions on the basis set of two independent free-rotor functions. We investigate three scenarios which differ with respect to the relative strength of single-rotor and coupling potential. For each scenario, we illustrate the dependence of the energy level scheme on the coupling strength. It is found that the main determinant of splitting energy levels tends to be a function of the ratio of strengths of coupling and single-rotor potential. The tunnel splitting caused by coupling is maximized for the coupled rotors in which their total hindering potential is relatively shallow. Such a weakly hindered methyl rotational potential is predicted for 4-methylpyridine at low temperature. The experimental observation of multiple tunneling peaks arising from a single type of methyl group in 4-methylpyridine in the inelastic neutron scattering spectrum is widely attributed to the rotor-rotor coupling. In this regard, using a set of first-principles calculations combined with the nudged elastic band method, we investigate the rotational potential energy surface (PES) of the coaxial pairs of rotors in 4-methylpyridine. A Numerov-type method is used to numerically solve the two-dimensional time-independent Schrödinger equation for the calculated 2D-density functional theory profile. Our computed energy levels reproduce the observed tunneling transitions well. Moreover, the calculated density distribution of the three methyl protons resembles the experimental nuclear densities obtained from the Fourier difference method. By mapping the
Mechanical coupling for a rotor shaft assembly of dissimilar materials
Shi, Jun [Glastonbury, CT; Bombara, David [New Hartford, CT; Green, Kevin E [Broad Brook, CT; Bird, Connic [Rocky Hill, CT; Holowczak, John [South Windsor, CT
2009-05-05
A mechanical coupling for coupling a ceramic disc member to a metallic shaft includes a first wedge clamp and a second wedge clamp. A fastener engages a threaded end of a tie-bolt to sandwich the ceramic disc between the wedge clamps. An axial spring is positioned between the fastener and the second wedge clamp to apply an axial preload along the longitudinal axis. Another coupling utilizes a rotor shaft end of a metallic rotor shaft as one wedge clamp. Still another coupling includes a solid ceramic rotor disc with a multiple of tie-bolts radially displaced from the longitudinal axis to exert the preload on the solid ceramic rotor disc.
Note: Attenuation motion of acoustically levitated spherical rotor
Lü, P.; Hong, Z. Y.; Yin, J. F.; Yan, N.; Zhai, W.; Wang, H. P.
2016-11-01
Here we observe the attenuation motion of spherical rotors levitated by near-field acoustic radiation force and analyze the factors that affect the duration time of free rotation. It is found that the rotating speed of freely rotating rotor decreases exponentially with respect to time. The time constant of exponential attenuation motion depends mainly on the levitation height, the mass of rotor, and the depth of concave ultrasound emitter. Large levitation height, large mass of rotor, and small depth of concave emitter are beneficial to increase the time constant and hence extend the duration time of free rotation.
Tuned mass damper for integrally bladed turbine rotor
Marra, John J. (Inventor)
1994-01-01
The invention is directed to a damper ring for damping the natural vibration of the rotor blades of an integrally bladed rocket turbine rotor. The invention consists of an integral damper ring which is fixed to the underside of the rotor blade platform of a turbine rotor. The damper ring includes integral supports which extend radially outwardly therefrom. The supports are located adjacent to the base portion and directly under each blade of the rotor. Vibration damping is accomplished by action of tuned mass damper beams attached at each end to the supports. These beams vibrate at a predetermined frequency during operation. The vibration of the beams enforce a local node of zero vibratory amplitude at the interface between the supports and the beam. The vibration of the beams create forces upon the supports which forces are transmitted through the rotor blade mounting platform to the base of each rotor blade. When these forces attain a predetermined design frequency and magnitude and are directed to the base of the rotor blades, vibration of the rotor blades is effectively counteracted.
Coupled Thermal Field of the Rotor of Liquid Floated Gyroscope
Directory of Open Access Journals (Sweden)
Wang Zhengjun
2015-01-01
Full Text Available Inertial navigation devices include star sensor, GPS, and gyroscope. Optical fiber and laser gyroscopes provide high accuracy, and their manufacturing costs are also high. Magnetic suspension rotor gyroscope improves the accuracy and reduces the production cost of the device because of the influence of thermodynamic coupling. Therefore, the precision of the gyroscope is reduced and drift rate is increased. In this study, the rotor of liquid floated gyroscope, particularly the dished rotor gyroscope, was placed under a thermal field, which improved the measurement accuracy of the gyroscope. A dynamic theory of the rotor of liquid floated gyroscope was proposed, and the thermal field of the rotor was simulated. The maximum stress was in x, 1.4; y, 8.43; min 97.23; and max 154.34. This stress occurred at the border of the dished rotor at a high-speed rotation. The secondary flow reached 5549 r/min, and the generated heat increased. Meanwhile, the high-speed rotation of the rotor was volatile, and the dished rotor movement was unstable. Thus, nanomaterials must be added to reduce the thermal coupling fluctuations in the dished rotor and improve the accuracy of the measurement error and drift rate.
Position Sensing for Rotor in Hybrid Stepper Motor
Howard, David E. (Inventor); Alhorn, Dean C. (Inventor); Smith, Dennis A. (Inventor)
2011-01-01
A method and system are provided for sensing the position of a rotor in a hybrid stepper motor. First and second Hall sensors are positioned in a spaced-apart relationship with the first and second armatures of the rotor such that the first and second Hall sensors generate electrical outputs that are 90.degree. out of phase with one another as the rotor rotates. The electrical outputs are adjusted relative to a reference, and the amplitude of the electrical outputs is further adjusted to account for spacing differences between the rotor and each of the first and second Hall sensors.
Wavelet bicoherence: A new turbulence analysis tool
Energy Technology Data Exchange (ETDEWEB)
van Milligen, B.P.; Sanchez, E.; Estrada, T.; Hidalgo, C.; Branas, B. [Asociacion EURATOM-CIEMAT, Madrid (Spain); Carreras, B. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Garcia, L. [Universidad Carlos III, Madrid (Spain)
1995-08-01
A recently introduced tool for the analysis of turbulence, wavelet bicoherence [van Milligen, Hidalgo, and Sanchez, Phys. Rev. Lett. {bold 16}, 395 (1995)], is investigated. It is capable of detecting phase coupling---nonlinear interactions of the lowest (quadratic) order---with time resolution. To demonstrate its potential, it is applied to numerical models of chaos and turbulence and to real measurements. It detected the coupling interaction between two coupled van der Pol oscillators. When applied to a model of drift wave turbulence relevant to plasma physics, it detected a highly localized coherent structure. Analyzing reflectometry measurements made in fusion plasmas, it detected temporal intermittency and a strong increase in nonlinear phase coupling coinciding with the L/H (low-to-high confinement mode) transition. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.
Fast wavelet based sparse approximate inverse preconditioner
Energy Technology Data Exchange (ETDEWEB)
Wan, W.L. [Univ. of California, Los Angeles, CA (United States)
1996-12-31
Incomplete LU factorization is a robust preconditioner for both general and PDE problems but unfortunately not easy to parallelize. Recent study of Huckle and Grote and Chow and Saad showed that sparse approximate inverse could be a potential alternative while readily parallelizable. However, for special class of matrix A that comes from elliptic PDE problems, their preconditioners are not optimal in the sense that independent of mesh size. A reason may be that no good sparse approximate inverse exists for the dense inverse matrix. Our observation is that for this kind of matrices, its inverse entries typically have piecewise smooth changes. We can take advantage of this fact and use wavelet compression techniques to construct a better sparse approximate inverse preconditioner. We shall show numerically that our approach is effective for this kind of matrices.
Network Anomaly Detection Based on Wavelet Analysis
Directory of Open Access Journals (Sweden)
Ali A. Ghorbani
2008-11-01
Full Text Available Signal processing techniques have been applied recently for analyzing and detecting network anomalies due to their potential to find novel or unknown intrusions. In this paper, we propose a new network signal modelling technique for detecting network anomalies, combining the wavelet approximation and system identification theory. In order to characterize network traffic behaviors, we present fifteen features and use them as the input signals in our system. We then evaluate our approach with the 1999 DARPA intrusion detection dataset and conduct a comprehensive analysis of the intrusions in the dataset. Evaluation results show that the approach achieves high-detection rates in terms of both attack instances and attack types. Furthermore, we conduct a full day's evaluation in a real large-scale WiFi ISP network where five attack types are successfully detected from over 30 millions flows.
Market turning points forecasting using wavelet analysis
Bai, Limiao; Yan, Sen; Zheng, Xiaolian; Chen, Ben M.
2015-11-01
Based on the system adaptation framework we previously proposed, a frequency domain based model is developed in this paper to forecast the major turning points of stock markets. This system adaptation framework has its internal model and adaptive filter to capture the slow and fast dynamics of the market, respectively. The residue of the internal model is found to contain rich information about the market cycles. In order to extract and restore its informative frequency components, we use wavelet multi-resolution analysis with time-varying parameters to decompose this internal residue. An empirical index is then proposed based on the recovered signals to forecast the market turning points. This index is successfully applied to US, UK and China markets, where all major turning points are well forecasted.
Xu, Xiangbo; Chen, Shao
2015-08-31
Harmonic vibrations of high-speed rotors in momentum exchange devices are primary disturbances for attitude control of spacecraft. Active magnetic bearings (AMBs), offering the ability to control the AMB-rotor dynamic behaviors, are preferred in high-precision and micro-vibration applications, such as high-solution Earth observation satellites. However, undesirable harmonic displacements, currents, and vibrations also occur in the AMB-rotor system owing to the mixed rotor imbalances and sensor runout. To compensate the rotor imbalances and to suppress the harmonic vibrations, two control methods are presented. Firstly, a four degrees-of-freedom AMB-rotor model with the static imbalance, dynamic imbalance, and the sensor runout are described. Next, a synchronous current reduction approach with a variable-phase notch feedback is proposed, so that the rotor imbalances can be identified on-line through the analysis of the synchronous displacement relationships of the geometric, inertial, and rotational axes of the rotor. Then, the identified rotor imbalances, which can be represented at two prescribed balancing planes of the rotor, are compensated by discrete add-on weights whose masses are calculated in the vector form. Finally, a repetitive control algorithm is utilized to suppress the residual harmonic vibrations. The proposed field balancing and harmonic vibration suppression strategies are verified by simulations and experiments performed on a control moment gyro test rig with a rigid AMB-rotor system. Compared with existing methods, the proposed strategies do not require trial weights or an accurate model of the AMB-rotor system. Moreover, the harmonic displacements, currents, and vibrations can be well-attenuated simultaneously.
A Secret Image Sharing Method Using Integer Wavelet Transform
Directory of Open Access Journals (Sweden)
Li Ching-Chung
2007-01-01
Full Text Available A new image sharing method, based on the reversible integer-to-integer (ITI wavelet transform and Shamir's threshold scheme is presented, that provides highly compact shadows for real-time progressive transmission. This method, working in the wavelet domain, processes the transform coefficients in each subband, divides each of the resulting combination coefficients into shadows, and allows recovery of the complete secret image by using any or more shadows . We take advantages of properties of the wavelet transform multiresolution representation, such as coefficient magnitude decay and excellent energy compaction, to design combination procedures for the transform coefficients and processing sequences in wavelet subbands such that small shadows for real-time progressive transmission are obtained. Experimental results demonstrate that the proposed method yields small shadow images and has the capabilities of real-time progressive transmission and perfect reconstruction of secret images.
A simple output voltage control scheme for single phase wavelet ...
African Journals Online (AJOL)
-phase pulse-width-modulated (PWM) dc-ac inverter. ... function, derived using wavelet theory, can be used to generate the switching signal as well as to model the inverter output which is not possible with other modulation techniques.
Tree-structured wavelet transform signature for classification of melanoma
Patwardhan, Sachin V.; Dhawan, Atam P.; Relue, Patricia A.
2002-05-01
The purpose of this work is to evaluate the use of a wavelet transform based tree structure in classifying skin lesion images in to melanoma and dysplastic nevus based on the spatial/frequency information. The classification is done using the wavelet transform tree structure analysis. Development of the tree structure in the proposed method uses energy ratio thresholds obtained from a statistical analysis of the coefficients in the wavelet domain. The method is used to obtain a tree structure signature of melanoma and dysplastic nevus, which is then used to classify the data set in to the two classes. Images are classified by using a semantic comparison of the wavelet transform tree structure signatures. Results show that the proposed method is effective and simple for classification based on spatial/frequency information, which also includes the textural information.
Doppler radar fall activity detection using the wavelet transform.
Su, Bo Yu; Ho, K C; Rantz, Marilyn J; Skubic, Marjorie
2015-03-01
We propose in this paper the use of Wavelet transform (WT) to detect human falls using a ceiling mounted Doppler range control radar. The radar senses any motions from falls as well as nonfalls due to the Doppler effect. The WT is very effective in distinguishing the falls from other activities, making it a promising technique for radar fall detection in nonobtrusive inhome elder care applications. The proposed radar fall detector consists of two stages. The prescreen stage uses the coefficients of wavelet decomposition at a given scale to identify the time locations in which fall activities may have occurred. The classification stage extracts the time-frequency content from the wavelet coefficients at many scales to form a feature vector for fall versus nonfall classification. The selection of different wavelet functions is examined to achieve better performance. Experimental results using the data from the laboratory and real inhome environments validate the promising and robust performance of the proposed detector.
Wavelet Neural Network Model for Yield Spread Forecasting
Directory of Open Access Journals (Sweden)
Firdous Ahmad Shah
2017-11-01
Full Text Available In this study, a hybrid method based on coupling discrete wavelet transforms (DWTs and artificial neural network (ANN for yield spread forecasting is proposed. The discrete wavelet transform (DWT using five different wavelet families is applied to decompose the five different yield spreads constructed at shorter end, longer end, and policy relevant area of the yield curve to eliminate noise from them. The wavelet coefficients are then used as inputs into Levenberg-Marquardt (LM ANN models to forecast the predictive power of each of these spreads for output growth. We find that the yield spreads constructed at the shorter end and policy relevant areas of the yield curve have a better predictive power to forecast the output growth, whereas the yield spreads, which are constructed at the longer end of the yield curve do not seem to have predictive information for output growth. These results provide the robustness to the earlier results.
Optimization and Assessment of Wavelet Packet Decompositions with Evolutionary Computation
Directory of Open Access Journals (Sweden)
Schell Thomas
2003-01-01
Full Text Available In image compression, the wavelet transformation is a state-of-the-art component. Recently, wavelet packet decomposition has received quite an interest. A popular approach for wavelet packet decomposition is the near-best-basis algorithm using nonadditive cost functions. In contrast to additive cost functions, the wavelet packet decomposition of the near-best-basis algorithm is only suboptimal. We apply methods from the field of evolutionary computation (EC to test the quality of the near-best-basis results. We observe a phenomenon: the results of the near-best-basis algorithm are inferior in terms of cost-function optimization but are superior in terms of rate/distortion performance compared to EC methods.
SYMMETRY, HAMILTONIAN PROBLEMS AND WAVELETS IN ACCELERATOR PHYSICS
Energy Technology Data Exchange (ETDEWEB)
FEDOROVA,A.; ZEITLIN,M.; PARSA,Z.
2000-03-31
In this paper the authors consider applications of methods from wavelet analysis to nonlinear dynamical problems related to accelerator physics. In this approach they take into account underlying algebraical, geometrical and topological structures of corresponding problems.
IMAGE SPLICING DETECTION BASED ON DEMOSAICKING AND WAVELET TRANSFORMATION
Directory of Open Access Journals (Sweden)
Endina Putri Purwandari
2015-03-01
Full Text Available Image splicing is a form of digital image manipulation by combining two or more image into a new image. The application was developed through a passive approach using demosaicking and wavelet transformation method. This research purposed a method to implement the demosaicking and wavelet transform for digital image forgery detection with a passive approach. This research shows that (1 demosaicking can be used as a comparison image in forgery detection; (2 the application of demosaicking and wavelet transformation can improve the quality of the input image (3 demosaicking and wavelet algorithm are able to estimate whether the input image is real or fake image with a passive approach and estimate the manipulation area from the input image.
Investigation of UH-60A Rotor Structural Loads from Flight and Wind Tunnel Tests
2016-05-19
ratio ρ freestream density σ rotor solidity Ω rotor angular velocity INTRODUCTION Rotorcraft aeromechanics prediction capability using cou- pled...controls and rotor drive system (trans- mission, electric motors ). The interface between the UH-60A rotor and test stand occurred at three locations...bending moments, one of the unresolved issues in the UH-60A rotor loads prediction. Coupled Helios/RCAS analysis is performed and the calculated rotor
A short introduction to frames, Gabor systems, and wavelet systems
DEFF Research Database (Denmark)
Christensen, Ole
2014-01-01
In this article we present a short survey of frame theory in Hilbert spaces. We discuss Gabor frames and wavelet frames, and a recent transform that allows to move results from one setting into the other and vice versa.......In this article we present a short survey of frame theory in Hilbert spaces. We discuss Gabor frames and wavelet frames, and a recent transform that allows to move results from one setting into the other and vice versa....
Wavelet based methods for improved wind profiler signal processing
Directory of Open Access Journals (Sweden)
V. Lehmann
2001-08-01
Full Text Available In this paper, we apply wavelet thresholding for removing automatically ground and intermittent clutter (airplane echoes from wind profiler radar data. Using the concept of discrete multi-resolution analysis and non-parametric estimation theory, we develop wavelet domain thresholding rules, which allow us to identify the coefficients relevant for clutter and to suppress them in order to obtain filtered reconstructions.Key words. Meteorology and atmospheric dynamics (instruments and techniques – Radio science (remote sensing; signal processing
Controlled wavelet domain sparsity for x-ray tomography
Purisha, Zenith; Rimpeläinen, Juho; Bubba, Tatiana; Siltanen, Samuli
2018-01-01
Tomographic reconstruction is an ill-posed inverse problem that calls for regularization. One possibility is to require sparsity of the unknown in an orthonormal wavelet basis. This, in turn, can be achieved by variational regularization, where the penalty term is the sum of the absolute values of the wavelet coefficients. The primal-dual fixed point algorithm showed that the minimizer of the variational regularization functional can be computed iteratively using a soft-thresholding operation. Choosing the soft-thresholding parameter \
An Empirical Analysis of Dynamic Multiscale Hedging using Wavelet Decomposition
Conlon, Thomas; Cotter, John
2011-01-01
This paper investigates the hedging effectiveness of a dynamic moving window OLS hedging model, formed using wavelet decomposed time-series. The wavelet transform is applied to calculate the appropriate dynamic minimum-variance hedge ratio for various hedging horizons for a number of assets. The effectiveness of the dynamic multiscale hedging strategy is then tested, both in- and out-of-sample, using standard variance reduction and expanded to include a downside risk metric, the time horizon ...
Sparse imaging of cortical electrical current densities via wavelet transforms
Liao, Ke; Zhu, Min; Ding, Lei; Valette, Sébastien; Zhang, Wenbo; Dickens, Deanna
2012-11-01
While the cerebral cortex in the human brain is of functional importance, functions defined on this structure are difficult to analyze spatially due to its highly convoluted irregular geometry. This study developed a novel L1-norm regularization method using a newly proposed multi-resolution face-based wavelet method to estimate cortical electrical activities in electroencephalography (EEG) and magnetoencephalography (MEG) inverse problems. The proposed wavelets were developed based on multi-resolution models built from irregular cortical surface meshes, which were realized in this study too. The multi-resolution wavelet analysis was used to seek sparse representation of cortical current densities in transformed domains, which was expected due to the compressibility of wavelets, and evaluated using Monte Carlo simulations. The EEG/MEG inverse problems were solved with the use of the novel L1-norm regularization method exploring the sparseness in the wavelet domain. The inverse solutions obtained from the new method using MEG data were evaluated by Monte Carlo simulations too. The present results indicated that cortical current densities could be efficiently compressed using the proposed face-based wavelet method, which exhibited better performance than the vertex-based wavelet method. In both simulations and auditory experimental data analysis, the proposed L1-norm regularization method showed better source detection accuracy and less estimation errors than other two classic methods, i.e. weighted minimum norm (wMNE) and cortical low-resolution electromagnetic tomography (cLORETA). This study suggests that the L1-norm regularization method with the use of face-based wavelets is a promising tool for studying functional activations of the human brain.
Photoionization of a Statistic Atom by Ultrashort Wavelet Pulses
Astapenko, V. A.; Ionichev, E. Yu.; Yakovets, A. V.
2017-10-01
Photoionization of atoms by ultrashort electromagnetic wavelet pulses is investigated within the framework of a statistical model. Integral representations of the total probability of atom ionization are obtained within the time over which the pulse acts. It is shown that the dependence of this probability on the pulse duration in the considered case is bell-shaped. The wavelet pulse duration at which the maximum photoionization probability is reached is determined for different charges of atomic nuclii.
Journal Afrika Statistika ISSN 0852-0305 Nonlinear wavelet ...
African Journals Online (AJOL)
introduce a new nonlinear wavelet-based estimator of the regression function in the right censorship model. ... wavelet estimator of the density function has first been considered for complete data; see,. Hall and Patil ..... 0 = x0 < x1 < ··· < xN < xN+1 = 1 such that the first r derivatives of l and h exist and are bounded and ...
Big data extraction with adaptive wavelet analysis (Presentation Video)
Qu, Hongya; Chen, Genda; Ni, Yiqing
2015-04-01
Nondestructive evaluation and sensing technology have been increasingly applied to characterize material properties and detect local damage in structures. More often than not, they generate images or data strings that are difficult to see any physical features without novel data extraction techniques. In the literature, popular data analysis techniques include Short-time Fourier Transform, Wavelet Transform, and Hilbert Transform for time efficiency and adaptive recognition. In this study, a new data analysis technique is proposed and developed by introducing an adaptive central frequency of the continuous Morlet wavelet transform so that both high frequency and time resolution can be maintained in a time-frequency window of interest. The new analysis technique is referred to as Adaptive Wavelet Analysis (AWA). This paper will be organized in several sections. In the first section, finite time-frequency resolution limitations in the traditional wavelet transform are introduced. Such limitations would greatly distort the transformed signals with a significant frequency variation with time. In the second section, Short Time Wavelet Transform (STWT), similar to Short Time Fourier Transform (STFT), is defined and developed to overcome such shortcoming of the traditional wavelet transform. In the third section, by utilizing the STWT and a time-variant central frequency of the Morlet wavelet, AWA can adapt the time-frequency resolution requirement to the signal variation over time. Finally, the advantage of the proposed AWA is demonstrated in Section 4 with a ground penetrating radar (GPR) image from a bridge deck, an analytical chirp signal with a large range sinusoidal frequency change over time, the train-induced acceleration responses of the Tsing-Ma Suspension Bridge in Hong Kong, China. The performance of the proposed AWA will be compared with the STFT and traditional wavelet transform.
Optical wavelet de-noising applied in multi-span nonlinear fiber links
Shao, Qunfeng; Zhang, Xiaoping; Qi, Xiaoqiong; Li, Hu; Xiang, Lian
2010-04-01
In this work, optical wavelet de-noising with several different types of wavelets such as db4, coif4 and dmey wavelet was applied at the end of the 40 Gbit/s multi-span intensity-modulated fiber communication systems. The results of numerical simulations carried out in different fiber links demonstrated that the optical wavelet de-noising method could remove the random amplitude fluctuation induced by the interaction of EDFA's ASE noise and optical fiber's dispersion and nonlinearity. The SNR and BER curves of the optical bit sequence without and with optical wavelet de-noising in dispersion compensation fiber link were plotted to show the effectiveness of the wavelet de-noising in the fiber-optic communication systems and wavelet de-noising with demy wavelet can achieve better result than with other type wavelet.
Wavelet analysis for ground penetrating radar applications: a case study
Javadi, Mehdi; Ghasemzadeh, Hasan
2017-10-01
Noises may significantly disturb ground penetrating radar (GPR) signals, therefore, filtering undesired information using wavelet analysis would be challenging, despite the fact that several methods have been presented. Noises are gathered by probe, particularly from deep locations, and they may conceal reflections, suffering from small altitudes, because of signal attenuation. Multiple engineering fields need data analysis to distinguish valued material, based on information obtained by underground observations. Using wavelets as one of the useful methods for analyzing data is considered in this paper. However, optimal wavelet analysis would be challenging in the realm of exploring GPR signals. There is no doubt that accounting for wavelet function, decomposition level, threshold estimation method and threshold transformation, in the matter of de-noising and investigating signals, is of great importance; they must be chosen with judgment as they influence the results enormously if they are not carefully designated. Multiple wavelet functions are applied to perform de-noising and reconstruction on synthetic noisy signals generated by the finite-difference time-domain (FDTD) method to account for the most appropriate function for the purpose. In addition, various possible decomposition levels, threshold estimation methods and threshold transformations in the de-noising procedure are tested. The optimal wavelet analysis is also evaluated by examining real data acquired from several antenna frequencies which are common in engineering practice.
Myoelectric signal compression using zero-trees of wavelet coefficients.
Norris, Jason A; Englehart, Kevin B; Lovely, Dennis F
2003-11-01
Recent progress in the diagnostic use of the myoelectric signal for neuromuscular diseases, coupled with increasing interests in telemedicine applications, mandate the need for an effective compression technique. The efficacy of the embedded zero-tree wavelet compression algorithm is examined with respect to some important analysis parameters (the length of the analysis segment and wavelet type) and measurement conditions (muscle type and contraction type). It is shown that compression performance improves with segment length, and that good choices of wavelet type include the Meyer wavelet and the fifth order biorthogonal wavelet. The effects of different muscle sites and contraction types on compression performance are less conclusive.A comparison of a number of lossy compression techniques has revealed that the EZW algorithm exhibits superior performance to a hard thresholding wavelet approach, but falls short of adaptive differential pulse code modulation. The bit prioritization capability of the EZW algorithm allows one to specify the compression factor online, making it an appealing technique for streaming data applications, as often encountered in telemedicine.
Analysis and removing noise from speech using wavelet transform
Tomala, Karel; Voznak, Miroslav; Partila, Pavol; Rezac, Filip; Safarik, Jakub
2013-05-01
The paper discusses the use of Discrete Wavelet Transform (DWT) and Stationary Wavelet Transform (SWT) wavelet in removing noise from voice samples and evaluation of its impact on speech quality. One significant part of Quality of Service (QoS) in communication technology is the speech quality assessment. However, this part is seriously overlooked as telecommunication providers often focus on increasing network capacity, expansion of services offered and their enforcement in the market. Among the fundamental factors affecting the transmission properties of the communication chain is noise, either at the transmitter or the receiver side. A wavelet transform (WT) is a modern tool for signal processing. One of the most significant areas in which wavelet transforms are used is applications designed to suppress noise in signals. To remove noise from the voice sample in our experiment, we used the reference segment of the voice which was distorted by Gaussian white noise. An evaluation of the impact on speech quality was carried out by an intrusive objective algorithm Perceptual Evaluation of Speech Quality (PESQ). DWT and SWT transformation was applied to voice samples that were devalued by Gaussian white noise. Afterwards, we determined the effectiveness of DWT and SWT by means of objective algorithm PESQ. The decisive criterion for determining the quality of a voice sample once the noise had been removed was Mean Opinion Score (MOS) which we obtained in PESQ. The contribution of this work lies in the evaluation of efficiency of wavelet transformation to suppress noise in voice samples.
Iterative PET Image Reconstruction Using Translation Invariant Wavelet Transform.
Zhou, Jian; Senhadji, Lotfi; Coatrieux, Jean-Louis; Luo, Limin
2009-02-01
The present work describes a Bayesian maximum a posteriori (MAP) method using a statistical multiscale wavelet prior model. Rather than using the orthogonal discrete wavelet transform (DWT), this prior is built on the translation invariant wavelet transform (TIWT). The statistical modeling of wavelet coefficients relies on the generalized Gaussian distribution. Image reconstruction is performed in spatial domain with a fast block sequential iteration algorithm. We study theoretically the TIWT MAP method by analyzing the Hessian of the prior function to provide some insights on noise and resolution properties of image reconstruction. We adapt the key concept of local shift invariance and explore how the TIWT MAP algorithm behaves with different scales. It is also shown that larger support wavelet filters do not offer better performance in contrast recovery studies. These theoretical developments are confirmed through simulation studies. The results show that the proposed method is more attractive than other MAP methods using either the conventional Gibbs prior or the DWT-based wavelet prior.
Energy Technology Data Exchange (ETDEWEB)
Garcia R, A. [ININ, Carretera Mexico-Toluca S/N, 52750 La Marquesa, Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: ramador@nuclear.inin.mx
2007-07-01
At the moment the signals are used to diagnose the state of the systems, by means of the extraction of their more important characteristics such as the frequencies, tendencies, changes and temporary evolutions. This characteristics are detected by means of diverse analysis techniques, as Autoregressive methods, Fourier Transformation, Fourier transformation in short time, Wavelet transformation, among others. The present work uses the one Wavelet transformation because it allows to analyze stationary, quasi-stationary and transitory signals in the time-frequency plane. It also describes a methodology to select the scales and the Wavelet function to be applied the one Wavelet transformation with the objective of detecting to the dominant system frequencies. (Author)
Simulation of Rotor Blade Element Turbulence
McFarland, R. E.; Duisenberg, Ken
1996-01-01
A turbulence model has been developed for blade-element helicopter simulation. This model, called Simulation of Rotor Blade Element Turbulence (SORBET), uses an innovative temporal and geometrical distribution algorithm that preserves the statistical characteristics of the turbulence spectra over the rotor disc, while providing velocity components in real time to each of five blade-element stations along each of four blades. An initial investigation of SORBET has been performed using a piloted, motion-based simulation of the Sikorsky UH60A Black Hawk. Although only the vertical component of stochastic turbulence was used in this investigation, vertical turbulence components induce vehicle responses in all translational and rotational degrees of freedom of the helicopter. The single-degree-of-freedom configuration of SORBET was compared to a conventional full 6-degrees-of-freedom baseline configuration, where translational velocity inputs are superimposed at the vehicle center of gravity, and rotational velocity inputs are created from filters that approximate the immersion rate into the turbulent field. For high-speed flight the vehicle responses were satisfactory for both models. Test pilots could not distinguish differences between the baseline configuration and SORBET. In low-speed flight the baseline configuration received criticism for its high frequency content, whereas the SORBET model elicited favorable pilot opinion. For this helicopter, which has fully articulated blades, results from SORBET show that vehicle responses to turbulent blade-station disturbances are severely attenuated. This is corroborated by in-flight observation of the rotor tip path plane as compared to vehicle responses.
Zhang, Hong; Zhang, Sheng; Wang, Ping; Qin, Yuzhe; Wang, Huifeng
2017-07-01
Particulate matter with aerodynamic diameter below 10 μm (PM10) forecasting is difficult because of the uncertainties in describing the emission and meteorological fields. This paper proposed a wavelet-ARMA/ARIMA model to forecast the short-term series of the PM10 concentrations. It was evaluated by experiments using a 10-year data set of daily PM10 concentrations from 4 stations located in Taiyuan, China. The results indicated the following: (1) PM10 concentrations of Taiyuan had a decreasing trend during 2005 to 2012 but increased in 2013. PM10 concentrations had an obvious seasonal fluctuation related to coal-fired heating in winter and early spring. (2) Spatial differences among the four stations showed that the PM10 concentrations in industrial and heavily trafficked areas were higher than those in residential and suburb areas. (3) Wavelet analysis revealed that the trend variation and the changes of the PM10 concentration of Taiyuan were complicated. (4) The proposed wavelet-ARIMA model could be efficiently and successfully applied to the PM10 forecasting field. Compared with the traditional ARMA/ARIMA methods, this wavelet-ARMA/ARIMA method could effectively reduce the forecasting error, improve the prediction accuracy, and realize multiple-time-scale prediction. Wavelet analysis can filter noisy signals and identify the variation trend and the fluctuation of the PM10 time-series data. Wavelet decomposition and reconstruction reduce the nonstationarity of the PM10 time-series data, and thus improve the accuracy of the prediction. This paper proposed a wavelet-ARMA/ARIMA model to forecast the PM10 time series. Compared with the traditional ARMA/ARIMA method, this wavelet-ARMA/ARIMA method could effectively reduce the forecasting error, improve the prediction accuracy, and realize multiple-time-scale prediction. The proposed model could be efficiently and successfully applied to the PM10 forecasting field.
Arrayed liquid rotor electret power generator systems
Boland, J. S.; Messenger, J. D. M.; Lo, H. W.; Tai, Y.C.
2005-01-01
We report our work on liquid rotor electret power generators (LEPG), LEPG devices are essentially fixed-charged, Teflon-electret capacitors with air-filled gaps and liquid droplets that move by vibration. As the liquid moves into and out of the gaps, a net voltage is generated across the capacitor as image charges on the electrodes redistribute according to the position of the droplets. In this work, we also study serial and parallel arrays of LEPG power generators to increase power output. P...
Flowfield Characteristics on a Retreating Rotor Blade
2015-12-03
seconds at 200 rpm) was acquired at each measurement location using two LaVision PRO-X 2M cameras with 50 mm, f/8 lenses , 1600×1200 pixel resolution...flow where the freestream flow first makes contact with the blade and a region of vortex flow immediately adjacent to it. A key difference between the...Gandhi, F., 2014. “Reversible airfoils for stopped rotors in high speed flight”. Smart Materials and Structures, 23(11), p. 115013. [24] Carter, J., and
Several rotor noise sources and treatments
Energy Technology Data Exchange (ETDEWEB)
Tangler, J. [National Renewable Energy Laboratory, Golden, CO (United States)
1997-12-31
Noise has been a design consideration in the development of advanced blades and turbines at the National Renewable Energy Laboratory. During atmospheric testing associated with these efforts various types of aeroacoustic noise have been encountered. This presentation discusses several of these noise sources and treatments used to mitigate or eliminate the noise. Tonal noise resulting from tip-vortex/trailing-edge interaction and laminar separation bubbles was found to be easily eliminated. Impulsive noise resulting from blade/vortex interaction for rotors that furl and that due to tower shadow can be mitigated by various means. (au)
Suarez Mullins, Astrid
-gamma motions, generated by waves and rotors and hypothesized to impact the SBL, is investigated using a new wavelet-based verification methodology for assessing non-deterministic model skill in the submeso and meso-gamma range to complement standard deterministic measures. This technique allows the verification and/or intercomparison of any two nonstationary stochastic systems without many of the limitations of typical wavelet-based verification approaches (e.g., selection of noise models, testing for significance, etc.). Through this analysis, it is shown that the WRF model largely underestimates the number of small amplitude fluctuations in the small submeso range, as expected; and it overestimates the number of small amplitude fluctuations in the meso-gamma range, generally resulting in forecasts that are too smooth. Investigation of the variability for different initialization strategies shows that deterministic wind speed predictions are less sensitive to the choice of initialization strategy than temperature forecasts. Similarly, investigation of the variability for various planetary boundary layer (PBL) parameterizations reveals that turbulent kinetic energy (TKE)-based schemes have an advantage over the non-local schemes for non-deterministic motions. The larger spread in the verification scores for various PBL parameterizations than initialization strategies indicates that PBL parameterization may play a larger role modulating the variability of non-deterministic motions in the SBL for these cases. These results confirm previous findings that have shown WRF to have limited skill forecasting submeso variability for periods greater than ~20 min. The limited skill of the WRF at these scales in these cases is related to the systematic underestimation of the amplitude of observed fluctuations. These results are implemented in the model design and configuration for the investigation of nonstationary waves and rotor structures modulating submeso and mesogamma motions and the
Eigenfrequency Of Rotor Disk Assembly With Different Bearing ...
African Journals Online (AJOL)
In the design of Rotors, the identification of critical speed is essential for the smooth operation of machines and safety. In this paper, the effect of different types of support conditions and types of bearings on the critical frequency, of Rotors is investigated. Including gyroscopic damping and operational speed dependent ...
Resonant vibration control of three-bladed wind turbine rotors
DEFF Research Database (Denmark)
Krenk, Steen; Svendsen, Martin Nymann; Høgsberg, Jan Becker
2012-01-01
Rotors with blades, as in wind turbines, are prone to vibrations due to the flexibility of the blades and the support. In the present paper a theory is developed for active control of a combined set of vibration modes in three-bladed rotors. The control system consists of identical collocated...
Hydraulic performance of sluice gate with unloaded upstream rotor ...
African Journals Online (AJOL)
Swift speed cameras and Tracker software were used to measure the upstream backwater depth and to estimate the instantaneous variation of the rotor speed. The study shows that adding a rotor upstream of the gate caused the upstream water level to increase such that the averaged normalized afflux increased to 1.72 ...
76 FR 42020 - Airworthiness Standards; Rotor Overspeed Requirements
2011-07-18
... standards for the design and testing of engine rotor parts in the United States and in Europe, eliminating... corresponding airworthiness standards to certify aircraft engines in Europe. While part 33 and the CS-E are... the recoverable (elastic) and the permanent (plastic) change in rotor dimensions. Rulemaking Analyses...
Towards Efficient Fluid-Structure-Control Interaction for Smart Rotors
Gillebaart, T.
2016-01-01
One of the solutions to speed up the energy transition is the smart rotor concept: wind turbine blades with actively controlled Trailing Edge Flaps. In the past decade feasibility studies (both numerical and experimental) have been performed to assess the applicability of smart rotors in future
Research on wind turbine rotor models using NACA profiles
Energy Technology Data Exchange (ETDEWEB)
Vardar, Ali; Alibas, Ilknur [Department of Agricultural Machinery, Faculty of Agriculture, Uludag University, Gorukle Kampusu, 16059 Bursa (Turkey)
2008-07-15
In this study, rotation rates and power coefficients of miniature wind turbine rotor models manufactured using NACA profiles were investigated. For this purpose, miniature rotor models with 310 mm diameter were made from ''Balsa'' wood. When all properties of rotor models were taken into account, a total of 180 various combinations were obtained. Each combination was coded with rotor form code. These model rotors were tested in a wind tunnel measurement system. Rotation rates for each rotor form were determined based on wind speed. Power coefficient values were calculated using power and tip speed rates of wind. Rotor models produced a rotation rate up to 3077 rpm, with a power coefficient rate up to 0.425. Rotor models manufactured by using NACA 4412 profiles with 0 grade twisting angle, 5 grade blade angle, double blades had the highest rotation rate, while those manufactured by using NACA 4415 profiles with 0 grade twisting angle, 18 grade blade angle, 4 blades had the highest power coefficient. (author)
PIV in a model wind turbine rotor wake
DEFF Research Database (Denmark)
Meyer, Knud Erik; Naumov, Igor; Karbadin, Ivan
2013-01-01
Stereoscopic particle image velocimetry (PIV) measurements of the flow in the wake of scale model of a horizontal axis wind turbine is presented Near the rotor, measurements are made in vertical planes intersecting the rotor axis These planes capture flow effect from the tip and root vortices...
Simulations of wind turbine rotor with vortex generators
DEFF Research Database (Denmark)
Zahle, Frederik; Sørensen, Niels N.
2016-01-01
This work presents simulations of the DTU 10MW wind turbine rotor equipped with vortex generators (VGs) on the inner part of the blades. The objective is to study the influence of different VG configurations on rotor performance and in particular to investigate the radial dependence of VGs, i.e...
The rotor theories by Professor Joukowsky: Vortex theories
DEFF Research Database (Denmark)
Okulov, Valery L.; Sørensen, Jens Nørkær; Wood, David H.
2015-01-01
This is the second of two articles with the main, and largely self-explanatory, title "Rotor theories by Professor Joukowsky". This article considers rotors with finite number of blades and is subtitled "Vortex theories". The first article with subtitle "Momentum theories", assessed the starring ...
Effect of Turbulence Modeling on Hovering Rotor Flows
Yoon, Seokkwan; Chaderjian, Neal M.; Pulliam, Thomas H.; Holst, Terry L.
2015-01-01
The effect of turbulence models in the off-body grids on the accuracy of solutions for rotor flows in hover has been investigated. Results from the Reynolds-Averaged Navier-Stokes and Laminar Off-Body models are compared. Advection of turbulent eddy viscosity has been studied to find the mechanism leading to inaccurate solutions. A coaxial rotor result is also included.
Experimental Study on a Rotor for WEPTOS Wave Energy Converter
DEFF Research Database (Denmark)
Pecher, Arthur; Kofoed, Jens Peter; Marchalot, Tanguy
This report presents the results of an experimental study of the power conversion capabilities of one single rotor of the WEPTOS wave energy converter. The investigation focuses mainly on defining the optimal weight distribution in the rotor in order to improve the hydraulic performance through...
Effects of increasing tip velocity on wind turbine rotor design.
Energy Technology Data Exchange (ETDEWEB)
Resor, Brian Ray [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Maniaci, David Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Berg, Jonathan Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Richards, Phillip William [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2014-05-01
A reduction in cost of energy from wind is anticipated when maximum allowable tip velocity is allowed to increase. Rotor torque decreases as tip velocity increases and rotor size and power rating are held constant. Reduction in rotor torque yields a lighter weight gearbox, a decrease in the turbine cost, and an increase in the capacity for the turbine to deliver cost competitive electricity. The high speed rotor incurs costs attributable to rotor aero-acoustics and system loads. The increased loads of high speed rotors drive the sizing and cost of other components in the system. Rotor, drivetrain, and tower designs at 80 m/s maximum tip velocity and 100 m/s maximum tip velocity are created to quantify these effects. Component costs, annualized energy production, and cost of energy are computed for each design to quantify the change in overall cost of energy resulting from the increase in turbine tip velocity. High fidelity physics based models rather than cost and scaling models are used to perform the work. Results provide a quantitative assessment of anticipated costs and benefits for high speed rotors. Finally, important lessons regarding full system optimization of wind turbines are documented.
Design of a wind turbine rotor for maximum aerodynamic efficiency
DEFF Research Database (Denmark)
Johansen, Jeppe; Aagaard Madsen, Helge; Gaunaa, Mac
2009-01-01
maximum aerodynamic efficiency. The rotor is designed assuming constant induction for most of the blade span, but near the tip region, a constant load is assumed instead. The rotor design is obtained using an actuator disc model, and is subsequently verified using both a free-wake lifting line method...
Recent developments in rotor wake modeling for helicopter noise prediction
Poling, D.; Dadone, L.; Althoff, S.
1991-01-01
A preliminary test/theory correlation evaluation is conducted for wake measurement test results obtained by LDV for a B360 helicopter rotor, at conditions critical to the understanding of wake-rollup and blade-vortex interaction phenomena. The LDV data were complemented by acoustic, blade pressure, rotor performance, and blade/control load measurements.
Thermal modeling of a mini rotor-stator system
Dikmen, E.; van der Hoogt, Peter; de Boer, Andries; Aarts, Ronald G.K.M.; Jonker, Jan B.
2009-01-01
In this study the temperature increase and heat dissipation in the air gap of a cylindrical mini rotor stator system has been analyzed. A simple thermal model based on lumped parameter thermal networks has been developed. With this model the temperature dependent air properties for the fluid-rotor
Output Enhancement in the Transfer-Field Machine Using Rotor ...
African Journals Online (AJOL)
The rotor windings not only give rise to an increase in the induced emf but also augment output by effectively lowering the synchronous reactance of the output winding. The rotor circuit current can be increased by connecting it to a synchronous condenser load, and thereby further increase both the emf and the synchronous ...
Indian Academy of Sciences (India)
Lawrence
LIKE MOTHER, LIKE DAUGHTER. 309 balancing her dual identities as a scientist and a mother. I did not appreciate these issues until much later when I faced gender based discrimination myself. One great source of inspiration during my. PhD. years was Rafael Sorkin, with whom I worked on a paper on quantum diffusion.
African Journals Online (AJOL)
Teen mothers, their educators, and parents were interviewed to gather infor- mation about the girls' schooling situation. ... from parents, peers and teachers. On the one hand they receive very little ...... teenage pregnancy is another area of conﬂict between the teen mothers and the communities. One LO teacher narrated that ...
Complete control, direct observation and study of molecular super rotors
Korobenko, Aleksey; Milner, Valery
2013-01-01
Extremely fast rotating molecules carrying significantly more energy in their rotation than in any other degree of freedom are known as "super rotors". It has been speculated that super rotors may exhibit a number of unique and intriguing properties. Theoretical studies showed that ultrafast molecular rotation may change the character of molecular scattering from solid surfaces, alter molecular trajectories in external fields, make super rotors surprisingly stable against collisions, and lead to the formation of gas vortices. New ways of molecular cooling and selective chemical bond breaking by ultrafast spinning have been proposed. Owing to the fundamental laws of nature, bringing a large number of molecules to fast, directional and synchronous rotation is rather challenging. As a result, only indirect evidence of super rotors has been reported to date. Here we demonstrate the first controlled creation, direct observation and study of molecular super rotors. Using intense laser pulses tailored to produce an ...
SMART wind turbine rotor. Design and field test
Energy Technology Data Exchange (ETDEWEB)
Berg, Jonathan Charles; Resor, Brian Ray; Paquette, Joshua A.; White, Jonathan Randall
2014-01-01
The Wind Energy Technologies department at Sandia National Laboratories has developed and field tested a wind turbine rotor with integrated trailing-edge flaps designed for active control of rotor aerodynamics. The SMART Rotor project was funded by the Wind and Water Power Technologies Office of the U.S. Department of Energy (DOE) and was conducted to demonstrate active rotor control and evaluate simulation tools available for active control research. This report documents the design, fabrication, and testing of the SMART Rotor. This report begins with an overview of active control research at Sandia and the objectives of this project. The SMART blade, based on the DOE / SNL 9-meter CX-100 blade design, is then documented including all modifications necessary to integrate the trailing edge flaps, sensors incorporated into the system, and the fabrication processes that were utilized. Finally the test site and test campaign are described.
Applications of Fluorogens with Rotor Structures in Solar Cells.
Ong, Kok-Haw; Liu, Bin
2017-05-29
Solar cells are devices that convert light energy into electricity. To drive greater adoption of solar cell technologies, higher cell efficiencies and reductions in manufacturing cost are necessary. Fluorogens containing rotor structures may be helpful in addressing some of these challenges due to their unique twisted structures and photophysics. In this review, we discuss the applications of rotor-containing molecules as dyes for luminescent down-shifting layers and luminescent solar concentrators, where their aggregation-induced emission properties and large Stokes shifts are highly desirable. We also discuss the applications of molecules containing rotors in third-generation solar cell technologies, namely dye-sensitized solar cells and organic photovoltaics, where the twisted 3-dimensional rotor structures are used primarily for aggregation control. Finally, we discuss perspectives on the future role of molecules containing rotor structures in solar cell technologies.
SMART wind turbine rotor. Data analysis and conclusions
Energy Technology Data Exchange (ETDEWEB)
Berg, Jonathan Charles; Barone, Matthew Franklin; Yoder, Nathanael C.
2014-01-01
The Wind Energy Technologies department at Sandia National Laboratories has developed and field tested a wind turbine rotor with integrated trailing-edge flaps designed for active control of the rotor aerodynamics. The SMART Rotor project was funded by the Wind and Water Power Technologies Office of the U.S. Department of Energy (DOE) and was conducted to demonstrate active rotor control and evaluate simulation tools available for active control research. This report documents the data post-processing and analysis performed to date on the field test data. Results include the control capability of the trailing edge flaps, the combined structural and aerodynamic damping observed through application of step actuation with ensemble averaging, direct observation of time delays associated with aerodynamic response, and techniques for characterizing an operating turbine with active rotor control.
DESIGN EVALUATIONS OF DOUBLE ROTOR SWITCHED RELUCTANCE MACHINE
Directory of Open Access Journals (Sweden)
C.V. ARAVIND
2016-02-01
Full Text Available The absence of magnets makes the reluctance machine typical for low cogging operations with the torque depending on the stator rotor interaction area. The air gap between stator pole and rotor pole gives a huge effect on the reluctance variation. The primitive double rotor switched reluctance machine lags to improvise the effect of the ripple value though the torque density is higher compared to conventional machines. An optimised circular hole position and dimensioned in the stator pole of lowers the torque ripple and reduce the acoustic noise as presented in this paper. A comparative evaluation of the conventional double rotor machine with this improved structure is done through numerical design and evaluations for the same sizing. It is found that the motor constant square density. It is found that the double rotor switched reluctance machine is improved by 140% to conventional machine.
Disc rotors with permanent magnets for brushless DC motor
Hawsey, Robert A.; Bailey, J. Milton
1992-01-01
A brushless dc permanent magnet motor drives an autonomous underwater vehe. In one embodiment, the motor comprises four substantially flat stators in stacked relationship, with pairs of the stators axially spaced, each of the stators comprising a tape-wound stator coil, and first and second substantially flat rotors disposed between the spaced pairs of stators. Each of the rotors includes an annular array of permanent magnets embedded therein. A first shaft is connected to the first rotor and a second, concentric shaft is connected to the second rotor, and a drive unit causes rotation of the two shafts in opposite directions. The second shaft comprises a hollow tube having a central bore in which the first shaft is disposed. Two different sets of bearings support the first and second shafts. In another embodiment, the motor comprises two ironless stators and pairs of rotors mounted on opposite sides of the stators and driven by counterrotating shafts.
Effect of Bearing Housings on Centrifugal Pump Rotor Dynamics
Yashchenko, A. S.; Rudenko, A. A.; Simonovskiy, V. I.; Kozlov, O. M.
2017-08-01
The article deals with the effect of a bearing housing on rotor dynamics of a barrel casing centrifugal boiler feed pump rotor. The calculation of the rotor model including the bearing housing has been performed by the method of initial parameters. The calculation of a rotor solid model including the bearing housing has been performed by the finite element method. Results of both calculations highlight the need to add bearing housings into dynamic analyses of the pump rotor. The calculation performed by modern software packages is more a time-taking process, at the same time it is a preferred one due to a graphic editor that is employed for creating a numerical model. When it is necessary to view many variants of design parameters, programs for beam modeling should be used.
The application of advanced rotor (performance) methods for design calculations
Energy Technology Data Exchange (ETDEWEB)
Bussel, G.J.W. van [Delft Univ. of Technology, Inst. for Wind Energy, Delft (Netherlands)
1997-08-01
The calculation of loads and performance of wind turbine rotors has been a topic for research over the last century. The principles for the calculation of loads on rotor blades with a given specific geometry, as well as the development of optimal shaped rotor blades have been published in the decades that significant aircraft development took place. Nowadays advanced computer codes are used for specific problems regarding modern aircraft, and application to wind turbine rotors has also been performed occasionally. The engineers designing rotor blades for wind turbines still use methods based upon global principles developed in the beginning of the century. The question what to expect in terms of the type of methods to be applied in a design environment for the near future is addressed here. (EG) 14 refs.
Aerodynamic loads and rotor performance for the Darrieus wind turbines
Paraschivoiu, I.
1981-12-01
Aerodynamic blade loads and rotor performance are studied for the Darrieus windmill by using a double-multiple streamtube model. The Darrieus is represented as a pair of actuator disks in tandem at each level of the rotor, with upstream and downstream half-cycles. An equilibrium velocity exists in the center plane, and the upwind velocity is higher than the downwind velocity; lift and drag coefficients are calculated from the Reynolds number and the local angle of attack. Half-rotor torque and power are found by averaging the contributions from each streamtube at each position of the rotor in the upwind cycle. An example is provided for a 17 m Darrieus employing NACA blades. While the method is found to be suitable for predicting blade and rotor performance, the need to incorporate the effects of dynamic stall in the model is stressed as a means to improve accuracy.
Heat transfer in rotor/stator cavity
Tuliszka-Sznitko, Ewa; Majchrowski, Wojciech; Kiełczewski, Kamil
2011-12-01
In the paper we analyze the results of DNS/LES of the flow with heat transfer in the rotor/stator cavity. The rotor and the outer cylinder are heated. Computations have been performed for wide range of Reynolds numbers and aspect ratios. Computations are based on the efficient pseudo-spectral Chebyshev-Fourier method. In LES we used a Lagrangian dynamic subgrid-scale model of turbulence. Analysis allowed to check the influence of the aspect ratio and Reynolds number on the statistics and the structure of the flow. We analyzed all six Reynolds stress tensor components, turbulent fluctuations, three turbulent heat fluxes and different structural parameters which can be useful for modeling purposes. The distributions of Nusselt numbers obtained for different Re and aspect rations along disks are given. We also investigated influence of thermal Rosssby number as well as distributions of temperature along heated disk on statistics. Computations have shown that turbulence is mostly concentrated in the stator boundary layer with a maximum at the junction between the stator and the outer cylinder. The results are compared to the experimental and numerical data taken from literature.
SMART Rotor Development and Wind-Tunnel Test
Lau, Benton H.; Straub, Friedrich; Anand, V. R.; Birchette, Terry
2009-01-01
Boeing and a team from Air Force, NASA, Army, Massachusetts Institute of Technology, University of California at Los Angeles, and University of Maryland have successfully completed a wind-tunnel test of the smart material actuated rotor technology (SMART) rotor in the 40- by 80-foot wind-tunnel of the National Full-Scale Aerodynamic Complex at NASA Ames Research Center, figure 1. The SMART rotor is a full-scale, five-bladed bearingless MD 900 helicopter rotor modified with a piezoelectric-actuated trailing-edge flap on each blade. The development effort included design, fabrication, and component testing of the rotor blades, the trailing-edge flaps, the piezoelectric actuators, the switching power amplifiers, the actuator control system, and the data/power system. Development of the smart rotor culminated in a whirl-tower hover test which demonstrated the functionality, robustness, and required authority of the active flap system. The eleven-week wind tunnel test program evaluated the forward flight characteristics of the active-flap rotor, gathered data to validate state-of-the-art codes for rotor noise analysis, and quantified the effects of open- and closed-loop active-flap control on rotor loads, noise, and performance. The test demonstrated on-blade smart material control of flaps on a full-scale rotor for the first time in a wind tunnel. The effectiveness and the reliability of the flap actuation system were successfully demonstrated in more than 60 hours of wind-tunnel testing. The data acquired and lessons learned will be instrumental in maturing this technology and transitioning it into production. The development effort, test hardware, wind-tunnel test program, and test results will be presented in the full paper.
Kernel wavelet-Reed-Xiaoli: an anomaly detection for forward-looking infrared imagery.
Mehmood, Asif; Nasrabadi, Nasser M
2011-06-10
This paper describes a new kernel wavelet-based anomaly detection technique for long-wave (LW) forward-looking infrared imagery. The proposed approach called kernel wavelet-Reed-Xiaoli (wavelet-RX) algorithm is essentially an extension of the wavelet-RX algorithm (combination of wavelet transform and RX anomaly detector) to a high-dimensional feature space (possibly infinite) via a certain nonlinear mapping function of the input data. The wavelet-RX algorithm in this high-dimensional feature space can easily be implemented in terms of kernels that implicitly compute dot products in the feature space (kernelizing the wavelet-RX algorithm). In the proposed kernel wavelet-RX algorithm, a two-dimensional wavelet transform is first applied to decompose the input image into uniform subbands. A number of significant subbands (high-energy subbands) are concatenated together to form a subband-image cube. The kernel RX algorithm is then applied to this subband-image cube. Experimental results are presented for the proposed kernel wavelet-RX, wavelet-RX, and the classical constant false alarm rate (CFAR) algorithm for detecting anomalies (targets) in a large database of LW imagery. The receiver operating characteristic plots show that the proposed kernel wavelet-RX algorithm outperforms the wavelet-RX as well as the classical CFAR detector.
Czech Academy of Sciences Publication Activity Database
Kobr, L.; Zhao, K.; Shen, X.; Shoemaker, R. K.; Rogers, C. T.; Michl, Josef
2013-01-01
Roč. 25, č. 3 (2013), s. 443-448 ISSN 0935-9648 EU Projects: European Commission(XE) 227756 - DIPOLAR ROTOR ARRAY Grant - others:NSF(US) CHE 0848663 Institutional support: RVO:61388963 Keywords : inclusion compounds * molecular rotors * ferroelectricity * two-dimensional arrays Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 15.409, year: 2013
Spectral Laplace-Beltrami wavelets with applications in medical images.
Tan, Mingzhen; Qiu, Anqi
2015-05-01
The spectral graph wavelet transform (SGWT) has recently been developed to compute wavelet transforms of functions defined on non-Euclidean spaces such as graphs. By capitalizing on the established framework of the SGWT, we adopt a fast and efficient computation of a discretized Laplace-Beltrami (LB) operator that allows its extension from arbitrary graphs to differentiable and closed 2-D manifolds (smooth surfaces embedded in the 3-D Euclidean space). This particular class of manifolds are widely used in bioimaging to characterize the morphology of cells, tissues, and organs. They are often discretized into triangular meshes, providing additional geometric information apart from simple nodes and weighted connections in graphs. In comparison with the SGWT, the wavelet bases constructed with the LB operator are spatially localized with a more uniform "spread" with respect to underlying curvature of the surface. In our experiments, we first use synthetic data to show that traditional applications of wavelets in smoothing and edge detectio can be done using the wavelet bases constructed with the LB operator. Second, we show that multi-resolutional capabilities of the proposed framework are applicable in the classification of Alzheimer's patients with normal subjects using hippocampal shapes. Wavelet transforms of the hippocampal shape deformations at finer resolutions registered higher sensitivity (96%) and specificity (90%) than the classification results obtained from the direct usage of hippocampal shape deformations. In addition, the Laplace-Beltrami method requires consistently a smaller number of principal components (to retain a fixed variance) at higher resolution as compared to the binary and weighted graph Laplacians, demonstrating the potential of the wavelet bases in adapting to the geometry of the underlying manifold.
Directory of Open Access Journals (Sweden)
2016-01-01
Full Text Available For single-rotor helicopters there are special flight modes, when tail rotor (TR is under significant inductive influ- ence of vortical wake of main rotor (MR. Inductive influence of vortical wake of MR can provoke essential changes in flowing of TR and its aerodynamic characteristics comparing to isolated rotor. In this case increase of tail rotor pitch, nec- essary for helicopter controlling, is possible.The article contains computational modelling of TR work with vortical wake of MR at the example of MIL Mi-171 helicopter. The modelling has been made on the base of non-linear blade (free wake vortical model of rotor, pro- duced at Helicopter Design Department of MAI.Helicopter hovering modes with crosswind of various intensity Vz was considered. Thrust-time relationship forisolated TR and TR with vortical wake of MR for equal flight modes was obtained. Flow around the rotors was analyzed, its vortical wake was considered.The results make it possible to clarify the peculiarities of TR work on considered modes and MR influence on its work. It was found out that vortical wake of MR has a more significant impact on TR work with crosswind on the right, when TR falls into vortex ring state mode. Inductive influence of vortical wake of MR leads to vortexring state mode for TR on lower speeds (Vz :: 5 m/s than in case of isolated work of TR (Vz :: 12,5 m/s. In that case,the required tail rotor pitch has increased by 13% for Vz = 5 m/s. The results of modelling and flight tests led to good agreement.
Wavelet Coherence Analysis of Change Blindness
Directory of Open Access Journals (Sweden)
Irfan Ali Memon
2013-01-01
Full Text Available Change blindness is the incapability of the brain to detect substantial visual changes in the presence of other visual interruption. The objectives of this study are to examine the EEG (Electroencephalographic based changes in functional connectivity of the brain due to the change blindness. The functional connectivity was estimated using the wavelet-based MSC (Magnitude Square Coherence function of ERPs (Event Related Potentials. The ERPs of 30 subjects were used and were recorded using the visual attention experiment in which subjects were instructed to detect changes in visual stimulus presented before them through the computer monitor. The two-way ANOVA statistical test revealed significant increase in both gamma and theta band MSCs, and significant decrease in beta band MSC for change detection trials. These findings imply that change blindness might be associated to the lack of functional connectivity in gamma and theta bands and increase of functional connectivity in beta band. Since gamma, theta, and beta frequency bands reflect different functions of cognitive process such as maintenance, encoding, retrieval, and matching and work load of VSTM (Visual Short Term Memory, the change in functional connectivity might be correlated to these cognitive processes during change blindness.
WAKES: Wavelet Adaptive Kinetic Evolution Solvers
Mardirian, Marine; Afeyan, Bedros; Larson, David
2016-10-01
We are developing a general capability to adaptively solve phase space evolution equations mixing particle and continuum techniques in an adaptive manner. The multi-scale approach is achieved using wavelet decompositions which allow phase space density estimation to occur with scale dependent increased accuracy and variable time stepping. Possible improvements on the SFK method of Larson are discussed, including the use of multiresolution analysis based Richardson-Lucy Iteration, adaptive step size control in explicit vs implicit approaches. Examples will be shown with KEEN waves and KEEPN (Kinetic Electrostatic Electron Positron Nonlinear) waves, which are the pair plasma generalization of the former, and have a much richer span of dynamical behavior. WAKES techniques are well suited for the study of driven and released nonlinear, non-stationary, self-organized structures in phase space which have no fluid, limit nor a linear limit, and yet remain undamped and coherent well past the drive period. The work reported here is based on the Vlasov-Poisson model of plasma dynamics. Work supported by a Grant from the AFOSR.
Wavelet Domain Radiofrequency Pulse Design Applied to Magnetic Resonance Imaging.
Directory of Open Access Journals (Sweden)
Andrew M Huettner
Full Text Available A new method for designing radiofrequency (RF pulses with numerical optimization in the wavelet domain is presented. Numerical optimization may yield solutions that might otherwise have not been discovered with analytic techniques alone. Further, processing in the wavelet domain reduces the number of unknowns through compression properties inherent in wavelet transforms, providing a more tractable optimization problem. This algorithm is demonstrated with simultaneous multi-slice (SMS spin echo refocusing pulses because reduced peak RF power is necessary for SMS diffusion imaging with high acceleration factors. An iterative, nonlinear, constrained numerical minimization algorithm was developed to generate an optimized RF pulse waveform. Wavelet domain coefficients were modulated while iteratively running a Bloch equation simulator to generate the intermediate slice profile of the net magnetization. The algorithm minimizes the L2-norm of the slice profile with additional terms to penalize rejection band ripple and maximize the net transverse magnetization across each slice. Simulations and human brain imaging were used to demonstrate a new RF pulse design that yields an optimized slice profile and reduced peak energy deposition when applied to a multiband single-shot echo planar diffusion acquisition. This method may be used to optimize factors such as magnitude and phase spectral profiles and peak RF pulse power for multiband simultaneous multi-slice (SMS acquisitions. Wavelet-based RF pulse optimization provides a useful design method to achieve a pulse waveform with beneficial amplitude reduction while preserving appropriate magnetization response for magnetic resonance imaging.
The Ricker wavelet and the Lambert W function
Wang, Yanghua
2015-01-01
The Ricker wavelet has been widely used in the analysis of seismic data, as its asymmetrical amplitude spectrum can represent the attenuation feature of seismic wave propagation through viscoelastic homogeneous media. However, the frequency band of the Ricker wavelet is not analytically determined yet. The determination of the frequency band leads to an inverse exponential equation. To solve this equation analytically a special function, the Lambert W function, is needed. The latter provides a closed and elegant expression of the frequency band of the Ricker wavelet, which is a sample application of the Lambert W function in geophysics and there have been other applications in various scientific and engineering fields in the past decade. Moreover, the Lambert W function is a variation of the Ricker wavelet amplitude spectrum. Since the Ricker wavelet is the second derivative of a Gaussian function and its spectrum is a single-valued smooth curve, numerical evaluation of the Lambert W function can be implemented by a stable interpolation procedure, followed by a recursive computation for high precision.
IMPLEMENTATION OF WAVELETS TO DETECTION OF FISH POPULATION
Directory of Open Access Journals (Sweden)
Yasemin KAHRAMANER
2013-01-01
Full Text Available The influence of climatic oscillations (based on NAO and ENSO on monthly catch rates of fish population such as blue fish and sea bass (pomatomus population between 1991-2008 were analyzed in Black Sea and Marmara Sea by wavelet transform (Wavelet 1-D and continuous wavelet 1-D with DMeyer for 7-Levels. Wavelet analysis is an efficient method of time series analysis to study non-stationary data. Wavelet analyses allowed us to quantify both the pattern of variability in the time series and non-stationary associations between fish population and climatic signals. Phase analyses were carried out to investigate dependency between the two signals. We reported strong relations between fish stock and climate series for the 4- and 5-yr periodic modes, i.e. the periodic band of the El Nino Southern Oscillation signal propagation in the Black and Marmara Seas. These associations were non-stationary, evidenced from 1995 to 2008. Warm episodes matched increases of longline catch rates of bigeye during the 1970-1990 time frames, whereas the strong 1997-1998 warm event matched a decrease of purse seine catch rates of yellowfin. We discussed these results in terms of changes in catchability for purse seine and longline. The results of this study were compared with former harmonic analyses to explain seasonal effects of NAO and ENSO on fish population.
Using Wavelets to Understand the Relationship between Mortgages and Gross Domestic Product in Spain
Directory of Open Access Journals (Sweden)
C. González-Concepción
2012-01-01
Full Text Available We use wavelet multiresolution decomposition and cross-wavelet analysis to reveal certain properties in financial data related to mortgages to households and gross domestic product data in Spain. Wavelet techniques possess many desirable properties, some of which are useful as a vehicle for analysing economic and financial data. In our case, wavelets are useful for drawing conclusions both in the time and frequency domains and for obtaining information on the different phases through which the study variables progress.
Signal Separation of Helicopter Radar Returns Using Wavelet-Based Sparse Signal Optimisation
2016-10-01
transforms based on rational sampling factors, in Proc. Wavelet Applications in Industrial Processing. 56 UNCLASSIFIED UNCLASSIFIED DST-Group–RR–0436 [38...separation techniques cannot be applied. A sparse signal representation technique is now proposed for this problem with the tunable Q wavelet transform ...components using state-of-the-art wavelet transforms and sparse signal representation techniques. Wavelet transforms have been used extensively to
Wavelet neural networks with applications in financial engineering, chaos, and classification
Alexandridis, Antonios K
2014-01-01
Through extensive examples and case studies, Wavelet Neural Networks provides a step-by-step introduction to modeling, training, and forecasting using wavelet networks. The acclaimed authors present a statistical model identification framework to successfully apply wavelet networks in various applications, specifically, providing the mathematical and statistical framework needed for model selection, variable selection, wavelet network construction, initialization, training, forecasting and prediction, confidence intervals, prediction intervals, and model adequacy testing. The text is ideal for
Shukla, K K
2013-01-01
Due to its inherent time-scale locality characteristics, the discrete wavelet transform (DWT) has received considerable attention in signal/image processing. Wavelet transforms have excellent energy compaction characteristics and can provide perfect reconstruction. The shifting (translation) and scaling (dilation) are unique to wavelets. Orthogonality of wavelets with respect to dilations leads to multigrid representation. As the computation of DWT involves filtering, an efficient filtering process is essential in DWT hardware implementation. In the multistage DWT, coefficients are calculated
Multi-input Multi-output Beta Wavelet Network: Modeling of Acoustic Units for Speech Recognition
Chokri Ben Amar; Mourad Zaied; Ridha Ejbali
2012-01-01
In this paper, we propose a novel architecture of wavelet network called Multi-input Multi-output Wavelet Network MIMOWN as a generalization of the old architecture of wavelet network. This newel prototype was applied to speech recognition application especially to model acoustic unit of speech. The originality of our work is the proposal of MIMOWN to model acoustic unit of speech. This approach was proposed to overcome limitation of old wavelet network model. The use of the multi-input multi...
Numerical Simulation of Tower Rotor Interaction for Downwind Wind Turbine
Directory of Open Access Journals (Sweden)
Isam Janajreh
2010-01-01
Full Text Available Downwind wind turbines have lower upwind rotor misalignment, and thus lower turning moment and self-steered advantage over the upwind configuration. In this paper, numerical simulation to the downwind turbine is conducted to investigate the interaction between the tower and the blade during the intrinsic passage of the rotor in the wake of the tower. The moving rotor has been accounted for via ALE formulation of the incompressible, unsteady, turbulent Navier-Stokes equations. The localized CP, CL, and CD are computed and compared to undisturbed flow evaluated by Panel method. The time history of the CP, aerodynamic forces (CL and CD, as well as moments were evaluated for three cross-sectional tower; asymmetrical airfoil (NACA0012 having four times the rotor's chord length, and two circular cross-sections having four and two chords lengths of the rotor's chord. 5%, 17%, and 57% reductions of the aerodynamic lift forces during the blade passage in the wake of the symmetrical airfoil tower, small circular cross-section tower and large circular cross-section tower were observed, respectively. The pronounced reduction, however, is confined to a short time/distance of three rotor chords. A net forward impulsive force is also observed on the tower due to the high speed rotor motion.
Flettner Rotor Concept for Marine Applications: A Systematic Study
Directory of Open Access Journals (Sweden)
A. De Marco
2016-01-01
Full Text Available The concept of Flettner rotor, a rotating cylinder immersed in a fluid current, with a top-mounted disk, has been analyzed by means of unsteady Reynolds averaged Navier-Stokes simulations, with the aim of creating a suitable tool for the preliminary design of the Flettner rotor as a ship’s auxiliary propulsion system. The simulation has been executed to evaluate the performance sensitivity of the Flettner rotor with respect to systematic variations of several parameters, that is, the spin ratio, the rotor aspect ratio, the effect of the end plates, and their dimensions. The Flettner rotor device has been characterized in terms of lift and drag coefficients, and these data were compared with experimental trends available in literature. A verification study has been conducted in order to evaluate the accuracy of the simulation results and the main sources of numerical uncertainty. All the simulation results were used to achieve a surrogate model of lift and drag coefficients. This model is an effective mathematical tool for the preliminary design of Flettner rotor. Finally, an example of assessment of the Flettner rotor performance as an auxiliary propulsion device on a real tanker ship is reported.
Analysis of a Stretched Derivative Aircraft with Open Rotor Propulsion
Berton, Jeffrey J.; Hendricks, Eric S.; Haller, William J.; Guynn, Mark D.
2015-01-01
Research into advanced, high-speed civil turboprops received significant attention during the 1970s and 1980s when fuel efficiency was the driving focus of U.S. aeronautical research. But when fuel prices declined sharply there was no longer sufficient motivation to continue maturing the technology. Recent volatility in fuel prices and increasing concern for aviation's environmental impact, however, have renewed interest in unducted, open rotor propulsion and revived research by NASA and a number of engine manufacturers. Recently, NASA and General Electric have teamed to conduct several investigations into the performance and noise of an advanced, single-aisle transport with open rotor propulsion. The results of these initial studies indicate open rotor engines have the potential to provide significant reduction in fuel consumption compared to aircraft using turbofan engines with equivalent core technology. In addition, noise analysis of the concept indicates that an open rotor aircraft in the single-aisle transport class would be able to meet current noise regulations with margin. The behavior of derivative open rotor transports is of interest. Heavier, "stretched" derivative aircraft tend to be noisier than their lighter relatives. Of particular importance to the business case for the concept is how the noise margin changes relative to regulatory limits within a family of similar open rotor aircraft. The subject of this report is a performance and noise assessment of a notional, heavier, stretched derivative airplane equipped with throttle-push variants of NASA's initial open rotor engine design.
The Effect of Rotor Tip Markings on Judgements of Rotor Sweep Extent
2010-12-01
cue of retinal disparity, or stereopsis , for distance judgements. Accurate distance estimation is required in these situations where both visual...contrast and cues to stereopsis are impoverished. The question addressed in this study is whether an improvement in the visual contrast of the rotor...wider arc. This rules out the use of both binocular stereopsis and vergence as cues to depth. The distance of objects lying on the ground can be
Wind Tunnel Test of the SMART Active Flap Rotor
Straub, Friedrich K.; Anand, Vaidyanthan R.; Birchette, Terrence S.; Lau, Benton H.
2009-01-01
Boeing and a team from Air Force, NASA, Army, DARPA, MIT, UCLA, and U. of Maryland have successfully completed a wind-tunnel test of the smart material actuated rotor technology (SMART) rotor in the 40- by 80-foot wind-tunnel of the National Full-Scale Aerodynamic Complex at NASA Ames Research Center. The Boeing SMART rotor is a full-scale, five-bladed bearingless MD 900 helicopter rotor modified with a piezoelectric-actuated trailing edge flap on each blade. The eleven-week test program evaluated the forward flight characteristics of the active-flap rotor at speeds up to 155 knots, gathered data to validate state-of-the-art codes for rotor aero-acoustic analysis, and quantified the effects of open and closed loop active flap control on rotor loads, noise, and performance. The test demonstrated on-blade smart material control of flaps on a full-scale rotor for the first time in a wind tunnel. The effectiveness of the active flap control on noise and vibration was conclusively demonstrated. Results showed significant reductions up to 6dB in blade-vortex-interaction and in-plane noise, as well as reductions in vibratory hub loads up to 80%. Trailing-edge flap deflections were controlled within 0.1 degrees of the commanded value. The impact of the active flap on control power, rotor smoothing, and performance was also demonstrated. Finally, the reliability of the flap actuation system was successfully proven in more than 60 hours of wind-tunnel testing.
Multidisciplinary Aerodynamic Design of a Rotor Blade for an Optimum Rotor Speed Helicopter
Directory of Open Access Journals (Sweden)
Jiayi Xie
2017-06-01
Full Text Available The aerodynamic design of rotor blades is challenging, and is crucial for the development of helicopter technology. Previous aerodynamic optimizations that focused only on limited design points find it difficult to balance flight performance across the entire flight envelope. This study develops a global optimum envelope (GOE method for determining blade parameters—blade twist, taper ratio, tip sweep—for optimum rotor speed helicopters (ORS-helicopters, balancing performance improvements in hover and various freestream velocities. The GOE method implements aerodynamic blade design by a bi-level optimization, composed of a global optimization step and a secondary optimization step. Power loss as a measure of rotor performance is chosen as the objective function, referred to as direct power loss (DPL in this study. A rotorcraft comprehensive code for trim simulation with a prescribed wake method is developed. With the application of the GOE method, a DPL reduction of as high as 16.7% can be achieved in hover, and 24% at high freestream velocity.
Elliott, Sinikka; Reid, Megan
Baltimore mother Toya Graham became a viral video sensation after being filmed yelling at and hitting her teen son. Graham, who is Black, was trying to stop her son from joining the protests following Freddie Gray's death in police custody in Baltimore in April 2015. Dubbed "mother of the year," news outlets applauded Graham for her fierce determination to keep her son out of harm's way by any means necessary. The media and ensuing public response to the video are illuminating for what they say about cultural notions of Black motherhood: the good Black mom should be superstrong to protect her children, but she is also responsible for controlling her children and preventing them from getting into trouble. In celebrating Graham, the media was implicitly condemning all the other mothers whose children participated in the protests-that is, the mothers who did not prevent their children from "senseless" rioting against institutional racism in policing.
Reintegration of young mothers
Directory of Open Access Journals (Sweden)
Miranda Worthen
2012-08-01
Full Text Available Young mothers seeking reintegration after periods of time spent livingwith fighting forces and armed groups face exclusion and stigmarather than the support they and their children badly need.
Wavelet characterization of Hörmander symbol class Sm Sm Sm ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
Our new idea is to analyse the symbol operators in phase space with relative wavelets, and to establish the kernel distribution property and the operator's continuity on the basis of the wavelets coefficients in phase space. Keywords. Hörmander's symbol; wavelet; kernel distribution; operator's continuity. 1. Introduction.
On Parseval Wavelet Frames with Two or Three Generators via the Unitary Extension Principle
DEFF Research Database (Denmark)
Christensen, Ole; Kim, Hong Oh; Kim, Rae Young
2014-01-01
The unitary extension principle (UEP) by A. Ron and Z. Shen yields a sufficient condition for the construction of Parseval wavelet frames with multiple generators. In this paper we characterize the UEP-type wavelet systems that can be extended to a Parseval wavelet frame by adding just one UEP-ty...
ANALYSIS OF EVENT-RELATED POTENTIALS OF EEG SIGNAL USING DISCRETE WAVELET TRANSFORM
Krotkikh, S. S.; Kirichenko, L. O.
2012-01-01
In this work we use discrete wavelet transform for analyzes the frequency structure of EEG signal with evoked potentials after effect of stimulus. The method for determining the response time to a stimulus, based on the evaluation of the wavelet entropy and relative wavelet entropy EEG, has been implemented.
García Plaza, E.; Núñez López, P. J.
2018-01-01
On-line monitoring of surface finish in machining processes has proven to be a substantial advancement over traditional post-process quality control techniques by reducing inspection times and costs and by avoiding the manufacture of defective products. This study applied techniques for processing cutting force signals based on the wavelet packet transform (WPT) method for the monitoring of surface finish in computer numerical control (CNC) turning operations. The behaviour of 40 mother wavelets was analysed using three techniques: global packet analysis (G-WPT), and the application of two packet reduction criteria: maximum energy (E-WPT) and maximum entropy (SE-WPT). The optimum signal decomposition level (Lj) was determined to eliminate noise and to obtain information correlated to surface finish. The results obtained with the G-WPT method provided an in-depth analysis of cutting force signals, and frequency ranges and signal characteristics were correlated to surface finish with excellent results in the accuracy and reliability of the predictive models. The radial and tangential cutting force components at low frequency provided most of the information for the monitoring of surface finish. The E-WPT and SE-WPT packet reduction criteria substantially reduced signal processing time, but at the expense of discarding packets with relevant information, which impoverished the results. The G-WPT method was observed to be an ideal procedure for processing cutting force signals applied to the real-time monitoring of surface finish, and was estimated to be highly accurate and reliable at a low analytical-computational cost.
Prediction of aerodynamic performance for MEXICO rotor
DEFF Research Database (Denmark)
Hong, Zedong; Yang, Hua; Xu, Haoran
2013-01-01
results by Shen is adopted in this paper. In order to accurately simulate the separation point and the separation area which is caused by the adverse pressure gradient, the CFD method using SST turbulence model is used to solve the three-dimensional Reynolds averaged equations. The first order upwind....... The boundaries of fan-shaped both sides are defined as rotationally periodic connection, and the freeze rotor model is applied at the interface of the rotating and stationary domains, which means the relative position of rotating and stationary domains is fixed when calculating the flow field. Speed no...... of this paper will be illustrated from the following points: first, the comparison of the calculated and the experimental angle of attack distribution along the span direction shows that the maximum relative errors of the attack angle calculated by BEM and CFD respectively are -0.402 and 0.099; it further...
SMART Rotor Development and Wind Tunnel Test
2009-09-01
segments is compromised by the constraints on blade design. Numerous active control concepts have been investigated that effect rotor blade motion or...shape at frequencies above 1/rev in order to mitigate unsteady effects, or adapt the blade to mission segments with conflicting design requirements...2P 3P 4P 5P 6P 7P 8P 9P 10P 0V Average NF 1-5P NF1 -5P,T=10 NF1 -5P,T=1 NF 10P,T=5 NF 10P,T=1 Vibration Index at mu=0.30, alfa=-9.1 Run 33, 39, 42 0V
Thermal shields for gas turbine rotor
Energy Technology Data Exchange (ETDEWEB)
Ross, Christopher W.; Acar, Bulent
2017-09-26
A turbomachine including a rotor having an axis and a plurality of disks positioned adjacent to each other in the axial direction, each disk including opposing axially facing surfaces and a circumferentially extending radially facing surface located between the axially facing surfaces. At least one row of blades is positioned on each of the disks, and the blades include an airfoil extending radially outward from the disk A non-segmented circumferentially continuous ring structure includes an outer rim defining a thermal barrier extending axially in overlapping relation over a portion of the radially facing surface of at least one disk, and extending to a location adjacent to a blade on the disk A compliant element is located between a radially inner circumferential portion of the ring structure and a flange structure that extends axially from an axially facing surface of the disk.
Enhancement of aeroelastic rotor airload prediction methods
Abras, Jennifer N.
The accurate prediction of rotor airloads is a current topic of interest in the rotorcraft community. The complex nature of this loading makes this problem especially difficult. Some of the issues that must be considered include transonic effects on the advancing blade, dynamic stall effects on the retreating blade, and wake vortex interactions with the blades, fuselage, and other components. There are numerous codes to perform these predictions, both aerodynamic and structural, but until recently each code has refined either the structural or aerodynamic aspect of the analysis without serious consideration to the other, using only simplified modules to represent the physics. More recent work has concentrated on coupling CFD and CSD computations to be able to use the most accurate codes available to combine the best of the structural and the aerodynamic codes. However, CFD codes are the most computationally expensive codes available, and although combined CFD and CSD methods are shown to give the most accurate predictions available today, the additional accuracy must be deemed worth the time required to perform the computations. The objective of the research is to both evaluate and extend a range of prediction methods comparing accuracy and computational expense. This range covers many methods where the highest accuracy method shown is a delta loads coupling between an unstructured CFD code and a comprehensive code, and the lowest accuracy is found through a free wake and comprehensive code coupling using simplified 2D aerodynamics. From here, methods to improve the efficiency and accuracy of the CFD code are considered through implementation of grid adaptation and low Mach number preconditioning methods. Applying grid adaptation allow coarser grids to be used where high gradients in the physics are not present, reserving the denser areas for more interesting regions. For steady-state problems, clustering of the grid provides better wake resolution behind the
Preliminary analysis of turbochargers rotors dynamic behaviour
Monoranu, R.; Ştirbu, C.; Bujoreanu, C.
2016-08-01
Turbocharger rotors for the spark and compression ignition engines are resistant steels manufactured in order to support the exhaust gas temperatures exceeding 1200 K. In fact, the mechanical stress is not large as the power consumption of these systems is up to 10 kW, but the operating speeds are high, ranging between 30000 ÷ 250000 rpm. Therefore, the correct turbochargers functioning involves, even from the design stage, the accurate evaluation of the temperature effects, of the turbine torque due to the engine exhaust gases and of the vibration system behaviour caused by very high operating speeds. In addition, the turbocharger lubrication complicates the model, because the classical hydrodynamic theory cannot be applied to evaluate the floating bush bearings. The paper proposes a FEM study using CATIA environment, both as modeling medium and as tool for the numerical analysis, in order to highlight the turbocharger complex behaviour. An accurate design may prevent some major issues which can occur during its operation.
System and method for smoothing a salient rotor in electrical machines
Raminosoa, Tsarafidy; Alexander, James Pellegrino; El-Refaie, Ayman Mohamed Fawzi; Torrey, David A.
2016-12-13
An electrical machine exhibiting reduced friction and windage losses is disclosed. The electrical machine includes a stator and a rotor assembly configured to rotate relative to the stator, wherein the rotor assembly comprises a rotor core including a plurality of salient rotor poles that are spaced apart from one another around an inner hub such that an interpolar gap is formed between each adjacent pair of salient rotor poles, with an opening being defined by the rotor core in each interpolar gap. Electrically non-conductive and non-magnetic inserts are positioned in the gaps formed between the salient rotor poles, with each of the inserts including a mating feature formed an axially inner edge thereof that is configured to mate with a respective opening being defined by the rotor core, so as to secure the insert to the rotor core against centrifugal force experienced during rotation of the rotor assembly.
Design and analysis of Air flow duct for improving the thermal performance of disc brake rotor
Raja, T.; Mathiselvan, G.; Sreenivasulureddy, M.; Goldwin Xavier, X.
2017-05-01
safety in automotive engineering has been considered as a number one priority in development of new vehicle. A brake system is one of the most critical systems in the vehicle, without which the vehicle will put a passenger in an unsafe position. Temperature distribution on disc rotor brake and the performance brake of disc rotor is influenced by the air flow around the disc rotor. In this paper, the effect of air flow over the disc rotor is analyzed using the CFD software. The air flow over the disc rotor is increased by using a duct to supply more air flow over the disc rotor. The duct is designed to supply more air to the rotor surface and it can be placed in front of the vehicle for better performance. Increasing the air flow around the rotor will maximize the heat convection from the rotor surface. The rotor life and the performance can be improved.
An improved numerical model for wave rotor design and analysis
Paxson, Daniel E.; Wilson, Jack
1993-01-01
A numerical model has been developed which can predict both the unsteady flows within a wave rotor and the steady averaged flows in the ports. The model is based on the assumptions of one-dimensional, unsteady, and perfect gas flow. Besides the dominant wave behavior, it is also capable of predicting the effects of finite tube opening time, leakage from the tube ends, and viscosity. The relative simplicity of the model makes it useful for design, optimization, and analysis of wave rotor cycles for any application. This paper discusses some details of the model and presents comparisons between the model and two laboratory wave rotor experiments.
Outer rotor eddy current heater for wind turbines
Directory of Open Access Journals (Sweden)
Tudorache Tiberiu
2016-01-01
Full Text Available This paper proposes a conversion system of wind energy into thermal energy by means of an outer rotor permanent magnet eddy current heater. The main advantages of this device are the following: compactness, easy temperature control by water flow rate regulation, reduced energy cost per kWh, possibility of combination with other heating systems. The analysis presented in the paper is based on the finite element method and its purpose is to optimize the device and to evaluate its performance and operation characteristics such as: analysis of demagnetization level of permanent magnets, output power–rotor speed and electromagnetic torque–rotor speed curves.
Active control rotor model testing at Princeton's Rotorcraft Dynamics Laboratory
Mckillip, Robert M., Jr.
1988-01-01
A description of the model helicopter rotor tests currently in progress at Princeton's Rotorcraft Dynamics Laboratory is presented. The tests are designed to provide data for rotor dynamic modeling for use with active control system design. The model rotor to be used incoporates the capability for Individual Blade Control (IBC) or Higher Harmonic Control through the use of a standard swashplate on a three bladed hub. Sample results from the first series of tests are presented, along with the methodology used for state and parameter identification. Finally, pending experiments and possible research directions using this model and test facility are outlined.
Federal Aviation Administration's approach to engine rotor integrity
Forney, A. K.
1977-01-01
Sections of the U.S. Airworthiness Standards which contribute to rotor integrity are explored. Reports published under NASA's Rotor Burst Protection program are included in current FAA studies to determine the weight penalty for two different levels of increased containment, and the penalty associated with protecting critical structure and systems, the passenger cabin, and the flight deck by strategic location of armor shields or deflector plates. Findings of the two studies will be used to propose revisions to regulations to reduce uncontained rotor failures.
Research on a novel Rotor Structure Switched Reluctance Motor
Zeng, Lingquan; Yu, Haiwei
The paper proposes a novel switched reluctance motor with improved rotor structure, in which the segment core is embedded in aluminum rotor block in order to increase the mechanical strength and easy manufacturing as well as to improve the performance characteristics and reduce the vibration and acoustic noise. The effect of design parameters on the average torque is investigated using the finite element method. Comparison with conventional VR type SRM and segment type SRM without conductive metal construction rotor show the proposed novel SRM has advantages in the torque performances and the vibration and noise characteristics. The performance is also investigated by experiment.
Comparison of calculated and measured helicopter rotor lateral flapping angles
Johnson, W.
1980-01-01
Calculated and measured values of helicopter rotor flapping angles in forward flight are compared for a model rotor in a wind tunnel and an autogiro in gliding flight. The lateral flapping angles can be accurately predicted when a calculation of the nonuniform wake-induced velocity is used. At low advance ratios, it is also necessary to use a free wake geometry calculation. For the cases considered, the tip vortices in the rotor wake remain very close to the tip-path plane, so the calculated values of the flapping motion are sensitive to the fine details of the wake structure, specifically the viscous core radius of the tip vortices.
Limit cases for rotor theories with Betz optimization
DEFF Research Database (Denmark)
Okulov, Valery
2014-01-01
A complete analytical formulation of the vortex approach for the rotor with an ideal load distribution under Betz optimal condition needs some additional assumption about a correct choice of the helical pitch for vortex sheets in the rotor wake. An examination of the three evident assumptions (the...... pitch is independent from velocities induced by the wake; the pitch depends on the induced velocities in the far wake; the pitch depends on the induced velocities in the rotor plane) was considered by a comparison with the main restriction of the actuator disk theory – the Betz-Joukowsky limit...
Prospects for development of wind turbines with orthogonal rotor
Gorelov, D. N.; Krivospitsky, V. P.
2008-03-01
The experimental data obtained previously on the investigation of power characteristics and the possibility of the self-start of the Darrieus rotor are anlysed. These results are used at the design of new two-tier wind turbines with straight blades. The full-scale tests of two design variants showed the prospects for the development of wind turbines with the Darrieus rotor. At a reasonable design, they do not need any devices for the rotor orientation and start-up, are little sensitive to wind gusts and can have a high level of power characteristics, which is not inferior to the best samples of the units of propeller type.
Anisotropy in wavelet-based phase field models
Korzec, Maciek
2016-04-01
When describing the anisotropic evolution of microstructures in solids using phase-field models, the anisotropy of the crystalline phases is usually introduced into the interfacial energy by directional dependencies of the gradient energy coefficients. We consider an alternative approach based on a wavelet analogue of the Laplace operator that is intrinsically anisotropic and linear. The paper focuses on the classical coupled temperature/Ginzburg--Landau type phase-field model for dendritic growth. For the model based on the wavelet analogue, existence, uniqueness and continuous dependence on initial data are proved for weak solutions. Numerical studies of the wavelet based phase-field model show dendritic growth similar to the results obtained for classical phase-field models.
Classification of FTIR cancer data using wavelets and BPNN
Cheng, Cungui; Tian, Yumei; Zhang, Changjiang
2007-11-01
In this paper, a feature extracting method based on wavelets for horizontal attenuated total reflectance Fourier transform infrared spectroscopy (HATR-FTIR) cancer data analysis and classification using artificial neural network trained with back-propagation algorithm is presented. 168 Spectra were collected from 84 pairs of fresh normal and abnormal lung tissue's samples. After preprocessing, 12 features were extracted with continuous wavelet analysis. Based on BPNN classification, all spectra were classified into two categories : normal or abnormal. The accuracy of identifying normal, early carcinoma, and advanced carcinoma were 100%, 90% and 100% respectively. This result indicated that FTIR with continuous wavelet transform (CWT) and the back-propagation neural network (BPNN) could effectively and easily diagnose lung cancer in its early stages.
Evaluation of the wavelet image two-line coder
DEFF Research Database (Denmark)
Rein, Stephan Alexander; Fitzek, Frank Hanns Paul; Gühmann, Clemens
2015-01-01
This paper introduces the wavelet image two-line (Wi2l) coding algorithm for low complexity compression of images. The algorithm recursively encodes an image backwards reading only two lines of a wavelet subband, which are read in blocks of 512 bytes from flash memory. It thus only requires very....... The times on a low-cost microcontroller for 256×256 grayscale pictures are measured as 0.25–0.6 s for encoding and 0.22–0.77 s for decoding. The algorithm can thus realize a low complexity system for compression of images when combined with a customized scheme for the wavelet transform; low complexity here....... The compression system uses flash memory (SD or MMC card) and a small camera sensor thus building an image communication system. It is also suitable for mobile devices or satellite communication. The underlying C source code is made publicly available....
Viewing seismic velocity anomalies with 3-D continuous Gaussian wavelets
Bergeron, Stephen Y.; Vincent, Alain P.; Yuen, David A.; Tranchant, Benoît J. S.; Tchong, Catherine
Seismic velocity anomalies (SVA) have traditionally been viewed as spatial objects. We present a new method for looking at SVA, based on a 3-D continuous Gaussian wavelet transform. Local spectra of the seismic anomalies are calculated with the wavelet transforms. Two proxy quantities based on wavelets are used for viewing SVA. These proxy quantities are the 3-D spatial distributions of (1.) the local maxima of the L2-norm of the seismic anomalies, E-max, and (2.) the associated local horizontal wavenumber k-max. The P1200 tomographical model [Zhou 1996] has been used for this purpose. Geographical distributions of E-max and k-max yield information which are not obvious from direct visual inspection of SVA. Some examples are the depth extent of the tectonic boundaries and the inference of a plume-like object beneath the transition zone under Iceland.
Apple Shape Classification Method Based on Wavelet Moment
Directory of Open Access Journals (Sweden)
Jiangsheng Gui
2014-09-01
Full Text Available Shape is not only an important indicator for assessing the grade of the apple, but also the important factors for increasing the value of the apple. In order to improve the apple shape classification accuracy rate, an approach for apple shape sorting based on wavelet moments was proposed, the image was first subjected to a normalization process using its regular moments to obtain scale and translation invariance, the rotation invariant wavelet moment features were then extracted from the scale and translation normalized images and the method of cluster analysis was used for finished the shape classification. This method performs better than traditional approaches such as Fourier descriptors and Zernike moments, because of that Wavelet moments can provide time-domain and frequency domain window, which was verified by experiments. The normal fruit shape, mild deformity and severe deformity classification accuracy is 86.21 %, 85.82 %, 90.81 % by our method.
Dual tree fractional quaternion wavelet transform for disparity estimation.
Kumar, Sanoj; Kumar, Sanjeev; Sukavanam, Nagarajan; Raman, Balasubramanian
2014-03-01
This paper proposes a novel phase based approach for computing disparity as the optical flow from the given pair of consecutive images. A new dual tree fractional quaternion wavelet transform (FrQWT) is proposed by defining the 2D Fourier spectrum upto a single quadrant. In the proposed FrQWT, each quaternion wavelet consists of a real part (a real DWT wavelet) and three imaginary parts that are organized according to the quaternion algebra. First two FrQWT phases encode the shifts of image features in the absolute horizontal and vertical coordinate system, while the third phase has the texture information. The FrQWT allowed a multi-scale framework for calculating and adjusting local disparities and executing phase unwrapping from coarse to fine scales with linear computational efficiency. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Shearlet-Wavelet Regularized Semismooth Newton Iteration for Image Restoration
Directory of Open Access Journals (Sweden)
Liang Ding
2015-01-01
Full Text Available Image normally has both dots-like and curve structures. But the traditional wavelet or multidirectional wave (ridgelet, contourlet, curvelet, etc. could only restore one of these structures efficiently so that the restoration results for complex images are unsatisfactory. For the image restoration, this paper adopted a strategy of combined shearlet and wavelet frame and proposed a new restoration method. Theoretically, image sparse representation of dots-like and curve structures could be achieved by shearlet and wavelet, respectively. Under the L1 regularization, the two frame-sparse structures could show their respective advantages and efficiently restore the two structures. In order to achieve superlinear convergence, this paper applied semismooth Newton method based on subgradient to solve objective functional without differentiability. Finally, through numerical results, the effectiveness of this strategy was validated, which presented outstanding advantages for any individual frame alone. Some detailed information that could not be restored in individual frame could be clearly demonstrated with this strategy.
Wavelet-based Image Enhancement Using Fourth Order PDE
DEFF Research Database (Denmark)
Nadernejad, Ehsan; Forchhammer, Søren
2011-01-01
The presence of noise interference signal may cause problems in signal and image analysis; hence signal and image de-noising is often used as a preprocessing stage in many signal processing applications. In this paper, a new method is presented for image de-noising based on fourth order partial...... differential equations (PDEs) and wavelet transform. In the existing wavelet thresholding methods, the final noise reduced image has limited improvement. It is due to keeping the approximate coefficients of the image unchanged. These coefficients have the main information of the image. Since noise affects both...... the approximate and detail coefficients, in this research, the anisotropic diffusion technique for noise reduction is applied on the approximation band to alleviate the deficiency of the existing wavelet thresholding methods. The proposed method was applied on several standard noisy images and the results...
Wavelet regression model in forecasting crude oil price
Hamid, Mohd Helmie; Shabri, Ani
2017-05-01
This study presents the performance of wavelet multiple linear regression (WMLR) technique in daily crude oil forecasting. WMLR model was developed by integrating the discrete wavelet transform (DWT) and multiple linear regression (MLR) model. The original time series was decomposed to sub-time series with different scales by wavelet theory. Correlation analysis was conducted to assist in the selection of optimal decomposed components as inputs for the WMLR model. The daily WTI crude oil price series has been used in this study to test the prediction capability of the proposed model. The forecasting performance of WMLR model were also compared with regular multiple linear regression (MLR), Autoregressive Moving Average (ARIMA) and Generalized Autoregressive Conditional Heteroscedasticity (GARCH) using root mean square errors (RMSE) and mean absolute errors (MAE). Based on the experimental results, it appears that the WMLR model performs better than the other forecasting technique tested in this study.
Wavelet coherence of EEG signals for a visual oddball task.
Qassim, Yahya T; Cutmore, Tim R H; James, Daniel A; Rowlands, David D
2013-01-01
Neural co-activation in frontal and central cortex was examined during a visual oddball task using wavelet coherence. EEG was recorded during a visual oddball task, presented to 12 participants with a random mix of 15% oddball targets and 85% frequent non-target letters over 265 trials. Wavelet coherence of individual trials was shown to distinguish frequent and oddball trials. Averaged wavelet coherence showed significant differences: oddball targets showed higher delta-theta activity whereas frequent background stimuli showed higher gamma activity. Increased gamma coherence appeared to be related to expectation of the targets with our analysis showing an R(2) of 0.935 for the relationship between averaged sections of gamma coherence and the number of intervening (frequent) trials since the last oddball. Copyright © 2012 Elsevier Ltd. All rights reserved.
Real-time video codec using reversible wavelets
Huang, Gen Dow; Chiang, David J.; Huang, Yi-En; Cheng, Allen
2003-04-01
This paper describes the hardware implementation of a real-time video codec using reversible Wavelets. The TechSoft (TS) real-time video system employs the Wavelet differencing for the inter-frame compression based on the independent Embedded Block Coding with Optimized Truncation (EBCOT) of the embedded bit stream. This high performance scalable image compression using EBCOT has been selected as part of the ISO new image compression standard, JPEG2000. The TS real-time video system can process up to 30 frames per second (fps) of the DVD format. In addition, audio signals are also processed by the same design for the cost reduction. Reversible Wavelets are used not only for the cost reduction, but also for the lossless applications. Design and implementation issues of the TS real-time video system are discussed.
Image superresolution of cytology images using wavelet based patch search
Vargas, Carlos; García-Arteaga, Juan D.; Romero, Eduardo
2015-01-01
Telecytology is a new research area that holds the potential of significantly reducing the number of deaths due to cervical cancer in developing countries. This work presents a novel super-resolution technique that couples high and low frequency information in order to reduce the bandwidth consumption of cervical image transmission. The proposed approach starts by decomposing into wavelets the high resolution images and transmitting only the lower frequency coefficients. The transmitted coefficients are used to reconstruct an image of the original size. Additional details are added by iteratively replacing patches of the wavelet reconstructed image with equivalent high resolution patches from a previously acquired image database. Finally, the original transmitted low frequency coefficients are used to correct the final image. Results show a higher signal to noise ratio in the proposed method over simply discarding high frequency wavelet coefficients or replacing directly down-sampled patches from the image-database.
Application of wavelet transform in γ-ray spectra analysis
Yu, GuoLiang; Gu, JianZhong; Hou, Long; Li, ZhenYu; Wang, YanZhao; Zhang, YiYun
2013-09-01
The frequency distribution of different ingredients in γ-ray spectra, e.g., photo-peak, fluctuations of counts and Compton region, is separately analyzed. After wavelet transform of γ-ray spectra, the wavelet coefficients of a photo-peak increase with transforming scales and these coefficients show direct proportion with intensity of peak at determinate scale. A novel algorithm based on wavelet transform is proposed and studied. The results indicate that most of the photo-peaks in multi-spectra can be determined accurately, the γ-rays energy and intensity of the peak can also be determined. This method has the prospect of being applied in on-line multi-spectra analysis in such fields as radioprotection and nuclear safety monitoring.
Optimization of the Continuous Wavelet Transform for DSP Processor Implementation.
Patil, Sunil; Abel, E
2005-01-01
The redundant wavelet transform is an effective tool when emphasis is on the analysis of non-stationary signals and on localization and characterization of singularities. Here we describe an optimized method to implement a B-spline based redundant wavelet transform (RWT) on a Digital Signal Processor (DSP) for integer scales. Expressions are derived to give an exact operation count at any integer scale m for any B-spline of order n. Finally experimental results are given using cubic b-spline as scaling function and first-and second-order derivative of B-splines as wavelets. It has been shown that optimized method improves the execution speed over the standard method by 20-28%.
Wavelet analysis of MR functional data from the cerebellum
Energy Technology Data Exchange (ETDEWEB)
Karen, Romero Sánchez, E-mail: alphacentauri-hp@hotmail.com, E-mail: marcos-vaquezr@hotmail.com, E-mail: isabeldgg@hotmail.com; Vásquez Reyes Marcos, A., E-mail: alphacentauri-hp@hotmail.com, E-mail: marcos-vaquezr@hotmail.com, E-mail: isabeldgg@hotmail.com; González Gómez Dulce, I., E-mail: alphacentauri-hp@hotmail.com, E-mail: marcos-vaquezr@hotmail.com, E-mail: isabeldgg@hotmail.com; Hernández López, Javier M., E-mail: javierh@fcfm.buap.mx [Faculty of Physics and Mathematics, BUAP, Puebla, Pue (Mexico); Silvia, Hidalgo Tobón, E-mail: shidbon@gmail.com [Infant Hospital of Mexico, Federico Gómez, Mexico DF. Mexico and Physics Department, Universidad Autónoma Metropolitana. Iztapalapa, Mexico DF. (Mexico); Pilar, Dies Suarez, E-mail: pilydies@yahoo.com, E-mail: neurodoc@prodigy.net.mx; Eduardo, Barragán Pérez, E-mail: pilydies@yahoo.com, E-mail: neurodoc@prodigy.net.mx [Infant Hospital of Mexico, Federico Gómez, Mexico DF. (Mexico); Benito, De Celis Alonso, E-mail: benileon@yahoo.com [Faculty of Physics and Mathematics, BUAP, Puebla, Pue. Mexico and Foundation for Development Carlos Sigüenza. Puebla, Pue. (Mexico)
2014-11-07
The main goal of this project was to create a computer algorithm based on wavelet analysis of BOLD signals, which automatically diagnosed ADHD using information from resting state MR experiments. Male right handed volunteers (infants with ages between 7 and 11 years old) were studied and compared with age matched controls. Wavelet analysis, which is a mathematical tool used to decompose time series into elementary constituents and detect hidden information, was applied here to the BOLD signal obtained from the cerebellum 8 region of all our volunteers. Statistical differences between the values of the a parameters of wavelet analysis was found and showed significant differences (p<0.02) between groups. This difference might help in the future to distinguish healthy from ADHD patients and therefore diagnose ADHD.
Color graph based wavelet transform with perceptual information
Malek, Mohamed; Helbert, David; Carré, Philippe
2015-09-01
We propose a numerical strategy to define a multiscale analysis for color and multicomponent images based on the representation of data on a graph. Our approach consists of computing the graph of an image using the psychovisual information and analyzing it by using the spectral graph wavelet transform. We suggest introducing color dimension into the computation of the weights of the graph and using the geodesic distance as a mean of distance measurement. We thus have defined a wavelet transform based on a graph with perceptual information by using the CIELab color distance. This new representation is illustrated with denoising and inpainting applications. Overall, by introducing psychovisual information in the graph computation for the graph wavelet transform, we obtain very promising results. Thus, results in image restoration highlight the interest of the appropriate use of color information.
Denoising portal images by means of wavelet techniques
Gonzalez Lopez, Antonio Francisco
Portal images are used in radiotherapy for the verification of patient positioning. The distinguishing feature of this image type lies in its formation process: the same beam used for patient treatment is used for image formation. The high energy of the photons used in radiotherapy strongly limits the quality of portal images: Low contrast between tissues, low spatial resolution and low signal to noise ratio. This Thesis studies the enhancement of these images, in particular denoising of portal images. The statistical properties of portal images and noise are studied: power spectra, statistical dependencies between image and noise and marginal, joint and conditional distributions in the wavelet domain. Later, various denoising methods are applied to noisy portal images. Methods operating in the wavelet domain are the basis of this Thesis. In addition, the Wiener filter and the non local means filter (NLM), operating in the image domain, are used as a reference. Other topics studied in this Thesis are spatial resolution, wavelet processing and image processing in dosimetry in radiotherapy. In this regard, the spatial resolution of portal imaging systems is studied; a new method for determining the spatial resolution of the imaging equipments in digital radiology is presented; the calculation of the power spectrum in the wavelet domain is studied; reducing uncertainty in film dosimetry is investigated; a method for the dosimetry of small radiation fields with radiochromic film is presented; the optimal signal resolution is determined, as a function of the noise level and the quantization step, in the digitization process of films and the useful optical density range is set, as a function of the required uncertainty level, for a densitometric system. Marginal distributions of portal images are similar to those of natural images. This also applies to the statistical relationships between wavelet coefficients, intra-band and inter-band. These facts result in a better
Directory of Open Access Journals (Sweden)
Edgar Estupiñán P
2006-08-01
Full Text Available El presente trabajo resalta la importancia del balanceamiento de rotores como principal herramienta dentro de las tareas correctivas del mantenimiento predictivo, con el fin de que se reduzcan las vibraciones y sus efectos secundarios en las máquinas rotatorias. Se ha desarrollado un instrumento virtual para el balanceamiento dinámico de rotores, basado en un sistema de adquisición de datos (SAD. El instrumento tiene incluidos todos los cálculos necesarios para balancear rotores en un plano y en dos planos, a partir de la medición de los datos de vibración, utilizando el procedimiento de los coeficientes de influencia o utilizando un procedimiento de medición sin fase. También se ha incluido un módulo para determinar la severidad vibratoria del rotor y un módulo de análisis de vibraciones, que incluye análisis espectral y de la forma de onda. Este instrumento virtual es una herramienta útil para el balanceamiento de rotores en laboratorio así como también en la industria.This article highlights the importance of rotor balancing like the most important corrective action included in a predictive maintenance program, whose main objective is reducing the vibrations level and its secondary effect in rotary machines. A virtual instrument, based in a data acquisition system has been developed for rotor balancing. With this instrument it is possible to balance rotors in a single or two-plane, using the influence coefficient method or a no phase method. Also the instrument includes a function to determine the vibration severity and a function of vibration analysis with spectral and waveform analysis included. This virtual instrument is useful for rotor balancing in the laboratory as well as in the industry.
CHARACTERIZATION OF RENAL BLOOD FLOW REGULATION BASED ON WAVELET COEFFICIENTS
DEFF Research Database (Denmark)
Pavlov, A.N.; Pavlova, O.N.; Mosekilde, Erik
2010-01-01
The purpose of this study is to demonstrate the possibility of revealing new characteristic features of renal blood flow autoregulation in healthy and pathological states through the application of discrete wavelet transforms to experimental time series for normotensive and hypertensive rats....... A reduction in the variability of the wavelet coefficients in hypertension is observed at both the microscopic level of the blood flow in efferent arterioles of individual nephrons and at the macroscopic level of the blood pressure in the main arteries. The reduction is manifest in both of the main frequency...
Wavelet-analysis for Laser Images of Blood Plasma
Directory of Open Access Journals (Sweden)
ANGELSKY, A.-P.
2011-05-01
Full Text Available The possibilities of the local wavelet-analysis of polarization-inhomogeneous laser image of human blood plasma were considered. The set of statistics, correlation and fractal parameters of the distributions of wavelet-coefficients that are characterize different scales of the polarization maps of polycrystalline networks of amino acids of blood plasma were defined. The criteria for the differentiation of the transformation of birefringence optical-anisotropic structures of blood plasma at different scales of their geometric dimensions were determined.
Image restoration by minimizing zero norm of wavelet frame coefficients
Bao, Chenglong; Dong, Bin; Hou, Likun; Shen, Zuowei; Zhang, Xiaoqun; Zhang, Xue
2016-11-01
In this paper, we propose two algorithms, namely the extrapolated proximal iterative hard thresholding (EPIHT) algorithm and the EPIHT algorithm with line-search, for solving the {{\\ell }}0-norm regularized wavelet frame balanced approach for image restoration. Under the theoretical framework of Kurdyka-Łojasiewicz property, we show that the sequences generated by the two algorithms converge to a local minimizer with linear convergence rate. Moreover, extensive numerical experiments on sparse signal reconstruction and wavelet frame based image restoration problems including CT reconstruction, image deblur, demonstrate the improvement of {{\\ell }}0-norm based regularization models over some prevailing ones, as well as the computational efficiency of the proposed algorithms.
Speckle Suppression in Ultrasonic Images Based on Undecimated Wavelets
Directory of Open Access Journals (Sweden)
Fabrizio Argenti
2003-04-01
Full Text Available An original method to denoise ultrasonic images affected by speckle is presented. Speckle is modeled as a signal-dependent noise corrupting the image. Noise reduction is approached as a Wiener-like filtering performed in a shift-invariant wavelet domain by means of an adaptive rescaling of the coefficients of an undecimated octave decomposition. The scaling factor of each coefficient is calculated from local statistics of the degraded image, the parameters of the noise model, and the wavelet filters. Experimental results demonstrate that excellent background smoothing as well as preservation of edge sharpness and fine details can be obtained.
Time-frequency analysis with the continuous wavelet transform
Lang, W. Christopher; Forinash, Kyle
1998-09-01
The continuous wavelet transform can be used to produce spectrograms which show the frequency content of sounds (or other signals) as a function of time in a manner analogous to sheet music. While this technique is commonly used in the engineering community for signal analysis, the physics community has, in our opinion, remained relatively unaware of this development. Indeed, some find the very notion of frequency as a function of time troublesome. Here spectrograms will be displayed for familiar sounds whose pitches change with time, demonstrating the usefulness of the continuous wavelet transform.
Electroencephalography data analysis by using discrete wavelet packet transform
Karim, Samsul Ariffin Abdul; Ismail, Mohd Tahir; Hasan, Mohammad Khatim; Sulaiman, Jumat; Muthuvalu, Mohana Sundaram; Janier Josefina, B.
2015-05-01
Electroencephalography (EEG) is the electrical activity generated by the movement of neurons in the brain. It is categorized into delta waves, theta, alpha, beta and gamma. These waves exist in a different frequency band. This paper is a continuation of our previous research. EEG data will be decomposed using Discrete Wavelet Packet Transform (DWPT). Daubechies wavelets 10 (D10) will be used as the basic functions for research purposes. From the main results, it is clear that the DWPT able to characterize the EEG signal corresponding to each wave at a specific frequency. Furthermore, the numerical results obtained better than the results using DWT. Statistical analysis support our main findings.
Adaptive wavelet-based recognition of oscillatory patterns on electroencephalograms
Nazimov, Alexey I.; Pavlov, Alexey N.; Hramov, Alexander E.; Grubov, Vadim V.; Koronovskii, Alexey A.; Sitnikova, Evgenija Y.
2013-02-01
The problem of automatic recognition of specific oscillatory patterns on electroencephalograms (EEG) is addressed using the continuous wavelet-transform (CWT). A possibility of improving the quality of recognition by optimizing the choice of CWT parameters is discussed. An adaptive approach is proposed to identify sleep spindles (SS) and spike wave discharges (SWD) that assumes automatic selection of CWT-parameters reflecting the most informative features of the analyzed time-frequency structures. Advantages of the proposed technique over the standard wavelet-based approaches are considered.
Wind Speed Forecasting Using Hybrid Wavelet Transform—ARMA Techniques
Directory of Open Access Journals (Sweden)
Diksha Kaur
2015-01-01
Full Text Available The objective of this paper is to develop a novel wind speed forecasting technique, which produces more accurate prediction. The Wavelet Transform (WT along with the Auto Regressive Moving Average (ARMA is chosen to form a hybrid whose combination is expected to give minimum Mean Absolute Prediction Error (MAPE. A simulation study has been conducted by comparing the forecasting results using the Wavelet-ARMA with the ARMA and Artificial Neural Network (ANN-Ensemble Kalman Filter (EnKF hybrid technique to verify the effectiveness of the proposed hybrid method. Results of the proposed hybrid show significant improvements in the forecasting error.
A Computational Tool for Helicopter Rotor Noise Prediction Project
National Aeronautics and Space Administration — This SBIR project proposes to develop a computational tool for helicopter rotor noise prediction based on hybrid Cartesian grid/gridless approach. The uniqueness of...
Flight Adaptive Blade for Optimum Rotor Response (FABFORR) Project
National Aeronautics and Space Administration — While past research has demonstrated the utility and benefits to be gained with the application of advanced rotor system control concepts, none have been implemented...
TORNADO concept and realisation of a rotor for small VAWTs
Directory of Open Access Journals (Sweden)
Horia DUMITRESCU
2013-09-01
Full Text Available The concept of a three-tier configuration for a vertical axis rotor was successfully developed into a experimental model. The rotor assembly is divided into three tiers with three straight blades in each tier. The three-tiers are shifted by an angle of 400 generating a full helical flow field inside the rotor. Thereby the new configuration has some different mechanism of torque generation as other Darrieus rotors. The three-tier configuration facilitates the operation by enabling the turbine to self-start at wind velocity as low as 2 m/s with good performance and a smoother driving torque. At the same time the design couples an esthetic appearance with low noise level.
Extension of Goldstein's circulation function for optimal rotors with hub
DEFF Research Database (Denmark)
Okulov, Valery; Sørensen, Jens Nørkær; Shen, Wen Zhong
2016-01-01
The aerodynamic interaction or interference between rotor blades and hub body is usually very complicated, but some useful simplifications can be made by considering the hub with an infinite cylinder. Various attempts to find the optimum distribution of circulation by the lifting vortex lines...... method have been previously proposed to describe the blade interaction with the hub modeled by the infinite cylinder. In this case, the ideal distribution of bound circulation on the rotor blades is such that the shed vortex system in the hub-area is a set of helicoidal vortex sheets moving uniformly...... as if rigid, exactly as in the case where there is no influence of the streamtube deformations by the central hub-body. In the present investigation, we consider a more specific problem of the rotor-hub interaction where the initial flow streamtubes and the rotor slipstream submitted strong deformations...
Stability Analysis of the Slowed-Rotor Compound Helicopter Configuration
Floros, Matthew W.; Johnson, Wayne
2007-01-01
The stability and control of rotors at high advance ratio are considered. Teetering, articulated, gimbaled, and rigid hub types are considered for a compound helicopter (rotor and fixed wing). Stability predictions obtained using an analytical rigid flapping blade analysis, a rigid blade CAMRAD II model, and an elastic blade CAMRAD II model are compared. For the flapping blade analysis, the teetering rotor is the most stable, showing no instabilities up to an advance ratio of 3 and a Lock number of 18. A notional elastic blade model of a teetering rotor is unstable at an advance ratio of 1.5, independent of pitch frequency. Analysis of the trim controls and blade flapping shows that for small positive collective pitch, trim can be maintained without excessive control input or flapping angles.
9th IFToMM International Conference on Rotor Dynamics
2015-01-01
This book presents the proceedings of the 9th IFToMM International Conference on Rotor Dynamics. This conference is a premier global event that brings together specialists from the university and industry sectors worldwide in order to promote the exchange of knowledge, ideas, and information on the latest developments and applied technologies in the dynamics of rotating machinery. The coverage is wide ranging, including, for example, new ideas and trends in various aspects of bearing technologies, issues in the analysis of blade dynamic behavior, condition monitoring of different rotating machines, vibration control, electromechanical and fluid-structure interactions in rotating machinery, rotor dynamics of micro, nano, and cryogenic machines, and applications of rotor dynamics in transportation engineering. Since its inception 32 years ago, the IFToMM International Conference on Rotor Dynamics has become an irreplaceable point of reference for those working in the field, and this book reflects the high qua...
SMART Wind Turbine Rotor: Design and Field Test
Energy Technology Data Exchange (ETDEWEB)
Berg, Jonathan C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Resor, Brian R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Paquette, Joshua A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); White, Jonathan R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2014-01-29
This report documents the design, fabrication, and testing of the SMART Rotor. This work established hypothetical approaches for integrating active aerodynamic devices (AADs) into the wind turbine structure and controllers.
Rotor position sensor switches currents in brushless dc motors
1965-01-01
Reluctance switch incorporated in an induction motor is used for sensing rotor position and switching armature circuits in a brushless dc motor. This device drives the solar array system of an unmanned space satellite.
GO JUPTER POS ANCILLARY ROTOR ATTITUDE V1.0
National Aeronautics and Space Administration — This data set contains the attitude data for the rotor of the Galileo spacecraft. The data provided are derived from the Attitude and Articulation Control System...
Application of higher harmonic control to hingeless rotor systems
Nguyen, Khanh; Chopra, Inderjit
1990-01-01
A comprehensive analytical formulation has been dveloped to predict the vibratory hub loads of a helicopter rotor system in forward flight. The analysis is used to calculate the optimal higher harmonic control inputs and associated actuator power required to minimize these hub loads. The present formulation is based on a finite element method in space and time. A nonlinear time domain, unsteady aerodynamic model is used to obtain the airloads, and the rotor induced inflow is calculated using a nonuniform inflow model. Predicted vibratory hub loads are correlated with experimental data obtained from a scaled model rotor. Results of a parametric study on a hingeless rotor show that blade flap, lag and torsion vibration characteristics, offset of blade center of mass from elastic axis, offset of elastic axis from quarter-chord axis, and blade thrust greatly affect the higher harmonic control actuator power requirement.
A Surface-Mounted Rotor State Sensing System Project
National Aeronautics and Space Administration — A surface-mounted instrumentation system for measuring rotor blade motions on rotorcraft, for use both in flight and in wind tunnel testing, is proposed for...
Aero dynamical and mechanical behaviour of the Savonius rotor
Energy Technology Data Exchange (ETDEWEB)
Aouachria, Z. [Batna Univ., (Algeria). Applied Energetic Physics Laboratory
2009-07-01
Although the Savonius wind turbine is not as efficient as the traditional Darrieus wind turbine, its rotor design has many advantages such as simple construction; acceptance of wind from all directions; high starting torque; operation at relatively low speed; and easy adaptation to urban sites. These advantages may outweigh its low efficiency and make it suitable for small-scale power requirements such as pumping and rural electrification. This paper presented a study of the aerodynamic behaviour of a Savonius rotor, based on blade pressure measurements. A two-dimensional analysis method was used to determine the aerodynamic strengths, which leads to the Magnus effect and the generation of the vibrations on the rotor. The study explained the vibratory behaviour of the rotor and proposed an antivibration system to protect the machine. 14 refs., 1 tab., 9 figs.
Surface-Mount Rotor Motion Sensing System Project
National Aeronautics and Space Administration — A surface-mounted instrumentation system for measuring rotor blade motions on rotorcraft, for use both in flight and in wind tunnel testing, is proposed for...
Towards More Efficient Comprehensive Rotor Noise Simulation Project
National Aeronautics and Space Administration — Rotorcraft design and optimization currently still rely largely on simplified (low-fidelity) models, such as rotor disk or wake models to reduce the turn-around time...
Tilt-rotor flutter control in cruise flight
Nasu, Ken-Ichi
1986-01-01
Tilt-rotor flutter control under cruising operation is analyzed. The rotor model consists of a straight fixed wing, a pylon attached to the wingtip, and a three-blade rotor. The wing is cantilevered to the fuselage and is allowed to bend forward and upward. It also has a torsional degree of freedom about the elastic axis. Each rotor blade has two bending degrees of freedom. Feedback of wingtip velocity and acceleration to cyclic pitch is investigated for flutter control, using strip theory and linearized equations of motion. To determine the feedback gain, an eigenvalue analysis is performed. A second, independent, timewise calculation is conducted to evaluate the control law while employing more sophisticated aerodynamics. The effectiveness of flutter control by cyclic pitch change was confirmed.
Research on Far-Field Wavelet's Extraction and Application of Vertical Cable System
Wang, Xiangchun; Xiao, Qingsong; Xia, Changliang; Wu, Zhongliang; Xie, Chengliang
2017-04-01
In marine seismic exploration, ghost wave and bubble effect reduce the vertical resolution and interpretation accuracy seriously. Here firstly the far-field wavelet including source wavelet, ghost wave and bubble effect recorded by the vertical cable system (VCS) is extracted. Then, filters are designed using the extracted far-field wavelet to eliminate ghost wave, bubble effect and source wavelet. At last, the designed filters are applied to the seismic data of VCS. The results show that this method can eliminate ghost wave, bubble effect and source wavelet effectively and the vertical resolution of the seismic data is improved obviously.
DEFF Research Database (Denmark)
Andre, Julia; Kiremidjian, Anne; Liao, Yizheng
2016-01-01
of the structure. In this paper, an ice accretion detection algorithm is presented based on the Continuous Wavelet Transform (CWT). In the proposed algorithm, the acceleration signals obtained from bridge cables are transformed using wavelet method. The damage sensitive features (DSFs) are de fined as a function...... of the wavelet energy at specific wavelet scales. It is found that as ice accretes on the cables, the mass of cable increases, thus changing the wavelet energies. Hence, the DSFs can be used to track the change of cables mass. To validate the proposed algorithm, we use the data collected from a laboratory...
Li, Hong; Ding, Xue
2017-03-01
This paper combines wavelet analysis and wavelet transform theory with artificial neural network, through the pretreatment on point feature attributes before in intrusion detection, to make them suitable for improvement of wavelet neural network. The whole intrusion classification model gets the better adaptability, self-learning ability, greatly enhances the wavelet neural network for solving the problem of field detection invasion, reduces storage space, contributes to improve the performance of the constructed neural network, and reduces the training time. Finally the results of the KDDCup99 data set simulation experiment shows that, this method reduces the complexity of constructing wavelet neural network, but also ensures the accuracy of the intrusion classification.