WorldWideScience

Sample records for wavelet-based segmentation method

  1. On exploiting wavelet bases in statistical region-based segmentation

    DEFF Research Database (Denmark)

    Stegmann, Mikkel Bille; Forchhammer, Søren

    2002-01-01

    Statistical region-based segmentation methods such as the Active Appearance Models establish dense correspondences by modelling variation of shape and pixel intensities in low-resolution 2D images. Unfortunately, for high-resolution 2D and 3D images, this approach is rendered infeasible due to ex...... 9-7 wavelet on cardiac MRIs and human faces show that the segmentation accuracy is minimally degraded at compression ratios of 1:10 and 1:20, respectively....

  2. Sparse data structure design for wavelet-based methods

    Directory of Open Access Journals (Sweden)

    Latu Guillaume

    2011-12-01

    Full Text Available This course gives an introduction to the design of efficient datatypes for adaptive wavelet-based applications. It presents some code fragments and benchmark technics useful to learn about the design of sparse data structures and adaptive algorithms. Material and practical examples are given, and they provide good introduction for anyone involved in the development of adaptive applications. An answer will be given to the question: how to implement and efficiently use the discrete wavelet transform in computer applications? A focus will be made on time-evolution problems, and use of wavelet-based scheme for adaptively solving partial differential equations (PDE. One crucial issue is that the benefits of the adaptive method in term of algorithmic cost reduction can not be wasted by overheads associated to sparse data management.

  3. A New Wavelet-Based Document Image Segmentation Scheme

    Institute of Scientific and Technical Information of China (English)

    赵健; 李道京; 俞卞章; 耿军平

    2002-01-01

    The document image segmentation is very useful for printing, faxing and data processing. An algorithm is developed for segmenting and classifying document image. Feature used for classification is based on the histogram distribution pattern of different image classes. The important attribute of the algorithm is using wavelet correlation image to enhance raw image's pattern, so the classification accuracy is improved. In this paper document image is divided into four types: background, photo, text and graph. Firstly, the document image background has been distingusished easily by former normally method; secondly, three image types will be distinguished by their typical histograms, in order to make histograms feature clearer, each resolution' s HH wavelet subimage is used to add to the raw image at their resolution. At last, the photo, text and praph have been devided according to how the feature fit to the Laplacian distrbution by -X2 and L. Simulations show that classification accuracy is significantly improved. The comparison with related shows that our algorithm provides both lower classification error rates and better visual results.

  4. Hyperspectral image compressing using wavelet-based method

    Science.gov (United States)

    Yu, Hui; Zhang, Zhi-jie; Lei, Bo; Wang, Chen-sheng

    2017-10-01

    Hyperspectral imaging sensors can acquire images in hundreds of continuous narrow spectral bands. Therefore each object presented in the image can be identified from their spectral response. However, such kind of imaging brings a huge amount of data, which requires transmission, processing, and storage resources for both airborne and space borne imaging. Due to the high volume of hyperspectral image data, the exploration of compression strategies has received a lot of attention in recent years. Compression of hyperspectral data cubes is an effective solution for these problems. Lossless compression of the hyperspectral data usually results in low compression ratio, which may not meet the available resources; on the other hand, lossy compression may give the desired ratio, but with a significant degradation effect on object identification performance of the hyperspectral data. Moreover, most hyperspectral data compression techniques exploits the similarities in spectral dimensions; which requires bands reordering or regrouping, to make use of the spectral redundancy. In this paper, we explored the spectral cross correlation between different bands, and proposed an adaptive band selection method to obtain the spectral bands which contain most of the information of the acquired hyperspectral data cube. The proposed method mainly consist three steps: First, the algorithm decomposes the original hyperspectral imagery into a series of subspaces based on the hyper correlation matrix of the hyperspectral images between different bands. And then the Wavelet-based algorithm is applied to the each subspaces. At last the PCA method is applied to the wavelet coefficients to produce the chosen number of components. The performance of the proposed method was tested by using ISODATA classification method.

  5. 3D Wavelet-Based Filter and Method

    Science.gov (United States)

    Moss, William C.; Haase, Sebastian; Sedat, John W.

    2008-08-12

    A 3D wavelet-based filter for visualizing and locating structural features of a user-specified linear size in 2D or 3D image data. The only input parameter is a characteristic linear size of the feature of interest, and the filter output contains only those regions that are correlated with the characteristic size, thus denoising the image.

  6. Wavelet-Based Bayesian Methods for Image Analysis and Automatic Target Recognition

    National Research Council Canada - National Science Library

    Nowak, Robert

    2001-01-01

    .... We have developed two new techniques. First, we have develop a wavelet-based approach to image restoration and deconvolution problems using Bayesian image models and an alternating-maximation method...

  7. Rough-fuzzy clustering and unsupervised feature selection for wavelet based MR image segmentation.

    Directory of Open Access Journals (Sweden)

    Pradipta Maji

    Full Text Available Image segmentation is an indispensable process in the visualization of human tissues, particularly during clinical analysis of brain magnetic resonance (MR images. For many human experts, manual segmentation is a difficult and time consuming task, which makes an automated brain MR image segmentation method desirable. In this regard, this paper presents a new segmentation method for brain MR images, integrating judiciously the merits of rough-fuzzy computing and multiresolution image analysis technique. The proposed method assumes that the major brain tissues, namely, gray matter, white matter, and cerebrospinal fluid from the MR images are considered to have different textural properties. The dyadic wavelet analysis is used to extract the scale-space feature vector for each pixel, while the rough-fuzzy clustering is used to address the uncertainty problem of brain MR image segmentation. An unsupervised feature selection method is introduced, based on maximum relevance-maximum significance criterion, to select relevant and significant textural features for segmentation problem, while the mathematical morphology based skull stripping preprocessing step is proposed to remove the non-cerebral tissues like skull. The performance of the proposed method, along with a comparison with related approaches, is demonstrated on a set of synthetic and real brain MR images using standard validity indices.

  8. Bone marrow cavity segmentation using graph-cuts with wavelet-based texture feature.

    Science.gov (United States)

    Shigeta, Hironori; Mashita, Tomohiro; Kikuta, Junichi; Seno, Shigeto; Takemura, Haruo; Ishii, Masaru; Matsuda, Hideo

    2017-10-01

    Emerging bioimaging technologies enable us to capture various dynamic cellular activities [Formula: see text]. As large amounts of data are obtained these days and it is becoming unrealistic to manually process massive number of images, automatic analysis methods are required. One of the issues for automatic image segmentation is that image-taking conditions are variable. Thus, commonly, many manual inputs are required according to each image. In this paper, we propose a bone marrow cavity (BMC) segmentation method for bone images as BMC is considered to be related to the mechanism of bone remodeling, osteoporosis, and so on. To reduce manual inputs to segment BMC, we classified the texture pattern using wavelet transformation and support vector machine. We also integrated the result of texture pattern classification into the graph-cuts-based image segmentation method because texture analysis does not consider spatial continuity. Our method is applicable to a particular frame in an image sequence in which the condition of fluorescent material is variable. In the experiment, we evaluated our method with nine types of mother wavelets and several sets of scale parameters. The proposed method with graph-cuts and texture pattern classification performs well without manual inputs by a user.

  9. A Wavelet-Based Optimization Method for Biofuel Production

    Directory of Open Access Journals (Sweden)

    Maurizio Carlini

    2018-02-01

    Full Text Available On a global scale many countries are still heavily dependent on crude oil to produce energy and fuel for transport, with a resulting increase of atmospheric pollution. A possible solution to obviate this problem is to find eco-sustainable energy sources. A potential choice could be the use of biodiesel as fuel. The work presented aims to characterise the transesterification reaction of waste peanut frying oil using colour analysis and wavelet analysis. The biodiesel production, with the complete absence of mucilages, was evaluated through a suitable set of energy wavelet coefficients and scalograms. The physical characteristics of the biodiesel are influenced by mucilages. In particular the viscosity, that is a fundamental parameter for the correct use of the biodiesel, might be compromised. The presence of contaminants in the samples can often be missed by visual analysis. The low and high frequency wavelet analysis, by investigating the energy change of wavelet coefficient, provided a valid characterisation of the quality of the samples, related to the absence of mucilages, which is consistent with the experimental results. The proposed method of this work represents a preliminary analysis, before the subsequent chemical physical analysis, that can be develop during the production phases of the biodiesel in order to optimise the process, avoiding the presence of impurities in suspension in the final product.

  10. Wavelet-based Encoding Scheme for Controlling Size of Compressed ECG Segments in Telecardiology Systems.

    Science.gov (United States)

    Al-Busaidi, Asiya M; Khriji, Lazhar; Touati, Farid; Rasid, Mohd Fadlee; Mnaouer, Adel Ben

    2017-09-12

    One of the major issues in time-critical medical applications using wireless technology is the size of the payload packet, which is generally designed to be very small to improve the transmission process. Using small packets to transmit continuous ECG data is still costly. Thus, data compression is commonly used to reduce the huge amount of ECG data transmitted through telecardiology devices. In this paper, a new ECG compression scheme is introduced to ensure that the compressed ECG segments fit into the available limited payload packets, while maintaining a fixed CR to preserve the diagnostic information. The scheme automatically divides the ECG block into segments, while maintaining other compression parameters fixed. This scheme adopts discrete wavelet transform (DWT) method to decompose the ECG data, bit-field preserving (BFP) method to preserve the quality of the DWT coefficients, and a modified running-length encoding (RLE) scheme to encode the coefficients. The proposed dynamic compression scheme showed promising results with a percentage packet reduction (PR) of about 85.39% at low percentage root-mean square difference (PRD) values, less than 1%. ECG records from MIT-BIH Arrhythmia Database were used to test the proposed method. The simulation results showed promising performance that satisfies the needs of portable telecardiology systems, like the limited payload size and low power consumption.

  11. A Hybrid Wavelet-Based Method for the Peak Detection of Photoplethysmography Signals

    Directory of Open Access Journals (Sweden)

    Suyi Li

    2017-01-01

    Full Text Available The noninvasive peripheral oxygen saturation (SpO2 and the pulse rate can be extracted from photoplethysmography (PPG signals. However, the accuracy of the extraction is directly affected by the quality of the signal obtained and the peak of the signal identified; therefore, a hybrid wavelet-based method is proposed in this study. Firstly, we suppressed the partial motion artifacts and corrected the baseline drift by using a wavelet method based on the principle of wavelet multiresolution. And then, we designed a quadratic spline wavelet modulus maximum algorithm to identify the PPG peaks automatically. To evaluate this hybrid method, a reflective pulse oximeter was used to acquire ten subjects’ PPG signals under sitting, raising hand, and gently walking postures, and the peak recognition results on the raw signal and on the corrected signal were compared, respectively. The results showed that the hybrid method not only corrected the morphologies of the signal well but also optimized the peaks identification quality, subsequently elevating the measurement accuracy of SpO2 and the pulse rate. As a result, our hybrid wavelet-based method profoundly optimized the evaluation of respiratory function and heart rate variability analysis.

  12. A Hybrid Wavelet-Based Method for the Peak Detection of Photoplethysmography Signals.

    Science.gov (United States)

    Li, Suyi; Jiang, Shanqing; Jiang, Shan; Wu, Jiang; Xiong, Wenji; Diao, Shu

    2017-01-01

    The noninvasive peripheral oxygen saturation (SpO 2 ) and the pulse rate can be extracted from photoplethysmography (PPG) signals. However, the accuracy of the extraction is directly affected by the quality of the signal obtained and the peak of the signal identified; therefore, a hybrid wavelet-based method is proposed in this study. Firstly, we suppressed the partial motion artifacts and corrected the baseline drift by using a wavelet method based on the principle of wavelet multiresolution. And then, we designed a quadratic spline wavelet modulus maximum algorithm to identify the PPG peaks automatically. To evaluate this hybrid method, a reflective pulse oximeter was used to acquire ten subjects' PPG signals under sitting, raising hand, and gently walking postures, and the peak recognition results on the raw signal and on the corrected signal were compared, respectively. The results showed that the hybrid method not only corrected the morphologies of the signal well but also optimized the peaks identification quality, subsequently elevating the measurement accuracy of SpO 2 and the pulse rate. As a result, our hybrid wavelet-based method profoundly optimized the evaluation of respiratory function and heart rate variability analysis.

  13. A Hybrid Wavelet-Based Method for the Peak Detection of Photoplethysmography Signals

    Science.gov (United States)

    Jiang, Shanqing; Jiang, Shan; Wu, Jiang; Xiong, Wenji

    2017-01-01

    The noninvasive peripheral oxygen saturation (SpO2) and the pulse rate can be extracted from photoplethysmography (PPG) signals. However, the accuracy of the extraction is directly affected by the quality of the signal obtained and the peak of the signal identified; therefore, a hybrid wavelet-based method is proposed in this study. Firstly, we suppressed the partial motion artifacts and corrected the baseline drift by using a wavelet method based on the principle of wavelet multiresolution. And then, we designed a quadratic spline wavelet modulus maximum algorithm to identify the PPG peaks automatically. To evaluate this hybrid method, a reflective pulse oximeter was used to acquire ten subjects' PPG signals under sitting, raising hand, and gently walking postures, and the peak recognition results on the raw signal and on the corrected signal were compared, respectively. The results showed that the hybrid method not only corrected the morphologies of the signal well but also optimized the peaks identification quality, subsequently elevating the measurement accuracy of SpO2 and the pulse rate. As a result, our hybrid wavelet-based method profoundly optimized the evaluation of respiratory function and heart rate variability analysis. PMID:29250135

  14. A Wavelet-Based Finite Element Method for the Self-Shielding Issue in Neutron Transport

    International Nuclear Information System (INIS)

    Le Tellier, R.; Fournier, D.; Ruggieri, J. M.

    2009-01-01

    This paper describes a new approach for treating the energy variable of the neutron transport equation in the resolved resonance energy range. The aim is to avoid recourse to a case-specific spatially dependent self-shielding calculation when considering a broad group structure. This method consists of a discontinuous Galerkin discretization of the energy using wavelet-based elements. A Σ t -orthogonalization of the element basis is presented in order to make the approach tractable for spatially dependent problems. First numerical tests of this method are carried out in a limited framework under the Livolant-Jeanpierre hypotheses in an infinite homogeneous medium. They are mainly focused on the way to construct the wavelet-based element basis. Indeed, the prior selection of these wavelet functions by a thresholding strategy applied to the discrete wavelet transform of a given quantity is a key issue for the convergence rate of the method. The Canuto thresholding approach applied to an approximate flux is found to yield a nearly optimal convergence in many cases. In these tests, the capability of such a finite element discretization to represent the flux depression in a resonant region is demonstrated; a relative accuracy of 10 -3 on the flux (in L 2 -norm) is reached with less than 100 wavelet coefficients per group. (authors)

  15. A wavelet-based Gaussian method for energy dispersive X-ray fluorescence spectrum

    Directory of Open Access Journals (Sweden)

    Pan Liu

    2017-05-01

    Full Text Available This paper presents a wavelet-based Gaussian method (WGM for the peak intensity estimation of energy dispersive X-ray fluorescence (EDXRF. The relationship between the parameters of Gaussian curve and the wavelet coefficients of Gaussian peak point is firstly established based on the Mexican hat wavelet. It is found that the Gaussian parameters can be accurately calculated by any two wavelet coefficients at the peak point which has to be known. This fact leads to a local Gaussian estimation method for spectral peaks, which estimates the Gaussian parameters based on the detail wavelet coefficients of Gaussian peak point. The proposed method is tested via simulated and measured spectra from an energy X-ray spectrometer, and compared with some existing methods. The results prove that the proposed method can directly estimate the peak intensity of EDXRF free from the background information, and also effectively distinguish overlap peaks in EDXRF spectrum.

  16. A wavelet-based Bayesian framework for 3D object segmentation in microscopy

    Science.gov (United States)

    Pan, Kangyu; Corrigan, David; Hillebrand, Jens; Ramaswami, Mani; Kokaram, Anil

    2012-03-01

    In confocal microscopy, target objects are labeled with fluorescent markers in the living specimen, and usually appear with irregular brightness in the observed images. Also, due to the existence of out-of-focus objects in the image, the segmentation of 3-D objects in the stack of image slices captured at different depth levels of the specimen is still heavily relied on manual analysis. In this paper, a novel Bayesian model is proposed for segmenting 3-D synaptic objects from given image stack. In order to solve the irregular brightness and out-offocus problems, the segmentation model employs a likelihood using the luminance-invariant 'wavelet features' of image objects in the dual-tree complex wavelet domain as well as a likelihood based on the vertical intensity profile of the image stack in 3-D. Furthermore, a smoothness 'frame' prior based on the a priori knowledge of the connections of the synapses is introduced to the model for enhancing the connectivity of the synapses. As a result, our model can successfully segment the in-focus target synaptic object from a 3D image stack with irregular brightness.

  17. On Decomposing Object Appearance using PCA and Wavelet bases with Applications to Image Segmentation

    DEFF Research Database (Denmark)

    Stegmann, Mikkel Bille; Forchhammer, Søren

    2002-01-01

    the complete object surface using principal component analysis. This typically involves matrices with a few thousands and up to 100.000+ rows. This paper demonstrates applications of such models applied on colour images of human faces and cardiac magnetic resonance images. Further, we devise methods...

  18. Wavelet-based unsupervised learning method for electrocardiogram suppression in surface electromyograms.

    Science.gov (United States)

    Niegowski, Maciej; Zivanovic, Miroslav

    2016-03-01

    We present a novel approach aimed at removing electrocardiogram (ECG) perturbation from single-channel surface electromyogram (EMG) recordings by means of unsupervised learning of wavelet-based intensity images. The general idea is to combine the suitability of certain wavelet decomposition bases which provide sparse electrocardiogram time-frequency representations, with the capacity of non-negative matrix factorization (NMF) for extracting patterns from images. In order to overcome convergence problems which often arise in NMF-related applications, we design a novel robust initialization strategy which ensures proper signal decomposition in a wide range of ECG contamination levels. Moreover, the method can be readily used because no a priori knowledge or parameter adjustment is needed. The proposed method was evaluated on real surface EMG signals against two state-of-the-art unsupervised learning algorithms and a singular spectrum analysis based method. The results, expressed in terms of high-to-low energy ratio, normalized median frequency, spectral power difference and normalized average rectified value, suggest that the proposed method enables better ECG-EMG separation quality than the reference methods. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  19. A Wavelet-based method for processing signal of fog in strap-down inertial systems

    Energy Technology Data Exchange (ETDEWEB)

    Han, D.; Xiong, C.; Liu, H. [Huazhong University of Science & Technology, Wuhan (China)

    2009-07-01

    Fibre optical gyroscopes (FOGs) have been applied widely in many fields in contrast, with their counterparts such as mechanical gyroscopes and ring laser gyroscopes. The precision of FOG is affected significantly by bias drift, angle random walk temperature effects and noises. Especially, uncertain disturbances resulting from road irregularities often affect accuracy of strap-down inertial system (SINS). Hence, eliminating, uncertain disturbances from outputs of it FOG plays a crucial role to improve accuracy of SINS. This paper presents a wavelet-based method for denoising signals of FOGs in SINS used for exploring and rescuing robots in coal mines. Property of road irregularities in mines is taken into account as a key factor resulting in uncertain disturbances in this research. Both frequency band and amplitude of uncertain disturbances are introduced to choose filtering thresholds. Experimental results have demonstrated that the proposed method can efficiently eliminate uncertain disturbances due to road irregularities from outputs of FOGs and improve accuracy of surrogate data. It indicates that the proposed method has a significant potential in FOG-related applications.

  20. Wavelet-based Adaptive Mesh Refinement Method for Global Atmospheric Chemical Transport Modeling

    Science.gov (United States)

    Rastigejev, Y.

    2011-12-01

    Numerical modeling of global atmospheric chemical transport presents enormous computational difficulties, associated with simulating a wide range of time and spatial scales. The described difficulties are exacerbated by the fact that hundreds of chemical species and thousands of chemical reactions typically are used for chemical kinetic mechanism description. These computational requirements very often forces researches to use relatively crude quasi-uniform numerical grids with inadequate spatial resolution that introduces significant numerical diffusion into the system. It was shown that this spurious diffusion significantly distorts the pollutant mixing and transport dynamics for typically used grid resolution. The described numerical difficulties have to be systematically addressed considering that the demand for fast, high-resolution chemical transport models will be exacerbated over the next decade by the need to interpret satellite observations of tropospheric ozone and related species. In this study we offer dynamically adaptive multilevel Wavelet-based Adaptive Mesh Refinement (WAMR) method for numerical modeling of atmospheric chemical evolution equations. The adaptive mesh refinement is performed by adding and removing finer levels of resolution in the locations of fine scale development and in the locations of smooth solution behavior accordingly. The algorithm is based on the mathematically well established wavelet theory. This allows us to provide error estimates of the solution that are used in conjunction with an appropriate threshold criteria to adapt the non-uniform grid. Other essential features of the numerical algorithm include: an efficient wavelet spatial discretization that allows to minimize the number of degrees of freedom for a prescribed accuracy, a fast algorithm for computing wavelet amplitudes, and efficient and accurate derivative approximations on an irregular grid. The method has been tested for a variety of benchmark problems

  1. Multilayer densities using a wavelet-based gravity method and their tectonic implications beneath the Tibetan Plateau

    Science.gov (United States)

    Xu, Chuang; Luo, Zhicai; Sun, Rong; Zhou, Hao; Wu, Yihao

    2018-06-01

    Determining density structure of the Tibetan Plateau is helpful in better understanding of tectonic structure and development. Seismic method, as traditional approach obtaining a large number of achievements of density structure in the Tibetan Plateau except in the centre and west, is primarily inhibited by the poor seismic station coverage. As the implementation of satellite gravity missions, gravity method is more competitive because of global homogeneous gravity coverage. In this paper, a novel wavelet-based gravity method with high computation efficiency and excellent local identification capability is developed to determine multilayer densities beneath the Tibetan Plateau. The inverted six-layer densities from 0 to 150 km depth can reveal rich tectonic structure and development of study area: (1) The densities present a clockwise pattern, nearly east-west high-low alternating pattern in the west and nearly south-north high-low alternating pattern in the east, which is almost perpendicular to surface movement direction relative to the stable Eurasia from the Global Positioning System velocity field; (2) Apparent fold structure approximately from 10 to 110 km depth can be inferred from the multilayer densities, the deformational direction of which is nearly south-north in the west and east-west in the east; (3) Possible channel flows approximately from 30 to 110 km depth can also be observed clearly during the multilayer densities. Moreover, the inverted multilayer densities are in agreement with previous studies, which verify the correctness and effectiveness of our method.

  2. Multilayer Densities Using a Wavelet-based Gravity Method and Their Tectonic Implications beneath the Tibetan Plateau

    Science.gov (United States)

    Xu, Chuang; Luo, Zhicai; Sun, Rong; Zhou, Hao; Wu, Yihao

    2018-03-01

    Determining density structure of the Tibetan Plateau is helpful in better understanding tectonic structure and development. Seismic method, as traditional approach obtaining a large number of achievements of density structure in the Tibetan Plateau except in the center and west, is primarily inhibited by the poor seismic station coverage. As the implementation of satellite gravity missions, gravity method is more competitive because of global homogeneous gravity coverage. In this paper, a novel wavelet-based gravity method with high computation efficiency and excellent local identification capability is developed to determine multilayer densities beneath the Tibetan Plateau. The inverted 6-layer densities from 0 km to 150 km depth can reveal rich tectonic structure and development of study area: (1) The densities present a clockwise pattern, nearly east-west high-low alternating pattern in the west and nearly south-north high-low alternating pattern in the east, which is almost perpendicular to surface movement direction relative to the stable Eurasia from the Global Positioning System velocity field; (2) Apparent fold structure approximately from 10 km to 110 km depth can be inferred from the multilayer densities, the deformational direction of which is nearly south-north in the west and east-west in the east; (3) Possible channel flows approximately from 30 km to 110 km depth can be also observed clearly during the multilayer densities. Moreover, the inverted multilayer densities are in agreement with previous studies, which verify the correctness and effectiveness of our method.

  3. Stabilized Conservative Level Set Method with Adaptive Wavelet-based Mesh Refinement

    Science.gov (United States)

    Shervani-Tabar, Navid; Vasilyev, Oleg V.

    2016-11-01

    This paper addresses one of the main challenges of the conservative level set method, namely the ill-conditioned behavior of the normal vector away from the interface. An alternative formulation for reconstruction of the interface is proposed. Unlike the commonly used methods which rely on the unit normal vector, Stabilized Conservative Level Set (SCLS) uses a modified renormalization vector with diminishing magnitude away from the interface. With the new formulation, in the vicinity of the interface the reinitialization procedure utilizes compressive flux and diffusive terms only in the normal direction to the interface, thus, preserving the conservative level set properties, while away from the interfaces the directional diffusion mechanism automatically switches to homogeneous diffusion. The proposed formulation is robust and general. It is especially well suited for use with adaptive mesh refinement (AMR) approaches due to need for a finer resolution in the vicinity of the interface in comparison with the rest of the domain. All of the results were obtained using the Adaptive Wavelet Collocation Method, a general AMR-type method, which utilizes wavelet decomposition to adapt on steep gradients in the solution while retaining a predetermined order of accuracy.

  4. Adaptive algorithms for a self-shielding wavelet-based Galerkin method

    International Nuclear Information System (INIS)

    Fournier, D.; Le Tellier, R.

    2009-01-01

    The treatment of the energy variable in deterministic neutron transport methods is based on a multigroup discretization, considering the flux and cross-sections to be constant within a group. In this case, a self-shielding calculation is mandatory to correct sections of resonant isotopes. In this paper, a different approach based on a finite element discretization on a wavelet basis is used. We propose adaptive algorithms constructed from error estimates. Such an approach is applied to within-group scattering source iterations. A first implementation is presented in the special case of the fine structure equation for an infinite homogeneous medium. Extension to spatially-dependent cases is discussed. (authors)

  5. Wavelet-Based Signal Processing of Electromagnetic Pulse Generated Waveforms

    National Research Council Canada - National Science Library

    Ardolino, Richard S

    2007-01-01

    This thesis investigated and compared alternative signal processing techniques that used wavelet-based methods instead of traditional frequency domain methods for processing measured electromagnetic pulse (EMP) waveforms...

  6. Orthonormal Wavelet Bases for Quantum Molecular Dynamics

    International Nuclear Information System (INIS)

    Tymczak, C.; Wang, X.

    1997-01-01

    We report on the use of compactly supported, orthonormal wavelet bases for quantum molecular-dynamics (Car-Parrinello) algorithms. A wavelet selection scheme is developed and tested for prototypical problems, such as the three-dimensional harmonic oscillator, the hydrogen atom, and the local density approximation to atomic and molecular systems. Our method shows systematic convergence with increased grid size, along with improvement on compression rates, thereby yielding an optimal grid for self-consistent electronic structure calculations. copyright 1997 The American Physical Society

  7. Wavelet-based verification of the quantitative precipitation forecast

    Science.gov (United States)

    Yano, Jun-Ichi; Jakubiak, Bogumil

    2016-06-01

    This paper explores the use of wavelets for spatial verification of quantitative precipitation forecasts (QPF), and especially the capacity of wavelets to provide both localization and scale information. Two 24-h forecast experiments using the two versions of the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) on 22 August 2010 over Poland are used to illustrate the method. Strong spatial localizations and associated intermittency of the precipitation field make verification of QPF difficult using standard statistical methods. The wavelet becomes an attractive alternative, because it is specifically designed to extract spatially localized features. The wavelet modes are characterized by the two indices for the scale and the localization. Thus, these indices can simply be employed for characterizing the performance of QPF in scale and localization without any further elaboration or tunable parameters. Furthermore, spatially-localized features can be extracted in wavelet space in a relatively straightforward manner with only a weak dependence on a threshold. Such a feature may be considered an advantage of the wavelet-based method over more conventional "object" oriented verification methods, as the latter tend to represent strong threshold sensitivities. The present paper also points out limits of the so-called "scale separation" methods based on wavelets. Our study demonstrates how these wavelet-based QPF verifications can be performed straightforwardly. Possibilities for further developments of the wavelet-based methods, especially towards a goal of identifying a weak physical process contributing to forecast error, are also pointed out.

  8. The effect of image enhancement on the statistical analysis of functional neuroimages : Wavelet-based denoising and Gaussian smoothing

    NARCIS (Netherlands)

    Wink, AM; Roerdink, JBTM; Sonka, M; Fitzpatrick, JM

    2003-01-01

    The quality of statistical analyses of functional neuroimages is studied after applying various preprocessing methods. We present wavelet-based denoising as an alternative to Gaussian smoothing, the standard denoising method in statistical parametric mapping (SPM). The wavelet-based denoising

  9. Wavelet-based prediction of oil prices

    International Nuclear Information System (INIS)

    Yousefi, Shahriar; Weinreich, Ilona; Reinarz, Dominik

    2005-01-01

    This paper illustrates an application of wavelets as a possible vehicle for investigating the issue of market efficiency in futures markets for oil. The paper provides a short introduction to the wavelets and a few interesting wavelet-based contributions in economics and finance are briefly reviewed. A wavelet-based prediction procedure is introduced and market data on crude oil is used to provide forecasts over different forecasting horizons. The results are compared with data from futures markets for oil and the relative performance of this procedure is used to investigate whether futures markets are efficiently priced

  10. Wavelet-based tracking of bacteria in unreconstructed off-axis holograms.

    Science.gov (United States)

    Marin, Zach; Wallace, J Kent; Nadeau, Jay; Khalil, Andre

    2018-03-01

    We propose an automated wavelet-based method of tracking particles in unreconstructed off-axis holograms to provide rough estimates of the presence of motion and particle trajectories in digital holographic microscopy (DHM) time series. The wavelet transform modulus maxima segmentation method is adapted and tailored to extract Airy-like diffraction disks, which represent bacteria, from DHM time series. In this exploratory analysis, the method shows potential for estimating bacterial tracks in low-particle-density time series, based on a preliminary analysis of both living and dead Serratia marcescens, and for rapidly providing a single-bit answer to whether a sample chamber contains living or dead microbes or is empty. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Enhanced ATM Security using Biometric Authentication and Wavelet Based AES

    Directory of Open Access Journals (Sweden)

    Sreedharan Ajish

    2016-01-01

    Full Text Available The traditional ATM terminal customer recognition systems rely only on bank cards, passwords and such identity verification methods are not perfect and functions are too single. Biometrics-based authentication offers several advantages over other authentication methods, there has been a significant surge in the use of biometrics for user authentication in recent years. This paper presents a highly secured ATM banking system using biometric authentication and wavelet based Advanced Encryption Standard (AES algorithm. Two levels of security are provided in this proposed design. Firstly we consider the security level at the client side by providing biometric authentication scheme along with a password of 4-digit long. Biometric authentication is achieved by considering the fingerprint image of the client. Secondly we ensure a secured communication link between the client machine to the bank server using an optimized energy efficient and wavelet based AES processor. The fingerprint image is the data for encryption process and 4-digit long password is the symmetric key for the encryption process. The performance of ATM machine depends on ultra-high-speed encryption, very low power consumption, and algorithmic integrity. To get a low power consuming and ultra-high speed encryption at the ATM machine, an optimized and wavelet based AES algorithm is proposed. In this system biometric and cryptography techniques are used together for personal identity authentication to improve the security level. The design of the wavelet based AES processor is simulated and the design of the energy efficient AES processor is simulated in Quartus-II software. Simulation results ensure its proper functionality. A comparison among other research works proves its superiority.

  12. Construction of a class of Daubechies type wavelet bases

    International Nuclear Information System (INIS)

    Li Dengfeng; Wu Guochang

    2009-01-01

    Extensive work has been done in the theory and the construction of compactly supported orthonormal wavelet bases of L 2 (R). Some of the most distinguished work was done by Daubechies, who constructed a whole family of such wavelet bases. In this paper, we construct a class of orthonormal wavelet bases by using the principle of Daubechies, and investigate the length of support and the regularity of these wavelet bases.

  13. Research on Wavelet-Based Algorithm for Image Contrast Enhancement

    Institute of Scientific and Technical Information of China (English)

    Wu Ying-qian; Du Pei-jun; Shi Peng-fei

    2004-01-01

    A novel wavelet-based algorithm for image enhancement is proposed in the paper. On the basis of multiscale analysis, the proposed algorithm solves efficiently the problem of noise over-enhancement, which commonly occurs in the traditional methods for contrast enhancement. The decomposed coefficients at same scales are processed by a nonlinear method, and the coefficients at different scales are enhanced in different degree. During the procedure, the method takes full advantage of the properties of Human visual system so as to achieve better performance. The simulations demonstrate that these characters of the proposed approach enable it to fully enhance the content in images, to efficiently alleviate the enhancement of noise and to achieve much better enhancement effect than the traditional approaches.

  14. Track segment synthesis method for NTA film

    International Nuclear Information System (INIS)

    Kumazawa, Shigeru

    1980-03-01

    A method is presented for synthesizing track segments extracted from a gray-level digital picture of NTA film in automatic counting system. In order to detect each track in an arbitrary direction, even if it has some gaps, as a set of the track segments, the method links extracted segments along the track, in succession, to the linked track segments, according to whether each extracted segment bears a similarity of direction to the track or not and whether it is connected with the linked track segments or not. In the case of a large digital picture, the method is applied to each subpicture, which is a strip of the picture, and then concatenates subsets of track segments linked at each subpicture as a set of track segments belonging to a track. The method was applied to detecting tracks in various directions over the eight 364 x 40-pixel subpictures with the gray scale of 127/pixel (picture element) of the microphotograph of NTA film. It was proved to be able to synthesize track segments correctly for every track in the picture. (author)

  15. MRI Brain Tumor Segmentation Methods- A Review

    OpenAIRE

    Gursangeet, Kaur; Jyoti, Rani

    2016-01-01

    Medical image processing and its segmentation is an active and interesting area for researchers. It has reached at the tremendous place in diagnosing tumors after the discovery of CT and MRI. MRI is an useful tool to detect the brain tumor and segmentation is performed to carry out the useful portion from an image. The purpose of this paper is to provide an overview of different image segmentation methods like watershed algorithm, morphological operations, neutrosophic sets, thresholding, K-...

  16. Unsupervised Segmentation Methods of TV Contents

    Directory of Open Access Journals (Sweden)

    Elie El-Khoury

    2010-01-01

    Full Text Available We present a generic algorithm to address various temporal segmentation topics of audiovisual contents such as speaker diarization, shot, or program segmentation. Based on a GLR approach, involving the ΔBIC criterion, this algorithm requires the value of only a few parameters to produce segmentation results at a desired scale and on most typical low-level features used in the field of content-based indexing. Results obtained on various corpora are of the same quality level than the ones obtained by other dedicated and state-of-the-art methods.

  17. CERES: A new cerebellum lobule segmentation method.

    Science.gov (United States)

    Romero, Jose E; Coupé, Pierrick; Giraud, Rémi; Ta, Vinh-Thong; Fonov, Vladimir; Park, Min Tae M; Chakravarty, M Mallar; Voineskos, Aristotle N; Manjón, Jose V

    2017-02-15

    The human cerebellum is involved in language, motor tasks and cognitive processes such as attention or emotional processing. Therefore, an automatic and accurate segmentation method is highly desirable to measure and understand the cerebellum role in normal and pathological brain development. In this work, we propose a patch-based multi-atlas segmentation tool called CERES (CEREbellum Segmentation) that is able to automatically parcellate the cerebellum lobules. The proposed method works with standard resolution magnetic resonance T1-weighted images and uses the Optimized PatchMatch algorithm to speed up the patch matching process. The proposed method was compared with related recent state-of-the-art methods showing competitive results in both accuracy (average DICE of 0.7729) and execution time (around 5 minutes). Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Comparative methods for PET image segmentation in pharyngolaryngeal squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zaidi, Habib [Geneva University Hospital, Division of Nuclear Medicine and Molecular Imaging, Geneva (Switzerland); Geneva University, Geneva Neuroscience Center, Geneva (Switzerland); University of Groningen, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen (Netherlands); Abdoli, Mehrsima [University of Groningen, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen (Netherlands); Fuentes, Carolina Llina [Geneva University Hospital, Division of Nuclear Medicine and Molecular Imaging, Geneva (Switzerland); Naqa, Issam M.El [McGill University, Department of Medical Physics, Montreal (Canada)

    2012-05-15

    Several methods have been proposed for the segmentation of {sup 18}F-FDG uptake in PET. In this study, we assessed the performance of four categories of {sup 18}F-FDG PET image segmentation techniques in pharyngolaryngeal squamous cell carcinoma using clinical studies where the surgical specimen served as the benchmark. Nine PET image segmentation techniques were compared including: five thresholding methods; the level set technique (active contour); the stochastic expectation-maximization approach; fuzzy clustering-based segmentation (FCM); and a variant of FCM, the spatial wavelet-based algorithm (FCM-SW) which incorporates spatial information during the segmentation process, thus allowing the handling of uptake in heterogeneous lesions. These algorithms were evaluated using clinical studies in which the segmentation results were compared to the 3-D biological tumour volume (BTV) defined by histology in PET images of seven patients with T3-T4 laryngeal squamous cell carcinoma who underwent a total laryngectomy. The macroscopic tumour specimens were collected ''en bloc'', frozen and cut into 1.7- to 2-mm thick slices, then digitized for use as reference. The clinical results suggested that four of the thresholding methods and expectation-maximization overestimated the average tumour volume, while a contrast-oriented thresholding method, the level set technique and the FCM-SW algorithm underestimated it, with the FCM-SW algorithm providing relatively the highest accuracy in terms of volume determination (-5.9 {+-} 11.9%) and overlap index. The mean overlap index varied between 0.27 and 0.54 for the different image segmentation techniques. The FCM-SW segmentation technique showed the best compromise in terms of 3-D overlap index and statistical analysis results with values of 0.54 (0.26-0.72) for the overlap index. The BTVs delineated using the FCM-SW segmentation technique were seemingly the most accurate and approximated closely the 3-D BTVs

  19. Fusion of Thresholding Rules During Wavelet-Based Noisy Image Compression

    Directory of Open Access Journals (Sweden)

    Bekhtin Yury

    2016-01-01

    Full Text Available The new method for combining semisoft thresholding rules during wavelet-based data compression of images with multiplicative noise is suggested. The method chooses the best thresholding rule and the threshold value using the proposed criteria which provide the best nonlinear approximations and take into consideration errors of quantization. The results of computer modeling have shown that the suggested method provides relatively good image quality after restoration in the sense of some criteria such as PSNR, SSIM, etc.

  20. Wavelet-based partial volume effect correction for simultaneous MR/PET of the carotid arteries

    Energy Technology Data Exchange (ETDEWEB)

    Bini, Jason; Eldib, Mootaz [Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, NY, NY (United States); Department of Biomedical Engineering, The City College of New York, NY, NY (United States); Robson, Philip M; Fayad, Zahi A [Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, NY, NY (United States)

    2014-07-29

    Simultaneous MR/PET scanners allow for the exploration and development of novel PVE correction techniques without the challenges of coregistration of MR and PET. The development of a wavelet-based PVE correction method, to improve PET quantification, has proven successful in brain PET.{sup 2} We report here the first attempt to apply these methods to simultaneous MR/PET imaging of the carotid arteries.

  1. Wavelet-based partial volume effect correction for simultaneous MR/PET of the carotid arteries

    International Nuclear Information System (INIS)

    Bini, Jason; Eldib, Mootaz; Robson, Philip M; Fayad, Zahi A

    2014-01-01

    Simultaneous MR/PET scanners allow for the exploration and development of novel PVE correction techniques without the challenges of coregistration of MR and PET. The development of a wavelet-based PVE correction method, to improve PET quantification, has proven successful in brain PET. 2 We report here the first attempt to apply these methods to simultaneous MR/PET imaging of the carotid arteries.

  2. Wavelet-based compression of pathological images for telemedicine applications

    Science.gov (United States)

    Chen, Chang W.; Jiang, Jianfei; Zheng, Zhiyong; Wu, Xue G.; Yu, Lun

    2000-05-01

    In this paper, we present the performance evaluation of wavelet-based coding techniques as applied to the compression of pathological images for application in an Internet-based telemedicine system. We first study how well suited the wavelet-based coding is as it applies to the compression of pathological images, since these images often contain fine textures that are often critical to the diagnosis of potential diseases. We compare the wavelet-based compression with the DCT-based JPEG compression in the DICOM standard for medical imaging applications. Both objective and subjective measures have been studied in the evaluation of compression performance. These studies are performed in close collaboration with expert pathologists who have conducted the evaluation of the compressed pathological images and communication engineers and information scientists who designed the proposed telemedicine system. These performance evaluations have shown that the wavelet-based coding is suitable for the compression of various pathological images and can be integrated well with the Internet-based telemedicine systems. A prototype of the proposed telemedicine system has been developed in which the wavelet-based coding is adopted for the compression to achieve bandwidth efficient transmission and therefore speed up the communications between the remote terminal and the central server of the telemedicine system.

  3. Method of manufacturing a large-area segmented photovoltaic module

    Science.gov (United States)

    Lenox, Carl

    2013-11-05

    One embodiment of the invention relates to a segmented photovoltaic (PV) module which is manufactured from laminate segments. The segmented PV module includes rectangular-shaped laminate segments formed from rectangular-shaped PV laminates and further includes non-rectangular-shaped laminate segments formed from rectangular-shaped and approximately-triangular-shaped PV laminates. The laminate segments are mechanically joined and electrically interconnected to form the segmented module. Another embodiment relates to a method of manufacturing a large-area segmented photovoltaic module from laminate segments of various shapes. Other embodiments relate to processes for providing a photovoltaic array for installation at a site. Other embodiments and features are also disclosed.

  4. Methods of evaluating segmentation characteristics and segmentation of major faults

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kie Hwa; Chang, Tae Woo; Kyung, Jai Bok [Seoul National Univ., Seoul (Korea, Republic of)] (and others)

    2000-03-15

    Seismological, geological, and geophysical studies were made for reasonable segmentation of the Ulsan fault and the results are as follows. One- and two- dimensional electrical surveys revealed clearly the fault fracture zone enlarges systematically northward and southward from the vicinity of Mohwa-ri, indicating Mohwa-ri is at the seismic segment boundary. Field Geological survey and microscope observation of fault gouge indicates that the Quaternary faults in the area are reactivated products of the preexisting faults. Trench survey of the Chonbuk fault Galgok-ri revealed thrust faults and cumulative vertical displacement due to faulting during the late Quaternary with about 1.1-1.9 m displacement per event; the latest event occurred from 14000 to 25000 yrs. BP. The seismic survey showed the basement surface os cut by numerous reverse faults and indicated the possibility that the boundary between Kyeongsangbukdo and Kyeongsannamdo may be segment boundary.

  5. Methods of evaluating segmentation characteristics and segmentation of major faults

    International Nuclear Information System (INIS)

    Lee, Kie Hwa; Chang, Tae Woo; Kyung, Jai Bok

    2000-03-01

    Seismological, geological, and geophysical studies were made for reasonable segmentation of the Ulsan fault and the results are as follows. One- and two- dimensional electrical surveys revealed clearly the fault fracture zone enlarges systematically northward and southward from the vicinity of Mohwa-ri, indicating Mohwa-ri is at the seismic segment boundary. Field Geological survey and microscope observation of fault gouge indicates that the Quaternary faults in the area are reactivated products of the preexisting faults. Trench survey of the Chonbuk fault Galgok-ri revealed thrust faults and cumulative vertical displacement due to faulting during the late Quaternary with about 1.1-1.9 m displacement per event; the latest event occurred from 14000 to 25000 yrs. BP. The seismic survey showed the basement surface os cut by numerous reverse faults and indicated the possibility that the boundary between Kyeongsangbukdo and Kyeongsannamdo may be segment boundary

  6. Wavelet Based Diagnosis and Protection of Electric Motors

    OpenAIRE

    Khan, M. Abdesh Shafiel Kafiey; Rahman, M. Azizur

    2010-01-01

    In this chapter, a short review of conventional Fourier transforms and new wavelet based faults diagnostic and protection techniques for electric motors is presented. The new hybrid wavelet packet transform (WPT) and neural network (NN) based faults diagnostic algorithm is developed and implemented for electric motors. The proposed WPT and NN

  7. Embedded wavelet-based face recognition under variable position

    Science.gov (United States)

    Cotret, Pascal; Chevobbe, Stéphane; Darouich, Mehdi

    2015-02-01

    For several years, face recognition has been a hot topic in the image processing field: this technique is applied in several domains such as CCTV, electronic devices delocking and so on. In this context, this work studies the efficiency of a wavelet-based face recognition method in terms of subject position robustness and performance on various systems. The use of wavelet transform has a limited impact on the position robustness of PCA-based face recognition. This work shows, for a well-known database (Yale face database B*), that subject position in a 3D space can vary up to 10% of the original ROI size without decreasing recognition rates. Face recognition is performed on approximation coefficients of the image wavelet transform: results are still satisfying after 3 levels of decomposition. Furthermore, face database size can be divided by a factor 64 (22K with K = 3). In the context of ultra-embedded vision systems, memory footprint is one of the key points to be addressed; that is the reason why compression techniques such as wavelet transform are interesting. Furthermore, it leads to a low-complexity face detection stage compliant with limited computation resources available on such systems. The approach described in this work is tested on three platforms from a standard x86-based computer towards nanocomputers such as RaspberryPi and SECO boards. For K = 3 and a database with 40 faces, the execution mean time for one frame is 0.64 ms on a x86-based computer, 9 ms on a SECO board and 26 ms on a RaspberryPi (B model).

  8. Wavelet-based audio embedding and audio/video compression

    Science.gov (United States)

    Mendenhall, Michael J.; Claypoole, Roger L., Jr.

    2001-12-01

    Watermarking, traditionally used for copyright protection, is used in a new and exciting way. An efficient wavelet-based watermarking technique embeds audio information into a video signal. Several effective compression techniques are applied to compress the resulting audio/video signal in an embedded fashion. This wavelet-based compression algorithm incorporates bit-plane coding, index coding, and Huffman coding. To demonstrate the potential of this audio embedding and audio/video compression algorithm, we embed an audio signal into a video signal and then compress. Results show that overall compression rates of 15:1 can be achieved. The video signal is reconstructed with a median PSNR of nearly 33 dB. Finally, the audio signal is extracted from the compressed audio/video signal without error.

  9. Benchmarking of Remote Sensing Segmentation Methods

    Czech Academy of Sciences Publication Activity Database

    Mikeš, Stanislav; Haindl, Michal; Scarpa, G.; Gaetano, R.

    2015-01-01

    Roč. 8, č. 5 (2015), s. 2240-2248 ISSN 1939-1404 R&D Projects: GA ČR(CZ) GA14-10911S Institutional support: RVO:67985556 Keywords : benchmark * remote sensing segmentation * unsupervised segmentation * supervised segmentation Subject RIV: BD - Theory of Information Impact factor: 2.145, year: 2015 http://library.utia.cas.cz/separaty/2015/RO/haindl-0445995.pdf

  10. FUSION SEGMENTATION METHOD BASED ON FUZZY THEORY FOR COLOR IMAGES

    Directory of Open Access Journals (Sweden)

    J. Zhao

    2017-09-01

    Full Text Available The image segmentation method based on two-dimensional histogram segments the image according to the thresholds of the intensity of the target pixel and the average intensity of its neighborhood. This method is essentially a hard-decision method. Due to the uncertainties when labeling the pixels around the threshold, the hard-decision method can easily get the wrong segmentation result. Therefore, a fusion segmentation method based on fuzzy theory is proposed in this paper. We use membership function to model the uncertainties on each color channel of the color image. Then, we segment the color image according to the fuzzy reasoning. The experiment results show that our proposed method can get better segmentation results both on the natural scene images and optical remote sensing images compared with the traditional thresholding method. The fusion method in this paper can provide new ideas for the information extraction of optical remote sensing images and polarization SAR images.

  11. Creating wavelet-based models for real-time synthesis of perceptually convincing environmental sounds

    Science.gov (United States)

    Miner, Nadine Elizabeth

    1998-09-01

    This dissertation presents a new wavelet-based method for synthesizing perceptually convincing, dynamic sounds using parameterized sound models. The sound synthesis method is applicable to a variety of applications including Virtual Reality (VR), multi-media, entertainment, and the World Wide Web (WWW). A unique contribution of this research is the modeling of the stochastic, or non-pitched, sound components. This stochastic-based modeling approach leads to perceptually compelling sound synthesis. Two preliminary studies conducted provide data on multi-sensory interaction and audio-visual synchronization timing. These results contributed to the design of the new sound synthesis method. The method uses a four-phase development process, including analysis, parameterization, synthesis and validation, to create the wavelet-based sound models. A patent is pending for this dynamic sound synthesis method, which provides perceptually-realistic, real-time sound generation. This dissertation also presents a battery of perceptual experiments developed to verify the sound synthesis results. These experiments are applicable for validation of any sound synthesis technique.

  12. Application of wavelet-based multi-model Kalman filters to real-time flood forecasting

    Science.gov (United States)

    Chou, Chien-Ming; Wang, Ru-Yih

    2004-04-01

    This paper presents the application of a multimodel method using a wavelet-based Kalman filter (WKF) bank to simultaneously estimate decomposed state variables and unknown parameters for real-time flood forecasting. Applying the Haar wavelet transform alters the state vector and input vector of the state space. In this way, an overall detail plus approximation describes each new state vector and input vector, which allows the WKF to simultaneously estimate and decompose state variables. The wavelet-based multimodel Kalman filter (WMKF) is a multimodel Kalman filter (MKF), in which the Kalman filter has been substituted for a WKF. The WMKF then obtains M estimated state vectors. Next, the M state-estimates, each of which is weighted by its possibility that is also determined on-line, are combined to form an optimal estimate. Validations conducted for the Wu-Tu watershed, a small watershed in Taiwan, have demonstrated that the method is effective because of the decomposition of wavelet transform, the adaptation of the time-varying Kalman filter and the characteristics of the multimodel method. Validation results also reveal that the resulting method enhances the accuracy of the runoff prediction of the rainfall-runoff process in the Wu-Tu watershed.

  13. A comparative study on medical image segmentation methods

    Directory of Open Access Journals (Sweden)

    Praylin Selva Blessy SELVARAJ ASSLEY

    2014-03-01

    Full Text Available Image segmentation plays an important role in medical images. It has been a relevant research area in computer vision and image analysis. Many segmentation algorithms have been proposed for medical images. This paper makes a review on segmentation methods for medical images. In this survey, segmentation methods are divided into five categories: region based, boundary based, model based, hybrid based and atlas based. The five different categories with their principle ideas, advantages and disadvantages in segmenting different medical images are discussed.

  14. Spectral information enhancement using wavelet-based iterative filtering for in vivo gamma spectrometry.

    Science.gov (United States)

    Paul, Sabyasachi; Sarkar, P K

    2013-04-01

    Use of wavelet transformation in stationary signal processing has been demonstrated for denoising the measured spectra and characterisation of radionuclides in the in vivo monitoring analysis, where difficulties arise due to very low activity level to be estimated in biological systems. The large statistical fluctuations often make the identification of characteristic gammas from radionuclides highly uncertain, particularly when interferences from progenies are also present. A new wavelet-based noise filtering methodology has been developed for better detection of gamma peaks in noisy data. This sequential, iterative filtering method uses the wavelet multi-resolution approach for noise rejection and an inverse transform after soft 'thresholding' over the generated coefficients. Analyses of in vivo monitoring data of (235)U and (238)U were carried out using this method without disturbing the peak position and amplitude while achieving a 3-fold improvement in the signal-to-noise ratio, compared with the original measured spectrum. When compared with other data-filtering techniques, the wavelet-based method shows the best results.

  15. Use of wavelet based iterative filtering to improve denoising of spectral information for in-vivo gamma spectrometry

    International Nuclear Information System (INIS)

    Paul, Sabyasachi; Sarkar, P.K.

    2012-05-01

    The characterization of radionuclide in the in-vivo monitoring analysis using gamma spectrometry poses difficulty due to very low activity level in biological systems. The large statistical fluctuations often make identification of characteristic gammas from radionuclides highly uncertain, particularly when interferences from progenies are also present. A new wavelet based noise filtering methodology has been developed for better detection of gamma peaks while analyzing noisy spectrometric data. This sequential, iterative filtering method uses the wavelet multi-resolution approach for the noise rejection and inverse transform after soft thresholding over the generated coefficients. Analyses of in-vivo monitoring data of 235 U and 238 U have been carried out using this method without disturbing the peak position and amplitude while achieving a threefold improvement in the signal to noise ratio, compared to the original measured spectrum. When compared with other data filtering techniques, the wavelet based method shows better results. (author)

  16. A level set method for multiple sclerosis lesion segmentation.

    Science.gov (United States)

    Zhao, Yue; Guo, Shuxu; Luo, Min; Shi, Xue; Bilello, Michel; Zhang, Shaoxiang; Li, Chunming

    2018-06-01

    In this paper, we present a level set method for multiple sclerosis (MS) lesion segmentation from FLAIR images in the presence of intensity inhomogeneities. We use a three-phase level set formulation of segmentation and bias field estimation to segment MS lesions and normal tissue region (including GM and WM) and CSF and the background from FLAIR images. To save computational load, we derive a two-phase formulation from the original multi-phase level set formulation to segment the MS lesions and normal tissue regions. The derived method inherits the desirable ability to precisely locate object boundaries of the original level set method, which simultaneously performs segmentation and estimation of the bias field to deal with intensity inhomogeneity. Experimental results demonstrate the advantages of our method over other state-of-the-art methods in terms of segmentation accuracy. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. A NDVI assisted remote sensing image adaptive scale segmentation method

    Science.gov (United States)

    Zhang, Hong; Shen, Jinxiang; Ma, Yanmei

    2018-03-01

    Multiscale segmentation of images can effectively form boundaries of different objects with different scales. However, for the remote sensing image which widely coverage with complicated ground objects, the number of suitable segmentation scales, and each of the scale size is still difficult to be accurately determined, which severely restricts the rapid information extraction of the remote sensing image. A great deal of experiments showed that the normalized difference vegetation index (NDVI) can effectively express the spectral characteristics of a variety of ground objects in remote sensing images. This paper presents a method using NDVI assisted adaptive segmentation of remote sensing images, which segment the local area by using NDVI similarity threshold to iteratively select segmentation scales. According to the different regions which consist of different targets, different segmentation scale boundaries could be created. The experimental results showed that the adaptive segmentation method based on NDVI can effectively create the objects boundaries for different ground objects of remote sensing images.

  18. Review methods for image segmentation from computed tomography images

    International Nuclear Information System (INIS)

    Mamat, Nurwahidah; Rahman, Wan Eny Zarina Wan Abdul; Soh, Shaharuddin Cik; Mahmud, Rozi

    2014-01-01

    Image segmentation is a challenging process in order to get the accuracy of segmentation, automation and robustness especially in medical images. There exist many segmentation methods that can be implemented to medical images but not all methods are suitable. For the medical purposes, the aims of image segmentation are to study the anatomical structure, identify the region of interest, measure tissue volume to measure growth of tumor and help in treatment planning prior to radiation therapy. In this paper, we present a review method for segmentation purposes using Computed Tomography (CT) images. CT images has their own characteristics that affect the ability to visualize anatomic structures and pathologic features such as blurring of the image and visual noise. The details about the methods, the goodness and the problem incurred in the methods will be defined and explained. It is necessary to know the suitable segmentation method in order to get accurate segmentation. This paper can be a guide to researcher to choose the suitable segmentation method especially in segmenting the images from CT scan

  19. Interactive segmentation: a scalable superpixel-based method

    Science.gov (United States)

    Mathieu, Bérengère; Crouzil, Alain; Puel, Jean-Baptiste

    2017-11-01

    This paper addresses the problem of interactive multiclass segmentation of images. We propose a fast and efficient new interactive segmentation method called superpixel α fusion (SαF). From a few strokes drawn by a user over an image, this method extracts relevant semantic objects. To get a fast calculation and an accurate segmentation, SαF uses superpixel oversegmentation and support vector machine classification. We compare SαF with competing algorithms by evaluating its performances on reference benchmarks. We also suggest four new datasets to evaluate the scalability of interactive segmentation methods, using images from some thousand to several million pixels. We conclude with two applications of SαF.

  20. A Wavelet-Based Approach to Fall Detection

    Directory of Open Access Journals (Sweden)

    Luca Palmerini

    2015-05-01

    Full Text Available Falls among older people are a widely documented public health problem. Automatic fall detection has recently gained huge importance because it could allow for the immediate communication of falls to medical assistance. The aim of this work is to present a novel wavelet-based approach to fall detection, focusing on the impact phase and using a dataset of real-world falls. Since recorded falls result in a non-stationary signal, a wavelet transform was chosen to examine fall patterns. The idea is to consider the average fall pattern as the “prototype fall”.In order to detect falls, every acceleration signal can be compared to this prototype through wavelet analysis. The similarity of the recorded signal with the prototype fall is a feature that can be used in order to determine the difference between falls and daily activities. The discriminative ability of this feature is evaluated on real-world data. It outperforms other features that are commonly used in fall detection studies, with an Area Under the Curve of 0.918. This result suggests that the proposed wavelet-based feature is promising and future studies could use this feature (in combination with others considering different fall phases in order to improve the performance of fall detection algorithms.

  1. Wavelet-based moment invariants for pattern recognition

    Science.gov (United States)

    Chen, Guangyi; Xie, Wenfang

    2011-07-01

    Moment invariants have received a lot of attention as features for identification and inspection of two-dimensional shapes. In this paper, two sets of novel moments are proposed by using the auto-correlation of wavelet functions and the dual-tree complex wavelet functions. It is well known that the wavelet transform lacks the property of shift invariance. A little shift in the input signal will cause very different output wavelet coefficients. The autocorrelation of wavelet functions and the dual-tree complex wavelet functions, on the other hand, are shift-invariant, which is very important in pattern recognition. Rotation invariance is the major concern in this paper, while translation invariance and scale invariance can be achieved by standard normalization techniques. The Gaussian white noise is added to the noise-free images and the noise levels vary with different signal-to-noise ratios. Experimental results conducted in this paper show that the proposed wavelet-based moments outperform Zernike's moments and the Fourier-wavelet descriptor for pattern recognition under different rotation angles and different noise levels. It can be seen that the proposed wavelet-based moments can do an excellent job even when the noise levels are very high.

  2. AN ITERATIVE SEGMENTATION METHOD FOR REGION OF INTEREST EXTRACTION

    Directory of Open Access Journals (Sweden)

    Volkan CETIN

    2013-01-01

    Full Text Available In this paper, a method is presented for applications which include mammographic image segmentation and region of interest extraction. Segmentation is a very critical and difficult stage to accomplish in computer aided detection systems. Although the presented segmentation method is developed for mammographic images, it can be used for any medical image which resembles the same statistical characteristics with mammograms. Fundamentally, the method contains iterative automatic thresholding and masking operations which is applied to the original or enhanced mammograms. Also the effect of image enhancement to the segmentation process was observed. A version of histogram equalization was applied to the images for enhancement. Finally, the results show that enhanced version of the proposed segmentation method is preferable because of its better success rate.

  3. From cardinal spline wavelet bases to highly coherent dictionaries

    International Nuclear Information System (INIS)

    Andrle, Miroslav; Rebollo-Neira, Laura

    2008-01-01

    Wavelet families arise by scaling and translations of a prototype function, called the mother wavelet. The construction of wavelet bases for cardinal spline spaces is generally carried out within the multi-resolution analysis scheme. Thus, the usual way of increasing the dimension of the multi-resolution subspaces is by augmenting the scaling factor. We show here that, when working on a compact interval, the identical effect can be achieved without changing the wavelet scale but reducing the translation parameter. By such a procedure we generate a redundant frame, called a dictionary, spanning the same spaces as a wavelet basis but with wavelets of broader support. We characterize the correlation of the dictionary elements by measuring their 'coherence' and produce examples illustrating the relevance of highly coherent dictionaries to problems of sparse signal representation. (fast track communication)

  4. Adaptive Image Transmission Scheme over Wavelet-Based OFDM System

    Institute of Scientific and Technical Information of China (English)

    GAOXinying; YUANDongfeng; ZHANGHaixia

    2005-01-01

    In this paper an adaptive image transmission scheme is proposed over Wavelet-based OFDM (WOFDM) system with Unequal error protection (UEP) by the design of non-uniform signal constellation in MLC. Two different data division schemes: byte-based and bitbased, are analyzed and compared. Different bits are protected unequally according to their different contribution to the image quality in bit-based data division scheme, which causes UEP combined with this scheme more powerful than that with byte-based scheme. Simulation results demonstrate that image transmission by UEP with bit-based data division scheme presents much higher PSNR values and surprisingly better image quality. Furthermore, by considering the tradeoff of complexity and BER performance, Haar wavelet with the shortest compactly supported filter length is the most suitable one among orthogonal Daubechies wavelet series in our proposed system.

  5. Anisotropy in wavelet-based phase field models

    KAUST Repository

    Korzec, Maciek; Mü nch, Andreas; Sü li, Endre; Wagner, Barbara

    2016-01-01

    When describing the anisotropic evolution of microstructures in solids using phase-field models, the anisotropy of the crystalline phases is usually introduced into the interfacial energy by directional dependencies of the gradient energy coefficients. We consider an alternative approach based on a wavelet analogue of the Laplace operator that is intrinsically anisotropic and linear. The paper focuses on the classical coupled temperature/Ginzburg--Landau type phase-field model for dendritic growth. For the model based on the wavelet analogue, existence, uniqueness and continuous dependence on initial data are proved for weak solutions. Numerical studies of the wavelet based phase-field model show dendritic growth similar to the results obtained for classical phase-field models.

  6. Anisotropy in wavelet-based phase field models

    KAUST Repository

    Korzec, Maciek

    2016-04-01

    When describing the anisotropic evolution of microstructures in solids using phase-field models, the anisotropy of the crystalline phases is usually introduced into the interfacial energy by directional dependencies of the gradient energy coefficients. We consider an alternative approach based on a wavelet analogue of the Laplace operator that is intrinsically anisotropic and linear. The paper focuses on the classical coupled temperature/Ginzburg--Landau type phase-field model for dendritic growth. For the model based on the wavelet analogue, existence, uniqueness and continuous dependence on initial data are proved for weak solutions. Numerical studies of the wavelet based phase-field model show dendritic growth similar to the results obtained for classical phase-field models.

  7. Wavelet based free-form deformations for nonrigid registration

    Science.gov (United States)

    Sun, Wei; Niessen, Wiro J.; Klein, Stefan

    2014-03-01

    In nonrigid registration, deformations may take place on the coarse and fine scales. For the conventional B-splines based free-form deformation (FFD) registration, these coarse- and fine-scale deformations are all represented by basis functions of a single scale. Meanwhile, wavelets have been proposed as a signal representation suitable for multi-scale problems. Wavelet analysis leads to a unique decomposition of a signal into its coarse- and fine-scale components. Potentially, this could therefore be useful for image registration. In this work, we investigate whether a wavelet-based FFD model has advantages for nonrigid image registration. We use a B-splines based wavelet, as defined by Cai and Wang.1 This wavelet is expressed as a linear combination of B-spline basis functions. Derived from the original B-spline function, this wavelet is smooth, differentiable, and compactly supported. The basis functions of this wavelet are orthogonal across scales in Sobolev space. This wavelet was previously used for registration in computer vision, in 2D optical flow problems,2 but it was not compared with the conventional B-spline FFD in medical image registration problems. An advantage of choosing this B-splines based wavelet model is that the space of allowable deformation is exactly equivalent to that of the traditional B-spline. The wavelet transformation is essentially a (linear) reparameterization of the B-spline transformation model. Experiments on 10 CT lung and 18 T1-weighted MRI brain datasets show that wavelet based registration leads to smoother deformation fields than traditional B-splines based registration, while achieving better accuracy.

  8. Comparison of parameter-adapted segmentation methods for fluorescence micrographs.

    Science.gov (United States)

    Held, Christian; Palmisano, Ralf; Häberle, Lothar; Hensel, Michael; Wittenberg, Thomas

    2011-11-01

    Interpreting images from fluorescence microscopy is often a time-consuming task with poor reproducibility. Various image processing routines that can help investigators evaluate the images are therefore useful. The critical aspect for a reliable automatic image analysis system is a robust segmentation algorithm that can perform accurate segmentation for different cell types. In this study, several image segmentation methods were therefore compared and evaluated in order to identify the most appropriate segmentation schemes that are usable with little new parameterization and robustly with different types of fluorescence-stained cells for various biological and biomedical tasks. The study investigated, compared, and enhanced four different methods for segmentation of cultured epithelial cells. The maximum-intensity linking (MIL) method, an improved MIL, a watershed method, and an improved watershed method based on morphological reconstruction were used. Three manually annotated datasets consisting of 261, 817, and 1,333 HeLa or L929 cells were used to compare the different algorithms. The comparisons and evaluations showed that the segmentation performance of methods based on the watershed transform was significantly superior to the performance of the MIL method. The results also indicate that using morphological opening by reconstruction can improve the segmentation of cells stained with a marker that exhibits the dotted surface of cells. Copyright © 2011 International Society for Advancement of Cytometry.

  9. Optimized Audio Classification and Segmentation Algorithm by Using Ensemble Methods

    Directory of Open Access Journals (Sweden)

    Saadia Zahid

    2015-01-01

    Full Text Available Audio segmentation is a basis for multimedia content analysis which is the most important and widely used application nowadays. An optimized audio classification and segmentation algorithm is presented in this paper that segments a superimposed audio stream on the basis of its content into four main audio types: pure-speech, music, environment sound, and silence. An algorithm is proposed that preserves important audio content and reduces the misclassification rate without using large amount of training data, which handles noise and is suitable for use for real-time applications. Noise in an audio stream is segmented out as environment sound. A hybrid classification approach is used, bagged support vector machines (SVMs with artificial neural networks (ANNs. Audio stream is classified, firstly, into speech and nonspeech segment by using bagged support vector machines; nonspeech segment is further classified into music and environment sound by using artificial neural networks and lastly, speech segment is classified into silence and pure-speech segments on the basis of rule-based classifier. Minimum data is used for training classifier; ensemble methods are used for minimizing misclassification rate and approximately 98% accurate segments are obtained. A fast and efficient algorithm is designed that can be used with real-time multimedia applications.

  10. Wavelet based methods for improved wind profiler signal processing

    Directory of Open Access Journals (Sweden)

    V. Lehmann

    2001-08-01

    Full Text Available In this paper, we apply wavelet thresholding for removing automatically ground and intermittent clutter (airplane echoes from wind profiler radar data. Using the concept of discrete multi-resolution analysis and non-parametric estimation theory, we develop wavelet domain thresholding rules, which allow us to identify the coefficients relevant for clutter and to suppress them in order to obtain filtered reconstructions.Key words. Meteorology and atmospheric dynamics (instruments and techniques – Radio science (remote sensing; signal processing

  11. Electrocardiogram ST-Segment Morphology Delineation Method Using Orthogonal Transformations.

    Directory of Open Access Journals (Sweden)

    Miha Amon

    Full Text Available Differentiation between ischaemic and non-ischaemic transient ST segment events of long term ambulatory electrocardiograms is a persisting weakness in present ischaemia detection systems. Traditional ST segment level measuring is not a sufficiently precise technique due to the single point of measurement and severe noise which is often present. We developed a robust noise resistant orthogonal-transformation based delineation method, which allows tracing the shape of transient ST segment morphology changes from the entire ST segment in terms of diagnostic and morphologic feature-vector time series, and also allows further analysis. For these purposes, we developed a new Legendre Polynomials based Transformation (LPT of ST segment. Its basis functions have similar shapes to typical transient changes of ST segment morphology categories during myocardial ischaemia (level, slope and scooping, thus providing direct insight into the types of time domain morphology changes through the LPT feature-vector space. We also generated new Karhunen and Lo ève Transformation (KLT ST segment basis functions using a robust covariance matrix constructed from the ST segment pattern vectors derived from the Long Term ST Database (LTST DB. As for the delineation of significant transient ischaemic and non-ischaemic ST segment episodes, we present a study on the representation of transient ST segment morphology categories, and an evaluation study on the classification power of the KLT- and LPT-based feature vectors to classify between ischaemic and non-ischaemic ST segment episodes of the LTST DB. Classification accuracy using the KLT and LPT feature vectors was 90% and 82%, respectively, when using the k-Nearest Neighbors (k = 3 classifier and 10-fold cross-validation. New sets of feature-vector time series for both transformations were derived for the records of the LTST DB which is freely available on the PhysioNet website and were contributed to the LTST DB. The

  12. Wavelet-Based Poisson Solver for Use in Particle-in-Cell Simulations

    CERN Document Server

    Terzic, Balsa; Mihalcea, Daniel; Pogorelov, Ilya V

    2005-01-01

    We report on a successful implementation of a wavelet-based Poisson solver for use in 3D particle-in-cell simulations. One new aspect of our algorithm is its ability to treat the general (inhomogeneous) Dirichlet boundary conditions. The solver harnesses advantages afforded by the wavelet formulation, such as sparsity of operators and data sets, existence of effective preconditioners, and the ability simultaneously to remove numerical noise and further compress relevant data sets. Having tested our method as a stand-alone solver on two model problems, we merged it into IMPACT-T to obtain a fully functional serial PIC code. We present and discuss preliminary results of application of the new code to the modelling of the Fermilab/NICADD and AES/JLab photoinjectors.

  13. Passive microrheology of soft materials with atomic force microscopy: A wavelet-based spectral analysis

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Torres, C.; Streppa, L. [CNRS, UMR5672, Laboratoire de Physique, Ecole Normale Supérieure de Lyon, 46 Allée d' Italie, Université de Lyon, 69007 Lyon (France); Arneodo, A.; Argoul, F. [CNRS, UMR5672, Laboratoire de Physique, Ecole Normale Supérieure de Lyon, 46 Allée d' Italie, Université de Lyon, 69007 Lyon (France); CNRS, UMR5798, Laboratoire Ondes et Matière d' Aquitaine, Université de Bordeaux, 351 Cours de la Libération, 33405 Talence (France); Argoul, P. [Université Paris-Est, Ecole des Ponts ParisTech, SDOA, MAST, IFSTTAR, 14-20 Bd Newton, Cité Descartes, 77420 Champs sur Marne (France)

    2016-01-18

    Compared to active microrheology where a known force or modulation is periodically imposed to a soft material, passive microrheology relies on the spectral analysis of the spontaneous motion of tracers inherent or external to the material. Passive microrheology studies of soft or living materials with atomic force microscopy (AFM) cantilever tips are rather rare because, in the spectral densities, the rheological response of the materials is hardly distinguishable from other sources of random or periodic perturbations. To circumvent this difficulty, we propose here a wavelet-based decomposition of AFM cantilever tip fluctuations and we show that when applying this multi-scale method to soft polymer layers and to living myoblasts, the structural damping exponents of these soft materials can be retrieved.

  14. Wavelet-based Poisson Solver for use in Particle-In-Cell Simulations

    International Nuclear Information System (INIS)

    Terzic, B.; Mihalcea, D.; Bohn, C.L.; Pogorelov, I.V.

    2005-01-01

    We report on a successful implementation of a wavelet based Poisson solver for use in 3D particle-in-cell (PIC) simulations. One new aspect of our algorithm is its ability to treat the general(inhomogeneous) Dirichlet boundary conditions (BCs). The solver harnesses advantages afforded by the wavelet formulation, such as sparsity of operators and data sets, existence of effective preconditioners, and the ability simultaneously to remove numerical noise and further compress relevant data sets. Having tested our method as a stand-alone solver on two model problems, we merged it into IMPACT-T to obtain a fully functional serial PIC code. We present and discuss preliminary results of application of the new code to the modeling of the Fermilab/NICADD and AES/JLab photoinjectors

  15. A Finite Segment Method for Skewed Box Girder Analysis

    Directory of Open Access Journals (Sweden)

    Xingwei Xue

    2018-01-01

    Full Text Available A finite segment method is presented to analyze the mechanical behavior of skewed box girders. By modeling the top and bottom plates of the segments with skew plate beam element under an inclined coordinate system and the webs with normal plate beam element, a spatial elastic displacement model for skewed box girder is constructed, which can satisfy the compatibility condition at the corners of the cross section for box girders. The formulation of the finite segment is developed based on the variational principle. The major advantage of the proposed approach, in comparison with the finite element method, is that it can simplify a three-dimensional structure into a one-dimensional structure for structural analysis, which results in significant saving in computational times. At last, the accuracy and efficiency of the proposed finite segment method are verified by a model test.

  16. An Efficient Evolutionary Based Method For Image Segmentation

    OpenAIRE

    Aslanzadeh, Roohollah; Qazanfari, Kazem; Rahmati, Mohammad

    2017-01-01

    The goal of this paper is to present a new efficient image segmentation method based on evolutionary computation which is a model inspired from human behavior. Based on this model, a four layer process for image segmentation is proposed using the split/merge approach. In the first layer, an image is split into numerous regions using the watershed algorithm. In the second layer, a co-evolutionary process is applied to form centers of finals segments by merging similar primary regions. In the t...

  17. Wavelet-based characterization of gait signal for neurological abnormalities.

    Science.gov (United States)

    Baratin, E; Sugavaneswaran, L; Umapathy, K; Ioana, C; Krishnan, S

    2015-02-01

    Studies conducted by the World Health Organization (WHO) indicate that over one billion suffer from neurological disorders worldwide, and lack of efficient diagnosis procedures affects their therapeutic interventions. Characterizing certain pathologies of motor control for facilitating their diagnosis can be useful in quantitatively monitoring disease progression and efficient treatment planning. As a suitable directive, we introduce a wavelet-based scheme for effective characterization of gait associated with certain neurological disorders. In addition, since the data were recorded from a dynamic process, this work also investigates the need for gait signal re-sampling prior to identification of signal markers in the presence of pathologies. To benefit automated discrimination of gait data, certain characteristic features are extracted from the wavelet-transformed signals. The performance of the proposed approach was evaluated using a database consisting of 15 Parkinson's disease (PD), 20 Huntington's disease (HD), 13 Amyotrophic lateral sclerosis (ALS) and 16 healthy control subjects, and an average classification accuracy of 85% is achieved using an unbiased cross-validation strategy. The obtained results demonstrate the potential of the proposed methodology for computer-aided diagnosis and automatic characterization of certain neurological disorders. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. FPGA Accelerator for Wavelet-Based Automated Global Image Registration

    Directory of Open Access Journals (Sweden)

    Baofeng Li

    2009-01-01

    Full Text Available Wavelet-based automated global image registration (WAGIR is fundamental for most remote sensing image processing algorithms and extremely computation-intensive. With more and more algorithms migrating from ground computing to onboard computing, an efficient dedicated architecture of WAGIR is desired. In this paper, a BWAGIR architecture is proposed based on a block resampling scheme. BWAGIR achieves a significant performance by pipelining computational logics, parallelizing the resampling process and the calculation of correlation coefficient and parallel memory access. A proof-of-concept implementation with 1 BWAGIR processing unit of the architecture performs at least 7.4X faster than the CL cluster system with 1 node, and at least 3.4X than the MPM massively parallel machine with 1 node. Further speedup can be achieved by parallelizing multiple BWAGIR units. The architecture with 5 units achieves a speedup of about 3X against the CL with 16 nodes and a comparative speed with the MPM with 30 nodes. More importantly, the BWAGIR architecture can be deployed onboard economically.

  19. FPGA Accelerator for Wavelet-Based Automated Global Image Registration

    Directory of Open Access Journals (Sweden)

    Li Baofeng

    2009-01-01

    Full Text Available Abstract Wavelet-based automated global image registration (WAGIR is fundamental for most remote sensing image processing algorithms and extremely computation-intensive. With more and more algorithms migrating from ground computing to onboard computing, an efficient dedicated architecture of WAGIR is desired. In this paper, a BWAGIR architecture is proposed based on a block resampling scheme. BWAGIR achieves a significant performance by pipelining computational logics, parallelizing the resampling process and the calculation of correlation coefficient and parallel memory access. A proof-of-concept implementation with 1 BWAGIR processing unit of the architecture performs at least 7.4X faster than the CL cluster system with 1 node, and at least 3.4X than the MPM massively parallel machine with 1 node. Further speedup can be achieved by parallelizing multiple BWAGIR units. The architecture with 5 units achieves a speedup of about 3X against the CL with 16 nodes and a comparative speed with the MPM with 30 nodes. More importantly, the BWAGIR architecture can be deployed onboard economically.

  20. An image adaptive, wavelet-based watermarking of digital images

    Science.gov (United States)

    Agreste, Santa; Andaloro, Guido; Prestipino, Daniela; Puccio, Luigia

    2007-12-01

    In digital management, multimedia content and data can easily be used in an illegal way--being copied, modified and distributed again. Copyright protection, intellectual and material rights protection for authors, owners, buyers, distributors and the authenticity of content are crucial factors in solving an urgent and real problem. In such scenario digital watermark techniques are emerging as a valid solution. In this paper, we describe an algorithm--called WM2.0--for an invisible watermark: private, strong, wavelet-based and developed for digital images protection and authenticity. Using discrete wavelet transform (DWT) is motivated by good time-frequency features and well-matching with human visual system directives. These two combined elements are important in building an invisible and robust watermark. WM2.0 works on a dual scheme: watermark embedding and watermark detection. The watermark is embedded into high frequency DWT components of a specific sub-image and it is calculated in correlation with the image features and statistic properties. Watermark detection applies a re-synchronization between the original and watermarked image. The correlation between the watermarked DWT coefficients and the watermark signal is calculated according to the Neyman-Pearson statistic criterion. Experimentation on a large set of different images has shown to be resistant against geometric, filtering and StirMark attacks with a low rate of false alarm.

  1. A deep level set method for image segmentation

    OpenAIRE

    Tang, Min; Valipour, Sepehr; Zhang, Zichen Vincent; Cobzas, Dana; MartinJagersand

    2017-01-01

    This paper proposes a novel image segmentation approachthat integrates fully convolutional networks (FCNs) with a level setmodel. Compared with a FCN, the integrated method can incorporatesmoothing and prior information to achieve an accurate segmentation.Furthermore, different than using the level set model as a post-processingtool, we integrate it into the training phase to fine-tune the FCN. Thisallows the use of unlabeled data during training in a semi-supervisedsetting. Using two types o...

  2. Image segmentation with a finite element method

    DEFF Research Database (Denmark)

    Bourdin, Blaise

    1999-01-01

    regularization results, make possible to imagine a finite element resolution method.In a first time, the Mumford-Shah functional is introduced and some existing results are quoted. Then, a discrete formulation for the Mumford-Shah problem is proposed and its $\\Gamma$-convergence is proved. Finally, some...

  3. Image Mosaic Method Based on SIFT Features of Line Segment

    Directory of Open Access Journals (Sweden)

    Jun Zhu

    2014-01-01

    Full Text Available This paper proposes a novel image mosaic method based on SIFT (Scale Invariant Feature Transform feature of line segment, aiming to resolve incident scaling, rotation, changes in lighting condition, and so on between two images in the panoramic image mosaic process. This method firstly uses Harris corner detection operator to detect key points. Secondly, it constructs directed line segments, describes them with SIFT feature, and matches those directed segments to acquire rough point matching. Finally, Ransac method is used to eliminate wrong pairs in order to accomplish image mosaic. The results from experiment based on four pairs of images show that our method has strong robustness for resolution, lighting, rotation, and scaling.

  4. High Order Wavelet-Based Multiresolution Technology for Airframe Noise Prediction, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a novel, high-accuracy, high-fidelity, multiresolution (MRES), wavelet-based framework for efficient prediction of airframe noise sources and...

  5. Clustering Methods Application for Customer Segmentation to Manage Advertisement Campaign

    Directory of Open Access Journals (Sweden)

    Maciej Kutera

    2010-10-01

    Full Text Available Clustering methods are recently so advanced elaborated algorithms for large collection data analysis that they have been already included today to data mining methods. Clustering methods are nowadays larger and larger group of methods, very quickly evolving and having more and more various applications. In the article, our research concerning usefulness of clustering methods in customer segmentation to manage advertisement campaign is presented. We introduce results obtained by using four selected methods which have been chosen because their peculiarities suggested their applicability to our purposes. One of the analyzed method k-means clustering with random selected initial cluster seeds gave very good results in customer segmentation to manage advertisement campaign and these results were presented in details in the article. In contrast one of the methods (hierarchical average linkage was found useless in customer segmentation. Further investigations concerning benefits of clustering methods in customer segmentation to manage advertisement campaign is worth continuing, particularly that finding solutions in this field can give measurable profits for marketing activity.

  6. Clustering Methods Application for Customer Segmentation to Manage Advertisement Campaign

    OpenAIRE

    Maciej Kutera; Mirosława Lasek

    2010-01-01

    Clustering methods are recently so advanced elaborated algorithms for large collection data analysis that they have been already included today to data mining methods. Clustering methods are nowadays larger and larger group of methods, very quickly evolving and having more and more various applications. In the article, our research concerning usefulness of clustering methods in customer segmentation to manage advertisement campaign is presented. We introduce results obtained by using four sel...

  7. Wavelet-based ground vehicle recognition using acoustic signals

    Science.gov (United States)

    Choe, Howard C.; Karlsen, Robert E.; Gerhart, Grant R.; Meitzler, Thomas J.

    1996-03-01

    We present, in this paper, a wavelet-based acoustic signal analysis to remotely recognize military vehicles using their sound intercepted by acoustic sensors. Since expedited signal recognition is imperative in many military and industrial situations, we developed an algorithm that provides an automated, fast signal recognition once implemented in a real-time hardware system. This algorithm consists of wavelet preprocessing, feature extraction and compact signal representation, and a simple but effective statistical pattern matching. The current status of the algorithm does not require any training. The training is replaced by human selection of reference signals (e.g., squeak or engine exhaust sound) distinctive to each individual vehicle based on human perception. This allows a fast archiving of any new vehicle type in the database once the signal is collected. The wavelet preprocessing provides time-frequency multiresolution analysis using discrete wavelet transform (DWT). Within each resolution level, feature vectors are generated from statistical parameters and energy content of the wavelet coefficients. After applying our algorithm on the intercepted acoustic signals, the resultant feature vectors are compared with the reference vehicle feature vectors in the database using statistical pattern matching to determine the type of vehicle from where the signal originated. Certainly, statistical pattern matching can be replaced by an artificial neural network (ANN); however, the ANN would require training data sets and time to train the net. Unfortunately, this is not always possible for many real world situations, especially collecting data sets from unfriendly ground vehicles to train the ANN. Our methodology using wavelet preprocessing and statistical pattern matching provides robust acoustic signal recognition. We also present an example of vehicle recognition using acoustic signals collected from two different military ground vehicles. In this paper, we will

  8. Wavelet-based multi-resolution analysis and artificial neural networks for forecasting temperature and thermal power consumption

    OpenAIRE

    Eynard , Julien; Grieu , Stéphane; Polit , Monique

    2011-01-01

    15 pages; International audience; As part of the OptiEnR research project, the present paper deals with outdoor temperature and thermal power consumption forecasting. This project focuses on optimizing the functioning of a multi-energy district boiler (La Rochelle, west coast of France), adding to the plant a thermal storage unit and implementing a model-based predictive controller. The proposed short-term forecast method is based on the concept of time series and uses both a wavelet-based mu...

  9. Wavelet-based adaptation methodology combined with finite difference WENO to solve ideal magnetohydrodynamics

    Science.gov (United States)

    Do, Seongju; Li, Haojun; Kang, Myungjoo

    2017-06-01

    In this paper, we present an accurate and efficient wavelet-based adaptive weighted essentially non-oscillatory (WENO) scheme for hydrodynamics and ideal magnetohydrodynamics (MHD) equations arising from the hyperbolic conservation systems. The proposed method works with the finite difference weighted essentially non-oscillatory (FD-WENO) method in space and the third order total variation diminishing (TVD) Runge-Kutta (RK) method in time. The philosophy of this work is to use the lifted interpolating wavelets as not only detector for singularities but also interpolator. Especially, flexible interpolations can be performed by an inverse wavelet transformation. When the divergence cleaning method introducing auxiliary scalar field ψ is applied to the base numerical schemes for imposing divergence-free condition to the magnetic field in a MHD equation, the approximations to derivatives of ψ require the neighboring points. Moreover, the fifth order WENO interpolation requires large stencil to reconstruct high order polynomial. In such cases, an efficient interpolation method is necessary. The adaptive spatial differentiation method is considered as well as the adaptation of grid resolutions. In order to avoid the heavy computation of FD-WENO, in the smooth regions fixed stencil approximation without computing the non-linear WENO weights is used, and the characteristic decomposition method is replaced by a component-wise approach. Numerical results demonstrate that with the adaptive method we are able to resolve the solutions that agree well with the solution of the corresponding fine grid.

  10. Wavelet-based resolution recovery using an anatomical prior provides quantitative recovery for human population phantom PET [11C]raclopride data

    International Nuclear Information System (INIS)

    Shidahara, M; Tamura, H; Tsoumpas, C; McGinnity, C J; Hammers, A; Turkheimer, F E; Kato, T; Watabe, H

    2012-01-01

    The objective of this study was to evaluate a resolution recovery (RR) method using a variety of simulated human brain [ 11 C]raclopride positron emission tomography (PET) images. Simulated datasets of 15 numerical human phantoms were processed by a wavelet-based RR method using an anatomical prior. The anatomical prior was in the form of a hybrid segmented atlas, which combined an atlas for anatomical labelling and a PET image for functional labelling of each anatomical structure. We applied RR to both 60 min static and dynamic PET images. Recovery was quantified in 84 regions, comparing the typical ‘true’ value for the simulation, as obtained in normal subjects, simulated and RR PET images. The radioactivity concentration in the white matter, striatum and other cortical regions was successfully recovered for the 60 min static image of all 15 human phantoms; the dependence of the solution on accurate anatomical information was demonstrated by the difficulty of the technique to retrieve the subthalamic nuclei due to mismatch between the two atlases used for data simulation and recovery. Structural and functional synergy for resolution recovery (SFS-RR) improved quantification in the caudate and putamen, the main regions of interest, from −30.1% and −26.2% to −17.6% and −15.1%, respectively, for the 60 min static image and from −51.4% and −38.3% to −27.6% and −20.3% for the binding potential (BP ND ) image, respectively. The proposed methodology proved effective in the RR of small structures from brain [ 11 C]raclopride PET images. The improvement is consistent across the anatomical variability of a simulated population as long as accurate anatomical segmentations are provided. (paper)

  11. Segment scheduling method for reducing 360° video streaming latency

    Science.gov (United States)

    Gudumasu, Srinivas; Asbun, Eduardo; He, Yong; Ye, Yan

    2017-09-01

    360° video is an emerging new format in the media industry enabled by the growing availability of virtual reality devices. It provides the viewer a new sense of presence and immersion. Compared to conventional rectilinear video (2D or 3D), 360° video poses a new and difficult set of engineering challenges on video processing and delivery. Enabling comfortable and immersive user experience requires very high video quality and very low latency, while the large video file size poses a challenge to delivering 360° video in a quality manner at scale. Conventionally, 360° video represented in equirectangular or other projection formats can be encoded as a single standards-compliant bitstream using existing video codecs such as H.264/AVC or H.265/HEVC. Such method usually needs very high bandwidth to provide an immersive user experience. While at the client side, much of such high bandwidth and the computational power used to decode the video are wasted because the user only watches a small portion (i.e., viewport) of the entire picture. Viewport dependent 360°video processing and delivery approaches spend more bandwidth on the viewport than on non-viewports and are therefore able to reduce the overall transmission bandwidth. This paper proposes a dual buffer segment scheduling algorithm for viewport adaptive streaming methods to reduce latency when switching between high quality viewports in 360° video streaming. The approach decouples the scheduling of viewport segments and non-viewport segments to ensure the viewport segment requested matches the latest user head orientation. A base layer buffer stores all lower quality segments, and a viewport buffer stores high quality viewport segments corresponding to the most recent viewer's head orientation. The scheduling scheme determines viewport requesting time based on the buffer status and the head orientation. This paper also discusses how to deploy the proposed scheduling design for various viewport adaptive video

  12. White matter hyperintensities segmentation: a new semi-automated method

    Directory of Open Access Journals (Sweden)

    Mariangela eIorio

    2013-12-01

    Full Text Available White matter hyperintensities (WMH are brain areas of increased signal on T2-weighted or fluid attenuated inverse recovery magnetic resonance imaging (MRI scans. In this study we present a new semi-automated method to measure WMH load that is based on the segmentation of the intensity histogram of fluid-attenuated inversion recovery images. Thirty patients with Mild Cognitive Impairment with variable WMH load were enrolled. The semi-automated WMH segmentation included: removal of non-brain tissue, spatial normalization, removal of cerebellum and brain stem, spatial filtering, thresholding to segment probable WMH, manual editing for correction of false positives and negatives, generation of WMH map and volumetric estimation of the WMH load. Accuracy was quantitatively evaluated by comparing semi-automated and manual WMH segmentations performed by two independent raters. Differences between the two procedures were assessed using Student’s t tests and similarity was evaluated using linear regression model and Dice Similarity Coefficient (DSC. The volumes of the manual and semi-automated segmentations did not statistically differ (t-value= -1.79, DF=29, p= 0.839 for rater 1; t-value= 1.113, DF=29, p= 0.2749 for rater 2, were highly correlated (R²= 0.921, F (1,29 =155,54, p

  13. Online Epileptic Seizure Prediction Using Wavelet-Based Bi-Phase Correlation of Electrical Signals Tomography.

    Science.gov (United States)

    Vahabi, Zahra; Amirfattahi, Rasoul; Shayegh, Farzaneh; Ghassemi, Fahimeh

    2015-09-01

    Considerable efforts have been made in order to predict seizures. Among these methods, the ones that quantify synchronization between brain areas, are the most important methods. However, to date, a practically acceptable result has not been reported. In this paper, we use a synchronization measurement method that is derived according to the ability of bi-spectrum in determining the nonlinear properties of a system. In this method, first, temporal variation of the bi-spectrum of different channels of electro cardiography (ECoG) signals are obtained via an extended wavelet-based time-frequency analysis method; then, to compare different channels, the bi-phase correlation measure is introduced. Since, in this way, the temporal variation of the amount of nonlinear coupling between brain regions, which have not been considered yet, are taken into account, results are more reliable than the conventional phase-synchronization measures. It is shown that, for 21 patients of FSPEEG database, bi-phase correlation can discriminate the pre-ictal and ictal states, with very low false positive rates (FPRs) (average: 0.078/h) and high sensitivity (100%). However, the proposed seizure predictor still cannot significantly overcome the random predictor for all patients.

  14. Liver segmentation in contrast enhanced CT data using graph cuts and interactive 3D segmentation refinement methods

    International Nuclear Information System (INIS)

    Beichel, Reinhard; Bornik, Alexander; Bauer, Christian; Sorantin, Erich

    2012-01-01

    Purpose: Liver segmentation is an important prerequisite for the assessment of liver cancer treatment options like tumor resection, image-guided radiation therapy (IGRT), radiofrequency ablation, etc. The purpose of this work was to evaluate a new approach for liver segmentation. Methods: A graph cuts segmentation method was combined with a three-dimensional virtual reality based segmentation refinement approach. The developed interactive segmentation system allowed the user to manipulate volume chunks and/or surfaces instead of 2D contours in cross-sectional images (i.e, slice-by-slice). The method was evaluated on twenty routinely acquired portal-phase contrast enhanced multislice computed tomography (CT) data sets. An independent reference was generated by utilizing a currently clinically utilized slice-by-slice segmentation method. After 1 h of introduction to the developed segmentation system, three experts were asked to segment all twenty data sets with the proposed method. Results: Compared to the independent standard, the relative volumetric segmentation overlap error averaged over all three experts and all twenty data sets was 3.74%. Liver segmentation required on average 16 min of user interaction per case. The calculated relative volumetric overlap errors were not found to be significantly different [analysis of variance (ANOVA) test, p = 0.82] between experts who utilized the proposed 3D system. In contrast, the time required by each expert for segmentation was found to be significantly different (ANOVA test, p = 0.0009). Major differences between generated segmentations and independent references were observed in areas were vessels enter or leave the liver and no accepted criteria for defining liver boundaries exist. In comparison, slice-by-slice based generation of the independent standard utilizing a live wire tool took 70.1 min on average. A standard 2D segmentation refinement approach applied to all twenty data sets required on average 38.2 min of

  15. Liver segmentation in contrast enhanced CT data using graph cuts and interactive 3D segmentation refinement methods

    Energy Technology Data Exchange (ETDEWEB)

    Beichel, Reinhard; Bornik, Alexander; Bauer, Christian; Sorantin, Erich [Departments of Electrical and Computer Engineering and Internal Medicine, Iowa Institute for Biomedical Imaging, University of Iowa, Iowa City, Iowa 52242 (United States); Institute for Computer Graphics and Vision, Graz University of Technology, Inffeldgasse 16, A-8010 Graz (Austria); Department of Electrical and Computer Engineering, Iowa Institute for Biomedical Imaging, University of Iowa, Iowa City, Iowa 52242 (United States); Department of Radiology, Medical University Graz, Auenbruggerplatz 34, A-8010 Graz (Austria)

    2012-03-15

    Purpose: Liver segmentation is an important prerequisite for the assessment of liver cancer treatment options like tumor resection, image-guided radiation therapy (IGRT), radiofrequency ablation, etc. The purpose of this work was to evaluate a new approach for liver segmentation. Methods: A graph cuts segmentation method was combined with a three-dimensional virtual reality based segmentation refinement approach. The developed interactive segmentation system allowed the user to manipulate volume chunks and/or surfaces instead of 2D contours in cross-sectional images (i.e, slice-by-slice). The method was evaluated on twenty routinely acquired portal-phase contrast enhanced multislice computed tomography (CT) data sets. An independent reference was generated by utilizing a currently clinically utilized slice-by-slice segmentation method. After 1 h of introduction to the developed segmentation system, three experts were asked to segment all twenty data sets with the proposed method. Results: Compared to the independent standard, the relative volumetric segmentation overlap error averaged over all three experts and all twenty data sets was 3.74%. Liver segmentation required on average 16 min of user interaction per case. The calculated relative volumetric overlap errors were not found to be significantly different [analysis of variance (ANOVA) test, p = 0.82] between experts who utilized the proposed 3D system. In contrast, the time required by each expert for segmentation was found to be significantly different (ANOVA test, p = 0.0009). Major differences between generated segmentations and independent references were observed in areas were vessels enter or leave the liver and no accepted criteria for defining liver boundaries exist. In comparison, slice-by-slice based generation of the independent standard utilizing a live wire tool took 70.1 min on average. A standard 2D segmentation refinement approach applied to all twenty data sets required on average 38.2 min of

  16. Liver segmentation in contrast enhanced CT data using graph cuts and interactive 3D segmentation refinement methods.

    Science.gov (United States)

    Beichel, Reinhard; Bornik, Alexander; Bauer, Christian; Sorantin, Erich

    2012-03-01

    Liver segmentation is an important prerequisite for the assessment of liver cancer treatment options like tumor resection, image-guided radiation therapy (IGRT), radiofrequency ablation, etc. The purpose of this work was to evaluate a new approach for liver segmentation. A graph cuts segmentation method was combined with a three-dimensional virtual reality based segmentation refinement approach. The developed interactive segmentation system allowed the user to manipulate volume chunks and∕or surfaces instead of 2D contours in cross-sectional images (i.e, slice-by-slice). The method was evaluated on twenty routinely acquired portal-phase contrast enhanced multislice computed tomography (CT) data sets. An independent reference was generated by utilizing a currently clinically utilized slice-by-slice segmentation method. After 1 h of introduction to the developed segmentation system, three experts were asked to segment all twenty data sets with the proposed method. Compared to the independent standard, the relative volumetric segmentation overlap error averaged over all three experts and all twenty data sets was 3.74%. Liver segmentation required on average 16 min of user interaction per case. The calculated relative volumetric overlap errors were not found to be significantly different [analysis of variance (ANOVA) test, p = 0.82] between experts who utilized the proposed 3D system. In contrast, the time required by each expert for segmentation was found to be significantly different (ANOVA test, p = 0.0009). Major differences between generated segmentations and independent references were observed in areas were vessels enter or leave the liver and no accepted criteria for defining liver boundaries exist. In comparison, slice-by-slice based generation of the independent standard utilizing a live wire tool took 70.1 min on average. A standard 2D segmentation refinement approach applied to all twenty data sets required on average 38.2 min of user interaction

  17. Content Adaptive Lagrange Multiplier Selection for Rate-Distortion Optimization in 3-D Wavelet-Based Scalable Video Coding

    Directory of Open Access Journals (Sweden)

    Ying Chen

    2018-03-01

    Full Text Available Rate-distortion optimization (RDO plays an essential role in substantially enhancing the coding efficiency. Currently, rate-distortion optimized mode decision is widely used in scalable video coding (SVC. Among all the possible coding modes, it aims to select the one which has the best trade-off between bitrate and compression distortion. Specifically, this tradeoff is tuned through the choice of the Lagrange multiplier. Despite the prevalence of conventional method for Lagrange multiplier selection in hybrid video coding, the underlying formulation is not applicable to 3-D wavelet-based SVC where the explicit values of the quantization step are not available, with on consideration of the content features of input signal. In this paper, an efficient content adaptive Lagrange multiplier selection algorithm is proposed in the context of RDO for 3-D wavelet-based SVC targeting quality scalability. Our contributions are two-fold. First, we introduce a novel weighting method, which takes account of the mutual information, gradient per pixel, and texture homogeneity to measure the temporal subband characteristics after applying the motion-compensated temporal filtering (MCTF technique. Second, based on the proposed subband weighting factor model, we derive the optimal Lagrange multiplier. Experimental results demonstrate that the proposed algorithm enables more satisfactory video quality with negligible additional computational complexity.

  18. Value-at-risk estimation with wavelet-based extreme value theory: Evidence from emerging markets

    Science.gov (United States)

    Cifter, Atilla

    2011-06-01

    This paper introduces wavelet-based extreme value theory (EVT) for univariate value-at-risk estimation. Wavelets and EVT are combined for volatility forecasting to estimate a hybrid model. In the first stage, wavelets are used as a threshold in generalized Pareto distribution, and in the second stage, EVT is applied with a wavelet-based threshold. This new model is applied to two major emerging stock markets: the Istanbul Stock Exchange (ISE) and the Budapest Stock Exchange (BUX). The relative performance of wavelet-based EVT is benchmarked against the Riskmetrics-EWMA, ARMA-GARCH, generalized Pareto distribution, and conditional generalized Pareto distribution models. The empirical results show that the wavelet-based extreme value theory increases predictive performance of financial forecasting according to number of violations and tail-loss tests. The superior forecasting performance of the wavelet-based EVT model is also consistent with Basel II requirements, and this new model can be used by financial institutions as well.

  19. A Wavelet-Based Algorithm for the Spatial Analysis of Poisson Data

    Science.gov (United States)

    Freeman, P. E.; Kashyap, V.; Rosner, R.; Lamb, D. Q.

    2002-01-01

    Wavelets are scalable, oscillatory functions that deviate from zero only within a limited spatial regime and have average value zero, and thus may be used to simultaneously characterize the shape, location, and strength of astronomical sources. But in addition to their use as source characterizers, wavelet functions are rapidly gaining currency within the source detection field. Wavelet-based source detection involves the correlation of scaled wavelet functions with binned, two-dimensional image data. If the chosen wavelet function exhibits the property of vanishing moments, significantly nonzero correlation coefficients will be observed only where there are high-order variations in the data; e.g., they will be observed in the vicinity of sources. Source pixels are identified by comparing each correlation coefficient with its probability sampling distribution, which is a function of the (estimated or a priori known) background amplitude. In this paper, we describe the mission-independent, wavelet-based source detection algorithm ``WAVDETECT,'' part of the freely available Chandra Interactive Analysis of Observations (CIAO) software package. Our algorithm uses the Marr, or ``Mexican Hat'' wavelet function, but may be adapted for use with other wavelet functions. Aspects of our algorithm include: (1) the computation of local, exposure-corrected normalized (i.e., flat-fielded) background maps; (2) the correction for exposure variations within the field of view (due to, e.g., telescope support ribs or the edge of the field); (3) its applicability within the low-counts regime, as it does not require a minimum number of background counts per pixel for the accurate computation of source detection thresholds; (4) the generation of a source list in a manner that does not depend upon a detailed knowledge of the point spread function (PSF) shape; and (5) error analysis. These features make our algorithm considerably more general than previous methods developed for the

  20. Wavelet-based blind identification of the UCLA Factor building using ambient and earthquake responses

    International Nuclear Information System (INIS)

    Hazra, B; Narasimhan, S

    2010-01-01

    Blind source separation using second-order blind identification (SOBI) has been successfully applied to the problem of output-only identification, popularly known as ambient system identification. In this paper, the basic principles of SOBI for the static mixtures case is extended using the stationary wavelet transform (SWT) in order to improve the separability of sources, thereby improving the quality of identification. Whereas SOBI operates on the covariance matrices constructed directly from measurements, the method presented in this paper, known as the wavelet-based modified cross-correlation method, operates on multiple covariance matrices constructed from the correlation of the responses. The SWT is selected because of its time-invariance property, which means that the transform of a time-shifted signal can be obtained as a shifted version of the transform of the original signal. This important property is exploited in the construction of several time-lagged covariance matrices. The issue of non-stationary sources is addressed through the formation of several time-shifted, windowed covariance matrices. Modal identification results are presented for the UCLA Factor building using ambient vibration data and for recorded responses from the Parkfield earthquake, and compared with published results for this building. Additionally, the effect of sensor density on the identification results is also investigated

  1. Realization of Chinese word segmentation based on deep learning method

    Science.gov (United States)

    Wang, Xuefei; Wang, Mingjiang; Zhang, Qiquan

    2017-08-01

    In recent years, with the rapid development of deep learning, it has been widely used in the field of natural language processing. In this paper, I use the method of deep learning to achieve Chinese word segmentation, with large-scale corpus, eliminating the need to construct additional manual characteristics. In the process of Chinese word segmentation, the first step is to deal with the corpus, use word2vec to get word embedding of the corpus, each character is 50. After the word is embedded, the word embedding feature is fed to the bidirectional LSTM, add a linear layer to the hidden layer of the output, and then add a CRF to get the model implemented in this paper. Experimental results show that the method used in the 2014 People's Daily corpus to achieve a satisfactory accuracy.

  2. Dependence and risk assessment for oil prices and exchange rate portfolios: A wavelet based approach

    Science.gov (United States)

    Aloui, Chaker; Jammazi, Rania

    2015-10-01

    In this article, we propose a wavelet-based approach to accommodate the stylized facts and complex structure of financial data, caused by frequent and abrupt changes of markets and noises. Specifically, we show how the combination of both continuous and discrete wavelet transforms with traditional financial models helps improve portfolio's market risk assessment. In the empirical stage, three wavelet-based models (wavelet-EGARCH with dynamic conditional correlations, wavelet-copula, and wavelet-extreme value) are considered and applied to crude oil price and US dollar exchange rate data. Our findings show that the wavelet-based approach provides an effective and powerful tool for detecting extreme moments and improving the accuracy of VaR and Expected Shortfall estimates of oil-exchange rate portfolios after noise is removed from the original data.

  3. Local Wavelet-Based Filtering of Electromyographic Signals to Eliminate the Electrocardiographic-Induced Artifacts in Patients with Spinal Cord Injury.

    Science.gov (United States)

    Nitzken, Matthew; Bajaj, Nihit; Aslan, Sevda; Gimel'farb, Georgy; El-Baz, Ayman; Ovechkin, Alexander

    2013-07-18

    Surface Electromyography (EMG) is a standard method used in clinical practice and research to assess motor function in order to help with the diagnosis of neuromuscular pathology in human and animal models. EMG recorded from trunk muscles involved in the activity of breathing can be used as a direct measure of respiratory motor function in patients with spinal cord injury (SCI) or other disorders associated with motor control deficits. However, EMG potentials recorded from these muscles are often contaminated with heart-induced electrocardiographic (ECG) signals. Elimination of these artifacts plays a critical role in the precise measure of the respiratory muscle electrical activity. This study was undertaken to find an optimal approach to eliminate the ECG artifacts from EMG recordings. Conventional global filtering can be used to decrease the ECG-induced artifact. However, this method can alter the EMG signal and changes physiologically relevant information. We hypothesize that, unlike global filtering, localized removal of ECG artifacts will not change the original EMG signals. We develop an approach to remove the ECG artifacts without altering the amplitude and frequency components of the EMG signal by using an externally recorded ECG signal as a mask to locate areas of the ECG spikes within EMG data. These segments containing ECG spikes were decomposed into 128 sub-wavelets by a custom-scaled Morlet Wavelet Transform. The ECG-related sub-wavelets at the ECG spike location were removed and a de-noised EMG signal was reconstructed. Validity of the proposed method was proven using mathematical simulated synthetic signals and EMG obtained from SCI patients. We compare the Root-mean Square Error and the Relative Change in Variance between this method, global, notch and adaptive filters. The results show that the localized wavelet-based filtering has the benefit of not introducing error in the native EMG signal and accurately removing ECG artifacts from EMG signals.

  4. A new approach to pre-processing digital image for wavelet-based watermark

    Science.gov (United States)

    Agreste, Santa; Andaloro, Guido

    2008-11-01

    The growth of the Internet has increased the phenomenon of digital piracy, in multimedia objects, like software, image, video, audio and text. Therefore it is strategic to individualize and to develop methods and numerical algorithms, which are stable and have low computational cost, that will allow us to find a solution to these problems. We describe a digital watermarking algorithm for color image protection and authenticity: robust, not blind, and wavelet-based. The use of Discrete Wavelet Transform is motivated by good time-frequency features and a good match with Human Visual System directives. These two combined elements are important for building an invisible and robust watermark. Moreover our algorithm can work with any image, thanks to the step of pre-processing of the image that includes resize techniques that adapt to the size of the original image for Wavelet transform. The watermark signal is calculated in correlation with the image features and statistic properties. In the detection step we apply a re-synchronization between the original and watermarked image according to the Neyman-Pearson statistic criterion. Experimentation on a large set of different images has been shown to be resistant against geometric, filtering, and StirMark attacks with a low rate of false alarm.

  5. A Sequential, Implicit, Wavelet-Based Solver for Multi-Scale Time-Dependent Partial Differential Equations

    Directory of Open Access Journals (Sweden)

    Donald A. McLaren

    2013-04-01

    Full Text Available This paper describes and tests a wavelet-based implicit numerical method for solving partial differential equations. Intended for problems with localized small-scale interactions, the method exploits the form of the wavelet decomposition to divide the implicit system created by the time-discretization into multiple smaller systems that can be solved sequentially. Included is a test on a basic non-linear problem, with both the results of the test, and the time required to calculate them, compared with control results based on a single system with fine resolution. The method is then tested on a non-trivial problem, its computational time and accuracy checked against control results. In both tests, it was found that the method requires less computational expense than the control. Furthermore, the method showed convergence towards the fine resolution control results.

  6. Level set method for image segmentation based on moment competition

    Science.gov (United States)

    Min, Hai; Wang, Xiao-Feng; Huang, De-Shuang; Jin, Jing; Wang, Hong-Zhi; Li, Hai

    2015-05-01

    We propose a level set method for image segmentation which introduces the moment competition and weakly supervised information into the energy functional construction. Different from the region-based level set methods which use force competition, the moment competition is adopted to drive the contour evolution. Here, a so-called three-point labeling scheme is proposed to manually label three independent points (weakly supervised information) on the image. Then the intensity differences between the three points and the unlabeled pixels are used to construct the force arms for each image pixel. The corresponding force is generated from the global statistical information of a region-based method and weighted by the force arm. As a result, the moment can be constructed and incorporated into the energy functional to drive the evolving contour to approach the object boundary. In our method, the force arm can take full advantage of the three-point labeling scheme to constrain the moment competition. Additionally, the global statistical information and weakly supervised information are successfully integrated, which makes the proposed method more robust than traditional methods for initial contour placement and parameter setting. Experimental results with performance analysis also show the superiority of the proposed method on segmenting different types of complicated images, such as noisy images, three-phase images, images with intensity inhomogeneity, and texture images.

  7. Combining multiple FDG-PET radiotherapy target segmentation methods to reduce the effect of variable performance of individual segmentation methods

    Energy Technology Data Exchange (ETDEWEB)

    McGurk, Ross J. [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Bowsher, James; Das, Shiva K. [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Lee, John A [Molecular Imaging and Experimental Radiotherapy Unit, Universite Catholique de Louvain, 1200 Brussels (Belgium)

    2013-04-15

    Purpose: Many approaches have been proposed to segment high uptake objects in 18F-fluoro-deoxy-glucose positron emission tomography images but none provides consistent performance across the large variety of imaging situations. This study investigates the use of two methods of combining individual segmentation methods to reduce the impact of inconsistent performance of the individual methods: simple majority voting and probabilistic estimation. Methods: The National Electrical Manufacturers Association image quality phantom containing five glass spheres with diameters 13-37 mm and two irregularly shaped volumes (16 and 32 cc) formed by deforming high-density polyethylene bottles in a hot water bath were filled with 18-fluoro-deoxyglucose and iodine contrast agent. Repeated 5-min positron emission tomography (PET) images were acquired at 4:1 and 8:1 object-to-background contrasts for spherical objects and 4.5:1 and 9:1 for irregular objects. Five individual methods were used to segment each object: 40% thresholding, adaptive thresholding, k-means clustering, seeded region-growing, and a gradient based method. Volumes were combined using a majority vote (MJV) or Simultaneous Truth And Performance Level Estimate (STAPLE) method. Accuracy of segmentations relative to CT ground truth volumes were assessed using the Dice similarity coefficient (DSC) and the symmetric mean absolute surface distances (SMASDs). Results: MJV had median DSC values of 0.886 and 0.875; and SMASD of 0.52 and 0.71 mm for spheres and irregular shapes, respectively. STAPLE provided similar results with median DSC of 0.886 and 0.871; and median SMASD of 0.50 and 0.72 mm for spheres and irregular shapes, respectively. STAPLE had significantly higher DSC and lower SMASD values than MJV for spheres (DSC, p < 0.0001; SMASD, p= 0.0101) but MJV had significantly higher DSC and lower SMASD values compared to STAPLE for irregular shapes (DSC, p < 0.0001; SMASD, p= 0.0027). DSC was not significantly

  8. An Accurate liver segmentation method using parallel computing algorithm

    International Nuclear Information System (INIS)

    Elbasher, Eiman Mohammed Khalied

    2014-12-01

    Computed Tomography (CT or CAT scan) is a noninvasive diagnostic imaging procedure that uses a combination of X-rays and computer technology to produce horizontal, or axial, images (often called slices) of the body. A CT scan shows detailed images of any part of the body, including the bones muscles, fat and organs CT scans are more detailed than standard x-rays. CT scans may be done with or without "contrast Contrast refers to a substance taken by mouth and/ or injected into an intravenous (IV) line that causes the particular organ or tissue under study to be seen more clearly. CT scan of the liver and biliary tract are used in the diagnosis of many diseases in the abdomen structures, particularly when another type of examination, such as X-rays, physical examination, and ultra sound is not conclusive. Unfortunately, the presence of noise and artifact in the edges and fine details in the CT images limit the contrast resolution and make diagnostic procedure more difficult. This experimental study was conducted at the College of Medical Radiological Science, Sudan University of Science and Technology and Fidel Specialist Hospital. The sample of study was included 50 patients. The main objective of this research was to study an accurate liver segmentation method using a parallel computing algorithm, and to segment liver and adjacent organs using image processing technique. The main technique of segmentation used in this study was watershed transform. The scope of image processing and analysis applied to medical application is to improve the quality of the acquired image and extract quantitative information from medical image data in an efficient and accurate way. The results of this technique agreed wit the results of Jarritt et al, (2010), Kratchwil et al, (2010), Jover et al, (2011), Yomamoto et al, (1996), Cai et al (1999), Saudha and Jayashree (2010) who used different segmentation filtering based on the methods of enhancing the computed tomography images. Anther

  9. Short segment search method for phylogenetic analysis using nested sliding windows

    Science.gov (United States)

    Iskandar, A. A.; Bustamam, A.; Trimarsanto, H.

    2017-10-01

    To analyze phylogenetics in Bioinformatics, coding DNA sequences (CDS) segment is needed for maximal accuracy. However, analysis by CDS cost a lot of time and money, so a short representative segment by CDS, which is envelope protein segment or non-structural 3 (NS3) segment is necessary. After sliding window is implemented, a better short segment than envelope protein segment and NS3 is found. This paper will discuss a mathematical method to analyze sequences using nested sliding window to find a short segment which is representative for the whole genome. The result shows that our method can find a short segment which more representative about 6.57% in topological view to CDS segment than an Envelope segment or NS3 segment.

  10. WaVPeak: Picking NMR peaks through wavelet-based smoothing and volume-based filtering

    KAUST Repository

    Liu, Zhi

    2012-02-10

    Motivation: Nuclear magnetic resonance (NMR) has been widely used as a powerful tool to determine the 3D structures of proteins in vivo. However, the post-spectra processing stage of NMR structure determination usually involves a tremendous amount of time and expert knowledge, which includes peak picking, chemical shift assignment and structure calculation steps. Detecting accurate peaks from the NMR spectra is a prerequisite for all following steps, and thus remains a key problem in automatic NMR structure determination. Results: We introduce WaVPeak, a fully automatic peak detection method. WaVPeak first smoothes the given NMR spectrum by wavelets. The peaks are then identified as the local maxima. The false positive peaks are filtered out efficiently by considering the volume of the peaks. WaVPeak has two major advantages over the state-of-the-art peak-picking methods. First, through wavelet-based smoothing, WaVPeak does not eliminate any data point in the spectra. Therefore, WaVPeak is able to detect weak peaks that are embedded in the noise level. NMR spectroscopists need the most help isolating these weak peaks. Second, WaVPeak estimates the volume of the peaks to filter the false positives. This is more reliable than intensity-based filters that are widely used in existing methods. We evaluate the performance of WaVPeak on the benchmark set proposed by PICKY (Alipanahi et al., 2009), one of the most accurate methods in the literature. The dataset comprises 32 2D and 3D spectra from eight different proteins. Experimental results demonstrate that WaVPeak achieves an average of 96%, 91%, 88%, 76% and 85% recall on 15N-HSQC, HNCO, HNCA, HNCACB and CBCA(CO)NH, respectively. When the same number of peaks are considered, WaVPeak significantly outperforms PICKY. The Author(s) 2012. Published by Oxford University Press.

  11. A New Wavelet-Based ECG Delineator for the Evaluation of the Ventricular Innervation

    DEFF Research Database (Denmark)

    Cesari, Matteo; Mehlsen, Jesper; Mehlsen, Anne-Birgitte

    2017-01-01

    T-wave amplitude (TWA) has been proposed as a marker of the innervation of the myocardium. Until now, TWA has been calculated manually or with poor algorithms, thus making its use not efficient in a clinical environment. We introduce a new wavelet-based algorithm for the delineation QRS complexes...

  12. Superiority Of Graph-Based Visual Saliency GVS Over Other Image Segmentation Methods

    Directory of Open Access Journals (Sweden)

    Umu Lamboi

    2017-02-01

    Full Text Available Although inherently tedious the segmentation of images and the evaluation of segmented images are critical in computer vision processes. One of the main challenges in image segmentation evaluation arises from the basic conflict between generality and objectivity. For general segmentation purposes the lack of well-defined ground-truth and segmentation accuracy limits the evaluation of specific applications. Subjectivity is the most common method of evaluation of segmentation quality where segmented images are visually compared. This is daunting task however limits the scope of segmentation evaluation to a few predetermined sets of images. As an alternative supervised evaluation compares segmented images against manually-segmented or pre-processed benchmark images. Not only good evaluation methods allow for different comparisons but also for integration with target recognition systems for adaptive selection of appropriate segmentation granularity with improved recognition accuracy. Most of the current segmentation methods still lack satisfactory measures of effectiveness. Thus this study proposed a supervised framework which uses visual saliency detection to quantitatively evaluate image segmentation quality. The new benchmark evaluator uses Graph-based Visual Saliency GVS to compare boundary outputs for manually segmented images. Using the Berkeley Segmentation Database the proposed algorithm was tested against 4 other quantitative evaluation methods Probabilistic Rand Index PRI Variation of Information VOI Global Consistency Error GSE and Boundary Detection Error BDE. Based on the results the GVS approach outperformed any of the other 4 independent standard methods in terms of visual saliency detection of images.

  13. Automatic diagnosis of abnormal macula in retinal optical coherence tomography images using wavelet-based convolutional neural network features and random forests classifier

    Science.gov (United States)

    Rasti, Reza; Mehridehnavi, Alireza; Rabbani, Hossein; Hajizadeh, Fedra

    2018-03-01

    The present research intends to propose a fully automatic algorithm for the classification of three-dimensional (3-D) optical coherence tomography (OCT) scans of patients suffering from abnormal macula from normal candidates. The method proposed does not require any denoising, segmentation, retinal alignment processes to assess the intraretinal layers, as well as abnormalities or lesion structures. To classify abnormal cases from the control group, a two-stage scheme was utilized, which consists of automatic subsystems for adaptive feature learning and diagnostic scoring. In the first stage, a wavelet-based convolutional neural network (CNN) model was introduced and exploited to generate B-scan representative CNN codes in the spatial-frequency domain, and the cumulative features of 3-D volumes were extracted. In the second stage, the presence of abnormalities in 3-D OCTs was scored over the extracted features. Two different retinal SD-OCT datasets are used for evaluation of the algorithm based on the unbiased fivefold cross-validation (CV) approach. The first set constitutes 3-D OCT images of 30 normal subjects and 30 diabetic macular edema (DME) patients captured from the Topcon device. The second publicly available set consists of 45 subjects with a distribution of 15 patients in age-related macular degeneration, DME, and normal classes from the Heidelberg device. With the application of the algorithm on overall OCT volumes and 10 repetitions of the fivefold CV, the proposed scheme obtained an average precision of 99.33% on dataset1 as a two-class classification problem and 98.67% on dataset2 as a three-class classification task.

  14. Automatic diagnosis of abnormal macula in retinal optical coherence tomography images using wavelet-based convolutional neural network features and random forests classifier.

    Science.gov (United States)

    Rasti, Reza; Mehridehnavi, Alireza; Rabbani, Hossein; Hajizadeh, Fedra

    2018-03-01

    The present research intends to propose a fully automatic algorithm for the classification of three-dimensional (3-D) optical coherence tomography (OCT) scans of patients suffering from abnormal macula from normal candidates. The method proposed does not require any denoising, segmentation, retinal alignment processes to assess the intraretinal layers, as well as abnormalities or lesion structures. To classify abnormal cases from the control group, a two-stage scheme was utilized, which consists of automatic subsystems for adaptive feature learning and diagnostic scoring. In the first stage, a wavelet-based convolutional neural network (CNN) model was introduced and exploited to generate B-scan representative CNN codes in the spatial-frequency domain, and the cumulative features of 3-D volumes were extracted. In the second stage, the presence of abnormalities in 3-D OCTs was scored over the extracted features. Two different retinal SD-OCT datasets are used for evaluation of the algorithm based on the unbiased fivefold cross-validation (CV) approach. The first set constitutes 3-D OCT images of 30 normal subjects and 30 diabetic macular edema (DME) patients captured from the Topcon device. The second publicly available set consists of 45 subjects with a distribution of 15 patients in age-related macular degeneration, DME, and normal classes from the Heidelberg device. With the application of the algorithm on overall OCT volumes and 10 repetitions of the fivefold CV, the proposed scheme obtained an average precision of 99.33% on dataset1 as a two-class classification problem and 98.67% on dataset2 as a three-class classification task. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  15. A wavelet-based intermittency detection technique from PIV investigations in transitional boundary layers

    Science.gov (United States)

    Simoni, Daniele; Lengani, Davide; Guida, Roberto

    2016-09-01

    The transition process of the boundary layer growing over a flat plate with pressure gradient simulating the suction side of a low-pressure turbine blade and elevated free-stream turbulence intensity level has been analyzed by means of PIV and hot-wire measurements. A detailed view of the instantaneous flow field in the wall-normal plane highlights the physics characterizing the complex process leading to the formation of large-scale coherent structures during breaking down of the ordered motion of the flow, thus generating randomized oscillations (i.e., turbulent spots). This analysis gives the basis for the development of a new procedure aimed at determining the intermittency function describing (statistically) the transition process. To this end, a wavelet-based method has been employed for the identification of the large-scale structures created during the transition process. Successively, a probability density function of these events has been defined so that an intermittency function is deduced. This latter strictly corresponds to the intermittency function of the transitional flow computed trough a classic procedure based on hot-wire data. The agreement between the two procedures in the intermittency shape and spot production rate proves the capability of the method in providing the statistical representation of the transition process. The main advantages of the procedure here proposed concern with its applicability to PIV data; it does not require a threshold level to discriminate first- and/or second-order time-derivative of hot-wire time traces (that makes the method not influenced by the operator); and it provides a clear evidence of the connection between the flow physics and the statistical representation of transition based on theory of turbulent spot propagation.

  16. Development of gait segmentation methods for wearable foot pressure sensors.

    Science.gov (United States)

    Crea, S; De Rossi, S M M; Donati, M; Reberšek, P; Novak, D; Vitiello, N; Lenzi, T; Podobnik, J; Munih, M; Carrozza, M C

    2012-01-01

    We present an automated segmentation method based on the analysis of plantar pressure signals recorded from two synchronized wireless foot insoles. Given the strict limits on computational power and power consumption typical of wearable electronic components, our aim is to investigate the capability of a Hidden Markov Model machine-learning method, to detect gait phases with different levels of complexity in the processing of the wearable pressure sensors signals. Therefore three different datasets are developed: raw voltage values, calibrated sensor signals and a calibrated estimation of total ground reaction force and position of the plantar center of pressure. The method is tested on a pool of 5 healthy subjects, through a leave-one-out cross validation. The results show high classification performances achieved using estimated biomechanical variables, being on average the 96%. Calibrated signals and raw voltage values show higher delays and dispersions in phase transition detection, suggesting a lower reliability for online applications.

  17. AISLE: an automatic volumetric segmentation method for the study of lung allometry.

    Science.gov (United States)

    Ren, Hongliang; Kazanzides, Peter

    2011-01-01

    We developed a fully automatic segmentation method for volumetric CT (computer tomography) datasets to support construction of a statistical atlas for the study of allometric laws of the lung. The proposed segmentation method, AISLE (Automated ITK-Snap based on Level-set), is based on the level-set implementation from an existing semi-automatic segmentation program, ITK-Snap. AISLE can segment the lung field without human interaction and provide intermediate graphical results as desired. The preliminary experimental results show that the proposed method can achieve accurate segmentation, in terms of volumetric overlap metric, by comparing with the ground-truth segmentation performed by a radiologist.

  18. A wavelet-based evaluation of time-varying long memory of equity markets: A paradigm in crisis

    Science.gov (United States)

    Tan, Pei P.; Chin, Cheong W.; Galagedera, Don U. A.

    2014-09-01

    This study, using wavelet-based method investigates the dynamics of long memory in the returns and volatility of equity markets. In the sample of five developed and five emerging markets we find that the daily return series from January 1988 to June 2013 may be considered as a mix of weak long memory and mean-reverting processes. In the case of volatility in the returns, there is evidence of long memory, which is stronger in emerging markets than in developed markets. We find that although the long memory parameter may vary during crisis periods (1997 Asian financial crisis, 2001 US recession and 2008 subprime crisis) the direction of change may not be consistent across all equity markets. The degree of return predictability is likely to diminish during crisis periods. Robustness of the results is checked with de-trended fluctuation analysis approach.

  19. Segmentation-Based And Segmentation-Free Methods for Spotting Handwritten Arabic Words

    OpenAIRE

    Ball , Gregory R.; Srihari , Sargur N.; Srinivasan , Harish

    2006-01-01

    http://www.suvisoft.com; Given a set of handwritten documents, a common goal is to search for a relevant subset. Attempting to find a query word or image in such a set of documents is called word spotting. Spotting handwritten words in documents written in the Latin alphabet, and more recently in Arabic, has received considerable attention. One issue is generating candidate word regions on a page. Attempting to definitely segment the document into such regions (automatic segmentation) can mee...

  20. Gravel Image Segmentation in Noisy Background Based on Partial Entropy Method

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Because of wide variation in gray levels and particle dimensions and the presence of many small gravel objects in the background, as well as corrupting the image by noise, it is difficult o segment gravel objects. In this paper, we develop a partial entropy method and succeed to realize gravel objects segmentation. We give entropy principles and fur calculation methods. Moreover, we use minimum entropy error automaticly to select a threshold to segment image. We introduce the filter method using mathematical morphology. The segment experiments are performed by using different window dimensions for a group of gravel image and demonstrates that this method has high segmentation rate and low noise sensitivity.

  1. Methods for recognition and segmentation of active fault

    International Nuclear Information System (INIS)

    Hyun, Chang Hun; Noh, Myung Hyun; Lee, Kieh Hwa; Chang, Tae Woo; Kyung, Jai Bok; Kim, Ki Young

    2000-03-01

    In order to identify and segment the active faults, the literatures of structural geology, paleoseismology, and geophysical explorations were investigated. The existing structural geological criteria for segmenting active faults were examined. These are mostly based on normal fault systems, thus, the additional criteria are demanded for application to different types of fault systems. Definition of the seismogenic fault, characteristics of fault activity, criteria and study results of fault segmentation, relationship between segmented fault length and maximum displacement, and estimation of seismic risk of segmented faults were examined in paleoseismic study. The history of earthquake such as dynamic pattern of faults, return period, and magnitude of the maximum earthquake originated by fault activity can be revealed by the study. It is confirmed through various case studies that numerous geophysical explorations including electrical resistivity, land seismic, marine seismic, ground-penetrating radar, magnetic, and gravity surveys have been efficiently applied to the recognition and segmentation of active faults

  2. Wavelet-Based Processing for Fiber Optic Sensing Systems

    Science.gov (United States)

    Hamory, Philip J. (Inventor); Parker, Allen R., Jr. (Inventor)

    2016-01-01

    The present invention is an improved method of processing conglomerate data. The method employs a Triband Wavelet Transform that decomposes and decimates the conglomerate signal to obtain a final result. The invention may be employed to improve performance of Optical Frequency Domain Reflectometry systems.

  3. Construction of Orthonormal Piecewise Polynomial Scaling and Wavelet Bases on Non-Equally Spaced Knots

    Directory of Open Access Journals (Sweden)

    Jean Pierre Astruc

    2007-01-01

    Full Text Available This paper investigates the mathematical framework of multiresolution analysis based on irregularly spaced knots sequence. Our presentation is based on the construction of nested nonuniform spline multiresolution spaces. From these spaces, we present the construction of orthonormal scaling and wavelet basis functions on bounded intervals. For any arbitrary degree of the spline function, we provide an explicit generalization allowing the construction of the scaling and wavelet bases on the nontraditional sequences. We show that the orthogonal decomposition is implemented using filter banks where the coefficients depend on the location of the knots on the sequence. Examples of orthonormal spline scaling and wavelet bases are provided. This approach can be used to interpolate irregularly sampled signals in an efficient way, by keeping the multiresolution approach.

  4. Wavelet based Image Registration Technique for Matching Dental x-rays

    OpenAIRE

    P. Ramprasad; H. C. Nagaraj; M. K. Parasuram

    2008-01-01

    Image registration plays an important role in the diagnosis of dental pathologies such as dental caries, alveolar bone loss and periapical lesions etc. This paper presents a new wavelet based algorithm for registering noisy and poor contrast dental x-rays. Proposed algorithm has two stages. First stage is a preprocessing stage, removes the noise from the x-ray images. Gaussian filter has been used. Second stage is a geometric transformation stage. Proposed work uses two l...

  5. A Novel Error Resilient Scheme for Wavelet-based Image Coding Over Packet Networks

    OpenAIRE

    WenZhu Sun; HongYu Wang; DaXing Qian

    2012-01-01

    this paper presents a robust transmission strategy for wavelet based scalable bit stream over packet erasure channel. By taking the advantage of the bit plane coding and the multiple description coding, the proposed strategy adopts layered multiple description coding (LMDC) for the embedded wavelet coders to improve the error resistant capability of the important bit planes in the meaning of D(R) function. Then, the post-compression rate-distortion (PCRD) optimization process is used to impro...

  6. Model-free stochastic processes studied with q-wavelet-based informational tools

    International Nuclear Information System (INIS)

    Perez, D.G.; Zunino, L.; Martin, M.T.; Garavaglia, M.; Plastino, A.; Rosso, O.A.

    2007-01-01

    We undertake a model-free investigation of stochastic processes employing q-wavelet based quantifiers, that constitute a generalization of their Shannon counterparts. It is shown that (i) interesting physical information becomes accessible in such a way (ii) for special q values the quantifiers are more sensitive than the Shannon ones and (iii) there exist an implicit relationship between the Hurst parameter H and q within this wavelet framework

  7. Performance Analysis of Wavelet Based MC-CDMA System with Implementation of Various Antenna Diversity Schemes

    OpenAIRE

    Islam, Md. Matiqul; Kabir, M. Hasnat; Ullah, Sk. Enayet

    2012-01-01

    The impact of using wavelet based technique on the performance of a MC-CDMA wireless communication system has been investigated. The system under proposed study incorporates Walsh Hadamard codes to discriminate the message signal for individual user. A computer program written in Mathlab source code is developed and this simulation study is made with implementation of various antenna diversity schemes and fading (Rayleigh and Rician) channel. Computer simulation results demonstrate that the p...

  8. A Wavelet-Based Approach to Pattern Discovery in Melodies

    DEFF Research Database (Denmark)

    Velarde, Gissel; Meredith, David; Weyde, Tillman

    2016-01-01

    We present a computational method for pattern discovery based on the application of the wavelet transform to symbolic representations of melodies or monophonic voices. We model the importance of a discovered pattern in terms of the compression ratio that can be achieved by using it to describe...

  9. Secured Data Transmission Using Wavelet Based Steganography and cryptography

    OpenAIRE

    K.Ravindra Reddy; Ms Shaik Taj Mahaboob

    2014-01-01

    Steganography and cryptographic methods are used together with wavelets to increase the security of the data while transmitting through networks. Another technology, the digital watermarking is the process of embedding information into a digital (image) signal. Before embedding the plain text into the image, the plain text is encrypted by using Data Encryption Standard (DES) algorithm. The encrypted text is embedded into the LL sub band of the wavelet decomposed image using Le...

  10. State-of-the-Art Methods for Brain Tissue Segmentation: A Review.

    Science.gov (United States)

    Dora, Lingraj; Agrawal, Sanjay; Panda, Rutuparna; Abraham, Ajith

    2017-01-01

    Brain tissue segmentation is one of the most sought after research areas in medical image processing. It provides detailed quantitative brain analysis for accurate disease diagnosis, detection, and classification of abnormalities. It plays an essential role in discriminating healthy tissues from lesion tissues. Therefore, accurate disease diagnosis and treatment planning depend merely on the performance of the segmentation method used. In this review, we have studied the recent advances in brain tissue segmentation methods and their state-of-the-art in neuroscience research. The review also highlights the major challenges faced during tissue segmentation of the brain. An effective comparison is made among state-of-the-art brain tissue segmentation methods. Moreover, a study of some of the validation measures to evaluate different segmentation methods is also discussed. The brain tissue segmentation, content in terms of methodologies, and experiments presented in this review are encouraging enough to attract researchers working in this field.

  11. GLOBAL CLASSIFICATION OF DERMATITIS DISEASE WITH K-MEANS CLUSTERING IMAGE SEGMENTATION METHODS

    OpenAIRE

    Prafulla N. Aerkewar1 & Dr. G. H. Agrawal2

    2018-01-01

    The objective of this paper to presents a global technique for classification of different dermatitis disease lesions using the process of k-Means clustering image segmentation method. The word global is used such that the all dermatitis disease having skin lesion on body are classified in to four category using k-means image segmentation and nntool of Matlab. Through the image segmentation technique and nntool can be analyze and study the segmentation properties of skin lesions occurs in...

  12. Wavelet based mobile video watermarking: spread spectrum vs. informed embedding

    Science.gov (United States)

    Mitrea, M.; Prêteux, F.; Duţă, S.; Petrescu, M.

    2005-11-01

    The cell phone expansion provides an additional direction for digital video content distribution: music clips, news, sport events are more and more transmitted toward mobile users. Consequently, from the watermarking point of view, a new challenge should be taken: very low bitrate contents (e.g. as low as 64 kbit/s) are now to be protected. Within this framework, the paper approaches for the first time the mathematical models for two random processes, namely the original video to be protected and a very harmful attack any watermarking method should face the StirMark attack. By applying an advanced statistical investigation (combining the Chi square, Ro, Fisher and Student tests) in the discrete wavelet domain, it is established that the popular Gaussian assumption can be very restrictively used when describing the former process and has nothing to do with the latter. As these results can a priori determine the performances of several watermarking methods, both of spread spectrum and informed embedding types, they should be considered in the design stage.

  13. Image superresolution of cytology images using wavelet based patch search

    Science.gov (United States)

    Vargas, Carlos; García-Arteaga, Juan D.; Romero, Eduardo

    2015-01-01

    Telecytology is a new research area that holds the potential of significantly reducing the number of deaths due to cervical cancer in developing countries. This work presents a novel super-resolution technique that couples high and low frequency information in order to reduce the bandwidth consumption of cervical image transmission. The proposed approach starts by decomposing into wavelets the high resolution images and transmitting only the lower frequency coefficients. The transmitted coefficients are used to reconstruct an image of the original size. Additional details are added by iteratively replacing patches of the wavelet reconstructed image with equivalent high resolution patches from a previously acquired image database. Finally, the original transmitted low frequency coefficients are used to correct the final image. Results show a higher signal to noise ratio in the proposed method over simply discarding high frequency wavelet coefficients or replacing directly down-sampled patches from the image-database.

  14. An ICA-based method for the segmentation of pigmented skin lesions in macroscopic images.

    Science.gov (United States)

    Cavalcanti, Pablo G; Scharcanski, Jacob; Di Persia, Leandro E; Milone, Diego H

    2011-01-01

    Segmentation is an important step in computer-aided diagnostic systems for pigmented skin lesions, since that a good definition of the lesion area and its boundary at the image is very important to distinguish benign from malignant cases. In this paper a new skin lesion segmentation method is proposed. This method uses Independent Component Analysis to locate skin lesions in the image, and this location information is further refined by a Level-set segmentation method. Our method was evaluated in 141 images and achieved an average segmentation error of 16.55%, lower than the results for comparable state-of-the-art methods proposed in literature.

  15. Target Identification Using Harmonic Wavelet Based ISAR Imaging

    Science.gov (United States)

    Shreyamsha Kumar, B. K.; Prabhakar, B.; Suryanarayana, K.; Thilagavathi, V.; Rajagopal, R.

    2006-12-01

    A new approach has been proposed to reduce the computations involved in the ISAR imaging, which uses harmonic wavelet-(HW) based time-frequency representation (TFR). Since the HW-based TFR falls into a category of nonparametric time-frequency (T-F) analysis tool, it is computationally efficient compared to parametric T-F analysis tools such as adaptive joint time-frequency transform (AJTFT), adaptive wavelet transform (AWT), and evolutionary AWT (EAWT). Further, the performance of the proposed method of ISAR imaging is compared with the ISAR imaging by other nonparametric T-F analysis tools such as short-time Fourier transform (STFT) and Choi-Williams distribution (CWD). In the ISAR imaging, the use of HW-based TFR provides similar/better results with significant (92%) computational advantage compared to that obtained by CWD. The ISAR images thus obtained are identified using a neural network-based classification scheme with feature set invariant to translation, rotation, and scaling.

  16. A study of symbol segmentation method for handwritten mathematical formula recognition using mathematical structure information

    OpenAIRE

    Toyozumi, Kenichi; Yamada, Naoya; Kitasaka, Takayuki; Mori, Kensaku; Suenaga, Yasuhito; Mase, Kenji; Takahashi, Tomoichi

    2004-01-01

    Symbol segmentation is very important in handwritten mathematical formula recognition, since it is the very first portion of the recognition, since it is the very first portion of the recognition process. This paper proposes a new symbol segmentation method using mathematical structure information. The base technique of symbol segmentation employed in theexisting methods is dynamic programming which optimizes the overall results of individual symbol recognition. The new method we propose here...

  17. Semiautomated segmentation of blood vessels using ellipse-overlap criteria: Method and comparison to manual editing

    International Nuclear Information System (INIS)

    Shiffman, Smadar; Rubin, Geoffrey D.; Schraedley-Desmond, Pamela; Napel, Sandy

    2003-01-01

    Two-dimensional intensity-based methods for the segmentation of blood vessels from computed-tomography-angiography data often result in spurious segments that originate from other objects whose intensity distributions overlap with those of the vessels. When segmented images include spurious segments, additional methods are required to select segments that belong to the target vessels. We describe a method that allows experts to select vessel segments from sequences of segmented images with little effort. Our method uses ellipse-overlap criteria to differentiate between segments that belong to different objects and are separated in plane but are connected in the through-plane direction. To validate our method, we used it to extract vessel regions from volumes that were segmented via analysis of isolabel-contour maps, and showed that the difference between the results of our method and manually-edited results was within inter-expert variability. Although the total editing duration for our method, which included user-interaction and computer processing, exceeded that of manual editing, the extent of user interaction required for our method was about a fifth of that required for manual editing

  18. WAVELET-BASED ALGORITHM FOR DETECTION OF BEARING FAULTS IN A GAS TURBINE ENGINE

    Directory of Open Access Journals (Sweden)

    Sergiy Enchev

    2014-07-01

    Full Text Available Presented is a gas turbine engine bearing diagnostic system that integrates information from various advanced vibration analysis techniques to achieve robust bearing health state awareness. This paper presents a computational algorithm for identifying power frequency variations and integer harmonics by using wavelet-based transform. The continuous wavelet transform with  the complex Morlet wavelet is adopted to detect the harmonics presented in a power signal. The algorithm based on the discrete stationary wavelet transform is adopted to denoise the wavelet ridges.

  19. Wavelet-based study of valence-arousal model of emotions on EEG signals with LabVIEW.

    Science.gov (United States)

    Guzel Aydin, Seda; Kaya, Turgay; Guler, Hasan

    2016-06-01

    This paper illustrates the wavelet-based feature extraction for emotion assessment using electroencephalogram (EEG) signal through graphical coding design. Two-dimensional (valence-arousal) emotion model was studied. Different emotions (happy, joy, melancholy, and disgust) were studied for assessment. These emotions were stimulated by video clips. EEG signals obtained from four subjects were decomposed into five frequency bands (gamma, beta, alpha, theta, and delta) using "db5" wavelet function. Relative features were calculated to obtain further information. Impact of the emotions according to valence value was observed to be optimal on power spectral density of gamma band. The main objective of this work is not only to investigate the influence of the emotions on different frequency bands but also to overcome the difficulties in the text-based program. This work offers an alternative approach for emotion evaluation through EEG processing. There are a number of methods for emotion recognition such as wavelet transform-based, Fourier transform-based, and Hilbert-Huang transform-based methods. However, the majority of these methods have been applied with the text-based programming languages. In this study, we proposed and implemented an experimental feature extraction with graphics-based language, which provides great convenience in bioelectrical signal processing.

  20. Soft-tissues Image Processing: Comparison of Traditional Segmentation Methods with 2D active Contour Methods

    Czech Academy of Sciences Publication Activity Database

    Mikulka, J.; Gescheidtová, E.; Bartušek, Karel

    2012-01-01

    Roč. 12, č. 4 (2012), s. 153-161 ISSN 1335-8871 R&D Projects: GA ČR GAP102/11/0318; GA ČR GAP102/12/1104; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : Medical image processing * image segmentation * liver tumor * temporomandibular joint disc * watershed method Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.233, year: 2012

  1. Fast CSF MRI for brain segmentation; Cross-validation by comparison with 3D T1-based brain segmentation methods.

    Science.gov (United States)

    van der Kleij, Lisa A; de Bresser, Jeroen; Hendrikse, Jeroen; Siero, Jeroen C W; Petersen, Esben T; De Vis, Jill B

    2018-01-01

    In previous work we have developed a fast sequence that focusses on cerebrospinal fluid (CSF) based on the long T2 of CSF. By processing the data obtained with this CSF MRI sequence, brain parenchymal volume (BPV) and intracranial volume (ICV) can be automatically obtained. The aim of this study was to assess the precision of the BPV and ICV measurements of the CSF MRI sequence and to validate the CSF MRI sequence by comparison with 3D T1-based brain segmentation methods. Ten healthy volunteers (2 females; median age 28 years) were scanned (3T MRI) twice with repositioning in between. The scan protocol consisted of a low resolution (LR) CSF sequence (0:57min), a high resolution (HR) CSF sequence (3:21min) and a 3D T1-weighted sequence (6:47min). Data of the HR 3D-T1-weighted images were downsampled to obtain LR T1-weighted images (reconstructed imaging time: 1:59 min). Data of the CSF MRI sequences was automatically segmented using in-house software. The 3D T1-weighted images were segmented using FSL (5.0), SPM12 and FreeSurfer (5.3.0). The mean absolute differences for BPV and ICV between the first and second scan for CSF LR (BPV/ICV: 12±9/7±4cc) and CSF HR (5±5/4±2cc) were comparable to FSL HR (9±11/19±23cc), FSL LR (7±4, 6±5cc), FreeSurfer HR (5±3/14±8cc), FreeSurfer LR (9±8, 12±10cc), and SPM HR (5±3/4±7cc), and SPM LR (5±4, 5±3cc). The correlation between the measured volumes of the CSF sequences and that measured by FSL, FreeSurfer and SPM HR and LR was very good (all Pearson's correlation coefficients >0.83, R2 .67-.97). The results from the downsampled data and the high-resolution data were similar. Both CSF MRI sequences have a precision comparable to, and a very good correlation with established 3D T1-based automated segmentations methods for the segmentation of BPV and ICV. However, the short imaging time of the fast CSF MRI sequence is superior to the 3D T1 sequence on which segmentation with established methods is performed.

  2. Application of a semi-automatic cartilage segmentation method for biomechanical modeling of the knee joint.

    Science.gov (United States)

    Liukkonen, Mimmi K; Mononen, Mika E; Tanska, Petri; Saarakkala, Simo; Nieminen, Miika T; Korhonen, Rami K

    2017-10-01

    Manual segmentation of articular cartilage from knee joint 3D magnetic resonance images (MRI) is a time consuming and laborious task. Thus, automatic methods are needed for faster and reproducible segmentations. In the present study, we developed a semi-automatic segmentation method based on radial intensity profiles to generate 3D geometries of knee joint cartilage which were then used in computational biomechanical models of the knee joint. Six healthy volunteers were imaged with a 3T MRI device and their knee cartilages were segmented both manually and semi-automatically. The values of cartilage thicknesses and volumes produced by these two methods were compared. Furthermore, the influences of possible geometrical differences on cartilage stresses and strains in the knee were evaluated with finite element modeling. The semi-automatic segmentation and 3D geometry construction of one knee joint (menisci, femoral and tibial cartilages) was approximately two times faster than with manual segmentation. Differences in cartilage thicknesses, volumes, contact pressures, stresses, and strains between segmentation methods in femoral and tibial cartilage were mostly insignificant (p > 0.05) and random, i.e. there were no systematic differences between the methods. In conclusion, the devised semi-automatic segmentation method is a quick and accurate way to determine cartilage geometries; it may become a valuable tool for biomechanical modeling applications with large patient groups.

  3. Traffic characterization and modeling of wavelet-based VBR encoded video

    Energy Technology Data Exchange (ETDEWEB)

    Yu Kuo; Jabbari, B. [George Mason Univ., Fairfax, VA (United States); Zafar, S. [Argonne National Lab., IL (United States). Mathematics and Computer Science Div.

    1997-07-01

    Wavelet-based video codecs provide a hierarchical structure for the encoded data, which can cater to a wide variety of applications such as multimedia systems. The characteristics of such an encoder and its output, however, have not been well examined. In this paper, the authors investigate the output characteristics of a wavelet-based video codec and develop a composite model to capture the traffic behavior of its output video data. Wavelet decomposition transforms the input video in a hierarchical structure with a number of subimages at different resolutions and scales. the top-level wavelet in this structure contains most of the signal energy. They first describe the characteristics of traffic generated by each subimage and the effect of dropping various subimages at the encoder on the signal-to-noise ratio at the receiver. They then develop an N-state Markov model to describe the traffic behavior of the top wavelet. The behavior of the remaining wavelets are then obtained through estimation, based on the correlations between these subimages at the same level of resolution and those wavelets located at an immediate higher level. In this paper, a three-state Markov model is developed. The resulting traffic behavior described by various statistical properties, such as moments and correlations, etc., is then utilized to validate their model.

  4. Evaluation of Effectiveness of Wavelet Based Denoising Schemes Using ANN and SVM for Bearing Condition Classification

    Directory of Open Access Journals (Sweden)

    Vijay G. S.

    2012-01-01

    Full Text Available The wavelet based denoising has proven its ability to denoise the bearing vibration signals by improving the signal-to-noise ratio (SNR and reducing the root-mean-square error (RMSE. In this paper seven wavelet based denoising schemes have been evaluated based on the performance of the Artificial Neural Network (ANN and the Support Vector Machine (SVM, for the bearing condition classification. The work consists of two parts, the first part in which a synthetic signal simulating the defective bearing vibration signal with Gaussian noise was subjected to these denoising schemes. The best scheme based on the SNR and the RMSE was identified. In the second part, the vibration signals collected from a customized Rolling Element Bearing (REB test rig for four bearing conditions were subjected to these denoising schemes. Several time and frequency domain features were extracted from the denoised signals, out of which a few sensitive features were selected using the Fisher’s Criterion (FC. Extracted features were used to train and test the ANN and the SVM. The best denoising scheme identified, based on the classification performances of the ANN and the SVM, was found to be the same as the one obtained using the synthetic signal.

  5. Comparison of wavelet based denoising schemes for gear condition monitoring: An Artificial Neural Network based Approach

    Science.gov (United States)

    Ahmed, Rounaq; Srinivasa Pai, P.; Sriram, N. S.; Bhat, Vasudeva

    2018-02-01

    Vibration Analysis has been extensively used in recent past for gear fault diagnosis. The vibration signals extracted is usually contaminated with noise and may lead to wrong interpretation of results. The denoising of extracted vibration signals helps the fault diagnosis by giving meaningful results. Wavelet Transform (WT) increases signal to noise ratio (SNR), reduces root mean square error (RMSE) and is effective to denoise the gear vibration signals. The extracted signals have to be denoised by selecting a proper denoising scheme in order to prevent the loss of signal information along with noise. An approach has been made in this work to show the effectiveness of Principal Component Analysis (PCA) to denoise gear vibration signal. In this regard three selected wavelet based denoising schemes namely PCA, Empirical Mode Decomposition (EMD), Neighcoeff Coefficient (NC), has been compared with Adaptive Threshold (AT) an extensively used wavelet based denoising scheme for gear vibration signal. The vibration signals acquired from a customized gear test rig were denoised by above mentioned four denoising schemes. The fault identification capability as well as SNR, Kurtosis and RMSE for the four denoising schemes have been compared. Features extracted from the denoised signals have been used to train and test artificial neural network (ANN) models. The performances of the four denoising schemes have been evaluated based on the performance of the ANN models. The best denoising scheme has been identified, based on the classification accuracy results. PCA is effective in all the regards as a best denoising scheme.

  6. Wavelet-based de-noising algorithm for images acquired with parallel magnetic resonance imaging (MRI)

    International Nuclear Information System (INIS)

    Delakis, Ioannis; Hammad, Omer; Kitney, Richard I

    2007-01-01

    Wavelet-based de-noising has been shown to improve image signal-to-noise ratio in magnetic resonance imaging (MRI) while maintaining spatial resolution. Wavelet-based de-noising techniques typically implemented in MRI require that noise displays uniform spatial distribution. However, images acquired with parallel MRI have spatially varying noise levels. In this work, a new algorithm for filtering images with parallel MRI is presented. The proposed algorithm extracts the edges from the original image and then generates a noise map from the wavelet coefficients at finer scales. The noise map is zeroed at locations where edges have been detected and directional analysis is also used to calculate noise in regions of low-contrast edges that may not have been detected. The new methodology was applied on phantom and brain images and compared with other applicable de-noising techniques. The performance of the proposed algorithm was shown to be comparable with other techniques in central areas of the images, where noise levels are high. In addition, finer details and edges were maintained in peripheral areas, where noise levels are low. The proposed methodology is fully automated and can be applied on final reconstructed images without requiring sensitivity profiles or noise matrices of the receiver coils, therefore making it suitable for implementation in a clinical MRI setting

  7. An improved method for pancreas segmentation using SLIC and interactive region merging

    Science.gov (United States)

    Zhang, Liyuan; Yang, Huamin; Shi, Weili; Miao, Yu; Li, Qingliang; He, Fei; He, Wei; Li, Yanfang; Zhang, Huimao; Mori, Kensaku; Jiang, Zhengang

    2017-03-01

    Considering the weak edges in pancreas segmentation, this paper proposes a new solution which integrates more features of CT images by combining SLIC superpixels and interactive region merging. In the proposed method, Mahalanobis distance is first utilized in SLIC method to generate better superpixel images. By extracting five texture features and one gray feature, the similarity measure between two superpixels becomes more reliable in interactive region merging. Furthermore, object edge blocks are accurately addressed by re-segmentation merging process. Applying the proposed method to four cases of abdominal CT images, we segment pancreatic tissues to verify the feasibility and effectiveness. The experimental results show that the proposed method can make segmentation accuracy increase to 92% on average. This study will boost the application process of pancreas segmentation for computer-aided diagnosis system.

  8. CT image segmentation methods for bone used in medical additive manufacturing.

    Science.gov (United States)

    van Eijnatten, Maureen; van Dijk, Roelof; Dobbe, Johannes; Streekstra, Geert; Koivisto, Juha; Wolff, Jan

    2018-01-01

    The accuracy of additive manufactured medical constructs is limited by errors introduced during image segmentation. The aim of this study was to review the existing literature on different image segmentation methods used in medical additive manufacturing. Thirty-two publications that reported on the accuracy of bone segmentation based on computed tomography images were identified using PubMed, ScienceDirect, Scopus, and Google Scholar. The advantages and disadvantages of the different segmentation methods used in these studies were evaluated and reported accuracies were compared. The spread between the reported accuracies was large (0.04 mm - 1.9 mm). Global thresholding was the most commonly used segmentation method with accuracies under 0.6 mm. The disadvantage of this method is the extensive manual post-processing required. Advanced thresholding methods could improve the accuracy to under 0.38 mm. However, such methods are currently not included in commercial software packages. Statistical shape model methods resulted in accuracies from 0.25 mm to 1.9 mm but are only suitable for anatomical structures with moderate anatomical variations. Thresholding remains the most widely used segmentation method in medical additive manufacturing. To improve the accuracy and reduce the costs of patient-specific additive manufactured constructs, more advanced segmentation methods are required. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  9. A method for robust segmentation of arbitrarily shaped radiopaque structures in cone-beam CT projections

    International Nuclear Information System (INIS)

    Poulsen, Per Rugaard; Fledelius, Walther; Keall, Paul J.; Weiss, Elisabeth; Lu Jun; Brackbill, Emily; Hugo, Geoffrey D.

    2011-01-01

    Purpose: Implanted markers are commonly used in radiotherapy for x-ray based target localization. The projected marker position in a series of cone-beam CT (CBCT) projections can be used to estimate the three dimensional (3D) target trajectory during the CBCT acquisition. This has important applications in tumor motion management such as motion inclusive, gating, and tumor tracking strategies. However, for irregularly shaped markers, reliable segmentation is challenged by large variations in the marker shape with projection angle. The purpose of this study was to develop a semiautomated method for robust and reliable segmentation of arbitrarily shaped radiopaque markers in CBCT projections. Methods: The segmentation method involved the following three steps: (1) Threshold based segmentation of the marker in three to six selected projections with large angular separation, good marker contrast, and uniform background; (2) construction of a 3D marker model by coalignment and backprojection of the threshold-based segmentations; and (3) construction of marker templates at all imaging angles by projection of the 3D model and use of these templates for template-based segmentation. The versatility of the segmentation method was demonstrated by segmentation of the following structures in the projections from two clinical CBCT scans: (1) Three linear fiducial markers (Visicoil) implanted in or near a lung tumor and (2) an artificial cardiac valve in a lung cancer patient. Results: Automatic marker segmentation was obtained in more than 99.9% of the cases. The segmentation failed in a few cases where the marker was either close to a structure of similar appearance or hidden behind a dense structure (data cable). Conclusions: A robust template-based method for segmentation of arbitrarily shaped radiopaque markers in CBCT projections was developed.

  10. Improvement of Secret Image Invisibility in Circulation Image with Dyadic Wavelet Based Data Hiding with Run-Length Coded Secret Images of Which Location of Codes are Determined with Random Number

    OpenAIRE

    Kohei Arai; Yuji Yamada

    2011-01-01

    An attempt is made for improvement of secret image invisibility in circulation images with dyadic wavelet based data hiding with run-length coded secret images of which location of codes are determined by random number. Through experiments, it is confirmed that secret images are almost invisible in circulation images. Also robustness of the proposed data hiding method against data compression of circulation images is discussed. Data hiding performance in terms of invisibility of secret images...

  11. Semi-automatic watershed medical image segmentation methods for customized cancer radiation treatment planning simulation

    International Nuclear Information System (INIS)

    Kum Oyeon; Kim Hye Kyung; Max, N.

    2007-01-01

    A cancer radiation treatment planning simulation requires image segmentation to define the gross tumor volume, clinical target volume, and planning target volume. Manual segmentation, which is usual in clinical settings, depends on the operator's experience and may, in addition, change for every trial by the same operator. To overcome this difficulty, we developed semi-automatic watershed medical image segmentation tools using both the top-down watershed algorithm in the insight segmentation and registration toolkit (ITK) and Vincent-Soille's bottom-up watershed algorithm with region merging. We applied our algorithms to segment two- and three-dimensional head phantom CT data and to find pixel (or voxel) numbers for each segmented area, which are needed for radiation treatment optimization. A semi-automatic method is useful to avoid errors incurred by both human and machine sources, and provide clear and visible information for pedagogical purpose. (orig.)

  12. Evaluation of prognostic models developed using standardised image features from different PET automated segmentation methods.

    Science.gov (United States)

    Parkinson, Craig; Foley, Kieran; Whybra, Philip; Hills, Robert; Roberts, Ashley; Marshall, Chris; Staffurth, John; Spezi, Emiliano

    2018-04-11

    Prognosis in oesophageal cancer (OC) is poor. The 5-year overall survival (OS) rate is approximately 15%. Personalised medicine is hoped to increase the 5- and 10-year OS rates. Quantitative analysis of PET is gaining substantial interest in prognostic research but requires the accurate definition of the metabolic tumour volume. This study compares prognostic models developed in the same patient cohort using individual PET segmentation algorithms and assesses the impact on patient risk stratification. Consecutive patients (n = 427) with biopsy-proven OC were included in final analysis. All patients were staged with PET/CT between September 2010 and July 2016. Nine automatic PET segmentation methods were studied. All tumour contours were subjectively analysed for accuracy, and segmentation methods with segmentation methods studied, clustering means (KM2), general clustering means (GCM3), adaptive thresholding (AT) and watershed thresholding (WT) methods were included for analysis. Known clinical prognostic factors (age, treatment and staging) were significant in all of the developed prognostic models. AT and KM2 segmentation methods developed identical prognostic models. Patient risk stratification was dependent on the segmentation method used to develop the prognostic model with up to 73 patients (17.1%) changing risk stratification group. Prognostic models incorporating quantitative image features are dependent on the method used to delineate the primary tumour. This has a subsequent effect on risk stratification, with patients changing groups depending on the image segmentation method used.

  13. An Interactive Method Based on the Live Wire for Segmentation of the Breast in Mammography Images

    Directory of Open Access Journals (Sweden)

    Zhang Zewei

    2014-01-01

    Full Text Available In order to improve accuracy of computer-aided diagnosis of breast lumps, the authors introduce an improved interactive segmentation method based on Live Wire. This paper presents the Gabor filters and FCM clustering algorithm is introduced to the Live Wire cost function definition. According to the image FCM analysis for image edge enhancement, we eliminate the interference of weak edge and access external features clear segmentation results of breast lumps through improving Live Wire on two cases of breast segmentation data. Compared with the traditional method of image segmentation, experimental results show that the method achieves more accurate segmentation of breast lumps and provides more accurate objective basis on quantitative and qualitative analysis of breast lumps.

  14. An interactive method based on the live wire for segmentation of the breast in mammography images.

    Science.gov (United States)

    Zewei, Zhang; Tianyue, Wang; Li, Guo; Tingting, Wang; Lu, Xu

    2014-01-01

    In order to improve accuracy of computer-aided diagnosis of breast lumps, the authors introduce an improved interactive segmentation method based on Live Wire. This paper presents the Gabor filters and FCM clustering algorithm is introduced to the Live Wire cost function definition. According to the image FCM analysis for image edge enhancement, we eliminate the interference of weak edge and access external features clear segmentation results of breast lumps through improving Live Wire on two cases of breast segmentation data. Compared with the traditional method of image segmentation, experimental results show that the method achieves more accurate segmentation of breast lumps and provides more accurate objective basis on quantitative and qualitative analysis of breast lumps.

  15. A Composite Model of Wound Segmentation Based on Traditional Methods and Deep Neural Networks

    Directory of Open Access Journals (Sweden)

    Fangzhao Li

    2018-01-01

    Full Text Available Wound segmentation plays an important supporting role in the wound observation and wound healing. Current methods of image segmentation include those based on traditional process of image and those based on deep neural networks. The traditional methods use the artificial image features to complete the task without large amounts of labeled data. Meanwhile, the methods based on deep neural networks can extract the image features effectively without the artificial design, but lots of training data are required. Combined with the advantages of them, this paper presents a composite model of wound segmentation. The model uses the skin with wound detection algorithm we designed in the paper to highlight image features. Then, the preprocessed images are segmented by deep neural networks. And semantic corrections are applied to the segmentation results at last. The model shows a good performance in our experiment.

  16. An Efficient Integer Coding and Computing Method for Multiscale Time Segment

    Directory of Open Access Journals (Sweden)

    TONG Xiaochong

    2016-12-01

    Full Text Available This article focus on the exist problem and status of current time segment coding, proposed a new set of approach about time segment coding: multi-scale time segment integer coding (MTSIC. This approach utilized the tree structure and the sort by size formed among integer, it reflected the relationship among the multi-scale time segments: order, include/contained, intersection, etc., and finally achieved an unity integer coding processing for multi-scale time. On this foundation, this research also studied the computing method for calculating the time relationships of MTSIC, to support an efficient calculation and query based on the time segment, and preliminary discussed the application method and prospect of MTSIC. The test indicated that, the implement of MTSIC is convenient and reliable, and the transformation between it and the traditional method is convenient, it has the very high efficiency in query and calculating.

  17. Comparative methods for PET image segmentation in pharyngolaryngeal squamous cell carcinoma

    NARCIS (Netherlands)

    Zaidi, Habib; Abdoli, Mehrsima; Fuentes, Carolina Llina; El Naqa, Issam M.

    Several methods have been proposed for the segmentation of F-18-FDG uptake in PET. In this study, we assessed the performance of four categories of F-18-FDG PET image segmentation techniques in pharyngolaryngeal squamous cell carcinoma using clinical studies where the surgical specimen served as the

  18. Enhancement of Tropical Land Cover Mapping with Wavelet-Based Fusion and Unsupervised Clustering of SAR and Landsat Image Data

    Science.gov (United States)

    LeMoigne, Jacqueline; Laporte, Nadine; Netanyahuy, Nathan S.; Zukor, Dorothy (Technical Monitor)

    2001-01-01

    The characterization and the mapping of land cover/land use of forest areas, such as the Central African rainforest, is a very complex task. This complexity is mainly due to the extent of such areas and, as a consequence, to the lack of full and continuous cloud-free coverage of those large regions by one single remote sensing instrument, In order to provide improved vegetation maps of Central Africa and to develop forest monitoring techniques for applications at the local and regional scales, we propose to utilize multi-sensor remote sensing observations coupled with in-situ data. Fusion and clustering of multi-sensor data are the first steps towards the development of such a forest monitoring system. In this paper, we will describe some preliminary experiments involving the fusion of SAR and Landsat image data of the Lope Reserve in Gabon. Similarly to previous fusion studies, our fusion method is wavelet-based. The fusion provides a new image data set which contains more detailed texture features and preserves the large homogeneous regions that are observed by the Thematic Mapper sensor. The fusion step is followed by unsupervised clustering and provides a vegetation map of the area.

  19. Detection of Dendritic Spines Using Wavelet-Based Conditional Symmetric Analysis and Regularized Morphological Shared-Weight Neural Networks

    Directory of Open Access Journals (Sweden)

    Shuihua Wang

    2015-01-01

    Full Text Available Identification and detection of dendritic spines in neuron images are of high interest in diagnosis and treatment of neurological and psychiatric disorders (e.g., Alzheimer’s disease, Parkinson’s diseases, and autism. In this paper, we have proposed a novel automatic approach using wavelet-based conditional symmetric analysis and regularized morphological shared-weight neural networks (RMSNN for dendritic spine identification involving the following steps: backbone extraction, localization of dendritic spines, and classification. First, a new algorithm based on wavelet transform and conditional symmetric analysis has been developed to extract backbone and locate the dendrite boundary. Then, the RMSNN has been proposed to classify the spines into three predefined categories (mushroom, thin, and stubby. We have compared our proposed approach against the existing methods. The experimental result demonstrates that the proposed approach can accurately locate the dendrite and accurately classify the spines into three categories with the accuracy of 99.1% for “mushroom” spines, 97.6% for “stubby” spines, and 98.6% for “thin” spines.

  20. MIA-Clustering: a novel method for segmentation of paleontological material

    Directory of Open Access Journals (Sweden)

    Christopher J. Dunmore

    2018-02-01

    Full Text Available Paleontological research increasingly uses high-resolution micro-computed tomography (μCT to study the inner architecture of modern and fossil bone material to answer important questions regarding vertebrate evolution. This non-destructive method allows for the measurement of otherwise inaccessible morphology. Digital measurement is predicated on the accurate segmentation of modern or fossilized bone from other structures imaged in μCT scans, as errors in segmentation can result in inaccurate calculations of structural parameters. Several approaches to image segmentation have been proposed with varying degrees of automation, ranging from completely manual segmentation, to the selection of input parameters required for computational algorithms. Many of these segmentation algorithms provide speed and reproducibility at the cost of flexibility that manual segmentation provides. In particular, the segmentation of modern and fossil bone in the presence of materials such as desiccated soft tissue, soil matrix or precipitated crystalline material can be difficult. Here we present a free open-source segmentation algorithm application capable of segmenting modern and fossil bone, which also reduces subjective user decisions to a minimum. We compare the effectiveness of this algorithm with another leading method by using both to measure the parameters of a known dimension reference object, as well as to segment an example problematic fossil scan. The results demonstrate that the medical image analysis-clustering method produces accurate segmentations and offers more flexibility than those of equivalent precision. Its free availability, flexibility to deal with non-bone inclusions and limited need for user input give it broad applicability in anthropological, anatomical, and paleontological contexts.

  1. MIA-Clustering: a novel method for segmentation of paleontological material.

    Science.gov (United States)

    Dunmore, Christopher J; Wollny, Gert; Skinner, Matthew M

    2018-01-01

    Paleontological research increasingly uses high-resolution micro-computed tomography (μCT) to study the inner architecture of modern and fossil bone material to answer important questions regarding vertebrate evolution. This non-destructive method allows for the measurement of otherwise inaccessible morphology. Digital measurement is predicated on the accurate segmentation of modern or fossilized bone from other structures imaged in μCT scans, as errors in segmentation can result in inaccurate calculations of structural parameters. Several approaches to image segmentation have been proposed with varying degrees of automation, ranging from completely manual segmentation, to the selection of input parameters required for computational algorithms. Many of these segmentation algorithms provide speed and reproducibility at the cost of flexibility that manual segmentation provides. In particular, the segmentation of modern and fossil bone in the presence of materials such as desiccated soft tissue, soil matrix or precipitated crystalline material can be difficult. Here we present a free open-source segmentation algorithm application capable of segmenting modern and fossil bone, which also reduces subjective user decisions to a minimum. We compare the effectiveness of this algorithm with another leading method by using both to measure the parameters of a known dimension reference object, as well as to segment an example problematic fossil scan. The results demonstrate that the medical image analysis-clustering method produces accurate segmentations and offers more flexibility than those of equivalent precision. Its free availability, flexibility to deal with non-bone inclusions and limited need for user input give it broad applicability in anthropological, anatomical, and paleontological contexts.

  2. Automatic segmentation of Leishmania parasite in microscopic images using a modified CV level set method

    Science.gov (United States)

    Farahi, Maria; Rabbani, Hossein; Talebi, Ardeshir; Sarrafzadeh, Omid; Ensafi, Shahab

    2015-12-01

    Visceral Leishmaniasis is a parasitic disease that affects liver, spleen and bone marrow. According to World Health Organization report, definitive diagnosis is possible just by direct observation of the Leishman body in the microscopic image taken from bone marrow samples. We utilize morphological and CV level set method to segment Leishman bodies in digital color microscopic images captured from bone marrow samples. Linear contrast stretching method is used for image enhancement and morphological method is applied to determine the parasite regions and wipe up unwanted objects. Modified global and local CV level set methods are proposed for segmentation and a shape based stopping factor is used to hasten the algorithm. Manual segmentation is considered as ground truth to evaluate the proposed method. This method is tested on 28 samples and achieved 10.90% mean of segmentation error for global model and 9.76% for local model.

  3. Microfluidic device and method for focusing, segmenting, and dispensing of a fluid stream

    Science.gov (United States)

    Jacobson, Stephen C [Knoxville, TN; Ramsey, J Michael [Knoxville, TN

    2008-09-09

    A microfluidic device and method for forming and dispensing minute volume segments of a material are described. In accordance with the present invention, a microfluidic device and method are provided for spatially confining the material in a focusing element. The device is also adapted for segmenting the confined material into minute volume segments, and dispensing a volume segment to a waste or collection channel. The device further includes means for driving the respective streams of sample and focusing fluids through respective channels into a chamber, such that the focusing fluid streams spatially confine the sample material. The device may also include additional means for driving a minute volume segment of the spatially confined sample material into a collection channel in fluid communication with the waste reservoir.

  4. A Novel Unsupervised Segmentation Quality Evaluation Method for Remote Sensing Images.

    Science.gov (United States)

    Gao, Han; Tang, Yunwei; Jing, Linhai; Li, Hui; Ding, Haifeng

    2017-10-24

    The segmentation of a high spatial resolution remote sensing image is a critical step in geographic object-based image analysis (GEOBIA). Evaluating the performance of segmentation without ground truth data, i.e., unsupervised evaluation, is important for the comparison of segmentation algorithms and the automatic selection of optimal parameters. This unsupervised strategy currently faces several challenges in practice, such as difficulties in designing effective indicators and limitations of the spectral values in the feature representation. This study proposes a novel unsupervised evaluation method to quantitatively measure the quality of segmentation results to overcome these problems. In this method, multiple spectral and spatial features of images are first extracted simultaneously and then integrated into a feature set to improve the quality of the feature representation of ground objects. The indicators designed for spatial stratified heterogeneity and spatial autocorrelation are included to estimate the properties of the segments in this integrated feature set. These two indicators are then combined into a global assessment metric as the final quality score. The trade-offs of the combined indicators are accounted for using a strategy based on the Mahalanobis distance, which can be exhibited geometrically. The method is tested on two segmentation algorithms and three testing images. The proposed method is compared with two existing unsupervised methods and a supervised method to confirm its capabilities. Through comparison and visual analysis, the results verified the effectiveness of the proposed method and demonstrated the reliability and improvements of this method with respect to other methods.

  5. A Novel Unsupervised Segmentation Quality Evaluation Method for Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Han Gao

    2017-10-01

    Full Text Available The segmentation of a high spatial resolution remote sensing image is a critical step in geographic object-based image analysis (GEOBIA. Evaluating the performance of segmentation without ground truth data, i.e., unsupervised evaluation, is important for the comparison of segmentation algorithms and the automatic selection of optimal parameters. This unsupervised strategy currently faces several challenges in practice, such as difficulties in designing effective indicators and limitations of the spectral values in the feature representation. This study proposes a novel unsupervised evaluation method to quantitatively measure the quality of segmentation results to overcome these problems. In this method, multiple spectral and spatial features of images are first extracted simultaneously and then integrated into a feature set to improve the quality of the feature representation of ground objects. The indicators designed for spatial stratified heterogeneity and spatial autocorrelation are included to estimate the properties of the segments in this integrated feature set. These two indicators are then combined into a global assessment metric as the final quality score. The trade-offs of the combined indicators are accounted for using a strategy based on the Mahalanobis distance, which can be exhibited geometrically. The method is tested on two segmentation algorithms and three testing images. The proposed method is compared with two existing unsupervised methods and a supervised method to confirm its capabilities. Through comparison and visual analysis, the results verified the effectiveness of the proposed method and demonstrated the reliability and improvements of this method with respect to other methods.

  6. An Efficient Parallel Multi-Scale Segmentation Method for Remote Sensing Imagery

    Directory of Open Access Journals (Sweden)

    Haiyan Gu

    2018-04-01

    Full Text Available Remote sensing (RS image segmentation is an essential step in geographic object-based image analysis (GEOBIA to ultimately derive “meaningful objects”. While many segmentation methods exist, most of them are not efficient for large data sets. Thus, the goal of this research is to develop an efficient parallel multi-scale segmentation method for RS imagery by combining graph theory and the fractal net evolution approach (FNEA. Specifically, a minimum spanning tree (MST algorithm in graph theory is proposed to be combined with a minimum heterogeneity rule (MHR algorithm that is used in FNEA. The MST algorithm is used for the initial segmentation while the MHR algorithm is used for object merging. An efficient implementation of the segmentation strategy is presented using data partition and the “reverse searching-forward processing” chain based on message passing interface (MPI parallel technology. Segmentation results of the proposed method using images from multiple sensors (airborne, SPECIM AISA EAGLE II, WorldView-2, RADARSAT-2 and different selected landscapes (residential/industrial, residential/agriculture covering four test sites indicated its efficiency in accuracy and speed. We conclude that the proposed method is applicable and efficient for the segmentation of a variety of RS imagery (airborne optical, satellite optical, SAR, high-spectral, while the accuracy is comparable with that of the FNEA method.

  7. Whole vertebral bone segmentation method with a statistical intensity-shape model based approach

    Science.gov (United States)

    Hanaoka, Shouhei; Fritscher, Karl; Schuler, Benedikt; Masutani, Yoshitaka; Hayashi, Naoto; Ohtomo, Kuni; Schubert, Rainer

    2011-03-01

    An automatic segmentation algorithm for the vertebrae in human body CT images is presented. Especially we focused on constructing and utilizing 4 different statistical intensity-shape combined models for the cervical, upper / lower thoracic and lumbar vertebrae, respectively. For this purpose, two previously reported methods were combined: a deformable model-based initial segmentation method and a statistical shape-intensity model-based precise segmentation method. The former is used as a pre-processing to detect the position and orientation of each vertebra, which determines the initial condition for the latter precise segmentation method. The precise segmentation method needs prior knowledge on both the intensities and the shapes of the objects. After PCA analysis of such shape-intensity expressions obtained from training image sets, vertebrae were parametrically modeled as a linear combination of the principal component vectors. The segmentation of each target vertebra was performed as fitting of this parametric model to the target image by maximum a posteriori estimation, combined with the geodesic active contour method. In the experimental result by using 10 cases, the initial segmentation was successful in 6 cases and only partially failed in 4 cases (2 in the cervical area and 2 in the lumbo-sacral). In the precise segmentation, the mean error distances were 2.078, 1.416, 0.777, 0.939 mm for cervical, upper and lower thoracic, lumbar spines, respectively. In conclusion, our automatic segmentation algorithm for the vertebrae in human body CT images showed a fair performance for cervical, thoracic and lumbar vertebrae.

  8. Impact of consensus contours from multiple PET segmentation methods on the accuracy of functional volume delineation

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, A. [Saarland University Medical Centre, Department of Nuclear Medicine, Homburg (Germany); Vermandel, M. [U1189 - ONCO-THAI - Image Assisted Laser Therapy for Oncology, University of Lille, Inserm, CHU Lille, Lille (France); CHU Lille, Nuclear Medicine Department, Lille (France); Baillet, C. [CHU Lille, Nuclear Medicine Department, Lille (France); Dewalle-Vignion, A.S. [U1189 - ONCO-THAI - Image Assisted Laser Therapy for Oncology, University of Lille, Inserm, CHU Lille, Lille (France); Modzelewski, R.; Vera, P.; Gardin, I. [Centre Henri-Becquerel and LITIS EA4108, Rouen (France); Massoptier, L.; Parcq, C.; Gibon, D. [AQUILAB, Research and Innovation Department, Loos Les Lille (France); Fechter, T.; Nestle, U. [University Medical Center Freiburg, Department for Radiation Oncology, Freiburg (Germany); German Cancer Consortium (DKTK) Freiburg and German Cancer Research Center (DKFZ), Heidelberg (Germany); Nemer, U. [University Medical Center Freiburg, Department of Nuclear Medicine, Freiburg (Germany)

    2016-05-15

    The aim of this study was to evaluate the impact of consensus algorithms on segmentation results when applied to clinical PET images. In particular, whether the use of the majority vote or STAPLE algorithm could improve the accuracy and reproducibility of the segmentation provided by the combination of three semiautomatic segmentation algorithms was investigated. Three published segmentation methods (contrast-oriented, possibility theory and adaptive thresholding) and two consensus algorithms (majority vote and STAPLE) were implemented in a single software platform (Artiview registered). Four clinical datasets including different locations (thorax, breast, abdomen) or pathologies (primary NSCLC tumours, metastasis, lymphoma) were used to evaluate accuracy and reproducibility of the consensus approach in comparison with pathology as the ground truth or CT as a ground truth surrogate. Variability in the performance of the individual segmentation algorithms for lesions of different tumour entities reflected the variability in PET images in terms of resolution, contrast and noise. Independent of location and pathology of the lesion, however, the consensus method resulted in improved accuracy in volume segmentation compared with the worst-performing individual method in the majority of cases and was close to the best-performing method in many cases. In addition, the implementation revealed high reproducibility in the segmentation results with small changes in the respective starting conditions. There were no significant differences in the results with the STAPLE algorithm and the majority vote algorithm. This study showed that combining different PET segmentation methods by the use of a consensus algorithm offers robustness against the variable performance of individual segmentation methods and this approach would therefore be useful in radiation oncology. It might also be relevant for other scenarios such as the merging of expert recommendations in clinical routine and

  9. Quality Variation Control for Three-Dimensional Wavelet-Based Video Coders

    Directory of Open Access Journals (Sweden)

    Vidhya Seran

    2007-02-01

    Full Text Available The fluctuation of quality in time is a problem that exists in motion-compensated-temporal-filtering (MCTF- based video coding. The goal of this paper is to design a solution for overcoming the distortion fluctuation challenges faced by wavelet-based video coders. We propose a new technique for determining the number of bits to be allocated to each temporal subband in order to minimize the fluctuation in the quality of the reconstructed video. Also, the wavelet filter properties are explored to design suitable scaling coefficients with the objective of smoothening the temporal PSNR. The biorthogonal 5/3 wavelet filter is considered in this paper and experimental results are presented for 2D+t and t+2D MCTF wavelet coders.

  10. Quality Variation Control for Three-Dimensional Wavelet-Based Video Coders

    Directory of Open Access Journals (Sweden)

    Seran Vidhya

    2007-01-01

    Full Text Available The fluctuation of quality in time is a problem that exists in motion-compensated-temporal-filtering (MCTF- based video coding. The goal of this paper is to design a solution for overcoming the distortion fluctuation challenges faced by wavelet-based video coders. We propose a new technique for determining the number of bits to be allocated to each temporal subband in order to minimize the fluctuation in the quality of the reconstructed video. Also, the wavelet filter properties are explored to design suitable scaling coefficients with the objective of smoothening the temporal PSNR. The biorthogonal 5/3 wavelet filter is considered in this paper and experimental results are presented for 2D+t and t+2D MCTF wavelet coders.

  11. Neuro-Fuzzy Wavelet Based Adaptive MPPT Algorithm for Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Syed Zulqadar Hassan

    2017-03-01

    Full Text Available An intelligent control of photovoltaics is necessary to ensure fast response and high efficiency under different weather conditions. This is often arduous to accomplish using traditional linear controllers, as photovoltaic systems are nonlinear and contain several uncertainties. Based on the analysis of the existing literature of Maximum Power Point Tracking (MPPT techniques, a high performance neuro-fuzzy indirect wavelet-based adaptive MPPT control is developed in this work. The proposed controller combines the reasoning capability of fuzzy logic, the learning capability of neural networks and the localization properties of wavelets. In the proposed system, the Hermite Wavelet-embedded Neural Fuzzy (HWNF-based gradient estimator is adopted to estimate the gradient term and makes the controller indirect. The performance of the proposed controller is compared with different conventional and intelligent MPPT control techniques. MATLAB results show the superiority over other existing techniques in terms of fast response, power quality and efficiency.

  12. JPEG2000-Compatible Scalable Scheme for Wavelet-Based Video Coding

    Directory of Open Access Journals (Sweden)

    Thomas André

    2007-03-01

    Full Text Available We present a simple yet efficient scalable scheme for wavelet-based video coders, able to provide on-demand spatial, temporal, and SNR scalability, and fully compatible with the still-image coding standard JPEG2000. Whereas hybrid video coders must undergo significant changes in order to support scalability, our coder only requires a specific wavelet filter for temporal analysis, as well as an adapted bit allocation procedure based on models of rate-distortion curves. Our study shows that scalably encoded sequences have the same or almost the same quality than nonscalably encoded ones, without a significant increase in complexity. A full compatibility with Motion JPEG2000, which tends to be a serious candidate for the compression of high-definition video sequences, is ensured.

  13. Fast and robust wavelet-based dynamic range compression and contrast enhancement model with color restoration

    Science.gov (United States)

    Unaldi, Numan; Asari, Vijayan K.; Rahman, Zia-ur

    2009-05-01

    Recently we proposed a wavelet-based dynamic range compression algorithm to improve the visual quality of digital images captured from high dynamic range scenes with non-uniform lighting conditions. The fast image enhancement algorithm that provides dynamic range compression, while preserving the local contrast and tonal rendition, is also a good candidate for real time video processing applications. Although the colors of the enhanced images produced by the proposed algorithm are consistent with the colors of the original image, the proposed algorithm fails to produce color constant results for some "pathological" scenes that have very strong spectral characteristics in a single band. The linear color restoration process is the main reason for this drawback. Hence, a different approach is required for the final color restoration process. In this paper the latest version of the proposed algorithm, which deals with this issue is presented. The results obtained by applying the algorithm to numerous natural images show strong robustness and high image quality.

  14. JPEG2000-Compatible Scalable Scheme for Wavelet-Based Video Coding

    Directory of Open Access Journals (Sweden)

    André Thomas

    2007-01-01

    Full Text Available We present a simple yet efficient scalable scheme for wavelet-based video coders, able to provide on-demand spatial, temporal, and SNR scalability, and fully compatible with the still-image coding standard JPEG2000. Whereas hybrid video coders must undergo significant changes in order to support scalability, our coder only requires a specific wavelet filter for temporal analysis, as well as an adapted bit allocation procedure based on models of rate-distortion curves. Our study shows that scalably encoded sequences have the same or almost the same quality than nonscalably encoded ones, without a significant increase in complexity. A full compatibility with Motion JPEG2000, which tends to be a serious candidate for the compression of high-definition video sequences, is ensured.

  15. Wavelet-based spectral finite element dynamic analysis for an axially moving Timoshenko beam

    Science.gov (United States)

    Mokhtari, Ali; Mirdamadi, Hamid Reza; Ghayour, Mostafa

    2017-08-01

    In this article, wavelet-based spectral finite element (WSFE) model is formulated for time domain and wave domain dynamic analysis of an axially moving Timoshenko beam subjected to axial pretension. The formulation is similar to conventional FFT-based spectral finite element (SFE) model except that Daubechies wavelet basis functions are used for temporal discretization of the governing partial differential equations into a set of ordinary differential equations. The localized nature of Daubechies wavelet basis functions helps to rule out problems of SFE model due to periodicity assumption, especially during inverse Fourier transformation and back to time domain. The high accuracy of WSFE model is then evaluated by comparing its results with those of conventional finite element and SFE results. The effects of moving beam speed and axial tensile force on vibration and wave characteristics, and static and dynamic stabilities of moving beam are investigated.

  16. SpotCaliper: fast wavelet-based spot detection with accurate size estimation.

    Science.gov (United States)

    Püspöki, Zsuzsanna; Sage, Daniel; Ward, John Paul; Unser, Michael

    2016-04-15

    SpotCaliper is a novel wavelet-based image-analysis software providing a fast automatic detection scheme for circular patterns (spots), combined with the precise estimation of their size. It is implemented as an ImageJ plugin with a friendly user interface. The user is allowed to edit the results by modifying the measurements (in a semi-automated way), extract data for further analysis. The fine tuning of the detections includes the possibility of adjusting or removing the original detections, as well as adding further spots. The main advantage of the software is its ability to capture the size of spots in a fast and accurate way. http://bigwww.epfl.ch/algorithms/spotcaliper/ zsuzsanna.puspoki@epfl.ch Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Multi-scale image segmentation method with visual saliency constraints and its application

    Science.gov (United States)

    Chen, Yan; Yu, Jie; Sun, Kaimin

    2018-03-01

    Object-based image analysis method has many advantages over pixel-based methods, so it is one of the current research hotspots. It is very important to get the image objects by multi-scale image segmentation in order to carry out object-based image analysis. The current popular image segmentation methods mainly share the bottom-up segmentation principle, which is simple to realize and the object boundaries obtained are accurate. However, the macro statistical characteristics of the image areas are difficult to be taken into account, and fragmented segmentation (or over-segmentation) results are difficult to avoid. In addition, when it comes to information extraction, target recognition and other applications, image targets are not equally important, i.e., some specific targets or target groups with particular features worth more attention than the others. To avoid the problem of over-segmentation and highlight the targets of interest, this paper proposes a multi-scale image segmentation method with visually saliency graph constraints. Visual saliency theory and the typical feature extraction method are adopted to obtain the visual saliency information, especially the macroscopic information to be analyzed. The visual saliency information is used as a distribution map of homogeneity weight, where each pixel is given a weight. This weight acts as one of the merging constraints in the multi- scale image segmentation. As a result, pixels that macroscopically belong to the same object but are locally different can be more likely assigned to one same object. In addition, due to the constraint of visual saliency model, the constraint ability over local-macroscopic characteristics can be well controlled during the segmentation process based on different objects. These controls will improve the completeness of visually saliency areas in the segmentation results while diluting the controlling effect for non- saliency background areas. Experiments show that this method works

  18. Wavelet-based regularization and edge preservation for submillimetre 3D list-mode reconstruction data from a high resolution small animal PET system

    Energy Technology Data Exchange (ETDEWEB)

    Jesus Ochoa Dominguez, Humberto de, E-mail: hochoa@uacj.mx [Departamento de Ingenieria Eectrica y Computacion, Universidad Autonoma de Ciudad Juarez, Avenida del Charro 450 Norte, C.P. 32310 Ciudad Juarez, Chihuahua (Mexico); Ortega Maynez, Leticia; Osiris Vergara Villegas, Osslan; Gordillo Castillo, Nelly; Guadalupe Cruz Sanchez, Vianey; Gutierrez Casas, Efren David [Departamento de Ingenieria Eectrica y Computacion, Universidad Autonoma de Ciudad Juarez, Avenida del Charro 450 Norte, C.P. 32310 Ciudad Juarez, Chihuahua (Mexico)

    2011-10-01

    The data obtained from a PET system tend to be noisy because of the limitations of the current instrumentation and the detector efficiency. This problem is particularly severe in images of small animals as the noise contaminates areas of interest within small organs. Therefore, denoising becomes a challenging task. In this paper, a novel wavelet-based regularization and edge preservation method is proposed to reduce such noise. To demonstrate this method, image reconstruction using a small mouse {sup 18}F NEMA phantom and a {sup 18}F mouse was performed. Investigation on the effects of the image quality was addressed for each reconstruction case. Results show that the proposed method drastically reduces the noise and preserves the image details.

  19. Wavelet-based linear-response time-dependent density-functional theory

    International Nuclear Information System (INIS)

    Natarajan, Bhaarathi; Genovese, Luigi; Casida, Mark E.; Deutsch, Thierry; Burchak, Olga N.

    2012-01-01

    Highlights: ► We has been implemented LR-TD-DFT in the pseudopotential wavelet-based program. ► We have compared the results against all-electron Gaussian-type program. ► Orbital energies converges significantly faster for BigDFT than for DEMON2K. ► We report the X-ray crystal structure of the small organic molecule flugi6. ► Measured and calculated absorption spectrum of flugi6 is also reported. - Abstract: Linear-response time-dependent (TD) density-functional theory (DFT) has been implemented in the pseudopotential wavelet-based electronic structure program BIGDFT and results are compared against those obtained with the all-electron Gaussian-type orbital program DEMON2K for the calculation of electronic absorption spectra of N 2 using the TD local density approximation (LDA). The two programs give comparable excitation energies and absorption spectra once suitably extensive basis sets are used. Convergence of LDA density orbitals and orbital energies to the basis-set limit is significantly faster for BIGDFT than for DEMON2K. However the number of virtual orbitals used in TD-DFT calculations is a parameter in BIGDFT, while all virtual orbitals are included in TD-DFT calculations in DEMON2K. As a reality check, we report the X-ray crystal structure and the measured and calculated absorption spectrum (excitation energies and oscillator strengths) of the small organic molecule N-cyclohexyl-2-(4-methoxyphenyl)imidazo[1, 2-a]pyridin-3-amine.

  20. Concrete Image Segmentation Based on Multiscale Mathematic Morphology Operators and Otsu Method

    Directory of Open Access Journals (Sweden)

    Sheng-Bo Zhou

    2015-01-01

    Full Text Available The aim of the current study lies in the development of a reformative technique of image segmentation for Computed Tomography (CT concrete images with the strength grades of C30 and C40. The results, through the comparison of the traditional threshold algorithms, indicate that three threshold algorithms and five edge detectors fail to meet the demand of segmentation for Computed Tomography concrete images. The paper proposes a new segmentation method, by combining multiscale noise suppression morphology edge detector with Otsu method, which is more appropriate for the segmentation of Computed Tomography concrete images with low contrast. This method cannot only locate the boundaries between objects and background with high accuracy, but also obtain a complete edge and eliminate noise.

  1. A Split-and-Merge-Based Uterine Fibroid Ultrasound Image Segmentation Method in HIFU Therapy.

    Directory of Open Access Journals (Sweden)

    Menglong Xu

    Full Text Available High-intensity focused ultrasound (HIFU therapy has been used to treat uterine fibroids widely and successfully. Uterine fibroid segmentation plays an important role in positioning the target region for HIFU therapy. Presently, it is completed by physicians manually, reducing the efficiency of therapy. Thus, computer-aided segmentation of uterine fibroids benefits the improvement of therapy efficiency. Recently, most computer-aided ultrasound segmentation methods have been based on the framework of contour evolution, such as snakes and level sets. These methods can achieve good performance, although they need an initial contour that influences segmentation results. It is difficult to obtain the initial contour automatically; thus, the initial contour is always obtained manually in many segmentation methods. A split-and-merge-based uterine fibroid segmentation method, which needs no initial contour to ensure less manual intervention, is proposed in this paper. The method first splits the image into many small homogeneous regions called superpixels. A new feature representation method based on texture histogram is employed to characterize each superpixel. Next, the superpixels are merged according to their similarities, which are measured by integrating their Quadratic-Chi texture histogram distances with their space adjacency. Multi-way Ncut is used as the merging criterion, and an adaptive scheme is incorporated to decrease manual intervention further. The method is implemented using Matlab on a personal computer (PC platform with Intel Pentium Dual-Core CPU E5700. The method is validated on forty-two ultrasound images acquired from HIFU therapy. The average running time is 9.54 s. Statistical results showed that SI reaches a value as high as 87.58%, and normHD is 5.18% on average. It has been demonstrated that the proposed method is appropriate for segmentation of uterine fibroids in HIFU pre-treatment imaging and planning.

  2. Segmenting the Parotid Gland using Registration and Level Set Methods

    DEFF Research Database (Denmark)

    Hollensen, Christian; Hansen, Mads Fogtmann; Højgaard, Liselotte

    . The method was evaluated on a test set consisting of 8 corresponding data sets. The attained total volume Dice coefficient and mean Haussdorff distance were 0.61 ± 0.20 and 15.6 ± 7.4 mm respectively. The method has improvement potential which could be exploited in order for clinical introduction....

  3. Performance Analysis of Unsupervised Clustering Methods for Brain Tumor Segmentation

    Directory of Open Access Journals (Sweden)

    Tushar H Jaware

    2013-10-01

    Full Text Available Medical image processing is the most challenging and emerging field of neuroscience. The ultimate goal of medical image analysis in brain MRI is to extract important clinical features that would improve methods of diagnosis & treatment of disease. This paper focuses on methods to detect & extract brain tumour from brain MR images. MATLAB is used to design, software tool for locating brain tumor, based on unsupervised clustering methods. K-Means clustering algorithm is implemented & tested on data base of 30 images. Performance evolution of unsupervised clusteringmethods is presented.

  4. An Interactive Method Based on the Live Wire for Segmentation of the Breast in Mammography Images

    OpenAIRE

    Zewei, Zhang; Tianyue, Wang; Li, Guo; Tingting, Wang; Lu, Xu

    2014-01-01

    In order to improve accuracy of computer-aided diagnosis of breast lumps, the authors introduce an improved interactive segmentation method based on Live Wire. This paper presents the Gabor filters and FCM clustering algorithm is introduced to the Live Wire cost function definition. According to the image FCM analysis for image edge enhancement, we eliminate the interference of weak edge and access external features clear segmentation results of breast lumps through improving Live Wire on two...

  5. A method for smoothing segmented lung boundary in chest CT images

    Science.gov (United States)

    Yim, Yeny; Hong, Helen

    2007-03-01

    To segment low density lung regions in chest CT images, most of methods use the difference in gray-level value of pixels. However, radiodense pulmonary vessels and pleural nodules that contact with the surrounding anatomy are often excluded from the segmentation result. To smooth lung boundary segmented by gray-level processing in chest CT images, we propose a new method using scan line search. Our method consists of three main steps. First, lung boundary is extracted by our automatic segmentation method. Second, segmented lung contour is smoothed in each axial CT slice. We propose a scan line search to track the points on lung contour and find rapidly changing curvature efficiently. Finally, to provide consistent appearance between lung contours in adjacent axial slices, 2D closing in coronal plane is applied within pre-defined subvolume. Our method has been applied for performance evaluation with the aspects of visual inspection, accuracy and processing time. The results of our method show that the smoothness of lung contour was considerably increased by compensating for pulmonary vessels and pleural nodules.

  6. A Hybrid 3D Colon Segmentation Method Using Modified Geometric Deformable Models

    Directory of Open Access Journals (Sweden)

    S. Falahieh Hamidpour

    2007-06-01

    Full Text Available Introduction: Nowadays virtual colonoscopy has become a reliable and efficient method of detecting primary stages of colon cancer such as polyp detection. One of the most important and crucial stages of virtual colonoscopy is colon segmentation because an incorrect segmentation may lead to a misdiagnosis.  Materials and Methods: In this work, a hybrid method based on Geometric Deformable Models (GDM in combination with an advanced region growing and thresholding methods is proposed. GDM are found to be an attractive tool for structural based image segmentation particularly for extracting the objects with complicated topology. There are two main parameters influencing the overall performance of GDM algorithm; the distance between the initial contour and the actual object’s contours and secondly the stopping term which controls the deformation. To overcome these limitations, a two stage hybrid based segmentation method is suggested to extract the rough but precise initial contours at the first stage of the segmentation. The extracted boundaries are smoothed and improved using a modified GDM algorithm by improving the stopping terms of the algorithm based on the gradient value of image voxels. Results: The proposed algorithm was implemented on forty data sets each containing 400-480 slices. The results show an improvement in the accuracy and smoothness of the extracted boundaries. The improvement obtained for the accuracy of segmentation is about 6% in comparison to the one achieved by the methods based on thresholding and region growing only. Discussion and Conclusion: The extracted contours using modified GDM are smoother and finer. The improvement achieved in this work on the performance of stopping function of GDM model together with applying two stage segmentation of boundaries have resulted in a great improvement on the computational efficiency of GDM algorithm while making smoother and finer colon borders.

  7. A Spatial Shape Constrained Clustering Method for Mammographic Mass Segmentation

    Directory of Open Access Journals (Sweden)

    Jian-Yong Lou

    2015-01-01

    error of 7.18% for well-defined masses (or 8.06% for ill-defined masses was obtained by using DACF on MiniMIAS database, with 5.86% (or 5.55% and 6.14% (or 5.27% improvements as compared to the standard DA and fuzzy c-means methods.

  8. Image segmentation and particles classification using texture analysis method

    Directory of Open Access Journals (Sweden)

    Mayar Aly Atteya

    Full Text Available Introduction: Ingredients of oily fish include a large amount of polyunsaturated fatty acids, which are important elements in various metabolic processes of humans, and have also been used to prevent diseases. However, in an attempt to reduce cost, recent developments are starting a replace the ingredients of fish oil with products of microalgae, that also produce polyunsaturated fatty acids. To do so, it is important to closely monitor morphological changes in algae cells and monitor their age in order to achieve the best results. This paper aims to describe an advanced vision-based system to automatically detect, classify, and track the organic cells using a recently developed SOPAT-System (Smart On-line Particle Analysis Technology, a photo-optical image acquisition device combined with innovative image analysis software. Methods The proposed method includes image de-noising, binarization and Enhancement, as well as object recognition, localization and classification based on the analysis of particles’ size and texture. Results The methods allowed for correctly computing cell’s size for each particle separately. By computing an area histogram for the input images (1h, 18h, and 42h, the variation could be observed showing a clear increase in cell. Conclusion The proposed method allows for algae particles to be correctly identified with accuracies up to 99% and classified correctly with accuracies up to 100%.

  9. A method of segment weight optimization for intensity modulated radiation therapy

    International Nuclear Information System (INIS)

    Pei Xi; Cao Ruifen; Jing Jia; Cheng Mengyun; Zheng Huaqing; Li Jia; Huang Shanqing; Li Gui; Song Gang; Wang Weihua; Wu Yican; FDS Team

    2011-01-01

    The error caused by leaf sequencing often leads to planning of Intensity-Modulated Radiation Therapy (IMRT) arrange system couldn't meet clinical demand. The optimization approach in this paper can reduce this error and improve efficiency of plan-making effectively. Conjugate Gradient algorithm was used to optimize segment weight and readjust segment shape, which could minimize the error anterior-posterior leaf sequencing eventually. Frequent clinical cases were tasted by precise radiotherapy system, and then compared Dose-Volume histogram between target area and organ at risk as well as isodose line in computed tomography (CT) film, we found that the effect was improved significantly after optimizing segment weight. Segment weight optimizing approach based on Conjugate Gradient method can make treatment planning meet clinical request more efficiently, so that has extensive application perspective. (authors)

  10. Segmentation of Natural Gas Customers in Industrial Sector Using Self-Organizing Map (SOM) Method

    Science.gov (United States)

    Masbar Rus, A. M.; Pramudita, R.; Surjandari, I.

    2018-03-01

    The usage of the natural gas which is non-renewable energy, needs to be more efficient. Therefore, customer segmentation becomes necessary to set up a marketing strategy to be right on target or to determine an appropriate fee. This research was conducted at PT PGN using one of data mining method, i.e. Self-Organizing Map (SOM). The clustering process is based on the characteristic of its customers as a reference to create the customer segmentation of natural gas customers. The input variables of this research are variable of area, type of customer, the industrial sector, the average usage, standard deviation of the usage, and the total deviation. As a result, 37 cluster and 9 segment from 838 customer data are formed. These 9 segments then employed to illustrate the general characteristic of the natural gas customer of PT PGN.

  11. A hybrid method for airway segmentation and automated measurement of bronchial wall thickness on CT.

    Science.gov (United States)

    Xu, Ziyue; Bagci, Ulas; Foster, Brent; Mansoor, Awais; Udupa, Jayaram K; Mollura, Daniel J

    2015-08-01

    Inflammatory and infectious lung diseases commonly involve bronchial airway structures and morphology, and these abnormalities are often analyzed non-invasively through high resolution computed tomography (CT) scans. Assessing airway wall surfaces and the lumen are of great importance for diagnosing pulmonary diseases. However, obtaining high accuracy from a complete 3-D airway tree structure can be quite challenging. The airway tree structure has spiculated shapes with multiple branches and bifurcation points as opposed to solid single organ or tumor segmentation tasks in other applications, hence, it is complex for manual segmentation as compared with other tasks. For computerized methods, a fundamental challenge in airway tree segmentation is the highly variable intensity levels in the lumen area, which often causes a segmentation method to leak into adjacent lung parenchyma through blurred airway walls or soft boundaries. Moreover, outer wall definition can be difficult due to similar intensities of the airway walls and nearby structures such as vessels. In this paper, we propose a computational framework to accurately quantify airways through (i) a novel hybrid approach for precise segmentation of the lumen, and (ii) two novel methods (a spatially constrained Markov random walk method (pseudo 3-D) and a relative fuzzy connectedness method (3-D)) to estimate the airway wall thickness. We evaluate the performance of our proposed methods in comparison with mostly used algorithms using human chest CT images. Our results demonstrate that, on publicly available data sets and using standard evaluation criteria, the proposed airway segmentation method is accurate and efficient as compared with the state-of-the-art methods, and the airway wall estimation algorithms identified the inner and outer airway surfaces more accurately than the most widely applied methods, namely full width at half maximum and phase congruency. Copyright © 2015. Published by Elsevier B.V.

  12. Is STAPLE algorithm confident to assess segmentation methods in PET imaging?

    Science.gov (United States)

    Dewalle-Vignion, Anne-Sophie; Betrouni, Nacim; Baillet, Clio; Vermandel, Maximilien

    2015-12-01

    Accurate tumor segmentation in [18F]-fluorodeoxyglucose positron emission tomography is crucial for tumor response assessment and target volume definition in radiation therapy. Evaluation of segmentation methods from clinical data without ground truth is usually based on physicians’ manual delineations. In this context, the simultaneous truth and performance level estimation (STAPLE) algorithm could be useful to manage the multi-observers variability. In this paper, we evaluated how this algorithm could accurately estimate the ground truth in PET imaging. Complete evaluation study using different criteria was performed on simulated data. The STAPLE algorithm was applied to manual and automatic segmentation results. A specific configuration of the implementation provided by the Computational Radiology Laboratory was used. Consensus obtained by the STAPLE algorithm from manual delineations appeared to be more accurate than manual delineations themselves (80% of overlap). An improvement of the accuracy was also observed when applying the STAPLE algorithm to automatic segmentations results. The STAPLE algorithm, with the configuration used in this paper, is more appropriate than manual delineations alone or automatic segmentations results alone to estimate the ground truth in PET imaging. Therefore, it might be preferred to assess the accuracy of tumor segmentation methods in PET imaging.

  13. Is STAPLE algorithm confident to assess segmentation methods in PET imaging?

    International Nuclear Information System (INIS)

    Dewalle-Vignion, Anne-Sophie; Betrouni, Nacim; Vermandel, Maximilien; Baillet, Clio

    2015-01-01

    Accurate tumor segmentation in [18F]-fluorodeoxyglucose positron emission tomography is crucial for tumor response assessment and target volume definition in radiation therapy. Evaluation of segmentation methods from clinical data without ground truth is usually based on physicians’ manual delineations. In this context, the simultaneous truth and performance level estimation (STAPLE) algorithm could be useful to manage the multi-observers variability. In this paper, we evaluated how this algorithm could accurately estimate the ground truth in PET imaging.Complete evaluation study using different criteria was performed on simulated data. The STAPLE algorithm was applied to manual and automatic segmentation results. A specific configuration of the implementation provided by the Computational Radiology Laboratory was used.Consensus obtained by the STAPLE algorithm from manual delineations appeared to be more accurate than manual delineations themselves (80% of overlap). An improvement of the accuracy was also observed when applying the STAPLE algorithm to automatic segmentations results.The STAPLE algorithm, with the configuration used in this paper, is more appropriate than manual delineations alone or automatic segmentations results alone to estimate the ground truth in PET imaging. Therefore, it might be preferred to assess the accuracy of tumor segmentation methods in PET imaging. (paper)

  14. Intrathoracic Airway Tree Segmentation from CT Images Using a Fuzzy Connectivity Method

    Directory of Open Access Journals (Sweden)

    Fereshteh Yousefi Rizi

    2009-03-01

    Full Text Available Introduction: Virtual bronchoscopy is a reliable and efficient diagnostic method for primary symptoms of lung cancer. The segmentation of airways from CT images is a critical step for numerous virtual bronchoscopy applications. Materials and Methods: To overcome the limitations of the fuzzy connectedness method, the proposed technique, called fuzzy connectivity - fuzzy C-mean (FC-FCM, utilized the FCM algorithm. Then, hanging-togetherness of pixels was handled by employing a spatial membership function. Another problem in airway segmentation that had to be overcome was the leakage into the extra-luminal regions due to the thinness of the airway walls during the process of segmentation. Results:   The result shows an accuracy of 92.92% obtained for segmentation of the airway tree up to the fourth generation. Conclusion:  We have presented a new segmentation method that is not only robust regarding the leakage problem but also functions more efficiently than the traditional FC method.

  15. Wavelet based artificial neural network applied for energy efficiency enhancement of decoupled HVAC system

    International Nuclear Information System (INIS)

    Jahedi, G.; Ardehali, M.M.

    2012-01-01

    Highlights: ► In HVAC systems, temperature and relative humidity are coupled and dynamic mathematical models are non-linear. ► A wavelet-based ANN is used in series with an infinite impulse response filter for self tuning of PD controller. ► Energy consumption is evaluated for a decoupled bi-linear HVAC system with variable air volume and variable water flow. ► Substantial enhancement in energy efficiency is realized, when the gain coefficients of PD controllers are tuned adaptively. - Abstract: Control methodologies could lower energy demand and consumption of heating, ventilating and air conditioning (HVAC) systems and, simultaneously, achieve better comfort conditions. However, the application of classical controllers is unsatisfactory as HVAC systems are non-linear and the control variables such as temperature and relative humidity (RH) inside the thermal zone are coupled. The objective of this study is to develop and simulate a wavelet-based artificial neural network (WNN) for self tuning of a proportional-derivative (PD) controller for a decoupled bi-linear HVAC system with variable air volume and variable water flow responsible for controlling temperature and RH of a thermal zone, where thermal comfort and energy consumption of the system are evaluated. To achieve the objective, a WNN is used in series with an infinite impulse response (IIR) filter for faster and more accurate identification of system dynamics, as needed for on-line use and off-line batch mode training. The WNN-IIR algorithm is used for self-tuning of two PD controllers for temperature and RH. The simulation results show that the WNN-IIR controller performance is superior, as compared with classical PD controller. The enhancement in efficiency of the HVAC system is accomplished due to substantially lower consumption of energy during the transient operation, when the gain coefficients of PD controllers are tuned in an adaptive manner, as the steady state setpoints for temperature and

  16. Control of equipment isolation system using wavelet-based hybrid sliding mode control

    Science.gov (United States)

    Huang, Shieh-Kung; Loh, Chin-Hsiung

    2017-04-01

    -structural components. The aim of this paper is to develop a hybrid control algorithm on the control of both structures and equipments simultaneously to overcome the limitations of classical feedback control through combining the advantage of classic LQR and SMC. To suppress vibrations with the frequency contents of strong earthquakes differing from the natural frequencies of civil structures, the hybrid control algorithms integrated with the wavelet-base vibration control algorithm is developed. The performance of classical, hybrid, and wavelet-based hybrid control algorithms as well as the responses of structure and non-structural components are evaluated and discussed through numerical simulation in this study.

  17. A neural method for determining electromagnetic shower positions in laterally segmented calorimeters

    International Nuclear Information System (INIS)

    Roy, A.; Ray, A.; Mitra, T.; Roy, A.

    1995-01-01

    A method based on a neural network technique is proposed to calculate the coordinates of an incident photon striking a laterally segmented calorimeter and depositing shower energies in different segments. The technique uses a multilayer perceptron trained by back-propagation implemented through standard gradient descent followed by conjugate gradient algorithms and has been demonstrated with GEANT simulations of a BAF2 detector array. The position resolution results obtained by using this method are found to be substantially better than the first moment method with logarithmic weighting. (orig.)

  18. Low Cost Skin Segmentation Scheme in Videos Using Two Alternative Methods for Dynamic Hand Gesture Detection Method

    Directory of Open Access Journals (Sweden)

    Eman Thabet

    2017-01-01

    Full Text Available Recent years have witnessed renewed interest in developing skin segmentation approaches. Skin feature segmentation has been widely employed in different aspects of computer vision applications including face detection and hand gestures recognition systems. This is mostly due to the attractive characteristics of skin colour and its effectiveness to object segmentation. On the contrary, there are certain challenges in using human skin colour as a feature to segment dynamic hand gesture, due to various illumination conditions, complicated environment, and computation time or real-time method. These challenges have led to the insufficiency of many of the skin color segmentation approaches. Therefore, to produce simple, effective, and cost efficient skin segmentation, this paper has proposed a skin segmentation scheme. This scheme includes two procedures for calculating generic threshold ranges in Cb-Cr colour space. The first procedure uses threshold values trained online from nose pixels of the face region. Meanwhile, the second procedure known as the offline training procedure uses thresholds trained out of skin samples and weighted equation. The experimental results showed that the proposed scheme achieved good performance in terms of efficiency and computation time.

  19. Assessment of automatic segmentation of teeth using a watershed-based method.

    Science.gov (United States)

    Galibourg, Antoine; Dumoncel, Jean; Telmon, Norbert; Calvet, Adèle; Michetti, Jérôme; Maret, Delphine

    2018-01-01

    Tooth 3D automatic segmentation (AS) is being actively developed in research and clinical fields. Here, we assess the effect of automatic segmentation using a watershed-based method on the accuracy and reproducibility of 3D reconstructions in volumetric measurements by comparing it with a semi-automatic segmentation(SAS) method that has already been validated. The study sample comprised 52 teeth, scanned with micro-CT (41 µm voxel size) and CBCT (76; 200 and 300 µm voxel size). Each tooth was segmented by AS based on a watershed method and by SAS. For all surface reconstructions, volumetric measurements were obtained and analysed statistically. Surfaces were then aligned using the SAS surfaces as the reference. The topography of the geometric discrepancies was displayed by using a colour map allowing the maximum differences to be located. AS reconstructions showed similar tooth volumes when compared with SAS for the 41 µm voxel size. A difference in volumes was observed, and increased with the voxel size for CBCT data. The maximum differences were mainly found at the cervical margins and incisal edges but the general form was preserved. Micro-CT, a modality used in dental research, provides data that can be segmented automatically, which is timesaving. AS with CBCT data enables the general form of the region of interest to be displayed. However, our AS method can still be used for metrically reliable measurements in the field of clinical dentistry if some manual refinements are applied.

  20. Development of a segmentation method for analysis of Campos basin typical reservoir rocks

    Energy Technology Data Exchange (ETDEWEB)

    Rego, Eneida Arendt; Bueno, Andre Duarte [Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Macae, RJ (Brazil). Lab. de Engenharia e Exploracao de Petroleo (LENEP)]. E-mails: eneida@lenep.uenf.br; bueno@lenep.uenf.br

    2008-07-01

    This paper represents a master thesis proposal in Exploration and Reservoir Engineering that have the objective to development a specific segmentation method for digital images of reservoir rocks, which produce better results than the global methods available in the bibliography for the determination of rocks physical properties as porosity and permeability. (author)

  1. A two-stage method for microcalcification cluster segmentation in mammography by deformable models

    International Nuclear Information System (INIS)

    Arikidis, N.; Kazantzi, A.; Skiadopoulos, S.; Karahaliou, A.; Costaridou, L.; Vassiou, K.

    2015-01-01

    Purpose: Segmentation of microcalcification (MC) clusters in x-ray mammography is a difficult task for radiologists. Accurate segmentation is prerequisite for quantitative image analysis of MC clusters and subsequent feature extraction and classification in computer-aided diagnosis schemes. Methods: In this study, a two-stage semiautomated segmentation method of MC clusters is investigated. The first stage is targeted to accurate and time efficient segmentation of the majority of the particles of a MC cluster, by means of a level set method. The second stage is targeted to shape refinement of selected individual MCs, by means of an active contour model. Both methods are applied in the framework of a rich scale-space representation, provided by the wavelet transform at integer scales. Segmentation reliability of the proposed method in terms of inter and intraobserver agreements was evaluated in a case sample of 80 MC clusters originating from the digital database for screening mammography, corresponding to 4 morphology types (punctate: 22, fine linear branching: 16, pleomorphic: 18, and amorphous: 24) of MC clusters, assessing radiologists’ segmentations quantitatively by two distance metrics (Hausdorff distance—HDIST cluster , average of minimum distance—AMINDIST cluster ) and the area overlap measure (AOM cluster ). The effect of the proposed segmentation method on MC cluster characterization accuracy was evaluated in a case sample of 162 pleomorphic MC clusters (72 malignant and 90 benign). Ten MC cluster features, targeted to capture morphologic properties of individual MCs in a cluster (area, major length, perimeter, compactness, and spread), were extracted and a correlation-based feature selection method yielded a feature subset to feed in a support vector machine classifier. Classification performance of the MC cluster features was estimated by means of the area under receiver operating characteristic curve (Az ± Standard Error) utilizing tenfold cross

  2. Twelve automated thresholding methods for segmentation of PET images: a phantom study

    International Nuclear Information System (INIS)

    Prieto, Elena; Peñuelas, Iván; Martí-Climent, Josep M; Lecumberri, Pablo; Gómez, Marisol; Pagola, Miguel; Bilbao, Izaskun; Ecay, Margarita

    2012-01-01

    Tumor volume delineation over positron emission tomography (PET) images is of great interest for proper diagnosis and therapy planning. However, standard segmentation techniques (manual or semi-automated) are operator dependent and time consuming while fully automated procedures are cumbersome or require complex mathematical development. The aim of this study was to segment PET images in a fully automated way by implementing a set of 12 automated thresholding algorithms, classical in the fields of optical character recognition, tissue engineering or non-destructive testing images in high-tech structures. Automated thresholding algorithms select a specific threshold for each image without any a priori spatial information of the segmented object or any special calibration of the tomograph, as opposed to usual thresholding methods for PET. Spherical 18 F-filled objects of different volumes were acquired on clinical PET/CT and on a small animal PET scanner, with three different signal-to-background ratios. Images were segmented with 12 automatic thresholding algorithms and results were compared with the standard segmentation reference, a threshold at 42% of the maximum uptake. Ridler and Ramesh thresholding algorithms based on clustering and histogram-shape information, respectively, provided better results that the classical 42%-based threshold (p < 0.05). We have herein demonstrated that fully automated thresholding algorithms can provide better results than classical PET segmentation tools. (paper)

  3. A wavelet-based PWTD algorithm-accelerated time domain surface integral equation solver

    KAUST Repository

    Liu, Yang

    2015-10-26

    © 2015 IEEE. The multilevel plane-wave time-domain (PWTD) algorithm allows for fast and accurate analysis of transient scattering from, and radiation by, electrically large and complex structures. When used in tandem with marching-on-in-time (MOT)-based surface integral equation (SIE) solvers, it reduces the computational and memory costs of transient analysis from equation and equation to equation and equation, respectively, where Nt and Ns denote the number of temporal and spatial unknowns (Ergin et al., IEEE Trans. Antennas Mag., 41, 39-52, 1999). In the past, PWTD-accelerated MOT-SIE solvers have been applied to transient problems involving half million spatial unknowns (Shanker et al., IEEE Trans. Antennas Propag., 51, 628-641, 2003). Recently, a scalable parallel PWTD-accelerated MOT-SIE solver that leverages a hiearchical parallelization strategy has been developed and successfully applied to the transient problems involving ten million spatial unknowns (Liu et. al., in URSI Digest, 2013). We further enhanced the capabilities of this solver by implementing a compression scheme based on local cosine wavelet bases (LCBs) that exploits the sparsity in the temporal dimension (Liu et. al., in URSI Digest, 2014). Specifically, the LCB compression scheme was used to reduce the memory requirement of the PWTD ray data and computational cost of operations in the PWTD translation stage.

  4. Wavelet-based linear-response time-dependent density-functional theory

    Science.gov (United States)

    Natarajan, Bhaarathi; Genovese, Luigi; Casida, Mark E.; Deutsch, Thierry; Burchak, Olga N.; Philouze, Christian; Balakirev, Maxim Y.

    2012-06-01

    Linear-response time-dependent (TD) density-functional theory (DFT) has been implemented in the pseudopotential wavelet-based electronic structure program BIGDFT and results are compared against those obtained with the all-electron Gaussian-type orbital program DEMON2K for the calculation of electronic absorption spectra of N2 using the TD local density approximation (LDA). The two programs give comparable excitation energies and absorption spectra once suitably extensive basis sets are used. Convergence of LDA density orbitals and orbital energies to the basis-set limit is significantly faster for BIGDFT than for DEMON2K. However the number of virtual orbitals used in TD-DFT calculations is a parameter in BIGDFT, while all virtual orbitals are included in TD-DFT calculations in DEMON2K. As a reality check, we report the X-ray crystal structure and the measured and calculated absorption spectrum (excitation energies and oscillator strengths) of the small organic molecule N-cyclohexyl-2-(4-methoxyphenyl)imidazo[1, 2-a]pyridin-3-amine.

  5. Finding the multipath propagation of multivariable crude oil prices using a wavelet-based network approach

    Science.gov (United States)

    Jia, Xiaoliang; An, Haizhong; Sun, Xiaoqi; Huang, Xuan; Gao, Xiangyun

    2016-04-01

    The globalization and regionalization of crude oil trade inevitably give rise to the difference of crude oil prices. The understanding of the pattern of the crude oil prices' mutual propagation is essential for analyzing the development of global oil trade. Previous research has focused mainly on the fuzzy long- or short-term one-to-one propagation of bivariate oil prices, generally ignoring various patterns of periodical multivariate propagation. This study presents a wavelet-based network approach to help uncover the multipath propagation of multivariable crude oil prices in a joint time-frequency period. The weekly oil spot prices of the OPEC member states from June 1999 to March 2011 are adopted as the sample data. First, we used wavelet analysis to find different subseries based on an optimal decomposing scale to describe the periodical feature of the original oil price time series. Second, a complex network model was constructed based on an optimal threshold selection to describe the structural feature of multivariable oil prices. Third, Bayesian network analysis (BNA) was conducted to find the probability causal relationship based on periodical structural features to describe the various patterns of periodical multivariable propagation. Finally, the significance of the leading and intermediary oil prices is discussed. These findings are beneficial for the implementation of periodical target-oriented pricing policies and investment strategies.

  6. Wavelet Based Hilbert Transform with Digital Design and Application to QCM-SS Watermarking

    Directory of Open Access Journals (Sweden)

    S. P. Maity

    2008-04-01

    Full Text Available In recent time, wavelet transforms are used extensively for efficient storage, transmission and representation of multimedia signals. Hilbert transform pairs of wavelets is the basic unit of many wavelet theories such as complex filter banks, complex wavelet and phaselet etc. Moreover, Hilbert transform finds various applications in communications and signal processing such as generation of single sideband (SSB modulation, quadrature carrier multiplexing (QCM and bandpass representation of a signal. Thus wavelet based discrete Hilbert transform design draws much attention of researchers for couple of years. This paper proposes an (i algorithm for generation of low computation cost Hilbert transform pairs of symmetric filter coefficients using biorthogonal wavelets, (ii approximation to its rational coefficients form for its efficient hardware realization and without much loss in signal representation, and finally (iii development of QCM-SS (spread spectrum image watermarking scheme for doubling the payload capacity. Simulation results show novelty of the proposed Hilbert transform design and its application to watermarking compared to existing algorithms.

  7. Wavelet-Based Visible and Infrared Image Fusion: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Angel D. Sappa

    2016-06-01

    Full Text Available This paper evaluates different wavelet-based cross-spectral image fusion strategies adopted to merge visible and infrared images. The objective is to find the best setup independently of the evaluation metric used to measure the performance. Quantitative performance results are obtained with state of the art approaches together with adaptations proposed in the current work. The options evaluated in the current work result from the combination of different setups in the wavelet image decomposition stage together with different fusion strategies for the final merging stage that generates the resulting representation. Most of the approaches evaluate results according to the application for which they are intended for. Sometimes a human observer is selected to judge the quality of the obtained results. In the current work, quantitative values are considered in order to find correlations between setups and performance of obtained results; these correlations can be used to define a criteria for selecting the best fusion strategy for a given pair of cross-spectral images. The whole procedure is evaluated with a large set of correctly registered visible and infrared image pairs, including both Near InfraRed (NIR and Long Wave InfraRed (LWIR.

  8. Application of wavelet based MFDFA on Mueller matrix images for cervical pre-cancer detection

    Science.gov (United States)

    Zaffar, Mohammad; Pradhan, Asima

    2018-02-01

    A systematic study has been conducted on application of wavelet based multifractal de-trended fluctuation analysis (MFDFA) on Mueller matrix (MM) images of cervical tissue sections for early cancer detection. Changes in multiple scattering and orientation of fibers are observed by utilizing a discrete wavelet transform (Daubechies) which identifies fluctuations over polynomial trends. Fluctuation profiles, after 9th level decomposition, for all elements of MM qualitatively establish a demarcation of different grades of cancer from normal tissue. Moreover, applying MFDFA on MM images, Hurst exponent profiles for images of MM qualitatively are seen to display differences. In addition, the values of Hurst exponent increase for the diagonal elements of MM with increasing grades of the cervical cancer, while the value for the elements which correspond to linear polarizance decrease. However, for circular polarizance the value increases with increasing grades. These fluctuation profiles reveal the trend of local variation of refractive -indices and along with Hurst exponent profile, may serve as a useful biological metric in the early detection of cervical cancer. The quantitative measurements of Hurst exponent for diagonal and first column (polarizance governing elements) elements which reflect changes in multiple scattering and structural anisotropy in stroma, may be sensitive indicators of pre-cancer.

  9. Quality assurance using outlier detection on an automatic segmentation method for the cerebellar peduncles

    Science.gov (United States)

    Li, Ke; Ye, Chuyang; Yang, Zhen; Carass, Aaron; Ying, Sarah H.; Prince, Jerry L.

    2016-03-01

    Cerebellar peduncles (CPs) are white matter tracts connecting the cerebellum to other brain regions. Automatic segmentation methods of the CPs have been proposed for studying their structure and function. Usually the performance of these methods is evaluated by comparing segmentation results with manual delineations (ground truth). However, when a segmentation method is run on new data (for which no ground truth exists) it is highly desirable to efficiently detect and assess algorithm failures so that these cases can be excluded from scientific analysis. In this work, two outlier detection methods aimed to assess the performance of an automatic CP segmentation algorithm are presented. The first one is a univariate non-parametric method using a box-whisker plot. We first categorize automatic segmentation results of a dataset of diffusion tensor imaging (DTI) scans from 48 subjects as either a success or a failure. We then design three groups of features from the image data of nine categorized failures for failure detection. Results show that most of these features can efficiently detect the true failures. The second method—supervised classification—was employed on a larger DTI dataset of 249 manually categorized subjects. Four classifiers—linear discriminant analysis (LDA), logistic regression (LR), support vector machine (SVM), and random forest classification (RFC)—were trained using the designed features and evaluated using a leave-one-out cross validation. Results show that the LR performs worst among the four classifiers and the other three perform comparably, which demonstrates the feasibility of automatically detecting segmentation failures using classification methods.

  10. Real-time biscuit tile image segmentation method based on edge detection.

    Science.gov (United States)

    Matić, Tomislav; Aleksi, Ivan; Hocenski, Željko; Kraus, Dieter

    2018-05-01

    In this paper we propose a novel real-time Biscuit Tile Segmentation (BTS) method for images from ceramic tile production line. BTS method is based on signal change detection and contour tracing with a main goal of separating tile pixels from background in images captured on the production line. Usually, human operators are visually inspecting and classifying produced ceramic tiles. Computer vision and image processing techniques can automate visual inspection process if they fulfill real-time requirements. Important step in this process is a real-time tile pixels segmentation. BTS method is implemented for parallel execution on a GPU device to satisfy the real-time constraints of tile production line. BTS method outperforms 2D threshold-based methods, 1D edge detection methods and contour-based methods. Proposed BTS method is in use in the biscuit tile production line. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Segmentation of rodent whole-body dynamic PET images: an unsupervised method based on voxel dynamics

    DEFF Research Database (Denmark)

    Maroy, Renaud; Boisgard, Raphaël; Comtat, Claude

    2008-01-01

    Positron emission tomography (PET) is a useful tool for pharmacokinetics studies in rodents during the preclinical phase of drug and tracer development. However, rodent organs are small as compared to the scanner's intrinsic resolution and are affected by physiological movements. We present a new...... method for the segmentation of rodent whole-body PET images that takes these two difficulties into account by estimating the pharmacokinetics far from organ borders. The segmentation method proved efficient on whole-body numerical rat phantom simulations, including 3-14 organs, together...

  12. Fast CSF MRI for brain segmentation; Cross-validation by comparison with 3D T1-based brain segmentation methods

    DEFF Research Database (Denmark)

    van der Kleij, Lisa A.; de Bresser, Jeroen; Hendrikse, Jeroen

    2018-01-01

    ObjectiveIn previous work we have developed a fast sequence that focusses on cerebrospinal fluid (CSF) based on the long T-2 of CSF. By processing the data obtained with this CSF MRI sequence, brain parenchymal volume (BPV) and intracranial volume (ICV) can be automatically obtained. The aim...... of this study was to assess the precision of the BPV and ICV measurements of the CSF MRI sequence and to validate the CSF MRI sequence by comparison with 3D T-1-based brain segmentation methods.Materials and methodsTen healthy volunteers (2 females; median age 28 years) were scanned (3T MRI) twice......cc) and CSF HR (5 +/- 5/4 +/- 2cc) were comparable to FSL HR (9 +/- 11/19 +/- 23cc), FSL LR (7 +/- 4,6 +/- 5cc),FreeSurfer HR (5 +/- 3/14 +/- 8cc), FreeSurfer LR (9 +/- 8,12 +/- 10cc), and SPM HR (5 +/- 3/4 +/- 7cc), and SPM LR (5 +/- 4,5 +/- 3cc). The correlation between the measured volumes...

  13. Interactive vs. automatic ultrasound image segmentation methods for staging hepatic lipidosis.

    Science.gov (United States)

    Weijers, Gert; Starke, Alexander; Haudum, Alois; Thijssen, Johan M; Rehage, Jürgen; De Korte, Chris L

    2010-07-01

    to predict TAG level in the liver. Receiver-operating-characteristics (ROC) analysis was applied to assess the performance and area under the curve (AUC) of predicting TAG and to compare the sensitivity and specificity of the methods. Best speckle-size estimates and overall performance (R2 = 0.71, AUC = 0.94) were achieved by using an SNR-based adaptive automatic-segmentation method (used TAG threshold: 50 mg/g liver wet weight). Automatic segmentation is thus feasible and profitable.

  14. DCS-SVM: a novel semi-automated method for human brain MR image segmentation.

    Science.gov (United States)

    Ahmadvand, Ali; Daliri, Mohammad Reza; Hajiali, Mohammadtaghi

    2017-11-27

    In this paper, a novel method is proposed which appropriately segments magnetic resonance (MR) brain images into three main tissues. This paper proposes an extension of our previous work in which we suggested a combination of multiple classifiers (CMC)-based methods named dynamic classifier selection-dynamic local training local Tanimoto index (DCS-DLTLTI) for MR brain image segmentation into three main cerebral tissues. This idea is used here and a novel method is developed that tries to use more complex and accurate classifiers like support vector machine (SVM) in the ensemble. This work is challenging because the CMC-based methods are time consuming, especially on huge datasets like three-dimensional (3D) brain MR images. Moreover, SVM is a powerful method that is used for modeling datasets with complex feature space, but it also has huge computational cost for big datasets, especially those with strong interclass variability problems and with more than two classes such as 3D brain images; therefore, we cannot use SVM in DCS-DLTLTI. Therefore, we propose a novel approach named "DCS-SVM" to use SVM in DCS-DLTLTI to improve the accuracy of segmentation results. The proposed method is applied on well-known datasets of the Internet Brain Segmentation Repository (IBSR) and promising results are obtained.

  15. Research on a Pulmonary Nodule Segmentation Method Combining Fast Self-Adaptive FCM and Classification

    Directory of Open Access Journals (Sweden)

    Hui Liu

    2015-01-01

    Full Text Available The key problem of computer-aided diagnosis (CAD of lung cancer is to segment pathologically changed tissues fast and accurately. As pulmonary nodules are potential manifestation of lung cancer, we propose a fast and self-adaptive pulmonary nodules segmentation method based on a combination of FCM clustering and classification learning. The enhanced spatial function considers contributions to fuzzy membership from both the grayscale similarity between central pixels and single neighboring pixels and the spatial similarity between central pixels and neighborhood and improves effectively the convergence rate and self-adaptivity of the algorithm. Experimental results show that the proposed method can achieve more accurate segmentation of vascular adhesion, pleural adhesion, and ground glass opacity (GGO pulmonary nodules than other typical algorithms.

  16. Segmentation of Brain MRI Using SOM-FCM-Based Method and 3D Statistical Descriptors

    Directory of Open Access Journals (Sweden)

    Andrés Ortiz

    2013-01-01

    Full Text Available Current medical imaging systems provide excellent spatial resolution, high tissue contrast, and up to 65535 intensity levels. Thus, image processing techniques which aim to exploit the information contained in the images are necessary for using these images in computer-aided diagnosis (CAD systems. Image segmentation may be defined as the process of parcelling the image to delimit different neuroanatomical tissues present on the brain. In this paper we propose a segmentation technique using 3D statistical features extracted from the volume image. In addition, the presented method is based on unsupervised vector quantization and fuzzy clustering techniques and does not use any a priori information. The resulting fuzzy segmentation method addresses the problem of partial volume effect (PVE and has been assessed using real brain images from the Internet Brain Image Repository (IBSR.

  17. A novel multiphoton microscopy images segmentation method based on superpixel and watershed.

    Science.gov (United States)

    Wu, Weilin; Lin, Jinyong; Wang, Shu; Li, Yan; Liu, Mingyu; Liu, Gaoqiang; Cai, Jianyong; Chen, Guannan; Chen, Rong

    2017-04-01

    Multiphoton microscopy (MPM) imaging technique based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) shows fantastic performance for biological imaging. The automatic segmentation of cellular architectural properties for biomedical diagnosis based on MPM images is still a challenging issue. A novel multiphoton microscopy images segmentation method based on superpixels and watershed (MSW) is presented here to provide good segmentation results for MPM images. The proposed method uses SLIC superpixels instead of pixels to analyze MPM images for the first time. The superpixels segmentation based on a new distance metric combined with spatial, CIE Lab color space and phase congruency features, divides the images into patches which keep the details of the cell boundaries. Then the superpixels are used to reconstruct new images by defining an average value of superpixels as image pixels intensity level. Finally, the marker-controlled watershed is utilized to segment the cell boundaries from the reconstructed images. Experimental results show that cellular boundaries can be extracted from MPM images by MSW with higher accuracy and robustness. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Detection of white spot lesions by segmenting laser speckle images using computer vision methods.

    Science.gov (United States)

    Gavinho, Luciano G; Araujo, Sidnei A; Bussadori, Sandra K; Silva, João V P; Deana, Alessandro M

    2018-05-05

    This paper aims to develop a method for laser speckle image segmentation of tooth surfaces for diagnosis of early stages caries. The method, applied directly to a raw image obtained by digital photography, is based on the difference between the speckle pattern of a carious lesion tooth surface area and that of a sound area. Each image is divided into blocks which are identified in a working matrix by their χ 2 distance between block histograms of the analyzed image and the reference histograms previously obtained by K-means from healthy (h_Sound) and lesioned (h_Decay) areas, separately. If the χ 2 distance between a block histogram and h_Sound is greater than the distance to h_Decay, this block is marked as decayed. The experiments showed that the method can provide effective segmentation for initial lesions. We used 64 images to test the algorithm and we achieved 100% accuracy in segmentation. Differences between the speckle pattern of a sound tooth surface region and a carious region, even in the early stage, can be evidenced by the χ 2 distance between histograms. This method proves to be more effective for segmenting the laser speckle image, which enhances the contrast between sound and lesioned tissues. The results were obtained with low computational cost. The method has the potential for early diagnosis in a clinical environment, through the development of low-cost portable equipment.

  19. Infrared dim small target segmentation method based on ALI-PCNN model

    Science.gov (United States)

    Zhao, Shangnan; Song, Yong; Zhao, Yufei; Li, Yun; Li, Xu; Jiang, Yurong; Li, Lin

    2017-10-01

    Pulse Coupled Neural Network (PCNN) is improved by Adaptive Lateral Inhibition (ALI), while a method of infrared (IR) dim small target segmentation based on ALI-PCNN model is proposed in this paper. Firstly, the feeding input signal is modulated by lateral inhibition network to suppress background. Then, the linking input is modulated by ALI, and linking weight matrix is generated adaptively by calculating ALI coefficient of each pixel. Finally, the binary image is generated through the nonlinear modulation and the pulse generator in PCNN. The experimental results show that the segmentation effect as well as the values of contrast across region and uniformity across region of the proposed method are better than the OTSU method, maximum entropy method, the methods based on conventional PCNN and visual attention, and the proposed method has excellent performance in extracting IR dim small target from complex background.

  20. Object-Based Change Detection in Urban Areas: The Effects of Segmentation Strategy, Scale, and Feature Space on Unsupervised Methods

    Directory of Open Access Journals (Sweden)

    Lei Ma

    2016-09-01

    Full Text Available Object-based change detection (OBCD has recently been receiving increasing attention as a result of rapid improvements in the resolution of remote sensing data. However, some OBCD issues relating to the segmentation of high-resolution images remain to be explored. For example, segmentation units derived using different segmentation strategies, segmentation scales, feature space, and change detection methods have rarely been assessed. In this study, we have tested four common unsupervised change detection methods using different segmentation strategies and a series of segmentation scale parameters on two WorldView-2 images of urban areas. We have also evaluated the effect of adding extra textural and Normalized Difference Vegetation Index (NDVI information instead of using only spectral information. Our results indicated that change detection methods performed better at a medium scale than at a fine scale where close to the pixel size. Multivariate Alteration Detection (MAD always outperformed the other methods tested, at the same confidence level. The overall accuracy appeared to benefit from using a two-date segmentation strategy rather than single-date segmentation. Adding textural and NDVI information appeared to reduce detection accuracy, but the magnitude of this reduction was not consistent across the different unsupervised methods and segmentation strategies. We conclude that a two-date segmentation strategy is useful for change detection in high-resolution imagery, but that the optimization of thresholds is critical for unsupervised change detection methods. Advanced methods need be explored that can take advantage of additional textural or other parameters.

  1. Evaluation and comparison of current fetal ultrasound image segmentation methods for biometric measurements: a grand challenge.

    Science.gov (United States)

    Rueda, Sylvia; Fathima, Sana; Knight, Caroline L; Yaqub, Mohammad; Papageorghiou, Aris T; Rahmatullah, Bahbibi; Foi, Alessandro; Maggioni, Matteo; Pepe, Antonietta; Tohka, Jussi; Stebbing, Richard V; McManigle, John E; Ciurte, Anca; Bresson, Xavier; Cuadra, Meritxell Bach; Sun, Changming; Ponomarev, Gennady V; Gelfand, Mikhail S; Kazanov, Marat D; Wang, Ching-Wei; Chen, Hsiang-Chou; Peng, Chun-Wei; Hung, Chu-Mei; Noble, J Alison

    2014-04-01

    This paper presents the evaluation results of the methods submitted to Challenge US: Biometric Measurements from Fetal Ultrasound Images, a segmentation challenge held at the IEEE International Symposium on Biomedical Imaging 2012. The challenge was set to compare and evaluate current fetal ultrasound image segmentation methods. It consisted of automatically segmenting fetal anatomical structures to measure standard obstetric biometric parameters, from 2D fetal ultrasound images taken on fetuses at different gestational ages (21 weeks, 28 weeks, and 33 weeks) and with varying image quality to reflect data encountered in real clinical environments. Four independent sub-challenges were proposed, according to the objects of interest measured in clinical practice: abdomen, head, femur, and whole fetus. Five teams participated in the head sub-challenge and two teams in the femur sub-challenge, including one team who tackled both. Nobody attempted the abdomen and whole fetus sub-challenges. The challenge goals were two-fold and the participants were asked to submit the segmentation results as well as the measurements derived from the segmented objects. Extensive quantitative (region-based, distance-based, and Bland-Altman measurements) and qualitative evaluation was performed to compare the results from a representative selection of current methods submitted to the challenge. Several experts (three for the head sub-challenge and two for the femur sub-challenge), with different degrees of expertise, manually delineated the objects of interest to define the ground truth used within the evaluation framework. For the head sub-challenge, several groups produced results that could be potentially used in clinical settings, with comparable performance to manual delineations. The femur sub-challenge had inferior performance to the head sub-challenge due to the fact that it is a harder segmentation problem and that the techniques presented relied more on the femur's appearance.

  2. Prosthetic component segmentation with blur compensation: a fast method for 3D fluoroscopy.

    Science.gov (United States)

    Tarroni, Giacomo; Tersi, Luca; Corsi, Cristiana; Stagni, Rita

    2012-06-01

    A new method for prosthetic component segmentation from fluoroscopic images is presented. The hybrid approach we propose combines diffusion filtering, region growing and level-set techniques without exploiting any a priori knowledge of the analyzed geometry. The method was evaluated on a synthetic dataset including 270 images of knee and hip prosthesis merged to real fluoroscopic data simulating different conditions of blurring and illumination gradient. The performance of the method was assessed by comparing estimated contours to references using different metrics. Results showed that the segmentation procedure is fast, accurate, independent on the operator as well as on the specific geometrical characteristics of the prosthetic component, and able to compensate for amount of blurring and illumination gradient. Importantly, the method allows a strong reduction of required user interaction time when compared to traditional segmentation techniques. Its effectiveness and robustness in different image conditions, together with simplicity and fast implementation, make this prosthetic component segmentation procedure promising and suitable for multiple clinical applications including assessment of in vivo joint kinematics in a variety of cases.

  3. An Evaluation of Research Replication with Q Method and Its Utility in Market Segmentation.

    Science.gov (United States)

    Adams, R. C.

    Precipitated by questions of using Q methodology in television market segmentation and of the replicability of such research, this paper reports on both a reexamination of 1968 research by Joseph M. Foley and an attempt to replicate Foley's study. By undertaking a reanalysis of the Foley data, the question of replication in Q method is addressed.…

  4. 3D Inversion of Magnetic Data through Wavelet based Regularization Method

    Directory of Open Access Journals (Sweden)

    Maysam Abedi

    2015-06-01

    Full Text Available This study deals with the 3D recovering of magnetic susceptibility model by incorporating the sparsity-based constraints in the inversion algorithm. For this purpose, the area under prospect was divided into a large number of rectangular prisms in a mesh with unknown susceptibilities. Tikhonov cost functions with two sparsity functions were used to recover the smooth parts as well as the sharp boundaries of model parameters. A pre-selected basis namely wavelet can recover the region of smooth behaviour of susceptibility distribution while Haar or finite-difference (FD domains yield a solution with rough boundaries. Therefore, a regularizer function which can benefit from the advantages of both wavelets and Haar/FD operators in representation of the 3D magnetic susceptibility distributionwas chosen as a candidate for modeling magnetic anomalies. The optimum wavelet and parameter β which controls the weight of the two sparsifying operators were also considered. The algorithm assumed that there was no remanent magnetization and observed that magnetometry data represent only induced magnetization effect. The proposed approach is applied to a noise-corrupted synthetic data in order to demonstrate its suitability for 3D inversion of magnetic data. On obtaining satisfactory results, a case study pertaining to the ground based measurement of magnetic anomaly over a porphyry-Cu deposit located in Kerman providence of Iran. Now Chun deposit was presented to be 3D inverted. The low susceptibility in the constructed model coincides with the known location of copper ore mineralization.

  5. A Fully Automated Method to Detect and Segment a Manufactured Object in an Underwater Color Image

    Science.gov (United States)

    Barat, Christian; Phlypo, Ronald

    2010-12-01

    We propose a fully automated active contours-based method for the detection and the segmentation of a moored manufactured object in an underwater image. Detection of objects in underwater images is difficult due to the variable lighting conditions and shadows on the object. The proposed technique is based on the information contained in the color maps and uses the visual attention method, combined with a statistical approach for the detection and an active contour for the segmentation of the object to overcome the above problems. In the classical active contour method the region descriptor is fixed and the convergence of the method depends on the initialization. With our approach, this dependence is overcome with an initialization using the visual attention results and a criterion to select the best region descriptor. This approach improves the convergence and the processing time while providing the advantages of a fully automated method.

  6. Evaluation of an automatic brain segmentation method developed for neonates on adult MR brain images

    Science.gov (United States)

    Moeskops, Pim; Viergever, Max A.; Benders, Manon J. N. L.; Išgum, Ivana

    2015-03-01

    Automatic brain tissue segmentation is of clinical relevance in images acquired at all ages. The literature presents a clear distinction between methods developed for MR images of infants, and methods developed for images of adults. The aim of this work is to evaluate a method developed for neonatal images in the segmentation of adult images. The evaluated method employs supervised voxel classification in subsequent stages, exploiting spatial and intensity information. Evaluation was performed using images available within the MRBrainS13 challenge. The obtained average Dice coefficients were 85.77% for grey matter, 88.66% for white matter, 81.08% for cerebrospinal fluid, 95.65% for cerebrum, and 96.92% for intracranial cavity, currently resulting in the best overall ranking. The possibility of applying the same method to neonatal as well as adult images can be of great value in cross-sectional studies that include a wide age range.

  7. Incremental and Enhanced Scanline-Based Segmentation Method for Surface Reconstruction of Sparse LiDAR Data

    Directory of Open Access Journals (Sweden)

    Weimin Wang

    2016-11-01

    Full Text Available The segmentation of point clouds is an important aspect of automated processing tasks such as semantic extraction. However, the sparsity and non-uniformity of the point clouds gathered by the popular 3D mobile LiDAR devices pose many challenges for existing segmentation methods. To improve the segmentation results of point clouds from mobile LiDAR devices, we propose an optimized segmentation method based on Scanline Continuity Constraint (SLCC in this work. Unlike conventional scanline-based segmentation methods, SLCC clusters scanlines using the continuity constraints in terms of the distance as well as the direction of two consecutive points. In addition, scanline clusters are agglomerated not only into primitive geometrical shapes but also irregular shapes. Another downside to existing segmentation methods is that they are not capable of incremental processing. This causes unnecessary memory and time consumption for applications that require frame-wise segmentation or when new point clouds are added. In order to address this, we propose an incremental scheme—the Incremental Recursive Segmentation (IRIS, that can be easily applied to any segmentation method. IRIS is achieved by combining the segments of newly added point clouds and the previously segmented results. Furthermore, as an example application, we construct a processing pipeline consisting of plane fitting and surface reconstruction using the segmentation results. Finally, we evaluate the proposed methods on three datasets acquired from a handheld Velodyne HDL-32E LiDAR device. The experimental results verify the efficiency of IRIS for any segmentation method and the advantages of SLCC for processing mobile LiDAR data.

  8. Yet Another Method for Image Segmentation based on Histograms and Heuristics

    Directory of Open Access Journals (Sweden)

    Horia-Nicolai L. Teodorescu

    2012-07-01

    Full Text Available We introduce a method for image segmentation that requires little computations, yet providing comparable results to other methods. While the proposed method resembles to the known ones based on histograms, it is still different in the use of the gray level distribution. When to the basic procedure we add several heuristic rules, the method produces results that, in some cases, may outperform the results produced by the known methods. The paper reports preliminary results. More details on the method, improvements, and results will be presented in a future paper.

  9. [Cardiac Synchronization Function Estimation Based on ASM Level Set Segmentation Method].

    Science.gov (United States)

    Zhang, Yaonan; Gao, Yuan; Tang, Liang; He, Ying; Zhang, Huie

    At present, there is no accurate and quantitative methods for the determination of cardiac mechanical synchronism, and quantitative determination of the synchronization function of the four cardiac cavities with medical images has a great clinical value. This paper uses the whole heart ultrasound image sequence, and segments the left & right atriums and left & right ventricles of each frame. After the segmentation, the number of pixels in each cavity and in each frame is recorded, and the areas of the four cavities of the image sequence are therefore obtained. The area change curves of the four cavities are further extracted, and the synchronous information of the four cavities is obtained. Because of the low SNR of Ultrasound images, the boundary lines of cardiac cavities are vague, so the extraction of cardiac contours is still a challenging problem. Therefore, the ASM model information is added to the traditional level set method to force the curve evolution process. According to the experimental results, the improved method improves the accuracy of the segmentation. Furthermore, based on the ventricular segmentation, the right and left ventricular systolic functions are evaluated, mainly according to the area changes. The synchronization of the four cavities of the heart is estimated based on the area changes and the volume changes.

  10. An improved segmentation-based HMM learning method for Condition-based Maintenance

    International Nuclear Information System (INIS)

    Liu, T; Lemeire, J; Cartella, F; Meganck, S

    2012-01-01

    In the domain of condition-based maintenance (CBM), persistence of machine states is a valid assumption. Based on this assumption, we present an improved Hidden Markov Model (HMM) learning algorithm for the assessment of equipment states. By a good estimation of initial parameters, more accurate learning can be achieved than by regular HMM learning methods which start with randomly chosen initial parameters. It is also better in avoiding getting trapped in local maxima. The data is segmented with a change-point analysis method which uses a combination of cumulative sum charts (CUSUM) and bootstrapping techniques. The method determines a confidence level that a state change happens. After the data is segmented, in order to label and combine the segments corresponding to the same states, a clustering technique is used based on a low-pass filter or root mean square (RMS) values of the features. The segments with their labelled hidden state are taken as 'evidence' to estimate the parameters of an HMM. Then, the estimated parameters are served as initial parameters for the traditional Baum-Welch (BW) learning algorithms, which are used to improve the parameters and train the model. Experiments on simulated and real data demonstrate that both performance and convergence speed is improved.

  11. Supervised segmentation of phenotype descriptions for the human skeletal phenome using hybrid methods

    Directory of Open Access Journals (Sweden)

    Groza Tudor

    2012-10-01

    Full Text Available Abstract Background Over the course of the last few years there has been a significant amount of research performed on ontology-based formalization of phenotype descriptions. In order to fully capture the intrinsic value and knowledge expressed within them, we need to take advantage of their inner structure, which implicitly combines qualities and anatomical entities. The first step in this process is the segmentation of the phenotype descriptions into their atomic elements. Results We present a two-phase hybrid segmentation method that combines a series individual classifiers using different aggregation schemes (set operations and simple majority voting. The approach is tested on a corpus comprised of skeletal phenotype descriptions emerged from the Human Phenotype Ontology. Experimental results show that the best hybrid method achieves an F-Score of 97.05% in the first phase and F-Scores of 97.16% / 94.50% in the second phase. Conclusions The performance of the initial segmentation of anatomical entities and qualities (phase I is not affected by the presence / absence of external resources, such as domain dictionaries. From a generic perspective, hybrid methods may not always improve the segmentation accuracy as they are heavily dependent on the goal and data characteristics.

  12. Supervised segmentation of phenotype descriptions for the human skeletal phenome using hybrid methods.

    Science.gov (United States)

    Groza, Tudor; Hunter, Jane; Zankl, Andreas

    2012-10-15

    Over the course of the last few years there has been a significant amount of research performed on ontology-based formalization of phenotype descriptions. In order to fully capture the intrinsic value and knowledge expressed within them, we need to take advantage of their inner structure, which implicitly combines qualities and anatomical entities. The first step in this process is the segmentation of the phenotype descriptions into their atomic elements. We present a two-phase hybrid segmentation method that combines a series individual classifiers using different aggregation schemes (set operations and simple majority voting). The approach is tested on a corpus comprised of skeletal phenotype descriptions emerged from the Human Phenotype Ontology. Experimental results show that the best hybrid method achieves an F-Score of 97.05% in the first phase and F-Scores of 97.16% / 94.50% in the second phase. The performance of the initial segmentation of anatomical entities and qualities (phase I) is not affected by the presence / absence of external resources, such as domain dictionaries. From a generic perspective, hybrid methods may not always improve the segmentation accuracy as they are heavily dependent on the goal and data characteristics.

  13. Computer-based automated left atrium segmentation and volumetry from ECG-gated coronary CT angiography data. Comparison with manual slice segmentation and ultrasound planimetric methods

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, R.W.; Kraus, B.; Kerl, J.M.; Lehnert, T.; Vogl, T.J. [Universitaetsklinikum Frankfurt (Germany). Inst. fuer Diagnostische und Interventionelle Radiologie; Bernhardt, D.; Vega-Higuera, F. [Siemens AG, Healthcare Sector, Forchheim (Germany). Computed Tomography; Ackermann, H. [Universitaetsklinikum Frankfurt (Germany). Inst. fuer Biostatistik und Mathematische Modellierung

    2010-12-15

    Purpose: Enlargement of the left atrium is a risk factor for cardiovascular or cerebrovascular events. We evaluated the performance of prototype software for fully automated segmentation and volumetry of the left atrium. Materials and Methods: In 34 retrospectively ECG-gated coronary CT angiography scans, the end-systolic (LAVsys) and end-diastolic (LAVdia) volume of the left atrium was calculated fully automatically by prototype software. Manual slice segmentation by two independent experienced radiologists served as the reference standard. Furthermore, two independent observers calculated the LAV utilizing two ultrasound planimetric methods ('area length' and 'prolate ellipse') on CTA images. Measurement periods were compared for all methods. Results: The left atrial volumes calculated with the prototype software were in excellent agreement with the results from manual slice segmentation (r = 0.97 - 0.99; p < 0.001; Bland-Altman) with excellent interobserver agreement between both radiologists (r = 0.99; p < 0.001). Ultrasound planimetric methods clearly showed a higher variation (r = 0.72 - 0.86) with moderate interobserver agreement (r = 0.51 - 0.79). The measurement period was significantly lower with the software (267 {+-} 28 sec; p < 0.001) than with ultrasound methods (431 {+-} 68 sec) or manual slice segmentation (567 {+-} 91 sec). Conclusion: The prototype software showed excellent agreement with manual slice segmentation with the least time consumption. This will facilitate the routine assessment of the LA volume from coronary CTA data and therefore risk stratification. (orig.)

  14. A gradient-based method for segmenting FDG-PET images: methodology and validation

    International Nuclear Information System (INIS)

    Geets, Xavier; Lee, John A.; Gregoire, Vincent; Bol, Anne; Lonneux, Max

    2007-01-01

    A new gradient-based method for segmenting FDG-PET images is described and validated. The proposed method relies on the watershed transform and hierarchical cluster analysis. To allow a better estimation of the gradient intensity, iteratively reconstructed images were first denoised and deblurred with an edge-preserving filter and a constrained iterative deconvolution algorithm. Validation was first performed on computer-generated 3D phantoms containing spheres, then on a real cylindrical Lucite phantom containing spheres of different volumes ranging from 2.1 to 92.9 ml. Moreover, laryngeal tumours from seven patients were segmented on PET images acquired before laryngectomy by the gradient-based method and the thresholding method based on the source-to-background ratio developed by Daisne (Radiother Oncol 2003;69:247-50). For the spheres, the calculated volumes and radii were compared with the known values; for laryngeal tumours, the volumes were compared with the macroscopic specimens. Volume mismatches were also analysed. On computer-generated phantoms, the deconvolution algorithm decreased the mis-estimate of volumes and radii. For the Lucite phantom, the gradient-based method led to a slight underestimation of sphere volumes (by 10-20%), corresponding to negligible radius differences (0.5-1.1 mm); for laryngeal tumours, the segmented volumes by the gradient-based method agreed with those delineated on the macroscopic specimens, whereas the threshold-based method overestimated the true volume by 68% (p = 0.014). Lastly, macroscopic laryngeal specimens were totally encompassed by neither the threshold-based nor the gradient-based volumes. The gradient-based segmentation method applied on denoised and deblurred images proved to be more accurate than the source-to-background ratio method. (orig.)

  15. An image segmentation method based on fuzzy C-means clustering and Cuckoo search algorithm

    Science.gov (United States)

    Wang, Mingwei; Wan, Youchuan; Gao, Xianjun; Ye, Zhiwei; Chen, Maolin

    2018-04-01

    Image segmentation is a significant step in image analysis and machine vision. Many approaches have been presented in this topic; among them, fuzzy C-means (FCM) clustering is one of the most widely used methods for its high efficiency and ambiguity of images. However, the success of FCM could not be guaranteed because it easily traps into local optimal solution. Cuckoo search (CS) is a novel evolutionary algorithm, which has been tested on some optimization problems and proved to be high-efficiency. Therefore, a new segmentation technique using FCM and blending of CS algorithm is put forward in the paper. Further, the proposed method has been measured on several images and compared with other existing FCM techniques such as genetic algorithm (GA) based FCM and particle swarm optimization (PSO) based FCM in terms of fitness value. Experimental results indicate that the proposed method is robust, adaptive and exhibits the better performance than other methods involved in the paper.

  16. Another Method of Building 2D Entropy to Realize Automatic Segmentation

    International Nuclear Information System (INIS)

    Zhang, Y F; Zhang, Y

    2006-01-01

    2D entropy formed during the process of building 2D histogram can realize automatic segmentation. Traditional method utilizes central pixel grey value and the others or all of pixels grey mean value in 4-neighbor to build 2D histogram. In fact, the change of the greyscale value between two ''invariable position vectors'' cannot represent the total characteristics among neighbour pixels very well. A new method is proposed which makes use of minimum grey value in the 4-neighbor and of maximum grey value in the 3x3 neighbour except pixels of the 4-neighbor. New method and traditional one are used in contrast to realize image automatic segmentation. The experimental results of the classical image prove the new method is effective

  17. 3D automatic segmentation method for retinal optical coherence tomography volume data using boundary surface enhancement

    Directory of Open Access Journals (Sweden)

    Yankui Sun

    2016-03-01

    Full Text Available With the introduction of spectral-domain optical coherence tomography (SD-OCT, much larger image datasets are routinely acquired compared to what was possible using the previous generation of time-domain OCT. Thus, there is a critical need for the development of three-dimensional (3D segmentation methods for processing these data. We present here a novel 3D automatic segmentation method for retinal OCT volume data. Briefly, to segment a boundary surface, two OCT volume datasets are obtained by using a 3D smoothing filter and a 3D differential filter. Their linear combination is then calculated to generate new volume data with an enhanced boundary surface, where pixel intensity, boundary position information, and intensity changes on both sides of the boundary surface are used simultaneously. Next, preliminary discrete boundary points are detected from the A-Scans of the volume data. Finally, surface smoothness constraints and a dynamic threshold are applied to obtain a smoothed boundary surface by correcting a small number of error points. Our method can extract retinal layer boundary surfaces sequentially with a decreasing search region of volume data. We performed automatic segmentation on eight human OCT volume datasets acquired from a commercial Spectralis OCT system, where each volume of datasets contains 97 OCT B-Scan images with a resolution of 496×512 (each B-Scan comprising 512 A-Scans containing 496 pixels; experimental results show that this method can accurately segment seven layer boundary surfaces in normal as well as some abnormal eyes.

  18. Contrast-based fully automatic segmentation of white matter hyperintensities: method and validation.

    Directory of Open Access Journals (Sweden)

    Thomas Samaille

    Full Text Available White matter hyperintensities (WMH on T2 or FLAIR sequences have been commonly observed on MR images of elderly people. They have been associated with various disorders and have been shown to be a strong risk factor for stroke and dementia. WMH studies usually required visual evaluation of WMH load or time-consuming manual delineation. This paper introduced WHASA (White matter Hyperintensities Automated Segmentation Algorithm, a new method for automatically segmenting WMH from FLAIR and T1 images in multicentre studies. Contrary to previous approaches that were based on intensities, this method relied on contrast: non linear diffusion filtering alternated with watershed segmentation to obtain piecewise constant images with increased contrast between WMH and surroundings tissues. WMH were then selected based on subject dependant automatically computed threshold and anatomical information. WHASA was evaluated on 67 patients from two studies, acquired on six different MRI scanners and displaying a wide range of lesion load. Accuracy of the segmentation was assessed through volume and spatial agreement measures with respect to manual segmentation; an intraclass correlation coefficient (ICC of 0.96 and a mean similarity index (SI of 0.72 were obtained. WHASA was compared to four other approaches: Freesurfer and a thresholding approach as unsupervised methods; k-nearest neighbours (kNN and support vector machines (SVM as supervised ones. For these latter, influence of the training set was also investigated. WHASA clearly outperformed both unsupervised methods, while performing at least as good as supervised approaches (ICC range: 0.87-0.91 for kNN; 0.89-0.94 for SVM. Mean SI: 0.63-0.71 for kNN, 0.67-0.72 for SVM, and did not need any training set.

  19. Quantification of the efficiency of segmentation methods on medical images by means of non-euclidean distances

    International Nuclear Information System (INIS)

    Pastore, J; Moler, E; Ballarin, V

    2007-01-01

    To quantify the efficiency of a segmentation method, it is necessary to do some validation experiments, consisting generally in comparing the result obtained against the expected result. The most direct method for validation is the comparison of a simple visual inspection between the automatic segmentation and a segmentation obtained manually by a specialist, but this method does not guarantee robustness. This work presents a new similarity parameter between a segmented object and a control object, that combines a measurement of spatial similarity through the Hausdorff metrics and the difference in the contour areas based on the symmetric difference between sets

  20. Pigmented skin lesion detection using random forest and wavelet-based texture

    Science.gov (United States)

    Hu, Ping; Yang, Tie-jun

    2016-10-01

    The incidence of cutaneous malignant melanoma, a disease of worldwide distribution and is the deadliest form of skin cancer, has been rapidly increasing over the last few decades. Because advanced cutaneous melanoma is still incurable, early detection is an important step toward a reduction in mortality. Dermoscopy photographs are commonly used in melanoma diagnosis and can capture detailed features of a lesion. A great variability exists in the visual appearance of pigmented skin lesions. Therefore, in order to minimize the diagnostic errors that result from the difficulty and subjectivity of visual interpretation, an automatic detection approach is required. The objectives of this paper were to propose a hybrid method using random forest and Gabor wavelet transformation to accurately differentiate which part belong to lesion area and the other is not in a dermoscopy photographs and analyze segmentation accuracy. A random forest classifier consisting of a set of decision trees was used for classification. Gabor wavelets transformation are the mathematical model of visual cortical cells of mammalian brain and an image can be decomposed into multiple scales and multiple orientations by using it. The Gabor function has been recognized as a very useful tool in texture analysis, due to its optimal localization properties in both spatial and frequency domain. Texture features based on Gabor wavelets transformation are found by the Gabor filtered image. Experiment results indicate the following: (1) the proposed algorithm based on random forest outperformed the-state-of-the-art in pigmented skin lesions detection (2) and the inclusion of Gabor wavelet transformation based texture features improved segmentation accuracy significantly.

  1. Segment and fit thresholding: a new method for image analysis applied to microarray and immunofluorescence data.

    Science.gov (United States)

    Ensink, Elliot; Sinha, Jessica; Sinha, Arkadeep; Tang, Huiyuan; Calderone, Heather M; Hostetter, Galen; Winter, Jordan; Cherba, David; Brand, Randall E; Allen, Peter J; Sempere, Lorenzo F; Haab, Brian B

    2015-10-06

    Experiments involving the high-throughput quantification of image data require algorithms for automation. A challenge in the development of such algorithms is to properly interpret signals over a broad range of image characteristics, without the need for manual adjustment of parameters. Here we present a new approach for locating signals in image data, called Segment and Fit Thresholding (SFT). The method assesses statistical characteristics of small segments of the image and determines the best-fit trends between the statistics. Based on the relationships, SFT identifies segments belonging to background regions; analyzes the background to determine optimal thresholds; and analyzes all segments to identify signal pixels. We optimized the initial settings for locating background and signal in antibody microarray and immunofluorescence data and found that SFT performed well over multiple, diverse image characteristics without readjustment of settings. When used for the automated analysis of multicolor, tissue-microarray images, SFT correctly found the overlap of markers with known subcellular localization, and it performed better than a fixed threshold and Otsu's method for selected images. SFT promises to advance the goal of full automation in image analysis.

  2. Pore REconstruction and Segmentation (PORES) method for improved porosity quantification of nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Van Eyndhoven, G., E-mail: geert.vaneyndhoven@uantwerpen.be [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium); Kurttepeli, M. [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Van Oers, C.J.; Cool, P. [Laboratory of Adsorption and Catalysis, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium); Bals, S. [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Batenburg, K.J. [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium); Centrum Wiskunde and Informatica, Science Park 123, NL-1090 GB Amsterdam (Netherlands); Mathematical Institute, Universiteit Leiden, Niels Bohrweg 1, NL-2333 CA Leiden (Netherlands); Sijbers, J. [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium)

    2015-01-15

    Electron tomography is currently a versatile tool to investigate the connection between the structure and properties of nanomaterials. However, a quantitative interpretation of electron tomography results is still far from straightforward. Especially accurate quantification of pore-space is hampered by artifacts introduced in all steps of the processing chain, i.e., acquisition, reconstruction, segmentation and quantification. Furthermore, most common approaches require subjective manual user input. In this paper, the PORES algorithm “POre REconstruction and Segmentation” is introduced; it is a tailor-made, integral approach, for the reconstruction, segmentation, and quantification of porous nanomaterials. The PORES processing chain starts by calculating a reconstruction with a nanoporous-specific reconstruction algorithm: the Simultaneous Update of Pore Pixels by iterative REconstruction and Simple Segmentation algorithm (SUPPRESS). It classifies the interior region to the pores during reconstruction, while reconstructing the remaining region by reducing the error with respect to the acquired electron microscopy data. The SUPPRESS reconstruction can be directly plugged into the remaining processing chain of the PORES algorithm, resulting in accurate individual pore quantification and full sample pore statistics. The proposed approach was extensively validated on both simulated and experimental data, indicating its ability to generate accurate statistics of nanoporous materials. - Highlights: • An electron tomography reconstruction/segmentation method for nanoporous materials. • The method exploits the porous nature of the scanned material. • Validated extensively on both simulation and real data experiments. • Results in increased image resolution and improved porosity quantification.

  3. News video story segmentation method using fusion of audio-visual features

    Science.gov (United States)

    Wen, Jun; Wu, Ling-da; Zeng, Pu; Luan, Xi-dao; Xie, Yu-xiang

    2007-11-01

    News story segmentation is an important aspect for news video analysis. This paper presents a method for news video story segmentation. Different form prior works, which base on visual features transform, the proposed technique uses audio features as baseline and fuses visual features with it to refine the results. At first, it selects silence clips as audio features candidate points, and selects shot boundaries and anchor shots as two kinds of visual features candidate points. Then this paper selects audio feature candidates as cues and develops different fusion method, which effectively using diverse type visual candidates to refine audio candidates, to get story boundaries. Experiment results show that this method has high efficiency and adaptability to different kinds of news video.

  4. A method and software for segmentation of anatomic object ensembles by deformable m-reps

    International Nuclear Information System (INIS)

    Pizer, Stephen M.; Fletcher, P. Thomas; Joshi, Sarang; Gash, A. Graham; Stough, Joshua; Thall, Andrew; Tracton, Gregg; Chaney, Edward L.

    2005-01-01

    Deformable shape models (DSMs) comprise a general approach that shows great promise for automatic image segmentation. Published studies by others and our own research results strongly suggest that segmentation of a normal or near-normal object from 3D medical images will be most successful when the DSM approach uses (1) knowledge of the geometry of not only the target anatomic object but also the ensemble of objects providing context for the target object and (2) knowledge of the image intensities to be expected relative to the geometry of the target and contextual objects. The segmentation will be most efficient when the deformation operates at multiple object-related scales and uses deformations that include not just local translations but the biologically important transformations of bending and twisting, i.e., local rotation, and local magnification. In computer vision an important class of DSM methods uses explicit geometric models in a Bayesian statistical framework to provide a priori information used in posterior optimization to match the DSM against a target image. In this approach a DSM of the object to be segmented is placed in the target image data and undergoes a series of rigid and nonrigid transformations that deform the model to closely match the target object. The deformation process is driven by optimizing an objective function that has terms for the geometric typicality and model-to-image match for each instance of the deformed model. The success of this approach depends strongly on the object representation, i.e., the structural details and parameter set for the DSM, which in turn determines the analytic form of the objective function. This paper describes a form of DSM called m-reps that has or allows these properties, and a method of segmentation consisting of large to small scale posterior optimization of m-reps. Segmentation by deformable m-reps, together with the appropriate data representations, visualizations, and user interface, has been

  5. Segmentation of rodent whole-body dynamic PET images: an unsupervised method based on voxel dynamics

    International Nuclear Information System (INIS)

    Maroy, R.; Boisgard, R.; Comtat, C.; Dolle, F.; Trebossen, R.; Tavitian, B.; Frouin, V.; Cathier, P.; Duchesnay, E.; D; Nielsen, P.E.

    2008-01-01

    Positron emission tomography (PET) is a useful tool for pharmacokinetics studies in rodents during the preclinical phase of drug and tracer development. However, rodent organs are small as compared to the scanner's intrinsic resolution and are affected by physiological movements. We present a new method for the segmentation of rodent whole-body PET images that takes these two difficulties into account by estimating the pharmacokinetics far from organ borders. The segmentation method proved efficient on whole-body numerical rat phantom simulations, including 3-14 organs, together with physiological movements (heart beating, breathing, and bladder filling). The method was resistant to spillover and physiological movements, while other methods failed to obtain a correct segmentation. The radioactivity concentrations calculated with this method also showed an excellent correlation with the manual delineation of organs in a large set of preclinical images. In addition, it was faster, detected more organs, and extracted organs' mean time activity curves with a better confidence on the measure than manual delineation. (authors)

  6. Fully convolutional networks (FCNs)-based segmentation method for colorectal tumors on T2-weighted magnetic resonance images.

    Science.gov (United States)

    Jian, Junming; Xiong, Fei; Xia, Wei; Zhang, Rui; Gu, Jinhui; Wu, Xiaodong; Meng, Xiaochun; Gao, Xin

    2018-06-01

    Segmentation of colorectal tumors is the basis of preoperative prediction, staging, and therapeutic response evaluation. Due to the blurred boundary between lesions and normal colorectal tissue, it is hard to realize accurate segmentation. Routinely manual or semi-manual segmentation methods are extremely tedious, time-consuming, and highly operator-dependent. In the framework of FCNs, a segmentation method for colorectal tumor was presented. Normalization was applied to reduce the differences among images. Borrowing from transfer learning, VGG-16 was employed to extract features from normalized images. We conducted five side-output blocks from the last convolutional layer of each block of VGG-16 along the network, these side-output blocks can deep dive multiscale features, and produced corresponding predictions. Finally, all of the predictions from side-output blocks were fused to determine the final boundaries of the tumors. A quantitative comparison of 2772 colorectal tumor manual segmentation results from T2-weighted magnetic resonance images shows that the average Dice similarity coefficient, positive predictive value, specificity, sensitivity, Hammoude distance, and Hausdorff distance were 83.56, 82.67, 96.75, 87.85%, 0.2694, and 8.20, respectively. The proposed method is superior to U-net in colorectal tumor segmentation (P colorectal tumor segmentation (P > 0.05). The results indicate that the introduction of FCNs contributed to accurate segmentation of colorectal tumors. This method has the potential to replace the present time-consuming and nonreproducible manual segmentation method.

  7. Creation of voxel-based models for paediatric dosimetry from automatic segmentation methods

    International Nuclear Information System (INIS)

    Acosta, O.; Li, R.; Ourselin, S.; Caon, M.

    2006-01-01

    Full text: The first computational models representing human anatomy were mathematical phantoms, but still far from accurate representations of human body. These models have been used with radiation transport codes (Monte Carlo) to estimate organ doses from radiological procedures. Although new medical imaging techniques have recently allowed the construction of voxel-based models based on the real anatomy, few children models from individual CT or MRI data have been reported [1,3]. For pediatric dosimetry purposes, a large range of voxel models by ages is required since scaling the anatomy from existing models is not sufficiently accurate. The small number of models available arises from the small number of CT or MRI data sets of children available and the long amount of time required to segment the data sets. The existing models have been constructed by manual segmentation slice by slice and using simple thresholding techniques. In medical image segmentation, considerable difficulties appear when applying classical techniques like thresholding or simple edge detection. Until now, any evidence of more accurate or near-automatic methods used in construction of child voxel models exists. We aim to construct a range of pediatric voxel models, integrating automatic or semi-automatic 3D segmentation techniques. In this paper we present the first stage of this work using pediatric CT data.

  8. Clinical Evaluation of a Fully-automatic Segmentation Method for Longitudinal Brain Tumor Volumetry

    Science.gov (United States)

    Meier, Raphael; Knecht, Urspeter; Loosli, Tina; Bauer, Stefan; Slotboom, Johannes; Wiest, Roland; Reyes, Mauricio

    2016-03-01

    Information about the size of a tumor and its temporal evolution is needed for diagnosis as well as treatment of brain tumor patients. The aim of the study was to investigate the potential of a fully-automatic segmentation method, called BraTumIA, for longitudinal brain tumor volumetry by comparing the automatically estimated volumes with ground truth data acquired via manual segmentation. Longitudinal Magnetic Resonance (MR) Imaging data of 14 patients with newly diagnosed glioblastoma encompassing 64 MR acquisitions, ranging from preoperative up to 12 month follow-up images, was analysed. Manual segmentation was performed by two human raters. Strong correlations (R = 0.83-0.96, p < 0.001) were observed between volumetric estimates of BraTumIA and of each of the human raters for the contrast-enhancing (CET) and non-enhancing T2-hyperintense tumor compartments (NCE-T2). A quantitative analysis of the inter-rater disagreement showed that the disagreement between BraTumIA and each of the human raters was comparable to the disagreement between the human raters. In summary, BraTumIA generated volumetric trend curves of contrast-enhancing and non-enhancing T2-hyperintense tumor compartments comparable to estimates of human raters. These findings suggest the potential of automated longitudinal tumor segmentation to substitute manual volumetric follow-up of contrast-enhancing and non-enhancing T2-hyperintense tumor compartments.

  9. A volumetric pulmonary CT segmentation method with applications in emphysema assessment

    Science.gov (United States)

    Silva, José Silvestre; Silva, Augusto; Santos, Beatriz S.

    2006-03-01

    A segmentation method is a mandatory pre-processing step in many automated or semi-automated analysis tasks such as region identification and densitometric analysis, or even for 3D visualization purposes. In this work we present a fully automated volumetric pulmonary segmentation algorithm based on intensity discrimination and morphologic procedures. Our method first identifies the trachea as well as primary bronchi and then the pulmonary region is identified by applying a threshold and morphologic operations. When both lungs are in contact, additional procedures are performed to obtain two separated lung volumes. To evaluate the performance of the method, we compared contours extracted from 3D lung surfaces with reference contours, using several figures of merit. Results show that the worst case generally occurs at the middle sections of high resolution CT exams, due the presence of aerial and vascular structures. Nevertheless, the average error is inferior to the average error associated with radiologist inter-observer variability, which suggests that our method produces lung contours similar to those drawn by radiologists. The information created by our segmentation algorithm is used by an identification and representation method in pulmonary emphysema that also classifies emphysema according to its severity degree. Two clinically proved thresholds are applied which identify regions with severe emphysema, and with highly severe emphysema. Based on this thresholding strategy, an application for volumetric emphysema assessment was developed offering new display paradigms concerning the visualization of classification results. This framework is easily extendable to accommodate other classifiers namely those related with texture based segmentation as it is often the case with interstitial diseases.

  10. An adaptive segment method for smoothing lidar signal based on noise estimation

    Science.gov (United States)

    Wang, Yuzhao; Luo, Pingping

    2014-10-01

    An adaptive segmentation smoothing method (ASSM) is introduced in the paper to smooth the signal and suppress the noise. In the ASSM, the noise is defined as the 3σ of the background signal. An integer number N is defined for finding the changing positions in the signal curve. If the difference of adjacent two points is greater than 3Nσ, the position is recorded as an end point of the smoothing segment. All the end points detected as above are recorded and the curves between them will be smoothed separately. In the traditional method, the end points of the smoothing windows in the signals are fixed. The ASSM creates changing end points in different signals and the smoothing windows could be set adaptively. The windows are always set as the half of the segmentations and then the average smoothing method will be applied in the segmentations. The Iterative process is required for reducing the end-point aberration effect in the average smoothing method and two or three times are enough. In ASSM, the signals are smoothed in the spacial area nor frequent area, that means the frequent disturbance will be avoided. A lidar echo was simulated in the experimental work. The echo was supposed to be created by a space-born lidar (e.g. CALIOP). And white Gaussian noise was added to the echo to act as the random noise resulted from environment and the detector. The novel method, ASSM, was applied to the noisy echo to filter the noise. In the test, N was set to 3 and the Iteration time is two. The results show that, the signal could be smoothed adaptively by the ASSM, but the N and the Iteration time might be optimized when the ASSM is applied in a different lidar.

  11. Cement bond evaluation method in horizontal wells using segmented bond tool

    Science.gov (United States)

    Song, Ruolong; He, Li

    2018-06-01

    Most of the existing cement evaluation technologies suffer from tool eccentralization due to gravity in highly deviated wells and horizontal wells. This paper proposes a correction method to lessen the effects of tool eccentralization on evaluation results of cement bond using segmented bond tool, which has an omnidirectional sonic transmitter and eight segmented receivers evenly arranged around the tool 2 ft from the transmitter. Using 3-D finite difference parallel numerical simulation method, we investigate the logging responses of centred and eccentred segmented bond tool in a variety of bond conditions. From the numerical results, we find that the tool eccentricity and channel azimuth can be estimated from measured sector amplitude. The average of the sector amplitude when the tool is eccentred can be corrected to the one when the tool is centred. Then the corrected amplitude will be used to calculate the channel size. The proposed method is applied to both synthetic and field data. For synthetic data, it turns out that this method can estimate the tool eccentricity with small error and the bond map is improved after correction. For field data, the tool eccentricity has a good agreement with the measured well deviation angle. Though this method still suffers from the low accuracy of calculating channel azimuth, the credibility of corrected bond map is improved especially in horizontal wells. It gives us a choice to evaluate the bond condition for horizontal wells using existing logging tool. The numerical results in this paper can provide aids for understanding measurements of segmented tool in both vertical and horizontal wells.

  12. Wavelet-based multiscale window transform and energy and vorticity analysis

    Science.gov (United States)

    Liang, Xiang San

    A new methodology, Multiscale Energy and Vorticity Analysis (MS-EVA), is developed to investigate sub-mesoscale, meso-scale, and large-scale dynamical interactions in geophysical fluid flows which are intermittent in space and time. The development begins with the construction of a wavelet-based functional analysis tool, the multiscale window transform (MWT), which is local, orthonormal, self-similar, and windowed on scale. The MWT is first built over the real line then modified onto a finite domain. Properties are explored, the most important one being the property of marginalization which brings together a quadratic quantity in physical space with its phase space representation. Based on MWT the MS-EVA is developed. Energy and enstrophy equations for the large-, meso-, and sub-meso-scale windows are derived and their terms interpreted. The processes thus represented are classified into four categories: transport; transfer, conversion, and dissipation/diffusion. The separation of transport from transfer is made possible with the introduction of the concept of perfect transfer. By the property of marginalization, the classical energetic analysis proves to be a particular case of the MS-EVA. The MS-EVA developed is validated with classical instability problems. The validation is carried out through two steps. First, it is established that the barotropic and baroclinic instabilities are indicated by the spatial averages of certain transfer term interaction analyses. Then calculations of these indicators are made with an Eady model and a Kuo model. The results agree precisely with what is expected from their analytical solutions, and the energetics reproduced reveal a consistent and important aspect of the unknown dynamic structures of instability processes. As an application, the MS-EVA is used to investigate the Iceland-Faeroe frontal (IFF) variability. A MS-EVA-ready dataset is first generated, through a forecasting study with the Harvard Ocean Prediction System

  13. Automatic segmentation of MRI head images by 3-D region growing method which utilizes edge information

    International Nuclear Information System (INIS)

    Jiang, Hao; Suzuki, Hidetomo; Toriwaki, Jun-ichiro

    1991-01-01

    This paper presents a 3-D segmentation method that automatically extracts soft tissue from multi-sliced MRI head images. MRI produces a sequence of two-dimensional (2-D) images which contains three-dimensional (3-D) information of organs. To utilize such information we need effective algorithms to treat 3-D digital images and to extract organs and tissues of interest. We developed a method to extract the brain from MRI images which uses a region growing procedure and integrates information of uniformity of gray levels and information of the presence of edge segments in the local area around the pixel of interest. First we generate a kernel region which is a part of brain tissue by simple thresholding. Then we grow the region by means of a region growing algorithm under the control of 3-D edge existence to obtain the region of the brain. Our method is rather simple because it uses basic 3-D image processing techniques like spatial difference. It is robust for variation of gray levels inside a tissue since it also refers to the edge information in the process of region growing. Therefore, the method is flexible enough to be applicable to the segmentation of other images including soft tissues which have complicated shapes and fluctuation in gray levels. (author)

  14. Comparison and Supervised Learning of Segmentation Methods Dedicated to Specular Microscope Images of Corneal Endothelium

    Directory of Open Access Journals (Sweden)

    Yann Gavet

    2014-01-01

    Full Text Available The cornea is the front of the eye. Its inner cell layer, called the endothelium, is important because it is closely related to the light transparency of the cornea. An in vivo observation of this layer is performed by using specular microscopy to evaluate the health of the cells: a high spatial density will result in a good transparency. Thus, the main criterion required by ophthalmologists is the cell density of the cornea endothelium, mainly obtained by an image segmentation process. Different methods can perform the image segmentation of these cells, and the three most performing methods are studied here. The question for the ophthalmologists is how to choose the best algorithm and to obtain the best possible results with it. This paper presents a methodology to compare these algorithms together. Moreover, by the way of geometric dissimilarity criteria, the algorithms are tuned up, and the best parameter values are thus proposed to the expert ophthalmologists.

  15. Geometric shapes inversion method of space targets by ISAR image segmentation

    Science.gov (United States)

    Huo, Chao-ying; Xing, Xiao-yu; Yin, Hong-cheng; Li, Chen-guang; Zeng, Xiang-yun; Xu, Gao-gui

    2017-11-01

    The geometric shape of target is an effective characteristic in the process of space targets recognition. This paper proposed a method of shape inversion of space target based on components segmentation from ISAR image. The Radon transformation, Hough transformation, K-means clustering, triangulation will be introduced into ISAR image processing. Firstly, we use Radon transformation and edge detection to extract space target's main body spindle and solar panel spindle from ISAR image. Then the targets' main body, solar panel, rectangular and circular antenna are segmented from ISAR image based on image detection theory. Finally, the sizes of every structural component are computed. The effectiveness of this method is verified using typical targets' simulation data.

  16. An improved K-means clustering method for cDNA microarray image segmentation.

    Science.gov (United States)

    Wang, T N; Li, T J; Shao, G F; Wu, S X

    2015-07-14

    Microarray technology is a powerful tool for human genetic research and other biomedical applications. Numerous improvements to the standard K-means algorithm have been carried out to complete the image segmentation step. However, most of the previous studies classify the image into two clusters. In this paper, we propose a novel K-means algorithm, which first classifies the image into three clusters, and then one of the three clusters is divided as the background region and the other two clusters, as the foreground region. The proposed method was evaluated on six different data sets. The analyses of accuracy, efficiency, expression values, special gene spots, and noise images demonstrate the effectiveness of our method in improving the segmentation quality.

  17. PETSTEP: Generation of synthetic PET lesions for fast evaluation of segmentation methods

    Science.gov (United States)

    Berthon, Beatrice; Häggström, Ida; Apte, Aditya; Beattie, Bradley J.; Kirov, Assen S.; Humm, John L.; Marshall, Christopher; Spezi, Emiliano; Larsson, Anne; Schmidtlein, C. Ross

    2016-01-01

    Purpose This work describes PETSTEP (PET Simulator of Tracers via Emission Projection): a faster and more accessible alternative to Monte Carlo (MC) simulation generating realistic PET images, for studies assessing image features and segmentation techniques. Methods PETSTEP was implemented within Matlab as open source software. It allows generating three-dimensional PET images from PET/CT data or synthetic CT and PET maps, with user-drawn lesions and user-set acquisition and reconstruction parameters. PETSTEP was used to reproduce images of the NEMA body phantom acquired on a GE Discovery 690 PET/CT scanner, and simulated with MC for the GE Discovery LS scanner, and to generate realistic Head and Neck scans. Finally the sensitivity (S) and Positive Predictive Value (PPV) of three automatic segmentation methods were compared when applied to the scanner-acquired and PETSTEP-simulated NEMA images. Results PETSTEP produced 3D phantom and clinical images within 4 and 6 min respectively on a single core 2.7 GHz computer. PETSTEP images of the NEMA phantom had mean intensities within 2% of the scanner-acquired image for both background and largest insert, and 16% larger background Full Width at Half Maximum. Similar results were obtained when comparing PETSTEP images to MC simulated data. The S and PPV obtained with simulated phantom images were statistically significantly lower than for the original images, but led to the same conclusions with respect to the evaluated segmentation methods. Conclusions PETSTEP allows fast simulation of synthetic images reproducing scanner-acquired PET data and shows great promise for the evaluation of PET segmentation methods. PMID:26321409

  18. A region-based segmentation method for ultrasound images in HIFU therapy

    International Nuclear Information System (INIS)

    Zhang, Dong; Liu, Yu; Yang, Yan; Xu, Menglong; Yan, Yu; Qin, Qianqing

    2016-01-01

    Purpose: Precisely and efficiently locating a tumor with less manual intervention in ultrasound-guided high-intensity focused ultrasound (HIFU) therapy is one of the keys to guaranteeing the therapeutic result and improving the efficiency of the treatment. The segmentation of ultrasound images has always been difficult due to the influences of speckle, acoustic shadows, and signal attenuation as well as the variety of tumor appearance. The quality of HIFU guidance images is even poorer than that of conventional diagnostic ultrasound images because the ultrasonic probe used for HIFU guidance usually obtains images without making contact with the patient’s body. Therefore, the segmentation becomes more difficult. To solve the segmentation problem of ultrasound guidance image in the treatment planning procedure for HIFU therapy, a novel region-based segmentation method for uterine fibroids in HIFU guidance images is proposed. Methods: Tumor partitioning in HIFU guidance image without manual intervention is achieved by a region-based split-and-merge framework. A new iterative multiple region growing algorithm is proposed to first split the image into homogenous regions (superpixels). The features extracted within these homogenous regions will be more stable than those extracted within the conventional neighborhood of a pixel. The split regions are then merged by a superpixel-based adaptive spectral clustering algorithm. To ensure the superpixels that belong to the same tumor can be clustered together in the merging process, a particular construction strategy for the similarity matrix is adopted for the spectral clustering, and the similarity matrix is constructed by taking advantage of a combination of specifically selected first-order and second-order texture features computed from the gray levels and the gray level co-occurrence matrixes, respectively. The tumor region is picked out automatically from the background regions by an algorithm according to a priori

  19. A region-based segmentation method for ultrasound images in HIFU therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dong, E-mail: dongz@whu.edu.cn; Liu, Yu; Yang, Yan; Xu, Menglong; Yan, Yu [School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Qin, Qianqing [State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430072 (China)

    2016-06-15

    Purpose: Precisely and efficiently locating a tumor with less manual intervention in ultrasound-guided high-intensity focused ultrasound (HIFU) therapy is one of the keys to guaranteeing the therapeutic result and improving the efficiency of the treatment. The segmentation of ultrasound images has always been difficult due to the influences of speckle, acoustic shadows, and signal attenuation as well as the variety of tumor appearance. The quality of HIFU guidance images is even poorer than that of conventional diagnostic ultrasound images because the ultrasonic probe used for HIFU guidance usually obtains images without making contact with the patient’s body. Therefore, the segmentation becomes more difficult. To solve the segmentation problem of ultrasound guidance image in the treatment planning procedure for HIFU therapy, a novel region-based segmentation method for uterine fibroids in HIFU guidance images is proposed. Methods: Tumor partitioning in HIFU guidance image without manual intervention is achieved by a region-based split-and-merge framework. A new iterative multiple region growing algorithm is proposed to first split the image into homogenous regions (superpixels). The features extracted within these homogenous regions will be more stable than those extracted within the conventional neighborhood of a pixel. The split regions are then merged by a superpixel-based adaptive spectral clustering algorithm. To ensure the superpixels that belong to the same tumor can be clustered together in the merging process, a particular construction strategy for the similarity matrix is adopted for the spectral clustering, and the similarity matrix is constructed by taking advantage of a combination of specifically selected first-order and second-order texture features computed from the gray levels and the gray level co-occurrence matrixes, respectively. The tumor region is picked out automatically from the background regions by an algorithm according to a priori

  20. Real-time wavelet-based inline banknote-in-bundle counting for cut-and-bundle machines

    Science.gov (United States)

    Petker, Denis; Lohweg, Volker; Gillich, Eugen; Türke, Thomas; Willeke, Harald; Lochmüller, Jens; Schaede, Johannes

    2011-03-01

    Automatic banknote sheet cut-and-bundle machines are widely used within the scope of banknote production. Beside the cutting-and-bundling, which is a mature technology, image-processing-based quality inspection for this type of machine is attractive. We present in this work a new real-time Touchless Counting and perspective cutting blade quality insurance system, based on a Color-CCD-Camera and a dual-core Computer, for cut-and-bundle applications in banknote production. The system, which applies Wavelet-based multi-scale filtering is able to count banknotes inside a 100-bundle within 200-300 ms depending on the window size.

  1. Effect of Interleaved FEC Code on Wavelet Based MC-CDMA System with Alamouti STBC in Different Modulation Schemes

    OpenAIRE

    Shams, Rifat Ara; Kabir, M. Hasnat; Ullah, Sheikh Enayet

    2012-01-01

    In this paper, the impact of Forward Error Correction (FEC) code namely Trellis code with interleaver on the performance of wavelet based MC-CDMA wireless communication system with the implementation of Alamouti antenna diversity scheme has been investigated in terms of Bit Error Rate (BER) as a function of Signal-to-Noise Ratio (SNR) per bit. Simulation of the system under proposed study has been done in M-ary modulation schemes (MPSK, MQAM and DPSK) over AWGN and Rayleigh fading channel inc...

  2. Generic method for automatic bladder segmentation on cone beam CT using a patient-specific bladder shape model

    International Nuclear Information System (INIS)

    Schoot, A. J. A. J. van de; Schooneveldt, G.; Wognum, S.; Stalpers, L. J. A.; Rasch, C. R. N.; Bel, A.; Hoogeman, M. S.; Chai, X.

    2014-01-01

    Purpose: The aim of this study is to develop and validate a generic method for automatic bladder segmentation on cone beam computed tomography (CBCT), independent of gender and treatment position (prone or supine), using only pretreatment imaging data. Methods: Data of 20 patients, treated for tumors in the pelvic region with the entire bladder visible on CT and CBCT, were divided into four equally sized groups based on gender and treatment position. The full and empty bladder contour, that can be acquired with pretreatment CT imaging, were used to generate a patient-specific bladder shape model. This model was used to guide the segmentation process on CBCT. To obtain the bladder segmentation, the reference bladder contour was deformed iteratively by maximizing the cross-correlation between directional grey value gradients over the reference and CBCT bladder edge. To overcome incorrect segmentations caused by CBCT image artifacts, automatic adaptations were implemented. Moreover, locally incorrect segmentations could be adapted manually. After each adapted segmentation, the bladder shape model was expanded and new shape patterns were calculated for following segmentations. All available CBCTs were used to validate the segmentation algorithm. The bladder segmentations were validated by comparison with the manual delineations and the segmentation performance was quantified using the Dice similarity coefficient (DSC), surface distance error (SDE) and SD of contour-to-contour distances. Also, bladder volumes obtained by manual delineations and segmentations were compared using a Bland-Altman error analysis. Results: The mean DSC, mean SDE, and mean SD of contour-to-contour distances between segmentations and manual delineations were 0.87, 0.27 cm and 0.22 cm (female, prone), 0.85, 0.28 cm and 0.22 cm (female, supine), 0.89, 0.21 cm and 0.17 cm (male, supine) and 0.88, 0.23 cm and 0.17 cm (male, prone), respectively. Manual local adaptations improved the segmentation

  3. A statistical method for lung tumor segmentation uncertainty in PET images based on user inference.

    Science.gov (United States)

    Zheng, Chaojie; Wang, Xiuying; Feng, Dagan

    2015-01-01

    PET has been widely accepted as an effective imaging modality for lung tumor diagnosis and treatment. However, standard criteria for delineating tumor boundary from PET are yet to develop largely due to relatively low quality of PET images, uncertain tumor boundary definition, and variety of tumor characteristics. In this paper, we propose a statistical solution to segmentation uncertainty on the basis of user inference. We firstly define the uncertainty segmentation band on the basis of segmentation probability map constructed from Random Walks (RW) algorithm; and then based on the extracted features of the user inference, we use Principle Component Analysis (PCA) to formulate the statistical model for labeling the uncertainty band. We validated our method on 10 lung PET-CT phantom studies from the public RIDER collections [1] and 16 clinical PET studies where tumors were manually delineated by two experienced radiologists. The methods were validated using Dice similarity coefficient (DSC) to measure the spatial volume overlap. Our method achieved an average DSC of 0.878 ± 0.078 on phantom studies and 0.835 ± 0.039 on clinical studies.

  4. Automated Segmentation of Coronary Arteries Based on Statistical Region Growing and Heuristic Decision Method

    Directory of Open Access Journals (Sweden)

    Yun Tian

    2016-01-01

    Full Text Available The segmentation of coronary arteries is a vital process that helps cardiovascular radiologists detect and quantify stenosis. In this paper, we propose a fully automated coronary artery segmentation from cardiac data volume. The method is built on a statistics region growing together with a heuristic decision. First, the heart region is extracted using a multi-atlas-based approach. Second, the vessel structures are enhanced via a 3D multiscale line filter. Next, seed points are detected automatically through a threshold preprocessing and a subsequent morphological operation. Based on the set of detected seed points, a statistics-based region growing is applied. Finally, results are obtained by setting conservative parameters. A heuristic decision method is then used to obtain the desired result automatically because parameters in region growing vary in different patients, and the segmentation requires full automation. The experiments are carried out on a dataset that includes eight-patient multivendor cardiac computed tomography angiography (CTA volume data. The DICE similarity index, mean distance, and Hausdorff distance metrics are employed to compare the proposed algorithm with two state-of-the-art methods. Experimental results indicate that the proposed algorithm is capable of performing complete, robust, and accurate extraction of coronary arteries.

  5. A rule based method for context sensitive threshold segmentation in SPECT using simulation

    International Nuclear Information System (INIS)

    Fleming, John S.; Alaamer, Abdulaziz S.

    1998-01-01

    Robust techniques for automatic or semi-automatic segmentation of objects in single photon emission computed tomography (SPECT) are still the subject of development. This paper describes a threshold based method which uses empirical rules derived from analysis of computer simulated images of a large number of objects. The use of simulation allowed the factors affecting the threshold which correctly segmented objects to be investigated systematically. Rules could then be derived from these data to define the threshold in any particular context. The technique operated iteratively and calculated local context sensitive thresholds along radial profiles from the centre of gravity of the object. It was evaluated in a further series of simulated objects and in human studies, and compared to the use of a global fixed threshold. The method was capable of improving accuracy of segmentation and volume assessment compared to the global threshold technique. The improvements were greater for small volumes, shapes with large surface area to volume ratio, variable surrounding activity and non-uniform distributions. The method was applied successfully to simulated objects and human studies and is considered to be a significant advance on global fixed threshold techniques. (author)

  6. A contrast enhancement method for improving the segmentation of breast lesions on ultrasonography.

    Science.gov (United States)

    Flores, Wilfrido Gómez; Pereira, Wagner Coelho de Albuquerque

    2017-01-01

    This paper presents an adaptive contrast enhancement method based on sigmoidal mapping function (SACE) used for improving the computerized segmentation of breast lesions on ultrasound. First, from the original ultrasound image an intensity variation map is obtained, which is used to generate local sigmoidal mapping functions related to distinct contextual regions. Then, a bilinear interpolation scheme is used to transform every original pixel to a new gray level value. Also, four contrast enhancement techniques widely used in breast ultrasound enhancement are implemented: histogram equalization (HEQ), contrast limited adaptive histogram equalization (CLAHE), fuzzy enhancement (FEN), and sigmoid based enhancement (SEN). In addition, these contrast enhancement techniques are considered in a computerized lesion segmentation scheme based on watershed transformation. The performance comparison among techniques is assessed in terms of both the quality of contrast enhancement and the segmentation accuracy. The former is quantified by the measure, where the greater the value, the better the contrast enhancement, whereas the latter is calculated by the Jaccard index, which should tend towards unity to indicate adequate segmentation. The experiments consider a data set with 500 breast ultrasound images. The results show that SACE outperforms its counterparts, where the median values for the measure are: SACE: 139.4, SEN: 68.2, HEQ: 64.1, CLAHE: 62.8, and FEN: 7.9. Considering the segmentation performance results, the SACE method presents the largest accuracy, where the median values for the Jaccard index are: SACE: 0.81, FEN: 0.80, CLAHE: 0.79, HEQ: 77, and SEN: 0.63. The SACE method performs well due to the combination of three elements: (1) the intensity variation map reduces intensity variations that could distort the real response of the mapping function, (2) the sigmoidal mapping function enhances the gray level range where the transition between lesion and background

  7. Method of image segmentation using a neural network. Application to MR imaging of brain tumors

    International Nuclear Information System (INIS)

    Engler, E.; Gautherie, M.

    1992-01-01

    An original method of numerical images segmentation has been developed. This method is based on pixel clustering using a formal neural network configurated by supervised learning of pre-classified examples. The method has been applied to series of MR images of brain tumors (gliomas) with a view to proceed with a 3D-extraction of the tumor volume. This study is part of a project on cancer thermotherapy including the development of a scan-focused ultrasound system of tumor heating and a 3D-numerical thermal model

  8. Supervised methods for detection and segmentation of tissues in clinical lumbar MRI.

    Science.gov (United States)

    Ghosh, Subarna; Chaudhary, Vipin

    2014-10-01

    Lower back pain (LBP) is widely prevalent all over the world and more than 80% of the people suffer from LBP at some point of their lives. Moreover, a shortage of radiologists is the most pressing cause for the need of CAD (computer-aided diagnosis) systems. Automatic localization and labeling of intervertebral discs from lumbar MRI is the first step towards computer-aided diagnosis of lower back ailments. Subsequently, for diagnosis and characterization (quantification and localization) of abnormalities like disc herniation and stenosis, a completely automatic segmentation of intervertebral discs and the dural sac is extremely important. Contribution of this paper towards clinical CAD systems is two-fold. First, we propose a method to automatically detect all visible intervertebral discs in clinical sagittal MRI using heuristics and machine learning techniques. We provide a novel end-to-end framework that outputs a tight bounding box for each disc, instead of simply marking the centroid of discs, as has been the trend in the recent past. Second, we propose a method to simultaneously segment all the tissues (vertebrae, intervertebral disc, dural sac and background) in a lumbar sagittal MRI, using an auto-context approach instead of any explicit shape features or models. Past work tackles the lumbar segmentation problem on a tissue/organ basis, and which tend to perform poorly in clinical scans due to high variability in appearance. We, on the other hand, train a series of robust classifiers (random forests) using image features and sparsely sampled context features, which implicitly represent the shape and configuration of the image. Both these methods have been tested on a huge clinical dataset comprising of 212 cases and show very promising results for both disc detection (98% disc localization accuracy and 2.08mm mean deviation) and sagittal MRI segmentation (dice similarity indices of 0.87 and 0.84 for the dural sac and the inter-vertebral disc, respectively

  9. TWO NOVEL ACM (ACTIVE CONTOUR MODEL) METHODS FOR INTRAVASCULAR ULTRASOUND IMAGE SEGMENTATION

    International Nuclear Information System (INIS)

    Chen, Chi Hau; Potdat, Labhesh; Chittineni, Rakesh

    2010-01-01

    One of the attractive image segmentation methods is the Active Contour Model (ACM) which has been widely used in medical imaging as it always produces sub-regions with continuous boundaries. Intravascular ultrasound (IVUS) is a catheter based medical imaging technique which is used for quantitative assessment of atherosclerotic disease. Two methods of ACM realizations are presented in this paper. The gradient descent flow based on minimizing energy functional can be used for segmentation of IVUS images. However this local operation alone may not be adequate to work with the complex IVUS images. The first method presented consists of basically combining the local geodesic active contours and global region-based active contours. The advantage of combining the local and global operations is to allow curves deforming under the energy to find only significant local minima and delineate object borders despite noise, poor edge information and heterogeneous intensity profiles. Results for this algorithm are compared to standard techniques to demonstrate the method's robustness and accuracy. In the second method, the energy function is appropriately modified and minimized using a Hopfield neural network. Proper modifications in the definition of the bias of the neurons have been introduced to incorporate image characteristics. The method overcomes distortions in the expected image pattern, such as due to the presence of calcium, and employs a specialized structure of the neural network and boundary correction schemes which are based on a priori knowledge about the vessel geometry. The presented method is very fast and has been evaluated using sequences of IVUS frames.

  10. CAMSHIFT IMPROVEMENT WITH MEAN-SHIFT SEGMENTATION, REGION GROWING, AND SURF METHOD

    Directory of Open Access Journals (Sweden)

    Ferdinan Ferdinan

    2013-10-01

    Full Text Available CAMSHIFT algorithm has been widely used in object tracking. CAMSHIFT utilizescolor features as the model object. Thus, original CAMSHIFT may fail when the object color issimilar with the background color. In this study, we propose CAMSHIFT tracker combined withmean-shift segmentation, region growing, and SURF in order to improve the tracking accuracy.The mean-shift segmentation and region growing are applied in object localization phase to extractthe important parts of the object. Hue-distance, saturation, and value are used to calculate theBhattacharyya distance to judge whether the tracked object is lost. Once the object is judged lost,SURF is used to find the lost object, and CAMSHIFT can retrack the object. The Object trackingsystem is built with OpenCV. Some measurements of accuracy have done using frame-basedmetrics. We use datasets BoBoT (Bonn Benchmark on Tracking to measure accuracy of thesystem. The results demonstrate that CAMSHIFT combined with mean-shift segmentation, regiongrowing, and SURF method has higher accuracy than the previous methods.

  11. NONINVASIVE METHODS ASSESSMENT BLOOD FLOW IN ANTERIOR SEGMENT AND CLINICAL APPLICATION PERSPECTIVE

    Directory of Open Access Journals (Sweden)

    T. N. Kiseleva

    2017-01-01

    Full Text Available The literature review contains information on the anatomical and physiological features of the vessels of the conjunctiva, iris, ciliary body. There are data on the development and application of new non-invasive methods for the study of hemodynamics in the microvessels of anterior eye segment. To study the blood flow of the anterior segment of the eye, biomycroscopy, photography and videobiomicroscopy, television biomicroscopy of vessels, darkfield visualization, application fluorescence angiography, photoacoustic angiography, orthogonal polarization spectroscopy, laser Doppler flowmetry and OCT-angiography were used in recent years. These methods allow to determine the qualitative and quantitative characteristics of conjunctiva, iris, ciliary body microcirculation. They are highly informative for assess of various drugs effect on the vascular eye system. Investigation of hemodynamics in the eye microvessels is necessary for a fundamental approach to the study of the pathophysiology of systemic circulatory pathologies (with arterial hypertension, diabetes, etc. and changes in regional blood flow in organ of vision disease. Monitoring of anterior segment microcirculation in clinical practice makes possible to monitor the effectiveness of drug and surgical treatment.

  12. Implementation of Segmentation Methods for the Diagnosis and Prognosis of Mild Cognitive Impairment and Alzheimer Disease

    International Nuclear Information System (INIS)

    Matoug, S; Abdel-Dayem, A

    2012-01-01

    Alzheimer's disease (AD) is the most common form of dementia affecting seniors age 65 and over. When AD is suspected, the diagnosis is usually confirmed with behavioural assessments and cognitive tests, often followed by a brain scan. Advanced medical imaging is a good tool to predict conversion from prodromal stages (mild cognitive impairment) to Alzheimer's disease. Since volumetric MRI can detect changes in the size of brain regions, measuring those regions that atrophy during the progress of Alzheimer's disease can help the neurologist in his diagnostic. In the present investigation, we present an automatic tool that reads volumetric MRI and performs 2-dimensional (volume slices) and volumetric segmentation methods in order to segment gray matter, white matter and cerebrospinal fluid (CSF). We used the MRI data sets database from the Open Access Series of Imaging Studies (OASIS).

  13. The method of segmentation of leukocytes in information-measuring systems on the basis of light microscopy

    Science.gov (United States)

    Nikitaev, V. G.; Pronichev, A. N.; Polyakov, E. V.; Zaharenko, Yu V.

    2018-01-01

    The paper considers the problem of leukocytes segmentation in microscopic images of bone marrow smears for automated diagnosis of the blood system diseases. The method was proposed to solve the problem of segmentation of contacting leukocytes in images of bone marrow smears. The method is based on the analysis of structure of objects of a separation and distances filter in combination with the watershed method and distance transformation method.

  14. A simple method of shower localization and identification in laterally segmented calorimeters

    International Nuclear Information System (INIS)

    Awes, T.C.; Obenshain, F.E.; Plasil, F.; Saini, S.; Young, G.R.; Sorensen, S.P.

    1992-01-01

    A method is proposed to calculate the first and second moments of the spatial distribution of the energy of electromagnetic and hadronic showers measured in laterally segmented colorimeters. The technique uses a logarithmic weighting of energy fraction observed in the individual detector cells. It is fast and simple requiring no fitting or complicated corrections for the position or angle of incidence. The method is demonstrated with GEANT simulations of a BGO detector array. The position resolution results and the e/π separation results are found to be equal or superior to those obtained with more complicated techniques. (orig.)

  15. A novel method for unsteady flow field segmentation based on stochastic similarity of direction

    Science.gov (United States)

    Omata, Noriyasu; Shirayama, Susumu

    2018-04-01

    Recent developments in fluid dynamics research have opened up the possibility for the detailed quantitative understanding of unsteady flow fields. However, the visualization techniques currently in use generally provide only qualitative insights. A method for dividing the flow field into physically relevant regions of interest can help researchers quantify unsteady fluid behaviors. Most methods at present compare the trajectories of virtual Lagrangian particles. The time-invariant features of an unsteady flow are also frequently of interest, but the Lagrangian specification only reveals time-variant features. To address these challenges, we propose a novel method for the time-invariant spatial segmentation of an unsteady flow field. This segmentation method does not require Lagrangian particle tracking but instead quantitatively compares the stochastic models of the direction of the flow at each observed point. The proposed method is validated with several clustering tests for 3D flows past a sphere. Results show that the proposed method reveals the time-invariant, physically relevant structures of an unsteady flow.

  16. Nondestructive Damage Assessment of Composite Structures Based on Wavelet Analysis of Modal Curvatures: State-of-the-Art Review and Description of Wavelet-Based Damage Assessment Benchmark

    Directory of Open Access Journals (Sweden)

    Andrzej Katunin

    2015-01-01

    Full Text Available The application of composite structures as elements of machines and vehicles working under various operational conditions causes degradation and occurrence of damage. Considering that composites are often used for responsible elements, for example, parts of aircrafts and other vehicles, it is extremely important to maintain them properly and detect, localize, and identify the damage occurring during their operation in possible early stage of its development. From a great variety of nondestructive testing methods developed to date, the vibration-based methods seem to be ones of the least expensive and simultaneously effective with appropriate processing of measurement data. Over the last decades a great popularity of vibration-based structural testing has been gained by wavelet analysis due to its high sensitivity to a damage. This paper presents an overview of results of numerous researchers working in the area of vibration-based damage assessment supported by the wavelet analysis and the detailed description of the Wavelet-based Structural Damage Assessment (WavStructDamAs Benchmark, which summarizes the author’s 5-year research in this area. The benchmark covers example problems of damage identification in various composite structures with various damage types using numerous wavelet transforms and supporting tools. The benchmark is openly available and allows performing the analysis on the example problems as well as on its own problems using available analysis tools.

  17. Wavelet-based multiscale analysis of minimum toe clearance variability in the young and elderly during walking.

    Science.gov (United States)

    Khandoker, Ahsan H; Karmakar, Chandan K; Begg, Rezaul K; Palaniswami, Marimuthu

    2007-01-01

    As humans age or are influenced by pathology of the neuromuscular system, gait patterns are known to adjust, accommodating for reduced function in the balance control system. The aim of this study was to investigate the effectiveness of a wavelet based multiscale analysis of a gait variable [minimum toe clearance (MTC)] in deriving indexes for understanding age-related declines in gait performance and screening of balance impairments in the elderly. MTC during walking on a treadmill for 30 healthy young, 27 healthy elderly and 10 falls risk elderly subjects with a history of tripping falls were analyzed. The MTC signal from each subject was decomposed to eight detailed signals at different wavelet scales by using the discrete wavelet transform. The variances of detailed signals at scales 8 to 1 were calculated. The multiscale exponent (beta) was then estimated from the slope of the variance progression at successive scales. The variance at scale 5 was significantly (ppathological conditions. Early detection of gait pattern changes due to ageing and balance impairments using wavelet-based multiscale analysis might provide the opportunity to initiate preemptive measures to be undertaken to avoid injurious falls.

  18. Segmented gamma scanning method for measuring holdup in the spherical container

    International Nuclear Information System (INIS)

    Deng Jingshan; Li Ze; Gan Lin; Lu Wenguang; Dong Mingli

    2007-01-01

    Some special nuclear material (SNM) is inevitably deposited in the facilities (mixer, reactor) of nuclear material process line. Exactly knowing the quantity of nuclear material holdup is very important for nuclear material accountability and critical safety. This paper presents segmented gamma scanning method for SNM holdup measurement of spherical container, at the left, right and back of which other equipments exist so that the detectors can be put at the only front of container for measurement. The nuclear material deposited in the spherical container can be looked as spherical shell source, which is divided into many layers. The detectors scanning spherical shell source are moved layer by layer from the top to the bottom to obtain projection data, with which deposited material distribution can be reconstructed by using Least Square (LS) method or Maximum Likelihood (ML) method. With these methods accurate total holdup can be obtained by summing up all the segmental values reconstructed. In this paper this measurement method for holdup in the spherical container was verified with Monte-Carlo simulation calculation and experiment. (authors)

  19. Evaluation of advanced automatic PET segmentation methods using nonspherical thin-wall inserts

    International Nuclear Information System (INIS)

    Berthon, B.; Marshall, C.; Evans, M.; Spezi, E.

    2014-01-01

    Purpose: The use of positron emission tomography (PET) within radiotherapy treatment planning requires the availability of reliable and accurate segmentation tools. PET automatic segmentation (PET-AS) methods have been recommended for the delineation of tumors, but there is still a lack of thorough validation and cross-comparison of such methods using clinically relevant data. In particular, studies validating PET segmentation tools mainly use phantoms with thick plastic walls inserts of simple spherical geometry and have not specifically investigated the effect of the target object geometry on the delineation accuracy. Our work therefore aimed at generating clinically realistic data using nonspherical thin-wall plastic inserts, for the evaluation and comparison of a set of eight promising PET-AS approaches. Methods: Sixteen nonspherical inserts were manufactured with a plastic wall of 0.18 mm and scanned within a custom plastic phantom. These included ellipsoids and toroids derived with different volumes, as well as tubes, pear- and drop-shaped inserts with different aspect ratios. A set of six spheres of volumes ranging from 0.5 to 102 ml was used for a baseline study. A selection of eight PET-AS methods, written in house, was applied to the images obtained. The methods represented promising segmentation approaches such as adaptive iterative thresholding, region-growing, clustering and gradient-based schemes. The delineation accuracy was measured in terms of overlap with the computed tomography reference contour, using the dice similarity coefficient (DSC), and error in dimensions. Results: The delineation accuracy was lower for nonspherical inserts than for spheres of the same volume in 88% cases. Slice-by-slice gradient-based methods, showed particularly lower DSC for tori (DSC 0.76 except for tori) but showed the largest errors in the recovery of pears and drops dimensions (higher than 10% and 30% of the true length, respectively). Large errors were visible

  20. A new 2D segmentation method based on dynamic programming applied to computer aided detection in mammography

    International Nuclear Information System (INIS)

    Timp, Sheila; Karssemeijer, Nico

    2004-01-01

    Mass segmentation plays a crucial role in computer-aided diagnosis (CAD) systems for classification of suspicious regions as normal, benign, or malignant. In this article we present a robust and automated segmentation technique--based on dynamic programming--to segment mass lesions from surrounding tissue. In addition, we propose an efficient algorithm to guarantee resulting contours to be closed. The segmentation method based on dynamic programming was quantitatively compared with two other automated segmentation methods (region growing and the discrete contour model) on a dataset of 1210 masses. For each mass an overlap criterion was calculated to determine the similarity with manual segmentation. The mean overlap percentage for dynamic programming was 0.69, for the other two methods 0.60 and 0.59, respectively. The difference in overlap percentage was statistically significant. To study the influence of the segmentation method on the performance of a CAD system two additional experiments were carried out. The first experiment studied the detection performance of the CAD system for the different segmentation methods. Free-response receiver operating characteristics analysis showed that the detection performance was nearly identical for the three segmentation methods. In the second experiment the ability of the classifier to discriminate between malignant and benign lesions was studied. For region based evaluation the area A z under the receiver operating characteristics curve was 0.74 for dynamic programming, 0.72 for the discrete contour model, and 0.67 for region growing. The difference in A z values obtained by the dynamic programming method and region growing was statistically significant. The differences between other methods were not significant

  1. The evolution of spillover effects between oil and stock markets across multi-scales using a wavelet-based GARCH-BEKK model

    Science.gov (United States)

    Liu, Xueyong; An, Haizhong; Huang, Shupei; Wen, Shaobo

    2017-01-01

    Aiming to investigate the evolution of mean and volatility spillovers between oil and stock markets in the time and frequency dimensions, we employed WTI crude oil prices, the S&P 500 (USA) index and the MICEX index (Russia) for the period Jan. 2003-Dec. 2014 as sample data. We first applied a wavelet-based GARCH-BEKK method to examine the spillover features in frequency dimension. To consider the evolution of spillover effects in time dimension at multiple-scales, we then divided the full sample period into three sub-periods, pre-crisis period, crisis period, and post-crisis period. The results indicate that spillover effects vary across wavelet scales in terms of strength and direction. By analysis the time-varying linkage, we found the different evolution features of spillover effects between the Oil-US stock market and Oil-Russia stock market. The spillover relationship between oil and US stock market is shifting to short-term while the spillover relationship between oil and Russia stock market is changing to all time scales. That result implies that the linkage between oil and US stock market is weakening in the long-term, and the linkage between oil and Russia stock market is getting close in all time scales. This may explain the phenomenon that the US stock index and the Russia stock index showed the opposite trend with the falling of oil price in the post-crisis period.

  2. Microbleed detection using automated segmentation (MIDAS): a new method applicable to standard clinical MR images.

    Science.gov (United States)

    Seghier, Mohamed L; Kolanko, Magdalena A; Leff, Alexander P; Jäger, Hans R; Gregoire, Simone M; Werring, David J

    2011-03-23

    Cerebral microbleeds, visible on gradient-recalled echo (GRE) T2* MRI, have generated increasing interest as an imaging marker of small vessel diseases, with relevance for intracerebral bleeding risk or brain dysfunction. Manual rating methods have limited reliability and are time-consuming. We developed a new method for microbleed detection using automated segmentation (MIDAS) and compared it with a validated visual rating system. In thirty consecutive stroke service patients, standard GRE T2* images were acquired and manually rated for microbleeds by a trained observer. After spatially normalizing each patient's GRE T2* images into a standard stereotaxic space, the automated microbleed detection algorithm (MIDAS) identified cerebral microbleeds by explicitly incorporating an "extra" tissue class for abnormal voxels within a unified segmentation-normalization model. The agreement between manual and automated methods was assessed using the intraclass correlation coefficient (ICC) and Kappa statistic. We found that MIDAS had generally moderate to good agreement with the manual reference method for the presence of lobar microbleeds (Kappa = 0.43, improved to 0.65 after manual exclusion of obvious artefacts). Agreement for the number of microbleeds was very good for lobar regions: (ICC = 0.71, improved to ICC = 0.87). MIDAS successfully detected all patients with multiple (≥2) lobar microbleeds. MIDAS can identify microbleeds on standard MR datasets, and with an additional rapid editing step shows good agreement with a validated visual rating system. MIDAS may be useful in screening for multiple lobar microbleeds.

  3. The energy market research of 1991. Method of segmenting households into ''life style groups''

    International Nuclear Information System (INIS)

    Ljones, A.; Doorman, G.

    1992-09-01

    The report discusses a method of classifying households into life style groups based on the individuals' needs, wishes and attitudes. Seven such groups have been defined based on nation-wide research among 1022 households in 1991. These groups are described with respect to a number of factors of attitude, housing conditions, socio-economic characteristics, use of media etc. This way of segmenting the households may give the power companies a better understanding of what kind of ''products'' and services their customers would like to have and how to market them efficiently. 5 refs., 3 figs., 5 tabs

  4. Reprint of Solution of Ambrosio-Tortorelli model for image segmentation by generalized relaxation method

    Science.gov (United States)

    D'Ambra, Pasqua; Tartaglione, Gaetano

    2015-04-01

    Image segmentation addresses the problem to partition a given image into its constituent objects and then to identify the boundaries of the objects. This problem can be formulated in terms of a variational model aimed to find optimal approximations of a bounded function by piecewise-smooth functions, minimizing a given functional. The corresponding Euler-Lagrange equations are a set of two coupled elliptic partial differential equations with varying coefficients. Numerical solution of the above system often relies on alternating minimization techniques involving descent methods coupled with explicit or semi-implicit finite-difference discretization schemes, which are slowly convergent and poorly scalable with respect to image size. In this work we focus on generalized relaxation methods also coupled with multigrid linear solvers, when a finite-difference discretization is applied to the Euler-Lagrange equations of Ambrosio-Tortorelli model. We show that non-linear Gauss-Seidel, accelerated by inner linear iterations, is an effective method for large-scale image analysis as those arising from high-throughput screening platforms for stem cells targeted differentiation, where one of the main goal is segmentation of thousand of images to analyze cell colonies morphology.

  5. Solution of Ambrosio-Tortorelli model for image segmentation by generalized relaxation method

    Science.gov (United States)

    D'Ambra, Pasqua; Tartaglione, Gaetano

    2015-03-01

    Image segmentation addresses the problem to partition a given image into its constituent objects and then to identify the boundaries of the objects. This problem can be formulated in terms of a variational model aimed to find optimal approximations of a bounded function by piecewise-smooth functions, minimizing a given functional. The corresponding Euler-Lagrange equations are a set of two coupled elliptic partial differential equations with varying coefficients. Numerical solution of the above system often relies on alternating minimization techniques involving descent methods coupled with explicit or semi-implicit finite-difference discretization schemes, which are slowly convergent and poorly scalable with respect to image size. In this work we focus on generalized relaxation methods also coupled with multigrid linear solvers, when a finite-difference discretization is applied to the Euler-Lagrange equations of Ambrosio-Tortorelli model. We show that non-linear Gauss-Seidel, accelerated by inner linear iterations, is an effective method for large-scale image analysis as those arising from high-throughput screening platforms for stem cells targeted differentiation, where one of the main goal is segmentation of thousand of images to analyze cell colonies morphology.

  6. A Method to Automate the Segmentation of the GTV and ITV for Lung Tumors

    International Nuclear Information System (INIS)

    Ehler, Eric D.; Bzdusek, Karl; Tome, Wolfgang A.

    2009-01-01

    Four-dimensional computed tomography (4D-CT) is a useful tool in the treatment of tumors that undergo significant motion. To fully utilize 4D-CT motion information in the treatment of mobile tumors such as lung cancer, autosegmentation methods will need to be developed. Using autosegmentation tools in the Pinnacle 3 v8.1t treatment planning system, 6 anonymized 4D-CT data sets were contoured. Two test indices were developed that can be used to evaluate which autosegmentation tools to apply to a given gross tumor volume (GTV) region of interest (ROI). The 4D-CT data sets had various phase binning error levels ranging from 3% to 29%. The appropriate autosegmentation method (rigid translational image registration and deformable surface mesh) was determined to properly delineate the GTV in all of the 4D-CT phases for the 4D-CT data sets with binning errors of up to 15%. The ITV was defined by 2 methods: a mask of the GTV in all 4D-CT phases and the maximum intensity projection. The differences in centroid position and volume were compared with manual segmentation studies in literature. The indices developed in this study, along with the autosegmentation tools in the treatment planning system, were able to automatically segment the GTV in the four 4D-CTs with phase binning errors of up to 15%.

  7. An accurate segmentation method for volumetry of brain tumor in 3D MRI

    Science.gov (United States)

    Wang, Jiahui; Li, Qiang; Hirai, Toshinori; Katsuragawa, Shigehiko; Li, Feng; Doi, Kunio

    2008-03-01

    Accurate volumetry of brain tumors in magnetic resonance imaging (MRI) is important for evaluating the interval changes in tumor volumes during and after treatment, and also for planning of radiation therapy. In this study, an automated volumetry method for brain tumors in MRI was developed by use of a new three-dimensional (3-D) image segmentation technique. First, the central location of a tumor was identified by a radiologist, and then a volume of interest (VOI) was determined automatically. To substantially simplify tumor segmentation, we transformed the 3-D image of the tumor into a two-dimensional (2-D) image by use of a "spiral-scanning" technique, in which a radial line originating from the center of the tumor scanned the 3-D image spirally from the "north pole" to the "south pole". The voxels scanned by the radial line provided a transformed 2-D image. We employed dynamic programming to delineate an "optimal" outline of the tumor in the transformed 2-D image. We then transformed the optimal outline back into 3-D image space to determine the volume of the tumor. The volumetry method was trained and evaluated by use of 16 cases with 35 brain tumors. The agreement between tumor volumes provided by computer and a radiologist was employed as a performance metric. Our method provided relatively accurate results with a mean agreement value of 88%.

  8. Comparisons of adaptive TIN modelling filtering method and threshold segmentation filtering method of LiDAR point cloud

    International Nuclear Information System (INIS)

    Chen, Lin; Fan, Xiangtao; Du, Xiaoping

    2014-01-01

    Point cloud filtering is the basic and key step in LiDAR data processing. Adaptive Triangle Irregular Network Modelling (ATINM) algorithm and Threshold Segmentation on Elevation Statistics (TSES) algorithm are among the mature algorithms. However, few researches concentrate on the parameter selections of ATINM and the iteration condition of TSES, which can greatly affect the filtering results. First the paper presents these two key problems under two different terrain environments. For a flat area, small height parameter and angle parameter perform well and for areas with complex feature changes, large height parameter and angle parameter perform well. One-time segmentation is enough for flat areas, and repeated segmentations are essential for complex areas. Then the paper makes comparisons and analyses of the results by these two methods. ATINM has a larger I error in both two data sets as it sometimes removes excessive points. TSES has a larger II error in both two data sets as it ignores topological relations between points. ATINM performs well even with a large region and a dramatic topology while TSES is more suitable for small region with flat topology. Different parameters and iterations can cause relative large filtering differences

  9. Brain tumor segmentation in MRI by using the fuzzy connectedness method

    Science.gov (United States)

    Liu, Jian-Guo; Udupa, Jayaram K.; Hackney, David; Moonis, Gul

    2001-07-01

    The aim of this paper is the precise and accurate quantification of brain tumor via MRI. This is very useful in evaluating disease progression, response to therapy, and the need for changes in treatment plans. We use multiple MRI protocols including FLAIR, T1, and T1 with Gd enhancement to gather information about different aspects of the tumor and its vicinity- edema, active regions, and scar left over due to surgical intervention. We have adapted the fuzzy connectedness framework to segment tumor and to measure its volume. The method requires only limited user interaction in routine clinical MRI. The first step in the process is to apply an intensity normalization method to the images so that the same body region has the same tissue meaning independent of the scanner and patient. Subsequently, a fuzzy connectedness algorithm is utilized to segment the different aspects of the tumor. The system has been tested, for its precision, accuracy, and efficiency, utilizing 40 patient studies. The percent coefficient of variation (% CV) in volume due to operator subjectivity in specifying seeds for fuzzy connectedness segmentation is less than 1%. The mean operator and computer time taken per study is 3 minutes. The package is designed to run under operator supervision. Delineation has been found to agree with the operators' visual inspection most of the time except in some cases when the tumor is close to the boundary of the brain. In the latter case, the scalp is included in the delineation and an operator has to exclude this manually. The methodology is rapid, robust, consistent, yielding highly reproducible measurements, and is likely to become part of the routine evaluation of brain tumor patients in our health system.

  10. A combined approach for the enhancement and segmentation of mammograms using modified fuzzy C-means method in wavelet domain.

    Science.gov (United States)

    Srivastava, Subodh; Sharma, Neeraj; Singh, S K; Srivastava, R

    2014-07-01

    In this paper, a combined approach for enhancement and segmentation of mammograms is proposed. In preprocessing stage, a contrast limited adaptive histogram equalization (CLAHE) method is applied to obtain the better contrast mammograms. After this, the proposed combined methods are applied. In the first step of the proposed approach, a two dimensional (2D) discrete wavelet transform (DWT) is applied to all the input images. In the second step, a proposed nonlinear complex diffusion based unsharp masking and crispening method is applied on the approximation coefficients of the wavelet transformed images to further highlight the abnormalities such as micro-calcifications, tumours, etc., to reduce the false positives (FPs). Thirdly, a modified fuzzy c-means (FCM) segmentation method is applied on the output of the second step. In the modified FCM method, the mutual information is proposed as a similarity measure in place of conventional Euclidian distance based dissimilarity measure for FCM segmentation. Finally, the inverse 2D-DWT is applied. The efficacy of the proposed unsharp masking and crispening method for image enhancement is evaluated in terms of signal-to-noise ratio (SNR) and that of the proposed segmentation method is evaluated in terms of random index (RI), global consistency error (GCE), and variation of information (VoI). The performance of the proposed segmentation approach is compared with the other commonly used segmentation approaches such as Otsu's thresholding, texture based, k-means, and FCM clustering as well as thresholding. From the obtained results, it is observed that the proposed segmentation approach performs better and takes lesser processing time in comparison to the standard FCM and other segmentation methods in consideration.

  11. Multilevel Thresholding Method Based on Electromagnetism for Accurate Brain MRI Segmentation to Detect White Matter, Gray Matter, and CSF

    Directory of Open Access Journals (Sweden)

    G. Sandhya

    2017-01-01

    Full Text Available This work explains an advanced and accurate brain MRI segmentation method. MR brain image segmentation is to know the anatomical structure, to identify the abnormalities, and to detect various tissues which help in treatment planning prior to radiation therapy. This proposed technique is a Multilevel Thresholding (MT method based on the phenomenon of Electromagnetism and it segments the image into three tissues such as White Matter (WM, Gray Matter (GM, and CSF. The approach incorporates skull stripping and filtering using anisotropic diffusion filter in the preprocessing stage. This thresholding method uses the force of attraction-repulsion between the charged particles to increase the population. It is the combination of Electromagnetism-Like optimization algorithm with the Otsu and Kapur objective functions. The results obtained by using the proposed method are compared with the ground-truth images and have given best values for the measures sensitivity, specificity, and segmentation accuracy. The results using 10 MR brain images proved that the proposed method has accurately segmented the three brain tissues compared to the existing segmentation methods such as K-means, fuzzy C-means, OTSU MT, Particle Swarm Optimization (PSO, Bacterial Foraging Algorithm (BFA, Genetic Algorithm (GA, and Fuzzy Local Gaussian Mixture Model (FLGMM.

  12. Segmentation methods for breast vasculature in dual-energy contrast-enhanced digital breast tomosynthesis

    Science.gov (United States)

    Lau, Kristen C.; Lee, Hyo Min; Singh, Tanushriya; Maidment, Andrew D. A.

    2015-03-01

    Dual-energy contrast-enhanced digital breast tomosynthesis (DE CE-DBT) uses an iodinated contrast agent to image the three-dimensional breast vasculature. The University of Pennsylvania has an ongoing DE CE-DBT clinical study in patients with known breast cancers. The breast is compressed continuously and imaged at four time points (1 pre-contrast; 3 post-contrast). DE images are obtained by a weighted logarithmic subtraction of the high-energy (HE) and low-energy (LE) image pairs. Temporal subtraction of the post-contrast DE images from the pre-contrast DE image is performed to analyze iodine uptake. Our previous work investigated image registration methods to correct for patient motion, enhancing the evaluation of vascular kinetics. In this project we investigate a segmentation algorithm which identifies blood vessels in the breast from our temporal DE subtraction images. Anisotropic diffusion filtering, Gabor filtering, and morphological filtering are used for the enhancement of vessel features. Vessel labeling methods are then used to distinguish vessel and background features successfully. Statistical and clinical evaluations of segmentation accuracy in DE-CBT images are ongoing.

  13. Evaluation of segmental body composition by gender in obese children using bioelectric impedance analysis method

    Directory of Open Access Journals (Sweden)

    İhsan Çetin

    2015-12-01

    Full Text Available Objective: In this study, it was aimed to evaluate segmental body composition of children diagnosed with obesity using bioelectrical impedance analysis method in terms of different gender. Methods: 48 children, aged between 6-15 years, 21 of whom were boys while 27 were girls, diagnosed with obesity in Erciyes University Medical Faculty Department of Pediatric Endocrinology Outpatient Clinic were included in our study from April to June in 2011. Those over 95 percentile were defined as obese group. Tanita BC-418 device was used to analyze the body composition. Results: As a result of bioelectrical impedance analysis, lean body mass and body muscle mass were found to be statistically significantly higher in obese girls compared with obese boys. However, lean mass of the left arm, left leg muscle mass and basal metabolic rate were found to be statistically significantly lower in obese girls compared with obese boys. Conclusion: Consequently, it may be suggest that segmental analysis, where gender differences are taken into account, can provide proper exercise pattern and healthy way of weight loss in children for prevention of obesity and associated diseases including obesity and type 2 diabetics and cardiovascular diseases.

  14. Generic and robust method for automatic segmentation of PET images using an active contour model

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Mingzan [Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9700 RB Groningen (Netherlands)

    2016-08-15

    Purpose: Although positron emission tomography (PET) images have shown potential to improve the accuracy of targeting in radiation therapy planning and assessment of response to treatment, the boundaries of tumors are not easily distinguishable from surrounding normal tissue owing to the low spatial resolution and inherent noisy characteristics of PET images. The objective of this study is to develop a generic and robust method for automatic delineation of tumor volumes using an active contour model and to evaluate its performance using phantom and clinical studies. Methods: MASAC, a method for automatic segmentation using an active contour model, incorporates the histogram fuzzy C-means clustering, and localized and textural information to constrain the active contour to detect boundaries in an accurate and robust manner. Moreover, the lattice Boltzmann method is used as an alternative approach for solving the level set equation to make it faster and suitable for parallel programming. Twenty simulated phantom studies and 16 clinical studies, including six cases of pharyngolaryngeal squamous cell carcinoma and ten cases of nonsmall cell lung cancer, were included to evaluate its performance. Besides, the proposed method was also compared with the contourlet-based active contour algorithm (CAC) and Schaefer’s thresholding method (ST). The relative volume error (RE), Dice similarity coefficient (DSC), and classification error (CE) metrics were used to analyze the results quantitatively. Results: For the simulated phantom studies (PSs), MASAC and CAC provide similar segmentations of the different lesions, while ST fails to achieve reliable results. For the clinical datasets (2 cases with connected high-uptake regions excluded) (CSs), CAC provides for the lowest mean RE (−8.38% ± 27.49%), while MASAC achieves the best mean DSC (0.71 ± 0.09) and mean CE (53.92% ± 12.65%), respectively. MASAC could reliably quantify different types of lesions assessed in this work

  15. Calculating Effective Elastic Properties of Berea Sandstone Using Segmentation-less Method without Targets

    Science.gov (United States)

    Ikeda, K.; Goldfarb, E. J.; Tisato, N.

    2017-12-01

    Digital rock physics (DRP) allows performing common laboratory experiments on numerical models to estimate, for example, rock hydraulic permeability. The standard procedure of DRP involves turning a rock sample into a numerical array using X-ray micro computed tomography (micro-CT). Each element of the array bears a value proportional to the X-ray attenuation of the rock at the element (voxel). However, the traditional DRP methodology, which includes segmentation, over-predicts rock moduli by significant amounts (e.g., 100%). Recently, a new methodology - the segmentation-less approach - has been proposed leading to more accurate DRP estimate of elastic moduli. This new method is based on homogenization theory. Typically, segmentation-less approach requires calibration points from known density objects, known as targets. Not all micro-CT datasets have these reference points. Here, we describe how we perform segmentation- and target-less DRP to estimate elastic properties of rocks (i.e., elastic moduli), which are crucial parameters to perform subsurface modeling. We calculate the elastic properties of a Berea sandstone sample that was scanned at a resolution of 40 microns per voxel. We transformed the CT images into density matrices using polynomial fitting curve with four calibration points: the whole rock, the center of quartz grains, the center of iron oxide grains, and the center of air-filled volumes. The first calibration point is obtained by assigning the density of the whole rock to the average of all CT-numbers in the dataset. Then, we locate the center of each phase by finding local extrema point in the dataset. The average CT-numbers of these center points are assigned the density equal to either pristine minerals (quartz and iron oxide) or air. Next, density matrices are transformed to porosity and moduli matrices by means of an effective medium theory. Finally, effective static bulk and shear modulus are numerically calculated by using a Matlab code

  16. Heart Rate Variability and Wavelet-based Studies on ECG Signals from Smokers and Non-smokers

    Science.gov (United States)

    Pal, K.; Goel, R.; Champaty, B.; Samantray, S.; Tibarewala, D. N.

    2013-12-01

    The current study deals with the heart rate variability (HRV) and wavelet-based ECG signal analysis of smokers and non-smokers. The results of HRV indicated dominance towards the sympathetic nervous system activity in smokers. The heart rate was found to be higher in case of smokers as compared to non-smokers ( p smokers from the non-smokers. The results indicated that when RMSSD, SD1 and RR-mean features were used concurrently a classification efficiency of > 90 % was achieved. The wavelet decomposition of the ECG signal was done using the Daubechies (db 6) wavelet family. No difference was observed between the smokers and non-smokers which apparently suggested that smoking does not affect the conduction pathway of heart.

  17. Wavelet-based compression with ROI coding support for mobile access to DICOM images over heterogeneous radio networks.

    Science.gov (United States)

    Maglogiannis, Ilias; Doukas, Charalampos; Kormentzas, George; Pliakas, Thomas

    2009-07-01

    Most of the commercial medical image viewers do not provide scalability in image compression and/or region of interest (ROI) encoding/decoding. Furthermore, these viewers do not take into consideration the special requirements and needs of a heterogeneous radio setting that is constituted by different access technologies [e.g., general packet radio services (GPRS)/ universal mobile telecommunications system (UMTS), wireless local area network (WLAN), and digital video broadcasting (DVB-H)]. This paper discusses a medical application that contains a viewer for digital imaging and communications in medicine (DICOM) images as a core module. The proposed application enables scalable wavelet-based compression, retrieval, and decompression of DICOM medical images and also supports ROI coding/decoding. Furthermore, the presented application is appropriate for use by mobile devices activating in heterogeneous radio settings. In this context, performance issues regarding the usage of the proposed application in the case of a prototype heterogeneous system setup are also discussed.

  18. Intracranial aneurysm segmentation in 3D CT angiography: Method and quantitative validation with and without prior noise filtering

    International Nuclear Information System (INIS)

    Firouzian, Azadeh; Manniesing, Rashindra; Flach, Zwenneke H.; Risselada, Roelof; Kooten, Fop van; Sturkenboom, Miriam C.J.M.; Lugt, Aad van der; Niessen, Wiro J.

    2011-01-01

    Intracranial aneurysm volume and shape are important factors for predicting rupture risk, for pre-surgical planning and for follow-up studies. To obtain these parameters, manual segmentation can be employed; however, this is a tedious procedure, which is prone to inter- and intra-observer variability. Therefore there is a need for an automated method, which is accurate, reproducible and reliable. This study aims to develop and validate an automated method for segmenting intracranial aneurysms in Computed Tomography Angiography (CTA) data. Also, it is investigated whether prior smoothing improves segmentation robustness and accuracy. The proposed segmentation method is implemented in the level set framework, more specifically Geodesic Active Surfaces, in which a surface is evolved to capture the aneurysmal wall via an energy minimization approach. The energy term is composed of three different image features, namely; intensity, gradient magnitude and intensity variance. The method requires minimal user interaction, i.e. a single seed point inside the aneurysm needs to be placed, based on which image intensity statistics of the aneurysm are derived and used in defining the energy term. The method has been evaluated on 15 aneurysms in 11 CTA data sets by comparing the results to manual segmentations performed by two expert radiologists. Evaluation measures were Similarity Index, Average Surface Distance and Volume Difference. The results show that the automated aneurysm segmentation method is reproducible, and performs in the range of inter-observer variability in terms of accuracy. Smoothing by nonlinear diffusion with appropriate parameter settings prior to segmentation, slightly improves segmentation accuracy.

  19. Comparison of automatic and visual methods used for image segmentation in Endodontics: a microCT study.

    Science.gov (United States)

    Queiroz, Polyane Mazucatto; Rovaris, Karla; Santaella, Gustavo Machado; Haiter-Neto, Francisco; Freitas, Deborah Queiroz

    2017-01-01

    To calculate root canal volume and surface area in microCT images, an image segmentation by selecting threshold values is required, which can be determined by visual or automatic methods. Visual determination is influenced by the operator's visual acuity, while the automatic method is done entirely by computer algorithms. To compare between visual and automatic segmentation, and to determine the influence of the operator's visual acuity on the reproducibility of root canal volume and area measurements. Images from 31 extracted human anterior teeth were scanned with a μCT scanner. Three experienced examiners performed visual image segmentation, and threshold values were recorded. Automatic segmentation was done using the "Automatic Threshold Tool" available in the dedicated software provided by the scanner's manufacturer. Volume and area measurements were performed using the threshold values determined both visually and automatically. The paired Student's t-test showed no significant difference between visual and automatic segmentation methods regarding root canal volume measurements (p=0.93) and root canal surface (p=0.79). Although visual and automatic segmentation methods can be used to determine the threshold and calculate root canal volume and surface, the automatic method may be the most suitable for ensuring the reproducibility of threshold determination.

  20. Simple Methods for Scanner Drift Normalization Validated for Automatic Segmentation of Knee Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Dam, Erik Bjørnager

    2018-01-01

    Scanner drift is a well-known magnetic resonance imaging (MRI) artifact characterized by gradual signal degradation and scan intensity changes over time. In addition, hardware and software updates may imply abrupt changes in signal. The combined effects are particularly challenging for automatic...... image analysis methods used in longitudinal studies. The implication is increased measurement variation and a risk of bias in the estimations (e.g. in the volume change for a structure). We proposed two quite different approaches for scanner drift normalization and demonstrated the performance...... for segmentation of knee MRI using the fully automatic KneeIQ framework. The validation included a total of 1975 scans from both high-field and low-field MRI. The results demonstrated that the pre-processing method denoted Atlas Affine Normalization significantly removed scanner drift effects and ensured...

  1. Mandibular canine intrusion with the segmented arch technique: A finite element method study.

    Science.gov (United States)

    Caballero, Giselle Milagros; Carvalho Filho, Osvaldo Abadia de; Hargreaves, Bernardo Oliveira; Brito, Hélio Henrique de Araújo; Magalhães Júnior, Pedro Américo Almeida; Oliveira, Dauro Douglas

    2015-06-01

    Mandibular canines are anatomically extruded in approximately half of the patients with a deepbite. Although simultaneous orthodontic intrusion of the 6 mandibular anterior teeth is not recommended, a few studies have evaluated individual canine intrusion. Our objectives were to use the finite element method to simulate the segmented intrusion of mandibular canines with a cantilever and to evaluate the effects of different compensatory buccolingual activations. A finite element study of the right quadrant of the mandibular dental arch together with periodontal structures was modeled using SolidWorks software (Dassault Systèmes Americas, Waltham, Mass). After all bony, dental, and periodontal ligament structures from the second molar to the canine were graphically represented, brackets and molar tubes were modeled. Subsequently, a 0.021 × 0.025-in base wire was modeled with stainless steel properties and inserted into the brackets and tubes of the 4 posterior teeth to simulate an anchorage unit. Finally, a 0.017 × 0.025-in cantilever was modeled with titanium-molybdenum alloy properties and inserted into the first molar auxiliary tube. Discretization and boundary conditions of all anatomic structures tested were determined with HyperMesh software (Altair Engineering, Milwaukee, Wis), and compensatory toe-ins of 0°, 4°, 6°, and 8° were simulated with Abaqus software (Dassault Systèmes Americas). The 6° toe-in produced pure intrusion of the canine. The highest amounts of periodontal ligament stress in the anchor segment were observed around the first molar roots. This tooth showed a slight tendency for extrusion and distal crown tipping. Moreover, the different compensatory toe-ins tested did not significantly affect the other posterior teeth. The segmented mechanics simulated in this study may achieve pure mandibular canine intrusion when an adequate amount of compensatory toe-in (6°) is incorporated into the cantilever to prevent buccal and lingual crown

  2. Segmental analysis of amphetamines in hair using a sensitive UHPLC-MS/MS method.

    Science.gov (United States)

    Jakobsson, Gerd; Kronstrand, Robert

    2014-06-01

    A sensitive and robust ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was developed and validated for quantification of amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine and 3,4-methylenedioxy methamphetamine in hair samples. Segmented hair (10 mg) was incubated in 2M sodium hydroxide (80°C, 10 min) before liquid-liquid extraction with isooctane followed by centrifugation and evaporation of the organic phase to dryness. The residue was reconstituted in methanol:formate buffer pH 3 (20:80). The total run time was 4 min and after optimization of UHPLC-MS/MS-parameters validation included selectivity, matrix effects, recovery, process efficiency, calibration model and range, lower limit of quantification, precision and bias. The calibration curve ranged from 0.02 to 12.5 ng/mg, and the recovery was between 62 and 83%. During validation the bias was less than ±7% and the imprecision was less than 5% for all analytes. In routine analysis, fortified control samples demonstrated an imprecision <13% and control samples made from authentic hair demonstrated an imprecision <26%. The method was applied to samples from a controlled study of amphetamine intake as well as forensic hair samples previously analyzed with an ultra high performance liquid chromatography time of flight mass spectrometry (UHPLC-TOF-MS) screening method. The proposed method was suitable for quantification of these drugs in forensic cases including violent crimes, autopsy cases, drug testing and re-granting of driving licences. This study also demonstrated that if hair samples are divided into several short segments, the time point for intake of a small dose of amphetamine can be estimated, which might be useful when drug facilitated crimes are investigated. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Investigation of a novel image segmentation method dedicated to forest fire applications

    Science.gov (United States)

    Rudz, S.; Chetehouna, K.; Hafiane, A.; Laurent, H.; Séro-Guillaume, O.

    2013-07-01

    To face fire it is crucial to understand its behaviour in order to maximize fighting means. To achieve this task, the development of a metrological tool is necessary for estimating both geometrical and physical parameters involved in forest fire modelling. A key parameter is to estimate fire positions accurately. In this paper an image processing tool especially dedicated to an accurate extraction of fire from an image is presented. In this work, the clustering on several colour spaces is investigated and it appears that the blue chrominance Cb from the YCbCr colour space is the most appropriate. As a consequence, a new segmentation algorithm dedicated to forest fire applications has been built using first an optimized k-means clustering in the Cb-channel and then some properties of fire pixels in the RGB colour space. Next, the performance of the proposed method is evaluated using three supervised evaluation criteria and then compared to other existing segmentation algorithms in the literature. Finally a conclusion is drawn, assessing the good behaviour of the developed algorithm. This paper is dedicated to the memory of Dr Olivier Séro-Guillaume (1950-2013), CNRS Research Director.

  4. A multi-atlas based method for automated anatomical rat brain MRI segmentation and extraction of PET activity.

    Science.gov (United States)

    Lancelot, Sophie; Roche, Roxane; Slimen, Afifa; Bouillot, Caroline; Levigoureux, Elise; Langlois, Jean-Baptiste; Zimmer, Luc; Costes, Nicolas

    2014-01-01

    Preclinical in vivo imaging requires precise and reproducible delineation of brain structures. Manual segmentation is time consuming and operator dependent. Automated segmentation as usually performed via single atlas registration fails to account for anatomo-physiological variability. We present, evaluate, and make available a multi-atlas approach for automatically segmenting rat brain MRI and extracting PET activies. High-resolution 7T 2DT2 MR images of 12 Sprague-Dawley rat brains were manually segmented into 27-VOI label volumes using detailed protocols. Automated methods were developed with 7/12 atlas datasets, i.e. the MRIs and their associated label volumes. MRIs were registered to a common space, where an MRI template and a maximum probability atlas were created. Three automated methods were tested: 1/registering individual MRIs to the template, and using a single atlas (SA), 2/using the maximum probability atlas (MP), and 3/registering the MRIs from the multi-atlas dataset to an individual MRI, propagating the label volumes and fusing them in individual MRI space (propagation & fusion, PF). Evaluation was performed on the five remaining rats which additionally underwent [18F]FDG PET. Automated and manual segmentations were compared for morphometric performance (assessed by comparing volume bias and Dice overlap index) and functional performance (evaluated by comparing extracted PET measures). Only the SA method showed volume bias. Dice indices were significantly different between methods (PF>MP>SA). PET regional measures were more accurate with multi-atlas methods than with SA method. Multi-atlas methods outperform SA for automated anatomical brain segmentation and PET measure's extraction. They perform comparably to manual segmentation for FDG-PET quantification. Multi-atlas methods are suitable for rapid reproducible VOI analyses.

  5. a Comparison of Tree Segmentation Methods Using Very High Density Airborne Laser Scanner Data

    Science.gov (United States)

    Pirotti, F.; Kobal, M.; Roussel, J. R.

    2017-09-01

    Developments of LiDAR technology are decreasing the unit cost per single point (e.g. single-photo counting). This brings to the possibility of future LiDAR datasets having very dense point clouds. In this work, we process a very dense point cloud ( 200 points per square meter), using three different methods for segmenting single trees and extracting tree positions and other metrics of interest in forestry, such as tree height distribution and canopy area distribution. The three algorithms are tested at decreasing densities, up to a lowest density of 5 point per square meter. Accuracy assessment is done using Kappa, recall, precision and F-Score metrics comparing results with tree positions from groundtruth measurements in six ground plots where tree positions and heights were surveyed manually. Results show that one method provides better Kappa and recall accuracy results for all cases, and that different point densities, in the range used in this study, do not affect accuracy significantly. Processing time is also considered; the method with better accuracy is several times slower than the other two methods and increases exponentially with point density. Best performer gave Kappa = 0.7. The implications of metrics for determining the accuracy of results of point positions' detection is reported. Motives for the different performances of the three methods is discussed and further research direction is proposed.

  6. Automatic neuron segmentation and neural network analysis method for phase contrast microscopy images.

    Science.gov (United States)

    Pang, Jincheng; Özkucur, Nurdan; Ren, Michael; Kaplan, David L; Levin, Michael; Miller, Eric L

    2015-11-01

    Phase Contrast Microscopy (PCM) is an important tool for the long term study of living cells. Unlike fluorescence methods which suffer from photobleaching of fluorophore or dye molecules, PCM image contrast is generated by the natural variations in optical index of refraction. Unfortunately, the same physical principles which allow for these studies give rise to complex artifacts in the raw PCM imagery. Of particular interest in this paper are neuron images where these image imperfections manifest in very different ways for the two structures of specific interest: cell bodies (somas) and dendrites. To address these challenges, we introduce a novel parametric image model using the level set framework and an associated variational approach which simultaneously restores and segments this class of images. Using this technique as the basis for an automated image analysis pipeline, results for both the synthetic and real images validate and demonstrate the advantages of our approach.

  7. A new tissue segmentation method to calculate 3D dose in small animal radiation therapy.

    Science.gov (United States)

    Noblet, C; Delpon, G; Supiot, S; Potiron, V; Paris, F; Chiavassa, S

    2018-02-26

    In pre-clinical animal experiments, radiation delivery is usually delivered with kV photon beams, in contrast to the MV beams used in clinical irradiation, because of the small size of the animals. At this medium energy range, however, the contribution of the photoelectric effect to absorbed dose is significant. Accurate dose calculation therefore requires a more detailed tissue definition because both density (ρ) and elemental composition (Z eff ) affect the dose distribution. Moreover, when applied to cone beam CT (CBCT) acquisitions, the stoichiometric calibration of HU becomes inefficient as it is designed for highly collimated fan beam CT acquisitions. In this study, we propose an automatic tissue segmentation method of CBCT imaging that assigns both density (ρ) and elemental composition (Z eff ) in small animal dose calculation. The method is based on the relationship found between CBCT number and ρ*Z eff product computed from known materials. Monte Carlo calculations were performed to evaluate the impact of ρZ eff variation on the absorbed dose in tissues. These results led to the creation of a tissue database composed of artificial tissues interpolated from tissue values published by the ICRU. The ρZ eff method was validated by measuring transmitted doses through tissue substitute cylinders and a mouse with EBT3 film. Measurements were compared to the results of the Monte Carlo calculations. The study of the impact of ρZ eff variation over the range of materials, from ρZ eff  = 2 g.cm - 3 (lung) to 27 g.cm - 3 (cortical bone) led to the creation of 125 artificial tissues. For tissue substitute cylinders, the use of ρZ eff method led to maximal and average relative differences between the Monte Carlo results and the EBT3 measurements of 3.6% and 1.6%. Equivalent comparison for the mouse gave maximal and average relative differences of 4.4% and 1.2%, inside the 80% isodose area. Gamma analysis led to a 94.9% success rate in the 10% isodose

  8. Graph cut-based method for segmenting the left ventricle from MRI or echocardiographic images.

    Science.gov (United States)

    Bernier, Michael; Jodoin, Pierre-Marc; Humbert, Olivier; Lalande, Alain

    2017-06-01

    In this paper, we present a fast and interactive graph cut method for 3D segmentation of the endocardial wall of the left ventricle (LV) adapted to work on two of the most widely used modalities: magnetic resonance imaging (MRI) and echocardiography. Our method accounts for the fundamentally different nature of both modalities: 3D echocardiographic images have a low contrast, a poor signal-to-noise ratio and frequent signal drop, while MR images are more detailed but also cluttered and contain highly anisotropic voxels. The main characteristic of our method is to work in a 3D Bezier coordinate system instead of the original Euclidean space. This comes with several advantages, including an implicit shape prior and a result guarantied not to have any holes in it. The proposed method is made of 4 steps. First, a 3D sampling of the LV cavity is made based on a Bezier coordinate system. This allows to warp the input 3D image to a Bezier space in which a plane corresponds to an anatomically plausible 3D Euclidean bullet shape. Second, a 3D graph is built and an energy term (which is based on the image gradient and a 3D probability map) is assigned to each edge of the graph, some of which being given an infinite energy to ensure the resulting 3D structure passes through key anatomical points. Third, a max-flow min-cut procedure is executed on the energy graph to delineate the endocardial surface. And fourth, the resulting surface is projected back to the Euclidean space where a post-processing convex hull algorithm is applied on every short axis slice to remove local concavities. Results obtained on two datasets reveal that our method takes between 2 and 5s to segment a 3D volume, it has better results overall than most state-of-the-art methods on the CETUS echocardiographic dataset and is statistically as good as a human operator on MR images. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. TU-CD-BRA-12: Coupling PET Image Restoration and Segmentation Using Variational Method with Multiple Regularizations

    Energy Technology Data Exchange (ETDEWEB)

    Li, L; Tan, S [Huazhong University of Science and Technology, Wuhan, Hubei (China); Lu, W [University of Maryland School of Medicine, Baltimore, MD (United States)

    2015-06-15

    Purpose: To propose a new variational method which couples image restoration with tumor segmentation for PET images using multiple regularizations. Methods: Partial volume effect (PVE) is a major degrading factor impacting tumor segmentation accuracy in PET imaging. The existing segmentation methods usually need to take prior calibrations to compensate PVE and they are highly system-dependent. Taking into account that image restoration and segmentation can promote each other and they are tightly coupled, we proposed a variational method to solve the two problems together. Our method integrated total variation (TV) semi-blind deconvolution and Mumford-Shah (MS) segmentation. The TV norm was used on edges to protect the edge information, and the L{sub 2} norm was used to avoid staircase effect in the no-edge area. The blur kernel was constrained to the Gaussian model parameterized by its variance and we assumed that the variances in the X-Y and Z directions are different. The energy functional was iteratively optimized by an alternate minimization algorithm. Segmentation performance was tested on eleven patients with non-Hodgkin’s lymphoma, and evaluated by Dice similarity index (DSI) and classification error (CE). For comparison, seven other widely used methods were also tested and evaluated. Results: The combination of TV and L{sub 2} regularizations effectively improved the segmentation accuracy. The average DSI increased by around 0.1 than using either the TV or the L{sub 2} norm. The proposed method was obviously superior to other tested methods. It has an average DSI and CE of 0.80 and 0.41, while the FCM method — the second best one — has only an average DSI and CE of 0.66 and 0.64. Conclusion: Coupling image restoration and segmentation can handle PVE and thus improves tumor segmentation accuracy in PET. Alternate use of TV and L2 regularizations can further improve the performance of the algorithm. This work was supported in part by National Natural

  10. A sensitivity analysis method for the body segment inertial parameters based on ground reaction and joint moment regressor matrices.

    Science.gov (United States)

    Futamure, Sumire; Bonnet, Vincent; Dumas, Raphael; Venture, Gentiane

    2017-11-07

    This paper presents a method allowing a simple and efficient sensitivity analysis of dynamics parameters of complex whole-body human model. The proposed method is based on the ground reaction and joint moment regressor matrices, developed initially in robotics system identification theory, and involved in the equations of motion of the human body. The regressor matrices are linear relatively to the segment inertial parameters allowing us to use simple sensitivity analysis methods. The sensitivity analysis method was applied over gait dynamics and kinematics data of nine subjects and with a 15 segments 3D model of the locomotor apparatus. According to the proposed sensitivity indices, 76 segments inertial parameters out the 150 of the mechanical model were considered as not influent for gait. The main findings were that the segment masses were influent and that, at the exception of the trunk, moment of inertia were not influent for the computation of the ground reaction forces and moments and the joint moments. The same method also shows numerically that at least 90% of the lower-limb joint moments during the stance phase can be estimated only from a force-plate and kinematics data without knowing any of the segment inertial parameters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Hybrid of Fuzzy Logic and Random Walker Method for Medical Image Segmentation

    OpenAIRE

    Jasdeep Kaur; Manish Mahajan

    2015-01-01

    The procedure of partitioning an image into various segments to reform an image into somewhat that is more significant and easier to analyze, defined as image segmentation. In real world applications, noisy images exits and there could be some measurement errors too. These factors affect the quality of segmentation, which is of major concern in medical fields where decisions about patients’ treatment are based on information extracted from radiological images. Several algorithms and technique...

  12. Segmentation of Gait Sequences in Sensor-Based Movement Analysis: A Comparison of Methods in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Nooshin Haji Ghassemi

    2018-01-01

    Full Text Available Robust gait segmentation is the basis for mobile gait analysis. A range of methods have been applied and evaluated for gait segmentation of healthy and pathological gait bouts. However, a unified evaluation of gait segmentation methods in Parkinson’s disease (PD is missing. In this paper, we compare four prevalent gait segmentation methods in order to reveal their strengths and drawbacks in gait processing. We considered peak detection from event-based methods, two variations of dynamic time warping from template matching methods, and hierarchical hidden Markov models (hHMMs from machine learning methods. To evaluate the methods, we included two supervised and instrumented gait tests that are widely used in the examination of Parkinsonian gait. In the first experiment, a sequence of strides from instructed straight walks was measured from 10 PD patients. In the second experiment, a more heterogeneous assessment paradigm was used from an additional 34 PD patients, including straight walks and turning strides as well as non-stride movements. The goal of the latter experiment was to evaluate the methods in challenging situations including turning strides and non-stride movements. Results showed no significant difference between the methods for the first scenario, in which all methods achieved an almost 100% accuracy in terms of F-score. Hence, we concluded that in the case of a predefined and homogeneous sequence of strides, all methods can be applied equally. However, in the second experiment the difference between methods became evident, with the hHMM obtaining a 96% F-score and significantly outperforming the other methods. The hHMM also proved promising in distinguishing between strides and non-stride movements, which is critical for clinical gait analysis. Our results indicate that both the instrumented test procedure and the required stride segmentation algorithm have to be selected adequately in order to support and complement classical

  13. A method for automatic grain segmentation of multi-angle cross-polarized microscopic images of sandstone

    Science.gov (United States)

    Jiang, Feng; Gu, Qing; Hao, Huizhen; Li, Na; Wang, Bingqian; Hu, Xiumian

    2018-06-01

    Automatic grain segmentation of sandstone is to partition mineral grains into separate regions in the thin section, which is the first step for computer aided mineral identification and sandstone classification. The sandstone microscopic images contain a large number of mixed mineral grains where differences among adjacent grains, i.e., quartz, feldspar and lithic grains, are usually ambiguous, which make grain segmentation difficult. In this paper, we take advantage of multi-angle cross-polarized microscopic images and propose a method for grain segmentation with high accuracy. The method consists of two stages, in the first stage, we enhance the SLIC (Simple Linear Iterative Clustering) algorithm, named MSLIC, to make use of multi-angle images and segment the images as boundary adherent superpixels. In the second stage, we propose the region merging technique which combines the coarse merging and fine merging algorithms. The coarse merging merges the adjacent superpixels with less evident boundaries, and the fine merging merges the ambiguous superpixels using the spatial enhanced fuzzy clustering. Experiments are designed on 9 sets of multi-angle cross-polarized images taken from the three major types of sandstones. The results demonstrate both the effectiveness and potential of the proposed method, comparing to the available segmentation methods.

  14. Communication: Proton NMR dipolar-correlation effect as a method for investigating segmental diffusion in polymer melts

    International Nuclear Information System (INIS)

    Lozovoi, A.; Mattea, C.; Stapf, S.; Herrmann, A.; Rössler, E. A.; Fatkullin, N.

    2016-01-01

    A simple and fast method for the investigation of segmental diffusion in high molar mass polymer melts is presented. The method is based on a special function, called proton dipolar-correlation build-up function, which is constructed from Hahn Echo signals measured at times t and t/2. The initial rise of this function contains additive contributions from both inter- and intramolecular magnetic dipole-dipole interactions. The intermolecular contribution depends on the relative mean squared displacements (MSDs) of polymer segments from different macromolecules, while the intramolecular part reflects segmental reorientations. Separation of both contributions via isotope dilution provides access to segmental displacements in polymer melts at millisecond range, which is hardly accessible by other methods. The feasibility of the method is illustrated by investigating protonated and deuterated polybutadiene melts with molecular mass 196 000 g/mol at different temperatures. The observed exponent of the power law of the segmental MSD is close to 0.32 ± 0.03 at times when the root MSD is in between 45 Å and 75 Å, and the intermolecular proton dipole-dipole contribution to the total proton Hahn Echo NMR signal is larger than 50% and increases with time.

  15. A hybrid segmentation method for partitioning the liver based on 4D DCE-MR images

    Science.gov (United States)

    Zhang, Tian; Wu, Zhiyi; Runge, Jurgen H.; Lavini, Cristina; Stoker, Jaap; van Gulik, Thomas; Cieslak, Kasia P.; van Vliet, Lucas J.; Vos, Frans M.

    2018-03-01

    The Couinaud classification of hepatic anatomy partitions the liver into eight functionally independent segments. Detection and segmentation of the hepatic vein (HV), portal vein (PV) and inferior vena cava (IVC) plays an important role in the subsequent delineation of the liver segments. To facilitate pharmacokinetic modeling of the liver based on the same data, a 4D DCE-MR scan protocol was selected. This yields images with high temporal resolution but low spatial resolution. Since the liver's vasculature consists of many tiny branches, segmentation of these images is challenging. The proposed framework starts with registration of the 4D DCE-MRI series followed by region growing from manually annotated seeds in the main branches of key blood vessels in the liver. It calculates the Pearson correlation between the time intensity curves (TICs) of a seed and all voxels. A maximum correlation map for each vessel is obtained by combining the correlation maps for all branches of the same vessel through a maximum selection per voxel. The maximum correlation map is incorporated in a level set scheme to individually delineate the main vessels. Subsequently, the eight liver segments are segmented based on three vertical intersecting planes fit through the three skeleton branches of HV and IVC's center of mass as well as a horizontal plane fit through the skeleton of PV. Our segmentation regarding delineation of the vessels is more accurate than the results of two state-of-the-art techniques on five subjects in terms of the average symmetric surface distance (ASSD) and modified Hausdorff distance (MHD). Furthermore, the proposed liver partitioning achieves large overlap with manual reference segmentations (expressed in Dice Coefficient) in all but a small minority of segments (mean values between 87% and 94% for segments 2-8). The lower mean overlap for segment 1 (72%) is due to the limited spatial resolution of our DCE-MR scan protocol.

  16. An improved level set method for brain MR images segmentation and bias correction.

    Science.gov (United States)

    Chen, Yunjie; Zhang, Jianwei; Macione, Jim

    2009-10-01

    Intensity inhomogeneities cause considerable difficulty in the quantitative analysis of magnetic resonance (MR) images. Thus, bias field estimation is a necessary step before quantitative analysis of MR data can be undertaken. This paper presents a variational level set approach to bias correction and segmentation for images with intensity inhomogeneities. Our method is based on an observation that intensities in a relatively small local region are separable, despite of the inseparability of the intensities in the whole image caused by the overall intensity inhomogeneity. We first define a localized K-means-type clustering objective function for image intensities in a neighborhood around each point. The cluster centers in this objective function have a multiplicative factor that estimates the bias within the neighborhood. The objective function is then integrated over the entire domain to define the data term into the level set framework. Our method is able to capture bias of quite general profiles. Moreover, it is robust to initialization, and thereby allows fully automated applications. The proposed method has been used for images of various modalities with promising results.

  17. Segmentation of anatomical structures in chest radiographs using supervised methods: a comparative study on a public database

    DEFF Research Database (Denmark)

    van Ginneken, Bram; Stegmann, Mikkel Bille; Loog, Marco

    2006-01-01

    classification method that employs a multi-scale filter bank of Gaussian derivatives and a k-nearest-neighbors classifier. The methods have been tested on a publicly available database of 247 chest radiographs, in which all objects have been manually segmented by two human observers. A parameter optimization...

  18. Interactive vs. automatic ultrasound image segmentation methods for staging hepatic lipidosis.

    NARCIS (Netherlands)

    Weijers, G.; Starke, A.; Haudum, A.; Thijssen, J.M.; Rehage, J.; Korte, C.L. de

    2010-01-01

    The aim of this study was to test the hypothesis that automatic segmentation of vessels in ultrasound (US) images can produce similar or better results in grading fatty livers than interactive segmentation. A study was performed in postpartum dairy cows (N=151), as an animal model of human fatty

  19. A Parallel Distributed-Memory Particle Method Enables Acquisition-Rate Segmentation of Large Fluorescence Microscopy Images.

    Directory of Open Access Journals (Sweden)

    Yaser Afshar

    Full Text Available Modern fluorescence microscopy modalities, such as light-sheet microscopy, are capable of acquiring large three-dimensional images at high data rate. This creates a bottleneck in computational processing and analysis of the acquired images, as the rate of acquisition outpaces the speed of processing. Moreover, images can be so large that they do not fit the main memory of a single computer. We address both issues by developing a distributed parallel algorithm for segmentation of large fluorescence microscopy images. The method is based on the versatile Discrete Region Competition algorithm, which has previously proven useful in microscopy image segmentation. The present distributed implementation decomposes the input image into smaller sub-images that are distributed across multiple computers. Using network communication, the computers orchestrate the collectively solving of the global segmentation problem. This not only enables segmentation of large images (we test images of up to 10(10 pixels, but also accelerates segmentation to match the time scale of image acquisition. Such acquisition-rate image segmentation is a prerequisite for the smart microscopes of the future and enables online data compression and interactive experiments.

  20. A Parallel Distributed-Memory Particle Method Enables Acquisition-Rate Segmentation of Large Fluorescence Microscopy Images.

    Science.gov (United States)

    Afshar, Yaser; Sbalzarini, Ivo F

    2016-01-01

    Modern fluorescence microscopy modalities, such as light-sheet microscopy, are capable of acquiring large three-dimensional images at high data rate. This creates a bottleneck in computational processing and analysis of the acquired images, as the rate of acquisition outpaces the speed of processing. Moreover, images can be so large that they do not fit the main memory of a single computer. We address both issues by developing a distributed parallel algorithm for segmentation of large fluorescence microscopy images. The method is based on the versatile Discrete Region Competition algorithm, which has previously proven useful in microscopy image segmentation. The present distributed implementation decomposes the input image into smaller sub-images that are distributed across multiple computers. Using network communication, the computers orchestrate the collectively solving of the global segmentation problem. This not only enables segmentation of large images (we test images of up to 10(10) pixels), but also accelerates segmentation to match the time scale of image acquisition. Such acquisition-rate image segmentation is a prerequisite for the smart microscopes of the future and enables online data compression and interactive experiments.

  1. A Parallel Distributed-Memory Particle Method Enables Acquisition-Rate Segmentation of Large Fluorescence Microscopy Images

    Science.gov (United States)

    Afshar, Yaser; Sbalzarini, Ivo F.

    2016-01-01

    Modern fluorescence microscopy modalities, such as light-sheet microscopy, are capable of acquiring large three-dimensional images at high data rate. This creates a bottleneck in computational processing and analysis of the acquired images, as the rate of acquisition outpaces the speed of processing. Moreover, images can be so large that they do not fit the main memory of a single computer. We address both issues by developing a distributed parallel algorithm for segmentation of large fluorescence microscopy images. The method is based on the versatile Discrete Region Competition algorithm, which has previously proven useful in microscopy image segmentation. The present distributed implementation decomposes the input image into smaller sub-images that are distributed across multiple computers. Using network communication, the computers orchestrate the collectively solving of the global segmentation problem. This not only enables segmentation of large images (we test images of up to 1010 pixels), but also accelerates segmentation to match the time scale of image acquisition. Such acquisition-rate image segmentation is a prerequisite for the smart microscopes of the future and enables online data compression and interactive experiments. PMID:27046144

  2. Fuzzy segmentation of cerebral tissues in a 3-D MR image: a possibilistic approach versus other methods

    International Nuclear Information System (INIS)

    Barra, V.; Boire, J.Y.

    1999-01-01

    An algorithm for the segmentation of a single sequence of 3-D magnetic resonance images into cerebrospinal Fluid (CSF), Grey (GM) and White Matter (WM) classes is proposed. The method is a possibilistic clustering algorithm on the wavelet coefficients of the voxels. Possibilistic logic allows for modeling the uncertainty and the impreciseness inherent in MR images of the brain, while the wavelet representation allows to take into account both spatial and textural information. The procedure is fast, unsupervised and totally independent of statistical assumptions. In method is validated on a phantom, and then compared with other very used brain tissues segmentation algorithms. (authors)

  3. A simple method for microtuber production in dioscorea opposita using single nodal segments

    International Nuclear Information System (INIS)

    Li, M.; Wang, Y; Liu, W.; Li, S.

    2015-01-01

    Dioscorea opposita Thunb. (Chinese yam) is an important tuber crop in East Asia because of its dual benefits edible and medicinal properties. Microtubers may provide a feasible alternative to in-vitro-grown plantlets as a means of micropropagation and a way to exchange healthy planting material. In this study, we have developed a simplified culture method for In vitro production of microtubers from D. opposita cv. Tiegun. In this method, microtubers formed in 98% of the internodes of single nodal segments after four weeks of dark-incubation when cultured in MS medium supplemented with 60 g sucrose 1-1 with shaking. Anatomical observations strongly supported the process of tuberization. We also found that 66% of the microtubers produced In vitro sprouted two months after transfer to vermiculite. The protocol presented here provides a simple model for studying the physiological, biochemical, and molecular mechanisms of tuberization in D. opposita, and shows good potential for large-scale production of microtubers as well. (author)

  4. Omega-3 chicken egg detection system using a mobile-based image processing segmentation method

    Science.gov (United States)

    Nurhayati, Oky Dwi; Kurniawan Teguh, M.; Cintya Amalia, P.

    2017-02-01

    An Omega-3 chicken egg is a chicken egg produced through food engineering technology. It is produced by hen fed with high omega-3 fatty acids. So, it has fifteen times nutrient content of omega-3 higher than Leghorn's. Visually, its shell has the same shape and colour as Leghorn's. Each egg can be distinguished by breaking the egg's shell and testing the egg yolk's nutrient content in a laboratory. But, those methods were proven not effective and efficient. Observing this problem, the purpose of this research is to make an application to detect the type of omega-3 chicken egg by using a mobile-based computer vision. This application was built in OpenCV computer vision library to support Android Operating System. This experiment required some chicken egg images taken using an egg candling box. We used 60 omega-3 chicken and Leghorn eggs as samples. Then, using an Android smartphone, image acquisition of the egg was obtained. After that, we applied several steps using image processing methods such as Grab Cut, convert RGB image to eight bit grayscale, median filter, P-Tile segmentation, and morphology technique in this research. The next steps were feature extraction which was used to extract feature values via mean, variance, skewness, and kurtosis from each image. Finally, using digital image measurement, some chicken egg images were classified. The result showed that omega-3 chicken egg and Leghorn egg had different values. This system is able to provide accurate reading around of 91%.

  5. Spectrum recovery method based on sparse representation for segmented multi-Gaussian model

    Science.gov (United States)

    Teng, Yidan; Zhang, Ye; Ti, Chunli; Su, Nan

    2016-09-01

    Hyperspectral images can realize crackajack features discriminability for supplying diagnostic characteristics with high spectral resolution. However, various degradations may generate negative influence on the spectral information, including water absorption, bands-continuous noise. On the other hand, the huge data volume and strong redundancy among spectrums produced intense demand on compressing HSIs in spectral dimension, which also leads to the loss of spectral information. The reconstruction of spectral diagnostic characteristics has irreplaceable significance for the subsequent application of HSIs. This paper introduces a spectrum restoration method for HSIs making use of segmented multi-Gaussian model (SMGM) and sparse representation. A SMGM is established to indicating the unsymmetrical spectral absorption and reflection characteristics, meanwhile, its rationality and sparse property are discussed. With the application of compressed sensing (CS) theory, we implement sparse representation to the SMGM. Then, the degraded and compressed HSIs can be reconstructed utilizing the uninjured or key bands. Finally, we take low rank matrix recovery (LRMR) algorithm for post processing to restore the spatial details. The proposed method was tested on the spectral data captured on the ground with artificial water absorption condition and an AVIRIS-HSI data set. The experimental results in terms of qualitative and quantitative assessments demonstrate that the effectiveness on recovering the spectral information from both degradations and loss compression. The spectral diagnostic characteristics and the spatial geometry feature are well preserved.

  6. A spectral element method with adaptive segmentation for accurately simulating extracellular electrical stimulation of neurons.

    Science.gov (United States)

    Eiber, Calvin D; Dokos, Socrates; Lovell, Nigel H; Suaning, Gregg J

    2017-05-01

    The capacity to quickly and accurately simulate extracellular stimulation of neurons is essential to the design of next-generation neural prostheses. Existing platforms for simulating neurons are largely based on finite-difference techniques; due to the complex geometries involved, the more powerful spectral or differential quadrature techniques cannot be applied directly. This paper presents a mathematical basis for the application of a spectral element method to the problem of simulating the extracellular stimulation of retinal neurons, which is readily extensible to neural fibers of any kind. The activating function formalism is extended to arbitrary neuron geometries, and a segmentation method to guarantee an appropriate choice of collocation points is presented. Differential quadrature may then be applied to efficiently solve the resulting cable equations. The capacity for this model to simulate action potentials propagating through branching structures and to predict minimum extracellular stimulation thresholds for individual neurons is demonstrated. The presented model is validated against published values for extracellular stimulation threshold and conduction velocity for realistic physiological parameter values. This model suggests that convoluted axon geometries are more readily activated by extracellular stimulation than linear axon geometries, which may have ramifications for the design of neural prostheses.

  7. Automated Segmentation Methods of Drusen to Diagnose Age-Related Macular Degeneration Screening in Retinal Images

    Directory of Open Access Journals (Sweden)

    Young Jae Kim

    2018-01-01

    Full Text Available Existing drusen measurement is difficult to use in clinic because it requires a lot of time and effort for visual inspection. In order to resolve this problem, we propose an automatic drusen detection method to help clinical diagnosis of age-related macular degeneration. First, we changed the fundus image to a green channel and extracted the ROI of the macular area based on the optic disk. Next, we detected the candidate group using the difference image of the median filter within the ROI. We also segmented vessels and removed them from the image. Finally, we detected the drusen through Renyi’s entropy threshold algorithm. We performed comparisons and statistical analysis between the manual detection results and automatic detection results for 30 cases in order to verify validity. As a result, the average sensitivity was 93.37% (80.95%~100% and the average DSC was 0.73 (0.3~0.98. In addition, the value of the ICC was 0.984 (CI: 0.967~0.993, p<0.01, showing the high reliability of the proposed automatic method. We expect that the automatic drusen detection helps clinicians to improve the diagnostic performance in the detection of drusen on fundus image.

  8. Influence of inverse dynamics methods on the calculation of inter-segmental moments in vertical jumping and weightlifting

    Directory of Open Access Journals (Sweden)

    Cleather Daniel J

    2010-11-01

    Full Text Available Abstract Background A vast number of biomechanical studies have employed inverse dynamics methods to calculate inter-segmental moments during movement. Although all inverse dynamics methods are rooted in classical mechanics and thus theoretically the same, there exist a number of distinct computational methods. Recent research has demonstrated a key influence of the dynamics computation of the inverse dynamics method on the calculated moments, despite the theoretical equivalence of the methods. The purpose of this study was therefore to explore the influence of the choice of inverse dynamics on the calculation of inter-segmental moments. Methods An inverse dynamics analysis was performed to analyse vertical jumping and weightlifting movements using two distinct methods. The first method was the traditional inverse dynamics approach, in this study characterized as the 3 step method, where inter-segmental moments were calculated in the local coordinate system of each segment, thus requiring multiple coordinate system transformations. The second method (the 1 step method was the recently proposed approach based on wrench notation that allows all calculations to be performed in the global coordinate system. In order to best compare the effect of the inverse dynamics computation a number of the key assumptions and methods were harmonized, in particular unit quaternions were used to parameterize rotation in both methods in order to standardize the kinematics. Results Mean peak inter-segmental moments calculated by the two methods were found to agree to 2 decimal places in all cases and were not significantly different (p > 0.05. Equally the normalized dispersions of the two methods were small. Conclusions In contrast to previously documented research the difference between the two methods was found to be negligible. This study demonstrates that the 1 and 3 step method are computationally equivalent and can thus be used interchangeably in

  9. Comparative performance evaluation of automated segmentation methods of hippocampus from magnetic resonance images of temporal lobe epilepsy patients.

    Science.gov (United States)

    Hosseini, Mohammad-Parsa; Nazem-Zadeh, Mohammad-Reza; Pompili, Dario; Jafari-Khouzani, Kourosh; Elisevich, Kost; Soltanian-Zadeh, Hamid

    2016-01-01

    Segmentation of the hippocampus from magnetic resonance (MR) images is a key task in the evaluation of mesial temporal lobe epilepsy (mTLE) patients. Several automated algorithms have been proposed although manual segmentation remains the benchmark. Choosing a reliable algorithm is problematic since structural definition pertaining to multiple edges, missing and fuzzy boundaries, and shape changes varies among mTLE subjects. Lack of statistical references and guidance for quantifying the reliability and reproducibility of automated techniques has further detracted from automated approaches. The purpose of this study was to develop a systematic and statistical approach using a large dataset for the evaluation of automated methods and establish a method that would achieve results better approximating those attained by manual tracing in the epileptogenic hippocampus. A template database of 195 (81 males, 114 females; age range 32-67 yr, mean 49.16 yr) MR images of mTLE patients was used in this study. Hippocampal segmentation was accomplished manually and by two well-known tools (FreeSurfer and hammer) and two previously published methods developed at their institution [Automatic brain structure segmentation (ABSS) and LocalInfo]. To establish which method was better performing for mTLE cases, several voxel-based, distance-based, and volume-based performance metrics were considered. Statistical validations of the results using automated techniques were compared with the results of benchmark manual segmentation. Extracted metrics were analyzed to find the method that provided a more similar result relative to the benchmark. Among the four automated methods, ABSS generated the most accurate results. For this method, the Dice coefficient was 5.13%, 14.10%, and 16.67% higher, Hausdorff was 22.65%, 86.73%, and 69.58% lower, precision was 4.94%, -4.94%, and 12.35% higher, and the root mean square (RMS) was 19.05%, 61.90%, and 65.08% lower than LocalInfo, FreeSurfer, and

  10. Wavelet-Based Artifact Identification and Separation Technique for EEG Signals during Galvanic Vestibular Stimulation

    Science.gov (United States)

    Adib, Mani; Cretu, Edmond

    2013-01-01

    We present a new method for removing artifacts in electroencephalography (EEG) records during Galvanic Vestibular Stimulation (GVS). The main challenge in exploiting GVS is to understand how the stimulus acts as an input to brain. We used EEG to monitor the brain and elicit the GVS reflexes. However, GVS current distribution throughout the scalp generates an artifact on EEG signals. We need to eliminate this artifact to be able to analyze the EEG signals during GVS. We propose a novel method to estimate the contribution of the GVS current in the EEG signals at each electrode by combining time-series regression methods with wavelet decomposition methods. We use wavelet transform to project the recorded EEG signal into various frequency bands and then estimate the GVS current distribution in each frequency band. The proposed method was optimized using simulated signals, and its performance was compared to well-accepted artifact removal methods such as ICA-based methods and adaptive filters. The results show that the proposed method has better performance in removing GVS artifacts, compared to the others. Using the proposed method, a higher signal to artifact ratio of −1.625 dB was achieved, which outperformed other methods such as ICA-based methods, regression methods, and adaptive filters. PMID:23956786

  11. Wavelet-Based Artifact Identification and Separation Technique for EEG Signals during Galvanic Vestibular Stimulation

    Directory of Open Access Journals (Sweden)

    Mani Adib

    2013-01-01

    Full Text Available We present a new method for removing artifacts in electroencephalography (EEG records during Galvanic Vestibular Stimulation (GVS. The main challenge in exploiting GVS is to understand how the stimulus acts as an input to brain. We used EEG to monitor the brain and elicit the GVS reflexes. However, GVS current distribution throughout the scalp generates an artifact on EEG signals. We need to eliminate this artifact to be able to analyze the EEG signals during GVS. We propose a novel method to estimate the contribution of the GVS current in the EEG signals at each electrode by combining time-series regression methods with wavelet decomposition methods. We use wavelet transform to project the recorded EEG signal into various frequency bands and then estimate the GVS current distribution in each frequency band. The proposed method was optimized using simulated signals, and its performance was compared to well-accepted artifact removal methods such as ICA-based methods and adaptive filters. The results show that the proposed method has better performance in removing GVS artifacts, compared to the others. Using the proposed method, a higher signal to artifact ratio of −1.625 dB was achieved, which outperformed other methods such as ICA-based methods, regression methods, and adaptive filters.

  12. Research on simulation calculation method of biomechanical characteristics of C1-3 motion segment damage mechanism

    Directory of Open Access Journals (Sweden)

    HUANG Ju-ying

    2013-11-01

    Full Text Available Objective To develop the finite element model (FEM of cervical spinal C1-3 motion segment, and to make biomechanical finite element analysis (FEA on C1-3 motion segment and thus simulate the biomechanical characteristics of C1-3 motion segment in distraction violence, compression violence, hyperextension violence and hyperflexion violence. Methods According to CT radiological data of a healthy adult, the vertebrae and intervertebral discs of cervical spinal C1-3 motion segment were respectively reconstructed by Mimics 10.01 software and Geomagic 10.0 software. The FEM of C1-3 motion segment was reconstructed by attaching the corresponding material properties of cervical spine in Ansys software. The biomechanical characteristics of cervical spinal C1-3 motion segment model were simulated under the 4 loadings of distraction violence, compression violence, hyperextension violence and hyperflexion violence by finite element method. Results In the loading of longitudinal stretch, the stress was relatively concentrated in the anterior arch of atlas, atlantoaxial joint and C3 lamina and spinous process. In the longitudinal compressive loads, the maximum stress of the upper cervical spine was located in the anterior arch of atlas. In the loading of hyperextension moment, the stress was larger in the massa lateralis atlantis, the lateral and posterior arch junction of atlas, the posterior arch nodules of the atlas, superior articular surface of axis and C2 isthmus. In the loading of hyperflexion moment, the stress was relatively concentrated in the odontoid process of axis, the posterior arch of atlas, the posterior arch nodules of atlas, C2 isthmic and C2 inferior articular process. Conclusion Finite element biomechanical testing of C1-3 motion segment can predict the biomechanical mechanism of upper cervical spine injury.

  13. Two-Phase and Graph-Based Clustering Methods for Accurate and Efficient Segmentation of Large Mass Spectrometry Images.

    Science.gov (United States)

    Dexter, Alex; Race, Alan M; Steven, Rory T; Barnes, Jennifer R; Hulme, Heather; Goodwin, Richard J A; Styles, Iain B; Bunch, Josephine

    2017-11-07

    Clustering is widely used in MSI to segment anatomical features and differentiate tissue types, but existing approaches are both CPU and memory-intensive, limiting their application to small, single data sets. We propose a new approach that uses a graph-based algorithm with a two-phase sampling method that overcomes this limitation. We demonstrate the algorithm on a range of sample types and show that it can segment anatomical features that are not identified using commonly employed algorithms in MSI, and we validate our results on synthetic MSI data. We show that the algorithm is robust to fluctuations in data quality by successfully clustering data with a designed-in variance using data acquired with varying laser fluence. Finally, we show that this method is capable of generating accurate segmentations of large MSI data sets acquired on the newest generation of MSI instruments and evaluate these results by comparison with histopathology.

  14. Automated segmentation and isolation of touching cell nuclei in cytopathology smear images of pleural effusion using distance transform watershed method

    Science.gov (United States)

    Win, Khin Yadanar; Choomchuay, Somsak; Hamamoto, Kazuhiko

    2017-06-01

    The automated segmentation of cell nuclei is an essential stage in the quantitative image analysis of cell nuclei extracted from smear cytology images of pleural fluid. Cell nuclei can indicate cancer as the characteristics of cell nuclei are associated with cells proliferation and malignancy in term of size, shape and the stained color. Nevertheless, automatic nuclei segmentation has remained challenging due to the artifacts caused by slide preparation, nuclei heterogeneity such as the poor contrast, inconsistent stained color, the cells variation, and cells overlapping. In this paper, we proposed a watershed-based method that is capable to segment the nuclei of the variety of cells from cytology pleural fluid smear images. Firstly, the original image is preprocessed by converting into the grayscale image and enhancing by adjusting and equalizing the intensity using histogram equalization. Next, the cell nuclei are segmented using OTSU thresholding as the binary image. The undesirable artifacts are eliminated using morphological operations. Finally, the distance transform based watershed method is applied to isolate the touching and overlapping cell nuclei. The proposed method is tested with 25 Papanicolaou (Pap) stained pleural fluid images. The accuracy of our proposed method is 92%. The method is relatively simple, and the results are very promising.

  15. A wavelet-based approach to the discovery of themes and sections in monophonic melodies

    DEFF Research Database (Denmark)

    Velarde, Gissel; Meredith, David

    We present the computational method submitted to the MIREX 2014 Discovery of Repeated Themes & Sections task, and the results on the monophonic version of the JKU Patterns Development Database. In the context of pattern discovery in monophonic music, the idea behind our method is that, with a good...

  16. Construction of Interval Wavelet Based on Restricted Variational Principle and Its Application for Solving Differential Equations

    OpenAIRE

    Mei, Shu-Li; Lv, Hong-Liang; Ma, Qin

    2008-01-01

    Based on restricted variational principle, a novel method for interval wavelet construction is proposed. For the excellent local property of quasi-Shannon wavelet, its interval wavelet is constructed, and then applied to solve ordinary differential equations. Parameter choices for the interval wavelet method are discussed and its numerical performance is demonstrated.

  17. Assessment of narrow angles by gonioscopy, Van Herick method and anterior segment optical coherence tomography.

    Science.gov (United States)

    Park, Seong Bae; Sung, Kyung Rim; Kang, Sung Yung; Jo, Jung Woo; Lee, Kyoung Sub; Kook, Michael S

    2011-07-01

    To evaluate anterior chamber (AC) angles using gonioscopy, Van Herick technique and anterior segment optical coherence tomography (AS-OCT). One hundred forty-eight consecutive subjects were enrolled. The agreement between any two of three diagnostic methods, gonioscopy, AS-OCT and Van Herick, was calculated in narrow-angle patients. The area under receiver-operating characteristic curves (AUC) for discriminating between narrow and open angles determined by gonioscopy was calculated in all participants for AS-OCT parameter angle opening distance (AOD), angle recess area, trabecular iris surface area and anterior chamber depth (ACD). As a subgroup analysis, capability of AS-OCT parameters for detecting angle closure defined by AS-OCT was assessed in narrow-angle patients. The agreement between the Van Herick method and gonioscopy in detecting angle closure was excellent in narrow angles (κ = 0.80, temporal; κ = 0.82, nasal). However, agreement between gonioscopy and AS-OCT and between the Van Herick method and AS-OCT was poor (κ = 0.11-0.16). Discrimination capability of AS-OCT parameters between open and narrow angles determined by gonioscopy was excellent for all AS-OCT parameters (AUC, temporal: AOD500 = 0.96, nasal: AOD500 = 0.99). The AUCs for detecting angle closure defined by AS-OCT image in narrow angle subjects was good for all AS-OCT parameters (AUC, 0.80-0.94) except for ACD (temporal: ACD = 0.70, nasal: ACD = 0.63). Assessment of narrow angles by gonioscopy and the Van Herick technique showed good agreement, but both measurements revealed poor agreement with AS-OCT. The angle closure detection capability of AS-OCT parameters was excellent; however, it was slightly lower in ACD.

  18. SU-E-J-252: Reproducibility of Radiogenomic Image Features: Comparison of Two Semi-Automated Segmentation Methods

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M; Woo, B; Kim, J [Seoul National University, Seoul (Korea, Republic of); Jamshidi, N; Kuo, M [UCLA School of Medicine, Los Angeles, CA (United States)

    2015-06-15

    Purpose: Objective and reliable quantification of imaging phenotype is an essential part of radiogenomic studies. We compared the reproducibility of two semi-automatic segmentation methods for quantitative image phenotyping in magnetic resonance imaging (MRI) of glioblastoma multiforme (GBM). Methods: MRI examinations with T1 post-gadolinium and FLAIR sequences of 10 GBM patients were downloaded from the Cancer Image Archive site. Two semi-automatic segmentation tools with different algorithms (deformable model and grow cut method) were used to segment contrast enhancement, necrosis and edema regions by two independent observers. A total of 21 imaging features consisting of area and edge groups were extracted automatically from the segmented tumor. The inter-observer variability and coefficient of variation (COV) were calculated to evaluate the reproducibility. Results: Inter-observer correlations and coefficient of variation of imaging features with the deformable model ranged from 0.953 to 0.999 and 2.1% to 9.2%, respectively, and the grow cut method ranged from 0.799 to 0.976 and 3.5% to 26.6%, respectively. Coefficient of variation for especially important features which were previously reported as predictive of patient survival were: 3.4% with deformable model and 7.4% with grow cut method for the proportion of contrast enhanced tumor region; 5.5% with deformable model and 25.7% with grow cut method for the proportion of necrosis; and 2.1% with deformable model and 4.4% with grow cut method for edge sharpness of tumor on CE-T1W1. Conclusion: Comparison of two semi-automated tumor segmentation techniques shows reliable image feature extraction for radiogenomic analysis of GBM patients with multiparametric Brain MRI.

  19. SU-E-J-252: Reproducibility of Radiogenomic Image Features: Comparison of Two Semi-Automated Segmentation Methods

    International Nuclear Information System (INIS)

    Lee, M; Woo, B; Kim, J; Jamshidi, N; Kuo, M

    2015-01-01

    Purpose: Objective and reliable quantification of imaging phenotype is an essential part of radiogenomic studies. We compared the reproducibility of two semi-automatic segmentation methods for quantitative image phenotyping in magnetic resonance imaging (MRI) of glioblastoma multiforme (GBM). Methods: MRI examinations with T1 post-gadolinium and FLAIR sequences of 10 GBM patients were downloaded from the Cancer Image Archive site. Two semi-automatic segmentation tools with different algorithms (deformable model and grow cut method) were used to segment contrast enhancement, necrosis and edema regions by two independent observers. A total of 21 imaging features consisting of area and edge groups were extracted automatically from the segmented tumor. The inter-observer variability and coefficient of variation (COV) were calculated to evaluate the reproducibility. Results: Inter-observer correlations and coefficient of variation of imaging features with the deformable model ranged from 0.953 to 0.999 and 2.1% to 9.2%, respectively, and the grow cut method ranged from 0.799 to 0.976 and 3.5% to 26.6%, respectively. Coefficient of variation for especially important features which were previously reported as predictive of patient survival were: 3.4% with deformable model and 7.4% with grow cut method for the proportion of contrast enhanced tumor region; 5.5% with deformable model and 25.7% with grow cut method for the proportion of necrosis; and 2.1% with deformable model and 4.4% with grow cut method for edge sharpness of tumor on CE-T1W1. Conclusion: Comparison of two semi-automated tumor segmentation techniques shows reliable image feature extraction for radiogenomic analysis of GBM patients with multiparametric Brain MRI

  20. Variational Level Set Method for Two-Stage Image Segmentation Based on Morphological Gradients

    Directory of Open Access Journals (Sweden)

    Zemin Ren

    2014-01-01

    Full Text Available We use variational level set method and transition region extraction techniques to achieve image segmentation task. The proposed scheme is done by two steps. We first develop a novel algorithm to extract transition region based on the morphological gradient. After this, we integrate the transition region into a variational level set framework and develop a novel geometric active contour model, which include an external energy based on transition region and fractional order edge indicator function. The external energy is used to drive the zero level set toward the desired image features, such as object boundaries. Due to this external energy, the proposed model allows for more flexible initialization. The fractional order edge indicator function is incorporated into the length regularization term to diminish the influence of noise. Moreover, internal energy is added into the proposed model to penalize the deviation of the level set function from a signed distance function. The results evolution of the level set function is the gradient flow that minimizes the overall energy functional. The proposed model has been applied to both synthetic and real images with promising results.

  1. Proposing Wavelet-Based Low-Pass Filter and Input Filter to Improve Transient Response of Grid-Connected Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Bijan Rahmani

    2016-08-01

    Full Text Available Available photovoltaic (PV systems show a prolonged transient response, when integrated into the power grid via active filters. On one hand, the conventional low-pass filter, employed within the integrated PV system, works with a large delay, particularly in the presence of system’s low-order harmonics. On the other hand, the switching of the DC (direct current–DC converters within PV units also prolongs the transient response of an integrated system, injecting harmonics and distortion through the PV-end current. This paper initially develops a wavelet-based low-pass filter to improve the transient response of the interconnected PV systems to grid lines. Further, a damped input filter is proposed within the PV system to address the raised converter’s switching issue. Finally, Matlab/Simulink simulations validate the effectiveness of the proposed wavelet-based low-pass filter and damped input filter within an integrated PV system.

  2. Evaluation of a wavelet-based compression algorithm applied to the silicon drift detectors data of the ALICE experiment at CERN

    International Nuclear Information System (INIS)

    Falchieri, Davide; Gandolfi, Enzo; Masotti, Matteo

    2004-01-01

    This paper evaluates the performances of a wavelet-based compression algorithm applied to the data produced by the silicon drift detectors of the ALICE experiment at CERN. This compression algorithm is a general purpose lossy technique, in other words, its application could prove useful even on a wide range of other data reduction's problems. In particular the design targets relevant for our wavelet-based compression algorithm are the following ones: a high-compression coefficient, a reconstruction error as small as possible and a very limited execution time. Interestingly, the results obtained are quite close to the ones achieved by the algorithm implemented in the first prototype of the chip CARLOS, the chip that will be used in the silicon drift detectors readout chain

  3. Image Segmentation Method Using Fuzzy C Mean Clustering Based on Multi-Objective Optimization

    Science.gov (United States)

    Chen, Jinlin; Yang, Chunzhi; Xu, Guangkui; Ning, Li

    2018-04-01

    Image segmentation is not only one of the hottest topics in digital image processing, but also an important part of computer vision applications. As one kind of image segmentation algorithms, fuzzy C-means clustering is an effective and concise segmentation algorithm. However, the drawback of FCM is that it is sensitive to image noise. To solve the problem, this paper designs a novel fuzzy C-mean clustering algorithm based on multi-objective optimization. We add a parameter λ to the fuzzy distance measurement formula to improve the multi-objective optimization. The parameter λ can adjust the weights of the pixel local information. In the algorithm, the local correlation of neighboring pixels is added to the improved multi-objective mathematical model to optimize the clustering cent. Two different experimental results show that the novel fuzzy C-means approach has an efficient performance and computational time while segmenting images by different type of noises.

  4. Automated intraretinal layer segmentation of optical coherence tomography images using graph-theoretical methods

    Science.gov (United States)

    Roy, Priyanka; Gholami, Peyman; Kuppuswamy Parthasarathy, Mohana; Zelek, John; Lakshminarayanan, Vasudevan

    2018-02-01

    Segmentation of spectral-domain Optical Coherence Tomography (SD-OCT) images facilitates visualization and quantification of sub-retinal layers for diagnosis of retinal pathologies. However, manual segmentation is subjective, expertise dependent, and time-consuming, which limits applicability of SD-OCT. Efforts are therefore being made to implement active-contours, artificial intelligence, and graph-search to automatically segment retinal layers with accuracy comparable to that of manual segmentation, to ease clinical decision-making. Although, low optical contrast, heavy speckle noise, and pathologies pose challenges to automated segmentation. Graph-based image segmentation approach stands out from the rest because of its ability to minimize the cost function while maximising the flow. This study has developed and implemented a shortest-path based graph-search algorithm for automated intraretinal layer segmentation of SD-OCT images. The algorithm estimates the minimal-weight path between two graph-nodes based on their gradients. Boundary position indices (BPI) are computed from the transition between pixel intensities. The mean difference between BPIs of two consecutive layers quantify individual layer thicknesses, which shows statistically insignificant differences when compared to a previous study [for overall retina: p = 0.17, for individual layers: p > 0.05 (except one layer: p = 0.04)]. These results substantiate the accurate delineation of seven intraretinal boundaries in SD-OCT images by this algorithm, with a mean computation time of 0.93 seconds (64-bit Windows10, core i5, 8GB RAM). Besides being self-reliant for denoising, the algorithm is further computationally optimized to restrict segmentation within the user defined region-of-interest. The efficiency and reliability of this algorithm, even in noisy image conditions, makes it clinically applicable.

  5. A novel application of wavelet based SVM to transient phenomena identification of power transformers

    International Nuclear Information System (INIS)

    Jazebi, S.; Vahidi, B.; Jannati, M.

    2011-01-01

    A novel differential protection approach is introduced in the present paper. The proposed scheme is a combination of Support Vector Machine (SVM) and wavelet transform theories. Two common transients such as magnetizing inrush current and internal fault are considered. A new wavelet feature is extracted which reduces the computational cost and enhances the discrimination accuracy of SVM. Particle swarm optimization technique (PSO) has been applied to tune SVM parameters. The suitable performance of this method is demonstrated by simulation of different faults and switching conditions on a power transformer in PSCAD/EMTDC software. The method has the advantages of high accuracy and low computational burden (less than a quarter of a cycle). The other advantage is that the method is not dependent on a specific threshold. Sympathetic and recovery inrush currents also have been simulated and investigated. Results show that the proposed method could remain stable even in noisy environments.

  6. Fusion of multiscale wavelet-based fractal analysis on retina image for stroke prediction.

    Science.gov (United States)

    Che Azemin, M Z; Kumar, Dinesh K; Wong, T Y; Wang, J J; Kawasaki, R; Mitchell, P; Arjunan, Sridhar P

    2010-01-01

    In this paper, we present a novel method of analyzing retinal vasculature using Fourier Fractal Dimension to extract the complexity of the retinal vasculature enhanced at different wavelet scales. Logistic regression was used as a fusion method to model the classifier for 5-year stroke prediction. The efficacy of this technique has been tested using standard pattern recognition performance evaluation, Receivers Operating Characteristics (ROC) analysis and medical prediction statistics, odds ratio. Stroke prediction model was developed using the proposed system.

  7. Spatial dependence of predictions from image segmentation: a methods to determine appropriate scales for producing land-management information

    Science.gov (United States)

    A challenge in ecological studies is defining scales of observation that correspond to relevant ecological scales for organisms or processes. Image segmentation has been proposed as an alternative to pixel-based methods for scaling remotely-sensed data into ecologically-meaningful units. However, to...

  8. Health Assessment of Cooling Fan Bearings Using Wavelet-Based Filtering

    Directory of Open Access Journals (Sweden)

    Qiang Miao

    2012-12-01

    Full Text Available As commonly used forced convection air cooling devices in electronics, cooling fans are crucial for guaranteeing the reliability of electronic systems. In a cooling fan assembly, fan bearing failure is a major failure mode that causes excessive vibration, noise, reduction in rotation speed, locked rotor, failure to start, and other problems; therefore, it is necessary to conduct research on the health assessment of cooling fan bearings. This paper presents a vibration-based fan bearing health evaluation method using comblet filtering and exponentially weighted moving average. A new health condition indicator (HCI for fan bearing degradation assessment is proposed. In order to collect the vibration data for validation of the proposed method, a cooling fan accelerated life test was conducted to simulate the lubricant starvation of fan bearings. A comparison between the proposed method and methods in previous studies (i.e., root mean square, kurtosis, and fault growth parameter was carried out to assess the performance of the HCI. The analysis results suggest that the HCI can identify incipient fan bearing failures and describe the bearing degradation process. Overall, the work presented in this paper provides a promising method for fan bearing health evaluation and prognosis.

  9. Marker-based reconstruction of the kinematics of a chain of segments: a new method that incorporates joint kinematic constraints.

    Science.gov (United States)

    Klous, Miriam; Klous, Sander

    2010-07-01

    The aim of skin-marker-based motion analysis is to reconstruct the motion of a kinematical model from noisy measured motion of skin markers. Existing kinematic models for reconstruction of chains of segments can be divided into two categories: analytical methods that do not take joint constraints into account and numerical global optimization methods that do take joint constraints into account but require numerical optimization of a large number of degrees of freedom, especially when the number of segments increases. In this study, a new and largely analytical method for a chain of rigid bodies is presented, interconnected in spherical joints (chain-method). In this method, the number of generalized coordinates to be determined through numerical optimization is three, irrespective of the number of segments. This new method is compared with the analytical method of Veldpaus et al. [1988, "A Least-Squares Algorithm for the Equiform Transformation From Spatial Marker Co-Ordinates," J. Biomech., 21, pp. 45-54] (Veldpaus-method, a method of the first category) and the numerical global optimization method of Lu and O'Connor [1999, "Bone Position Estimation From Skin-Marker Co-Ordinates Using Global Optimization With Joint Constraints," J. Biomech., 32, pp. 129-134] (Lu-method, a method of the second category) regarding the effects of continuous noise simulating skin movement artifacts and regarding systematic errors in joint constraints. The study is based on simulated data to allow a comparison of the results of the different algorithms with true (noise- and error-free) marker locations. Results indicate a clear trend that accuracy for the chain-method is higher than the Veldpaus-method and similar to the Lu-method. Because large parts of the equations in the chain-method can be solved analytically, the speed of convergence in this method is substantially higher than in the Lu-method. With only three segments, the average number of required iterations with the chain-method

  10. Estimation of Seismic Wavelets Based on the Multivariate Scale Mixture of Gaussians Model

    Directory of Open Access Journals (Sweden)

    Jing-Huai Gao

    2009-12-01

    Full Text Available This paper proposes a new method for estimating seismic wavelets. Suppose a seismic wavelet can be modeled by a formula with three free parameters (scale, frequency and phase. We can transform the estimation of the wavelet into determining these three parameters. The phase of the wavelet is estimated by constant-phase rotation to the seismic signal, while the other two parameters are obtained by the Higher-order Statistics (HOS (fourth-order cumulant matching method. In order to derive the estimator of the Higher-order Statistics (HOS, the multivariate scale mixture of Gaussians (MSMG model is applied to formulating the multivariate joint probability density function (PDF of the seismic signal. By this way, we can represent HOS as a polynomial function of second-order statistics to improve the anti-noise performance and accuracy. In addition, the proposed method can work well for short time series.

  11. Wavelet-Based Frequency Response Function: Comparative Study of Input Excitation

    Directory of Open Access Journals (Sweden)

    K. Dziedziech

    2014-01-01

    Full Text Available Time-variant systems can be found in many areas of engineering. It is widely accepted that the classical Fourier-based methods are not suitable for the analysis and identification of such systems. The time-variant frequency response function—based on the continuous wavelet transform—is used in this paper for the analysis of time-variant systems. The focus is on the comparative study of various broadband input excitations. The performance of the method is tested using simulated data from a simple MDOF system and experimental data from a frame-like structure.

  12. A wavelet-based regularized reconstruction algorithm for SENSE parallel MRI with applications to neuroimaging

    International Nuclear Information System (INIS)

    Chaari, L.; Pesquet, J.Ch.; Chaari, L.; Ciuciu, Ph.; Benazza-Benyahia, A.

    2011-01-01

    To reduce scanning time and/or improve spatial/temporal resolution in some Magnetic Resonance Imaging (MRI) applications, parallel MRI acquisition techniques with multiple coils acquisition have emerged since the early 1990's as powerful imaging methods that allow a faster acquisition process. In these techniques, the full FOV image has to be reconstructed from the resulting acquired under sampled k-space data. To this end, several reconstruction techniques have been proposed such as the widely-used Sensitivity Encoding (SENSE) method. However, the reconstructed image generally presents artifacts when perturbations occur in both the measured data and the estimated coil sensitivity profiles. In this paper, we aim at achieving accurate image reconstruction under degraded experimental conditions (low magnetic field and high reduction factor), in which neither the SENSE method nor the Tikhonov regularization in the image domain give convincing results. To this end, we present a novel method for SENSE-based reconstruction which proceeds with regularization in the complex wavelet domain by promoting sparsity. The proposed approach relies on a fast algorithm that enables the minimization of regularized non-differentiable criteria including more general penalties than a classical l 1 term. To further enhance the reconstructed image quality, local convex constraints are added to the regularization process. In vivo human brain experiments carried out on Gradient-Echo (GRE) anatomical and Echo Planar Imaging (EPI) functional MRI data at 1.5 T indicate that our algorithm provides reconstructed images with reduced artifacts for high reduction factors. (authors)

  13. Semi-automated segmentation of the sigmoid and descending colon for radiotherapy planning using the fast marching method

    International Nuclear Information System (INIS)

    Losnegaard, Are; Hodneland, Erlend; Lundervold, Arvid; Hysing, Liv Bolstad; Muren, Ludvig Paul

    2010-01-01

    A fast and accurate segmentation of organs at risk, such as the healthy colon, would be of benefit for planning of radiotherapy, in particular in an adaptive scenario. For the treatment of pelvic tumours, a great challenge is the segmentation of the most adjacent and sensitive parts of the gastrointestinal tract, the sigmoid and descending colon. We propose a semi-automated method to segment these bowel parts using the fast marching (FM) method. Standard 3D computed tomography (CT) image data obtained from routine radiotherapy planning were used. Our pre-processing steps distinguish the intestine, muscles and air from connective tissue. The core part of our method separates the sigmoid and descending colon from the muscles and other segments of the intestine. This is done by utilizing the ability of the FM method to compute a specified minimal energy functional integrated along a path, and thereby extracting the colon centre line between user-defined control points in the sigmoid and descending colon. Further, we reconstruct the tube-shaped geometry of the sigmoid and descending colon by fitting ellipsoids to points on the path and by adding adjacent voxels that are likely voxels belonging to these bowel parts. Our results were compared to manually outlined sigmoid and descending colon, and evaluated using the Dice coefficient (DC). Tests on 11 patients gave an average DC of 0.83 (±0.07) with little user interaction. We conclude that the proposed method makes it possible to fast and accurately segment the sigmoid and descending colon from routine CT image data.

  14. Wavelet Based Denoising for the Estimation of the State of Charge for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Xiao Wang

    2018-05-01

    Full Text Available In practical electric vehicle applications, the noise of original discharging/charging voltage (DCV signals are inevitable, which comes from electromagnetic interference and the measurement noise of the sensors. To solve such problems, the Discrete Wavelet Transform (DWT based state of charge (SOC estimation method is proposed in this paper. Through a multi-resolution analysis, the original DCV signals with noise are decomposed into different frequency sub-bands. The desired de-noised DCV signals are then reconstructed by utilizing the inverse discrete wavelet transform, based on the sure rule. With the de-noised DCV signal, the SOC and the parameters are obtained using the adaptive extended Kalman Filter algorithm, and the adaptive forgetting factor recursive least square method. Simulation and experimental results show that the SOC estimation error is less than 1%, which indicates an effective improvement in SOC estimation accuracy.

  15. A Blind High-Capacity Wavelet-Based Steganography Technique for Hiding Images into other Images

    Directory of Open Access Journals (Sweden)

    HAMAD, S.

    2014-05-01

    Full Text Available The flourishing field of Steganography is providing effective techniques to hide data into different types of digital media. In this paper, a novel technique is proposed to hide large amounts of image data into true colored images. The proposed method employs wavelet transforms to decompose images in a way similar to the Human Visual System (HVS for more secure and effective data hiding. The designed model can blindly extract the embedded message without the need to refer to the original cover image. Experimental results showed that the proposed method outperformed all of the existing techniques not only imperceptibility but also in terms of capacity. In fact, the proposed technique showed an outstanding performance on hiding a secret image whose size equals 100% of the cover image while maintaining excellent visual quality of the resultant stego-images.

  16. Development of Wavelet Based Tools for Improving the γ-ray Spectrometry

    International Nuclear Information System (INIS)

    Hamzaoui, E-M.; El Badri, L.; Laraki, K.; Cherkaoui-Elmorsli, R.

    2013-06-01

    In this article, we propose a wavelet transform based tool to improve the use of gamma ray spectrometry as a nuclear technique. First, we attempt to study the problem of filtering the preamplifier's output signals of HPGe detector used in the measurements chain. Thus, we developed a nonlinear method based on discrete Coiflet transform combined to principal component analysis, which allows a significant improvement of the signal to noise ratio (SNR) at the output of the HPGe preamplifier. In a second step, the continuous wavelet transform, based on the Mexican Hat mother function, is used to achieve an automatic processing of the spectrometric data. This method permits us to get an alternative representation of the gamma energy spectrum. The results of different tests, performed in both the presence and the absence of a gamma radiation source, are illustrated. (authors)

  17. Homogeneous hierarchies: A discrete analogue to the wavelet-based multiresolution approximation

    Energy Technology Data Exchange (ETDEWEB)

    Mirkin, B. [Rutgers Univ., Piscataway, NJ (United States)

    1996-12-31

    A correspondence between discrete binary hierarchies and some orthonormal bases of the n-dimensional Euclidean space can be applied to such problems as clustering, ordering, identifying/testing in very large data bases, or multiresolution image/signal processing. The latter issue is considered in the paper. The binary hierarchy based multiresolution theory is expected to lead to effective methods for data processing because of relaxing the regularity restrictions of the classical theory.

  18. Effect of micro-computed tomography voxel size and segmentation method on trabecular bone microstructure measures in mice

    Directory of Open Access Journals (Sweden)

    Blaine A. Christiansen

    2016-12-01

    Full Text Available Micro-computed tomography (μCT is currently the gold standard for determining trabecular bone microstructure in small animal models. Numerous parameters associated with scanning and evaluation of μCT scans can strongly affect morphologic results obtained from bone samples. However, the effect of these parameters on specific trabecular bone outcomes is not well understood. This study investigated the effect of μCT scanning with nominal voxel sizes between 6–30 μm on trabecular bone outcomes quantified in mouse vertebral body trabecular bone. Additionally, two methods for determining a global segmentation threshold were compared: based on qualitative assessment of 2D images, or based on quantitative assessment of image histograms. It was found that nominal voxel size had a strong effect on several commonly reported trabecular bone parameters, in particular connectivity density, trabecular thickness, and bone tissue mineral density. Additionally, the two segmentation methods provided similar trabecular bone outcomes for scans with small nominal voxel sizes, but considerably different outcomes for scans with larger voxel sizes. The Qualitatively Selected segmentation method more consistently estimated trabecular bone volume fraction (BV/TV and trabecular thickness across different voxel sizes, but the Histogram segmentation method more consistently estimated trabecular number, trabecular separation, and structure model index. Altogether, these results suggest that high-resolution scans be used whenever possible to provide the most accurate estimation of trabecular bone microstructure, and that the limitations of accurately determining trabecular bone outcomes should be considered when selecting scan parameters and making conclusions about inter-group variance or between-group differences in studies of trabecular bone microstructure in small animals. Keywords: Trabecular bone, Microstructure, Micro-computed tomography, Voxel size, Resolution

  19. A wavelet-based ECG delineation algorithm for 32-bit integer online processing.

    Science.gov (United States)

    Di Marco, Luigi Y; Chiari, Lorenzo

    2011-04-03

    Since the first well-known electrocardiogram (ECG) delineator based on Wavelet Transform (WT) presented by Li et al. in 1995, a significant research effort has been devoted to the exploitation of this promising method. Its ability to reliably delineate the major waveform components (mono- or bi-phasic P wave, QRS, and mono- or bi-phasic T wave) would make it a suitable candidate for efficient online processing of ambulatory ECG signals. Unfortunately, previous implementations of this method adopt non-linear operators such as root mean square (RMS) or floating point algebra, which are computationally demanding. This paper presents a 32-bit integer, linear algebra advanced approach to online QRS detection and P-QRS-T waves delineation of a single lead ECG signal, based on WT. The QRS detector performance was validated on the MIT-BIH Arrhythmia Database (sensitivity Se = 99.77%, positive predictive value P+ = 99.86%, on 109010 annotated beats) and on the European ST-T Database (Se = 99.81%, P+ = 99.56%, on 788050 annotated beats). The ECG delineator was validated on the QT Database, showing a mean error between manual and automatic annotation below 1.5 samples for all fiducial points: P-onset, P-peak, P-offset, QRS-onset, QRS-offset, T-peak, T-offset, and a mean standard deviation comparable to other established methods. The proposed algorithm exhibits reliable QRS detection as well as accurate ECG delineation, in spite of a simple structure built on integer linear algebra.

  20. A bio-inspired method and system for visual object-based attention and segmentation

    Science.gov (United States)

    Huber, David J.; Khosla, Deepak

    2010-04-01

    This paper describes a method and system of human-like attention and object segmentation in visual scenes that (1) attends to regions in a scene in their rank of saliency in the image, (2) extracts the boundary of an attended proto-object based on feature contours, and (3) can be biased to boost the attention paid to specific features in a scene, such as those of a desired target object in static and video imagery. The purpose of the system is to identify regions of a scene of potential importance and extract the region data for processing by an object recognition and classification algorithm. The attention process can be performed in a default, bottom-up manner or a directed, top-down manner which will assign a preference to certain features over others. One can apply this system to any static scene, whether that is a still photograph or imagery captured from video. We employ algorithms that are motivated by findings in neuroscience, psychology, and cognitive science to construct a system that is novel in its modular and stepwise approach to the problems of attention and region extraction, its application of a flooding algorithm to break apart an image into smaller proto-objects based on feature density, and its ability to join smaller regions of similar features into larger proto-objects. This approach allows many complicated operations to be carried out by the system in a very short time, approaching real-time. A researcher can use this system as a robust front-end to a larger system that includes object recognition and scene understanding modules; it is engineered to function over a broad range of situations and can be applied to any scene with minimal tuning from the user.

  1. A combined approach for the enhancement and segmentation of mammograms using modified fuzzy C-means method in wavelet domain

    OpenAIRE

    Srivastava, Subodh; Sharma, Neeraj; Singh, S. K.; Srivastava, R.

    2014-01-01

    In this paper, a combined approach for enhancement and segmentation of mammograms is proposed. In preprocessing stage, a contrast limited adaptive histogram equalization (CLAHE) method is applied to obtain the better contrast mammograms. After this, the proposed combined methods are applied. In the first step of the proposed approach, a two dimensional (2D) discrete wavelet transform (DWT) is applied to all the input images. In the second step, a proposed nonlinear complex diffusion based uns...

  2. Quantification of localized vertebral deformities using a sparse wavelet-based shape model.

    Science.gov (United States)

    Zewail, R; Elsafi, A; Durdle, N

    2008-01-01

    Medical experts often examine hundreds of spine x-ray images to determine existence of various pathologies. Common pathologies of interest are anterior osteophites, disc space narrowing, and wedging. By careful inspection of the outline shapes of the vertebral bodies, experts are able to identify and assess vertebral abnormalities with respect to the pathology under investigation. In this paper, we present a novel method for quantification of vertebral deformation using a sparse shape model. Using wavelets and Independent component analysis (ICA), we construct a sparse shape model that benefits from the approximation power of wavelets and the capability of ICA to capture higher order statistics in wavelet space. The new model is able to capture localized pathology-related shape deformations, hence it allows for quantification of vertebral shape variations. We investigate the capability of the model to predict localized pathology related deformations. Next, using support-vector machines, we demonstrate the diagnostic capabilities of the method through the discrimination of anterior osteophites in lumbar vertebrae. Experiments were conducted using a set of 150 contours from digital x-ray images of lumbar spine. Each vertebra is labeled as normal or abnormal. Results reported in this work focus on anterior osteophites as the pathology of interest.

  3. Wavelet-based multicomponent denoising on GPU to improve the classification of hyperspectral images

    Science.gov (United States)

    Quesada-Barriuso, Pablo; Heras, Dora B.; Argüello, Francisco; Mouriño, J. C.

    2017-10-01

    Supervised classification allows handling a wide range of remote sensing hyperspectral applications. Enhancing the spatial organization of the pixels over the image has proven to be beneficial for the interpretation of the image content, thus increasing the classification accuracy. Denoising in the spatial domain of the image has been shown as a technique that enhances the structures in the image. This paper proposes a multi-component denoising approach in order to increase the classification accuracy when a classification method is applied. It is computed on multicore CPUs and NVIDIA GPUs. The method combines feature extraction based on a 1Ddiscrete wavelet transform (DWT) applied in the spectral dimension followed by an Extended Morphological Profile (EMP) and a classifier (SVM or ELM). The multi-component noise reduction is applied to the EMP just before the classification. The denoising recursively applies a separable 2D DWT after which the number of wavelet coefficients is reduced by using a threshold. Finally, inverse 2D-DWT filters are applied to reconstruct the noise free original component. The computational cost of the classifiers as well as the cost of the whole classification chain is high but it is reduced achieving real-time behavior for some applications through their computation on NVIDIA multi-GPU platforms.

  4. Volumetric analysis of pelvic hematomas after blunt trauma using semi-automated seeded region growing segmentation: a method validation study.

    Science.gov (United States)

    Dreizin, David; Bodanapally, Uttam K; Neerchal, Nagaraj; Tirada, Nikki; Patlas, Michael; Herskovits, Edward

    2016-11-01

    Manually segmented traumatic pelvic hematoma volumes are strongly predictive of active bleeding at conventional angiography, but the method is time intensive, limiting its clinical applicability. We compared volumetric analysis using semi-automated region growing segmentation to manual segmentation and diameter-based size estimates in patients with pelvic hematomas after blunt pelvic trauma. A 14-patient cohort was selected in an anonymous randomized fashion from a dataset of patients with pelvic binders at MDCT, collected retrospectively as part of a HIPAA-compliant IRB-approved study from January 2008 to December 2013. To evaluate intermethod differences, one reader (R1) performed three volume measurements using the manual technique and three volume measurements using the semi-automated technique. To evaluate interobserver differences for semi-automated segmentation, a second reader (R2) performed three semi-automated measurements. One-way analysis of variance was used to compare differences in mean volumes. Time effort was also compared. Correlation between the two methods as well as two shorthand appraisals (greatest diameter, and the ABC/2 method for estimating ellipsoid volumes) was assessed with Spearman's rho (r). Intraobserver variability was lower for semi-automated compared to manual segmentation, with standard deviations ranging between ±5-32 mL and ±17-84 mL, respectively (p = 0.0003). There was no significant difference in mean volumes between the two readers' semi-automated measurements (p = 0.83); however, means were lower for the semi-automated compared with the manual technique (manual: mean and SD 309.6 ± 139 mL; R1 semi-auto: 229.6 ± 88.2 mL, p = 0.004; R2 semi-auto: 243.79 ± 99.7 mL, p = 0.021). Despite differences in means, the correlation between the two methods was very strong and highly significant (r = 0.91, p hematoma volumes correlate strongly with manually segmented volumes. Since semi-automated segmentation

  5. Wavelet-Based Watermarking and Compression for ECG Signals with Verification Evaluation

    Directory of Open Access Journals (Sweden)

    Kuo-Kun Tseng

    2014-02-01

    Full Text Available In the current open society and with the growth of human rights, people are more and more concerned about the privacy of their information and other important data. This study makes use of electrocardiography (ECG data in order to protect individual information. An ECG signal can not only be used to analyze disease, but also to provide crucial biometric information for identification and authentication. In this study, we propose a new idea of integrating electrocardiogram watermarking and compression approach, which has never been researched before. ECG watermarking can ensure the confidentiality and reliability of a user’s data while reducing the amount of data. In the evaluation, we apply the embedding capacity, bit error rate (BER, signal-to-noise ratio (SNR, compression ratio (CR, and compressed-signal to noise ratio (CNR methods to assess the proposed algorithm. After comprehensive evaluation the final results show that our algorithm is robust and feasible.

  6. Fuzzy-Wavelet Based Double Line Transmission System Protection Scheme in the Presence of SVC

    Science.gov (United States)

    Goli, Ravikumar; Shaik, Abdul Gafoor; Tulasi Ram, Sankara S.

    2015-06-01

    Increasing the power transfer capability and efficient utilization of available transmission lines, improving the power system controllability and stability, power oscillation damping and voltage compensation have made strides and created Flexible AC Transmission (FACTS) devices in recent decades. Shunt FACTS devices can have adverse effects on distance protection both in steady state and transient periods. Severe under reaching is the most important problem of relay which is caused by current injection at the point of connection to the system. Current absorption of compensator leads to overreach of relay. This work presents an efficient method based on wavelet transforms, fault detection, classification and location using Fuzzy logic technique which is almost independent of fault impedance, fault distance and fault inception angle. The proposed protection scheme is found to be fast, reliable and accurate for various types of faults on transmission lines with and without Static Var compensator at different locations and with various incidence angles.

  7. Comparison on Integer Wavelet Transforms in Spherical Wavelet Based Image Based Relighting

    Institute of Scientific and Technical Information of China (English)

    WANGZe; LEEYin; LEUNGChising; WONGTientsin; ZHUYisheng

    2003-01-01

    To provide a good quality rendering in the Image based relighting (IBL) system, tremendous reference images under various illumination conditions are needed. Therefore data compression is essential to enable interactive action. And the rendering speed is another crucial consideration for real applications. Based on Spherical wavelet transform (SWT), this paper presents a quick representation method with Integer wavelet transform (IWT) for the IBL system. It focuses on comparison on different IWTs with the Embedded zerotree wavelet (EZW) used in the IBL system. The whole compression procedure contains two major compression steps. Firstly, SWT is applied to consider the correlation among different reference images. Secondly, the SW transformed images are compressed with IWT based image compression approach. Two IWTs are used and good results are showed in the simulations.

  8. Improving performance of wavelet-based image denoising algorithm using complex diffusion process

    DEFF Research Database (Denmark)

    Nadernejad, Ehsan; Sharifzadeh, Sara; Korhonen, Jari

    2012-01-01

    using a variety of standard images and its performance has been compared against several de-noising algorithms known from the prior art. Experimental results show that the proposed algorithm preserves the edges better and in most cases, improves the measured visual quality of the denoised images......Image enhancement and de-noising is an essential pre-processing step in many image processing algorithms. In any image de-noising algorithm, the main concern is to keep the interesting structures of the image. Such interesting structures often correspond to the discontinuities (edges...... in comparison to the existing methods known from the literature. The improvement is obtained without excessive computational cost, and the algorithm works well on a wide range of different types of noise....

  9. A wavelet-based technique to predict treatment outcome for Major Depressive Disorder

    Science.gov (United States)

    Xia, Likun; Mohd Yasin, Mohd Azhar; Azhar Ali, Syed Saad

    2017-01-01

    Treatment management for Major Depressive Disorder (MDD) has been challenging. However, electroencephalogram (EEG)-based predictions of antidepressant’s treatment outcome may help during antidepressant’s selection and ultimately improve the quality of life for MDD patients. In this study, a machine learning (ML) method involving pretreatment EEG data was proposed to perform such predictions for Selective Serotonin Reuptake Inhibitor (SSRIs). For this purpose, the acquisition of experimental data involved 34 MDD patients and 30 healthy controls. Consequently, a feature matrix was constructed involving time-frequency decomposition of EEG data based on wavelet transform (WT) analysis, termed as EEG data matrix. However, the resultant EEG data matrix had high dimensionality. Therefore, dimension reduction was performed based on a rank-based feature selection method according to a criterion, i.e., receiver operating characteristic (ROC). As a result, the most significant features were identified and further be utilized during the training and testing of a classification model, i.e., the logistic regression (LR) classifier. Finally, the LR model was validated with 100 iterations of 10-fold cross-validation (10-CV). The classification results were compared with short-time Fourier transform (STFT) analysis, and empirical mode decompositions (EMD). The wavelet features extracted from frontal and temporal EEG data were found statistically significant. In comparison with other time-frequency approaches such as the STFT and EMD, the WT analysis has shown highest classification accuracy, i.e., accuracy = 87.5%, sensitivity = 95%, and specificity = 80%. In conclusion, significant wavelet coefficients extracted from frontal and temporal pre-treatment EEG data involving delta and theta frequency bands may predict antidepressant’s treatment outcome for the MDD patients. PMID:28152063

  10. A wavelet-based technique to predict treatment outcome for Major Depressive Disorder.

    Science.gov (United States)

    Mumtaz, Wajid; Xia, Likun; Mohd Yasin, Mohd Azhar; Azhar Ali, Syed Saad; Malik, Aamir Saeed

    2017-01-01

    Treatment management for Major Depressive Disorder (MDD) has been challenging. However, electroencephalogram (EEG)-based predictions of antidepressant's treatment outcome may help during antidepressant's selection and ultimately improve the quality of life for MDD patients. In this study, a machine learning (ML) method involving pretreatment EEG data was proposed to perform such predictions for Selective Serotonin Reuptake Inhibitor (SSRIs). For this purpose, the acquisition of experimental data involved 34 MDD patients and 30 healthy controls. Consequently, a feature matrix was constructed involving time-frequency decomposition of EEG data based on wavelet transform (WT) analysis, termed as EEG data matrix. However, the resultant EEG data matrix had high dimensionality. Therefore, dimension reduction was performed based on a rank-based feature selection method according to a criterion, i.e., receiver operating characteristic (ROC). As a result, the most significant features were identified and further be utilized during the training and testing of a classification model, i.e., the logistic regression (LR) classifier. Finally, the LR model was validated with 100 iterations of 10-fold cross-validation (10-CV). The classification results were compared with short-time Fourier transform (STFT) analysis, and empirical mode decompositions (EMD). The wavelet features extracted from frontal and temporal EEG data were found statistically significant. In comparison with other time-frequency approaches such as the STFT and EMD, the WT analysis has shown highest classification accuracy, i.e., accuracy = 87.5%, sensitivity = 95%, and specificity = 80%. In conclusion, significant wavelet coefficients extracted from frontal and temporal pre-treatment EEG data involving delta and theta frequency bands may predict antidepressant's treatment outcome for the MDD patients.

  11. Online Semiparametric Identification of Lithium-Ion Batteries Using the Wavelet-Based Partially Linear Battery Model

    Directory of Open Access Journals (Sweden)

    Caiping Zhang

    2013-05-01

    Full Text Available Battery model identification is very important for reliable battery management as well as for battery system design process. The common problem in identifying battery models is how to determine the most appropriate mathematical model structure and parameterized coefficients based on the measured terminal voltage and current. This paper proposes a novel semiparametric approach using the wavelet-based partially linear battery model (PLBM and a recursive penalized wavelet estimator for online battery model identification. Three main contributions are presented. First, the semiparametric PLBM is proposed to simulate the battery dynamics. Compared with conventional electrical models of a battery, the proposed PLBM is equipped with a semiparametric partially linear structure, which includes a parametric part (involving the linear equivalent circuit parameters and a nonparametric part [involving the open-circuit voltage (OCV]. Thus, even with little prior knowledge about the OCV, the PLBM can be identified using a semiparametric identification framework. Second, we model the nonparametric part of the PLBM using the truncated wavelet multiresolution analysis (MRA expansion, which leads to a parsimonious model structure that is highly desirable for model identification; using this model, the PLBM could be represented in a linear-in-parameter manner. Finally, to exploit the sparsity of the wavelet MRA representation and allow for online implementation, a penalized wavelet estimator that uses a modified online cyclic coordinate descent algorithm is proposed to identify the PLBM in a recursive fashion. The simulation and experimental results demonstrate that the proposed PLBM with the corresponding identification algorithm can accurately simulate the dynamic behavior of a lithium-ion battery in the Federal Urban Driving Schedule tests.

  12. Automated method for structural segmentation of nasal airways based on cone beam computed tomography

    Science.gov (United States)

    Tymkovych, Maksym Yu.; Avrunin, Oleg G.; Paliy, Victor G.; Filzow, Maksim; Gryshkov, Oleksandr; Glasmacher, Birgit; Omiotek, Zbigniew; DzierŻak, RóŻa; Smailova, Saule; Kozbekova, Ainur

    2017-08-01

    The work is dedicated to the segmentation problem of human nasal airways using Cone Beam Computed Tomography. During research, we propose a specialized approach of structured segmentation of nasal airways. That approach use spatial information, symmetrisation of the structures. The proposed stages can be used for construction a virtual three dimensional model of nasal airways and for production full-scale personalized atlases. During research we build the virtual model of nasal airways, which can be used for construction specialized medical atlases and aerodynamics researches.

  13. A Discrete Wavelet Based Feature Extraction and Hybrid Classification Technique for Microarray Data Analysis

    Directory of Open Access Journals (Sweden)

    Jaison Bennet

    2014-01-01

    Full Text Available Cancer classification by doctors and radiologists was based on morphological and clinical features and had limited diagnostic ability in olden days. The recent arrival of DNA microarray technology has led to the concurrent monitoring of thousands of gene expressions in a single chip which stimulates the progress in cancer classification. In this paper, we have proposed a hybrid approach for microarray data classification based on nearest neighbor (KNN, naive Bayes, and support vector machine (SVM. Feature selection prior to classification plays a vital role and a feature selection technique which combines discrete wavelet transform (DWT and moving window technique (MWT is used. The performance of the proposed method is compared with the conventional classifiers like support vector machine, nearest neighbor, and naive Bayes. Experiments have been conducted on both real and benchmark datasets and the results indicate that the ensemble approach produces higher classification accuracy than conventional classifiers. This paper serves as an automated system for the classification of cancer and can be applied by doctors in real cases which serve as a boon to the medical community. This work further reduces the misclassification of cancers which is highly not allowed in cancer detection.

  14. Wavelet-Based Methodology for Evolutionary Spectra Estimation of Nonstationary Typhoon Processes

    Directory of Open Access Journals (Sweden)

    Guang-Dong Zhou

    2015-01-01

    Full Text Available Closed-form expressions are proposed to estimate the evolutionary power spectral density (EPSD of nonstationary typhoon processes by employing the wavelet transform. Relying on the definition of the EPSD and the concept of the wavelet transform, wavelet coefficients of a nonstationary typhoon process at a certain time instant are interpreted as the Fourier transform of a new nonstationary oscillatory process, whose modulating function is equal to the modulating function of the nonstationary typhoon process multiplied by the wavelet function in time domain. Then, the EPSD of nonstationary typhoon processes is deduced in a closed form and is formulated as a weighted sum of the squared moduli of time-dependent wavelet functions. The weighted coefficients are frequency-dependent functions defined by the wavelet coefficients of the nonstationary typhoon process and the overlapping area of two shifted wavelets. Compared with the EPSD, defined by a sum of the squared moduli of the wavelets in frequency domain in literature, this paper provides an EPSD estimation method in time domain. The theoretical results are verified by uniformly modulated nonstationary typhoon processes and non-uniformly modulated nonstationary typhoon processes.

  15. Fetal QRS detection and heart rate estimation: a wavelet-based approach

    International Nuclear Information System (INIS)

    Almeida, Rute; Rocha, Ana Paula; Gonçalves, Hernâni; Bernardes, João

    2014-01-01

    Fetal heart rate monitoring is used for pregnancy surveillance in obstetric units all over the world but in spite of recent advances in analysis methods, there are still inherent technical limitations that bound its contribution to the improvement of perinatal indicators. In this work, a previously published wavelet transform based QRS detector, validated over standard electrocardiogram (ECG) databases, is adapted to fetal QRS detection over abdominal fetal ECG. Maternal ECG waves were first located using the original detector and afterwards a version with parameters adapted for fetal physiology was applied to detect fetal QRS, excluding signal singularities associated with maternal heartbeats. Single lead (SL) based marks were combined in a single annotator with post processing rules (SLR) from which fetal RR and fetal heart rate (FHR) measures can be computed. Data from PhysioNet with reference fetal QRS locations was considered for validation, with SLR outperforming SL including ICA based detections. The error in estimated FHR using SLR was lower than 20 bpm for more than 80% of the processed files. The median error in 1 min based FHR estimation was 0.13 bpm, with a correlation between reference and estimated FHR of 0.48, which increased to 0.73 when considering only records for which estimated FHR > 110 bpm. This allows us to conclude that the proposed methodology is able to provide a clinically useful estimation of the FHR. (paper)

  16. Exploring an optimal wavelet-based filter for cryo-ET imaging.

    Science.gov (United States)

    Huang, Xinrui; Li, Sha; Gao, Song

    2018-02-07

    Cryo-electron tomography (cryo-ET) is one of the most advanced technologies for the in situ visualization of molecular machines by producing three-dimensional (3D) biological structures. However, cryo-ET imaging has two serious disadvantages-low dose and low image contrast-which result in high-resolution information being obscured by noise and image quality being degraded, and this causes errors in biological interpretation. The purpose of this research is to explore an optimal wavelet denoising technique to reduce noise in cryo-ET images. We perform tests using simulation data and design a filter using the optimum selected wavelet parameters (three-level decomposition, level-1 zeroed out, subband-dependent threshold, a soft-thresholding and spline-based discrete dyadic wavelet transform (DDWT)), which we call a modified wavelet shrinkage filter; this filter is suitable for noisy cryo-ET data. When testing using real cryo-ET experiment data, higher quality images and more accurate measures of a biological structure can be obtained with the modified wavelet shrinkage filter processing compared with conventional processing. Because the proposed method provides an inherent advantage when dealing with cryo-ET images, it can therefore extend the current state-of-the-art technology in assisting all aspects of cryo-ET studies: visualization, reconstruction, structural analysis, and interpretation.

  17. Wavelet-based multiscale adjoint waveform-difference tomography using body and surface waves

    Science.gov (United States)

    Yuan, Y. O.; Simons, F. J.; Bozdag, E.

    2014-12-01

    We present a multi-scale scheme for full elastic waveform-difference inversion. Using a wavelet transform proves to be a key factor to mitigate cycle-skipping effects. We start with coarse representations of the seismogram to correct a large-scale background model, and subsequently explain the residuals in the fine scales of the seismogram to map the heterogeneities with great complexity. We have previously applied the multi-scale approach successfully to body waves generated in a standard model from the exploration industry: a modified two-dimensional elastic Marmousi model. With this model we explored the optimal choice of wavelet family, number of vanishing moments and decomposition depth. For this presentation we explore the sensitivity of surface waves in waveform-difference tomography. The incorporation of surface waves is rife with cycle-skipping problems compared to the inversions considering body waves only. We implemented an envelope-based objective function probed via a multi-scale wavelet analysis to measure the distance between predicted and target surface-wave waveforms in a synthetic model of heterogeneous near-surface structure. Our proposed method successfully purges the local minima present in the waveform-difference misfit surface. An elastic shallow model with 100~m in depth is used to test the surface-wave inversion scheme. We also analyzed the sensitivities of surface waves and body waves in full waveform inversions, as well as the effects of incorrect density information on elastic parameter inversions. Based on those numerical experiments, we ultimately formalized a flexible scheme to consider both body and surface waves in adjoint tomography. While our early examples are constructed from exploration-style settings, our procedure will be very valuable for the study of global network data.

  18. A new bias field correction method combining N3 and FCM for improved segmentation of breast density on MRI.

    Science.gov (United States)

    Lin, Muqing; Chan, Siwa; Chen, Jeon-Hor; Chang, Daniel; Nie, Ke; Chen, Shih-Ting; Lin, Cheng-Ju; Shih, Tzu-Ching; Nalcioglu, Orhan; Su, Min-Ying

    2011-01-01

    Quantitative breast density is known as a strong risk factor associated with the development of breast cancer. Measurement of breast density based on three-dimensional breast MRI may provide very useful information. One important step for quantitative analysis of breast density on MRI is the correction of field inhomogeneity to allow an accurate segmentation of the fibroglandular tissue (dense tissue). A new bias field correction method by combining the nonparametric nonuniformity normalization (N3) algorithm and fuzzy-C-means (FCM)-based inhomogeneity correction algorithm is developed in this work. The analysis is performed on non-fat-sat T1-weighted images acquired using a 1.5 T MRI scanner. A total of 60 breasts from 30 healthy volunteers was analyzed. N3 is known as a robust correction method, but it cannot correct a strong bias field on a large area. FCM-based algorithm can correct the bias field on a large area, but it may change the tissue contrast and affect the segmentation quality. The proposed algorithm applies N3 first, followed by FCM, and then the generated bias field is smoothed using Gaussian kernal and B-spline surface fitting to minimize the problem of mistakenly changed tissue contrast. The segmentation results based on the N3+FCM corrected images were compared to the N3 and FCM alone corrected images and another method, coherent local intensity clustering (CLIC), corrected images. The segmentation quality based on different correction methods were evaluated by a radiologist and ranked. The authors demonstrated that the iterative N3+FCM correction method brightens the signal intensity of fatty tissues and that separates the histogram peaks between the fibroglandular and fatty tissues to allow an accurate segmentation between them. In the first reading session, the radiologist found (N3+FCM > N3 > FCM) ranking in 17 breasts, (N3+FCM > N3 = FCM) ranking in 7 breasts, (N3+FCM = N3 > FCM) in 32 breasts, (N3+FCM = N3 = FCM) in 2 breasts, and (N3 > N3

  19. CUDA Accelerated Multi-domain Volumetric Image Segmentation and Using a Higher Order Level Set Method

    DEFF Research Database (Denmark)

    Sharma, Ojaswa; Anton, François; Zhang, Qin

    2009-01-01

    -manding in terms of computation and memory space, we employ a CUDA based fast GPU segmentation and provide accuracy measures compared with an equivalent CPU implementation. Our resulting surfaces are C2-smooth resulting from tri-cubic spline interpolation algorithm. We also provide error bounds...

  20. An optimized process flow for rapid segmentation of cortical bones of the craniofacial skeleton using the level-set method.

    Science.gov (United States)

    Szwedowski, T D; Fialkov, J; Pakdel, A; Whyne, C M

    2013-01-01

    Accurate representation of skeletal structures is essential for quantifying structural integrity, for developing accurate models, for improving patient-specific implant design and in image-guided surgery applications. The complex morphology of thin cortical structures of the craniofacial skeleton (CFS) represents a significant challenge with respect to accurate bony segmentation. This technical study presents optimized processing steps to segment the three-dimensional (3D) geometry of thin cortical bone structures from CT images. In this procedure, anoisotropic filtering and a connected components scheme were utilized to isolate and enhance the internal boundaries between craniofacial cortical and trabecular bone. Subsequently, the shell-like nature of cortical bone was exploited using boundary-tracking level-set methods with optimized parameters determined from large-scale sensitivity analysis. The process was applied to clinical CT images acquired from two cadaveric CFSs. The accuracy of the automated segmentations was determined based on their volumetric concurrencies with visually optimized manual segmentations, without statistical appraisal. The full CFSs demonstrated volumetric concurrencies of 0.904 and 0.719; accuracy increased to concurrencies of 0.936 and 0.846 when considering only the maxillary region. The highly automated approach presented here is able to segment the cortical shell and trabecular boundaries of the CFS in clinical CT images. The results indicate that initial scan resolution and cortical-trabecular bone contrast may impact performance. Future application of these steps to larger data sets will enable the determination of the method's sensitivity to differences in image quality and CFS morphology.

  1. Multidimensional segmentation of coronary intravascular ultrasound images using knowledge-based methods

    Science.gov (United States)

    Olszewski, Mark E.; Wahle, Andreas; Vigmostad, Sarah C.; Sonka, Milan

    2005-04-01

    In vivo studies of the relationships that exist among vascular geometry, plaque morphology, and hemodynamics have recently been made possible through the development of a system that accurately reconstructs coronary arteries imaged by x-ray angiography and intravascular ultrasound (IVUS) in three dimensions. Currently, the bottleneck of the system is the segmentation of the IVUS images. It is well known that IVUS images contain numerous artifacts from various sources. Previous attempts to create automated IVUS segmentation systems have suffered from either a cost function that does not include enough information, or from a non-optimal segmentation algorithm. The approach presented in this paper seeks to strengthen both of those weaknesses -- first by building a robust, knowledge-based cost function, and then by using a fully optimal, three-dimensional segmentation algorithm. The cost function contains three categories of information: a compendium of learned border patterns, information theoretic and statistical properties related to the imaging physics, and local image features. By combining these criteria in an optimal way, weaknesses associated with cost functions that only try to optimize a single criterion are minimized. This cost function is then used as the input to a fully optimal, three-dimensional, graph search-based segmentation algorithm. The resulting system has been validated against a set of manually traced IVUS image sets. Results did not show any bias, with a mean unsigned luminal border positioning error of 0.180 +/- 0.027 mm and an adventitial border positioning error of 0.200 +/- 0.069 mm.

  2. Development of quantitative analysis method for stereotactic brain image. Assessment of reduced accumulation in extent and severity using anatomical segmentation

    International Nuclear Information System (INIS)

    Mizumura, Sunao; Kumita, Shin-ichiro; Cho, Keiichi; Ishihara, Makiko; Nakajo, Hidenobu; Toba, Masahiro; Kumazaki, Tatsuo

    2003-01-01

    Through visual assessment by three-dimensional (3D) brain image analysis methods using stereotactic brain coordinates system, such as three-dimensional stereotactic surface projections and statistical parametric mapping, it is difficult to quantitatively assess anatomical information and the range of extent of an abnormal region. In this study, we devised a method to quantitatively assess local abnormal findings by segmenting a brain map according to anatomical structure. Through quantitative local abnormality assessment using this method, we studied the characteristics of distribution of reduced blood flow in cases with dementia of the Alzheimer type (DAT). Using twenty-five cases with DAT (mean age, 68.9 years old), all of whom were diagnosed as probable Alzheimer's disease based on National Institute of Neurological and Communicative Disorders and Stroke-Alzheimer's Disease and Related Disorders Association (NINCDS-ADRDA), we collected I-123 iodoamphetamine SPECT data. A 3D brain map using the 3D-stereotactic surface projections (SSP) program was compared with the data of 20 cases in the control group, who age-matched the subject cases. To study local abnormalities on the 3D images, we divided the whole brain into 24 segments based on anatomical classification. We assessed the extent of an abnormal region in each segment (rate of the coordinates with a Z-value that exceeds the threshold value, in all coordinates within a segment), and severity (average Z-value of the coordinates with a Z-value that exceeds the threshold value). This method clarified orientation and expansion of reduced accumulation, through classifying stereotactic brain coordinates according to the anatomical structure. This method was considered useful for quantitatively grasping distribution abnormalities in the brain and changes in abnormality distribution. (author)

  3. Assessment of body composition by segmental bioelectrical impedance method in Japanese college athletes : focus on the different characteristic of sports

    OpenAIRE

    村松, 愛梨奈; 乙木, 幸道; 井川, 正治

    2013-01-01

    The purpose of this study was to clarify a characteristic of body composition of limbs in Japanese athletes by the segmental bioelectric impedance analysis (S-BIA) method. The subjects were 131 college athletes (baseball, volleyball, handball, combined competition, wrestling, soft tennis, swimming; athletes group) and 107 healthy college students (control group). The items of measurement were body height, body weight, BMI, percent of body fat (%FAT), skeletal muscle mass (SMM). We measured %F...

  4. Clinical feasibility of a myocardial signal intensity threshold-based semi-automated cardiac magnetic resonance segmentation method

    Energy Technology Data Exchange (ETDEWEB)

    Varga-Szemes, Akos; Schoepf, U.J.; Suranyi, Pal; De Cecco, Carlo N.; Fox, Mary A. [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); Muscogiuri, Giuseppe [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); University of Rome ' ' Sapienza' ' , Department of Medical-Surgical Sciences and Translational Medicine, Rome (Italy); Wichmann, Julian L. [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt (Germany); Cannao, Paola M. [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); University of Milan, Scuola di Specializzazione in Radiodiagnostica, Milan (Italy); Renker, Matthias [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); Kerckhoff Heart and Thorax Center, Bad Nauheim (Germany); Mangold, Stefanie [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); Eberhard-Karls University Tuebingen, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany); Ruzsics, Balazs [Royal Liverpool and Broadgreen University Hospitals, Department of Cardiology, Liverpool (United Kingdom)

    2016-05-15

    To assess the accuracy and efficiency of a threshold-based, semi-automated cardiac MRI segmentation algorithm in comparison with conventional contour-based segmentation and aortic flow measurements. Short-axis cine images of 148 patients (55 ± 18 years, 81 men) were used to evaluate left ventricular (LV) volumes and mass (LVM) using conventional and threshold-based segmentations. Phase-contrast images were used to independently measure stroke volume (SV). LV parameters were evaluated by two independent readers. Evaluation times using the conventional and threshold-based methods were 8.4 ± 1.9 and 4.2 ± 1.3 min, respectively (P < 0.0001). LV parameters measured by the conventional and threshold-based methods, respectively, were end-diastolic volume (EDV) 146 ± 59 and 134 ± 53 ml; end-systolic volume (ESV) 64 ± 47 and 59 ± 46 ml; SV 82 ± 29 and 74 ± 28 ml (flow-based 74 ± 30 ml); ejection fraction (EF) 59 ± 16 and 58 ± 17 %; and LVM 141 ± 55 and 159 ± 58 g. Significant differences between the conventional and threshold-based methods were observed in EDV, ESV, and LVM measurements; SV from threshold-based and flow-based measurements were in agreement (P > 0.05) but were significantly different from conventional analysis (P < 0.05). Excellent inter-observer agreement was observed. Threshold-based LV segmentation provides improved accuracy and faster assessment compared to conventional contour-based methods. (orig.)

  5. Method for stationarity-segmentation of spike train data with application to the Pearson cross-correlation.

    Science.gov (United States)

    Quiroga-Lombard, Claudio S; Hass, Joachim; Durstewitz, Daniel

    2013-07-01

    Correlations among neurons are supposed to play an important role in computation and information coding in the nervous system. Empirically, functional interactions between neurons are most commonly assessed by cross-correlation functions. Recent studies have suggested that pairwise correlations may indeed be sufficient to capture most of the information present in neural interactions. Many applications of correlation functions, however, implicitly tend to assume that the underlying processes are stationary. This assumption will usually fail for real neurons recorded in vivo since their activity during behavioral tasks is heavily influenced by stimulus-, movement-, or cognition-related processes as well as by more general processes like slow oscillations or changes in state of alertness. To address the problem of nonstationarity, we introduce a method for assessing stationarity empirically and then "slicing" spike trains into stationary segments according to the statistical definition of weak-sense stationarity. We examine pairwise Pearson cross-correlations (PCCs) under both stationary and nonstationary conditions and identify another source of covariance that can be differentiated from the covariance of the spike times and emerges as a consequence of residual nonstationarities after the slicing process: the covariance of the firing rates defined on each segment. Based on this, a correction of the PCC is introduced that accounts for the effect of segmentation. We probe these methods both on simulated data sets and on in vivo recordings from the prefrontal cortex of behaving rats. Rather than for removing nonstationarities, the present method may also be used for detecting significant events in spike trains.

  6. Crowdsourcing image annotation for nucleus detection and segmentation in computational pathology: evaluating experts, automated methods, and the crowd.

    Science.gov (United States)

    Irshad, H; Montaser-Kouhsari, L; Waltz, G; Bucur, O; Nowak, J A; Dong, F; Knoblauch, N W; Beck, A H

    2015-01-01

    The development of tools in computational pathology to assist physicians and biomedical scientists in the diagnosis of disease requires access to high-quality annotated images for algorithm learning and evaluation. Generating high-quality expert-derived annotations is time-consuming and expensive. We explore the use of crowdsourcing for rapidly obtaining annotations for two core tasks in com- putational pathology: nucleus detection and nucleus segmentation. We designed and implemented crowdsourcing experiments using the CrowdFlower platform, which provides access to a large set of labor channel partners that accesses and manages millions of contributors worldwide. We obtained annotations from four types of annotators and compared concordance across these groups. We obtained: crowdsourced annotations for nucleus detection and segmentation on a total of 810 images; annotations using automated methods on 810 images; annotations from research fellows for detection and segmentation on 477 and 455 images, respectively; and expert pathologist-derived annotations for detection and segmentation on 80 and 63 images, respectively. For the crowdsourced annotations, we evaluated performance across a range of contributor skill levels (1, 2, or 3). The crowdsourced annotations (4,860 images in total) were completed in only a fraction of the time and cost required for obtaining annotations using traditional methods. For the nucleus detection task, the research fellow-derived annotations showed the strongest concordance with the expert pathologist- derived annotations (F-M =93.68%), followed by the crowd-sourced contributor levels 1,2, and 3 and the automated method, which showed relatively similar performance (F-M = 87.84%, 88.49%, 87.26%, and 86.99%, respectively). For the nucleus segmentation task, the crowdsourced contributor level 3-derived annotations, research fellow-derived annotations, and automated method showed the strongest concordance with the expert pathologist

  7. A multi-atlas based method for automated anatomical Macaca fascicularis brain MRI segmentation and PET kinetic extraction.

    Science.gov (United States)

    Ballanger, Bénédicte; Tremblay, Léon; Sgambato-Faure, Véronique; Beaudoin-Gobert, Maude; Lavenne, Franck; Le Bars, Didier; Costes, Nicolas

    2013-08-15

    MRI templates and digital atlases are needed for automated and reproducible quantitative analysis of non-human primate PET studies. Segmenting brain images via multiple atlases outperforms single-atlas labelling in humans. We present a set of atlases manually delineated on brain MRI scans of the monkey Macaca fascicularis. We use this multi-atlas dataset to evaluate two automated methods in terms of accuracy, robustness and reliability in segmenting brain structures on MRI and extracting regional PET measures. Twelve individual Macaca fascicularis high-resolution 3DT1 MR images were acquired. Four individual atlases were created by manually drawing 42 anatomical structures, including cortical and sub-cortical structures, white matter regions, and ventricles. To create the MRI template, we first chose one MRI to define a reference space, and then performed a two-step iterative procedure: affine registration of individual MRIs to the reference MRI, followed by averaging of the twelve resampled MRIs. Automated segmentation in native space was obtained in two ways: 1) Maximum probability atlases were created by decision fusion of two to four individual atlases in the reference space, and transformation back into the individual native space (MAXPROB)(.) 2) One to four individual atlases were registered directly to the individual native space, and combined by decision fusion (PROPAG). Accuracy was evaluated by computing the Dice similarity index and the volume difference. The robustness and reproducibility of PET regional measurements obtained via automated segmentation was evaluated on four co-registered MRI/PET datasets, which included test-retest data. Dice indices were always over 0.7 and reached maximal values of 0.9 for PROPAG with all four individual atlases. There was no significant mean volume bias. The standard deviation of the bias decreased significantly when increasing the number of individual atlases. MAXPROB performed better when increasing the number of

  8. Multi-resolution Shape Analysis via Non-Euclidean Wavelets: Applications to Mesh Segmentation and Surface Alignment Problems.

    Science.gov (United States)

    Kim, Won Hwa; Chung, Moo K; Singh, Vikas

    2013-01-01

    The analysis of 3-D shape meshes is a fundamental problem in computer vision, graphics, and medical imaging. Frequently, the needs of the application require that our analysis take a multi-resolution view of the shape's local and global topology, and that the solution is consistent across multiple scales. Unfortunately, the preferred mathematical construct which offers this behavior in classical image/signal processing, Wavelets, is no longer applicable in this general setting (data with non-uniform topology). In particular, the traditional definition does not allow writing out an expansion for graphs that do not correspond to the uniformly sampled lattice (e.g., images). In this paper, we adapt recent results in harmonic analysis, to derive Non-Euclidean Wavelets based algorithms for a range of shape analysis problems in vision and medical imaging. We show how descriptors derived from the dual domain representation offer native multi-resolution behavior for characterizing local/global topology around vertices. With only minor modifications, the framework yields a method for extracting interest/key points from shapes, a surprisingly simple algorithm for 3-D shape segmentation (competitive with state of the art), and a method for surface alignment (without landmarks). We give an extensive set of comparison results on a large shape segmentation benchmark and derive a uniqueness theorem for the surface alignment problem.

  9. An assessment study of the wavelet-based index of magnetic storm activity (WISA) and its comparison to the Dst index

    Science.gov (United States)

    Xu, Zhonghua; Zhu, Lie; Sojka, Jan; Kokoszka, Piotr; Jach, Agnieszka

    2008-08-01

    A wavelet-based index of storm activity (WISA) has been recently developed [Jach, A., Kokoszka, P., Sojka, L., Zhu, L., 2006. Wavelet-based index of magnetic storm activity. Journal of Geophysical Research 111, A09215, doi:10.1029/2006JA011635] to complement the traditional Dst index. The new index can be computed automatically by using the wavelet-based statistical procedure without human intervention on the selection of quiet days and the removal of secular variations. In addition, the WISA is flexible on data stretch and has a higher temporal resolution (1 min), which can provide a better description of the dynamical variations of magnetic storms. In this work, we perform a systematic assessment study on the WISA index. First, we statistically compare the WISA to the Dst for various quiet and disturbed periods and analyze the differences of their spectral features. Then we quantitatively assess the flexibility of the WISA on data stretch and study the effects of varying number of stations on the index. In addition, the ability of the WISA for handling the missing data is also quantitatively assessed. The assessment results show that the hourly averaged WISA index can describe storm activities equally well as the Dst index, but its full automation, high flexibility on data stretch, easiness of using the data from varying number of stations, high temporal resolution, and high tolerance to missing data from individual station can be very valuable and essential for real-time monitoring of the dynamical variations of magnetic storm activities and space weather applications, thus significantly complementing the existing Dst index.

  10. A novel clinically relevant segmentation method and corresponding maximal ischemia score to risk-stratify patients undergoing myocardial perfusion scintigraphy.

    Science.gov (United States)

    Nudi, Francesco; Pinto, Annamaria; Procaccini, Enrica; Neri, Giandomenico; Vetere, Maurizio; Tomai, Fabrizio; Gaspardone, Achille; Biondi-Zoccai, Giuseppe; Schillaci, Orazio

    2014-08-01

    Myocardial perfusion scintigraphy (MPS) represents a key prognostic tool, but its predictive yield is far from perfect. We developed a novel clinically relevant segmentation method and a corresponding maximal ischemia score (MIS) in order to risk-stratify patients undergoing MPS. Patients referred for MPS were identified, excluding those with evidence of myocardial necrosis or prior revascularization. A seven-region segmentation approach was adopted for left ventricular myocardium, with a corresponding MIS distinguishing five groups (no, minimal, mild, moderate, or severe ischemia). The association between MIS and clinical events was assessed at 1 year and at long-term follow-up. A total of 8,714 patients were included, with a clinical follow-up of 31 ± 20 months. Unadjusted analyses showed that subjects with a higher MIS were significantly different for several baseline and test data, being older, having lower ejection fraction, and achieving lower workloads (P < .05 for all). Adverse outcomes were also more frequent in patients with higher levels of ischemia, including cardiac death, myocardial infarction (MI), and their composites (P < .05 for all). Differences in adverse events remained significant even after extensive multivariable adjustment (hazard ratio for each MIS increment = 1.57 [1.29-1.90], P < .001 for cardiac death; 1.19 [1.04-1.36], P = .013 for MI; 1.23 [1.09-1.39], P = .001 for cardiac death/MI). Our novel segmentation method and corresponding MIS efficiently yield satisfactory prognostic information.

  11. Comparative analysis of nonlinear dimensionality reduction techniques for breast MRI segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Akhbardeh, Alireza; Jacobs, Michael A. [Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 (United States); Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 (United States) and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 (United States)

    2012-04-15

    Purpose: Visualization of anatomical structures using radiological imaging methods is an important tool in medicine to differentiate normal from pathological tissue and can generate large amounts of data for a radiologist to read. Integrating these large data sets is difficult and time-consuming. A new approach uses both supervised and unsupervised advanced machine learning techniques to visualize and segment radiological data. This study describes the application of a novel hybrid scheme, based on combining wavelet transform and nonlinear dimensionality reduction (NLDR) methods, to breast magnetic resonance imaging (MRI) data using three well-established NLDR techniques, namely, ISOMAP, local linear embedding (LLE), and diffusion maps (DfM), to perform a comparative performance analysis. Methods: Twenty-five breast lesion subjects were scanned using a 3T scanner. MRI sequences used were T1-weighted, T2-weighted, diffusion-weighted imaging (DWI), and dynamic contrast-enhanced (DCE) imaging. The hybrid scheme consisted of two steps: preprocessing and postprocessing of the data. The preprocessing step was applied for B{sub 1} inhomogeneity correction, image registration, and wavelet-based image compression to match and denoise the data. In the postprocessing step, MRI parameters were considered data dimensions and the NLDR-based hybrid approach was applied to integrate the MRI parameters into a single image, termed the embedded image. This was achieved by mapping all pixel intensities from the higher dimension to a lower dimensional (embedded) space. For validation, the authors compared the hybrid NLDR with linear methods of principal component analysis (PCA) and multidimensional scaling (MDS) using synthetic data. For the clinical application, the authors used breast MRI data, comparison was performed using the postcontrast DCE MRI image and evaluating the congruence of the segmented lesions. Results: The NLDR-based hybrid approach was able to define and segment

  12. Comparative analysis of nonlinear dimensionality reduction techniques for breast MRI segmentation

    International Nuclear Information System (INIS)

    Akhbardeh, Alireza; Jacobs, Michael A.

    2012-01-01

    Purpose: Visualization of anatomical structures using radiological imaging methods is an important tool in medicine to differentiate normal from pathological tissue and can generate large amounts of data for a radiologist to read. Integrating these large data sets is difficult and time-consuming. A new approach uses both supervised and unsupervised advanced machine learning techniques to visualize and segment radiological data. This study describes the application of a novel hybrid scheme, based on combining wavelet transform and nonlinear dimensionality reduction (NLDR) methods, to breast magnetic resonance imaging (MRI) data using three well-established NLDR techniques, namely, ISOMAP, local linear embedding (LLE), and diffusion maps (DfM), to perform a comparative performance analysis. Methods: Twenty-five breast lesion subjects were scanned using a 3T scanner. MRI sequences used were T1-weighted, T2-weighted, diffusion-weighted imaging (DWI), and dynamic contrast-enhanced (DCE) imaging. The hybrid scheme consisted of two steps: preprocessing and postprocessing of the data. The preprocessing step was applied for B 1 inhomogeneity correction, image registration, and wavelet-based image compression to match and denoise the data. In the postprocessing step, MRI parameters were considered data dimensions and the NLDR-based hybrid approach was applied to integrate the MRI parameters into a single image, termed the embedded image. This was achieved by mapping all pixel intensities from the higher dimension to a lower dimensional (embedded) space. For validation, the authors compared the hybrid NLDR with linear methods of principal component analysis (PCA) and multidimensional scaling (MDS) using synthetic data. For the clinical application, the authors used breast MRI data, comparison was performed using the postcontrast DCE MRI image and evaluating the congruence of the segmented lesions. Results: The NLDR-based hybrid approach was able to define and segment both

  13. Comparison of two different segmentation methods on planar lung perfusion scan with reference to quantitative value on SPECT/CT

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Min Seok; Kang, Yeon Koo; Ha, Seung Gyun [Dept. of Nuclear Medicine, Seoul National University Hospital, Seoul (Korea, Republic of); and others

    2017-06-15

    Until now, there was no single standardized regional segmentation method of planar lung perfusion scan. We compared planar scan based two segmentation methods, which are frequently used in the Society of Nuclear Medicine, with reference to the lung perfusion single photon emission computed tomography (SPECT)/computed tomography (CT) derived values in lung cancer patients. Fifty-five lung cancer patients (male:female, 37:18; age, 67.8 ± 10.7 years) were evaluated. The patients underwent planar scan and SPECT/CT after injection of technetium-99 m macroaggregated albumin (Tc-99 m-MAA). The % uptake and predicted postoperative percentage forced expiratory volume in 1 s (ppoFEV1%) derived from both posterior oblique (PO) and anterior posterior (AP) methods were compared with SPECT/CT derived parameters. Concordance analysis, paired comparison, reproducibility analysis and spearman correlation analysis were conducted. The % uptake derived from PO method showed higher concordance with SPECT/CT derived % uptake in every lobe compared to AP method. Both methods showed significantly different lobar distribution of % uptake compared to SPECT/CT. For the target region, ppoFEV1% measured from PO method showed higher concordance with SPECT/CT, but lower reproducibility compared to AP method. Preliminary data revealed that every method significantly correlated with actual postoperative FEV1%, with SPECT/CT showing the best correlation. The PO method derived values showed better concordance with SPECT/CT compared to the AP method. Both PO and AP methods showed significantly different lobar distribution compared to SPECT/CT. In clinical practice such difference according to different methods and lobes should be considered for more accurate postoperative lung function prediction.

  14. Segmentation Method of Time-Lapse Microscopy Images with the Focus on Biocompatibility Assessment

    Czech Academy of Sciences Publication Activity Database

    Soukup, Jindřich; Císař, P.; Šroubek, Filip

    2016-01-01

    Roč. 22, č. 3 (2016), s. 497-506 ISSN 1431-9276 R&D Projects: GA ČR GA13-29225S Grant - others:GA MŠk(CZ) LO1205; GA UK(CZ) 914813/2013; GA UK(CZ) SVV-2016-260332; CENAKVA(CZ) CZ.1.05/2.1.00/01.0024 Institutional support: RVO:67985556 Keywords : phase contrast microscopy * segmentation * biocompatibility assessment * time-lapse * cytotoxicity testing Subject RIV: JD - Computer Applications, Robotics Impact factor: 1.891, year: 2016 http://library.utia.cas.cz/separaty/2016/ZOI/soukupj-0460642.pdf

  15. A novel method for measuring anterior segment area of the eye on ultrasound biomicroscopic images using photoshop.

    Directory of Open Access Journals (Sweden)

    Zhonghao Wang

    Full Text Available To describe a novel method for quantitative measurement of area parameters in ocular anterior segment ultrasound biomicroscopy (UBM images using Photoshop software and to assess its intraobserver and interobserver reproducibility.Twenty healthy volunteers with wide angles and twenty patients with narrow or closed angles were consecutively recruited. UBM images were obtained and analyzed using Photoshop software by two physicians with different-level training on two occasions. Borders of anterior segment structures including cornea, iris, lens, and zonules in the UBM image were semi-automatically defined by the Magnetic Lasso Tool in the Photoshop software according to the pixel contrast and modified by the observers. Anterior chamber area (ACA, posterior chamber area (PCA, iris cross-section area (ICA and angle recess area (ARA were drawn and measured. The intraobserver and interobserver reproducibilities of the anterior segment area parameters and scleral spur location were assessed by limits of agreement, coefficient of variation (CV, and intraclass correlation coefficient (ICC.All of the parameters were successfully measured by Photoshop. The intraobserver and interobserver reproducibilities of ACA, PCA, and ICA were good, with no more than 5% CV and more than 0.95 ICC, while the CVs of ARA were within 20%. The intraobserver and interobserver reproducibilities for defining the spur location were more than 0.97 ICCs. Although the operating times for both observers were less than 3 minutes per image, there was significant difference in the measuring time between two observers with different levels of training (p<0.001.Measurements of ocular anterior segment areas on UBM images by Photoshop showed good intraobserver and interobserver reproducibilties. The methodology was easy to adopt and effective in measuring.

  16. Study on the optimal moisture adding rate of brown rice during germination by using segmented moisture conditioning method.

    Science.gov (United States)

    Cao, Yinping; Jia, Fuguo; Han, Yanlong; Liu, Yang; Zhang, Qiang

    2015-10-01

    The aim of this study was to find out the optimal moisture adding rate of brown rice during the process of germination. The process of water addition in brown rice could be divided into three stages according to different water absorption speeds in soaking process. Water was added with three different speeds in three stages to get the optimal water adding rate in the whole process of germination. Thus, the technology of segmented moisture conditioning which is a method of adding water gradually was put forward. Germinated brown rice was produced by using segmented moisture conditioning method to reduce the loss of water-soluble nutrients and was beneficial to the accumulation of gamma aminobutyric acid. The effects of once moisture adding amount in three stages on the gamma aminobutyric acid content in germinated brown rice and germination rate of brown rice were investigated by using response surface methodology. The optimum process parameters were obtained as follows: once moisture adding amount of stage I with 1.06 %/h, once moisture adding amount of stage II with 1.42 %/h and once moisture adding amount of stage III with 1.31 %/h. The germination rate under the optimum parameters was 91.33 %, which was 7.45 % higher than that of germinated brown rice produced by soaking method (84.97 %). The content of gamma aminobutyric acid in germinated brown rice under the optimum parameters was 29.03 mg/100 g, which was more than two times higher than that of germinated brown rice produced by soaking method (12.81 mg/100 g). The technology of segmented moisture conditioning has potential applications for studying many other cereals.

  17. Quantitative characterization of metastatic disease in the spine. Part I. Semiautomated segmentation using atlas-based deformable registration and the level set method

    International Nuclear Information System (INIS)

    Hardisty, M.; Gordon, L.; Agarwal, P.; Skrinskas, T.; Whyne, C.

    2007-01-01

    Quantitative assessment of metastatic disease in bone is often considered immeasurable and, as such, patients with skeletal metastases are often excluded from clinical trials. In order to effectively quantify the impact of metastatic tumor involvement in the spine, accurate segmentation of the vertebra is required. Manual segmentation can be accurate but involves extensive and time-consuming user interaction. Potential solutions to automating segmentation of metastatically involved vertebrae are demons deformable image registration and level set methods. The purpose of this study was to develop a semiautomated method to accurately segment tumor-bearing vertebrae using the aforementioned techniques. By maintaining morphology of an atlas, the demons-level set composite algorithm was able to accurately differentiate between trans-cortical tumors and surrounding soft tissue of identical intensity. The algorithm successfully segmented both the vertebral body and trabecular centrum of tumor-involved and healthy vertebrae. This work validates our approach as equivalent in accuracy to an experienced user

  18. Practical no-gold-standard evaluation framework for quantitative imaging methods: application to lesion segmentation in positron emission tomography.

    Science.gov (United States)

    Jha, Abhinav K; Mena, Esther; Caffo, Brian; Ashrafinia, Saeed; Rahmim, Arman; Frey, Eric; Subramaniam, Rathan M

    2017-01-01

    Recently, a class of no-gold-standard (NGS) techniques have been proposed to evaluate quantitative imaging methods using patient data. These techniques provide figures of merit (FoMs) quantifying the precision of the estimated quantitative value without requiring repeated measurements and without requiring a gold standard. However, applying these techniques to patient data presents several practical difficulties including assessing the underlying assumptions, accounting for patient-sampling-related uncertainty, and assessing the reliability of the estimated FoMs. To address these issues, we propose statistical tests that provide confidence in the underlying assumptions and in the reliability of the estimated FoMs. Furthermore, the NGS technique is integrated within a bootstrap-based methodology to account for patient-sampling-related uncertainty. The developed NGS framework was applied to evaluate four methods for segmenting lesions from F-Fluoro-2-deoxyglucose positron emission tomography images of patients with head-and-neck cancer on the task of precisely measuring the metabolic tumor volume. The NGS technique consistently predicted the same segmentation method as the most precise method. The proposed framework provided confidence in these results, even when gold-standard data were not available. The bootstrap-based methodology indicated improved performance of the NGS technique with larger numbers of patient studies, as was expected, and yielded consistent results as long as data from more than 80 lesions were available for the analysis.

  19. New methods to cope with temperature elevations in heated segments of flat plates cooled by boundary layer flow

    Directory of Open Access Journals (Sweden)

    Hajmohammadi Mohammad R.

    2016-01-01

    Full Text Available This paper documents two reliable methods to cope with the rising temperature in an array of heated segments with a known overall heat load and exposed to forced convective boundary layer flow. Minimization of the hot spots (peak temperatures in the array of heated segments constitutes the primary goal that sets the platform to develop the methods. The two proposed methods consist of: 1 Designing an array of unequal heaters so that each heater has a different size and generates heat at different rates, and 2 Distancing the unequal heaters from each other using an insulated spacing. Multi-scale design based on constructal theory is applied to estimate the optimal insulated spacing, heaters size and heat generation rates, such that the minimum hot spots temperature is achieved when subject to space constraint and fixed overall heat load. It is demonstrated that the two methods can considerably reduce the hot spot temperatures and consequently, both can be utilized with confidence in industry to achieve optimized heat transfer.

  20. Optimization of the segmented method for optical compression and multiplexing system

    Science.gov (United States)

    Al Falou, Ayman

    2002-05-01

    Because of the constant increasing demands of images exchange, and despite the ever increasing bandwidth of the networks, compression and multiplexing of images is becoming inseparable from their generation and display. For high resolution real time motion pictures, electronic performing of compression requires complex and time-consuming processing units. On the contrary, by its inherent bi-dimensional character, coherent optics is well fitted to perform such processes that are basically bi-dimensional data handling in the Fourier domain. Additionally, the main limiting factor that was the maximum frame rate is vanishing because of the recent improvement of spatial light modulator technology. The purpose of this communication is to benefit from recent optical correlation algorithms. The segmented filtering used to store multi-references in a given space bandwidth product optical filter can be applied to networks to compress and multiplex images in a given bandwidth channel.

  1. Evaluating the Performance of Wavelet-based Data-driven Models for Multistep-ahead Flood Forecasting in an Urbanized Watershed

    Science.gov (United States)

    Kasaee Roodsari, B.; Chandler, D. G.

    2015-12-01

    A real-time flood forecast system is presented to provide emergency management authorities sufficient lead time to execute plans for evacuation and asset protection in urban watersheds. This study investigates the performance of two hybrid models for real-time flood forecasting at different subcatchments of Ley Creek watershed, a heavily urbanized watershed in the vicinity of Syracuse, New York. Hybrid models include Wavelet-Based Artificial Neural Network (WANN) and Wavelet-Based Adaptive Neuro-Fuzzy Inference System (WANFIS). Both models are developed on the basis of real time stream network sensing. The wavelet approach is applied to decompose the collected water depth timeseries to Approximation and Detail components. The Approximation component is then used as an input to ANN and ANFIS models to forecast water level at lead times of 1 to 10 hours. The performance of WANN and WANFIS models are compared to ANN and ANFIS models for different lead times. Initial results demonstrated greater predictive power of hybrid models.

  2. SU-D-206-03: Segmentation Assisted Fast Iterative Reconstruction Method for Cone-Beam CT

    International Nuclear Information System (INIS)

    Wu, P; Mao, T; Gong, S; Wang, J; Niu, T; Sheng, K; Xie, Y

    2016-01-01

    Purpose: Total Variation (TV) based iterative reconstruction (IR) methods enable accurate CT image reconstruction from low-dose measurements with sparse projection acquisition, due to the sparsifiable feature of most CT images using gradient operator. However, conventional solutions require large amount of iterations to generate a decent reconstructed image. One major reason is that the expected piecewise constant property is not taken into consideration at the optimization starting point. In this work, we propose an iterative reconstruction method for cone-beam CT (CBCT) using image segmentation to guide the optimization path more efficiently on the regularization term at the beginning of the optimization trajectory. Methods: Our method applies general knowledge that one tissue component in the CT image contains relatively uniform distribution of CT number. This general knowledge is incorporated into the proposed reconstruction using image segmentation technique to generate the piecewise constant template on the first-pass low-quality CT image reconstructed using analytical algorithm. The template image is applied as an initial value into the optimization process. Results: The proposed method is evaluated on the Shepp-Logan phantom of low and high noise levels, and a head patient. The number of iterations is reduced by overall 40%. Moreover, our proposed method tends to generate a smoother reconstructed image with the same TV value. Conclusion: We propose a computationally efficient iterative reconstruction method for CBCT imaging. Our method achieves a better optimization trajectory and a faster convergence behavior. It does not rely on prior information and can be readily incorporated into existing iterative reconstruction framework. Our method is thus practical and attractive as a general solution to CBCT iterative reconstruction. This work is supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No. LR16F010001), National High-tech R

  3. SU-D-206-03: Segmentation Assisted Fast Iterative Reconstruction Method for Cone-Beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Wu, P; Mao, T; Gong, S; Wang, J; Niu, T [Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang (China); Sheng, K [Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA (United States); Xie, Y [Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong (China)

    2016-06-15

    Purpose: Total Variation (TV) based iterative reconstruction (IR) methods enable accurate CT image reconstruction from low-dose measurements with sparse projection acquisition, due to the sparsifiable feature of most CT images using gradient operator. However, conventional solutions require large amount of iterations to generate a decent reconstructed image. One major reason is that the expected piecewise constant property is not taken into consideration at the optimization starting point. In this work, we propose an iterative reconstruction method for cone-beam CT (CBCT) using image segmentation to guide the optimization path more efficiently on the regularization term at the beginning of the optimization trajectory. Methods: Our method applies general knowledge that one tissue component in the CT image contains relatively uniform distribution of CT number. This general knowledge is incorporated into the proposed reconstruction using image segmentation technique to generate the piecewise constant template on the first-pass low-quality CT image reconstructed using analytical algorithm. The template image is applied as an initial value into the optimization process. Results: The proposed method is evaluated on the Shepp-Logan phantom of low and high noise levels, and a head patient. The number of iterations is reduced by overall 40%. Moreover, our proposed method tends to generate a smoother reconstructed image with the same TV value. Conclusion: We propose a computationally efficient iterative reconstruction method for CBCT imaging. Our method achieves a better optimization trajectory and a faster convergence behavior. It does not rely on prior information and can be readily incorporated into existing iterative reconstruction framework. Our method is thus practical and attractive as a general solution to CBCT iterative reconstruction. This work is supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No. LR16F010001), National High-tech R

  4. Novel method for edge detection of retinal vessels based on the model of the retinal vascular network and mathematical morphology

    Science.gov (United States)

    Xu, Lei; Zheng, Xiaoxiang; Zhang, Hengyi; Yu, Yajun

    1998-09-01

    Accurate edge detection of retinal vessels is a prerequisite for quantitative analysis of subtle morphological changes of retinal vessels under different pathological conditions. A novel method for edge detection of retinal vessels is presented in this paper. Methods: (1) Wavelet-based image preprocessing. (2) The signed edge detection algorithm and mathematical morphological operation are applied to get the approximate regions that contain retinal vessels. (3) By convolving the preprocessed image with a LoG operator only on the detected approximate regions of retinal vessels, followed by edges refining, clear edge maps of the retinal vessels are fast obtained. Results: A detailed performance evaluation together with the existing techniques is given to demonstrate the strong features of our method. Conclusions: True edge locations of retinal vessels can be fast detected with continuous structures of retinal vessels, less non- vessel segments left and insensitivity to noise. The method is also suitable for other application fields such as road edge detection.

  5. Assaying the character and stenosis of the pyeloureteric segment in nephrolithiasis through pharmacologic modification of the imaging methods

    International Nuclear Information System (INIS)

    Yudin, L.; Reznichenko, A.; Budkevich, Yu.; Shejretova, E.

    1994-01-01

    The study is performed with 17 patients presenting nephrolithiasis and 6 - hydronephrosis with stenosis of the pyeloureteric segment, confirmed intraoperatively. The character of stenosis (reversible or irreversible) is determined by ultrasonography with furosemide, dynamic scintigraphy with furosemide and progesterone, and excretory urography with progesterone. As shown by the obtained results, the pharmacologic modifications of imaging methods prove more informative in hydronephrosis, and to a lesser extent in nephrolithiasis patients. Dynamic scintigraphy with furosemide and excretory urography with progesterone yields less information, in comparison to ultrasonography with forosemid and excretory urography with progesterone. However, the comparatively limited number of patients investigated should be borne in mind. 2 tabs., 5 refs

  6. Performance of five research-domain automated WM lesion segmentation methods in a multi-center MS study

    DEFF Research Database (Denmark)

    de Sitter, Alexandra; Steenwijk, Martijn D; Ruet, Aurélie

    2017-01-01

    (Lesion-TOADS); and k-Nearest Neighbor with Tissue Type Priors (kNN-TTP). Main software parameters were optimized using a training set (N = 18), and formal testing was performed on the remaining patients (N = 52). To evaluate volumetric agreement with the reference segmentations, intraclass correlation......BACKGROUND AND PURPOSE: In vivoidentification of white matter lesions plays a key-role in evaluation of patients with multiple sclerosis (MS). Automated lesion segmentation methods have been developed to substitute manual outlining, but evidence of their performance in multi-center investigations......-one-center-out design to exclude the center of interest from the training phase to evaluate the performance of the method on 'unseen' center. RESULTS: Compared to the reference mean lesion volume (4.85 ± 7.29 mL), the methods displayed a mean difference of 1.60 ± 4.83 (Cascade), 2.31 ± 7.66 (LGA), 0.44 ± 4.68 (LPA), 1...

  7. An automated three-dimensional detection and segmentation method for touching cells by integrating concave points clustering and random walker algorithm.

    Directory of Open Access Journals (Sweden)

    Yong He

    Full Text Available Characterizing cytoarchitecture is crucial for understanding brain functions and neural diseases. In neuroanatomy, it is an important task to accurately extract cell populations' centroids and contours. Recent advances have permitted imaging at single cell resolution for an entire mouse brain using the Nissl staining method. However, it is difficult to precisely segment numerous cells, especially those cells touching each other. As presented herein, we have developed an automated three-dimensional detection and segmentation method applied to the Nissl staining data, with the following two key steps: 1 concave points clustering to determine the seed points of touching cells; and 2 random walker segmentation to obtain cell contours. Also, we have evaluated the performance of our proposed method with several mouse brain datasets, which were captured with the micro-optical sectioning tomography imaging system, and the datasets include closely touching cells. Comparing with traditional detection and segmentation methods, our approach shows promising detection accuracy and high robustness.

  8. TU-H-CAMPUS-IeP3-01: Simultaneous PET Restoration and PET/CT Co-Segmentation Using a Variational Method

    International Nuclear Information System (INIS)

    Li, L; Tan, S; Lu, W

    2016-01-01

    Purpose: PET images are usually blurred due to the finite spatial resolution, while CT images suffer from low contrast. Segment a tumor from either a single PET or CT image is thus challenging. To make full use of the complementary information between PET and CT, we propose a novel variational method for simultaneous PET image restoration and PET/CT images co-segmentation. Methods: The proposed model was constructed based on the Γ-convergence approximation of Mumford-Shah (MS) segmentation model for PET/CT co-segmentation. Moreover, a PET de-blur process was integrated into the MS model to improve the segmentation accuracy. An interaction edge constraint term over the two modalities were specially designed to share the complementary information. The energy functional was iteratively optimized using an alternate minimization (AM) algorithm. The performance of the proposed method was validated on ten lung cancer cases and five esophageal cancer cases. The ground truth were manually delineated by an experienced radiation oncologist using the complementary visual features of PET and CT. The segmentation accuracy was evaluated by Dice similarity index (DSI) and volume error (VE). Results: The proposed method achieved an expected restoration result for PET image and satisfactory segmentation results for both PET and CT images. For lung cancer dataset, the average DSI (0.72) increased by 0.17 and 0.40 than single PET and CT segmentation. For esophageal cancer dataset, the average DSI (0.85) increased by 0.07 and 0.43 than single PET and CT segmentation. Conclusion: The proposed method took full advantage of the complementary information from PET and CT images. This work was supported in part by the National Cancer Institute Grants R01CA172638. Shan Tan and Laquan Li were supported in part by the National Natural Science Foundation of China, under Grant Nos. 60971112 and 61375018.

  9. A fast 4D IMRT/VMAT planning method based on segment aperture morphing.

    Science.gov (United States)

    Klawikowski, Slade; Tai, An; Ates, Ozgur; Ahunbay, Ergun; Li, X Allen

    2018-04-01

    Four-dimensional volumetric modulated arc therapy (4D VMAT) and four-dimensional intensity-modulated radiotherapy (4D IMRT) are developing radiation therapy treatment strategies designed to maximize dose conformality, minimize normal tissue dose, and deliver the treatment as efficiently as possible. The patient's entire breathing cycle is captured through 4D imaging modalities and then separated into individual breathing phases for planning purposes. Optimizing multiphase VMAT and IMRT plans is computationally demanding and currently impractical for clinical application. The purpose of this study is to assess a new planning process decreasing the upfront computational time required to optimize multiphased treatment plans while maintaining good plan quality. Optimized VMAT and IMRT plans were created on the end-of-exhale (EOE) breathing phase of 10-phase 4D CT scans with planning tumor volume (PTV)-based targets. These single-phase optimized plans are analogous to single-phase gated treatment plans. The simulated tracked plans were created by deformably registering EOE contours to the remaining breathing phases, recalculating the optimized EOE plan onto the other individual phases and realigning the MLC's relative positions to the PTV border in each of the individual breathing phases using a segment aperture morphing (SAM) algorithm. Doses for each of the 10 phases were calculated with the treatment planning system and deformably transferred back onto the EOE phase and averaged with equal weighting simulating the actual delivered dose a patient would potentially receive in a tracked treatment plan. Plan DVH quality for the 10-phase 4D SAM plans were comparable with the individual EOE optimized treatment plans for the PTV structures as well as the organ at risk structures. SAM-based algorithms out performed simpler isocenter-shifted only approaches. SAM-based 4D planning greatly reduced plan computation time vs individually optimizing all 10 phases. In addition

  10. Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method.

    Science.gov (United States)

    Zhou, Xiangrong; Takayama, Ryosuke; Wang, Song; Hara, Takeshi; Fujita, Hiroshi

    2017-10-01

    We propose a single network trained by pixel-to-label deep learning to address the general issue of automatic multiple organ segmentation in three-dimensional (3D) computed tomography (CT) images. Our method can be described as a voxel-wise multiple-class classification scheme for automatically assigning labels to each pixel/voxel in a 2D/3D CT image. We simplify the segmentation algorithms of anatomical structures (including multiple organs) in a CT image (generally in 3D) to a majority voting scheme over the semantic segmentation of multiple 2D slices drawn from different viewpoints with redundancy. The proposed method inherits the spirit of fully convolutional networks (FCNs) that consist of "convolution" and "deconvolution" layers for 2D semantic image segmentation, and expands the core structure with 3D-2D-3D transformations to adapt to 3D CT image segmentation. All parameters in the proposed network are trained pixel-to-label from a small number of CT cases with human annotations as the ground truth. The proposed network naturally fulfills the requirements of multiple organ segmentations in CT cases of different sizes that cover arbitrary scan regions without any adjustment. The proposed network was trained and validated using the simultaneous segmentation of 19 anatomical structures in the human torso, including 17 major organs and two special regions (lumen and content inside of stomach). Some of these structures have never been reported in previous research on CT segmentation. A database consisting of 240 (95% for training and 5% for testing) 3D CT scans, together with their manually annotated ground-truth segmentations, was used in our experiments. The results show that the 19 structures of interest were segmented with acceptable accuracy (88.1% and 87.9% voxels in the training and testing datasets, respectively, were labeled correctly) against the ground truth. We propose a single network based on pixel-to-label deep learning to address the challenging

  11. A novel method for measuring anterior segment area of the eye on ultrasound biomicroscopic images using photoshop.

    Science.gov (United States)

    Wang, Zhonghao; Liang, Xuanwei; Wu, Ziqiang; Lin, Jialiu; Huang, Jingjing

    2015-01-01

    To describe a novel method for quantitative measurement of area parameters in ocular anterior segment ultrasound biomicroscopy (UBM) images using Photoshop software and to assess its intraobserver and interobserver reproducibility. Twenty healthy volunteers with wide angles and twenty patients with narrow or closed angles were consecutively recruited. UBM images were obtained and analyzed using Photoshop software by two physicians with different-level training on two occasions. Borders of anterior segment structures including cornea, iris, lens, and zonules in the UBM image were semi-automatically defined by the Magnetic Lasso Tool in the Photoshop software according to the pixel contrast and modified by the observers. Anterior chamber area (ACA), posterior chamber area (PCA), iris cross-section area (ICA) and angle recess area (ARA) were drawn and measured. The intraobserver and interobserver reproducibilities of the anterior segment area parameters and scleral spur location were assessed by limits of agreement, coefficient of variation (CV), and intraclass correlation coefficient (ICC). All of the parameters were successfully measured by Photoshop. The intraobserver and interobserver reproducibilities of ACA, PCA, and ICA were good, with no more than 5% CV and more than 0.95 ICC, while the CVs of ARA were within 20%. The intraobserver and interobserver reproducibilities for defining the spur location were more than 0.97 ICCs. Although the operating times for both observers were less than 3 minutes per image, there was significant difference in the measuring time between two observers with different levels of training (pPhotoshop showed good intraobserver and interobserver reproducibilties. The methodology was easy to adopt and effective in measuring.

  12. A multi-segment foot model based on anatomically registered technical coordinate systems: method repeatability in pediatric feet.

    Science.gov (United States)

    Saraswat, Prabhav; MacWilliams, Bruce A; Davis, Roy B

    2012-04-01

    Several multi-segment foot models to measure the motion of intrinsic joints of the foot have been reported. Use of these models in clinical decision making is limited due to lack of rigorous validation including inter-clinician, and inter-lab variability measures. A model with thoroughly quantified variability may significantly improve the confidence in the results of such foot models. This study proposes a new clinical foot model with the underlying strategy of using separate anatomic and technical marker configurations and coordinate systems. Anatomical landmark and coordinate system identification is determined during a static subject calibration. Technical markers are located at optimal sites for dynamic motion tracking. The model is comprised of the tibia and three foot segments (hindfoot, forefoot and hallux) and inter-segmental joint angles are computed in three planes. Data collection was carried out on pediatric subjects at two sites (Site 1: n=10 subjects by two clinicians and Site 2: five subjects by one clinician). A plaster mold method was used to quantify static intra-clinician and inter-clinician marker placement variability by allowing direct comparisons of marker data between sessions for each subject. Intra-clinician and inter-clinician joint angle variability were less than 4°. For dynamic walking kinematics, intra-clinician, inter-clinician and inter-laboratory variability were less than 6° for the ankle and forefoot, but slightly higher for the hallux. Inter-trial variability accounted for 2-4° of the total dynamic variability. Results indicate the proposed foot model reduces the effects of marker placement variability on computed foot kinematics during walking compared to similar measures in previous models. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Segmentation of 3D microPET images of the rat brain via the hybrid gaussian mixture method with kernel density estimation.

    Science.gov (United States)

    Chen, Tai-Been; Chen, Jyh-Cheng; Lu, Henry Horng-Shing

    2012-01-01

    Segmentation of positron emission tomography (PET) is typically achieved using the K-Means method or other approaches. In preclinical and clinical applications, the K-Means method needs a prior estimation of parameters such as the number of clusters and appropriate initialized values. This work segments microPET images using a hybrid method combining the Gaussian mixture model (GMM) with kernel density estimation. Segmentation is crucial to registration of disordered 2-deoxy-2-fluoro-D-glucose (FDG) accumulation locations with functional diagnosis and to estimate standardized uptake values (SUVs) of region of interests (ROIs) in PET images. Therefore, simulation studies are conducted to apply spherical targets to evaluate segmentation accuracy based on Tanimoto's definition of similarity. The proposed method generates a higher degree of similarity than the K-Means method. The PET images of a rat brain are used to compare the segmented shape and area of the cerebral cortex by the K-Means method and the proposed method by volume rendering. The proposed method provides clearer and more detailed activity structures of an FDG accumulation location in the cerebral cortex than those by the K-Means method.

  14. Segmentation of the Infant Food Market

    OpenAIRE

    Hrůzová, Daniela

    2015-01-01

    The theoretical part covers general market segmentation, namely the marketing importance of differences among consumers, the essence of market segmentation, its main conditions and the process of segmentation, which consists of four consecutive phases - defining the market, determining important criteria, uncovering segments and developing segment profiles. The segmentation criteria, segmentation approaches, methods and techniques for the process of market segmentation are also described in t...

  15. Comparison of various quantization methods of segmental ventricular wall motion in ischemic heart disease

    International Nuclear Information System (INIS)

    Probst, P.; Moore, R.; Kim, S.W.; Zollikofer, C.; Amplatz, K.

    1981-01-01

    Numerous methods of measuring regional myocardial wall motion are in use. A critical comparison is needed to assess the strengths, weaknesses, accuracy, and precision of these methods. This paper reports the evaluation of five methods using computer-assisted interactive graphics. Fifty cines were selected: 16 from normal subjects, and 34 from patients with proven cardiovascular diseases. Tracings were made of the opacified left ventricle in end systole and dastole and digitized. All fifty cines were analyzed by five methods using computer-implemented graphic techniques. The reults included a display of the silhouettes, which were translated and rotated according to various methods. In addition, the percent contraction for eleven myocardial regions was tabulated and displayed. The sixteen cines from normal subjects were used to derive 1 range of 'house' normal values for region contraction patterns with which the measurements from the 34 abnormal patients were compared. The five methods were evaluated by comparing results from the computer-aided analysis with the visual assessment of two experienced radiologists. One method was found, the results from which agreed with the radiologists' visual impression for every case. This computer-aided method was quantitative and reproducible. Consequently, it can give information which supplements the visual impression. (orig.) [de

  16. Method of segmenting inferior horns of lateral ventricles using active contour models

    International Nuclear Information System (INIS)

    Hattori, Masumi; Koyama, Shuji; Kodera, Yoshie

    2007-01-01

    Recent research has suggested that the measurement of regional atrophy in the structure of the medial temporal lobe is a promising way to discriminate Alzheimer-type dementia patients from healthy control subjects. There are some reports that the inferior horns of the lateral ventricles are expanded by atrophying the structure of the medial temporal lobe. We developed a technique to automatically detect the region of the inferior horns of the lateral ventricles by gray-level thresholding and morphological processing. However, there were some incorrect regions in this method. Accordingly, we proposed a technique for which active contour models (ACM) were used. Our ACM incorporates the improved edge-based image and the external constraint to improve convergence and to reduce its dependence on initial estimation. In this study, we present the details of an algorithm that traces the contours of the inferior horns of the lateral ventricles and its performance relative to manual methods. The average degree of correspondence between the extract region and manual trace was measured in 30 inferior horns of 15 subjects. The average degree of correspondence of the proposed method was about 4% higher than that of the conventional method. These results suggest that the proposed method is more accurate than the conventional method. (author)

  17. A Wavelet-Based Unified Power Quality Conditioner to Eliminate Wind Turbine Non-Ideality Consequences on Grid-Connected Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Bijan Rahmani

    2016-05-01

    Full Text Available The integration of renewable power sources with power grids presents many challenges, such as synchronization with the grid, power quality problems and so on. The shunt active power filter (SAPF can be a solution to address the issue while suppressing the grid-end current harmonics and distortions. Nonetheless, available SAPFs work somewhat unpredictably in practice. This is attributed to the dependency of the SAPF controller on nonlinear complicated equations and two distorted variables, such as load current and voltage, to produce the current reference. This condition will worsen when the plant includes wind turbines which inherently produce 3rd, 5th, 7th and 11th voltage harmonics. Moreover, the inability of the typical phase locked loop (PLL used to synchronize the SAPF reference with the power grid also disrupts SAPF operation. This paper proposes an improved synchronous reference frame (SRF which is equipped with a wavelet-based PLL to control the SAPF, using one variable such as load current. Firstly the fundamental positive sequence of the source voltage, obtained using a wavelet, is used as the input signal of the PLL through an orthogonal signal generator process. Then, the generated orthogonal signals are applied through the SRF-based compensation algorithm to synchronize the SAPF’s reference with power grid. To further force the remained uncompensated grid current harmonics to pass through the SAPF, an improved series filter (SF equipped with a current harmonic suppression loop is proposed. Concurrent operation of the improved SAPF and SF is coordinated through a unified power quality conditioner (UPQC. The DC-link capacitor of the proposed UPQC, used to interconnect a photovoltaic (PV system to the power grid, is regulated by an adaptive controller. Matlab/Simulink results confirm that the proposed wavelet-based UPQC results in purely sinusoidal grid-end currents with total harmonic distortion (THD = 1.29%, which leads to high

  18. Adaptive striping watershed segmentation method for processing microscopic images of overlapping irregular-shaped and multicentre particles.

    Science.gov (United States)

    Xiao, X; Bai, B; Xu, N; Wu, K

    2015-04-01

    Oversegmentation is a major drawback of the morphological watershed algorithm. Here, we study and reveal that the oversegmentation is not only because of the irregular shapes of the particle images, which people are familiar with, but also because of some particles, such as ellipses, with more than one centre. A new parameter, the striping level, is introduced and the criterion for striping parameter is built to help find the right markers prior to segmentation. An adaptive striping watershed algorithm is established by applying a procedure, called the marker searching algorithm, to find the markers, which can effectively suppress the oversegmentation. The effectiveness of the proposed method is validated by analysing some typical particle images including the images of gold nanorod ensembles. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  19. Digital images segmentation: a state of art of the different methods ...

    African Journals Online (AJOL)

    An image is a planar representation of a scene or a 3 D object. The primary information associated to each point of the image is transcribed in grey level or in colour. Image analysis is the set of methods which permits the extraction of pertinent information from the image according to the concerned application, to treat them ...

  20. Automated fibroglandular tissue segmentation and volumetric density estimation in breast MRI using an atlas-aided fuzzy C-means method

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Shandong; Weinstein, Susan P.; Conant, Emily F.; Kontos, Despina, E-mail: despina.kontos@uphs.upenn.edu [Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)

    2013-12-15

    Purpose: Breast magnetic resonance imaging (MRI) plays an important role in the clinical management of breast cancer. Studies suggest that the relative amount of fibroglandular (i.e., dense) tissue in the breast as quantified in MR images can be predictive of the risk for developing breast cancer, especially for high-risk women. Automated segmentation of the fibroglandular tissue and volumetric density estimation in breast MRI could therefore be useful for breast cancer risk assessment. Methods: In this work the authors develop and validate a fully automated segmentation algorithm, namely, an atlas-aided fuzzy C-means (FCM-Atlas) method, to estimate the volumetric amount of fibroglandular tissue in breast MRI. The FCM-Atlas is a 2D segmentation method working on a slice-by-slice basis. FCM clustering is first applied to the intensity space of each 2D MR slice to produce an initial voxelwise likelihood map of fibroglandular tissue. Then a prior learned fibroglandular tissue likelihood atlas is incorporated to refine the initial FCM likelihood map to achieve enhanced segmentation, from which the absolute volume of the fibroglandular tissue (|FGT|) and the relative amount (i.e., percentage) of the |FGT| relative to the whole breast volume (FGT%) are computed. The authors' method is evaluated by a representative dataset of 60 3D bilateral breast MRI scans (120 breasts) that span the full breast density range of the American College of Radiology Breast Imaging Reporting and Data System. The automated segmentation is compared to manual segmentation obtained by two experienced breast imaging radiologists. Segmentation performance is assessed by linear regression, Pearson's correlation coefficients, Student's pairedt-test, and Dice's similarity coefficients (DSC). Results: The inter-reader correlation is 0.97 for FGT% and 0.95 for |FGT|. When compared to the average of the two readers’ manual segmentation, the proposed FCM-Atlas method achieves a

  1. Automated fibroglandular tissue segmentation and volumetric density estimation in breast MRI using an atlas-aided fuzzy C-means method

    International Nuclear Information System (INIS)

    Wu, Shandong; Weinstein, Susan P.; Conant, Emily F.; Kontos, Despina

    2013-01-01

    Purpose: Breast magnetic resonance imaging (MRI) plays an important role in the clinical management of breast cancer. Studies suggest that the relative amount of fibroglandular (i.e., dense) tissue in the breast as quantified in MR images can be predictive of the risk for developing breast cancer, especially for high-risk women. Automated segmentation of the fibroglandular tissue and volumetric density estimation in breast MRI could therefore be useful for breast cancer risk assessment. Methods: In this work the authors develop and validate a fully automated segmentation algorithm, namely, an atlas-aided fuzzy C-means (FCM-Atlas) method, to estimate the volumetric amount of fibroglandular tissue in breast MRI. The FCM-Atlas is a 2D segmentation method working on a slice-by-slice basis. FCM clustering is first applied to the intensity space of each 2D MR slice to produce an initial voxelwise likelihood map of fibroglandular tissue. Then a prior learned fibroglandular tissue likelihood atlas is incorporated to refine the initial FCM likelihood map to achieve enhanced segmentation, from which the absolute volume of the fibroglandular tissue (|FGT|) and the relative amount (i.e., percentage) of the |FGT| relative to the whole breast volume (FGT%) are computed. The authors' method is evaluated by a representative dataset of 60 3D bilateral breast MRI scans (120 breasts) that span the full breast density range of the American College of Radiology Breast Imaging Reporting and Data System. The automated segmentation is compared to manual segmentation obtained by two experienced breast imaging radiologists. Segmentation performance is assessed by linear regression, Pearson's correlation coefficients, Student's pairedt-test, and Dice's similarity coefficients (DSC). Results: The inter-reader correlation is 0.97 for FGT% and 0.95 for |FGT|. When compared to the average of the two readers’ manual segmentation, the proposed FCM-Atlas method achieves a correlation ofr = 0

  2. Improving Semantic Updating Method on 3d City Models Using Hybrid Semantic-Geometric 3d Segmentation Technique

    Science.gov (United States)

    Sharkawi, K.-H.; Abdul-Rahman, A.

    2013-09-01

    to LoD4. The accuracy and structural complexity of the 3D objects increases with the LoD level where LoD0 is the simplest LoD (2.5D; Digital Terrain Model (DTM) + building or roof print) while LoD4 is the most complex LoD (architectural details with interior structures). Semantic information is one of the main components in CityGML and 3D City Models, and provides important information for any analyses. However, more often than not, the semantic information is not available for the 3D city model due to the unstandardized modelling process. One of the examples is where a building is normally generated as one object (without specific feature layers such as Roof, Ground floor, Level 1, Level 2, Block A, Block B, etc). This research attempts to develop a method to improve the semantic data updating process by segmenting the 3D building into simpler parts which will make it easier for the users to select and update the semantic information. The methodology is implemented for 3D buildings in LoD2 where the buildings are generated without architectural details but with distinct roof structures. This paper also introduces hybrid semantic-geometric 3D segmentation method that deals with hierarchical segmentation of a 3D building based on its semantic value and surface characteristics, fitted by one of the predefined primitives. For future work, the segmentation method will be implemented as part of the change detection module that can detect any changes on the 3D buildings, store and retrieve semantic information of the changed structure, automatically updates the 3D models and visualize the results in a userfriendly graphical user interface (GUI).

  3. Segmentation of Moving Object Using Background Subtraction Method in Complex Environments

    Directory of Open Access Journals (Sweden)

    S. Kumar

    2016-06-01

    Full Text Available Background subtraction is an extensively used approach to localize the moving object in a video sequence. However, detecting an object under the spatiotemporal behavior of background such as rippling of water, moving curtain and illumination change or low resolution is not a straightforward task. To deal with the above-mentioned problem, we address a background maintenance scheme based on the updating of background pixels by estimating the current spatial variance along the temporal line. The work is focused to immune the variation of local motion in the background. Finally, the most suitable label assignment to the motion field is estimated and optimized by using iterated conditional mode (ICM under a Markovian framework. Performance evaluation and comparisons with the other well-known background subtraction methods show that the proposed method is unaffected by the problem of aperture distortion, ghost image, and high frequency noise.

  4. NCC-RANSAC: a fast plane extraction method for 3-D range data segmentation.

    Science.gov (United States)

    Qian, Xiangfei; Ye, Cang

    2014-12-01

    This paper presents a new plane extraction (PE) method based on the random sample consensus (RANSAC) approach. The generic RANSAC-based PE algorithm may over-extract a plane, and it may fail in case of a multistep scene where the RANSAC procedure results in multiple inlier patches that form a slant plane straddling the steps. The CC-RANSAC PE algorithm successfully overcomes the latter limitation if the inlier patches are separate. However, it fails if the inlier patches are connected. A typical scenario is a stairway with a stair wall where the RANSAC plane-fitting procedure results in inliers patches in the tread, riser, and stair wall planes. They connect together and form a plane. The proposed method, called normal-coherence CC-RANSAC (NCC-RANSAC), performs a normal coherence check to all data points of the inlier patches and removes the data points whose normal directions are contradictory to that of the fitted plane. This process results in separate inlier patches, each of which is treated as a candidate plane. A recursive plane clustering process is then executed to grow each of the candidate planes until all planes are extracted in their entireties. The RANSAC plane-fitting and the recursive plane clustering processes are repeated until no more planes are found. A probabilistic model is introduced to predict the success probability of the NCC-RANSAC algorithm and validated with real data of a 3-D time-of-flight camera-SwissRanger SR4000. Experimental results demonstrate that the proposed method extracts more accurate planes with less computational time than the existing RANSAC-based methods.

  5. a Numerical Comparison of Langrange and Kane's Methods of AN Arm Segment

    Science.gov (United States)

    Rambely, Azmin Sham; Halim, Norhafiza Ab.; Ahmad, Rokiah Rozita

    A 2-D model of a two-link kinematic chain is developed using two dynamics equations of motion, namely Kane's and Lagrange Methods. The dynamics equations are reduced to first order differential equation and solved using modified Euler and fourth order Runge Kutta to approximate the shoulder and elbow joint angles during a smash performance in badminton. Results showed that Runge-Kutta produced a better and exact approximation than that of modified Euler and both dynamic equations produced better absolute errors.

  6. Integrating atlas and graph cut methods for right ventricle blood-pool segmentation from cardiac cine MRI

    Science.gov (United States)

    Dangi, Shusil; Linte, Cristian A.

    2017-03-01

    Segmentation of right ventricle from cardiac MRI images can be used to build pre-operative anatomical heart models to precisely identify regions of interest during minimally invasive therapy. Furthermore, many functional parameters of right heart such as right ventricular volume, ejection fraction, myocardial mass and thickness can also be assessed from the segmented images. To obtain an accurate and computationally efficient segmentation of right ventricle from cardiac cine MRI, we propose a segmentation algorithm formulated as an energy minimization problem in a graph. Shape prior obtained by propagating label from an average atlas using affine registration is incorporated into the graph framework to overcome problems in ill-defined image regions. The optimal segmentation corresponding to the labeling with minimum energy configuration of the graph is obtained via graph-cuts and is iteratively refined to produce the final right ventricle blood pool segmentation. We quantitatively compare the segmentation results obtained from our algorithm to the provided gold-standard expert manual segmentation for 16 cine-MRI datasets available through the MICCAI 2012 Cardiac MR Right Ventricle Segmentation Challenge according to several similarity metrics, including Dice coefficient, Jaccard coefficient, Hausdorff distance, and Mean absolute distance error.

  7. Automated Segmentation Methods of Drusen to Diagnose Age-Related Macular Degeneration Screening in Retinal Images

    OpenAIRE

    Kim, Young Jae; Kim, Kwang Gi

    2018-01-01

    Existing drusen measurement is difficult to use in clinic because it requires a lot of time and effort for visual inspection. In order to resolve this problem, we propose an automatic drusen detection method to help clinical diagnosis of age-related macular degeneration. First, we changed the fundus image to a green channel and extracted the ROI of the macular area based on the optic disk. Next, we detected the candidate group using the difference image of the median filter within the ROI. We...

  8. TU-AB-202-11: Tumor Segmentation by Fusion of Multi-Tracer PET Images Using Copula Based Statistical Methods

    International Nuclear Information System (INIS)

    Lapuyade-Lahorgue, J; Ruan, S; Li, H; Vera, P

    2016-01-01

    Purpose: Multi-tracer PET imaging is getting more attention in radiotherapy by providing additional tumor volume information such as glucose and oxygenation. However, automatic PET-based tumor segmentation is still a very challenging problem. We propose a statistical fusion approach to joint segment the sub-area of tumors from the two tracers FDG and FMISO PET images. Methods: Non-standardized Gamma distributions are convenient to model intensity distributions in PET. As a serious correlation exists in multi-tracer PET images, we proposed a new fusion method based on copula which is capable to represent dependency between different tracers. The Hidden Markov Field (HMF) model is used to represent spatial relationship between PET image voxels and statistical dynamics of intensities for each modality. Real PET images of five patients with FDG and FMISO are used to evaluate quantitatively and qualitatively our method. A comparison between individual and multi-tracer segmentations was conducted to show advantages of the proposed fusion method. Results: The segmentation results show that fusion with Gaussian copula can receive high Dice coefficient of 0.84 compared to that of 0.54 and 0.3 of monomodal segmentation results based on individual segmentation of FDG and FMISO PET images. In addition, high correlation coefficients (0.75 to 0.91) for the Gaussian copula for all five testing patients indicates the dependency between tumor regions in the multi-tracer PET images. Conclusion: This study shows that using multi-tracer PET imaging can efficiently improve the segmentation of tumor region where hypoxia and glucidic consumption are present at the same time. Introduction of copulas for modeling the dependency between two tracers can simultaneously take into account information from both tracers and deal with two pathological phenomena. Future work will be to consider other families of copula such as spherical and archimedian copulas, and to eliminate partial volume

  9. A fast alignment method for breast MRI follow-up studies using automated breast segmentation and current-prior registration

    Science.gov (United States)

    Wang, Lei; Strehlow, Jan; Rühaak, Jan; Weiler, Florian; Diez, Yago; Gubern-Merida, Albert; Diekmann, Susanne; Laue, Hendrik; Hahn, Horst K.

    2015-03-01

    In breast cancer screening for high-risk women, follow-up magnetic resonance images (MRI) are acquired with a time interval ranging from several months up to a few years. Prior MRI studies may provide additional clinical value when examining the current one and thus have the potential to increase sensitivity and specificity of screening. To build a spatial correlation between suspicious findings in both current and prior studies, a reliable alignment method between follow-up studies is desirable. However, long time interval, different scanners and imaging protocols, and varying breast compression can result in a large deformation, which challenges the registration process. In this work, we present a fast and robust spatial alignment framework, which combines automated breast segmentation and current-prior registration techniques in a multi-level fashion. First, fully automatic breast segmentation is applied to extract the breast masks that are used to obtain an initial affine transform. Then, a non-rigid registration algorithm using normalized gradient fields as similarity measure together with curvature regularization is applied. A total of 29 subjects and 58 breast MR images were collected for performance assessment. To evaluate the global registration accuracy, the volume overlap and boundary surface distance metrics are calculated, resulting in an average Dice Similarity Coefficient (DSC) of 0.96 and root mean square distance (RMSD) of 1.64 mm. In addition, to measure local registration accuracy, for each subject a radiologist annotated 10 pairs of markers in the current and prior studies representing corresponding anatomical locations. The average distance error of marker pairs dropped from 67.37 mm to 10.86 mm after applying registration.

  10. Method for updating pipelined, single port Z-buffer by segments on a scan line

    International Nuclear Information System (INIS)

    Hannah, M.R.

    1990-01-01

    This patent describes, in a raster scan, computer controlled video display system for presenting an image to an observer. Having Z-buffer for storing Z values and a frame buffer for storing pixel values, a method for updating the Z-buffer with new Z values to replace old Z values. It comprises: calculating a new pixel value and a new Z value for each pixel location in pixel locations, performing a Z comparison for each new Z value by comparing the old Z value with the new Z value for each pixel location, the Z comparison being performed sequentially in one direction through the plurality of pixel locations, and updating the Z-buffer only after the Z comparison produces a combination of a fail condition for a current pixel location subsequent to producing a pass condition for a pixel location immediately preceding the current pixel location

  11. Variational Methods for Discontinuous Structures : Applications to Image Segmentation, Continuum Mechanics

    CERN Document Server

    Tomarelli, Franco

    1996-01-01

    In recent years many researchers in material science have focused their attention on the study of composite materials, equilibrium of crystals and crack distribution in continua subject to loads. At the same time several new issues in computer vision and image processing have been studied in depth. The understanding of many of these problems has made significant progress thanks to new methods developed in calculus of variations, geometric measure theory and partial differential equations. In particular, new technical tools have been introduced and successfully applied. For example, in order to describe the geometrical complexity of unknown patterns, a new class of problems in calculus of variations has been introduced together with a suitable functional setting: the free-discontinuity problems and the special BV and BH functions. The conference held at Villa Olmo on Lake Como in September 1994 spawned successful discussion of these topics among mathematicians, experts in computer science and material scientis...

  12. Multi-modal distribution crossover method based on two crossing segments bounded by selected parents applied to multi-objective design optimization

    Energy Technology Data Exchange (ETDEWEB)

    Ariyarit, Atthaphon; Kanazaki, Masahiro [Tokyo Metropolitan University, Tokyo (Japan)

    2015-04-15

    This paper discusses airfoil design optimization using a genetic algorithm (GA) with multi-modal distribution crossover (MMDX). The proposed crossover method creates four segments from four parents, of which two segments are bounded by selected parents and two segments are bounded by one parent and another segment. After these segments are defined, four offsprings are generated. This study applied the proposed optimization to a real-world, multi-objective airfoil design problem using class-shape function transformation parameterization, which is an airfoil representation that uses polynomial function, to investigate the effectiveness of this algorithm. The results are compared with the results of the blend crossover (BLX) and unimodal normal distribution crossover (UNDX) algorithms. The objective of these airfoil design problems is to successfully find the optimal design. The outcome of using this algorithm is superior to that of the BLX and UNDX crossover methods because the proposed method can maintain higher diversity than the BLX and UNDX methods. This advantage is desirable for real-world problems.

  13. Multi-modal distribution crossover method based on two crossing segments bounded by selected parents applied to multi-objective design optimization

    International Nuclear Information System (INIS)

    Ariyarit, Atthaphon; Kanazaki, Masahiro

    2015-01-01

    This paper discusses airfoil design optimization using a genetic algorithm (GA) with multi-modal distribution crossover (MMDX). The proposed crossover method creates four segments from four parents, of which two segments are bounded by selected parents and two segments are bounded by one parent and another segment. After these segments are defined, four offsprings are generated. This study applied the proposed optimization to a real-world, multi-objective airfoil design problem using class-shape function transformation parameterization, which is an airfoil representation that uses polynomial function, to investigate the effectiveness of this algorithm. The results are compared with the results of the blend crossover (BLX) and unimodal normal distribution crossover (UNDX) algorithms. The objective of these airfoil design problems is to successfully find the optimal design. The outcome of using this algorithm is superior to that of the BLX and UNDX crossover methods because the proposed method can maintain higher diversity than the BLX and UNDX methods. This advantage is desirable for real-world problems.

  14. Study on Air-cooled Self-humidifying PEMFC Control Method Based on Segmented Predict Negative Feedback Control

    International Nuclear Information System (INIS)

    Zhiyu, You; Tao, Xu; Zhixiang, Liu; Yun, Peng; Weirong, Cheng

    2014-01-01

    In order to obtain the optimal output performance of the air-cooled self-humidifying proton exchange membrane fuel cell (PEMFC), the operating temperature, the air flow, purge interval and some other parameters must be controlled strictly. As a key factor, the operating temperature mainly determines the optimal output performance of the fuel cell. However, some intrinsic issues such as long adjusting time, over-shoot still exist inevitably for the traditional PID temperature-controlled method in circumstances of the load variation. Consequently, output performance of PEMFC decreases because the operating temperature of the fuel cell fails to reach, and the corresponding lifetime of PEMFC is also reduced. In this study, a segmented predict negative feedback control method, based on the advance proportional control one, is proposed and verified by experiments to overcome the shortcomings of PID temperature control. The results demonstrate that the optimal output performance of PEMFC can be realized by utilizing the proposed method for temperature control due to its excellent properties, simple controlling and small over-shoot

  15. The Proposal to “Snapshot” Raim Method for Gnss Vessel Receivers Working in Poor Space Segment Geometry

    Directory of Open Access Journals (Sweden)

    Nowak Aleksander

    2015-12-01

    Full Text Available Nowadays, we can observe an increase in research on the use of small unmanned autonomous vessel (SUAV to patrol and guiding critical areas including harbours. The proposal to “snapshot” RAIM (Receiver Autonomous Integrity Monitoring method for GNSS receivers mounted on SUAV operating in poor space segment geometry is presented in the paper. Existing “snapshot” RAIM methods and algorithms which are used in practical applications have been developed for airborne receivers, thus two main assumptions have been made. The first one is that the geometry of visible satellites is strong. It means that the exclusion of any satellite from the positioning solution don’t cause significant deterioration of Dilution of Precision (DOP coefficients. The second one is that only one outlier could appear in pseudorange measurements. In case of SUAV operating in harbour these two assumptions cannot be accepted. Because of their small dimensions, GNSS antenna is only a few decimetres above sea level and regular ships, buildings and harbour facilities block and reflect satellite signals. Thus, different approach to “snapshot” RAIM is necessary. The proposal to method based on analyses of allowable maximal separation of positioning sub-solutions with using some information from EGNOS messages is described in the paper. Theoretical assumptions and results of numerical experiments are presented.

  16. Numerical method for assessing the potential of smart engine thermal management: Application to a medium-upper segment passenger car

    International Nuclear Information System (INIS)

    Caresana, F.; Bilancia, M.; Bartolini, C.M.

    2011-01-01

    Significant reductions in vehicle fuel consumption can be obtained through a greater control of the thermal status of the engine, especially under partial load conditions. Different systems have been proposed to implement this concept, referred to as improved engine thermal management. The amount of fuel saved depends on the components and layout of the engine cooling plant and on the performance of its control system. In this work, a method was developed to calculate the theoretical minimum fuel consumption of a passenger car and used as a reference in comparing different engine cooling system concepts. A high-medium class car was taken as an example and simulated on standard cycles. Models for power train and cooling system components were developed and linked to simulate the vehicle. A preliminary analysis of the engine was performed using AVL's Boost program. The fuel consumption of the complete vehicle, equipped with a conventional cooling plant, was determined on standard cycles and compared with that of a vehicle equipped with a 'perfect' cooling system, to calculate the theoretical reduction in fuel consumption. - Highlights: → We propose a method for assessing the potential of smart engine thermal management. → A conventional cooling system is compared to a 'perfect' one to estimate fuel economy. → We tested the method in an upper-medium segment passenger car.

  17. Development of representative magnetic resonance imaging-based atlases of the canine brain and evaluation of three methods for atlas-based segmentation.

    Science.gov (United States)

    Milne, Marjorie E; Steward, Christopher; Firestone, Simon M; Long, Sam N; O'Brien, Terrence J; Moffat, Bradford A

    2016-04-01

    To develop representative MRI atlases of the canine brain and to evaluate 3 methods of atlas-based segmentation (ABS). 62 dogs without clinical signs of epilepsy and without MRI evidence of structural brain disease. The MRI scans from 44 dogs were used to develop 4 templates on the basis of brain shape (brachycephalic, mesaticephalic, dolichocephalic, and combined mesaticephalic and dolichocephalic). Atlas labels were generated by segmenting the brain, ventricular system, hippocampal formation, and caudate nuclei. The MRI scans from the remaining 18 dogs were used to evaluate 3 methods of ABS (manual brain extraction and application of a brain shape-specific template [A], automatic brain extraction and application of a brain shape-specific template [B], and manual brain extraction and application of a combined template [C]). The performance of each ABS method was compared by calculation of the Dice and Jaccard coefficients, with manual segmentation used as the gold standard. Method A had the highest mean Jaccard coefficient and was the most accurate ABS method assessed. Measures of overlap for ABS methods that used manual brain extraction (A and C) ranged from 0.75 to 0.95 and compared favorably with repeated measures of overlap for manual extraction, which ranged from 0.88 to 0.97. Atlas-based segmentation was an accurate and repeatable method for segmentation of canine brain structures. It could be performed more rapidly than manual segmentation, which should allow the application of computer-assisted volumetry to large data sets and clinical cases and facilitate neuroimaging research and disease diagnosis.

  18. SU-F-BRB-12: A Novel Haar Wavelet Based Approach to Deliver Non-Coplanar Intensity Modulated Radiotherapy Using Sparse Orthogonal Collimators

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, D; Ruan, D; Low, D; Sheng, K [Deparment of Radiation Oncology, University of California Los Angeles, Los Angeles, CA (United States); O’Connor, D [Deparment of Mathematics, University of California Los Angeles, Los Angeles, CA (United States); Boucher, S [RadiaBeam Technologies, Santa Monica, CA (United States)

    2015-06-15

    Purpose: Existing efforts to replace complex multileaf collimator (MLC) by simple jaws for intensity modulated radiation therapy (IMRT) resulted in unacceptable compromise in plan quality and delivery efficiency. We introduce a novel fluence map segmentation method based on compressed sensing for plan delivery using a simplified sparse orthogonal collimator (SOC) on the 4π non-coplanar radiotherapy platform. Methods: 4π plans with varying prescription doses were first created by automatically selecting and optimizing 20 non-coplanar beams for 2 GBM, 2 head & neck, and 2 lung patients. To create deliverable 4π plans using SOC, which are two pairs of orthogonal collimators with 1 to 4 leaves in each collimator bank, a Haar Fluence Optimization (HFO) method was used to regulate the number of Haar wavelet coefficients while maximizing the dose fidelity to the ideal prescription. The plans were directly stratified utilizing the optimized Haar wavelet rectangular basis. A matching number of deliverable segments were stratified for the MLC-based plans. Results: Compared to the MLC-based 4π plans, the SOC-based 4π plans increased the average PTV dose homogeneity from 0.811 to 0.913. PTV D98 and D99 were improved by 3.53% and 5.60% of the corresponding prescription doses. The average mean and maximal OAR doses slightly increased by 0.57% and 2.57% of the prescription doses. The average number of segments ranged between 5 and 30 per beam. The collimator travel time to create the segments decreased with increasing leaf numbers in the SOC. The two and four leaf designs were 1.71 and 1.93 times more efficient, on average, than the single leaf design. Conclusion: The innovative dose domain optimization based on compressed sensing enables uncompromised 4π non-coplanar IMRT dose delivery using simple rectangular segments that are deliverable using a sparse orthogonal collimator, which only requires 8 to 16 leaves yet is unlimited in modulation resolution. This work is

  19. Prostate CT segmentation method based on nonrigid registration in ultrasound-guided CT-based HDR prostate brachytherapy

    Science.gov (United States)

    Yang, Xiaofeng; Rossi, Peter; Ogunleye, Tomi; Marcus, David M.; Jani, Ashesh B.; Mao, Hui; Curran, Walter J.; Liu, Tian

    2014-01-01

    Purpose: The technological advances in real-time ultrasound image guidance for high-dose-rate (HDR) prostate brachytherapy have placed this treatment modality at the forefront of innovation in cancer radiotherapy. Prostate HDR treatment often involves placing the HDR catheters (needles) into the prostate gland under the transrectal ultrasound (TRUS) guidance, then generating a radiation treatment plan based on CT prostate images, and subsequently delivering high dose of radiation through these catheters. The main challenge for this HDR procedure is to accurately segment the prostate volume in the CT images for the radiation treatment planning. In this study, the authors propose a novel approach that integrates the prostate volume from 3D TRUS images into the treatment planning CT images to provide an accurate prostate delineation for prostate HDR treatment. Methods: The authors’ approach requires acquisition of 3D TRUS prostate images in the operating room right after the HDR catheters are inserted, which takes 1–3 min. These TRUS images are used to create prostate contours. The HDR catheters are reconstructed from the intraoperative TRUS and postoperative CT images, and subsequently used as landmarks for the TRUS–CT image fusion. After TRUS–CT fusion, the TRUS-based prostate volume is deformed to the CT images for treatment planning. This method was first validated with a prostate-phantom study. In addition, a pilot study of ten patients undergoing HDR prostate brachytherapy was conducted to test its clinical feasibility. The accuracy of their approach was assessed through the locations of three implanted fiducial (gold) markers, as well as T2-weighted MR prostate images of patients. Results: For the phantom study, the target registration error (TRE) of gold-markers was 0.41 ± 0.11 mm. For the ten patients, the TRE of gold markers was 1.18 ± 0.26 mm; the prostate volume difference between the authors’ approach and the MRI-based volume was 7.28% ± 0

  20. Prostate CT segmentation method based on nonrigid registration in ultrasound-guided CT-based HDR prostate brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaofeng, E-mail: xyang43@emory.edu; Rossi, Peter; Ogunleye, Tomi; Marcus, David M.; Jani, Ashesh B.; Curran, Walter J.; Liu, Tian [Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia 30322 (United States); Mao, Hui [Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322 (United States)

    2014-11-01

    Purpose: The technological advances in real-time ultrasound image guidance for high-dose-rate (HDR) prostate brachytherapy have placed this treatment modality at the forefront of innovation in cancer radiotherapy. Prostate HDR treatment often involves placing the HDR catheters (needles) into the prostate gland under the transrectal ultrasound (TRUS) guidance, then generating a radiation treatment plan based on CT prostate images, and subsequently delivering high dose of radiation through these catheters. The main challenge for this HDR procedure is to accurately segment the prostate volume in the CT images for the radiation treatment planning. In this study, the authors propose a novel approach that integrates the prostate volume from 3D TRUS images into the treatment planning CT images to provide an accurate prostate delineation for prostate HDR treatment. Methods: The authors’ approach requires acquisition of 3D TRUS prostate images in the operating room right after the HDR catheters are inserted, which takes 1–3 min. These TRUS images are used to create prostate contours. The HDR catheters are reconstructed from the intraoperative TRUS and postoperative CT images, and subsequently used as landmarks for the TRUS–CT image fusion. After TRUS–CT fusion, the TRUS-based prostate volume is deformed to the CT images for treatment planning. This method was first validated with a prostate-phantom study. In addition, a pilot study of ten patients undergoing HDR prostate brachytherapy was conducted to test its clinical feasibility. The accuracy of their approach was assessed through the locations of three implanted fiducial (gold) markers, as well as T2-weighted MR prostate images of patients. Results: For the phantom study, the target registration error (TRE) of gold-markers was 0.41 ± 0.11 mm. For the ten patients, the TRE of gold markers was 1.18 ± 0.26 mm; the prostate volume difference between the authors’ approach and the MRI-based volume was 7.28% ± 0

  1. A level-set method for pathology segmentation in fluorescein angiograms and en face retinal images of patients with age-related macular degeneration

    Science.gov (United States)

    Mohammad, Fatimah; Ansari, Rashid; Shahidi, Mahnaz

    2013-03-01

    The visibility and continuity of the inner segment outer segment (ISOS) junction layer of the photoreceptors on spectral domain optical coherence tomography images is known to be related to visual acuity in patients with age-related macular degeneration (AMD). Automatic detection and segmentation of lesions and pathologies in retinal images is crucial for the screening, diagnosis, and follow-up of patients with retinal diseases. One of the challenges of using the classical level-set algorithms for segmentation involves the placement of the initial contour. Manually defining the contour or randomly placing it in the image may lead to segmentation of erroneous structures. It is important to be able to automatically define the contour by using information provided by image features. We explored a level-set method which is based on the classical Chan-Vese model and which utilizes image feature information for automatic contour placement for the segmentation of pathologies in fluorescein angiograms and en face retinal images of the ISOS layer. This was accomplished by exploiting a priori knowledge of the shape and intensity distribution allowing the use of projection profiles to detect the presence of pathologies that are characterized by intensity differences with surrounding areas in retinal images. We first tested our method by applying it to fluorescein angiograms. We then applied our method to en face retinal images of patients with AMD. The experimental results included demonstrate that the proposed method provided a quick and improved outcome as compared to the classical Chan-Vese method in which the initial contour is randomly placed, thus indicating the potential to provide a more accurate and detailed view of changes in pathologies due to disease progression and treatment.

  2. Evaluation and comparison of 3D intervertebral disc localization and segmentation methods for 3D T2 MR data: A grand challenge.

    Science.gov (United States)

    Zheng, Guoyan; Chu, Chengwen; Belavý, Daniel L; Ibragimov, Bulat; Korez, Robert; Vrtovec, Tomaž; Hutt, Hugo; Everson, Richard; Meakin, Judith; Andrade, Isabel Lŏpez; Glocker, Ben; Chen, Hao; Dou, Qi; Heng, Pheng-Ann; Wang, Chunliang; Forsberg, Daniel; Neubert, Aleš; Fripp, Jurgen; Urschler, Martin; Stern, Darko; Wimmer, Maria; Novikov, Alexey A; Cheng, Hui; Armbrecht, Gabriele; Felsenberg, Dieter; Li, Shuo

    2017-01-01

    The evaluation of changes in Intervertebral Discs (IVDs) with 3D Magnetic Resonance (MR) Imaging (MRI) can be of interest for many clinical applications. This paper presents the evaluation of both IVD localization and IVD segmentation methods submitted to the Automatic 3D MRI IVD Localization and Segmentation challenge, held at the 2015 International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI2015) with an on-site competition. With the construction of a manually annotated reference data set composed of 25 3D T2-weighted MR images acquired from two different studies and the establishment of a standard validation framework, quantitative evaluation was performed to compare the results of methods submitted to the challenge. Experimental results show that overall the best localization method achieves a mean localization distance of 0.8 mm and the best segmentation method achieves a mean Dice of 91.8%, a mean average absolute distance of 1.1 mm and a mean Hausdorff distance of 4.3 mm, respectively. The strengths and drawbacks of each method are discussed, which provides insights into the performance of different IVD localization and segmentation methods. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. A hierarchical 3D segmentation method and the definition of vertebral body coordinate systems for QCT of the lumbar spine.

    Science.gov (United States)

    Mastmeyer, André; Engelke, Klaus; Fuchs, Christina; Kalender, Willi A

    2006-08-01

    We have developed a new hierarchical 3D technique to segment the vertebral bodies in order to measure bone mineral density (BMD) with high trueness and precision in volumetric CT datasets. The hierarchical approach starts with a coarse separation of the individual vertebrae, applies a variety of techniques to segment the vertebral bodies with increasing detail and ends with the definition of an anatomic coordinate system for each vertebral body, relative to which up to 41 trabecular and cortical volumes of interest are positioned. In a pre-segmentation step constraints consisting of Boolean combinations of simple geometric shapes are determined that enclose each individual vertebral body. Bound by these constraints viscous deformable models are used to segment the main shape of the vertebral bodies. Volume growing and morphological operations then capture the fine details of the bone-soft tissue interface. In the volumes of interest bone mineral density and content are determined. In addition, in the segmented vertebral bodies geometric parameters such as volume or the length of the main axes of inertia can be measured. Intra- and inter-operator precision errors of the segmentation procedure were analyzed using existing clinical patient datasets. Results for segmented volume, BMD, and coordinate system position were below 2.0%, 0.6%, and 0.7%, respectively. Trueness was analyzed using phantom scans. The bias of the segmented volume was below 4%; for BMD it was below 1.5%. The long-term goal of this work is improved fracture prediction and patient monitoring in the field of osteoporosis. A true 3D segmentation also enables an accurate measurement of geometrical parameters that may augment the clinical value of a pure BMD analysis.

  4. Automated quantification of renal interstitial fibrosis for computer-aided diagnosis: A comprehensive tissue structure segmentation method.

    Science.gov (United States)

    Tey, Wei Keat; Kuang, Ye Chow; Ooi, Melanie Po-Leen; Khoo, Joon Joon

    2018-03-01

    Interstitial fibrosis in renal biopsy samples is a scarring tissue structure that may be visually quantified by pathologists as an indicator to the presence and extent of chronic kidney disease. The standard method of quantification by visual evaluation presents reproducibility issues in the diagnoses. This study proposes an automated quantification system for measuring the amount of interstitial fibrosis in renal biopsy images as a consistent basis of comparison among pathologists. The system extracts and segments the renal tissue structures based on colour information and structural assumptions of the tissue structures. The regions in the biopsy representing the interstitial fibrosis are deduced through the elimination of non-interstitial fibrosis structures from the biopsy area and quantified as a percentage of the total area of the biopsy sample. A ground truth image dataset has been manually prepared by consulting an experienced pathologist for the validation of the segmentation algorithms. The results from experiments involving experienced pathologists have demonstrated a good correlation in quantification result between the automated system and the pathologists' visual evaluation. Experiments investigating the variability in pathologists also proved the automated quantification error rate to be on par with the average intra-observer variability in pathologists' quantification. Interstitial fibrosis in renal biopsy samples is a scarring tissue structure that may be visually quantified by pathologists as an indicator to the presence and extent of chronic kidney disease. The standard method of quantification by visual evaluation presents reproducibility issues in the diagnoses due to the uncertainties in human judgement. An automated quantification system for accurately measuring the amount of interstitial fibrosis in renal biopsy images is presented as a consistent basis of comparison among pathologists. The system identifies the renal tissue structures

  5. A fuzzy feature fusion method for auto-segmentation of gliomas with multi-modality diffusion and perfusion magnetic resonance images in radiotherapy.

    Science.gov (United States)

    Guo, Lu; Wang, Ping; Sun, Ranran; Yang, Chengwen; Zhang, Ning; Guo, Yu; Feng, Yuanming

    2018-02-19

    The diffusion and perfusion magnetic resonance (MR) images can provide functional information about tumour and enable more sensitive detection of the tumour extent. We aimed to develop a fuzzy feature fusion method for auto-segmentation of gliomas in radiotherapy planning using multi-parametric functional MR images including apparent diffusion coefficient (ADC), fractional anisotropy (FA) and relative cerebral blood volume (rCBV). For each functional modality, one histogram-based fuzzy model was created to transform image volume into a fuzzy feature space. Based on the fuzzy fusion result of the three fuzzy feature spaces, regions with high possibility belonging to tumour were generated automatically. The auto-segmentations of tumour in structural MR images were added in final auto-segmented gross tumour volume (GTV). For evaluation, one radiation oncologist delineated GTVs for nine patients with all modalities. Comparisons between manually delineated and auto-segmented GTVs showed that, the mean volume difference was 8.69% (±5.62%); the mean Dice's similarity coefficient (DSC) was 0.88 (±0.02); the mean sensitivity and specificity of auto-segmentation was 0.87 (±0.04) and 0.98 (±0.01) respectively. High accuracy and efficiency can be achieved with the new method, which shows potential of utilizing functional multi-parametric MR images for target definition in precision radiation treatment planning for patients with gliomas.

  6. An objective method to optimize the MR sequence set for plaque classification in carotid vessel wall images using automated image segmentation.

    Directory of Open Access Journals (Sweden)

    Ronald van 't Klooster

    Full Text Available A typical MR imaging protocol to study the status of atherosclerosis in the carotid artery consists of the application of multiple MR sequences. Since scanner time is limited, a balance has to be reached between the duration of the applied MR protocol and the quantity and quality of the resulting images which are needed to assess the disease. In this study an objective method to optimize the MR sequence set for classification of soft plaque in vessel wall images of the carotid artery using automated image segmentation was developed. The automated method employs statistical pattern recognition techniques and was developed based on an extensive set of MR contrast weightings and corresponding manual segmentations of the vessel wall and soft plaque components, which were validated by histological sections. Evaluation of the results from nine contrast weightings showed the tradeoff between scan duration and automated image segmentation performance. For our dataset the best segmentation performance was achieved by selecting five contrast weightings. Similar performance was achieved with a set of three contrast weightings, which resulted in a reduction of scan time by more than 60%. The presented approach can help others to optimize MR imaging protocols by investigating the tradeoff between scan duration and automated image segmentation performance possibly leading to shorter scanning times and better image interpretation. This approach can potentially also be applied to other research fields focusing on different diseases and anatomical regions.

  7. Active Segmentation.

    Science.gov (United States)

    Mishra, Ajay; Aloimonos, Yiannis

    2009-01-01

    The human visual system observes and understands a scene/image by making a series of fixations. Every fixation point lies inside a particular region of arbitrary shape and size in the scene which can either be an object or just a part of it. We define as a basic segmentation problem the task of segmenting that region containing the fixation point. Segmenting the region containing the fixation is equivalent to finding the enclosing contour- a connected set of boundary edge fragments in the edge map of the scene - around the fixation. This enclosing contour should be a depth boundary.We present here a novel algorithm that finds this bounding contour and achieves the segmentation of one object, given the fixation. The proposed segmentation framework combines monocular cues (color/intensity/texture) with stereo and/or motion, in a cue independent manner. The semantic robots of the immediate future will be able to use this algorithm to automatically find objects in any environment. The capability of automatically segmenting objects in their visual field can bring the visual processing to the next level. Our approach is different from current approaches. While existing work attempts to segment the whole scene at once into many areas, we segment only one image region, specifically the one containing the fixation point. Experiments with real imagery collected by our active robot and from the known databases 1 demonstrate the promise of the approach.

  8. Fingerprint segmentation: an investigation of various techniques and a parameter study of a variance-based method

    CSIR Research Space (South Africa)

    Msiza, IS

    2011-09-01

    Full Text Available Fingerprint image segmentation plays an important role in any fingerprint image analysis implementation and it should, ideally, be executed during the initial stages of a fingerprint manipulation process. After careful consideration of various...

  9. Two-dimensional tracking and TDI are consistent methods for evaluating myocardial longitudinal peak strain in left and right ventricle basal segments in athletes

    OpenAIRE

    Lstefani, L.Stefani; Ltoncelli, L.Toncelli; Mgianassi, M.Gianassi; Pmanetti, P.Manetti; Vdi, V.Di Tante; Mrvono, M.R.Vono; Amoretti, A.Moretti; Bcappelli, B.Cappelli; Gpedrizzetti, G.Pedrizzetti; Ggalanti, G.Galanti

    2007-01-01

    Abstract Background Myocardial contractility can be investigated using longitudinal peak strain. It can be calculated using the Doppler-derived TDI method and the non-Doppler method based on tissue tracking on B-mode images. Both are validated and show good reproducibility, but no comparative analysis of their results has yet been conducted. This study analyzes the results obtained from the basal segments of the ventricular chambers in a group of athletes. Methods 30 regularly-trained athlete...

  10. Evaluation of a multi-atlas based method for segmentation of cardiac CTA data: a large-scale, multicenter, and multivendor study

    International Nuclear Information System (INIS)

    Kirisli, H. A.; Schaap, M.; Klein, S.; Papadopoulou, S. L.; Bonardi, M.; Chen, C. H.; Weustink, A. C.; Mollet, N. R.; Vonken, E. J.; Geest, R. J. van der; Walsum, T. van; Niessen, W. J.

    2010-01-01

    Purpose: Computed tomography angiography (CTA) is increasingly used for the diagnosis of coronary artery disease (CAD). However, CTA is not commonly used for the assessment of ventricular and atrial function, although functional information extracted from CTA data is expected to improve the diagnostic value of the examination. In clinical practice, the extraction of ventricular and atrial functional information, such as stroke volume and ejection fraction, requires accurate delineation of cardiac chambers. In this paper, we investigated the accuracy and robustness of cardiac chamber delineation using a multiatlas based segmentation method on multicenter and multivendor CTA data. Methods: A fully automatic multiatlas based method for segmenting the whole heart (i.e., the outer surface of the pericardium) and cardiac chambers from CTA data is presented and evaluated. In the segmentation approach, eight atlas images are registered to a new patient's CTA scan. The eight corresponding manually labeled images are then propagated and combined using a per voxel majority voting procedure, to obtain a cardiac segmentation. Results: The method was evaluated on a multicenter/multivendor database, consisting of (1) a set of 1380 Siemens scans from 795 patients and (2) a set of 60 multivendor scans (Siemens, Philips, and GE) from different patients, acquired in six different institutions worldwide. A leave-one-out 3D quantitative validation was carried out on the eight atlas images; we obtained a mean surface-to-surface error of 0.94±1.12 mm and an average Dice coefficient of 0.93 was achieved. A 2D quantitative evaluation was performed on the 60 multivendor data sets. Here, we observed a mean surface-to-surface error of 1.26±1.25 mm and an average Dice coefficient of 0.91 was achieved. In addition to this quantitative evaluation, a large-scale 2D and 3D qualitative evaluation was performed on 1380 and 140 images, respectively. Experts evaluated that 49% of the 1380 images

  11. A novel segmentation method for uneven lighting image with noise injection based on non-local spatial information and intuitionistic fuzzy entropy

    Science.gov (United States)

    Yu, Haiyan; Fan, Jiulun

    2017-12-01

    Local thresholding methods for uneven lighting image segmentation always have the limitations that they are very sensitive to noise injection and that the performance relies largely upon the choice of the initial window size. This paper proposes a novel algorithm for segmenting uneven lighting images with strong noise injection based on non-local spatial information and intuitionistic fuzzy theory. We regard an image as a gray wave in three-dimensional space, which is composed of many peaks and troughs, and these peaks and troughs can divide the image into many local sub-regions in different directions. Our algorithm computes the relative characteristic of each pixel located in the corresponding sub-region based on fuzzy membership function and uses it to replace its absolute characteristic (its gray level) to reduce the influence of uneven light on image segmentation. At the same time, the non-local adaptive spatial constraints of pixels are introduced to avoid noise interference with the search of local sub-regions and the computation of local characteristics. Moreover, edge information is also taken into account to avoid false peak and trough labeling. Finally, a global method based on intuitionistic fuzzy entropy is employed on the wave transformation image to obtain the segmented result. Experiments on several test images show that the proposed method has excellent capability of decreasing the influence of uneven illumination on images and noise injection and behaves more robustly than several classical global and local thresholding methods.

  12. An Automatic Segmentation Method Combining an Active Contour Model and a Classification Technique for Detecting Polycomb-group Proteinsin High-Throughput Microscopy Images.

    Science.gov (United States)

    Gregoretti, Francesco; Cesarini, Elisa; Lanzuolo, Chiara; Oliva, Gennaro; Antonelli, Laura

    2016-01-01

    The large amount of data generated in biological experiments that rely on advanced microscopy can be handled only with automated image analysis. Most analyses require a reliable cell image segmentation eventually capable of detecting subcellular structures.We present an automatic segmentation method to detect Polycomb group (PcG) proteins areas isolated from nuclei regions in high-resolution fluorescent cell image stacks. It combines two segmentation algorithms that use an active contour model and a classification technique serving as a tool to better understand the subcellular three-dimensional distribution of PcG proteins in live cell image sequences. We obtained accurate results throughout several cell image datasets, coming from different cell types and corresponding to different fluorescent labels, without requiring elaborate adjustments to each dataset.

  13. Segmentation: Identification of consumer segments

    DEFF Research Database (Denmark)

    Høg, Esben

    2005-01-01

    It is very common to categorise people, especially in the advertising business. Also traditional marketing theory has taken in consumer segments as a favorite topic. Segmentation is closely related to the broader concept of classification. From a historical point of view, classification has its...... origin in other sciences as for example biology, anthropology etc. From an economic point of view, it is called segmentation when specific scientific techniques are used to classify consumers to different characteristic groupings. What is the purpose of segmentation? For example, to be able to obtain...... a basic understanding of grouping people. Advertising agencies may use segmentation totarget advertisements, while food companies may usesegmentation to develop products to various groups of consumers. MAPP has for example investigated the positioning of fish in relation to other food products...

  14. Segmental Vitiligo.

    Science.gov (United States)

    van Geel, Nanja; Speeckaert, Reinhart

    2017-04-01

    Segmental vitiligo is characterized by its early onset, rapid stabilization, and unilateral distribution. Recent evidence suggests that segmental and nonsegmental vitiligo could represent variants of the same disease spectrum. Observational studies with respect to its distribution pattern point to a possible role of cutaneous mosaicism, whereas the original stated dermatomal distribution seems to be a misnomer. Although the exact pathogenic mechanism behind the melanocyte destruction is still unknown, increasing evidence has been published on the autoimmune/inflammatory theory of segmental vitiligo. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Modelling and short-term forecasting of daily peak power demand in Victoria using two-dimensional wavelet based SDP models

    International Nuclear Information System (INIS)

    Truong, Nguyen-Vu; Wang, Liuping; Wong, Peter K.C.

    2008-01-01

    Power demand forecasting is of vital importance to the management and planning of power system operations which include generation, transmission, distribution, as well as system's security analysis and economic pricing processes. This paper concerns the modeling and short-term forecast of daily peak power demand in the state of Victoria, Australia. In this study, a two-dimensional wavelet based state dependent parameter (SDP) modelling approach is used to produce a compact mathematical model for this complex nonlinear dynamic system. In this approach, a nonlinear system is expressed by a set of linear regressive input and output terms (state variables) multiplied by the respective state dependent parameters that carry the nonlinearities in the form of 2-D wavelet series expansions. This model is identified based on historical data, descriptively representing the relationship and interaction between various components which affect the peak power demand of a certain day. The identified model has been used to forecast daily peak power demand in the state of Victoria, Australia in the time period from the 9th of August 2007 to the 24th of August 2007. With a MAPE (mean absolute prediction error) of 1.9%, it has clearly implied the effectiveness of the identified model. (author)

  16. Wavelet-based peak detection and a new charge inference procedure for MS/MS implemented in ProteoWizard's msConvert.

    Science.gov (United States)

    French, William R; Zimmerman, Lisa J; Schilling, Birgit; Gibson, Bradford W; Miller, Christine A; Townsend, R Reid; Sherrod, Stacy D; Goodwin, Cody R; McLean, John A; Tabb, David L

    2015-02-06

    We report the implementation of high-quality signal processing algorithms into ProteoWizard, an efficient, open-source software package designed for analyzing proteomics tandem mass spectrometry data. Specifically, a new wavelet-based peak-picker (CantWaiT) and a precursor charge determination algorithm (Turbocharger) have been implemented. These additions into ProteoWizard provide universal tools that are independent of vendor platform for tandem mass spectrometry analyses and have particular utility for intralaboratory studies requiring the advantages of different platforms convergent on a particular workflow or for interlaboratory investigations spanning multiple platforms. We compared results from these tools to those obtained using vendor and commercial software, finding that in all cases our algorithms resulted in a comparable number of identified peptides for simple and complex samples measured on Waters, Agilent, and AB SCIEX quadrupole time-of-flight and Thermo Q-Exactive mass spectrometers. The mass accuracy of matched precursor ions also compared favorably with vendor and commercial tools. Additionally, typical analysis runtimes (∼1-100 ms per MS/MS spectrum) were short enough to enable the practical use of these high-quality signal processing tools for large clinical and research data sets.

  17. Wavelet-Based Peak Detection and a New Charge Inference Procedure for MS/MS Implemented in ProteoWizard’s msConvert

    Science.gov (United States)

    2015-01-01

    We report the implementation of high-quality signal processing algorithms into ProteoWizard, an efficient, open-source software package designed for analyzing proteomics tandem mass spectrometry data. Specifically, a new wavelet-based peak-picker (CantWaiT) and a precursor charge determination algorithm (Turbocharger) have been implemented. These additions into ProteoWizard provide universal tools that are independent of vendor platform for tandem mass spectrometry analyses and have particular utility for intralaboratory studies requiring the advantages of different platforms convergent on a particular workflow or for interlaboratory investigations spanning multiple platforms. We compared results from these tools to those obtained using vendor and commercial software, finding that in all cases our algorithms resulted in a comparable number of identified peptides for simple and complex samples measured on Waters, Agilent, and AB SCIEX quadrupole time-of-flight and Thermo Q-Exactive mass spectrometers. The mass accuracy of matched precursor ions also compared favorably with vendor and commercial tools. Additionally, typical analysis runtimes (∼1–100 ms per MS/MS spectrum) were short enough to enable the practical use of these high-quality signal processing tools for large clinical and research data sets. PMID:25411686

  18. Reproducibility of F18-FDG PET radiomic features for different cervical tumor segmentation methods, gray-level discretization, and reconstruction algorithms.

    Science.gov (United States)

    Altazi, Baderaldeen A; Zhang, Geoffrey G; Fernandez, Daniel C; Montejo, Michael E; Hunt, Dylan; Werner, Joan; Biagioli, Matthew C; Moros, Eduardo G

    2017-11-01

    Site-specific investigations of the role of radiomics in cancer diagnosis and therapy are emerging. We evaluated the reproducibility of radiomic features extracted from 18 Flourine-fluorodeoxyglucose ( 18 F-FDG) PET images for three parameters: manual versus computer-aided segmentation methods, gray-level discretization, and PET image reconstruction algorithms. Our cohort consisted of pretreatment PET/CT scans from 88 cervical cancer patients. Two board-certified radiation oncologists manually segmented the metabolic tumor volume (MTV 1 and MTV 2 ) for each patient. For comparison, we used a graphical-based method to generate semiautomated segmented volumes (GBSV). To address any perturbations in radiomic feature values, we down-sampled the tumor volumes into three gray-levels: 32, 64, and 128 from the original gray-level of 256. Finally, we analyzed the effect on radiomic features on PET images of eight patients due to four PET 3D-reconstruction algorithms: maximum likelihood-ordered subset expectation maximization (OSEM) iterative reconstruction (IR) method, fourier rebinning-ML-OSEM (FOREIR), FORE-filtered back projection (FOREFBP), and 3D-Reprojection (3DRP) analytical method. We extracted 79 features from all segmentation method, gray-levels of down-sampled volumes, and PET reconstruction algorithms. The features were extracted using gray-level co-occurrence matrices (GLCM), gray-level size zone matrices (GLSZM), gray-level run-length matrices (GLRLM), neighborhood gray-tone difference matrices (NGTDM), shape-based features (SF), and intensity histogram features (IHF). We computed the Dice coefficient between each MTV and GBSV to measure segmentation accuracy. Coefficient values close to one indicate high agreement, and values close to zero indicate low agreement. We evaluated the effect on radiomic features by calculating the mean percentage differences (d¯) between feature values measured from each pair of parameter elements (i.e. segmentation methods: MTV

  19. Experimental Evaluation for the Microvibration Performance of a Segmented PC Method Based High Technology Industrial Facility Using 1/2 Scale Test Models

    Directory of Open Access Journals (Sweden)

    Sijun Kim

    2017-01-01

    Full Text Available The precast concrete (PC method used in the construction process of high technology industrial facilities is limited when applied to those with greater span lengths, due to the transport length restriction (maximum length of 15~16 m in Korea set by traffic laws. In order to resolve this, this study introduces a structural system with a segmented PC system, and a 1/2 scale model with a width of 9000 mm (hereafter Segmented Model is manufactured to evaluate vibration performance. Since a real vibrational environment cannot be reproduced for vibration testing using a scale model, a comparative analysis of their relative performances is conducted in this study. For this purpose, a 1/2 scale model with a width of 7200 mm (hereafter Nonsegmented Model of a high technology industrial facility is additionally prepared using the conventional PC method. By applying the same experiment method for both scale models and comparing the results, the relative vibration performance of the Segmented Model is observed. Through impact testing, the natural frequencies of the two scale models are compared. Also, in order to analyze the estimated response induced by the equipment, the vibration responses due to the exciter are compared. The experimental results show that the Segmented Model exhibits similar or superior performances when compared to the Nonsegmented Model.

  20. SU-F-J-27: Segmentation of Prostate CBCT Images with Implanted Calypso Transponders Using Double Haar Wavelet Transform

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y [Shandong Communication and Media College, Jinan, Shandong (China); Saleh, Z; Tang, X [Memorial Sloan Kettering Cancer Center, West Harrison, NY (United States); Song, Y; Obcemea, C [Memorial Sloan-Kettering Cancer Center, Sleepy Hollow, NY (United States); Chan, M [Memorial Sloan-Kettering Cancer Center, Basking Ridge, NJ (United States); Li, X [Memorial Sloan Kettering Cancer Center, Rockville Centre, NY (United States); Happersett, L [Memorial Sloan Kettering Cancer Center, New York, NY (United States); Shi, C [Saint Vincent Medical Center, Bridgeport, CT (United States); Qian, X [North Shore Long Island Jewish health System, North New Hyde Park, NY (United States)

    2016-06-15

    Purpose: Segmentation of prostate CBCT images is an essential step towards real-time adaptive radiotherapy. It is challenging For Calypso patients, as more artifacts are generated by the beacon transponders. We herein propose a novel wavelet-based segmentation algorithm for rectum, bladder, and prostate of CBCT images with implanted Calypso transponders. Methods: Five hypofractionated prostate patients with daily CBCT were studied. Each patient had 3 Calypso transponder beacons implanted, and the patients were setup and treated with Calypso tracking system. Two sets of CBCT images from each patient were studied. The structures (i.e. rectum, bladder, and prostate) were contoured by a trained expert, and these served as ground truth. For a given CBCT, the moving window-based Double Haar transformation is applied first to obtain the wavelet coefficients. Based on a user defined point in the object of interest, a cluster algorithm based adaptive thresholding is applied to the low frequency components of the wavelet coefficients, and a Lee filter theory based adaptive thresholding is applied to the high frequency components. For the next step, the wavelet reconstruction is applied to the thresholded wavelet coefficients. A binary/segmented image of the object of interest is therefore obtained. DICE, sensitivity, inclusiveness and ΔV were used to evaluate the segmentation result. Results: Considering all patients, the bladder has the DICE, sensitivity, inclusiveness, and ΔV ranges of [0.81–0.95], [0.76–0.99], [0.83–0.94], [0.02–0.21]. For prostate, the ranges are [0.77–0.93], [0.84–0.97], [0.68–0.92], [0.1–0.46]. For rectum, the ranges are [0.72–0.93], [0.57–0.99], [0.73–0.98], [0.03–0.42]. Conclusion: The proposed algorithm appeared effective segmenting prostate CBCT images with the present of the Calypso artifacts. However, it is not robust in two scenarios: 1) rectum with significant amount of gas; 2) prostate with very low contrast. Model

  1. A 3D global-to-local deformable mesh model based registration and anatomy-constrained segmentation method for image guided prostate radiotherapy

    International Nuclear Information System (INIS)

    Zhou Jinghao; Kim, Sung; Jabbour, Salma; Goyal, Sharad; Haffty, Bruce; Chen, Ting; Levinson, Lydia; Metaxas, Dimitris; Yue, Ning J.

    2010-01-01

    Purpose: In the external beam radiation treatment of prostate cancers, successful implementation of adaptive radiotherapy and conformal radiation dose delivery is highly dependent on precise and expeditious segmentation and registration of the prostate volume between the simulation and the treatment images. The purpose of this study is to develop a novel, fast, and accurate segmentation and registration method to increase the computational efficiency to meet the restricted clinical treatment time requirement in image guided radiotherapy. Methods: The method developed in this study used soft tissues to capture the transformation between the 3D planning CT (pCT) images and 3D cone-beam CT (CBCT) treatment images. The method incorporated a global-to-local deformable mesh model based registration framework as well as an automatic anatomy-constrained robust active shape model (ACRASM) based segmentation algorithm in the 3D CBCT images. The global registration was based on the mutual information method, and the local registration was to minimize the Euclidian distance of the corresponding nodal points from the global transformation of deformable mesh models, which implicitly used the information of the segmented target volume. The method was applied on six data sets of prostate cancer patients. Target volumes delineated by the same radiation oncologist on the pCT and CBCT were chosen as the benchmarks and were compared to the segmented and registered results. The distance-based and the volume-based estimators were used to quantitatively evaluate the results of segmentation and registration. Results: The ACRASM segmentation algorithm was compared to the original active shape model (ASM) algorithm by evaluating the values of the distance-based estimators. With respect to the corresponding benchmarks, the mean distance ranged from -0.85 to 0.84 mm for ACRASM and from -1.44 to 1.17 mm for ASM. The mean absolute distance ranged from 1.77 to 3.07 mm for ACRASM and from 2.45 to

  2. Albedo estimation for scene segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C H; Rosenfeld, A

    1983-03-01

    Standard methods of image segmentation do not take into account the three-dimensional nature of the underlying scene. For example, histogram-based segmentation tacitly assumes that the image intensity is piecewise constant, and this is not true when the scene contains curved surfaces. This paper introduces a method of taking 3d information into account in the segmentation process. The image intensities are adjusted to compensate for the effects of estimated surface orientation; the adjusted intensities can be regarded as reflectivity estimates. When histogram-based segmentation is applied to these new values, the image is segmented into parts corresponding to surfaces of constant reflectivity in the scene. 7 references.

  3. A novel wavelet-based feature extraction from common mode currents for fault location in a residential DC microgrid

    DEFF Research Database (Denmark)

    Beheshtaein, Siavash; Yu, Junyang; Cuzner, Rob

    2017-01-01

    approaches have been developed that enable construction of scalable microgrids based on PV and battery storage. However, as these systems proliferate, it will be necessary to develop safe and reliable methods for fault protection. Ground faults are of specific concern because, in many cases, cables...... are buried underground. At the same time, microgrids include current monitoring and processing capability wherever an energy resource interfaces to the microgrid through a power electronic converter. This paper discusses methods for identifying ground fault behavior within standard DC microgrid structures...

  4. Gamifying Video Object Segmentation.

    Science.gov (United States)

    Spampinato, Concetto; Palazzo, Simone; Giordano, Daniela

    2017-10-01

    Video object segmentation can be considered as one of the most challenging computer vision problems. Indeed, so far, no existing solution is able to effectively deal with the peculiarities of real-world videos, especially in cases of articulated motion and object occlusions; limitations that appear more evident when we compare the performance of automated methods with the human one. However, manually segmenting objects in videos is largely impractical as it requires a lot of time and concentration. To address this problem, in this paper we propose an interactive video object segmentation method, which exploits, on one hand, the capability of humans to identify correctly objects in visual scenes, and on the other hand, the collective human brainpower to solve challenging and large-scale tasks. In particular, our method relies on a game with a purpose to collect human inputs on object locations, followed by an accurate segmentation phase achieved by optimizing an energy function encoding spatial and temporal constraints between object regions as well as human-provided location priors. Performance analysis carried out on complex video benchmarks, and exploiting data provided by over 60 users, demonstrated that our method shows a better trade-off between annotation times and segmentation accuracy than interactive video annotation and automated video object segmentation approaches.

  5. SU-F-J-111: A Novel Distance-Dose Weighting Method for Label Fusion in Multi- Atlas Segmentation for Prostate Radiation Therapy

    International Nuclear Information System (INIS)

    Chang, J; Gu, X; Lu, W; Jiang, S; Song, T

    2016-01-01

    Purpose: A novel distance-dose weighting method for label fusion was developed to increase segmentation accuracy in dosimetrically important regions for prostate radiation therapy. Methods: Label fusion as implemented in the original SIMPLE (OS) for multi-atlas segmentation relies iteratively on the majority vote to generate an estimated ground truth and DICE similarity measure to screen candidates. The proposed distance-dose weighting puts more values on dosimetrically important regions when calculating similarity measure. Specifically, we introduced distance-to-dose error (DDE), which converts distance to dosimetric importance, in performance evaluation. The DDE calculates an estimated DE error derived from surface distance differences between the candidate and estimated ground truth label by multiplying a regression coefficient. To determine the coefficient at each simulation point on the rectum, we fitted DE error with respect to simulated voxel shift. The DEs were calculated by the multi-OAR geometry-dosimetry training model previously developed in our research group. Results: For both the OS and the distance-dose weighted SIMPLE (WS) results, the evaluation metrics for twenty patients were calculated using the ground truth segmentation. The mean difference of DICE, Hausdorff distance, and mean absolute distance (MAD) between OS and WS have shown 0, 0.10, and 0.11, respectively. In partial MAD of WS which calculates MAD within a certain PTV expansion voxel distance, the lower MADs were observed at the closer distances from 1 to 8 than those of OS. The DE results showed that the segmentation from WS produced more accurate results than OS. The mean DE error of V75, V70, V65, and V60 were decreased by 1.16%, 1.17%, 1.14%, and 1.12%, respectively. Conclusion: We have demonstrated that the method can increase the segmentation accuracy in rectum regions adjacent to PTV. As a result, segmentation using WS have shown improved dosimetric accuracy than OS. The WS will

  6. SU-F-J-111: A Novel Distance-Dose Weighting Method for Label Fusion in Multi- Atlas Segmentation for Prostate Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Chang, J; Gu, X; Lu, W; Jiang, S [UT Southwestern Medical Center, Dallas, TX (United States); Song, T [Southern Medical University, Guangzhou, Guangdong (China)

    2016-06-15

    Purpose: A novel distance-dose weighting method for label fusion was developed to increase segmentation accuracy in dosimetrically important regions for prostate radiation therapy. Methods: Label fusion as implemented in the original SIMPLE (OS) for multi-atlas segmentation relies iteratively on the majority vote to generate an estimated ground truth and DICE similarity measure to screen candidates. The proposed distance-dose weighting puts more values on dosimetrically important regions when calculating similarity measure. Specifically, we introduced distance-to-dose error (DDE), which converts distance to dosimetric importance, in performance evaluation. The DDE calculates an estimated DE error derived from surface distance differences between the candidate and estimated ground truth label by multiplying a regression coefficient. To determine the coefficient at each simulation point on the rectum, we fitted DE error with respect to simulated voxel shift. The DEs were calculated by the multi-OAR geometry-dosimetry training model previously developed in our research group. Results: For both the OS and the distance-dose weighted SIMPLE (WS) results, the evaluation metrics for twenty patients were calculated using the ground truth segmentation. The mean difference of DICE, Hausdorff distance, and mean absolute distance (MAD) between OS and WS have shown 0, 0.10, and 0.11, respectively. In partial MAD of WS which calculates MAD within a certain PTV expansion voxel distance, the lower MADs were observed at the closer distances from 1 to 8 than those of OS. The DE results showed that the segmentation from WS produced more accurate results than OS. The mean DE error of V75, V70, V65, and V60 were decreased by 1.16%, 1.17%, 1.14%, and 1.12%, respectively. Conclusion: We have demonstrated that the method can increase the segmentation accuracy in rectum regions adjacent to PTV. As a result, segmentation using WS have shown improved dosimetric accuracy than OS. The WS will

  7. A deformable-model approach to semi-automatic segmentation of CT images demonstrated by application to the spinal canal

    International Nuclear Information System (INIS)

    Burnett, Stuart S.C.; Starkschall, George; Stevens, Craig W.; Liao Zhongxing

    2004-01-01

    Because of the importance of accurately defining the target in radiation treatment planning, we have developed a deformable-template algorithm for the semi-automatic delineation of normal tissue structures on computed tomography (CT) images. We illustrate the method by applying it to the spinal canal. Segmentation is performed in three steps: (a) partial delineation of the anatomic structure is obtained by wavelet-based edge detection; (b) a deformable-model template is fitted to the edge set by chamfer matching; and (c) the template is relaxed away from its original shape into its final position. Appropriately chosen ranges for the model parameters limit the deformations of the template, accounting for interpatient variability. Our approach differs from those used in other deformable models in that it does not inherently require the modeling of forces. Instead, the spinal canal was modeled using Fourier descriptors derived from four sets of manually drawn contours. Segmentation was carried out, without manual intervention, on five CT data sets and the algorithm's performance was judged subjectively by two radiation oncologists. Two assessments were considered: in the first, segmentation on a random selection of 100 axial CT images was compared with the corresponding contours drawn manually by one of six dosimetrists, also chosen randomly; in the second assessment, the segmentation of each image in the five evaluable CT sets (a total of 557 axial images) was rated as either successful, unsuccessful, or requiring further editing. Contours generated by the algorithm were more likely than manually drawn contours to be considered acceptable by the oncologists. The mean proportions of acceptable contours were 93% (automatic) and 69% (manual). Automatic delineation of the spinal canal was deemed to be successful on 91% of the images, unsuccessful on 2% of the images, and requiring further editing on 7% of the images. Our deformable template algorithm thus gives a robust

  8. Performance comparison of deep learning and segmentation-based radiomic methods in the task of distinguishing benign and malignant breast lesions on DCE-MRI

    Science.gov (United States)

    Antropova, Natasha; Huynh, Benjamin; Giger, Maryellen

    2017-03-01

    Intuitive segmentation-based CADx/radiomic features, calculated from the lesion segmentations of dynamic contrast-enhanced magnetic resonance images (DCE-MRIs) have been utilized in the task of distinguishing between malignant and benign lesions. Additionally, transfer learning with pre-trained deep convolutional neural networks (CNNs) allows for an alternative method of radiomics extraction, where the features are derived directly from the image data. However, the comparison of computer-extracted segmentation-based and CNN features in MRI breast lesion characterization has not yet been conducted. In our study, we used a DCE-MRI database of 640 breast cases - 191 benign and 449 malignant. Thirty-eight segmentation-based features were extracted automatically using our quantitative radiomics workstation. Also, 2D ROIs were selected around each lesion on the DCE-MRIs and directly input into a pre-trained CNN AlexNet, yielding CNN features. Each method was investigated separately and in combination in terms of performance in the task of distinguishing between benign and malignant lesions. Area under the ROC curve (AUC) served as the figure of merit. Both methods yielded promising classification performance with round-robin cross-validated AUC values of 0.88 (se =0.01) and 0.76 (se=0.02) for segmentationbased and deep learning methods, respectively. Combination of the two methods enhanced the performance in malignancy assessment resulting in an AUC value of 0.91 (se=0.01), a statistically significant improvement over the performance of the CNN method alone.

  9. An efficient and high fidelity method for amplification, cloning and sequencing of complete tospovirus genomic RNA segments

    Science.gov (United States)

    Amplification and sequencing of the complete M- and S-RNA segments of Tomato spotted wilt virus and Impatiens necrotic spot virus as a single fragment is useful for whole genome sequencing of tospoviruses co-infecting a single host plant. It avoids issues associated with overlapping amplicon-based ...

  10. Alzheimer's Disease Diagnostic Performance of a Multi-Atlas Hippocampal Segmentation Method using the Harmonized Hippocampal Protocol

    DEFF Research Database (Denmark)

    Anker, Cecilie Benedicte; Sørensen, Lauge; Pai, Akshay

    PURPOSE Hippocampal volumetry is the most widely used structural MRI biomarker of Alzheimer’s disease (AD), and state-of-the-art, automatic hippocampal segmentation can be obtained using longitudinal FreeSurfer. In this study, we compare the diagnostic AD performance of a single time point, multi...

  11. Real-Time Wavelet-Based Coordinated Control of Hybrid Energy Storage Systems for Denoising and Flattening Wind Power Output

    Directory of Open Access Journals (Sweden)

    Tran Thai Trung

    2014-10-01

    Full Text Available Since the penetration level of wind energy is continuously increasing, the negative impact caused by the fluctuation of wind power output needs to be carefully managed. This paper proposes a novel real-time coordinated control algorithm based on a wavelet transform to mitigate both short-term and long-term fluctuations by using a hybrid energy storage system (HESS. The short-term fluctuation is eliminated by using an electric double-layer capacitor (EDLC, while the wind-HESS system output is kept constant during each 10-min period by a Ni-MH battery (NB. State-of-charge (SOC control strategies for both EDLC and NB are proposed to maintain the SOC level of storage within safe operating limits. A ramp rate limitation (RRL requirement is also considered in the proposed algorithm. The effectiveness of the proposed algorithm has been tested by using real time simulation. The simulation model of the wind-HESS system is developed in the real-time digital simulator (RTDS/RSCAD environment. The proposed algorithm is also implemented as a user defined model of the RSCAD. The simulation results demonstrate that the HESS with the proposed control algorithm can indeed assist in dealing with the variation of wind power generation. Moreover, the proposed method shows better performance in smoothing out the fluctuation and managing the SOC of battery and EDLC than the simple moving average (SMA based method.

  12. TU-CD-BRA-04: Evaluation of An Atlas-Based Segmentation Method for Prostate and Peripheral Zone Regions On MRI

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, AS; Piper, J; Curry, K; Swallen, A [MIM Software Inc., Cleveland, OH (United States); Padgett, K; Pollack, A; Stoyanova, RS [University of Miami, Miami, FL (United States)

    2015-06-15

    Purpose: Prostate MRI plays an important role in diagnosis, biopsy guidance, and therapy planning for prostate cancer. Prostate MRI contours can be used to aid in image fusion for ultrasound biopsy guidance and delivery of radiation. Our goal in this study is to evaluate an automatic atlas-based segmentation method for generating prostate and peripheral zone (PZ) contours on MRI. Methods: T2-weighted MRIs were acquired on 3T-Discovery MR750 System (GE, Milwaukee). The Volumes of Interest (VOIs): prostate and PZ were outlined by an expert radiation oncologist and used to create an atlas library for atlas-based segmentation. The atlas-segmentation accuracy was evaluated using a leave-one-out analysis. The method involved automatically finding the atlas subject that best matched the test subject followed by a normalized intensity-based free-form deformable registration of the atlas subject to the test subject. The prostate and PZ contours were transformed to the test subject using the same deformation. For each test subject the three best matches were used and the final contour was combined using Majority Vote. The atlas-segmentation process was fully automatic. Dice similarity coefficients (DSC) and mean Hausdorff values were used for comparison. Results: VOIs contours were available for 28 subjects. For the prostate, the atlas-based segmentation method resulted in an average DSC of 0.88+/−0.08 and a mean Hausdorff distance of 1.1+/−0.9mm. The number of patients (#) in DSC ranges are as follows: 0.60–0.69(1), 0.70–0.79(2), 0.80–0.89(13), >0.89(11). For the PZ, the average DSC was 0.72+/−0.17 and average Hausdorff of 0.9+/−0.9mm. The number of patients (#) in DSC ranges are as follows: <0.60(4), 0.60–0.69(6), 0.70–0.79(7), 0.80–0.89(9), >0.89(1). Conclusion: The MRI atlas-based segmentation method achieved good results for both the whole prostate and PZ compared to expert defined VOIs. The technique is fast, fully automatic, and has the potential

  13. TU-CD-BRA-04: Evaluation of An Atlas-Based Segmentation Method for Prostate and Peripheral Zone Regions On MRI

    International Nuclear Information System (INIS)

    Nelson, AS; Piper, J; Curry, K; Swallen, A; Padgett, K; Pollack, A; Stoyanova, RS

    2015-01-01

    Purpose: Prostate MRI plays an important role in diagnosis, biopsy guidance, and therapy planning for prostate cancer. Prostate MRI contours can be used to aid in image fusion for ultrasound biopsy guidance and delivery of radiation. Our goal in this study is to evaluate an automatic atlas-based segmentation method for generating prostate and peripheral zone (PZ) contours on MRI. Methods: T2-weighted MRIs were acquired on 3T-Discovery MR750 System (GE, Milwaukee). The Volumes of Interest (VOIs): prostate and PZ were outlined by an expert radiation oncologist and used to create an atlas library for atlas-based segmentation. The atlas-segmentation accuracy was evaluated using a leave-one-out analysis. The method involved automatically finding the atlas subject that best matched the test subject followed by a normalized intensity-based free-form deformable registration of the atlas subject to the test subject. The prostate and PZ contours were transformed to the test subject using the same deformation. For each test subject the three best matches were used and the final contour was combined using Majority Vote. The atlas-segmentation process was fully automatic. Dice similarity coefficients (DSC) and mean Hausdorff values were used for comparison. Results: VOIs contours were available for 28 subjects. For the prostate, the atlas-based segmentation method resulted in an average DSC of 0.88+/−0.08 and a mean Hausdorff distance of 1.1+/−0.9mm. The number of patients (#) in DSC ranges are as follows: 0.60–0.69(1), 0.70–0.79(2), 0.80–0.89(13), >0.89(11). For the PZ, the average DSC was 0.72+/−0.17 and average Hausdorff of 0.9+/−0.9mm. The number of patients (#) in DSC ranges are as follows: 0.89(1). Conclusion: The MRI atlas-based segmentation method achieved good results for both the whole prostate and PZ compared to expert defined VOIs. The technique is fast, fully automatic, and has the potential to provide significant time savings for prostate VOI

  14. Segmentation-DrivenTomographic Reconstruction

    DEFF Research Database (Denmark)

    Kongskov, Rasmus Dalgas

    such that the segmentation subsequently can be carried out by use of a simple segmentation method, for instance just a thresholding method. We tested the advantages of going from a two-stage reconstruction method to a one stage segmentation-driven reconstruction method for the phase contrast tomography reconstruction......The tomographic reconstruction problem is concerned with creating a model of the interior of an object from some measured data, typically projections of the object. After reconstructing an object it is often desired to segment it, either automatically or manually. For computed tomography (CT...

  15. SU-F-J-112: Clinical Feasibility Test of An RF Pulse-Based MRI Method for the Quantitative Fat-Water Segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Yee, S; Wloch, J; Pirkola, M [William Beaumont Hospital, Royal Oak, MI (United States)

    2016-06-15

    Purpose: Quantitative fat-water segmentation is important not only because of the clinical utility of fat-suppressed MRI images in better detecting lesions of clinical significance (in the midst of bright fat signal) but also because of the possible physical need, in which CT-like images based on the materials’ photon attenuation properties may have to be generated from MR images; particularly, as in the case of MR-only radiation oncology environment to obtain radiation dose calculation or as in the case of hybrid PET/MR modality to obtain attenuation correction map for the quantitative PET reconstruction. The majority of such fat-water quantitative segmentations have been performed by utilizing the Dixon’s method and its variations, which have to enforce the proper settings (often predefined) of echo time (TE) in the pulse sequences. Therefore, such methods have been unable to be directly combined with those ultrashort TE (UTE) sequences that, taking the advantage of very low TE values (∼ 10’s microsecond), might be beneficial to directly detect bones. Recently, an RF pulse-based method (http://dx.doi.org/10.1016/j.mri.2015.11.006), termed as PROD pulse method, was introduced as a method of quantitative fat-water segmentation that does n