WorldWideScience

Sample records for wavelet signal threshold

  1. Electrocardiogram signal denoising based on a new improved wavelet thresholding

    Science.gov (United States)

    Han, Guoqiang; Xu, Zhijun

    2016-08-01

    Good quality electrocardiogram (ECG) is utilized by physicians for the interpretation and identification of physiological and pathological phenomena. In general, ECG signals may mix various noises such as baseline wander, power line interference, and electromagnetic interference in gathering and recording process. As ECG signals are non-stationary physiological signals, wavelet transform is investigated to be an effective tool to discard noises from corrupted signals. A new compromising threshold function called sigmoid function-based thresholding scheme is adopted in processing ECG signals. Compared with other methods such as hard/soft thresholding or other existing thresholding functions, the new algorithm has many advantages in the noise reduction of ECG signals. It perfectly overcomes the discontinuity at ±T of hard thresholding and reduces the fixed deviation of soft thresholding. The improved wavelet thresholding denoising can be proved to be more efficient than existing algorithms in ECG signal denoising. The signal to noise ratio, mean square error, and percent root mean square difference are calculated to verify the denoising performance as quantitative tools. The experimental results reveal that the waves including P, Q, R, and S waves of ECG signals after denoising coincide with the original ECG signals by employing the new proposed method.

  2. A New Wavelet Threshold Determination Method Considering Interscale Correlation in Signal Denoising

    Directory of Open Access Journals (Sweden)

    Can He

    2015-01-01

    Full Text Available Due to simple calculation and good denoising effect, wavelet threshold denoising method has been widely used in signal denoising. In this method, the threshold is an important parameter that affects the denoising effect. In order to improve the denoising effect of the existing methods, a new threshold considering interscale correlation is presented. Firstly, a new correlation index is proposed based on the propagation characteristics of the wavelet coefficients. Then, a threshold determination strategy is obtained using the new index. At the end of the paper, a simulation experiment is given to verify the effectiveness of the proposed method. In the experiment, four benchmark signals are used as test signals. Simulation results show that the proposed method can achieve a good denoising effect under various signal types, noise intensities, and thresholding functions.

  3. ECG signal performance de-noising assessment based on threshold tuning of dual-tree wavelet transform.

    Science.gov (United States)

    El B'charri, Oussama; Latif, Rachid; Elmansouri, Khalifa; Abenaou, Abdenbi; Jenkal, Wissam

    2017-02-07

    Since the electrocardiogram (ECG) signal has a low frequency and a weak amplitude, it is sensitive to miscellaneous mixed noises, which may reduce the diagnostic accuracy and hinder the physician's correct decision on patients. The dual tree wavelet transform (DT-WT) is one of the most recent enhanced versions of discrete wavelet transform. However, threshold tuning on this method for noise removal from ECG signal has not been investigated yet. In this work, we shall provide a comprehensive study on the impact of the choice of threshold algorithm, threshold value, and the appropriate wavelet decomposition level to evaluate the ECG signal de-noising performance. A set of simulations is performed on both synthetic and real ECG signals to achieve the promised results. First, the synthetic ECG signal is used to observe the algorithm response. The evaluation results of synthetic ECG signal corrupted by various types of noise has showed that the modified unified threshold and wavelet hyperbolic threshold de-noising method is better in realistic and colored noises. The tuned threshold is then used on real ECG signals from the MIT-BIH database. The results has shown that the proposed method achieves higher performance than the ordinary dual tree wavelet transform into all kinds of noise removal from ECG signal. The simulation results indicate that the algorithm is robust for all kinds of noises with varying degrees of input noise, providing a high quality clean signal. Moreover, the algorithm is quite simple and can be used in real time ECG monitoring.

  4. A New Wavelet Threshold Function and Denoising Application

    Directory of Open Access Journals (Sweden)

    Lu Jing-yi

    2016-01-01

    Full Text Available In order to improve the effects of denoising, this paper introduces the basic principles of wavelet threshold denoising and traditional structures threshold functions. Meanwhile, it proposes wavelet threshold function and fixed threshold formula which are both improved here. First, this paper studies the problems existing in the traditional wavelet threshold functions and introduces the adjustment factors to construct the new threshold function basis on soft threshold function. Then, it studies the fixed threshold and introduces the logarithmic function of layer number of wavelet decomposition to design the new fixed threshold formula. Finally, this paper uses hard threshold, soft threshold, Garrote threshold, and improved threshold function to denoise different signals. And the paper also calculates signal-to-noise (SNR and mean square errors (MSE of the hard threshold functions, soft thresholding functions, Garrote threshold functions, and the improved threshold function after denoising. Theoretical analysis and experimental results showed that the proposed approach could improve soft threshold functions with constant deviation and hard threshold with discontinuous function problems. The proposed approach could improve the different decomposition scales that adopt the same threshold value to deal with the noise problems, also effectively filter the noise in the signals, and improve the SNR and reduce the MSE of output signals.

  5. Application of Improved Wavelet Thresholding Function in Image Denoising Processing

    Directory of Open Access Journals (Sweden)

    Hong Qi Zhang

    2014-07-01

    Full Text Available Wavelet analysis is a time – frequency analysis method, time-frequency localization problems are well solved, this paper analyzes the basic principles of the wavelet transform and the relationship between the signal singularity Lipschitz exponent and the local maxima of the wavelet transform coefficients mold, the principles of wavelet transform in image denoising are analyzed, the disadvantages of traditional wavelet thresholding function are studied, wavelet threshold function, the discontinuity of hard threshold and constant deviation of soft threshold are improved, image is denoised through using the improved threshold function.

  6. An NMR log echo data de-noising method based on the wavelet packet threshold algorithm

    International Nuclear Information System (INIS)

    Meng, Xiangning; Xie, Ranhong; Li, Changxi; Hu, Falong; Li, Chaoliu; Zhou, Cancan

    2015-01-01

    To improve the de-noising effects of low signal-to-noise ratio (SNR) nuclear magnetic resonance (NMR) log echo data, this paper applies the wavelet packet threshold algorithm to the data. The principle of the algorithm is elaborated in detail. By comparing the properties of a series of wavelet packet bases and the relevance between them and the NMR log echo train signal, ‘sym7’ is found to be the optimal wavelet packet basis of the wavelet packet threshold algorithm to de-noise the NMR log echo train signal. A new method is presented to determine the optimal wavelet packet decomposition scale; this is within the scope of its maximum, using the modulus maxima and the Shannon entropy minimum standards to determine the global and local optimal wavelet packet decomposition scales, respectively. The results of applying the method to the simulated and actual NMR log echo data indicate that compared with the wavelet threshold algorithm, the wavelet packet threshold algorithm, which shows higher decomposition accuracy and better de-noising effect, is much more suitable for de-noising low SNR–NMR log echo data. (paper)

  7. Wavelet based methods for improved wind profiler signal processing

    Directory of Open Access Journals (Sweden)

    V. Lehmann

    2001-08-01

    Full Text Available In this paper, we apply wavelet thresholding for removing automatically ground and intermittent clutter (airplane echoes from wind profiler radar data. Using the concept of discrete multi-resolution analysis and non-parametric estimation theory, we develop wavelet domain thresholding rules, which allow us to identify the coefficients relevant for clutter and to suppress them in order to obtain filtered reconstructions.Key words. Meteorology and atmospheric dynamics (instruments and techniques – Radio science (remote sensing; signal processing

  8. Noise Suppression in ECG Signals through Efficient One-Step Wavelet Processing Techniques

    Directory of Open Access Journals (Sweden)

    E. Castillo

    2013-01-01

    Full Text Available This paper illustrates the application of the discrete wavelet transform (DWT for wandering and noise suppression in electrocardiographic (ECG signals. A novel one-step implementation is presented, which allows improving the overall denoising process. In addition an exhaustive study is carried out, defining threshold limits and thresholding rules for optimal wavelet denoising using this presented technique. The system has been tested using synthetic ECG signals, which allow accurately measuring the effect of the proposed processing. Moreover, results from real abdominal ECG signals acquired from pregnant women are presented in order to validate the presented approach.

  9. A de-noising algorithm based on wavelet threshold-exponential adaptive window width-fitting for ground electrical source airborne transient electromagnetic signal

    Science.gov (United States)

    Ji, Yanju; Li, Dongsheng; Yu, Mingmei; Wang, Yuan; Wu, Qiong; Lin, Jun

    2016-05-01

    The ground electrical source airborne transient electromagnetic system (GREATEM) on an unmanned aircraft enjoys considerable prospecting depth, lateral resolution and detection efficiency, etc. In recent years it has become an important technical means of rapid resources exploration. However, GREATEM data are extremely vulnerable to stationary white noise and non-stationary electromagnetic noise (sferics noise, aircraft engine noise and other human electromagnetic noises). These noises will cause degradation of the imaging quality for data interpretation. Based on the characteristics of the GREATEM data and major noises, we propose a de-noising algorithm utilizing wavelet threshold method and exponential adaptive window width-fitting. Firstly, the white noise is filtered in the measured data using the wavelet threshold method. Then, the data are segmented using data window whose step length is even logarithmic intervals. The data polluted by electromagnetic noise are identified within each window based on the discriminating principle of energy detection, and the attenuation characteristics of the data slope are extracted. Eventually, an exponential fitting algorithm is adopted to fit the attenuation curve of each window, and the data polluted by non-stationary electromagnetic noise are replaced with their fitting results. Thus the non-stationary electromagnetic noise can be effectively removed. The proposed algorithm is verified by the synthetic and real GREATEM signals. The results show that in GREATEM signal, stationary white noise and non-stationary electromagnetic noise can be effectively filtered using the wavelet threshold-exponential adaptive window width-fitting algorithm, which enhances the imaging quality.

  10. Adaptive Wavelet Threshold Denoising Method for Machinery Sound Based on Improved Fruit Fly Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Jing Xu

    2016-07-01

    Full Text Available As the sound signal of a machine contains abundant information and is easy to measure, acoustic-based monitoring or diagnosis systems exhibit obvious superiority, especially in some extreme conditions. However, the sound directly collected from industrial field is always polluted. In order to eliminate noise components from machinery sound, a wavelet threshold denoising method optimized by an improved fruit fly optimization algorithm (WTD-IFOA is proposed in this paper. The sound is firstly decomposed by wavelet transform (WT to obtain coefficients of each level. As the wavelet threshold functions proposed by Donoho were discontinuous, many modified functions with continuous first and second order derivative were presented to realize adaptively denoising. However, the function-based denoising process is time-consuming and it is difficult to find optimal thresholds. To overcome these problems, fruit fly optimization algorithm (FOA was introduced to the process. Moreover, to avoid falling into local extremes, an improved fly distance range obeying normal distribution was proposed on the basis of original FOA. Then, sound signal of a motor was recorded in a soundproof laboratory, and Gauss white noise was added into the signal. The simulation results illustrated the effectiveness and superiority of the proposed approach by a comprehensive comparison among five typical methods. Finally, an industrial application on a shearer in coal mining working face was performed to demonstrate the practical effect.

  11. Wavelet analysis for nonstationary signals

    International Nuclear Information System (INIS)

    Penha, Rosani Maria Libardi da

    1999-01-01

    Mechanical vibration signals play an important role in anomalies identification resulting of equipment malfunctioning. Traditionally, Fourier spectral analysis is used where the signals are assumed to be stationary. However, occasional transient impulses and start-up process are examples of nonstationary signals that can be found in mechanical vibrations. These signals can provide important information about the equipment condition, as early fault detection. The Fourier analysis can not adequately be applied to nonstationary signals because the results provide data about the frequency composition averaged over the duration of the signal. In this work, two methods for nonstationary signal analysis are used: Short Time Fourier Transform (STFT) and wavelet transform. The STFT is a method of adapting Fourier spectral analysis for nonstationary application to time-frequency domain. To have a unique resolution throughout the entire time-frequency domain is its main limitation. The wavelet transform is a new analysis technique suitable to nonstationary signals, which handles the STFT drawbacks, providing multi-resolution frequency analysis and time localization in a unique time-scale graphic. The multiple frequency resolutions are obtained by scaling (dilatation/compression) the wavelet function. A comparison of the conventional Fourier transform, STFT and wavelet transform is made applying these techniques to: simulated signals, arrangement rotor rig vibration signal and rotate machine vibration signal Hanning window was used to STFT analysis. Daubechies and harmonic wavelets were used to continuos, discrete and multi-resolution wavelet analysis. The results show the Fourier analysis was not able to detect changes in the signal frequencies or discontinuities. The STFT analysis detected the changes in the signal frequencies, but with time-frequency resolution problems. The wavelet continuos and discrete transform demonstrated to be a high efficient tool to detect

  12. Application of time-resolved glucose concentration photoacoustic signals based on an improved wavelet denoising

    Science.gov (United States)

    Ren, Zhong; Liu, Guodong; Huang, Zhen

    2014-10-01

    Real-time monitoring of blood glucose concentration (BGC) is a great important procedure in controlling diabetes mellitus and preventing the complication for diabetic patients. Noninvasive measurement of BGC has already become a research hotspot because it can overcome the physical and psychological harm. Photoacoustic spectroscopy is a well-established, hybrid and alternative technique used to determine the BGC. According to the theory of photoacoustic technique, the blood is irradiated by plused laser with nano-second repeation time and micro-joule power, the photoacoustic singals contained the information of BGC are generated due to the thermal-elastic mechanism, then the BGC level can be interpreted from photoacoustic signal via the data analysis. But in practice, the time-resolved photoacoustic signals of BGC are polluted by the varities of noises, e.g., the interference of background sounds and multi-component of blood. The quality of photoacoustic signal of BGC directly impacts the precision of BGC measurement. So, an improved wavelet denoising method was proposed to eliminate the noises contained in BGC photoacoustic signals. To overcome the shortcoming of traditional wavelet threshold denoising, an improved dual-threshold wavelet function was proposed in this paper. Simulation experimental results illustrated that the denoising result of this improved wavelet method was better than that of traditional soft and hard threshold function. To varify the feasibility of this improved function, the actual photoacoustic BGC signals were test, the test reslut demonstrated that the signal-to-noises ratio(SNR) of the improved function increases about 40-80%, and its root-mean-square error (RMSE) decreases about 38.7-52.8%.

  13. Denoising of Mechanical Vibration Signals Using Quantum-Inspired Adaptive Wavelet Shrinkage

    Directory of Open Access Journals (Sweden)

    Yan-long Chen

    2014-01-01

    Full Text Available The potential application of a quantum-inspired adaptive wavelet shrinkage (QAWS technique to mechanical vibration signals with a focus on noise reduction is studied in this paper. This quantum-inspired shrinkage algorithm combines three elements: an adaptive non-Gaussian statistical model of dual-tree complex wavelet transform (DTCWT coefficients proposed to improve practicability of prior information, the quantum superposition introduced to describe the interscale dependencies of DTCWT coefficients, and the quantum-inspired probability of noise defined to shrink wavelet coefficients in a Bayesian framework. By combining all these elements, this signal processing scheme incorporating the DTCWT with quantum theory can both reduce noise and preserve signal details. A practical vibration signal measured from a power-shift steering transmission is utilized to evaluate the denoising ability of QAWS. Application results demonstrate the effectiveness of the proposed method. Moreover, it achieves better performance than hard and soft thresholding.

  14. [Investigation of fast filter of ECG signals with lifting wavelet and smooth filter].

    Science.gov (United States)

    Li, Xuefei; Mao, Yuxing; He, Wei; Yang, Fan; Zhou, Liang

    2008-02-01

    The lifting wavelet is used to decompose the original ECG signals and separate them into the approach signals with low frequency and the detail signals with high frequency, based on frequency characteristic. Parts of the detail signals are ignored according to the frequency characteristic. To avoid the distortion of QRS Complexes, the approach signals are filtered by an adaptive smooth filter with a proper threshold value. Through the inverse transform of the lifting wavelet, the reserved approach signals are reconstructed, and the three primary kinds of noise are limited effectively. In addition, the method is fast and there is no time delay between input and output.

  15. Entropy-Based Method of Choosing the Decomposition Level in Wavelet Threshold De-noising

    Directory of Open Access Journals (Sweden)

    Yan-Fang Sang

    2010-06-01

    Full Text Available In this paper, the energy distributions of various noises following normal, log-normal and Pearson-III distributions are first described quantitatively using the wavelet energy entropy (WEE, and the results are compared and discussed. Then, on the basis of these analytic results, a method for use in choosing the decomposition level (DL in wavelet threshold de-noising (WTD is put forward. Finally, the performance of the proposed method is verified by analysis of both synthetic and observed series. Analytic results indicate that the proposed method is easy to operate and suitable for various signals. Moreover, contrary to traditional white noise testing which depends on “autocorrelations”, the proposed method uses energy distributions to distinguish real signals and noise in noisy series, therefore the chosen DL is reliable, and the WTD results of time series can be improved.

  16. An improved method based on wavelet coefficient correlation to filter noise in Doppler ultrasound blood flow signals

    Science.gov (United States)

    Wan, Renzhi; Zu, Yunxiao; Shao, Lin

    2018-04-01

    The blood echo signal maintained through Medical ultrasound Doppler devices would always include vascular wall pulsation signal .The traditional method to de-noise wall signal is using high-pass filter, which will also remove the lowfrequency part of the blood flow signal. Some scholars put forward a method based on region selective reduction, which at first estimates of the wall pulsation signals and then removes the wall signal from the mixed signal. Apparently, this method uses the correlation between wavelet coefficients to distinguish blood signal from wall signal, but in fact it is a kind of wavelet threshold de-noising method, whose effect is not so much ideal. In order to maintain a better effect, this paper proposes an improved method based on wavelet coefficient correlation to separate blood signal and wall signal, and simulates the algorithm by computer to verify its validity.

  17. Wavelets and multiscale signal processing

    CERN Document Server

    Cohen, Albert

    1995-01-01

    Since their appearance in mid-1980s, wavelets and, more generally, multiscale methods have become powerful tools in mathematical analysis and in applications to numerical analysis and signal processing. This book is based on "Ondelettes et Traitement Numerique du Signal" by Albert Cohen. It has been translated from French by Robert D. Ryan and extensively updated by both Cohen and Ryan. It studies the existing relations between filter banks and wavelet decompositions and shows how these relations can be exploited in the context of digital signal processing. Throughout, the book concentrates on the fundamentals. It begins with a chapter on the concept of multiresolution analysis, which contains complete proofs of the basic results. The description of filter banks that are related to wavelet bases is elaborated in both the orthogonal case (Chapter 2), and in the biorthogonal case (Chapter 4). The regularity of wavelets, how this is related to the properties of the filters and the importance of regularity for t...

  18. Application of wavelet transform in seismic signal processing

    International Nuclear Information System (INIS)

    Ghasemi, M. R.; Mohammadzadeh, A.; Salajeghe, E.

    2005-01-01

    Wavelet transform is a new tool for signal analysis which can perform a simultaneous signal time and frequency representations. Under Multi Resolution Analysis, one can quickly determine details for signals and their properties using Fast Wavelet Transform algorithms. In this paper, for a better physical understanding of a signal and its basic algorithms, Multi Resolution Analysis together with wavelet transforms in a form of Digital Signal Processing will be discussed. For a Seismic Signal Processing, sets of Orthonormal Daubechies Wavelets are suggested. when dealing with the application of wavelets in SSP, one may discuss about denoising from the signal and data compression existed in the signal, which is important in seismic signal data processing. Using this techniques, EL-Centro and Nagan signals were remodeled with a 25% of total points, resulted in a satisfactory results with an acceptable error drift. Thus a total of 1559 and 2500 points for EL-centro and Nagan seismic curves each, were reduced to 389 and 625 points respectively, with a very reasonable error drift, details of which are recorded in the paper. Finally, the future progress in signal processing, based on wavelet theory will be appointed

  19. Night Vision Image De-Noising of Apple Harvesting Robots Based on the Wavelet Fuzzy Threshold

    Directory of Open Access Journals (Sweden)

    Chengzhi Ruan

    2015-12-01

    Full Text Available In this paper, the de-noising problem of night vision images is studied for apple harvesting robots working at night. The wavelet threshold method is applied to the de-noising of night vision images. Due to the fact that the choice of wavelet threshold function restricts the effect of the wavelet threshold method, the fuzzy theory is introduced to construct the fuzzy threshold function. We then propose the de-noising algorithm based on the wavelet fuzzy threshold. This new method can reduce image noise interferences, which is conducive to further image segmentation and recognition. To demonstrate the performance of the proposed method, we conducted simulation experiments and compared the median filtering and the wavelet soft threshold de-noising methods. It is shown that this new method can achieve the highest relative PSNR. Compared with the original images, the median filtering de-noising method and the classical wavelet threshold de-noising method, the relative PSNR increases 24.86%, 13.95%, and 11.38% respectively. We carry out comparisons from various aspects, such as intuitive visual evaluation, objective data evaluation, edge evaluation and artificial light evaluation. The experimental results show that the proposed method has unique advantages for the de-noising of night vision images, which lay the foundation for apple harvesting robots working at night.

  20. Signal-dependent independent component analysis by tunable mother wavelets

    International Nuclear Information System (INIS)

    Seo, Kyung Ho

    2006-02-01

    The objective of this study is to improve the standard independent component analysis when applied to real-world signals. Independent component analysis starts from the assumption that signals from different physical sources are statistically independent. But real-world signals such as EEG, ECG, MEG, and fMRI signals are not statistically independent perfectly. By definition, standard independent component analysis algorithms are not able to estimate statistically dependent sources, that is, when the assumption of independence does not hold. Therefore before independent component analysis, some preprocessing stage is needed. This paper started from simple intuition that wavelet transformed source signals by 'well-tuned' mother wavelet will be simplified sufficiently, and then the source separation will show better results. By the correlation coefficient method, the tuning process between source signal and tunable mother wavelet was executed. Gamma component of raw EEG signal was set to target signal, and wavelet transform was executed by tuned mother wavelet and standard mother wavelets. Simulation results by these wavelets was shown

  1. Signal quality enhancement using higher order wavelets for ultrasonic TOFD signals from austenitic stainless steel welds.

    Science.gov (United States)

    Praveen, Angam; Vijayarekha, K; Abraham, Saju T; Venkatraman, B

    2013-09-01

    Time of flight diffraction (TOFD) technique is a well-developed ultrasonic non-destructive testing (NDT) method and has been applied successfully for accurate sizing of defects in metallic materials. This technique was developed in early 1970s as a means for accurate sizing and positioning of cracks in nuclear components became very popular in the late 1990s and is today being widely used in various industries for weld inspection. One of the main advantages of TOFD is that, apart from fast technique, it provides higher probability of detection for linear defects. Since TOFD is based on diffraction of sound waves from the extremities of the defect compared to reflection from planar faces as in pulse echo and phased array, the resultant signal would be quite weak and signal to noise ratio (SNR) low. In many cases the defect signal is submerged in this noise making it difficult for detection, positioning and sizing. Several signal processing methods such as digital filtering, Split Spectrum Processing (SSP), Hilbert Transform and Correlation techniques have been developed in order to suppress unwanted noise and enhance the quality of the defect signal which can thus be used for characterization of defects and the material. Wavelet Transform based thresholding techniques have been applied largely for de-noising of ultrasonic signals. However in this paper, higher order wavelets are used for analyzing the de-noising performance for TOFD signals obtained from Austenitic Stainless Steel welds. It is observed that higher order wavelets give greater SNR improvement compared to the lower order wavelets. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Pseudo-stochastic signal characterization in wavelet-domain

    International Nuclear Information System (INIS)

    Zaytsev, Kirill I; Zhirnov, Andrei A; Alekhnovich, Valentin I; Yurchenko, Stanislav O

    2015-01-01

    In this paper we present the method for fast and accurate characterization of pseudo-stochastic signals, which contain a large number of similar but randomly-located fragments. This method allows estimating the statistical characteristics of pseudo-stochastic signal, and it is based on digital signal processing in wavelet-domain. Continuous wavelet transform and the criterion for wavelet scale power density are utilized. We are experimentally implementing this method for the purpose of sand granulometry, and we are estimating the statistical parameters of test sand fractions

  3. Noise Reduction of Steel Cord Conveyor Belt Defect Electromagnetic Signal by Combined Use of Improved Wavelet and EMD

    Directory of Open Access Journals (Sweden)

    Hong-Wei Ma

    2016-09-01

    Full Text Available In order to reduce the noise of a defect electromagnetic signal of the steel cord conveyor belt used in coal mines, a new signal noise reduction method by combined use of the improved threshold wavelet and Empirical Mode Decomposition (EMD is proposed. Firstly, the denoising method based on the improved threshold wavelet is applied to reduce the noise of a defect electromagnetic signal obtained by an electromagnetic testing system. Then, the EMD is used to decompose the denoised signal and then the effective Intrinsic Mode Function (IMF is extracted by the dominant eigenvalue strategy. Finally, the signal reconstruction is carried out by utilizing the obtained IMF. In order to verify the proposed noise reduction method, the experiments are carried out in two cases including the defective joint and steel wire rope break. The experimental results show that the proposed method in this paper obtains the higher Signal to Noise Ratio (SNR for the defect electromagnetic signal noise reduction of steel cord conveyor belts.

  4. Partial discharge signal denoising with spatially adaptive wavelet thresholding and support vector machines

    Energy Technology Data Exchange (ETDEWEB)

    Mota, Hilton de Oliveira; Rocha, Leonardo Chaves Dutra da [Department of Computer Science, Federal University of Sao Joao del-Rei, Visconde do Rio Branco Ave., Colonia do Bengo, Sao Joao del-Rei, MG, 36301-360 (Brazil); Salles, Thiago Cunha de Moura [Department of Computer Science, Federal University of Minas Gerais, 6627 Antonio Carlos Ave., Pampulha, Belo Horizonte, MG, 31270-901 (Brazil); Vasconcelos, Flavio Henrique [Department of Electrical Engineering, Federal University of Minas Gerais, 6627 Antonio Carlos Ave., Pampulha, Belo Horizonte, MG, 31270-901 (Brazil)

    2011-02-15

    In this paper an improved method to denoise partial discharge (PD) signals is presented. The method is based on the wavelet transform (WT) and support vector machines (SVM) and is distinct from other WT-based denoising strategies in the sense that it exploits the high spatial correlations presented by PD wavelet decompositions as a way to identify and select the relevant coefficients. PD spatial correlations are characterized by WT modulus maxima propagation along decomposition levels (scales), which are a strong indicative of the their time-of-occurrence. Denoising is performed by identification and separation of PD-related maxima lines by an SVM pattern classifier. The results obtained confirm that this method has superior denoising capabilities when compared to other WT-based methods found in the literature for the processing of Gaussian and discrete spectral interferences. Moreover, its greatest advantages become clear when the interference has a pulsating or localized shape, situation in which traditional methods usually fail. (author)

  5. Analysis of transient signals by Wavelet transform

    International Nuclear Information System (INIS)

    Penha, Rosani Libardi da; Silva, Aucyone A. da; Ting, Daniel K.S.; Oliveira Neto, Jose Messias de

    2000-01-01

    The objective of this work is to apply the Wavelet Transform in transient signals. The Wavelet technique can outline the short time events that are not easily detected using traditional techniques. In this work, the Wavelet Transform is compared with Fourier Transform, by using simulated data and rotor rig data. This data contain known transients. The wavelet could follow all the transients, what do not happen to the Fourier techniques. (author)

  6. Application of Shannon Wavelet Entropy and Shannon Wavelet Packet Entropy in Analysis of Power System Transient Signals

    Directory of Open Access Journals (Sweden)

    Jikai Chen

    2016-12-01

    Full Text Available In a power system, the analysis of transient signals is the theoretical basis of fault diagnosis and transient protection theory. Shannon wavelet entropy (SWE and Shannon wavelet packet entropy (SWPE are powerful mathematics tools for transient signal analysis. Combined with the recent achievements regarding SWE and SWPE, their applications are summarized in feature extraction of transient signals and transient fault recognition. For wavelet aliasing at adjacent scale of wavelet decomposition, the impact of wavelet aliasing is analyzed for feature extraction accuracy of SWE and SWPE, and their differences are compared. Meanwhile, the analyses mentioned are verified by partial discharge (PD feature extraction of power cable. Finally, some new ideas and further researches are proposed in the wavelet entropy mechanism, operation speed and how to overcome wavelet aliasing.

  7. Hardware design and implementation of a wavelet de-noising procedure for medical signal preprocessing.

    Science.gov (United States)

    Chen, Szi-Wen; Chen, Yuan-Ho

    2015-10-16

    In this paper, a discrete wavelet transform (DWT) based de-noising with its applications into the noise reduction for medical signal preprocessing is introduced. This work focuses on the hardware realization of a real-time wavelet de-noising procedure. The proposed de-noising circuit mainly consists of three modules: a DWT, a thresholding, and an inverse DWT (IDWT) modular circuits. We also proposed a novel adaptive thresholding scheme and incorporated it into our wavelet de-noising procedure. Performance was then evaluated on both the architectural designs of the software and. In addition, the de-noising circuit was also implemented by downloading the Verilog codes to a field programmable gate array (FPGA) based platform so that its ability in noise reduction may be further validated in actual practice. Simulation experiment results produced by applying a set of simulated noise-contaminated electrocardiogram (ECG) signals into the de-noising circuit showed that the circuit could not only desirably meet the requirement of real-time processing, but also achieve satisfactory performance for noise reduction, while the sharp features of the ECG signals can be well preserved. The proposed de-noising circuit was further synthesized using the Synopsys Design Compiler with an Artisan Taiwan Semiconductor Manufacturing Company (TSMC, Hsinchu, Taiwan) 40 nm standard cell library. The integrated circuit (IC) synthesis simulation results showed that the proposed design can achieve a clock frequency of 200 MHz and the power consumption was only 17.4 mW, when operated at 200 MHz.

  8. Improved Real-time Denoising Method Based on Lifting Wavelet Transform

    Directory of Open Access Journals (Sweden)

    Liu Zhaohua

    2014-06-01

    Full Text Available Signal denoising can not only enhance the signal to noise ratio (SNR but also reduce the effect of noise. In order to satisfy the requirements of real-time signal denoising, an improved semisoft shrinkage real-time denoising method based on lifting wavelet transform was proposed. The moving data window technology realizes the real-time wavelet denoising, which employs wavelet transform based on lifting scheme to reduce computational complexity. Also hyperbolic threshold function and recursive threshold computing can ensure the dynamic characteristics of the system, in addition, it can improve the real-time calculating efficiency as well. The simulation results show that the semisoft shrinkage real-time denoising method has quite a good performance in comparison to the traditional methods, namely soft-thresholding and hard-thresholding. Therefore, this method can solve more practical engineering problems.

  9. Fusion of Thresholding Rules During Wavelet-Based Noisy Image Compression

    Directory of Open Access Journals (Sweden)

    Bekhtin Yury

    2016-01-01

    Full Text Available The new method for combining semisoft thresholding rules during wavelet-based data compression of images with multiplicative noise is suggested. The method chooses the best thresholding rule and the threshold value using the proposed criteria which provide the best nonlinear approximations and take into consideration errors of quantization. The results of computer modeling have shown that the suggested method provides relatively good image quality after restoration in the sense of some criteria such as PSNR, SSIM, etc.

  10. Time-frequency analysis of phonocardiogram signals using wavelet transform: a comparative study.

    Science.gov (United States)

    Ergen, Burhan; Tatar, Yetkin; Gulcur, Halil Ozcan

    2012-01-01

    Analysis of phonocardiogram (PCG) signals provides a non-invasive means to determine the abnormalities caused by cardiovascular system pathology. In general, time-frequency representation (TFR) methods are used to study the PCG signal because it is one of the non-stationary bio-signals. The continuous wavelet transform (CWT) is especially suitable for the analysis of non-stationary signals and to obtain the TFR, due to its high resolution, both in time and in frequency and has recently become a favourite tool. It decomposes a signal in terms of elementary contributions called wavelets, which are shifted and dilated copies of a fixed mother wavelet function, and yields a joint TFR. Although the basic characteristics of the wavelets are similar, each type of the wavelets produces a different TFR. In this study, eight real types of the most known wavelets are examined on typical PCG signals indicating heart abnormalities in order to determine the best wavelet to obtain a reliable TFR. For this purpose, the wavelet energy and frequency spectrum estimations based on the CWT and the spectra of the chosen wavelets were compared with the energy distribution and the autoregressive frequency spectra in order to determine the most suitable wavelet. The results show that Morlet wavelet is the most reliable wavelet for the time-frequency analysis of PCG signals.

  11. Wavelet-based ground vehicle recognition using acoustic signals

    Science.gov (United States)

    Choe, Howard C.; Karlsen, Robert E.; Gerhart, Grant R.; Meitzler, Thomas J.

    1996-03-01

    We present, in this paper, a wavelet-based acoustic signal analysis to remotely recognize military vehicles using their sound intercepted by acoustic sensors. Since expedited signal recognition is imperative in many military and industrial situations, we developed an algorithm that provides an automated, fast signal recognition once implemented in a real-time hardware system. This algorithm consists of wavelet preprocessing, feature extraction and compact signal representation, and a simple but effective statistical pattern matching. The current status of the algorithm does not require any training. The training is replaced by human selection of reference signals (e.g., squeak or engine exhaust sound) distinctive to each individual vehicle based on human perception. This allows a fast archiving of any new vehicle type in the database once the signal is collected. The wavelet preprocessing provides time-frequency multiresolution analysis using discrete wavelet transform (DWT). Within each resolution level, feature vectors are generated from statistical parameters and energy content of the wavelet coefficients. After applying our algorithm on the intercepted acoustic signals, the resultant feature vectors are compared with the reference vehicle feature vectors in the database using statistical pattern matching to determine the type of vehicle from where the signal originated. Certainly, statistical pattern matching can be replaced by an artificial neural network (ANN); however, the ANN would require training data sets and time to train the net. Unfortunately, this is not always possible for many real world situations, especially collecting data sets from unfriendly ground vehicles to train the ANN. Our methodology using wavelet preprocessing and statistical pattern matching provides robust acoustic signal recognition. We also present an example of vehicle recognition using acoustic signals collected from two different military ground vehicles. In this paper, we will

  12. Hardware Design and Implementation of a Wavelet De-Noising Procedure for Medical Signal Preprocessing

    Directory of Open Access Journals (Sweden)

    Szi-Wen Chen

    2015-10-01

    Full Text Available In this paper, a discrete wavelet transform (DWT based de-noising with its applications into the noise reduction for medical signal preprocessing is introduced. This work focuses on the hardware realization of a real-time wavelet de-noising procedure. The proposed de-noising circuit mainly consists of three modules: a DWT, a thresholding, and an inverse DWT (IDWT modular circuits. We also proposed a novel adaptive thresholding scheme and incorporated it into our wavelet de-noising procedure. Performance was then evaluated on both the architectural designs of the software and. In addition, the de-noising circuit was also implemented by downloading the Verilog codes to a field programmable gate array (FPGA based platform so that its ability in noise reduction may be further validated in actual practice. Simulation experiment results produced by applying a set of simulated noise-contaminated electrocardiogram (ECG signals into the de-noising circuit showed that the circuit could not only desirably meet the requirement of real-time processing, but also achieve satisfactory performance for noise reduction, while the sharp features of the ECG signals can be well preserved. The proposed de-noising circuit was further synthesized using the Synopsys Design Compiler with an Artisan Taiwan Semiconductor Manufacturing Company (TSMC, Hsinchu, Taiwan 40 nm standard cell library. The integrated circuit (IC synthesis simulation results showed that the proposed design can achieve a clock frequency of 200 MHz and the power consumption was only 17.4 mW, when operated at 200 MHz.

  13. A Novel Compressed Sensing Method for Magnetic Resonance Imaging: Exponential Wavelet Iterative Shrinkage-Thresholding Algorithm with Random Shift

    Directory of Open Access Journals (Sweden)

    Yudong Zhang

    2016-01-01

    Full Text Available Aim. It can help improve the hospital throughput to accelerate magnetic resonance imaging (MRI scanning. Patients will benefit from less waiting time. Task. In the last decade, various rapid MRI techniques on the basis of compressed sensing (CS were proposed. However, both computation time and reconstruction quality of traditional CS-MRI did not meet the requirement of clinical use. Method. In this study, a novel method was proposed with the name of exponential wavelet iterative shrinkage-thresholding algorithm with random shift (abbreviated as EWISTARS. It is composed of three successful components: (i exponential wavelet transform, (ii iterative shrinkage-thresholding algorithm, and (iii random shift. Results. Experimental results validated that, compared to state-of-the-art approaches, EWISTARS obtained the least mean absolute error, the least mean-squared error, and the highest peak signal-to-noise ratio. Conclusion. EWISTARS is superior to state-of-the-art approaches.

  14. A Novel Compressed Sensing Method for Magnetic Resonance Imaging: Exponential Wavelet Iterative Shrinkage-Thresholding Algorithm with Random Shift

    Science.gov (United States)

    Zhang, Yudong; Yang, Jiquan; Yang, Jianfei; Liu, Aijun; Sun, Ping

    2016-01-01

    Aim. It can help improve the hospital throughput to accelerate magnetic resonance imaging (MRI) scanning. Patients will benefit from less waiting time. Task. In the last decade, various rapid MRI techniques on the basis of compressed sensing (CS) were proposed. However, both computation time and reconstruction quality of traditional CS-MRI did not meet the requirement of clinical use. Method. In this study, a novel method was proposed with the name of exponential wavelet iterative shrinkage-thresholding algorithm with random shift (abbreviated as EWISTARS). It is composed of three successful components: (i) exponential wavelet transform, (ii) iterative shrinkage-thresholding algorithm, and (iii) random shift. Results. Experimental results validated that, compared to state-of-the-art approaches, EWISTARS obtained the least mean absolute error, the least mean-squared error, and the highest peak signal-to-noise ratio. Conclusion. EWISTARS is superior to state-of-the-art approaches. PMID:27066068

  15. Wavelet transform analysis of transient signals: the seismogram and the electrocardiogram

    Energy Technology Data Exchange (ETDEWEB)

    Anant, K.S.

    1997-06-01

    In this dissertation I quantitatively demonstrate how the wavelet transform can be an effective mathematical tool for the analysis of transient signals. The two key signal processing applications of the wavelet transform, namely feature identification and representation (i.e., compression), are shown by solving important problems involving the seismogram and the electrocardiogram. The seismic feature identification problem involved locating in time the P and S phase arrivals. Locating these arrivals accurately (particularly the S phase) has been a constant issue in seismic signal processing. In Chapter 3, I show that the wavelet transform can be used to locate both the P as well as the S phase using only information from single station three-component seismograms. This is accomplished by using the basis function (wave-let) of the wavelet transform as a matching filter and by processing information across scales of the wavelet domain decomposition. The `pick` time results are quite promising as compared to analyst picks. The representation application involved the compression of the electrocardiogram which is a recording of the electrical activity of the heart. Compression of the electrocardiogram is an important problem in biomedical signal processing due to transmission and storage limitations. In Chapter 4, I develop an electrocardiogram compression method that applies vector quantization to the wavelet transform coefficients. The best compression results were obtained by using orthogonal wavelets, due to their ability to represent a signal efficiently. Throughout this thesis the importance of choosing wavelets based on the problem at hand is stressed. In Chapter 5, I introduce a wavelet design method that uses linear prediction in order to design wavelets that are geared to the signal or feature being analyzed. The use of these designed wavelets in a test feature identification application led to positive results. The methods developed in this thesis; the

  16. Wavelet modeling of signals for non-destructive testing of concretes

    International Nuclear Information System (INIS)

    Shao, Zhixue; Shi, Lihua; Cai, Jian

    2011-01-01

    In a non-destructive test of concrete structures, ultrasonic pulses are commonly used to detect damage or embedded objects from their reflections. A wavelet modeling method is proposed here to identify the main reflections and to remove the interferences in the detected ultrasonic waves. This method assumes that if the structure is stimulated by a wavelet function with good time–frequency localization ability, the detected signal is a combination of time-delayed and amplitude-attenuated wavelets. Therefore, modeling of the detected signal by wavelets can give a straightforward and simple model of the original signal. The central time and amplitude of each wavelet represent the position and amplitude of the reflections in the detected structure. A signal processing method is also proposed to estimate the structure response to wavelet excitation from its response to a high-voltage pulse with a sharp leading edge. A signal generation card with a compact peripheral component interconnect extension for instrumentation interface is designed to produce this high-voltage pulse. The proposed method is applied to synthesized aperture focusing technology of concrete specimens and the image results are provided

  17. Applications of wavelet transforms for nuclear power plant signal analysis

    International Nuclear Information System (INIS)

    Seker, S.; Turkcan, E.; Upadhyaya, B.R.; Erbay, A.S.

    1998-01-01

    The safety of Nuclear Power Plants (NPPs) may be enhanced by the timely processing of information derived from multiple process signals from NPPs. The most widely used technique in signal analysis applications is the Fourier transform in the frequency domain to generate power spectral densities (PSD). However, the Fourier transform is global in nature and will obscure any non-stationary signal feature. Lately, a powerful technique called the Wavelet Transform, has been developed. This transform uses certain basis functions for representing the data in an effective manner, with capability for sub-band analysis and providing time-frequency localization as needed. This paper presents a brief overview of wavelets applied to the nuclear industry for signal processing and plant monitoring. The basic theory of Wavelets is also summarized. In order to illustrate the application of wavelet transforms data were acquired from the operating nuclear power plant Borssele in the Netherlands. The experimental data consist of various signals in the power plant and are selected from a stationary power operation. Their frequency characteristics and the mutual relations were investigated using MATLAB signal processing and wavelet toolbox for computing their PSDs and coherence functions by multi-resolution analysis. The results indicate that the sub-band PSD matches with the original signal PSD and enhances the estimation of coherence functions. The Wavelet analysis demonstrates the feasibility of application to stationary signals to provide better estimates in the frequency band of interest as compared to the classical FFT approach. (author)

  18. Study of Denoising in TEOAE Signals Using an Appropriate Mother Wavelet Function

    Directory of Open Access Journals (Sweden)

    Habib Alizadeh Dizaji

    2007-06-01

    Full Text Available Background and Aim: Matching a mother wavelet to class of signals can be of interest in signal analy­sis and denoising based on wavelet multiresolution analysis and decomposition. As transient evoked otoacoustic emissions (TEOAES are contaminated with noise, the aim of this work was to pro­vide a quantitative approach to the problem of matching a mother wavelet to TEOAE signals by us­ing tun­ing curves and to use it for analysis and denoising TEOAE signals. Approximated mother wave­let for TEOAE signals was calculated using an algorithm for designing wavelet to match a specified sig­nal.Materials and Methods: In this paper a tuning curve has used as a template for designing a mother wave­let that has maximum matching to the tuning curve. The mother wavelet matching was performed on tuning curves spectrum magnitude and phase independent of one another. The scaling function was calcu­lated from the matched mother wavelet and by using these functions, lowpass and highpass filters were designed for a filter bank and otoacoustic emissions signal analysis and synthesis. After signal analyz­ing, denoising was performed by time windowing the signal time-frequency component.Results: Aanalysis indicated more signal reconstruction improvement in comparison with coiflets mother wavelet and by using the purposed denoising algorithm it is possible to enhance signal to noise ra­tio up to dB.Conclusion: The wavelet generated from this algorithm was remarkably similar to the biorthogonal wave­lets. Therefore, by matching a biorthogonal wavelet to the tuning curve and using wavelet packet analy­sis, a high resolution time-frequency analysis for the otoacoustic emission signals is possible.

  19. Denoising in Wavelet Packet Domain via Approximation Coefficients

    Directory of Open Access Journals (Sweden)

    Zahra Vahabi

    2012-01-01

    Full Text Available In this paper we propose a new approach in the wavelet domain for image denoising. In recent researches wavelet transform has introduced a time-Frequency transform for computing wavelet coefficient and eliminating noise. Some coefficients have effected smaller than the other's from noise, so they can be use reconstruct images with other subbands. We have developed Approximation image to estimate better denoised image. Naturally noiseless subimage introduced image with lower noise. Beside denoising we obtain a bigger compression rate. Increasing image contrast is another advantage of this method. Experimental results demonstrate that our approach compares favorably to more typical methods of denoising and compression in wavelet domain.100 images of LIVE Dataset were tested, comparing signal to noise ratios (SNR,soft thresholding was %1.12 better than hard thresholding, POAC was %1.94 better than soft thresholding and POAC with wavelet packet was %1.48 better than POAC.

  20. Generalized Wavelet Fisher’s Information of 1/fα Signals

    Directory of Open Access Journals (Sweden)

    Julio Ramírez-Pacheco

    2015-01-01

    Full Text Available This paper defines the generalized wavelet Fisher information of parameter q. This information measure is obtained by generalizing the time-domain definition of Fisher’s information of Furuichi to the wavelet domain and allows to quantify smoothness and correlation, among other signals characteristics. Closed-form expressions of generalized wavelet Fisher information for 1/fα signals are determined and a detailed discussion of their properties, characteristics and their relationship with wavelet q-Fisher information are given. Information planes of 1/f signals Fisher information are obtained and, based on these, potential applications are highlighted. Finally, generalized wavelet Fisher information is applied to the problem of detecting and locating weak structural breaks in stationary 1/f signals, particularly for fractional Gaussian noise series. It is shown that by using a joint Fisher/F-Statistic procedure, significant improvements in time and accuracy are achieved in comparison with the sole application of the F-statistic.

  1. Multiresolution signal decomposition transforms, subbands, and wavelets

    CERN Document Server

    Akansu, Ali N; Haddad, Paul R

    2001-01-01

    The uniqueness of this book is that it covers such important aspects of modern signal processing as block transforms from subband filter banks and wavelet transforms from a common unifying standpoint, thus demonstrating the commonality among these decomposition techniques. In addition, it covers such ""hot"" areas as signal compression and coding, including particular decomposition techniques and tables listing coefficients of subband and wavelet filters and other important properties.The field of this book (Electrical Engineering/Computer Science) is currently booming, which is, of course

  2. Grating geophone signal processing based on wavelet transform

    Science.gov (United States)

    Li, Shuqing; Zhang, Huan; Tao, Zhifei

    2008-12-01

    Grating digital geophone is designed based on grating measurement technique benefiting averaging-error effect and wide dynamic range to improve weak signal detected precision. This paper introduced the principle of grating digital geophone and its post signal processing system. The signal acquisition circuit use Atmega 32 chip as core part and display the waveform on the Labwindows through the RS232 data link. Wavelet transform is adopted this paper to filter the grating digital geophone' output signal since the signal is unstable. This data processing method is compared with the FIR filter that widespread use in current domestic. The result indicates that the wavelet algorithm has more advantages and the SNR of seismic signal improve obviously.

  3. Parameters optimization for wavelet denoising based on normalized spectral angle and threshold constraint machine learning

    Science.gov (United States)

    Li, Hao; Ma, Yong; Liang, Kun; Tian, Yong; Wang, Rui

    2012-01-01

    Wavelet parameters (e.g., wavelet type, level of decomposition) affect the performance of the wavelet denoising algorithm in hyperspectral applications. Current studies select the best wavelet parameters for a single spectral curve by comparing similarity criteria such as spectral angle (SA). However, the method to find the best parameters for a spectral library that contains multiple spectra has not been studied. In this paper, a criterion named normalized spectral angle (NSA) is proposed. By comparing NSA, the best combination of parameters for a spectral library can be selected. Moreover, a fast algorithm based on threshold constraint and machine learning is developed to reduce the time of a full search. After several iterations of learning, the combination of parameters that constantly surpasses a threshold is selected. The experiments proved that by using the NSA criterion, the SA values decreased significantly, and the fast algorithm could save 80% time consumption, while the denoising performance was not obviously impaired.

  4. Denoising solar radiation data using coiflet wavelets

    Energy Technology Data Exchange (ETDEWEB)

    Karim, Samsul Ariffin Abdul, E-mail: samsul-ariffin@petronas.com.my; Janier, Josefina B., E-mail: josefinajanier@petronas.com.my; Muthuvalu, Mohana Sundaram, E-mail: mohana.muthuvalu@petronas.com.my [Department of Fundamental and Applied Sciences, Faculty of Sciences and Information Technology, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak Darul Ridzuan (Malaysia); Hasan, Mohammad Khatim, E-mail: khatim@ftsm.ukm.my [Jabatan Komputeran Industri, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Sulaiman, Jumat, E-mail: jumat@ums.edu.my [Program Matematik dengan Ekonomi, Universiti Malaysia Sabah, Beg Berkunci 2073, 88999 Kota Kinabalu, Sabah (Malaysia); Ismail, Mohd Tahir [School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM Minden, Penang (Malaysia)

    2014-10-24

    Signal denoising and smoothing plays an important role in processing the given signal either from experiment or data collection through observations. Data collection usually was mixed between true data and some error or noise. This noise might be coming from the apparatus to measure or collect the data or human error in handling the data. Normally before the data is use for further processing purposes, the unwanted noise need to be filtered out. One of the efficient methods that can be used to filter the data is wavelet transform. Due to the fact that the received solar radiation data fluctuates according to time, there exist few unwanted oscillation namely noise and it must be filtered out before the data is used for developing mathematical model. In order to apply denoising using wavelet transform (WT), the thresholding values need to be calculated. In this paper the new thresholding approach is proposed. The coiflet2 wavelet with variation diminishing 4 is utilized for our purpose. From numerical results it can be seen clearly that, the new thresholding approach give better results as compare with existing approach namely global thresholding value.

  5. Wavelet-domain de-noising of OCT images of human brain malignant glioma

    Science.gov (United States)

    Dolganova, I. N.; Aleksandrova, P. V.; Beshplav, S.-I. T.; Chernomyrdin, N. V.; Dubyanskaya, E. N.; Goryaynov, S. A.; Kurlov, V. N.; Reshetov, I. V.; Potapov, A. A.; Tuchin, V. V.; Zaytsev, K. I.

    2018-04-01

    We have proposed a wavelet-domain de-noising technique for imaging of human brain malignant glioma by optical coherence tomography (OCT). It implies OCT image decomposition using the direct fast wavelet transform, thresholding of the obtained wavelet spectrum and further inverse fast wavelet transform for image reconstruction. By selecting both wavelet basis and thresholding procedure, we have found an optimal wavelet filter, which application improves differentiation of the considered brain tissue classes - i.e. malignant glioma and normal/intact tissue. Namely, it allows reducing the scattering noise in the OCT images and retaining signal decrement for each tissue class. Therefore, the observed results reveals the wavelet-domain de-noising as a prospective tool for improved characterization of biological tissue using the OCT.

  6. Analysis of Ultrasonic Transmitted Signal for Apple using Wavelet Transform

    International Nuclear Information System (INIS)

    Kim, Ki Bok; Lee, Sang Dae; Choi, Man Yong; Kim, Man Soo

    2005-01-01

    This study was conducted to analyze the ultrasonic transmitted signal for apple using wavelet transform. Fruit consists of nonlinear visco-elastic properties such as flesh, an ovary and rind and lienee most ultrasonic wave is attenuated and its frequency is shifted during passing the fruit. Thus it is not easy to evaluate the internal quality of the fruit using typical ultrasonic parameters such as wave velocity, attenuation, and frequency spectrum. The discrete wavelet transform was applied to the ultrasonic transmitted signal for apple. The magnitude of the first peak frequency of the wavelet basis from the ultrasonic transmitted signal showed a close correlation to the storage time of apple

  7. Multisensor signal denoising based on matching synchrosqueezing wavelet transform for mechanical fault condition assessment

    Science.gov (United States)

    Yi, Cancan; Lv, Yong; Xiao, Han; Huang, Tao; You, Guanghui

    2018-04-01

    Since it is difficult to obtain the accurate running status of mechanical equipment with only one sensor, multisensor measurement technology has attracted extensive attention. In the field of mechanical fault diagnosis and condition assessment based on vibration signal analysis, multisensor signal denoising has emerged as an important tool to improve the reliability of the measurement result. A reassignment technique termed the synchrosqueezing wavelet transform (SWT) has obvious superiority in slow time-varying signal representation and denoising for fault diagnosis applications. The SWT uses the time-frequency reassignment scheme, which can provide signal properties in 2D domains (time and frequency). However, when the measured signal contains strong noise components and fast varying instantaneous frequency, the performance of SWT-based analysis still depends on the accuracy of instantaneous frequency estimation. In this paper, a matching synchrosqueezing wavelet transform (MSWT) is investigated as a potential candidate to replace the conventional synchrosqueezing transform for the applications of denoising and fault feature extraction. The improved technology utilizes the comprehensive instantaneous frequency estimation by chirp rate estimation to achieve a highly concentrated time-frequency representation so that the signal resolution can be significantly improved. To exploit inter-channel dependencies, the multisensor denoising strategy is performed by using a modulated multivariate oscillation model to partition the time-frequency domain; then, the common characteristics of the multivariate data can be effectively identified. Furthermore, a modified universal threshold is utilized to remove noise components, while the signal components of interest can be retained. Thus, a novel MSWT-based multisensor signal denoising algorithm is proposed in this paper. The validity of this method is verified by numerical simulation, and experiments including a rolling

  8. A Hybrid Wavelet-Based Method for the Peak Detection of Photoplethysmography Signals

    Directory of Open Access Journals (Sweden)

    Suyi Li

    2017-01-01

    Full Text Available The noninvasive peripheral oxygen saturation (SpO2 and the pulse rate can be extracted from photoplethysmography (PPG signals. However, the accuracy of the extraction is directly affected by the quality of the signal obtained and the peak of the signal identified; therefore, a hybrid wavelet-based method is proposed in this study. Firstly, we suppressed the partial motion artifacts and corrected the baseline drift by using a wavelet method based on the principle of wavelet multiresolution. And then, we designed a quadratic spline wavelet modulus maximum algorithm to identify the PPG peaks automatically. To evaluate this hybrid method, a reflective pulse oximeter was used to acquire ten subjects’ PPG signals under sitting, raising hand, and gently walking postures, and the peak recognition results on the raw signal and on the corrected signal were compared, respectively. The results showed that the hybrid method not only corrected the morphologies of the signal well but also optimized the peaks identification quality, subsequently elevating the measurement accuracy of SpO2 and the pulse rate. As a result, our hybrid wavelet-based method profoundly optimized the evaluation of respiratory function and heart rate variability analysis.

  9. A Hybrid Wavelet-Based Method for the Peak Detection of Photoplethysmography Signals.

    Science.gov (United States)

    Li, Suyi; Jiang, Shanqing; Jiang, Shan; Wu, Jiang; Xiong, Wenji; Diao, Shu

    2017-01-01

    The noninvasive peripheral oxygen saturation (SpO 2 ) and the pulse rate can be extracted from photoplethysmography (PPG) signals. However, the accuracy of the extraction is directly affected by the quality of the signal obtained and the peak of the signal identified; therefore, a hybrid wavelet-based method is proposed in this study. Firstly, we suppressed the partial motion artifacts and corrected the baseline drift by using a wavelet method based on the principle of wavelet multiresolution. And then, we designed a quadratic spline wavelet modulus maximum algorithm to identify the PPG peaks automatically. To evaluate this hybrid method, a reflective pulse oximeter was used to acquire ten subjects' PPG signals under sitting, raising hand, and gently walking postures, and the peak recognition results on the raw signal and on the corrected signal were compared, respectively. The results showed that the hybrid method not only corrected the morphologies of the signal well but also optimized the peaks identification quality, subsequently elevating the measurement accuracy of SpO 2 and the pulse rate. As a result, our hybrid wavelet-based method profoundly optimized the evaluation of respiratory function and heart rate variability analysis.

  10. A Hybrid Wavelet-Based Method for the Peak Detection of Photoplethysmography Signals

    Science.gov (United States)

    Jiang, Shanqing; Jiang, Shan; Wu, Jiang; Xiong, Wenji

    2017-01-01

    The noninvasive peripheral oxygen saturation (SpO2) and the pulse rate can be extracted from photoplethysmography (PPG) signals. However, the accuracy of the extraction is directly affected by the quality of the signal obtained and the peak of the signal identified; therefore, a hybrid wavelet-based method is proposed in this study. Firstly, we suppressed the partial motion artifacts and corrected the baseline drift by using a wavelet method based on the principle of wavelet multiresolution. And then, we designed a quadratic spline wavelet modulus maximum algorithm to identify the PPG peaks automatically. To evaluate this hybrid method, a reflective pulse oximeter was used to acquire ten subjects' PPG signals under sitting, raising hand, and gently walking postures, and the peak recognition results on the raw signal and on the corrected signal were compared, respectively. The results showed that the hybrid method not only corrected the morphologies of the signal well but also optimized the peaks identification quality, subsequently elevating the measurement accuracy of SpO2 and the pulse rate. As a result, our hybrid wavelet-based method profoundly optimized the evaluation of respiratory function and heart rate variability analysis. PMID:29250135

  11. Application of Cubic Box Spline Wavelets in the Analysis of Signal Singularities

    Directory of Open Access Journals (Sweden)

    Rakowski Waldemar

    2015-12-01

    Full Text Available In the subject literature, wavelets such as the Mexican hat (the second derivative of a Gaussian or the quadratic box spline are commonly used for the task of singularity detection. The disadvantage of the Mexican hat, however, is its unlimited support; the disadvantage of the quadratic box spline is a phase shift introduced by the wavelet, making it difficult to locate singular points. The paper deals with the construction and properties of wavelets in the form of cubic box splines which have compact and short support and which do not introduce a phase shift. The digital filters associated with cubic box wavelets that are applied in implementing the discrete dyadic wavelet transform are defined. The filters and the algorithme à trous of the discrete dyadic wavelet transform are used in detecting signal singularities and in calculating the measures of signal singularities in the form of a Lipschitz exponent. The article presents examples illustrating the use of cubic box spline wavelets in the analysis of signal singularities.

  12. Wavelet analysis deformation monitoring data of high-speed railway bridge

    Science.gov (United States)

    Tang, ShiHua; Huang, Qing; Zhou, Conglin; Xu, HongWei; Liu, YinTao; Li, FeiDa

    2015-12-01

    Deformation monitoring data of high-speed railway bridges will inevitably be affected because of noise pollution, A deformation monitoring point of high-speed railway bridge was measurd by using sokkia SDL30 electronic level for a long time,which got a large number of deformation monitoring data. Based on the characteristics of the deformation monitoring data of high-speed railway bridge, which contain lots of noise. Based on the MATLAB software platform, 120 groups of deformation monitoring data were applied to analysis of wavelet denoising.sym6,db6 wavelet basis function were selected to analyze and remove the noise.The original signal was broken into three layers wavelet,which contain high frequency coefficients and low frequency coefficients.However, high frequency coefficient have plenty of noise.Adaptive method of soft and hard threshold were used to handle in the high frequency coefficient.Then,high frequency coefficient that was removed much of noise combined with low frequency coefficient to reconstitute and obtain reconstruction wavelet signal.Root Mean Square Error (RMSE) and Signal-To-Noise Ratio (SNR) were regarded as evaluation index of denoising,The smaller the root mean square error and the greater signal-to-noise ratio indicate that them have a good effect in denoising. We can surely draw some conclusions in the experimental analysis:the db6 wavelet basis function has a good effect in wavelet denoising by using a adaptive soft threshold method,which root mean square error is minimum and signal-to-noise ratio is maximum.Moreover,the reconstructed image are more smooth than original signal denoising after wavelet denoising, which removed noise and useful signal are obtained in the original signal.Compared to the other three methods, this method has a good effect in denoising, which not only retain useful signal in the original signal, but aiso reach the goal of removing noise. So, it has a strong practical value in a actual deformation monitoring

  13. Automated Classification and Removal of EEG Artifacts With SVM and Wavelet-ICA.

    Science.gov (United States)

    Sai, Chong Yeh; Mokhtar, Norrima; Arof, Hamzah; Cumming, Paul; Iwahashi, Masahiro

    2018-05-01

    Brain electrical activity recordings by electroencephalography (EEG) are often contaminated with signal artifacts. Procedures for automated removal of EEG artifacts are frequently sought for clinical diagnostics and brain-computer interface applications. In recent years, a combination of independent component analysis (ICA) and discrete wavelet transform has been introduced as standard technique for EEG artifact removal. However, in performing the wavelet-ICA procedure, visual inspection or arbitrary thresholding may be required for identifying artifactual components in the EEG signal. We now propose a novel approach for identifying artifactual components separated by wavelet-ICA using a pretrained support vector machine (SVM). Our method presents a robust and extendable system that enables fully automated identification and removal of artifacts from EEG signals, without applying any arbitrary thresholding. Using test data contaminated by eye blink artifacts, we show that our method performed better in identifying artifactual components than did existing thresholding methods. Furthermore, wavelet-ICA in conjunction with SVM successfully removed target artifacts, while largely retaining the EEG source signals of interest. We propose a set of features including kurtosis, variance, Shannon's entropy, and range of amplitude as training and test data of SVM to identify eye blink artifacts in EEG signals. This combinatorial method is also extendable to accommodate multiple types of artifacts present in multichannel EEG. We envision future research to explore other descriptive features corresponding to other types of artifactual components.

  14. Fast Image Edge Detection based on Faber Schauder Wavelet and Otsu Threshold

    Directory of Open Access Journals (Sweden)

    Assma Azeroual

    2017-12-01

    Full Text Available Edge detection is a critical stage in many computer vision systems, such as image segmentation and object detection. As it is difficult to detect image edges with precision and with low complexity, it is appropriate to find new methods for edge detection. In this paper, we take advantage of Faber Schauder Wavelet (FSW and Otsu threshold to detect edges in a multi-scale way with low complexity, since the extrema coefficients of this wavelet are located on edge points and contain only arithmetic operations. First, the image is smoothed using bilateral filter depending on noise estimation. Second, the FSW extrema coefficients are selected based on Otsu threshold. Finally, the edge points are linked using a predictive edge linking algorithm to get the image edges. The effectiveness of the proposed method is supported by the experimental results which prove that our method is faster than many competing state-of-the-art approaches and can be used in real-time applications.

  15. Wavelet based analysis of multi-electrode EEG-signals in epilepsy

    Science.gov (United States)

    Hein, Daniel A.; Tetzlaff, Ronald

    2005-06-01

    For many epilepsy patients seizures cannot sufficiently be controlled by an antiepileptic pharmacatherapy. Furthermore, only in small number of cases a surgical treatment may be possible. The aim of this work is to contribute to the realization of an implantable seizure warning device. By using recordings of electroenzephalographical(EEG) signals obtained from the department of epileptology of the University of Bonn we studied a recently proposed algorithm for the detection of parameter changes in nonlinear systems. Firstly, after calculating the crosscorrelation function between the signals of two electrodes near the epileptic focus, a wavelet-analysis follows using a sliding window with the so called Mexican-Hat wavelet. Then the Shannon-Entropy of the wavelet-transformed data has been determined providing the information content on a time scale in subject to the dilation of the wavelet-transformation. It shows distinct changes at the seizure onset for all dilations and for all patients.

  16. Noise reduction by wavelet thresholding

    National Research Council Canada - National Science Library

    Jansen, Maarten

    2001-01-01

    .... I rather present new material and own insights in the que stions involved with wavelet based noise reduction . On the other hand , the presented material does cover a whole range of methodologies, and in that sense, the book may serve as an introduction into the domain of wavelet smoothing. Throughout the text, three main properties show up ever again: spar...

  17. ECG denoising with adaptive bionic wavelet transform.

    Science.gov (United States)

    Sayadi, Omid; Shamsollahi, Mohammad Bagher

    2006-01-01

    In this paper a new ECG denoising scheme is proposed using a novel adaptive wavelet transform, named bionic wavelet transform (BWT), which had been first developed based on a model of the active auditory system. There has been some outstanding features with the BWT such as nonlinearity, high sensitivity and frequency selectivity, concentrated energy distribution and its ability to reconstruct signal via inverse transform but the most distinguishing characteristic of BWT is that its resolution in the time-frequency domain can be adaptively adjusted not only by the signal frequency but also by the signal instantaneous amplitude and its first-order differential. Besides by optimizing the BWT parameters parallel to modifying a new threshold value, one can handle ECG denoising with results comparing to those of wavelet transform (WT). Preliminary tests of BWT application to ECG denoising were constructed on the signals of MIT-BIH database which showed high performance of noise reduction.

  18. Noise reduction in Lidar signal using correlation-based EMD combined with soft thresholding and roughness penalty

    Science.gov (United States)

    Chang, Jianhua; Zhu, Lingyan; Li, Hongxu; Xu, Fan; Liu, Binggang; Yang, Zhenbo

    2018-01-01

    Empirical mode decomposition (EMD) is widely used to analyze the non-linear and non-stationary signals for noise reduction. In this study, a novel EMD-based denoising method, referred to as EMD with soft thresholding and roughness penalty (EMD-STRP), is proposed for the Lidar signal denoising. With the proposed method, the relevant and irrelevant intrinsic mode functions are first distinguished via a correlation coefficient. Then, the soft thresholding technique is applied to the irrelevant modes, and the roughness penalty technique is applied to the relevant modes to extract as much information as possible. The effectiveness of the proposed method was evaluated using three typical signals contaminated by white Gaussian noise. The denoising performance was then compared to the denoising capabilities of other techniques, such as correlation-based EMD partial reconstruction, correlation-based EMD hard thresholding, and wavelet transform. The use of EMD-STRP on the measured Lidar signal resulted in the noise being efficiently suppressed, with an improved signal to noise ratio of 22.25 dB and an extended detection range of 11 km.

  19. Application of wavelet analysis to signal processing methods for eddy-current test

    International Nuclear Information System (INIS)

    Chen, G.; Yoneyama, H.; Yamaguchi, A.; Uesugi, N.

    1998-01-01

    This study deals with the application of wavelet analysis to detection and characterization of defects from eddy-current and ultrasonic testing signals of a low signal-to-noise ratio. Presented in this paper are the methods for processing eddy-current testing signals of heat exchanger tubes of a steam generator in a nuclear power plant. The results of processing eddy-current testing signals of tube testpieces with artificial flaws show that the flaw signals corrupted by noise and/or non-defect signals can be effectively detected and characterized by using the wavelet methods. (author)

  20. Spline and spline wavelet methods with applications to signal and image processing

    CERN Document Server

    Averbuch, Amir Z; Zheludev, Valery A

    This volume provides universal methodologies accompanied by Matlab software to manipulate numerous signal and image processing applications. It is done with discrete and polynomial periodic splines. Various contributions of splines to signal and image processing from a unified perspective are presented. This presentation is based on Zak transform and on Spline Harmonic Analysis (SHA) methodology. SHA combines approximation capabilities of splines with the computational efficiency of the Fast Fourier transform. SHA reduces the design of different spline types such as splines, spline wavelets (SW), wavelet frames (SWF) and wavelet packets (SWP) and their manipulations by simple operations. Digital filters, produced by wavelets design process, give birth to subdivision schemes. Subdivision schemes enable to perform fast explicit computation of splines' values at dyadic and triadic rational points. This is used for signals and images upsampling. In addition to the design of a diverse library of splines, SW, SWP a...

  1. Optical Aperture Synthesis Object's Information Extracting Based on Wavelet Denoising

    International Nuclear Information System (INIS)

    Fan, W J; Lu, Y

    2006-01-01

    Wavelet denoising is studied to improve OAS(optical aperture synthesis) object's Fourier information extracting. Translation invariance wavelet denoising based on Donoho wavelet soft threshold denoising is researched to remove Pseudo-Gibbs in wavelet soft threshold image. OAS object's information extracting based on translation invariance wavelet denoising is studied. The study shows that wavelet threshold denoising can improve the precision and the repetition of object's information extracting from interferogram, and the translation invariance wavelet denoising information extracting is better than soft threshold wavelet denoising information extracting

  2. Multidimensional signaling via wavelet packets

    Science.gov (United States)

    Lindsey, Alan R.

    1995-04-01

    This work presents a generalized signaling strategy for orthogonally multiplexed communication. Wavelet packet modulation (WPM) employs the basis functions from an arbitrary pruning of a full dyadic tree structured filter bank as orthogonal pulse shapes for conventional QAM symbols. The multi-scale modulation (MSM) and M-band wavelet modulation (MWM) schemes which have been recently introduced are handled as special cases, with the added benefit of an entire library of potentially superior sets of basis functions. The figures of merit are derived and it is shown that the power spectral density is equivalent to that for QAM (in fact, QAM is another special case) and hence directly applicable in existing systems employing this standard modulation. Two key advantages of this method are increased flexibility in time-frequency partitioning and an efficient all-digital filter bank implementation, making the WPM scheme more robust to a larger set of interferences (both temporal and sinusoidal) and computationally attractive as well.

  3. Mathematical principles of signal processing Fourier and wavelet analysis

    CERN Document Server

    Brémaud, Pierre

    2002-01-01

    Fourier analysis is one of the most useful tools in many applied sciences. The recent developments of wavelet analysis indicates that in spite of its long history and well-established applications, the field is still one of active research. This text bridges the gap between engineering and mathematics, providing a rigorously mathematical introduction of Fourier analysis, wavelet analysis and related mathematical methods, while emphasizing their uses in signal processing and other applications in communications engineering. The interplay between Fourier series and Fourier transforms is at the heart of signal processing, which is couched most naturally in terms of the Dirac delta function and Lebesgue integrals. The exposition is organized into four parts. The first is a discussion of one-dimensional Fourier theory, including the classical results on convergence and the Poisson sum formula. The second part is devoted to the mathematical foundations of signal processing - sampling, filtering, digital signal proc...

  4. Discrete Fourier and wavelet transforms an introduction through linear algebra with applications to signal processing

    CERN Document Server

    Goodman, Roe W

    2016-01-01

    This textbook for undergraduate mathematics, science, and engineering students introduces the theory and applications of discrete Fourier and wavelet transforms using elementary linear algebra, without assuming prior knowledge of signal processing or advanced analysis.It explains how to use the Fourier matrix to extract frequency information from a digital signal and how to use circulant matrices to emphasize selected frequency ranges. It introduces discrete wavelet transforms for digital signals through the lifting method and illustrates through examples and computer explorations how these transforms are used in signal and image processing. Then the general theory of discrete wavelet transforms is developed via the matrix algebra of two-channel filter banks. Finally, wavelet transforms for analog signals are constructed based on filter bank results already presented, and the mathematical framework of multiresolution analysis is examined.

  5. [A wavelet neural network algorithm of EEG signals data compression and spikes recognition].

    Science.gov (United States)

    Zhang, Y; Liu, A; Yu, K

    1999-06-01

    A novel method of EEG signals compression representation and epileptiform spikes recognition based on wavelet neural network and its algorithm is presented. The wavelet network not only can compress data effectively but also can recover original signal. In addition, the characters of the spikes and the spike-slow rhythm are auto-detected from the time-frequency isoline of EEG signal. This method is well worth using in the field of the electrophysiological signal processing and time-frequency analyzing.

  6. Wavelet-Based Signal Processing of Electromagnetic Pulse Generated Waveforms

    National Research Council Canada - National Science Library

    Ardolino, Richard S

    2007-01-01

    This thesis investigated and compared alternative signal processing techniques that used wavelet-based methods instead of traditional frequency domain methods for processing measured electromagnetic pulse (EMP) waveforms...

  7. Removal of EMG and ECG artifacts from EEG based on wavelet transform and ICA.

    Science.gov (United States)

    Zhou, Weidong; Gotman, Jean

    2004-01-01

    In this study, the methods of wavelet threshold de-noising and independent component analysis (ICA) are introduced. ICA is a novel signal processing technique based on high order statistics, and is used to separate independent components from measurements. The extended ICA algorithm does not need to calculate the higher order statistics, converges fast, and can be used to separate subGaussian and superGaussian sources. A pre-whitening procedure is performed to de-correlate the mixed signals before extracting sources. The experimental results indicate the electromyogram (EMG) and electrocardiograph (ECG) artifacts in electroencephalograph (EEG) can be removed by a combination of wavelet threshold de-noising and ICA.

  8. Frequency hopping signal detection based on wavelet decomposition and Hilbert-Huang transform

    Science.gov (United States)

    Zheng, Yang; Chen, Xihao; Zhu, Rui

    2017-07-01

    Frequency hopping (FH) signal is widely adopted by military communications as a kind of low probability interception signal. Therefore, it is very important to research the FH signal detection algorithm. The existing detection algorithm of FH signals based on the time-frequency analysis cannot satisfy the time and frequency resolution requirement at the same time due to the influence of window function. In order to solve this problem, an algorithm based on wavelet decomposition and Hilbert-Huang transform (HHT) was proposed. The proposed algorithm removes the noise of the received signals by wavelet decomposition and detects the FH signals by Hilbert-Huang transform. Simulation results show the proposed algorithm takes into account both the time resolution and the frequency resolution. Correspondingly, the accuracy of FH signals detection can be improved.

  9. Investigating Multi-Array Antenna Signal Convergence using Wavelet Transform and Krylov Sequence

    Directory of Open Access Journals (Sweden)

    Muhammad Ahmed Sikander

    2018-01-01

    Full Text Available In the present world, wireless communication is becoming immensely popular for plethora of applications. Technology has been advancing at an accelerated rate leading to make communication reliable. Still, there are issues need to be address to minimize errors in the transmission. This research study expounds on the rapid convergence of the signal. Convergence is considered to be an important aspect in wireless communication. For rapid convergence, two ambiguities should be addressed; Eigenvalue spread and sparse identification or sparsity of the signal. Eigen value spread is defining as the ratio of minimum to maximum Eigenvalue, whereas sparsity is defining as the loosely bounded system. In this research, two of these attributes are investigated for MAA (Multi-Array Antenna signal using the cascading of Wavelet and Krylov processes. Specifically, the MAA signal is applied in the research because nowadays there are many physical hindrances in the communication path. These hurdles weaken the signal strength which in turn effects the quality of the reception. WT (Wavelet Transform is used to address the Eigenvalue problem and the Krylov sequence is used to attempt the sparse identification of the MAA signal. The results show that the convergence of the MMA signal is improved by applying Wavelet transform and Krylov Subspace.

  10. Investigating multi-array antenna signal convergence using wavelet transform and krylov sequence

    International Nuclear Information System (INIS)

    Sikander, M.A.; Hussain, R.; Hussain, R.

    2018-01-01

    In the present world, wireless communication is becoming immensely popular for plethora of applications. Technology has been advancing at an accelerated rate leading to make communication reliable. Still, there are issues need to be address to minimize errors in the transmission. This research study expounds on the rapid convergence of the signal. Convergence is considered to be an important aspect in wireless communication. For rapid convergence, two ambiguities should be addressed; Eigenvalue spread and sparse identification or sparsity of the signal. Eigen value spread is defining as the ratio of minimum to maximum Eigenvalue, whereas sparsity is defining as the loosely bounded system. In this research, two of these attributes are investigated for MAA (Multi-Array Antenna) signal using the cascading of Wavelet and Krylov processes. Specifically, the MAA signal is applied in the research because nowadays there are many physical hindrances in the communication path. These hurdles weaken the signal strength which in turn effects the quality of the reception. WT (Wavelet Transform) is used to address the Eigenvalue problem and the Krylov sequence is used to attempt the sparse identification of the MAA signal. The results show that the convergence of the MMA signal is improved by applying Wavelet transform and Krylov Subspace. (author)

  11. receive signal strength prediction in the gsm band using wavelet

    African Journals Online (AJOL)

    user

    strength was measured on a Mobile Equipment (ME). One-dimensional ... used to predict the fading phenomenon of the GSM receive signal strength measured. Wavelet ... radio wavelength. The prediction is ... realized by reusing frequency in a dense or complex .... NETWORK SIGNAL PRO software, down loaded from.

  12. Signal Analysis by New Mother Wavelets

    International Nuclear Information System (INIS)

    Niu Jinbo; Qi Kaiguo; Fan Hongyi

    2009-01-01

    Based on the general formula for finding qualified mother wavelets [Opt. Lett. 31 (2006) 407] we make wavelet transforms computed with the newly found mother wavelets (characteristic of the power 2n) for some optical Gaussian pulses, which exhibit the ability to measure frequency of the pulse more precisely and clearly. We also work with complex mother wavelets composed of new real mother wavelets, which offer the ability of obtaining phase information of the pulse as well as amplitude information. The analogy between the behavior of Hermite-Gauss beams and that of new wavelet transforms is noticed. (general)

  13. Wavelet tree structure based speckle noise removal for optical coherence tomography

    Science.gov (United States)

    Yuan, Xin; Liu, Xuan; Liu, Yang

    2018-02-01

    We report a new speckle noise removal algorithm in optical coherence tomography (OCT). Though wavelet domain thresholding algorithms have demonstrated superior advantages in suppressing noise magnitude and preserving image sharpness in OCT, the wavelet tree structure has not been investigated in previous applications. In this work, we propose an adaptive wavelet thresholding algorithm via exploiting the tree structure in wavelet coefficients to remove the speckle noise in OCT images. The threshold for each wavelet band is adaptively selected following a special rule to retain the structure of the image across different wavelet layers. Our results demonstrate that the proposed algorithm outperforms conventional wavelet thresholding, with significant advantages in preserving image features.

  14. Energy-Based Wavelet De-Noising of Hydrologic Time Series

    Science.gov (United States)

    Sang, Yan-Fang; Liu, Changming; Wang, Zhonggen; Wen, Jun; Shang, Lunyu

    2014-01-01

    De-noising is a substantial issue in hydrologic time series analysis, but it is a difficult task due to the defect of methods. In this paper an energy-based wavelet de-noising method was proposed. It is to remove noise by comparing energy distribution of series with the background energy distribution, which is established from Monte-Carlo test. Differing from wavelet threshold de-noising (WTD) method with the basis of wavelet coefficient thresholding, the proposed method is based on energy distribution of series. It can distinguish noise from deterministic components in series, and uncertainty of de-noising result can be quantitatively estimated using proper confidence interval, but WTD method cannot do this. Analysis of both synthetic and observed series verified the comparable power of the proposed method and WTD, but de-noising process by the former is more easily operable. The results also indicate the influences of three key factors (wavelet choice, decomposition level choice and noise content) on wavelet de-noising. Wavelet should be carefully chosen when using the proposed method. The suitable decomposition level for wavelet de-noising should correspond to series' deterministic sub-signal which has the smallest temporal scale. If too much noise is included in a series, accurate de-noising result cannot be obtained by the proposed method or WTD, but the series would show pure random but not autocorrelation characters, so de-noising is no longer needed. PMID:25360533

  15. On the application of optimal wavelet filter banks for ECG signal classification

    International Nuclear Information System (INIS)

    Hadjiloucas, S; Jannah, N; Hwang, F; Galvão, R K H

    2014-01-01

    This paper discusses ECG signal classification after parametrizing the ECG waveforms in the wavelet domain. Signal decomposition using perfect reconstruction quadrature mirror filter banks can provide a very parsimonious representation of ECG signals. In the current work, the filter parameters are adjusted by a numerical optimization algorithm in order to minimize a cost function associated to the filter cut-off sharpness. The goal consists of achieving a better compromise between frequency selectivity and time resolution at each decomposition level than standard orthogonal filter banks such as those of the Daubechies and Coiflet families. Our aim is to optimally decompose the signals in the wavelet domain so that they can be subsequently used as inputs for training to a neural network classifier

  16. Visibility of wavelet quantization noise

    Science.gov (United States)

    Watson, A. B.; Yang, G. Y.; Solomon, J. A.; Villasenor, J.

    1997-01-01

    The discrete wavelet transform (DWT) decomposes an image into bands that vary in spatial frequency and orientation. It is widely used for image compression. Measures of the visibility of DWT quantization errors are required to achieve optimal compression. Uniform quantization of a single band of coefficients results in an artifact that we call DWT uniform quantization noise; it is the sum of a lattice of random amplitude basis functions of the corresponding DWT synthesis filter. We measured visual detection thresholds for samples of DWT uniform quantization noise in Y, Cb, and Cr color channels. The spatial frequency of a wavelet is r 2-lambda, where r is display visual resolution in pixels/degree, and lambda is the wavelet level. Thresholds increase rapidly with wavelet spatial frequency. Thresholds also increase from Y to Cr to Cb, and with orientation from lowpass to horizontal/vertical to diagonal. We construct a mathematical model for DWT noise detection thresholds that is a function of level, orientation, and display visual resolution. This allows calculation of a "perceptually lossless" quantization matrix for which all errors are in theory below the visual threshold. The model may also be used as the basis for adaptive quantization schemes.

  17. Wavelet-OFDM Signal Transmission Characteristics with High-Speed PLC Modem

    Science.gov (United States)

    Nakagawa, Kenichi; Tokuda, Masamitsu; Igata, Yuji

    In this paper, we measured the interference immunity characteristics of high-speed PLC system using Wavelet-OFDM when the narrowband conducted interference wave signal was injected. As the results, it was clear that (1) measured PHY rate at the all frequency band hardly decreased in C/I (Carrier to Interference ratio) of above 20dB, but began to decrease rapidly in C/I of below 0dB when the interference signal was injected in the frequency band of high-speed PLC signal, (2) when C/I became from 0dB to -20dB, the measured PHY rate at the frequency existing the notch band were improved around 10Mbps than that at the frequency not existing the notch band, (3) when the narrowband interference wave was injected outside of frequency band of high-speed PLC signal, the measured PHY rate did not decrease than that in each notch band. Therefore, it was revealed that high-speed PLC system using Wavelet-OFDM had good interference immunity characteristics.

  18. The design and implementation of signal decomposition system of CL multi-wavelet transform based on DSP builder

    Science.gov (United States)

    Huang, Yan; Wang, Zhihui

    2015-12-01

    With the development of FPGA, DSP Builder is widely applied to design system-level algorithms. The algorithm of CL multi-wavelet is more advanced and effective than scalar wavelets in processing signal decomposition. Thus, a system of CL multi-wavelet based on DSP Builder is designed for the first time in this paper. The system mainly contains three parts: a pre-filtering subsystem, a one-level decomposition subsystem and a two-level decomposition subsystem. It can be converted into hardware language VHDL by the Signal Complier block that can be used in Quartus II. After analyzing the energy indicator, it shows that this system outperforms Daubenchies wavelet in signal decomposition. Furthermore, it has proved to be suitable for the implementation of signal fusion based on SoPC hardware, and it will become a solid foundation in this new field.

  19. A wavelet phase filter for emission tomography

    International Nuclear Information System (INIS)

    Olsen, E.T.; Lin, B.

    1995-01-01

    The presence of a high level of noise is a characteristic in some tomographic imaging techniques such as positron emission tomography (PET). Wavelet methods can smooth out noise while preserving significant features of images. Mallat et al. proposed a wavelet based denoising scheme exploiting wavelet modulus maxima, but the scheme is sensitive to noise. In this study, the authors explore the properties of wavelet phase, with a focus on reconstruction of emission tomography images. Specifically, they show that the wavelet phase of regular Poisson noise under a Haar-type wavelet transform converges in distribution to a random variable uniformly distributed on [0, 2π). They then propose three wavelet-phase-based denoising schemes which exploit this property: edge tracking, local phase variance thresholding, and scale phase variation thresholding. Some numerical results are also presented. The numerical experiments indicate that wavelet phase techniques show promise for wavelet based denoising methods

  20. Wavelet-based characterization of gait signal for neurological abnormalities.

    Science.gov (United States)

    Baratin, E; Sugavaneswaran, L; Umapathy, K; Ioana, C; Krishnan, S

    2015-02-01

    Studies conducted by the World Health Organization (WHO) indicate that over one billion suffer from neurological disorders worldwide, and lack of efficient diagnosis procedures affects their therapeutic interventions. Characterizing certain pathologies of motor control for facilitating their diagnosis can be useful in quantitatively monitoring disease progression and efficient treatment planning. As a suitable directive, we introduce a wavelet-based scheme for effective characterization of gait associated with certain neurological disorders. In addition, since the data were recorded from a dynamic process, this work also investigates the need for gait signal re-sampling prior to identification of signal markers in the presence of pathologies. To benefit automated discrimination of gait data, certain characteristic features are extracted from the wavelet-transformed signals. The performance of the proposed approach was evaluated using a database consisting of 15 Parkinson's disease (PD), 20 Huntington's disease (HD), 13 Amyotrophic lateral sclerosis (ALS) and 16 healthy control subjects, and an average classification accuracy of 85% is achieved using an unbiased cross-validation strategy. The obtained results demonstrate the potential of the proposed methodology for computer-aided diagnosis and automatic characterization of certain neurological disorders. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Certain problems concerning wavelets and wavelets packets

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqi, A H

    1995-09-01

    Wavelets is the outcome of the synthesis of ideas that have emerged in different branches of science and technology, mainly in the last decade. The concept of wavelet packets, which are superpositions of wavelets, has been introduced a couple of years ago. They form bases which retain many properties of wavelets like orthogonality, smoothness and localization. The Walsh orthornomal system is a special case of wavelet packet. The wavelet packets provide at our disposal a library of orthonormal bases, each of which can be used to analyze a given signal of finite energy. The optimal choice is decided by the entropy criterion. In the present paper we discuss results concerning convergence, coefficients, and approximation of wavelet packets series in general and wavelets series in particular. Wavelet packet techniques for solutions of differential equations are also mentioned. (author). 117 refs.

  2. Certain problems concerning wavelets and wavelets packets

    International Nuclear Information System (INIS)

    Siddiqi, A.H.

    1995-09-01

    Wavelets is the outcome of the synthesis of ideas that have emerged in different branches of science and technology, mainly in the last decade. The concept of wavelet packets, which are superpositions of wavelets, has been introduced a couple of years ago. They form bases which retain many properties of wavelets like orthogonality, smoothness and localization. The Walsh orthornomal system is a special case of wavelet packet. The wavelet packets provide at our disposal a library of orthonormal bases, each of which can be used to analyze a given signal of finite energy. The optimal choice is decided by the entropy criterion. In the present paper we discuss results concerning convergence, coefficients, and approximation of wavelet packets series in general and wavelets series in particular. Wavelet packet techniques for solutions of differential equations are also mentioned. (author). 117 refs

  3. Fourier and wavelet analysis of skin laser doppler flowmetry signals

    OpenAIRE

    Qi, Wei

    2011-01-01

    ObjectiveThis thesis examines the measurement of skin microvascular blood flows from Laser Doppler Flowmetry (LDF) signals. Both healthy subjects and those with features of the metabolic syndrome are studied using signal processing techniques such as the Fourier and Wavelet transforms. An aim of this study is to investigate whether change in blood flow at rest can be detected from the spectral content of the processed signals in the diferent subject groups. Additionally the effect of insulin ...

  4. Significance tests for the wavelet cross spectrum and wavelet linear coherence

    Directory of Open Access Journals (Sweden)

    Z. Ge

    2008-12-01

    Full Text Available This work attempts to develop significance tests for the wavelet cross spectrum and the wavelet linear coherence as a follow-up study on Ge (2007. Conventional approaches that are used by Torrence and Compo (1998 based on stationary background noise time series were used here in estimating the sampling distributions of the wavelet cross spectrum and the wavelet linear coherence. The sampling distributions are then used for establishing significance levels for these two wavelet-based quantities. In addition to these two wavelet quantities, properties of the phase angle of the wavelet cross spectrum of, or the phase difference between, two Gaussian white noise series are discussed. It is found that the tangent of the principal part of the phase angle approximately has a standard Cauchy distribution and the phase angle is uniformly distributed, which makes it impossible to establish significance levels for the phase angle. The simulated signals clearly show that, when there is no linear relation between the two analysed signals, the phase angle disperses into the entire range of [−π,π] with fairly high probabilities for values close to ±π to occur. Conversely, when linear relations are present, the phase angle of the wavelet cross spectrum settles around an associated value with considerably reduced fluctuations. When two signals are linearly coupled, their wavelet linear coherence will attain values close to one. The significance test of the wavelet linear coherence can therefore be used to complement the inspection of the phase angle of the wavelet cross spectrum. The developed significance tests are also applied to actual data sets, simultaneously recorded wind speed and wave elevation series measured from a NOAA buoy on Lake Michigan. Significance levels of the wavelet cross spectrum and the wavelet linear coherence between the winds and the waves reasonably separated meaningful peaks from those generated by randomness in the data set. As

  5. Operational Safety Assessment of Turbo Generators with Wavelet Rényi Entropy from Sensor-Dependent Vibration Signals

    Directory of Open Access Journals (Sweden)

    Xiaoli Zhang

    2015-04-01

    Full Text Available With the rapid development of sensor technology, various professional sensors are installed on modern machinery to monitor operational processes and assure operational safety, which play an important role in industry and society. In this work a new operational safety assessment approach with wavelet Rényi entropy utilizing sensor-dependent vibration signals is proposed. On the basis of a professional sensor and the corresponding system, sensor-dependent vibration signals are acquired and analyzed by a second generation wavelet package, which reflects time-varying operational characteristic of individual machinery. Derived from the sensor-dependent signals’ wavelet energy distribution over the observed signal frequency range, wavelet Rényi entropy is defined to compute the operational uncertainty of a turbo generator, which is then associated with its operational safety degree. The proposed method is applied in a 50 MW turbo generator, whereupon it is proved to be reasonable and effective for operation and maintenance.

  6. The research of optimal selection method for wavelet packet basis in compressing the vibration signal of a rolling bearing in fans and pumps

    International Nuclear Information System (INIS)

    Hao, W; Jinji, G

    2012-01-01

    Compressing the vibration signal of a rolling bearing has important significance to wireless monitoring and remote diagnosis of fans and pumps which is widely used in the petrochemical industry. In this paper, according to the characteristics of the vibration signal in a rolling bearing, a compression method based on the optimal selection of wavelet packet basis is proposed. We analyze several main attributes of wavelet packet basis and the effect to the compression of the vibration signal in a rolling bearing using wavelet packet transform in various compression ratios, and proposed a method to precisely select a wavelet packet basis. Through an actual signal, we come to the conclusion that an orthogonal wavelet packet basis with low vanishing moment should be used to compress the vibration signal of a rolling bearing to get an accurate energy proportion between the feature bands in the spectrum of reconstructing the signal. Within these low vanishing moments, orthogonal wavelet packet basis, and 'coif' wavelet packet basis can obtain the best signal-to-noise ratio in the same compression ratio for its best symmetry.

  7. Spectral information enhancement using wavelet-based iterative filtering for in vivo gamma spectrometry.

    Science.gov (United States)

    Paul, Sabyasachi; Sarkar, P K

    2013-04-01

    Use of wavelet transformation in stationary signal processing has been demonstrated for denoising the measured spectra and characterisation of radionuclides in the in vivo monitoring analysis, where difficulties arise due to very low activity level to be estimated in biological systems. The large statistical fluctuations often make the identification of characteristic gammas from radionuclides highly uncertain, particularly when interferences from progenies are also present. A new wavelet-based noise filtering methodology has been developed for better detection of gamma peaks in noisy data. This sequential, iterative filtering method uses the wavelet multi-resolution approach for noise rejection and an inverse transform after soft 'thresholding' over the generated coefficients. Analyses of in vivo monitoring data of (235)U and (238)U were carried out using this method without disturbing the peak position and amplitude while achieving a 3-fold improvement in the signal-to-noise ratio, compared with the original measured spectrum. When compared with other data-filtering techniques, the wavelet-based method shows the best results.

  8. Heart Rate Variability and Wavelet-based Studies on ECG Signals from Smokers and Non-smokers

    Science.gov (United States)

    Pal, K.; Goel, R.; Champaty, B.; Samantray, S.; Tibarewala, D. N.

    2013-12-01

    The current study deals with the heart rate variability (HRV) and wavelet-based ECG signal analysis of smokers and non-smokers. The results of HRV indicated dominance towards the sympathetic nervous system activity in smokers. The heart rate was found to be higher in case of smokers as compared to non-smokers ( p smokers from the non-smokers. The results indicated that when RMSSD, SD1 and RR-mean features were used concurrently a classification efficiency of > 90 % was achieved. The wavelet decomposition of the ECG signal was done using the Daubechies (db 6) wavelet family. No difference was observed between the smokers and non-smokers which apparently suggested that smoking does not affect the conduction pathway of heart.

  9. refining of scintillation detector signals relying on interpolated wavelets on a FPGA prototype

    International Nuclear Information System (INIS)

    Aboshosha, A.; Sayed, M.; Ashour, M.; Safwat, A.

    2010-01-01

    in this article, a signal processing core based on field programmable gate arrays (FPGAs) is developed for processing of scintillation detector signals. this core is implemented to apply the forward wavelet transfrom and interpolation technique. the main purpose of that is to de-noise, compress and reconstruct these signals by which the processing speed and storage will be optimized. moreover, this technique gives us all important features of the acquired signals such as counting, shaping and pulse height. A new contribution of our framework arises from employing the interpolation techniques to reconstruct the signal where the mother wavelet and details are not required. The hardware design is implemented using hardware description language (HDL) and is implemented practically on the FPGA. The performance of the design has been tested in simulation mode on Model sim benchmark and in real time mode on XC2S 50 spartan- II FPGA.

  10. Properties of an improved Gabor wavelet transform and its applications to seismic signal processing and interpretation

    Science.gov (United States)

    Ji, Zhan-Huai; Yan, Sheng-Gang

    2017-12-01

    This paper presents an analytical study of the complete transform of improved Gabor wavelets (IGWs), and discusses its application to the processing and interpretation of seismic signals. The complete Gabor wavelet transform has the following properties. First, unlike the conventional transform, the improved Gabor wavelet transform (IGWT) maps time domain signals to the time-frequency domain instead of the time-scale domain. Second, the IGW's dominant frequency is fixed, so the transform can perform signal frequency division, where the dominant frequency components of the extracted sub-band signal carry essentially the same information as the corresponding components of the original signal, and the subband signal bandwidth can be regulated effectively by the transform's resolution factor. Third, a time-frequency filter consisting of an IGWT and its inverse transform can accurately locate target areas in the time-frequency field and perform filtering in a given time-frequency range. The complete IGW transform's properties are investigated using simulation experiments and test cases, showing positive results for seismic signal processing and interpretation, such as enhancing seismic signal resolution, permitting signal frequency division, and allowing small faults to be identified.

  11. Resonance detection of EEG signals using two-layer wavelet analysis

    International Nuclear Information System (INIS)

    Abdallah, H. M; Odeh, F.S.

    2000-01-01

    This paper presents the hybrid quadrature mirror filter (HQMF) algorithm applied to the electroencephalogram (EEG) signal during mental activity. The information contents of this signal, i.e., its medical diagnosis, lie in its power spectral density (PSD). The HQMF algorithm is a modified technique that is based on the shape and the details of the signal. If applied efficiently, the HQMF algorithm will produce much better results than conventional wavelet methods in detecting (diagnosing) the information of the EEG signal from its PSD. This technique is applicable not only to EEG signals, but is highly recommended to compression analysis and de noising techniques. (authors). 16 refs., 9 figs

  12. ANN-based wavelet analysis for predicting electrical signal from photovoltaic power supply system

    Energy Technology Data Exchange (ETDEWEB)

    Mellit, A. [Medea Univ., Medea (Algeria). Inst. of Science Engineering, Dept. of Electronics

    2007-07-01

    This study was conducted to predict different electrical signals from a photovoltaic power supply system (PVPS) using an artificial neural networks (ANN) with wavelet analysis. It involved the creation of a database of electrical signals (PV-generator current, voltage, battery current voltage, regulator current and voltage) obtained from an experimental PVPS system installed in the south of Algeria. The potential applications were for sizing and analyzing the performance of PVPS systems; control of maximum power point tracker (MPPT) in order to deliver the maximum energy from the PV-array; prediction of the optimal configuration (PV-array and battery sizing) of PVPS systems; expert configuration of PV-systems; faults diagnosis; supervision; and, control and monitoring. First, based on the wavelet analysis each electrical signal was mapped in several time frequency domains. The PV-system was then divided into 3-subsystems corresponding to ANN-PV generator model, ANN-battery model, and ANN-regulator model. An example of day-by-day prediction for each electrical signal was presented. The results of the proposed approach were in good agreement with experimental results. In addition, the accuracy of the proposed approach was more satisfactory when only ANN was used. It was concluded that this methodology offers the possibility of developing a new expert configuration of PVPS by implementing the soft computing ANN-wavelet program with a digital signal processing (DSP) circuit. 26 refs., 1 tab., 5 figs.

  13. Wavelet-LMS algorithm-based echo cancellers

    Science.gov (United States)

    Seetharaman, Lalith K.; Rao, Sathyanarayana S.

    2002-12-01

    This paper presents Echo Cancellers based on the Wavelet-LMS Algorithm. The performance of the Least Mean Square Algorithm in Wavelet transform domain is observed and its application in Echo cancellation is analyzed. The Widrow-Hoff Least Mean Square Algorithm is most widely used algorithm for Adaptive filters that function as Echo Cancellers. The present day communication signals are widely non-stationary in nature and some errors crop up when Least Mean Square Algorithm is used for the Echo Cancellers handling such signals. The analysis of non-stationary signals often involves a compromise between how well transitions or discontinuities can be located. The multi-scale or multi-resolution of signal analysis, which is the essence of wavelet transform, makes Wavelets popular in non-stationary signal analysis. In this paper, we present a Wavelet-LMS algorithm wherein the wavelet coefficients of a signal are modified adaptively using the Least Mean Square Algorithm and then reconstructed to give an Echo-free signal. The Echo Canceller based on this Algorithm is found to have a better convergence and a comparatively lesser MSE (Mean Square error).

  14. Filtering Performance Comparison of Kernel and Wavelet Filters for Reactivity Signal Noise

    International Nuclear Information System (INIS)

    Park, Moon Ghu; Shin, Ho Cheol; Lee, Yong Kwan; You, Skin

    2006-01-01

    Nuclear reactor power deviation from the critical state is a parameter of specific interest defined by the reactivity measuring neutron population. Reactivity is an extremely important quantity used to define many of the reactor startup physics parameters. The time dependent reactivity is normally determined by solving the using inverse neutron kinetics equation. The reactivity computer is a device to provide an on-line solution of the inverse kinetics equation. The measurement signal of the neutron density is normally noise corrupted and the control rods movement typically gives reactivity variation with edge signals like saw teeth. Those edge regions should be precisely preserved since the measured signal is used to estimate the reactivity wroth which is a crucial parameter to assure the safety of the nuclear reactors. In this paper, three kind of edge preserving noise filters are proposed and their performance is demonstrated using stepwise signals. The tested filters are based on the unilateral, bilateral kernel and wavelet filters which are known to be effective in edge preservation. The bilateral filter shows a remarkable improvement compared with unilateral kernel and wavelet filters

  15. An investigation of two-phase flow instability using wavelet signal extraction technique

    International Nuclear Information System (INIS)

    Shang Zhi; Yang Ruichang; Cao Xuewu; Yang Yanhua

    2004-01-01

    When the oscillation periods of the instability of two-phase flow are sought with traditional methods of signal analysis, generally the Fourier transform must be employed and then the oscillation periods will be gotten at the location of the local maximum amplitude of frequency transform. However, Fourier transform will be difficult to clearly analyze the unsteady signals especially when the signals include many peaks and the noise interference is not generated by white noise in many areas of practical engineering like the oscillation of the instability of two-phase flow. The most effective solving method for the difficulty of Fourier transform is to analyze the signals directly in time domain. Wavelet analysis is able to search out the periods from time domain directly. It also has more excellent local characteristics than Fourier analysis in the both of time and frequency domains. In this paper, not only is a direct detecting method of the oscillation periods successfully applied based on the wavelet signal extraction techniques, but also the oscillation of density wave type of TYPE I is found as a kind of oscillations with a high-frequency harmonization

  16. A generalized wavelet extrema representation

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jian; Lades, M.

    1995-10-01

    The wavelet extrema representation originated by Stephane Mallat is a unique framework for low-level and intermediate-level (feature) processing. In this paper, we present a new form of wavelet extrema representation generalizing Mallat`s original work. The generalized wavelet extrema representation is a feature-based multiscale representation. For a particular choice of wavelet, our scheme can be interpreted as representing a signal or image by its edges, and peaks and valleys at multiple scales. Such a representation is shown to be stable -- the original signal or image can be reconstructed with very good quality. It is further shown that a signal or image can be modeled as piecewise monotonic, with all turning points between monotonic segments given by the wavelet extrema. A new projection operator is introduced to enforce piecewise inonotonicity of a signal in its reconstruction. This leads to an enhancement to previously developed algorithms in preventing artifacts in reconstructed signal.

  17. Selection of mother wavelets for the detection of the oscillation frequencies in power signals of nuclear reactors

    International Nuclear Information System (INIS)

    Amador G, R.; Castillo D, R.; Ortiz V, J.

    2007-01-01

    Diverse types of transitory events can lead to oscillations of power in nuclear reactors. In such events, the power monitors provide a signal that contains important characteristics of the transitory one, as the oscillation frequency, tendencies, changes and the instants or periods in those that important events are presented. This characteristics are detected by means of diverse analysis techniques, as Autoregressive methods, Fourier Transform, Fourier Transform in Short Time, Wavelets Transform, among others. Presently work is used the one Wavelets Continuous Transform because it allows to carry out studies of the stationary, quasi-stationary and transitory signals in the Time-scale and Time-scale-spectrum planes. Contrary to other similar works, this work describes a methodology for the selection of the scales and the Wavelet mother to be applied the one Wavelets Continuous Transform, with the objective of detecting to the dominant frequencies of the system. To prove the proposal a broadly well-known real signal of an event of power oscillations it has been used. The obtained results correspond to three families of Wavelets mothers that fulfilled the conditions of scales and central frequency of the proposal. The results show that the value of the certain frequency oscillation in this work is practically the same one reported in other studies with other techniques. (Author)

  18. Wavelets: Applications to Image Compression-II

    Indian Academy of Sciences (India)

    Wavelets: Applications to Image Compression-II. Sachin P ... successful application of wavelets in image com- ... b) Soft threshold: In this case, all the coefficients x ..... [8] http://www.jpeg.org} Official site of the Joint Photographic Experts Group.

  19. Application of wavelet transform to seismic data; Wavelet henkan no jishin tansa eno tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Nakagami, K; Murayama, R; Matsuoka, T [Japan National Oil Corp., Tokyo (Japan)

    1996-05-01

    Introduced herein is the use of the wavelet transform in the field of seismic exploration. Among applications so far made, there are signal filtering, break point detection, data compression, and the solution of finite differential equations in the wavelet domain. In the field of data compression in particular, some examples of practical application have been introduced already. In seismic exploration, it is expected that the wavelet transform will separate signals and noises in data in a way different from the Fourier transform. The continuous wavelet transform displays time change in frequency easy to read, but is not suitable for the analysis and processing large quantities of data. On the other hand, the discrete wavelet transform, being an orthogonal transform, can handle large quantities of data. As compared with the conventional Fourier transform that handles only the frequency domain, the wavelet transform handles the time domain as well as the frequency domain, and therefore is more convenient in handling unsteady signals. 9 ref., 8 figs.

  20. EEG Artifact Removal Using a Wavelet Neural Network

    Science.gov (United States)

    Nguyen, Hoang-Anh T.; Musson, John; Li, Jiang; McKenzie, Frederick; Zhang, Guangfan; Xu, Roger; Richey, Carl; Schnell, Tom

    2011-01-01

    !n this paper we developed a wavelet neural network. (WNN) algorithm for Electroencephalogram (EEG) artifact removal without electrooculographic (EOG) recordings. The algorithm combines the universal approximation characteristics of neural network and the time/frequency property of wavelet. We. compared the WNN algorithm with .the ICA technique ,and a wavelet thresholding method, which was realized by using the Stein's unbiased risk estimate (SURE) with an adaptive gradient-based optimal threshold. Experimental results on a driving test data set show that WNN can remove EEG artifacts effectively without diminishing useful EEG information even for very noisy data.

  1. Wavelet analysis

    CERN Document Server

    Cheng, Lizhi; Luo, Yong; Chen, Bo

    2014-01-01

    This book could be divided into two parts i.e. fundamental wavelet transform theory and method and some important applications of wavelet transform. In the first part, as preliminary knowledge, the Fourier analysis, inner product space, the characteristics of Haar functions, and concepts of multi-resolution analysis, are introduced followed by a description on how to construct wavelet functions both multi-band and multi wavelets, and finally introduces the design of integer wavelets via lifting schemes and its application to integer transform algorithm. In the second part, many applications are discussed in the field of image and signal processing by introducing other wavelet variants such as complex wavelets, ridgelets, and curvelets. Important application examples include image compression, image denoising/restoration, image enhancement, digital watermarking, numerical solution of partial differential equations, and solving ill-conditioned Toeplitz system. The book is intended for senior undergraduate stude...

  2. Wavelet transform and Huffman coding based electrocardiogram compression algorithm: Application to telecardiology

    International Nuclear Information System (INIS)

    Chouakri, S A; Djaafri, O; Taleb-Ahmed, A

    2013-01-01

    We present in this work an algorithm for electrocardiogram (ECG) signal compression aimed to its transmission via telecommunication channel. Basically, the proposed ECG compression algorithm is articulated on the use of wavelet transform, leading to low/high frequency components separation, high order statistics based thresholding, using level adjusted kurtosis value, to denoise the ECG signal, and next a linear predictive coding filter is applied to the wavelet coefficients producing a lower variance signal. This latter one will be coded using the Huffman encoding yielding an optimal coding length in terms of average value of bits per sample. At the receiver end point, with the assumption of an ideal communication channel, the inverse processes are carried out namely the Huffman decoding, inverse linear predictive coding filter and inverse discrete wavelet transform leading to the estimated version of the ECG signal. The proposed ECG compression algorithm is tested upon a set of ECG records extracted from the MIT-BIH Arrhythmia Data Base including different cardiac anomalies as well as the normal ECG signal. The obtained results are evaluated in terms of compression ratio and mean square error which are, respectively, around 1:8 and 7%. Besides the numerical evaluation, the visual perception demonstrates the high quality of ECG signal restitution where the different ECG waves are recovered correctly

  3. An Introduction to Wavelet Theory and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Miner, N.E.

    1998-10-01

    This report reviews the history, theory and mathematics of wavelet analysis. Examination of the Fourier Transform and Short-time Fourier Transform methods provides tiormation about the evolution of the wavelet analysis technique. This overview is intended to provide readers with a basic understanding of wavelet analysis, define common wavelet terminology and describe wavelet amdysis algorithms. The most common algorithms for performing efficient, discrete wavelet transforms for signal analysis and inverse discrete wavelet transforms for signal reconstruction are presented. This report is intended to be approachable by non- mathematicians, although a basic understanding of engineering mathematics is necessary.

  4. Multifocal ERG wavelet packet decomposition applied to glaucoma diagnosis

    Directory of Open Access Journals (Sweden)

    Rodríguez-Ascariz José M

    2011-05-01

    Full Text Available Abstract Background Glaucoma is the second-leading cause of blindness worldwide and early diagnosis is essential to its treatment. Current clinical methods based on multifocal electroretinography (mfERG essentially involve measurement of amplitudes and latencies and assume standard signal morphology. This paper presents a new method based on wavelet packet analysis of global-flash multifocal electroretinogram signals. Methods This study comprised twenty-five patients diagnosed with OAG and twenty-five control subjects. Their mfERG recordings data were used to develop the algorithm method based on wavelet packet analysis. By reconstructing the third wavelet packet contained in the fourth decomposition level (ADAA4 of the mfERG recording, it is possible to obtain a signal from which to extract a marker in the 60-80 ms time interval. Results The marker found comprises oscillatory potentials with a negative-slope basal line in the case of glaucomatous recordings and a positive-slope basal line in the case of normal signals. Application of the optimal threshold calculated in the validation cases showed that the technique proposed achieved a sensitivity of 0.81 and validation specificity of 0.73. Conclusions This new method based on mfERG analysis may be reliable enough to detect functional deficits that are not apparent using current automated perimetry tests. As new stimulation and analysis protocols develop, mfERG has the potential to become a useful tool in early detection of glaucoma-related functional deficits.

  5. 1-D Wavelet Signal Analysis of the Actuators Nonlinearities Impact on the Healthy Control Systems Performance

    Directory of Open Access Journals (Sweden)

    Nicolae Tudoroiu

    2017-09-01

    Full Text Available The objective of this paper is to investigate the use of the 1-D wavelet analysis to extract several patterns from signals data sets collected from healthy and faulty input-output signals of control systems as a preliminary step in real-time implementation of fault detection diagnosis and isolation strategies. The 1-D wavelet analysis proved that is an useful tool for signals processing, design and analysis based on wavelet transforms found in a wide range of control systems industrial applications. Based on the fact that in the real life there is a great similitude between the phenomena, we are motivated to extend the applicability of these techniques to solve similar applications from control systems field, such is done in our research work. Their efficiency will be demonstrated on a case study mainly chosen to evaluate the impact of the uncertainties and the nonlinearities of the sensors and actuators on the overall performance of the control systems. The proposed techniques are able to extract in frequency domain some pattern features (signatures of interest directly from the signals data set collected by data acquisition equipment from the control system.

  6. Wavelets for Sparse Representation of Music

    DEFF Research Database (Denmark)

    Endelt, Line Ørtoft; Harbo, Anders La-Cour

    2004-01-01

    We are interested in obtaining a sparse representation of music signals by means of a discrete wavelet transform (DWT). That means we want the energy in the representation to be concentrated in few DWT coefficients. It is well-known that the decay of the DWT coefficients is strongly related...... to the number of vanishing moments of the mother wavelet, and to the smoothness of the signal. In this paper we present the result of applying two classical families of wavelets to a series of musical signals. The purpose is to determine a general relation between the number of vanishing moments of the wavelet...

  7. Robust Wavelet Estimation to Eliminate Simultaneously the Effects of Boundary Problems, Outliers, and Correlated Noise

    Directory of Open Access Journals (Sweden)

    Alsaidi M. Altaher

    2012-01-01

    Full Text Available Classical wavelet thresholding methods suffer from boundary problems caused by the application of the wavelet transformations to a finite signal. As a result, large bias at the edges and artificial wiggles occur when the classical boundary assumptions are not satisfied. Although polynomial wavelet regression and local polynomial wavelet regression effectively reduce the risk of this problem, the estimates from these two methods can be easily affected by the presence of correlated noise and outliers, giving inaccurate estimates. This paper introduces two robust methods in which the effects of boundary problems, outliers, and correlated noise are simultaneously taken into account. The proposed methods combine thresholding estimator with either a local polynomial model or a polynomial model using the generalized least squares method instead of the ordinary one. A primary step that involves removing the outlying observations through a statistical function is considered as well. The practical performance of the proposed methods has been evaluated through simulation experiments and real data examples. The results are strong evidence that the proposed method is extremely effective in terms of correcting the boundary bias and eliminating the effects of outliers and correlated noise.

  8. Signal post-processing for acoustic velocimeters: detecting and replacing spikes

    International Nuclear Information System (INIS)

    Razaz, Mahdi; Kawanisi, Kiyosi

    2011-01-01

    Time series recorded by acoustic velocimeters are often affected by a combination of factors, including turbulent velocity fluctuations, Doppler noise and signal aliasing. Although it is not possible to find a comprehensive threshold for identifying spurious data, the present work attempts to describe an effective technique for detecting spikes. This technique is based on transforming data into wavelet space and thresholding the wavelet basis by a consistent threshold. The universal threshold modified by a robust scale estimator such as Q n is proven to work extremely well. The suggested methods for replacing identified spikes combine times series analyses (linear time series modelling or a Kalman predictor) with a straightforward method, polynomial interpolation, to generate substitutions retaining both the trends and the fluctuations in the surrounding clean data. Then, tests were performed to reveal the influence of replacing methods on the total number of detected spikes, required iterations and physical properties of the restored signal. From the overall results, it is inferred that using the wavelet-Q n as the detecting module and integrating it with linear time series modelling/Kalman filtering as the replacement module constitutes an effective despiking algorithm. This methodology is capable of restoring the contaminated signal in such a way that its statistical and physical properties correlate well with those of the original record

  9. Application of the wavelet packet transform to vibration signals for surface roughness monitoring in CNC turning operations

    Science.gov (United States)

    García Plaza, E.; Núñez López, P. J.

    2018-01-01

    The wavelet packet transform method decomposes a time signal into several independent time-frequency signals called packets. This enables the temporary location of transient events occurring during the monitoring of the cutting processes, which is advantageous in monitoring condition and fault diagnosis. This paper proposes the monitoring of surface roughness using a single low cost sensor that is easily implemented in numerical control machine tools in order to make on-line decisions on workpiece surface finish quality. Packet feature extraction in vibration signals was applied to correlate the sensor signals to measured surface roughness. For the successful application of the WPT method, mother wavelets, packet decomposition level, and appropriate packet selection methods should be considered, but are poorly understood aspects in the literature. In this novel contribution, forty mother wavelets, optimal decomposition level, and packet reduction methods were analysed, as well as identifying the effective frequency range providing the best packet feature extraction for monitoring surface finish. The results show that mother wavelet biorthogonal 4.4 in decomposition level L3 with the fusion of the orthogonal vibration components (ax + ay + az) were the best option in the vibration signal and surface roughness correlation. The best packets were found in the medium-high frequency DDA (6250-9375 Hz) and high frequency ADA (9375-12500 Hz) ranges, and the feed acceleration component ay was the primary source of information. The packet reduction methods forfeited packets with relevant features to the signal, leading to poor results for the prediction of surface roughness. WPT is a robust vibration signal processing method for the monitoring of surface roughness using a single sensor without other information sources, satisfactory results were obtained in comparison to other processing methods with a low computational cost.

  10. A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification.

    Science.gov (United States)

    Yildirim, Özal

    2018-05-01

    Long-short term memory networks (LSTMs), which have recently emerged in sequential data analysis, are the most widely used type of recurrent neural networks (RNNs) architecture. Progress on the topic of deep learning includes successful adaptations of deep versions of these architectures. In this study, a new model for deep bidirectional LSTM network-based wavelet sequences called DBLSTM-WS was proposed for classifying electrocardiogram (ECG) signals. For this purpose, a new wavelet-based layer is implemented to generate ECG signal sequences. The ECG signals were decomposed into frequency sub-bands at different scales in this layer. These sub-bands are used as sequences for the input of LSTM networks. New network models that include unidirectional (ULSTM) and bidirectional (BLSTM) structures are designed for performance comparisons. Experimental studies have been performed for five different types of heartbeats obtained from the MIT-BIH arrhythmia database. These five types are Normal Sinus Rhythm (NSR), Ventricular Premature Contraction (VPC), Paced Beat (PB), Left Bundle Branch Block (LBBB), and Right Bundle Branch Block (RBBB). The results show that the DBLSTM-WS model gives a high recognition performance of 99.39%. It has been observed that the wavelet-based layer proposed in the study significantly improves the recognition performance of conventional networks. This proposed network structure is an important approach that can be applied to similar signal processing problems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Transient signal analysis in power reactors by means of the wavelet technique

    International Nuclear Information System (INIS)

    Wentzeis, Luis

    1999-01-01

    The application of the wavelet technique, had enabled to study the time evolution of the properties (amplitude and frequency content) of a signals set, measured in the Embalse nuclear power plant (CANDU 600 M we), in the low frequency range and for different operating conditions. Particularly, by means of this technique, we studied the time evolution of the signals in the non-stationary state of the reactor (during a raise in power), where the Fourier analysis results inadequate. (author)

  12. Wavelet-based study of valence-arousal model of emotions on EEG signals with LabVIEW.

    Science.gov (United States)

    Guzel Aydin, Seda; Kaya, Turgay; Guler, Hasan

    2016-06-01

    This paper illustrates the wavelet-based feature extraction for emotion assessment using electroencephalogram (EEG) signal through graphical coding design. Two-dimensional (valence-arousal) emotion model was studied. Different emotions (happy, joy, melancholy, and disgust) were studied for assessment. These emotions were stimulated by video clips. EEG signals obtained from four subjects were decomposed into five frequency bands (gamma, beta, alpha, theta, and delta) using "db5" wavelet function. Relative features were calculated to obtain further information. Impact of the emotions according to valence value was observed to be optimal on power spectral density of gamma band. The main objective of this work is not only to investigate the influence of the emotions on different frequency bands but also to overcome the difficulties in the text-based program. This work offers an alternative approach for emotion evaluation through EEG processing. There are a number of methods for emotion recognition such as wavelet transform-based, Fourier transform-based, and Hilbert-Huang transform-based methods. However, the majority of these methods have been applied with the text-based programming languages. In this study, we proposed and implemented an experimental feature extraction with graphics-based language, which provides great convenience in bioelectrical signal processing.

  13. Detecting microcalcifications in digital mammogram using wavelets

    International Nuclear Information System (INIS)

    Yang Jucheng; Park Dongsun

    2004-01-01

    Breast cancer is still one of main mortality causes in women, but the early detection can increase the chance of cure. Microcalcifications are small size structures, which can indicate the presence of cancer since they are often associated to the most different types of breast tumors. However, they very small size and the X-ray systems limitations lead to constraints to the adequate visualization of such structures, which means that the microcalcifications can be missed many times in mammogram visual examination. In addition, the human eyes are not able to distinguish minimal tonality differences, which can be another constraint when mammogram image presents poor contrast between microcalcifications and the tissues around them. Computer-aided diagnosis (CAD) schemes are being developed in order to increase the probabilities of early detection. To enhance and detect the microcalcifications in the mammograms we use the wavelets transform. From a signal processing point of view, microcalcifications are high frequency components in mammograms. Due to the multi-resolution decomposition capacity of the wavelet transform, we can decompose the image into different resolution levels which sensitive to different frequency bands. By choosing an appropriate wavelet and a right resolution level, we can effectively enhance and detect the microcalcifications in digital mammogram. In this work, we describe a new four-step method for the detection of microcalcifications: segmentation, wavelets transform processing, labeling and post-processing. The segmentation step is to split the breast area into 256x256 segments. For each segmented sub-image, wavelet transform is operated on it. For comparing study wavelet transform method, 4 typical family wavelets and 4 decomposing levels is discussed. We choose four family wavelets for detecting microcalcifications, that is, Daubechies, Biothgonai, Coieflets and Symlets wavelets, for simply, bd4, bior3.7, coif3, sym2 are chosen as the

  14. Directional dual-tree rational-dilation complex wavelet transform.

    Science.gov (United States)

    Serbes, Gorkem; Gulcur, Halil Ozcan; Aydin, Nizamettin

    2014-01-01

    Dyadic discrete wavelet transform (DWT) has been used successfully in processing signals having non-oscillatory transient behaviour. However, due to the low Q-factor property of their wavelet atoms, the dyadic DWT is less effective in processing oscillatory signals such as embolic signals (ESs). ESs are extracted from quadrature Doppler signals, which are the output of Doppler ultrasound systems. In order to process ESs, firstly, a pre-processing operation known as phase filtering for obtaining directional signals from quadrature Doppler signals must be employed. Only then, wavelet based methods can be applied to these directional signals for further analysis. In this study, a directional dual-tree rational-dilation complex wavelet transform, which can be applied directly to quadrature signals and has the ability of extracting directional information during analysis, is introduced.

  15. Wavelet-based verification of the quantitative precipitation forecast

    Science.gov (United States)

    Yano, Jun-Ichi; Jakubiak, Bogumil

    2016-06-01

    This paper explores the use of wavelets for spatial verification of quantitative precipitation forecasts (QPF), and especially the capacity of wavelets to provide both localization and scale information. Two 24-h forecast experiments using the two versions of the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) on 22 August 2010 over Poland are used to illustrate the method. Strong spatial localizations and associated intermittency of the precipitation field make verification of QPF difficult using standard statistical methods. The wavelet becomes an attractive alternative, because it is specifically designed to extract spatially localized features. The wavelet modes are characterized by the two indices for the scale and the localization. Thus, these indices can simply be employed for characterizing the performance of QPF in scale and localization without any further elaboration or tunable parameters. Furthermore, spatially-localized features can be extracted in wavelet space in a relatively straightforward manner with only a weak dependence on a threshold. Such a feature may be considered an advantage of the wavelet-based method over more conventional "object" oriented verification methods, as the latter tend to represent strong threshold sensitivities. The present paper also points out limits of the so-called "scale separation" methods based on wavelets. Our study demonstrates how these wavelet-based QPF verifications can be performed straightforwardly. Possibilities for further developments of the wavelet-based methods, especially towards a goal of identifying a weak physical process contributing to forecast error, are also pointed out.

  16. Wavelet-Based Artifact Identification and Separation Technique for EEG Signals during Galvanic Vestibular Stimulation

    Science.gov (United States)

    Adib, Mani; Cretu, Edmond

    2013-01-01

    We present a new method for removing artifacts in electroencephalography (EEG) records during Galvanic Vestibular Stimulation (GVS). The main challenge in exploiting GVS is to understand how the stimulus acts as an input to brain. We used EEG to monitor the brain and elicit the GVS reflexes. However, GVS current distribution throughout the scalp generates an artifact on EEG signals. We need to eliminate this artifact to be able to analyze the EEG signals during GVS. We propose a novel method to estimate the contribution of the GVS current in the EEG signals at each electrode by combining time-series regression methods with wavelet decomposition methods. We use wavelet transform to project the recorded EEG signal into various frequency bands and then estimate the GVS current distribution in each frequency band. The proposed method was optimized using simulated signals, and its performance was compared to well-accepted artifact removal methods such as ICA-based methods and adaptive filters. The results show that the proposed method has better performance in removing GVS artifacts, compared to the others. Using the proposed method, a higher signal to artifact ratio of −1.625 dB was achieved, which outperformed other methods such as ICA-based methods, regression methods, and adaptive filters. PMID:23956786

  17. Wavelet-Based Artifact Identification and Separation Technique for EEG Signals during Galvanic Vestibular Stimulation

    Directory of Open Access Journals (Sweden)

    Mani Adib

    2013-01-01

    Full Text Available We present a new method for removing artifacts in electroencephalography (EEG records during Galvanic Vestibular Stimulation (GVS. The main challenge in exploiting GVS is to understand how the stimulus acts as an input to brain. We used EEG to monitor the brain and elicit the GVS reflexes. However, GVS current distribution throughout the scalp generates an artifact on EEG signals. We need to eliminate this artifact to be able to analyze the EEG signals during GVS. We propose a novel method to estimate the contribution of the GVS current in the EEG signals at each electrode by combining time-series regression methods with wavelet decomposition methods. We use wavelet transform to project the recorded EEG signal into various frequency bands and then estimate the GVS current distribution in each frequency band. The proposed method was optimized using simulated signals, and its performance was compared to well-accepted artifact removal methods such as ICA-based methods and adaptive filters. The results show that the proposed method has better performance in removing GVS artifacts, compared to the others. Using the proposed method, a higher signal to artifact ratio of −1.625 dB was achieved, which outperformed other methods such as ICA-based methods, regression methods, and adaptive filters.

  18. Controlled wavelet domain sparsity for x-ray tomography

    Science.gov (United States)

    Purisha, Zenith; Rimpeläinen, Juho; Bubba, Tatiana; Siltanen, Samuli

    2018-01-01

    Tomographic reconstruction is an ill-posed inverse problem that calls for regularization. One possibility is to require sparsity of the unknown in an orthonormal wavelet basis. This, in turn, can be achieved by variational regularization, where the penalty term is the sum of the absolute values of the wavelet coefficients. The primal-dual fixed point algorithm showed that the minimizer of the variational regularization functional can be computed iteratively using a soft-thresholding operation. Choosing the soft-thresholding parameter \

  19. Wavelet theory and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Faber, V.; Bradley, JJ.; Brislawn, C.; Dougherty, R.; Hawrylycz, M.

    1996-07-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). We investigated the theory of wavelet transforms and their relation to Laboratory applications. The investigators have had considerable success in the past applying wavelet techniques to the numerical solution of optimal control problems for distributed- parameter systems, nonlinear signal estimation, and compression of digital imagery and multidimensional data. Wavelet theory involves ideas from the fields of harmonic analysis, numerical linear algebra, digital signal processing, approximation theory, and numerical analysis, and the new computational tools arising from wavelet theory are proving to be ideal for many Laboratory applications. 10 refs.

  20. Wavelet transform and real-time learning method for myoelectric signal in motion discrimination

    International Nuclear Information System (INIS)

    Liu Haihua; Chen Xinhao; Chen Yaguang

    2005-01-01

    This paper discusses the applicability of the Wavelet transform for analyzing an EMG signal and discriminating motion classes. In many previous works, researchers have dealt with steady EMG and have proposed suitable analyzing methods for the EMG, for example FFT and STFT. Therefore, it is difficult for the previous approaches to discriminate motions from the EMG in the different phases of muscle activity, i.e., pre-activity, in activity, postactivity phases, as well as the period of motion transition from one to another. In this paper, we introduce the Wavelet transform using the Coiflet mother wavelet into our real-time EMG prosthetic hand controller for discriminating motions from steady and unsteady EMG. A preliminary experiment to discriminate three hand motions from four channel EMG in the initial pre-activity and in activity phase is carried out to show the effectiveness of the approach. However, future research efforts are necessary to discriminate more motions much precisely

  1. A Wavelet-based method for processing signal of fog in strap-down inertial systems

    Energy Technology Data Exchange (ETDEWEB)

    Han, D.; Xiong, C.; Liu, H. [Huazhong University of Science & Technology, Wuhan (China)

    2009-07-01

    Fibre optical gyroscopes (FOGs) have been applied widely in many fields in contrast, with their counterparts such as mechanical gyroscopes and ring laser gyroscopes. The precision of FOG is affected significantly by bias drift, angle random walk temperature effects and noises. Especially, uncertain disturbances resulting from road irregularities often affect accuracy of strap-down inertial system (SINS). Hence, eliminating, uncertain disturbances from outputs of it FOG plays a crucial role to improve accuracy of SINS. This paper presents a wavelet-based method for denoising signals of FOGs in SINS used for exploring and rescuing robots in coal mines. Property of road irregularities in mines is taken into account as a key factor resulting in uncertain disturbances in this research. Both frequency band and amplitude of uncertain disturbances are introduced to choose filtering thresholds. Experimental results have demonstrated that the proposed method can efficiently eliminate uncertain disturbances due to road irregularities from outputs of FOGs and improve accuracy of surrogate data. It indicates that the proposed method has a significant potential in FOG-related applications.

  2. Local Wavelet-Based Filtering of Electromyographic Signals to Eliminate the Electrocardiographic-Induced Artifacts in Patients with Spinal Cord Injury.

    Science.gov (United States)

    Nitzken, Matthew; Bajaj, Nihit; Aslan, Sevda; Gimel'farb, Georgy; El-Baz, Ayman; Ovechkin, Alexander

    2013-07-18

    Surface Electromyography (EMG) is a standard method used in clinical practice and research to assess motor function in order to help with the diagnosis of neuromuscular pathology in human and animal models. EMG recorded from trunk muscles involved in the activity of breathing can be used as a direct measure of respiratory motor function in patients with spinal cord injury (SCI) or other disorders associated with motor control deficits. However, EMG potentials recorded from these muscles are often contaminated with heart-induced electrocardiographic (ECG) signals. Elimination of these artifacts plays a critical role in the precise measure of the respiratory muscle electrical activity. This study was undertaken to find an optimal approach to eliminate the ECG artifacts from EMG recordings. Conventional global filtering can be used to decrease the ECG-induced artifact. However, this method can alter the EMG signal and changes physiologically relevant information. We hypothesize that, unlike global filtering, localized removal of ECG artifacts will not change the original EMG signals. We develop an approach to remove the ECG artifacts without altering the amplitude and frequency components of the EMG signal by using an externally recorded ECG signal as a mask to locate areas of the ECG spikes within EMG data. These segments containing ECG spikes were decomposed into 128 sub-wavelets by a custom-scaled Morlet Wavelet Transform. The ECG-related sub-wavelets at the ECG spike location were removed and a de-noised EMG signal was reconstructed. Validity of the proposed method was proven using mathematical simulated synthetic signals and EMG obtained from SCI patients. We compare the Root-mean Square Error and the Relative Change in Variance between this method, global, notch and adaptive filters. The results show that the localized wavelet-based filtering has the benefit of not introducing error in the native EMG signal and accurately removing ECG artifacts from EMG signals.

  3. Implementing wavelet packet transform for valve failure detection using vibration and acoustic emission signals

    International Nuclear Information System (INIS)

    Sim, H Y; Ramli, R; Abdullah, M A K

    2012-01-01

    The efficiency of reciprocating compressors relies heavily on the health condition of its moving components, most importantly its valves. Previous studies showed good correlation between the dynamic response and the physical condition of the valves. These can be achieved by employing vibration technique which is capable of monitoring the response of the valve, and acoustic emission technique which is capable of detecting the valves' material deformation. However, the relationship/comparison between the two techniques is rarely investigated. In this paper, the two techniques were examined using time-frequency analysis. Wavelet packet transform (WPT) was chosen as the multi-resolution analysis technique over continuous wavelet transform (CWT), and discrete wavelet transform (DWT). This is because WPT could overcome the high computational time and high redundancy problem in CWT and could provide detailed analysis of the high frequency components compared to DWT. The features of both signals can be extracted by evaluating the normalised WPT coefficients for different time window under different valve conditions. By comparing the normalised coefficients over a certain time frame and frequency range, the feature vectors revealing the condition of valves can be constructed. One way analysis of variance was employed on these feature vectors to test the significance of data under different valve conditions. It is believed that AE signals can give a better representation of the valve condition as it can detect both the fluid motion and material deformation of valves as compared to the vibration signals.

  4. A new fractional wavelet transform

    Science.gov (United States)

    Dai, Hongzhe; Zheng, Zhibao; Wang, Wei

    2017-03-01

    The fractional Fourier transform (FRFT) is a potent tool to analyze the time-varying signal. However, it fails in locating the fractional Fourier domain (FRFD)-frequency contents which is required in some applications. A novel fractional wavelet transform (FRWT) is proposed to solve this problem. It displays the time and FRFD-frequency information jointly in the time-FRFD-frequency plane. The definition, basic properties, inverse transform and reproducing kernel of the proposed FRWT are considered. It has been shown that an FRWT with proper order corresponds to the classical wavelet transform (WT). The multiresolution analysis (MRA) associated with the developed FRWT, together with the construction of the orthogonal fractional wavelets are also presented. Three applications are discussed: the analysis of signal with time-varying frequency content, the FRFD spectrum estimation of signals that involving noise, and the construction of fractional Harr wavelet. Simulations verify the validity of the proposed FRWT.

  5. Multivariate wavelet frames

    CERN Document Server

    Skopina, Maria; Protasov, Vladimir

    2016-01-01

    This book presents a systematic study of multivariate wavelet frames with matrix dilation, in particular, orthogonal and bi-orthogonal bases, which are a special case of frames. Further, it provides algorithmic methods for the construction of dual and tight wavelet frames with a desirable approximation order, namely compactly supported wavelet frames, which are commonly required by engineers. It particularly focuses on methods of constructing them. Wavelet bases and frames are actively used in numerous applications such as audio and graphic signal processing, compression and transmission of information. They are especially useful in image recovery from incomplete observed data due to the redundancy of frame systems. The construction of multivariate wavelet frames, especially bases, with desirable properties remains a challenging problem as although a general scheme of construction is well known, its practical implementation in the multidimensional setting is difficult. Another important feature of wavelet is ...

  6. Wavelet basics

    CERN Document Server

    Chan, Y T

    1995-01-01

    Since the study of wavelets is a relatively new area, much of the research coming from mathematicians, most of the literature uses terminology, concepts and proofs that may, at times, be difficult and intimidating for the engineer. Wavelet Basics has therefore been written as an introductory book for scientists and engineers. The mathematical presentation has been kept simple, the concepts being presented in elaborate detail in a terminology that engineers will find familiar. Difficult ideas are illustrated with examples which will also aid in the development of an intuitive insight. Chapter 1 reviews the basics of signal transformation and discusses the concepts of duals and frames. Chapter 2 introduces the wavelet transform, contrasts it with the short-time Fourier transform and clarifies the names of the different types of wavelet transforms. Chapter 3 links multiresolution analysis, orthonormal wavelets and the design of digital filters. Chapter 4 gives a tour d'horizon of topics of current interest: wave...

  7. Wavelet analysis and its applications an introduction

    CERN Document Server

    Yajnik, Archit

    2013-01-01

    "Wavelet analysis and its applications: an introduction" demonstrates the consequences of Fourier analysis and introduces the concept of wavelet followed by applications lucidly. While dealing with one dimension signals, sometimes they are required to be oversampled. A novel technique of oversampling the digital signal is introduced in this book alongwith necessary illustrations. The technique of feature extraction in the development of optical character recognition software for any natural language alongwith wavelet based feature extraction technique is demonstrated using multiresolution analysis of wavelet in the book.

  8. Rejection of the maternal electrocardiogram in the electrohysterogram signal.

    Science.gov (United States)

    Leman, H; Marque, C

    2000-08-01

    The electrohysterogram (EHG) signal is mainly corrupted by the mother's electrocardiogram (ECG), which remains present despite analog filtering during acquisition. Wavelets are a powerful denoising tool and have already proved their efficiency on the EHG. In this paper, we propose a new method that employs the redundant wavelet packet transform. We first study wavelet packet coefficient histograms and propose an algorithm to automatically detect the histogram mode number. Using a new criterion, we compute a best basis adapted to the denoising. After EHG wavelet packet coefficient thresholding in the selected basis, the inverse transform is applied. The ECG seems to be very efficiently removed.

  9. Application of complex discrete wavelet transform in classification of Doppler signals using complex-valued artificial neural network.

    Science.gov (United States)

    Ceylan, Murat; Ceylan, Rahime; Ozbay, Yüksel; Kara, Sadik

    2008-09-01

    In biomedical signal classification, due to the huge amount of data, to compress the biomedical waveform data is vital. This paper presents two different structures formed using feature extraction algorithms to decrease size of feature set in training and test data. The proposed structures, named as wavelet transform-complex-valued artificial neural network (WT-CVANN) and complex wavelet transform-complex-valued artificial neural network (CWT-CVANN), use real and complex discrete wavelet transform for feature extraction. The aim of using wavelet transform is to compress data and to reduce training time of network without decreasing accuracy rate. In this study, the presented structures were applied to the problem of classification in carotid arterial Doppler ultrasound signals. Carotid arterial Doppler ultrasound signals were acquired from left carotid arteries of 38 patients and 40 healthy volunteers. The patient group included 22 males and 16 females with an established diagnosis of the early phase of atherosclerosis through coronary or aortofemoropopliteal (lower extremity) angiographies (mean age, 59 years; range, 48-72 years). Healthy volunteers were young non-smokers who seem to not bear any risk of atherosclerosis, including 28 males and 12 females (mean age, 23 years; range, 19-27 years). Sensitivity, specificity and average detection rate were calculated for comparison, after training and test phases of all structures finished. These parameters have demonstrated that training times of CVANN and real-valued artificial neural network (RVANN) were reduced using feature extraction algorithms without decreasing accuracy rate in accordance to our aim.

  10. Wavelet analysis to decompose a vibration simulation signal to improve pre-distribution testing of packaging

    Science.gov (United States)

    Griffiths, K. R.; Hicks, B. J.; Keogh, P. S.; Shires, D.

    2016-08-01

    In general, vehicle vibration is non-stationary and has a non-Gaussian probability distribution; yet existing testing methods for packaging design employ Gaussian distributions to represent vibration induced by road profiles. This frequently results in over-testing and/or over-design of the packaging to meet a specification and correspondingly leads to wasteful packaging and product waste, which represent 15bn per year in the USA and €3bn per year in the EU. The purpose of the paper is to enable a measured non-stationary acceleration signal to be replaced by a constructed signal that includes as far as possible any non-stationary characteristics from the original signal. The constructed signal consists of a concatenation of decomposed shorter duration signals, each having its own kurtosis level. Wavelet analysis is used for the decomposition process into inner and outlier signal components. The constructed signal has a similar PSD to the original signal, without incurring excessive acceleration levels. This allows an improved and more representative simulated input signal to be generated that can be used on the current generation of shaker tables. The wavelet decomposition method is also demonstrated experimentally through two correlation studies. It is shown that significant improvements over current international standards for packaging testing are achievable; hence the potential for more efficient packaging system design is possible.

  11. Parsimonious Wavelet Kernel Extreme Learning Machine

    Directory of Open Access Journals (Sweden)

    Wang Qin

    2015-11-01

    Full Text Available In this study, a parsimonious scheme for wavelet kernel extreme learning machine (named PWKELM was introduced by combining wavelet theory and a parsimonious algorithm into kernel extreme learning machine (KELM. In the wavelet analysis, bases that were localized in time and frequency to represent various signals effectively were used. Wavelet kernel extreme learning machine (WELM maximized its capability to capture the essential features in “frequency-rich” signals. The proposed parsimonious algorithm also incorporated significant wavelet kernel functions via iteration in virtue of Householder matrix, thus producing a sparse solution that eased the computational burden and improved numerical stability. The experimental results achieved from the synthetic dataset and a gas furnace instance demonstrated that the proposed PWKELM is efficient and feasible in terms of improving generalization accuracy and real time performance.

  12. Convergence acceleration of Navier-Stokes equation using adaptive wavelet method

    International Nuclear Information System (INIS)

    Kang, Hyung Min; Ghafoor, Imran; Lee, Do Hyung

    2010-01-01

    An efficient adaptive wavelet method is proposed for the enhancement of computational efficiency of the Navier-Stokes equations. The method is based on sparse point representation (SPR), which uses the wavelet decomposition and thresholding to obtain a sparsely distributed dataset. The threshold mechanism is modified in order to maintain the spatial accuracy of a conventional Navier-Stokes solver by adapting the threshold value to the order of spatial truncation error. The computational grid can be dynamically adapted to a transient solution to reflect local changes in the solution. The flux evaluation is then carried out only at the points of the adapted dataset, which reduces the computational effort and memory requirements. A stabilization technique is also implemented to avoid the additional numerical errors introduced by the threshold procedure. The numerical results of the adaptive wavelet method are compared with a conventional solver to validate the enhancement in computational efficiency of Navier-Stokes equations without the degeneration of the numerical accuracy of a conventional solver

  13. Multiscale peak detection in wavelet space.

    Science.gov (United States)

    Zhang, Zhi-Min; Tong, Xia; Peng, Ying; Ma, Pan; Zhang, Ming-Jin; Lu, Hong-Mei; Chen, Xiao-Qing; Liang, Yi-Zeng

    2015-12-07

    Accurate peak detection is essential for analyzing high-throughput datasets generated by analytical instruments. Derivatives with noise reduction and matched filtration are frequently used, but they are sensitive to baseline variations, random noise and deviations in the peak shape. A continuous wavelet transform (CWT)-based method is more practical and popular in this situation, which can increase the accuracy and reliability by identifying peaks across scales in wavelet space and implicitly removing noise as well as the baseline. However, its computational load is relatively high and the estimated features of peaks may not be accurate in the case of peaks that are overlapping, dense or weak. In this study, we present multi-scale peak detection (MSPD) by taking full advantage of additional information in wavelet space including ridges, valleys, and zero-crossings. It can achieve a high accuracy by thresholding each detected peak with the maximum of its ridge. It has been comprehensively evaluated with MALDI-TOF spectra in proteomics, the CAMDA 2006 SELDI dataset as well as the Romanian database of Raman spectra, which is particularly suitable for detecting peaks in high-throughput analytical signals. Receiver operating characteristic (ROC) curves show that MSPD can detect more true peaks while keeping the false discovery rate lower than MassSpecWavelet and MALDIquant methods. Superior results in Raman spectra suggest that MSPD seems to be a more universal method for peak detection. MSPD has been designed and implemented efficiently in Python and Cython. It is available as an open source package at .

  14. Rapid limit tests for metal impurities in pharmaceutical materials by X-ray fluorescence spectroscopy using wavelet transform filtering.

    Science.gov (United States)

    Arzhantsev, Sergey; Li, Xiang; Kauffman, John F

    2011-02-01

    We introduce a new method for analysis of X-ray fluorescence (XRF) spectra based on continuous wavelet transform filters, and the method is applied to the determination of toxic metals in pharmaceutical materials using hand-held XRF spectrometers. The method uses the continuous wavelet transform to filter the signal and noise components of the spectrum. We present a limit test that compares the wavelet domain signal-to-noise ratios at the energies of the elements of interest to an empirically determined signal-to-noise decision threshold. The limit test is advantageous because it does not require the user to measure calibration samples prior to measurement, though system suitability tests are still recommended. The limit test was evaluated in a collaborative study that involved five different hand-held XRF spectrometers used by multiple analysts in six separate laboratories across the United States. In total, more than 1200 measurements were performed. The detection limits estimated for arsenic, lead, mercury, and chromium were 8, 14, 20, and 150 μg/g, respectively.

  15. Investigation of using wavelet analysis for classifying pattern of cyclic voltammetry signals

    Science.gov (United States)

    Jityen, Arthit; Juagwon, Teerasak; Jaisuthi, Rawat; Osotchan, Tanakorn

    2017-09-01

    Wavelet analysis is an excellent technique for data processing analysis based on linear vector algebra since it has an ability to perform local analysis and is able to analyze an unspecific localized area of a large signal. In this work, the wavelet analysis of cyclic waveform was investigated in order to find the distinguishable feature from the cyclic data. The analyzed wavelet coefficients were proposed to be used as selected cyclic feature parameters. The cyclic voltammogram (CV) of different electrodes consisting of carbon nanotube (CNT) and several types of metal phthalocyanine (MPc) including CoPc, FePc, ZnPc and MnPc powders was used as several sets of cyclic data for various types of coffee. The mixture powder was embedded in a hollow Teflon rod and used as working electrodes. Electrochemical response of the fabricated electrodes in Robusta, blend coffee I, blend coffee II, chocolate malt and cocoa at the same concentrations was measured with scanning rate of 0.05V/s from -1.5 to 1.5V respectively to Ag/AgCl electrode for five scanning loops. The CV of blended CNT electrode with some MPc electrodes indicated the ionic interaction which can be the effect of catalytic oxidation of saccharides and/or polyphenol on the sensor surface. The major information of CV response can be extracted by using several mother wavelet families viz. daubechies (dB1 to dB3), coiflets (coiflet1), biorthogonal (Bior1.1) and symlets (sym2) and then the discrimination of these wavelet coefficients of each data group can be separated by principal component analysis (PCA). The PCA results indicated the clearly separate groups with total contribution more than 62.37% representing from PC1 and PC2.

  16. Visualization of synchronization of the uterine contraction signals: running cross-correlation and wavelet running cross-correlation methods.

    Science.gov (United States)

    Oczeretko, Edward; Swiatecka, Jolanta; Kitlas, Agnieszka; Laudanski, Tadeusz; Pierzynski, Piotr

    2006-01-01

    In physiological research, we often study multivariate data sets, containing two or more simultaneously recorded time series. The aim of this paper is to present the cross-correlation and the wavelet cross-correlation methods to assess synchronization between contractions in different topographic regions of the uterus. From a medical point of view, it is important to identify time delays between contractions, which may be of potential diagnostic significance in various pathologies. The cross-correlation was computed in a moving window with a width corresponding to approximately two or three contractions. As a result, the running cross-correlation function was obtained. The propagation% parameter assessed from this function allows quantitative description of synchronization in bivariate time series. In general, the uterine contraction signals are very complicated. Wavelet transforms provide insight into the structure of the time series at various frequencies (scales). To show the changes of the propagation% parameter along scales, a wavelet running cross-correlation was used. At first, the continuous wavelet transforms as the uterine contraction signals were received and afterwards, a running cross-correlation analysis was conducted for each pair of transformed time series. The findings show that running functions are very useful in the analysis of uterine contractions.

  17. Alleviating Border Effects in Wavelet Transforms for Nonlinear Time-varying Signal Analysis

    Directory of Open Access Journals (Sweden)

    SU, H.

    2011-08-01

    Full Text Available Border effects are very common in many finite signals analysis and processing approaches using convolution operation. Alleviating the border effects that can occur in the processing of finite-length signals using wavelet transform is considered in this paper. Traditional methods for alleviating the border effects are suitable to compression or coding applications. We propose an algorithm based on Fourier series which is proved to be appropriate to the application of time-frequency analysis of nonlinear signals. Fourier series extension method preserves the time-varying characteristics of the signals. A modified signal duration expression for measuring the extent of border effects region is presented. The proposed algorithm is confirmed to be efficient to alleviate the border effects in comparison to the current methods through the numerical examples.

  18. Multiresolution signal decomposition schemes. Part 2: Morphological wavelets

    NARCIS (Netherlands)

    H.J.A.M. Heijmans (Henk); J. Goutsias (John)

    1999-01-01

    htmlabstractIn its original form, the wavelet transform is a linear tool. However, it has been increasingly recognized that nonlinear extensions are possible. A major impulse to the development of nonlinear wavelet transforms has been given by the introduction of the lifting scheme by Sweldens. The

  19. Nuclear data compression and reconstruction via discrete wavelet transform

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Ryong; Cho, Nam Zin [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-12-31

    Discrete Wavelet Transforms (DWTs) are recent mathematics, and begin to be used in various fields. The wavelet transform can be used to compress the signal and image due to its inherent properties. We applied the wavelet transform compression and reconstruction to the neutron cross section data. Numerical tests illustrate that the signal compression using wavelet is very effective to reduce the data saving spaces. 7 refs., 4 figs., 3 tabs. (Author)

  20. Nuclear data compression and reconstruction via discrete wavelet transform

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Ryong; Cho, Nam Zin [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-12-31

    Discrete Wavelet Transforms (DWTs) are recent mathematics, and begin to be used in various fields. The wavelet transform can be used to compress the signal and image due to its inherent properties. We applied the wavelet transform compression and reconstruction to the neutron cross section data. Numerical tests illustrate that the signal compression using wavelet is very effective to reduce the data saving spaces. 7 refs., 4 figs., 3 tabs. (Author)

  1. Singularity detection by wavelet approach: application to electrocardiogram signal

    Science.gov (United States)

    Jalil, Bushra; Beya, Ouadi; Fauvet, Eric; Laligant, Olivier

    2010-01-01

    In signal processing, the region of abrupt changes contains the most of the useful information about the nature of the signal. The region or the points where these changes occurred are often termed as singular point or singular region. The singularity is considered to be an important character of the signal, as it refers to the discontinuity and interruption present in the signal and the main purpose of the detection of such singular point is to identify the existence, location and size of those singularities. Electrocardiogram (ECG) signal is used to analyze the cardiovascular activity in the human body. However the presence of noise due to several reasons limits the doctor's decision and prevents accurate identification of different pathologies. In this work we attempt to analyze the ECG signal with energy based approach and some heuristic methods to segment and identify different signatures inside the signal. ECG signal has been initially denoised by empirical wavelet shrinkage approach based on Steins Unbiased Risk Estimate (SURE). At the second stage, the ECG signal has been analyzed by Mallat approach based on modulus maximas and Lipschitz exponent computation. The results from both approaches has been discussed and important aspects has been highlighted. In order to evaluate the algorithm, the analysis has been done on MIT-BIH Arrhythmia database; a set of ECG data records sampled at a rate of 360 Hz with 11 bit resolution over a 10mv range. The results have been examined and approved by medical doctors.

  2. WAVELET ANALYSIS OF ABNORMAL ECGS

    Directory of Open Access Journals (Sweden)

    Vasudha Nannaparaju

    2014-02-01

    Full Text Available Detection of the warning signals by the heart can be diagnosed from ECG. An accurate and reliable diagnosis of ECG is very important however which is cumbersome and at times ambiguous in time domain due to the presence of noise. Study of ECG in wavelet domain using both continuous Wavelet transform (CWT and discrete Wavelet transform (DWT, with well known wavelet as well as a wavelet proposed by the authors for this investigation is found to be useful and yields fairly reliable results. In this study, Wavelet analysis of ECGs of Normal, Hypertensive, Diabetic and Cardiac are carried out. The salient feature of the study is that detection of P and T phases in wavelet domain is feasible which are otherwise feeble or absent in raw ECGs.

  3. Improving the quality of brain CT image from Wavelet filters

    International Nuclear Information System (INIS)

    Pita Machado, Reinaldo; Perez Diaz, Marlen; Bravo Pino, Rolando

    2012-01-01

    An algorithm to reduce Poisson noise is described using Wavelet filters. Five tomographic images of patients and a head anthropomorphic phantom were used. They were acquired with two different CT machines. Due to the original images contain the acquisition noise; some simulated free noise lesions were added to the images and after that the whole images were contaminated with noise. Contaminated images were filtered with 9 Wavelet filters at different decomposition levels and thresholds. Image quality of filtered and unfiltered images was graded using the Signal to Noise ratio, Normalized Mean Square Error and the Structural Similarity Index, as well as, by the subjective JAFROC methods with 5 observers. Some filters as Bior 3.7 and dB45 improved in a significant way head CT image quality (p<0.05) producing an increment in SNR without visible structural distortions

  4. Wavelet-based moment invariants for pattern recognition

    Science.gov (United States)

    Chen, Guangyi; Xie, Wenfang

    2011-07-01

    Moment invariants have received a lot of attention as features for identification and inspection of two-dimensional shapes. In this paper, two sets of novel moments are proposed by using the auto-correlation of wavelet functions and the dual-tree complex wavelet functions. It is well known that the wavelet transform lacks the property of shift invariance. A little shift in the input signal will cause very different output wavelet coefficients. The autocorrelation of wavelet functions and the dual-tree complex wavelet functions, on the other hand, are shift-invariant, which is very important in pattern recognition. Rotation invariance is the major concern in this paper, while translation invariance and scale invariance can be achieved by standard normalization techniques. The Gaussian white noise is added to the noise-free images and the noise levels vary with different signal-to-noise ratios. Experimental results conducted in this paper show that the proposed wavelet-based moments outperform Zernike's moments and the Fourier-wavelet descriptor for pattern recognition under different rotation angles and different noise levels. It can be seen that the proposed wavelet-based moments can do an excellent job even when the noise levels are very high.

  5. Wavelets in medical imaging

    International Nuclear Information System (INIS)

    Zahra, Noor e; Sevindir, Huliya A.; Aslan, Zafar; Siddiqi, A. H.

    2012-01-01

    The aim of this study is to provide emerging applications of wavelet methods to medical signals and images, such as electrocardiogram, electroencephalogram, functional magnetic resonance imaging, computer tomography, X-ray and mammography. Interpretation of these signals and images are quite important. Nowadays wavelet methods have a significant impact on the science of medical imaging and the diagnosis of disease and screening protocols. Based on our initial investigations, future directions include neurosurgical planning and improved assessment of risk for individual patients, improved assessment and strategies for the treatment of chronic pain, improved seizure localization, and improved understanding of the physiology of neurological disorders. We look ahead to these and other emerging applications as the benefits of this technology become incorporated into current and future patient care. In this chapter by applying Fourier transform and wavelet transform, analysis and denoising of one of the important biomedical signals like EEG is carried out. The presence of rhythm, template matching, and correlation is discussed by various method. Energy of EEG signal is used to detect seizure in an epileptic patient. We have also performed denoising of EEG signals by SWT.

  6. Wavelets in medical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zahra, Noor e; Sevindir, Huliya A.; Aslan, Zafar; Siddiqi, A. H. [Sharda University, SET, Department of Electronics and Communication, Knowledge Park 3rd, Gr. Noida (India); University of Kocaeli, Department of Mathematics, 41380 Kocaeli (Turkey); Istanbul Aydin University, Department of Computer Engineering, 34295 Istanbul (Turkey); Sharda University, SET, Department of Mathematics, 32-34 Knowledge Park 3rd, Greater Noida (India)

    2012-07-17

    The aim of this study is to provide emerging applications of wavelet methods to medical signals and images, such as electrocardiogram, electroencephalogram, functional magnetic resonance imaging, computer tomography, X-ray and mammography. Interpretation of these signals and images are quite important. Nowadays wavelet methods have a significant impact on the science of medical imaging and the diagnosis of disease and screening protocols. Based on our initial investigations, future directions include neurosurgical planning and improved assessment of risk for individual patients, improved assessment and strategies for the treatment of chronic pain, improved seizure localization, and improved understanding of the physiology of neurological disorders. We look ahead to these and other emerging applications as the benefits of this technology become incorporated into current and future patient care. In this chapter by applying Fourier transform and wavelet transform, analysis and denoising of one of the important biomedical signals like EEG is carried out. The presence of rhythm, template matching, and correlation is discussed by various method. Energy of EEG signal is used to detect seizure in an epileptic patient. We have also performed denoising of EEG signals by SWT.

  7. A wavelet and least square filter based spatial-spectral denoising approach of hyperspectral imagery

    Science.gov (United States)

    Li, Ting; Chen, Xiao-Mei; Chen, Gang; Xue, Bo; Ni, Guo-Qiang

    2009-11-01

    Noise reduction is a crucial step in hyperspectral imagery pre-processing. Based on sensor characteristics, the noise of hyperspectral imagery represents in both spatial and spectral domain. However, most prevailing denosing techniques process the imagery in only one specific domain, which have not utilized multi-domain nature of hyperspectral imagery. In this paper, a new spatial-spectral noise reduction algorithm is proposed, which is based on wavelet analysis and least squares filtering techniques. First, in the spatial domain, a new stationary wavelet shrinking algorithm with improved threshold function is utilized to adjust the noise level band-by-band. This new algorithm uses BayesShrink for threshold estimation, and amends the traditional soft-threshold function by adding shape tuning parameters. Comparing with soft or hard threshold function, the improved one, which is first-order derivable and has a smooth transitional region between noise and signal, could save more details of image edge and weaken Pseudo-Gibbs. Then, in the spectral domain, cubic Savitzky-Golay filter based on least squares method is used to remove spectral noise and artificial noise that may have been introduced in during the spatial denoising. Appropriately selecting the filter window width according to prior knowledge, this algorithm has effective performance in smoothing the spectral curve. The performance of the new algorithm is experimented on a set of Hyperion imageries acquired in 2007. The result shows that the new spatial-spectral denoising algorithm provides more significant signal-to-noise-ratio improvement than traditional spatial or spectral method, while saves the local spectral absorption features better.

  8. Some applications of wavelets to physics

    International Nuclear Information System (INIS)

    Thompson, C.R.

    1992-01-01

    A thorough description of a fast wavelet transform algorithm (FWT) and its inverse (IFWT) are given. The effects of noise in the wavelet transform are studied, in particular the effects on signal reconstruction. A model for additive white noise on the coefficients is presented along with two methods that can help to suppress the effects of noise corruption of the signal. Problems of improper sampling are studied, including the propagation of uncertainty through the FWT and IFWT. Interpolation techniques and data compression are also studied. The FWT and IFWT are generalized for analysis of two dimensional images. Methods for edge detection are discussed as well as contrast improvement and data compression. Finally, wavelets are applied to electromagnetic wave propagation problems. Formulas relating the wavelet and Fourier transforms are given, and expansions of time-dependent electromagnetic fields using both fixed and moving wavelet bases are studied

  9. Comparison of wavelet based denoising schemes for gear condition monitoring: An Artificial Neural Network based Approach

    Science.gov (United States)

    Ahmed, Rounaq; Srinivasa Pai, P.; Sriram, N. S.; Bhat, Vasudeva

    2018-02-01

    Vibration Analysis has been extensively used in recent past for gear fault diagnosis. The vibration signals extracted is usually contaminated with noise and may lead to wrong interpretation of results. The denoising of extracted vibration signals helps the fault diagnosis by giving meaningful results. Wavelet Transform (WT) increases signal to noise ratio (SNR), reduces root mean square error (RMSE) and is effective to denoise the gear vibration signals. The extracted signals have to be denoised by selecting a proper denoising scheme in order to prevent the loss of signal information along with noise. An approach has been made in this work to show the effectiveness of Principal Component Analysis (PCA) to denoise gear vibration signal. In this regard three selected wavelet based denoising schemes namely PCA, Empirical Mode Decomposition (EMD), Neighcoeff Coefficient (NC), has been compared with Adaptive Threshold (AT) an extensively used wavelet based denoising scheme for gear vibration signal. The vibration signals acquired from a customized gear test rig were denoised by above mentioned four denoising schemes. The fault identification capability as well as SNR, Kurtosis and RMSE for the four denoising schemes have been compared. Features extracted from the denoised signals have been used to train and test artificial neural network (ANN) models. The performances of the four denoising schemes have been evaluated based on the performance of the ANN models. The best denoising scheme has been identified, based on the classification accuracy results. PCA is effective in all the regards as a best denoising scheme.

  10. Adaptive Filtering in the Wavelet Transform Domain via Genetic Algorithms

    Science.gov (United States)

    2004-08-06

    wavelet transforms. Whereas the term “evolved” pertains only to the altered wavelet coefficients used during the inverse transform process. 2...words, the inverse transform produces the original signal x(t) from the wavelet and scaling coefficients. )()( ,, tdtx nk n nk k ψ...reconstruct the original signal as accurately as possible. The inverse transform reconstructs an approximation of the original signal (Burrus

  11. Wavelet Analysis of Ultrasonic Echo Waveform and Application to Nondestructive Evaluation

    International Nuclear Information System (INIS)

    Park, Ik Keun; Park, Un Su; Ahn, Hyung Keun; Kwun, Sook In; Byeon, Jai Won

    2000-01-01

    Recently, advanced signal analysis which is called 'time-frequency analysis' has been used widely in nondestructive evaluation applications. Wavelet transform(WT) and Wigner Distribution are the most advanced techniques for processing signals with time-varying spectra. Wavelet analysis method is an attractive technique for evaluation of material characterization nondestructively. Wavelet transform is applied to the time-frequency analysis of ultrasonic echo waveform obtained by an ultrasonic pulse-echo technique. In this study, the feasibility of noise suppression of ultrasonic flaw signal and frequency-dependent ultrasonic group velocity and attenuation coefficient using wavelet analysis of ultrasonic echo waveform have been verified experimentally. The Gabor function is adopted the analyzing wavelet. The wavelet analysis shows that the variations of ultrasonic group velocity and attenuation coefficient due to the change of material characterization can be evaluated at each frequency. Furthermore, to assure the enhancement of detectability and new sizing performance, both computer simulated results and experimental measurements using wavelet signal processing are used to demonstrate the effectiveness of the noise suppression of ultrasonic flaw signal obtained from austenitic stainless steel weld including EDM notch

  12. Estimation of the Tool Condition by Applying the Wavelet Transform to Acoustic Emission Signals

    International Nuclear Information System (INIS)

    Gomez, M. P.; Piotrkowski, R.; Ruzzante, J. E.; D'Attellis, C. E.

    2007-01-01

    This work follows the search of parameters to evaluate the tool condition in machining processes. The selected sensing technique is acoustic emission and it is applied to a turning process of steel samples. The obtained signals are studied using the wavelet transformation. The tool wear level is quantified as a percentage of the final wear specified by the Standard ISO 3685. The amplitude and relevant scale obtained of acoustic emission signals could be related with the wear level

  13. A wavelet filtering method for cumulative gamma spectroscopy used in wear measurements

    International Nuclear Information System (INIS)

    Bianchi, Davide; Lenauer, Claudia; Betz, Gerhard; Vernes, András

    2017-01-01

    Continuous ultra-mild wear quantification using radioactive isotopes involves measuring very low amounts of activity in limited time intervals. This results in gamma spectra with poor signal-to-noise ratio and hence very scattered wear data, especially during running-in, where wear is intrinsically low. Therefore, advanced filtering methods reducing the wear data scattering and making the calculation of the main peak area more accurate are mandatory. An energy-time dependent threshold for wavelet detail coefficients based on Poisson statistics and using a combined Barwell law for the estimation of the average photon counting rate is then introduced. In this manner, it was shown that the accuracy of running-in wear quantification is enhanced. - Highlights: • Time-dependent Poisson statistics. • Wavelet-based filtering of cumulative gamma spectra. • Improvement of low wear analysis.

  14. Value-at-risk estimation with wavelet-based extreme value theory: Evidence from emerging markets

    Science.gov (United States)

    Cifter, Atilla

    2011-06-01

    This paper introduces wavelet-based extreme value theory (EVT) for univariate value-at-risk estimation. Wavelets and EVT are combined for volatility forecasting to estimate a hybrid model. In the first stage, wavelets are used as a threshold in generalized Pareto distribution, and in the second stage, EVT is applied with a wavelet-based threshold. This new model is applied to two major emerging stock markets: the Istanbul Stock Exchange (ISE) and the Budapest Stock Exchange (BUX). The relative performance of wavelet-based EVT is benchmarked against the Riskmetrics-EWMA, ARMA-GARCH, generalized Pareto distribution, and conditional generalized Pareto distribution models. The empirical results show that the wavelet-based extreme value theory increases predictive performance of financial forecasting according to number of violations and tail-loss tests. The superior forecasting performance of the wavelet-based EVT model is also consistent with Basel II requirements, and this new model can be used by financial institutions as well.

  15. Wavelets, vibrations and scalings

    CERN Document Server

    Meyer, Yves

    1997-01-01

    Physicists and mathematicians are intensely studying fractal sets of fractal curves. Mandelbrot advocated modeling of real-life signals by fractal or multifractal functions. One example is fractional Brownian motion, where large-scale behavior is related to a corresponding infrared divergence. Self-similarities and scaling laws play a key role in this new area. There is a widely accepted belief that wavelet analysis should provide the best available tool to unveil such scaling laws. And orthonormal wavelet bases are the only existing bases which are structurally invariant through dyadic dilations. This book discusses the relevance of wavelet analysis to problems in which self-similarities are important. Among the conclusions drawn are the following: 1) A weak form of self-similarity can be given a simple characterization through size estimates on wavelet coefficients, and 2) Wavelet bases can be tuned in order to provide a sharper characterization of this self-similarity. A pioneer of the wavelet "saga", Meye...

  16. The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance

    Energy Technology Data Exchange (ETDEWEB)

    Kingsbury, J Ng and N G [Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)

    2004-02-06

    wavelet. The second half of the chapter groups together miscellaneous points about the discrete wavelet transform, including coefficient manipulation for signal denoising and smoothing, a description of Daubechies' wavelets, the properties of translation invariance and biorthogonality, the two-dimensional discrete wavelet transforms and wavelet packets. The fourth chapter is dedicated to wavelet transform methods in the author's own specialty, fluid mechanics. Beginning with a definition of wavelet-based statistical measures for turbulence, the text proceeds to describe wavelet thresholding in the analysis of fluid flows. The remainder of the chapter describes wavelet analysis of engineering flows, in particular jets, wakes, turbulence and coherent structures, and geophysical flows, including atmospheric and oceanic processes. The fifth chapter describes the application of wavelet methods in various branches of engineering, including machining, materials, dynamics and information engineering. Unlike previous chapters, this (and subsequent) chapters are styled more as literature reviews that describe the findings of other authors. The areas addressed in this chapter include: the monitoring of machining processes, the monitoring of rotating machinery, dynamical systems, chaotic systems, non-destructive testing, surface characterization and data compression. The sixth chapter continues in this vein with the attention now turned to wavelets in the analysis of medical signals. Most of the chapter is devoted to the analysis of one-dimensional signals (electrocardiogram, neural waveforms, acoustic signals etc.), although there is a small section on the analysis of two-dimensional medical images. The seventh and final chapter of the book focuses on the application of wavelets in three seemingly unrelated application areas: fractals, finance and geophysics. The treatment on wavelet methods in fractals focuses on stochastic fractals with a short section on multifractals

  17. Wavelet denoising method; application to the flow rate estimation for water level control

    International Nuclear Information System (INIS)

    Park, Gee Young; Park, Jin Ho; Lee, Jung Han; Kim, Bong Soo; Seong, Poong Hyun

    2003-01-01

    The wavelet transform decomposes a signal into time- and frequency-domain signals and it is well known that a noise-corrupted signal could be reconstructed or estimated when a proper denoising method is involved in the wavelet transform. Among the wavelet denoising methods proposed up to now, the wavelets by Mallat and Zhong can reconstruct best the pure transient signal from a highly corrupted signal. But there has been no systematic way of discriminating the original signal from the noise in a dyadic wavelet transform. In this paper, a systematic method is proposed for noise discrimination, which could be implemented easily into a digital system. For demonstrating the potential role of the wavelet denoising method in the nuclear field, this method is applied to the steam or feedwater flow rate estimation of the secondary loop. And the configuration of the S/G water level control system is proposed for incorporating the wavelet denoising method in estimating the flow rate value at low operating powers

  18. Mass Detection in Mammographic Images Using Wavelet Processing and Adaptive Threshold Technique.

    Science.gov (United States)

    Vikhe, P S; Thool, V R

    2016-04-01

    Detection of mass in mammogram for early diagnosis of breast cancer is a significant assignment in the reduction of the mortality rate. However, in some cases, screening of mass is difficult task for radiologist, due to variation in contrast, fuzzy edges and noisy mammograms. Masses and micro-calcifications are the distinctive signs for diagnosis of breast cancer. This paper presents, a method for mass enhancement using piecewise linear operator in combination with wavelet processing from mammographic images. The method includes, artifact suppression and pectoral muscle removal based on morphological operations. Finally, mass segmentation for detection using adaptive threshold technique is carried out to separate the mass from background. The proposed method has been tested on 130 (45 + 85) images with 90.9 and 91 % True Positive Fraction (TPF) at 2.35 and 2.1 average False Positive Per Image(FP/I) from two different databases, namely Mammographic Image Analysis Society (MIAS) and Digital Database for Screening Mammography (DDSM). The obtained results show that, the proposed technique gives improved diagnosis in the early breast cancer detection.

  19. Selection of the wavelet function for the frequencies estimation; Seleccion de la funcion wavelet para la estimacion de frecuencias

    Energy Technology Data Exchange (ETDEWEB)

    Garcia R, A. [ININ, Carretera Mexico-Toluca S/N, 52750 La Marquesa, Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: ramador@nuclear.inin.mx

    2007-07-01

    At the moment the signals are used to diagnose the state of the systems, by means of the extraction of their more important characteristics such as the frequencies, tendencies, changes and temporary evolutions. This characteristics are detected by means of diverse analysis techniques, as Autoregressive methods, Fourier Transformation, Fourier transformation in short time, Wavelet transformation, among others. The present work uses the one Wavelet transformation because it allows to analyze stationary, quasi-stationary and transitory signals in the time-frequency plane. It also describes a methodology to select the scales and the Wavelet function to be applied the one Wavelet transformation with the objective of detecting to the dominant system frequencies. (Author)

  20. Detection of combustion start in the controlled auto ignition engine by wavelet transform of the engine block vibration signal

    International Nuclear Information System (INIS)

    Kim, Seonguk; Min, Kyoungdoug

    2008-01-01

    The CAI (controlled auto ignition) engine ignites fuel and air mixture by trapping high temperature burnt gas using a negative valve overlap. Due to auto ignition in CAI combustion, efficiency improvements and low level NO x emission can be obtained. Meanwhile, the CAI combustion regime is restricted and control parameters are limited. The start of combustion data in the compressed ignition engine are most critical for controlling the overall combustion. In this research, the engine block vibration signal is transformed by the Meyer wavelet to analyze CAI combustion more easily and accurately. Signal acquisition of the engine block vibration is a more suitable method for practical use than measurement of in-cylinder pressure. A new method for detecting combustion start in CAI engines through wavelet transformation of the engine block vibration signal was developed and results indicate that it is accurate enough to analyze the start of combustion. Experimental results show that wavelet transformation of engine block vibration can track the start of combustion in each cycle. From this newly developed method, the start of combustion data in CAI engines can be detected more easily and used as input data for controlling CAI combustion

  1. Detection of combustion start in the controlled auto ignition engine by wavelet transform of the engine block vibration signal

    Science.gov (United States)

    Kim, Seonguk; Min, Kyoungdoug

    2008-08-01

    The CAI (controlled auto ignition) engine ignites fuel and air mixture by trapping high temperature burnt gas using a negative valve overlap. Due to auto ignition in CAI combustion, efficiency improvements and low level NOx emission can be obtained. Meanwhile, the CAI combustion regime is restricted and control parameters are limited. The start of combustion data in the compressed ignition engine are most critical for controlling the overall combustion. In this research, the engine block vibration signal is transformed by the Meyer wavelet to analyze CAI combustion more easily and accurately. Signal acquisition of the engine block vibration is a more suitable method for practical use than measurement of in-cylinder pressure. A new method for detecting combustion start in CAI engines through wavelet transformation of the engine block vibration signal was developed and results indicate that it is accurate enough to analyze the start of combustion. Experimental results show that wavelet transformation of engine block vibration can track the start of combustion in each cycle. From this newly developed method, the start of combustion data in CAI engines can be detected more easily and used as input data for controlling CAI combustion.

  2. Characterization of EEG Signals Using Wavelet Packet and Fuzzy Entropy in Motor Imagination Tasks

    Directory of Open Access Journals (Sweden)

    Boris Alexander Medina

    2017-05-01

    Full Text Available Context:  Clinical rhythm analysis on advanced signal processing methods is very important in medical areas such as brain disorder diagnostic, epilepsy, sleep analysis, anesthesia analysis, and more recently in brain-computer interfaces (BCI. Method: Wavelet transform package is used on this work to extract brain rhythms of electroencephalographic signals (EEG related to motor imagination tasks. We used the Competition BCI 2008 database for this characterization. Using statistical functions we obtained features that characterizes brain rhythms, which are discriminated using different classifiers; they were evaluated using a 10-fold cross validation criteria. Results: The classification accuracy achieved 81.11% on average, with a degree of agreement of 61%, indicating a "suitable" concordance, as it has been reported in the literature. An analysis of relevance showed the concentration of characteristics provided in the nodes as a result of Wavelet decomposition, as well as the characteristics that more information content contribute to improve the separability decision region for the classification task. Conclusions: The proposed method can be used as a reference to support future studies focusing on characterizing EEG signals oriented to the imagination of left and right hand movement, considering that our results proved to compared favourably to those reported in the literature. Language: Spanish.

  3. Spectrogram analysis of selected tremor signals using short-time Fourier transform and continuous wavelet transform

    Directory of Open Access Journals (Sweden)

    D. Seidl

    1999-06-01

    Full Text Available Among a variety of spectrogram methods Short-Time Fourier Transform (STFT and Continuous Wavelet Transform (CWT were selected to analyse transients in non-stationary tremor signals. Depending on the properties of the tremor signal a more suitable representation of the signal is gained by CWT. Three selected broadband tremor signals from the volcanos Mt. Stromboli, Mt. Semeru and Mt. Pinatubo were analyzed using both methods. The CWT can also be used to extend the definition of coherency into a time-varying coherency spectrogram. An example is given using array data from the volcano Mt. Stromboli.

  4. Wavelet-transform-based time–frequency domain reflectometry for reduction of blind spot

    International Nuclear Information System (INIS)

    Lee, Sin Ho; Park, Jin Bae; Choi, Yoon Ho

    2012-01-01

    In this paper, wavelet-transform-based time–frequency domain reflectometry (WTFDR) is proposed to reduce the blind spot in reflectometry. TFDR has a blind spot problem when the time delay between the reference signal and the reflected signal is short enough compared with the time duration of the reference signal. To solve the blind spot problem, the wavelet transform (WT) is used because the WT has linearity. Using the characteristics of the WT, the overlapped reference signal at the measured signal can be separated and the blind spot is reduced by obtaining the difference of the wavelet coefficients for the reference and reflected signals. In the proposed method, the complex wavelet is utilized as a mother wavelet because the reference signal in WTFDR has a complex form. Finally, the computer simulations and the real experiments are carried out to confirm the effectiveness and accuracy of the proposed method. (paper)

  5. Wavelet analysis of frequency chaos game signal: a time-frequency signature of the C. elegans DNA.

    Science.gov (United States)

    Messaoudi, Imen; Oueslati, Afef Elloumi; Lachiri, Zied

    2014-12-01

    Challenging tasks are encountered in the field of bioinformatics. The choice of the genomic sequence's mapping technique is one the most fastidious tasks. It shows that a judicious choice would serve in examining periodic patterns distribution that concord with the underlying structure of genomes. Despite that, searching for a coding technique that can highlight all the information contained in the DNA has not yet attracted the attention it deserves. In this paper, we propose a new mapping technique based on the chaos game theory that we call the frequency chaos game signal (FCGS). The particularity of the FCGS coding resides in exploiting the statistical properties of the genomic sequence itself. This may reflect important structural and organizational features of DNA. To prove the usefulness of the FCGS approach in the detection of different local periodic patterns, we use the wavelet analysis because it provides access to information that can be obscured by other time-frequency methods such as the Fourier analysis. Thus, we apply the continuous wavelet transform (CWT) with the complex Morlet wavelet as a mother wavelet function. Scalograms that relate to the organism Caenorhabditis elegans (C. elegans) exhibit a multitude of periodic organization of specific DNA sequences.

  6. Evaluation of cardiac signals using discrete wavelet transform with MATLAB graphical user interface.

    Science.gov (United States)

    John, Agnes Aruna; Subramanian, Aruna Priyadharshni; Jaganathan, Saravana Kumar; Sethuraman, Balasubramanian

    2015-01-01

    To process the electrocardiogram (ECG) signals using MATLAB-based graphical user interface (GUI) and to classify the signals based on heart rate. The subject condition was identified using R-peak detection based on discrete wavelet transform followed by a Bayes classifier that classifies the ECG signals. The GUI was designed to display the ECG signal plot. Obtained from MIT database 18 patients had normal heart rate and 9 patients had abnormal heart rate; 14.81% of the patients suffered from tachycardia and 18.52% of the patients have bradycardia. The proposed GUI display was found useful to analyze the digitized ECG signal by a non-technical user and may help in diagnostics. Further improvement can be done by employing field programmable gate array for the real time processing of cardiac signals. Copyright © 2015 Cardiological Society of India. Published by Elsevier B.V. All rights reserved.

  7. CVTresh: R Package for Level-Dependent Cross-Validation Thresholding

    Directory of Open Access Journals (Sweden)

    Donghoh Kim

    2006-04-01

    Full Text Available The core of the wavelet approach to nonparametric regression is thresholding of wavelet coefficients. This paper reviews a cross-validation method for the selection of the thresholding value in wavelet shrinkage of Oh, Kim, and Lee (2006, and introduces the R package CVThresh implementing details of the calculations for the procedures. This procedure is implemented by coupling a conventional cross-validation with a fast imputation method, so that it overcomes a limitation of data length, a power of 2. It can be easily applied to the classical leave-one-out cross-validation and K-fold cross-validation. Since the procedure is computationally fast, a level-dependent cross-validation can be developed for wavelet shrinkage of data with various sparseness according to levels.

  8. CVTresh: R Package for Level-Dependent Cross-Validation Thresholding

    Directory of Open Access Journals (Sweden)

    Donghoh Kim

    2006-04-01

    Full Text Available The core of the wavelet approach to nonparametric regression is thresholding of wavelet coefficients. This paper reviews a cross-validation method for the selection of the thresholding value in wavelet shrinkage of Oh, Kim, and Lee (2006, and introduces the R package CVThresh implementing details of the calculations for the procedures.This procedure is implemented by coupling a conventional cross-validation with a fast imputation method, so that it overcomes a limitation of data length, a power of 2. It can be easily applied to the classical leave-one-out cross-validation and K-fold cross-validation. Since the procedure is computationally fast, a level-dependent cross-validation can be developed for wavelet shrinkage of data with various sparseness according to levels.

  9. Wavelets a primer

    CERN Document Server

    Blatter, Christian

    1998-01-01

    The Wavelet Transform has stimulated research that is unparalleled since the invention of the Fast Fourier Transform and has opened new avenues of applications in signal processing, image compression, radiology, cardiology, and many other areas. This book grew out of a short course for mathematics students at the ETH in Zurich; it provides a solid mathematical foundation for the broad range of applications enjoyed by the wavelet transform. Numerous illustrations and fully worked out examples enhance the book.

  10. Spectrogram analysis of selected tremor signals using short-time Fourier transform and continuous wavelet transform

    Energy Technology Data Exchange (ETDEWEB)

    Bartosch, T. [Erlanger-Nuernberg Univ., Erlanger (Germany). Lehrstul fuer Nachrichtentechnik I; Seidl, D. [Seismologisches Zentralobservatorium Graefenberg, Erlanegen (Greece). Bundesanstalt fuer Geiwissenschaften und Rohstoffe

    1999-06-01

    Among a variety of spectrogram methods short-time Fourier transform (STFT) and continuous wavelet transform (CWT) were selected to analyse transients in non-stationary signals. Depending on the properties of the tremor signals from the volcanos Mt. Stromboli, Mt. Semeru and Mt. Pinatubo were analyzed using both methods. The CWT can also be used to extend the definition of coherency into a time-varying coherency spectrogram. An example is given using array data from the volcano Mt. Stromboli (Italy).

  11. Joint Time-Frequency And Wavelet Analysis - An Introduction

    Directory of Open Access Journals (Sweden)

    Majkowski Andrzej

    2014-12-01

    Full Text Available A traditional frequency analysis is not appropriate for observation of properties of non-stationary signals. This stems from the fact that the time resolution is not defined in the Fourier spectrum. Thus, there is a need for methods implementing joint time-frequency analysis (t/f algorithms. Practical aspects of some representative methods of time-frequency analysis, including Short Time Fourier Transform, Gabor Transform, Wigner-Ville Transform and Cone-Shaped Transform are described in this paper. Unfortunately, there is no correlation between the width of the time-frequency window and its frequency content in the t/f analysis. This property is not valid in the case of a wavelet transform. A wavelet is a wave-like oscillation, which forms its own “wavelet window”. Compression of the wavelet narrows the window, and vice versa. Individual wavelet functions are well localized in time and simultaneously in scale (the equivalent of frequency. The wavelet analysis owes its effectiveness to the pyramid algorithm described by Mallat, which enables fast decomposition of a signal into wavelet components.

  12. Noise removal for medical X-ray images in wavelet domain

    International Nuclear Information System (INIS)

    Wang, Ling; Lu, Jianming; Li, Yeqiu; Yahagi, Takashi; Okamoto, Takahide

    2006-01-01

    Many important problems in engineering and science are well-modeled by Poisson noise, the noise of medical X-ray image is Poisson noise. In this paper, we propose a method of noise removal for degraded medical X-ray image using improved preprocessing and improved BayesShrink (IBS) method in wavelet domain. Firstly, we pre-process the medical X-ray image, Secondly, we apply the Daubechies (db) wavelet transform to medical X-ray image to acquire scaling and wavelet coefficients. Thirdly, we apply the proposed IBS method to process wavelet coefficients. Finally, we compute the inverse wavelet transform for the thresholded coefficeints. Experimental results show that the proposed method always outperforms traditional methods. (author)

  13. Discrete wavelet transform-based denoising technique for advanced state-of-charge estimator of a lithium-ion battery in electric vehicles

    International Nuclear Information System (INIS)

    Lee, Seongjun; Kim, Jonghoon

    2015-01-01

    Sophisticated data of the experimental DCV (discharging/charging voltage) of a lithium-ion battery is required for high-accuracy SOC (state-of-charge) estimation algorithms based on the state-space ECM (electrical circuit model) in BMSs (battery management systems). However, when sensing noisy DCV signals, erroneous SOC estimation (which results in low BMS performance) is inevitable. Therefore, this manuscript describes the design and implementation of a DWT (discrete wavelet transform)-based denoising technique for DCV signals. The steps for denoising a noisy DCV measurement in the proposed approach are as follows. First, using MRA (multi-resolution analysis), the noise-riding DCV signal is decomposed into different frequency sub-bands (low- and high-frequency components, A n and D n ). Specifically, signal processing of the high frequency component D n that focuses on a short-time interval is necessary to reduce noise in the DCV measurement. Second, a hard-thresholding-based denoising rule is applied to adjust the wavelet coefficients of the DWT to achieve a clear separation between the signal and the noise. Third, the desired de-noised DCV signal is reconstructed by taking the IDWT (inverse discrete wavelet transform) of the filtered detailed coefficients. Finally, this signal is sent to the ECM-based SOC estimation algorithm using an EKF (extended Kalman filter). Experimental results indicate the robustness of the proposed approach for reliable SOC estimation. - Highlights: • Sophisticated data of the experimental DCV is required for high-accuracy SOC. • DWT (discrete wavelet transform)-based denoising technique is newly investigated. • Three steps for denoising a noisy DCV measurement in this work are implemented. • Experimental results indicate the robustness of the proposed work for reliable SOC

  14. Evolutive Optimization of Wavelets and Shapelets for Bioelectrical Signal Analysis

    OpenAIRE

    Pinzón Morales, Rubén Dario

    2011-01-01

    análisis Wavelet es una poderosa herramienta para el procesamiento de señal digital. Ha sido ampliamente utilizado en señales bioeléctricas incluyendo evocar potenciales relacionados (ERP), señales de electromiografía (EMG), grabaciones de microelectrodos (MER), electrocardiograma (ECG), electroencefalogramas (EEG), entre otros. Algunas de las principales ventajas de la wavelet transform son el soporte compacto, y la concentración de la energía. Básicamente, la transformada wavelet es una con...

  15. The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance

    International Nuclear Information System (INIS)

    Kingsbury, J Ng and N G

    2004-01-01

    wavelet. The second half of the chapter groups together miscellaneous points about the discrete wavelet transform, including coefficient manipulation for signal denoising and smoothing, a description of Daubechies' wavelets, the properties of translation invariance and biorthogonality, the two-dimensional discrete wavelet transforms and wavelet packets. The fourth chapter is dedicated to wavelet transform methods in the author's own specialty, fluid mechanics. Beginning with a definition of wavelet-based statistical measures for turbulence, the text proceeds to describe wavelet thresholding in the analysis of fluid flows. The remainder of the chapter describes wavelet analysis of engineering flows, in particular jets, wakes, turbulence and coherent structures, and geophysical flows, including atmospheric and oceanic processes. The fifth chapter describes the application of wavelet methods in various branches of engineering, including machining, materials, dynamics and information engineering. Unlike previous chapters, this (and subsequent) chapters are styled more as literature reviews that describe the findings of other authors. The areas addressed in this chapter include: the monitoring of machining processes, the monitoring of rotating machinery, dynamical systems, chaotic systems, non-destructive testing, surface characterization and data compression. The sixth chapter continues in this vein with the attention now turned to wavelets in the analysis of medical signals. Most of the chapter is devoted to the analysis of one-dimensional signals (electrocardiogram, neural waveforms, acoustic signals etc.), although there is a small section on the analysis of two-dimensional medical images. The seventh and final chapter of the book focuses on the application of wavelets in three seemingly unrelated application areas: fractals, finance and geophysics. The treatment on wavelet methods in fractals focuses on stochastic fractals with a short section on multifractals. The

  16. An Analog Circuit Approximation of the Discrete Wavelet Transform for Ultra Low Power Signal Processing in Wearable Sensor Nodes.

    Science.gov (United States)

    Casson, Alexander J

    2015-12-17

    Ultra low power signal processing is an essential part of all sensor nodes, and particularly so in emerging wearable sensors for biomedical applications. Analog signal processing has an important role in these low power, low voltage, low frequency applications, and there is a key drive to decrease the power consumption of existing analog domain signal processing and to map more signal processing approaches into the analog domain. This paper presents an analog domain signal processing circuit which approximates the output of the Discrete Wavelet Transform (DWT) for use in ultra low power wearable sensors. Analog filters are used for the DWT filters and it is demonstrated how these generate analog domain DWT-like information that embeds information from Butterworth and Daubechies maximally flat mother wavelet responses. The Analog DWT is realised in hardware via g(m)C circuits, designed to operate from a 1.3 V coin cell battery, and provide DWT-like signal processing using under 115 nW of power when implemented in a 0.18 μm CMOS process. Practical examples demonstrate the effective use of the new Analog DWT on ECG (electrocardiogram) and EEG (electroencephalogram) signals recorded from humans.

  17. An Analog Circuit Approximation of the Discrete Wavelet Transform for Ultra Low Power Signal Processing in Wearable Sensor Nodes

    Directory of Open Access Journals (Sweden)

    Alexander J. Casson

    2015-12-01

    Full Text Available Ultra low power signal processing is an essential part of all sensor nodes, and particularly so in emerging wearable sensors for biomedical applications. Analog signal processing has an important role in these low power, low voltage, low frequency applications, and there is a key drive to decrease the power consumption of existing analog domain signal processing and to map more signal processing approaches into the analog domain. This paper presents an analog domain signal processing circuit which approximates the output of the Discrete Wavelet Transform (DWT for use in ultra low power wearable sensors. Analog filters are used for the DWT filters and it is demonstrated how these generate analog domain DWT-like information that embeds information from Butterworth and Daubechies maximally flat mother wavelet responses. The Analog DWT is realised in hardware via g m C circuits, designed to operate from a 1.3 V coin cell battery, and provide DWT-like signal processing using under 115 nW of power when implemented in a 0.18 μm CMOS process. Practical examples demonstrate the effective use of the new Analog DWT on ECG (electrocardiogram and EEG (electroencephalogram signals recorded from humans.

  18. Use of wavelet based iterative filtering to improve denoising of spectral information for in-vivo gamma spectrometry

    International Nuclear Information System (INIS)

    Paul, Sabyasachi; Sarkar, P.K.

    2012-05-01

    The characterization of radionuclide in the in-vivo monitoring analysis using gamma spectrometry poses difficulty due to very low activity level in biological systems. The large statistical fluctuations often make identification of characteristic gammas from radionuclides highly uncertain, particularly when interferences from progenies are also present. A new wavelet based noise filtering methodology has been developed for better detection of gamma peaks while analyzing noisy spectrometric data. This sequential, iterative filtering method uses the wavelet multi-resolution approach for the noise rejection and inverse transform after soft thresholding over the generated coefficients. Analyses of in-vivo monitoring data of 235 U and 238 U have been carried out using this method without disturbing the peak position and amplitude while achieving a threefold improvement in the signal to noise ratio, compared to the original measured spectrum. When compared with other data filtering techniques, the wavelet based method shows better results. (author)

  19. A new time-adaptive discrete bionic wavelet transform for enhancing speech from adverse noise environment

    Science.gov (United States)

    Palaniswamy, Sumithra; Duraisamy, Prakash; Alam, Mohammad Showkat; Yuan, Xiaohui

    2012-04-01

    Automatic speech processing systems are widely used in everyday life such as mobile communication, speech and speaker recognition, and for assisting the hearing impaired. In speech communication systems, the quality and intelligibility of speech is of utmost importance for ease and accuracy of information exchange. To obtain an intelligible speech signal and one that is more pleasant to listen, noise reduction is essential. In this paper a new Time Adaptive Discrete Bionic Wavelet Thresholding (TADBWT) scheme is proposed. The proposed technique uses Daubechies mother wavelet to achieve better enhancement of speech from additive non- stationary noises which occur in real life such as street noise and factory noise. Due to the integration of human auditory system model into the wavelet transform, bionic wavelet transform (BWT) has great potential for speech enhancement which may lead to a new path in speech processing. In the proposed technique, at first, discrete BWT is applied to noisy speech to derive TADBWT coefficients. Then the adaptive nature of the BWT is captured by introducing a time varying linear factor which updates the coefficients at each scale over time. This approach has shown better performance than the existing algorithms at lower input SNR due to modified soft level dependent thresholding on time adaptive coefficients. The objective and subjective test results confirmed the competency of the TADBWT technique. The effectiveness of the proposed technique is also evaluated for speaker recognition task under noisy environment. The recognition results show that the TADWT technique yields better performance when compared to alternate methods specifically at lower input SNR.

  20. Wavelet analysis in neurodynamics

    International Nuclear Information System (INIS)

    Pavlov, Aleksei N; Hramov, Aleksandr E; Koronovskii, Aleksei A; Sitnikova, Evgenija Yu; Makarov, Valeri A; Ovchinnikov, Alexey A

    2012-01-01

    Results obtained using continuous and discrete wavelet transforms as applied to problems in neurodynamics are reviewed, with the emphasis on the potential of wavelet analysis for decoding signal information from neural systems and networks. The following areas of application are considered: (1) the microscopic dynamics of single cells and intracellular processes, (2) sensory data processing, (3) the group dynamics of neuronal ensembles, and (4) the macrodynamics of rhythmical brain activity (using multichannel EEG recordings). The detection and classification of various oscillatory patterns of brain electrical activity and the development of continuous wavelet-based brain activity monitoring systems are also discussed as possibilities. (reviews of topical problems)

  1. Selection of Mother Wavelet Functions for Multi-Channel EEG Signal Analysis during a Working Memory Task

    Directory of Open Access Journals (Sweden)

    Noor Kamal Al-Qazzaz

    2015-11-01

    Full Text Available We performed a comparative study to select the efficient mother wavelet (MWT basis functions that optimally represent the signal characteristics of the electrical activity of the human brain during a working memory (WM task recorded through electro-encephalography (EEG. Nineteen EEG electrodes were placed on the scalp following the 10–20 system. These electrodes were then grouped into five recording regions corresponding to the scalp area of the cerebral cortex. Sixty-second WM task data were recorded from ten control subjects. Forty-five MWT basis functions from orthogonal families were investigated. These functions included Daubechies (db1–db20, Symlets (sym1–sym20, and Coiflets (coif1–coif5. Using ANOVA, we determined the MWT basis functions with the most significant differences in the ability of the five scalp regions to maximize their cross-correlation with the EEG signals. The best results were obtained using “sym9” across the five scalp regions. Therefore, the most compatible MWT with the EEG signals should be selected to achieve wavelet denoising, decomposition, reconstruction, and sub-band feature extraction. This study provides a reference of the selection of efficient MWT basis functions.

  2. Exploring an optimal wavelet-based filter for cryo-ET imaging.

    Science.gov (United States)

    Huang, Xinrui; Li, Sha; Gao, Song

    2018-02-07

    Cryo-electron tomography (cryo-ET) is one of the most advanced technologies for the in situ visualization of molecular machines by producing three-dimensional (3D) biological structures. However, cryo-ET imaging has two serious disadvantages-low dose and low image contrast-which result in high-resolution information being obscured by noise and image quality being degraded, and this causes errors in biological interpretation. The purpose of this research is to explore an optimal wavelet denoising technique to reduce noise in cryo-ET images. We perform tests using simulation data and design a filter using the optimum selected wavelet parameters (three-level decomposition, level-1 zeroed out, subband-dependent threshold, a soft-thresholding and spline-based discrete dyadic wavelet transform (DDWT)), which we call a modified wavelet shrinkage filter; this filter is suitable for noisy cryo-ET data. When testing using real cryo-ET experiment data, higher quality images and more accurate measures of a biological structure can be obtained with the modified wavelet shrinkage filter processing compared with conventional processing. Because the proposed method provides an inherent advantage when dealing with cryo-ET images, it can therefore extend the current state-of-the-art technology in assisting all aspects of cryo-ET studies: visualization, reconstruction, structural analysis, and interpretation.

  3. Wavelet based free-form deformations for nonrigid registration

    Science.gov (United States)

    Sun, Wei; Niessen, Wiro J.; Klein, Stefan

    2014-03-01

    In nonrigid registration, deformations may take place on the coarse and fine scales. For the conventional B-splines based free-form deformation (FFD) registration, these coarse- and fine-scale deformations are all represented by basis functions of a single scale. Meanwhile, wavelets have been proposed as a signal representation suitable for multi-scale problems. Wavelet analysis leads to a unique decomposition of a signal into its coarse- and fine-scale components. Potentially, this could therefore be useful for image registration. In this work, we investigate whether a wavelet-based FFD model has advantages for nonrigid image registration. We use a B-splines based wavelet, as defined by Cai and Wang.1 This wavelet is expressed as a linear combination of B-spline basis functions. Derived from the original B-spline function, this wavelet is smooth, differentiable, and compactly supported. The basis functions of this wavelet are orthogonal across scales in Sobolev space. This wavelet was previously used for registration in computer vision, in 2D optical flow problems,2 but it was not compared with the conventional B-spline FFD in medical image registration problems. An advantage of choosing this B-splines based wavelet model is that the space of allowable deformation is exactly equivalent to that of the traditional B-spline. The wavelet transformation is essentially a (linear) reparameterization of the B-spline transformation model. Experiments on 10 CT lung and 18 T1-weighted MRI brain datasets show that wavelet based registration leads to smoother deformation fields than traditional B-splines based registration, while achieving better accuracy.

  4. Investigating the effect of traditional Persian music on ECG signals in young women using wavelet transform and neural networks.

    Science.gov (United States)

    Abedi, Behzad; Abbasi, Ataollah; Goshvarpour, Atefeh

    2017-05-01

    In the past few decades, several studies have reported the physiological effects of listening to music. The physiological effects of different music types on different people are different. In the present study, we aimed to examine the effects of listening to traditional Persian music on electrocardiogram (ECG) signals in young women. Twenty-two healthy females participated in this study. ECG signals were recorded under two conditions: rest and music. For each ECG signal, 20 morphological and wavelet-based features were selected. Artificial neural network (ANN) and probabilistic neural network (PNN) classifiers were used for the classification of ECG signals during and before listening to music. Collected data were separated into two data sets: train and test. Classification accuracies of 88% and 97% were achieved in train data sets using ANN and PNN, respectively. In addition, the test data set was employed for evaluating the classifiers, and classification rates of 84% and 93% were obtained using ANN and PNN, respectively. The present study investigated the effect of music on ECG signals based on wavelet transform and morphological features. The results obtained here can provide a good understanding on the effects of music on ECG signals to researchers.

  5. Fringe pattern information retrieval using wavelets

    Science.gov (United States)

    Sciammarella, Cesar A.; Patimo, Caterina; Manicone, Pasquale D.; Lamberti, Luciano

    2005-08-01

    Two-dimensional phase modulation is currently the basic model used in the interpretation of fringe patterns that contain displacement information, moire, holographic interferometry, speckle techniques. Another way to look to these two-dimensional signals is to consider them as frequency modulated signals. This alternative interpretation has practical implications similar to those that exist in radio engineering for handling frequency modulated signals. Utilizing this model it is possible to obtain frequency information by using the energy approach introduced by Ville in 1944. A natural complementary tool of this process is the wavelet methodology. The use of wavelet makes it possible to obtain the local values of the frequency in a one or two dimensional domain without the need of previous phase retrieval and differentiation. Furthermore from the properties of wavelets it is also possible to obtain at the same time the phase of the signal with the advantage of a better noise removal capabilities and the possibility of developing simpler algorithms for phase unwrapping due to the availability of the derivative of the phase.

  6. Forecasting East Asian Indices Futures via a Novel Hybrid of Wavelet-PCA Denoising and Artificial Neural Network Models

    Science.gov (United States)

    2016-01-01

    The motivation behind this research is to innovatively combine new methods like wavelet, principal component analysis (PCA), and artificial neural network (ANN) approaches to analyze trade in today’s increasingly difficult and volatile financial futures markets. The main focus of this study is to facilitate forecasting by using an enhanced denoising process on market data, taken as a multivariate signal, in order to deduct the same noise from the open-high-low-close signal of a market. This research offers evidence on the predictive ability and the profitability of abnormal returns of a new hybrid forecasting model using Wavelet-PCA denoising and ANN (named WPCA-NN) on futures contracts of Hong Kong’s Hang Seng futures, Japan’s NIKKEI 225 futures, Singapore’s MSCI futures, South Korea’s KOSPI 200 futures, and Taiwan’s TAIEX futures from 2005 to 2014. Using a host of technical analysis indicators consisting of RSI, MACD, MACD Signal, Stochastic Fast %K, Stochastic Slow %K, Stochastic %D, and Ultimate Oscillator, empirical results show that the annual mean returns of WPCA-NN are more than the threshold buy-and-hold for the validation, test, and evaluation periods; this is inconsistent with the traditional random walk hypothesis, which insists that mechanical rules cannot outperform the threshold buy-and-hold. The findings, however, are consistent with literature that advocates technical analysis. PMID:27248692

  7. Wavelet frames and their duals

    DEFF Research Database (Denmark)

    Lemvig, Jakob

    2008-01-01

    frames with good time localization and other attractive properties. Furthermore, the dual wavelet frames are constructed in such a way that we are guaranteed that both frames will have the same desirable features. The construction procedure works for any real, expansive dilation. A quasi-affine system....... The signals are then represented by linear combinations of the building blocks with coefficients found by an associated frame, called a dual frame. A wavelet frame is a frame where the building blocks are stretched (dilated) and translated versions of a single function; such a frame is said to have wavelet...... structure. The dilation of the wavelet building blocks in higher dimension is done via a square matrix which is usually taken to be integer valued. In this thesis we step away from the "usual" integer, expansive dilation and consider more general, expansive dilations. In most applications of wavelet frames...

  8. Wavelet Approach to Data Analysis, Manipulation, Compression, and Communication

    National Research Council Canada - National Science Library

    Chui, Charles K

    2007-01-01

    ...; secondly, based on minimum-energy criteria, new data processing tools, particularly variational algorithms and optimal wavelet thresholding methods, with applications to image restoration, were introduced...

  9. Texture analysis using Gabor wavelets

    Science.gov (United States)

    Naghdy, Golshah A.; Wang, Jian; Ogunbona, Philip O.

    1996-04-01

    Receptive field profiles of simple cells in the visual cortex have been shown to resemble even- symmetric or odd-symmetric Gabor filters. Computational models employed in the analysis of textures have been motivated by two-dimensional Gabor functions arranged in a multi-channel architecture. More recently wavelets have emerged as a powerful tool for non-stationary signal analysis capable of encoding scale-space information efficiently. A multi-resolution implementation in the form of a dyadic decomposition of the signal of interest has been popularized by many researchers. In this paper, Gabor wavelet configured in a 'rosette' fashion is used as a multi-channel filter-bank feature extractor for texture classification. The 'rosette' spans 360 degrees of orientation and covers frequencies from dc. In the proposed algorithm, the texture images are decomposed by the Gabor wavelet configuration and the feature vectors corresponding to the mean of the outputs of the multi-channel filters extracted. A minimum distance classifier is used in the classification procedure. As a comparison the Gabor filter has been used to classify the same texture images from the Brodatz album and the results indicate the superior discriminatory characteristics of the Gabor wavelet. With the test images used it can be concluded that the Gabor wavelet model is a better approximation of the cortical cell receptive field profiles.

  10. Power-law spectra found in plant signal of the Borssele NPP. An analysis using wavelet. Application of wavelet for wide-frequency range investigation and investigation (spectrum) for the secondary system signals

    International Nuclear Information System (INIS)

    Suzudo, T.; Verhoef, J.P.; Tuerkcan, E.

    1996-09-01

    Power-law spectra were found in the temperature signals of the secondary loop in the Borssele Nuclear Power Plant, a PWR in the Netherlands. The coolant temperature before the steam generator inlet was found to fluctuate such that its power spectrum density S, follows S∝f -α , where α is ∝4/3. Analyses using PSD suggested that the value of α is roughly constant over years. Detailed analyses were conducted using wavelet, with the discovery that the power-law appears constantly only at around 0.1 Hz, and the estimated α was found between 1.26 and 1.36. The feedwater pressure signal and feedwater flow rate signal in the same frequency range were white noise and Borwnian motion respectively, and the indication of α=4/3 was not found from them. (orig.)

  11. Atlantic bottlenose dolphin (Tursiops truncatus) hearing threshold for brief broadband signals.

    Science.gov (United States)

    Au, Whitlow W L; Lemonds, David W; Vlachos, Stephanie; Nachtigall, Paul E; Roitblat, Herbert L

    2002-06-01

    The hearing sensitivity of an Atlantic bottlenose dolphin (Tursiops truncatus) to both pure tones and broadband signals simulating echoes from a 7.62-cm water-filled sphere was measured. Pure tones with frequencies between 40 and 140 kHz in increments of 20 kHz were measured along with broadband thresholds using a stimulus with a center frequency of 97.3 kHz and 88.2 kHz. The pure-tone thresholds were compared with the broadband thresholds by converting the pure-tone threshold intensity to energy flux density. The results indicated that dolphins can detect broadband signals slightly better than a pure-tone signal. The broadband results suggest that an echolocating bottlenose dolphin should be able to detect a 7.62-cm diameter water-filled sphere out to a range of 178 m in a quiet environment.

  12. Burst Detection and Localization using Discrete Wavelet Transform and Cross-Correlation

    Directory of Open Access Journals (Sweden)

    Eduardo Trutié-Carrero

    2018-03-01

    Full Text Available Burst in water distribution systems causes great loss of this natural resource, interrupts the water supply, damages the streets, builds and increases the transmission of infectious diseases. In this paper we propose a new algorithm that allows the detection and automatic localization of burst in water distribution systems. As for detection, the novelty is to use the wavelet correlation criterion to compute the statistical decision and compare it with a detection threshold. The novelty in the localization is to use the statistical operator cross-correlation. The algorithm was implemented in Octave and was validated with 32 signals acquired in the laboratory in a 26.7 m long steel pipe. In 16 signals burst were triggered which were detected under a false positive probability of 2 %. No false positives were present on the 16 signals where only noise was present.

  13. Selection of the wavelet function for the frequencies estimation

    International Nuclear Information System (INIS)

    Garcia R, A.

    2007-01-01

    At the moment the signals are used to diagnose the state of the systems, by means of the extraction of their more important characteristics such as the frequencies, tendencies, changes and temporary evolutions. This characteristics are detected by means of diverse analysis techniques, as Autoregressive methods, Fourier Transformation, Fourier transformation in short time, Wavelet transformation, among others. The present work uses the one Wavelet transformation because it allows to analyze stationary, quasi-stationary and transitory signals in the time-frequency plane. It also describes a methodology to select the scales and the Wavelet function to be applied the one Wavelet transformation with the objective of detecting to the dominant system frequencies. (Author)

  14. Analysis of cutting force signals by wavelet packet transform for surface roughness monitoring in CNC turning

    Science.gov (United States)

    García Plaza, E.; Núñez López, P. J.

    2018-01-01

    On-line monitoring of surface finish in machining processes has proven to be a substantial advancement over traditional post-process quality control techniques by reducing inspection times and costs and by avoiding the manufacture of defective products. This study applied techniques for processing cutting force signals based on the wavelet packet transform (WPT) method for the monitoring of surface finish in computer numerical control (CNC) turning operations. The behaviour of 40 mother wavelets was analysed using three techniques: global packet analysis (G-WPT), and the application of two packet reduction criteria: maximum energy (E-WPT) and maximum entropy (SE-WPT). The optimum signal decomposition level (Lj) was determined to eliminate noise and to obtain information correlated to surface finish. The results obtained with the G-WPT method provided an in-depth analysis of cutting force signals, and frequency ranges and signal characteristics were correlated to surface finish with excellent results in the accuracy and reliability of the predictive models. The radial and tangential cutting force components at low frequency provided most of the information for the monitoring of surface finish. The E-WPT and SE-WPT packet reduction criteria substantially reduced signal processing time, but at the expense of discarding packets with relevant information, which impoverished the results. The G-WPT method was observed to be an ideal procedure for processing cutting force signals applied to the real-time monitoring of surface finish, and was estimated to be highly accurate and reliable at a low analytical-computational cost.

  15. Wavelet Based Hilbert Transform with Digital Design and Application to QCM-SS Watermarking

    Directory of Open Access Journals (Sweden)

    S. P. Maity

    2008-04-01

    Full Text Available In recent time, wavelet transforms are used extensively for efficient storage, transmission and representation of multimedia signals. Hilbert transform pairs of wavelets is the basic unit of many wavelet theories such as complex filter banks, complex wavelet and phaselet etc. Moreover, Hilbert transform finds various applications in communications and signal processing such as generation of single sideband (SSB modulation, quadrature carrier multiplexing (QCM and bandpass representation of a signal. Thus wavelet based discrete Hilbert transform design draws much attention of researchers for couple of years. This paper proposes an (i algorithm for generation of low computation cost Hilbert transform pairs of symmetric filter coefficients using biorthogonal wavelets, (ii approximation to its rational coefficients form for its efficient hardware realization and without much loss in signal representation, and finally (iii development of QCM-SS (spread spectrum image watermarking scheme for doubling the payload capacity. Simulation results show novelty of the proposed Hilbert transform design and its application to watermarking compared to existing algorithms.

  16. BOOK REVIEW: The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance

    Science.gov (United States)

    Ng, J.; Kingsbury, N. G.

    2004-02-01

    wavelet. The second half of the chapter groups together miscellaneous points about the discrete wavelet transform, including coefficient manipulation for signal denoising and smoothing, a description of Daubechies’ wavelets, the properties of translation invariance and biorthogonality, the two-dimensional discrete wavelet transforms and wavelet packets. The fourth chapter is dedicated to wavelet transform methods in the author’s own specialty, fluid mechanics. Beginning with a definition of wavelet-based statistical measures for turbulence, the text proceeds to describe wavelet thresholding in the analysis of fluid flows. The remainder of the chapter describes wavelet analysis of engineering flows, in particular jets, wakes, turbulence and coherent structures, and geophysical flows, including atmospheric and oceanic processes. The fifth chapter describes the application of wavelet methods in various branches of engineering, including machining, materials, dynamics and information engineering. Unlike previous chapters, this (and subsequent) chapters are styled more as literature reviews that describe the findings of other authors. The areas addressed in this chapter include: the monitoring of machining processes, the monitoring of rotating machinery, dynamical systems, chaotic systems, non-destructive testing, surface characterization and data compression. The sixth chapter continues in this vein with the attention now turned to wavelets in the analysis of medical signals. Most of the chapter is devoted to the analysis of one-dimensional signals (electrocardiogram, neural waveforms, acoustic signals etc.), although there is a small section on the analysis of two-dimensional medical images. The seventh and final chapter of the book focuses on the application of wavelets in three seemingly unrelated application areas: fractals, finance and geophysics. The treatment on wavelet methods in fractals focuses on stochastic fractals with a short section on multifractals. The

  17. Numerical shaping of the ultrasonic wavelet

    International Nuclear Information System (INIS)

    Bonis, M.

    1991-01-01

    Improving the performance and the quality of ultrasonic testing requires the numerical control of the shape of the driving signal applied to the piezoelectric transducer. This allows precise shaping of the ultrasonic field wavelet and corrections for the physical defects of the transducer, which are mainly due to the damper or the lens. It also does away with the need for an accurate electric matching. It then becomes feasible to characterize, a priori, the ultrasonic wavelet by means of temporal and/or spectral specifications and to use, subsequently, an adaptative algorithm to calculate the corresponding driving wavelet. Moreover, the versatility resulting from the numerical control of this wavelet allows it to be changed in real time during a test

  18. A Hybrid Model Based on Wavelet Decomposition-Reconstruction in Track Irregularity State Forecasting

    Directory of Open Access Journals (Sweden)

    Chaolong Jia

    2015-01-01

    Full Text Available Wavelet is able to adapt to the requirements of time-frequency signal analysis automatically and can focus on any details of the signal and then decompose the function into the representation of a series of simple basis functions. It is of theoretical and practical significance. Therefore, this paper does subdivision on track irregularity time series based on the idea of wavelet decomposition-reconstruction and tries to find the best fitting forecast model of detail signal and approximate signal obtained through track irregularity time series wavelet decomposition, respectively. On this ideology, piecewise gray-ARMA recursive based on wavelet decomposition and reconstruction (PG-ARMARWDR and piecewise ANN-ARMA recursive based on wavelet decomposition and reconstruction (PANN-ARMARWDR models are proposed. Comparison and analysis of two models have shown that both these models can achieve higher accuracy.

  19. Processing of pulse oximeter data using discrete wavelet analysis.

    Science.gov (United States)

    Lee, Seungjoon; Ibey, Bennett L; Xu, Weijian; Wilson, Mark A; Ericson, M Nance; Coté, Gerard L

    2005-07-01

    A wavelet-based signal processing technique was employed to improve an implantable blood perfusion monitoring system. Data was acquired from both in vitro and in vivo sources: a perfusion model and the proximal jejunum of an adult pig. Results showed that wavelet analysis could isolate perfusion signals from raw, periodic, in vitro data as well as fast Fourier transform (FFT) methods. However, for the quasi-periodic in vivo data segments, wavelet analysis provided more consistent results than the FFT analysis for data segments of 50, 10, and 5 s in length. Wavelet analysis has thus been shown to require less data points for quasi-periodic data than FFT analysis making it a good choice for an indwelling perfusion monitor where power consumption and reaction time are paramount.

  20. FPGA compression of ECG signals by using modified convolution scheme of the Discrete Wavelet Transform Compresión de señales ECG sobre FPGA utilizando un esquema modificado de convolución de la Transformada Wavelet Discreta

    Directory of Open Access Journals (Sweden)

    Dora M Ballesteros

    2012-04-01

    Full Text Available This paper presents FPGA design of ECG compression by using the Discrete Wavelet Transform (DWT and one lossless encoding method. Unlike the classical works based on off-line mode, the current work allows the real-time processing of the ECG signal to reduce the redundant information. A model is developed for a fixed-point convolution scheme which has a good performance in relation to the throughput, the latency, the maximum frequency of operation and the quality of the compressed signal. The quantization of the coefficients of the filters and the selected fixed-threshold give a low error in relation to clinical applications.Este documento presenta el diseño basado en FPGA para la compresión de señales ECG utilizando la Transformada Wavelet Discreta y un método de codificación sin pérdida de información. A diferencia de los trabajos clásicos para modo off-line, el trabajo actual permite la compresión en tiempo real de la señal ECG por medio de la reducción de la información redundante. Se propone un modelo para el esquema de convolución en formato punto fijo, el cual tiene buen desempeño en relación a la tasa de salida, la latencia del sistema, la máxima frecuencia de operación y la calidad de la señal comprimida. La arquitectura propuesta, la cuantización utilizada y el método de codificación proporcionan un PRD que es apto para el análisis clínico.

  1. Applications of a fast, continuous wavelet transform

    Energy Technology Data Exchange (ETDEWEB)

    Dress, W.B.

    1997-02-01

    A fast, continuous, wavelet transform, based on Shannon`s sampling theorem in frequency space, has been developed for use with continuous mother wavelets and sampled data sets. The method differs from the usual discrete-wavelet approach and the continuous-wavelet transform in that, here, the wavelet is sampled in the frequency domain. Since Shannon`s sampling theorem lets us view the Fourier transform of the data set as a continuous function in frequency space, the continuous nature of the functions is kept up to the point of sampling the scale-translation lattice, so the scale-translation grid used to represent the wavelet transform is independent of the time- domain sampling of the signal under analysis. Computational cost and nonorthogonality aside, the inherent flexibility and shift invariance of the frequency-space wavelets has advantages. The method has been applied to forensic audio reconstruction speaker recognition/identification, and the detection of micromotions of heavy vehicles associated with ballistocardiac impulses originating from occupants` heart beats. Audio reconstruction is aided by selection of desired regions in the 2-D representation of the magnitude of the transformed signal. The inverse transform is applied to ridges and selected regions to reconstruct areas of interest, unencumbered by noise interference lying outside these regions. To separate micromotions imparted to a mass-spring system (e.g., a vehicle) by an occupants beating heart from gross mechanical motions due to wind and traffic vibrations, a continuous frequency-space wavelet, modeled on the frequency content of a canonical ballistocardiogram, was used to analyze time series taken from geophone measurements of vehicle micromotions. By using a family of mother wavelets, such as a set of Gaussian derivatives of various orders, features such as the glottal closing rate and word and phrase segmentation may be extracted from voice data.

  2. Wavelet analysis as a tool to characteriseand remove environmental noisefrom self-potential time series

    OpenAIRE

    Chianese, D.; Colangelo, G.; D'Emilio, M.; Lanfredi, M.; Lapenna, V.; Ragosta, M.; Macchiato, M. F.

    2004-01-01

    Multiresolution wavelet analysis of self-potential signals and rainfall levels is performed for extracting fluctuations in electrical signals, which might be addressed to meteorological variability. In the time-scale domain of the wavelet transform, rain data are used as markers to single out those wavelet coefficients of the electric signal which can be considered relevant to the environmental disturbance. Then these coefficients are filtered out and the signal is recovered by anti...

  3. Biomedical application of wavelets: analysis of electroencephalograph signals for monitoring depth of anesthesia

    Science.gov (United States)

    Abbate, Agostino; Nayak, A.; Koay, J.; Roy, R. J.; Das, Pankaj K.

    1996-03-01

    The wavelet transform (WT) has been used to study the nonstationary information in the electroencephalograph (EEG) as an aid in determining the anesthetic depth. A complex analytic mother wavelet is utilized to obtain the time evolution of the various spectral components of the EEG signal. The technique is utilized for the detection and spectral analysis of transient and background processes in the awake and asleep states. It can be observed that the response of both states before the application of the stimulus is similar in amplitude but not in spectral contents, which suggests a background activity of the brain. The brain reacts to the external stimulus in two different modes depending on the state of consciousness of the subject. In the case of awake state, there is an evident increase in response, while for the sleep state a reduction in this activity is observed. This analysis seems to suggest that the brain has an ongoing background process that monitors external stimulus in both the sleep and awake states.

  4. Research on fault diagnosis for RCP rotor based on wavelet analysis

    International Nuclear Information System (INIS)

    Chen Zhihui; Xia Hong; Wang Taotao

    2008-01-01

    Wavelet analysis is with the characteristics of noise reduction and multiscale resolution, and can be used to effectively extract the fault features of the typical failures of the main pumps. Simulink is used to simulate the typical faults: Misalignment Fault, Crackle Fault of rotor, and Initial Bending Fault, then the Wavelet method is used to analyze the vibration signal. The result shows that the extracted fault feature from wavelet analysis can effectively identify the fault signals. The Wavelet analysis is a practical method for the diagnosis of main coolant pump failure, and is with certain value for application and significance. (authors)

  5. Wavelet and Blend maps for texture synthesis

    OpenAIRE

    Du Jin-Lian; Wang Song; Meng Xianhai

    2011-01-01

    blending is now a popular technology for large realtime texture synthesis .Nevertheless, creating blend map during rendering is time and computation consuming work. In this paper, we exploited a method to create a kind of blend tile which can be tile together seamlessly. Note that blend map is in fact a kind of image, which is Markov Random Field, contains multiresolution signals, while wavelet is a powerful way to process multiresolution signals, we use wavelet to process the traditional ble...

  6. From Fourier analysis to wavelets

    CERN Document Server

    Gomes, Jonas

    2015-01-01

    This text introduces the basic concepts of function spaces and operators, both from the continuous and discrete viewpoints.  Fourier and Window Fourier Transforms are introduced and used as a guide to arrive at the concept of Wavelet transform.  The fundamental aspects of multiresolution representation, and its importance to function discretization and to the construction of wavelets is also discussed. Emphasis is given on ideas and intuition, avoiding the heavy computations which are usually involved in the study of wavelets.  Readers should have a basic knowledge of linear algebra, calculus, and some familiarity with complex analysis.  Basic knowledge of signal and image processing is desirable. This text originated from a set of notes in Portuguese that the authors wrote for a wavelet course on the Brazilian Mathematical Colloquium in 1997 at IMPA, Rio de Janeiro.

  7. Zero NDZ assessment for anti-islanding protection using wavelet analysis and neuro-fuzzy system in inverter based distributed generation

    International Nuclear Information System (INIS)

    Shayeghi, H.; Sobhani, B.

    2014-01-01

    Highlights: • Reduction of NDZ nearly to zero by proposed passive time–frequency islanding detection algorithm. • Avoiding of threshold selection based on neuro-fuzzy learning system. • Unchanged of power quality against active detection techniques. • Separate islanding condition from other switching condition. - Abstract: Due to increase of electrical power demand, several uncommon sources mainly voltage source converter (VSC) based distributed generations (DGs) have been included into the power systems which increased the systems complexity and uncertainty. One of the most problem of DGs is unwanted islanding. This paper addresses a reliable passive time–frequency islanding detection algorithm using the multi signal analysis method. In addition, Adaptive Neuro Fuzzy Learning System (ANFIS) is used for decision making mechanism to avoid of threshold. Reduction of non detection zone (NDZ) is another contribution of this study. At first, all possible linear and nonlinear load switching, motor starting, capacitor bank switching, and islanding conditions are simulated and the required detection parameters measured. Using the discrete wavelet theory, the energy of any decomposition level of all mother wavelet for parameters detection is calculated. From of these signals, the best of them are selected for ANFIS training for islanding detection purpose. Simulation results confirm the performance of the proposed detection algorithm in comparison with existing methods

  8. Wavelet-based audio embedding and audio/video compression

    Science.gov (United States)

    Mendenhall, Michael J.; Claypoole, Roger L., Jr.

    2001-12-01

    Watermarking, traditionally used for copyright protection, is used in a new and exciting way. An efficient wavelet-based watermarking technique embeds audio information into a video signal. Several effective compression techniques are applied to compress the resulting audio/video signal in an embedded fashion. This wavelet-based compression algorithm incorporates bit-plane coding, index coding, and Huffman coding. To demonstrate the potential of this audio embedding and audio/video compression algorithm, we embed an audio signal into a video signal and then compress. Results show that overall compression rates of 15:1 can be achieved. The video signal is reconstructed with a median PSNR of nearly 33 dB. Finally, the audio signal is extracted from the compressed audio/video signal without error.

  9. Study and analysis of wavelet based image compression techniques

    African Journals Online (AJOL)

    user

    Discrete Wavelet Transform (DWT) is a recently developed compression ... serve emerging areas of mobile multimedia and internet communication, ..... In global thresholding the best trade-off between PSNR and compression is provided by.

  10. A STUDY OF WAVELET ENTROPY MEASURE DEFINITION AND ITS APPLICATION FOR FAULT FEATURE PICK-UP AND CLASSIFICATION

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Shannon entropy in time domain is a measure of signal or system uncertainty. When based on spectrum entropy, Shannon entropy can be taken as a measure of signal or system complexity.Therefore, wavelet analysis based on wavelet entropy measure can signify the complexity of non-steady signal or system in both time and frequency domain. In this paper, in order to meet the requirements of post-analysis on abundant wavelet transform result data and the need of information mergence, the basic definition of wavelet entropy measure is proposed, corresponding algorithms of several wavelet entropies, such as wavelet average entropy, wavelet time-frequency entropy, wavelet distance entropy,etc. are put forward, and the physical meanings of these entropies are analyzed as well. The application principle of wavelet entropy measure in ElectroEncephaloGraphy (EEG) signal analysis, mechanical fault diagnosis, fault detection and classification in power system are analyzed. Finally, take the transmission line fault detection in power system for example, simulations in two different systems, a 10kV automatic blocking and continuous power transmission line and a 500kV Extra High Voltage (EHV) transmission line, are carried out, and the two methods, wavelet entropy and wavelet modulus maxima, are compared, the results show feasibility and application prospect of the six wavelet entropies.

  11. A Wavelet-Based Approach to Fall Detection

    Directory of Open Access Journals (Sweden)

    Luca Palmerini

    2015-05-01

    Full Text Available Falls among older people are a widely documented public health problem. Automatic fall detection has recently gained huge importance because it could allow for the immediate communication of falls to medical assistance. The aim of this work is to present a novel wavelet-based approach to fall detection, focusing on the impact phase and using a dataset of real-world falls. Since recorded falls result in a non-stationary signal, a wavelet transform was chosen to examine fall patterns. The idea is to consider the average fall pattern as the “prototype fall”.In order to detect falls, every acceleration signal can be compared to this prototype through wavelet analysis. The similarity of the recorded signal with the prototype fall is a feature that can be used in order to determine the difference between falls and daily activities. The discriminative ability of this feature is evaluated on real-world data. It outperforms other features that are commonly used in fall detection studies, with an Area Under the Curve of 0.918. This result suggests that the proposed wavelet-based feature is promising and future studies could use this feature (in combination with others considering different fall phases in order to improve the performance of fall detection algorithms.

  12. Comparative study of wavelets of the first and second generation

    International Nuclear Information System (INIS)

    Ososkov, G.A.; Shitov, A.B.; Stadnik, A.V.

    2001-01-01

    In order to compare efficiency a comprehensive set of benchmarking tests is developed, which is used to compare abilities of continuous wavelet transform of the vanishing momenta type as well as the second generation wavelets constructed on the basis of the lifting scheme. It is based on processing of various types of pure and contaminated harmonic signals, delta-function, study of the signal phase dependence and the gain-frequency characteristics. The results of a comparative multiscale analysis allow one to reveal advantages and flaws of the considered types of wavelets

  13. Improvement of electrocardiogram by empirical wavelet transform

    Science.gov (United States)

    Chanchang, Vikanda; Kumchaiseemak, Nakorn; Sutthiopad, Malee; Luengviriya, Chaiya

    2017-09-01

    Electrocardiogram (ECG) is a crucial tool in the detection of cardiac arrhythmia. It is also often used in a routine physical exam, especially, for elderly people. This graphical representation of electrical activity of heart is obtained by a measurement of voltage at the skin; therefore, the signal is always contaminated by noise from various sources. For a proper interpretation, the quality of the ECG should be improved by a noise reduction. In this article, we present a study of a noise filtration in the ECG by using an empirical wavelet transform (EWT). Unlike the traditional wavelet method, EWT is adaptive since the frequency spectrum of the ECG is taken into account in the construction of the wavelet basis. We show that the signal-to-noise ratio increases after the noise filtration for different noise artefacts.

  14. Discrete wavelet transform: a tool in smoothing kinematic data.

    Science.gov (United States)

    Ismail, A R; Asfour, S S

    1999-03-01

    Motion analysis systems typically introduce noise to the displacement data recorded. Butterworth digital filters have been used to smooth the displacement data in order to obtain smoothed velocities and accelerations. However, this technique does not yield satisfactory results, especially when dealing with complex kinematic motions that occupy the low- and high-frequency bands. The use of the discrete wavelet transform, as an alternative to digital filters, is presented in this paper. The transform passes the original signal through two complementary low- and high-pass FIR filters and decomposes the signal into an approximation function and a detail function. Further decomposition of the signal results in transforming the signal into a hierarchy set of orthogonal approximation and detail functions. A reverse process is employed to perfectly reconstruct the signal (inverse transform) back from its approximation and detail functions. The discrete wavelet transform was applied to the displacement data recorded by Pezzack et al., 1977. The smoothed displacement data were twice differentiated and compared to Pezzack et al.'s acceleration data in order to choose the most appropriate filter coefficients and decomposition level on the basis of maximizing the percentage of retained energy (PRE) and minimizing the root mean square error (RMSE). Daubechies wavelet of the fourth order (Db4) at the second decomposition level showed better results than both the biorthogonal and Coiflet wavelets (PRE = 97.5%, RMSE = 4.7 rad s-2). The Db4 wavelet was then used to compress complex displacement data obtained from a noisy mathematically generated function. Results clearly indicate superiority of this new smoothing approach over traditional filters.

  15. Big data extraction with adaptive wavelet analysis (Presentation Video)

    Science.gov (United States)

    Qu, Hongya; Chen, Genda; Ni, Yiqing

    2015-04-01

    Nondestructive evaluation and sensing technology have been increasingly applied to characterize material properties and detect local damage in structures. More often than not, they generate images or data strings that are difficult to see any physical features without novel data extraction techniques. In the literature, popular data analysis techniques include Short-time Fourier Transform, Wavelet Transform, and Hilbert Transform for time efficiency and adaptive recognition. In this study, a new data analysis technique is proposed and developed by introducing an adaptive central frequency of the continuous Morlet wavelet transform so that both high frequency and time resolution can be maintained in a time-frequency window of interest. The new analysis technique is referred to as Adaptive Wavelet Analysis (AWA). This paper will be organized in several sections. In the first section, finite time-frequency resolution limitations in the traditional wavelet transform are introduced. Such limitations would greatly distort the transformed signals with a significant frequency variation with time. In the second section, Short Time Wavelet Transform (STWT), similar to Short Time Fourier Transform (STFT), is defined and developed to overcome such shortcoming of the traditional wavelet transform. In the third section, by utilizing the STWT and a time-variant central frequency of the Morlet wavelet, AWA can adapt the time-frequency resolution requirement to the signal variation over time. Finally, the advantage of the proposed AWA is demonstrated in Section 4 with a ground penetrating radar (GPR) image from a bridge deck, an analytical chirp signal with a large range sinusoidal frequency change over time, the train-induced acceleration responses of the Tsing-Ma Suspension Bridge in Hong Kong, China. The performance of the proposed AWA will be compared with the STFT and traditional wavelet transform.

  16. Sparsity guided empirical wavelet transform for fault diagnosis of rolling element bearings

    Science.gov (United States)

    Wang, Dong; Zhao, Yang; Yi, Cai; Tsui, Kwok-Leung; Lin, Jianhui

    2018-02-01

    Rolling element bearings are widely used in various industrial machines, such as electric motors, generators, pumps, gearboxes, railway axles, turbines, and helicopter transmissions. Fault diagnosis of rolling element bearings is beneficial to preventing any unexpected accident and reducing economic loss. In the past years, many bearing fault detection methods have been developed. Recently, a new adaptive signal processing method called empirical wavelet transform attracts much attention from readers and engineers and its applications to bearing fault diagnosis have been reported. The main problem of empirical wavelet transform is that Fourier segments required in empirical wavelet transform are strongly dependent on the local maxima of the amplitudes of the Fourier spectrum of a signal, which connotes that Fourier segments are not always reliable and effective if the Fourier spectrum of the signal is complicated and overwhelmed by heavy noises and other strong vibration components. In this paper, sparsity guided empirical wavelet transform is proposed to automatically establish Fourier segments required in empirical wavelet transform for fault diagnosis of rolling element bearings. Industrial bearing fault signals caused by single and multiple railway axle bearing defects are used to verify the effectiveness of the proposed sparsity guided empirical wavelet transform. Results show that the proposed method can automatically discover Fourier segments required in empirical wavelet transform and reveal single and multiple railway axle bearing defects. Besides, some comparisons with three popular signal processing methods including ensemble empirical mode decomposition, the fast kurtogram and the fast spectral correlation are conducted to highlight the superiority of the proposed method.

  17. A Wavelet-based Energetic Approach for the Analysis of Electroencephalogram

    Directory of Open Access Journals (Sweden)

    Abul Hasan Siddiqi

    2012-12-01

    Full Text Available Electroencephalography (EEG is the recording of electrical activity along the scalp produced by the firing of neurons within the brain. The main application of EEG is in the case of epilepsy, as epileptic activity can create clear abnormalities on a standard EEG study. EEG signals, like many biomedical signals, are highly non-stationary by their nature. Wavelet analysis has found a prominent position in the investigation of biomedical signals for its ability to analyze such signals, in particular EEG signals. Wavelet transform is capable of separating the signal energy among different frequency bands (i.e., different scales, achieving a good compromise between temporal and frequency resolution. The present study is an attempt at better understanding of the mechanism causing the epileptic disorder and accurate prediction of the occurrence of seizures. In the present paper we identify typical patterns of energy redistribution before and during a seizure using multi-resolution wavelet analysis.

  18. Wavelet Packet Entropy in Speaker-Independent Emotional State Detection from Speech Signal

    OpenAIRE

    Mina Kadkhodaei Elyaderani; Seyed Hamid Mahmoodian; Ghazaal Sheikhi

    2015-01-01

    In this paper, wavelet packet entropy is proposed for speaker-independent emotion detection from speech. After pre-processing, wavelet packet decomposition using wavelet type db3 at level 4 is calculated and Shannon entropy in its nodes is calculated to be used as feature. In addition, prosodic features such as first four formants, jitter or pitch deviation amplitude, and shimmer or energy variation amplitude besides MFCC features are applied to complete the feature vector. Then, Support Vect...

  19. Analysis of the tennis racket vibrations during forehand drives: Selection of the mother wavelet.

    Science.gov (United States)

    Blache, Y; Hautier, C; Lefebvre, F; Djordjevic, A; Creveaux, T; Rogowski, I

    2017-08-16

    The time-frequency analysis of the tennis racket and hand vibrations is of great interest for discomfort and pathology prevention. This study aimed to (i) to assess the stationarity of the vibratory signal of the racket and hand and (ii) to identify the best mother wavelet to perform future time-frequency analysis, (iii) to determine if the stroke spin, racket characteristics and impact zone can influence the selection of the best mother wavelet. A total of 2364 topspin and flat forehand drives were performed by fourteen male competitive tennis players with six different rackets. One tri-axial and one mono-axial accelerometer were taped on the racket throat and dominant hand respectively. The signal stationarity was tested through the wavelet spectrum test. Eighty-nine mother wavelet were tested to select the best mother wavelet based on continuous and discrete transforms. On average only 25±17%, 2±5%, 5±7% and 27±27% of the signal tested respected the hypothesis of stationarity for the three axes of the racket and the hand respectively. Regarding the two methods for the detection of the best mother wavelet, the Daubechy 45 wavelet presented the highest average ranking. No effect of the stroke spin, racket characteristics and impact zone was observed for the selection of the best mother wavelet. It was concluded that alternative approach to Fast Fourier Transform should be used to interpret tennis vibration signals. In the case where wavelet transform is chosen, the Daubechy 45 mother wavelet appeared to be the most suitable. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. A Comparative Analysis for Selection of Appropriate Mother Wavelet for Detection of Stationary Disturbances

    Science.gov (United States)

    Kamble, Saurabh Prakash; Thawkar, Shashank; Gaikwad, Vinayak G.; Kothari, D. P.

    2017-12-01

    Detection of disturbances is the first step of mitigation. Power electronics plays a crucial role in modern power system which makes system operation efficient but it also bring stationary disturbances in the power system and added impurities to the supply. It happens because of the non-linear loads used in modern day power system which inject disturbances like harmonic disturbances, flickers, sag etc. in power grid. These impurities can damage equipments so it is necessary to mitigate these impurities present in the supply very quickly. So, digital signal processing techniques are incorporated for detection purpose. Signal processing techniques like fast Fourier transform, short-time Fourier transform, Wavelet transform etc. are widely used for the detection of disturbances. Among all, wavelet transform is widely used because of its better detection capabilities. But, which mother wavelet has to use for detection is still a mystery. Depending upon the periodicity, the disturbances are classified as stationary and non-stationary disturbances. This paper presents the importance of selection of mother wavelet for analyzing stationary disturbances using discrete wavelet transform. Signals with stationary disturbances of various frequencies are generated using MATLAB. The analysis of these signals is done using various mother wavelets like Daubechies and bi-orthogonal wavelets and the measured root mean square value of stationary disturbance is obtained. The measured value obtained by discrete wavelet transform is compared with the exact RMS value of the frequency component and the percentage differences are presented which helps to select optimum mother wavelet.

  1. Image-adaptive and robust digital wavelet-domain watermarking for images

    Science.gov (United States)

    Zhao, Yi; Zhang, Liping

    2018-03-01

    We propose a new frequency domain wavelet based watermarking technique. The key idea of our scheme is twofold: multi-tier solution representation of image and odd-even quantization embedding/extracting watermark. Because many complementary watermarks need to be hidden, the watermark image designed is image-adaptive. The meaningful and complementary watermark images was embedded into the original image (host image) by odd-even quantization modifying coefficients, which was selected from the detail wavelet coefficients of the original image, if their magnitudes are larger than their corresponding Just Noticeable Difference thresholds. The tests show good robustness against best-known attacks such as noise addition, image compression, median filtering, clipping as well as geometric transforms. Further research may improve the performance by refining JND thresholds.

  2. Distinguishing Stationary/Nonstationary Scaling Processes Using Wavelet Tsallis q-Entropies

    Directory of Open Access Journals (Sweden)

    Julio Ramirez Pacheco

    2012-01-01

    Full Text Available Classification of processes as stationary or nonstationary has been recognized as an important and unresolved problem in the analysis of scaling signals. Stationarity or nonstationarity determines not only the form of autocorrelations and moments but also the selection of estimators. In this paper, a methodology for classifying scaling processes as stationary or nonstationary is proposed. The method is based on wavelet Tsallis q-entropies and particularly on the behaviour of these entropies for scaling signals. It is demonstrated that the observed wavelet Tsallis q-entropies of 1/f signals can be modeled by sum-cosh apodizing functions which allocates constant entropies to a set of scaling signals and varying entropies to the rest and that this allocation is controlled by q. The proposed methodology, therefore, differentiates stationary signals from non-stationary ones based on the observed wavelet Tsallis entropies for 1/f signals. Experimental studies using synthesized signals confirm that the proposed method not only achieves satisfactorily classifications but also outperforms current methods proposed in the literature.

  3. Differentiating epileptic from non-epileptic high frequency intracerebral EEG signals with measures of wavelet entropy.

    Science.gov (United States)

    Mooij, Anne H; Frauscher, Birgit; Amiri, Mina; Otte, Willem M; Gotman, Jean

    2016-12-01

    To assess whether there is a difference in the background activity in the ripple band (80-200Hz) between epileptic and non-epileptic channels, and to assess whether this difference is sufficient for their reliable separation. We calculated mean and standard deviation of wavelet entropy in 303 non-epileptic and 334 epileptic channels from 50 patients with intracerebral depth electrodes and used these measures as predictors in a multivariable logistic regression model. We assessed sensitivity, positive predictive value (PPV) and negative predictive value (NPV) based on a probability threshold corresponding to 90% specificity. The probability of a channel being epileptic increased with higher mean (p=0.004) and particularly with higher standard deviation (pentropy is likely to be epileptic; with a threshold corresponding to 90% specificity our model can reliably select a subset of epileptic channels. Most studies have concentrated on brief ripple events. We showed that background activity in the ripple band also has some ability to discriminate epileptic channels. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  4. The signal extraction of fetal heart rate based on wavelet transform and BP neural network

    Science.gov (United States)

    Yang, Xiao Hong; Zhang, Bang-Cheng; Fu, Hu Dai

    2005-04-01

    This paper briefly introduces the collection and recognition of bio-medical signals, designs the method to collect FM signals. A detailed discussion on the system hardware, structure and functions is also given. Under LabWindows/CVI,the hardware and the driver do compatible, the hardware equipment work properly actively. The paper adopts multi threading technology for real-time analysis and makes use of latency time of CPU effectively, expedites program reflect speed, improves the program to perform efficiency. One threading is collecting data; the other threading is analyzing data. Using the method, it is broaden to analyze the signal in real-time. Wavelet transform to remove the main interference in the FM and by adding time-window to recognize with BP network; Finally the results of collecting signals and BP networks are discussed. 8 pregnant women's signals of FM were collected successfully by using the sensor. The correctness rate of BP network recognition is about 83.3% by using the above measure.

  5. Traffic characterization and modeling of wavelet-based VBR encoded video

    Energy Technology Data Exchange (ETDEWEB)

    Yu Kuo; Jabbari, B. [George Mason Univ., Fairfax, VA (United States); Zafar, S. [Argonne National Lab., IL (United States). Mathematics and Computer Science Div.

    1997-07-01

    Wavelet-based video codecs provide a hierarchical structure for the encoded data, which can cater to a wide variety of applications such as multimedia systems. The characteristics of such an encoder and its output, however, have not been well examined. In this paper, the authors investigate the output characteristics of a wavelet-based video codec and develop a composite model to capture the traffic behavior of its output video data. Wavelet decomposition transforms the input video in a hierarchical structure with a number of subimages at different resolutions and scales. the top-level wavelet in this structure contains most of the signal energy. They first describe the characteristics of traffic generated by each subimage and the effect of dropping various subimages at the encoder on the signal-to-noise ratio at the receiver. They then develop an N-state Markov model to describe the traffic behavior of the top wavelet. The behavior of the remaining wavelets are then obtained through estimation, based on the correlations between these subimages at the same level of resolution and those wavelets located at an immediate higher level. In this paper, a three-state Markov model is developed. The resulting traffic behavior described by various statistical properties, such as moments and correlations, etc., is then utilized to validate their model.

  6. Using wavelet denoising and mathematical morphology in the segmentation technique applied to blood cells images

    OpenAIRE

    Boix García, Macarena; Cantó Colomina, Begoña

    2013-01-01

    Accurate image segmentation is used in medical diagnosis since this technique is a noninvasive pre-processing step for biomedical treatment. In this work we present an efficient segmentation method for medical image analysis. In particular, with this method blood cells can be segmented. For that, we combine the wavelet transform with morphological operations. Moreover, the wavelet thresholding technique is used to eliminate the noise and prepare the image for suitable segmentation. In wavelet...

  7. A wavelet ridge extraction method employing a novel cost function in two-dimensional wavelet transform profilometry

    Science.gov (United States)

    Wang, Jianhua; Yang, Yanxi

    2018-05-01

    We present a new wavelet ridge extraction method employing a novel cost function in two-dimensional wavelet transform profilometry (2-D WTP). First of all, the maximum value point is extracted from two-dimensional wavelet transform coefficient modulus, and the local extreme value points over 90% of maximum value are also obtained, they both constitute wavelet ridge candidates. Then, the gradient of rotate factor is introduced into the Abid's cost function, and the logarithmic Logistic model is used to adjust and improve the cost function weights so as to obtain more reasonable value estimation. At last, the dynamic programming method is used to accurately find the optimal wavelet ridge, and the wrapped phase can be obtained by extracting the phase at the ridge. Its advantage is that, the fringe pattern with low signal-to-noise ratio can be demodulated accurately, and its noise immunity will be better. Meanwhile, only one fringe pattern is needed to projected to measured object, so dynamic three-dimensional (3-D) measurement in harsh environment can be realized. Computer simulation and experimental results show that, for the fringe pattern with noise pollution, the 3-D surface recovery accuracy by the proposed algorithm is increased. In addition, the demodulation phase accuracy of Morlet, Fan and Cauchy mother wavelets are compared.

  8. Adapted wavelet analysis from theory to software

    CERN Document Server

    Wickerhauser, Mladen Victor

    1994-01-01

    This detail-oriented text is intended for engineers and applied mathematicians who must write computer programs to perform wavelet and related analysis on real data. It contains an overview of mathematical prerequisites and proceeds to describe hands-on programming techniques to implement special programs for signal analysis and other applications. From the table of contents: - Mathematical Preliminaries - Programming Techniques - The Discrete Fourier Transform - Local Trigonometric Transforms - Quadrature Filters - The Discrete Wavelet Transform - Wavelet Packets - The Best Basis Algorithm - Multidimensional Library Trees - Time-Frequency Analysis - Some Applications - Solutions to Some of the Exercises - List of Symbols - Quadrature Filter Coefficients

  9. Information retrieval system utilizing wavelet transform

    Science.gov (United States)

    Brewster, Mary E.; Miller, Nancy E.

    2000-01-01

    A method for automatically partitioning an unstructured electronically formatted natural language document into its sub-topic structure. Specifically, the document is converted to an electronic signal and a wavelet transform is then performed on the signal. The resultant signal may then be used to graphically display and interact with the sub-topic structure of the document.

  10. An automatic system for Turkish word recognition using Discrete Wavelet Neural Network based on adaptive entropy

    International Nuclear Information System (INIS)

    Avci, E.

    2007-01-01

    In this paper, an automatic system is presented for word recognition using real Turkish word signals. This paper especially deals with combination of the feature extraction and classification from real Turkish word signals. A Discrete Wavelet Neural Network (DWNN) model is used, which consists of two layers: discrete wavelet layer and multi-layer perceptron. The discrete wavelet layer is used for adaptive feature extraction in the time-frequency domain and is composed of Discrete Wavelet Transform (DWT) and wavelet entropy. The multi-layer perceptron used for classification is a feed-forward neural network. The performance of the used system is evaluated by using noisy Turkish word signals. Test results showing the effectiveness of the proposed automatic system are presented in this paper. The rate of correct recognition is about 92.5% for the sample speech signals. (author)

  11. An improved adaptive wavelet shrinkage for ultrasound despeckling

    Indian Academy of Sciences (India)

    Preservation Index (EPI). A comparison of the results shows that the proposed fil- ter achieves an improvement in terms of quantitative measures and in terms of visual quality of the images. Keywords. Wavelet; translation invariance; inter and intra scale dependency; speckle; adaptive thresholding; ultrasound images. ∗.

  12. Complex Wavelet transform for MRI

    International Nuclear Information System (INIS)

    Junor, P.; Janney, P.

    2004-01-01

    Full text: There is a perpetual compromise encountered in magnetic resonance (MRl) image reconstruction, between the traditional elements of image quality (noise, spatial resolution and contrast). Additional factors exacerbating this trade-off include various artifacts, computational (and hence time-dependent) overhead, and financial expense. This paper outlines a new approach to the problem of minimizing MRI image acquisition and reconstruction time without compromising resolution and noise reduction. The standard approaches for reconstructing magnetic resonance (MRI) images from raw data (which rely on relatively conventional signal processing) have matured but there are a number of challenges which limit their use. A major one is the 'intrinsic' signal-to-noise ratio (SNR) of the reconstructed image that depends on the strength of the main field. A typical clinical MRI almost invariably uses a super-cooled magnet in order to achieve a high field strength. The ongoing running cost of these super-cooled magnets prompts consideration of alternative magnet systems for use in MRIs for developing countries and in some remote regional installations. The decrease in image quality from using lower field strength magnets can be addressed by improvements in signal processing strategies. Conversely, improved signal processing will obviously benefit the current conventional field strength MRI machines. Moreover, the 'waiting time' experienced in many MR sequences (due to the relaxation time delays) can be exploited by more rigorous processing of the MR signals. Acquisition often needs to be repeated so that coherent averaging may partially redress the shortfall in SNR, at the expense of further delay. Wavelet transforms have been used in MRI as an alternative for encoding and denoising for over a decade. These have not supplanted the traditional Fourier transform methods that have long been the mainstay of MRI reconstruction, but have some inflexibility. The dual

  13. From cardinal spline wavelet bases to highly coherent dictionaries

    International Nuclear Information System (INIS)

    Andrle, Miroslav; Rebollo-Neira, Laura

    2008-01-01

    Wavelet families arise by scaling and translations of a prototype function, called the mother wavelet. The construction of wavelet bases for cardinal spline spaces is generally carried out within the multi-resolution analysis scheme. Thus, the usual way of increasing the dimension of the multi-resolution subspaces is by augmenting the scaling factor. We show here that, when working on a compact interval, the identical effect can be achieved without changing the wavelet scale but reducing the translation parameter. By such a procedure we generate a redundant frame, called a dictionary, spanning the same spaces as a wavelet basis but with wavelets of broader support. We characterize the correlation of the dictionary elements by measuring their 'coherence' and produce examples illustrating the relevance of highly coherent dictionaries to problems of sparse signal representation. (fast track communication)

  14. A Wavelet-Based Finite Element Method for the Self-Shielding Issue in Neutron Transport

    International Nuclear Information System (INIS)

    Le Tellier, R.; Fournier, D.; Ruggieri, J. M.

    2009-01-01

    This paper describes a new approach for treating the energy variable of the neutron transport equation in the resolved resonance energy range. The aim is to avoid recourse to a case-specific spatially dependent self-shielding calculation when considering a broad group structure. This method consists of a discontinuous Galerkin discretization of the energy using wavelet-based elements. A Σ t -orthogonalization of the element basis is presented in order to make the approach tractable for spatially dependent problems. First numerical tests of this method are carried out in a limited framework under the Livolant-Jeanpierre hypotheses in an infinite homogeneous medium. They are mainly focused on the way to construct the wavelet-based element basis. Indeed, the prior selection of these wavelet functions by a thresholding strategy applied to the discrete wavelet transform of a given quantity is a key issue for the convergence rate of the method. The Canuto thresholding approach applied to an approximate flux is found to yield a nearly optimal convergence in many cases. In these tests, the capability of such a finite element discretization to represent the flux depression in a resonant region is demonstrated; a relative accuracy of 10 -3 on the flux (in L 2 -norm) is reached with less than 100 wavelet coefficients per group. (authors)

  15. Detection of Heart Sounds in Children with and without Pulmonary Arterial Hypertension--Daubechies Wavelets Approach.

    Directory of Open Access Journals (Sweden)

    Mohamed Elgendi

    Full Text Available Automatic detection of the 1st (S1 and 2nd (S2 heart sounds is difficult, and existing algorithms are imprecise. We sought to develop a wavelet-based algorithm for the detection of S1 and S2 in children with and without pulmonary arterial hypertension (PAH.Heart sounds were recorded at the second left intercostal space and the cardiac apex with a digital stethoscope simultaneously with pulmonary arterial pressure (PAP. We developed a Daubechies wavelet algorithm for the automatic detection of S1 and S2 using the wavelet coefficient 'D6' based on power spectral analysis. We compared our algorithm with four other Daubechies wavelet-based algorithms published by Liang, Kumar, Wang, and Zhong. We annotated S1 and S2 from an audiovisual examination of the phonocardiographic tracing by two trained cardiologists and the observation that in all subjects systole was shorter than diastole.We studied 22 subjects (9 males and 13 females, median age 6 years, range 0.25-19. Eleven subjects had a mean PAP < 25 mmHg. Eleven subjects had PAH with a mean PAP ≥ 25 mmHg. All subjects had a pulmonary artery wedge pressure ≤ 15 mmHg. The sensitivity (SE and positive predictivity (+P of our algorithm were 70% and 68%, respectively. In comparison, the SE and +P of Liang were 59% and 42%, Kumar 19% and 12%, Wang 50% and 45%, and Zhong 43% and 53%, respectively. Our algorithm demonstrated robustness and outperformed the other methods up to a signal-to-noise ratio (SNR of 10 dB. For all algorithms, detection errors arose from low-amplitude peaks, fast heart rates, low signal-to-noise ratio, and fixed thresholds.Our algorithm for the detection of S1 and S2 improves the performance of existing Daubechies-based algorithms and justifies the use of the wavelet coefficient 'D6' through power spectral analysis. Also, the robustness despite ambient noise may improve real world clinical performance.

  16. Wavelet analysis of MR functional data from the cerebellum

    Energy Technology Data Exchange (ETDEWEB)

    Karen, Romero Sánchez, E-mail: alphacentauri-hp@hotmail.com, E-mail: marcos-vaquezr@hotmail.com, E-mail: isabeldgg@hotmail.com; Vásquez Reyes Marcos, A., E-mail: alphacentauri-hp@hotmail.com, E-mail: marcos-vaquezr@hotmail.com, E-mail: isabeldgg@hotmail.com; González Gómez Dulce, I., E-mail: alphacentauri-hp@hotmail.com, E-mail: marcos-vaquezr@hotmail.com, E-mail: isabeldgg@hotmail.com; Hernández López, Javier M., E-mail: javierh@fcfm.buap.mx [Faculty of Physics and Mathematics, BUAP, Puebla, Pue (Mexico); Silvia, Hidalgo Tobón, E-mail: shidbon@gmail.com [Infant Hospital of Mexico, Federico Gómez, Mexico DF. Mexico and Physics Department, Universidad Autónoma Metropolitana. Iztapalapa, Mexico DF. (Mexico); Pilar, Dies Suarez, E-mail: pilydies@yahoo.com, E-mail: neurodoc@prodigy.net.mx; Eduardo, Barragán Pérez, E-mail: pilydies@yahoo.com, E-mail: neurodoc@prodigy.net.mx [Infant Hospital of Mexico, Federico Gómez, Mexico DF. (Mexico); Benito, De Celis Alonso, E-mail: benileon@yahoo.com [Faculty of Physics and Mathematics, BUAP, Puebla, Pue. Mexico and Foundation for Development Carlos Sigüenza. Puebla, Pue. (Mexico)

    2014-11-07

    The main goal of this project was to create a computer algorithm based on wavelet analysis of BOLD signals, which automatically diagnosed ADHD using information from resting state MR experiments. Male right handed volunteers (infants with ages between 7 and 11 years old) were studied and compared with age matched controls. Wavelet analysis, which is a mathematical tool used to decompose time series into elementary constituents and detect hidden information, was applied here to the BOLD signal obtained from the cerebellum 8 region of all our volunteers. Statistical differences between the values of the a parameters of wavelet analysis was found and showed significant differences (p<0.02) between groups. This difference might help in the future to distinguish healthy from ADHD patients and therefore diagnose ADHD.

  17. Wavelet analysis of MR functional data from the cerebellum

    International Nuclear Information System (INIS)

    Karen, Romero Sánchez; Vásquez Reyes Marcos, A.; González Gómez Dulce, I.; Hernández López, Javier M.; Silvia, Hidalgo Tobón; Pilar, Dies Suarez; Eduardo, Barragán Pérez; Benito, De Celis Alonso

    2014-01-01

    The main goal of this project was to create a computer algorithm based on wavelet analysis of BOLD signals, which automatically diagnosed ADHD using information from resting state MR experiments. Male right handed volunteers (infants with ages between 7 and 11 years old) were studied and compared with age matched controls. Wavelet analysis, which is a mathematical tool used to decompose time series into elementary constituents and detect hidden information, was applied here to the BOLD signal obtained from the cerebellum 8 region of all our volunteers. Statistical differences between the values of the a parameters of wavelet analysis was found and showed significant differences (p<0.02) between groups. This difference might help in the future to distinguish healthy from ADHD patients and therefore diagnose ADHD

  18. Implementation of Texture Based Image Retrieval Using M-band Wavelet Transform

    Institute of Scientific and Technical Information of China (English)

    LiaoYa-li; Yangyan; CaoYang

    2003-01-01

    Wavelet transform has attracted attention because it is a very useful tool for signal analyzing. As a fundamental characteristic of an image, texture traits play an important role in the human vision system for recognition and interpretation of images. The paper presents an approach to implement texture-based image retrieval using M-band wavelet transform. Firstly the traditional 2-band wavelet is extended to M-band wavelet transform. Then the wavelet moments are computed by M-band wavelet coefficients in the wavelet domain. The set of wavelet moments forms the feature vector related to the texture distribution of each wavelet images. The distances between the feature vectors describe the similarities of different images. The experimental result shows that the M-band wavelet moment features of the images are effective for image indexing.The retrieval method has lower computational complexity, yet it is capable of giving better retrieval performance for a given medical image database.

  19. Wavelet Filter Banks for Super-Resolution SAR Imaging

    Science.gov (United States)

    Sheybani, Ehsan O.; Deshpande, Manohar; Memarsadeghi, Nargess

    2011-01-01

    This paper discusses Innovative wavelet-based filter banks designed to enhance the analysis of super resolution Synthetic Aperture Radar (SAR) images using parametric spectral methods and signal classification algorithms, SAR finds applications In many of NASA's earth science fields such as deformation, ecosystem structure, and dynamics of Ice, snow and cold land processes, and surface water and ocean topography. Traditionally, standard methods such as Fast-Fourier Transform (FFT) and Inverse Fast-Fourier Transform (IFFT) have been used to extract Images from SAR radar data, Due to non-parametric features of these methods and their resolution limitations and observation time dependence, use of spectral estimation and signal pre- and post-processing techniques based on wavelets to process SAR radar data has been proposed. Multi-resolution wavelet transforms and advanced spectral estimation techniques have proven to offer efficient solutions to this problem.

  20. Efficient regularization with wavelet sparsity constraints in photoacoustic tomography

    Science.gov (United States)

    Frikel, Jürgen; Haltmeier, Markus

    2018-02-01

    In this paper, we consider the reconstruction problem of photoacoustic tomography (PAT) with a flat observation surface. We develop a direct reconstruction method that employs regularization with wavelet sparsity constraints. To that end, we derive a wavelet-vaguelette decomposition (WVD) for the PAT forward operator and a corresponding explicit reconstruction formula in the case of exact data. In the case of noisy data, we combine the WVD reconstruction formula with soft-thresholding, which yields a spatially adaptive estimation method. We demonstrate that our method is statistically optimal for white random noise if the unknown function is assumed to lie in any Besov-ball. We present generalizations of this approach and, in particular, we discuss the combination of PAT-vaguelette soft-thresholding with a total variation (TV) prior. We also provide an efficient implementation of the PAT-vaguelette transform that leads to fast image reconstruction algorithms supported by numerical results.

  1. Multiscale Signal Analysis and Modeling

    CERN Document Server

    Zayed, Ahmed

    2013-01-01

    Multiscale Signal Analysis and Modeling presents recent advances in multiscale analysis and modeling using wavelets and other systems. This book also presents applications in digital signal processing using sampling theory and techniques from various function spaces, filter design, feature extraction and classification, signal and image representation/transmission, coding, nonparametric statistical signal processing, and statistical learning theory. This book also: Discusses recently developed signal modeling techniques, such as the multiscale method for complex time series modeling, multiscale positive density estimations, Bayesian Shrinkage Strategies, and algorithms for data adaptive statistics Introduces new sampling algorithms for multidimensional signal processing Provides comprehensive coverage of wavelets with presentations on waveform design and modeling, wavelet analysis of ECG signals and wavelet filters Reviews features extraction and classification algorithms for multiscale signal and image proce...

  2. Discovering Wavelets

    CERN Document Server

    Aboufadel, Edward

    1999-01-01

    An accessible and practical introduction to wavelets. With applications in image processing, audio restoration, seismology, and elsewhere, wavelets have been the subject of growing excitement and interest over the past several years. Unfortunately, most books on wavelets are accessible primarily to research mathematicians. Discovering Wavelets presents basic and advanced concepts of wavelets in a way that is accessible to anyone with only a fundamental knowledge of linear algebra. The basic concepts of wavelet theory are introduced in the context of an explanation of how the FBI uses wavelets

  3. Abnormal traffic flow data detection based on wavelet analysis

    Directory of Open Access Journals (Sweden)

    Xiao Qian

    2016-01-01

    Full Text Available In view of the traffic flow data of non-stationary, the abnormal data detection is difficult.proposed basing on the wavelet analysis and least squares method of abnormal traffic flow data detection in this paper.First using wavelet analysis to make the traffic flow data of high frequency and low frequency component and separation, and then, combined with least square method to find abnormal points in the reconstructed signal data.Wavelet analysis and least square method, the simulation results show that using wavelet analysis of abnormal traffic flow data detection, effectively reduce the detection results of misjudgment rate and false negative rate.

  4. Application of the wavelet ridges method for the estimation of the decay ratio in Boiling Water Reactors; Atomos para el desarrollo de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Prieto G, A.; Espinosa P, G. [UAM-I, 09340 Mexico D.F. (Mexico)

    2008-07-01

    A wavelet ridges application is proposed as a simple method to determine the evolution of the linear stability parameters of a BWR NPP using neutronic noise signals. The wavelets ridges are used to track the instantaneous frequencies contained in a signal and to estimate the Decay Ratio (DR). The first step of the method consists of de noising the analyzed signals by Discrete Wavelet Transform (DWT) to reduce the interference of high-frequency noise and concentrate the analysis in the band where crucial frequencies are presented. Next, is computation of the wavelet ridges by Continuous Wavelet Transform (CWT) to obtain the modulus maxima from the normalized scalogram of the signal. In general, associations with these wavelets ridges can be used to compute instantaneous frequency contained in the signal and the DR evolution with the measurement. To study the performance of the wavelet ridges method, by computing the evolution of the linear stability parameters, both simulated and real neutronic signals were considered. The simulated signal is used to validate methodically and to study some features of the wavelet ridges method. To demonstrate the method applicability a real neutronic signal from the instability event in Laguna Verde was analyzed. The investigations show that most of the local energies of the signal are concentrated in the wavelet ridges and DR variations of the signals were observed along the measurements. (Author)

  5. Nonlinear Analysis of Auscultation Signals in TCM Using the Combination of Wavelet Packet Transform and Sample Entropy

    Directory of Open Access Journals (Sweden)

    Jian-Jun Yan

    2012-01-01

    Full Text Available Auscultation signals are nonstationary in nature. Wavelet packet transform (WPT has currently become a very useful tool in analyzing nonstationary signals. Sample entropy (SampEn has recently been proposed to act as a measurement for quantifying regularity and complexity of time series data. WPT and SampEn were combined in this paper to analyze auscultation signals in traditional Chinese medicine (TCM. SampEns for WPT coefficients were computed to quantify the signals from qi- and yin-deficient, as well as healthy, subjects. The complexity of the signal can be evaluated with this scheme in different time-frequency resolutions. First, the voice signals were decomposed into approximated and detailed WPT coefficients. Then, SampEn values for approximated and detailed coefficients were calculated. Finally, SampEn values with significant differences in the three kinds of samples were chosen as the feature parameters for the support vector machine to identify the three types of auscultation signals. The recognition accuracy rates were higher than 90%.

  6. The Discrete Wavelet Transform and Its Application for Noise Removal in Localized Corrosion Measurements

    Directory of Open Access Journals (Sweden)

    Rogelio Ramos

    2017-01-01

    Full Text Available The present work discusses the problem of induced external electrical noise as well as its removal from the electrical potential obtained from Scanning Vibrating Electrode Technique (SVET in the pitting corrosion process of aluminum alloy A96061 in 3.5% NaCl. An accessible and efficient solution of this problem is presented with the use of virtual instrumentation (VI, embedded systems, and the discrete wavelet transform (DWT. The DWT is a computational algorithm for digital processing that allows obtaining electrical noise with Signal to Noise Ratio (SNR superior to those obtained with Lock-In Amplifier equipment. The results show that DWT and the threshold method are efficient and powerful alternatives to carry out electrical measurements of potential signals from localized corrosion processes measured by SVET.

  7. Wavelet-Coded OFDM for Next Generation Mobile Communications

    DEFF Research Database (Denmark)

    Cavalcante, Lucas Costa Pereira; Vegas Olmos, Juan José; Tafur Monroy, Idelfonso

    2016-01-01

    In this work, we evaluate the performance of Wavelet-Coding into offering robustness for OFDM signals against the combined effects of varying fading and noise bursts. Wavelet-Code enables high diversity gains with a low complex receiver, and, most notably, without compromising the system’s spectr......-wave frequencies in future generation mobile communication due to its robustness against multipath fading....

  8. High-resolution time-frequency representation of EEG data using multi-scale wavelets

    Science.gov (United States)

    Li, Yang; Cui, Wei-Gang; Luo, Mei-Lin; Li, Ke; Wang, Lina

    2017-09-01

    An efficient time-varying autoregressive (TVAR) modelling scheme that expands the time-varying parameters onto the multi-scale wavelet basis functions is presented for modelling nonstationary signals and with applications to time-frequency analysis (TFA) of electroencephalogram (EEG) signals. In the new parametric modelling framework, the time-dependent parameters of the TVAR model are locally represented by using a novel multi-scale wavelet decomposition scheme, which can allow the capability to capture the smooth trends as well as track the abrupt changes of time-varying parameters simultaneously. A forward orthogonal least square (FOLS) algorithm aided by mutual information criteria are then applied for sparse model term selection and parameter estimation. Two simulation examples illustrate that the performance of the proposed multi-scale wavelet basis functions outperforms the only single-scale wavelet basis functions or Kalman filter algorithm for many nonstationary processes. Furthermore, an application of the proposed method to a real EEG signal demonstrates the new approach can provide highly time-dependent spectral resolution capability.

  9. Wavelet Packet Entropy in Speaker-Independent Emotional State Detection from Speech Signal

    Directory of Open Access Journals (Sweden)

    Mina Kadkhodaei Elyaderani

    2015-01-01

    Full Text Available In this paper, wavelet packet entropy is proposed for speaker-independent emotion detection from speech. After pre-processing, wavelet packet decomposition using wavelet type db3 at level 4 is calculated and Shannon entropy in its nodes is calculated to be used as feature. In addition, prosodic features such as first four formants, jitter or pitch deviation amplitude, and shimmer or energy variation amplitude besides MFCC features are applied to complete the feature vector. Then, Support Vector Machine (SVM is used to classify the vectors in multi-class (all emotions or two-class (each emotion versus normal state format. 46 different utterances of a single sentence from Berlin Emotional Speech Dataset are selected. These are uttered by 10 speakers in sadness, happiness, fear, boredom, anger, and normal emotional state. Experimental results show that proposed features can improve emotional state detection accuracy in multi-class situation. Furthermore, adding to other features wavelet entropy coefficients increase the accuracy of two-class detection for anger, fear, and happiness.

  10. Reversible wavelet filter banks with side informationless spatially adaptive low-pass filters

    Science.gov (United States)

    Abhayaratne, Charith

    2011-07-01

    Wavelet transforms that have an adaptive low-pass filter are useful in applications that require the signal singularities, sharp transitions, and image edges to be left intact in the low-pass signal. In scalable image coding, the spatial resolution scalability is achieved by reconstructing the low-pass signal subband, which corresponds to the desired resolution level, and discarding other high-frequency wavelet subbands. In such applications, it is vital to have low-pass subbands that are not affected by smoothing artifacts associated with low-pass filtering. We present the mathematical framework for achieving 1-D wavelet transforms that have a spatially adaptive low-pass filter (SALP) using the prediction-first lifting scheme. The adaptivity decisions are computed using the wavelet coefficients, and no bookkeeping is required for the perfect reconstruction. Then, 2-D wavelet transforms that have a spatially adaptive low-pass filter are designed by extending the 1-D SALP framework. Because the 2-D polyphase decompositions are used in this case, the 2-D adaptivity decisions are made nonseparable as opposed to the separable 2-D realization using 1-D transforms. We present examples using the 2-D 5/3 wavelet transform and their lossless image coding and scalable decoding performances in terms of quality and resolution scalability. The proposed 2-D-SALP scheme results in better performance compared to the existing adaptive update lifting schemes.

  11. Evaluation of diagnostic thresholds dependability for tribologic signals received in the environment disturbed by vibroacoustic and functional signals

    Directory of Open Access Journals (Sweden)

    Lindstedt Paweł

    2015-12-01

    Full Text Available Determination of dependable diagnostic thresholds for tribologic signals received e.g. from antifriction bearings (in particular for insufficient number of measurements, only 4÷5 is a really difficult task due to complexity of working environment where such bearings are operated. Typical working environment for such objects must take account for operation time under various working conditions and accompanying (and disturbing signals, e.g. vibroacoustic ones. The sought assessment of the relationship between diagnostic signals and environmental noise can be determined from convolution of both diagnostic and environments signals that make up the complete set of received information. The convolution of these two series of signals can be obtained from an algorithm based on the Cauchy product. Then one has to find the coherence factor and the square of amplitude gain for the set of diagnostic signals with reference to various sets of signals received from environment, which makes it possible to evaluate cohesion of the investigated series of signals, thus their suitability to determine diagnostic threshold for tribologic signals intended for the analysis.

  12. Simulasi Unjuk Kerja Discrete Wavelet Transform (DWT dan Discrete Cosine Transform (DCT untuk Pengolahan Sinyal Radar di Daerah yang Ber-Noise Tinggi

    Directory of Open Access Journals (Sweden)

    Raisah Hayati

    2014-03-01

    Full Text Available Detection of low signal and determination target locations is the basis and important in the system radar. Performance of radar can enhanced with enhancement signal-to-noise ratio in the receiver. In this research, will show a algorithm in radar signal processing, that is for extract the signal target in the place of noise. Discrete Cosine Transform (DCT and Discrete Wavelet Transform (DWT is the success full mathematic function in the signal processing in the last twenty years. In this research will simulate signal with DCT and DWT, analysis his performance in radar signal processing. DWT signal processing will analysis and compare with mother wavelet Haar, Daubechies-12, Coiflet-5 and Symlet-8. DCT signal processing will analysis and compare with same of window function with use in signal restrictions. Window function have influence signal resolution in domain frequency. Window function that use in this research Rectangular, Hamming, Hanning and Dolph-Chebyshev. The result of simulation and analysis Is: mother wavelet with DWT, wavelet Daubechies-12 and Symlet-8 give the best performance and mother wavelet Haar give bad performance. Wavelet Daubechies-12 give the biggest signal to noise ratio that is 32,0603 dB. Mother wavelet Symlet-8 give 32,6589 dB. Mother wavelet Haar give 14,6692 dB. Testing window function DCT, window Dolph-Chebyshev give the best performance, with give the best separation of signal. Analysis of signal reflection that accept of radar give the result that DWT is better performance than DCT in breaking of noise.

  13. Wavelet analysis as a tool to characteriseand remove environmental noisefrom self-potential time series

    Directory of Open Access Journals (Sweden)

    M. Ragosta

    2004-06-01

    Full Text Available Multiresolution wavelet analysis of self-potential signals and rainfall levels is performed for extracting fluctuations in electrical signals, which might be addressed to meteorological variability. In the time-scale domain of the wavelet transform, rain data are used as markers to single out those wavelet coefficients of the electric signal which can be considered relevant to the environmental disturbance. Then these coefficients are filtered out and the signal is recovered by anti-transforming the retained coefficients. Such methodological approach might be applied to characterise unwanted environmental noise. It also can be considered as a practical technique to remove noise that can hamper the correct assessment and use of electrical techniques for the monitoring of geophysical phenomena.

  14. Wavelet transform and ANNs for detection and classification of power signal disturbances

    International Nuclear Information System (INIS)

    Memon, A.P.; Uqaili, M.A.; Memon, Z.A.

    2012-01-01

    This article proposes WT (Wavelet Transform) and an ANN (Artificial Neural Network) based approach for detection and classification of EPQDs (Electrical Power Quality Disturbances). A modified WT known as ST (Stockwell Transform) is suggested for feature extraction and PNN (probabilistic Neural Network) for pattern classification. The ST possesses outstanding time-frequency resolution characteristics and its phase correction techniques determine the phase of the WT to the zero time point The feature vectors for the input of PNN are extracted using ST technique and these obtained features are discrete, logical, and unaffected to noisy data of distorted signals. The data of the models required to develop the distorted EPQ (Electrical Power Quality) signals, is obtained within the ranges specified by IEEE 1159-1995 in its literatures. The features vectors including noisy time varying data during steady state or transient condition and extracted using the ST, are trained through PNN for pattern classification. Their simulation results demonstrate that the proposed methodology is successful and can classify EPQDs even under a noisy environment very efficiently with an average classification accuracy of 96%. (author)

  15. Wavelet Packet Transform Based Driver Distraction Level Classification Using EEG

    Directory of Open Access Journals (Sweden)

    Mousa Kadhim Wali

    2013-01-01

    Full Text Available We classify the driver distraction level (neutral, low, medium, and high based on different wavelets and classifiers using wireless electroencephalogram (EEG signals. 50 subjects were used for data collection using 14 electrodes. We considered for this research 4 distraction stimuli such as Global Position Systems (GPS, music player, short message service (SMS, and mental tasks. Deriving the amplitude spectrum of three different frequency bands theta, alpha, and beta of EEG signals was based on fusion of discrete wavelet packet transform (DWPT and FFT. Comparing the results of three different classifiers (subtractive fuzzy clustering probabilistic neural network, -nearest neighbor was based on spectral centroid, and power spectral features extracted by different wavelets (db4, db8, sym8, and coif5. The results of this study indicate that the best average accuracy achieved by subtractive fuzzy inference system classifier is 79.21% based on power spectral density feature extracted by sym8 wavelet which gave a good class discrimination under ANOVA test.

  16. Epileptic Seizure Detection based on Wavelet Transform Statistics Map and EMD Method for Hilbert-Huang Spectral Analyzing in Gamma Frequency Band of EEG Signals

    Directory of Open Access Journals (Sweden)

    Morteza Behnam

    2015-08-01

    Full Text Available Seizure detection using brain signal (EEG analysis is the important clinical methods in drug therapy and the decisions before brain surgery. In this paper, after signal conditioning using suitable filtering, the Gamma frequency band has been extracted and the other brain rhythms, ambient noises and the other bio-signal are canceled. Then, the wavelet transform of brain signal and the map of wavelet transform in multi levels are computed. By dividing the color map to different epochs, the histogram of each sub-image is obtained and the statistics of it based on statistical momentums and Negentropy values are calculated. Statistical feature vector using Principle Component Analysis (PCA is reduced to one dimension. By EMD algorithm and sifting procedure for analyzing the data by Intrinsic Mode Function (IMF and computing the residues of brain signal using spectrum of Hilbert transform and Hilbert – Huang spectrum forming, one spatial feature based on the Euclidian distance for signal classification is obtained. By K-Nearest Neighbor (KNN classifier and by considering the optimal neighbor parameter, EEG signals are classified in two classes, seizure and non-seizure signal, with the rate of accuracy 76.54% and with variance of error 0.3685 in the different tests.

  17. WAVELET-BASED ALGORITHM FOR DETECTION OF BEARING FAULTS IN A GAS TURBINE ENGINE

    Directory of Open Access Journals (Sweden)

    Sergiy Enchev

    2014-07-01

    Full Text Available Presented is a gas turbine engine bearing diagnostic system that integrates information from various advanced vibration analysis techniques to achieve robust bearing health state awareness. This paper presents a computational algorithm for identifying power frequency variations and integer harmonics by using wavelet-based transform. The continuous wavelet transform with  the complex Morlet wavelet is adopted to detect the harmonics presented in a power signal. The algorithm based on the discrete stationary wavelet transform is adopted to denoise the wavelet ridges.

  18. Fusion of ECG and ABP signals based on wavelet transform for cardiac arrhythmias classification.

    Science.gov (United States)

    Arvanaghi, Roghayyeh; Daneshvar, Sabalan; Seyedarabi, Hadi; Goshvarpour, Atefeh

    2017-11-01

    Each of Electrocardiogram (ECG) and Atrial Blood Pressure (ABP) signals contain information of cardiac status. This information can be used for diagnosis and monitoring of diseases. The majority of previously proposed methods rely only on ECG signal to classify heart rhythms. In this paper, ECG and ABP were used to classify five different types of heart rhythms. To this end, two mentioned signals (ECG and ABP) have been fused. These physiological signals have been used from MINIC physioNet database. ECG and ABP signals have been fused together on the basis of the proposed Discrete Wavelet Transformation fusion technique. Then, some frequency features were extracted from the fused signal. To classify the different types of cardiac arrhythmias, these features were given to a multi-layer perceptron neural network. In this study, the best results for the proposed fusion algorithm were obtained. In this case, the accuracy rates of 96.6%, 96.9%, 95.6% and 93.9% were achieved for two, three, four and five classes, respectively. However, the maximum classification rate of 89% was obtained for two classes on the basis of ECG features. It has been found that the higher accuracy rates were acquired by using the proposed fusion technique. The results confirmed the importance of fusing features from different physiological signals to gain more accurate assessments. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Scalets, wavelets and (complex) turning point quantization

    Science.gov (United States)

    Handy, C. R.; Brooks, H. A.

    2001-05-01

    Despite the many successes of wavelet analysis in image and signal processing, the incorporation of continuous wavelet transform theory within quantum mechanics has lacked a compelling, first principles, motivating analytical framework, until now. For arbitrary one-dimensional rational fraction Hamiltonians, we develop a simple, unified formalism, which clearly underscores the complementary, and mutually interdependent, role played by moment quantization theory (i.e. via scalets, as defined herein) and wavelets. This analysis involves no approximation of the Hamiltonian within the (equivalent) wavelet space, and emphasizes the importance of (complex) multiple turning point contributions in the quantization process. We apply the method to three illustrative examples. These include the (double-well) quartic anharmonic oscillator potential problem, V(x) = Z2x2 + gx4, the quartic potential, V(x) = x4, and the very interesting and significant non-Hermitian potential V(x) = -(ix)3, recently studied by Bender and Boettcher.

  20. Implementation of Wavelet-Based Robust Differential Control for Electric Vehicle Application

    DEFF Research Database (Denmark)

    Daya, Febin; Padmanaban, Sanjeevikumar; Blaabjerg, Frede

    2015-01-01

    This research letter presents the modeling and simulation of electronic differential, employing a novel wavelet controller for two brushless dc motors. The proposed controller uses discrete wavelet transform to decompose the error between actual and reference speed. Error signal that is actually...

  1. Comparisons between two wavelet functions in extracting coherent structures from solar wind time series

    International Nuclear Information System (INIS)

    Bolzani, M.J.A.; Guarnieri, F.L.; Vieira, Paulo Cesar

    2009-01-01

    Nowadays, wavelet analysis of turbulent flows have become increasingly popular. However, the study of geometric characteristics from wavelet functions is still poorly explored. In this work we compare the performance of two wavelet functions in extracting the coherent structures from solar wind velocity time series. The data series are from years 1996 to 2002 (except 1998 and 1999). The wavelet algorithm decomposes the annual time-series in two components: the coherent part and non-coherent one, using the daubechies-4 and haar wavelet function. The threshold assumed is based on a percentage of maximum variance found in each dyadic scale. After the extracting procedure, we applied the power spectral density on the original time series and coherent time series to obtain spectral indices. The results from spectral indices show higher values for the coherent part obtained by daubechies-4 than those obtained by the haar wavelet function. Using the kurtosis statistical parameter, on coherent and non-coherent time series, it was possible to conjecture that the differences found between two wavelet functions may be associated with their geometric forms. (author)

  2. Using wavelet denoising and mathematical morphology in the segmentation technique applied to blood cells images.

    Science.gov (United States)

    Boix, Macarena; Cantó, Begoña

    2013-04-01

    Accurate image segmentation is used in medical diagnosis since this technique is a noninvasive pre-processing step for biomedical treatment. In this work we present an efficient segmentation method for medical image analysis. In particular, with this method blood cells can be segmented. For that, we combine the wavelet transform with morphological operations. Moreover, the wavelet thresholding technique is used to eliminate the noise and prepare the image for suitable segmentation. In wavelet denoising we determine the best wavelet that shows a segmentation with the largest area in the cell. We study different wavelet families and we conclude that the wavelet db1 is the best and it can serve for posterior works on blood pathologies. The proposed method generates goods results when it is applied on several images. Finally, the proposed algorithm made in MatLab environment is verified for a selected blood cells.

  3. An Enhanced Empirical Wavelet Transform for Features Extraction from Wind Turbine Condition Monitoring Signals

    Directory of Open Access Journals (Sweden)

    Pu Shi

    2017-07-01

    Full Text Available Feature extraction from nonlinear and non-stationary (NNS wind turbine (WT condition monitoring (CM signals is challenging. Previously, much effort has been spent to develop advanced signal processing techniques for dealing with CM signals of this kind. The Empirical Wavelet Transform (EWT is one of the achievements attributed to these efforts. The EWT takes advantage of Empirical Mode Decomposition (EMD in dealing with NNS signals but is superior to the EMD in mode decomposition and robustness against noise. However, the conventional EWT meets difficulty in properly segmenting the frequency spectrum of the signal, especially when lacking pre-knowledge of the signal. The inappropriate segmentation of the signal spectrum will inevitably lower the accuracy of the EWT result and thus raise the difficulty of WT CM. To address this issue, an enhanced EWT is proposed in this paper by developing a feasible and efficient spectrum segmentation method. The effectiveness of the proposed method has been verified by using the bearing and gearbox CM data that are open to the public for the purpose of research. The experiment has shown that, after adopting the proposed method, it becomes much easier and more reliable to segment the frequency spectrum of the signal. Moreover, benefitting from the correct segmentation of the signal spectrum, the fault-related features of the CM signals are presented more explicitly in the time-frequency map of the enhanced EWT, despite the considerable noise contained in the signal and the shortage of pre-knowledge about the machine being investigated.

  4. Wavelet time-frequency analysis of accelerating and decelerating flows in a tube bank

    International Nuclear Information System (INIS)

    Indrusiak, M.L.S.; Goulart, J.V.; Olinto, C.R.; Moeller, S.V.

    2005-01-01

    In the present work, the steady approximation for accelerating and decelerating flows through tube banks is discussed. With this purpose, the experimental study of velocity and pressure fluctuations of transient turbulent cross-flow in a tube bank with square arrangement and a pitch-to-diameter ratio of 1.26 is performed. The Reynolds number at steady-state flow, computed with the tube diameter and the flow velocity in the narrow gap between the tubes, is 8 x 10 4 . Air is the working fluid. The accelerating and decelerating transients are obtained by means of start and stop of the centrifugal blower. Wavelet and wavelet packet multiresolution analysis were applied to decompose the signal in frequency intervals, using Daubechies 20 wavelet and scale functions, thus allowing the analysis of phenomena in a time-frequency domain. The continuous wavelet transform was also applied, using the Morlet function. The signals in the steady state, which presented a bistable behavior, were separated in two modes and analyzed with usual statistic tools. The results were compared with the steady-state assumption, demonstrating the ability of wavelets for analyzing time varying signals

  5. Detection of seismic phases by wavelet transform. Dependence of its performance on wavelet functions; Wavelet henkan ni yoru jishinha no iso kenshutsu. Wavelet ni yoru sai

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, X; Yamazaki, K [Tokyo Gakugei University, Tokyo (Japan); Oguchi, Y [Hosei University, Tokyo (Japan)

    1997-10-22

    A study has been performed on wavelet analysis of seismic waves. In the wavelet analysis of seismic waves, there is a possibility that the results according to different wavelet functions may come out with great difference. The study has carried out the following analyses: an analysis of amplitude and phase using wavelet transform which uses wavelet function of Morlet on P- and S-waves generated by natural earthquakes and P-wave generated by an artificial earthquake, and an analysis using continuous wavelet transform, which uses a constitution of complex wavelet function constructed by a completely diagonal scaling function of Daubechies and the wavelet function. As a result, the following matters were made clear: the result of detection of abnormal components or discontinuity depends on the wavelet function; if the Morlet wavelet function is used to properly select angular frequency and scale, equiphase lines in a phase scalogram concentrate on the discontinuity; and the result of applying the complex wavelet function is superior to that of applying the wavelet function of Morlet. 2 refs., 5 figs.

  6. Evaluation of the efficiency of continuous wavelet transform as processing and preprocessing algorithm for resolution of overlapped signals in univariate and multivariate regression analyses; an application to ternary and quaternary mixtures

    Science.gov (United States)

    Hegazy, Maha A.; Lotfy, Hayam M.; Mowaka, Shereen; Mohamed, Ekram Hany

    2016-07-01

    Wavelets have been adapted for a vast number of signal-processing applications due to the amount of information that can be extracted from a signal. In this work, a comparative study on the efficiency of continuous wavelet transform (CWT) as a signal processing tool in univariate regression and a pre-processing tool in multivariate analysis using partial least square (CWT-PLS) was conducted. These were applied to complex spectral signals of ternary and quaternary mixtures. CWT-PLS method succeeded in the simultaneous determination of a quaternary mixture of drotaverine (DRO), caffeine (CAF), paracetamol (PAR) and p-aminophenol (PAP, the major impurity of paracetamol). While, the univariate CWT failed to simultaneously determine the quaternary mixture components and was able to determine only PAR and PAP, the ternary mixtures of DRO, CAF, and PAR and CAF, PAR, and PAP. During the calculations of CWT, different wavelet families were tested. The univariate CWT method was validated according to the ICH guidelines. While for the development of the CWT-PLS model a calibration set was prepared by means of an orthogonal experimental design and their absorption spectra were recorded and processed by CWT. The CWT-PLS model was constructed by regression between the wavelet coefficients and concentration matrices and validation was performed by both cross validation and external validation sets. Both methods were successfully applied for determination of the studied drugs in pharmaceutical formulations.

  7. Neurocomputational account of memory and perception: Thresholded and graded signals in the hippocampus.

    Science.gov (United States)

    Elfman, Kane W; Aly, Mariam; Yonelinas, Andrew P

    2014-12-01

    Recent evidence suggests that the hippocampus, a region critical for long-term memory, also supports certain forms of high-level visual perception. A seemingly paradoxical finding is that, unlike the thresholded hippocampal signals associated with memory, the hippocampus produces graded, strength-based signals in perception. This article tests a neurocomputational model of the hippocampus, based on the complementary learning systems framework, to determine if the same model can account for both memory and perception, and whether it produces the appropriate thresholded and strength-based signals in these two types of tasks. The simulations showed that the hippocampus, and most prominently the CA1 subfield, produced graded signals when required to discriminate between highly similar stimuli in a perception task, but generated thresholded patterns of activity in recognition memory. A threshold was observed in recognition memory because pattern completion occurred for only some trials and completely failed to occur for others; conversely, in perception, pattern completion always occurred because of the high degree of item similarity. These results offer a neurocomputational account of the distinct hippocampal signals associated with perception and memory, and are broadly consistent with proposals that CA1 functions as a comparator of expected versus perceived events. We conclude that the hippocampal computations required for high-level perceptual discrimination are congruous with current neurocomputational models that account for recognition memory, and fit neatly into a broader description of the role of the hippocampus for the processing of complex relational information. © 2014 Wiley Periodicals, Inc.

  8. A CMOS Morlet Wavelet Generator

    Directory of Open Access Journals (Sweden)

    A. I. Bautista-Castillo

    2017-04-01

    Full Text Available The design and characterization of a CMOS circuit for Morlet wavelet generation is introduced. With the proposed Morlet wavelet circuit, it is possible to reach a~low power consumption, improve standard deviation (σ control and also have a small form factor. A prototype in a double poly, three metal layers, 0.5 µm CMOS process from MOSIS foundry was carried out in order to verify the functionality of the proposal. However, the design methodology can be extended to different CMOS processes. According to the performance exhibited by the circuit, may be useful in many different signal processing tasks such as nonlinear time-variant systems.

  9. Digital transceiver implementation for wavelet packet modulation

    Science.gov (United States)

    Lindsey, Alan R.; Dill, Jeffrey C.

    1998-03-01

    Current transceiver designs for wavelet-based communication systems are typically reliant on analog waveform synthesis, however, digital processing is an important part of the eventual success of these techniques. In this paper, a transceiver implementation is introduced for the recently introduced wavelet packet modulation scheme which moves the analog processing as far as possible toward the antenna. The transceiver is based on the discrete wavelet packet transform which incorporates level and node parameters for generalized computation of wavelet packets. In this transform no particular structure is imposed on the filter bank save dyadic branching, and a maximum level which is specified a priori and dependent mainly on speed and/or cost considerations. The transmitter/receiver structure takes a binary sequence as input and, based on the desired time- frequency partitioning, processes the signal through demultiplexing, synthesis, analysis, multiplexing and data determination completely in the digital domain - with exception of conversion in and out of the analog domain for transmission.

  10. Forecasting of particulate matter time series using wavelet analysis and wavelet-ARMA/ARIMA model in Taiyuan, China.

    Science.gov (United States)

    Zhang, Hong; Zhang, Sheng; Wang, Ping; Qin, Yuzhe; Wang, Huifeng

    2017-07-01

    Particulate matter with aerodynamic diameter below 10 μm (PM 10 ) forecasting is difficult because of the uncertainties in describing the emission and meteorological fields. This paper proposed a wavelet-ARMA/ARIMA model to forecast the short-term series of the PM 10 concentrations. It was evaluated by experiments using a 10-year data set of daily PM 10 concentrations from 4 stations located in Taiyuan, China. The results indicated the following: (1) PM 10 concentrations of Taiyuan had a decreasing trend during 2005 to 2012 but increased in 2013. PM 10 concentrations had an obvious seasonal fluctuation related to coal-fired heating in winter and early spring. (2) Spatial differences among the four stations showed that the PM 10 concentrations in industrial and heavily trafficked areas were higher than those in residential and suburb areas. (3) Wavelet analysis revealed that the trend variation and the changes of the PM 10 concentration of Taiyuan were complicated. (4) The proposed wavelet-ARIMA model could be efficiently and successfully applied to the PM 10 forecasting field. Compared with the traditional ARMA/ARIMA methods, this wavelet-ARMA/ARIMA method could effectively reduce the forecasting error, improve the prediction accuracy, and realize multiple-time-scale prediction. Wavelet analysis can filter noisy signals and identify the variation trend and the fluctuation of the PM 10 time-series data. Wavelet decomposition and reconstruction reduce the nonstationarity of the PM 10 time-series data, and thus improve the accuracy of the prediction. This paper proposed a wavelet-ARMA/ARIMA model to forecast the PM 10 time series. Compared with the traditional ARMA/ARIMA method, this wavelet-ARMA/ARIMA method could effectively reduce the forecasting error, improve the prediction accuracy, and realize multiple-time-scale prediction. The proposed model could be efficiently and successfully applied to the PM 10 forecasting field.

  11. Accelerometer North Finding System Based on the Wavelet Packet De-noising Algorithm and Filtering Circuit

    Directory of Open Access Journals (Sweden)

    LU Yongle

    2014-07-01

    Full Text Available This paper demonstrates a method and system for north finding with a low-cost piezoelectricity accelerometer based on the Coriolis acceleration principle. The proposed setup is based on the choice of an accelerometer with residual noise of 35 ng•Hz-1/2. The plane of the north finding system is aligned parallel to the local level, which helps to eliminate the effect of plane error. The Coriolis acceleration caused by the earth’s rotation and the acceleration’s instantaneous velocity is much weaker than the g-sensitivity acceleration. To get a high accuracy and a shorter time for north finding system, in this paper, the Filtering Circuit and the wavelet packet de-nosing algorithm are used as the following. First, the hardware is designed as the alternating currents across by filtering circuit, so the DC will be isolated and the weak AC signal will be amplified. The DC is interfering signal generated by the earth's gravity. Then, we have used a wavelet packet to filter the signal which has been done through the filtering circuit. Finally, compare the north finding results measured by wavelet packet filtering with those measured by a low-pass filter. Wavelet filter de-noise data shows that wavelet packet filtering and wavelet filter measurement have high accuracy. Wavelet Packet filtering has stronger ability to remove burst noise and higher engineering environment adaptability than that of Wavelet filtering. Experimental results prove the effectiveness and project implementation of the accelerometer north finding method based on wavelet packet de-noising algorithm.

  12. EEG Signal Decomposition and Improved Spectral Analysis Using Wavelet Transform

    National Research Council Canada - National Science Library

    Bhatti, Muhammad

    2001-01-01

    EEG (Electroencephalograph), as a noninvasive testing method, plays a key role in the diagnosing diseases, and is useful for both physiological research and medical applications. Wavelet transform (WT...

  13. Analysis and removing noise from speech using wavelet transform

    Science.gov (United States)

    Tomala, Karel; Voznak, Miroslav; Partila, Pavol; Rezac, Filip; Safarik, Jakub

    2013-05-01

    The paper discusses the use of Discrete Wavelet Transform (DWT) and Stationary Wavelet Transform (SWT) wavelet in removing noise from voice samples and evaluation of its impact on speech quality. One significant part of Quality of Service (QoS) in communication technology is the speech quality assessment. However, this part is seriously overlooked as telecommunication providers often focus on increasing network capacity, expansion of services offered and their enforcement in the market. Among the fundamental factors affecting the transmission properties of the communication chain is noise, either at the transmitter or the receiver side. A wavelet transform (WT) is a modern tool for signal processing. One of the most significant areas in which wavelet transforms are used is applications designed to suppress noise in signals. To remove noise from the voice sample in our experiment, we used the reference segment of the voice which was distorted by Gaussian white noise. An evaluation of the impact on speech quality was carried out by an intrusive objective algorithm Perceptual Evaluation of Speech Quality (PESQ). DWT and SWT transformation was applied to voice samples that were devalued by Gaussian white noise. Afterwards, we determined the effectiveness of DWT and SWT by means of objective algorithm PESQ. The decisive criterion for determining the quality of a voice sample once the noise had been removed was Mean Opinion Score (MOS) which we obtained in PESQ. The contribution of this work lies in the evaluation of efficiency of wavelet transformation to suppress noise in voice samples.

  14. Noise Reduction in Breath Sound Files Using Wavelet Transform Based Filter

    Science.gov (United States)

    Syahputra, M. F.; Situmeang, S. I. G.; Rahmat, R. F.; Budiarto, R.

    2017-04-01

    The development of science and technology in the field of healthcare increasingly provides convenience in diagnosing respiratory system problem. Recording the breath sounds is one example of these developments. Breath sounds are recorded using a digital stethoscope, and then stored in a file with sound format. This breath sounds will be analyzed by health practitioners to diagnose the symptoms of disease or illness. However, the breath sounds is not free from interference signals. Therefore, noise filter or signal interference reduction system is required so that breath sounds component which contains information signal can be clarified. In this study, we designed a filter called a wavelet transform based filter. The filter that is designed in this study is using Daubechies wavelet with four wavelet transform coefficients. Based on the testing of the ten types of breath sounds data, the data is obtained in the largest SNRdB bronchial for 74.3685 decibels.

  15. A novel EMD selecting thresholding method based on multiple iteration for denoising LIDAR signal

    Science.gov (United States)

    Li, Meng; Jiang, Li-hui; Xiong, Xing-long

    2015-06-01

    Empirical mode decomposition (EMD) approach has been believed to be potentially useful for processing the nonlinear and non-stationary LIDAR signals. To shed further light on its performance, we proposed the EMD selecting thresholding method based on multiple iteration, which essentially acts as a development of EMD interval thresholding (EMD-IT), and randomly alters the samples of noisy parts of all the corrupted intrinsic mode functions to generate a better effect of iteration. Simulations on both synthetic signals and LIDAR signals from real world support this method.

  16. Improved CEEMDAN-wavelet transform de-noising method and its application in well logging noise reduction

    Science.gov (United States)

    Zhang, Jingxia; Guo, Yinghai; Shen, Yulin; Zhao, Difei; Li, Mi

    2018-06-01

    The use of geophysical logging data to identify lithology is an important groundwork in logging interpretation. Inevitably, noise is mixed in during data collection due to the equipment and other external factors and this will affect the further lithological identification and other logging interpretation. Therefore, to get a more accurate lithological identification it is necessary to adopt de-noising methods. In this study, a new de-noising method, namely improved complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN)-wavelet transform, is proposed, which integrates the superiorities of improved CEEMDAN and wavelet transform. Improved CEEMDAN, an effective self-adaptive multi-scale analysis method, is used to decompose non-stationary signals as the logging data to obtain the intrinsic mode function (IMF) of N different scales and one residual. Moreover, one self-adaptive scale selection method is used to determine the reconstruction scale k. Simultaneously, given the possible frequency aliasing problem between adjacent IMFs, a wavelet transform threshold de-noising method is used to reduce the noise of the (k-1)th IMF. Subsequently, the de-noised logging data are reconstructed by the de-noised (k-1)th IMF and the remaining low-frequency IMFs and the residual. Finally, empirical mode decomposition, improved CEEMDAN, wavelet transform and the proposed method are applied for analysis of the simulation and the actual data. Results show diverse performance of these de-noising methods with regard to accuracy for lithological identification. Compared with the other methods, the proposed method has the best self-adaptability and accuracy in lithological identification.

  17. Detection of Early Faults in Rotating Machinery Based on Wavelet Analysis

    Directory of Open Access Journals (Sweden)

    Meng Hee Lim

    2013-01-01

    Full Text Available This paper explores the application of wavelet analysis for the detection of early changes in rotor dynamics caused by common machinery faults, namely, rotor unbalance and minor blade rubbing conditions. In this paper, the time synchronised wavelet analysis method was formulated and its effectiveness to detect machinery faults at the early stage was evaluated based on signal simulation and experimental study. The proposed method provides a more standardised approach to visualise the current state of rotor dynamics of a rotating machinery by taking into account the effects of time shift, wavelet edge distortion, and system noise suppression. The experimental results showed that this method is able to reveal subtle changes of the vibration signal characteristics in both the frequency content distribution and the amplitude distortion caused by minor rotor unbalance and blade rubbing conditions. Besides, this method also appeared to be an effective tool to diagnose and to discriminate the different types of machinery faults based on the unique pattern of the wavelet contours. This study shows that the proposed wavelet analysis method is promising to reveal machinery faults at early stage as compared to vibration spectrum analysis.

  18. Analysis on Behaviour of Wavelet Coefficient during Fault Occurrence in Transformer

    Science.gov (United States)

    Sreewirote, Bancha; Ngaopitakkul, Atthapol

    2018-03-01

    The protection system for transformer has play significant role in avoiding severe damage to equipment when disturbance occur and ensure overall system reliability. One of the methodology that widely used in protection scheme and algorithm is discrete wavelet transform. However, characteristic of coefficient under fault condition must be analyzed to ensure its effectiveness. So, this paper proposed study and analysis on wavelet coefficient characteristic when fault occur in transformer in both high- and low-frequency component from discrete wavelet transform. The effect of internal and external fault on wavelet coefficient of both fault and normal phase has been taken into consideration. The fault signal has been simulate using transmission connected to transformer experimental setup on laboratory level that modelled after actual system. The result in term of wavelet coefficient shown a clearly differentiate between wavelet characteristic in both high and low frequency component that can be used to further design and improve detection and classification algorithm that based on discrete wavelet transform methodology in the future.

  19. Wavelet entropy of BOLD time series: An application to Rolandic epilepsy.

    Science.gov (United States)

    Gupta, Lalit; Jansen, Jacobus F A; Hofman, Paul A M; Besseling, René M H; de Louw, Anton J A; Aldenkamp, Albert P; Backes, Walter H

    2017-12-01

    To assess the wavelet entropy for the characterization of intrinsic aberrant temporal irregularities in the time series of resting-state blood-oxygen-level-dependent (BOLD) signal fluctuations. Further, to evaluate the temporal irregularities (disorder/order) on a voxel-by-voxel basis in the brains of children with Rolandic epilepsy. The BOLD time series was decomposed using the discrete wavelet transform and the wavelet entropy was calculated. Using a model time series consisting of multiple harmonics and nonstationary components, the wavelet entropy was compared with Shannon and spectral (Fourier-based) entropy. As an application, the wavelet entropy in 22 children with Rolandic epilepsy was compared to 22 age-matched healthy controls. The images were obtained by performing resting-state functional magnetic resonance imaging (fMRI) using a 3T system, an 8-element receive-only head coil, and an echo planar imaging pulse sequence ( T2*-weighted). The wavelet entropy was also compared to spectral entropy, regional homogeneity, and Shannon entropy. Wavelet entropy was found to identify the nonstationary components of the model time series. In Rolandic epilepsy patients, a significantly elevated wavelet entropy was observed relative to controls for the whole cerebrum (P = 0.03). Spectral entropy (P = 0.41), regional homogeneity (P = 0.52), and Shannon entropy (P = 0.32) did not reveal significant differences. The wavelet entropy measure appeared more sensitive to detect abnormalities in cerebral fluctuations represented by nonstationary effects in the BOLD time series than more conventional measures. This effect was observed in the model time series as well as in Rolandic epilepsy. These observations suggest that the brains of children with Rolandic epilepsy exhibit stronger nonstationary temporal signal fluctuations than controls. 2 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2017;46:1728-1737. © 2017 International Society for Magnetic

  20. Gamma Splines and Wavelets

    Directory of Open Access Journals (Sweden)

    Hannu Olkkonen

    2013-01-01

    Full Text Available In this work we introduce a new family of splines termed as gamma splines for continuous signal approximation and multiresolution analysis. The gamma splines are born by -times convolution of the exponential by itself. We study the properties of the discrete gamma splines in signal interpolation and approximation. We prove that the gamma splines obey the two-scale equation based on the polyphase decomposition. to introduce the shift invariant gamma spline wavelet transform for tree structured subscale analysis of asymmetric signal waveforms and for systems with asymmetric impulse response. Especially we consider the applications in biomedical signal analysis (EEG, ECG, and EMG. Finally, we discuss the suitability of the gamma spline signal processing in embedded VLSI environment.

  1. Wavelet library for constrained devices

    Science.gov (United States)

    Ehlers, Johan Hendrik; Jassim, Sabah A.

    2007-04-01

    The wavelet transform is a powerful tool for image and video processing, useful in a range of applications. This paper is concerned with the efficiency of a certain fast-wavelet-transform (FWT) implementation and several wavelet filters, more suitable for constrained devices. Such constraints are typically found on mobile (cell) phones or personal digital assistants (PDA). These constraints can be a combination of; limited memory, slow floating point operations (compared to integer operations, most often as a result of no hardware support) and limited local storage. Yet these devices are burdened with demanding tasks such as processing a live video or audio signal through on-board capturing sensors. In this paper we present a new wavelet software library, HeatWave, that can be used efficiently for image/video processing/analysis tasks on mobile phones and PDA's. We will demonstrate that HeatWave is suitable for realtime applications with fine control and range to suit transform demands. We shall present experimental results to substantiate these claims. Finally this library is intended to be of real use and applied, hence we considered several well known and common embedded operating system platform differences; such as a lack of common routines or functions, stack limitations, etc. This makes HeatWave suitable for a range of applications and research projects.

  2. Wavelet Entropy Algorithm to Allocate the Extreme Power Peaks in WiMax Systems

    Directory of Open Access Journals (Sweden)

    Omar Daoud

    2014-10-01

    Full Text Available This work proposes a solution to overcome the effect for one of the main drawbacks of these days’ wireless systems, where Multiple-Input Multiple-Output (MIMO-Orthogonal Frequency Division Multiplexing (OFDM combinations has been used. High peak-to-average power ratio (PAPR arises after the OFDM stage and reduces the performance of the used nonlinear devices. Therefore, a new stage has been imposed between the MIMO and OFDM block. It is based on the entropy meaning of the wavelet transformation to trigger a proposed thresholding criterion and reconstruct the OFDM signal. As a result, the probability of high PAPR appearance will be limited and reduced; a promising result over our recently published work has been conducted; 15-25% extra reduction. This work could be denoted by MIMO-OFDM based on Entropy Wavelet Transform (MO-EWT systems. The MO-EWT validity has been checked based on either numerical analysis or conducted simulation based on MATLAB; where 80% improvement of reducing the high PAPR has been achieved over the literature. These results have been reached using the same environment conditions and at additional cost and complexity of the transceivers structure.

  3. Optimization of wavelet decomposition for image compression and feature preservation.

    Science.gov (United States)

    Lo, Shih-Chung B; Li, Huai; Freedman, Matthew T

    2003-09-01

    A neural-network-based framework has been developed to search for an optimal wavelet kernel that can be used for a specific image processing task. In this paper, a linear convolution neural network was employed to seek a wavelet that minimizes errors and maximizes compression efficiency for an image or a defined image pattern such as microcalcifications in mammograms and bone in computed tomography (CT) head images. We have used this method to evaluate the performance of tap-4 wavelets on mammograms, CTs, magnetic resonance images, and Lena images. We found that the Daubechies wavelet or those wavelets with similar filtering characteristics can produce the highest compression efficiency with the smallest mean-square-error for many image patterns including general image textures as well as microcalcifications in digital mammograms. However, the Haar wavelet produces the best results on sharp edges and low-noise smooth areas. We also found that a special wavelet whose low-pass filter coefficients are 0.32252136, 0.85258927, 1.38458542, and -0.14548269) produces the best preservation outcomes in all tested microcalcification features including the peak signal-to-noise ratio, the contrast and the figure of merit in the wavelet lossy compression scheme. Having analyzed the spectrum of the wavelet filters, we can find the compression outcomes and feature preservation characteristics as a function of wavelets. This newly developed optimization approach can be generalized to other image analysis applications where a wavelet decomposition is employed.

  4. Automatic Threshold Determination for a Local Approach of Change Detection in Long-Term Signal Recordings

    Directory of Open Access Journals (Sweden)

    David Hewson

    2007-01-01

    Full Text Available CUSUM (cumulative sum is a well-known method that can be used to detect changes in a signal when the parameters of this signal are known. This paper presents an adaptation of the CUSUM-based change detection algorithms to long-term signal recordings where the various hypotheses contained in the signal are unknown. The starting point of the work was the dynamic cumulative sum (DCS algorithm, previously developed for application to long-term electromyography (EMG recordings. DCS has been improved in two ways. The first was a new procedure to estimate the distribution parameters to ensure the respect of the detectability property. The second was the definition of two separate, automatically determined thresholds. One of them (lower threshold acted to stop the estimation process, the other one (upper threshold was applied to the detection function. The automatic determination of the thresholds was based on the Kullback-Leibler distance which gives information about the distance between the detected segments (events. Tests on simulated data demonstrated the efficiency of these improvements of the DCS algorithm.

  5. Application of lifting wavelet and random forest in compound fault diagnosis of gearbox

    Science.gov (United States)

    Chen, Tang; Cui, Yulian; Feng, Fuzhou; Wu, Chunzhi

    2018-03-01

    Aiming at the weakness of compound fault characteristic signals of a gearbox of an armored vehicle and difficult to identify fault types, a fault diagnosis method based on lifting wavelet and random forest is proposed. First of all, this method uses the lifting wavelet transform to decompose the original vibration signal in multi-layers, reconstructs the multi-layer low-frequency and high-frequency components obtained by the decomposition to get multiple component signals. Then the time-domain feature parameters are obtained for each component signal to form multiple feature vectors, which is input into the random forest pattern recognition classifier to determine the compound fault type. Finally, a variety of compound fault data of the gearbox fault analog test platform are verified, the results show that the recognition accuracy of the fault diagnosis method combined with the lifting wavelet and the random forest is up to 99.99%.

  6. Smart-phone based electrocardiogram wavelet decomposition and neural network classification

    International Nuclear Information System (INIS)

    Jannah, N; Hadjiloucas, S; Hwang, F; Galvão, R K H

    2013-01-01

    This paper discusses ECG classification after parametrizing the ECG waveforms in the wavelet domain. The aim of the work is to develop an accurate classification algorithm that can be used to diagnose cardiac beat abnormalities detected using a mobile platform such as smart-phones. Continuous time recurrent neural network classifiers are considered for this task. Records from the European ST-T Database are decomposed in the wavelet domain using discrete wavelet transform (DWT) filter banks and the resulting DWT coefficients are filtered and used as inputs for training the neural network classifier. Advantages of the proposed methodology are the reduced memory requirement for the signals which is of relevance to mobile applications as well as an improvement in the ability of the neural network in its generalization ability due to the more parsimonious representation of the signal to its inputs.

  7. Wavelets and triple difference as a mathematical method for filtering and mitigation of DGPS errors

    Directory of Open Access Journals (Sweden)

    Aly M. El-naggar

    2015-12-01

    Wavelet spectral techniques can separate GPS signals into sub-bands where different errors can be separated and mitigated. The main goal of this paper was the development and implementation of DGPS error mitigation techniques using triple difference and wavelet. This paper studies, analyzes and provides new techniques that will help mitigate these errors in the frequency domain. The proposed technique applied to smooth noise for GPS receiver positioning data is based upon the analysis of wavelet transform (WT. The technique is applied using wavelet as a de-noising tool to tackle the high-frequency errors in the triple difference domain and to obtain a de-noised triple difference signal that can be used in a positioning calculation.

  8. The De-Noising of Sonic Echo Test Data through Wavelet Transform Reconstruction

    Directory of Open Access Journals (Sweden)

    J.N. Watson

    1999-01-01

    Full Text Available This paper presents the results of feasibility study into the application of the wavelet transform signal processing method to sonic based non-destructive testing techniques. Finite element generated data from cast in situ foundation piles were collated and processed using both continuous and discrete wavelet transform techniques. Results were compared with conventional Fourier based methods. The discrete Daubechies wavelets and the continuous Mexican hat wavelet were used and their relative merits investigated. It was found that both the continuous Mexican hat and discrete Daubechies D8 wavelets were significantly better at locating the pile toe compared than the Fourier filtered case. The wavelet transform method was then applied to field test data and found to be successful in facilitating the detection of the pile toe.

  9. State recognition of the viscoelastic sandwich structure based on the adaptive redundant second generation wavelet packet transform, permutation entropy and the wavelet support vector machine

    International Nuclear Information System (INIS)

    Qu, Jinxiu; Zhang, Zhousuo; Guo, Ting; Luo, Xue; Sun, Chuang; Li, Bing; Wen, Jinpeng

    2014-01-01

    The viscoelastic sandwich structure is widely used in mechanical equipment, yet the structure always suffers from damage during long-term service. Therefore, state recognition of the viscoelastic sandwich structure is very necessary for monitoring structural health states and keeping the equipment running with high reliability. Through the analysis of vibration response signals, this paper presents a novel method for this task based on the adaptive redundant second generation wavelet packet transform (ARSGWPT), permutation entropy (PE) and the wavelet support vector machine (WSVM). In order to tackle the non-linearity existing in the structure vibration response, the PE is introduced to reveal the state changes of the structure. In the case of complex non-stationary vibration response signals, in order to obtain more effective information regarding the structural health states, the ARSGWPT, which can adaptively match the characteristics of a given signal, is proposed to process the vibration response signals, and then multiple PE features are extracted from the resultant wavelet packet coefficients. The WSVM, which can benefit from the conventional SVM as well as wavelet theory, is applied to classify the various structural states automatically. In this study, to achieve accurate and automated state recognition, the ARSGWPT, PE and WSVM are combined for signal processing, feature extraction and state classification, respectively. To demonstrate the effectiveness of the proposed method, a typical viscoelastic sandwich structure is designed, and the different degrees of preload on the structure are used to characterize the various looseness states. The test results show that the proposed method can reliably recognize the different looseness states of the viscoelastic sandwich structure, and the WSVM can achieve a better classification performance than the conventional SVM. Moreover, the superiority of the proposed ARSGWPT in processing the complex vibration response

  10. Gestures recognition based on wavelet and LLE

    International Nuclear Information System (INIS)

    Ai, Qingsong; Liu, Quan; Lu, Ying; Yuan, Tingting

    2013-01-01

    Wavelet analysis is a time–frequency, non-stationary method while the largest Lyapunov exponent (LLE) is used to judge the non-linear characteristic of systems. Because surface electromyography signal (SEMGS) is a complex signal that is characterized by non-stationary and non-linear properties. This paper combines wavelet coefficient and LLE together as the new feature of SEMGS. The proposed method not only reflects the non-stationary and non-linear characteristics of SEMGS, but also is suitable for its classification. Then, the BP (back propagation) neural network is employed to implement the identification of six gestures (fist clench, fist extension, wrist extension, wrist flexion, radial deviation, ulnar deviation). The experimental results indicate that based on the proposed method, the identification of these six gestures can reach an average rate of 97.71 %.

  11. Multi-Level Wavelet Shannon Entropy-Based Method for Single-Sensor Fault Location

    Directory of Open Access Journals (Sweden)

    Qiaoning Yang

    2015-10-01

    Full Text Available In actual application, sensors are prone to failure because of harsh environments, battery drain, and sensor aging. Sensor fault location is an important step for follow-up sensor fault detection. In this paper, two new multi-level wavelet Shannon entropies (multi-level wavelet time Shannon entropy and multi-level wavelet time-energy Shannon entropy are defined. They take full advantage of sensor fault frequency distribution and energy distribution across multi-subband in wavelet domain. Based on the multi-level wavelet Shannon entropy, a method is proposed for single sensor fault location. The method firstly uses a criterion of maximum energy-to-Shannon entropy ratio to select the appropriate wavelet base for signal analysis. Then multi-level wavelet time Shannon entropy and multi-level wavelet time-energy Shannon entropy are used to locate the fault. The method is validated using practical chemical gas concentration data from a gas sensor array. Compared with wavelet time Shannon entropy and wavelet energy Shannon entropy, the experimental results demonstrate that the proposed method can achieve accurate location of a single sensor fault and has good anti-noise ability. The proposed method is feasible and effective for single-sensor fault location.

  12. Wavelet methods in mathematical analysis and engineering

    CERN Document Server

    Damlamian, Alain

    2010-01-01

    This book gives a comprehensive overview of both the fundamentals of wavelet analysis and related tools, and of the most active recent developments towards applications. It offers a stateoftheart in several active areas of research where wavelet ideas, or more generally multiresolution ideas have proved particularly effective. The main applications covered are in the numerical analysis of PDEs, and signal and image processing. Recently introduced techniques such as Empirical Mode Decomposition (EMD) and new trends in the recovery of missing data, such as compressed sensing, are also presented.

  13. Time-Frequency Distribution of Music based on Sparse Wavelet Packet Representations

    DEFF Research Database (Denmark)

    Endelt, Line Ørtoft

    We introduce a new method for generating time-frequency distributions, which is particularly useful for the analysis of music signals. The method presented here is based on $\\ell1$ sparse representations of music signals in a redundant wavelet packet dictionary. The representations are found using...... the minimization methods basis pursuit and best orthogonal basis. Visualizations of the time-frequency distribution are constructed based on a simplified energy distribution in the wavelet packet decomposition. The time-frequency distributions emphasizes structured musical content, including non-stationary content...

  14. On-Line QRS Complex Detection Using Wavelet Filtering

    National Research Council Canada - National Science Library

    Szilagyi, L

    2001-01-01

    ...: first a wavelet transform filtering is applied to the signal, then QRS complex localization is performed using a maximum detection and peak classification algorithm The algorithm has been tested...

  15. An Application of Reassigned Time-Frequency Representations for Seismic Noise/Signal Decomposition

    Science.gov (United States)

    Mousavi, S. M.; Langston, C. A.

    2016-12-01

    Seismic data recorded by surface arrays are often strongly contaminated by unwanted noise. This background noise makes the detection of small magnitude events difficult. An automatic method for seismic noise/signal decomposition is presented based upon an enhanced time-frequency representation. Synchrosqueezing is a time-frequency reassignment method aimed at sharpening a time-frequency picture. Noise can be distinguished from the signal and suppressed more easily in this reassigned domain. The threshold level is estimated using a general cross validation approach that does not rely on any prior knowledge about the noise level. Efficiency of thresholding has been improved by adding a pre-processing step based on higher order statistics and a post-processing step based on adaptive hard-thresholding. In doing so, both accuracy and speed of the denoising have been improved compared to our previous algorithms (Mousavi and Langston, 2016a, 2016b; Mousavi et al., 2016). The proposed algorithm can either kill the noise (either white or colored) and keep the signal or kill the signal and keep the noise. Hence, It can be used in either normal denoising applications or in ambient noise studies. Application of the proposed method on synthetic and real seismic data shows the effectiveness of the method for denoising/designaling of local microseismic, and ocean bottom seismic data. References: Mousavi, S.M., C. A. Langston., and S. P. Horton (2016), Automatic Microseismic Denoising and Onset Detection Using the Synchrosqueezed-Continuous Wavelet Transform. Geophysics. 81, V341-V355, doi: 10.1190/GEO2015-0598.1. Mousavi, S.M., and C. A. Langston (2016a), Hybrid Seismic Denoising Using Higher-Order Statistics and Improved Wavelet Block Thresholding. Bull. Seismol. Soc. Am., 106, doi: 10.1785/0120150345. Mousavi, S.M., and C.A. Langston (2016b), Adaptive noise estimation and suppression for improving microseismic event detection, Journal of Applied Geophysics., doi: http

  16. Magnetomyographic recording and identification of uterine contractions using Hilbert-wavelet transforms

    International Nuclear Information System (INIS)

    Furdea, A; Wilson, J D; Eswaran, H; Lowery, C L; Govindan, R B; Preissl, H

    2009-01-01

    We propose a multi-stage approach using Wavelet and Hilbert transforms to identify uterine contraction bursts in magnetomyogram (MMG) signals measured using a 151 magnetic sensor array. In the first stage, we decompose the MMG signals by wavelet analysis into multilevel approximate and detail coefficients. In each level, the signals are reconstructed using the detail coefficients followed by the computation of the Hilbert transform. The Hilbert amplitude of the reconstructed signals from different frequency bands (0.1–1 Hz) is summed up over all the sensors to increase the signal-to-noise ratio. Using a novel clustering technique, affinity propagation, the contractile bursts are distinguished from the noise level. The method is applied on simulated MMG data, using a simple stochastic model to determine its robustness and to seven MMG datasets

  17. Harmonic analysis of electric locomotive and traction power system based on wavelet singular entropy

    Science.gov (United States)

    Dun, Xiaohong

    2018-05-01

    With the rapid development of high-speed railway and heavy-haul transport, the locomotive and traction power system has become the main harmonic source of China's power grid. In response to this phenomenon, the system's power quality issues need timely monitoring, assessment and governance. Wavelet singular entropy is an organic combination of wavelet transform, singular value decomposition and information entropy theory, which combines the unique advantages of the three in signal processing: the time-frequency local characteristics of wavelet transform, singular value decomposition explores the basic modal characteristics of data, and information entropy quantifies the feature data. Based on the theory of singular value decomposition, the wavelet coefficient matrix after wavelet transform is decomposed into a series of singular values that can reflect the basic characteristics of the original coefficient matrix. Then the statistical properties of information entropy are used to analyze the uncertainty of the singular value set, so as to give a definite measurement of the complexity of the original signal. It can be said that wavelet entropy has a good application prospect in fault detection, classification and protection. The mat lab simulation shows that the use of wavelet singular entropy on the locomotive and traction power system harmonic analysis is effective.

  18. Identification Method of Mud Shale Fractures Base on Wavelet Transform

    Science.gov (United States)

    Xia, Weixu; Lai, Fuqiang; Luo, Han

    2018-01-01

    In recent years, inspired by seismic analysis technology, a new method for analysing mud shale fractures oil and gas reservoirs by logging properties has emerged. By extracting the high frequency attribute of the wavelet transform in the logging attribute, the formation information hidden in the logging signal is extracted, identified the fractures that are not recognized by conventional logging and in the identified fracture segment to show the “cycle jump”, “high value”, “spike” and other response effect is more obvious. Finally formed a complete wavelet denoising method and wavelet high frequency identification fracture method.

  19. Estimation of Seismic Wavelets Based on the Multivariate Scale Mixture of Gaussians Model

    Directory of Open Access Journals (Sweden)

    Jing-Huai Gao

    2009-12-01

    Full Text Available This paper proposes a new method for estimating seismic wavelets. Suppose a seismic wavelet can be modeled by a formula with three free parameters (scale, frequency and phase. We can transform the estimation of the wavelet into determining these three parameters. The phase of the wavelet is estimated by constant-phase rotation to the seismic signal, while the other two parameters are obtained by the Higher-order Statistics (HOS (fourth-order cumulant matching method. In order to derive the estimator of the Higher-order Statistics (HOS, the multivariate scale mixture of Gaussians (MSMG model is applied to formulating the multivariate joint probability density function (PDF of the seismic signal. By this way, we can represent HOS as a polynomial function of second-order statistics to improve the anti-noise performance and accuracy. In addition, the proposed method can work well for short time series.

  20. Secured Data Transmission Using Wavelet Based Steganography and cryptography

    OpenAIRE

    K.Ravindra Reddy; Ms Shaik Taj Mahaboob

    2014-01-01

    Steganography and cryptographic methods are used together with wavelets to increase the security of the data while transmitting through networks. Another technology, the digital watermarking is the process of embedding information into a digital (image) signal. Before embedding the plain text into the image, the plain text is encrypted by using Data Encryption Standard (DES) algorithm. The encrypted text is embedded into the LL sub band of the wavelet decomposed image using Le...

  1. Application of the adaptive wavelet transform for analysis of blood flow oscillations in the human skin

    International Nuclear Information System (INIS)

    Tankanag, Arina; Chemeris, Nikolay

    2008-01-01

    An original method for the analysis of oscillations of cutaneous blood flow has been developed, which makes use of laser Doppler flowmetry (LDF) data and is based on the continuous wavelet transform and adaptive wavelet theory. The potential of the method has been demonstrated in experiments with the response of microcirculatory bed to the local linearly-increasing heating of a skin spot. The use of adaptive wavelet transform for analysis of peripheral blood flow oscillations enables one to process short (5 min) LDF signals in a wide frequency range (0.009-2 Hz). The major advantage of the method proposed, as compared to traditional wavelet analysis, has been shown to be a significant reduction of 'border effects'. This makes possible a correct low-frequency component analysis of much shorter LDF signals compared to those used in traditional wavelet processing.

  2. Contrast thresholds for component motion with full and poor attention.

    Science.gov (United States)

    Tsuchiya, Naotsugu; Braun, Jochen

    2007-02-12

    We compare luminance-contrast-masking thresholds for fully and poorly attended stimuli, controlling attention with a demanding concurrent task. We use dynamic displays composed of discrete spatiotemporal wavelets, comparing three conditions ("single," "parallel," and "random"). In contrast to static displays, we do not find that attention modulates the "dipper" regime for masks of low luminance contrast. Nor does attention alter direction-selective masking by multiple wavelets moving in random directions, a condition designed to isolate effects on component motion. However, direction-selective masking by multiple wavelets moving in parallel is significantly reduced by attention. As the latter condition is expected to excite both component and pattern motion mechanisms, this implies that attention may alter the visual representation of pattern motion. In addition, attention exhibits its well-known effect of reducing lateral masking between nearby spatiotemporal wavelets.

  3. A new stationary gridline artifact suppression method based on the 2D discrete wavelet transform

    International Nuclear Information System (INIS)

    Tang, Hui; Tong, Dan; Dong Bao, Xu; Dillenseger, Jean-Louis

    2015-01-01

    Purpose: In digital x-ray radiography, an antiscatter grid is inserted between the patient and the image receptor to reduce scattered radiation. If the antiscatter grid is used in a stationary way, gridline artifacts will appear in the final image. In most of the gridline removal image processing methods, the useful information with spatial frequencies close to that of the gridline is usually lost or degraded. In this study, a new stationary gridline suppression method is designed to preserve more of the useful information. Methods: The method is as follows. The input image is first recursively decomposed into several smaller subimages using a multiscale 2D discrete wavelet transform. The decomposition process stops when the gridline signal is found to be greater than a threshold in one or several of these subimages using a gridline detection module. An automatic Gaussian band-stop filter is then applied to the detected subimages to remove the gridline signal. Finally, the restored image is achieved using the corresponding 2D inverse discrete wavelet transform. Results: The processed images show that the proposed method can remove the gridline signal efficiently while maintaining the image details. The spectra of a 1D Fourier transform of the processed images demonstrate that, compared with some existing gridline removal methods, the proposed method has better information preservation after the removal of the gridline artifacts. Additionally, the performance speed is relatively high. Conclusions: The experimental results demonstrate the efficiency of the proposed method. Compared with some existing gridline removal methods, the proposed method can preserve more information within an acceptable execution time

  4. A new stationary gridline artifact suppression method based on the 2D discrete wavelet transform

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Hui, E-mail: corinna@seu.edu.cn [Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, Nanjing 210096 (China); Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of Education, Nanjing 210000 (China); Centre de Recherche en Information Biomédicale sino-français, Laboratoire International Associé, Inserm, Université de Rennes 1, Rennes 35000 (France); Southeast University, Nanjing 210000 (China); Tong, Dan; Dong Bao, Xu [Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, Nanjing 210096 (China); Dillenseger, Jean-Louis [INSERM, U1099, Rennes F-35000 (France); Université de Rennes 1, LTSI, Rennes F-35000 (France); Centre de Recherche en Information Biomédicale sino-français, Laboratoire International Associé, Inserm, Université de Rennes 1, Rennes 35000 (France); Southeast University, Nanjing 210000 (China)

    2015-04-15

    Purpose: In digital x-ray radiography, an antiscatter grid is inserted between the patient and the image receptor to reduce scattered radiation. If the antiscatter grid is used in a stationary way, gridline artifacts will appear in the final image. In most of the gridline removal image processing methods, the useful information with spatial frequencies close to that of the gridline is usually lost or degraded. In this study, a new stationary gridline suppression method is designed to preserve more of the useful information. Methods: The method is as follows. The input image is first recursively decomposed into several smaller subimages using a multiscale 2D discrete wavelet transform. The decomposition process stops when the gridline signal is found to be greater than a threshold in one or several of these subimages using a gridline detection module. An automatic Gaussian band-stop filter is then applied to the detected subimages to remove the gridline signal. Finally, the restored image is achieved using the corresponding 2D inverse discrete wavelet transform. Results: The processed images show that the proposed method can remove the gridline signal efficiently while maintaining the image details. The spectra of a 1D Fourier transform of the processed images demonstrate that, compared with some existing gridline removal methods, the proposed method has better information preservation after the removal of the gridline artifacts. Additionally, the performance speed is relatively high. Conclusions: The experimental results demonstrate the efficiency of the proposed method. Compared with some existing gridline removal methods, the proposed method can preserve more information within an acceptable execution time.

  5. Standard filter approximations for low power Continuous Wavelet Transforms.

    Science.gov (United States)

    Casson, Alexander J; Rodriguez-Villegas, Esther

    2010-01-01

    Analogue domain implementations of the Continuous Wavelet Transform (CWT) have proved popular in recent years as they can be implemented at very low power consumption levels. This is essential for use in wearable, long term physiological monitoring systems. Present analogue CWT implementations rely on taking mathematical a approximation of the wanted mother wavelet function to give a filter transfer function that is suitable for circuit implementation. This paper investigates the use of standard filter approximations (Butterworth, Chebyshev, Bessel) as an alternative wavelet approximation technique. This extends the number of approximation techniques available for generating analogue CWT filters. An example ECG analysis shows that signal information can be successfully extracted using these CWT approximations.

  6. Detection of short-term anomaly using parasitic discrete wavelet transform

    International Nuclear Information System (INIS)

    Nagamatsu, Takashi; Gofuku, Akio

    2013-01-01

    A parasitic discrete wavelet transform (P-DWT) that has a large flexibility in design of the mother wavelet (MW) and a high processing speed was applied for simulation and measured anomalies. First, we applied the P-DWT to detection of the short-term anomalies. Second, we applied the P-DWT to detection of the collision of pump using the pump diagnostic experiment equipment that was designed taking into consideration the structure of the pump used for the water-steam system of the fast breeder reactor 'Monju'. The vibration signals were measured by the vibration sensor attached to the pump when injecting four types of small objects (sphere, small sphere, cube, and rectangular parallelepiped). Anomaly detection was performed by calculating the fast wavelet instantaneous correlation using the parasitic filter that was constructed on the basis of the measured signals. The results suggested that the anomalies could be detected for all types of the supposed anomalies. (author)

  7. a pyramid algorithm for the haar discrete wavelet packet transform

    African Journals Online (AJOL)

    PROF EKWUEME

    computer-aided signal processing of non-stationary signals, this paper develops a pyramid algorithm for the discrete wavelet packet ... Edith T. Luhanga, School of Computational and Communication Sciences and Engineering, Nelson Mandela African. Institute of ..... Mathematics, Washington University. 134. EDITH T.

  8. Face recognition by combining eigenface method with different wavelet subbands

    Institute of Scientific and Technical Information of China (English)

    MA Yan; LI Shun-bao

    2006-01-01

    @@ A method combining eigenface with different wavelet subbands for face recognition is proposed.Each training image is decomposed into multi-subbands for extracting their eigenvector sets and projection vectors.In the recognition process,the inner product distance between the projection vectors of the test image and that of the training image are calculated.The training image,corresponding to the maximum distance under the given threshold condition,is considered as the final result.The experimental results on the ORL and YALE face database show that,compared with the eigenface method directly on the image domain or on a single wavelet subband,the recognition accuracy using the proposed method is improved by 5% without influencing the recognition speed.

  9. Detecting fine scratches on smooth surfaces with multiscale wavelet representation

    International Nuclear Information System (INIS)

    Yao, Li; Wan, Yan; Yao, Ming; Xu, Bugao

    2012-01-01

    This paper presents a set of image-processing algorithms for automatic detection of fine scratches on smooth surfaces, such as automobile paint surfaces. The scratches to be detected have random directions, inconspicuous gray levels and background noise. The multiscale wavelet transform was used to extract texture features, and a controlled edge fusion model was employed to merge the detailed (horizontal, vertical and diagonal) wavelet coefficient maps. Based on the fused detail map, multivariate statistics were applied to synthesize features in multiple scales and directions, and an optimal threshold was set to separate scratches from the background. The experimental results of 24 automobile paint surface showed that the presented algorithms can effectively suppress background noise and detect scratches accurately. (paper)

  10. Mobile Healthcare for Automatic Driving Sleep-Onset Detection Using Wavelet-Based EEG and Respiration Signals

    Directory of Open Access Journals (Sweden)

    Boon-Giin Lee

    2014-09-01

    Full Text Available Driving drowsiness is a major cause of traffic accidents worldwide and has drawn the attention of researchers in recent decades. This paper presents an application for in-vehicle non-intrusive mobile-device-based automatic detection of driver sleep-onset in real time. The proposed application classifies the driving mental fatigue condition by analyzing the electroencephalogram (EEG and respiration signals of a driver in the time and frequency domains. Our concept is heavily reliant on mobile technology, particularly remote physiological monitoring using Bluetooth. Respiratory events are gathered, and eight-channel EEG readings are captured from the frontal, central, and parietal (Fpz-Cz, Pz-Oz regions. EEGs are preprocessed with a Butterworth bandpass filter, and features are subsequently extracted from the filtered EEG signals by employing the wavelet-packet-transform (WPT method to categorize the signals into four frequency bands: α, β, θ, and δ. A mutual information (MI technique selects the most descriptive features for further classification. The reduction in the number of prominent features improves the sleep-onset classification speed in the support vector machine (SVM and results in a high sleep-onset recognition rate. Test results reveal that the combined use of the EEG and respiration signals results in 98.6% recognition accuracy. Our proposed application explores the possibility of processing long-term multi-channel signals.

  11. Study on characteristic points of boiling curve by using wavelet analysis and genetic algorithm

    International Nuclear Information System (INIS)

    Wei Huiming; Su Guanghui; Qiu Suizheng; Yang Xingbo

    2009-01-01

    Based on the wavelet analysis theory of signal singularity detection,the critical heat flux (CHF) and minimum film boiling starting point (q min ) of boiling curves can be detected and analyzed by using the wavelet multi-resolution analysis. To predict the CHF in engineering, empirical relations were obtained based on genetic algorithm. The results of wavelet detection and genetic algorithm prediction are consistent with experimental data very well. (authors)

  12. ACO-Initialized Wavelet Neural Network for Vibration Fault Diagnosis of Hydroturbine Generating Unit

    Directory of Open Access Journals (Sweden)

    Zhihuai Xiao

    2015-01-01

    Full Text Available Considering the drawbacks of traditional wavelet neural network, such as low convergence speed and high sensitivity to initial parameters, an ant colony optimization- (ACO- initialized wavelet neural network is proposed in this paper for vibration fault diagnosis of a hydroturbine generating unit. In this method, parameters of the wavelet neural network are initialized by the ACO algorithm, and then the wavelet neural network is trained by the gradient descent algorithm. Amplitudes of the frequency components of the hydroturbine generating unit vibration signals are used as feature vectors for wavelet neural network training to realize mapping relationship from vibration features to fault types. A real vibration fault diagnosis case result of a hydroturbine generating unit shows that the proposed method has faster convergence speed and stronger generalization ability than the traditional wavelet neural network and ACO wavelet neural network. Thus it can provide an effective solution for online vibration fault diagnosis of a hydroturbine generating unit.

  13. Electromyography (EMG) signal recognition using combined discrete wavelet transform based adaptive neuro-fuzzy inference systems (ANFIS)

    Science.gov (United States)

    Arozi, Moh; Putri, Farika T.; Ariyanto, Mochammad; Khusnul Ari, M.; Munadi, Setiawan, Joga D.

    2017-01-01

    People with disabilities are increasing from year to year either due to congenital factors, sickness, accident factors and war. One form of disability is the case of interruptions of hand function. The condition requires and encourages the search for solutions in the form of creating an artificial hand with the ability as a human hand. The development of science in the field of neuroscience currently allows the use of electromyography (EMG) to control the motion of artificial prosthetic hand into the necessary use of EMG as an input signal to control artificial prosthetic hand. This study is the beginning of a significant research planned in the development of artificial prosthetic hand with EMG signal input. This initial research focused on the study of EMG signal recognition. Preliminary results show that the EMG signal recognition using combined discrete wavelet transform and Adaptive Neuro-Fuzzy Inference System (ANFIS) produces accuracy 98.3 % for training and 98.51% for testing. Thus the results can be used as an input signal for Simulink block diagram of a prosthetic hand that will be developed on next study. The research will proceed with the construction of artificial prosthetic hand along with Simulink program controlling and integrating everything into one system.

  14. The cross wavelet and wavelet coherence analysis of spatio-temporal rainfall-groundwater system in Pingtung plain, Taiwan

    Science.gov (United States)

    Lin, Yuan-Chien; Yu, Hwa-Lung

    2013-04-01

    The increasing frequency and intensity of extreme rainfall events has been observed recently in Taiwan. Particularly, Typhoon Morakot, Typhoon Fanapi, and Typhoon Megi consecutively brought record-breaking intensity and magnitude of rainfalls to different locations of Taiwan in these two years. However, records show the extreme rainfall events did not elevate the amount of annual rainfall accordingly. Conversely, the increasing frequency of droughts has also been occurring in Taiwan. The challenges have been confronted by governmental agencies and scientific communities to come up with effective adaptation strategies for natural disaster reduction and sustainable environment establishment. Groundwater has long been a reliable water source for a variety of domestic, agricultural, and industrial uses because of its stable quantity and quality. In Taiwan, groundwater accounts for the largest proportion of all water resources for about 40%. This study plans to identify and quantify the nonlinear relationship between precipitation and groundwater recharge, find the non-stationary time-frequency relations between the variations of rainfall and groundwater levels to understand the phase difference of time series. Groundwater level data and over-50-years hourly rainfall records obtained from 20 weather stations in Pingtung Plain, Taiwan has been collected. Extract the space-time pattern by EOF method, which is a decomposition of a signal or data set in terms of orthogonal basis functions determined from the data for both time series and spatial patterns, to identify the important spatial pattern of groundwater recharge and using cross wavelet and wavelet coherence method to identify the relationship between rainfall and groundwater levels. Results show that EOF method can specify the spatial-temporal patterns which represents certain geological characteristics and other mechanisms of groundwater, and the wavelet coherence method can identify general correlation between

  15. Multiresolution analysis (discrete wavelet transform) through Daubechies family for emotion recognition in speech.

    Science.gov (United States)

    Campo, D.; Quintero, O. L.; Bastidas, M.

    2016-04-01

    We propose a study of the mathematical properties of voice as an audio signal. This work includes signals in which the channel conditions are not ideal for emotion recognition. Multiresolution analysis- discrete wavelet transform - was performed through the use of Daubechies Wavelet Family (Db1-Haar, Db6, Db8, Db10) allowing the decomposition of the initial audio signal into sets of coefficients on which a set of features was extracted and analyzed statistically in order to differentiate emotional states. ANNs proved to be a system that allows an appropriate classification of such states. This study shows that the extracted features using wavelet decomposition are enough to analyze and extract emotional content in audio signals presenting a high accuracy rate in classification of emotional states without the need to use other kinds of classical frequency-time features. Accordingly, this paper seeks to characterize mathematically the six basic emotions in humans: boredom, disgust, happiness, anxiety, anger and sadness, also included the neutrality, for a total of seven states to identify.

  16. Detection and classification of Breast Cancer in Wavelet Sub-bands of Fractal Segmented Cancerous Zones.

    Science.gov (United States)

    Shirazinodeh, Alireza; Noubari, Hossein Ahmadi; Rabbani, Hossein; Dehnavi, Alireza Mehri

    2015-01-01

    Recent studies on wavelet transform and fractal modeling applied on mammograms for the detection of cancerous tissues indicate that microcalcifications and masses can be utilized for the study of the morphology and diagnosis of cancerous cases. It is shown that the use of fractal modeling, as applied to a given image, can clearly discern cancerous zones from noncancerous areas. In this paper, for fractal modeling, the original image is first segmented into appropriate fractal boxes followed by identifying the fractal dimension of each windowed section using a computationally efficient two-dimensional box-counting algorithm. Furthermore, using appropriate wavelet sub-bands and image Reconstruction based on modified wavelet coefficients, it is shown that it is possible to arrive at enhanced features for detection of cancerous zones. In this paper, we have attempted to benefit from the advantages of both fractals and wavelets by introducing a new algorithm. By using a new algorithm named F1W2, the original image is first segmented into appropriate fractal boxes, and the fractal dimension of each windowed section is extracted. Following from that, by applying a maximum level threshold on fractal dimensions matrix, the best-segmented boxes are selected. In the next step, the segmented Cancerous zones which are candidates are then decomposed by utilizing standard orthogonal wavelet transform and db2 wavelet in three different resolution levels, and after nullifying wavelet coefficients of the image at the first scale and low frequency band of the third scale, the modified reconstructed image is successfully utilized for detection of breast cancer regions by applying an appropriate threshold. For detection of cancerous zones, our simulations indicate the accuracy of 90.9% for masses and 88.99% for microcalcifications detection results using the F1W2 method. For classification of detected mictocalcification into benign and malignant cases, eight features are identified and

  17. Wavelet analysis of the seismograms for tsunami warning

    Directory of Open Access Journals (Sweden)

    A. Chamoli

    2010-10-01

    Full Text Available The complexity in the tsunami phenomenon makes the available warning systems not much effective in the practical situations. The problem arises due to the time lapsed in the data transfer, processing and modeling. The modeling and simulation needs the input fault geometry and mechanism of the earthquake. The estimation of these parameters and other aprior information increases the utilized time for making any warning. Here, the wavelet analysis is used to identify the tsunamigenesis of an earthquake. The frequency content of the seismogram in time scale domain is examined using wavelet transform. The energy content in high frequencies is calculated and gives a threshold for tsunami warnings. Only first few minutes of the seismograms of the earthquake events are used for quick estimation. The results for the earthquake events of Andaman Sumatra region and other historic events are promising.

  18. Wavelet theory applied to remove noise and movement artifacts from images

    International Nuclear Information System (INIS)

    Blanco, S.; Cabrejas, M.L.; Carpintiero, S.; Costa, A.; Stenborg, J.

    2002-01-01

    The quality of the images is in direct relationship with the accuracy of the diagnosis. There are several physical and technical problems (signal to noise ratio, image distortions, geometrical defects, pattern recognition and movement corrections) associated with acquisition and processing devices, each of which require specific solutions. New generation equipment or appropriate quality control techniques, often solve the problem. The option, is trying to correct for image distortions existing on the reconstructed images using post processing mathematical filtering. In this paper a new developed software is described to correct the images and solve the above mentioned problems. Mathematical tools: To improve the signal to noise ratio, a noise reduction method, based on Multi Resolution Analysis with Wavelets, was used. The use of cubic spline wavelets as mother wavelets, is more convenient because they conform an orthogonal basis. For each multi resolution level, a 'hard thresholding' was applied. This means that the coefficients, which are strongly dependent on the images, are put to zero when they are smaller than a reference value. It is also possible to separate the movement of the structures under study from instrumental constraints or noise. To accomplish this, cross-correlations of particular sub-regions, in consecutive images, were performed. Since a quantitative estimation of the error introduced by both effects is rather difficult, a new technique was developed, a so-called trial and error technique (TET), via the identification of a particular subregion on consecutive images, provided there are sharp fixed features present in the considered subregion. This position, being the one in which the standard deviation is the smallest, is then chosen on the second image. Taking into account the time between images and the dynamic characteristic time, the Gaussian distribution confirms the absence of substantial variability form one image to the other. Results

  19. Ripples in Communication : Reconfigurable and Adaptive Wireless Communication Systems based on Wavelet Packet Modulators

    NARCIS (Netherlands)

    Lakshmanan, M.K.

    2011-01-01

    Wavelet Packet Modulation (WPM) is a multi-carrier transmission technique that uses orthogonal wavelet packet bases to combine a collection of information bits into a single composite signal. This system can be considered as a viable alternative, for wide-band communication, to the popular

  20. Feature Extraction on Brain Computer Interfaces using Discrete Dyadic Wavelet Transform: Preliminary Results

    International Nuclear Information System (INIS)

    Gareis, I; Gentiletti, G; Acevedo, R; Rufiner, L

    2011-01-01

    The purpose of this work is to evaluate different feature extraction alternatives to detect the event related evoked potential signal on brain computer interfaces, trying to minimize the time employed and the classification error, in terms of sensibility and specificity of the method, looking for alternatives to coherent averaging. In this context the results obtained performing the feature extraction using discrete dyadic wavelet transform using different mother wavelets are presented. For the classification a single layer perceptron was used. The results obtained with and without the wavelet decomposition were compared; showing an improvement on the classification rate, the specificity and the sensibility for the feature vectors obtained using some mother wavelets.

  1. A Fusion Approach to Feature Extraction by Wavelet Decomposition and Principal Component Analysis in Transient Signal Processing of SAW Odor Sensor Array

    Directory of Open Access Journals (Sweden)

    Prashant SINGH

    2011-03-01

    Full Text Available This paper presents theoretical analysis of a new approach for development of surface acoustic wave (SAW sensor array based odor recognition system. The construction of sensor array employs a single polymer interface for selective sorption of odorant chemicals in vapor phase. The individual sensors are however coated with different thicknesses. The idea of sensor coating thickness variation is for terminating solvation and diffusion kinetics of vapors into polymer up to different stages of equilibration on different sensors. This is expected to generate diversity in information content of the sensors transient. The analysis is based on wavelet decomposition of transient signals. The single sensor transients have been used earlier for generating odor identity signatures based on wavelet approximation coefficients. In the present work, however, we exploit variability in diffusion kinetics due to polymer thicknesses for making odor signatures. This is done by fusion of the wavelet coefficients from different sensors in the array, and then applying the principal component analysis. We find that the present approach substantially enhances the vapor class separability in feature space. The validation is done by generating synthetic sensor array data based on well-established SAW sensor theory.

  2. The Application of Helicopter Rotor Defect Detection Using Wavelet Analysis and Neural Network Technique

    Directory of Open Access Journals (Sweden)

    Jin-Li Sun

    2014-06-01

    Full Text Available When detect the helicopter rotor beam with ultrasonic testing, it is difficult to realize the noise removing and quantitative testing. This paper used the wavelet analysis technique to remove the noise among the ultrasonic detection signal and highlight the signal feature of defect, then drew the curve of defect size and signal amplitude. Based on the relationship of defect size and signal amplitude, a BP neural network was built up and the corresponding estimated value of the simulate defect was obtained by repeating training. It was confirmed that the wavelet analysis and neural network technique met the requirements of practical testing.

  3. Embedded DCT and wavelet methods for fine granular scalable video: analysis and comparison

    Science.gov (United States)

    van der Schaar-Mitrea, Mihaela; Chen, Yingwei; Radha, Hayder

    2000-04-01

    Video transmission over bandwidth-varying networks is becoming increasingly important due to emerging applications such as streaming of video over the Internet. The fundamental obstacle in designing such systems resides in the varying characteristics of the Internet (i.e. bandwidth variations and packet-loss patterns). In MPEG-4, a new SNR scalability scheme, called Fine-Granular-Scalability (FGS), is currently under standardization, which is able to adapt in real-time (i.e. at transmission time) to Internet bandwidth variations. The FGS framework consists of a non-scalable motion-predicted base-layer and an intra-coded fine-granular scalable enhancement layer. For example, the base layer can be coded using a DCT-based MPEG-4 compliant, highly efficient video compression scheme. Subsequently, the difference between the original and decoded base-layer is computed, and the resulting FGS-residual signal is intra-frame coded with an embedded scalable coder. In order to achieve high coding efficiency when compressing the FGS enhancement layer, it is crucial to analyze the nature and characteristics of residual signals common to the SNR scalability framework (including FGS). In this paper, we present a thorough analysis of SNR residual signals by evaluating its statistical properties, compaction efficiency and frequency characteristics. The signal analysis revealed that the energy compaction of the DCT and wavelet transforms is limited and the frequency characteristic of SNR residual signals decay rather slowly. Moreover, the blockiness artifacts of the low bit-rate coded base-layer result in artificial high frequencies in the residual signal. Subsequently, a variety of wavelet and embedded DCT coding techniques applicable to the FGS framework are evaluated and their results are interpreted based on the identified signal properties. As expected from the theoretical signal analysis, the rate-distortion performances of the embedded wavelet and DCT-based coders are very

  4. Correlation analysis of motor current and chatter vibration in grinding using complex continuous wavelet coherence

    International Nuclear Information System (INIS)

    Liu, Yao; Wang, Xiufeng; Lin, Jing; Zhao, Wei

    2016-01-01

    Motor current is an emerging and popular signal which can be used to detect machining chatter with its multiple advantages. To achieve accurate and reliable chatter detection using motor current, it is important to make clear the quantitative relationship between motor current and chatter vibration, which has not yet been studied clearly. In this study, complex continuous wavelet coherence, including cross wavelet transform and wavelet coherence, is applied to the correlation analysis of motor current and chatter vibration in grinding. Experimental results show that complex continuous wavelet coherence performs very well in demonstrating and quantifying the intense correlation between these two signals in frequency, amplitude and phase. When chatter occurs, clear correlations in frequency and amplitude in the chatter frequency band appear and the phase difference of current signal to vibration signal turns from random to stable. The phase lead of the most correlated chatter frequency is the largest. With the further development of chatter, the correlation grows up in intensity and expands to higher order chatter frequency band. The analyzing results confirm that there is a consistent correlation between motor current and vibration signals in the grinding chatter process. However, to achieve accurate and reliable chatter detection using motor current, the frequency response bandwidth of current loop of the feed drive system must be wide enough to response chatter effectively. (paper)

  5. Jump Variation Estimation with Noisy High Frequency Financial Data via Wavelets

    Directory of Open Access Journals (Sweden)

    Xin Zhang

    2016-08-01

    Full Text Available This paper develops a method to improve the estimation of jump variation using high frequency data with the existence of market microstructure noises. Accurate estimation of jump variation is in high demand, as it is an important component of volatility in finance for portfolio allocation, derivative pricing and risk management. The method has a two-step procedure with detection and estimation. In Step 1, we detect the jump locations by performing wavelet transformation on the observed noisy price processes. Since wavelet coefficients are significantly larger at the jump locations than the others, we calibrate the wavelet coefficients through a threshold and declare jump points if the absolute wavelet coefficients exceed the threshold. In Step 2 we estimate the jump variation by averaging noisy price processes at each side of a declared jump point and then taking the difference between the two averages of the jump point. Specifically, for each jump location detected in Step 1, we get two averages from the observed noisy price processes, one before the detected jump location and one after it, and then take their difference to estimate the jump variation. Theoretically, we show that the two-step procedure based on average realized volatility processes can achieve a convergence rate close to O P ( n − 4 / 9 , which is better than the convergence rate O P ( n − 1 / 4 for the procedure based on the original noisy process, where n is the sample size. Numerically, the method based on average realized volatility processes indeed performs better than that based on the price processes. Empirically, we study the distribution of jump variation using Dow Jones Industrial Average stocks and compare the results using the original price process and the average realized volatility processes.

  6. Real-time wavelet-transform spectrum analyzer for the investigation of 1/fα noise

    Science.gov (United States)

    Brogioli, Doriano; Vailati, Alberto

    2003-04-01

    A wavelet-transform spectrum analyzer operating in real time within the frequency range 3×10-5-1.3×105Hz has been implemented on a low-cost digital signal processing (DSP) board operating at 150 MHz. The wavelet decomposition of the signal allows one to efficiently process nonstationary signals dominated by large amplitude events fairly well localized in time, thus providing the natural tool to analyze processes characterized by 1/fα power spectrum. The parallel architecture of the DSP allows the real-time processing of the wavelet transform of the signal sampled at 0.3 MHz. The bandwidth is about 220 dB, almost 10 decades. The power spectrum of the signal is processed in real time from the mean square value of the wavelet coefficients within each frequency band. The performances of the spectrum analyzer have been investigated by performing dynamic light scattering experiments on colloidal suspensions and by comparing the measured spectra with the correlation functions data obtained with a traditional multitau correlator. In order to assess the potentialities of the spectrum analyzer in the investigation of processes involving a wide range of time scales, we have performed measurements on a model system where fluctuations in the scattered intensities are generated by the number fluctuations in a dilute colloidal suspension illuminated by a wide beam. This system is characterized by a power-law spectrum with exponent -3/2 in the scattered intensity fluctuations. The spectrum analyzer allows one to recover the power spectrum with a dynamic range spanning about 8 decades. The advantages of wavelet analysis versus correlation analysis in the investigation of processes characterized by a wide distribution of time scales and nonstationary processes are briefly discussed.

  7. A New Method of Reliability Evaluation Based on Wavelet Information Entropy for Equipment Condition Identification

    International Nuclear Information System (INIS)

    He, Z J; Zhang, X L; Chen, X F

    2012-01-01

    Aiming at reliability evaluation of condition identification of mechanical equipment, it is necessary to analyze condition monitoring information. A new method of reliability evaluation based on wavelet information entropy extracted from vibration signals of mechanical equipment is proposed. The method is quite different from traditional reliability evaluation models that are dependent on probability statistics analysis of large number sample data. The vibration signals of mechanical equipment were analyzed by means of second generation wavelet package (SGWP). We take relative energy in each frequency band of decomposed signal that equals a percentage of the whole signal energy as probability. Normalized information entropy (IE) is obtained based on the relative energy to describe uncertainty of a system instead of probability. The reliability degree is transformed by the normalized wavelet information entropy. A successful application has been achieved to evaluate the assembled quality reliability for a kind of dismountable disk-drum aero-engine. The reliability degree indicates the assembled quality satisfactorily.

  8. Parametric and Wavelet Analyses of Acoustic Emission Signals for the Identification of Failure Modes in CFRP Composites Using PZT and PVDF Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Prasopchaichana, Kritsada; Kwon, Oh Yang [Inha University, Incheon (Korea, Republic of)

    2007-12-15

    Combination of the parametric and the wavelet analyses of acoustic emission (AE) signals was applied to identify the failure modes in carbon fiber reinforced plastic (CFRP) composite laminates during tensile testing. AE signals detected by surface mounted lead-zirconate-titanate (PZT) and polyvinylidene fluoride (PVDF) sensors were analyzed by parametric analysis based on the time of occurrence which classifies AE signals corresponding to failure modes. The frequency band level-energy analysis can distinguish the dominant frequency band for each failure mode. It was observed that the same type of failure mechanism produced signals with different characteristics depending on the stacking sequences and the type of sensors. This indicates that the proposed method can identify the failure modes of the signals if the stacking sequences and the sensors used are known

  9. Using wavelet analysis to compare the QCD prediction and experimental data on R{sub e{sup +}e{sup -}} and to determine parameters of the charmonium states above the D anti D threshold

    Energy Technology Data Exchange (ETDEWEB)

    Henner, V.K. [University of Louisville, Department of Physics, Louisville, KY (United States); Perm State University, Department of Theoretical Physics, Perm (Russian Federation); Perm State Technical University, Department of Mathematics, Perm (Russian Federation); Davis, C.L. [University of Louisville, Department of Physics, Louisville, KY (United States); Belozerova, T.S. [Perm State University, Department of Theoretical Physics, Perm (Russian Federation)

    2015-10-15

    The first part of our analysis uses the wavelet method to compare the quantum chromodynamic (QCD) prediction for the ratio of hadronic to muon cross sections in electron-positron collisions, R, with experimental data for R over a center of mass energy range up to about 7 GeV. A direct comparison of the raw experimental data and the QCD prediction is difficult because the data have a wide range of structures and large statistical errors and the QCD description contains sharp quark-antiquark thresholds. However, a meaningful comparison can be made if a type of ''smearing'' procedure is used to smooth out rapid variations in both the theoretical and experimental values of R. A wavelet analysis (WA) can be used to achieve this smearing effect. The second part of the analysis concentrates on the 3.0-6.0 GeV energy region which includes the relatively wide charmonium resonances ψ(1{sup -}). We use the wavelet methodology to distinguish these resonances from experimental noise, background and from each other, allowing a reliable determination of the parameters of these states. Both analyses are examples of the usefulness of WA in extracting information in a model independent way from high energy physics data. (orig.)

  10. Decay ratio studies in BWR and PWR using wavelet

    International Nuclear Information System (INIS)

    Ciftcioglu, Oe.

    1996-10-01

    The on-line stability of BWR and PWR is studied using the neutron noise signals as the fluctuations reflect the dynamic characteristics of the reactor. Using appropriate signal modeling for time domain analysis of noise signals, the stability parameters can be directly obtained from the system impulse response. Here in particular for BWR, an important stability parameter is the decay ratio (DR) of the impulse response. The time series analysis involves the autoregressive modeling of the neutron detector signal. The DR determination is strongly effected by the low frequency behaviour since the transfer function characteristic tends to be a third order system rather than a second order system for a BWR. In a PWR low frequency behaviour is modified by the Boron concentration. As a result of these phenomena there are difficulties in the consistent determination of the DR oscillations. The enhancement of the consistency of this DR estimation is obtained by wavelet transform using actual power plant data from BWR and PWR. A comparative study of the Restimation with and without wavelets are presented. (orig.)

  11. Wavelets in neuroscience

    CERN Document Server

    Hramov, Alexander E; Makarov, Valeri A; Pavlov, Alexey N; Sitnikova, Evgenia

    2015-01-01

    This book examines theoretical and applied aspects of wavelet analysis in neurophysics, describing in detail different practical applications of the wavelet theory in the areas of neurodynamics and neurophysiology and providing a review of fundamental work that has been carried out in these fields over the last decade. Chapters 1 and 2 introduce and review the relevant foundations of neurophysics and wavelet theory, respectively, pointing on one hand to the various current challenges in neuroscience and introducing on the other the mathematical techniques of the wavelet transform in its two variants (discrete and continuous) as a powerful and versatile tool for investigating the relevant neuronal dynamics. Chapter 3 then analyzes results from examining individual neuron dynamics and intracellular processes. The principles for recognizing neuronal spikes from extracellular recordings and the advantages of using wavelets to address these issues are described and combined with approaches based on wavelet neural ...

  12. A feasibility study on wavelet transform for reactivity coefficient estimation

    International Nuclear Information System (INIS)

    Shimazu, Yoichiro

    2000-01-01

    Recently, a new method using Fourier transform has been introduced in place of the conventional method in order to reduce the time required for the measurement of moderator temperature coefficient in domestic PWRs. The basic concept of these methods is to eliminate noise in the reactivity signal. From this point of view, wavelet analysis is also known as an effective method. In this paper, we tried to apply this method to estimate reactivity coefficients of a nuclear reactor. The basic idea of the reactivity coefficient estimation is to analyze the ratios themselves of the corresponding expansion coefficients of the wavelet transform of the signals of reactivity and the relevant parameter. The concept requires no inverse wavelet transform. Based on numerical simulations, it is found that the method can reasonably estimate reactivity coefficient, for example moderator temperature coefficient, with less length of time sequence data than those required for Fourier transform method. We will continue this study to examine the validity of the estimation procedure for the actual reactor data and further to estimate the other reactivity coefficients. (author)

  13. A Quantitative Analysis of an EEG Epileptic Record Based on MultiresolutionWavelet Coefficients

    Directory of Open Access Journals (Sweden)

    Mariel Rosenblatt

    2014-11-01

    Full Text Available The characterization of the dynamics associated with electroencephalogram (EEG signal combining an orthogonal discrete wavelet transform analysis with quantifiers originated from information theory is reviewed. In addition, an extension of this methodology based on multiresolution quantities, called wavelet leaders, is presented. In particular, the temporal evolution of Shannon entropy and the statistical complexity evaluated with different sets of multiresolution wavelet coefficients are considered. Both methodologies are applied to the quantitative EEG time series analysis of a tonic-clonic epileptic seizure, and comparative results are presented. In particular, even when both methods describe the dynamical changes of the EEG time series, the one based on wavelet leaders presents a better time resolution.

  14. Study on critical heat flux based on wavelet transform in rectangular narrow channels

    International Nuclear Information System (INIS)

    Zhou Tao; Ju Zhongyun; Zhang Lei; Li Jingjing; Sheng Cheng; Xiao Zejun

    2014-01-01

    Critical heat flux is very important for nuclear reactor safety, and observing temperature rise rate is a feasible method. Through using the wavelet transform to analyze the CHF temperature rise curves in rectangular narrow channels, it can remove relative weaker interference and effectively judge CHF. Rectangular narrow channel can strengthen heat transfer and reduce CHF, whose characteristics are proved by, temperature rise curves analyzed by wavelet transform. Respectively applying Daubechies function and Haar function is for guarantee the accuracy of the wavelet analysis, and Daubechies function is more accurate than Haar function in the detail signal processing from results. While the wavelet analysis and experimental results are compared and found in good agreement with the experimental results. (authors)

  15. PREVISIÓN DE CRISIS EPILÉPTICAS USANDO TRANSFORMADA WAVELET Y CORRELACIÓN CRUZADA PREVENTION OF EPILEPTICAL CRISIS USING WAVELET TRANSFORM AND CROSS-CORRELATION

    Directory of Open Access Journals (Sweden)

    Claudia C. Botero Suárez

    2007-07-01

    Full Text Available Este artículo describe la detección de actividad precrisis mediante la aplicación de la correlación cruzada junto con la transformada Wavelet. La transformada Wavelet es aplicada a los datos EEG puros para la reducción y pre-procesamiento de las señales. Esta técnica de extracción de características provee las señales simplificadas para ser procesadas por medio de la técnica de correlación cruzada. El análisis ha sido realizado con un grupo de datos tanto precrisis como intercrisis, (incluyendo crisis agudas inducidas y crisis espontáneas recurrentes, con el fin de determinar su sensitividad y especificidad (tasa de falsas predicciones. Son determinados, adicionalmente, el período de ocurrencia de crisis y el horizonte de previsión de crisis.This paper describes the detection of a pre-crisis activity through the application of Cross-Correlation together with the Wavelet Transform. The Wavelet Transform is applied in the data reduction and pre-processing of signals. This feature extract technique provides the simplified signals to process by means of the Cross-Correlation technique. The analysis with a group of pre-crisis and inter-crisis data (including both induced acute crises and recurrent spontaneous crises, to determinate its sensitivity and its specificity (False Prediction Rate has been done. The seizure occurrence period and the seizure prediction horizon are calculated additionally.

  16. Detection of Driver Drowsiness Using Wavelet Analysis of Heart Rate Variability and a Support Vector Machine Classifier

    Directory of Open Access Journals (Sweden)

    Gang Li

    2013-12-01

    Full Text Available Driving while fatigued is just as dangerous as drunk driving and may result in car accidents. Heart rate variability (HRV analysis has been studied recently for the detection of driver drowsiness. However, the detection reliability has been lower than anticipated, because the HRV signals of drivers were always regarded as stationary signals. The wavelet transform method is a method for analyzing non-stationary signals. The aim of this study is to classify alert and drowsy driving events using the wavelet transform of HRV signals over short time periods and to compare the classification performance of this method with the conventional method that uses fast Fourier transform (FFT-based features. Based on the standard shortest duration for FFT-based short-term HRV evaluation, the wavelet decomposition is performed on 2-min HRV samples, as well as 1-min and 3-min samples for reference purposes. A receiver operation curve (ROC analysis and a support vector machine (SVM classifier are used for feature selection and classification, respectively. The ROC analysis results show that the wavelet-based method performs better than the FFT-based method regardless of the duration of the HRV sample that is used. Finally, based on the real-time requirements for driver drowsiness detection, the SVM classifier is trained using eighty FFT and wavelet-based features that are extracted from 1-min HRV signals from four subjects. The averaged leave-one-out (LOO classification performance using wavelet-based feature is 95% accuracy, 95% sensitivity, and 95% specificity. This is better than the FFT-based results that have 68.8% accuracy, 62.5% sensitivity, and 75% specificity. In addition, the proposed hardware platform is inexpensive and easy-to-use.

  17. Feature Extraction Using Discrete Wavelet Transform for Gear Fault Diagnosis of Wind Turbine Gearbox

    DEFF Research Database (Denmark)

    Bajric, Rusmir; Zuber, Ninoslav; Skrimpas, Georgios Alexandros

    2016-01-01

    , the vibration signals are decomposed into a series of subbands signals with the use of amultiresolution analytical property of the discrete wavelet transform.Then, 22 condition indicators are extracted fromthe TSA signal, residual signal, and difference signal.Through the case study analysis, a new approach...

  18. Multi-time-over-threshold technique for photomultiplier signal processing: Description and characterization of the SCOTT ASIC

    International Nuclear Information System (INIS)

    Ferry, S.; Guilloux, F.; Anvar, S.; Chateau, F.; Delagnes, E.; Gautard, V.; Louis, F.; Monmarthe, E.; Le Provost, H.; Russo, S.; Schuller, J.-P.; Stolarczyk, Th.; Vallage, B.; Zonca, E.

    2012-01-01

    KM3NeT aims to build a cubic-kilometer scale neutrino telescope in the Mediterranean Sea based on a 3D array of photomultiplier tubes. A dedicated ASIC, named SCOTT, has been developed for the readout electronics of the PMTs: it uses up to 16 adjustable thresholds to digitize the signals with the multi-time-over-threshold technique. Digital outputs of discriminators feed a circular sampling memory and a “first in first out” digital memory for derandomization. At the end of the data processing, the ASIC produces a digital waveform sampled at 800 MHz. A specific study was carried out to process PMT data and has showed that five specifically chosen thresholds are suited to reach the required timing precision. A dedicated method based on the duration of the signal over a given threshold allows an equivalent timing precision at any charge. A charge estimator using the information from the thresholds allows a charge determination within less than 20% up to 60 pe.

  19. Multi-time-over-threshold technique for photomultiplier signal processing: Description and characterization of the SCOTT ASIC

    Science.gov (United States)

    Ferry, S.; Guilloux, F.; Anvar, S.; Chateau, F.; Delagnes, E.; Gautard, V.; Louis, F.; Monmarthe, E.; Le Provost, H.; Russo, S.; Schuller, J.-P.; Stolarczyk, Th.; Vallage, B.; Zonca, E.; Representing the KM3NeT Consortium

    2012-12-01

    KM3NeT aims to build a cubic-kilometer scale neutrino telescope in the Mediterranean Sea based on a 3D array of photomultiplier tubes. A dedicated ASIC, named SCOTT, has been developed for the readout electronics of the PMTs: it uses up to 16 adjustable thresholds to digitize the signals with the multi-time-over-threshold technique. Digital outputs of discriminators feed a circular sampling memory and a “first in first out” digital memory for derandomization. At the end of the data processing, the ASIC produces a digital waveform sampled at 800 MHz. A specific study was carried out to process PMT data and has showed that five specifically chosen thresholds are suited to reach the required timing precision. A dedicated method based on the duration of the signal over a given threshold allows an equivalent timing precision at any charge. A charge estimator using the information from the thresholds allows a charge determination within less than 20% up to 60 pe.

  20. Diagnostics of detector tube impacting with wavelet techniques

    Energy Technology Data Exchange (ETDEWEB)

    Racz, A. [KFKI-AEKI Applied Reactor Physics, Budapest (Hungary); Pazsit, I. [Chalmers Univ. of Tech., Goeteborg (Sweden). Dept. of Reactor Physics

    1997-12-08

    A neutron noise based method is proposed for the detection of impacting of detector tubes in BWRs. The basic idea relies on the assumption that non-stationary transients (e.g. fuel box vibrations) may be induced at impacting. Such short-lived transients are difficult to detect by spectral analysis methods. However, their presence in the detector signal can be detected by wavelet analysis. A simple wavelet technique, the so-called Haar transform, is suggested for the detection of impacting. Tests of the proposed method have been performed with success on both simulated data with controlled impacting as well as with real measurement data. The simulation model as well as the results of the wavelet analysis are reported in this paper. The source code written in MATLAB are available at a public ftp site. The necessary information to reproduce the simulation results is also reported. (author).

  1. Diagnostics of detector tube impacting with wavelet techniques

    Energy Technology Data Exchange (ETDEWEB)

    Racz, A.; Pazsit, I

    1998-04-01

    A neutron noise based method is proposed for the detection of impacting of detector tubes in BWRs. The basic idea relies on the assumption that non-stationary transients (e.g. fuel box vibrations) may be induced at impacting. Such short-lived transients are difficult to detect by spectral analysis methods. However, their presence in the detector signal can be detected by wavelet analysis. A simple wavelet technique, the so-called Haar transform, is suggested for the detection of impacting. Tests of the proposed method have been performed with success on both simulated data with controlled impacting as well as with real measurement data. The simulation model as well as the results of the wavelet analysis are reported in this paper. The source codes written in MATLAB[reg] are available at a public ftp site. The necessary information to reproduce the simulation results is also reported.

  2. Discrimination Between Inrush and Short Circuit Currents in Differential Protection of Power Transformer Based on Correlation Method Using the Wavelet Transform

    OpenAIRE

    M. Rasoulpoor; M. Banejad; A. Ahmadyfard

    2011-01-01

    This paper presents a novel technique for transformer differential protection to prevent incorrect operation due to inrush current. The proposed method in this paper is based on time-frequency transform known as the Wavelet transform. The discrete Wavelet transform is used for analysis the differential current signals in time and frequency domains. The investigation on the energy distribution of the signal on the discrete Wavelet transform components shows the difference distribution between ...

  3. Energy detection based on undecimated discrete wavelet transform and its application in magnetic anomaly detection.

    Directory of Open Access Journals (Sweden)

    Xinhua Nie

    Full Text Available Magnetic anomaly detection (MAD is a passive approach for detection of a ferromagnetic target, and its performance is often limited by external noises. In consideration of one major noise source is the fractal noise (or called 1/f noise with a power spectral density of 1/fa (0wavelet decomposition can play the role of a Karhunen-Loève-type expansion to the 1/f-type signal by its decorrelation abilities, an effective energy detection method based on undecimated discrete wavelet transform (UDWT is proposed in this paper. Firstly, the foundations of magnetic anomaly detection and UDWT are introduced in brief, while a possible detection system based on giant magneto-impedance (GMI magnetic sensor is also given out. Then our proposed energy detection based on UDWT is described in detail, and the probabilities of false alarm and detection for given the detection threshold in theory are presented. It is noticeable that no a priori assumptions regarding the ferromagnetic target or the magnetic noise probability are necessary for our method, and different from the discrete wavelet transform (DWT, the UDWT is shift invariant. Finally, some simulations are performed and the results show that the detection performance of our proposed detector is better than that of the conventional energy detector even utilized in the Gaussian white noise, especially when the spectral parameter α is less than 1.0. In addition, a real-world experiment was done to demonstrate the advantages of the proposed method.

  4. Automatic sleep stage classification based on EEG signals by using neural networks and wavelet packet coefficients.

    Science.gov (United States)

    Ebrahimi, Farideh; Mikaeili, Mohammad; Estrada, Edson; Nazeran, Homer

    2008-01-01

    Currently in the world there is an alarming number of people who suffer from sleep disorders. A number of biomedical signals, such as EEG, EMG, ECG and EOG are used in sleep labs among others for diagnosis and treatment of sleep related disorders. The usual method for sleep stage classification is visual inspection by a sleep specialist. This is a very time consuming and laborious exercise. Automatic sleep stage classification can facilitate this process. The definition of sleep stages and the sleep literature show that EEG signals are similar in Stage 1 of non-rapid eye movement (NREM) sleep and rapid eye movement (REM) sleep. Therefore, in this work an attempt was made to classify four sleep stages consisting of Awake, Stage 1 + REM, Stage 2 and Slow Wave Stage based on the EEG signal alone. Wavelet packet coefficients and artificial neural networks were deployed for this purpose. Seven all night recordings from Physionet database were used in the study. The results demonstrated that these four sleep stages could be automatically discriminated from each other with a specificity of 94.4 +/- 4.5%, a of sensitivity 84.2+3.9% and an accuracy of 93.0 +/- 4.0%.

  5. Wavelet denoising of multiframe optical coherence tomography data.

    Science.gov (United States)

    Mayer, Markus A; Borsdorf, Anja; Wagner, Martin; Hornegger, Joachim; Mardin, Christian Y; Tornow, Ralf P

    2012-03-01

    We introduce a novel speckle noise reduction algorithm for OCT images. Contrary to present approaches, the algorithm does not rely on simple averaging of multiple image frames or denoising on the final averaged image. Instead it uses wavelet decompositions of the single frames for a local noise and structure estimation. Based on this analysis, the wavelet detail coefficients are weighted, averaged and reconstructed. At a signal-to-noise gain at about 100% we observe only a minor sharpness decrease, as measured by a full-width-half-maximum reduction of 10.5%. While a similar signal-to-noise gain would require averaging of 29 frames, we achieve this result using only 8 frames as input to the algorithm. A possible application of the proposed algorithm is preprocessing in retinal structure segmentation algorithms, to allow a better differentiation between real tissue information and unwanted speckle noise.

  6. Biometric identification of cardiosynchronous waveforms utilizing person specific continuous and discrete wavelet transform features.

    Science.gov (United States)

    Bhagavatula, Chandrasekhar; Venugopalan, Shreyas; Blue, Rebecca; Friedman, Robert; Griofa, Marc O; Savvides, Marios; Kumar, B V K Vijaya

    2012-01-01

    In this paper we explore how a Radio Frequency Impedance Interrogation (RFII) signal may be used as a biometric feature. This could allow the identification of subjects in operational and potentially hostile environments. Features extracted from the continuous and discrete wavelet decompositions of the signal are investigated for biometric identification. In the former case, the most discriminative features in the wavelet space were extracted using a Fisher ratio metric. Comparisons in the wavelet space were done using the Euclidean distance measure. In the latter case, the signal was decomposed at various levels using different wavelet bases, in order to extract both low frequency and high frequency components. Comparisons at each decomposition level were performed using the same distance measure as before. The data set used consists of four subjects, each with a 15 minute RFII recording. The various data samples for our experiments, corresponding to a single heart beat duration, were extracted from these recordings. We achieve identification rates of up to 99% using the CWT approach and rates of up to 100% using the DWT approach. While the small size of the dataset limits the interpretation of these results, further work with larger datasets is expected to develop better algorithms for subject identification.

  7. Peak center and area estimation in gamma-ray energy spectra using a Mexican-hat wavelet

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Zhang-jian; Chen, Chuan; Luo, Jun-song; Xie, Xing-hong; Ge, Liang-quan [School of Information Science & Technology, Chengdu University of Technology, Chengdu (China); Wu, Qi-fan [Department of Engineering Physics, Tsinghua University, Beijing (China)

    2017-06-21

    Wavelet analysis is commonly used to detect and localize peaks within a signal, such as in Gamma-ray energy spectra. This paper presents a peak area estimation method based on a new wavelet analysis. Another Mexican Hat Wavelet Signal (MHWS) named after the new MHWS is obtained with the convolution of a Gaussian signal and a MHWS. During the transform, the overlapping background on the Gaussian signal caused by Compton scattering can be subtracted because the impulse response function MHWS is a second-order smooth function, and the amplitude of the maximum within the new MHWS is the net height corresponding to the Gaussian signal height, which can be used to estimate the Gaussian peak area. Moreover, the zero-crossing points within the new MHWS contain the information of the Gaussian variance whose valve should be obtained when the Gaussian peak area is estimated. Further, the new MHWS center is also the Gaussian peak center. With that distinguishing feature, the channel address of a characteristic peak center can be accurately obtained which is very useful in the stabilization of airborne Gamma energy spectra. In particular, a method for determining the correction coefficient k is given, where the peak area is calculated inaccurately because the value of the scale factor in wavelet transform is too small. The simulation and practical applications show the feasibility of the proposed peak center and area estimation method.

  8. Reversible Integer Wavelet Transform for the Joint of Image Encryption and Watermarking

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2015-01-01

    Full Text Available In recent years, signal processing in the encrypted domain has attracted considerable research interest, especially embedding watermarking in encrypted image. In this work, a novel joint of image encryption and watermarking based on reversible integer wavelet transform is proposed. Firstly, the plain-image is encrypted by chaotic maps and reversible integer wavelet transform. Then the lossless watermarking is embedded in the encrypted image by reversible integer wavelet transform and histogram modification. Finally an encrypted image containing watermarking is obtained by the inverse integer wavelet transform. What is more, the original image and watermarking can be completely recovered by inverse process. Numerical experimental results and comparing with previous works show that the proposed scheme possesses higher security and embedding capacity than previous works. It is suitable for protecting the image information.

  9. Seismic Target Classification Using a Wavelet Packet Manifold in Unattended Ground Sensors Systems

    Directory of Open Access Journals (Sweden)

    Enliang Song

    2013-07-01

    Full Text Available One of the most challenging problems in target classification is the extraction of a robust feature, which can effectively represent a specific type of targets. The use of seismic signals in unattended ground sensor (UGS systems makes this problem more complicated, because the seismic target signal is non-stationary, geology-dependent and with high-dimensional feature space. This paper proposes a new feature extraction algorithm, called wavelet packet manifold (WPM, by addressing the neighborhood preserving embedding (NPE algorithm of manifold learning on the wavelet packet node energy (WPNE of seismic signals. By combining non-stationary information and low-dimensional manifold information, WPM provides a more robust representation for seismic target classification. By using a K nearest neighbors classifier on the WPM signature, the algorithm of wavelet packet manifold classification (WPMC is proposed. Experimental results show that the proposed WPMC can not only reduce feature dimensionality, but also improve the classification accuracy up to 95.03%. Moreover, compared with state-of-the-art methods, WPMC is more suitable for UGS in terms of recognition ratio and computational complexity.

  10. Detecting modulated signals in modulated noise: (II) neural thresholds in the songbird forebrain.

    Science.gov (United States)

    Bee, Mark A; Buschermöhle, Michael; Klump, Georg M

    2007-10-01

    Sounds in the real world fluctuate in amplitude. The vertebrate auditory system exploits patterns of amplitude fluctuations to improve signal detection in noise. One experimental paradigm demonstrating these general effects has been used in psychophysical studies of 'comodulation detection difference' (CDD). The CDD effect refers to the fact that thresholds for detecting a modulated, narrowband noise signal are lower when the envelopes of flanking bands of modulated noise are comodulated with each other, but fluctuate independently of the signal compared with conditions in which the envelopes of the signal and flanking bands are all comodulated. Here, we report results from a study of the neural correlates of CDD in European starlings (Sturnus vulgaris). We manipulated: (i) the envelope correlations between a narrowband noise signal and a masker comprised of six flanking bands of noise; (ii) the signal onset delay relative to masker onset; (iii) signal duration; and (iv) masker spectrum level. Masked detection thresholds were determined from neural responses using signal detection theory. Across conditions, the magnitude of neural CDD ranged between 2 and 8 dB, which is similar to that reported in a companion psychophysical study of starlings [U. Langemann & G.M. Klump (2007) Eur. J. Neurosci., 26, 1969-1978]. We found little evidence to suggest that neural CDD resulted from the across-channel processing of auditory grouping cues related to common envelope fluctuations and synchronous onsets between the signal and flanking bands. We discuss a within-channel model of peripheral processing that explains many of our results.

  11. Wavelets and their uses

    International Nuclear Information System (INIS)

    Dremin, Igor M; Ivanov, Oleg V; Nechitailo, Vladimir A

    2001-01-01

    This review paper is intended to give a useful guide for those who want to apply the discrete wavelet transform in practice. The notion of wavelets and their use in practical computing and various applications are briefly described, but rigorous proofs of mathematical statements are omitted, and the reader is just referred to the corresponding literature. The multiresolution analysis and fast wavelet transform have become a standard procedure for dealing with discrete wavelets. The proper choice of a wavelet and use of nonstandard matrix multiplication are often crucial for the achievement of a goal. Analysis of various functions with the help of wavelets allows one to reveal fractal structures, singularities etc. The wavelet transform of operator expressions helps solve some equations. In practical applications one often deals with the discretized functions, and the problem of stability of the wavelet transform and corresponding numerical algorithms becomes important. After discussing all these topics we turn to practical applications of the wavelet machinery. They are so numerous that we have to limit ourselves to a few examples only. The authors would be grateful for any comments which would move us closer to the goal proclaimed in the first phrase of the abstract. (reviews of topical problems)

  12. The Hilbert-Huang Transform-Based Denoising Method for the TEM Response of a PRBS Source Signal

    Science.gov (United States)

    Hai, Li; Guo-qiang, Xue; Pan, Zhao; Hua-sen, Zhong; Khan, Muhammad Younis

    2016-08-01

    The denoising process is critical in processing transient electromagnetic (TEM) sounding data. For the full waveform pseudo-random binary sequences (PRBS) response, an inadequate noise estimation may result in an erroneous interpretation. We consider the Hilbert-Huang transform (HHT) and its application to suppress the noise in the PRBS response. The focus is on the thresholding scheme to suppress the noise and the analysis of the signal based on its Hilbert time-frequency representation. The method first decomposes the signal into the intrinsic mode function, and then, inspired by the thresholding scheme in wavelet analysis; an adaptive and interval thresholding is conducted to set to zero all the components in intrinsic mode function which are lower than a threshold related to the noise level. The algorithm is based on the characteristic of the PRBS response. The HHT-based denoising scheme is tested on the synthetic and field data with the different noise levels. The result shows that the proposed method has a good capability in denoising and detail preservation.

  13. Adaptive Wavelet Transforms

    Energy Technology Data Exchange (ETDEWEB)

    Szu, H.; Hsu, C. [Univ. of Southwestern Louisiana, Lafayette, LA (United States)

    1996-12-31

    Human sensors systems (HSS) may be approximately described as an adaptive or self-learning version of the Wavelet Transforms (WT) that are capable to learn from several input-output associative pairs of suitable transform mother wavelets. Such an Adaptive WT (AWT) is a redundant combination of mother wavelets to either represent or classify inputs.

  14. Wavelet-Based Processing for Fiber Optic Sensing Systems

    Science.gov (United States)

    Hamory, Philip J. (Inventor); Parker, Allen R., Jr. (Inventor)

    2016-01-01

    The present invention is an improved method of processing conglomerate data. The method employs a Triband Wavelet Transform that decomposes and decimates the conglomerate signal to obtain a final result. The invention may be employed to improve performance of Optical Frequency Domain Reflectometry systems.

  15. Adaptive Image Transmission Scheme over Wavelet-Based OFDM System

    Institute of Scientific and Technical Information of China (English)

    GAOXinying; YUANDongfeng; ZHANGHaixia

    2005-01-01

    In this paper an adaptive image transmission scheme is proposed over Wavelet-based OFDM (WOFDM) system with Unequal error protection (UEP) by the design of non-uniform signal constellation in MLC. Two different data division schemes: byte-based and bitbased, are analyzed and compared. Different bits are protected unequally according to their different contribution to the image quality in bit-based data division scheme, which causes UEP combined with this scheme more powerful than that with byte-based scheme. Simulation results demonstrate that image transmission by UEP with bit-based data division scheme presents much higher PSNR values and surprisingly better image quality. Furthermore, by considering the tradeoff of complexity and BER performance, Haar wavelet with the shortest compactly supported filter length is the most suitable one among orthogonal Daubechies wavelet series in our proposed system.

  16. Study on critical heat flux based on wavelet transform in rectangular narrow channels

    International Nuclear Information System (INIS)

    Zhou Tao; Ju Zhongyun; Zhang Lei; Li Jingjing; Sheng Cheng; Xiao Zejun

    2014-01-01

    Critical heat flux is very important for the safety of nuclear reactor, and observing temperature rise rate is a feasible method. The wavelet transform is used to analyze the CHF temperature rise curves in rectangular narrow channels, which can remove relative weaker interference and effectively judge CHF. Rectangular narrow channel can strengthen heat transfer and reduce CHF, whose characteristics are proved by temperature rise curves analyzed by wavelet transform. Respectively applying Daubechies function and Haar function is to guarantee the accuracy of the wavelet analysis, and Daubechies function is more accurate than Haar function in the detail signal processing from results. While the wavelet analysis and experimental results are compared and found in good agreement with the experimental results. (authors)

  17. Wavelet Denoising of Radio Observations of Rotating Radio Transients (RRATs): Improved Timing Parameters for Eight RRATs

    Science.gov (United States)

    Jiang, M.; Cui, B.-Y.; Schmid, N. A.; McLaughlin, M. A.; Cao, Z.-C.

    2017-09-01

    Rotating radio transients (RRATs) are sporadically emitting pulsars detectable only through searches for single pulses. While over 100 RRATs have been detected, only a small fraction (roughly 20%) have phase-connected timing solutions, which are critical for determining how they relate to other neutron star populations. Detecting more pulses in order to achieve solutions is key to understanding their physical nature. Astronomical signals collected by radio telescopes contain noise from many sources, making the detection of weak pulses difficult. Applying a denoising method to raw time series prior to performing a single-pulse search typically leads to a more accurate estimation of their times of arrival (TOAs). Taking into account some features of RRAT pulses and noise, we present a denoising method based on wavelet data analysis, an image-processing technique. Assuming that the spin period of an RRAT is known, we estimate the frequency spectrum components contributing to the composition of RRAT pulses. This allows us to suppress the noise, which contributes to other frequencies. We apply the wavelet denoising method including selective wavelet reconstruction and wavelet shrinkage to the de-dispersed time series of eight RRATs with existing timing solutions. The signal-to-noise ratio (S/N) of most pulses are improved after wavelet denoising. Compared to the conventional approach, we measure 12%–69% more TOAs for the eight RRATs. The new timing solutions for the eight RRATs show 16%–90% smaller estimation error of most parameters. Thus, we conclude that wavelet analysis is an effective tool for denoising RRATs signal.

  18. Wavelet Denoising of Radio Observations of Rotating Radio Transients (RRATs): Improved Timing Parameters for Eight RRATs

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, M.; Schmid, N. A.; Cao, Z.-C. [Lane Department of Computer Science and Electrical Engineering West Virginia University Morgantown, WV 26506 (United States); Cui, B.-Y.; McLaughlin, M. A. [Department of Physics and Astronomy West Virginia University Morgantown, WV 26506 (United States)

    2017-09-20

    Rotating radio transients (RRATs) are sporadically emitting pulsars detectable only through searches for single pulses. While over 100 RRATs have been detected, only a small fraction (roughly 20%) have phase-connected timing solutions, which are critical for determining how they relate to other neutron star populations. Detecting more pulses in order to achieve solutions is key to understanding their physical nature. Astronomical signals collected by radio telescopes contain noise from many sources, making the detection of weak pulses difficult. Applying a denoising method to raw time series prior to performing a single-pulse search typically leads to a more accurate estimation of their times of arrival (TOAs). Taking into account some features of RRAT pulses and noise, we present a denoising method based on wavelet data analysis, an image-processing technique. Assuming that the spin period of an RRAT is known, we estimate the frequency spectrum components contributing to the composition of RRAT pulses. This allows us to suppress the noise, which contributes to other frequencies. We apply the wavelet denoising method including selective wavelet reconstruction and wavelet shrinkage to the de-dispersed time series of eight RRATs with existing timing solutions. The signal-to-noise ratio (S/N) of most pulses are improved after wavelet denoising. Compared to the conventional approach, we measure 12%–69% more TOAs for the eight RRATs. The new timing solutions for the eight RRATs show 16%–90% smaller estimation error of most parameters. Thus, we conclude that wavelet analysis is an effective tool for denoising RRATs signal.

  19. Shaft Crack Identification Based on Vibration and AE Signals

    Directory of Open Access Journals (Sweden)

    Wenxiu Lu

    2011-01-01

    Full Text Available The shaft crack is one of the main serious malfunctions that often occur in rotating machinery. However, it is difficult to locate the crack and determine the depth of the crack. In this paper, the acoustic emission (AE signal and vibration response are used to diagnose the crack. The wavelet transform is applied to AE signal to decompose into a series of time-domain signals, each of which covers a specific octave frequency band. Then an improved union method based on threshold and cross-correlation method is applied to detect the location of the shaft crack. The finite element method is used to build the model of the cracked rotor, and the crack depth is identified by comparing the vibration response of experiment and simulation. The experimental results show that the AE signal is effective and convenient to locate the shaft crack, and the vibration signal is feasible to determine the depth of shaft crack.

  20. A procedure for denoising dual-axis swallowing accelerometry signals

    International Nuclear Information System (INIS)

    Sejdić, Ervin; Chau, Tom; Steele, Catriona M

    2010-01-01

    Dual-axis swallowing accelerometry is an emerging tool for the assessment of dysphagia (swallowing difficulties). These signals however can be very noisy as a result of physiological and motion artifacts. In this note, we propose a novel scheme for denoising those signals, i.e. a computationally efficient search for the optimal denoising threshold within a reduced wavelet subspace. To determine a viable subspace, the algorithm relies on the minimum value of the estimated upper bound for the reconstruction error. A numerical analysis of the proposed scheme using synthetic test signals demonstrated that the proposed scheme is computationally more efficient than minimum noiseless description length (MNDL)-based denoising. It also yields smaller reconstruction errors than MNDL, SURE and Donoho denoising methods. When applied to dual-axis swallowing accelerometry signals, the proposed scheme exhibits improved performance for dry, wet and wet chin tuck swallows. These results are important for the further development of medical devices based on dual-axis swallowing accelerometry signals. (note)

  1. Wavelet-based multiscale analysis of minimum toe clearance variability in the young and elderly during walking.

    Science.gov (United States)

    Khandoker, Ahsan H; Karmakar, Chandan K; Begg, Rezaul K; Palaniswami, Marimuthu

    2007-01-01

    As humans age or are influenced by pathology of the neuromuscular system, gait patterns are known to adjust, accommodating for reduced function in the balance control system. The aim of this study was to investigate the effectiveness of a wavelet based multiscale analysis of a gait variable [minimum toe clearance (MTC)] in deriving indexes for understanding age-related declines in gait performance and screening of balance impairments in the elderly. MTC during walking on a treadmill for 30 healthy young, 27 healthy elderly and 10 falls risk elderly subjects with a history of tripping falls were analyzed. The MTC signal from each subject was decomposed to eight detailed signals at different wavelet scales by using the discrete wavelet transform. The variances of detailed signals at scales 8 to 1 were calculated. The multiscale exponent (beta) was then estimated from the slope of the variance progression at successive scales. The variance at scale 5 was significantly (ppathological conditions. Early detection of gait pattern changes due to ageing and balance impairments using wavelet-based multiscale analysis might provide the opportunity to initiate preemptive measures to be undertaken to avoid injurious falls.

  2. In-Line Acoustic Device Inspection of Leakage in Water Distribution Pipes Based on Wavelet and Neural Network

    Directory of Open Access Journals (Sweden)

    Dileep Kumar

    2017-01-01

    Full Text Available Traditionally permanent acoustic sensors leak detection techniques have been proven to be very effective in water distribution pipes. However, these methods need long distance deployment and proper position of sensors and cannot be implemented on underground pipelines. An inline-inspection acoustic device is developed which consists of acoustic sensors. The device will travel by the flow of water through the pipes which record all noise events and detect small leaks. However, it records all the noise events regarding background noises, but the time domain noisy acoustic signal cannot manifest complete features such as the leak flow rate which does not distinguish the leak signal and environmental disturbance. This paper presents an algorithm structure with the modularity of wavelet and neural network, which combines the capability of wavelet transform analyzing leakage signals and classification capability of artificial neural networks. This study validates that the time domain is not evident to the complete features regarding noisy leak signals and significance of selection of mother wavelet to extract the noise event features in water distribution pipes. The simulation consequences have shown that an appropriate mother wavelet has been selected and localized to extract the features of the signal with leak noise and background noise, and by neural network implementation, the method improves the classification performance of extracted features.

  3. Human Body Image Edge Detection Based on Wavelet Transform

    Institute of Scientific and Technical Information of China (English)

    李勇; 付小莉

    2003-01-01

    Human dresses are different in thousands way.Human body image signals have big noise, a poor light and shade contrast and a narrow range of gray gradation distribution. The application of a traditional grads method or gray method to detect human body image edges can't obtain satisfactory results because of false detections and missed detections. According to tte peculiarity of human body image, dyadic wavelet transform of cubic spline is successfully applied to detect the face and profile edges of human body image and Mallat algorithm is used in the wavelet decomposition in this paper.

  4. End-point detection in potentiometric titration by continuous wavelet transform.

    Science.gov (United States)

    Jakubowska, Małgorzata; Baś, Bogusław; Kubiak, Władysław W

    2009-10-15

    The aim of this work was construction of the new wavelet function and verification that a continuous wavelet transform with a specially defined dedicated mother wavelet is a useful tool for precise detection of end-point in a potentiometric titration. The proposed algorithm does not require any initial information about the nature or the type of analyte and/or the shape of the titration curve. The signal imperfection, as well as random noise or spikes has no influence on the operation of the procedure. The optimization of the new algorithm was done using simulated curves and next experimental data were considered. In the case of well-shaped and noise-free titration data, the proposed method gives the same accuracy and precision as commonly used algorithms. But, in the case of noisy or badly shaped curves, the presented approach works good (relative error mainly below 2% and coefficients of variability below 5%) while traditional procedures fail. Therefore, the proposed algorithm may be useful in interpretation of the experimental data and also in automation of the typical titration analysis, specially in the case when random noise interfere with analytical signal.

  5. Estimation of effect of hydrogen on the parameters of magnetoacoustic emission signals

    Science.gov (United States)

    Skalskyi, Valentyn; Stankevych, Olena; Dubytskyi, Olexandr

    2018-05-01

    The features of the magnetoacoustic emission (MAE) signals during magnetization of structural steels with the different degree of hydrogenating were investigated by the wavelet transform. The dominant frequency ranges of MAE signals for the different magnetic field strength were determined using Discrete Wavelet Transform (DWT), and the energy and spectral parameters of MAE signals were determined using Continuous Wavelet Transform (CWT). The characteristic differences of the local maximums of signals according to energy, bandwidth, duration and frequency were found. The methodology of estimation of state of local degradation of materials by parameters of wavelet transform of MAE signals was proposed. This methodology was approbated for investigate of state of long-time exploitations structural steels of oil and gas pipelines.

  6. Wavelet Transforms using VTK-m

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shaomeng [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sewell, Christopher Meyer [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-27

    These are a set of slides that deal with the topics of wavelet transforms using VTK-m. First, wavelets are discussed and detailed, then VTK-m is discussed and detailed, then wavelets and VTK-m are looked at from a performance comparison, then from an accuracy comparison, and finally lessons learned, conclusion, and what is next. Lessons learned are the following: Launching worklets is expensive; Natural logic of performing 2D wavelet transform: Repeat the same 1D wavelet transform on every row, repeat the same 1D wavelet transform on every column, invoke the 1D wavelet worklet every time: num_rows x num_columns; VTK-m approach of performing 2D wavelet transform: Create a worklet for 2D that handles both rows and columns, invoke this new worklet only one time; Fast calculation, but cannot reuse 1D implementations.

  7. Wavelets in scientific computing

    DEFF Research Database (Denmark)

    Nielsen, Ole Møller

    1998-01-01

    the FWT can be used as a front-end for efficient image compression schemes. Part II deals with vector-parallel implementations of several variants of the Fast Wavelet Transform. We develop an efficient and scalable parallel algorithm for the FWT and derive a model for its performance. Part III...... supported wavelets in the context of multiresolution analysis. These wavelets are particularly attractive because they lead to a stable and very efficient algorithm, namely the fast wavelet transform (FWT). We give estimates for the approximation characteristics of wavelets and demonstrate how and why...... is an investigation of the potential for using the special properties of wavelets for solving partial differential equations numerically. Several approaches are identified and two of them are described in detail. The algorithms developed are applied to the nonlinear Schrödinger equation and Burgers' equation...

  8. Iris image recognition wavelet filter-banks based iris feature extraction schemes

    CERN Document Server

    Rahulkar, Amol D

    2014-01-01

    This book provides the new results in wavelet filter banks based feature extraction, and the classifier in the field of iris image recognition. It provides the broad treatment on the design of separable, non-separable wavelets filter banks, and the classifier. The design techniques presented in the book are applied on iris image analysis for person authentication. This book also brings together the three strands of research (wavelets, iris image analysis, and classifier). It compares the performance of the presented techniques with state-of-the-art available schemes. This book contains the compilation of basic material on the design of wavelets that avoids reading many different books. Therefore, it provide an easier path for the new-comers, researchers to master the contents. In addition, the designed filter banks and classifier can also be effectively used than existing filter-banks in many signal processing applications like pattern classification, data-compression, watermarking, denoising etc.  that will...

  9. Electrocardiogram de-noising based on forward wavelet transform ...

    Indian Academy of Sciences (India)

    Ratio (SNR) and Mean Square Error (MSE) computations showed that our proposed ... This technique permits to cancel noises and retain the informa- tion of the ... Wavelet analysis is used for transforming the signal under investigation into joined temporal and ... introduced the BWT in our proposed ECG de-noising system.

  10. Accelerating wavelet lifting on graphics hardware using CUDA

    NARCIS (Netherlands)

    Laan, van der W.J.; Roerdink, J.B.T.M.; Jalba, A.C.

    2011-01-01

    The Discrete Wavelet Transform (DWT) has a wide range of applications from signal processing to video and image compression. We show that this transform, by means of the lifting scheme, can be performed in a memory and computation-efficient way on modern, programmable GPUs, which can be regarded as

  11. Accelerating Wavelet Lifting on Graphics Hardware Using CUDA

    NARCIS (Netherlands)

    Laan, Wladimir J. van der; Jalba, Andrei C.; Roerdink, Jos B.T.M.

    The Discrete Wavelet Transform (DWT) has a wide range of applications from signal processing to video and image compression. We show that this transform, by means of the lifting scheme, can be performed in a memory and computation-efficient way on modern, programmable GPUs, which can be regarded as

  12. Prediction of Hydrophobic Cores of Proteins Using Wavelet Analysis.

    Science.gov (United States)

    Hirakawa; Kuhara

    1997-01-01

    Information concerning the secondary structures, flexibility, epitope and hydrophobic regions of amino acid sequences can be extracted by assigning physicochemical indices to each amino acid residue, and information on structure can be derived using the sliding window averaging technique, which is in wide use for smoothing out raw functions. Wavelet analysis has shown great potential and applicability in many fields, such as astronomy, radar, earthquake prediction, and signal or image processing. This approach is efficient for removing noise from various functions. Here we employed wavelet analysis to smooth out a plot assigned to a hydrophobicity index for amino acid sequences. We then used the resulting function to predict hydrophobic cores in globular proteins. We calculated the prediction accuracy for the hydrophobic cores of 88 representative set of proteins. Use of wavelet analysis made feasible the prediction of hydrophobic cores at 6.13% greater accuracy than the sliding window averaging technique.

  13. Lecture notes on wavelet transforms

    CERN Document Server

    Debnath, Lokenath

    2017-01-01

    This book provides a systematic exposition of the basic ideas and results of wavelet analysis suitable for mathematicians, scientists, and engineers alike. The primary goal of this text is to show how different types of wavelets can be constructed, illustrate why they are such powerful tools in mathematical analysis, and demonstrate their use in applications. It also develops the required analytical knowledge and skills on the part of the reader, rather than focus on the importance of more abstract formulation with full mathematical rigor.  These notes differs from many textbooks with similar titles in that a major emphasis is placed on the thorough development of the underlying theory before introducing applications and modern topics such as fractional Fourier transforms, windowed canonical transforms, fractional wavelet transforms, fast wavelet transforms, spline wavelets, Daubechies wavelets, harmonic wavelets and non-uniform wavelets. The selection, arrangement, and presentation of the material in these ...

  14. Hydrological model performance and parameter estimation in the wavelet-domain

    Directory of Open Access Journals (Sweden)

    B. Schaefli

    2009-10-01

    Full Text Available This paper proposes a method for rainfall-runoff model calibration and performance analysis in the wavelet-domain by fitting the estimated wavelet-power spectrum (a representation of the time-varying frequency content of a time series of a simulated discharge series to the one of the corresponding observed time series. As discussed in this paper, calibrating hydrological models so as to reproduce the time-varying frequency content of the observed signal can lead to different results than parameter estimation in the time-domain. Therefore, wavelet-domain parameter estimation has the potential to give new insights into model performance and to reveal model structural deficiencies. We apply the proposed method to synthetic case studies and a real-world discharge modeling case study and discuss how model diagnosis can benefit from an analysis in the wavelet-domain. The results show that for the real-world case study of precipitation – runoff modeling for a high alpine catchment, the calibrated discharge simulation captures the dynamics of the observed time series better than the results obtained through calibration in the time-domain. In addition, the wavelet-domain performance assessment of this case study highlights the frequencies that are not well reproduced by the model, which gives specific indications about how to improve the model structure.

  15. ESPI correlogram analysis by two stage application of wavelet transform with use of intensity thresholding

    Czech Academy of Sciences Publication Activity Database

    Stanke, L.; Šmíd, Petr; Horváth, P.

    2015-01-01

    Roč. 126, 7-8 (2015), s. 865-870 ISSN 0030-4026 R&D Projects: GA MŠk(CZ) LG13007; GA ČR GA13-12301S Institutional support: RVO:68378271 Keywords : phase retrieval * wavelets * speckle interferometry * speckle imaging * metrology Subject RIV: BH - Optics , Masers, Lasers Impact factor: 0.742, year: 2015

  16. Texture Analysis of Recurrence Plots Based on Wavelets and PSO for Laryngeal Pathologies Detection.

    Science.gov (United States)

    Souza, Taciana A; Vieira, Vinícius J D; Correia, Suzete E N; Costa, Silvana L N C; de A Costa, Washington C; Souza, Micael A

    2015-01-01

    This paper deals with the discrimination between healthy and pathological speech signals using recurrence plots and wavelet transform with texture features. Approximation and detail coefficients are obtained from the recurrence plots using Haar wavelet transform, considering one decomposition level. The considered laryngeal pathologies are: paralysis, Reinke's edema and nodules. Accuracy rates above 86% were obtained by means of the employed method.

  17. Bearing faults identification and resonant band demodulation based on wavelet de-noising methods and envelope analysis

    Science.gov (United States)

    Abdelrhman, Ahmed M.; Sei Kien, Yong; Salman Leong, M.; Meng Hee, Lim; Al-Obaidi, Salah M. Ali

    2017-07-01

    The vibration signals produced by rotating machinery contain useful information for condition monitoring and fault diagnosis. Fault severities assessment is a challenging task. Wavelet Transform (WT) as a multivariate analysis tool is able to compromise between the time and frequency information in the signals and served as a de-noising method. The CWT scaling function gives different resolutions to the discretely signals such as very fine resolution at lower scale but coarser resolution at a higher scale. However, the computational cost increased as it needs to produce different signal resolutions. DWT has better low computation cost as the dilation function allowed the signals to be decomposed through a tree of low and high pass filters and no further analysing the high-frequency components. In this paper, a method for bearing faults identification is presented by combing Continuous Wavelet Transform (CWT) and Discrete Wavelet Transform (DWT) with envelope analysis for bearing fault diagnosis. The experimental data was sampled by Case Western Reserve University. The analysis result showed that the proposed method is effective in bearing faults detection, identify the exact fault’s location and severity assessment especially for the inner race and outer race faults.

  18. Wavefield analysis in inhomogeneous media by wavelet transform; Wavelet henkan ni yoru fukinshitsu baitai no hadoba kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Matsushima, J; Rokugawa, S; Kato, Y [The University of Tokyo, Tokyo (Japan). Faculty of Engineering; Yokota, T; Miyazaki, T [Geological Survey of Japan, Tsukuba (Japan); Ichie, Y [The University of Tokyo, Tokyo (Japan)

    1996-10-01

    Data processing techniques have been investigated for clarifying structures and physical properties of geothermal reservoirs in the deep underground by seismic exploration using multiple wells. They include the initial motion time-distance tomography, amplitude tomography, diffracted wave tomography, and structure imaging using reflected wave or scattered wave. When applying these data processing methods to observed records, weak and minor signals essentially required are canceled due to averaging the analytical fields. In this study, influence of inhomogeneous media on the wavefield was evaluated. Data were analyzed considering frequency by using wavelet transform by which time-frequency can be easily analyzed. From the time-frequency analysis using wavelet transform, it was illustrated that high frequency scattered waves, generated by scatterer like cracks or by irregularity on the reflection surface, arrive behind direct P-wave and direct S-wave. 5 refs., 8 figs.

  19. A fully automated algorithm of baseline correction based on wavelet feature points and segment interpolation

    Science.gov (United States)

    Qian, Fang; Wu, Yihui; Hao, Peng

    2017-11-01

    Baseline correction is a very important part of pre-processing. Baseline in the spectrum signal can induce uneven amplitude shifts across different wavenumbers and lead to bad results. Therefore, these amplitude shifts should be compensated before further analysis. Many algorithms are used to remove baseline, however fully automated baseline correction is convenient in practical application. A fully automated algorithm based on wavelet feature points and segment interpolation (AWFPSI) is proposed. This algorithm finds feature points through continuous wavelet transformation and estimates baseline through segment interpolation. AWFPSI is compared with three commonly introduced fully automated and semi-automated algorithms, using simulated spectrum signal, visible spectrum signal and Raman spectrum signal. The results show that AWFPSI gives better accuracy and has the advantage of easy use.

  20. Experimental study on the crack detection with optimized spatial wavelet analysis and windowing

    Science.gov (United States)

    Ghanbari Mardasi, Amir; Wu, Nan; Wu, Christine

    2018-05-01

    In this paper, a high sensitive crack detection is experimentally realized and presented on a beam under certain deflection by optimizing spatial wavelet analysis. Due to the crack existence in the beam structure, a perturbation/slop singularity is induced in the deflection profile. Spatial wavelet transformation works as a magnifier to amplify the small perturbation signal at the crack location to detect and localize the damage. The profile of a deflected aluminum cantilever beam is obtained for both intact and cracked beams by a high resolution laser profile sensor. Gabor wavelet transformation is applied on the subtraction of intact and cracked data sets. To improve detection sensitivity, scale factor in spatial wavelet transformation and the transformation repeat times are optimized. Furthermore, to detect the possible crack close to the measurement boundaries, wavelet transformation edge effect, which induces large values of wavelet coefficient around the measurement boundaries, is efficiently reduced by introducing different windowing functions. The result shows that a small crack with depth of less than 10% of the beam height can be localized with a clear perturbation. Moreover, the perturbation caused by a crack at 0.85 mm away from one end of the measurement range, which is covered by wavelet transform edge effect, emerges by applying proper window functions.

  1. Instrument-independent analysis of music by means of the continuous wavelet transform

    Science.gov (United States)

    Olmo, Gabriella; Dovis, Fabio; Benotto, Paolo; Calosso, Claudio; Passaro, Pierluigi

    1999-10-01

    This paper deals with the problem of automatic recognition of music. Segments of digitized music are processed by means of a Continuous Wavelet Transform, properly chosen so as to match the spectral characteristics of the signal. In order to achieve a good time-scale representation of the signal components a novel wavelet has been designed suited to the musical signal features. particular care has been devoted towards an efficient implementation, which operates in the frequency domain, and includes proper segmentation and aliasing reduction techniques to make the analysis of long signals feasible. The method achieves very good performance in terms of both time and frequency selectivity, and can yield the estimate and the localization in time of both the fundamental frequency and the main harmonics of each tone. The analysis is used as a preprocessing step for a recognition algorithm, which we show to be almost independent on the instrument reproducing the sounds. Simulations are provided to demonstrate the effectiveness of the proposed method.

  2. Fractional Calculus and Shannon Wavelet

    Directory of Open Access Journals (Sweden)

    Carlo Cattani

    2012-01-01

    Full Text Available An explicit analytical formula for the any order fractional derivative of Shannon wavelet is given as wavelet series based on connection coefficients. So that for any 2(ℝ function, reconstructed by Shannon wavelets, we can easily define its fractional derivative. The approximation error is explicitly computed, and the wavelet series is compared with Grünwald fractional derivative by focusing on the many advantages of the wavelet method, in terms of rate of convergence.

  3. A continuous wavelet transform approach for harmonic parameters estimation in the presence of impulsive noise

    Science.gov (United States)

    Dai, Yu; Xue, Yuan; Zhang, Jianxun

    2016-01-01

    Impulsive noise caused by some random events has the main character of short rise-time and wide frequency spectrum range, so it has the potential to degrade the performance and reliability of the harmonic estimation. This paper focuses on the harmonic estimation procedure based on continuous wavelet transform (CWT) when the analyzed signal is corrupted by the impulsive noise. The digital CWT of both the time-varying sinusoidal signal and the impulsive noise are analyzed, and there are two cross ridges in the time-frequency plane of CWT, which are generated by the signal and the noise separately. In consideration of the amplitude of the noise and the number of the spike event, two inequalities are derived to provide limitations on the wavelet parameters. Based on the amplitude distribution of the noise, the optimal wavelet parameters determined by solving these inequalities are used to suppress the contamination of the noise, as well as increase the amplitude of the ridge corresponding to the signal, so the parameters of each harmonic component can be estimated accurately. The proposed procedure is applied to a numerical simulation and a bone vibration signal test giving satisfactory results of stationary and time-varying harmonic parameter estimation.

  4. Shannon Entropy-Based Wavelet Transform Method for Autonomous Coherent Structure Identification in Fluid Flow Field Data

    Directory of Open Access Journals (Sweden)

    Kartik V. Bulusu

    2015-09-01

    Full Text Available The coherent secondary flow structures (i.e., swirling motions in a curved artery model possess a variety of spatio-temporal morphologies and can be encoded over an infinitely-wide range of wavelet scales. Wavelet analysis was applied to the following vorticity fields: (i a numerically-generated system of Oseen-type vortices for which the theoretical solution is known, used for bench marking and evaluation of the technique; and (ii experimental two-dimensional, particle image velocimetry data. The mother wavelet, a two-dimensional Ricker wavelet, can be dilated to infinitely large or infinitesimally small scales. We approached the problem of coherent structure detection by means of continuous wavelet transform (CWT and decomposition (or Shannon entropy. The main conclusion of this study is that the encoding of coherent secondary flow structures can be achieved by an optimal number of binary digits (or bits corresponding to an optimal wavelet scale. The optimal wavelet-scale search was driven by a decomposition entropy-based algorithmic approach and led to a threshold-free coherent structure detection method. The method presented in this paper was successfully utilized in the detection of secondary flow structures in three clinically-relevant blood flow scenarios involving the curved artery model under a carotid artery-inspired, pulsatile inflow condition. These scenarios were: (i a clean curved artery; (ii stent-implanted curved artery; and (iii an idealized Type IV stent fracture within the curved artery.

  5. A Wavelet-Based Algorithm for the Spatial Analysis of Poisson Data

    Science.gov (United States)

    Freeman, P. E.; Kashyap, V.; Rosner, R.; Lamb, D. Q.

    2002-01-01

    Wavelets are scalable, oscillatory functions that deviate from zero only within a limited spatial regime and have average value zero, and thus may be used to simultaneously characterize the shape, location, and strength of astronomical sources. But in addition to their use as source characterizers, wavelet functions are rapidly gaining currency within the source detection field. Wavelet-based source detection involves the correlation of scaled wavelet functions with binned, two-dimensional image data. If the chosen wavelet function exhibits the property of vanishing moments, significantly nonzero correlation coefficients will be observed only where there are high-order variations in the data; e.g., they will be observed in the vicinity of sources. Source pixels are identified by comparing each correlation coefficient with its probability sampling distribution, which is a function of the (estimated or a priori known) background amplitude. In this paper, we describe the mission-independent, wavelet-based source detection algorithm ``WAVDETECT,'' part of the freely available Chandra Interactive Analysis of Observations (CIAO) software package. Our algorithm uses the Marr, or ``Mexican Hat'' wavelet function, but may be adapted for use with other wavelet functions. Aspects of our algorithm include: (1) the computation of local, exposure-corrected normalized (i.e., flat-fielded) background maps; (2) the correction for exposure variations within the field of view (due to, e.g., telescope support ribs or the edge of the field); (3) its applicability within the low-counts regime, as it does not require a minimum number of background counts per pixel for the accurate computation of source detection thresholds; (4) the generation of a source list in a manner that does not depend upon a detailed knowledge of the point spread function (PSF) shape; and (5) error analysis. These features make our algorithm considerably more general than previous methods developed for the

  6. Generalized exact holographic mapping with wavelets

    Science.gov (United States)

    Lee, Ching Hua

    2017-12-01

    The idea of renormalization and scale invariance is pervasive across disciplines. It has not only drawn numerous surprising connections between physical systems under the guise of holographic duality, but has also inspired the development of wavelet theory now widely used in signal processing. Synergizing on these two developments, we describe in this paper a generalized exact holographic mapping that maps a generic N -dimensional lattice system to a (N +1 )-dimensional holographic dual, with the emergent dimension representing scale. In previous works, this was achieved via the iterations of the simplest of all unitary mappings, the Haar mapping, which fails to preserve the form of most Hamiltonians. By taking advantage of the full generality of biorthogonal wavelets, our new generalized holographic mapping framework is able to preserve the form of a large class of lattice Hamiltonians. By explicitly separating features that are fundamentally associated with the physical system from those that are basis specific, we also obtain a clearer understanding of how the resultant bulk geometry arises. For instance, the number of nonvanishing moments of the high-pass wavelet filter is revealed to be proportional to the radius of the dual anti-de Sitter space geometry. We conclude by proposing modifications to the mapping for systems with generic Fermi pockets.

  7. Wavelet Spatial Energy Spectrums Studies on Drag Reduction by Micro-bubble Injection

    International Nuclear Information System (INIS)

    Ling Zhen; Yassin Hassan

    2006-01-01

    In this study, continuous wavelet transforms and spatial correlation techniques are employed to determine the space-localized wavenumber energy spectrum of the velocity signals in turbulent channel flow. The flow conditions correspond to single phase flow and micro-bubbles injected two phase flow. The wavelet energy spectrums demonstrate that the wavenumber (eddy size) content of the velocity signals is not only space-dependent but also micro-bubbles can impact the eddy size content. Visual observations of the wavelet energy spectrum spatial distribution was realized by using Particle Image Velocimetry (PIV) measurement technique. The two phase flow condition corresponds to a drag reduction of 38.4% with void fraction of 4.9%. The present results provide evidence that micro-bubbles in the boundary layer of a turbulent channel flow can help adjust the eddy size distributions near the wall. This can assist in explaining that micro-bubbles are performing as buffers to keep the energy of fluid particles going in stream-wise direction and reducing the energy of fluid particles going in normal direction. (authors)

  8. A Time-Frequency Auditory Model Using Wavelet Packets

    DEFF Research Database (Denmark)

    Agerkvist, Finn

    1996-01-01

    A time-frequency auditory model is presented. The model uses the wavelet packet analysis as the preprocessor. The auditory filters are modelled by the rounded exponential filters, and the excitation is smoothed by a window function. By comparing time-frequency excitation patterns it is shown...... that the change in the time-frequency excitation pattern introduced when a test tone at masked threshold is added to the masker is approximately equal to 7 dB for all types of maskers. The classic detection ratio therefore overrates the detection efficiency of the auditory system....

  9. Transformer Protection Using the Wavelet Transform

    OpenAIRE

    ÖZGÖNENEL, Okan; ÖNBİLGİN, Güven; KOCAMAN, Çağrı

    2014-01-01

    This paper introduces a novel approach for power transformer protection algorithm. Power system signals such as current and voltage have traditionally been analysed by the Fast Fourier Transform. This paper aims to prove that the Wavelet Transform is a reliable and computationally efficient tool for distinguishing between the inrush currents and fault currents. The simulated results presented clearly show that the proposed technique for power transformer protection facilitates the a...

  10. Wavelets and their applications past and future

    Science.gov (United States)

    Coifman, Ronald R.

    2009-04-01

    As this is a conference on mathematical tools for defense, I would like to dedicate this talk to the memory of Louis Auslander, who through his insights and visionary leadership, brought powerful new mathematics into DARPA, he has provided the main impetus to the development and insertion of wavelet based processing in defense. My goal here is to describe the evolution of a stream of ideas in Harmonic Analysis, ideas which in the past have been mostly applied for the analysis and extraction of information from physical data, and which now are increasingly applied to organize and extract information and knowledge from any set of digital documents, from text to music to questionnaires. This form of signal processing on digital data, is part of the future of wavelet analysis.

  11. Recognizing emotions from EEG subbands using wavelet analysis.

    Science.gov (United States)

    Candra, Henry; Yuwono, Mitchell; Handojoseno, Ardi; Chai, Rifai; Su, Steven; Nguyen, Hung T

    2015-01-01

    Objectively recognizing emotions is a particularly important task to ensure that patients with emotional symptoms are given the appropriate treatments. The aim of this study was to develop an emotion recognition system using Electroencephalogram (EEG) signals to identify four emotions including happy, sad, angry, and relaxed. We approached this objective by firstly investigating the relevant EEG frequency band followed by deciding the appropriate feature extraction method. Two features were considered namely: 1. Wavelet Energy, and 2. Wavelet Entropy. EEG Channels reduction was then implemented to reduce the complexity of the features. The ground truth emotional states of each subject were inferred using Russel's circumplex model of emotion, that is, by mapping the subjectively reported degrees of valence (pleasure) and arousal to the appropriate emotions - for example, an emotion with high valence and high arousal is equivalent to a `happy' emotional state, while low valence and low arousal is equivalent to a `sad' emotional state. The Support Vector Machine (SVM) classifier was then used for mapping each feature vector into corresponding discrete emotions. The results presented in this study indicated thatWavelet features extracted from alpha, beta and gamma bands seem to provide the necessary information for describing the aforementioned emotions. Using the DEAP (Dataset for Emotion Analysis using electroencephalogram, Physiological and Video Signals), our proposed method achieved an average sensitivity and specificity of 77.4% ± 14.1% and 69.1% ± 12.8%, respectively.

  12. Adaptive wavelet tight frame construction for accelerating MRI reconstruction

    Directory of Open Access Journals (Sweden)

    Genjiao Zhou

    2017-09-01

    Full Text Available The sparsity regularization approach, which assumes that the image of interest is likely to have sparse representation in some transform domain, has been an active research area in image processing and medical image reconstruction. Although various sparsifying transforms have been used in medical image reconstruction such as wavelet, contourlet, and total variation (TV etc., the efficiency of these transforms typically rely on the special structure of the underlying image. A better way to address this issue is to develop an overcomplete dictionary from the input data in order to get a better sparsifying transform for the underlying image. However, the general overcomplete dictionaries do not satisfy the so-called perfect reconstruction property which ensures that the given signal can be perfectly represented by its canonical coefficients in a manner similar to orthonormal bases, resulting in time consuming in the iterative image reconstruction. This work is to develop an adaptive wavelet tight frame method for magnetic resonance image reconstruction. The proposed scheme incorporates the adaptive wavelet tight frame approach into the magnetic resonance image reconstruction by solving a l0-regularized minimization problem. Numerical results show that the proposed approach provides significant time savings as compared to the over-complete dictionary based methods with comparable performance in terms of both peak signal-to-noise ratio and subjective visual quality.

  13. Reactor condition monitoring and singularity detection via wavelet and use of entropy in Monte Carlo calculation

    International Nuclear Information System (INIS)

    Kim, Ok Joo

    2007-02-01

    Wavelet theory was applied to detect the singularity in reactor power signal. Compared to Fourier transform, wavelet transform has localization properties in space and frequency. Therefore, by wavelet transform after de-noising, singular points can be found easily. To demonstrate this, we generated reactor power signals using a HANARO (a Korean multi-purpose research reactor) dynamics model consisting of 39 nonlinear differential equations and Gaussian noise. We applied wavelet transform decomposition and de-noising procedures to these signals. It was effective to detect the singular events such as sudden reactivity change and abrupt intrinsic property changes. Thus this method could be profitably utilized in a real-time system for automatic event recognition (e.g., reactor condition monitoring). In addition, using the wavelet de-noising concept, variance reduction of Monte Carlo result was tried. To get correct solution in Monte Carlo calculation, small uncertainty is required and it is quite time-consuming on a computer. Instead of long-time calculation in the Monte Carlo code (MCNP), wavelet de-noising can be performed to get small uncertainties. We applied this idea to MCNP results of k eff and fission source. Variance was reduced somewhat while the average value is kept constant. In MCNP criticality calculation, initial guess for the fission distribution is used and it could give contamination to solution. To avoid this situation, sufficient number of initial generations should be discarded, and they are called inactive cycles. Convergence check can give guildeline to determine when we should start the active cycles. Various entropy functions are tried to check the convergence of fission distribution. Some entropy functions reflect the convergence behavior of fission distribution well. Entropy could be a powerful method to determine inactive/active cycles in MCNP calculation

  14. An odor-specific threshold deficit implicates abnormal cAMP signaling in youths at clinical risk for psychosis.

    Science.gov (United States)

    Kamath, Vidyulata; Moberg, Paul J; Calkins, Monica E; Borgmann-Winter, Karin; Conroy, Catherine G; Gur, Raquel E; Kohler, Christian G; Turetsky, Bruce I

    2012-07-01

    While olfactory deficits have been reported in schizophrenia and youths at-risk for psychosis, few studies have linked these deficits to current pathophysiological models of the illness. There is evidence that disrupted cyclic adenosine 3',5'-monophosphate (cAMP) signaling may contribute to schizophrenia pathology. As cAMP mediates olfactory signal transduction, the degree to which this disruption could manifest in olfactory impairment was ascertained. Odor-detection thresholds to two odorants that differ in the degree to which they activate intracellular cAMP were assessed in clinical risk and low-risk participants. Birhinal assessments of odor-detection threshold sensitivity to lyral and citralva were acquired in youths experiencing prodromal symptoms (n=17) and controls at low risk for developing psychosis (n=15). Citralva and lyral are odorants that differ in cAMP activation; citralva is a strong cAMP activator and lyral is a weak cAMP activator. The overall group-by-odor interaction was statistically significant. At-risk youths showed significantly reduced odor detection thresholds for lyral, but showed intact detection thresholds for citralva. This odor-specific threshold deficit was uncorrelated with deficits in odor identification or discrimination, which were also present. ROC curve analysis revealed that olfactory performance correctly classified at-risk and low-risk youths with greater than 97% accuracy. This study extends prior findings of an odor-specific hyposmia implicating cAMP-mediated signal transduction in schizophrenia and unaffected first-degree relatives to include youths at clinical risk for developing the disorder. These results suggest that dysregulation of cAMP signaling may be present during the psychosis prodrome. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Study of the oscillations event of the CNLV-U1 with Wavelets techniques; Estudio del evento de oscilaciones de la CNLV-U1 con tecnicas de wavelets

    Energy Technology Data Exchange (ETDEWEB)

    Amador G, R.; Nunez C, A. [CNSNS, Dr. Barragan 779, 03020 Mexico D.F. (Mexico)]. E-mail: ragarcia@cnsns.gob.mx; Prieto G, A.; Espinosa P, G. [UAM-I, 09340 Mexico D.F. (Mexico)

    2004-07-01

    Presently work is described and the techniques are applied of the Fourier Transformation in Short Time, the Continuous Transformation of Wavelets and the Multi resolution Analysis for the analysis of the event of oscillations of power in the Nuclear Power station of Laguna Verde Unit 1 happened in January of 1995. In general, the wavelets techniques allows to carry out studies of the different signals generated by a nuclear plant in the plane Time-frequency, Time-scale as well as the decomposition of the signals. The results obtained study presently demonstrate that the frequency of the event of oscillations in the Nuclear Power station of Laguna Verde Unit 1 are approximately 0.52 Hz for the 3 analysis techniques, besides being observed the evolution of the frequency in function of the time. (Author)

  16. RBF neural network prediction on weak electrical signals in Aloe vera var. chinensis

    Science.gov (United States)

    Wang, Lanzhou; Zhao, Jiayin; Wang, Miao

    2008-10-01

    A Gaussian radial base function (RBF) neural network forecast on signals in the Aloe vera var. chinensis by the wavelet soft-threshold denoised as the time series and using the delayed input window chosen at 50, is set up to forecast backward. There was the maximum amplitude at 310.45μV, minimum -75.15μV, average value -2.69μV and Aloe vera var. chinensis respectively. The electrical signal in Aloe vera var. chinensis is a sort of weak, unstable and low frequency signals. A result showed that it is feasible to forecast plant electrical signals for the timing by the RBF. The forecast data can be used as the preferences for the intelligent autocontrol system based on the adaptive characteristic of plants to achieve the energy saving on the agricultural production in the plastic lookum or greenhouse.

  17. Hidden corrosion detection in aircraft aluminum structures using laser ultrasonics and wavelet transform signal analysis.

    Science.gov (United States)

    Silva, M Z; Gouyon, R; Lepoutre, F

    2003-06-01

    Preliminary results of hidden corrosion detection in aircraft aluminum structures using a noncontact laser based ultrasonic technique are presented. A short laser pulse focused to a line spot is used as a broadband source of ultrasonic guided waves in an aluminum 2024 sample cut from an aircraft structure and prepared with artificially corroded circular areas on its back surface. The out of plane surface displacements produced by the propagating ultrasonic waves were detected with a heterodyne Mach-Zehnder interferometer. Time-frequency analysis of the signals using a continuous wavelet transform allowed the identification of the generated Lamb modes by comparison with the calculated dispersion curves. The presence of back surface corrosion was detected by noting the loss of the S(1) mode near its cutoff frequency. This method is applicable to fast scanning inspection techniques and it is particularly suited for early corrosion detection.

  18. Image superresolution of cytology images using wavelet based patch search

    Science.gov (United States)

    Vargas, Carlos; García-Arteaga, Juan D.; Romero, Eduardo

    2015-01-01

    Telecytology is a new research area that holds the potential of significantly reducing the number of deaths due to cervical cancer in developing countries. This work presents a novel super-resolution technique that couples high and low frequency information in order to reduce the bandwidth consumption of cervical image transmission. The proposed approach starts by decomposing into wavelets the high resolution images and transmitting only the lower frequency coefficients. The transmitted coefficients are used to reconstruct an image of the original size. Additional details are added by iteratively replacing patches of the wavelet reconstructed image with equivalent high resolution patches from a previously acquired image database. Finally, the original transmitted low frequency coefficients are used to correct the final image. Results show a higher signal to noise ratio in the proposed method over simply discarding high frequency wavelet coefficients or replacing directly down-sampled patches from the image-database.

  19. Analysis of the Emitted Wavelet of High-Resolution Bowtie GPR Antennas

    Directory of Open Access Journals (Sweden)

    Manuel Pereira

    2009-06-01

    Full Text Available Most Ground Penetrating Radars (GPR cover a wide frequency range by emitting very short time wavelets. In this work, we study in detail the wavelet emitted by two bowtie GPR antennas with nominal frequencies of 800 MHz and 1 GHz. Knowledge of this emitted wavelet allows us to extract as much information as possible from recorded signals, using advanced processing techniques and computer simulations. Following previously published methodology used by Rial et al. [1], which ensures system stability and reliability in data acquisition, a thorough analysis of the wavelet in both time and frequency domain is performed. Most of tests were carried out with air as propagation medium, allowing a proper analysis of the geometrical attenuation factor. Furthermore, we attempt to determine, for each antenna, a time zero in the records to allow us to correctly assign a position to the reflectors detected by the radar. Obtained results indicate that the time zero is not a constant value for the evaluated antennas, but instead depends on the characteristics of the material in contact with the antenna.

  20. Identification of speech transients using variable frame rate analysis and wavelet packets.

    Science.gov (United States)

    Rasetshwane, Daniel M; Boston, J Robert; Li, Ching-Chung

    2006-01-01

    Speech transients are important cues for identifying and discriminating speech sounds. Yoo et al. and Tantibundhit et al. were successful in identifying speech transients and, emphasizing them, improving the intelligibility of speech in noise. However, their methods are computationally intensive and unsuitable for real-time applications. This paper presents a method to identify and emphasize speech transients that combines subband decomposition by the wavelet packet transform with variable frame rate (VFR) analysis and unvoiced consonant detection. The VFR analysis is applied to each wavelet packet to define a transitivity function that describes the extent to which the wavelet coefficients of that packet are changing. Unvoiced consonant detection is used to identify unvoiced consonant intervals and the transitivity function is amplified during these intervals. The wavelet coefficients are multiplied by the transitivity function for that packet, amplifying the coefficients localized at times when they are changing and attenuating coefficients at times when they are steady. Inverse transform of the modified wavelet packet coefficients produces a signal corresponding to speech transients similar to the transients identified by Yoo et al. and Tantibundhit et al. A preliminary implementation of the algorithm runs more efficiently.

  1. Estimation of Handgrip Force from SEMG Based on Wavelet Scale Selection.

    Science.gov (United States)

    Wang, Kai; Zhang, Xianmin; Ota, Jun; Huang, Yanjiang

    2018-02-24

    This paper proposes a nonlinear correlation-based wavelet scale selection technology to select the effective wavelet scales for the estimation of handgrip force from surface electromyograms (SEMG). The SEMG signal corresponding to gripping force was collected from extensor and flexor forearm muscles during the force-varying analysis task. We performed a computational sensitivity analysis on the initial nonlinear SEMG-handgrip force model. To explore the nonlinear correlation between ten wavelet scales and handgrip force, a large-scale iteration based on the Monte Carlo simulation was conducted. To choose a suitable combination of scales, we proposed a rule to combine wavelet scales based on the sensitivity of each scale and selected the appropriate combination of wavelet scales based on sequence combination analysis (SCA). The results of SCA indicated that the scale combination VI is suitable for estimating force from the extensors and the combination V is suitable for the flexors. The proposed method was compared to two former methods through prolonged static and force-varying contraction tasks. The experiment results showed that the root mean square errors derived by the proposed method for both static and force-varying contraction tasks were less than 20%. The accuracy and robustness of the handgrip force derived by the proposed method is better than that obtained by the former methods.

  2. Wavelet and Spectral Analysis of Some Selected Problems in Reactor Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Sunde, Carl

    2004-12-01

    Both spectral and wavelet analysis were successfully used in various diagnostic problems involving non-stationary core processes in nuclear power reactors. Three different problems were treated: two-phase flow identification, detector tube impacting and core-barrel vibrations. The first two problems are of non-stationary nature, whereas the last one is not. In the first problem, neutron radiographic and visible light images of four different vertical two-phase flow regimes, bubbly, slug, chum and annular flow, were analysed and classified with a neuro-wavelet algorithm. The algorithm consists of a wavelet part, using the 2-D discrete wavelet transform and of an artificial neural network. It classifies the different flow regimes with up to 99% efficiency. Detector tubes in a Boiling Water Reactor may execute vibrations and may also impact on nearby fuel-assemblies. Signals from in-core neutron detectors in Ringhals-1 were analysed, for detection of impacting, with both a classical spectral method and wavelet-based methods. The wavelet methods include both the discrete and the continuous 1-D wavelet transform. It was found that there is agreement between the different methods as well as with visual inspections made during the outage at the plant. However, the wavelet technique has the advantage that it does not require expert judgement for the interpretation of the analysis. In the last part two analytical calculations of the neutron noise, induced by shell-mode core-barrel vibrations, were carried out. The results are in good agreement with calculations from a numerical simulator. An out-of-phase behaviour between in-core and ex-core positions was found, which is in agreement with earlier measurements from the Pressurised Water Reactor Ringhals-3. The results from these calculations are planned to be used when diagnosing the shell-mode core-barrel vibrations in an operating plant.

  3. Wavelet and Spectral Analysis of Some Selected Problems in Reactor Diagnostics

    International Nuclear Information System (INIS)

    Sunde, Carl

    2004-12-01

    Both spectral and wavelet analysis were successfully used in various diagnostic problems involving non-stationary core processes in nuclear power reactors. Three different problems were treated: two-phase flow identification, detector tube impacting and core-barrel vibrations. The first two problems are of non-stationary nature, whereas the last one is not. In the first problem, neutron radiographic and visible light images of four different vertical two-phase flow regimes, bubbly, slug, chum and annular flow, were analysed and classified with a neuro-wavelet algorithm. The algorithm consists of a wavelet part, using the 2-D discrete wavelet transform and of an artificial neural network. It classifies the different flow regimes with up to 99% efficiency. Detector tubes in a Boiling Water Reactor may execute vibrations and may also impact on nearby fuel-assemblies. Signals from in-core neutron detectors in Ringhals-1 were analysed, for detection of impacting, with both a classical spectral method and wavelet-based methods. The wavelet methods include both the discrete and the continuous 1-D wavelet transform. It was found that there is agreement between the different methods as well as with visual inspections made during the outage at the plant. However, the wavelet technique has the advantage that it does not require expert judgement for the interpretation of the analysis. In the last part two analytical calculations of the neutron noise, induced by shell-mode core-barrel vibrations, were carried out. The results are in good agreement with calculations from a numerical simulator. An out-of-phase behaviour between in-core and ex-core positions was found, which is in agreement with earlier measurements from the Pressurised Water Reactor Ringhals-3. The results from these calculations are planned to be used when diagnosing the shell-mode core-barrel vibrations in an operating plant

  4. Numerical implementation of wavelet and fuzzy transform IFOC for three-phase induction motor

    Directory of Open Access Journals (Sweden)

    Sanjeevikumar Padmanaban

    2016-03-01

    Full Text Available This article elaborates the numerical implementation of a novel, indirect field-oriented control (IFOC for induction motor drive by wave-let discrete transform/fuzzy logic interface system unique combination. The feedback (speed error signal is a mixed component of multiple low and high frequencies. Further, these signals are decomposed by the discrete wave-let transform (WT, then fuzzy logic (FL generates the scaled gains for the proportional-integral (P-I controller parameters. This unique combination improves the high precision speed control of induction motor during both transient as well as steady-state conditions. Numerical simulation model is implemented with proposed control scheme using Matlab/Simulink software and obtained results confirm the expectation.

  5. Separation of transient and oscillatory cerebral activities using over-complete rational dilation wavelet transforms

    International Nuclear Information System (INIS)

    Chaibi, S.; Lajnef, T.; Samet, M.; Kachouri, A.

    2011-01-01

    Many natural signals EEG are comprised frequency overlapping of oscillatory and transient components. In our study the intracranial EEG signals of epilepsy are composed of the superposition of oscillatory signals (HFOs: High Frequency oscillations) and a transient signals (spikes and sharp waves, etc.). The oscillatory components (HFOs) exist in the frequency band 80-500Hz. The transient components comes from nonrhythmic brain activities (spikes, sharp waves and vertex waves of varying amplitude, shape and duration) and cover a continuous wide bandwidth from low to high frequencies and resemble an HFOs events when filtered using a band pass classical filter. The classical filtering methods based on FIR filters, Wavelet transforms and the Matching Pursuit cannot separate the oscillatory from transient activities. This paper describes an approach for decomposing an iEEG signals of epilepsy into the sum of oscillatory components and a transient components based on overcomplete rational dilation wavelet transforms (overcomplete RADWT) in conjunction with morphological component analysis (MCA).

  6. AFIT/AFOSR Workshop on the Role of Wavelets in Signal Processing Applications

    Science.gov (United States)

    1992-08-28

    Stein and G. Weiss, "Fourier analysis on Eucildean spaces," Princeton University Press, 1971. [V] G. Vitali, Sulla condizione di chiusura di un sistema ...present the more general framework into wavelets fit, suggesting hence companion ways of time-scale analysis for self-similar and 1/f-type processes

  7. SU-F-J-27: Segmentation of Prostate CBCT Images with Implanted Calypso Transponders Using Double Haar Wavelet Transform

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y [Shandong Communication and Media College, Jinan, Shandong (China); Saleh, Z; Tang, X [Memorial Sloan Kettering Cancer Center, West Harrison, NY (United States); Song, Y; Obcemea, C [Memorial Sloan-Kettering Cancer Center, Sleepy Hollow, NY (United States); Chan, M [Memorial Sloan-Kettering Cancer Center, Basking Ridge, NJ (United States); Li, X [Memorial Sloan Kettering Cancer Center, Rockville Centre, NY (United States); Happersett, L [Memorial Sloan Kettering Cancer Center, New York, NY (United States); Shi, C [Saint Vincent Medical Center, Bridgeport, CT (United States); Qian, X [North Shore Long Island Jewish health System, North New Hyde Park, NY (United States)

    2016-06-15

    Purpose: Segmentation of prostate CBCT images is an essential step towards real-time adaptive radiotherapy. It is challenging For Calypso patients, as more artifacts are generated by the beacon transponders. We herein propose a novel wavelet-based segmentation algorithm for rectum, bladder, and prostate of CBCT images with implanted Calypso transponders. Methods: Five hypofractionated prostate patients with daily CBCT were studied. Each patient had 3 Calypso transponder beacons implanted, and the patients were setup and treated with Calypso tracking system. Two sets of CBCT images from each patient were studied. The structures (i.e. rectum, bladder, and prostate) were contoured by a trained expert, and these served as ground truth. For a given CBCT, the moving window-based Double Haar transformation is applied first to obtain the wavelet coefficients. Based on a user defined point in the object of interest, a cluster algorithm based adaptive thresholding is applied to the low frequency components of the wavelet coefficients, and a Lee filter theory based adaptive thresholding is applied to the high frequency components. For the next step, the wavelet reconstruction is applied to the thresholded wavelet coefficients. A binary/segmented image of the object of interest is therefore obtained. DICE, sensitivity, inclusiveness and ΔV were used to evaluate the segmentation result. Results: Considering all patients, the bladder has the DICE, sensitivity, inclusiveness, and ΔV ranges of [0.81–0.95], [0.76–0.99], [0.83–0.94], [0.02–0.21]. For prostate, the ranges are [0.77–0.93], [0.84–0.97], [0.68–0.92], [0.1–0.46]. For rectum, the ranges are [0.72–0.93], [0.57–0.99], [0.73–0.98], [0.03–0.42]. Conclusion: The proposed algorithm appeared effective segmenting prostate CBCT images with the present of the Calypso artifacts. However, it is not robust in two scenarios: 1) rectum with significant amount of gas; 2) prostate with very low contrast. Model

  8. A Study of Coherent Structures using Wavelet Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kaspersen, J H

    1996-05-01

    Turbulence is important in many fields of engineering, for example in estimating drag or minimizing drag on surfaces. It is known that turbulent flows contain coherent structures, which implies that a turbulent shear flow can be decomposed into coherent structures and random motion. It is generally accepted that coherent structures are responsible for significant transport of mass, heat and momentum. This doctoral thesis presents and discusses a new algorithm to detect coherent structures based on Wavelet transformations, a transform similar to the Fourier transform but providing information on both frequency and scale. The new detection scheme does not require any predefined threshold or integration time, and its general performance is found to be very good. Wind tunnel experiments were performed to obtain data for analysis. Scalograms resulting from the Wavelet transform show clearly that coherent structures exist in turbulent flows. These structures are shown to contribute considerably to the shear stresses. The contribution from the organized motion to the normal stresses close to the wall appears to be considerably smaller. Direct Navier Stokes (DNS) channel flow seems to be more organized than Zero Pressure Gradient (ZPG) flows. The topology of ZPG flows was studied using a multiple hot wire arrangement and conditionally averaged streamlines based on detections from the Wavelet method are presented. It is shown that the coherent structures produce large amounts of both vorticity and strain at the detection point. 56 refs., 92 figs., 3 tabs.

  9. Wavelets in physics

    CERN Document Server

    Fang, Li-Zhi

    1998-01-01

    Recent advances have shown wavelets to be an effective, and even necessary, mathematical tool for theoretical physics. This book is a timely overview of the progress of this new frontier. It includes an introduction to wavelet analysis, and applications in the fields of high energy physics, astrophysics, cosmology and statistical physics. The topics are selected for the interests of physicists and graduate students of theoretical studies. It emphasizes the need for wavelets in describing and revealing structure in physical problems, which is not easily accomplishing by other methods.

  10. An adaptive demodulation approach for bearing fault detection based on adaptive wavelet filtering and spectral subtraction

    Science.gov (United States)

    Zhang, Yan; Tang, Baoping; Liu, Ziran; Chen, Rengxiang

    2016-02-01

    Fault diagnosis of rolling element bearings is important for improving mechanical system reliability and performance. Vibration signals contain a wealth of complex information useful for state monitoring and fault diagnosis. However, any fault-related impulses in the original signal are often severely tainted by various noises and the interfering vibrations caused by other machine elements. Narrow-band amplitude demodulation has been an effective technique to detect bearing faults by identifying bearing fault characteristic frequencies. To achieve this, the key step is to remove the corrupting noise and interference, and to enhance the weak signatures of the bearing fault. In this paper, a new method based on adaptive wavelet filtering and spectral subtraction is proposed for fault diagnosis in bearings. First, to eliminate the frequency associated with interfering vibrations, the vibration signal is bandpass filtered with a Morlet wavelet filter whose parameters (i.e. center frequency and bandwidth) are selected in separate steps. An alternative and efficient method of determining the center frequency is proposed that utilizes the statistical information contained in the production functions (PFs). The bandwidth parameter is optimized using a local ‘greedy’ scheme along with Shannon wavelet entropy criterion. Then, to further reduce the residual in-band noise in the filtered signal, a spectral subtraction procedure is elaborated after wavelet filtering. Instead of resorting to a reference signal as in the majority of papers in the literature, the new method estimates the power spectral density of the in-band noise from the associated PF. The effectiveness of the proposed method is validated using simulated data, test rig data, and vibration data recorded from the transmission system of a helicopter. The experimental results and comparisons with other methods indicate that the proposed method is an effective approach to detecting the fault-related impulses

  11. An adaptive demodulation approach for bearing fault detection based on adaptive wavelet filtering and spectral subtraction

    International Nuclear Information System (INIS)

    Zhang, Yan; Tang, Baoping; Chen, Rengxiang; Liu, Ziran

    2016-01-01

    Fault diagnosis of rolling element bearings is important for improving mechanical system reliability and performance. Vibration signals contain a wealth of complex information useful for state monitoring and fault diagnosis. However, any fault-related impulses in the original signal are often severely tainted by various noises and the interfering vibrations caused by other machine elements. Narrow-band amplitude demodulation has been an effective technique to detect bearing faults by identifying bearing fault characteristic frequencies. To achieve this, the key step is to remove the corrupting noise and interference, and to enhance the weak signatures of the bearing fault. In this paper, a new method based on adaptive wavelet filtering and spectral subtraction is proposed for fault diagnosis in bearings. First, to eliminate the frequency associated with interfering vibrations, the vibration signal is bandpass filtered with a Morlet wavelet filter whose parameters (i.e. center frequency and bandwidth) are selected in separate steps. An alternative and efficient method of determining the center frequency is proposed that utilizes the statistical information contained in the production functions (PFs). The bandwidth parameter is optimized using a local ‘greedy’ scheme along with Shannon wavelet entropy criterion. Then, to further reduce the residual in-band noise in the filtered signal, a spectral subtraction procedure is elaborated after wavelet filtering. Instead of resorting to a reference signal as in the majority of papers in the literature, the new method estimates the power spectral density of the in-band noise from the associated PF. The effectiveness of the proposed method is validated using simulated data, test rig data, and vibration data recorded from the transmission system of a helicopter. The experimental results and comparisons with other methods indicate that the proposed method is an effective approach to detecting the fault-related impulses

  12. EbayesThresh: R Programs for Empirical Bayes Thresholding

    Directory of Open Access Journals (Sweden)

    Iain Johnstone

    2005-04-01

    Full Text Available Suppose that a sequence of unknown parameters is observed sub ject to independent Gaussian noise. The EbayesThresh package in the S language implements a class of Empirical Bayes thresholding methods that can take advantage of possible sparsity in the sequence, to improve the quality of estimation. The prior for each parameter in the sequence is a mixture of an atom of probability at zero and a heavy-tailed density. Within the package, this can be either a Laplace (double exponential density or else a mixture of normal distributions with tail behavior similar to the Cauchy distribution. The mixing weight, or sparsity parameter, is chosen automatically by marginal maximum likelihood. If estimation is carried out using the posterior median, this is a random thresholding procedure; the estimation can also be carried out using other thresholding rules with the same threshold, and the package provides the posterior mean, and hard and soft thresholding, as additional options. This paper reviews the method, and gives details (far beyond those previously published of the calculations needed for implementing the procedures. It explains and motivates both the general methodology, and the use of the EbayesThresh package, through simulated and real data examples. When estimating the wavelet transform of an unknown function, it is appropriate to apply the method level by level to the transform of the observed data. The package can carry out these calculations for wavelet transforms obtained using various packages in R and S-PLUS. Details, including a motivating example, are presented, and the application of the method to image estimation is also explored. The final topic considered is the estimation of a single sequence that may become progressively sparser along the sequence. An iterated least squares isotone regression method allows for the choice of a threshold that depends monotonically on the order in which the observations are made. An alternative

  13. Use of Wavelet Transform to Detect Compensated and Decompensated Stages in the Congestive Heart Failure Patient

    Directory of Open Access Journals (Sweden)

    Pratibha Sharma

    2017-09-01

    Full Text Available This research work is aimed at improving health care, reducing cost, and the occurrence of emergency hospitalization in patients with Congestive Heart Failure (CHF by analyzing heart and lung sounds to distinguish between the compensated and decompensated states. Compensated state defines stable state of the patient but with lack of retention of fluids in lungs, whereas decompensated state leads to unstable state of the patient with lots of fluid retention in the lungs, where the patient needs medication. Acoustic signals from the heart and the lung were analyzed using wavelet transforms to measure changes in the CHF patient’s status from the decompensated to compensated and vice versa. Measurements were taken on CHF patients diagnosed to be in compensated and decompensated states by using a digital stethoscope and electrocardiogram (ECG in order to monitor their progress in the management of their disease. Analysis of acoustic signals of the heart due to the opening and closing of heart valves as well as the acoustic signals of the lungs due to respiration and the ECG signals are presented. Fourier, short-time Fourier, and wavelet transforms are evaluated to determine the best method to detect shifts in the status of a CHF patient. The power spectra obtained through the Fourier transform produced results that differentiate the signals from healthy people and CHF patients, while the short-time Fourier transform (STFT technique did not provide the desired results. The most promising results were obtained by using wavelet analysis. Wavelet transforms provide better resolution, in time, for higher frequencies, and a better resolution, in frequency, for lower frequencies.

  14. Performance Evaluation of Wavelet-Coded OFDM on a 4.9 Gbps W-Band Radio-over-Fiber Link

    DEFF Research Database (Denmark)

    Cavalcante, Lucas Costa Pereira; Rommel, Simon; Dinis, Rui

    2017-01-01

    Future generation mobile communications running on mm-wave frequencies will require great robustness against frequency selective channels. In this work we evaluate the transmission performance of 4.9 Gbps Wavelet-Coded OFDM signals on a 10 km fiber plus 58 m wireless Radio-over-Fiber link using...... a mm-wave radio frequency carrier. The results show that a 2×128 Wavelet-Coded OFDM system achieves a bit-error rate of 1e-4 with nearly 2.5 dB less signal-to-noise ratio than a convolutional coded OFDM system with equivalent spectral efficiency for 8 GHz-wide signals with 512 sub-carriers on a carrier...

  15. On the Use of Wavelet Transform for Quench Precursors Characterisation in the LHC Superconducting Dipole Magnets

    CERN Document Server

    Calvi, M; Bottura, L; Masi, A; Siemko, A

    2006-01-01

    Premature training quenches are caused by transient energy released within the magnet coil while it is energized. Signals recorded across the so-called quench antenna carry information about these disturbances. A new method for identifying and characterizing those events is proposed, which applies the wavelet transform approach to the recorded signals. Such an approach takes into account the time of occurrence as well as frequency content of the events. The choice of the optimal mother wavelet is discussed, and the results obtained from the application of the method to actual signals are given. The criteria to recognize the interesting events are presented as well as the methodology to classify their global behavior.

  16. An odor-specific threshold deficit implicates abnormal intracellular cyclic AMP signaling in schizophrenia.

    Science.gov (United States)

    Turetsky, Bruce I; Moberg, Paul J

    2009-02-01

    Although olfactory deficits are common in schizophrenia, their underlying pathophysiology remains unknown. Recent evidence has suggested that cAMP signaling may be disrupted in schizophrenia. Since cAMP mediates signal transduction in olfactory receptor neurons, this could contribute to the etiology of observed olfactory deficits. This study was designed to test this hypothesis by determining odor detection threshold sensitivities to two odorants that differ in their relative activations of this intracellular cAMP signaling cascade. Thirty schizophrenia patients, 25 healthy comparison subjects, and 19 unaffected first-degree relatives of schizophrenia patients were studied. Odor detection threshold sensitivities were measured for the two odorants citralva and lyral. Although both have fruity/floral scents, citralva strongly activates adenylyl cyclase to increase cAMP levels, while lyral is a very weak activator of adenylyl cyclase. There was a significant group-by-odor interaction. Both schizophrenia patients and unaffected first-degree relatives were impaired in their ability to detect lyral versus citralva. Comparison subjects were equally sensitive to both odorants. This selective deficit could not be explained by differences in age, sex, smoking, clinical symptom profile, or medication use. This study establishes the presence of an odor-specific hyposmia that may denote a disruption of cAMP-mediated signal transduction in schizophrenia. The presence of a parallel deficit in the patients' unaffected first-degree relatives suggests that this deficit is genetically mediated. Although additional physiological studies are needed to confirm the underlying mechanism, these results offer strong inferential support for the hypothesis that cAMP signaling is dysregulated in schizophrenia.

  17. Wavelets in functional data analysis

    CERN Document Server

    Morettin, Pedro A; Vidakovic, Brani

    2017-01-01

    Wavelet-based procedures are key in many areas of statistics, applied mathematics, engineering, and science. This book presents wavelets in functional data analysis, offering a glimpse of problems in which they can be applied, including tumor analysis, functional magnetic resonance and meteorological data. Starting with the Haar wavelet, the authors explore myriad families of wavelets and how they can be used. High-dimensional data visualization (using Andrews' plots), wavelet shrinkage (a simple, yet powerful, procedure for nonparametric models) and a selection of estimation and testing techniques (including a discussion on Stein’s Paradox) make this a highly valuable resource for graduate students and experienced researchers alike.

  18. Development of Wavelet Based Tools for Improving the γ-ray Spectrometry

    International Nuclear Information System (INIS)

    Hamzaoui, E-M.; El Badri, L.; Laraki, K.; Cherkaoui-Elmorsli, R.

    2013-06-01

    In this article, we propose a wavelet transform based tool to improve the use of gamma ray spectrometry as a nuclear technique. First, we attempt to study the problem of filtering the preamplifier's output signals of HPGe detector used in the measurements chain. Thus, we developed a nonlinear method based on discrete Coiflet transform combined to principal component analysis, which allows a significant improvement of the signal to noise ratio (SNR) at the output of the HPGe preamplifier. In a second step, the continuous wavelet transform, based on the Mexican Hat mother function, is used to achieve an automatic processing of the spectrometric data. This method permits us to get an alternative representation of the gamma energy spectrum. The results of different tests, performed in both the presence and the absence of a gamma radiation source, are illustrated. (authors)

  19. Wavelet Based Denoising for the Estimation of the State of Charge for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Xiao Wang

    2018-05-01

    Full Text Available In practical electric vehicle applications, the noise of original discharging/charging voltage (DCV signals are inevitable, which comes from electromagnetic interference and the measurement noise of the sensors. To solve such problems, the Discrete Wavelet Transform (DWT based state of charge (SOC estimation method is proposed in this paper. Through a multi-resolution analysis, the original DCV signals with noise are decomposed into different frequency sub-bands. The desired de-noised DCV signals are then reconstructed by utilizing the inverse discrete wavelet transform, based on the sure rule. With the de-noised DCV signal, the SOC and the parameters are obtained using the adaptive extended Kalman Filter algorithm, and the adaptive forgetting factor recursive least square method. Simulation and experimental results show that the SOC estimation error is less than 1%, which indicates an effective improvement in SOC estimation accuracy.

  20. [A method to estimate the short-term fractal dimension of heart rate variability based on wavelet transform].

    Science.gov (United States)

    Zhonggang, Liang; Hong, Yan

    2006-10-01

    A new method of calculating fractal dimension of short-term heart rate variability signals is presented. The method is based on wavelet transform and filter banks. The implementation of the method is: First of all we pick-up the fractal component from HRV signals using wavelet transform. Next, we estimate the power spectrum distribution of fractal component using auto-regressive model, and we estimate parameter 7 using the least square method. Finally according to formula D = 2- (gamma-1)/2 estimate fractal dimension of HRV signal. To validate the stability and reliability of the proposed method, using fractional brown movement simulate 24 fractal signals that fractal value is 1.6 to validate, the result shows that the method has stability and reliability.

  1. FPGAs and wavelets on circuit testing based on current signal measurements

    International Nuclear Information System (INIS)

    Pouros, Sotirios; Vassios, Vassilios; Manolakis, Dimitrios; Bamnios, Georgios; Papakostas, Dimitrios K.; Hatzopoulos, Alkis A.; Hristov, Valentin

    2015-01-01

    The research team designed and implemented a prototype testing system using FPGAs, where test methods for analog and digital (mixed) electronics using wavelets can be incorporated. The prototype has been evaluated and the results are promising. Moreover, the usability and verification of the system’s functionality are presented. The current sensing unit is described in detail. The new automated fault testing system incorporates reconfigurability and parallel processing capabilities.

  2. Wavelet-filtering of symbolic music representations for folk tune segmentation and classification

    DEFF Research Database (Denmark)

    Velarde, Gissel; Weyde, Tillman; Meredith, David

    2013-01-01

    The aim of this study is to evaluate a machine-learning method in which symbolic representations of folk songs are segmented and classified into tune families with Haar-wavelet filtering. The method is compared with previously proposed Gestalt based method. Melodies are represented as discrete...... coefficients’ local maxima to indicate local boundaries and classify segments by means of k-nearest neighbours based on standard vector-metrics (Euclidean, cityblock), and compare the results to a Gestalt-based segmentation method and metrics applied directly to the pitch signal. We found that the wavelet...

  3. Fault feature extraction of planet gear in wind turbine gearbox based on spectral kurtosis and time wavelet energy spectrum

    Science.gov (United States)

    Kong, Yun; Wang, Tianyang; Li, Zheng; Chu, Fulei

    2017-09-01

    Planetary transmission plays a vital role in wind turbine drivetrains, and its fault diagnosis has been an important and challenging issue. Owing to the complicated and coupled vibration source, time-variant vibration transfer path, and heavy background noise masking effect, the vibration signal of planet gear in wind turbine gearboxes exhibits several unique characteristics: Complex frequency components, low signal-to-noise ratio, and weak fault feature. In this sense, the periodic impulsive components induced by a localized defect are hard to extract, and the fault detection of planet gear in wind turbines remains to be a challenging research work. Aiming to extract the fault feature of planet gear effectively, we propose a novel feature extraction method based on spectral kurtosis and time wavelet energy spectrum (SK-TWES) in the paper. Firstly, the spectral kurtosis (SK) and kurtogram of raw vibration signals are computed and exploited to select the optimal filtering parameter for the subsequent band-pass filtering. Then, the band-pass filtering is applied to extrude periodic transient impulses using the optimal frequency band in which the corresponding SK value is maximal. Finally, the time wavelet energy spectrum analysis is performed on the filtered signal, selecting Morlet wavelet as the mother wavelet which possesses a high similarity to the impulsive components. The experimental signals collected from the wind turbine gearbox test rig demonstrate that the proposed method is effective at the feature extraction and fault diagnosis for the planet gear with a localized defect.

  4. Design and application of discrete wavelet packet transform based multiresolution controller for liquid level system.

    Science.gov (United States)

    Paul, Rimi; Sengupta, Anindita

    2017-11-01

    A new controller based on discrete wavelet packet transform (DWPT) for liquid level system (LLS) has been presented here. This controller generates control signal using node coefficients of the error signal which interprets many implicit phenomena such as process dynamics, measurement noise and effect of external disturbances. Through simulation results on LLS problem, this controller is shown to perform faster than both the discrete wavelet transform based controller and conventional proportional integral controller. Also, it is more efficient in terms of its ability to provide better noise rejection. To overcome the wind up phenomenon by considering the saturation due to presence of actuator, anti-wind up technique is applied to the conventional PI controller and compared to the wavelet packet transform based controller. In this case also, packet controller is found better than the other ones. This similar work has been extended for analogous first order RC plant as well as second order plant also. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Accelerating wavelet-based video coding on graphics hardware using CUDA

    NARCIS (Netherlands)

    Laan, van der W.J.; Roerdink, J.B.T.M.; Jalba, A.C.; Zinterhof, P.; Loncaric, S.; Uhl, A.; Carini, A.

    2009-01-01

    The DiscreteWavelet Transform (DWT) has a wide range of applications from signal processing to video and image compression. This transform, by means of the lifting scheme, can be performed in a memory and computation efficient way on modern, programmable GPUs, which can be regarded as massively

  6. Accelerating Wavelet-Based Video Coding on Graphics Hardware using CUDA

    NARCIS (Netherlands)

    Laan, Wladimir J. van der; Roerdink, Jos B.T.M.; Jalba, Andrei C.; Zinterhof, P; Loncaric, S; Uhl, A; Carini, A

    2009-01-01

    The Discrete Wavelet Transform (DWT) has a wide range of applications from signal processing to video and image compression. This transform, by means of the lifting scheme, can be performed in a memory mid computation efficient way on modern, programmable GPUs, which can be regarded as massively

  7. Threshold-Based Multiple Optical Signal Selection Scheme for Free-Space Optical Wavelength Division Multiplexing Systems

    KAUST Repository

    Nam, Sung Sik; Alouini, Mohamed-Slim; Zhang, Lin; Ko, Young-Chai

    2017-01-01

    We propose a threshold-based multiple optical signal selection scheme (TMOS) for free-space optical wavelength division multiplexing systems. With this scheme, we can obtain higher spectral efficiency while reducing the possible complexity

  8. Wavelets and the Lifting Scheme

    DEFF Research Database (Denmark)

    la Cour-Harbo, Anders; Jensen, Arne

    The objective of this article is to give a concise introduction to the discrete wavelet transform (DWT) based on a technique called lifting. The lifting technique allows one to give an elementary, but rigorous, definition of the DWT, with modest requirements on the reader. A basic knowledge...... of linear algebra and signal processing will suffice. The lifting based definition is equivalent to the usual filer bank based definition of the DWT. The article does not discuss applications in any detail. The reader is referred to other articles in this collection....

  9. Wavelets and the lifting scheme

    DEFF Research Database (Denmark)

    la Cour-Harbo, Anders; Jensen, Arne

    2012-01-01

    The objective of this article is to give a concise introduction to the discrete wavelet transform (DWT) based on a technique called lifting. The lifting technique allows one to give an elementary, but rigorous, definition of the DWT, with modest requirements on the reader. A basic knowledge...... of linear algebra and signal processing will suffice. The lifting based definition is equivalent to the usual filer bank based definition of the DWT. The article does not discuss applications in any detail. The reader is referred to other articles in this collection....

  10. Wavelets and the lifting scheme

    DEFF Research Database (Denmark)

    la Cour-Harbo, Anders; Jensen, Arne

    2009-01-01

    The objective of this article is to give a concise introduction to the discrete wavelet transform (DWT) based on a technique called lifting. The lifting technique allows one to give an elementary, but rigorous, definition of the DWT, with modest requirements on the reader. A basic knowledge...... of linear algebra and signal processing will suffice. The lifting based definition is equivalent to the usual filer bank based definition of the DWT. The article does not discuss applications in any detail. The reader is referred to other articles in this collection....

  11. Fault diagnosis of rolling bearing based on second generation wavelet denoising and morphological filter

    International Nuclear Information System (INIS)

    Meng, Lingjie; Xiang, Jiawei; Zhong, Yongteng; Song, Wenlei

    2015-01-01

    Defective rolling bearing response is often characterized by the presence of periodic impulses. However, the in-situ sampled vibration signal is ordinarily mixed with ambient noises and easy to be interfered even submerged. The hybrid approach combining the second generation wavelet denoising with morphological filter is presented. The raw signal is purified using the second generation wavelet. The difference between the closing and opening operator is employed as the morphology filter to extract the periodicity impulsive features from the purified signal and the defect information is easily to be extracted from the corresponding frequency spectrum. The proposed approach is evaluated by simulations and vibration signals from defective bearings with inner race fault, outer race fault, rolling element fault and compound faults, espectively. Results show that the ambient noises can be fully restrained and the defect information of the above defective bearings is well extracted, which demonstrates that the approach is feasible and effective for the fault detection of rolling bearing.

  12. Wavelet analysis of interannual LOD, AAM, and ENSO: 1997-98 El Niño and 1998-99 La Niña signals

    Science.gov (United States)

    Zhou, Y. H.; Zheng, D. W.; Liao, X. H.

    2001-05-01

    On the basis of the data series of the length of day (LOD), the atmospheric angular momentum (AAM) and the Southern Oscillation Index (SOI) for January 1970-June 1999, the relationship among Interannual LOD, AAM, and the EL Niño/Southern Oscillation (ENSO) is analyzed by the wavelet transform method. The results suggest that they have similar time-varying spectral structures. The signals of 1997-98 El Niño and 1998-99 La Niña events can be detected from the LOD or AAM data.

  13. Wavelet transform based on inner product in fault diagnosis of rotating machinery: A review

    Science.gov (United States)

    Chen, Jinglong; Li, Zipeng; Pan, Jun; Chen, Gaige; Zi, Yanyang; Yuan, Jing; Chen, Binqiang; He, Zhengjia

    2016-03-01

    As a significant role in industrial equipment, rotating machinery fault diagnosis (RMFD) always draws lots of attention for guaranteeing product quality and improving economic benefit. But non-stationary vibration signal with a large amount of noise on abnormal condition of weak fault or compound fault in many cases would lead to this task challenging. As one of the most powerful non-stationary signal processing techniques, wavelet transform (WT) has been extensively studied and widely applied in RMFD. Numerous publications about the study and applications of WT for RMFD have been presented to academic journals, technical reports and conference proceedings. Many previous publications admit that WT can be realized by means of inner product principle of signal and wavelet base. This paper verifies the essence on inner product operation of WT by simulation and field experiments. Then the development process of WT based on inner product is concluded and the applications of major developments in RMFD are also summarized. Finally, super wavelet transform as an important prospect of WT based on inner product are presented and discussed. It is expected that this paper can offer an in-depth and comprehensive references for researchers and help them with finding out further research topics.

  14. Harmonic analysis of traction power supply system based on wavelet decomposition

    Science.gov (United States)

    Dun, Xiaohong

    2018-05-01

    With the rapid development of high-speed railway and heavy-haul transport, AC drive electric locomotive and EMU large-scale operation in the country on the ground, the electrified railway has become the main harmonic source of China's power grid. In response to this phenomenon, the need for timely monitoring of power quality problems of electrified railway, assessment and governance. Wavelet transform is developed on the basis of Fourier analysis, the basic idea comes from the harmonic analysis, with a rigorous theoretical model, which has inherited and developed the local thought of Garbor transformation, and has overcome the disadvantages such as window fixation and lack of discrete orthogonally, so as to become a more recently studied spectral analysis tool. The wavelet analysis takes the gradual and precise time domain step in the high frequency part so as to focus on any details of the signal being analyzed, thereby comprehensively analyzing the harmonics of the traction power supply system meanwhile use the pyramid algorithm to increase the speed of wavelet decomposition. The matlab simulation shows that the use of wavelet decomposition of the traction power supply system for harmonic spectrum analysis is effective.

  15. Wavelet entropy of BOLD time series : an application to Rolandic epilepsy

    NARCIS (Netherlands)

    Gupta, Lalit; Jansen, Jacobus F.A.; Hofman, Paul A.M.; Besseling, René M.H.; de Louw, Anton J.A.; Aldenkamp, Albert P.; Backes, Walter H.

    2017-01-01

    Purpose: To assess the wavelet entropy for the characterization of intrinsic aberrant temporal irregularities in the time series of resting-state blood-oxygen-level-dependent (BOLD) signal fluctuations. Further, to evaluate the temporal irregularities (disorder/order) on a voxel-by-voxel basis in

  16. Wavelet domain image restoration with adaptive edge-preserving regularization.

    Science.gov (United States)

    Belge, M; Kilmer, M E; Miller, E L

    2000-01-01

    In this paper, we consider a wavelet based edge-preserving regularization scheme for use in linear image restoration problems. Our efforts build on a collection of mathematical results indicating that wavelets are especially useful for representing functions that contain discontinuities (i.e., edges in two dimensions or jumps in one dimension). We interpret the resulting theory in a statistical signal processing framework and obtain a highly flexible framework for adapting the degree of regularization to the local structure of the underlying image. In particular, we are able to adapt quite easily to scale-varying and orientation-varying features in the image while simultaneously retaining the edge preservation properties of the regularizer. We demonstrate a half-quadratic algorithm for obtaining the restorations from observed data.

  17. A combined approach for the enhancement and segmentation of mammograms using modified fuzzy C-means method in wavelet domain.

    Science.gov (United States)

    Srivastava, Subodh; Sharma, Neeraj; Singh, S K; Srivastava, R

    2014-07-01

    In this paper, a combined approach for enhancement and segmentation of mammograms is proposed. In preprocessing stage, a contrast limited adaptive histogram equalization (CLAHE) method is applied to obtain the better contrast mammograms. After this, the proposed combined methods are applied. In the first step of the proposed approach, a two dimensional (2D) discrete wavelet transform (DWT) is applied to all the input images. In the second step, a proposed nonlinear complex diffusion based unsharp masking and crispening method is applied on the approximation coefficients of the wavelet transformed images to further highlight the abnormalities such as micro-calcifications, tumours, etc., to reduce the false positives (FPs). Thirdly, a modified fuzzy c-means (FCM) segmentation method is applied on the output of the second step. In the modified FCM method, the mutual information is proposed as a similarity measure in place of conventional Euclidian distance based dissimilarity measure for FCM segmentation. Finally, the inverse 2D-DWT is applied. The efficacy of the proposed unsharp masking and crispening method for image enhancement is evaluated in terms of signal-to-noise ratio (SNR) and that of the proposed segmentation method is evaluated in terms of random index (RI), global consistency error (GCE), and variation of information (VoI). The performance of the proposed segmentation approach is compared with the other commonly used segmentation approaches such as Otsu's thresholding, texture based, k-means, and FCM clustering as well as thresholding. From the obtained results, it is observed that the proposed segmentation approach performs better and takes lesser processing time in comparison to the standard FCM and other segmentation methods in consideration.

  18. Wavelet-space correlation imaging for high-speed MRI without motion monitoring or data segmentation.

    Science.gov (United States)

    Li, Yu; Wang, Hui; Tkach, Jean; Roach, David; Woods, Jason; Dumoulin, Charles

    2015-12-01

    This study aims to (i) develop a new high-speed MRI approach by implementing correlation imaging in wavelet-space, and (ii) demonstrate the ability of wavelet-space correlation imaging to image human anatomy with involuntary or physiological motion. Correlation imaging is a high-speed MRI framework in which image reconstruction relies on quantification of data correlation. The presented work integrates correlation imaging with a wavelet transform technique developed originally in the field of signal and image processing. This provides a new high-speed MRI approach to motion-free data collection without motion monitoring or data segmentation. The new approach, called "wavelet-space correlation imaging", is investigated in brain imaging with involuntary motion and chest imaging with free-breathing. Wavelet-space correlation imaging can exceed the speed limit of conventional parallel imaging methods. Using this approach with high acceleration factors (6 for brain MRI, 16 for cardiac MRI, and 8 for lung MRI), motion-free images can be generated in static brain MRI with involuntary motion and nonsegmented dynamic cardiac/lung MRI with free-breathing. Wavelet-space correlation imaging enables high-speed MRI in the presence of involuntary motion or physiological dynamics without motion monitoring or data segmentation. © 2014 Wiley Periodicals, Inc.

  19. Wavelets y sus aplicaciones

    OpenAIRE

    Castro, Liliana Raquel; Castro, Silvia Mabel

    1995-01-01

    Se presenta una introducción a la teorfa de wavelets. Ademas, se da una revisión histórica de cómo fueron introducidas las wavelets para la representación de funciones. Se efectúa una comparación entre la transformada wavelet y la transformada de Fourier. Por último, se presentan también algunas de los múltiples aplicaciones de esta nueva herramienta de análisis armónico.

  20. Noise in Neural Networks: Thresholds, Hysteresis, and Neuromodulation of Signal-To-Noise

    Science.gov (United States)

    Keeler, James D.; Pichler, Elgar E.; Ross, John

    1989-03-01

    We study a neural-network model including Gaussian noise, higher-order neuronal interactions, and neuromodulation. For a first-order network, there is a threshold in the noise level (phase transition) above which the network displays only disorganized behavior and critical slowing down near the noise threshold. The network can tolerate more noise if it has higher-order feedback interactions, which also lead to hysteresis and multistability in the network dynamics. The signal-to-noise ratio can be adjusted in a biological neural network by neuromodulators such as norepinephrine. Comparisons are made to experimental results and further investigations are suggested to test the effects of hysteresis and neuromodulation in pattern recognition and learning. We propose that norepinephrine may ``quench'' the neural patterns of activity to enhance the ability to learn details.

  1. A high-resolution processing technique for improving the energy of weak signal based on matching pursuit

    Directory of Open Access Journals (Sweden)

    Shuyan Wang

    2016-05-01

    Full Text Available This paper proposes a new method to improve the resolution of the seismic signal and to compensate the energy of weak seismic signal based on matching pursuit. With a dictionary of Morlet wavelets, matching pursuit algorithm can decompose a seismic trace into a series of wavelets. We abstract complex-trace attributes from analytical expressions to shrink the search range of amplitude, frequency and phase. In addition, considering the level of correlation between constituent wavelets and average wavelet abstracted from well-seismic calibration, we can obtain the search range of scale which is an important adaptive parameter to control the width of wavelet in time and the bandwidth of frequency. Hence, the efficiency of selection of proper wavelets is improved by making first a preliminary estimate and refining a local selecting range. After removal of noise wavelets, we integrate useful wavelets which should be firstly executed by adaptive spectral whitening technique. This approach can improve the resolutions of seismic signal and enhance the energy of weak wavelets simultaneously. The application results of real seismic data show this method has a good perspective of application.

  2. Data-driven haemodynamic response function extraction using Fourier-wavelet regularised deconvolution

    Directory of Open Access Journals (Sweden)

    Roerdink Jos BTM

    2008-04-01

    Full Text Available Abstract Background We present a simple, data-driven method to extract haemodynamic response functions (HRF from functional magnetic resonance imaging (fMRI time series, based on the Fourier-wavelet regularised deconvolution (ForWaRD technique. HRF data are required for many fMRI applications, such as defining region-specific HRFs, effciently representing a general HRF, or comparing subject-specific HRFs. Results ForWaRD is applied to fMRI time signals, after removing low-frequency trends by a wavelet-based method, and the output of ForWaRD is a time series of volumes, containing the HRF in each voxel. Compared to more complex methods, this extraction algorithm requires few assumptions (separability of signal and noise in the frequency and wavelet domains and the general linear model and it is fast (HRF extraction from a single fMRI data set takes about the same time as spatial resampling. The extraction method is tested on simulated event-related activation signals, contaminated with noise from a time series of real MRI images. An application for HRF data is demonstrated in a simple event-related experiment: data are extracted from a region with significant effects of interest in a first time series. A continuous-time HRF is obtained by fitting a nonlinear function to the discrete HRF coeffcients, and is then used to analyse a later time series. Conclusion With the parameters used in this paper, the extraction method presented here is very robust to changes in signal properties. Comparison of analyses with fitted HRFs and with a canonical HRF shows that a subject-specific, regional HRF significantly improves detection power. Sensitivity and specificity increase not only in the region from which the HRFs are extracted, but also in other regions of interest.

  3. Study of the oscillations event of the CNLV-U1 with Wavelets techniques

    International Nuclear Information System (INIS)

    Amador G, R.; Nunez C, A.; Prieto G, A.; Espinosa P, G.

    2004-01-01

    Presently work is described and the techniques are applied of the Fourier Transformation in Short Time, the Continuous Transformation of Wavelets and the Multi resolution Analysis for the analysis of the event of oscillations of power in the Nuclear Power station of Laguna Verde Unit 1 happened in January of 1995. In general, the wavelets techniques allows to carry out studies of the different signals generated by a nuclear plant in the plane Time-frequency, Time-scale as well as the decomposition of the signals. The results obtained study presently demonstrate that the frequency of the event of oscillations in the Nuclear Power station of Laguna Verde Unit 1 are approximately 0.52 Hz for the 3 analysis techniques, besides being observed the evolution of the frequency in function of the time. (Author)

  4. Design of a Biorthogonal Wavelet Transform Based R-Peak Detection and Data Compression Scheme for Implantable Cardiac Pacemaker Systems.

    Science.gov (United States)

    Kumar, Ashish; Kumar, Manjeet; Komaragiri, Rama

    2018-04-19

    Bradycardia can be modulated using the cardiac pacemaker, an implantable medical device which sets and balances the patient's cardiac health. The device has been widely used to detect and monitor the patient's heart rate. The data collected hence has the highest authenticity assurance and is convenient for further electric stimulation. In the pacemaker, ECG detector is one of the most important element. The device is available in its new digital form, which is more efficient and accurate in performance with the added advantage of economical power consumption platform. In this work, a joint algorithm based on biorthogonal wavelet transform and run-length encoding (RLE) is proposed for QRS complex detection of the ECG signal and compressing the detected ECG data. Biorthogonal wavelet transform of the input ECG signal is first calculated using a modified demand based filter bank architecture which consists of a series combination of three lowpass filters with a highpass filter. Lowpass and highpass filters are realized using a linear phase structure which reduces the hardware cost of the proposed design approximately by 50%. Then, the location of the R-peak is found by comparing the denoised ECG signal with the threshold value. The proposed R-peak detector achieves the highest sensitivity and positive predictivity of 99.75 and 99.98 respectively with the MIT-BIH arrhythmia database. Also, the proposed R-peak detector achieves a comparatively low data error rate (DER) of 0.002. The use of RLE for the compression of detected ECG data achieves a higher compression ratio (CR) of 17.1. To justify the effectiveness of the proposed algorithm, the results have been compared with the existing methods, like Huffman coding/simple predictor, Huffman coding/adaptive, and slope predictor/fixed length packaging.

  5. Construction of Orthonormal Piecewise Polynomial Scaling and Wavelet Bases on Non-Equally Spaced Knots

    Directory of Open Access Journals (Sweden)

    Jean Pierre Astruc

    2007-01-01

    Full Text Available This paper investigates the mathematical framework of multiresolution analysis based on irregularly spaced knots sequence. Our presentation is based on the construction of nested nonuniform spline multiresolution spaces. From these spaces, we present the construction of orthonormal scaling and wavelet basis functions on bounded intervals. For any arbitrary degree of the spline function, we provide an explicit generalization allowing the construction of the scaling and wavelet bases on the nontraditional sequences. We show that the orthogonal decomposition is implemented using filter banks where the coefficients depend on the location of the knots on the sequence. Examples of orthonormal spline scaling and wavelet bases are provided. This approach can be used to interpolate irregularly sampled signals in an efficient way, by keeping the multiresolution approach.

  6. Lock threshold deterioration induced by antenna vibration and signal coupling effects in hypersonic vehicle carrier tracking system of Ka band

    Directory of Open Access Journals (Sweden)

    Congying ZHU

    2018-04-01

    Full Text Available The envelope of a hypersonic vehicle is affected by severe fluctuating pressure, which causes the airborne antenna to vibrate slightly. This vibration mixes with the transmitted signals and thus introduces additional multiplicative phase noise. Antenna vibration and signal coupling effects as well as their influence on the lock threshold of the hypersonic vehicle carrier tracking system of the Ka band are investigated in this study. A vibration model is initially established to obtain phase noise in consideration of the inherent relationship between vibration displacement and electromagnetic wavelength. An analytical model of the Phase-Locked Loop (PLL, which is widely used in carrier tracking systems, is established. The coupling effects on carrier tracking performance are investigated and quantitatively analyzed by imposing the multiplicative phase noise on the PLL model. Simulation results show that the phase noise presents a Gaussian distribution and is similar to vibration displacement variation. A large standard deviation in vibration displacement exerts a significant effect on the lock threshold. A critical standard deviation is observed in the PLL of Binary Phase Shift Keying (BPSK and Quadrature Phase Shift Keying (QPSK signals. The effect on QPSK signals is more severe than that on BPSK signals. The maximum tolerable standard deviations normalized by the wavelength of the carrier are 0.04 and 0.02 for BPSK and QPSK signals, respectively. With these critical standard deviations, lock thresholds are increased from −12 and −4 dB to 3 and −2 dB, respectively. Keywords: Antenna vibration, Carrier tracking performance, Lock threshold, Phase locked loop, Tracking Telemetry and Command (TT&C signals

  7. Use of muscle synergies and wavelet transforms to identify fatigue during squatting.

    Science.gov (United States)

    Smale, Kenneth B; Shourijeh, Mohammad S; Benoit, Daniel L

    2016-06-01

    The objective of this study was to supplement continuous wavelet transforms with muscle synergies in a fatigue analysis to better describe the combination of decreased firing frequency and altered activation profiles during dynamic muscle contractions. Nine healthy young individuals completed the dynamic tasks before and after they squatted with a standard Olympic bar until complete exhaustion. Electromyography (EMG) profiles were analyzed with a novel concatenated non-negative matrix factorization method that decomposed EMG signals into muscle synergies. Muscle synergy analysis provides the activation pattern of the muscles while continuous wavelet transforms output the temporal frequency content of the EMG signals. Synergy analysis revealed subtle changes in two-legged squatting after fatigue while differences in one-legged squatting were more pronounced and included the shift from a general co-activation of muscles in the pre-fatigue state to a knee extensor dominant weighting post-fatigue. Continuous wavelet transforms showed major frequency content decreases in two-legged squatting after fatigue while very few frequency changes occurred in one-legged squatting. It was observed that the combination of methods is an effective way of describing muscle fatigue and that muscle activation patterns play a very important role in maintaining the overall joint kinetics after fatigue. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. A stethoscope with wavelet separation of cardiac and respiratory sounds for real time telemedicine implemented on field-programmable gate array

    Science.gov (United States)

    Castro, Víctor M.; Muñoz, Nestor A.; Salazar, Antonio J.

    2015-01-01

    Auscultation is one of the most utilized physical examination procedures for listening to lung, heart and intestinal sounds during routine consults and emergencies. Heart and lung sounds overlap in the thorax. An algorithm was used to separate them based on the discrete wavelet transform with multi-resolution analysis, which decomposes the signal into approximations and details. The algorithm was implemented in software and in hardware to achieve real-time signal separation. The heart signal was found in detail eight and the lung signal in approximation six. The hardware was used to separate the signals with a delay of 256 ms. Sending wavelet decomposition data - instead of the separated full signa - allows telemedicine applications to function in real time over low-bandwidth communication channels.

  9. Comparison among Wavelet filters and others in the frequency domain for reducing Poisson noise in head CT

    International Nuclear Information System (INIS)

    Perez Diaz, M.; Ruiz Gonzalez, Y.; Lorenzo Ginori, J. V.

    2015-01-01

    This paper describes a comparison among some wavelet filters and other most traditional filters in the frequency domain like Median, Wiener and Butter worth to reduce Poisson noise in Computed Tomography (CT) scans. Five slices of CT containing the posterior fossa from an anthropomorphic phantom and from patients were selected. As their original projections contain noise from the acquisition process, some simulated noise-free lesions were added on the images. After that, the whole images were artificially contaminated with Poisson noise over the sinogram-space. The configurations using wavelets drawn from four wavelet families, using various decomposition levels, and different thresholds, were tested in order to determine de-noising performance as well as the rest of the traditional filters. The quality of the resulting images was evaluated by using Contrast to Noise Ratio (CNR), HVS absolute norm (H1), and Structural Similarity Index (SSIM) as quantitative metrics. We have observed that Wavelet filtering is an alternative to be considered for Poisson noise reduction in image processing of posterior fossa images for head CT with similar behavior to Butter worth and better than Median or Wiener filters for the developed experiment. (Author)

  10. Defective pixel map creation based on wavelet analysis in digital radiography detectors

    International Nuclear Information System (INIS)

    Park, Chun Joo; Lee, Hyoung Koo; Song, William Y.; Achterkirchen, Thorsten Graeve; Kim, Ho Kyung

    2011-01-01

    The application of digital radiography detectors has attracted increasing attention in both medicine and industry. Since the imaging detectors are fabricated by semiconductor manufacturing process over large areas, defective pixels in the detectors are unavoidable. Moreover, the radiation damage due to the routine use of the detectors progressively increases the density of defective pixels. In this study, we present a method of identifying defective pixels in digital radiography detectors based on wavelet analysis. Artifacts generated due to wavelet transformations have been prevented by an additional local threshold method. The proposed method was applied to a sample digital radiography and the result was promising. The proposed method uses a single pair of dark and white images and does not require them to be corrected in gain-and-offset properties. This method will be helpful for the reliable use of digital radiography detectors through the working lifetime.

  11. Target recognition by wavelet transform

    International Nuclear Information System (INIS)

    Li Zhengdong; He Wuliang; Zheng Xiaodong; Cheng Jiayuan; Peng Wen; Pei Chunlan; Song Chen

    2002-01-01

    Wavelet transform has an important character of multi-resolution power, which presents pyramid structure, and this character coincides the way by which people distinguish object from coarse to fineness and from large to tiny. In addition to it, wavelet transform benefits to reducing image noise, simplifying calculation, and embodying target image characteristic point. A method of target recognition by wavelet transform is provided

  12. Application of wavelet analysis to detect dysfunction in cerebral blood flow autoregulation during experimental hyperhomocysteinaemia.

    Science.gov (United States)

    Aleksandrin, Valery V; Ivanov, Alexander V; Virus, Edward D; Bulgakova, Polina O; Kubatiev, Aslan A

    2018-04-03

    The purpose of the present study was to investigate the use of laser Doppler flowmetry (LDF) signals coupled with spectral wavelet analysis to detect endothelial link dysfunction in the autoregulation of cerebral blood flow in the setting of hyperhomocysteinaemia (HHcy). Fifty-one rats were assigned to three groups (intact, control, and HHcy) according to the results of biochemical assays of homocysteine level in blood plasma. LDF signals on the rat brain were recorded by LAKK-02 device to measure the microcirculatory blood flow. The laser operating wavelength and output power density were1064 nm and 0.051 W/mm 2 , respectively. A Morlet mother wavelet transform was applied to the measured 8-min LDF signals, and periodic oscillations with five frequency intervals were identified (0.01-0.04 Hz, 0.04-0.15 Hz, 0.15-0.4 Hz, 0.4-2 Hz, and 2-5 Hz) corresponding to endothelial, neurogenic, myogenic, respiratory, and cardiac origins, respectively. In initial state, the amplitude of the oscillations decreased by 38% (P wavelet analysis may be successfully applied to detect the dysfunction of the endothelial link in cerebral vessel tone and to reveal the pathological shift of lower limit of autoregulation.

  13. Non parametric denoising methods based on wavelets: Application to electron microscopy images in low exposure time

    International Nuclear Information System (INIS)

    Soumia, Sid Ahmed; Messali, Zoubeida; Ouahabi, Abdeldjalil; Trepout, Sylvain; Messaoudi, Cedric; Marco, Sergio

    2015-01-01

    The 3D reconstruction of the Cryo-Transmission Electron Microscopy (Cryo-TEM) and Energy Filtering TEM images (EFTEM) hampered by the noisy nature of these images, so that their alignment becomes so difficult. This noise refers to the collision between the frozen hydrated biological samples and the electrons beam, where the specimen is exposed to the radiation with a high exposure time. This sensitivity to the electrons beam led specialists to obtain the specimen projection images at very low exposure time, which resulting the emergence of a new problem, an extremely low signal-to-noise ratio (SNR). This paper investigates the problem of TEM images denoising when they are acquired at very low exposure time. So, our main objective is to enhance the quality of TEM images to improve the alignment process which will in turn improve the three dimensional tomography reconstructions. We have done multiple tests on special TEM images acquired at different exposure time 0.5s, 0.2s, 0.1s and 1s (i.e. with different values of SNR)) and equipped by Golding beads for helping us in the assessment step. We herein, propose a structure to combine multiple noisy copies of the TEM images. The structure is based on four different denoising methods, to combine the multiple noisy TEM images copies. Namely, the four different methods are Soft, the Hard as Wavelet-Thresholding methods, Bilateral Filter as a non-linear technique able to maintain the edges neatly, and the Bayesian approach in the wavelet domain, in which context modeling is used to estimate the parameter for each coefficient. To ensure getting a high signal-to-noise ratio, we have guaranteed that we are using the appropriate wavelet family at the appropriate level. So we have chosen âĂIJsym8âĂİ wavelet at level 3 as the most appropriate parameter. Whereas, for the bilateral filtering many tests are done in order to determine the proper filter parameters represented by the size of the filter, the range parameter and the

  14. Modeling Network Traffic in Wavelet Domain

    Directory of Open Access Journals (Sweden)

    Sheng Ma

    2004-12-01

    Full Text Available This work discovers that although network traffic has the complicated short- and long-range temporal dependence, the corresponding wavelet coefficients are no longer long-range dependent. Therefore, a "short-range" dependent process can be used to model network traffic in the wavelet domain. Both independent and Markov models are investigated. Theoretical analysis shows that the independent wavelet model is sufficiently accurate in terms of the buffer overflow probability for Fractional Gaussian Noise traffic. Any model, which captures additional correlations in the wavelet domain, only improves the performance marginally. The independent wavelet model is then used as a unified approach to model network traffic including VBR MPEG video and Ethernet data. The computational complexity is O(N for developing such wavelet models and generating synthesized traffic of length N, which is among the lowest attained.

  15. Neural network and wavelet average framing percentage energy for atrial fibrillation classification.

    Science.gov (United States)

    Daqrouq, K; Alkhateeb, A; Ajour, M N; Morfeq, A

    2014-03-01

    ECG signals are an important source of information in the diagnosis of atrial conduction pathology. Nevertheless, diagnosis by visual inspection is a difficult task. This work introduces a novel wavelet feature extraction method for atrial fibrillation derived from the average framing percentage energy (AFE) of terminal wavelet packet transform (WPT) sub signals. Probabilistic neural network (PNN) is used for classification. The presented method is shown to be a potentially effective discriminator in an automated diagnostic process. The ECG signals taken from the MIT-BIH database are used to classify different arrhythmias together with normal ECG. Several published methods were investigated for comparison. The best recognition rate selection was obtained for AFE. The classification performance achieved accuracy 97.92%. It was also suggested to analyze the presented system in an additive white Gaussian noise (AWGN) environment; 55.14% for 0dB and 92.53% for 5dB. It was concluded that the proposed approach of automating classification is worth pursuing with larger samples to validate and extend the present study. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Research and Implementation of Heart Sound Denoising

    Science.gov (United States)

    Liu, Feng; Wang, Yutai; Wang, Yanxiang

    Heart sound is one of the most important signals. However, the process of getting heart sound signal can be interfered with many factors outside. Heart sound is weak electric signal and even weak external noise may lead to the misjudgment of pathological and physiological information in this signal, thus causing the misjudgment of disease diagnosis. As a result, it is a key to remove the noise which is mixed with heart sound. In this paper, a more systematic research and analysis which is involved in heart sound denoising based on matlab has been made. The study of heart sound denoising based on matlab firstly use the powerful image processing function of matlab to transform heart sound signals with noise into the wavelet domain through wavelet transform and decomposition these signals in muli-level. Then for the detail coefficient, soft thresholding is made using wavelet transform thresholding to eliminate noise, so that a signal denoising is significantly improved. The reconstructed signals are gained with stepwise coefficient reconstruction for the processed detail coefficient. Lastly, 50HZ power frequency and 35 Hz mechanical and electrical interference signals are eliminated using a notch filter.

  17. Economic evaluation and cost-effectiveness thresholds: signals to firms and implications for R & D investment and innovation.

    Science.gov (United States)

    Vernon, John A; Goldberg, Robert; Golec, Joseph

    2009-01-01

    In this article we describe how reimbursement cost-effectiveness thresholds, per unit of health benefit, whether set explicitly or observed implicitly via historical reimbursement decisions, serve as a signal to firms about the commercial viability of their R&D projects (including candidate products for in-licensing). Traditional finance methods for R&D project valuations, such as net present value analyses (NPV), incorporate information from these payer reimbursement signals to help determine which R&D projects should be continued and which should be terminated (in the case of the latter because they yield an NPV important for reimbursement thresholds to reflect the economic value of the unit of health benefit being considered for reimbursement. Thresholds set too low (below the economic value of the health benefit) will result in R&D investment levels that are too low relative to the economic value of R&D (on the margin). Similarly, thresholds set too high (above the economic value of the health benefit) will result in inefficiently high levels of R&D spending. The US in particular, which represents approximately half of the global pharmaceutical market (based on sales), and which seems poised to begin undertaking cost effectiveness in a systematic way, needs to exert caution in setting policies that explicitly or implicitly establish cost-effectiveness reimbursement thresholds for healthcare products and technologies, such as pharmaceuticals.

  18. Wavelet Methods for Solving Fractional Order Differential Equations

    OpenAIRE

    A. K. Gupta; S. Saha Ray

    2014-01-01

    Fractional calculus is a field of applied mathematics which deals with derivatives and integrals of arbitrary orders. The fractional calculus has gained considerable importance during the past decades mainly due to its application in diverse fields of science and engineering such as viscoelasticity, diffusion of biological population, signal processing, electromagnetism, fluid mechanics, electrochemistry, and many more. In this paper, we review different wavelet methods for solving both linea...

  19. Online Epileptic Seizure Prediction Using Wavelet-Based Bi-Phase Correlation of Electrical Signals Tomography.

    Science.gov (United States)

    Vahabi, Zahra; Amirfattahi, Rasoul; Shayegh, Farzaneh; Ghassemi, Fahimeh

    2015-09-01

    Considerable efforts have been made in order to predict seizures. Among these methods, the ones that quantify synchronization between brain areas, are the most important methods. However, to date, a practically acceptable result has not been reported. In this paper, we use a synchronization measurement method that is derived according to the ability of bi-spectrum in determining the nonlinear properties of a system. In this method, first, temporal variation of the bi-spectrum of different channels of electro cardiography (ECoG) signals are obtained via an extended wavelet-based time-frequency analysis method; then, to compare different channels, the bi-phase correlation measure is introduced. Since, in this way, the temporal variation of the amount of nonlinear coupling between brain regions, which have not been considered yet, are taken into account, results are more reliable than the conventional phase-synchronization measures. It is shown that, for 21 patients of FSPEEG database, bi-phase correlation can discriminate the pre-ictal and ictal states, with very low false positive rates (FPRs) (average: 0.078/h) and high sensitivity (100%). However, the proposed seizure predictor still cannot significantly overcome the random predictor for all patients.

  20. The Use of Continuous Wavelet Transform Based on the Fast Fourier Transform in the Analysis of Multi-channel Electrogastrography Recordings.

    Science.gov (United States)

    Komorowski, Dariusz; Pietraszek, Stanislaw

    2016-01-01

    This paper presents the analysis of multi-channel electrogastrographic (EGG) signals using the continuous wavelet transform based on the fast Fourier transform (CWTFT). The EGG analysis was based on the determination of the several signal parameters such as dominant frequency (DF), dominant power (DP) and index of normogastria (NI). The use of continuous wavelet transform (CWT) allows for better visible localization of the frequency components in the analyzed signals, than commonly used short-time Fourier transform (STFT). Such an analysis is possible by means of a variable width window, which corresponds to the scale time of observation (analysis). Wavelet analysis allows using long time windows when we need more precise low-frequency information, and shorter when we need high frequency information. Since the classic CWT transform requires considerable computing power and time, especially while applying it to the analysis of long signals, the authors used the CWT analysis based on the fast Fourier transform (FFT). The CWT was obtained using properties of the circular convolution to improve the speed of calculation. This method allows to obtain results for relatively long records of EGG in a fairly short time, much faster than using the classical methods based on running spectrum analysis (RSA). In this study authors indicate the possibility of a parametric analysis of EGG signals using continuous wavelet transform which is the completely new solution. The results obtained with the described method are shown in the example of an analysis of four-channel EGG recordings, performed for a non-caloric meal.

  1. Group theoretical methods and wavelet theory: coorbit theory and applications

    Science.gov (United States)

    Feichtinger, Hans G.

    2013-05-01

    Before the invention of orthogonal wavelet systems by Yves Meyer1 in 1986 Gabor expansions (viewed as discretized inversion of the Short-Time Fourier Transform2 using the overlap and add OLA) and (what is now perceived as) wavelet expansions have been treated more or less at an equal footing. The famous paper on painless expansions by Daubechies, Grossman and Meyer3 is a good example for this situation. The description of atomic decompositions for functions in modulation spaces4 (including the classical Sobolev spaces) given by the author5 was directly modeled according to the corresponding atomic characterizations by Frazier and Jawerth,6, 7 more or less with the idea of replacing the dyadic partitions of unity of the Fourier transform side by uniform partitions of unity (so-called BUPU's, first named as such in the early work on Wiener-type spaces by the author in 19808). Watching the literature in the subsequent two decades one can observe that the interest in wavelets "took over", because it became possible to construct orthonormal wavelet systems with compact support and of any given degree of smoothness,9 while in contrast the Balian-Low theorem is prohibiting the existence of corresponding Gabor orthonormal bases, even in the multi-dimensional case and for general symplectic lattices.10 It is an interesting historical fact that* his construction of band-limited orthonormal wavelets (the Meyer wavelet, see11) grew out of an attempt to prove the impossibility of the existence of such systems, and the final insight was that it was not impossible to have such systems, and in fact quite a variety of orthonormal wavelet system can be constructed as we know by now. Meanwhile it is established wisdom that wavelet theory and time-frequency analysis are two different ways of decomposing signals in orthogonal resp. non-orthogonal ways. The unifying theory, covering both cases, distilling from these two situations the common group theoretical background lead to the

  2. Wavelet entropy characterization of elevated intracranial pressure.

    Science.gov (United States)

    Xu, Peng; Scalzo, Fabien; Bergsneider, Marvin; Vespa, Paul; Chad, Miller; Hu, Xiao

    2008-01-01

    Intracranial Hypertension (ICH) often occurs for those patients with traumatic brain injury (TBI), stroke, tumor, etc. Pathology of ICH is still controversial. In this work, we used wavelet entropy and relative wavelet entropy to study the difference existed between normal and hypertension states of ICP for the first time. The wavelet entropy revealed the similar findings as the approximation entropy that entropy during ICH state is smaller than that in normal state. Moreover, with wavelet entropy, we can see that ICH state has the more focused energy in the low wavelet frequency band (0-3.1 Hz) than the normal state. The relative wavelet entropy shows that the energy distribution in the wavelet bands between these two states is actually different. Based on these results, we suggest that ICH may be formed by the re-allocation of oscillation energy within brain.

  3. Continuous Wavelet Transform Analysis of Surface Electromyography for Muscle Fatigue Assessment on the Elbow Joint Motion

    Directory of Open Access Journals (Sweden)

    Triwiyanto Triwiyanto

    2017-01-01

    Full Text Available Studying muscle fatigue plays an important role in preventing the risks associated with musculoskeletal disorders. The effect of elbow-joint angle on time-frequency parameters during a repetitive motion provides valuable information in finding the most accurate position of the angle causing muscle fatigue. Therefore, the purpose of this study is to analyze the effect of muscle fatigue on the spectral and time-frequency domain parameters derived from electromyography (EMG signals using the Continuous Wavelet Transform (CWT. Four male participants were recruited to perform a repetitive motion (flexion and extension movements from a non-fatigue to fatigue condition. EMG signals were recorded from the biceps muscle. The recorded EMG signals were then analyzed offline using the complex Morlet wavelet. The time-frequency domain data were analyzed using the time-averaged wavelet spectrum (TAWS and the Scale-Average Wavelet Power (SAWP parameters. The spectral domain data were analyzed using the Instantaneous Mean Frequency (IMNF and the Instantaneous Mean Power Spectrum (IMNP parameters. The index of muscle fatigue was observed by calculating the increase of the IMNP and the decrease of the IMNF parameters. After performing a repetitive motion from non-fatigue to fatigue condition, the average of the IMNF value decreased by 15.69% and the average of the IMNP values increased by 84%, respectively. This study suggests that the reliable frequency band to detect muscle fatigue is 31.10-36.19Hz with linear regression parameters of 0.979mV^2Hz^(-1 and 0.0095mV^2Hz^(-1 for R^2 and slope, respectively.

  4. The development of the spatially correlated adjustment wavelet filter for atomic force microscopy data

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, Andrzej, E-mail: sikora@iel.wroc.pl [Electrotechnical Institute, Division of Electrotechnology and Materials Science, M. Skłodowskiej-Curie 55/61, 50-369 Wrocław (Poland); Rodak, Aleksander [Faculty of Electronics, Wrocław University of Technology, Janiszewskiego 11/17, 50-372 Wrocław (Poland); Unold, Olgierd [Institute of Computer Engineering, Control and Robotics, Faculty of Electronics, Wrocław University of Technology, Janiszewskiego 11/17, 50-372 Wrocław (Poland); Klapetek, Petr [Czech Metrology Institute, Okružní 31, 638 00 Brno (Czech Republic)

    2016-12-15

    In this paper a novel approach for the practical utilization of the 2D wavelet filter in terms of the artifacts removal from atomic force microscopy measurements results is presented. The utilization of additional data such as summary photodiode signal map is implemented in terms of the identification of the areas requiring the data processing, filtering settings optimization and the verification of the process performance. Such an approach allows to perform the filtering parameters adjustment by average user, while the straightforward method requires an expertise in this field. The procedure was developed as the function of the Gwyddion software. The examples of filtering the phase imaging and Electrostatic Force Microscopy measurement result are presented. As the wavelet filtering feature may remove a local artifacts, its superior efficiency over similar approach with 2D Fast Fourier Transformate based filter (2D FFT) can be noticed. - Highlights: • A novel approach to 2D wavelet-based filter for atomic force microscopy is shown. • The additional AFM measurement signal is used to adjust the filter. • Efficient removal of the local interference phenomena caused artifacts is presented.

  5. The development of the spatially correlated adjustment wavelet filter for atomic force microscopy data

    International Nuclear Information System (INIS)

    Sikora, Andrzej; Rodak, Aleksander; Unold, Olgierd; Klapetek, Petr

    2016-01-01

    In this paper a novel approach for the practical utilization of the 2D wavelet filter in terms of the artifacts removal from atomic force microscopy measurements results is presented. The utilization of additional data such as summary photodiode signal map is implemented in terms of the identification of the areas requiring the data processing, filtering settings optimization and the verification of the process performance. Such an approach allows to perform the filtering parameters adjustment by average user, while the straightforward method requires an expertise in this field. The procedure was developed as the function of the Gwyddion software. The examples of filtering the phase imaging and Electrostatic Force Microscopy measurement result are presented. As the wavelet filtering feature may remove a local artifacts, its superior efficiency over similar approach with 2D Fast Fourier Transformate based filter (2D FFT) can be noticed. - Highlights: • A novel approach to 2D wavelet-based filter for atomic force microscopy is shown. • The additional AFM measurement signal is used to adjust the filter. • Efficient removal of the local interference phenomena caused artifacts is presented.

  6. A New Method for Multisensor Data Fusion Based on Wavelet Transform in a Chemical Plant

    Directory of Open Access Journals (Sweden)

    Karim Salahshoor

    2014-07-01

    Full Text Available This paper presents a new multi-sensor data fusion method based on the combination of wavelet transform (WT and extended Kalman filter (EKF. Input data are first filtered by a wavelet transform via Daubechies wavelet “db4” functions and the filtered data are then fused based on variance weights in terms of minimum mean square error. The fused data are finally treated by extended Kalman filter for the final state estimation. The recent data are recursively utilized to apply wavelet transform and extract the variance of the updated data, which makes it suitable to be applied to both static and dynamic systems corrupted by noisy environments. The method has suitable performance in state estimation in comparison with the other alternative algorithms. A three-tank benchmark system has been adopted to comparatively demonstrate the performance merits of the method compared to a known algorithm in terms of efficiently satisfying signal-tonoise (SNR and minimum square error (MSE criteria.

  7. A neuro-fuzzy inference system for sensor failure detection using wavelet denoising, PCA and SPRT

    International Nuclear Information System (INIS)

    Na, Man Gyun

    2001-01-01

    In this work, a neuro-fuzzy inference system combined with the wavelet denoising, PCA(principal component analysis) and SPRT (sequential probability ratio test) methods is developed to detect the relevant sensor failure using other sensor signals. The wavelet denoising technique is applied to remove noise components in input signals into the neuro-fuzzy system. The PCA is used to reduce the dimension of an input space without losing a significant amount of information, The PCA makes easy the selection of the input signals into the neuro-fuzzy system. Also, a lower dimensional input space usually reduces the time necessary to train a neuro-fuzzy system. The parameters of the neuro-fuzzy inference system which estimates the relevant sensor signal are optimized by a genetic algorithm and a least-squares algorithm. The residuals between the estimated signals and the measured signals are used to detect whether the sensors are failed or not. The SPRT is used in this failure detection algorithm. The proposed sensor-monitoring algorithm was verified through applications to the pressurizer water level and the hot-leg flowrate sensors in pressurized water reactors

  8. Construction of wavelets with composite dilations

    International Nuclear Information System (INIS)

    Wu Guochang; Li Zhiqiang; Cheng Zhengxing

    2009-01-01

    In order to overcome classical wavelets' shortcoming in image processing problems, people developed many producing systems, which built up wavelet family. In this paper, the notion of AB-multiresolution analysis is generalized, and the corresponding theory is developed. For an AB-multiresolution analysis associated with any expanding matrices, we deduce that there exists a singe scaling function in its reducing subspace. Under some conditions, wavelets with composite dilations can be gotten by AB-multiresolution analysis, which permits the existence of fast implementation algorithm. Then, we provide an approach to design the wavelets with composite dilations by classic wavelets. Our way consists of separable and partly nonseparable cases. In each section, we construct all kinds of examples with nice properties to prove our theory.

  9. Wavelets a tutorial in theory and applications

    CERN Document Server

    1992-01-01

    Wavelets: A Tutorial in Theory and Applications is the second volume in the new series WAVELET ANALYSIS AND ITS APPLICATIONS. As a companion to the first volume in this series, this volume covers several of the most important areas in wavelets, ranging from the development of the basic theory such as construction and analysis of wavelet bases to an introduction of some of the key applications, including Mallat's local wavelet maxima technique in second generation image coding. A fairly extensive bibliography is also included in this volume.Key Features* Covers several of the

  10. Boosted bosons and wavelets

    CERN Document Server

    Søgaard, Andreas

    For the LHC Run 2 and beyond, experiments are pushing both the energy and the intensity frontier so the need for robust and efficient pile-up mitigation tools becomes ever more pressing. Several methods exist, relying on uniformity of pile-up, local correlations of charged to neutral particles, and parton shower shapes, all in $y − \\phi$ space. Wavelets are presented as tools for pile-up removal, utilising their ability to encode position and frequency information simultaneously. This allows for the separation of individual hadron collision events by angular scale and thus for subtracting of soft, diffuse/wide-angle contributions while retaining the hard, small-angle components from the hard event. Wavelet methods may utilise the same assumptions as existing methods, the difference being the underlying, novel representation. Several wavelet methods are proposed and their effect studied in simple toy simulation under conditions relevant for the LHC Run 2. One full pile-up mitigation tool (‘wavelet analysis...

  11. 3D High Resolution Mesh Deformation Based on Multi Library Wavelet Neural Network Architecture

    Science.gov (United States)

    Dhibi, Naziha; Elkefi, Akram; Bellil, Wajdi; Amar, Chokri Ben

    2016-12-01

    This paper deals with the features of a novel technique for large Laplacian boundary deformations using estimated rotations. The proposed method is based on a Multi Library Wavelet Neural Network structure founded on several mother wavelet families (MLWNN). The objective is to align features of mesh and minimize distortion with a fixed feature that minimizes the sum of the distances between all corresponding vertices. New mesh deformation method worked in the domain of Region of Interest (ROI). Our approach computes deformed ROI, updates and optimizes it to align features of mesh based on MLWNN and spherical parameterization configuration. This structure has the advantage of constructing the network by several mother wavelets to solve high dimensions problem using the best wavelet mother that models the signal better. The simulation test achieved the robustness and speed considerations when developing deformation methodologies. The Mean-Square Error and the ratio of deformation are low compared to other works from the state of the art. Our approach minimizes distortions with fixed features to have a well reconstructed object.

  12. A simple structure wavelet transform circuit employing function link neural networks and SI filters

    Science.gov (United States)

    Mu, Li; Yigang, He

    2016-12-01

    Signal processing by means of analog circuits offers advantages from a power consumption viewpoint. Implementing wavelet transform (WT) using analog circuits is of great interest when low-power consumption becomes an important issue. In this article, a novel simple structure WT circuit in analog domain is presented by employing functional link neural network (FLNN) and switched-current (SI) filters. First, the wavelet base is approximated using FLNN algorithms for giving a filter transfer function that is suitable for simple structure WT circuit implementation. Next, the WT circuit is constructed with the wavelet filter bank, whose impulse response is the approximated wavelet and its dilations. The filter design that follows is based on a follow-the-leader feedback (FLF) structure with multiple output bilinear SI integrators and current mirrors as the main building blocks. SI filter is well suited for this application since the dilation constant across different scales of the transform can be precisely implemented and controlled by the clock frequency of the circuit with the same system architecture. Finally, to illustrate the design procedure, a seventh-order FLNN-approximated Gaussian wavelet is implemented as an example. Simulations have successfully verified that the designed simple structure WT circuit has low sensitivity, low-power consumption and litter effect to the imperfections.

  13. Wavelet transforms as solutions of partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Zweig, G.

    1997-10-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Wavelet transforms are useful in representing transients whose time and frequency structure reflect the dynamics of an underlying physical system. Speech sound, pressure in turbulent fluid flow, or engine sound in automobiles are excellent candidates for wavelet analysis. This project focused on (1) methods for choosing the parent wavelet for a continuous wavelet transform in pattern recognition applications and (2) the more efficient computation of continuous wavelet transforms by understanding the relationship between discrete wavelet transforms and discretized continuous wavelet transforms. The most interesting result of this research is the finding that the generalized wave equation, on which the continuous wavelet transform is based, can be used to understand phenomena that relate to the process of hearing.

  14. Network Anomaly Detection Based on Wavelet Analysis

    Directory of Open Access Journals (Sweden)

    Ali A. Ghorbani

    2008-11-01

    Full Text Available Signal processing techniques have been applied recently for analyzing and detecting network anomalies due to their potential to find novel or unknown intrusions. In this paper, we propose a new network signal modelling technique for detecting network anomalies, combining the wavelet approximation and system identification theory. In order to characterize network traffic behaviors, we present fifteen features and use them as the input signals in our system. We then evaluate our approach with the 1999 DARPA intrusion detection dataset and conduct a comprehensive analysis of the intrusions in the dataset. Evaluation results show that the approach achieves high-detection rates in terms of both attack instances and attack types. Furthermore, we conduct a full day's evaluation in a real large-scale WiFi ISP network where five attack types are successfully detected from over 30 millions flows.

  15. Network Anomaly Detection Based on Wavelet Analysis

    Science.gov (United States)

    Lu, Wei; Ghorbani, Ali A.

    2008-12-01

    Signal processing techniques have been applied recently for analyzing and detecting network anomalies due to their potential to find novel or unknown intrusions. In this paper, we propose a new network signal modelling technique for detecting network anomalies, combining the wavelet approximation and system identification theory. In order to characterize network traffic behaviors, we present fifteen features and use them as the input signals in our system. We then evaluate our approach with the 1999 DARPA intrusion detection dataset and conduct a comprehensive analysis of the intrusions in the dataset. Evaluation results show that the approach achieves high-detection rates in terms of both attack instances and attack types. Furthermore, we conduct a full day's evaluation in a real large-scale WiFi ISP network where five attack types are successfully detected from over 30 millions flows.

  16. A review on applications of the wavelet transform techniques in spectral analysis

    International Nuclear Information System (INIS)

    Medhat, M.E.; Albdel-hafiez, A.; Hassan, M.F.; Ali, M.A.; Awaad, Z.

    2004-01-01

    Starting from 1989, a new technique known as wavelet transforms (WT) has been applied successfully for analysis of different types of spectra. WT offers certain advantages over Fourier transforms for analysis of signals. A review of using this technique through different fields of elemental analysis is presented

  17. Simultaneous Determination of Electrochemical Impedance of Lithium-ion Rechargeable Batteries with Measurement of Charge-discharge Curves by Wavelet Transformation

    International Nuclear Information System (INIS)

    Itagaki, Masayuki; Ueno, Masaki; Hoshi, Yoshinao; Shitanda, Isao

    2017-01-01

    Highlights: • Wavelet transformation (WT) was used to obtain electrochemical impedance (EI) from time domain data. • Complex Morlet mother wavelet was employed to transform current and voltage time series from time domain to frequency domain. • An analytical method to determine EI of LIRB at arbitrary state of charge was proposed. • EI of LIRB was determined at arbitrary state of charge without stopping galvanostatic polarization for charge and discharge. - Abstract: A new analytical method was developed to determine the electrochemical impedance of lithium-ion rechargeable batteries (LIRB) at an arbitrary state of charge (SOC). Wavelet transformation (WT) is one of the waveform analysis methods, which allows the determination of frequency domain data as a function of time. The frequency domain data are obtained by convolution integral of a mother wavelet and original time domain data via the WT. A complex Morlet mother wavelet is used to obtain the complex number data in the frequency domain. The time series data of input current and output voltage signals are recorded by superimposing the double pulse current as an input signal to constant charge current for the charge of LIRB without stopping galvanostatic polarization. The double pulse current is composed of symmetrical positive and negative square waves. In this case, the SOC of LIRB is not affected by the input signal because the total amount of charge calculated from double pulse current is 0C. The impedance spectrum of LIRB at SOC 25% is determined in the frequency range from 0.1 to 100 Hz during charge/discharge cycles without stopping galvanostatic polarization for the charge/discharge.

  18. Wavelet spectra of JACEE events

    International Nuclear Information System (INIS)

    Suzuki, Naomichi; Biyajima, Minoru; Ohsawa, Akinori.

    1995-01-01

    Pseudo-rapidity distributions of two high multiplicity events Ca-C and Si-AgBr observed by the JACEE are analyzed by a wavelet transform. Wavelet spectra of those events are calculated and compared with the simulation calculations. The wavelet spectrum of the Ca-C event somewhat resembles that simulated with the uniform random numbers. That of Si-AgBr event, however, is not reproduced by simulation calculations with Poisson random numbers, uniform random numbers, or a p-model. (author)

  19. Time-frequency feature analysis and recognition of fission neutrons signal based on support vector machine

    International Nuclear Information System (INIS)

    Jin Jing; Wei Biao; Feng Peng; Tang Yuelin; Zhou Mi

    2010-01-01

    Based on the interdependent relationship between fission neutrons ( 252 Cf) and fission chain ( 235 U system), the paper presents the time-frequency feature analysis and recognition in fission neutron signal based on support vector machine (SVM) through the analysis on signal characteristics and the measuring principle of the 252 Cf fission neutron signal. The time-frequency characteristics and energy features of the fission neutron signal are extracted by using wavelet decomposition and de-noising wavelet packet decomposition, and then applied to training and classification by means of support vector machine based on statistical learning theory. The results show that, it is effective to obtain features of nuclear signal via wavelet decomposition and de-noising wavelet packet decomposition, and the latter can reflect the internal characteristics of the fission neutron system better. With the training accomplished, the SVM classifier achieves an accuracy rate above 70%, overcoming the lack of training samples, and verifying the effectiveness of the algorithm. (authors)

  20. Adaptive dynamic inversion robust control for BTT missile based on wavelet neural network

    Science.gov (United States)

    Li, Chuanfeng; Wang, Yongji; Deng, Zhixiang; Wu, Hao

    2009-10-01

    A new nonlinear control strategy incorporated the dynamic inversion method with wavelet neural networks is presented for the nonlinear coupling system of Bank-to-Turn(BTT) missile in reentry phase. The basic control law is designed by using the dynamic inversion feedback linearization method, and the online learning wavelet neural network is used to compensate the inversion error due to aerodynamic parameter errors, modeling imprecise and external disturbance in view of the time-frequency localization properties of wavelet transform. Weights adjusting laws are derived according to Lyapunov stability theory, which can guarantee the boundedness of all signals in the whole system. Furthermore, robust stability of the closed-loop system under this tracking law is proved. Finally, the six degree-of-freedom(6DOF) simulation results have shown that the attitude angles can track the anticipant command precisely under the circumstances of existing external disturbance and in the presence of parameter uncertainty. It means that the dependence on model by dynamic inversion method is reduced and the robustness of control system is enhanced by using wavelet neural network(WNN) to reconstruct inversion error on-line.

  1. Gaussian-log-Gaussian wavelet trees, frequentist and Bayesian inference, and statistical signal processing applications

    DEFF Research Database (Denmark)

    Møller, Jesper; Jacobsen, Robert Dahl

    We introduce a promising alternative to the usual hidden Markov tree model for Gaussian wavelet coefficients, where their variances are specified by the hidden states and take values in a finite set. In our new model, the hidden states have a similar dependence structure but they are jointly Gaus...

  2. Wavelet-based prediction of oil prices

    International Nuclear Information System (INIS)

    Yousefi, Shahriar; Weinreich, Ilona; Reinarz, Dominik

    2005-01-01

    This paper illustrates an application of wavelets as a possible vehicle for investigating the issue of market efficiency in futures markets for oil. The paper provides a short introduction to the wavelets and a few interesting wavelet-based contributions in economics and finance are briefly reviewed. A wavelet-based prediction procedure is introduced and market data on crude oil is used to provide forecasts over different forecasting horizons. The results are compared with data from futures markets for oil and the relative performance of this procedure is used to investigate whether futures markets are efficiently priced

  3. Wavelet Denoising of Mobile Radiation Data

    International Nuclear Information System (INIS)

    Campbell, D.B.

    2008-01-01

    The FY08 phase of this project investigated the merits of video fusion as a method for mitigating the false alarms encountered by vehicle borne detection systems in an effort to realize performance gains associated with wavelet denoising. The fusion strategy exploited the significant correlations which exist between data obtained from radiation detectors and video systems with coincident fields of view. The additional information provided by optical systems can greatly increase the capabilities of these detection systems by reducing the burden of false alarms and through the generation of actionable information. The investigation into the use of wavelet analysis techniques as a means of filtering the gross-counts signal obtained from moving radiation detectors showed promise for vehicle borne systems. However, the applicability of these techniques to man-portable systems is limited due to minimal gains in performance over the rapid feedback available to system operators under walking conditions. Furthermore, the fusion of video holds significant promise for systems operating from vehicles or systems organized into stationary arrays; however, the added complexity and hardware required by this technique renders it infeasible for man-portable systems

  4. Wavelet transform for the evaluation of peak intensities in flow-injection analysis

    NARCIS (Netherlands)

    Bos, M.; Hoogendam, E.

    1992-01-01

    The application of the wavelet transform in the determination of peak intensities in flow-injection analysis was studied with regard to its properties of minimizing the effects of noise and baseline drift. The results indicate that for white noise and a favourable peak shape a signal-to-noise ratio

  5. Double-Wavelet Approach to Studying the Modulation Properties of Nonstationary Multimode Dynamics

    DEFF Research Database (Denmark)

    Sosnovtseva, Olga; Mosekilde, Erik; Pavlov, A.N.

    2005-01-01

    On the basis of double-wavelet analysis, the paper proposes a method to study interactions in the form of frequency and amplitude modulation in nonstationary multimode data series. Special emphasis is given to the problem of quantifying the strength of modulation for a fast signal by a coexisting...

  6. Medical image compression by using three-dimensional wavelet transformation

    International Nuclear Information System (INIS)

    Wang, J.; Huang, H.K.

    1996-01-01

    This paper proposes a three-dimensional (3-D) medical image compression method for computed tomography (CT) and magnetic resonance (MR) that uses a separable nonuniform 3-D wavelet transform. The separable wavelet transform employs one filter bank within two-dimensional (2-D) slices and then a second filter bank on the slice direction. CT and MR image sets normally have different resolutions within a slice and between slices. The pixel distances within a slice are normally less than 1 mm and the distance between slices can vary from 1 mm to 10 mm. To find the best filter bank in the slice direction, the authors use the various filter banks in the slice direction and compare the compression results. The results from the 12 selected MR and CT image sets at various slice thickness show that the Haar transform in the slice direction gives the optimum performance for most image sets, except for a CT image set which has 1 mm slice distance. Compared with 2-D wavelet compression, compression ratios of the 3-D method are about 70% higher for CT and 35% higher for MR image sets at a peak signal to noise ratio (PSNR) of 50 dB. In general, the smaller the slice distance, the better the 3-D compression performance

  7. Adaptive Wavelet Coding Applied in a Wireless Control System.

    Science.gov (United States)

    Gama, Felipe O S; Silveira, Luiz F Q; Salazar, Andrés O

    2017-12-13

    Wireless control systems can sense, control and act on the information exchanged between the wireless sensor nodes in a control loop. However, the exchanged information becomes susceptible to the degenerative effects produced by the multipath propagation. In order to minimize the destructive effects characteristic of wireless channels, several techniques have been investigated recently. Among them, wavelet coding is a good alternative for wireless communications for its robustness to the effects of multipath and its low computational complexity. This work proposes an adaptive wavelet coding whose parameters of code rate and signal constellation can vary according to the fading level and evaluates the use of this transmission system in a control loop implemented by wireless sensor nodes. The performance of the adaptive system was evaluated in terms of bit error rate (BER) versus E b / N 0 and spectral efficiency, considering a time-varying channel with flat Rayleigh fading, and in terms of processing overhead on a control system with wireless communication. The results obtained through computational simulations and experimental tests show performance gains obtained by insertion of the adaptive wavelet coding in a control loop with nodes interconnected by wireless link. These results enable the use of this technique in a wireless link control loop.

  8. Adaptive Wavelet Coding Applied in a Wireless Control System

    Directory of Open Access Journals (Sweden)

    Felipe O. S. Gama

    2017-12-01

    Full Text Available Wireless control systems can sense, control and act on the information exchanged between the wireless sensor nodes in a control loop. However, the exchanged information becomes susceptible to the degenerative effects produced by the multipath propagation. In order to minimize the destructive effects characteristic of wireless channels, several techniques have been investigated recently. Among them, wavelet coding is a good alternative for wireless communications for its robustness to the effects of multipath and its low computational complexity. This work proposes an adaptive wavelet coding whose parameters of code rate and signal constellation can vary according to the fading level and evaluates the use of this transmission system in a control loop implemented by wireless sensor nodes. The performance of the adaptive system was evaluated in terms of bit error rate (BER versus E b / N 0 and spectral efficiency, considering a time-varying channel with flat Rayleigh fading, and in terms of processing overhead on a control system with wireless communication. The results obtained through computational simulations and experimental tests show performance gains obtained by insertion of the adaptive wavelet coding in a control loop with nodes interconnected by wireless link. These results enable the use of this technique in a wireless link control loop.

  9. Nonlinear Prediction Model for Hydrologic Time Series Based on Wavelet Decomposition

    Science.gov (United States)

    Kwon, H.; Khalil, A.; Brown, C.; Lall, U.; Ahn, H.; Moon, Y.

    2005-12-01

    Traditionally forecasting and characterizations of hydrologic systems is performed utilizing many techniques. Stochastic linear methods such as AR and ARIMA and nonlinear ones such as statistical learning theory based tools have been extensively used. The common difficulty to all methods is the determination of sufficient and necessary information and predictors for a successful prediction. Relationships between hydrologic variables are often highly nonlinear and interrelated across the temporal scale. A new hybrid approach is proposed for the simulation of hydrologic time series combining both the wavelet transform and the nonlinear model. The present model employs some merits of wavelet transform and nonlinear time series model. The Wavelet Transform is adopted to decompose a hydrologic nonlinear process into a set of mono-component signals, which are simulated by nonlinear model. The hybrid methodology is formulated in a manner to improve the accuracy of a long term forecasting. The proposed hybrid model yields much better results in terms of capturing and reproducing the time-frequency properties of the system at hand. Prediction results are promising when compared to traditional univariate time series models. An application of the plausibility of the proposed methodology is provided and the results conclude that wavelet based time series model can be utilized for simulating and forecasting of hydrologic variable reasonably well. This will ultimately serve the purpose of integrated water resources planning and management.

  10. A wavelet transform algorithm for peak detection and application to powder x-ray diffraction data.

    Science.gov (United States)

    Gregoire, John M; Dale, Darren; van Dover, R Bruce

    2011-01-01

    Peak detection is ubiquitous in the analysis of spectral data. While many noise-filtering algorithms and peak identification algorithms have been developed, recent work [P. Du, W. Kibbe, and S. Lin, Bioinformatics 22, 2059 (2006); A. Wee, D. Grayden, Y. Zhu, K. Petkovic-Duran, and D. Smith, Electrophoresis 29, 4215 (2008)] has demonstrated that both of these tasks are efficiently performed through analysis of the wavelet transform of the data. In this paper, we present a wavelet-based peak detection algorithm with user-defined parameters that can be readily applied to the application of any spectral data. Particular attention is given to the algorithm's resolution of overlapping peaks. The algorithm is implemented for the analysis of powder diffraction data, and successful detection of Bragg peaks is demonstrated for both low signal-to-noise data from theta-theta diffraction of nanoparticles and combinatorial x-ray diffraction data from a composition spread thin film. These datasets have different types of background signals which are effectively removed in the wavelet-based method, and the results demonstrate that the algorithm provides a robust method for automated peak detection.

  11. SeismicWaveTool: Continuous and discrete wavelet analysis and filtering for multichannel seismic data

    Science.gov (United States)

    Galiana-Merino, J. J.; Rosa-Herranz, J. L.; Rosa-Cintas, S.; Martinez-Espla, J. J.

    2013-01-01

    A MATLAB-based computer code has been developed for the simultaneous wavelet analysis and filtering of multichannel seismic data. The considered time-frequency transforms include the continuous wavelet transform, the discrete wavelet transform and the discrete wavelet packet transform. The developed approaches provide a fast and precise time-frequency examination of the seismograms at different frequency bands. Moreover, filtering methods for noise, transients or even baseline removal, are implemented. The primary motivation is to support seismologists with a user-friendly and fast program for the wavelet analysis, providing practical and understandable results. Program summaryProgram title: SeismicWaveTool Catalogue identifier: AENG_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENG_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 611072 No. of bytes in distributed program, including test data, etc.: 14688355 Distribution format: tar.gz Programming language: MATLAB (MathWorks Inc.) version 7.8.0.347 (R2009a) or higher. Wavelet Toolbox is required. Computer: Developed on a MacBook Pro. Tested on Mac and PC. No computer-specific optimization was performed. Operating system: Any supporting MATLAB (MathWorks Inc.) v7.8.0.347 (R2009a) or higher. Tested on Mac OS X 10.6.8, Windows XP and Vista. Classification: 13. Nature of problem: Numerous research works have developed a great number of free or commercial wavelet based software, which provide specific solutions for the analysis of seismic data. On the other hand, standard toolboxes, packages or libraries, such as the MathWorks' Wavelet Toolbox for MATLAB, offer command line functions and interfaces for the wavelet analysis of one-component signals. Thus, software usually is focused on very specific problems

  12. Removing Eddy-current probe wobble noise from steam generator tubes testing using wavelet transform

    International Nuclear Information System (INIS)

    Lopez, Luiz Antonio Negro Martin; Ting, Daniel Kao Sun; Upadhyaya, Belle R.

    2005-01-01

    One of the most import nondestructive evaluation (NDE) applied to steam generator tubes inspection is the electromagnetic Eddy-Current testing (ECT). The signals generated in this NDE, in general, contain many noises which make difficult the interpretation and analysis of ECT signals. One of the noises present in the signals is the probe wobble noise, which is caused by the existing slack between the probe and the tube. In this work, Wavelet Transform (WT) is used in the probe wobble de-noising. WT is a relatively recent mathematical tool, which allows local analysis of non stationary signals such as ECT signals. This is a great advantage of WT when compared with other analysis tools such as Fourier Transform. However, using WT involves wavelets and coefficients selection as well as choosing the number of decomposition level needed. This work presents a probe wobble de-noising method when used in conjunction with the traditional ECT evaluation. Comparative results using several WT applied do Eddy-Current signals are presented in a reliable way, in other words, without loss of inherent defect information. A stainless steel tube, with 2 artificial defects generated by electro-erosion, was inspected by a ZETEC MIZ-17ET ECT equipment. The signals were de-noised through several different WT and the results are presented. The method offer good results and is a promising method because allows for the removal of Eddy-Current signals probe wobble effect without loss of essential signal information. (author)

  13. Comparison between wavelet and wavelet packet transform features for classification of faults in distribution system

    Science.gov (United States)

    Arvind, Pratul

    2012-11-01

    The ability to identify and classify all ten types of faults in a distribution system is an important task for protection engineers. Unlike transmission system, distribution systems have a complex configuration and are subjected to frequent faults. In the present work, an algorithm has been developed for identifying all ten types of faults in a distribution system by collecting current samples at the substation end. The samples are subjected to wavelet packet transform and artificial neural network in order to yield better classification results. A comparison of results between wavelet transform and wavelet packet transform is also presented thereby justifying the feature extracted from wavelet packet transform yields promising results. It should also be noted that current samples are collected after simulating a 25kv distribution system in PSCAD software.

  14. Numerical implementation of wavelet and fuzzy transform IFOC for three-phase induction motor

    DEFF Research Database (Denmark)

    Padamanaban, Sanjeevi Kumar; Daya, J.L. Febin; Blaabjerg, Frede

    2016-01-01

    This article elaborates the numerical implementation of a novel, indirect field-oriented control (IFOC) for induction motor drive by wave-let discrete transform/fuzzy logic interface system unique combination. The feedback (speed) error signal is a mixed component of multiple low and high frequen...

  15. Flow meter fault isolation in building central chilling systems using wavelet analysis

    International Nuclear Information System (INIS)

    Chen Youming; Hao Xiaoli; Zhang Guoqiang; Wang Shengwei

    2006-01-01

    This paper presents an approach to isolate flow meter faults in building central chilling systems. It mathematically explains the fault collinearity among the flow meters in central chilling systems and points out that the sensor validation index (SVI) used in principal component analysis (PCA) is incapable of isolating flow meter faults due to the fault collinearity. The wavelet transform is used to isolate the flow meter faults as a substitute for the SVI of PCA. This approach can identify various variations in measuring signals, such as ramp, step, discontinuity etc., due to the good property of the wavelet in local time-frequency. Some examples are given to demonstrate its ability of fault isolation for the flow meters

  16. Psychoacoustic Music Analysis Based on the Discrete Wavelet Packet Transform

    Directory of Open Access Journals (Sweden)

    Xing He

    2008-01-01

    Full Text Available Psychoacoustical computational models are necessary for the perceptual processing of acoustic signals and have contributed significantly in the development of highly efficient audio analysis and coding. In this paper, we present an approach for the psychoacoustic analysis of musical signals based on the discrete wavelet packet transform. The proposed method mimics the multiresolution properties of the human ear closer than other techniques and it includes simultaneous and temporal auditory masking. Experimental results show that this method provides better masking capabilities and it reduces the signal-to-masking ratio substantially more than other approaches, without introducing audible distortion. This model can lead to greater audio compression by permitting further bit rate reduction and more secure watermarking by providing greater signal space for information hiding.

  17. Cross wavelet analysis: significance testing and pitfalls

    Directory of Open Access Journals (Sweden)

    D. Maraun

    2004-01-01

    Full Text Available In this paper, we present a detailed evaluation of cross wavelet analysis of bivariate time series. We develop a statistical test for zero wavelet coherency based on Monte Carlo simulations. If at least one of the two processes considered is Gaussian white noise, an approximative formula for the critical value can be utilized. In a second part, typical pitfalls of wavelet cross spectra and wavelet coherency are discussed. The wavelet cross spectrum appears to be not suitable for significance testing the interrelation between two processes. Instead, one should rather apply wavelet coherency. Furthermore we investigate problems due to multiple testing. Based on these results, we show that coherency between ENSO and NAO is an artefact for most of the time from 1900 to 1995. However, during a distinct period from around 1920 to 1940, significant coherency between the two phenomena occurs.

  18. Wavelet Radiosity on Arbitrary Planar Surfaces

    OpenAIRE

    Holzschuch , Nicolas; Cuny , François; Alonso , Laurent

    2000-01-01

    Colloque avec actes et comité de lecture. internationale.; International audience; Wavelet radiosity is, by its nature, restricted to parallelograms or triangles. This paper presents an innovative technique enabling wavelet radiosity computations on planar surfaces of arbitrary shape, including concave contours or contours with holes. This technique replaces the need for triangulating such complicated shapes, greatly reducing the complexity of the wavelet radiosity algorithm and the computati...

  19. Multi-dimensional medical images compressed and filtered with wavelets

    International Nuclear Information System (INIS)

    Boyen, H.; Reeth, F. van; Flerackers, E.

    2002-01-01

    Full text: Using the standard wavelet decomposition methods, multi-dimensional medical images can be compressed and filtered by repeating the wavelet-algorithm on 1D-signals in an extra loop per extra dimension. In the non-standard decomposition for multi-dimensional images the areas that must be zero-filled in case of band- or notch-filters are more complex than geometric areas such as rectangles or cubes. Adding an additional dimension in this algorithm until 4D (e.g. a 3D beating heart) increases the geometric complexity of those areas even more. The aim of our study was to calculate the boundaries of the formed complex geometric areas, so we can use the faster non-standard decomposition to compress and filter multi-dimensional medical images. Because a lot of 3D medical images taken by PET- or SPECT-cameras have only a few layers in the Z-dimension and compressing images in a dimension with a few voxels is usually not worthwhile, we provided a solution in which one can choose which dimensions will be compressed or filtered. With the proposal of non-standard decomposition on Daubechies' wavelets D2 to D20 by Steven Gollmer in 1992, 1D data can be compressed and filtered. Each additional level works only on the smoothed data, so the transformation-time halves per extra level. Zero-filling a well-defined area alter the wavelet-transform and then performing the inverse transform will do the filtering. To be capable to compress and filter up to 4D-Images with the faster non-standard wavelet decomposition method, we have investigated a new method for calculating the boundaries of the areas which must be zero-filled in case of filtering. This is especially true for band- and notch filtering. Contrary to the standard decomposition method, the areas are no longer rectangles in 2D or cubes in 3D or a row of cubes in 4D: they are rectangles expanded with a half-sized rectangle in the other direction for 2D, cubes expanded with half cubes in one and quarter cubes in the

  20. Comparison on Integer Wavelet Transforms in Spherical Wavelet Based Image Based Relighting

    Institute of Scientific and Technical Information of China (English)

    WANGZe; LEEYin; LEUNGChising; WONGTientsin; ZHUYisheng

    2003-01-01

    To provide a good quality rendering in the Image based relighting (IBL) system, tremendous reference images under various illumination conditions are needed. Therefore data compression is essential to enable interactive action. And the rendering speed is another crucial consideration for real applications. Based on Spherical wavelet transform (SWT), this paper presents a quick representation method with Integer wavelet transform (IWT) for the IBL system. It focuses on comparison on different IWTs with the Embedded zerotree wavelet (EZW) used in the IBL system. The whole compression procedure contains two major compression steps. Firstly, SWT is applied to consider the correlation among different reference images. Secondly, the SW transformed images are compressed with IWT based image compression approach. Two IWTs are used and good results are showed in the simulations.